From 7074410877146d0d6204568cdad74d1d29604f6c Mon Sep 17 00:00:00 2001 From: ivy-seed Date: Mon, 25 Dec 2023 15:06:00 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20main=20from=20@=20unifyai/ivy@?= =?UTF-8?q?29ee1620899ea497f338ebb66e62ee22120aac3a=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- ...vy.data_classes.array.experimental.doctree | Bin 2207203 -> 2207158 bytes ...lasses.factorized_tensor.cp_tensor.doctree | Bin 116896 -> 116868 bytes ...lasses.factorized_tensor.tt_tensor.doctree | Bin 53462 -> 53384 bytes ...functional.ivy.experimental.layers.doctree | Bin 565456 -> 565442 bytes ...al.ivy.experimental.linear_algebra.doctree | Bin 433147 -> 433102 bytes ...ivy.experimental.layers.max_pool1d.doctree | Bin 77706 -> 77692 bytes ...ntal.linear_algebra.multi_mode_dot.doctree | Bin 59023 -> 58933 bytes .../ivy/ivy.functional.ivy.losses.doctree | Bin 70333 -> 70301 bytes .../ivy/ivy.functional.ivy.meta.doctree | Bin 95382 -> 95382 bytes ...al.ivy.losses.binary_cross_entropy.doctree | Bin 86669 -> 86637 bytes ...vy.functional.ivy.meta.fomaml_step.doctree | Bin 34830 -> 34830 bytes .../ivy.functional.ivy.meta.maml_step.doctree | Bin 37244 -> 37244 bytes ...y.functional.ivy.meta.reptile_step.doctree | Bin 26943 -> 26943 bytes ...ivy_tests.test_ivy.helpers.globals.doctree | Bin 33732 -> 33732 bytes .../docs/stateful/ivy.stateful.layers.doctree | Bin 316882 -> 316882 bytes ivy/.doctrees/environment.pickle | Bin 5543558 -> 5543558 bytes ivy/.doctrees/index.doctree | Bin 665423 -> 665423 bytes .../ivy.data_classes.array.experimental.html | 6 ++-- ...a_classes.factorized_tensor.cp_tensor.html | 4 +-- ...a_classes.factorized_tensor.tt_tensor.html | 6 ++-- ...vy.functional.ivy.experimental.layers.html | 2 +- ...ional.ivy.experimental.linear_algebra.html | 2 +- ...al.ivy.experimental.layers.max_pool1d.html | 2 +- ...imental.linear_algebra.multi_mode_dot.html | 8 ++--- .../ivy/ivy.functional.ivy.losses.html | 2 +- .../ivy/ivy.functional.ivy.meta.html | 6 ++-- ...ional.ivy.losses.binary_cross_entropy.html | 2 +- .../ivy.functional.ivy.meta.fomaml_step.html | 2 +- .../ivy.functional.ivy.meta.maml_step.html | 2 +- .../ivy.functional.ivy.meta.reptile_step.html | 2 +- .../ivy_tests.test_ivy.helpers.globals.html | 2 +- ivy/docs/stateful/ivy.stateful.layers.html | 34 +++++++++--------- ivy/searchindex.js | 2 +- 33 files changed, 42 insertions(+), 42 deletions(-) diff --git a/ivy/.doctrees/docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.doctree b/ivy/.doctrees/docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.doctree index c5daec61497012c114ee73e2d3f9879e9366be12..055d9c5753e7b90420495c651e42a9577e923a2d 100644 GIT binary patch delta 169259 zcmb4sd3+Vc(zeqH5J*mvIZGgrkOTxFYzd1BC=gIl_Nb@`YCu^Gpr9y-sGxv);Q}E* zgCGVF6qHpY$i9e(Yzh0O>>$d{bqD>Ps_My^gSp=K`y;l0BLJ8zlef!dGLO=I<+Kzo^vWQM!MIzmb|hN)Oo^ zyGH-j!1m=omSC5()Yqf*`sesu6efhXx;U> z;JtB&O4d}Z%)R?U?=4BO+o*1%h2tkj3&;KBS?fuiSIMrSUN=qRw!6tEDnt9)RLwP2 zXPaiIyf3D<`pnctIi&7^m=UI~ax2twfQ~MRJZS~aWQ|;TVx1};}x+~AFVK=h!T$QJp$_u3OG(D`Qoo=m?%D5S< z{Ft@ZRj<(0J1H!qIAcLnZR?6uL@`*=r_a~6A5~?>NC%f3BOP3Bj0`H2sj8}qG7Tz} zsjgZ#O50cLdY<_h{k;-;h4o6zUOP%>UV%PaqRJJ!I`q~5PCHp=g@pwsUA4RFQ|Y#C zWyr;}URJC%Ul*3O8f9-|k3A6;GlRo8yVvzE{+wzhgz$exEe zk>$Hh*E$uOn!l)?-Q7|zg4g$>>gop?*xOV;6qt<90;)fZ^}-N*;5&xy@OYU3C^>{4Vs zD_bAG)2`_mMwk^_mjFAcc;%7+6dw27rw&6u&7;bzZ^!7A=8>(eg930C>Uu4*J^(Ts z+0}0XNZA?19L)GRx{dm4jLwJ)Br9vI0NfCO$gvJU#uK(*cX%YW!c8da>-qd7$KrKS z6^Uk^kE~>Upr5+St^<;hYuD669}SPNrV(J0PMfJB)f8}ldsG!2xZD0o&u#8#<*u=! z70?;4M7CBBgC2-XRF8~ht*8gb>MLbor?SR6Y5`MqqKsNfK`nRbVJ+=A>n>f;)NZQ= zjh$3JI#CT4k<`nk`f#^Q6?DPF9={_KV~o}5HKY6rTx6zr8mMWg_OHltYPx}W&%k_K z1e4Oru6z?hhBrEy5Uxy(xm&FntL?tg^{8CvjTU6m(p~zo7WN$=<678#)B$-4#k%*{ zL+Ii3fsyr8L(tsF>P0$haIgKo{-c$nv)_!)Kv`$@IM$iv(~Dc#i8}2=RSR|}^M1_i zL~XaUX)L(4774BWCR+PVwANr8Y0bJr0EX7IYFqUfKxK?`4Tey~F^o|hSYgF=8pn#W zItx;VGNtPXPWK`lx8@84YYq^kIqOxbT3?~aiX&uF+;2L$wcU{}vx0eW+79*a5m%xGt))?%cs{NClG7nnB1n zO`i&x_C?*MlQR@*fO*+~c)+jx+qn)V!ZR)>k>T7p>pB~pUXjNPwVKs8B+{?!U zdfg*X(tJ^p0&i@%Kv{#wdd7z9wvXCX)LMChs_9`nO9#Njx<~DHh@)a2vn#2+s0h=j z3JnuSbDYr(A$)qx5O3m5y5ONG?Ih{7kJ!oTryvtNAaQfp?3l{>Mkjk5amK^38mN25 z7QF8LLdSP;x~bxL=_XL_rrSZOo9-Mhw!gkE?1I_aT&F+%x7q4NCsoulp0?u@s^@&< zX{8P`~xi!of@dVGuiu$=MyF0T~+Qa<2M(S|yYCX5RBYnP+9+aiuX{0YS>~9zL4?FC; zZB+o$=Zo~HzP@TyQ*~{;80VkHi`%-w)zx3)oxXKj7_N`@X#xU(ElfbCWW!DtJgUml zH5Ln$#md(^y4zjpGEc#!ge`(uQ}W04Kn$Qq_kmz(*>=^ ztfuF3WPrF1EL6`O+P9LLW>DtkI$Cl^2L|Q%UomkO*r(uNLoNpg)|Wwybp~Tc5ysyF z1OvoliR2=Keu@x`x^a!vZ8gy|p0g{1YPynKp0_Jme+D1N{SnXGtLQ$@ zvc{n9S@v~5dx!4)BD&-9K&LyBCP;UHa(CPTO5M>=A0LSBXfQ##qs4^cx+4+Yfr{K6 zpgi00p^a-clql60S!>=zV@ zEMx+xTgdJ&+Z%P~!68DqN*^hQDu$6*3t@q9O|kiZPdvJ9I)7>x52! z#jb$vDw6YDU zSvN_WFvMP{|9Hcg4y%^7UPEwKOXs`}^^NNkUPs+KQEX?+iQ?i~Oq3qYoLF3sR)(;( z@B{*9LCH|h0^n7Dyy`tsuOIAbZJGKnO>{bwg*;l)wjCi22nz`?SjeVol#vf*mJgKW ztEE33YCo$`WcgA--Mu+&m_1T|`KFOiEuE@zE8JV%nk0dA zUM(w9jX=2nA%ep<5&mC`%v6`qFs(k$Pjprv>FcqWd1|=*q$)WHy781(5tBq$;Z#O6 z?VaT43bG=q8&SGQ)@o4LEt7Q0Q!()hlvWy6s!n;=uApk-GI`T#2Iclij>gEAM4Omg z04$y3uTYK=nqo2EZW4#(9SlMngYb9}0xU^rbXgo9F9;t43`#$P@_G?UaeSorFUfqc zVsD_c??w9K{KO(9ru-cFfSL=4buslLCb@N(KXR0Pw`FbAUyjBq@#{&X=bAcsoL$P= zq|^TmhrDT$ZZ^(N(B1!ySme+oonw3I;oiD`+Zl8ZO{T{rW*fy+hi2E~B8G#tCcp0( zdxWKK(Js*I0(zZ6TPv?-yqN1?>ZNYI;zr+DJ^94YT%9)ti{J?(CJdYK+62-Po@bw3 zBgY=AZq*W3Ue}r9;kXK#Mn*cLI2F(S>apROR;%tS^8E@BC`Oqm8WX+NKLvu0W zFw!y-ebudgw6sh2%nMn67dDQ)Gp@UKQd2$XKTb{c&^n_=>}&b0CfM&->J81QDeKkz zm`V1XmYSqx@jqU3R!EJ}df1yWP1FJiO?jz#a@`uEyG(|0{K`DOK})V+k342=(EX;^ zwbTg|DOG^moGJhsrwU#LHzrl^Z)loQ1!0ppRiJJGebQH-(*%8|+P1o(_2PS?>!??? zPJc5tUcHPaDMc`OQfw6+Gtn*+el5G|WXTk~In8eALBhky6bwT9lqtCUc5-U|ZSUJ{ zEmdc-WD3epiCxCkBP6L%6W1weaL;6(whqx_h2INLQcXn264k z#i4<6c<>@BQr_St@PfR7>OWcL^c$0TPAl+u{9<$s&)ozpnFCa1YY)nq13g(X2U8}? zgq~<1W=-Y^%@Bv9tK9^_Avhp7JXkqdatEso#1{r)a}Z+jkFm9Hg5bmfAUJUV$`-S; z-ZI;6rcmT5`WPr#%#J{$gu%Euc7J{T6Gt7t8g+oOI%1}XI_xQ;4$l-(M};ZHs)JVh zsLJX9E%f_ZT2n+D4W{TBrG2eY92W330--d@&AKr4Sr@3!x_ESo=%UjUQD;ZP!qY(r zw=N6>>jDt03sBa@ulm9#upKC}E`AEtMgHfX+G&=ax6o0>gefvMKsgTh6fIBmRs`=n zH0FVU7#4+6N+e3g(qNyIhAL2zRROxVaZEE+03h;>yNoD1j3`HfqGbJn%!e6V27(Vg5W5376LV{d2OM^8x}L^Y>tuqPef zD;f@&WxPeRBN{qr@}77*P@WyV-jnDV2{eMCY>4V%U#--j;9Wx*{K>0+Hr7vJdFD=|E>Rw5J4 zu4<2-u>#B3J@1LDI=aH{Z~Z`Z>(ezJeW2V_p=oNJG==aR-IA(cveuuo(>#MhtSKA* z#Ho(quSox~;jcJV41f34_NNwdO6gxxXWXMITJ`eVt+hK^Ry(?866LL?iUYWBDmwrR zi`Xxb2JIHS-1o9^^7E`LN22gvd!uOsJM`By3bd3tomW9 zxR82N#f8+KDlX*K&2|IjnnuS{APr89W%0oY?(+lmS+zwSMs6NR4li>jC>{3z*SX>Hfv*7^c zNi%$!7}1f_WKsTR5M|snnKOh!UL_QTEh$jgl72i*Ea^OhGAD?#G>F2+G!%u6DNuMg zgR-%?Ul$f&_@YRo+q##)QdM(sPJZRhLi>At|3ODBr;S=bSuHnEe%Vt2Ic(O-A3;t^ zzhA6Y$gHC>YXy|ojw$cU+Oe|E+;6v5Nhp#rs`Y-6Ml##SRB|+85LhEXD5Svo-uF2( z+fo2p7=X+m04#cW$!8ml7!=ND1BKJF&l)~@3rtS~^HLC|7(QY<`vVFHtW!dwH0)_T z`GCEMF0)RtW_0Ux=Rte2u6cy)&wgh?KIeTIZ=mF(tToy?Y*)kYFvCyz$NHYLjDa~3E?F3t$sdDMPcmpS2#u%^>R5uog>9|ff( zV5jNgtvgPa(ed>3qVeTc1ErEtmDK>s?)p_gkh^|uxzHekhnPmgzer~F(p0d*viY(e)ppIy?AZ<$hUO9JYr&6jm<|_H68n6Jg9z6gA zT959X?pPsSk6t-#KVV(bjnCK>)fL0;1;g$iMeM@N_;ii4b~&fpVj=ap={lofY%O&L zkCP|di|VFD_Joym|MQ5Q*BvTbI_ZOuMn`;aw}%Jf+xi zKrf|r-WAxxl6j67dqIWei30=QyapQhfjF@8*X-M^nmY5E{i13 zVyOms;-ZfJWN%eY)u9dHFFwb^Aa=|v~J83OMr_!7eIL~ysMwMZl{Dk`>i}{y{oTXw|me%_^Q!3HOcIQ4kw7*?xese|i#S+ULvyV)MvK zr6$_9U{v3d+dn&1bun<+GsIZ|j-5m(92*mYrA^PFB9=m#6$r`-tfb?@y|2(^7BdNy zqW;eMa=15DJ%&D@Y26aNhiOfl_$9m#s+Fh=I})*ch76raCB3<77cNq;vd73=V3_+aMbyvp_jg`FVy!D!;PKt<-;@)$FK7*32R?DN2bBK`@a$AP^hW(Rpo4 z#jEl&p>E{X5@w3}%TXDFuIfxyKL%ZgGTxfbpev4(CNqVTW;12j-enM4{ohz&X}TGV zXADM`!FcZf17oDYc*kH2pQ-Im{{N*B&Z|Kq+@)L457dXtp;YO^VKLrTYV}O<1uJGs zAHu9qZnEN`5)ryltapssg{CQIwnP6J>rGQTpi9~!ZDV_DsZ(HsCdm%H(DrttdpyP3 zGz%}MelEH<)ay;6d(6gGNKb66fF$H0?!gp5=8DV_uV7wr8Nm-U+44a3S&l7FrT^HL zr{*8`fdSQGmYk<*3c4(2jgGDB_36a2-mdELS(2uDWR|R69-O7E5>c(x3$rAx^&HA{ z%xb844rM+lH3nr$R8g7Ew4ffZGMb`oW1TZ+$tq*vELmlI3hE@Pc9-|sYVIsC(%_1W zwADzbSMX}J3zz8>%e4yLCp?*iCr0`%G>P0){_q6vEK3~*V|0L}b472VI)DOM>C0%6 zT=oU3m6#0Bn=|h={DIZFNoTxJ^dmE`5AByz> zJ3JH52`42n69GWh2LLlFd0VO$AIk8*7kl7zekDTy+J7h$kpO795DGxSv2c*6k98=S zrh0xTONM6+N_RndF^Iy;g-{e;E`S{lZ9&;emC^-OyzeR$X)Iac1Z4I!u}#lwhGSK| zGj#77jz&H-8bOT|ui2hh^`ThhHAXEsVL)p6I;a*7>I^?+pcbI8T2PVHa?GgZgb@hm z3kcwRP$0Kj3;>&90wOc4W{V#~nawa!I$Y4FhPS6efyIL%4G|Afo%(YYPanO0U`n#Y zLO)>eP*8XGY#AYqW;-JU6Sdv-u7z4Y#Q|;&#VO>?<0houRApIrn+m-n@#SilAeC0Tq!iNxRJMknrOHk z9^{r|!~^-g8hbsKqI|iFiCe+M4Q3)<7u@9?rQ+s&m>gVzuxVAU#0&Yxz?PZc-NbFGgb3Y^eRAUI)}wmcs8?wyY1JD6gWV3=S3^oX(g9vm9=Two> zVir&gLBKIptPp|-3k|}0xz;QYo~YB?ds|pLr9SSv>+@OF?_KpznfgETHC6&Hu@b_y zoe3pS(WL}FuZp8(nT{IcKNc<2(ALASRVZ@phEkh~uG)NF^+8wdcBXcg)JE|_s$JE3 zPHLm*uFVHl-*(l0%haC8wXL^wVMlMe1;0v+<7Tk(V>redlQBBufmNJSKb z73IJx&awt;Uof@*lG-TpnN`nR@$V>8b@kC4@$VC8n#t;G4rU~6MAe=v{=EjMI;)z40S_-fX+T7(p8kY) zgf6I4F`fP!s~(>#wr5=M=|^#i9RG83#jN+9%VvEX<{_P2edZ}|6P=LdxVaH?d6PP9 z#9S-ay0xs1%mSCV$RXF8pcKr%p%)MER@Jkzyc_kAo=(;Ib7jc_$~lispp^623^8c) zYU5meB^)Q8=1R<*sTcS6*6|olDP}-LUa^33KJ46F-bns&t~i{txJ^O#PjlJfSPUQ= z$x&_;o%4)0pa8<@FwZ<$_QcGS$Rkpx_oZPw&jsSsmoLV|-oy%@Yay1%&DNPGZkAZ1 zBc6ng6dBP@E$rKg=CrVTs|Vz{sQIL183W_=l%C!e^aSg0UZ@VA?&ZC#hdk%#FngZp z5R`TJCMfA}_&f=`h6?v%<`t(y+Mz*3)*&eCaLzo|;m1aL1Oz1g61VhbFW#uofN<^% zAgsf0j1IRMl&=M4pBqJV=yU|5=)%6<6h$173eOuA5@)1B0;eovHjW2*$5D}Em7av1 zq_bX$h>}spr#-V@^u|saw-wF>X7q=U4L>PPNwhRZ zJysGZFO4%%rei-3QGGu4W3?BICqDVF!^8k_GzK7E%g}L8>qSB_=YMd6g$3pD0@|em z_QV4^bAY$L<)v0c*nCVWzolP&)h*~WBPb{fy3`1|OaxsbOs*?dP}*NYJr)#{6Ws@Z z*Dz2)YVVWUr`)xDI;~DjyfYIF1djzkH0_A3+v|9ovax>($nOFY@u^GK=ESENP%eG{8Cx9{5a?2dEYw_@qbHKZ=9j_k5~jA48VrzE8z6H2+jA zLx)d8dW(;IhH}A^T3RwkK6^+bgv~t#$~^`8XD53s_5`@6u~?I{3NWAZ#%R``rkksx~m( zUw{eby)PIcagj9u%DNs`boBGD;1jF{Ji%%JeLl;6MuD>V8V%}l0grdZCcxo$Lm^2&BooB6H*Q=|t!^nl8&2T-1z&!9|ss~+>kfOiXm z^qU{j-)fO;8nTAyvFwmHf|p*v*iT9Pjk> zLL($-*GFR7KxUS4i;;0tkiFf-%2*aMqAtq_O7qhCQLq2Ew}QH0FwO-resN=j&Q1eF zy&bl2zBvvWvp`m9_5zt2o&_>BDl7<5RbE<5oHNS}4sS()q4d(ew$=h!Xg63O$0QcW zF$p(@ye#6_d&baH5iHW9(- zvCrE}=t=GtO!lH~sjB%rXa()`%D4qG^gwz3eGE!NZyw%lqTpkW(Zf=RLa*F}Mjr|2 z6V&8B0p)SG4P_d4JB%j3F$f3TS_q9C3=9uCz|d(>b#GbvXr3Q*=6E4kF#hlxt z>Z9-7GV=M)FJ?J1PB$`wvW&|_#^pxFrG~u?#mY#lX;fqxL20W1J0>|Zz2(&rBi{i7 za3)kfKKyCqGbk({q0p|`bt4+eEE*_xAn5#|b}t3W9XK^qxW{LEf7kIJJHl02#2si= z(KF_F+o-!2$?$BtNIJ0bBI&>f78Tclw8#el2`2!FI`(|&TUA$}&|b*Xi=+piGAMl) zh4i3XLIcGT0+J5cH5 zk~+OW>3HRuMZC_4Sh+~n8M@i0-WzJ?B3hWFha*Q1CaK;^Fm38ldd2goD`cLd3y(wx zbYKD6xx{!iCtbHnMY*5RZ!AD2w8Ua+t!6^lVzgEv`!6*5Qn&2c>Xuuo%bCd%*_O^) z=zT)@7Kbd2>hRP0uZ7;beK!oNvS^|^kLvb|yzi*$p>@*e&Ro54i@!>4-fJa1IaHx& zrN@bpX5d2-BN_A`Cq^9XhXRV%hv-UwZg;=5BXxf)+X*BMtKQdjuE=hbb-Rmf6rE!I~W`P0-WRs;^; ztXFYZ7-uZ=*0A2l@4L)qRkGLB>_yc2wd~U*IsHF!La(3rpO<>o==B^D(%{L-W)E3R>)d#q^?Gze zJ!Vxzx?XqHTUj@)rK0r3RS{Kn!8H`KR(i{+v*@UQ$ENC`Uxh{Lg)6-etG`4B>yP|q ztGr>B?zsk2ap+fALKOTSUp6dyiKY9MNvvii>;7LMwUM_!EP*c;&WxyH)uxLG;hiTl zo2u$6dI?R0YC3C~H>%Pf#HMt;XNhq9Qn&8ClIWOj$`cc^e-4$tjI~HduJxv?HcNEU zc5fw}wbmOO-xf6;xg8V?v0qv4a{7a)#1zl3?uKX^BT*+0kFFT^1nSB_dy@X+f%fDQ z8bx=KHu`6HTj=-Kc{f;R^Rw1_dt25Zk%az&?u58_hVG+&x^jW6jAJ*+f^ zYn*^FP4C_8y<0_nCi%jM&lp0L|BUm6VG*BMxv|Zwt7<6I?h5X^>n6Vyey7SXb?-KH z+e=-AGUpnfFm|- zbXkZF{teRNlxyS+U}aYb!-wm&iqC^|CgAbtNmNyP>PS8H6)lFa7>#bltBXE3XGt0m|xAdQ7G-w>_ z0+kP2ROSJWevYXAmEfuK&L zt6svjY4A}4KbJu1MT0l&a~>`?jlRt9ReY40jEtx=PI!}vIbJlsaRR&0`g4hyaFOK( zWw{&b=#$<&dY0wB9h8D5^m}>>Upt-ECXlXUSCpx*=@TLP@b``e))@_evIY(q4IDBW z*!Q{4c?cKMEGvGlIHEI_h)$5SrmMJ2q$X&} z;eqmK2hHdb`B-j;en~oSyj6y7u>7lo@>9@=b4_eO_~oXRFi#W!E{D0IeaBAA#MV8s z%&~R6@7Qmdu>Zm`>AUBU{Gv4QkpIHIGdt;R(ClTh0ofCEDCT?w7^X>%RcDzd^W05V z*TXJ&pHs`xE{-ciEv0+n6#D73i`ar&x=e&yY*6!ps2s_DM8?|GSVEC(BXxosk|5T7 zJAdsZ@4J?|yi6D7M%RmW-&$hj=IpE<)!*fl^tvnFc%GccTZbjaVV0T@pj1Bo;}D=! zK8FCM&r;aH4x|5PF*rti)w?1L*L2>(h?e^DQg6nj{l1F&+BNSAm6FdpbzzD5H{Txr zlXtedGhZBW{d_t8kd`lR?{vtQ4ZJqN>sONSR!=W;{h8qPI#Yd5s-c2|S6y>{#Yvzs z=CL9991o~zD8rxQ_Lb|1>iDxXY5JqzZ~)_TQxjnk)!b-mF2=jU^zD#BQxk!(Q&WLS zKBMu2sd`4L{%We80dMproRZ6>(KErSRvP_ZKMLA#IUlqOcMujrC&I;S+C@dced(hI$ zqn$qM^M&*oD7%K?pyV7!ej)05(=ave3vrGvb!m2vhAG;U0R}6J=piIGJ_h~8S5D0{ z0?sj5ON$Y(@K;~Fqj-ZwX#}f}PKot3SKoXgz5&oYEc)oeI1GzEdUvevKMGgbAv_C8 zX)YNTxdrX2i%-P2v%2YlWgVHX8JR&@=ExNyvuB0KTzZA+)D{0MGktCX7%Vd=50E-| z{gK9e`U)8!wG39{75_Xy3>M3Ljbu*DJ@#OV%3L9G6Fg0aYb>`y5iYR>egCVz_(WV` z6$eS-LKcEnYv80Hc0( zg~)UYOppw_1rdjQnA1nh^dGyy#w*zkMi@63uZJf4ZqT|owleZSX_b64RmYX= z_N>hOn99DpEY)Wv`#GzZPOsvtt)5vaZf^KWc5^u8?ObLrH_cqeOMB*Nc5+JvL@in= ztJV$j7?o+&s|rx2RV&K8@Wejf zYmm9C?^7VZgbeT*GUXKHpscIn3z7#FZqZ&Czwft&P8z`%-?rQP7^;e5gOy{=Kb!D6oqELIdKE2=z>#`*50CfEj-1*LTvG{x)j#Kyj# z^e4?6P30R+fwKGA2}&-v&}eGA(bQqqRHRE&>~S4Ek(Wd)NO}SiJKSra~M{23htYnk) zUse6d>TY>1%Ke`{JHDoq>SQG}pD*=8~)V%TjZ!^rfP7YoJbR z;X9$Pw{+C~<{BB8pseoqKuO)x*2ut|yha8lPE+0MtN&ls?SZ=A)a&nsx`D*Qa?KhU zmh0BYuv{fb>YFwHJS-UsT+ye5fW?d7V>tz-7s%hz2iCa69?AulGUt##(7)!Nq} zL=BwBGed>e?KRhmqpyxCb=tks8Wys9u-$I%cB|`|ZG40DvbN}%aUFfpxz3AJ zQ7_YD;>p|U&TW02)yr!|+80d|-J}VX1zSh^Iqk`gn;LNHSOw!`HHoVWW+s-s>GtJ} zxVZet_P%6GEm_MEK$N?_?$g0n!_zLr)A5P^EnrKs;NQ@H?EAmbS339_IxAp|d0qj( znCaVLoz>Gz`#;v#pTh3R^#^^&@J=Cf#7XgEYxM`E{U6EQ-4FZbTYu2qM(UTfvhuyQ zR$g27>8_n|Ic8naWeN#!?1(SlCYKQhHht9hvekmF$_Z4wNq6N@Un=&V`N5{^h&@9-pj<@8Ti zZMsIG3EJn-{2vSQz5Oka$Urw{L zd@n{_C2$EmzRe$(h3-B|%{?Oh>PmRmXelC8}r+u$!U^(=s`Mr73dSz#>fn>v(TpOVxgZC@OOUE6QpsSe-Zgvz`nR=}EXUZ;iaTL3H(!f$J}D zZxjRPR+WKcRe?cP6)3w{pN@SV(FBU5DJxdb7=USI6m{fz-!HoN07p@ajG}M=AR9xD zH}1dQARG7J7?!>gmi7osQLd4IUESvK@gCEC6a@e;hhAp{<=y)qHb@wNGKT@6%;O^6 z=tZ9{dMtb+KjvAqp~x&BS*zJUqXvtClT0o#t`6{>(vgE5F{*5oxdF<@WA5H4$77mq zlul}_`wu~fKd_NIDO801tpequj0kjW5(f-k^CjVcLHcXZNZ+Rt6V+3~o&r2e0m{y` z%0^3Db;<>F>p}Qji@U}vQX>jaIDY1c_P*ll9`e*EBewe~5gU)KABrfalFk?$?7Z=V zeLw0?UU#Ja)JP4=;oFy>6uy0Bq(|^| z$Ndys+HL;39B%3s`veURJi%I;>(bH*y=8=>pohMcVFAjaTW?Sb-THnhCiB@Z^{|I= z=oJ=|A8<$NjT^53{kdH<m-IZr>#B)!P(oFIDIM3&Gk)qtF+eo@q%pCE_}w+l)et)^d}W@_RN3Y&|dr zSgVtWl=rhL<+-0cqN#<@i*_qs;?{V#B0A(Y&f&hC9LT>u+Be+7A(LTaeD$N;59F^O zUmTW`b|FIrc4epR~EPL=$MgC5kqrhV-Z;|1$Bmbz{E z5}%@I{FTIfouw{{9PjPI$N#TKlrOIrOu^BJ0WOGs0`X=M1iZ}9_k4A5n21~NSJZm# zslKNW(gjp=k-e;`!cD>!BZblS_3}2SrQCw z=lVX-4Hvp=PTnl06O^OPMVlpywS+jpdyk_dYg?Q33>yol%@ReG217T+n??fis=#6U z3Ci|!kG}GWuY$Et;P{xtE<8du^w?%GNiIMMIYZ$%3dQ4C3V0k#5$`GjX%ow3+g zUbX*PTtw@yMZ8YJPLxYL6Gs_-XjdN?97ln|N0@J!J&&)0)2G~VaoG31fb})|2`WB$ z9Us;L<GasqwXq4h#8TfwYAP`3Taxq3+NDCD zowC%IPy`vh0segce}jy1H-fpK`^Vv%*6)1odrGbSulUuLVX%j=TqyXS5Htw_@f`O+ zT~PPHeKy~BK}W4{df=+*0Z{%NN0}`W$wqCFE{ND7T@Z&=B@P??_b#B%R0D*&fWYXe zZOtvBeU#ZvgR+~xs#mY@^;IacTJK-!%Tf1jajEsHy9>&%g4lSLdy3SGIemE@5}NL( zHi^`DjHSMGlhjYF_I;>VtaYS*Ws8hEP)t=hJ)NU-)*w8|HG+>dg1;|2M?X3e||>KYIE z$s1uv^%q|`s_}lqs)4nh@g)|IsmQ)ifL!w%84uM^CW~|XH-EPfoZmDvvOJUmC{_w6 zPL^k=Hs8o_K$(XFDC@$Tzv3%wVJMWD#TZbBMcPp70joqoRL9K{L_N4!g0{C&pMtjG z-vsS?s&4j+)j~~2)3hg;XV{)**q&Dm+Z?+Yw&}q5WUx!0ESiWq)a-CzQ0#_gId&^F z&F*kDyITLY4I1RI?F3zy0BogRyA8{U6F_vFn)(&6WM)Dhdu2NuI38p9kD7*e1RF+> zicR+&82d>&nZ$KIyHs=N@p>&VOaXd=&fJA~9s1_PV+^@%rvXVkP82aI@fhX4onL#m?+;7O+A1kW z_br{h*HKX%2LG7Abp`#$f$NH`A={2C^V9bEA}!i?9D2cH zPI6x^?SE7!?f1p#$IAGVb%p=n^l`=g*xG7#0O`U#!s)si2}#!0VrzYJ&^Hk;3_+=l z)Y+{P&z{^Wo0VbPB%b{%c%9?i3g&v*ZAH%`z30=uBff^J9u8&E&qdYQMthd2IHN@| zaaf&ga?rLt%Cu#P+nn4(TfEiT%T#-Yt5sJon>JA9t8sAY7G6Fyt**~Ss7RX`&K zzXkNo*5V^nyv)AeR|{YLy|GR9Hq%b}+IUV-dlH#$-^!6`{-Tq<97~nlE{Vo%!3V-{ zi4u+Fx3iHcU3NQ9wryKoCwBk%p62`?zN)a@oM=qP&mqvy`#i8+%unm>Y&ETxI{lp4 z!R)wQ4Cjq)MX{fRYNl<^av~3u>;ujj0xeb5*zVdD{Pdz@z~3~y zfN~i69#AOhIc>XS^0340@G@t+#Gx);oZVEz4JFM0#BnGn3%AAyx6TNMy-El0oBtu4 zf#Wz7a2$u8fUxvSMyCwiu^`;VV&FIo4dsr*P{45*3d&C9O?~AeQhF$|&fX}}8Sf9S zzT}&s=UsMmmb63q50tYWcYspXqu~z8dNkM}Ua!RtNqe{yCP#7%LzK@02CECyi7ixT zT%+@`Wkp#aL_*=S9JsG{@1WH0v} zy2*ch-RW8OBnhD8NikGd?9`upYjvC79kJ&au|ZkvHAd`pM(kBa>~H>u*tA*!28&G; zCy}tzaQPQsygFqhK4v7o$P!1oB$mXQk(ZG~UI0&ZU8PbAmsna*mUfQb z@|*81y3Eqf3Q8M1oQv~10i0uPtFQkBv71?bS?1Nk_cds10F*_)7Zg2CGu86TnRcs% zP6_kNxr0oc_M&{3n{Uo{8NMkY2q@M7D9@8;cd`+H|6@r0Wu~4CsV|=|pMZm6oJMj( zawrlC$$2k=M&8RB71RZ_La8rMHWHxD`6QCpoZH1!9{#D+ZsqZtOYu;kP0VUEA!HM? zEM^`BIDSlQB*Tyo0mJo6Z`|ovJl?_l)`)Y|CC=fXhR(4#mGlhduMnapw@h?~cRv_K zcm>Z0mT>xWXHnxEUBwoNz4a8hTCc9Fh5NhfxDtL7W2Mkti3zsp9pV1_RZ4*jf{Jhr z6hwHi()OFLLP9W(B*Mssn_37FC^goeo8#1&C-nBZOWwHr-X;ABmU^N$`&2*}GpfI6oA~L8j~GIh5JEmnoE! zvpj9!2)%plr34f|8A1TZDq@!~0?O_@d6#6BD(Nc;e)$G(#a+To&0XToUCcP{+^|Fb7eH*LKv}YT zc8Qs~j{sY%<^pDQ&{rz@8~j(n3=(^CAh9R!wM#Ne*@D!=AYq^TW+Zmvp**n@2NFAR zP&R6y{MHR9>#78((G~l%car`8(VeR}x|(ft1#6ekJ zxt}aYbmHZqsM))Utk&E5Xchmx%7LjNPk7ue*V(oawh)hAL==$JYiw8HD8`YqTk0o1(R^6Lm7|1|v!logAEC_tpGqa7loB4nDC_+gY< zn3X7A8sQs8lqKy8>WnnXK`g+8r)0qUh2pN>gFPT$Sy~UPi|7QuYEZi59><`tzf9gE z^Qsa(fqmk$QFY++c<|NS^UrM4iJ$UVIZ_s)Eb36hCE+j0Nuy!%li1^O8jk2-8rH|s z{du~4J@m)8x;Sq53|$v@haZrw>+htV*(1_*1!!t?D*0f8$^P+OGKr=FTpk_q!LQXp zK04j&3BAiFe4elGzaOt7?_u|N(*u1w;K1-ZE*}6y`n{Qaa3$_>IsM1(arqv0kCEnh zFAW5}{+GzxDi5L8UW6m(MdFaxa_OaNYiY!7ahr-zzbZogic#<2m#`!7p=dzhW>jkq`)sX@~11cmpp^Ka;<(xA2p7wqA#roD-rcGFoliL_mDT++5Ny!<*sf=@777@K?jOkv}&6OP63yU1;d} zy(E}_$GEg1_rGYZ^u>UDv!@BiqwP{$t zLD5KQzfVTW4^TIKUG}u2$&{z#Q%R60WJCt-BZa2wN89@E_gtr@WOSTmCEliYxAjj^ z!}d}9R9EM<^KVqIqd<|CD|8#IX!Tf#V2|(F= zZ-S&0J#F46=6mBl`E(ovC-XfBfD%33rWdylBzeYC3l&?_J|01kou03|KIpF;Hh&)u zXXYoC)zcsJ+X^??TF(Q8wZ{AHu@Cv@>SsGUjQnXB0p;i^Zoec$%Iz1Q8u%L?VEVa+K(SY2I!)U zK$5;(x^!jr=6?QW+;9Ur)PRmD2K4w}vA5oY$6ucU9)CG*4(ifJbUrp%9~vyY@PD(s z={w8D-vq_KN&zT}@#vr-I+Qr=-PwO9(ezhh>tpV)-~DKxM8h?@_=oF1x;XuL5+5R< zWjiQ;4(|^U?S^6JH(^JWI=}-fRAD4rlo?qRzMj-wpY+EO6d!;}Iv}E@9FVR|M45Iv zY6wFg*rJK?Q{4H-$a~CEuQlX+eH?9Ht4K zMtSalOtjtyoQcK}#fSqki{3UIzGXPfDTYJ$G@|bezi~jqi6N*%P4)(cX_A-S%T1G? zyPK@86FUa()wg$t`e|!JZ8@N0)(2`6Eo>1}-!fpI2f-+gAcMi5>^>V}$k_Yea?r8D z7X8Oo7{7k*w!%O6@SibOSRek;j?`Nt0{A_L{(f8E-OJxYmB){zXW-T8xcpA@>;nhI#NHcvkH0h9)!ci+eeW^#ih+CSpsaS^HjkmqucuB# zneyi-b3WTN_j;2uC3QjdKwY)K0L(K0s{|ly-a$*xI9|4j`o36^o^FdgAy9pc&v>-6TUOCzrTr! zJ|w<#M1TJyo@#_Hrrrkz=vYR~3;uzs>>)ArD_-z#QGOK2)Ym*DBe41*9)Vzo7s*Iz(1?VvPY+po4gOIJ4oMaqAFU*YmLHNOvx^}_GOxGuRQ4E_$W#N0SpsF2Cg^3a z_?zLVHnWuTca~lo?4O`F4{=yJZCC>3P4*jLjlT2rm(k82!c6JIf7ecj=JDknR>;x- zg7;Jj3R~>h4($2{Ru}wx$hgLAf-;+@^`O`Mk0A;A*i ziJ)u|vktRG#P>PSMr-vXiewP`6vHMPM58fUIs<~)1mzF^@2uo0XW`IO5wEzxZvB3J zWvIWhb-xY_^Ve6n%7*e@P%@NvA7VoZFU!5opBbnQrIF>T3Qf=o3@_RMmEXBoao8EH zY%lkK2@FCC$B6%3hW}&5@XzMb@J~7D9f!qSZbcn3mn)FzG>x*kEOkWYNB9v}i`8|X z5s1rcj)YdpT;h<~)e#tE<&Lma_(7h(q3YPLr+ z61#Sw|JZ7FI1*wt&%e#FE8@}(`rUW^(^d8nNhkI=qA%_9uh&&a`TMG2N7x=(uj!qm z@R6ypN7!`g5@Y=Gk#6qSZ;yluOX>p71B= zCy)8l^s0%@9Buq94}Pn$&Ya+HsUG^4#!dz6Td`l6+M0--eCk`7p{0NsV!urLWGn#0 zvk;VLAr1{r^xvaUq@iuyNl50CI}N_o_DL++KYZWeVzl96G;xur7j-LBQ+)^^+Q6Ih zt(Y$SmIm>%=vxU{-MnzfYIq@Q0XPa-Erx5UzGk7yt8a`{UkTEl{~?t@qG*+n-t%Xu z^WTaEyJ(Pp5Tsv=L1GIQ$`ggCKw3Q2-(1Chr{DPAUjgS$>}i;!(ReF`j7-9Jf7kSZ zY5rS1p-3EcK}wFgKuO~Y^v|_m5|mZ`Zm7z021ZuN-}X@4?Ut@E3yMEB6Q5GcTNH@E z(B$B<&ul!=A*Nq*|Xg?DhZd@5;}7DNw~>k8B`dc)bA1R{veV!RliZhb4U* zm%Aa1DMnCIS(Fi!k#zr=c(acHX%`4zww(!Mi6Rd)P#$P)b+cLiU+6O1&{m*iLovws zQ!RBx3v7K-&~0SSDq=v84Lw7MlEpgtoiklvL#yk?LjrBojqh~w9B}@ZaQ=rV0lBaB zbFj#94?yc9e~P06+7tWbJNW@0P>Ktz6nqO8%caUkCB{xV%Ds)>2K^fnS!72CjHEyK z7%me)EZu*=0~zL%XuwFqhWW9hGV41Y4H4t$vxyP<#$5kk)%U1;2Ig6MKnztky?ma( zyLuKoTbQA$2bd!0j$qP2b9T%_hQ!o3BD+VLTa(?R(A%6Id*M?=32OFHNsom-&~LXt z)$??SwPaJj3VeyFUrqn9sb77RO?~MnDV|QuhAHFSBbfZsI&7i85YaN*eZ2^FfB#Xj z`@4^d-LJm{cK;%zrY)Nvj_QI@{yOUVQ8E0!&mF^m=BOBc|1pWCV~>g9uXIdmqRfUr z4P`R?R3^iZdTjW22laUxS|P)qc}#-WcAzF{k)@wm=8sjak4fAL9yw95U9VrpDIdrD zM?}->h)>5Ys@(TTwqZ_Nz|}b$1R;vFRnuV&Vhj(3%_DXPs%}b14m0_Je{#D5U1CEjosLS zzdu8VjJF-9?vfvVi86KRdMmwPi@&yN$+x99Y1iNb^eUN>F&H^yN=9KM(E`832^o;; zgfk$6#x~&u8(UTJgp9WGC&Wf#!+smAty{HhZ4DP>BjZqoel87^t!*=HZHKjOZjhQ7 zq&9y?;`lcdiGRo#NIW|5dN&KA0A&PWb34!oG9XkCHn)9u!rYENA?EfSdO(clPF<}4 z=Jp)}J;Fc_2tu>D9ZZwe)PM!0&H82BnwZPrZZZ*N7pAJEV5_Sf(f zgqSF{wuix%Slc7?A6wfaCqk?(tVPh;zOjd_Z9c4RmZg3^A&H2q`4{*3>sZQjQcPv( zlVW5moMcl9KiTyV21kjLVqxpaWmV@SS=dx;C$ecqkqvBnlwn};NocBNl^`O&1L?UM zRAM-e(UFbqcT$4uzWT~xMAiM4#}Cj)5BqKW3u5(E;r1Jrng(vkyj~<88-b8On?lRD#=Ck}F_H?&)l_+(s0j)u0Su-R3pQut4S& zuNR!aFWmx?ZQ5qt`vhWb6lv7rB{g7~WWjnJd(uBc|9H+}quePmYoMGOPCF%GcHL8w z8m@gxZ0lWkr<{)d`ShI!k4IP zM(LMM>Ej>9Hlp|VZ`L{c5yKMs5kRocK}k_qT^C;Tmse#^i^_ecrTbD&|4rp?JsBkS zBZNp>#CM#Q-FcMRjexQnIS4%l-H2*?I%GzW3&E2`E<`;QdY{}x=hH#=;dDA(M?HLm zx|Z4}>a+0H_aO}24%sCm;jMTOQ`}CQAatF7>UJI`4*8M^5RhhH&S_`%1%1gUr^T1d zH%ggnl#>5Lp(?8&$}cfbx*ud0K{aAnj#z={fNc7xRz&?oYK; zS$rChK248L08%4iXSfk-p3&SNR-|VN*(p;C&VshN@8!1nOBPY?+xhq0@UOPiLs%fu z_Z;1~PRIeUOCdIyok}*i5~tFe{$r=o`%H*afsG`mGVy`HcTTGNAuBM_8ZLa$_bbAN zp21nrUrM#q$J+V(>jD)RXHBKs2+q#P24n6S`GCb|y08Q;FAQGh4_M%c8(rQUyiCWr zU{x99=ot?1@x};0g(A5htnqNye18Jh(l6mhjL%SrUq33S?D1#B`y`*02tN^&BK*AE za$R-lh=8ripOpxIC?LrHyn4p*KPw`@Q;V~bnXXtm(9ScSfW@V}hTfyNKCg6OnAJwx z-T-o&2czS3$1;IU>VdQLs$g7x-N-<^g`c2xZkP2uewHC*L}8>pv%&$edIO-g^hT%fytF9AyDQ+|{2 zQ+n7=#4kmr#3RqK=zH--ON^566CcFRs$!JH-pDA4ex4pkq;5e<)R&(NPgQ%2p7t5( zb_v|E|Dh)XM=l9)c0!KTcF$~w7G zcq#Q7MgmNs)rYR7s%J4E$Zw>dW4{qm`&@8xB#xinLEV2&y0_Ii>E8QvdJ?qo@VS5P zUh-qj&&k
54Fln1G98xFVg`*XIZy_)xKekfNQq|WEV2~<8-3fvF#g7)7o z*Y>sHdBFs6?GV>acFl(!{kbK*`GH#B@ZKNNKjHF=isc2v^TG)|xdC>-$GmW2C3lq6 z91ObFYHOPpY{LGV6_@|!$j9y70IMJmI+K1dHR%Uykhm>+f-|ESnJj5(o!E9{;U zSx%1qtC0j&DO+#L;7xLha=V56TbI&yGySiEx9ynzSAvy|^q)25X~I+dzS2PNlOFV* zuuEJ)^V3@u^G(*f;mtd;-WgVIIqT`dSt1E)u$QEVJqY{66*fN&UbWw(UBTOTq+N!U zTTZ)vXY(OTgZ-oQurGvN;tE^2v&D!j+$oEw3-IP0S$_{!PGId(ct=$;pOfGfo`;02 z-T%NUh8$4iiH?Zcy_D^a&h~xF)hbm~@w4AwfaBB}WZ}lPa?w)07r6;aNnxqrpYsh7 zS;0TeB$hF=x6BGYcs~jh_u@TRo|=nF_PuP5;Jvn0?ffTQ3ks!NWodU$h1}B}RjK8H zrNiOQURs)npFv{xzp9lFCh}g+3pyU<1$n2qPGr}7Fr9vZmEge)`d{;cne4w;V1H(* zx&KQ)pk0NT)!egej@DB5Z0btN>U$PRG^6_dC%H$tRl?cqEEroa%+Y!U+zQ7GJ{?vz zGI-YHrzxSVA>Tbc@?Bt;SQBYrBIl#EV!p|GN4$AQ*4x3#EoVK;mc2CO)%3^*V9&TB z=XbfS7bf|B+zLnX0j!)r-lNEpbs8VXJtSnE_9Po+{Oh#avVCRSzH5G{K<_-`b=uW% zxLRY)xlZflCMbiCrB1ujH$-Heb~%&CyiVJ}R$K92+v+s_ldc>;ON0I`p*nL>;HNxw zGm(A0%;+iRbCvF%Tu)!Vx4S>z-(4EXv#S^Sgb`7QQU=Fda969tkcFLI)#3r zd$3lZS?m40ny$Yi=&lY943sN1@(OR0CbADmr#M)$XwLJ}TtqLAXlkCF#==hasy4Xo z<|jBX*i8qc{zjx1DaE6qzuZf~}rbdm$~rp^w3YJNfla(XcK%8o6IwgWf1o z@{C@RZSQ3Y?V;jL`TC?*uH}kK;`Z}x%}4-#yeY|9VrL&O=Ws1Edi;p#cUx=<;&Cb* zqIZIS5Z5Qf^^fBECvkmJT%QuxKa1mPruZrty;`+L{z9FuE6W2Gz_3!KoPodmPf0pGG%4AssX^&JZKbCspWJQu_#>B~O z9l72P zE4Q5ML~;?EMA6{Bn;!1lus2-cPN~D?(?7zAauLE?c*~B2--MN0PIyl8G?&KwqrXdC ziLXNvqf?2m$(Sei#k|kg#BFhmf;q5q%cEe8hUY9(lUf`cm_82ngFWPW@AJ=LEvq+X zBag2c>Sh?jfFq7uT zm3IId`peU!zYO+@D|&udtKI{X_$9anj>Ip5m0M1H^<})R(cu3vJ^aUE2f4!M2O2G- zGiDq-h8yD;2amwYEsuj~$}2XFeEaWH7l7kPVsr{XK0~LNZ?bN~n|EaW{{KJL6YFn6 zHO!l*$Gj=-=MH*vnXk}>yx~*AcG{vpSSbu!CSv)sUEOk%@Wyz{j)XUam0Nx{uN?Ww zcvr3AJ|aEt`LJtT^ZBZ*jM3 zFf{xxr^o*S>=#%3{IGPh4<_~Ja2p({KMgClocb)bKq|KME?R7*abNNA)aCpPk{F$G zUMyC(Eg2KemGk*iaVs3jPlAcO;#Mm0M1FhVWH=si_A0y!5co zg`MIGo1gBbb-?6(7H)te?{C4%E$2O{u_jm}eNTGQcf#&)B|Virvo}mP8Q+dK?a25R zSh?klXX?wgHPmmXNBtJ;6<5@Jyw-bQ5`Po7z>)atu<{rnzU;Sa>--^gUA`tsj80uH zh-*DCiO<0;a3nq(R&F`*S+=bZ+I_xXdg}Yao^id;`O}!K7bf|=a4Q_i?+z=soct>G zjVl`aW74x<3j4;DJ^yH#y&oq1A>0l}`c+uD<@9H08;vyVm!-#k3G5VC?7UvrI$-j? z2sgly_YYv@mh+ynE8i%&tGU(w@${@8gB{|^n!h_&jTg?8vuuyx%{!8Q5LRwE>5ly? z<>*A!igKR9xF=FqZfztnI+YuLbKbDq;QKyIA#~*X9;}?e*W4OH`^2>% zu7S8N7T2P<_KRytT+8eVZ#_SR{w&L_=bhrd(~9$x$c&T+_MO0bf(#edG#ea1I!f9M zC$lNmdcrV<^5gJ^9f$H`U}a+{&zf%sxrx%4hWBdfNJ_j{!oG0DJE@L0O1}o(%kg#{ z>0Smax1KH^q%^wESm>U$W!rLX(Lc-nAeHEmJoNr4*eMuhG0Ga4|A@Eii1~3?x#gJ0 zQw^app8UtucW@_3G~;2*OwfFPaa8yiT-)(R9l4H!m0QlWy`RcD4eVCw!F~$%gzG)q z$x?G}e0-#zddX%7kc?qMt6hc@w9m=Cgj_pnM&xir+)y(nLb zJ{H{8U903u)q!$VJ%IcWI9{zuB(xqXTFfoYSF9h4=0E9*OsrcNGfu-Rw&_V$safP`d8+UYneo1{+OFx0$EN?=ug95H!{VOuzRfFg8N8EK@qmIxtqLM zemsFU>6jFL4=Wo<;ZY`$9np^r6qFlj(v#?oWFYMziDuN4CejHEDOoJql*^UI<83-J z{Rphwa;D=-G+!Cdj$5XOx&`b8*ZY(|*heNCR5!yLb)>optlWC4h0;QWYCb*H1+W`1 zs*%YC)o#2|N2-Ux$}Oilp_D%=x1^v}Gv7*2_8YJ(T*>m)2z9d!x*^`MBi*mV$_aEm z>SbAS^J2_HLO$GI?OP^@hx`8awzkA-FtK!)>+$t@_L2GNRC3eTM2l-JES8U2t305_ z>Tls#wFX-FY4^%IGNwB+raLl5sroDh_(Q&7BMb2RnM9(?=LVzm9a!s!tmw%@>A!7x zp#D2uJ^cf8!sBpwpv}qpZv%>@axLNOSYDzF%a!h8xjc~Y5h^du!ou!+u}YsFI;d%V zuhD0A^Gka21JwEEsUFowE6jQKW6Sg2rqGL)=e;AY{}$JG#q~ep`X0N&%kN&HKg)9Y zT?dauZN_QxQ>h<1I!U4#4;{~vLzIjXisf1S4l;(jcD!B3;cgtPYz%i<)1AcWQdZCa zZiVC4kL z9o?-mFvy*cUNn9n#8kik#78^gUsMSZ>~mDcL&&} z?i_{kOY%K~wS4zcg<4;C<8OwWFf>>vQyVQTyL zN$2!pu75#y-RWuQ6?2tpL&&;Z&#_D8fm)%zaCE-XP}?&_EL3adfkq4rht?0BI~q2W zD-PznbERIU7vE5QHQlq(jO{PP^%`-#R$Q+W*Xzag266qRxZWtPH;L=7*cG1H{Sp0H zmNUDP8aKXHLOe!>UQA-Fu_t!ApeA;*rZ`!erxDQq~>WHiv zPhpPY2|}aX_H=5>@52spr97QY9mI?`IlqTD?#TJyuyV^euVNoGHRKzoN4_CRV2@9( z$oV>9dp}J2AH(f%q`w}l+;aN1=fFeLvpyL1ge&W1JqLakZ`G0P0kCq*$-+oXrRCF~W~o0^{)ulK+tz6EZ9 zBk|2(<(3nlrc6y~xck!M&ciNo#m!F>R?Ih9FTk63WZexbx19BKb?#7ueO7wd--3PO z3VQ`Mk)qmf(*6eCz9a1rR!*Sp@#0Lrd*g3qJS5~Bz>|C@g~S{BFOJW23&4cW)e6Nz zZK?9+?RRjbTEi^tvd!pQ_S_B%8Qz(If1N4EiB7vUTk?t$a4CAHqs*t1Vl$f zIel-oJ8CCK>tovLOIqS5HT)J1Qfq{zT6(1{-kF#y_4Ji1rCfi0*ivgh#di8I3 z=rt&uv4XyTiTUOd+p~^SM6(%L^G;(llCk&2V-=>to2sIO>kts z3as36<}2?)`{r{6I-hVE+~=j|z7Omg*SmaG#@*Ttll`8!8IJ6CgOwB5dkpxpX5fQ{ zhlH#d?(t1rqGmWh+nQnOz7)K<%38VNqWpqNPML{29gbUT(1lyrW`Qg-aYbfIcij|a zG_n*4r}~DBED}y;63ZwOM&|^M&)6KI_TDxxr~XD46;Q=|bumq|?cE%`O1Vmhd01CM zt4%u?*PEwPEUYV`aj8OX(Qw!tpY@VfxkO*GYf?A!1v0HU-6W~LW_6Ra=xs`s^qLbI zg%XW$&GK2HG&CH}Yf8u#2fG*MdTM2|&AJ@`jY~?uSBvW}#Pu3+y;fYW6W8m-^#*bMrMTWGt~ZJ6uf+A&;(D{V-XgBIitBCS zdb_y(MqKX@*E_}aE^)nET<;Ord&TuWalKz$9}w3E#q}X}g&uDtI#rwd zdY9}-xq<6#))i!a*7|@Fe2;XLr;U)G>{GYgd=P#MZ`tud_)S>Zco5E-@PwY|$w9;W z(dSd+U56x^G1+C}oyaCVnAs-VHSuO0+0KELTh4Yol_DD11Jje;4|as>jmsAwMD>$! zom_mdFW#sl*S%onmUC^7o`f~9$E62*4D1P4u>2);WVK0lDc-6h*&$fD(LVsy$Vo|7Z1O|orxtBz#f|NlpJBKe3-$ZB*qPfvGK z+|M0_63wDTv*4$M?Unq(!AfB`@foOYxk-3qyk$qi8^X#hzjr6FDRK?(5$W;Hhh5>C zmH9IepV>F^@}YRMj%*Kxm0QksJk1kpWKT~|_Egvru4MUm8%=H-Tu;Uub>w;?tlV<0 zlNzs&G`csYr+Yo@4p+MTY@vqfCgW@HrX3ky1uM6laR+~+rvZLBJ>VB$U$_G1Uj`6w zB8@xvIlNs*x=+K(EvGvr_J&nMyy6R~3+EXmF*=1aUs@S6-n@&a;*C3Uo&+nmoby!S zD)!o21HDsv(A&cvalMyku!-il^(N_U@YWqkZwV{6oOJz;jusiO$&s?$v zU;}FT7z#zPrQ9E$2Idty|RS9+RH#QrH!)bop4zms=Wa zhwx?{*;ZlYma`pCi*Plvm!&6r3G4`0vV1l=S~+ZRy$EmAk?Rj&<(6~pBo{^R2sO5k zr)T>Z>uA@P-}vJ_swfobRN@5_OI6xR+8FRBa?NIt3Mf+t4uGyocY1 zNraA!--DG~&Ui{}*MLTO)AW=#9yQ8*_9|w)$$3M(aYxP{gOyv(c>>$Yp%I>+p75ct zD_k=*udnzH6eCX`j5q7Z_Oq~Z%h`7Doi!TVQ`5se8TN%MT>i#T>WNcVVH zc?{5HJDoJT*Qcj@4eSe$F5jVL(7g(8*OBfOuyV`kPKoV2(-6Oq9`SRqLtGK_@i%6? zIsQJ4H}1&!Nm#k%oYx*=TI?5QL%Iu-VM>=p3{9Wvu#5^j)VJaoXy3Gv`@ zj*2{rg&)n~At8@qInj43oj8i+yV;(GJbAYz1Nlm!pS~eXOLODLx9tzduQl<6o7=YH zS`K2##|=?7Mp}+x`HXM4$YWUcW)g|Vumq!X3X63gd%WwmV@~2f@1mn83PZVCpDZRr4QUbmi>02$VsA1XxK;M2Q5 zU(820%Ta}D(g6pMVT_??@5J^bRZLmgXy@w4d$ng?gx-HqsQ^Xyb35 zY_p!u1KHM}D-{L?iy~%sOWjvG9w0Xyrq?Out8}J>^{cf||Dr=+ni3AQxTv>G=gFjx z(kdPN)zeof(Gf=0PcuXPt40StS5!a>SdbGHHNnDQ+*JH)? z%i?;RxPC=kj~CYy#PzGVXp@_wq;pMJy=gUBb?fMqpxRWC3roPNUQ`$ z>&x^z+8n`qZL8Y&PrB%&Fv?Zs{z8-xw)K*TlxR2JaJaMgpO^dDK|7HRyQC2rEEN{A zgUYt@QmN+ibT*Wq7pi@O3l|oZZ+1LKfe@v_=f(9e;`)NPz9_CQu`8U4en)?n17(XSl)@ z3+qH(Z18;yZ`hIVBd~G;Uyo;W`Iyfi13e_<%b#m}i%0SDXUl9~{wzP#pBqqK`mFL- zv}Uvhm;Eb>Vy@fva4UY)#SBuO1}rasRw5&@s#JuFeB__WBoZI_v-^Had(>ksNo)f{ z5dD)6XIsK9vT_VQMmh?PkdFY2laV2|z*}|95SziuMuynLS3+h89yO^l#I!V4(B#3i zj3)x=_2AIvy-JQan!13^9av+_o+J2sCtHf(Kj{(%DM4w;5l8v@S>}iulSs@FbF)hl z9lX<8n)p7R`UDyFgzOF6Bx}W;vI-f|Wqln6tm9 zcA1ihOe4#fVM@?ia>`l0ewU9O-(nJpIVHo#4o*dMT}vi6!BmW7as%uuE7;&t(owjC zyf9@kRRm1+|0Hv&9Yii*_AQE zlEnjjgGCkz^O(dkiiFYGy<%PK7wfw15iR!Pu0{FcV8Vj!*sqPG(wD3BR%rtUeQDPE zO-?|nn9nU<+FfC0S=Y8BTIEIE)$+nxe{M;_sz^YrpLH*-zj?>3`v?GAs)a@U59z4oJ%0tsa)}s4Wm*4Cyj8~` z{tQ^z7~-=gJE@T=HN1CFUsB?|4R(ihfDKH%{PdrO>1G*sGv2f#jn`A(%d3$@GoH`Pdzmlg zj~Q=rUIlO5k@HHha?3flM|GbDc%Sru_k=y+dLQ$#m{qI7d2%e?4R6(v?9Q-q>&Zs7 zxJGtKda{GCCorOXkPj)dQVmB$9*XqHDKywMw}OXm$pVsuJpNtn$~8Tat|c*~B2*M*f6 z2z$JVkS{a%6t{ZPQe>>%n&ER%0`Ab!B;|N2p%)3GQ@&3R?sBlV3Kma536xd~Kr{J1;oas?-ep7Oxb`k{IL zJ<0bE)acYbe>0dscd@XT9BMsP%BeH?rS#|4!wsGOd|`!7*Xk_}lOXI@a#_BM$lQJbiiVCkZTH!@}krl{rPI& zqDr(R#(LJLlS4{$u;WnUq)7j}uUyJ^_m$~1H-EMyK}%`;*+zda*!qjq%8j7+?@6sv zpeRlC_q0IGA1bv!*j=FG^?D+Y`e(AE^OZ6Q_-8UEz?sC(`aFn6w`gV4XT|k%;`(`U zJy=}7Ag+gq>!ITMMR7e$T<44H;o{mYu1AP#PFxp=Ymd10ifdk67mDj5aqSb=g183k z3a_Nvo&GG#l~f&kFxD#kGsp_;am=XjPh%ZPzm{ry(ou>iu}@nR5k^IS3f`_`MSl{k zY*h4F)1APo91ZSG)Q^;KZ-8B4e|$6H^6xM4;>=)sE#9mn+pA&amb2~5@fud6`$~Gc zFT&1nrOV&p3d7CWzvuCW9r->3E4Q5QWch%hAztat)Hm=W>&SL1Sh?kFC(CDZ4RAR<;3Dh~ zSHS!ZmbROBZ~<@Ik@7-Vx#g6{)7*)M_j~E_eg}4hD_;KgEt>E#?%uQUMjg3+8&+;P z*D0|{EsgKJ>G|FTJH(YQU%wnP-sJonym3d)x5COT=R8@?I%=5TNssxTus>We^DHfG zH!1%eZ`+ab8?bWADYr+H!5ZIn|DL*zUW+6~r;g^U)Y%lak*8P3TXiJ6Dy-acvXdeo zv1vmM@BZoWeg<}j>+Q>Tj5SO*@7}%frX3mY0V}th@x=OD6bY2Ix%GtWZy+_oe@IXG zcd$1w!gb5dd-%6_%Z`K}f|XlNcxwFputs_Lf26LpmLrMLskQjwTXE}6(jUM)LPyg7 zg_T=Qx>LNt*C2l)J>;%YgUsJO)R!I@x%%UH!;XCC!pbe@+a4{C(BK}P9_|-mPq^l3 z{Rs0cjJYrt(NTFy!$)CXS;+<~l8(Y9k zB$bn4e_0_1L!_gy3HcZK^d6YC=!v)mj(O#HSlP%cUuF{7jUlV>&&23n)3{$xR$+Ih z!TlQ8H?G|IsT}rxnDnp0?Qo=j1+3h1`g7!`Vn&F77t%+-bFhD0BVbMKvp0HQ%qVyo zx5Y6Eo`jVXqQIjtkhKLLQamK&Gs@w<9TBy~huJ=(jGtGo^s5Iyt@|%DYgq#>+{ji> zSPo_>F$rDDB?3On$5Sc0?q<6S6&+YVv1trNY1}g`G3@%34A0)`S%0tCY!zQWfvA!&gIIofFQ_yv%qp6 z$`NLhNiwsOnJ_ci13>`+Q3gc`cq<@^Ajlz?T!J79f`Xv@ITS$<1W^=04uQA2s%EOY zsycaoRY`YVJ|C&YY<~6B^L^^6r@O1GUA?TXozCYH38%t^_9IckW4EQm@Xy;i3c0?4 zn)S<1;lDSuPN~?DVaMGZYy*TURjQd{wY@LHPVza(TQ9q+FH`Jfcjef!JPZ!&;tum4 zW?#14%g&6HcKHJ+XZx}Nfc?E4R%XX2W%}4@PSyi=AeQA)a6Fau17(m-rLT}1ma$dX zvySX3Y;40|QCJW`lfW+LtOZuyWIKW1)ev@@MSLsXFOhCDteiUC$;?ZQ+C^i$vp?e< zVUJK5i``FQ>rK+zv?FTi^xl06?*PMz%J@CBGg_+Ed)cf%f`5*E2S zY`r;$@5Fm2lD-XAPM!2PacQhEe%+t(Yp^eda_V$jkuTn~?_FlkskeY>TjR>TFx(jaH5B<^FUp zg`GjAE5E)f?+_b&zk_#7k>K{_9;ZFJuxU zQ!vZ-Z-a+h2HB1AUWsHkfR$4x+bSR2X>gDAhkF$44C>Ss>u&vtqrvxZykjEYLty39 z`HrtYP1OLO?GN}&*c(*9A~)A9H)rr?@Scf;Plc6Z2s`ZJQX9d<<{$?NwGr$Ku8%t9 zMzF(^-32>gpF*~meF1f4t`dE><~}%1twC1X#<)I* zSU>lL*iy+Ahrt-8!W`pm4BJ{a48|~(ZH7mNjcJK(G6N1?mg9-0oo(}r*?{OEmMgBv zmf4;&>*tmo^a|OoYI~(8*Tpogd&V3zOXY#u;lt#-a<03lVc>8PSru658?qhQ;Ol|D zIgV#1Z&OMY7O&R5g8;tHZ1*JC0f z&AzH@-!TsOSqinwN#X0FTyLg3W`jLoRIbvME9TgX>fUob$La_+O?^{Fu2KvN3G0q! zXj}~2Fr=PBN3VZ07qS&r!TK)Ffl57id}l_X#A3%66%$#!_3+3HLuzK$u+(hbp$^0i zQ^|C8^0mU7S6zykT=$rpb)+mY)lmsmpZhgQz^X4n_Zg968QJt&v@ zg9~Nf!lshzW(9!n3diq__?t2uw?--_2iN<)6%E_?kSVhX;XAb|{mZK5Ob4^b*Twvf zkFSfF2)pw24LvrZzEg%nroY(Xe??U-Gnx7oRp{-sm)Tw1;O(@($@Uf5zAD?l%l0+d z{zJC^lt%?lkNXx`@U>HknM-EZF*bS zzlLnrl&te5Y(FB~4P?8aY&Vka#vk z?dG!GLbhAVb}QMo$##)!x0dZ<*>1yI_^rdI8O|i%IvmR$189#GKhG@peChBUCNUhF z0v==Dh&;imiLbl{&n}E-#-GJIB|cF+9ac7;C??IdIm7OKYG7~n2m2G)6V^w0c@wPI z?GadQlD!V^l}Pp)SUGjFErE}EG_-&5NBd{k6;!lh7alj;Wcx?FTO!-1VCB@=j%D{Z zG_q6Q@y^DRn8b)?WA@zD$j0OGPKjJwVCB@gwq$~*${N{S{K@VFy8@iE{9(Akb_cv$ zBHQg?<60Coix ztz2mXvrV>N#=9l5{UWTKI@{(9ySbsw+WY*`-UEAridN3r;J%JAYwyB)C6c`zR!*I4 zOF(uT4eh`D(f$K=1r@EFwSn0t+gI^!iELknl}86#JtMF8u6KpJ4wD#}3R$tWWaPE+ zZi#GX!OE$#ofO*9r_J62{R!_6JA^uW#px;`YS(6T_rYKYN%KF zqwa@&LPagUK@_#$q+Q1QC(li$XdAhP`$K=+ z|AQSv#l3c9a)$jY^H}1=DzM`JQ(zz8RAknOZzrsRbL^q$|~F zX`A4k6FF}PE2qx6Id};}1N;epz(>QLpiXFUkA%NEVvs!o@0CdQP*^#2vSZDM!{_*e z{VePVDp>K<-}-F$bi7j{*VAC-)VVfW9u5D*AMACoC#YcMj1AtfGG^>Gc&|jVSHa4u zlWmpnk7?=n&;D@#2s?ucSDf)sfAP)W`xM?Wk?#|*a_W4?iFdp-yp#UtT~3W>5+hSi ziSsJuyJ-g97Q9~~-7&Co>U3N9du1Bjo&4eM0K0-Zcg1~c@j9Hrc00UVBHP8Va_Vfy zvNvEgvfch4$(1_;dX->a^<AbUIBE0OH2uyX2TTll;C8rpyOqkR>2 z1r@DaW%-c<2HThMZi#GPgq720%TGek*sk-wcX_-vlNg!uSg;l6Kp1Ri;oTD1PKT9K zXFEB3%7un_e}BaLz#gGaU-4Cju=VEJyC>c|k@Rk`a_Xd;gA+(J!u|e)%djV?gvHv+ z&rLDra0%~~NVWhgj|Q?O{ndrb{KQ?{TALUk?hxD<|}VK?N(WZ-e8746YC0of5g;4=bn6wN;*Zq_O>A@W*>N0&YLiak*S=g^L-f+^Ub-uA>KWa^#WKqb=J+nfnyrtqx}&d z0egZvkwsm_k4ZCT@u7IHM6w6N%BhnbUq1v+qx)HZx~Ie5pwbm*f7dNH=k95E&qTtf zz{;r;ZsCXXX?U;m$9oOz3MyW4XG5GRXw2TL@NS80uYi?D16y_+n8x;x{%oIuU4gO< z4tg}$K7n^jWcxU*oI2Zaxk_+im8=4Qr%rb) zJ6u#lyMsU4?O;bx=dHNv4NgQgX6<6UQzF+kSUGjB&A~~n8rV*Muo>7BRIs8_=BLye zWKYCs6j(WRw#{q;=)0-*@khHS>z} zcw)m*`W*hQKjd%0{-8pZHFG^aEi?J+c;7_I7sJY_Q=Y^q*S}Dq&E<#uF+Tu1go;_b zuNyMnoXz*+ofA3V3oDNv&g^3k8s~TXIll!v#EmmE-sJoS-Z_!;>#%a_oP(?_zw4r5 z-ee8$qIyFnF)~GUBWu^cNh2Mp-o9Ue_f4ccA68DCawBV-rz{-dkNHs8A#StTddkAV zc;`gUOJL>HIk(D>A!$?jbbrRD!OoyE7W=U3UvV<#@hN!6M7}FwZga7|1kFS4hPh-5DKjX!?pU35j?8CN2 z_7%BvYt7|sSARJ-VEJl_n8$U?O~P$>&qTsoz{;u5;|c82QhWqaL!9wPd?M@)YN{4@ zG#jRyjE}>+CNe%2R!*Jq`1;o=HN;=^M|>Xa4Ju+Wi|dw~gwMr$CK5gyR!*JpSoYOW z4ess!aBqbjL4_-J00f^pm9A6wJ8r@|C33w1R!*I3tNf6w#`a}@wlBiYpt2R$!SyfD z8hoF}J0|jd7FJH3FRNmV-LkXR@~)q!Gl`L@pT(16{#9Uu>=e9LBH4+sa_VF!s&5`^ zlXp*lzPrKxpiW+KKU&#t=I5R9zKN7~gq2gLJfZP5Y7KJ9A94Y92NklYo*Sl{jB|L` zM8;jPa_Wp*_-Dd3zTfia`*qkARK8-TmiW54k)AC6e6_ zR!*JlxXQ`>nX>-P-_!iro&x)V%2vD{D(p7tuEhH#(yhYEsnZ=_>0eeYXFBw`dzC-m zD`0O>`HI`jb<0h{m*YJX3112;r%rgR`F+?Y{NX+hJAw*V)Kb>Z!#;|4O62+*SUGjB z&CEsm7evR5^{%DXU=kx)O9fV&Gxh`6|1~1n_h9AJ$+obB+;@t0g}c}vZQF>U6*n)q z*(Td9@NS807sAS;fo*@WLt}fQKilJAS5WhDoh>ulWP2>$Es^a}uyX2bCs)hNN$u7T zpq%HA_*~c{RK()=->~&2>9g_PiKNejm19U}^B1$5N5RdCTestPpKcS)9iq8QGc17dEBtrc@CZDGDO<|pxY z-}p_o)+4f+az{_D*gbIeKyZ&vIO0J#QmtWD+q$#VQCZZ*W<)htV*9@qIowuj9Zje!s9m9|W|o9#~@@Ycu`2Wory*|D-GTh0#D_ViFG zmWroj%cX(Z?j9n-j%bC`I8-}W9SSZme6TFu@?eG`)yj-via z=8(uNt%+MLGDeLV`#yIdk`bw8{kyQTv1p`1*EltPYk#_1B|w*D4}9Lo4qIa^Zg|34eN@WH)pT7kyf|dBzz3sGm-F-uyX2zTjkoN0sewN;LpL% zpaK^A`s$0WF@w*-J0|iy16EF*Z;NgE-r`U9M%Wcpy5iDYR6_>a>+x=hY<~I3T&wj421E)# z%VpXduHm6B(_ZHiiC?DeY;!{}X4@57@c*}Um3lM1h4xA{+c!|#3I6raFYf~Xayi>q z%@wku^U%f6ycTgWw2o}oiGl~6Lk{3UdLcY|N*e#eTm1W3fgiJVxH7@)Y^3fm? z)|rwY%XA_Wpe7D?2^nveQ5)l(6I1a9u(FYgljc035%e16W7$|dDIW#9gGyO!zipUq zGCmydn#lMNSUGjZlf$`5!+f?s<}+cBP%(=;;bH4d(x1V5Cz3uDR*oUn<)4TV^G9jIbdy z3cJfM!$W0+1zaLFBaGDZG3#@wV9d588T|iknL?pG_(Qg{Jy-0^b!00s*I$FGbd>s5 zbD4qK!M032=r4En_Z8R)aMf&krd-af4(!OTYVYXD+4gL2 zUzPa)hbewN=phu|`@%6{$cU)GBeasOhJ!1ZZ1|uw5pGN9cFq!(l7na42g>#!*&Zz0 zrLsLlwuj30Fxeh1+aqLqq->9p?a{J5Mz+Vw_7k%Gq->9q?eV;YZzt`-el5w{Ni)qA zLMt#o#Vqo?->`}g%Kxs?N10A!b+66g$A6n+FfT{@aT|!`W*JsC%FU#yPiU;@8tfmk zv3SD%KI{%_&6hV}iOI{*g#AI~F3#&vwwsjyhxbjS{0^*~I^}iP^_2b6 zMuWb{ANrO|0=tB!LSK(h_Sm7AF|ZkK3NZ#Yft6E_f%!3x3yNhe3Xb=Wf=|E>qDH}j z!J>dy{?gUzcH+^vF~m4H0#;5v4#u+UPL22H{du1QJA%qvyv!I}EE`-ui+4)odOEC} zI@cM@MbRs1jq=U@lz#%dg-UrgpVh_?Oy<|&CJ>ol11qP_e3s@gOD_M5KlMMuj-gUt z+eY1HM_z(7jY`s!tv7UAs?W5+hT_%@WY{yTL|wACFr=B;Eom zr%rsLymid(d~2+C@n^jg><{V$7uRXZb~B&vfcH(LydA8ZI^}6~PuX9D$or%2hMhu1 zJ(EvsZ2%_kPTT+@?+mP*I`8_dX3MxXtH0`xdI0tZ6?J4*GuutdU&i|;QvM>WoI2&{ za#Dyz+hl#8KkIv7uTWWw)mk5cN&GI{0wVF-Vdd0`PYOMx)h718{9*qCb_f-=*oYl6 z-sJo$-Z_!;%dm3loM#!2!LzG0-s?^9F2&bj5+hTJi|a4TAWZIS<3*yu^m)8mvkt>#zYlH(k^P>qa_a17Xq!!p8NbS(dq3E`D(_}WVc>V3-;J=)7jL{4woxd*q5cUk$u=Nz=3Oxy4pUrJ%pt9G`8ss znHJf@W!a(qoNE-R9om255`*l}PVBUr=>m-!zE(W8O!O`u$1sWEC?4NnPK&Uqi7P{W z1ZGBA1Gj*fQ9f{u1vQu76S0sO@wN8|HoEiIlfq%Iao^6L`(oVd*6&Q3+}GiyqkSAE z{WjbVBK<93Wn(=_n*O?bm5NpNaznN}R0L%FBj7~XKi0&aHzQzu9s%)VF{9u(+!kUK z91APQM1ey|psEV7q&P^ZO!TyCGLu!s3u6*};j`t4Qn{)he0T{QwbqcUwb^P3%V8Q7 zX+vaTvJ?&9b`26$G<<_g3{o_V%&~{N+B_kLZF{pz{wO%|F!y8H2x=?TmTPhN2P-A@m~0eGEeIBF8Ued%tXd$y@k^id)#PCHX={tE8f>_D?V~ zJU7-q&PU?^7R9wpCo-98;`pn2ILX|pw$?q0cT7y|zk!vF#GW+Y7Cvb-x??7J(_Mo} z3`Y%b(iO*FiMejD{QxFFJ$mvzSUGjJlfxNJL%i4@aodO?7UywMV)-4WV68Of@UeKWM6yT0$}waes%BMqi?Yl?LKWU$ zbxlUH@SZR((ZYLTrZdyq)ZX9M$=;if+{ybk9HiC=t6AR$?q*-M&Si^L>!B-+AGQU? z)oqIu5|*m`8?F(gs`9ULi9xFJ#BS_N3XNP#9(TiB=+QIU?Pi!X|@)XDE%q*;qmLZ}FgehENkOE<39{2eic56LNkF)`6 zF?&SkzI|(PWc!x8729}O5#CJ`^T3hhi*3EE*f!#e18iYUvZB2^%QlH*3hYam1$LW{ z*>s@4mfHX4NV}7LE}>^-u99u<;9Ck~o-PkL!p?H3uhh>TPP+w5fo-74lw%Hn9J2F5 zrK;{wx)BmDa`j|0>?F!+mE9C&UuPVseawkav6r26YJJK-t=l)=G1qk zBU50fX?B*X?S17^XMaa-i2o4F6~Q8!?^e72IG) zaG!+tN-W?`fR&8`E@`skf_%5QQ@d8XkPXC>?FFzetOZowWGlWZDeN}O^Yih3iFCgJ zE2mDE@4^mOF&gK){W;$Wdxgqb?ZOU^z$AVfZUK?_EwFOx#QA*QMxW2G`Ez~+_63!* zn$N6GmJU?guwKIZCDMHXR!*JnP;XVto9dmn=P(KE3X{rN&F9D!jX``SZUK?_G*~%x z;(R`DtIy~C{5kIp`+~|@&1ZJSY0%vR@0Un-S6Df9x_mx|udKE8x$4jPWY{ZI&T2k~ zM_>{!;ua8zFNc*=Cq6r{@mY&y+Y+KGQBNl~a3)QvQ26)FrzU#xvsq-Bt zZq{pfkMhTRIP44RJQkI?e8^zXJp}KUNcSLEId!^|LJw0k#Ao^={tWC8Dq?ZYS;%-Z zOP`8&PUO5AR!*JsY}*qr4fwVGz^{fqLj^ACaoZ?N@>k+k5Xt`lR!*J#SoVBU1O1FY z=qF)EP(h2Y1q2UOjm-TAyi+3A$6)2uxlU+2Jl5#8PWP_7nwiANR9@mMUk%eu#%tkS z6B#$b%BeG6Z?Nb48usn|v2P1|h&rjoSH1=tjTs4B@cOQJ76w(KYNL`8NW_QP>&4Lb6PBXVEXkXsPTu0f)`?q=V#=qkl*?V=dL6pESN;8WJtPtlSjf-h0a zkt}r`NriuJtuu=6DG96iW*K}k$da~_ZY^&FPjwW>!a((T+nQA$=s=Zh$ z_j)R=$aYjqWvOI;V^~br!D5EpBo)VDwO3d71<2W4}`QeUOL%yucVBNw|FcIzjN38plZ*yg<9km<{2*tm9a z4593*T&2n=S@#MPM$=X5FXyu5_H41E)X9c(yrUgm{l$)8&tL5S0_hx%b zW%fyN*W?{2=BiniSFC47QHB+K3cSCU?RgIN#JZ;5z>adZE6Wl>IhcbiHB@pdJW_8@ zroz^gA~VU=*)sdro!tnkftZ&jhfbVz#m;O;Ior!JpTAVD*pPCa-*v0x*%Y0?R>_+$n6ryXGNQBz5$(FJBoPdNvSq8p_a9 zl;3P*+v?e>#5~d+^9BdOp+QPC)3kNRKS8apoMUy8J@vafj3HyM4V2rv*t;qNwLKhX zeO)D3)?71CaKt(HReLY5FkCZspp#wI!QOWX$_%y*p(865U8jAZSkG(1HrD{>N?r?X zpwP>f{AHO6nei%I6$JYJeJtg63`_TkLPvO9* zll!y%+4gF#H_P8xvc85zn0A3wr67}u%7)k-VdgG#u4WjWK=$EII6OkJ;j z13Rm|eXIs!Fs)~YQU)6g)cvAIMnPw8MJ~8XaLy+pnEFa9-7f{%btJRFqx6%7OXCiJ zJR6HCx+dFdiB};!nA``(R0`~3&V6}f0 zbxjg-+Ct*zujo?ZXPCB_9PH&Zb2<5hr`})-itEf0L>fzqYt~zlDX?XjU!<_B3)gFt z6~V_ULoc>|o!w#&UTpn_Y`-bnZ^`!Cvi**1zbo5IWP7P>FO%)}WP7=6zc1S#$o2}^ z{!q48%JwSR{z$f0%k~=C{#drx%Jw?hUN74lWcw4@-YDCfWP7u0Z;|b-vi+%SZXvi-GeACm3Evi*&0 ze=FNZWc#RWe<$0=Wc#>me=plV$o2`@{-120lE z(YKn#CV__O=A+?V@ve!FhCdD~8;^#QW;~wV<=_w9G{h(SBQC<;us)m3n}{dz*DLCl zn}nC+JrfD{z{;r;o)GwnKNQsvf5#v3H(_^B5zARzH{E3XHN0yg$>G8;q~#JiG0H`~JlFnRv~H-O0dd$4lqyk}XqCu+=}^k@DD z*fCV*;@oG;AWZI$;YJX-KLRVK&b?LcB-L0q&+;zT)?yMPQ>@9Co8=Z*=|Z(~H{l%< z`M&@EAK&SX?YY4fEZgX-f!@|1^wzk)t)Fo=@1coWO&@_dqqo8>AQImkR!)6JPigoo z*pRK^KFJ^V39w73Ib3|LA!5GC`jdF~MApZ^%A<&NuxnmpeZD{IFTgHwWX(7I8=3rb zc=trsXTi#;vmPg2ZO|a!<`4N6*cVjD;+P8gN`^uAM!a7l-RoiH)ag!*zIdWhe#xKm z3$Rb9lxOhEt*HHG-hK}6pGf;puyX3OHzmCuqy@pu+1@qzG$t`JHTmWu2uN=|8JS=* zZWb{%Ccw(6$Hr!j*kJpT#LJo1m&df|*uy_Mc7>fqO%Yp0qhs)anYrWRxM9Tj_!z95 zdVGu%uhwb!i~jhR!@i*67j=MqrO=rDJ$S!Fx>;B`b-EK8FHUNJzv&P7Yp^@0fW=OT zhUw-Ez6kG{$oMO;a_Wrd#l6|8A^(*>@?XH-p(3BpQ+nJ;%n0~7ZV530eg-S29s%R) zZz5~N-}EQ`Z`d1D;^G;3-Ex!gKk=T4g#QjJr%rfs;HUbV;u_@*=6DzK>obXwDdeX$ z=5^hAlk~cH??lpbVdd0G&kaah-sab!AL0-FAlNz7sV(+9#SFyce*kU>k^jE1a_aoY z*AHLNfS>9Qd^PM1DsYj@>z12@SKvJp30Gj{)Cte4zmLW@frd_c(1>5@Py7e4cc{cg zy%skTGXlPcTSAP0OJL>HBVb0|Z;iuDH1vP)NBV7=p?CeV9y*$oyScId$e!>ytzr52OL#+8_847=%0hVL4__V_`2mL;j{3biGg$rb6DemG!6GH{@h0lf5nD6S({Nu1ws1sehs-g|R? z!pf=hZVry`)F3bShui~uf(p4+)aSvWqtbcmWrZx>E0OFnSUGjFtPmHcq-k`&=1=z` z*c(*3^+H^p?`9DG3f?o3@RwlaQ9xK8eX9}vg+Jk+!`=W1*AMMA2>%T4nMn8!SUGjV zlfy?7Yn1=(Px+s)N2rv=6;{}KGh6>1@102cZ?JOeq^D`eM{BUxpXXg`ugfGxrq&j9 zmo@;C_gvfnBJbI-a_YQi+fMn`pdaK9{Q%fA)EO?muxJ~FNq%443L^QvVCB@wuN!|N zyT*UDKmQf5f2jP|=XH4eSj;G>;Ipbu6~Jqjk*Prnb&(AT*Cz@Pi~V2@C_iei-kYNcllnId#fYqX&U& zq?^|9F5ljVeL^KI9(G6VH)+3%_fMq#UsySH+VcW$*$!*hxNqgpeRC!;GG)8i#1=Oa zGXgfnEg?q0MzC_~5imXQTYbwz@YNBG{3rd%9|L=ZI^)F?F?|Fk@gs2yh{O+rl~X4^ zp8Jd4x6(*|&Y$#Ius5ir#r@Q}kc}aj%*Wv-5SfpKl~ZTVE4A=PeKh1B_ecIQ*eleD zt}32NTR|jWgOyV!zk%>s{I|@sDEPU56#NYK5;Y1o z7I$5FEXR+?jEFmMi--~NQ&>6mh?o>ag!}@X2LGS_@c#}wgbH7L93^DD$@y=1=S0qb zg_Tq1+`{v{MtI%%-WB{@CNVM<{CF|F`R8(_`_%5m*?6}^wliSm)Y(pnd=yw?e1JdW zePNeSXR$bVH)6gykN3j6C$iohR!*JuMCmN{>a;PV`|!Sr zlzU<2)G4>hZ)Ci49TteiUEd2ydU*ML9b5By=+ zJ5=EEnW#7^)clCM5djb4mJlQ0m#}i`5ips3m_2wO)K-?g?@#?**dtWx;`vF~dUM78 zFWx(m^nYOG)JeB8Ulno{edF5Z>v`ASn=*-!sl7!mmxh~sH^Mt6^8E;`oI2lW%uVtw zK-*+K#-H<%uv4g$S?osF24M0&3^#ztdnv4(I`8p;yZU?kR%>hZS^l8UfW1KlE%r9l zEjI~&8t<7%_*1ZQ>VzjSKe5f6g-lsPe7!&7AH(jTA{Iv>H%vDf{|N7z$oPk_a_Wqy zRLiT|vxQ2wy;v&h8`A#d&-rQCB~;Gho=L=fllA}M-4j{=9#&4B^>lXZKfB8h=%?^0|WlNgy&Ogz=rM_>{ki(5b>z9y`kI`MUdzX-dIKjzQ=qp*LdQ(e3_6h9U- z3bw&*Ax6O>SUL45m?=Cr$j;-eKmBE}U#Rrw@CP8~7)p zS>FdMr_OrvicFzD+s=rK-C!Fwl?{uivAI_c&Wy_r5O zn{WCN?@E3nCNVOVyf|Mqu-YX15xiF-+4W%M)XBE)Q7&gzAIy$^7&v?2jDgbz@)xnA z`}0To!#xak26g(1=c&qY=|r^$eJS2Gk??`Aa_WR999qtHQb z5;onS{3*P1BIQ-Eat!4x{vnJ9A6cVG%)!$1AUirp2%N z{4?w-E86^TnN9>tP2`Y}@n$XXN4#@l4tWYzHgd=lTp~HnGx(Akj&qIn)D65#zDZ1C zI7&W~ws_;*7=p=sJZ=J!c?+zZI`cVum5S9&u9z(k!hIKi?mNM*q0Vygl+HQ~ll>03 z8ASHm!OAi09Tt35Gl)gQK|<9Gx40&*zzS9~yfh}!nqeCIn$wDHJDb|8}_iqoHn?t`A>ZPQDAX zF^Y$8!Tz%1&7a3~B5Z16cb`52GoySRw}6;YE{2tjjB+8DNUnldTP(l2*EH@AF{>)e z9Ii@K(f9!D8!C74M94l4lm7j<9Yp%~!pf=BUw5xYEips{yyG7MZ^8bdMu6Dc89x>? z3f{nNAx6RLuyRZkIFtmcst`+xgM_LoDy{>ORmBm>-ier7zwB>fyS^$N?B;;=w#3Ia zL^GK+2y2Jis*Ab_)&isP!^RDYx}nrt6dz@_V^?A_v{b3F4VM@VrAC97<^^r#IS%F} z$E;SKV_~;hk>~egI?;+_UH$~R4ptk8nRJfA4Iw6-!(nA3=^Vl(k}Evc7YlZb^Ry^9 zml@|-f1C}wh#CbO@F*B`IA$!IiJL==h0nmssmH>GYU!rM!%hD2a0BcnYCLSh<6+1l znK5xKZW1vju7;IkV#1-KP(_JYd>kZHQL@N&AhIaAyE)NY9nC>iy-jE2!N`Bu5U^Zk z4ZPaNZ50UV{suEBvW{8qYW&O9&#Kh;2bUNPrN%fxL0ePiY=m+!DvOy+0xQU@DD!JE zod}WI1fD}=^vHhI)ADI}zr;i_8CEtD#RM*qTp=-8UHNaLf9Ys%W(zjg490uF9-%T8 zdz!-5n@hs3c<)5gABUAwCp}%Qsn!{NvOn!2>=i0)ad%Q5fk}KhZUK>a53C$R++hV* zMSxfq93)f`@T%+LB#VHLBztFq7Xgc-MZk4%s9NL9qX=LIMV1^(5pa!bz^EeNDlRc< zih#xX0`VBk!B`+3fxTo!ng1Eni4X}D0SuPxR}}#d38woiKPDvE2mCcD*_DKTlv%8oJkBvS#Qp0TM=L*zA0`2k@!Zi zatv{Y6U`=>EDdoL8Si^SUGk2+NOuF=d=j; zn|}oS74{D`0&JTe!ecR`;4io>#3=YPtQ->s4kdxAD#ViFAfc*?4%dOms$zDsRYmLG znQCT1b#-5K3+2L1(9C5Gy4u#ZM+}xXE;^YN?c9pU;$*p{urad?E3IXqsKQ|bE-^^q z@Jhb%YJ`04MZN@cS@53R`@w4r7qdSFZ^zua9e*w6HqqQ6n!7}Ew`j&Zx(0i5W?^kV zn=cvzx4nnb_+eXyo#@WaC+`$4TH>c9&qtPGdw7WngAVl2SXM4&Iy*8Ic_d_Iz{^oe zty&tW?d4%tN2b^wm^EO3fvCY|aBv+x*^cGyU4>GH2`%+8r@*#3Gbgb(m~)-=KseMx zuru40=`U2y~q3sBy2iFUwWg6!I~pD_87dbLU8p(bV6kYnNZv$jXRimK{ADvh2hL@u7>5u+NZl zV#q!L%M`L@wt-7bDmepuCR45$nd)9rmG)(&QlTFAKG~Wb{GcU_13Z8-wPBm!Osglu z&huGT$kqqyv*I$j(A4%>ahXzd#q~rPPB}hOedSVbshZ_w7n_*Y{iwv$6On2!buriV z^#^&#`tB`Jw4AL3>yt=~KG`TZZn{1(wczzxQNprvzWewvEEky+K8t)!J}J}Mf9?=#QC z%Um`;UR*6L%^$?B(#{!Jnm<^!OJ#eAY!8*~VX{43wnxbJNZB4G+oNTBjBJmU?I&dW zN!cDJ+v8<>f^1KeZM$qwl5Iw|%VgUj+fLbLW!oj&ZrS$8HYeM>Y?sTnAlqKq7G+zK zZJ%sUmTg(K71>s0+b`P{yv^pPG6ygDko}XN#{RT4Kb`-326uaZzKxvQUH{@LZQvT^?`Y0}e}ufm0q2Ky;CB2U;)z)qpU7N2U;24M1j95;Z-`%zdqb>8FH z%@nrIYnWR$^~OAgNnp1GshGtkT4A?IcMZH>BHa)E|D!uy-FXuQoW^-Of6j|>e~)98 zPnMn7Qy4h6)?ChZ^_O!4mfS6#f$AeLiMQbv5Q%RAE2lo6Co6wdOB(HrKkXA?k5Ff| zSgFI-o1~A!dnb}U7FJH3^!WO{aEn3yk{cevti}b2~P?= zr_dnZ?hpA^*dbKN;<&Gn@h0b+@Xm>xZ-A9k=RB*!e2k>=e%YV*i?Cy;yv0X4EQ2t) zKaU$h~m3`B@9SOY!MUVq{8japaeE7$*BExEVzD6Jh1l*-xoEjo+=* znD6P&d^gx7)Y&eMXOEa~vfdf*p2&JfSUGjpv+B+Y-ALAmm;8wrV8>92i~MdGgvmXJ z8$smW1uLh{eMa47jXV7s^>6u8|2pgzDs^#;r!fSR`Ng;iMCKR5%BeG-S$CLv5TikV zz#sbkuwSUq#fP`dF__fv#cd!`zZ+IgoqCIH6@SYg^c%1%sG!I5lL*A4Qt3YR4&v*0 zw?wwD!OE$#oyeWUw{U4QdBe@TOY;RxVq{A5DGIRIer8afkM~WaJP%e*opKA`V5b2- z)F1G{uq&_`EcOK&Y?t8O64~wtE2qwOo!Fg^8t>Emd7lEihst|BKA~fWVy@6DaZ`vf zP=%FKkAe9O$Fcn~+BQ`!3a;{xf-7JLQKMi%Gz!eYm~n79ZVWLFE`^m-kAoJzt5_rc zgg^1eVOLOzi%LywhBos2qjZUH-FeW!%m^jZSf|7HUN|Nj<^9t-rK{z~+!g!Kv*1rV2fKtyyHS}d z^G()Wc=trs9k6oxtn06Z2Jenkv{n1-{;V&CU4pTWm~XPa5bvJI`T|%vb=Gqu&QkA@ zYt--er+zQ&94dA3MW2{~nEda?4I%Qs6IM>0|D@0>{~Gf*{F%QFJA}$y>_QJ2Z*qPO z@0`f_6<9fS&g+EF5E$&X%YrSv%k=q7Vr0s6@su=nC}s@I!%ZQ^z#LdP^%$5DcARZb z)4~4im%whJ&UkS}ZVbU>z8`J^k@?=Ra_Y?Ih8-4v^X(LW@+)EIP|1t+J!T*#|0-?> zk^jlCa_ao&gxwZ*Yvu}n`j^A5q0$#`p;(7uvcD8JgUJ3nuyX3`*A6>PUHxih-sAr8 zABBBGg)dG_wvWT4{~O#6BK=>(%Bj;YJX- zzYQy=&V7FL$f&_;{WgF8TQG@{srAKPxIqSE#=%0|7-Af33@fJ|2eYECv(@{@`SU*( zb__QEErT$*AB7u1UtMDt&RKA3GE?2F}DyA;!RGVCB?f zU~bfLadrPq{t<8k>>O$Yh^xMsftdWS#SJ0yzZzCfo&UV3+hS|~=luiVS=c+&0GQAB z+{BHeMGnmzlV8 z{4bB~S??lcg!OE#~o+f>@Z}2e_6ZXaaurGw2LWM1!*O&t^h+lx4 zKqP)XteiUWDbisF6fL~(weY@ZX44u?!9OPqZqK_BwqW2KGB~ z1BlpfgOyXqK2^HwD0Zo4&hytT+(F#0!9Jnl7Oz4W_8Yuk!7U*2ehF5N;qCAhI`ttt z@rg4B3H2en^(mLIY^dTgSf$DPW`^!{v9d#1=fk=tF)bVdr#MT^kO3~R*ItRK4x zddp>t)r##?V2vNPaRUSUgn5zE<1HV$+me}#UDn7zQXjh8j7!9R=q|ZK{RN!H*tKiG z!(ljbq-p^<1a_8{Z+=&%69H2bFWYGBjC^ts-aj#)8~`gD`D9;L36)PoBzfhNO?<3i zU!b_UCDD8`y|0w3R7%CB_F|#X)Xt7gtwb`)m)UT_pC_2P1Fw2!i)L-n%oEMJys<`H zt=;xLmh7s&Y&qA0JHS{NM(=X##0wX(y|v*m2DBRi1i z-}(5WhG*#Uh&ZdU?~?cSWjds zs-76yQ8JrMSk_-Cuoj*(`q;`7sYecHmSFkI z8hW+Nko8D!rkLyNFJ!8@QqgwB6RAqVf4NPX9a-Ay6-i#@uR~npORZK12`(QT(D;zI z{DQamo_B(^$2c))E!XtJw2alJ41386JfC4Y5h6A5)guW@_N(ZW@P3JTr2s1%c_qgs zlB+Ey?-6{gQU#YAjdG zmhH5E>reY3*eg`p;_^Wsfl2%U+yWx;`(fo6;tuP4utY(3YOXFi&IYX@i|+ z4T=1GrV{~F6YtPihhb)&*I}a*g@0? z5WDFI8H^bR$Ku8ip(>TJt^<*k%Kw@Zec-ZIXDNC|<3VOWmcpztS6ep1MM+?HWQDVo zAis2Fp-PbZxWs5ELB_HXYs<}RFe{_rcm;Nm6?gtgrW3(Y8^=>jfJt_$Zf3lMcS=kn zFTl!18hMUOBv)QckhcR2y7RU{XQDxO4wJxYa4Ox&oNmK(lkrTvYa-)muyX2*r>K?I zoW=Y3bKV?6Zz> zg~gWL7w5o{Y7Mj6(L>h;(C&-E;z2fDgdTBx)-{?`J#adg7!CD6s~ojf6I=;1GFFWr zz;3c)&R@iIqBX%pzG~EQ$&OWB@IAa^Vjj5!RyOj;x4A@eb-@&|xY{ZIff<8U=?3M; zV3$xSi!~!+zPV;Rf_G13{V=SYI_nu~fwl8qYg=#LO-y1qYC&^Wi`P7iA(+hHhsg~7 zQ4^Jx--VT9m^&=;s!kA#gM);s6Hap-h^!N~P4@P|gx*ZGoLkk@&bA*!Hb(3T2dp)_ z)N(_Y3ZBn40{gl7k)_IVH(@t;0?8OtVY)My7!B3KL;)@sxK==9VRFXOvJCc=6@LCO zrW2u36Cb@)wwpPo9q*gCt{e|58#(3^Tq3y|V!Bv_mA^FBUt#ummJwfqy+UOz9-r$Y zFp1Z23y8!&4=blme70JKW2yhlpZXoJXQ`6fyhAad z>It!2I7p~^Vn^43$a-RpgzJe+g>9Q)#5=RmSIItL85^4k{@%?cNh{X4S zl~X4kswI@qH0q!7r@jjI43)ZGOQ=zpxj&QBgmrfos|2 zk1#1?O?e9TlofXV0j6WCAC&E8PI&_Fo0wA`hn0<-@+g-`ynayr(pZoGsCWI)!X$>H zRy0|M>jyOgllU0i0wVD>VCB?_hw2CAGmZKV{?xaFJwu)0di|hAVUk~rTR|k>1}n#q zcUb&Y{UDYL2MJX_T<@B+Wc{#9vM+H=uavr~P3^sza(9j$NMW2su>uZVYupX{SrmcU z(rQ{UQE?40RZR48iP2C@aBAVP5oq<<%@oI3r` zNfWx~vla{iF$fEM^qEhTB4nf>&VWm?&_l7F59@mJ|mGRdDpW4n!6l zyCz$3OzJ2V`g>WaQK@D+mPfWzY_mO@y{v&(>mKr!MfiyZ_V`0sFO83^YnBHfi`am$ zOEno|s^-{|ON@q^V{&-tTGlxVCMO4~9)TPV`^pMGzX#KaaH)y&2*TEzdFBwjcVeD7 z2v#=o%mG{?xmshU*p3kPn8y1|W|3!|@fp}JRNiw!Z*7FfU{XI7w}D7~HLRRE^|jTe zim=x-^4I#4zZ&)pmAt4h?c*@%Uy0j6r2hk0IflMNVW4UYv2-{{sM=yP*MZ2|;+AA< zi^gv*tNtnZ3mQ}QDRJH5?DEA4T1do%wrKSHSsb)#C$W~Ou)M*=9_V_ zvXO7ba*5<>j9H?_h`3B6zAG~co3RG*kHe0k5*J@|u?)iG{xRGLBKMEN%Bgdot5)a1 z*e~~I-vc{`%3gf2EoLAl|153@k^eGSIflPOk)Y}fv4A*8s5;|C*JVuB84o18>0+&H zt~*j(Tm^@#HP%M_Jc+>W$jW6YDXwr0DpgWk&Lu`eNimj8vYBrgGx7io`jY0 zfAFq}jQ<5Ir_MNZo`lJH(~o&`-iS#I$K`-Ii}mv)tgJtRcTZ%!9;_V0+F?ysWr0`( z93)g(aH(t1%Cg{uWY3eBkf|23nF`xZu}$>7jxIP@tr=xx-|G;z2c}1sBuj8RQ8~sGs20Nnp${KdH)G%Q1sWYh&(I(i%?X)HyL!alPGL;h~26X8=6Wv~^bv_f6- z{sy;#n23H2D;tUES6m{&<*2@kFPO=L@?T>obS4}8KY;y1@#hK0C2#Aw(UR*s1Vhsr_~Ct|5_ zkWj_R4_(7r7AKb_TbxYo?Jrbw?489@C;R+VaQ1$lzt^Ep`ANIGY6iR22A*<$gI`b=YfC$kB=m@t^%2789eT$G@;QJBlkEw~j# z@;AcDsgs|lijP6*zv55-CD=Pu`t!B2BRUc@0$#u^Ax6M+uyRZUI8+O&;1J7*gM=zL zI$Z}M3y!^$EjZ?MXW6$|Gli!1T#@~uslBgU>g?}`)*YLD9L-?X037k}T*|SCp)^Jk zS>!C`$0lraSXD1WPn91Va*5GUe$;tJeW0yK2f;jz73l!jY1WX)e~jrw0LkxM+EGd~ zR57wIZU!+S?FB0v32ApOkz6q%zjJAIofZMBnQ5Li$qLv()CdTF=h8YDb789B#t`G6 z4^~b+4np6#w7O4=g&+9G!uMb&QDZ^>&ZTugW;|Si8$^tUZ^Ozl@!(Kps6s_7I1Uo3 zP+8zQ5Lu|4ne6+IY6If7(G7?%vTetae}ey7 zOPZQC3!Z5%%-7~OHTB$_Kc6)x4CGtmelR)i2kR|}k-C5>*0c?X2J4Udv)%^x_qbe< zy(eAF6b8<%HJ7tp{pH+%g|%%1qK)_>+yWx;En#J2MM;{tWdou?eVIS?cGxr286LL* z(MJAw+zKN3Pr%ACowIhap zvXWVyEmwwqqQd`L8#gqvI9W=D@3@AMDjB}XB}PNZ&>Rd|yF$4SrehQf_rN}~0?uE@ zbRs-zt^6J;2W6BAcj3JfQ^)PFvXMG&2;XIaFqS#Ocu{SqxPG$*T(xN(w+q?$Iy0I z%T+lbmI4O}RSta3HEd-$up-%KAhUXM-95pxk5aiaXnIS%*L-`PQi^JCZd(FvXO|YTq3#RVjZzSTO6m+zlIs+S!-McyN61DJzh)34#ixI zuE0$p#=zyUa_TX#zFNA6j)SNC~ z#|$np8VZl*V9459volOf4p2Sh*b(-T6?lFj(~0nq_boUm*{doow#R!Vrjl)8Wh0er z%_Wj6E#!R*3*Q{G#Iu&@g8f0|8@_L0r`&<}O{9DhteiUK(0vOF>5KhIUkLkzN?N~f zVW)io-anD{`LJ>fZHKj8l?P%eaF9^t!Bp3Q$ns!SviB{TJ9S<81Zj3;IkJ=ozjLLb%7fo>iP-WWxiw^*7_(L%ybZ&W6GzntZ^BNp^3K1& zbRs}%6ZkcVWF`Am6~e#qeu>%SpRlr#P5$mGp|XjH9ItHhkdGDp%ksx0dn(JMYPMJ@ zvD=^3awb=dB$XX@8=j;x^ocBf@12Pe$N@y6*^*wiV}tU%`dG{*V$;jQi3svtYkad51q>6CQ&}{S4d&BK1$h%BfQieZVH{HI4j@{^YNReM2R$f50X@4wL?m zaXX0ge*`PX(03>fRDB_q4hIQ!wbJG~5P7xoY_eA?t(6t*<27A{TwkQNc!P}s%U0Ha zBYYUoueM;;3*#f}m!+G zOlp(Fj;uN`*|WNKnTq#J%q^2(Wh1wY=Mu@)6I12RCh0AW^IpsvY<3!)cZYpK5wO!i@DOQthlV()ZBs)uXgXtjn~t!v2Joqp9r-S)^r zWhox6b`367JY2~oMnmz?Do3rYDZhi68EeXKVK-T^=kH=V5hS&VymqMLk{zqk;UT z+Ierehd1xdn8a{g5ty@jwzi)tc7AVyn?Pi~A*>w3++odEWrJ8893)iP@B`Q2m1V

acSEtzIwb0?MRsM2nb7!TR=~y1A8kWPcYE3L7`jAwb9a)_$1w)T(SgC>`%Ozrw zB={6#oEWrLFMJWEC1;L$N_rmbB`fg!DNH9qL_Q^zuw=igTsRl+mzYk@hLw$UaweCE zopBBmZt&N{CyVvg%J_C>i)XcPE9?;}<7s^L2wQI!3pe4t6G`6yE2mC+x+)f|v|sk8 z{UYoYDs6EffIb3~`1800MB>lF$}z+p)_GMbh-JY+LX`^3Tn8dcg@=>9!!W6%C)=@{ zeG;G}Q^=Gf6~m@`qWQ@hZiJ^4KHI98^>yPTtCXc~*oX}XtF>i}sk-4KTq3q^NN{1{ z+~ml$;$aC4PL5L*5BtHcva-)_&vYVK`VMkfn=fB2uB2eUER?2oW#ry#8o0ww02P+#X<`P#4 zm10B$d8L@seXL+9W^A%IJzAHSOGQ=9uokA$)%zr5_qMdghD&vEAY&_CLOJJW|UX%p5x$sb-`P%&1o7 zNZ3H?)X621yJ(gNW>_4j(f>9x44cUY{cphTq0$c@m|+=;83SL%O(Dj> z0IZyP41^BMusBbPg9rWN;FqwAsBxelm|+=?84LH}<`84y9#}ah797e7RhfuI#z8{e z!QI<+AhI&~OR{^+#{_j~qz-A_8_izUkQ?y>Gq~ZAmCaIkG_%2ARlE!)A9a^ zv`>STV`w|9?W#NwOM!!gDi4}m2O`UZ4U#Pn#&za0-Cc!DbPxG2*dVZ^WQ{Yzvt7SE z zY~+`(af#%LiD_b+cEep7=|`D4Sgmi6{tfIDD(RV_eddh;n7n_D8$jg!D_A*o-m}z3 z?S{)V<{$Voe-CyHmAN?Y-!cf3``fq?MDB0G$}!v>iU3tdh=syILe&wgTn8fSi06~t z3EEukH}+`lvM-vUtf5BuoT=a42x)p`t+EslJF($l*IqKTQ~|LAmlzEN#5gf%Ex()u z6EoJ76JRe{q2~``IuRoB{WJ+n_NyLSd=l@Mm{N{`m5r2gB$r68bdc|-Ss9OI{6^dYBJt~CftR{K&pCpgG-Et>S0P`>{=1A?tUmgIj7X)jJZq#E48d4kRQi%B4BFb zxRi+b=H>Milb+yBCA_Fn`_u+;R`S-%gG5j5h1XX8<1;jx@ z)fun5E@QIJ_-nGaC8lL6l~PA8Q_Zc&^0(omTPkmYgV!2)wV}TT;QlUrXavD~;l&{z zbll(?YpT+?mP?F=N@Kb{d~NCZKbWAg^!y(7mo*6T_c5Jlu_3N+^bweO=XbaT#Juxc zSlP%s4{?d)>W#IMkR3I~q@oP)b0L;-SLB0$-%o+;$)0s{LPE8yaY7D{5KVQU6Am*R*U}Yo! zoXaJWt3l?9wcBu;M*bdVmgjwsyI|)~$%|{>n1Pu5Z^sQG^1l^UPM!aJRfP-{1OM=k zfmdM%QDb0%R)!dZG2`H6+!$gUya+4D#DPN*q3RH^usBGlI;6*SAhHfQJlQiYre$;8 zJ;ApSbHNVZQZZAAJZ{h0aoiY|aLTUEj%gQ&q^OTw*j- zA=CBYYfI6gFhx07_0Z*D*k9H_$nVT_B5Z2nK8QX7GxsdPEgbbx z`yl#Q%qX}Vw}lu5m%_?1QQ%NKsQN=JDGm~<{@BQMAhQ0Ln(zsJy`@fe2PAk$BYgYg zZ)_A;=CTIeh`*~ESkH}*tZ9~dXJT$y3syFAOB0t!uD+1(s@A=wao&+xgUwEZ^Y*Y$sGP&^ zs@Cl{X>W`7Po%vyteiUS(7UR2k7>la{E2tKexVZA-&L)T!K8i?ZUd3}39xbub%(`Y z)emBcaF9^-!=GIjDp@~Vp6qj!sg>SRsmktP6c)4pl`54;8S#BMY^^a@J7MVC7p&`S zWl?U$>b5Snd9|7gZl$yZ|CwFYmo4Xdv+R4Mg|@)LY^6;Y&1@DXM;0ne@o<@IaH-$ve=`QaxuKU;qoXjFmw)0`5Xt`?R!*J#JoT6)>Nk!4 z1_yf6U!O?~$3=rVz@a)&1%_Bg93)hM@h#U-mIcPW z$)17H!tP3~$P}V=MFx&pYq}Zn&oS3+k1S)B0^>y2;8F#~aa>|F6d0{?)LNc73uY!K zka`Gm2J9v)_Iw}Hi6D`mW3JK`agq5~^%C)^#AVZ1`ic_a!D|s)cN(!ag9fIQjzX{DaU0WsNq%xfdR9l?dAd z(<952rE-|ZhJ%&fGQL#hFo#QwhRR{0gvJK06%V_^)Z{Q#@vsZ*DJ%H=mP{u?MSl5A z*=}Bz?1cAC%r85@%0_fi9E{#DpBRO;d;lx-9y`2pMtBKa@F$}!{}3ISD1h~>gTLe&y8 zT?Zm-iRY57C0dpj*ba%@ipZmlC)pUVEM*P0+EK&&Xk&SSn;Kc6EOo;lToI_c;V~{T z8tR5|V$fPf`5#Qks2SdYy<~-)f0^k-h{*G@BrMsly5H~?-Y+qSya6j4IplRNkzBnX z&&#qh-t1s>78;BvcO=TQDFDs7phIsEp(hFea)JccV%d*lw+Mo6juve(G_4Bgg zh#!huKqP)JtQRY5=ag8-qKYWQxjE4GQYIN{g9dRp6&{$(` zg1u!8g8b!7Ct62{EfG=s&1;ey@cxN8=UQ0V$T?SYiR9`Dxg{d%GmZI+%qFb5H<&*U zdxpw9yd@$!3X}Y^xD`b5&%ny5lMii)i26;VKYgh;{V7ahII2o>#_L-mq9ZXQU?Oe_ zF#=j)<(LR?C>B(`A(jyb2~}^@Ttivb8~;l9+^kBe5S*CBUK-65yZZ~7a^%j$VQ}->KbpV<~Wc`#MT_iEke`v(Q7HF3PUs&pp#*DS>qso64QyG zk*|#EBQR4>5x0PtdX~e=M(XKtl~AciM3YzQ+26;C{$=?OlYL!%dZEYeVr>8m20ly z60x~vVS>pRgk1`2BQ!947tuVMa9~{dZyI)ai%bPuD%CMZnhn5wO*W zMS%W(x;_>&3O2`WAx6QbuyRZkI8+O&;1ElSgM_-)xym)1<+aYa$rc>5`-_!QS$v8h z+a0{c#ZC(D?~PpWl(Zo3+p($Xgn@inG*!{85X~yySl1rH%jzBFEIX~ZR2;JGsQ<;b zy7}!DVLdlKvcT0ZbZV{TY*)6NEp}w(8H5Eb=7t`Zh`HLdj#6)5rlZ=~OHKnYS2_NcLav%Ev!j&6S&mtl&`P>3`g=9`aF$nAsbw5t;|)j zLtgBJ{%#vLITEv$4Duyc4l0AxxWs61Lm?&TKF!?^uEWzfX!S`9%A5^|mIA3MExl}xZ_f4ey zB&?h|<*DlG!!nbn9Og}WB9jQ;A|JY5qLLPyzoPb=v|I81iL{$xZN_;(qbtbtJXlPEgACCVyI)b8W$8pUQ8V58bYcR*q=)b zQVP71Z(IV%>kE0caanK)&{8dRRLfa*)0KWfQ=6D8b`<(Mvt7ADwlZ+Sz`|O2NT)TN zGGsy3_?vCZa>dT}j{Zuu)Z1SFf7|Pi#Ro>{A~3&#T?CHY^<}o!!Ya#hPB?C9zRLKW zGq5z@FWVKo&DO^CW>$4(`>H(yOFm@()W&odO3Mb8)>=9;eZft5_Q&z%%u1!zpKoIq zdrR|+_`msQe6k`o61$#Ue^6jrmG}i_oM#pBIX*t*THHG2^CvK!XqC7DuObE=j=9vF zg_}cMYR-U_jin~(SQyLZkw*L$HVRMTH^Ppf5*POtg2^vkr|vCWk9SJs`eRr*eXiy` zqZj!R`wzi zD;shhY=I4*>AvCNX!5Z}7-4T-{pt6Rg--o1wgpxnZELyFhRy%&ktLM-|h9Q@g(BEwfERG~D%Yt&PD+RTn zT+Jm$!-6uFjabVmzlSLq>&Wk57g<5)?_oL-9P*K7fJt_$E<1jUcS=kk55dYt0(pQ- zB)5D_5O?%Vx@#VR&Ow9jhp;=SbSH-%MpzmD5AT}D_#Id|b;eWF(rR*Elqv zcEwp*8L175aJ*WBt#;CowL$$da>&A<{ukSX*>$TU3zDTiSne8Ksy^u95~HC$m=YPg zRw;ZLW@fA zU?ysW4`!xdbI~BY1a^pZI_FKoQ^S{^JdGHf_rp6Ua^4$OPMz~Kwa(gR^C|wUSHe!A zvYyFVYXdL~geqW)m;?`VnJ|_PzAz&T$d$TAWTg5BD5t}>0rl!WFsZQ zPvKCt#u?%2GqmhOB|_cm$eLs+5^i=4D^(=?giDNuBB51|T3bY(foU0w$dj;}tibcX zVmc8d^5al-T*da0T_hqCkD-kWf|X;KJFNDqU=WLggM=y= zu5(RPvS8RN*@9tAN2!>PR15uZq*}v_@S$qgYJr;^S(hxOLfJK-RH;zn5~HD1Xby&~ z)d^pNImsELc0^qS`^btqe-_h;@Q^RoaZs{XbvNNFc(24H@+DZ=NFp^ZkzA1=U#zq6 z{ROkc^Jc=&VSiBhhF`3+Q~nv=H<9ukuyX2@Loe1@NdMcP^gm&rP)X}A*4b(Q9q*q= z`){yv3~h&1T@?mmDR7Wbg+ak}AhIyHGugtRxt#6nXXkH)w@oiT8cj*oD61Va=Lmg4;qlgNRvvXMmg=Mu>k2J%x+R>o&ATRcmHPs1LeG7f+0 zDUS4~@ZO1}SHa4ulMa3A$x8dj{uR*oU=u)3=PK`aXn z5~@I0=sFNtAk0d(KxiCW$xb1yA4jSm((@V{5|*f}ahJ?-q=E5~<;qe(yyD786%a3R ziP2C%GziuKwwuShOg#oAC})={Cnhlotmv`^LH>WtaS=XoXO0FSr4_2U7>`>)Oh7HL zvXOwsaEauKi@3u^P5!$u%di=2@ZSmc50(F*hmBgJUgB><%Mnc{{ z61rg@Q6pikB6o9%*m>qK%?3Y2RzA+K z@O_6_;#o+%1^a`_H~cumPWcVIZzAQ_Vdc~*haP8GNN;kiH|Y(T#Bf|Pm@`>_oMETE z0Pmkjdp@ijL)&3hSA~IC3LGRV zK^h%dj4Z{$GS{F|#X&ol7!Ae2I5B9gJUAC-CFhO04{eKo8cL)szd zt7StZ2?q(aY#i@85V>s3O7?nkYK46_s*>wk%|0=l4L-jWxwiZd8w?h()@ZBs4Ea3V zbpffHU$;Jzw=65kzg+RCmE<2>Vl=EI)3niROUj&2p!AF-WhRptjyiQMrV~L^6L0Wn z12FGuPs0r$W}L~evXOBnaEavBmO0|hJk4nu^}U%<*qk+}?*Y5UI_>i&^?9Lp^t54^ z?03b@AhQ2BteiUgb@nP1tC<|zHPog#PUC;FKmQ`^9xDI!wDE zObj@b3##G}i;07TsyJSCUD9O5aYeEf$JkZu+peo4WyW=I$XerV1YhwNHb+)4OL1|H zYe=c$;wmmN8j6b+K4vYsJO-087MDk0Cs|?Vf5vnoK;$d_0+sAmU8FvYcS}qp55meu zBKakkNUo5OulU;tH+|B(e0U#r2$gX775^B{@8X>kIsX?{PMve;6@MG+t^8SU&LoE8 z0>PZk`YZl1yf?)SAoAV_R*vEAu)3=PK`aOk5~@JB!ZmPZf$*th3xqMfrOvKMeNceo z)S6I6@DVpRIkFmA%7dJ1K&kSei%X1#@}M~wvQ`~@3FahcjJk(igMDO0o&OZmiSUq* zxH%}ZYepr;QL`jPuWHaB^wXgJN4gNlYzxWuTqEC`0IT^4)~<|MP7 zx-7T^_K`Ko=fA{sB0S_}0S6^}RhI?d#(O1}5Z{26jS}LkTq5zy0t??qm?fT<1rNji zpz;l07T762i1$sT{7YCldCC_xHLcMU{L^!DUVbr`S6iX$0}Jx^{gJ;5JBNx~zdo>I z|1aJ@5&M5&igsKo$x(-BE2tRZx5S=T8vB9U-`Xd(yJ0FjxCToxp zzK~r1+{BP4der|S{|;jRkT2x!$VT9Ksjxkl7!B1y3n!$N2kkH;IbBqFa6IfJE9U%x zOeb0%h-1S=V99P(eeemqTVe`18df$^$Prv3x%xmpQ?wDTF;hGXgwMkcp%M;1Q;gw! z4&FJD^Jih@)H#QqDcV^7)Svauuv4h4^=FDPynlilK;(TLtQ^DJVO>|Hfmje6Bvfgz zt?NK!Y4EFrZyt2@W};uSe47mb%SqNC8^LFa+~mk=WVw_0rYi?^^WfiHVlR_D{P)>5jsOn&CCV`buR@C_xrW4^IZys<^vR73c%))ymCXwl|vXMllaEauK1NltR z!gqgW2{sQ6zWc!bpz;mhJg`&V6YrZyc{f-&b;_Z81{Tu&{-n#WPpG8zdj@veCA@zk z?E>4BMmSWhaaKEE$oHOd zD^|C4^%pw=6EcOi;6K@Cm$KztZ~4%;=*ip_OoD+9IC2#7Dw&;Wc#vg|0dg4Wc#XY|1R6tc$>|i$_!ufA^RtP8vE1I{HOW9Kf{O9pKn{x z#QwiU{NEP^1=_FKuk|lW?xKI1R)uMIcBY)@edRxqNesuGoqL&QqIY)0onmbO=Ig1g zxB?+Ac@y*`{zh`$a+C1(c+W(_+rrAJ6P_Bq zDA73Q{5f~QKB00JH+Z7L#U|56Wx&UCg%(A z&WW7Qhm}+3+$!r}jq$zyjPHh>L1jFVr|o(HFI}h}zTAm-OyqkTteiUE^#;39qCtP% zANp&shp5m$!l4f~8gr(lwzKM2+_nf8P7SZlO+f@x@+a2qyEraTAEl_kfjCXFe%(TUVpK(w}w} zb_kWWsMtcro19O^J1253!pf<0Zk2b}HO80wGrkmd29>d>*y@i3qzhHW_8q)qBHwSq z%IWi!4>&ZwkNWfd4eShzZ~e)P!S~mA$3(urf|XO}JE8H6NhAD$KjHUacTfpW=H++8 zbTdc4jdx9C{3fiNI^${DgFcP)7AJXE+Y6b*$W+_n?zc7ollR8B0Yu&#z{;ufuFvUe zStEU{Kk1`jcR0;y_PE%{+lS*_6B!=@D~}$=RgLl4{*2Fr-QmW#YBK%|-Zhc&sjzbD zjHk%7Cw3oboNw^wd@bw}Dra$zBx1hF`f9v;BI_$*<O6G{I8R!*I?_07|X8Sfgbl}U_D4L0bTr_Fe`M7C?e%Bi!RV{TGn`=PYy zyrVzs?P1qYr?WT~-#QF)UT=$=L1e!*teiS~$|s(?{Ly#7o}r?j%P*=;^tMktpM+aM zB!2>|JPOIP4TIXGztErj1+Zs4$p_mWrE}HY(erUDh~&QjE2mC=N@N44hWu`S?`&8|8?~gxdG?S;^dOy|g`*w9z zb(qu72GZJ*gY@L+Y0wE8}6SAMtKXBPYZR@<#+Z}|=*wbkqmE|L0Hv-bP6 zVt#15+bs6m`MF}TuUKYyJ9r>Ku5pGzNA(+P``d5Fi}f4w(c(fWS1Ej^v8AJPM=r8M zSR=}YJl{_Am4}yC3rm=z2HM_q{%wquYQ3d$iTSGBNoVyJ1_mg5EPOlCUl1Rq?I7=b zWuT9;$;r111C1Sc?Kk>)%NNVJTJLcAsLtLMd^lrxM*CgPz91S&ZgGL#51kuJ)k2BI?)Ez*y}Ka4ZQJ@dZ0GJf@pYmO z`sy?JS}wj<@!gBXUd4^&^*!?XUU}U_Ugyc{rt-R(yuMFfH<#Bf$dW`oxFZPUbmOm56bI@bad%^e$H2RGUvOMrgGr3V zi+nrlinz?@rL4HT8r~|A>>OA*bF$N#b880OJ;Ukl4ts-o^NO0PX}Nvx?t-^WB)k)> zoH^lHedXB9rh&N@j`>K~B~;Af&7Eex&ANm)Ph`CmR?eJtcVlwdKzwC5;>%!9P!Wqb z&8NhzIDHA;Dv|7kuyW>Pr^;!41MW}5;r;}61{JQ@eb#&*Ve$PD-Y}8x1F&-De7hU( zR1COphQs|2>7zuRpkSeh-uAOzAv@PiZt> z!C742g*Qs%x&f@5IoBBj>NTRl_n>gT`@;^Q-ne4lcg%R3^S*fFM9%xb%9(R^eIVh) zaKOjIo}dC2k=cEi`muPcM6%0a<;=-W9%#HlH}2h=!_nRdyMl^V>`&lk+js5tc(X*d z*TTw~vz^vlykOvcAsp|sus5i9#k@w-a+~nec*{h>Pr%BV6Q0bMju?2S=7TG%ZYI&0 z%1Ye5V#SMepL$y~0dJPbwhLCyob6P(YR90vT{zusU}sQoUU@p6TyA9X-3o7*$af1^ zIdi^~`I0GvZeKXvBVboh>56+-tn{+jF2b87vON@5&YW$xBJsF&Rz zEItEol}PqfSUGdDQ;K|@pmE#Y6VCQ7*cVi`J$y1l*lpKSci`<3>D~q_XHK`fu}0Hi z`${<5Kfs=#vK99&Us-BJIdjHS<-%}-@R8w! zORzJjgvIkvb49y#4==?VCh{GGl{4qt-B^`xz`ZOS?j^7%sBlH@<$DP%vKQj563Lzq zD`!r2PF3FzVL<*#IOHF}PN6~;ClVSRup{*YxB*1o_rc1U^PbE%r5Kd|6HfVGuq&vP z#mt7-OJm*3f5)38vV9F!&YW#`V?U6A_B~62tLS$ziOy8fB1-dJOcvP<@K%Xr*M*f6 z$a)-Cp-#LIryY1ms1q+<_dRn#o_MieH~RqG+k3UX-zz`ddlvgH9Q#b~guUH=FfW># z@F&sCq(3-^N!BOwbbRt?<72@Q|M*-#JUE>}qk}u_#BRiCxl-R?xl+mvKKuHg{9?0CoKtd@dZ)siq>rxLmwo=3qdp1tkrQ=PWjgu> zwiT6nC*Z9TgUE5PvK2&*;S%YQoxV$@l3PCCQOe)OED7Agb_?teD&JXrid5Nd7kD?} zZ4)Wq04rxsdG>B)_L2BPDPM7s{!KXPU&212k`|xi)9truKaaOhr2P!6oIu+ntE<95 zqyi5KRTzBQw$oSNLz>?Gl5@>#(vFO#ZVil=YqGL6j( z=>2Fh-jqpTWipkq_#{T$di#0uy?EaPr_cI(q5g<6q!A+ zi64MlKqUTuuyO)%k1VeW1(6m!BvhgBgl~|Ng~A`xeYG%E9h4KV6)uEFt8=KObNq3e za^Za6p{2@&bGgKLC>IjXWcm(F%*rO;h8^XE9(|SR=oLfTGnu}HH%$yIx5CO+V7Zw~ zq*pY|5oxz|XBsc2|H#b2>UfLv?_sA|>hBJW?p%9-=}iVjm3CzRYnTJbaz;hH$uXUnQTb70RWypHgW4aK8PqsD|}g{&K8b z*w1&ksiI;bmlzL4MT=n*Atz|0ougoeR@$k-PIC@}sE_Grfa=gE-;Tu1AO@iltZW6L zrCcJtVq-m#tDSd&F#^8AObaYLu7n*#9RVB07CSgQV<)4_aASz$;1XCl^Kr0|Dngv@ zGseQt!pFi-VJA_?!p25H;_Q$;9)5xwL>v!4f|V1-gGXhdiW8A=JS0?c@^Rme$l~OQ zbk|4BLk6pd!i;g{Zri`qU%lHR7En4ON@t#WQ9kYZUd8( zJymNbwt}7Igdc6dbo5GubhPOfc=NY@VCPJ=bF%@NF`z{+D0 z>=-I>@%ZcLgq>jy#f>0xKNwcdocmg;;#d*;v%=Y*0Xv7veqE!|&^luCKNUBG$p0i* zIf1`Nd7vr`kw82oRE06ww?Egoi_z~Ys2z|}kVh0T`PTJ~~G zbo|(thbk)`s_(CmXveK*_&BK4hNBPZ(UOH4;E7Q~)T z_h&b*!CNH;k*i>3D~MdqCDJPtIq$dpplU|ugj72$U-^u3I4L9v~U?z1U?YCg%1lk^1T@?l*6?jOf!r*w{ zj>y7b<8%vyN#ZElcxA9VJWieAq=R3qmmf-RQyT07-z;)SsnTF4E-@ZT1LsM{OJGt~ z?&yb|7h|6J@P$`QAN}Bn0)vye2p2)fiD`(DnRaIoUd0!vS`&!s7RNixq zmrTuYEZwTUQ*||N0+IO@uyO)(k1|hHiXu69NT`D0-M$@>1;g}oPXU=EzDO1?7yih4 zfQ2UKIP2h4lCW9JOpXHb_r4@lvG7|iF&>Hq=Lhe4$|xy$)2LEm3X{MpDktpd-^^1Q zkopQgcsB`emKaD@hLx>A@{XXMbVjeoQ`w47g_ToDu1^|nA5M5%*dbKH@u{SQ4;wDP z8z*w!5?0Qfb8ITf#X29(dNJ%2Dr<8pDS>w{ZUB+@VX$%nZ;$M*3Ivf5JS0?s@GIZ6 zBnyP^OiFe2>g47}T;e6dSKy)Q9B1{;%_uaj)^d`gNVw8>Sg9i6GA=P5iiCtO1^p1F zC2t*7CfpCZ$q79ACezW7$QgwuF4?ep;`lz^FfpKf7gn|c%6GU#>N5(`S;m@_e==jR zvfZNmH`paq%JCV6MAm=7n)4EfoA*Y;!MxXJ5@S*P+jq4&qmama9oz&W z^EF}R1m+&uUKI=?Ie18@g5eV1!7B@ft5SXiv1gv0kDn`QZ=a5U2dgu()IZkt6-488 z(~90cEs@q~S;$csEb<*bsxUZ|ORS(UcqM9mEJS`6Mt(EoD)vd2Xz70J`yLmt|N89c zylD7?{JSv~ajA*RGI2Rt{u%rIqS5-nZCxZ?(Dn_D{N4OYzJG+hP0U3{@fH?FC$Wy5 z!v6QM?0@h54*MtiEc>s8(Q*9W$Mau}MDy9FP!>j8@_+NslpH1ek=k?h6k)iLC%?$7 z2+WgT;2p^UaGaw#Dl;8z9M;9TsnX#x9;ssJOuSuUusjV`wt}Ug>k;WxuoO3phlC22 z2m5wJ2Fv$&y{Py8Y}1s!^6>ITa@3;bW2_U{5Ot2P4(<(XnXL_9M;Lv?mxl_Y4{?bV zgwfOj%Cu&;jgayWn3ueJ)C1OEVLv&MN55h^8WXuUuxYvd9`Db1%fz7a3ao4el|OKa z^q#Qf-oU1}49*)KiQbnM=k=JxSd`p0=lI^hru{bUwej|ewAX-@Gp8Nf8`$)iLHrZp z#P^2%LcO!iy@Aa>*wpvLZ6H$L9ac`D?veFX;UH3khlDB|e&`#lWZ|$$x`o43_4V}l z#B3cNug<~N!9$sq-CCM*ln$r+4lPwWoWdo>L+Q}d>US%`oZr>8Qdi?2@e#+HVRTk< zxe@l5lYVpw)6wYE#p%qgKG+fFdc0|3gt-=0wj#{cTq31f~G=IP9>PT1Th z;6@O+cfraD+&#(wRY{19;US?aiO>5EU|C7Lk?srLDY;^?uUM|?+XX%bk5^}a>EIMZ z%WN%EIqHay`VK5rN9@Wa#zP%3t=VlOzAS}#Svh48_LCENbTHG=n8+!JrsZ}}$>S{( zgUVu9*$OJXTq3>VK~6z5y=8E|kXaL0JDd;ugvvQS1<|zMrhP8nK9Tm>uyW?KV^a`K zj~T=t2q%6Y>=!C=a|)u_2b=o6xD7<=cf-mF)IGAkDjYx$X=7+X#ePh3!-hsuTiPIhCs!igW=G2#vV?MCbU9c!T4mn-J` zdj;=Booj~sse}53#*N*%;Z!XT)S7o*=V(_2hR$`Pq2KJr;*P-*$&b9voDUgyi}mh!rlylyS83*>bhd40dU zZY!_b$?FIBHIJ?%T8I6$k;Umfk##rHpiz|{z-$P74*Ngejqp`Ot1=y}xT%X1{&@11 zHHun8^a;FGVjaFWtZdccX_K8~gZ&)qMIhME!j5p(zmW}g3g4*P$PE_P&)|&`xgG^8 zXU=uHs{D-m_UqwzzXtn*idUT6sBE_>e-&?=Nck(Ua^{q$H7jp}@pIvfe-3+t%2*uL z-n85%{3PBok?_x8<;)3B=FdF_-pRG#2tAQWV9)wgyz&4&{N8mq(1O7ei2`XSQ zx6!cLCi`2wRU+A6!OG)+ESuvsZr#;Kf=lOBm_%nvXGyj(Gi}A@S$L~NveRMZ%*jqy zv+D-mUBmf)1oj8@&J~rjvfZZqVZ3c3*WvIpv<#i#-GKkHaB9 z2)ly{S#0%anQk-w0p2u`@%Lcm%o(rJa+G|pYM_2S9Q8k7uTW91&R-{)J+O)Y6}Ny$ z{Lip*0&$OpcWUjPShwXNq1Nub8Mt=uoOHJjP9G?ibG5GC;qp=Wine%f+hyn@f^)PH zmf*w=fN#5KEcV;^+;nNV_TJmEsBZ!54feDm$Cp~vw$wqT4uPr3 zeyS4)4uW0f1Rw3rbTlk=F((r<-i|Q)~F-) zAhN$6R!(5=Q4XkzLL?0j2~|;S?%NT$8({Tx50c+-aiP@T)!R2xt(AwmdYj*=?&@tG z#->#ne`B4)BA9a+)+=q-OEwLuwyiN*zntIbitI_NBdQ--a&y!ifAIyUYK}i~iNu;C zy;QWp3SD8OrPYo?p;|@A943L)YtC^Ibuk@{Q~g~$Jgu-hc9@!pn?np!J+QJBrl$Bx zs4ykQSx}hzqwi>!Vd_2UZd#fUEgRM%(E-ehV-blC=}07MSgVa=N4)tz-*KSg%_q3T zIEXisSci?MvJ3`fMU^V-A$L?+%ycvwb+I6~K}j~M7FrMEjS^$W5Ugy)j>uO+#SSrM zf?~(sAy%**0Gp>fX)-Zi8R*l3$G2Dq#v*vM-{=#Y0BKvu#C|)Uo2-plM+CXmmxGER zH*<-^2r@6dlBK)RWg~_>19P%s$WyS7+%e>SrlawYyEQl{D~LRfw@M5mkHX4U5P6tO zq(^qTm{f4^opdyMA6k4@W)fpjdD?u%TQg<5ohsgeS=5P?--4Ahr#xHDgg8hq2q(Q| z$4HCwFLe8D+MDC;6KQV>D<{zQ$m*&v5UIdJLd|{L=sRrXL&bm7EevK1<&N&^9Vrc$ z%f+qxwF==#W4u1R13$<8r{eOMxI8W{Px6a1ZPY*A_VJ>aTb{49pXCrgo6js(25b4K zSs&D=vPJOuO1{L7ei!G~m5kxlzAs{U)#vn;hlbhK_uk=LCC8>&h6knMQm!~2s)m_y zhZxnv1u#R|@5#ji+fu-G6bS#F2m8-C7NXBF9SvE14xikJccB?}PGr9ot)GLpzQV9` zdQ15%SXugKYOzqQ^)ep~Ne`XDmC~yyRufq{?l^<}1I(g$g-;#x(bX;Y+y}ddid~$( zWB0*^e=lwW5&qqT9YDy#n%oXZ8h>e+~8xmHax!%a(XQZ2GU_b`a^m z3@azlSLFir4y*Sp9w`>{wcbV$(eeqd6{*2E=-Z=pmp2|DqKWC29^L!rO8w;_t>#$3 zEWt*ubJ*4QY+G}*JAbJnjMI`;v%ZK_YTA;!PMw569RiWcL7NNjzr9!Mi#qaCI^x4R z^P&|Vy;PrEEBDnZc~Smm9FJR$K2rlLZ#3*$nMI~`hjC?@RHon5VQD`V=OydE>x@K(rCUu zIbW((3WDUq=nyub8fT(>N?s3@*H6pqVf>n}Php|AKR;X>9OYj^s!v=}EH55iSfAXN z8?F_Y@WT4EO71A7?f5X#UQ8>^15J8b#J5s+}_L3vw?zgHN;z)6wFF zJcGPtx}D~Vc+qa2nOJPq?@rvy~4XbUk7vZfE$zA{} zXHK@K6=V&(4~OIZG3*X1Ua_paWxCDyLA+@q;~&7vnKPcuvz@{Bjc~rN!>*w66`OxV zl9ujM1>QgKW{GV73M*&McB(8n47%_AOmJ|1HYb z!$iL8!O97IJst`hPjq7LOgvq9NT}z^O??Nde6IZG#8f}~-n|c>PS&0)^Y93D29Gg# zt`w8l2`gh%*jem5c+_)cFPB)s4D|}1E2DiILx}!J8GVxdzVRU0{;)}Gxi#@_XHO1i=bY9t{nT@u~F|(zQ=&wIO22jy+^TKFXf}g z-snn4?)HW%yW88ZoW*=mEfyMStYglo)>t~rM~g(Azc4zTJzq3lGn^r>XUc0`UeA)( zFUafJ@_LTEeo*V!%e$7Yy%pv>*N|a~+wJ;js|6an~nXV19xBHxJBe-CH;8te{?am#c&AHRw>O=SEsteiRH zN$ky;L3e}C2G`H)GKo&s&yAOe(sk;&Xf3=^BGTN4_ zd^D`K$?k!-N+i1*teiR7wUZVW8MK#&(_RL9he~@rzJxrfC-w-a;+7Ccz%Z+l^u6%-M=fbLK&{hlayF81@DAzU|@Fmt4zi(LE4v zmq>R%SUGdLGh%g?asQqgj`$?lAymZTGb=IU?W*boym2Du<6z~?IZtn{irU(ITYOtM z=38KYP%(>@AIf%{@=bW#M9Me7%HxN!^=jfb;go*~`@@g2>)pijc-utE&%ny#hqCo@ zV&?I|)pQS&=uF9_-^;GI6I1ZEiIgY7%9&GM(IK5Xgmc~=_6YTErku~YE#5kj^a5Bp zbJD9jwo@6k*kCyDJnR@MaIxRQ(Fr?SFUE}^a_@zeGw0sj*x_b?K0h4vxv(dwpv6oV z-&3yYVz8i0z$ofuLIdj(C zjm?<`;@83vzY2STidfvme50y$7r%_RN+kOdteiR7$$Zw z>=w4z&c&N0vRxHc&YbOReebgYd9QHDd%!-S-oN6*8@l~=jNT1zpGbRWSUGdr-Hn~- z2IFPnjH|FGsEkF7=KJTZ`*;{{l}L67R!$)6ad@0Me@>i2<{_cZpF7NV6RtdeZl%eo zoIvfMaNOG?-lLF7_c$xPq{G5*anT{4W>SEr= z(Fwbnc?maynDbtQm93nYHup7|%N(QLK)==r!RY5QiLrQ4vC)h5aqfQD^jF30Akv== zD`!rB_4erZ2uHsg>=UfyT$AjGg zD?(h1n?NM~C0IFg;yp>M9|>pu5bO>rYq63mZn{PJhj`;e%J;*{36wpiE7XjKc-Hlh zP%|Dk`j)YB#^XQfp19w`mUMMB&t^Y)^n}sR%8%MjKM}23o#U)y=fF13n4Oj@^$nIQ zrQA?{)G_%nm30BDn&p^MlONq&Vg-{Q6ZUq0`YoE8^anGO{$TwL6Qs^rudAz`yl!wy zn3U|M`h3>ru&11`qji{$My0N=HDb`Ln6fF}HZi8W7gn}n%DcHldY^_}MSWJa@pj)@ zBYGIKCvY0!Q?OU4ti?%iW)E!QpTsR75ZgZOKLz#-mHJw|M0EAS zCjWWd3L^Q>!O98bJ(9nwA4IzFkWlr*1mBLx`eACiUxJ;vPoc5iY{Oh}Nq%u9r#;#H zh;;=ER?ab3-?#0gb-Q;aMQ&to(?~5vISPjdd>N?1;XW?0g2JIQU+@`d>nhz9ZQq;d zKcAoLkIHPX$7sFS;f5CHYJG$G{$BRIlYC{g-q+#g`pP9%PZGY&p$#O|d;Nvnk^%N* zAJX@U!dfb)&`7?(KD<)yFd5d!U@!YZZo_xwQjUFypwnZVwaDI8RY&W!4tGtQN>F5P z$V&N2?{KBuKhpRXQKiGp4l<9j_R5uh_V1x`<8A6_eYnGo7D|O$Ay+JXCf{2d>0=*` z8LbyO+~m^192+;im0Y>=@ndO)eRH`!*y$dzR`SAmogSM*xuxu7^|JonQn}Py$}izl zn4M=f)IfH0FMH45`Di>;?$5JNxUs?CX>LO!#acl$HPqoDBAQZN>vVf;QoC_qw{GfA zr-N#_$W~FXL6R#i87byi80mDMy71p_2fd!LJS6H>mNU4u~ zWsoh$SjK9fPG_B3tykXMY)y#hDd_`cL1mCkHL)+>yvpkG#!8bv%j;j{^)-3@tGxbA zUjHty|B%;z%Im-6^>umux4iyGUf+<{|H|u|^7@v%{!d=tme+UWwd?c3zLn&4WqF+- zuM_2U62HPLV}8Y&Npoe)RQbSQyaRn7vmSdgluzqw%5ol)z$SN{50}x;nMbte!MgbB zaPvt=Hmvs7ya#WXIEV2rSlODxNSp60?K#b$d`LLugJ73XDU1Czn)&v8)&6+%MArMl z%9*q7ZagF#h))hjd?M@#Dq^vAn?KrHck%Ift3>4WVwRyqi?1s($EZhtt`!itW%-OH*c;#Y{|6Vxxdtk><$%~x=j!xLz@4}5B za=!ys&Yb(I)>|)w`k%w8zXH33N?ok|wz^<5{{wCUk@@dn<;Oe+g~|k^P0Ra^~#WK8ofN69f29!-4+<_6HSsb00<1cAN5#@V1GRAAprJ zr#!8>0>)tcW;o;jz}}!T7H>3~mfM8?g||#3{C8M6bHY8XMO6mkd8Y)I+3#Tzohh?L zo^F|LGkzD|G?DQJuyW>%XX~rk4A2LKgWezZ3H4qUXT$0C+qCz^+b7cAr>*k&D|fBb z)%a)8X!Q6F{PHBfWRG26RA^v7F&z8xZJlHK1jDY|Z(~0eZ=Z;LIjo#H?N!Vrod)ll z!+GBbdxgqdyy`N0U=zO{w}43eT39)A;?tT-Y7Npagp+<2_6C)-D9)Oe+k~ISTP6~I z0#?qP@XYv9W`pw7Q-kZXZYI&0`b>N>A#S}*dIH`$k#rZVoH^-P+A?wj^>*Q?w}D+k zy`jYdP|bXs^;UTEMAlot%9*oX-LZz>Al?^F{0P`FRN~?_rlS)!_eHo7MDB;e%9(SY zBDPT&sLu&UeHQEsDr)iJLAm`yI#9jvI0J8&NcU7&If1Un83O7U0tf?k7N<-{HRlIdtz>V)rHzKS=u-sR%Gs~m zUF5_YUCeYe9CfkLrGZH{s-8Zs!y6@rjcZ_KD{NfFCDJPsdPI)3=|0a43EU$74D1dn zUGW;XWxCDyDZFVS zJ#x4z14I(=kWgj7iM}0?Wx%)7EdwSWR4WtWKe{PJ+E&^SG=cS*k1n=j`1p=Y^h z(ejnq@`r`dQr68=Msra=``>%N!~Ti#?7tR91N`4h_^(Ey`Rst^h0&J$-{-S4nWMvn zcT$@>nd|C?@mPH{vneodj___FbAQf}9(|JOXk)Z4&Wd&Q!Vaqy+zMh?EyK!I3Kir% zVxkJG;@0wzP+@f^-;T(zIwRe%I!k^kv#a+g_EE6%QQDK%9jq_dxOEP?`l7b6qXmz`t$76()LHP#{VkX zPPN=uke^5F%dsO_+dr2Ev{ozTbJbdJsv}W$v>bs<;GdVy#tl< zP;WJV!0R`_>gsJtwnJG#Jf<>4J1Tf;dvcsrSlo7?OL_-)eu z3nu;!Yqr$f7*g(CmhT%Se8D8V$&pfe-D90Z*xa~iv;7_Ys9;o%!1}pjMARCN@68kVxClf=BeVt{r9(B-XjTTY^R4WhnvI4Y| zk3H;xaj5q*`AV4uy-t<|&D*v8cUSxe+eoRvD(K$6a;ci{V{bT@bvS!3OCftN6WKfV zrH(JLnTy7kIxdvgi{$lUdA&qlFO}CX%j;$Gdbzw_A+J};>s9i4wY+{sUayhYYvuK; z@_L=TUN5g-lh+&M^+tL9y1d>buQ$u%r^LteivuXoDp zUGn-JdA(a+?~&K<@+o2) zr2mVzP9*(rSUGdjQ~CxQuMrK#TZA*-j7fB+>J~>g2)k{%o8avd>23@wXHIu!U+e|0 z!T8W{#s|Y50q^6O^)~4P@z#l?_k)!)Cq0)<_E|5`4dSPU6F&*|43)T8o9XI>P5uPj z3L^RAVCBroPZ0|l4A!@Wv%UrP1(mgk;BofyBiDSj63(WaJH|)o}jW7-(us-`Yf_9;-9d#bzpU2yxFg>{V=;aR zZ<@&Xhp=+yjM?`Q#TFm~@&CdR{}=WK6>;uu8e z;jI%%FNBpdC%s0~SK6*a&YbpSz8BqqynQ(2 zZDChX@9b%O(nM^bm+n(*xfbBf64`DED`(DjRqGG{gL6Kd^J3U7RL9BIK0^4TpR; z>=Y{G)p*P{I$+<)cj5*RdEX8zXU=;vKZL}f{AxJmmtj{>DT~Z3&Q7uJ<(KegiELkl zl{05MU7h}70AA~h!S(fACefMtTI@+zw%d2`s(9N(%ClkR%qdTC&Xw#DPIx!i7t~u= ztR#?U23hy;&Um{-x;w(knbTd(KK01Bm#g8Vhhe`^Nw2|EvfT&!o*u$&AX1ND<;sq^}4k{bkq}RMO&}mS<*J_w>bhyF|KQf|bVuUB~L6N5bho1p5M|>s}r7L%dxg z-TPtX1iBs{1W?};5U0s|NT_cLM81bu$!`i=mF|b-Cm&F*)EehG#=i5+&y3ych>_o$@mTX5Oo1|hBInLHfpic zt$D{u7pk`u19-zkzJ0KA0$-1msob+Q|UB{}A)PPQZqrN zD`ocmiOvP6BS&&2_95Ixm>;`b+|ws&JNYQ4-;%7U@Ro^$*MyZbCp@XI zyv%^RFdXj3VMkEmiv1(ZXq)TD@J5MTKME^n&UH#3uNV!q$AqIj8ukSht$3p%?6&ES z;O!FWR$%4vLAOvc=w262_Zrw2I9*l}N(ZXBo2&44iF7ZAl{2T?(|S@e06!HD_;J`B zRKW5)jMhV*#rRRYX(Ho?VdcyjPZ1BQ2H=%PgX^kyU|&!Hi})-bur0c8;q4OXz5y#| zPghJ57<9J`r@J|m=uFit=*r0ri|(d)yF|M0g_Sd>J5^557LB-pO(0oSQiqOBn z8z%C74pz>b@3iKuya9Oj`N8$`3?|W;3QNp9H!ZjC;AwcvM8cC{+_WY01^RXzJcwU7MaT`q|NWQGLCxuEE=*v)E1a^uqTFklZika1 z-ZU|s6kug5oD6V@^cc_CrBcZ)S0mgYeK|8H@QvlAuv4g{#Wqi)12*rAa07_EFMyRZ z=e_!F3&>Rp zjE~#iG+oPHj*?;u>kd|T%fY5fib-4|v7|^Z+cW?=d|)J<`7l7)V^vSr~U`nGgRv0Q?RaH*yMkQTR|lM z8(2Akyhrj^^@B(k9un#qrr)r3Fn%e%QmVnvZ&s#)FP03+M%1EaID&0es_ob;pZnT|%ME~ZW# zov_2s9=H+2u(KPiY=xbjeI-=b5o0PS>}(if1$%6HGu^N=p}()DMVT|1{a9h-9B1|Y z$M|ujVW&239Z}^pU*D_el#{tcVpK`-Ib{;-u@OdYg4tMM~}7aI*4 zm}H}BvGR3zqr|Xr4XkX1jjOmsdg-D^zL>D+KFZT$D>7%MNSlt+f8@}XmDbD_kx%$NG|QoQ|CH{y`u z)?7AMEPN(EN|;86v=_v++wa?lw9D)imtHm}FkCKGJLDRHQ@AE}BG*!OBQ*Bw7v*(G zUQ6;?me*lYlm?eR=*9p8c;XCj@$#k?>C#U|E?RG*w z4sV;7kdJ|tt>P;B6BrUk58^PI;D=GYrtb z3=G(yQDST6+pM3#nuu7L z@Yac>SB90x0qIylWsu%JobCO|YvSmH&Ak^lg2??aSUGdhP;lR&^JwgR8@9>!QHt9OvI+670uyO)v zk6A4>F(xKRJS5b_*iOFXhnyIzrhK9*TT3FA^%;ATeg=W~x!O~t zW5(>KzGF(wnEixHtYF40X^YsHZ%S${>sw%MV*MvfO5QqZ+3??BPdQ;nzh*ib6=PW+ zgC^TnFVFshw@r*Ge}a{*nDR$1k>1NQV_BcYdZUYjp9a=v5@Yc+V6%2D>vIub2e*Jo zd`(z6bK;I=eHQhF;nY74dxm<4CoSu9k^dNO1(EzmVdVt!9?4(T4q_uJ~5j2?yl$btjn|I+TQT9sL*>%gBlIrU_>m_eR^m8}f&7?((|TGThOTcoF6 z5?m~HGl{V%7H!gwP3$h-6L15Fyt`oK%z4|J*e&MUg)`pTcmJLUxTQ;no>(33>3d`8$_1v;0V$O+?k8dR%fd{X1 z z64TM}$Soi)jM4~IV4RB^K@2=+!^&3RsdI@jD=^NV(6v%m;~#c#)ryZqT1Tvmc6iVj z1`jX`1DBxO2m6US4A$po7$kPZt~T$*O(713yJ6){4~Dj5U<0*ky8Sr#d-ynb4R#TA z9K6doOvlk3dn~+)n?oE6FT=_SW5J`GP!);DHXahHA}RWIL{=onrdyHBVH;9&+POMf zHL~@kXee`zzk2)cX<-u@4XdHesPkDzu!lG~zEmmlJ}!}1ii}xCY8!-BF?(<1p95iN zvahNP*$;M?lY6u?)6vTi@q)zcfgNfV;ua7?&BtM7E7W|l;wcV_m>XCFeM+?-@K*UKGY@gVpg!bB?diRUA2sOC-jTc~NI} zptRp`AzaXQ3yS#J{K1jM`ATo&e~i`-YU_SXdug$^zrem7`pGfYWveuW!GwIo#{<Sh#mlNdSrF=h!C_^cfL2=7ezW|XU#ju!Uh zf)!=Eot+=T+a_k`AHvF3c21k}6cMfr!vA9(2_*bq*cZ<17}-}&Gh{PAd%Gnb)Ybk^HN#Vp#fW3kdH+x_cKMuEmNcm+n_!<%d9TXnX?6Q;+Be|s6KP)uD`!r774u2M;Qh;R-p|8cq4E|H-Ryx) z{2AN=BJrnSkC%>%3-Ev($?S-E0{@3ZD&f0T>~9o9$_tD-x+2n`>STloNLJN2a4uk*^n&?RHFg9dDZ$Q~m)f zTQTLYTq3<1L+*!F{xVo^dO3PmTCCs8B(PeX$~wLuR`tLp{%+g?BJmAj<;;o4_QNWl z8Pq=+PW=GbGgRv4epuBDoBaRbRuIX50#;5S?~(jf{UFkXhlHvh9`g-avVQn@x@!uX znSm$u-)E9o4wOX2T6c6Y64k%SToXsW1L-Eku9J!6TIr7^uCo7+P3wD$f zb@Uacqe0O(M>1rxY4z^FLEju{k^Vh12dn2T(!YhBLM83k z9O>fyE8GAg?-yX@%z4|JBQ55uToKHC7Lyo@YSF&C6E;V>xKGE8Aab7yD<^RG$oZ;l z5Q)M=LX{15-vKPkhEJwD?J%*>_^?QPzF|LjtU7~B{ebo>C3DO3m1_Idp8RL?xuIHK zauf>-eTR`M7Cz1;#zV2t-RQFM1X6?PSlQ!9*hfyl(Gg5X<58c=Uz>AKvQ2~`e!%(o-59C$L_uhva$ zd}muL2WDJ}1|;Vg8}o928>*!rM>#N!8IKjsau}&{U^16TEC{iSt;)44DyE1H}Qd&&trI*#e+(L~gq&376MniW&(c-zF7ayqPR#gtRHM0(l6 zczspEZ>9VGvbC5uc1oME66$?dp)t!j^g6c? zyP2H`OQPnnz63s*yoXDShmxYju60VAwGewD%+AU;ABSD$#2FBkEu@F0kQ5vBh zTt0>yK@2<}g_W(qvn!WKugEYLVk^fP&#A{S!vd>~qha?@={pxV8~e z1#vaCu+r1&w-Hi419P%M%2BYRoT#G#rlUcTOHx~=+u@{!H%$yDN5aZhI4N<7^d8jY zlGK*F4ANg^<^(2>ufR^Bl8!G)ZFRureI;%Hk@sb=a^}2aOHx}dGnhXa&irSvW2nr{ zC8@1W*xY}L8$sm$6IeNcyGPDfWrIi*9ulf-Sm@gkSvGt&-Lhfgz(8$*_UyIlSJ3$6 z9B5;{28A1{sbXOUmlzMlLU*IfMkLt|rXxG39zC{!edGijy^HB+ zJmex24obGF=5n{fTP22$EnsCUbZo{Y(kl_sC?rI!cF;Aylo=omtp11DaZCKI7n}BO)%+onFLl2Q%Re9 z7TmPg!rLd(o(n4{(DumXsvHohz(Ycn0~h%YTUiclk?x*_?n0@SuMBGi!Qt>gb&fL1 zH#V?MjKWkc1vyHBPx}rfRT3P+B@#=5^zz0Ofybx`PJjVfIpa9kNlwPm5Yy3s)Wt#l za#+cB)nnr^c)P?1ax|=LMUW9+2^B%a$O(!d2ZdO{_AcC=?u^r<0xMceS^)VT>j75N zI0sk#z_zdZv2U;mOSR$Zh#&X(`d`J5ySPMR{77-b!eriOBYwOH^ReQ`uVE)S5l4?Q z9Sul*n%D=;2bC2*et|bj3?I+I%2xRJIhRN;In0ooi5spm2+zJ2y#p=6Gnm9!)S5Qo z*_?39c>Be~G`w*l=gF{g=A7rmwh}v7?-`Em{Q=wnBJcOZ$_czZ za=I!DL_+Y8P!AS&_y#EXV6lF>Wx?7@@}+zwS7RTJ&lgJ7ks)?HawJzPl=WKSSa|e0 zhhBZj7}p9-^QHC5cr9Bw%7^8?15T9>%eX{h`H)_QX+bo-V5FPNVTe|`xfFJra~wox zG93+3eLbFT5_w8X)FaA8xFy6`bOEev#iH|kB~&aDqbn#DRYR;`k0^gl`JG3j2-coZ ze#ts87EdT+eoj-vP;K}+BFyu?-d7Rk87`3+VN!fR>29zw!pTZsMd?`K99un%& zB_K2Lrww}}{F3eZ;YT#mclsbo4{iAK4LE3FkDm6^g@{J?^f5~^; zsQf?bE1{r&(N{u3|AH6vF*ss}oy{6Qvh%?)f=~EbJ@mG#xp9)2+ipPoz!!xY5Z~hx zV z&^ThpVmh&F525j!s8vvCWE#Am?DnG<&$v13u+Eu8w!uxF@uc+wF& zF7i9#RuIX52v$xY?@{roqEVy^4+&L2+~XUxWc@HN-TGldzcGb$B0N@|1FgP)+oBPB z$=$G1OHGan@_64tqzZ;(xx{!V7$&hE8xu&^z-+8a;VRfgPQ1|DpFxx{#=|0eT38x`PLFdwT%I0JT) z^UjWzGaU_xT;eED$!1jzcq-m3F=w0vD_c3^1TK+Y4Jem5x(MIJObM(4?|>abB^+Pk zn85iqym2DuTVUnPImebbx>)}qob~Tur%+j&OB@q;{{}aJ$orSDasqFULQd6!A|ZH4 zsInmE+Ywn7ype8MFtd{HAL(NY9FJm$;+2om%EI@44UJCD;Z{FvjAw_0$xVy3wB)E3 z-_3dvSS@bICB{RYFiY#ZQ7`NT^OE?|kpXj`VEfssc5YUbO|n!Dl66XVOy zu(B0jcH|Q2)eWnQxg*VG2JvOgq`>;23Oj~MT%6(L=!DIE7&n5*eF#?0ocmg8LS{wm zuMTH_1?(Iu`*ryYVnRo3{$IuoA@aW%R!-pWQ52}ULL?9m2~}6D=i3okS3H<*T`{#b zSjkrh%SC;m%5PaO;sI;kPF?H--e@y%*<4)ai_2F0;v8{=^MP}HwZbyKRipg}W@Epd zuk64TZ_H&HFL^#_%l>A}`3L)< z;InOZDVYrV`tL()BOa;5Z24tY#y%WDSp z?L4VRtFgZ*yuJfP+_8>tjV9l+zqgtj_hW8VrlfQWqySXri;&0F3{ zn|JJ((3Z;#=6%dKEMm)EDdtDOj-lS<<}snIPT1TR;YJX-9||ica98yKIb!rI9w`>{ zwcbYH(6R@v6{%tPtY-j=&f>0!CZt2secZibr7`)ov!2Vovo6!`({Bq!47 zR;Hr?X}-$fgGe^3*nAIfmKZngft9VeaTk|JuRdtL%4oRCAp8$z3U{N@kmH;i8Ks|=Nk4)YyZs!sS6mlzLo3o~LpH*(2|FfS{Y91pw7i99MX z9lcr*xg=)1{j6~;-Z(L~EQgh?*s_dEq*pVnp=N<&PBVz#%!~@G9&UtPLnXepF_|6f zhRyzZ+zcZ7YhmRC_8v(=GHM?!ZkvU&SsaTm~CX*P8 z%JhHCSsIi23?4_CmfNAD2XC1eI;OzNR_K_-CDKb9v&DE!7HyufYS>Ioj%d&H^F! zEV*Uu^|iBFi2Zhc?6>n{hHHt+Q9OLrcW|lV;VWEXJQNSpRmY9A@(9e#N-Gb+o^oQ3 z?qoU|6?r;?vfU0YKg8Q62ABI`Wh=ORpG%}yK*-Y>l)ntt|7G?BmJt7jy+UOjKb=AK zz$X4r+yWx;zro6x6OWzFpnPUf-{huX>KikOv3NkR?{M>U2Gt9j{6@GHMDpvy$_eB> zssL3;h;-p0p$dsBeTT3tBt}y%BnESpen%lO01sJbl<8n05i?v%S&l-Y&v$UCLgEN6 zF)j)T)o~-toDMUy3W-x-PdTwiBTPr5A`1y+yB%CUkGD+>E}w&yt>E%mE|Gd6q5NgA zzMa_#%a>#AAho@|i*X#c=AshCM^2ZWa=%7dH7{ z;8qaHKL;x(koTwpR3RbKg@=SHBo_I0L>3ZnP3-DQ%vXtl%zH*+Qni*V4Qi7S@46X{ zQO==8cmp1rV8A9LxXoIka+D7nuzp~*w;WQcd{~!D;5a;v+gN|YuC7f_7;UTpud}t_ zgSSU#u?ySpz|U}<%rO~Z<)bht*+I43c30R(PS(-ZOh@A(7s`pzC7V@?6F!1BON=8Q zhLx>2@EpIj}>z3ut9m;x-Ve{{&XfocfyTjpz!%#^gWWlsvkt^@Q_f?A;CVi}03- zLFG_b*$OHLbBXi{3Av=I=`DlvIn0{CBH}FACsfYyB~?xPZQ5tx?GtIA3M*$$JGP{% z=`n-&J>kUfg8f1zZZ4^6_Q9rp2W|tA`fads0(Fn9uL=i|B0MBi;qU?9j>y8{OX`t@j?ghJpN;iHky_4}Cc+*72yTQttGmf20Z*yKA&UqQ^5-Ml&TzV(#D&9Pi^)RfQ zz}h2ctF$kYfQN)i`~UDwMKbL_lK)3}Dutu9GT__rpmmP8 zdcU&_h)*3fx92(wg4hq$K3-;yBnGR!)cm9+iVCK15>ikWj_P&C~&X{>oh|bv6EB3uDBYpRz}?3i(O8RmjBZ zkrjQbcMTrA&b(9K%~^KPXCJs>THa5-F$(+0 z2{igV)6sa;r}9w3LCIFt1jHBdR*5m=3$U^kGtT4^>D3O?Map&Xy`NbUI0Ny0*dJ8B zvp8R6yPX-ni?>ar{2f?1bIP+-h2S9lw{X&bfqg}ogtt$m{YO|ifwo5y zS9O3$1s)Qr4p{2j5t;sXPIu8GOF1LCioV)$t8bzq$vMgrzK@3#0NgY!j6afdoL}VA$GU@+=z2t-%eT3;~MCv`V2;i_}yQ&QM1l}$& zWb6$qTOnglE|FdtFteFT8@@6ae~#G_SO|O;_6U`+Sj8H*-cAmm!CNPiJ_=UOob)R3 zRO+Dp^>Er>gS|qfEq2kFJ+O&?6}Ny${420>0&$OAuF3(C7Ca4@ha;97MGmEtb=>0gw0w~a+C=#`;t&)!b@CYJd_EOd7q68GV3;!l)PzF zl`x%2V6~JJcJwCmlm?`E>Np=>vRPFmOvRfe29j=A*$N~RxI}tILi5z|hN}$1A7-Xt z_o7AkgRn!Wgtb%0-JG|>8z*w!23F3TbNtkC2kSyO>jBs)RMyt1<8I!4xB*1oN5IMn zygjnJDiB0M@Q_di!i&CXNfrplrduG)uH@K~LXFV@ z`&r}x+yG*zxer#hLe0It5-QY)u@n?)E)TJS?Z^I3%Asa)G1s?rDChpj!L)CorI2&L zbtKd@4X1wSU^43qR&~n}rb5j`E|C~&QrxLM$LPHgYqo&7S+Qm_*j-Na(OOK$6>E$R z*s*34+yG*%*%(%~V$DWeBE8(QhL{yJoMuozlo=KH;BqkR8Y*@1!2@SEZ1xA@W)Ru$ z2PR`o@ANqbv3pH~}|>I0lY`l@rE*N1>o<4UtSdB-CTg zO1>SDk2N#XT?I9PJ-=#CG7mEQv4G_qZS}*Pi=bjls=c>uH!Rk&m*W}c2fh?kVevgK zF&+wwNvy|4T6r0!WEB%H!7g%wj-FyV8V>Ad-NGgenN`@eNF}AlND0f?#5`0s7?8#&L$?3zH|pqtrRX z>Wey75pa{W9ONhoj`tlC}=L2w)sBJEWs*si|?bbKd5}Q1=CK-594hUDgPK&&YW_5 z!L&{Kop91`!9JmqwiZk~X}^KDPo(`iteimGBde>zK%@c>2~`*@_w9%*40cVoFqk!% z8yYHt>ywe?MY;q1a!eMXt`%h^%^_|2HtSi`)lN?{FPS~DHjE6d5w%&Q8V#vYN ztc-Fv>@6qw=o3swuNXv}(e1Y<6h4i&PmD8%z{*yfIfzT7S39h&W~Ft%8Qj0X>~SX8F@A(t2rnP!H7#(Qpr zo4>-;tTgjy*i}yO(F;sR!%`QEH)F=z5#|-Vabkq|1FURCnBQ@U^m5FqaxaV;=LYTd zzK!0a7VWi}1XhAkX^R73tS;Eh*T796GG7f=&Ybxgs;-FLC#dkod65{h*Vmy=(-Hk3AQRPOMla)=bhkfKk9bL$DG#+wNn}d?AsyE%& z;;j;c$knj26-2J!66qBUa#GvD_gQ8MR?%C0pN9QGu2Iupc zHGy@)xv)>DoJIB!vkFc7ZQ5t!?GtI&Vdcze$G%$9^q4{XzHs9A!hWF=H@{la?1N4H zZrlbU^*dqZ1nM3MU)2mEMR-W4n&HE~9g#J|Bk6wbY-V#OaBZY-X}+ROE39-E8m62h zu6{%Z3J1B9R9dZNDo6G3wl5S_J-o>!603*wQp+r@>qeZ}7)EAQ5F0Uxv3M?-&2%&_ zb+HInGv5v|>*LK6L(Dp`vK3<1^p#K{MvSAN5c413(JVvEnkhe)RPsZ)LaE<~E`7|G zSP|roE+2D77y9{x$~tYdI-(d`6Kzys zIvSL^*sswt-3}k0!<#0CkI%x&R`~b~mq;&F%n?<5%UuTPZ!&YRJJ2Hi4cIAE(&E4f zqXRbYuj2*~d4CO7&Ybt^>YZQ`^IwNE{{`$AD)Tjs)l#ia*xaAPjUaOWIjo$(-6O}V zGC?E?4+-@oa;R@dWSOvbx@E!!OLK*4zS7mZIA3KOLb`fc!BAM%SUGhRD;~;6X^$ow zd=M9mA?`Ir>zMu@;vY4>iX6D{_UA zjCO^ITFK}muEjyTj>z=!@s!g?slPEt zs((9n$Gg$N>KthuNgqvnwOHjyA0J|U2z;XX0GCKiAL&Jxsj|~X_BaB@WW|(4u$P>q zqkWi;MnqE*09SORp8w0fa!N$R`pEM~tjUmMVl5Ob+7AXTAW#3d3#Oo}gN zRx!J81e^O{epax#7xtHP2t+qA9gR(0d~?R^fnC4cjaxvBI(Nd#R@AwjOQe@o))a3! zOs^T-Ut?Bb_pQbKRoFLF?(6VJ6n8&t`Y+>l5b3`JD`!rBT~+S483F6w6FdUeViH&} zMjZhg7}H^9U+hsZ7q^8t3RZ=c6GnkY*`O*9ky1P))HBQlzQb8Q!@QJk1CU#veQO-IS$5TrI%x1FF8p^ z5!2C#$Y+=)E!nVohB+E5Y$U}Y?x*=skwNTOu zlMTK*HnC(^=R^p70cyi8ZFD*ckad}@SluoMjfxm+af!r;k>U);B-UdiSnLY3u!6-$ zU>CWA#eAlt;gCnbH!#UYRps$vyisD9_#muog^BIBM0%B_JObXPTV{q}S=*vpgxx`< z8$SZx$+&va!z93beEO3o+SE)we0^q>joB+oCB?sPZG>xEfG2Df@geTsJh@OE|FLl zq?kVBlSJRJQ5?Jtqq5S+o3Njpw4+y;j>e?9BSkz(Fk-T4RU-TcZ<-iV{sk*rA?5GB z5-OyK@e>qM9uKjCJxSb{?lkA5T4kivr$v(;?;V?HvU}jOgs@B-p^m8WA!cph)5Hh3 zL}JuP@o8c*@3Rpyj(~YsA!8BjBzMTzhv{fQ>eKkE5`oGJ7l-1_62ry8u(A~{4&)N) zrGy#sjbh_|GYFr>Ou_QEMfeQZAymTR9M+iec3L z>=Y_%u~E_JfX(|h+yEl)TVUk`-X1wzl>s6lcu1%xi}(9>L_S%3KHUk$X~puAYGKJx zxzMlG0&lQxV3El=)arfCS|GkR&3A!S%y2C;IZB1seVM2SjDK*6@lYyER~N})V`EWCr7!T#cWZq{Zn>+)Pva-oju#=pyqx+eT21L#@2vo9JH8J@(-YhYYJPIpY zf#hK>kzUatXBu3DCw)J-URaq)j74o|6OPX`ByfHQrcozyehXI4oO5iZ!Nqz(IO{Dt z#@d`|NZ`FWZUB+@rm%7XZ;$M*3Ivf5JS0?saHH?Ql?B41>Au69$lg`!-wrzx9;eQf zQQys3A3$rD2HU=*Ecp%_RRk>M662u==x(quYJgFghP*FUyJ6)n@m=yS!ai~WjXuY8 z^cr9)f41NwNVcjp6;Roi^O&nyX?G59X*4=UgIcRk#c zzk|0;r2K7IIdjUf?|L}yv*{ynUmK-(jCtMo5Yfro@j z|AW3Ak?H@ybklziI~SrfGL*06YWkNwwzvL&R;?5|U$<5{WS-%{5M(lMzmCg-KcAeIQ+1V-}IKHLf-`FmmI1o9ra zUX=?XU3f^Sa$#5Bj>vN1<#gv0*o(>~`XLLG??*$FbEJ*Ii%MpgmW&)F!bD~)RzS;P zqe_I8xWsrU5!j2$CFU^;o53_>2h|MZCa{m3K%==#N8?d%zNloNWUFe%U}L;hVyM^% zR<=UL`dlKtvY_>%(&BqCvm~$}I1u&+m9PGy(nWbcylo=og|Kqwl(iR?7U`41NuL1w zgi6|eQR$+69Ns>W_A#(>0&S1nt1aG;`sbizt1A8f z8gG>tDt-YgTcP4PE|Gfrcko^Hf#CE%n@M0LFqLmS{ktj8z}qHLo(3ytPC1tT9i(>- zC%q%=6Dnyl{kv&@2ydTA`vb6Y0&S1nt?w!OB(;xqwTgUKlv|KFTZ!oELZ)_6L=3yfEOmqec10 zc-utE55mfsQ;rn|4$^OhlYRsC36->27`SP_j<-*w{SR0 z5m^}AlWt)!Q+ylO`6cfi9z;WvbF|fuXj>xSYnbIHedYJZwXEc*61HbO!5*FD=u%a} zwp?O7R0*@Rz8mGj;V?7VQ&lc}8g`Zwd$c#x(ZJNjIj@@ecHM9Y-aIkJ90V&{F=l@* zkzU=fmO4H|bDKf^OlDSK5pf#q94hs7jT1Dqj@bN9#tk9zKM__=;O~(jRE`mW#6v>m zm<7HakvZm|baTwK#w>3)mExK#JYivTIZ1K;Avbj!?j4}NHIV3Wuj8d{aj)^ zq?qZd<3^h?;B6Cw%kN-iE4ciIOQe@v9YKA<-d$aro-q2^(RopQy{@jo+oQACWzlFfHR%s#CjG(s z8zxAd!xZbS4+bz-8HBeFC%i4}5O-3r3CB0nieO=JUVt}F_(8!Qh z2z%ae^dj$=$lMOqa{C+-Xtk++HbL+31&aQ8(v{Vxx1zOJy=<~W@@oet@SeZ3`ytQ z!KlSq*DiZ^mNNJ|AIY3g)QE5YUVeKLxueBc=JT$uffW4JpQHS zo3vT4s@`+DdB5k!!MxwaB;pSN?S~AN_gv!*XX0(X0d4}3`MR)j0&|u1+xtgGik`(I z#bUnJ+Xxt1#=x~AH3Tp59mV@{S43NOcXgdVyKAMc#y^R0nS^LPN_&pDF{?C{3{ zt&qqwi?Cqj9C`K783kdPmYAAlM5F@KV&9>pl1{Hc@b+Hr2f{RG6nLMFa^W%iTIiny@$z~Os6Y*w=0pxgC*$N=Xa*4z{%HxJ2%_z7Ce~X!d-EkJ- zTVaP#3CCv?5;)(CH%{byBdnY`=h%#bi}i2AS^o-l3YE1vqmaP+1>684?`L7<1l}IW zypf5;^NmOd9ule^ILx;rvL5*E#8k_G>7`t$tG8C}>SgBxYt_I;523NiIoN^^=wb#k z`?z^p26B`H>ob$F(pe57RT8YjB@*kf6ib2z8QF28F4!F=V`Yt9U{5*WMq4o*jfz~{ zq-?jJD0jl!CI*omU}Y#H}EbKOa_3An%dwRly+Ag@=SH7}oUd zh%6XhO!pPU!~r&Kq!kLkU>(3hlyjs7pU}Y#(~^;+M0n2E+p0wPIhPm@B|>+j%SPzv z`Uy(IDh~b!`^X72dX?#DJmf}P4obGF<_!Lew@M5Z|Av*VQ1MSLkzQFK59o66-6EXt zW=sMrlc{{;8*$x~H^JK`Qr;L=&YW^=Bd&w=q2Z(thJ8XMZEnPM(>@SypGbQ@SUG{V zNA6bXU!(#L36=hz^bJlj{okMNd_hk!U#)ia=8qgP&hx$q9<9!y7Cc?huuqz&pn6~ve-XEUNc`8Za^}Qi(*??B z2KBiQ2UA~_NsL8JXy4)Hbb;!HO@20R1(Ey=SUG{bN3vJ-f=Cx05~^M}$9D+Jdf|)d zZmOO%P%M}AZBPfnqtzK;f|nTx%d~XlC=&Mf9XP5;*q2L;hazDz@3Rp-j)r+yIb#HN zk`rmv&vY~(a+!fZC7V@K1{J(nVz?;7%2v22a*6ax1G#a*Mfe(KN?=uR73>fy;rKFx z1kRV^jT1Rv3M*&MIkwEe#rpAZ){nwYp|UoY86@z27&m~(`^T_y0&kBTuF3$B5IiJQ z8L*FUM`RiBNV;XfO zUO6DQCAcZ)m@$C`!Qrq=sFdT|5)xT|8gHJ+`Vd$-bJnqK32xqB2=r6-b6Y|p z^V4t>h|Euhl@pkIPaf=5^fu*l>bX2FXI zxM5oMaTEj(`FdLw1V7{w zfmiTWiJ{^Tu(A~@e#a%!D+T0Y0tesqev0007T>j*1XdJN`NkI$xGArJw@swH8myc- z<=A2Z2kE`TN$&~!gi6|6OyH)yJKjE#_Aan;0&S1nthKj3UWh+!%!6i~p{|>&-GE1;x+v58)><=p6c=~r!egbcs zNck~XIdjUf^zR_u{b(@h2~1)v3O)NyHq*bGb{F10k@o+_ind4YR_R})0uKq5{y*p2 z5t;rUOZVx2lD&%XqwqL&hLhm60m3pZ;W!F_UEv`q!-OgTKEfr&Ljf?E_t~fb24Nmn zhRDNCaw3fmWI7rUxi&zclFh0TU@_h-F~i#Mk5}+&Ma7bN@JQ1d;p4VCBrY$G+dTBKF6H zvp)uQ4wb$6{Wh&5Hvgk>Lx}uGVC4k<9z}qvBSZr6kWh8Re|*!JtRuEccRFEuvAm?v zmn(Ml9&PM6xCb7$&Ouk-JFtq726FqfROOgkxXX7GsT$%AE-@Zzh#9e-8~NndFdM6a z_yz1LC*J5`rlVo0i|5an@pc?}4sV%qPOinKNHQor#>x{X^m0KLERidY7+loQoXmhRy!{xEVzD zTf@o;>^+jcsvAVo@Q_e-!)?BSOV$nD>7HmbWw=}|)C$Y;+Cs$T@Q8H|xB8xeHABld zEi*X^hGo9PM->cJE-@YohH1@i8~Ni>n2J>`Tm<{c2{t;7>1a&qGk6?nT5gAq3-FeS zq2oMQ*$N%!aEbIvh1nv{HoawV{xP#AaF*dg*e6uZ;(fJlzfJoGc>6@!--DGir@fjg z5)z2N9!~rpuwSUe*DxxCW*=~}pTeU?1Cwl2txnhKJT?=_MZ6Td%msP_x?P*=CeL)?X}nHN@*_>{v!Oq zijt8u_k#}ow;gr!Lc@-s3;45b=w%o1Cr_dix`4)O9^tsw3`}|g%}nr9kBpo?uJ-*~}WU8LUid$T&|TzMi0Q&|x!PTCV2^d$3<2$@OeF zD%@O$4mxalKu3+kaSNCkKNMC@Jmcy?hs~I2SueV0eHk1XZq~^`hfObN=KF9fn3>PQ z$`P5j80=-g;13rT60%?TqwSy-^b47I`-M@3O!)q!@58JbL33UvsM{49iVO|H_iUk& z4Z?RliB4z`MhlO%y74HS3o=?f42Q^=&ivg%CzOt0nV_Dg;Gwc5co2UmvrPOFRwiZQ z7oJ3XEkUqMK(qUiFvPJJ_y7(EH@oUGficJL;g4qK_#Id|@f<751T@ckJ?Wh1J%mIn z`g{5-)|Uy4x!w(bJTuq3!paf3wivVJutW3(q`JP1NFRESFD4R0;6Jd&D18@f% z5N?LmZx|!;{A2v#%sl@PR!%(6$~TOrT>rs6*T08@!p*h*4P!*Ue}@~u%=e41azwr@ z#&FpN_ydB4glq%Ov~?tC0}hLM_AidC3N-<{KZTYgBV*39|GHhF5y#L1Oc%CdO>qE? zYyqZu5}nWjj20ei4Z!hmE&~5#18^)HB4ax92MV1~I)d4MJx#$w89QOS|z(PU}`%`Tl35NYS@y`A?EtaaLV+&puZeTUZ z2wLrU$1Q@wJm!%FFWClO_5ja&5}nWkY}WK!>jXA=8qG`aJCU8hMnVE>mW-**zb&E_ z?gad?qG>wq2mS`hS$Kf z8d0kq>)0a%riI2L!y>`AZPAep!nZt$PG}Iu`A%zN#!umlknZ3fI7-H(=5G}`p^Vfv z^R}A@$qJq;mkRE}pUW&6cf!h~WUTch;#(@%(jQrkIetsnf_3I3$8W$9;pTXP@<~Bd zreDLK&dl_yuyW#=-bRk6#%%BKjB~cP6B4cH_vtU%-zBPhK-+;yxCP9NPk@ypGHx-J z%XYvY7Az!WJFwao-Jl)#b-X7Yj_V&RRC5D`6`@xKpMzmF))nUy2b#u(1|UOA@L5}Y zWJ_?eC(#Kl!KMwjwWi=)I4fkpSOLe$nAm)u&-BXqXH|F(lOvk z#Mc%CCk`~CrRDi%VU1&Ba1$I8Zl2W>2O9R%Y~O%CpPB9JVCBTKt(-W}h?th~r`qs#CPl|U_LE{7Wu2i}hZUY_@j$nn!$Xd(JF|OMe8hs4iz$3Q7m)*ca zocb*obQO6z|8sfuyW!#H=JWk^Zpt4 zyq^GvhMV`ObBv9-KOQ%Onfqg5<%rx{4EnNf@COYG3E4M1U|YC?zTty-HyMoW&h{Qq zPKR5Dl`ybI+G@wS?lK5$3yn*LcHt6Rcx1b9u_w_9?ZWsVBU-EQLpUd7@c2F)CSzLj z-w`^Yl+-r&_ZbA~3LY%mgzw=GW|ocb!pfv<+~`Tf*CuQgY&7tLrDgd=VGP!+lPo_6 zhlHDDf4_RjeA*H|gFl{`>nCC5#B)7Sc~Ni7_omM|=X

Xhlm%f7O0VNL-*f-vl>- zne&Zc<%pbHjOns1@COGA3E380WD9T57R-tFZGv1*5c_6B8xH2f#2U*>%a#-B_Jsx` zLw|6bEk&|FIL4Fcg#MtpoFF{cMvnrV8!~$2;7}RUn?GIXgwmodC)CpxJY4n(J@~_! zbtD5TlR9#yClOztpe-lRY+oe|a_kkZfWyMgwrM%RnDfhV6PP()1uG|>bHj21&HMl7 zp7)=_q2cB|YB|A}`=8=wFmrzotQ?Vhi$P!Z4gR2EAtC#Qqih`s`iAG@eGM@xQ>uj8 zh0)KWMaoE;^N|L1yF%lUp-tFW*ot-10W`8r_`8>`PG}QG3y-z-UDh8&7MjON6|DU$#$ie?VJc&*i z{KxrDYvcc`a7Kb(haCT3hNEOmYW`876Us>NsbY|<;JLB|cnNCNz`Gc!F7R!%(A%BPCPY|nPj_Tg|;xY^b} zRgB8`p|}Oij2{FmM`YY$ESK$oKP*^C$adi0ZHrW}3h=9#Hx=}XZlIbihx&o@U{;Nw zId3Xx*cKXo3=P2-Y~hg&!P%ZfCo}}(1FyA?;5s-b!4E`s1lPb}GNv_O6FQ-k1e*#P z=?We!TY_)n4`!B)Z^6o>Y^?Sq;%fZXFoT>lb(JTuq7 zfRz)^wX&(eobM0Z^Zgzi7H+=vO$CuTe+M^#ne)HE$`LuY7}I52;13QK60$9*+By=n z1sBBoa-e?7ZvXzFrr@v_(b8n(%=y{_-?Gs7V`vEu7S>`jqW~P)63p@>I-w;P>-nrT z1fPfV5qKyYg3rN0GNv?tywC|HB)Im#PgU?(*$#Xbe=M_HoD3_Ia&e+35nns7g}+J9 zl;N)nQyiOtufhT0W>~%UAR^CS#vjhi^ZBrH;(1oCJuv0^4)w5&8Zh zZU8gi--neW@@+AO%QnCt5G*8Q8?c|PBS9N*Y`l95HzBVI-W3jDHOUB>^GOAsVWBa{ z&;+cvjkat8)_D@0&;*RByR7v9+rNZnBlum&9$;G`fi+6TgyuI9I-z_7Clz>!3Z5!k zfNk)nGE2o)uretXn|l)RwE)3M1%~_{D=fi&Z6v=(!|~weS3Rk~oaH0&XEU>W1gxBR zmX(tV44E#wXSxK(gqvyoqylrc3;6Sy+0Mbr5!tpFyXElj4+Rzya`=DKc0dY-|KsBw z{zvC3#dI;W3UE8jsSz^gRRG_z(12rT0B*AdM>YVrcoLn^0F3o~);fSE;e3!0;xRZ# z#+2rNDs(~#30498R0WTfEx;rAW0~dRAy}D|iw8W3_*#Hq6~L6?jehIg1N;pR2sgv( zDnLY@Kg1u-%=7!Oa^iVbRsl@8p6Qi={@;w7LfSK>zVdaQ?Ta4kd z4e$p93klf<{HravK^t&Qyn6&TDP$|*PX+p6PK^b{c@@AjEHvgAnt;45HnIum^&~o> z2^dp%S?d8-!Py9Y7jhL~B^)DTLi6Veolri4RRAwh!Bb@ma0&iYW~sOsRwkw5B2OZ| z79dy!Fy!|hVTt1^z+G@WxcOCA0nAyx6Mr@{%WGlf#Ivld0vIy=hI^)8gJZ(Yw7v>p z&i1SL^O@Ox8CH(Sw#C>jhkt)4u#k|$f48k8!SKI*ysH4CvgMx88o-{vL+gvn|(8^hrLabYXg4hPW4!T)2PL?;aXqlL%X*uN0YMc|(t`{%4yFwV^IPwp{;oxRh{ZO#}QzSXA;E!hJ zcmP&TJjcq1g7R0qW?a`sUG;y?Tb*Ac?$ONO-e?BH0I==1FuyAFzeuxz-Py59fxA80W#E zGNw0Q5IUi>1ji05#?!vw3;4sCb>wVVnbeW0ClOy?5F9(K1We2J_k}@@{lWL(uyC`j z9y_eKKy&_G+yrLMZ-kW-&$)8!uo5&a@6WmC{TVnk+`Q|@4l8cZ+&_t%!OZ<*uyRE1 zEe3trH~52wg@o)IPO)_)=o|hV?{dK=qCY$!v|cdf_h^+eqUOGtux?mrL^3oAlZCNZ zA01#L8-mhBgx#vz)=7&CK$duyW#ARyPyUOkd%i z>C54ma5GId6B@I<3V%K`+bdz^h-_Po-E#Q%hXM-;Is9*J>qs#C-xKe$!FVy`q`SMt z2@;_m;3?q+R+WsP)sA<(#!y-p8h8wiz~i=YmyN)$J&8_e1U75>t#t$M!+8mQCbAoN z7Y>v$wfR?tPADlge}%beI&BHo-`mRD0Hbog*gfZq;J|QmzP)!*slf@F_l39- z%)HNsl_TH@Zw4y_#zwjwh-GX7Ia2#$0GxMWi<%rB%jP|^CUWarF!fjw?eKo9{c-FUf6zVizl3AM&HRp9_n`Vg zv;Pa+4rca$1}jHo-(v8W{ewSrSV+kJVXmzsLI3dac>9NO#cXf7ni~qY4&(oT7Aqrf z&Yw6ojSCG=hPGjhFc@pE1AJuLFv^qYgtlSRhTGZ@@(DOAfs^u;#GY`RjET)}FLXjV z2|jUbSWZjF$MGjKOUK7xWl}nJ@g(AF7lKb58`0A8{5fHbW2^94I40aYtDiVF?5Ej2 z8Gk-A+b6=xiDz5+#IX@EE#qHx&-j<&xNtMBf8yBifoA=D+y-XW&x4gCvTiZ9%l5z@ zA}l0id(dU;NYEaf8SepzqXtT6hqf!+FYL!^lMyrLPaNxZg$5u)Q*fVctYuShuP4z7 zO~Gj4u~s$y2~8xS`b#6(-9|`YT`@Pi>L-rI9B+j`nwjIxVdcbgtbF1~^L(^>o{xk>!p*b( ziK8*sN8pcV=K3&LIU?5fJNJMt^VpCzj!i`9($_yrOFlP#nE#VR3L8{3~=p6eg%4-Nenz@Qo_bG{q7VOwat zF%17-w1r0w|L1rTk%6BP8F`Dq@4QPys=SPh54_e|fE(eQkU`>lI84U0=2r=wP)dTk zksIj>9xU5{Yw-s&%f{8PGASEZdJ^&FH@F+woaM)aF<8@0vit}f5^k2&yOASv{Sf|m zX09KAl@rgkayPO$-+yz@_lIy;xcS!aMvlz+`?v|roWBbzN95dMOqXqeKR8%O$hKg) zts_BOFg@Nc80*LE>>vJo;ZuJ^OOuf^=Ub6{%R=Lip(XgFuojyT1>ne*;1Exu6Iz0? zp3hoCa3-7&GE^*qgJeu;exc9_B_y~N$xl`ASlJGofj^d6E>44$Nx3-1lZdY!2yR6( zWq749#jzQ<1P%x{!|JU_5qZ8Ce>gMG7s1Mj=UKTG$&~B6+;e>=929P@^;?l5^1T)} zfSK>xVdaQ?Ta4kd4e$p93klf<9BAuE&<5-k@1B88a{cM>!H54R9KdRl5i;k43_Qa^ zV~(K-_+Q&-%O>D|Jc&+d0>;!`)_Q=cucO%reiu(auyL1v8v7I>fi+6TgyzQyolri4 zgABYx1y7YNz-0WX%u+ECRwkulYfmD+79cptz>weh!V>J)M)G?c91m`O)q@PoSw04T zHZ#jd!ODqeSvknSkm(`!OjqETa5JqRWMIzr0RDVtw)?sMDL6*Pgyw%CbVB(EhJP=_}^Ga zw4%ME`BjI1bC&-O=c2~U@?T-)#Ivjn|AtH-;GXGy+m>m4_%~xvf z*e!>De<-k!ki-A2w%7*4|Hkpo{>OJ`hq_XO)m$Oe1DvI?`n#jOtqHIAe_r+f{K5b8 zNAHhu$f$kF^tGXQWG<84H#f9mX3t|Iz<9^*_Ezq0y!>`q##bD_gSV zY%!A!ZW}9V@QiG&4^M4Erqn->&Qwza>2kWaoF3>46qk95kv&0t1IMO~SZHm*6>x$A zm&X>w4OnGy^^LzYa5)@0W1{ot3!PB5f=>t<<~Q~YUMT+W{3ox%pFC_W`Fc}%C9E98 zW_%%6sis7H`h)0PVym>-(!oL@TTRskLrBTm!i6;dA5F*lEX~Q^=lu`!KaY3c(awG8 zVs}BDtX?VgRK-Wl-p{@(HIy#r(n|~BZ+4k9Ig`0H#X>OXux*gj)U<>%KfRtzr9KNRo&hV3d@QFX$# zr@y2ftMJJ`wWjVE4`T8w-Y|`hurO3~Jo7>*8w$=L!en*2H*%>Ac#;L@Ku@9r+MCIy z2xygN37jHQY0iK{X09~zg-$3vHUGR8lNYqaoQ7M$EHS6R%A~}cWGf*{j8BzQiP_)9 z3Q=O##=CerN}M4Unm2t%*x!ma=4ewJlPzTXvqkT=8dFVC{`JhdT_I2nb>u4BSj#$c zg(neNM`GMjJz99I)s1`MT#&kPHyk2!-MB^QgwhdwP*qP;@KD)M{sez0vrOCpE0Z$u zV^1Q!`ET$+70vFO!Vv72MzZ@l91d=F)eowSIsOCwXl9Oo4=X30W95S?n&&BRI_G(^ zkiZ%yZl3iIs*Jgwh(Dg0>#bqsh+JEY*>c$T2LTHSIlsBw7TUTMV%Wbb-bK^NgGFy{ z(Vgu{4;GqB8=+3%beLNsbmkLYN1RxA28yK&&%R(uW5kBwR9l>6L$KJBh-?Vr8#nwE zX%WyGgmd5&ks)L`95Q2;^SweR+#vW93u7JwD`dwoh+Dy|FlAVoRG5;jgsd<=RZbOV zk&6|g!u&GkrPJQ}+C{oh=t_zABI5s7E~i&ix>BX0w~iXBG3tkGHkiJT0n>S90n<;jgT& zf1vI!AWwa(HD%^Vt1^?Wcol|ISEdL5vxBuBu3 zG8dA)g-*DT`1^*W?X+?nhCiEGISz)EN#&SjD|) zAH|_;xf&`SUlhKyqDT3(sdy+0pChe{HZExmObk(LSRy^gHU+YjEcYZLOG%7Nq+5rb z*XqgjaE3@dxfYI=xt^>PI-$(e{M~6``)N(N8h<{srd$atlbW)|lZbHw?4SP}j+vJ8 zM}$q-uae~aAviMJocj}ClNU7e58zfXGk-snv;RIE9d7n_(oV7t zdqN3#7q^5-zz!+b-KExfuW&s%+O&RB8+#OtQ_b`M0ObQ z4LLhRML`>OmcR)k!_FCS*o-;P&lftO6xIB~6XgjlJg4E7FbmHquret;C)rBK!sFBB zRCxAxu|gD{gX1kc+w=|$ib;%E2T2d5a|NkKxTHE-WI`($Uxsr*O2+wch|DFUBy>XQXzV%_X$l^CVe|Wt^YDi< z%fuI8Wl|>2_9Wt)$u@SKlI;Fa7=r!MNOr#uhl88l(5_Qcj=zULnwjJ8!pe!~Slx9> z^8BKEo}Yt5!p$?;b!y7>Gx+0~xqcE>j>xsem@S8We-N;ckPD)x**X#o``5<1E-@)s z1Mf-|vi0w2D}A}1@LSfYZ===8h+OR?(>%iBEo%W-R%B&>p!BS^657G%TW4=)xHvf-F$>qyXW^u*h6Ostlw zX|V%6a^3P-;SW~Hi~w4`3Gu8$7A~K%4ZrL$9`__7dyM!7n{9OOwL#`XI5ojgyGypVtLo3i}xHZfQbPB9Y zD$q%`60!pMlsQ$P{avgO73lGJE717jpm+-_-ol5A&3A+st!QQJ4m=b#`6h*kH58Vs zY=bRZm@7Pq4k#>}HoVq~$h~kXND;Xk4wJcv+#+;BDG5$BY*RT29)KD`%w2il{ z8Si@%ku@X6H?CtnpS6my>v}XFq+;wWB(RRnTrsu~I-!IF*QEKW3Lbl5^R4TS_+y#n zVtZJbl#6XWiTLKU!8K{741Y$Lg8kx1hEIS4!p*RHOtccn7vOy97ZIq!n;HL_P*XnF}d;q$g53Gt01QzC+( zbqz1Vi6Udlb8ys*xz7Je=!Cn5soooy2uJ9&;~Cr#X1#e5Rwni4Fdoyg zR)~7@)p(~JQ@nMG5fA^F`afu6WF)Y*z^dBR=fU{FKU0LwSg#!*C2P%OPoe{A&348R zXqDzjI7y_^90AA7nCJZ7LML2lcJL~V(G6N>4#Ul0)|rE0Wm0Em*-FSd<8$RyXC}H> zA?nO;;_YiDjd+sb7llLE+{=hwZJt$$sUNKko@029Z3bk0S?)=6Kz*sFNAq7RF4x29 zA;sldIAF#M=T{1yaB=asl2IRMWw{!+fmvCugq2BUSz{|9D~nH*Q)L-+u|iaq74g1l z*{r!=wNws$uJSwKM=J`7@y-Qc`LwaaQJ5E^*06^9qHXA9NqNqbh%6~FuAy!&9oK5f zsCUrJkXq6uB(UbrTuau8aD}o`^A8o1w$mE&5uByrFC&!6`v6uZHRL@%|DzUkb?sR{ zRc}VVwo_ME-yQjt;?I)REx*fWoA4&iQd!IOe(t&6r)|0RcL?bo(2VbeTfiJO_JEZW z&-i4z{gh;ViF?-1fFr~Gh5JW7nY^HxKMl8nnfX&-<%rB%4EC~L@P`Wv3Aw`hjBU}X zTOs;|C*wWyc++aBu@NlPE_??@*2r6Jw$=QjS_*c3jo2exWy_5mX0GrgI-y6{tm(Hl zY}^ZHgR}^D!+|m;G=GcG3AYIT7m!WUY1Q}%{%B^^xC2%uRpZB=M11Sy6a4YD87?i; zZwhm;Hl1YpbvP*8O#AQQGzVzD|9~67%=hnM<;3&7tsGgSaz5o<=bTR#60Mj3&|mlV z+E*z}CurU$;zls@zBQ~Ik#~!sU3LflKw%*vyMxPZ0S>x@SK?i#^beP-HweLaiEIGBs#%@8p?uSnU!@A|2w(*t~WvwR>Sy5tKw;bzbLn|OJ!ucQtRbUmVHsSRv7h zo|I-dwD;4T=S}d3GxNL=tekkB)xDpFTp!||>jUASaDUBY@25H6`{M>M^F0$*j>xyg z7%tlYe?YL1kaLgQZ3|Q|_ZW(I?lGY1aAL^FaRnSLV{Y?b5jvsF)ck6q zXD={7b_ti`1~9A1Dp;9Rla;m-vYPlTIaQN>7c0c1; z!GcBCAR7;Vkg<@E)0kh|7Pep-^Gdvp$1Ve9@1+UvTItm=(F%@h#&&JgRsZK}wK3&v z&tN&Xx^|-Rjmk*(op?4|-Z1@5ThL@H@(oWSvK5JMMA~VXKxnn-PB?R9Oj-*^PD#GZ zdHx2W6YfZM@oLd9&d^G9J8lfK65R$XlS*`pt%R&ZK4VUm=$~Ay5L2MX;{CX7^PzMh zS3mZPT;}$_!jV?Ye2y~~8{X?%&p77&ZU18%cv)iJ_9Qx>#B8BBu9cK2@1toUC1tXZ zXhoYlTIhsJioXW07*9*cMEv2*60$X{OiIWWwi2?0_zXFfkhg3}4w{)$;%#QOYHkGa zS4cxEvZsrPwxWt0W2_=0wJhN0YNy(!UzU)?o?(MWI?j(^4@caEey45pWi?srNpwIpsi!97y;e_Ngi}N6$#ZbH%=P3~LML2Lfh?jy~W^mYT_)L*~S* zpJDMm@G9{kacwK_+@MUor^%Gc+3+dHUlhKyqL(pV6glEfmHHVo!mz-u5V?kZD(Be7 zT~?Rno&+9zi`ehHOT=g0&7?@zwTf~*oD@<~u7zV|t|%*oPAD%m|E{@k=13K}8h<>q zid+dRlPa>tRzg-0pChL#GU#H3s3MEvofM5u7kdlY(3;Bcga@st9nKryJC%lnUsqkdlK<&?`gCFh77+cOu-s&lHu3kfN(P$ zY6Hx9{saDSW}bf!D<__3wGA-jddi2+xt=T}TG7*06F!zAeUZ z*#`Inf`x=^11`4(H)sRyigz_&i^lhF=}c8S%ky*?SYu_W%`v{g7-^?P@b#2$R%qxk zED4-yOONaY7JCwry+C}!#g?k)T1RjWoDwo#EQdp7%xb<@=!DWzo8WE#RIR6PL0BrI#VUoBkF3wUPXe6%wszD`|fHbDgE_bU@eye>OAA z8^OwnXL)P+S(+i!hq!0@KsYAcU$Vc&GHgH1_Wt>{=f5I!!hORuuWuM8r-3c9o46deg;{x4!OEoathAMo zmB%N{sq*x@SRp1J&&RtJbClSW6ncH}tgyco^NvHU3QXOa5Tu65##6QtmX+jjPa?9C z#5ma)Ej-q0#)ohQNX>X34w1QLye4!)>8OqKYDPUxq&U2bKa^P<*2BuAIIQy|;u|71 z^V@Zr-5DRDzb}&A-GxLeW*RiR{_*fl(`k;U0S3AL~1@JfL*G&v8^bHIRLx!&4o3>2JuHYMFV_uTL=hK}*f;xE;(=a~rHoO3f{{60+3zWI2_Z ze{!)x%q!N#{X#>$`wmSk{#Q8Aiiw5u3yr#AAy^I7aEfp%cnSOAApMsSW&$9YLgJ!zop6LNNCfrPu7aGQF z_v6oJW;+inM`YV#?3Tm7KNMI<$eG4lwgXZy(|9l57aBVbWXqXsQOq(1D_L=lRe!d> zD^)6bla5eV@FSRBBYL%kR&$NOO3%o;jl#tGq+`VP;0Lx?$@bt@Pa?8Ch;Iy;5)lNg zVR#Bo6d6z+hoff9b^d2UC)_aj_Yg%mLVJi`RzlVrpDm|)bF+&T zV!Dxvce=4vy3&;@rmMN3EUht<{*LxSM(%2MA9bfIfnlu5GC|miHPrz?va)RHNpwJE z5lK;8*Xqe3a8gJ;IS`JOF|YZL37v2~@z+N~=F=*&KmK@T6`2VulPa>et%R&1K1WVf zWHT2lL>2i(yj{ySm2CaCf#5C^x|e%MxPwiqjKJ0GPP!7t`L?Bcc>B34w$YchWWbZ? zfLc;dO~`w#oLmK`hLn>l;BXnUoBxW?36~T9q$}M6T2U^?EnrrZRj@LtC@XCxWJU35 za;hl(E>?(&a(}#i$>{nH#JwGaULp)STz(_`{ibo(3x?o@e#@P(!Xyb#`Cfz@z|8kTSUDo!7Gt<<1N;HOLP9Qw{@S)c)vXY1KzF=tz~;>x&C~a*HPsUw<&s-_@uDOw0DG!XT_KC)s`(4huKi zlfCUU#08r3mv9r9Ie#8jPCVz^$sLZ-d7rS6bKbWU60PVC>92eTFYiV-Xzn+|&0yw! z9IPCXdy7F|_6`1^VId*=hJUh!IOrR`7w?A6P1529?NGmPB225X#JGPJUNA{iQm zPupT68-)d)L?<)~W9qrk#*7M_4Kij7z%eo=G@lYWp?oxUQPmR_JoUon(m_A|RA#Bj z!^)&o^m-EUwFZq{R5ZWW2}>M%f@|P-aPu45MP0alG#%$1F^*$d<$B z!fd{AxFj8MY**Kk)%n@}pQHRgNBe)~dVh?R1q%k<^(!zkg>|3t;7d?DNI{&@XLqQ?oCFnpCx%E>;Fg z75#wxJB8Vf{H%pT#^vY4*6<^przG8u8_y)^Hdr}vl18pS2k7(4B`{>*mg=WsYsTz*^Qg?Qs+IM!YlJ#a{q!YT*ouoBz$YLW&cb<}T8E!n2q)TDt z#7X-2uyeBRa%rG6Sk+pg``rP$4~`TUpn0xSvA}1_&AqtIOm6Oml@sS?28SE62(;dv zoON)lxa7=l5jp!C`k*&)tC{S)4l8dM?2ut=+9u8uu&F|#Jrl52v16LUPr1tIRGn6aoJ2Rhf2kB8bY+R5|aRtc~07}%uxC2b0 z9)y(>C+ZW!5>?K24`#BdvvbAn(%IT@)-~F>hyDnT7Z;^ZyP_2GoHFzQZaI^o_h9A3 z89IDehANqKA={nmE{T0=<&xm38d;t8aYt$|A<>>`+2>u68ZHo&usv``n1t;HD<@9a zPDa9vdxOq!XXrFIK-{u4+m<2URZ7VzxT#D^PJ)#ar(};|D2aR*f3Z6+7r~+8@^ZWz zFVbmB&IP#9Ome;mD<@7)bbTR9hilz=xg8D=mlvn{Vp=b}4L6lZ$t|#Q;*>Wjb@VbEUcV3InninEH7_4#(7$`nUH8t5A0N5Ol!*H za8sF-jE0pHrzE<*sM}ez`f|8CFNeaRilx4&PSg5w5NN`Uq*#C0*YuXwl)G_jnXLQ-R_<(8$b@>GJ1cL(F^Y>7)13Ns z+*&3pe}I)cn-wxSnmX2bax_Iqv}bbUT31Z-qsh3nOjahs%89dLo<$q?+RS$cTXviIv3LGUaD#zG%wTi#ATN%LZW%AMw zD<{s&-bP+bTS+u*Mconvj$33*JJc@Vdl$;>Zd<;0mW@8lb9i-?BMNA3uH0Edl>ko8W!;Q~O3dJlJi zNz^;Aas*NGT(*%boPqQv4C8y^UI6{uegqnynI&wej=H z>F%7^NgFvlRXHHH5PEO#hJX9+Lk&xyI}u zB(RQ+3y$H#7!EiQo>Pdn!!2h*GznHt93o@IDWvo zEfbbGuyUuuQm&X`IolnUDjcM?!_xGY!g3aFEfba^teiM3A2$t8rGaX$Klg=f*-Xrh z?!;UVM~X{~;rs#4xTL#GvAGsEnTgHSuyW$qe9VMRrCJ(DH3oQXzVw(oGmpSw;xc1+ zIm%%s3XjFb}}W5x`h1!OB%!e}TtBLQe6|wC(4m75;*vlNCp~SRvMuAB=Y` zdDO|-YUuWZshgtn1mh2*HqX1`GvzI0)FK>@?=jU za&<9s)yQTAfB1Fe3E`KvdUB40lN0zVSCNl^!)45Ges7@@N=|H!ESj?R@m`$Y%1+68zLfGiY%H?pR zxRqh91uMj1S}a!K1~Z{q2`eWK&7Ov;5{_Y}G$>vfYux`AxA5k>!@ z_&!r~?!j$lqH`CloH#n#`EQ1LlPeC1tL^mj-`;j-=Pfu|Ty}>2h@8bv;53Ej4curZ zJg>pZiNiB;-5E+32D5tI*=aN9@oEPlfi?bIcHHZZ?=wYbJKSa_I+I}K#L>~d@~qdL z$o^)5J1_I#2yuBi0`G66qZE?4xS>o)=D^B{L$WLFYl7Gr`SNBrZDpcTgq0IVMf=7^sVCx!{odCZ-aN8liFS+TDxQGLooxUEc79)Oi2P_bC0mka&=YM_OLTosyS+p9|}{B>t1 zD<-;FAzn9J8t?0dF^kjU(BA&=8;8x&seti!Q9F8sHxAxgxTt;W;!f7OU7;0i)5`{7 zD>ml{=v7`ecoLBd(UHrHt$*3DwS4btNXwCMS^`&chZP zD?XB>XK*W-Nk0=-4vdon$`Vf^^7r5J*93Ztn!H{RwmA}VIUFHwF)+M} z8nzhBRQ#l~?^U>+Oh#71%84^VD@eV-iZ4v`*9h)>{1lE3mybix3KIB8*|-O{k;%qg zuyW#T>_X~?KlrAKrE)*1AaA=9@)jH;E+LC&zLME zWb-`Bwk}F5CVLW2R!nrULafGoF5cCcu_u?x)m*VRv>dYr{&6Y44Ecko9pkbbQwaF_+o$E7xN#^&}#v>yh)Z*00A*kPVe7G5-!HCitz&1(|`c{}zv@aZQG1 zJ95SynQg^OlJ^&IJDGX^4XjLtx2HXc$STnCRT%>y>2hy9u3DeG)t1hHY%U~P(I-b0?$+juDrT$Z2*oA*!nslnibv6O=Py<-|eR zp4O0hTs1(ha0ldaI5u2B4vt!|8wL>JA_Zd=ZXy$mm9TOI7#1^9IjQwKUkeF2wZ7H1 ziIP_Mb1Ww-YA#lYsdZ&+yl3>yO;^*qR96gSLzC;5;UAUp7vXkBpZ8IwXIf|uXP92U zWXrIeUO(?iL{7aT8|&6juaz_U>d84ptBT=A4- ze+F(VGyA*4%4E2k?ny*egqBaWr^-G^Vv?@ZE2Gv6{e!T~aWUp}I6lV8pQn|<@bv+Q z65mnU5uJ(~%0y%_teiL^%851-k)`EQx;rD{m-6DQf7`kuj{6wEFUI?#TQIjuID{qod|pTx6;xipvjhbD6l@3M(g$ zi?S0>R+&t?n5q{U4V72iQTZ(#AucMB>o&uq(r}ex@&axu6O-S-%86s5yc&?0bQ{{0 zt+sYgK+c4f69+^&ictar zhMFtfLAe|b6Bm@oqZo%DYC`@}U{>MwGJ#nMD<=-jZl;-z2w+d4l&%_y`MEnWKZWDO zCB|@46=y9a>@Y><9^7CiGIznsi6dj29E%8wuS$%-yzLImTX2-Pz*tU>Rd*>aZ{X%K zad{0^P8^r0A!#s*mz^d!&wh3g678A&*bhn4Ukc22xV=nZCc(;y1EYLzB72x}wlY|# zrVNwi1@5@agM-8^FOl~f4Bx>h-cnfR;?^=@nFA|Fz+$meKyEhh-$PnR$Sn`=!!Jn# zN2C@0dv7Nzo^`Q8Yi5-%EV+AteiL| zd&`BsW+kaqvgK;3GB_|G_Ey&ya0UwLjJ|g&=Z;Jd94;<0^P~1Q41Yl=?>x0;F1 znXq!=_$ced4SX_%+(4>7T`lL9dk1M~8y&82=jL)aPF!vxm;Iu-(cPuMtisJ@0<#iU z?pR=kvYBeBYy#%z?!f#Mj#ImVQQW1#+=H9T1m-SSIdNbNbD{2RPg<<{X@%u&cTV1d z!^7ny^26Ea!V-8%@puEbl8MJ_uyW#f7zUthu2>qVq{`wWNpVb1uim)qG|_oNw1bdn z&xFWg0Mgy1z-)(`%LHZ;teiM7%4>v1$I^^o_aJF=7r4_h4-OKysziQB5?xh7zEV`? z;oQ2!UM5PETCyt78#96bdEYDTQy<9iC zGjcr~9WEn>;9ECIMC#likmcdlRmsP%MrN=}7i#H}KcpPfYyHL9x=l*PEIOi&iV%87%bd?w!j zr7vAc71Ko>lCQW!av>ZaE+n7Co7RS#6p%0BW-nM)_W`F%j&LfkqMd5~#z z9g&VwNao;%G9j4_D<=+#VK-Z)nqFGSikCe@IkK~$>dwhoaFDp1SnOsC`AShK;)koI7LE{?6PtR{bd*AJHEt*qk}F~5#3A_vednWp2bS`e zW%ZYYkGLcA5F9TqG7IpRgi&r&fF8ijW&(6SteiMNhR-#srBqLjT=x2*J1_6U;otW>%#iJm0%4#FfjP0B!KD!Hv_Dp>2@Thx9@tBTV$;4wCteiL= zhW9(-cO~{N4Xn`kIMtnx#c+JM<-_9rPQy(K$RgZKCLjx8<-`FoY=9Jz6Vt^)THhdh zp*ta8f&;`Q#9{+v(@%=XxwxH7L{`Aci6dfIU>iyo2D2$|xn5s^{ee3rx56>vQev^d zrn*W&xfwT=3Cc~das((AN2|%x+597%EF|PnKDXMQ1|+TU4-0d$qUK_SI3w<{cyFBF z{Mh9K*>bMFBTzdi?gRMuW&Cl}j(53sKC4<6I;6^QTHJfKB+Jv{-tiN~z_k>B+LRdL*su&e&piF!6 z3*CYG5*#cpQ0=HtUJxit=i*KB@~par*T)9Ts;9RC(adPEwe(0 zyYV|XH{@f4M0*Lz}?g^8si(%!&soH1czP#Eet}^W_74$`@d)%SA3l10;s&?!zXa<5Z zbtmo!lc}|^a^g%K2rwlke1_$yH{8*B4UQWZtxOvxd`+~1cu>M##r)b_1v}e}I+pj0i+iAF| zbh%N^2b{?LdOP9fGa=r=Q;yuP7YRi>x9dfOMcJpOZrA&?I~@z~@V0cj9z=%{2Exfa z+z}=xb75st?B>`?$YSTyx?vSN<&*Sd#C1*et;vx)lfNoL}V z^?X#zoXKs%?)kXkOm@%nlp||gjCWoutF9&%l%KX*;eO~&#rN^xGAkT!;~$d>B>;qv z@8K>m`S>oZOlsSWo};;LuNvHl~&J`kz<1G-w6; zZ`>OuV6VW+5rA2&eahuie<935g8i)s?{(N*C?Oz( z4B}2O2`R(Mq_mW5CFDrwbK1_4uJyYjlyf2HW`}Z_=<2ps1jupy{&qOV-0F5buey02 zs-=y(OsKsLH=0T9EuL}*)HP*wi$b9MqSd1Ik~exjsgX6{RqIieZU`RFMKvx?2a6gzt zWntySiBdLcMH1DYUaqZ3UF}ZOm2j-MH1R%Y1Zfg6pd_uqePEJw8LYfvkVM}5Jm5~! z{cx<3CCT)*=RVvACQ0|g%88Std~Oz1la}U+>2mH1S^bKDcinMX4+o5kQ#(4RW*}&F zT8BHrWa>>=IdP^K~A+L>d)2BIiP1A%#d**5F80YFSpd?MjePEI_1y)X+Bt{RO zDGjU;XR_(LXcoECv=ELLw>Y(<2XDlI5;Y(9gGtnJuyW!=?Jr;UMU8iv(xBLxRV)?7 zkXO=*)Vc0ht$>5Z#p+Df0y)-eV6K9Jt?seySdNibNc1P+aI96Pw z+A;3cV?ar|0r!DP(si(M;v_LvGrM!W>Hhw-2Gi5-Fg*c>iwn~kZKzK{7${GV;%+c` zdKgwtoF_(Q%9eXF8cd^haqh^wgv5r^k=J8DN%{!Rca2HX2e5MDBqkfP@*=& z{a_L`4pvT_C`NVaTQN}5ahmOp)8TNilB`Z%5GYHB;!ZGGItW%yoF&G(Wv*h{GPlf~ zram}aT$T(f*&g-k-#wVk{99vSqy+zu%py`-TgeF;-lr+Ob4X zj{!yMUfc&JQg_43iIcR~$eRfYrnhwK-C0@(M~lnS=i2a=&W{46=}p`VCQYxy%8Ap& zs7w8&ZhiZ}wCT>%x~W29GF8DHVKOxU zD<{qrW1*nFsdp*4x%(z}qHci0#U-j83k5+KC{NenZZLVe23Ag-Cr0m7$rbetPEWYQ z^e7xFE==v{o$4{5Bt4A#z$EEGSUGW$W{o_js|=*Y#WFoBQq^qzJWuUCOV`Jo8}g6f zuyLW{o!^PQw$s8v`T78NhsoD_uyW#jF_tu!7fQV=G^+M-r)n=D(Vl5uJC-!PAW)X} zz@1>Sv>U9PI7^IC?+e+gzDN8Fca%&i(jgvj@vj*GA2)-wru8CH%U$YM~F zEq2hbE@k}bd3oDaCcB8F?EMz{L8&)Ax&RSoX zULh`^k8IOk7XfmtWPgBT%&la+v(^iqhe|0kxJ;=1J#I9U+TVG~k+m$w(}QqRVE67esxTt5(G;If>x~6xFbxkz6mQQ z4wkasWf}^jM!;XX^YjZiSX`b?W=#)SBVf~iiqX$-`VdYK-r$-0p9CvV*!%<2AoE`%> zgSg>LaLTZ9;@~K|MGX}v+rKp1-JL7;Y8#LL)g7OIfn&wRr*+GcP4{W_`DfgGCPe=a zR!$tE;fJjrQhlCs$LDc4N?d$eH*5*VDLB8z4QGP$U$AoG;CyV@en-Ub0Il$ByoYnc z{C7A^Tyj3$vWBPbIYsBMxaCZA{ts5}aCCCCSKikholgjf_RO_fhfdvdiq4+647|{7FZaEX3lVRn=(b;X-0jnNB{m!YcyR-9EI8I!4 zcpGmy3(lVFwC;QvH=PO3`LJ^0@F*v+80K2JqBtsJpj1d#^{)@^a7XCJaJ0Ax@jhW; zAtVDpLHZ%?028F|!^(++H2k}-#w$d!`{VcS9Q_Us7MG*etu{;lDMl~i_A@bh4p!bk zFe2~1ww~cU2irnOw5O47Jw~Q?Uz_6gGcg(qD{mkek#}F8a>wYCaIliAMy7XPhv4=z zF**=dP8=iU^e01iR4?j-MdPN%ygNv}aJaZ2o!YWBAvFSYVC%*`V4{?Ul@muvxevjB zlK+is>g-&xyL7g;zW6P7mR7^@;Vd65>x`oEN=MsE_A*C{-I z!cAww^G8@Yad?yyRtIfdTr(sDZTW7><{3BCZ%7MEaV8T1@YrF~D;k7^?$5a1$@2KyrJ1C!-* zJmpUKwpJZ1qavexWvYH+dz(8Yx8MiDtkvv9z;h-|!GqcN;_^mMInWZ;}pj zC+h$_56tn9c}4&}9@Yavf!Y^$gbCCqVCBSX7N`51*_})G_J}M9jX)@G45D+ zX1mH&BN!B{&*RQ8!TKDmoH$tOc9zIW)lDuNzSNzm8XPPxQ@p#Y3wWUtaiBPT9ruHY z(^p~T4FjiaPXDIqZg-r10tYK`oJ1TbPIusbFmd`ZteiMb2P<2CBde1LV_<7Hjh9 z-cm7L(1yR)-P!sB962sqeeD|l^q^4CevdoF1nqaQa^j$|mKsD%hth?L#@FP%oo9m+ zg+zO1gKb-C2x398+8XzTiPaXca^hGW&Z%F)trMwSQCzT*8Yq{W(u;tnX8;J@< z?OV84Ow?Ax%88@KT2x(DF6sNa9(1ScmvFSWbhT|!wH^ox)Gu&Hm_YpuR!$r!R(IB) zUY1Q&hPqS5QZZG`_NMEn{AyEx_uL742M!;Xu(ow)#>i0Q{(^hPMDEY9a^lGC#~CjB z(_%Gac`CbnK;vw;PdHCCcNG%tnQHQGvb9)smEoXp?Tov_glk7wIdQmHFNyj~-Psgf z&_Br?t6Rkm5IdQZO*2806k3EUwjV0*&Ki37&k5M3<~7Bk{}tnT_^nAU=&+zIk# zK8Jh6MC`M$a^i@w-bz-hsbHqxin<(tAwRl(6E~Vk?dzU$Cwz3PUT8}~ zqI_Yher-E-rt>UwijZi}ER%V2#K=4-&J!{wZczRp}xVT zVsBVM{0prIn=j0C{IvEsI9S}O!aRbKL6P*I4vWX&_A@a$3RX@WqurGie2USsLaIAA zq#-oqj!*>-6c?dIye5l*kncOiX8^aIiBCVQoH#zi4`hY?O(p0CcYdyeBgN(C#Fp_B zI8On(1~;Aw(6?db!~s%YPSg5RDAliH&s8d7_m*KWd(@qzhvATMN%~ytNYbJ}k$MpK zf{D~GVdV}-s)19nP%t6&kvmc!z#)qtDLo1lsrPU%m`J??D<_VW`hgj(QkDKvsoIw^ zk9K?Q>)defAtc%}ZDSs##pss8F`zi@hWo(8X;)Y|ah!%9^eUyE`citiH)kC5PICw9 z6gXt@S13IS6sePNFPKPu23C$h%3^I&E^qqFRTdHnE^jLLS$;ZQ%nb~R15I+JV&p-C ztK4B;2`7sSGw*_)e#K8^sWa0302R65c?s?SljDm$0{&z9mp)7>$G~T}f5yr%Pn@T@SAbV;vVl zUxh=)tvtLB|52`FEa+hRGVTi#te0Tr#KAg9E{YBVR;855dEb+zDw(vtZEMng&Uj4_ z676aGd7El*yuuNokZp;3#Dr`!SUGXXSk%P8 z!UXG3Sb2j2i(FAxbO&o09J0;;%XD2`AMOhitSqd&L4idst-IPCtSjM=bp}|b3+&e5 zzA(YM3|3AYto<4NR;E-K>@SLDKAl;ny^wyu9j*J}pmEXSeWQr>T52@taCjf?4HK?= zVdcc(QZ_F~HuK^PW3f9v)l)9@rz+XA2D8PCeoDlQUSgCQ=W>%84VzY0~S*JQT_rQKJrU zZqmDi#D>(Q`*EN^eFUey#sumESb2j1YEXX(y`MW!`)q(f4H_|)RZCc3KBHBt5eW)a7Wae+ z)lyhFaj0f62EBo_zH)G-J5OuiSaEqey)8V6AW)Pp!<}HFbSbQyI7*ytd5uG+d+2J^ z{q9WN2M3MIRC~7NsnMWt-HUs}gzIitIdQl?$*NPqq3*%)$feX!Hly`d>)k0^2S<-f zS-wq`%Mccd+ncysOx#|Fl@rHJIVCx=*J}KF2aASkHtj&?dErzc(Vlr>rmdX$@t}ZB z!Tn(ZHW^k<95AGwi7J+gIwX0aJ7@FZ=ygUt3x$Q^b{y^&6Srev<-~Dg)w98BDqScQ zdsBuPA#Y0yY3ECk~i$Uu)!mSuRx%)7MXLa_8y>I9gn; z&S=Xx>4kyfbRF&n6Q^rn<-~D1n9=TgNB&g%%GpYvm`&!2y;`gPggaV~!ja>m#k(sE zUGyR$p_o04yTruoL0CC)%s3los^U&yjjXPNoSXZP;9zmdYR|@*dK4&3AK+dvVR{c% zP8=rXcEiXaupY+fCTkyeuJ#fVjY;F0jk-4Ks{eD|>KXYXj_vANvN}K8|8tc8=V<@W zT<;GTFy1XrXz9`-Ls{EH@r>yZleOJo<-}Rzv|H8EKuZ7i`3!f$PJ^Sx1*<*nmKO$! z(1Q`zg)c7ovDl9ka3x6&(T;i78I-ta9@~UeGyhp z94yYRKjZr8T6d^!hr`8%sy(~@qSj4s!~I|abqlPVI8cW$CWeE>oH&yqB~EFmWHW=+ z+>qYCzw8dzOK|A8aP_uj(SgQn`FZ zGm%~9DR;tg-O8I(vSOY7QN_Lqi z5#Pz&$|h9G&(d@?)0e6TTU&*HNLcB3B=-Ywthn{$q}J4vnbLdOUfqvd&t&L6Sh=$q z>MfTB2TTmT@6OP>aIE5HNP15hT8~@LWN00%oH#?uoR8L_Tu~e*Dh_%yVYK@p&ZTI& zkZ8}Gk9RN0$fH>(0FJN33M5}P~nGmgnl@o_(w_)o~ zZ@Rx#Nipfi5@8BDwUFcRQlWQ_`C&2 zii;2LJSp-kcrpuW=@j+nZ zs=%IyIXCbh7ZUB61@h`&rQxKqFkp5(AVjVWd<-|8iSI6+awn_}C|~v&qoT}^)#ZVc z-N85!k1lgt3h!VmHW*3>2qK@xonRue09GayZk{I*-y(tXb&Q#%!D2Z*lr5xk#qR8K zZLW8|FxGLc;5;~F+_92(tq7l}P$1~I`32k&CRJy{$`Mpq40>|h^vj=xM1tey6m{IJ zMvj<2amV-$I7eKJk7msnD%omitPDF#O5l%ibD6OI&{K{aCF3h>%EHyj*-$u?u|XXk zfA3Dg@9?lPhsTBP6ew;J9$v%^XY%kItW1j6Gqw`4c==RrSjB56rFfOZDR;xP{8K;a zJPuD0676aE7x2*aT~v#h!D#~SWZY~fxD!3)$U-(FzDlN?-F`BSiSn~ntJ!hxNF0O5 zmRZesyY?y^Boy}v97o{}FyZ(VtW2ufCq0Rdp{S5uUXQod;8%o^jt%|*94c;S#9NH# zQ53jO+xmXod?rJASUG|ri(yTUjDDH3kVvqt-&GkItLbX4Qq5)3g~;~)R(FVRhI7?o zh^3qA2r2*Dkn^Mv-h`Xag!l$exf4c7Wq`K{$kZ`U}mN?q`|br9i}tjP;ncg&+?WFq_d3jBtk$rIt_P$$bcs7k7sJuwqQpBb6dURMC{UU%!o6V9bOEfqq0p4m_uky;PSaXAT1nHC zD^i+n$Gu?EbQ`RkI8Dmka8b3XPpkoyddq437=>5efqEGZ7#FB^%4zoac8_g+zPickOs{*N6ipY6|WLlc>qCas*Kp z+g9Yx7k}%5g+zioUz9zerwV#=)fMWip4IBMhSS|iJ{8Urw>0whgo^78>MklTcuYJxP|cN!=|ZYETTNvP+5Rlq>GA_%vEv5OTj98Is|@dcBpySK`;ns z-HO4b`R|PB>WUl(B7eX$^5YkDb?te<>iWeeHSy@aJMt^VA8~i#mQnv=mH79y(cVF; zq4E6#_?Kt=+0^EAmok-oyVKQlDpN>TDp~D6q|4>>ihXlKD`u+yH#5EedZu?C>gw92 z;_TqQQn{G!&#vyfgVfyjY}wsy<56AtH6j4{cRY!BBEIu35jpZwv6b9>Op~(HZ0B;g zgOF&+^g-x^5>wkJYG;k{R9jlyw!Ba%6U6{MJVKV${p7(n_eE)I4FZ$uCd1j`oBRJ^ zu*{K;v*7p`t9yRD&@)nbWFaB@j0v`mNGtrI z&&i6v*bcx!x3lr+Si7BZ$CR^T_j#!pYIyDyp~QYw#-BuOu1mv{X;>EeQ5kxkyKNIM zd!C{Q1}9FAG6l|##4?=bBxW8GQu?ip>zjo|Fij#=x>oEe7uloMW0I({wa%uD}IvH zkHIZvrhXKx92h4Dm@ZEuvKF+n3u-cwu6VOS?JI-Bgk@O0CX5^m$A?=K4!2<>@RK$| zvv50^gzN_^Cr*fRSY4BlOle?6$^=P|J0ux6L|jN_+dv{+rJS6Jo66*539Q_aoMih4 zsw+~3+%o;W?B(v9tb#+-R!*d=l#`XXsZ35Tft3^IWEa|e&g?0d`cvJ7fplh>HtPJ; z9h7_E7;!;4(x#v&zEV=|!fj=eawn{uI4L`uND)^Ym8n#3@nsP&E6Kg1G-r6cc^a+2JVX7Ir%!(Vl6}5jMr7;V5Nf5^gAykqNMJ zXEIXiH8C>Josqe4fVhRkj*-Ao%E%ntP$na@Vdaiwq(58f>n-Q>ZK_pwM$Uo*)K*3s zj#5U7xS>o&mch!2GoqYS)f{VzVrhFQYn%;V@6O4!aFDp19Az`!sLoPWuEvdJvT`M? zoH#3{)z?xno9Zj+#|u5;j>$uCe7Klct*ixpQbHcU?PL;iKdhWMA*T6_h+M@qzxmLe zk@w*UaT&3i-!wg?l)Q^u%A{mHteiL{$`+R9m{Tq13fe-+j5*G8o85&(d*(Kgn-ns^ z`&Yv|yP0(-DI3#qBbjVWgOxj#jX{l#Q{CBE3JZ#w*q--q0jbyU15LQl{4byv@ zFJ#Llb;G0m2z?}ZYqpI0$V%W&B;#P8eaIQ>Ij`rgP%?baQv} zU(M_d3=D0lF>H5w(3WGl-RYN}MC3l0$Sn@7-|n<+>X=4sPRmvMOi6khPEvro-0}1l z95Q2`^DhXUPI(V05Q=uESZftB)Ox;JnunWgVFPdPH*G46YsW{ichB}m=+w8PQP zee-rgq7{8J&HORenOD3e3{1l9Wil`URt}7l1J9P8L}Ybn`39&xBVh4PuF0g*;&o$I zd{nJZx8?~m9d|>`g@eT{7$-Pjqx(&}r#ZOYOnhd;%8BE%_XzmZzqT?0RCNdFEI3?T zfDHGlGe?}6sRlsObBa(Ax15R4GFUlrgbo=2A@L1gxtgjB4h)D3T`J<@#(@HTwSB!i zPS?Vry6789^wV*QT?o*hidOmJ?3l@kZY zyoTRgQRyiSmUH5SimbS!u3PVjUT_EKH*mzb0G;R#P}q42($l!{Opu;{l@kYPgbLJ~ zuJ&ciS_K+E*SV!0BP80>Qn#Q2`A$=CM&U*?!RdmP69;F6mmz)(Q$>A0{K4+*%z}f( zEj}%H8PfEd;yw8|Zzm2j-M02z))M%StvZc}(J!OdpEb1|%( zI6V6g4^Qy!EY+PA8;=dg-`?X+(Oq!RxD=i2UWSPO6sJ3J`u;&n5|p_RP;(Fu@Ny zPeGc18_xu3OISH^kVfc{auws}sB_&Bnghp*TaH@LBQ@Nn@XW@|X2NqgteiMJBh1o7 z6vgS_Mu5(82dD_giwjT-W@)PH6ryFg=}d_FVCBRi+INITyFN*a{4V}lcaE-xL&oLk zq!zT}p?H z$cm-wp&WVly8Cg?Q?uzpqCHcy7VIGk`A#vKhTG1>Xez9nI7TDYAs?fG(%IVU*TwD( zErO#JXB}!fP61ko8_oo1KCGNLK!=VnkZGTRr2NGq{dLHf+;KV=jvW^#!$rF2>k$2G zm_`^VTq|%lm~aij%8A3Z$MA4fOXBFEioUn;R(FOktk8zF-?+2$G#o1~J1tmpY`9I~c>*_^3D2Xja^moeu&+o&QOr{c zX?;)Hn0d~P^(Z0Hp2oTb`-+-=Q+&E`yP5cWwBg}1!V1w)x-ghciN#y7FGQ<9v)l>V z56^`0Vn2GiLkm`jRM#m)`{1TCA=(R8PP_)~YVLia4tO}zot!0bkhmk4!?_?$eWyvnTufM#F2@3 zCsx0NdE^5e?sCWHPB>&-d>r11MR-q9T8mrHMCo=|IdPOCW?TA+1zHJu&7GlF;aG7Q za+q!DZc}((#?5BJ^AfDw(eNlI6lm~FI^KD*H9<(UXR_rAkK#6kXG`2{COn(L%AE>N z^E-0$fedrp;h7D`Du&9VyG`La95G#tQCbSGyS94Ib1^X%K^ zkk1sGKHO#|Hd$D?GPfEPt$}%d*)9L6(;K7gsHf(Oi-r4%87##@p7SgaDY}^ z7P+&s5DpTzxH!CAX!=X*%6zW9YsPeK)K&jy$?E*vW9xrvOm2?jKBB3dI5)eQTNw4Y z01cgU-O*VA$BB#1arW~i)n!W05NncLrd04pbsPsGf-@hdc*bg-X0JNvYa9fz5B z*l7yRUbxZBy0ZtYoH#fUJx=2jf34gsaYyD1I7Zyj%Av<;xJzL<4L6qw%PFvO;;=-_ zqSVj%HDE4r2j*fpPF!FdW>Kok6q<{0lbO(504paBO~kh_B7(!5TyUp5H*4Wgak+8$ z7Dn@$qH{ZLH4~lNVCBTonQESZ=PEgU|M{!#yu1v@hs%rMUR~~Mr@E^Yl9zB(nUFjW zD<=*~R0mVd_E&OW(2w_;aDwxMX-gr|o(Ypn2NSqUVc85fmkG-_SUGW6B08AH=?#Xn zPiDIVb2uC)Ze?-kU{seWG>76QGod*MR!$t6>E>am5kYd+$uf6j`rs&Wk(q115-c62 zz+`cQnZPWCl@kXhVtZcbd=G7+bfr5pYv4d}nQ_>j7xI~6a~WxWP=5<&(abzM^V;TW8PnxDJbe=R#6%y^4G&!usXkJrvrr=gH(U}Y@ zCyq|UJEkCr6>+<9cUC_iX`wqg^WjKw3y#A(rm)i#oa1n#ncy4)D<=-lw21kWk(d?k z#0abmI3i&)j4MZ`;~dA3y4jU?TC zZ#t$=F21T-nCl9V4Qqt_6ZVNqNYgdbDj~ziOsV-h-ex8>e}$EOs0q-?)%wYDf(jr} z>nE=b8c4Afs)t(L-X3b3BfXUCWG6d`9=9v&H1t#ZEJh(W5;|~PEBdKKshyFbb~fZh zLvJ-xwH+I_RCucOR-GjY-`>hMJq4*2n)g-{8fUS~pX^}67dsLDVx;3b9yZSS(c_0G zoraGz(6oAQ{Jh#Ls*M3xnp~?)j>VhI%u0((%DxD+v0%~m^)xur8F9MQntL*nX!!Y_ zs~Rutqt3>iHC~KOVQBiCEFXrt&V`7y(K1fEGVD;xRCJS_dmz=V{L-T~dvwY&xe` z&QHo=dK|Wk3)AtfhN)-(CFxN-047O~z{=K1(rz!%dbY~1GUn<}7HxgBI4NzZB(NHh z%Tdz>*8oXLg-P zKa->Bu(I`R#Hy2uKBiMnLSv~*&Qb(+jGK~LT_+8BKzUk@$H3%i8LVubCstl^y`El; zrAy^34Zv=3S!#7&D#lMax)5(alcP1TvUQGFc}e-G);V)JOLxmzx)XMc%TlZJ(vSy~ zrww=vOrF-m%GP;ejo-Xf%GDq2dqEDvUQSJ<2NtW zr*&{U93vjTZKotg$M{W!PbnIYH=jw-I9S;_McVt1=J8w7$tMeX)qRK@qsS=di{}9I-AroQ$`L{5;lzsRMUsm1I#Sd*+8j^ z<6$tV>VcK5Q#A{qDwAGG3a9JjSX~3V#>MKC*5|3>udCz( zIurJaOHtD|xdROL&d5@R`tjB?87jca)*1Q;r)tV2(mixP%FS|+ZiEfvg0!^7#Ztur zO4B+#1SU;uVP)$yv1+7TI?<;W-jB;!dK9*c%TlXrq>=%Yq(|@om?S+6D_bXtwZ@X` zi)nKMTOKE_wZ|xlaBA&V?~zmCQ;Igh-+osFgS-MbMvPs?G;xINrSEv}ZTCQzc5;XyEo zS_&&$CyF%_UN+NIH4Vs_x)3&v%T%jp!s~3HRIS0oU{ZA+tZbbsRu!(MeWQ96ey5zL z4X|BYo?2anmkgjJt;Yjkl5`uaY@H<59+f^P6(f`0&&g4G2KI}KQmglV?WSMz-CDY!ph3Cjt!DGIUU?bjeCOP-O%GSxzuGnoP zhpzj+BIo91*d#7DN3@6=XUf^>hh5^b)2h5-P1C$HbcSBbJ2%SNSqD4CWv5knXDD`> zch=%;@}ar$&1tr*Y(7zHdRRgOdg4{2HsbBxoJm_@&~Z*f=E-PD$OWnZ( z4QG<`JgjV;oY~FRQ7exh8CMatk=LXX#Url?N+O(*SF}~hDDULe*#e^oHbn=qc?{vlH;@xHi?^`TD3N2yfI_}-fSi{^I>J{)HJV(j5me!%gHIgMsdk$ zSykkBLr4~HI+LC>tZbd0-JA7o)k`t7j%=NrpS7@6Tz*>hYHc-m+G|~pH=aq*wXm{v zf|{;q)Lnt0G4zO>p@(6!xD2&wMWZf!O3_1j^O+Pq04rOksOjj;bo0k1IX`c~HgWlB z)#%LU#*a7ghBL`|4OX^JPSd?X#+yE-pClfKO;Zx#jKf;BH^}dXkKOQ=Guhc0RvzK( zm~Qr1CTC|U>=QTbw2U2}8$FibEoZWG46JOOou+k9-4zyE-Lpmx(0Q;~T!30t_tb?? z>z;G)<})ce3s$yH(VS-EuVJpI(8yXZC+jxYKrUI`Et*~&#u7@~EqF*w+HQiCeQ0yz zS5EBcIBRff{J;er9j6Y)=a&DNSN>yu`Hw?Oe^exP-+J?o_!a7Z6<=I>2R?wrIb((- z76pAuzSfFPc`Npmw4%@zzjG_)#@mN?bWA&Uu;}H0a;JAg{9^TovUKw!%zrU8{!X92 ziErcg7ndo?fi31cId|~1b|7%*i{EXu`?mT<4ZT(Hhiop%fw@VNlKy>V}Nl=r{T*C96*z$`HOav7|A!C zfVYyF|8^`X`+n-FzQ4HuKe^_gdV+34XGEQA^zxC2)Wc)p!m1$-gy=hj|I zy|I*X5`z~Eyd&#&7qZ@9oPPEBfxmh+T-yCDz?;kb{PSUD()}G&l4u_%AEcZ(UD1e_ z%p@9;L%(X55R(GzjRKzO{emXr|xN@Gkw*+>Qu8`)kZcxP;>OvF?XIR^>NboBO#Jw$1pxpb*2h|DZEZGpBi>qOI=rW(?ECH8IP<4%8>;i8Gg6)GsGp>NSv6faweu40 zt8oU9Qqc7LVcqZBpMtum2@fyg?Pl`uJgiK*$7f3tzFDK?Q^wj$)D7TNk8~soT17SK z6fr#$lte2^Z%R+ojnhne>O!aW)sA@6nE-7MD_aLhd#KX{P_L7Xo93gzMAq*O@8g)QUK)b!mlkfxdg6sPO) z2$(os3oBd4iBTsdX%F{^oTG00KJJfoe9uuu(EZ4w6}px9a_%oNv1urPO@A)SevFK!Wpa`E1vM_j8tmFO7s+? z-SE~kG1?hc9u*iFYocXxjF!T7aZ^z%F)Bw-Fe;HJ_YF!*d(#5f`41 z%looo$P}1c@Fp{Xxd~Rb4vcosM?Emri8d|eJT0f@DcC43H7!`|sK!mvc>-@Y6P?Fk zW$Wl@4@uRdQ=3=Q*co@KxOyI|B*Lklo1U-dbyu~(DLh-@4QIl$1*~ix9_@yh26$@I zXc|4U<@D?iTgA;hO^-=4>8V9d@!1D&ITN3mu(EZ0n$$UliNhW_H!;{FE;lWxbIcQl z4&G!YFsH%FKEPZtrem{?;y>+MqHjWuVa9M!PR`}9S#2c8JX3fH-ee{@7s1Lt-SM>ICZ8Nrw2*t`ha)J|;tW&)qb zTg}AgSyy*k6qr^NPdH6Hq}owQgfpaSdSNRw-T2P@ZI3sb3C^~#vJW@` zHni9F#Fsb329T)j%)cw>9?DuP%3HEUt@xs(6>4YxFW%ACOE}(rl#}u@g+ys@e#6%M zZuqxmOt1sTv|?+1vc8oK8@~;E^P@qDuIs=2_x)TK!k?@1 zGp=pUUjzGQ{NnL~(rNfc1BUaDwaxkU-&Whm*AQ)`y|wN6=i%*T=EQSK%D$h!job6J zKC<4Bx}ECv`}5bUwhQ;?--a7&+@DWDXgYDk1fec&g2XL&%b7^r1S^wn@`jRxZ|-RM z4t?!@y+(E_TOXncFQXM%Ppf7M0eT8HiVk!nt8M*{- zJd>e|U}ftJaeBIpn@tw->OM4@mNv>+x(7Cm%Th~wx_T2RQ+MG(FqygoR<_O*rwY%y z8JASyFUe_o5w?p^=kewhjTkB ziExH!vkQl z^eq& z1U0L8410=Va&#QnBrZBFsd&tLiB7{C&1B{jSlK!=&3dl-?K4{1xm?c9C9qjsc3Lw3 zQy)CdI~U=NXEJmFtZbd3W>vFs&(J+`dhUX4;?mQSs@ZR^&>eWQncUnCD_iHL*~v5W z9-$ZI;5-le#0976Wog{umhax6XYqD3$@wF!Y@M8Dm5yOg(2h~@IBR<)5zaWPC6$hO zFVMDlqnXUS2UfPu%uY?_15JB?7RaHQ54*(8HBB#`;pQ5jy*~%xt!7elAgpYinr3~J zdCyN)&P^KjiOWq(`Y7MMJ_)?tOmaL}**ZB*^NnFG^m;ir*TODwxoJ(lG4JiU8gDg| znk!*t>(ppB2sg|E`t0d>NDj^euu)uan%)A-?x=kC^4y0voXO6QVP)&=G^>gYdwAZI zbMqQ(5|^8nRK@1KJO9EP&1B{uu(EY#n$D>bxX8gwS zTa-@2#~IkS*`j^vYid{MmE)_luy%LeU3d$b3Ga@QGXAAoe*M`*!-uZBJFfoDycboQ zg;$x=6{#e->{m^W*;!RwljOAA(BM`k69+P1ph8e$ce1Xzw_&CjbyVBRxdb@IbB;hT=TgXg!$CQ+PzjPaK ziq*Qik`r~EKz(<2o@%tPyE_MW)Y#q8Z{D=K^Zn*^k&>@}7T#9o*Ix}QR~lCvR;?^a z_}0HIuZpxcVak{!oKZ}}0p7JFuWs1S<-MqrXsD0= zqvF7RV8&m^z+uD81~}QQvucLdx2iMdYM8{Xmu9ZLL0N?NFzjr}yqmtTN;YOIpzmp8nq z!2I%c(GmvcEhID9w0=Q#K{ZYYOBS|>n;r+UQy=d3VKPsR!++GutQu@3?(%;t(1eMpj?YLmI=z$ zu<}R+#r0AYl!xV@JOn$`22jeuQcxbi8_NXcK3Lg0C=<*XCF%5QBlNfAl)MSs!=+?S z@Qz1CN)dStZz&Uzf5FPu5&4i0BCeCt7@5{1E>3n+65)(t<_Z{5p;Ab8#+%B7WHPL5 z9TLAh;^~Yml{2ygwx=C=#4{jr4Bk>EB1gf>))Dc^BZfiFd2&Y1f&Jk!BFH1fP-z}H z3vVhDlGU)Xbx3^jNG`7rgm05Gatmw^mk~idq9Ub;+=RE3iO3DG@`y!*jDVk#Bk}}n zPdgAPBq<_~;Voq%@*7xrq$1MiWVMQQY_GUt-AYM>Q?UxNh>DaVvIX8!CL)``%07q$ zSgWfo_m$`W14z{7ezy%eJgc>$yy_%s#Xp0teHB}w79BUXchT|P3;NYPDPGb|<+WAE z6BHNNY_&0cw&rbbb%j)|l@04#hULfOf)ZU@emuG)5nws0_3Mw?`JRKLd9SbZ61(r0 z>xaKwg8G$1@;pspj?kzY+SvhphQChrOpk4%(ZwtOk}Qx zl`D;_^>9~~B-*#Sxp(94c=OM$_B5}XC}<_x!>YkTz#f8a<7T4n5CJRgmWf89$`V@3 zJ%ESAWb8gz**ashAjT+SZ^;pR6LyV@m>WJ~M#5ghBVrQvFId?+VFy5j^*Y&Dt~cwY z^cQ@ldE#8Qo04e7aFceHiSR+I8ACJL&Uj!<-X_D!)_L0>=1o0l->dbUOXajJfvw}F zwRn4IE80R?I|dJn$=Xq{vUS#GL#*Z0&SEzfG2nKd9Jg~|_qezv!^f@88A{w)cw|iC zR>R8HiNnSOIggA9Zj+;S3v3$~wKj|iik48uZo)%iGIj&3Y@IQzV#}qw^TvwpDLH9R zz~*sDYeU6WGluf^7#NW_Kut0R)k-(Rehnf&BWtk($)zpTc>SL7H!3;N^J}p zlLO|!c5wkaEj+-?v$m(`1y;7sl=cj^&&mKr>T)?!m%wgukvcUzq>Qt)7vYgG ziMjw*wocScR+g$wLTb6{9ywTd!KQJ+iiHPO%@EoP-hl_iOHWsb*gwhqH;3l^(51tK0I6?M{7Q88aHQ!*dx{qp?n>L2gKy-Kv>y2 zU%af9$~Ff>M>hV_{O|!OEkAsv=bTX?@}Ka;mO{{TcyOmAs%- zU5&@Wr0Pmo**aCcU1D{sxEfmz$=P}Uc8$wch`Yq<9HE5WheyOD?8mUOb;5YFq&eCd zz9~oRHP|jLS|QGo7OkL6{R%p7jJ)8<$Qx_O6wds zVQ0a%aS01?e^^jAokddO{A`W3X*p(8AAXKC@oG!9!v)_A6L`a_Kb^Hi1(ya z{h)N+j>p5K>)Wuhb-H*bzN>DUJIv?hkUa}q$Av7!6W_Wml(j$NVKG_z1FY=BT7WC# ziub+6ub8Nwm?~c;6+ohPGf<**Er;*TK%w7Cc1Swa=Vo(WI^}yS*_4!cggZ$|gfqhB z-%6$~E2~7R-%94=L4}ywtz;AMD400!SW@=AmCP59urDPuJ5zTJSN)}Ai{zXv#2sc1 zQ~8}O%1NCYgqQ_*JWOKd!^$K99u!ofmH^A#j;;i_Q)5MWNY-tBDdVS=O~R|t&V`-k zcJIft$HUP|oZ7X6#_$QpXX61dIX<(b?3?-8_g}LoibwHqn0P$`D_h5FpW*wm&aQ+LU6FKBk(FL5mR_mNkZhe61Gc4-2&cH`PrxC7 zX@*e5#^3=l5!*ES5c>!NF?W?4Nq8$8d%vnS_d;a#1)R0bF+~yH>b99L}Ka% zj6St?U@XAyma}#zY$BI6{&G9gNj7tb!nXmBjtSp-SlK#!obhDEUL$QU$Z2~Hc8yD0 zIOE9%J1Aby;NdXwdKy-?j@N#S+?G@sZKdn=^yVW;C!h87H;Z@3h)0y$DT#1Kl>7~m zNJ1l)P|U{TAu%x<2P<30j5F1mNhenIISFk@d59dYd9YvH{Ixuk%B*4pMQRQn2otH< zu(EZeKE}vgm5D`d{zoG$BPT2g+s7r0e>eq6UuIt@aB(~?CU8BlvUT7%Q?C_chbDzI z(yo(}b`9(sm$Y!EUNu7~Vprh-F%cVtm8~PDy%AxY#HcvhI60(&_MjZJ`(gLEpz$}T z1xRU)wou&e#lvFawh>mgj+?d_vN>+m*&>a#*X69e0$ayrttXTMt@;zJdO|^a8IOqx z+Dovqb&>tz++s4|QzTQT*qu!Kv{B7j$%-IvAf@{$pPGkNM?44lVsrv7q*X?_$_RZu;}u z0AYF7ky5t^kBUj%LRi^4b#wR$kW4LU)q884Yd!ru|uyuGmOu*K{%GLqXE{AE>m#SrhL_}>z z^P+A}OK6YFDSH(5j!Ri@m_2B{DHOFw@SvEeJq#;bM~$-vU-|78Qn_?CuU6l4Zcoxp zsYNT-NomY&nH3Km#wdw!h7RGZ!8dbQlOy*GZrsKge(VGSkjvg>m z(wEM5c{%fTw*fhG7sBRonG1D-q`?&m+ZsG7CT!=y%GP1iZj~_(CF;v%EwSAxhin6E z8W%Drls>iI4GPzKJQ^lkx53KR;nJQ!^o2{m80$GXRnNd~aj7~vG^z}D#XpUQ!Nln) zSlK#GoK<>S>e4~zb~*7Nbi9%XXAm0BD!tJbn!U#1VKH$V3oBd4jZ=qFU&*j@o}9Kh zuzB2M7ET>za)rV+8;^lg30n+SwhkNTY)iu+ zN~`*>kyCaR>>8J{aL%?g*ga8}FH% z!2+c2XJ4QDek@1jhq%Yg+{ZsN2%}PG2Z84MctA{Oz6UFlEco4$MEeF2+Qmmczr0Q- zk%%VJIsL}Af2h_9Gtu8*&$yY0zr`2FYse2ehw>LZ9wuFXhLx?;rCr?MOIOm-Zv~lH z5R>&mB@s?NA7R(?0mxEbP^#XK$HJuQeX#QAp^B_x9U-UcFxW3{z6zHrFGZ<36pw{T z)xof`b*i*IM1Hxd%S$;~Z?&7%Rufjr(aOW7anTC1(yAIl`8op+h{;z9R<_O;voBQ7 zNyIg@zA8uSE3jW&w8G3xT(`B`50_uxDJd z!mQti{GfFG43CFN*H2+(>vZkQn|p|+3+kX$DxFf@Vp>aHZ_5$;4{RJ4G5+~HypV4& zg>v==9u$+aS7BxAoH6^xnAhE{;k9Rno zJ?iRsM+565IanvamT~hIe|Hd`w<>l}wvNNYVX}2JtZbbvX2x=}-BAs!^W|WD3igW& zR+!a%(F;n|C-GRARDA+gwocWayn3sfT%!DKIaJ?-?czeke^Lz3R>}&>)Hm=@m`r^g zR<_QRc8`nSyjFK2?c^hw^hz?b^#?gyzlUw(vc+_FGulI%CY< zu$!*)ynCg%et)Nu7=877(F;n|JMdVTRBa9`j~=ShF|EcrKu*t88I-H<;lVJu`Yx<&oh#-Xsh2Zt|NEPqtiQmPamfmEjgU|OViEsv=ZOCTkGu-dRLt-+v4XkXPG3{BJVP-k#QSL+K zh#d^O#?54I_|=*5ME6`gA|_!UgO#llroA9I9AULn%-T5M3^{2j*gY<3$u^KybB2xr zR^X8_iR*=xtrLg!n}%cFUy`HtMc6hjYHjE@&8NM;fQQ6n>aIE|tXNgAun=6TMMgVPK%zV1M0}qMG*ndYKW6bv%Dtm&Ahs^huQ??iW zNtiE0hWS22gDG^B`4K!QCTDxV%GPrkwsX6B!djcsI9-m~sjzq4PO}X=x2wKT+D^vf zV$yaZtZbb&Y_w@UfPS%@wa>!Naan7_Xw&x``e*Q{n52CgR<=$WHV!ZxNB^E2v+u&T zaWQK{jb=WT{vA9dCS%`%m8~;27g}@DPGM_3=%3}d{RwuEi`yCDuRdw+(0=s)@aUN2 z{V%L+ojhzVtv`|OS*7vzzO%(c(Dy2daE735m`f{pLMht@kBLdyyI^JOlwp17YB#UH zv~{o?vbnHr+@#iqKD1~FW$a^kNKD2)3M*S@jCqr+DTSrvbgh65-50xQleNm3p7hu1*ScQ2Hl{s5ofyct6>T|HN4^?jb%84BvXAMq`AGn~S z{*0UTlIjHt zCoy>bV6i3T5Pu^l`d9F`;u3uvdu-8D4pX~#)f9Z?BTuY;pkkGJJ`{0H}!xlXXW^?20TKtOo|4}=NItFSW3cK<9% zw2vt5ypxfr%34d-jTNGGqnU%ZN01_4}vz;}l zD^G&ud~37I3PK8)R=HXKvhGA>k}$&^5Bto`aL2GoPL!h5Qk)@lLh!M8X#-el zOWjYrKFggeXX9+#US>IWa;w>>Gl5WYCLRWpl73j380*&{ZXD< zRa=GW=4RM2Zo1)5;WE=ry%BU;t2<5BM6N=iScuY*x9)Xpuqo(ccHgtzh%*o`vJ~!g@^+Yo1bYf;q z<8145#d&N?B@xa5fd6zImotMQ6tXdRKupLs{eJ=3EFH3a<&e$7zX`McY6E1mVid9& zctA|Zro+mkDU+!ec}kg#K-MLPECM^n?J+}ytY!#>Y&jkf6S8HnvUSL`^#D_M>DNnM zDrai|HjK;GDJ>sB)~W@H)P;B)Or+Mp%A*J=lCJKSBXuWin0=&7UEu~i4kl9TVdYVT z)ZTiT^@1F!=U~I^Bel1ox_SnWgNfABu(EZeb{lp|A{N!>w|4lHcwD%hk_cy9cznxy zJY@jw>c-;%Fd-TTD~|?<$Rz0@a){=^PH_`b2oQA}Aew^*z=UWvtZW@3?Tm<_1b35N zZmc*hs?AenBVc0m60B?;qp8DZBV}SrtB-a$Pdr|mq9no@ukm-abJy{_q6IV` zO~ON9f;0hEwhq$p+grR;-pyvx2`8@~Bs*4)(_+{$Zdz*n_Le#$C{&B^K$uW1gq5vB zHT)vV(0UZvYH+rksWV~2xJMXDcSM!Btxp8=0OytJG%GQz7E~z(cuc};^ zSKHvP^{4aXq|JeS<0iMRmQPd=J1AhY@o<=c?GG!DKEOySOUeO@!@i9ez)YQH4;~H^ zuo$d7`T!&I_t(e)y9)Mg!~kZR#vjDPVFGqJtZW^y;n%M#eFEL_cfXvhdtt-4WVL?% zy5>O_r6$8)*{$3Zpv!? z&cHe&C{zpaK$uW1fR#rPRCGc6OgU8juw(Y2GOlYE@IaVQWnpFOPz}H9X6OfMSl+%- zPSrZtGA>oE-*r>(1kF`z@kp3hT@Nc;$7)~h3S`~JaIM06R1Vi8uyI_tqG8RH*7-pZ zdl-+0iP%H1vUSARbMZr~8)U!yn9qo7_)V~HT*5+|i?7*10ecG%hY8r5u=3~wjLgN) zkOMYdNrW><3>`4jT>LaV94279!OEi#FftdvTn^YW*tZdr!Ax`UOYv}+fGvTQtphgv z{k4^nw%8~5?5w{~j@TO5IWA(YzxB~z2<;}%!vkVMb`Gp;9WwS@mtmj%202{oVaK>| zg*Mk^-fn*z9tabvTVQ4DP_d^aOuO!%kyG_FY#EoT(559SoA32K_fO%GFtK_9R<@26 zJ6GlMWGQj{1>(`-I3*EIF&|p4DjGpMz_EBBOsKYkm90ZH{0TDyO>^Wl&4#Vw=BU=6 zFf(JcKOO-SqkUjyAB+OL=v8|Zto*Q3011oFz3Mc3Dc8v!oak}8vX1ZThkbIIbMP1A z(hM9%Dg_&H%F*hbg|8D8bZY0^GI%UZu9GF@k?>TQetgZ(ow~=e>R$}|vYeRfaF>}c zR(Sl`{XoRjc|zE^29Ju#&Q-87$%%s{iS|7p#)iy^#nWo(L|a1oxoWQP4Y3Dd)3|8~ zc;hJ;WED?n^>#lV6BDs}VP)%x?XRs=`sT4NCm-!~W07=0-RY%)_HQ|8ufx`HK}&|6 z%^IAcxV?f$#>DMqSlK#m+@hj0nojA@5A1%SIGydHB*Gbi0#mWU(pk|E3fB}oASPUs zU}fuY&En>=nCJ9#t6K@RG@+rH3WaPj9uyO@MX<7U$n*mqz8z*P zt@CxRoUgNC!?=6_TY7>eFy#kD>r6ZzCR+Wl^5{X!_4MZpZk3~TGi=z1K}-2T(Yg_j zhl$oYSlK#Sv$XVmE$%G|1``g*<9GE&EOA3Zw4M86TRuMvi0otF>aUYrM$f7B)rvb zBwvWGAhTy(a_}OsecV3vjIhBY?ojNO@8i5wPTBzM7?-rr zXV8j%)B8lv_`-2RL(=j(fXL5JANIW#%PDz9_G!1>FV8|2-*?2rCCS>DaW$TdXm#p|_ zvqB>887MnMPT4%zHf}NteUngf$Q6p&96Tx}X0u^s>zI9%U9*)89s2QV9cM<)S`zk- z%UUY*jm8}Cem)oUQTy59^sCBHb%dvX}c94r* zKJ1RwWDte#WjsJ8d@sSu*5T9d4)Pr~RJ=9pl-y-NJUpGEB*Gb<0{8isLPyV|bk_Mo zQJaLv#YAlatZW^%1He2tv_()$amUJWTMV1WO>yZqrMMw)C~}MN*qF#Igq5u$$DZP? z{EF$^+u3s3&V+sA(iZv@Z_O48T0b5Z6SM-XJnBGG`)#zecC#F`8)4r@8feNE3fek6 zEGB4cVP)%}9SnA&%F$*!EFYIs_b6;4m%5d0>P&TyD1wjRF)|T+7*@89AbSe9(t9X- z4f`#(yjVPH7^5V@88w7H1>9&21#T0J1^ZQLSlK#ohk`lJu)9#}Y-h>gn-Lm(tJ{?J z3^q{^r{iHVGv72=**b{xK@iDqLk+`-9K+?Xi`?F~zfBktlPHAC@F1BGE`^n?Lx|4U z8Fpq4$ho@^Hjc|(yJqan8#LG8aWPRl4_3C0+Q-3sXWWIT<-9xP>}`OZ_HhXe{R9MYhhq0M9vu_Ar(k94*rBTy zK0BVayF@(P9j_$98Sb`g)ndpSirhFnHYRdoVP)&cv5!v={g#LJE^1xvJUMf7VE4F* zF7)Hmx;YfO*?4eF==O(|twYB?jML!j&@WmeFDWN44qM12FZ9DWMu#YVJ$Qsn{9>^3 zsKc*uOQVM0HFEr}f-M|r_%%92@f*Y=Wa4)@tZW@Ww8|?UM(j>_`hl?f<>1{5o5uyO zT~*$YHx#*zcx+7M?tzu9Bgei>qSBq@-Bd1}Rk!6ho_^B$6*+bzszjm$W8f>BH79;_<^K*g7t4p?9DS&QRRm!Xsni_9m=s9XIxbiJ=tMpqn9wZn}~PXV4n@ zgo(i)irzFlJ|=p*!OGUr+l#vq%6R4Gayf0wV9&TIt~>M&wKQy^fGx#CVgj}VR`vlb zz+-~7_Xx|c#|4nE_#WY8jq`La=jMDLBD_M*_2=ME#pU`KKG&rv^_xy<=oLt6FArXd zH=arGKuLKdygazaa75HSuUG%%;1A?%+>P7Iyx;odRZfEXVCS*gpHX>8?=R zuEC>X;&v6RY#ld!gQb6V%O%t4d~d|ugZ^9&+k>!qT-bnDy1?Al=m|ybemo{7YWKp* z)=}ekq`7o=adT0&$1`@M|CYn{I&2>ow(vSq-4%-4D|l2)++K#2t>dOY(MvO%?^MR_ zpA(NYcTp1Ij5SYb`FNn_14U{I9tRVtNwBhYq^1o!>1v$1I9`s^v9MX(e05^Waq^q8 zSd7QOL}?MMY#pWH=kLvh*12+)&W7FMvUF0*S@NBtI1>+o2~$6;Y#k>3jTze2>4R`> za`jd@RX4-7aj9}zPt~wf5;x+}F!5RkD~|%a^g*|V*OPL*9*1qShnMaKt*RcyqhaFp z2&`-!ui+Pl8i&~$Tw8x$T&!=YB*H1yTfZ>W=mkY<3?2&;txcm3t>HUHeNe5zwXYnm zS@;KGZkK3%$EdqO@tT20!^CSktn8Dy0&MN7?G7vN@ChJcad+5mjl6Gstv6LL_74Qe+cFD`x6<@M0R&A%4uMHJ!YWu}{@j#eNyCvn3uwP8uDeGrW-G-_9 zU1ML6({crFGBXYGcghB!rOpt-&FAotnA}_nE0bI}P?Bih4l?cRx<6o*%?I6{TDB}c zmy%9739Z-tiE6uWE7^}=2f4{98)kBqT9X;)etYOj16!Pjh zsdTC*;`Dp^HpYL-+50F&dW;&k^RB@xaDmcO1UL9XZu1?>ZPR7}uzfR(L-rY)Zj4_eksMpnDow4ULPl;d_d zY#%qn@h`&?;a2sALicezHYRk3z{=L4JA^m1td=c>ly^qKji}csb8fVd_xki)w@MCQ zA8aERKK{c-68NY`6v7-HBNM_5tZW@ZZ5Gcr^Eo+nNG0pVT>UPrugRhNAJ{f7bo||E zL7=O7LLvJy9upI?>tJQ;kZBtsn?ROJM?E#U*5^iYQAfY>@7HqFehHh$MU8)LLNL@C zouR<}9FL3%+=H;Pb>P@pEuV0mTs|^W&uSf4h=&dTg>B=a7IIdrdO{)lHy#rcve#kd zQ3u&99kP$eA=^Vqgflj64`j1q6tdm%n3$050xOR?$oAGDJ6R6diLh-WE0gVQfb4iY zCMIOZ!phbmoeUMn$^z5BVz)0HmqzN zIPS!5G@U3UQ^o5MqARqC-S5a@`xa~*7q)OGcI#cCpxuf`#RTnUSlK#g+Wl$1BTqG{ zrY`%AbZ67aNX}K$Y^kU|yY_!_;QkjjkP96D3AG@jPm?n zaUqL^3t8C^ir3wEKuo;ugq5x1#VzoQFXkn(8eM;v)Ad)_GA>==)?j5nC|ob#@i5_f z4ptsja250#>_bk9~5wa&viZT)x6Bzsi14 zxUR$FVZwC{tUQX~GR&|3QV!S8VarAeT;}=J2l05AaNQ3pTZd~;=E{(_m)0x(R}R*{ zVY|3s@h{^DQgeBG(Tw#v9t#tyS72r9P;o1+(yPKzZ?#@=?ePWim~nR{5zd$~+={De z2}NudJR~M!Q($H5h-p^|`4;ubbf0TD`+K6Cu;XFVxY^4MbwYK>5enF`ctlLV7Q@Qc z0h`Y37&DGO8}Vs5Tj#=laoOU(F%hI^RAx}D&c=gbVs$30Y#l4^Uc-!&&3jHFQk>t> zDz9(J`MMQ0j>}iLdkyPdp`hK2N5ur~Mp)T8Xxv*`hAbU=bvYgBbE6t@|0^f%N!URy zapB(5Vzh^%_c$IN6TL@aW$Wl^uTuNgW<%Z1RCbHx(~)wz)AHO$<;?91J2%RyJ4?%`L`Uu*I^&I`1Q93KWY-i@D)5rCWbG=%GNRD9$~LM_+Y%?W%nr ziEu`=;T~acu!W*F1rLjf+9X(c^r2=rj&QsjwPRuDxH+y(sF_bCEXKoPqP7TD9&M-@ zFMl~#j@sF>QW1wsfI>mv%gghs8wg5mlEI*zCKn9JE>Z7h%3S+uM$*5A!`9Gw`68m`#V3 zt!Fguz3`Qaq+h}mD4r= zJIAH1E!CRe9Um9sVKGr#11pa{)C_ZLcgs<`6LxNdp=O?2+kl6~L~T8+Y#lZ3gyu9MSt4eTG6 zwzlkRt2c*YcNHES6T3lJ**bO$u-*=E;=JSgYye%MGZf2-QjuNqyVAl{2d$pmpD ztZW@b?!^w(4yAlylJPQ;*X0Dh0z1ehFx(4ljP_9UUdF>?qW2Q4Y#qITIk4gG3~g+& z%a_Ds*(pjQoUv?Mb6|r@6vRn*luQsOz{=J^b}&};k?Rh$Y1Co>a@1ywZq&-QP}HX5VKGsg1}l#~)C`-KB68H0!_IO0&$eW>J~do5 zJqN!G4~vP~QdrqKYTQR6i}kNICLNFyb|GvSm#}aji7dK7bJ!X@8YWoh!OGUb;_e{P z238tlcgh*t0DH$}EZiL=nlTi&^>|=R+-`%Ft>ebM&DS*4d`=G8Gq7V^$iltN*Jq6R zG#(BUt*2mR>u7N|C*`wVGP2surgK^n+wRNa0p@rm5zYWJ+|5ZfPiX!chsVT(Y%Hv7 z9Ww5Nx5gQad2+z!z?N|nShx?~`b}NT#^YhawLh$E9j=ct*8&PD?~H;QiKbIIH(JPh zeR|2Cl!F$B?c;)$4s{)XdP6f>4;~v6x)`i%9Xf7CGftFUBM0p&*fK6?;bt_y8L~k< z9wuCu!^)!wF2mH={c^bOg)JK?aGB@CHsbLx;kpM__JPZdUpcX(cbh+nM!P|bO#-(PIw_ZO2U`$%1;6bE)t-Eh>&N4m4=WF+URjyV<8`{RzUh({Lx zg})D%kj1%Qx9FM!pyfo&d)`C%I0YT(gJP0Nti(zGwTNafh+Q*XiY&ZFZ zb#^)VXm6zWYt*K_KCN1s>vHgJdv5i|dM@l2w{u$7Vw`F&(7x(yJPIaHXTr)OpQoN| zx{xvP^es70x59qe;;H5W<>_WT3MNlC!phcp(xw?`e)3XkAAl;IO-TK(9H}Q^%eY7_ zZ*huhFoII`I35U-sz+gE>r@R_S9T_5mUwa!-fDeN_O7+!es60f5l(%5N{gYY_kl9C zB_0QpsWGtfC}3)qFH;|tGqo@57&lS1oT)k=C{wfWIG9Y$fR#r9Q{__1l&4%dQ(drQ z)|jgEfie}r<6tti99Fi@l(yf2R#cT^fVClyHt_qL9IQ)W+qhtz-r^3Bm_g|pz=L7Z zbs?-gYUrvBfHb;(AgAkY*fz^_)y$xD-H8Xoq-z7LY@IIcJdkhhY8VS?fc;et*bA_8 zT)_Bi&&3(JVduv?E9tAj56akccsxwTo`IFEGo~GG^kuAmXrv+bf&UQ?5qD4$;S3S^ zJ5C|Q>g}L}ZHI@$By2paJbDPL8z^aneOyl1A+T}WBo-E7b#_p~=HcNm37Z2ej~>G6 zhD{n_IXPh&*f`sS)!9J_OXA@$35&zZK7<9>0aM#VQ(oW>Ai>^5)B2qelN*=9k8@J7 zbkcWg#5d$je;xi*T&9m8i4CVB3`l7zMW5%gEq+2v+a=|UpmX&vb1 zUlk7mI+R2>gMiipRkeY3od1PCJNKT6f5Xbwf!cl8{M6;<9gU^E zR9nN!)}dnOtZHeh^@MZfWPJ>_&3ewNx%0dA%oqgvGVOof`>X;yT%Aub1laT`v5UoatY{UyI8$e{v%?6sT71 znhmJXQd>0q86E-?<)4<6N5Z0^c1^0$nYtyj`gOzq$RT+HcbK_u$lnbOK~iT0!R1vv z7$z?Ngq2C=`+G^EeXEDF87XIIh*?Nwojx}a@lr9jUmFoj{hD~JxvP>0XRNt`-MeCt zRqBlfU+CCiCp<1DZy$!0t@EZ0J}Wh7CSgay z%07ezD8y>DT)7(#AYrkVo2Vz&yl)kEi5%&R;P1pmntzE>&drnhtubiQ6<>fin+fju zC1u~rt$iJ=wwq#!+h9puol;-2-61F9cHCNK$#y)DB8wQhwyp#9HW{ria&BENX0CtX>d)(IN9)lxvpfDegh)LN& zu(EZ^7+$=V8=2Z5u9JGgE*SMhZH=n_v`DU~S z@MxHH-3KfC&=p|FSQ~YghYbNFEKa5EszF|?_i}kJ>Lh%p)V97+T>WjSB*Gb509|w~ zRDJYW`4#JXx({8smk-Od3#Z}pOB@xajF-*FK{GfD=!{cGn zH5OL3PM5wy;8XcW(|sCP^W&dZ4U?=GtUQ{?BDMTAaAdhOa=2cG9pl0kW}jGggOc?U9u1SM7h&bmLRQj^d5%7lI_0L}M~7E*bZpj9{3mXD z{<-#!TR_*;Dr&SU|reQG_+2uWw04?$fhfaaE6TW5EptXM>oB=mU1?8;j3#IKgJT4|}x4_EQ zY13XoT~hPAVNtU3>ou+&JtIf$Y1lX}YQ5oCX?{ycPvJo^IeP+D9%Y;vSCYnmLp zQ=7jt1z+K$b{)p+c=MSMzfw{j3D;q0$CeDf)ZP71kH_w}h{vhBD2Z^!sr(BW*?831 zKtP#-2f_qp60A(J-Gq`v`>w#yMhqsR(wX8Vj7}obQplP9!aU5v-XByAC_Y@M`&8rKj^q*ccHCUdn~?p!%=XTuh9flGw|ToY?3 zcW2_EF}dr9m3_DiP>j{;xpIdbKtiwQ0!Y+aaddC7Lku8MYsHZz2`7H##Ey=$2B*dk zT+q>R>R^0s`Hy+!KTPKjimfPg#n)}A&L_Nmct^*ya|et6`vIlXyCHtD`a{WVeuVii zrpDjt^EdHr{QlxHB{}e}1?B9&(#yFG)#pR-&(Zi>8aOPLj^<{>oV*i>CY)T()&7l> z%{r@Qczvrn>;F5QrT@6I(lwPDH!#*oMSIiPl#_G^dpD38;DMkV?=oidj`$VIjQD*e ziT1cZX|nlC#!H`N`^dpXUrzM$y?!6)@9+nzSXMje@>ke0<2Q~!sdO4X&%gmRUy?7{ zX^xS6*cb3tGE?7kC1v05-NtL#KWy}(uH>z+{6BE3xHQ{ANwlK!r(gb%z+b*DTEf6~ zczc-)jE9vgjjN^naU}`g+#Db^H%|@|%&<6JIjyAnxN4ZNhCc+hhnphi1P4V$N-Ly! zcuSdx%z>4yBl001M51Y(k(`{74D1h=k+}j!RHzh^B;HgeBym{TIwTYQA?ejJ$(QAn zTn8J(rQ{$PCA}1rYw)%*F}Vs>wvLHkcN5c30{vVL$%C*xTu3C{P0Vn}=YG7UOhoR5 zm8~P(DGA4SL^Q0V;$6{YmQ9$Z9%Ok+E-4^Ec_c7-#DVn zI}7F1l!K<=%)lGX1ZO&|Y(3ZP(HxwF+ntZ(dcAJ_4Tdf`JQ3I}ZvS+o9G+U>6rkmJ z!)U z+$|^PPS`FkIY-IKsf(NG zW+L-6tZW?_pJ}|P>m{@fYKL!$2UFWAiEsu}f@!>Bs1%a%cvG2>jDwY}L*lanO*gX~ zB4=bCY!5e|2v(qtds*h-EoCAy8&<^a_Ngh$5(mWE!o63Zw z2UfNYiO(+EnA*$kr*U34#2DXUH$-%+P+Dfz(m8Wz1f!f{s1%ZZ zys1n`3b3+uNc<|2{!DVFmPu}wQ*tA05SJ23MN*8FVzLfzD-)Bou<}U7q&tx&)AWza zF?kd=s12BuVx^cog1424$-}U+bxd|K4}?qBMU2DYE!T@H*fB~XoC@~i!H2{3Aya5J z!Jl@33C&xuvUO;D>XdH!Fxf0QEHgrbMNp>{L#2>R$D7K8WE!k&9TJ}*aZgmAiH*n^ zSq|I7?S2H~9Th1>WEtL4CL&8=W$TFeOxX8iT_^AAJD3LKm|O^3#KlA~VPA=sqOt~W zEfbaVU}fv5>}sx4D&|E@^Raizf!P2X#RcZD;Dt&<%oLmTc$=Bn+y*OK$Hu2p@sduD zHdcO4PRlc}KU`V_l}a&G3dz%WQ<;!F1uI*JWU@K8c)4yb<>mF|!0o;x9{-G265))0 z<_AwJL*Y_b#^KFn!ZH?CwhoKW^qZ&7^y+Ip^W>z=feqrO6v6acDOQTfY`m>ZO!kMB zM=mDnsS2&gnN3MVlUg>pUrx!rusvK#1hXkBQi{k%yroP;?tzu9BjPjG zNw_)vQovW_jJyo{!(~J;)+vTcA$bXJDie|yVP)%(_?#OoI%k|jnR2^$v@=ObgfrR^ zoExkKOo5qzH<$^`jRZz}w2iBnvB#WK8rekT=RPSqB@`CQJ;QAlKq; zWnywYtZW?W%BxS4$mFAL%@uo5%c?edv4#^brl)XyBPAsN2 zk!sz}m<{48b`xw8mlVO13e|WiE^p!OW#aNCtZW?@zfsQ+E_!B}A?Ibfk{EfTo@&4p zm}z)}nZWD@D_aM~=c)_!d-I~|T|Igi+;TZF%V3+h8Afo`MP0-cnWcD(naC`Gl}9=< zskDBV*M)Lq*1$Hk5g8RRMdm!b#Y|+*ft9TzHToqjJ_ z&=(KKe^)$C8mA<}se1)`Y%9^y?r1FDS|%!6!O9~R6}1bFqB2L0%52yoZf237QjV6Q zvOnHhCMx^D%GOcw*)o|dB=TM+u}YhMiOX5(fj#1~BG@uH6fT7&hBuc9ivufLhsCGN zRlCC?`E(>jdZDZ2xD3KBad8opxwU{PFqh*EW&(2wtZW?^pX`!ydz`%2r*Fu8#V5C9(mBtNTPEEh9uQ4X65$Mp1i57>TnfvMcypPsY!542hs9^}QzpGqt8f>| zIavtX!_6v!%}**)ipT=IrA$QT!^+kX@tI#y7mm(SS8-~X^vf|Rz!q^a5e%9u(Na{h zcx#!cq+w<2sQBz`F&y<+C+B1>><^a{!OoUqs1%ax@uo5%xfWKo4vEiTIqOEfOg60+ zpS6_oh#ZxNVVAh52nNfwfGIE!;SFX2^8l=D9T=bSPu5L3UMfbe(by#CeO%bR$6nYg?LD_h6KXR~%TT_EopPQOz;_?f08!WsMsHfxt+rI_r7x0Q*>&akp| zOnhpUoY$itUtT7sWGUm13wAk|lUknUEXp4;Zj)k!JEs3WhSg_ z9TuMwHcxJ8>XCC2gYDsRA}C>1q!bYcZz&Uz(_m%mi1?JS$~e7*9h5V2IqVOY5kU!C z43$E13EosDBp1QT)*J>| z^&wMew#S>ygl1b<*#{aoe&xiDjpS%@6mb9YK6@T;{%8j=V@93Cz?qJc&0p(8b zhWN$m4`u1*N0|R&YW$r(e-q!v?=LP>k^@`JcXICF`Gdv(v+|edhJRniR64LQmX79T z#GJeni6)#}&ei@+G@Z(;bz3((!|PksS^wYbto~JJSFv>iW1UpAH=Rv6Nq4Y!Lxr7* z)ej#HO7JdKiPK9GzP?XwsqvF0n?GW_^hL%UGGq+-G#A33rsCDyYM^UiuZ&+eUQjv> z-({eaUdY|}9XlHXBcJg+ylKo7cTPz;z}F4%t7`snCp37_8Hx0`d3Eu6G7`~hqV=lD zxvl`otoEsI!~NXaOR48bQflkc1q1KMy4{7WH)#0Ov$0QIA13YDZo!+${OmWu$`vMS zeaa0b3Ey9T%lX(*=c9NpKY`R~!$5wbVnS5*kD_iH|{aWU5x}p&;nMpL%cC+Pd>Oae=5jR;j z>X9=OgH7Wya}3JNaKY0o{*ealh3e!$P_b;FeBFhI!Q|@>SlK#XI~n;(r=qIoE2O+`{pOCB4N;C}m`OyrE1+wuP0gGxA|yM)IpN`o6q{a!MA!7ID*wVS_|5VGNT_N|Y2s zrJT&io66+mAXs_ia+2$H2qy(OCt28{@Hr`kN;yg6O=WVDfR(LtGTASml+4r1+_iF0 zu7^G1f@0W9!%QgUSScyj;%#M;ay6`MofLg;ujp+=t(rE>?L9098A`8*&y&M*4(t&Zo?v}hEmoR&&N8<3 zijI!WI*R`^+iN+%L}s<||Du_)b!3cFGPy$1SpD24C*~H|A}%q(revz2QebYvo66+m z23UE-aZ;ShI-}qg+(>croi@Syl$?_%V2eWIq%l;=$zym^nVkFvR<_Q`q{fn_Gzcv& zNp?GloIb-l_6Oo}cq=6lPC0BiCRq%|cZRnyQcB4dcuSd-Yz8Y^r(|azN@^Qww2ZR9 z9F=`wo46UpaPpdmN-bQ<%S^nvOkO%+W$V0Xi;LCYnmX~LCzY6-6bCklOA5NU*bpdX zo=MZ~u=1#(DW|%r zXud#h9(qwu)AO)vZKtUkJ*DYcy!A|){s=2ur)gLJ+~mdFl-kfq?sMMphvEU$_DUk0 z0hHlB=VHbgW&l-AN7aBSGuz?~W-{|0SlK!=GZ@UM-N5Gbvp`PIeAqH>`dKXK%&PR% zLZ=)Zgg2eZ(SfkCb&jT(II26}qLo2eIXP+ABrZ9IEAtq6r!H8^N&;^zlNAqEw$6&S zExhP$<5?&Tmh0uPTnoFzg$3OfPNSu?T#dJuNz0Y6vUOTM+P9A{$;d1h^ zK;2O(spKdj_u=hi67pkMc|;NtO((n5#U@%Nc~efvYp_3|5>kni67ny+olHXh0V`W4 zWH&<&QO+gPsk)6<8Y{bP6c3GdRubV1jSP?37dw{bLn9I~rDihTVkR{cVP)&oe85Oe zs@v;n*z~(Z4$3jGIozazUiMI=s5p6946^b8YTJH~!kfvY;|N&UIvsnO=@@L=v1JO-P?r3F2bQt6#Ct0)`4!5hhB<5#ey9{G zIkg&~mAhO0NL=o2p(Mg7cLS{i=mAq^Hp3gtWajPB$ILFKdZv(1cPn6uXYez5{Q~-Z zi?8_&Y-aM=j75~SEDMM?PhBi>FXAAf+At@B|T6UV&nZf&fy{g1_Coo$sw zIAfhaW8z|vGEg4uF-dv!PwxS7xJ-QRkkEQzlL}>#Qm+6qax5)sjhCPD}!Jj7!W>fr#;ooMspg zZ#k2qZdlnmMY|iSlWs2+YkDByS~)&f!&Y(eF+8PI{B1N}W~L!iZmz_e%;e_tu=2>} zrn(%WrJV=l+}sCS)gErDAyaOCj5nFd%@1K^>)e=jwR9((eBQ0w)}mqanjD*d!A^0p z3AC$)L`VoJ>sc#E0T90n_oOlq>}qD2 zaH9IrqnUDEI!6{Sjp0&W_QadZ%r8@6W$V0{PBHeX@>i`YXx-6ia!^iz{o!^;f!3}o zaZ*A~!rRFtySO1=pzTc^ZyMy={yWnJ6&(#^ASWc~=- z#YHC288vg*l%GG~&1UlRdsx{zKc+d~nvrTLSRE79mkPGMPdqSskCF&yU=(PDi9}4P zc{ko-CN=Mbm90}V)i4iJ^RT+QtMyU`$+?s=OSnPmaisVQ09A1UgMpjId&T?KH^` z@isEK_&%&`or^sTbxQ3*eRU$OwA0Z`^=RqjUvgId0lURz{{5CyK<=p1w9c`F`=3Xrht`XG|2RR;flxDfuAYQYIzuhn1~UqP>n)%qgYS zM0J?UiLTHR%TaPnj({!VCKmK{EG<;Z$zga?nVcL7D_iHpbaE|`cJ#dptL22Ogw5d+ z66oYwF-Xcr9&aR*jWb|n>ui`#t|gs}mOO5dqw!VP8!j4wDp(aGCF3i28<}K$30AgF zhH1@ExmG=Jq|cfBM$X8uV3)Xz1X?p}h?dgw3%s>VT7CvATc^de2O;V7m+$szI6uGH zPsR1>+ps@eP6E}dwKyxEp*AM|58hHHBX7XU))_I4YLbOS-iy#4r&CVJo=Rc_jcTfq z(o8ZHZz+?KU14SGl$d5ts@|y$aFOmpDw_Am9_>@)#GC}X#my^$W=@PzQ+iIoTg{~B zI9S;_J*F{nNIKK^KIBJE;E64ub9K8{CpE{Hj|%kz{=M7nQoZhHyf!Zoj=L}`UC72 z7obH!X83*LrUd;SZ#R>m-@(e(37TvmD3dLu+=!dZ!g@&&n>%GU0c&SsRQM-902>o%`t&)&(-3k#O#N+mr2atu(EYx zOm}o^4(i>KCr73mHj0Z(pxblxfGIOkyunOnPKTAPGh@1^tY%^90ADrT=3qrc!yXL9ssSlK#96AYuMtQ#wkGtv_u z6c3<2s3gJ}Km~e9tsExh2=10o9fB;s$Ek_PrroW z2sto^!G3X*OrUuhpSUSOhvMyK5_B-EY@Hy}opu!`Gg+^+<&MI$QVvfZwu%c+pgZko z$dsEi@Fp|4Nx{n2xiP(3pLI(oVpYCbp`Ro9s+^dwz$S5t3G`}xeXx|3FX4@4vhqb( z**YtxxnN~qK3j<93t1hNU&&GV1?&+Ql|XaBb+J-XeulS|Ny<-QW$UDv)-CJY^M7*s zZ8$nRlqxP%0HS*sjl#s1oPg5Tk-WU}#FSlK!o z##*-5$+)=&INtq`xR!mVk_e}k4K(v#zE+K9j(6bAWYV!YtUN;LNUzkkN*y4lV?Wp& zZt4g&(& zCNsG?6;`&+jp_EeoVVJIq_Z(st;d>=nS5Rj&SkJyTyO&2K4*xTl5;WMW+pkGg_W(7 zW7-#$Q*VHlmZ9|l&kyCmd>^)m3rwJWQMFJhC*Q-H%H-s`u(EYdOsDS4=Jk1w;YRnr z$x-=GB1K&S2-qNTL_8E-9NLT4iVXc7q;LpVaq4z6^a0Wub z=22>~Qc~WBx0OlCdtqhkq?pc-46QFa3H4$cdC2}SIW336K5;Wkpfe;|yp))O@%A!_ znF}jhC&qN6M?S4ciRwG$@^Vtnfc@c;66jTtN}QCC6y8oIAuC{I>x7tcO369j*B8Gc zC*@19Ph3(0S)L`)4Yl|naRyRVP)&wn0DVP6a8LXocas#&}dgB z5zf#k(C*v%U@0p*;f-ao@?lunIxD78w6afK1e100>8v)2K0%Jkaj-|+8{FnenM$ zhO$ef&q)+qotkgTsrd$M6_=Wz6^s@#<>u>nlbPIn4OX_!jZd#s95Xmw34O!%@8!V! z4)%x(Owe9wC{{|!Z}GM=N%=LbY@HO-n?))~r_=!=wIpqLU;Ld9i>uvtD2Z^Y-9T>^ zHHJ%h*&J^!la~%y**Y(#GxN&8tfTLZ+E32O-mpE~q!MW7Tsch2$6k0dnS6W%R<_Q^ zM8lm5`K*^TEI&u(gq#i=#3kgwAlK3j1xgt?6>lh$k&|I%>x>w4NLH;nN44SdWpY9; zhV9`J5-f+5!lZnB7H=k#kI%r$*7^9LA%_%FUblX)<@e=yd=GYqi$|cH`=ux;9pA-U z$)w{uu(EYJOuL*4snWAmrKj=q;qYJNl>8ZXiAzbKT}}r^R$b!b(qF@)UEs9rfBs z`HF;ef=uimD#zwv*e-6833Nk(Ic&<$T)f##em({(Tj$60{z%D4H>Jh~ZZ6{FN^>fD zA9aQtpA_sC7oR}yj~Jt-^sK;J&7`LnR<=%$X@#idqk1wq(xsl|bW{4fi(it1^F`Pw zE;xZ!i1dIdGhe_P%w*;YSlK!=z8R-@-*S^13V$XC=clk+TyTPC96f4E&rk4HGwJye ztZbbg(+wP@A7J@*LN66l9hX)izab~*RoE#mIe~8AAQ4k){)xAkNzLD3W$V=V_EY|M zTJHKQ@vv$qB@xcBDtJFt7cgb!!+3+4%zOw|w$6;{F5SA{UBXju*W@xz)Jy3j^5f*_ z91Z)$%{PJW()Ed(5_BZqZYDv8!^+kP(pHvYt5QzViw@Pr4YziDQjW|gV1u~Gpl4w9 zKr0{O|50}?U~&}I9$yS3fj~%r@C?b2O-KmL=0$h~0wLiM2nmp26pfSF+1}lm%+4(H z*krk&peTsLL);*uC|49k5JeFL@r4&3Ac~?0f?N?q@p45`1i7I1bal^EcU4#KIaS@$ z3EyXynDFmY=luHAsb}+hU54qVA}JXnD<@8gaPp{sai%w4gwz5D?S(q#HgiaBA^Qgl z3H9WWx1DkxxtVS!l8~Fo%83&qoTjh#*L!<`5Z8kOBu|(_@)+4gSV*XuL};qa$)j{r zk(@k2R!*D~VU@Z%Sj^V~7nsKW+_<(K0}}Dnw$xQ>PcvmcI_PF1`FJxbKCHsE2X=H^ zI5MYj>`5IR8%7FCogXJSKTdRhtYAM}#Ac5l(^1$8|5f3lZ`fhbkhthAO^FMcL}AQn z9UX^UJYw6?0OkI>3Rl1nFlT4gA52vJ!L*b@>S|DIOw8n~ndV+cA$c8d4(74+h>wTw z8d#N5wm5QGV{FChtyl6Rg*v#Uu}ij;>o3C}4OkCsDY*I82f1d0LY~OY8=;61UB*(p%ZW1!?IkK`M?ivY%=b(+|IcNiu$m(Un zdUxTmv5*V@wNjCGRH`MPqvoLWD96_21=&n~%IcuS?9#R)6tXCea>mhxa7AWtLSc+2QrD z+${#=C****u3Fk^=R;&y1;(^+FX;Hf(l|uUB&`T``P(D~@P~A(kjdl$rmT$Xoc2`+ z`}lm&mC1JJGWmhQqVJV^4a}`}YorVw;aBLs3@jDo2roiM*wZ>G)-TiTL&o|gva)L& zFB@NE677Rxe?Jtk@9@03mB|*1LJ2wRQDZJ%t}4Ox|{IMezbb3QI0dkD)%z%|K=@}bL3B5osPK!)i?A^{m9D<=*}aQ+B9 zuzZ_2AGeSlgyn;tKb$toc-&045sAl5WMu^&Mk80J$H=~`+!6g zmG)TB@r9@ndhoy#*)DZk-HgL0Pxhi)i%f@;nX)qWZ5(@dD*fRZsd_0`0j3*{!+LrII<>8U>48(*J3X-TDV1zb9?tRjCkK}Ql3FPSz9x+` zqL>`$YnkX9cLq!ioB(Fi#<(uad}`o0CZQZ2DvSK+rv~=%C&=JH^^ybSwwN!?=EzP9 zjCJ8`(D4PRaa>qe+KQ@B(DQb>mhwq~jdV+qNpJ&GRz|&zlL7}RqV5?Sd#41h2Ez@9 zbXU;58aO2&$3OH7aHGcG(_)E)%jq^FNw}1(>>9^AqDz>BGE+o89WYOcj5{8#*2;sK zroV+bfp3Dbh5+45b{RH-gpTE!4XUaVNNYa8*M7MyzngA95~e%J%8A1yOiH%0aaXn{ zI{*_b)}R2;pUeUJ1KCYjfDAKGtIaYr&(Up0Lh}q+IdN!&v77)+o!v1cV6)F-#(8Hi zkf2q2SZqSC7#Kb8Fl?Mw%iv6=Ta5%~B3U_ca2BY#uBMaWZl!7th9{Xoh*p?Gw2bUD zEJWuRRli*d56D0*rMCbH)Dp6C;y@`gQ87Ev9SqTV<`9+0j>1A@n29{CmciLXw;Bmf zKUsNO2B%UD2IrIJ;C!6ysJ4OAYPAf`b#$wd;A|x;Ck~FV7|Uy)@?b4L04K{U!Sp<2 zPR|d?-onze+N|#qn=T{t0Nr#XLidxE6Gv#astWQAT!jMqHFJJmA-f98Pv~Muv$9bS z+s}NVuGCGm?Z$$;z&Ayd%1VNhmW#4M*a0Cs}#>z$af4 z@cENDK7SzlDgk`*B^jUR=!PTld4{Zt0prv%n zkpL|rD<=++Fqy^PKsOkP%l%~K z#BmW03h}N9UbdiK={0j;ULku43ry(8>QVVc(ILG|HyMe{OJwE5krDPob7X?c;8{-? z52R**L_7nj(C?3oPK>hroldtH3CvWoa^k>DS5+`U3Fd5bT-K0XgiSEZ%|=a%?6Qh( zFA|oOWMu^`8f%Vx+0t3P(2(GB*5~R@JaH?IV-iMI9AjbyES~;$r?xJhj$Ku@FH!Za zoZdiwy#n8j#)+dGBV%`R$@j}RS9KK~yL_uL0n4S=>(a}YOFzmalnZCdMUd#1ODFLQ z*aE`x9dcOQ7nQG*ev|C2z{nPE107#v8uR3==Z&N1(pI-+u5El}^j^Ac$P9NkQ&tAJ zjVq&`D>@xFcoqn~OQL@QiwzgH{y=wU;F72u>VU7HhlbkIMk(me(XB)V{TZ^d)U7?u zB$V%e9J73CHhBLVeB*TpTz1i}hcstBKzcxl?FOZ0$be2&Gn9K=BC8)vj zWX@!|!ANQ*l9dyuCM8i5hRX_bT$Yi2gzZEEP9BHj;%lkQ$x^zdNKTfJl@sSg&Mxq6 zKDgL5G`pN=M*qnVL;>gOSwqla&?JXpB(!Ajc_(G$i;?>rUOym0RId z-9}c7m{wG?o9_E z)%S@aAA(H{NC@!ppn$!nN0?Kxi0mJ1W;j-l64m1Qe7d1XMABsCZ5I(~;XG%K$VRe% z+JH#Vg82rzp-4o|B`YV6i0?xh&CW)#SbnuRBv+6vFoO zNK7szD<_UgU`-OdK>kg0O70~)2uq1_+9sS5<-+*gbW4$t+(}kW9FhZqDw3c@@jsa( z@&~eeu!sbF`y7)<6j|gsx}8Wso*^qM0MVG(;BzC+ut`IL&(J(d9@DuE;Z``qbR#Ri zYGMV<(EM`8_AZ96u!izE%QpkC_$lgWFz}r)TMX}U?D7r&0~W&7}>%K(D6k^y%_Gq(K9RKw#>DSPsyB3w+)%$ z)-YvdfZI4F<5>)M+~Ap|@Xp7)7c4eh41W*Zoq>zta;TMy;fhdu+9(D60=kvRpbwLk zUE_F%GQ=d5?|2Dx9AB64+!&#%*NJV3UCI3%4pV;QyBwqi&(whh*Yr zvU1`~cxLBZCgARU$DINhPnnbP1ld1WGRQfj)k>L<$LLlf`FND9tl&eVg5*W0(_Lvu z@XWPJw;|jLrz$eC;xH2{pcHsbkzM?Cj z9G(f*8kWNcF^O%VTAGxx+nwpHmvS}uDx{F_P9q1#eOY-qd7Nu65JG0%2}BKtJYuc5kKU; z8LTs`k!oZgVaZUgX12%(Z>vnod30Nmq?E|Y3Q{z>5#AFy2}whO_lMJT8)91lJ<;Rs zos^llDqn)z(^A=DpVeK-`X*=Yf~L^m4kWX2nn{0DWcFp6_W5#OK(F*wUH9`znlCd6 zWv`@6MbU4d*@utPoG>j5h|&|}C`p~uV`QfV2DgFIt*gdlw-Wi-RPg7r034jiepw)6%00O=o=x#dpz1J!LJWZBR zcr!K>UMDNN#_?|8RfndwZLOK1VkXyLE?U)1;=zXb=Fp^LgC^iwKoT^~Hp>OfT)NH3 z^f8;PoH#SnmCV>DVuUf!26JG}CA$clWz>7saao3)bdYITPd6Az%Q~`h;ZTgk|MK)$To9Nn$rwCgl>kxkyqjCMzdSif4nCKuSK_C!lh-IVyLO zJ%mLi;IaWyKhy*5m07uiZZDFR+sVp_v!bk9Y~Phj*`mP9bLPA}L-rDu7t^|>*=CuU zr|C8$nR$||oH#Sep2*6J>1FbN8;^}9f+7sFBm03B8ZZDFR#bo8gSyA>x;Jcx0u`2Si$()ydvX`*DnD#`? zHp|RdbeoaPbd!}6XGS@K&X-D7MMyB$nFF(x>>?~MrXy(9V40R{=msNcxr(fuI4#P$ zC0`QvUOiyW%Kc;qVOcS)TcEizDc`1>izMYfvU1|2cyAqHGg$7zPuD=UHc%JGL@%4e z@)FrcSXct?cO;FWofgZyyhyhg$;%65<-~cJrJBhF?^W_!GNp25K`hiqoScJ4A!o3>St?{!nWM9k>?v%%3Ah)Zns4kkhP7K} z=VZFwNOqQ!l@n)Yw5(IfmNp4lXV@H_A+n>e=tPut>}Jd4ROx0T$r&UoCr-}XQL;`A zd{`YUSH({P-E5A}O=NFj@mUj1r`2k^%+QT=+mQ_2KvqtiA?4V+T(3!8)}!X&JVJI6 z797*DH*2s=%fobok+eKWR!*E2)ys70*E^|N8ZL;*?(6oRqmB5zioMnPGo)UPb0)Hr-kzCo{>)iF2adr&%qQ`{Z3Q z=bFQ^p6n!SS_$}Y3u)NoHd!WS9o=LkF=vsL6DLMlvsBB)A+gxK)SQ<~$S%V2Vp_AX z2FtWuOg9)w%e%?SiPNH7FQ^Xn2;=HI%~`pF>>w;Frt1aJT$z;H>Eo_o|idkaL%~51WVRMb?jIXEJGC7Os zW+Ta2NLEgq9A)JT)15i7^6fWg#v;22%ZzE|%Ni`x(oHuQNlS*ToH#AY{SQOgQjavb zyVV?*Ysfyr;$pi0!D+F~%T;uXk-Rj>%G)q6R!%Nu?lyg^)-ENxD=@Z& zA<*%Krm;Yk6WvI9E--1f&9#o-U2_TDI%Jx=m?%KWwbr5l;VCn-A-iOZzU_c#_^8j^GrgS1tPzB*mI{<6Oe3C zJkjtB7-a~@(`46RQ-SisaB4W9g>u#NB;7(J7LSvaw@EBY;-y6spEJf{0!TzrHOo0e z2aD3MjKz4mg-9%RA}cGf(5NAK8S3;^8WKEby<3-WZiQ178Cmfz6Dyz?ez3j8@PuV> zwe3*WzTUR#D~R7teyajAW#bf+f;j6j&R2N_6vc1V<(L=6Yng=`Onp_Rtc-UX3uMni zn8z2M^3hu)-wb9O)^L>@Krp4LhX+(@?<$-oU{WvTnSo=GUPL*&J> zXD6~3mOiUk7bX-R1rUg0y{b>c2ngV>0!F5NJt(eD<=+#XY-dAlKyO^ zr@A>W-CNS}dt*}GBs&R9ia}0kwO7XFb-KMsTwWzBCytBfo*OSNMJu~$I8%``OWK^5 zxgZh6piAz9l$$X|&n&#bGBC601|xx)NmfoA7|&KgA28*V{gJs2_Zn2vxLvk_QR3s$t zCM$2NkOXu=cbY?T2iZSufW&U949V?uQ<0F|N>)xB62)-2n(rGZ=fzVn&zN)aG}%R1 zPL#(nNAGyt*2<_nNw*e>%Hw3^Z5EZl8fD`1#-pGKAQ4YhYl4c?S{aq`bZe2Q>_k>h z92L+0VsA-nm$QS#x_De_i8(7rk$r?sE6T%lh_vE1SB7OV-CQIr3(3j~STvSy`09@{ z9jqb2*PsSlxWnez0C-t5Cj0s1K0evA`FkajMB8 z)PUDI-!ezQD%AUQN#?6i7cmLts)TZ$Ir>#7&-b8}A-aVeBKOth%TPCyeHIwy!dB4n z#iya%vEz-YXC2DdO4m-l5OovXPGtVOktr)f-o}L}Pao)YhG%WYyAt&%*loJLKzC~3 zN|YRY<(v*8_@4Gk7(7h37>U7yWM!!v`~j0t=7`AGqCB?|_;|?`^Mk?!V8a#`_IdD@(mxgZh6FicJ>%F-G| z3Tv*+%51v1NLFT&l@n*ha}G;n#s2JaEi;%E=XlOFCuTj_QP|v~yoUfuOsml{H|yv| zBe^+?teiMEGx??|A2-&PK{z0s>B$d>WB5zWvAKloCoDF~uXSLs@w8c{=3=_dNNV0q zR!*E6RRz;4S1@;)<8lYtL0DXjDj2)5GAFmwjYV>DD_J>lPE@_ppj8=wyJdsY%QNP@ zJWX~KmKUR5$=hg|n-)w4O&v=JMoXkW26Znu?<$fPIF~e#?#G3 zva%Cd8Oh4lF&#T}*#Gq3Rk-57j*bl@kq@g?(=ZjQ+MgX1Z^l_-PR&tdXJPYok(^}6%87I0 zx$fLIK&lSHd3a&AZmT&c*N{Dg1x2|Oj>##kwK6GJ(XB<2(jY4*PKv7ksh(H2tn&rN;7csR5lNW?Q7Ql2tEbwX}~WnT8C8;s;- zPqK32yr?Q$xF|>LgjSlfax&RL*u-K~+1ibjIay9O7Rkv8WaY#;QPnH;5-grbebA6O zDpj(Nu&5Z-D{gybS_bL%B54^QD<@8iDyt0Tt9y< zlr6!za;cVuudG+*<%fp5da|`_CRfZ>t5&tE^+#Qn$4KAK(}119`-0)Lfr!g9-x)lG zNhr68DtG-wzcYBh%<`sx*5_;es$eZ82g_|U-yFPz?6$yo7v_SFFGP)i!G2(5yVPxU zt>s&UkD^RLEw`si~QVg&d;~WzQXdeIzoP+=`uj~(M?AJbPriMaexlN z0n{%{0lZ{R(2HbeVF?QOyu5Y>0)hf=r+9&GI})Mi$;yc%gz3V1#Lekb|Hrrs+YcmY zg9j`?QFdWH0bk_Yn{GK0pFPRSiQ|Lm!m9a_kbqX2^K&xUS6F_c?82bwau>FoZaNa6 z6UfSm1BB_qz>8uRHe^mvmFz4mK~Z*LcH3oy2I;mV5gH&XCyo#%2f-;TAqU-LPSA~H zUttM~G6zA^Wq@v=n~ntNda`oj0AX?vcyXaX&?DvqJxq2MmY^tekll6}p$F-z~N6J7tMXqctkcE zB;py7ofF-pkjDdZMw&@)0TQQ!$jXW1v=EO|zBFW2#O?Cy&52q^_8K-dy)Am894E+7 zoked15~|f?<;0;n0uNQu>aAs}{rO%ItV_(nx|r-aELiW19xUz%8LoHJ8-j%EKgi07 z!=+x9?#j4pO3n0Nt_c0#9p+HoPWBiUs&&yrRj$Y|-AZo&5~k0Sl@o{QNPMQM$-cs-rwFGo?WW5BEu@={1ZW;vIdOmx%eeAR z63d*QZnCSe{6x5n8@Q1qL$@4>&pXM=iQ|LGKd_fVD7vpP=jST2udw_?nSTPeku>P0 zBLVs#Svhfl4jsMR?y>q7R-}6lzirOYePnlG89FPv65DOP+>PBsw;qYnU1a6NF`A3O zC_j|%5s%8gXim`!WN%?9Ix|9wSmR}go~Ij+gy>naa^esnmUFH1>RGXx-tW)Gqq4n0 zBA!uMgv+_C?J`1p(rrf~G>NR7I6{bW+N$&l<v!kP_*?bwK|DcBey)9=n`j+Za1gsR;u&1t+0(Oc-oBO&_t z_6HGS38a`C5T+m(n-jE<9t7mYSP?FPK+9!(=Fu%j;&T{TIq@8X*ilrps^Z;7-RAsc z$iBk%ViE2rvYRdg^iI0zNPyl>R!$rs#Ay)Qi-BYOtIRQKkUfUQD8kbq+yOF7AEY+` z3DXD2%8A2->CDP~LT7fLIYsx7U4^A6%Fe9ZC*yM$-Et&8UnMIijt^p3Uo7`6m@feI zf;m9XlbwYHD8gYqYrBllvvk{$2>q6m12Pi%IG6$scY)=n- zYhCEd2F)oNAUh08(c0+NIa=+PQ7X{wN21h6R!$rx#Q9fnWj>cJ23%HigE>sslU;^| zDZOiO?DSHF-5ow(rvw*l}@KykHqLy zvhsF;5o}nKF?zQ-M*l%}R}vUGt(P&{Lbo1?QJt)uI7Wz_j|25$Ek9Ts7G?x)HRtH_ zWPf2fig4#+v-vVepQW3R1nJXcU z%xYJxTz;@phGjQ_qG>{k0_lzvOMABoa$$jXVMgxDQfDc7Y>*6jIr5!!{UoH#;=t!>qOpZE#C6U+%Zj_fOJB8qTpo85F7pkwH!BLO;+teiMN zh!Gl`yB3O~0dsx|WLIJNiExAlEtm1>qg#%|r-!VZI6kQSBYlMSdUJk0O7<0&pGfmh zDd6LMBXrY|0DYLOyj=ivp7f2iAD9F5Uu0h;0T47@&OqO#n~ntNTV&;_K@8$^omFz7nLJ^+XcN#B4^k=&9NQnN2teiMRhy{;oy}MS)=EOa;2fboE7@GzX z@eIZyT<~Z%Uk2#_y7@?u_9ZJP4iciAmcOXJ+MJ=&$*#htq6o|Bzz?dQO1B(|&q-wE z#PLCt)8It$b29&7&d(OIudw_?SWeqbm-A1ZZaNa63RyXEfDluP(2EV8FAV5EZ%)u> z$kqD$)Ok-MZX(=A5g@3Cl6^LRG<>m_D+Pu*5`>V**#Gdgvx2fyt7U z69*!TB@URakH$*hb-LxtwwShi*9%pFfh7 z6UQfHPhiuD`O=UjZ7ZGjn(-Lw0Fa1h3>CqiK!4+9i1wu$kA!FnSvhftLQah~{aCbm zYnf_)zE|88c)B@Ar;)ZzCY1m+)P<-~yrSt*w{;~e%+<004~AQ8_HEP|Etz`ZyJ z(=A5g(n(fM9G9^CQm%@#g>N_K<*j5NwKKm!ljZ!fmToc%UHtlU=1*jz-n8i~z?WaY%MnGu3bekk7~ZprzoIW=DQXud#JP8^z$owtNP58k84sKG1&MfuO%c>Jc9UgbrqE4B0<#BMIdNb@hS_~NaR&HQb6!p& zy9k?TA{aM8i)CC+q+5){<#@7k;<$t?8uV4HY)!hnziy69h3qCQG7&5qxUH74DbuY+ zVpAk5Cyq_X{aUUA13$3#X>)i!MRpbzo(S&O^0i$?=o56?kqCW^teiMPA(c&jAS-^! z=%?o7{Fv+`EIAQWHg=O`V17h5841ky$;ycXGgG}#nXmT3*LrK>Qso=w(EO9^CoD9l znJ-l~n=OO$54zb%aQ;SCP8^(&slGg%jTYCQ4tc|P5Opv}#50JBV5*O`Sw^OlZgU_q zTgP7<1|`^=0dvBNNCO{D<=+3$h1u{ zHy|uVec7CtFOpq^B_@Jt8)&hN%NOVtBXRj0SvhfBLIzJot18|E`WtgzeogifmX`?kZXr<*SzwAwAB^Lx78NOXQjR!$t9u+dW!9WmqV`!D0s(-e@{c1KUGhRg8mK{p%; z&+cU9#Ni3KX9V8Ad@frIxWw-yb9zoBy9%3mBDiP7({dS~&|NGBIQWlqm0$ezN|6UD@zn|8|;8J>^P z4M)OrEm=8nco1Eed_~re&FT3O*;QD2BJ8>XugLm7-Et&8-y~_o4%9)bXQ(a_^&V^)8VbO`8MCJ{b;W?jfI1--CWaY%+3CTJot1ny24~e_d zzi5um7s!6Xq7y;ZX*OF1=W}$kk>GrWteiMFA8-AHtPMpjN7osgU}Sgz&+a?ZGp9XqPs*}}E34gbQCIfY|S>gd=oQdsKzIKlaG zqVr<~`{6cnX>0TTjvx_Fg&aZ7X*OF1X9v33NO1nO{ecs*k!!HLS*VT=H)m!6-TCA5 zB{+0k$`(g1YmBW}z4c0dq%ikSV>%kUWJ|gJGW^kiHPVP+BNwz-#-)pHF%p+U$;yf6 znUMJ#xJ`B;+^;GilQl=?U1T?5JE#Z-;%=*DY~De)8i~!@$jXUh6S6ZW;P}gx=FEJE z>?15Q5$w#dn=Au!8Qo+gFz+WTCk{-=0K8)5@`IH!ERqYU<{ReNe4XqmEH)7gza5K&GP~1lMk2E-SvhfJLTa08zE3<3exf-s z$CG`8O*9eIHg=O`V2-7mj0EOrvU1|Ugbcai?g^o&DVy_BB)bU9O9Vr1Xt9h-o^CM` zmtL}R;<$w7my-C^pHGL%G69*_{ zC$a0rfX{TCY0l3XWLIHRPXs%OJuR2i~5}yAgD<=-m=v`O9 zeZ{{rr{@=BS7GUiuImcEw)kgs%aQo}gshx6K56x}1MVx>I)yJDA>VO~as9jlNW@b= zuQk7ZKx)67iT*_ncms*j|B;oq1C;o-ZDD44fjLTD+W|_v{W402((Om0G>5F5I7*{; zY5`ky-enHaJIJnTf2S6_W9Myj%aQn;Lsm{4pO78M)p~cWlFf-X5`4&aRb z-9aLr5mp3Sx>%cKWOk+7j6`N30V%URlt40pY<)8lanX=3QJA|%c0(;%K-J#O-BNhBP%Navgqd{XOC}w+-NbJ zQLA@rNLXq?jIR!lLsVhfMDu>;#{B`q#>ijzcaUvCo<|;LK_NU4<*) z2OK#ab6W5p%qi@w_>;m!)gN39l8p(=%cUW!Qq7l3)sgp)*w1vnHgz}obqjn~8mIJ> zbJcl0*;+P}D`u-zOZZK;Qppa_%MT5AdH+rq`@g$#9^-r`82j&XAv~}Z{yTL!=3m&l zgGng8KS$|)4ew7&1xK>L!m>|>Ie^`sVQtQIXLFk@X-EC9$sux`#*ZccitMz&C>OpD zI=%okj+Q65rI>aFwo*=hzo1)*OnyHjD@)1mCrqM!XzXl50q=`YSdH7sxE9|LB%-Lr zWf%@c!Qiw@4*w2xyO81k*Y+3wU0F^Dx*6qga{?C7Jso)BTqd9kOF)S=O@^S0ZW

C{%B6b@5zqA5^*Gn2;N3HNBoX%BNB`MCMze7#rVL%!<4bcgNHpp zBA&s+Tnq`SvBU0kvyj2xm8_h2@F#$m0{ey&&EtPO*&WzSkVeK|)h!%Lw+xBE(PZVs z5tw8nz_X>$Bb3cKD3X1GkRhTRoP*f!1hgE-%jQ@5W>cZCX?4i$1dNrXu!Pnt-9RsdF#(J3FW-C za&A&*)gXM{dQxVYJ)gfmU+WJD%g@MRabFQWVf_=bw*n(u_$KK1BGXU~Mx8izNiB12 z<0}vk(QQNKmLD=@Wq{kbFtNYr2AIR|&SmlggGJvP_>@`$&wGA*~zjYZOOGg&!tT7vV)A~BCVWzNVGWanTR(aIx>0`kaXbQ6(e zJW5thoQ&W+vPhjrb{=nBvyKIccxqOyJmPJvoJYpcjYZPZK~~-dY3Z>BYyF$^RV!nc z|59agggGsX$Zo=B6f!MhV`W>n&0>+IKSVEnA_q0=HWGUTFBqK}6%84^FTVjNL1Uu7jWqUH&TFole z;Gm$8OU^Tgr9^fW7M2xMSb`cXQ?rR~Fp`>nvU1|o%#*08!WYM^o=gvXi5EUU)>F^b zl=OVkoSu)9U52G6;G$6H5Tj}k9M*7|qU-2}BPrTSR#s4?v6GB%Msv2UXh`tQXbxA=Dtu>I5Z&h1Xj37&mo-m4UjFc0%0x-$d!!pUJ)&hrL_+0#NP;PdG= zA_JZ#D@(oETwMv?k2u&F^&=hTRye86$co?UCRlfa_qpxu&30Y^mxrWk!-M`F?PBmH zZHH-ak9Ni=JsPa<)!;j*Rz<#~r1eM6-6hOKUlI-I-QKN>0Po%YgGtcyU-Z4(KK|Re z?Le)AIQci@e})_=_wD7ozWsK~!9FLqbT*`6FgUc<|9#BMOIE6 zrMaVJr(Cv_v6GX4(RJ=;RBh2AhM0OQ64@CqIYqt!~e7fC8c+zC$#Nk;o zT9?)f-x09)DrKtm!NGE+X75I^UrKRiAZHHLMzZ^`KxLxIMoM4EkZqv11qs=?WaY#m zI}Qz5y)+7DSDRyY1=)dE%(4+kR!$tWQR}FDKv(!pbENJiy9$d` zL|q|kw+zqSbi0x8+(}kW9G-cjWvP5M(_JnX1IKlLGKc67WS3zf3jIbhehSLhei^3c z==LLFdWNi=I8381w16|irl9uO&3JIP7f8f2xQl3^MRb9T)MR=SkVs7=D<_WBd_;co zOt}biqFJPwd?T1syK5~n3(<-~Csb=?lUnJ)#;VxDIXQ;F;` zEKCut+j*NWqqK=`J`$yVvU1`mVJfG(iltAQv-EMY%djj(S2^+a%P?I>w;u`9Rt&E0pj(dw>3*_u;vfkh?dFRrfm`HW zGiT=&vX8Lr1RTDkY>{&sEaUPr-C!gxFOiiK$3?mMgzsNsM;672?^zR#M`|-bBA$_& z;pP*u=`upo>82wQno3qq9HE0%T^IMGv<2>Lb9~m2J%!CXrb0 zMOa>zoAJWhE5mX#-CiUtH<6XMU08xPhdf~p%VT60wFwr*rjSSJ_99_!)9Gdy`ARv!28m_tf+AViW zX}aA=c;=Fo6VEitK{q%tYZW*3u=yoIFd77-8I6Sjd zvp1dvJ^`J*CK->kCWAygBdwKYb2y$>%iv6;Ta5%~0$EuBj>bJw{6Z|}Mj8zXehRDy+SP#3+a8z2p$NFD<_Z>pf(T1xC400v%s;8Ufb;dY0;0 zW5k_zP77Td`Mr-9&}~F!y)C!SlxEvC+^*Lu5zoU+lJk_}`Z zVS6I&0;bhknU!!pH4SJcV()+d|hyK5qXZ-9}{Adw?k`gPq*C-EoCyEbAS& zzXnz}M`D_#^ec3i1{Ozh*h9O$kg$8&Dgp2^-C867FOij{Ztq1Vq09@BkK2VE9!*l* z;Vb({SgAaa&lZJZY1SUb)XV^hC{40rE+CJ$~^Be zr{@B)zp(V25jM|^rKi<$nW162?kZWp(oUxS0Qk=x66G^l$GzLbd!

eaHmp_%Q8%JcqTWm!M%0P4aH6-FOGBcjq%|Vi!FY{{9%OzIKvmxDj2KB` zF^N$`_mUP(^e|~LM86R=A$o(MO^Mzjtr<}Svu;lG6GK}N&0%OPQ5 zt*QvGu$`@mK4FqJL~k=Vp2$U7TcY+v?T9+FP3?)MG3yRQA2LNpqJgA!BD#*W&O{!j zNFZuQS|X99>cn^{MBNy# z7tt4t*PCbnX?=*ECao_~)p`>95q?i%Dp52uOe5;c4AY5PGc7P0q9USx%%zxUCs7H}i$tZ(X#f4i49iID zLo}CYDTB+2_K{XW^bcv3M16_o5$$9l^ND_AFDxKRBlj#MYQeONi2N9DG0{gvHxT{G zT&k83?j~_5(G(_GMl_d5P0x-*%SmfSw1Q|F6W>VWWN|BriWqtm(Lth{i9TSwTZq0R z?N*`=M5~C-D*xYYghNQICOXB+tR`y8#A}E?CR$7MH_aXr}iNiJM9MhY^Kn32Ao_EhD;WwQp5S?$A}cK5zet`nsety|h|aJ5A+z z|KwvT?1K7AX!4!tZ~T^FY5+PtNrn%Guhr zs;?v!wZ)&hXPT=_&t`qE!j7mfx$SfHCF<*qFdcT6`U*}yt-`pmSM54*@Ei3tSe5YD zDjl{QB~(?rZkeY$BTpxM|6>)kz4{ve^-=Y8RDC@-`$P4`t-os5&^fwij;pW+r;n?! zQL2dXH-4nP-cgM>ds%bB85OgvNcY9p{Hk*GcwM)b)3VyNxBEqvkPKbz8kOcaK(?eH ztacsj`>P70XsdR8G5@mqqG+skO%M4?eQ{P+yUxe_uD&?It6ev=zNEg+s&wYLU(^?; zLba>vp2dbLf|9e^^~RomR3N80Dl`61^~Gsj?fP%~AL@&)0^JBs`f69rhySWvIJ2u=r>efx*>JK}yON*KQ7I|#b%U-9B}lca z$>)Eogq+NnY8P}&%8zQ-kURcUVU!`&uE+g#o~=}#Tb!n9AO%RZYje9RDkg-PM4+9ZU0ZVp8BcU zb?ayPiyFAvb+)~~Dvw&Y+BN)L|0?xKRb1`rRU4?jsE(^$yZ_K%)SK0=e>;V%FzU`~ z*Wtd6)ED(#_Eg8yV`a1u}Jkr{ax*HoY7y@;b{GD(K;6uv&3q4U;^2T%Dmc@ zwmMb?QlVG7!q&v8FDmtF*ZpVp7ZrQ8tG0V96-MP=?K+mDzwT1G$b;<-ySulC|2xpEXuzIUrUWPmPkYbpiKPTk)H3vO0oJc}sf6Z8~negsr#QA%LQn0gk(@ z*0Sm*T<2@E8pofP+++nJl%n`r*-gwdfT1*P>JOlV0CvKh{_gF6w}5MW;5n7M*(GTJ+HWBR*Bd z{}yWx)rJ3~p41=LDu9}#j_wVGy}lFe z)=(u~D*=_$wdhn+*P>HlU5ifDbuBuT80r7N3Q?b3Gk~h?S~*e4U5id_cg>8b_^ug1 z9eB+Es>5p)LB)8@1k{n&44}HK%js%npysR#xN1PDL;rtts|M>GN!((!bsUz2EjY!! zdW#h-)3;bn%^GjM+`R=-h(Z=AaRU4B-T2>nL3iUnW~FVl5+wR=tF? zTL#-A*A}q0Bvt395Jihgb@mKjTJWhOU-;5uO`WA;nBoAhmQm{57l>K}sS{K9(gMaC zN`n`lT7G!7v{0waK-99pp7~xq#c?1@CD2n>9brREJulU%Gkob;r%s;XOV25FFbrRM z!l=Vx_*zcyHhwkttJ7%s(wwbMbm2?0tvVQoFU^wbEEv8tzo{h@zG$T3ht?T>XqMrJ z_85L>h~bA87=CDa;RiNX6@O`L;fGcherR6dhjtZyXi(vYmK1(yLg9zD6Mkqk;fKZ& zerP4(hvpG}Xcys!1`&Q}3E_t(5PoR;;D<&}5B$>F!4J(G{LsF^4-Fgq(4xT)O&R>q zhQSYb=Z$-<6^eJ3YTm&Q)ir*oobf{~j2|jp{E&C>LtTm=@(zBeBk@Dt!4EYc!*l}j z4!)?)@I&6g549D3$UFE^yn|oz&i_Z+dxuAHJ8|Q=<#t!+UU0)0Y^rH4bW>cgF~t~6 zFQJ*v(R&MEAb}j!gd!jbB_yGR76=D~&_WA@o#>&-1%K zZnUG(Xe5nBBWYKnNST5L7Ce#e0MMubK)M4!x&uJE13*?DfOH3dOgI4P4geWw0MZ=* zGQR+%I{;)_0fg=VlI{SIodh7=0U#R)K)M4!1`dF92Y`$h0O<|@`S}2(I{>6R0Hiwr zq&onlI{>6R0HiwrLU#a3cK}Ft07!QLNOu58cK}Ft07!QLNOu58cK}Ft07!QLNOu58 zcK}Ft07!QLNOu58cL0R$0Fv$iknRAG?f{VP0FdqgknRAG?f^h{Mty0ng^%8wZ^fq= zYu1~i`28<&2*z(ba5WH96Vy=Na}}<`{bxHqtU0+E7xS%|u7>b)tIW;$<@2~)qxNdV zezX^{Cn~B%`BpsA@$tE9ko@@HuFcU@zS=PM9aO5n)O zRTwIcdW(ql^h;Fi1%xWx5y3Llb5P&-Aq_eQ}()ZWIca9pPVp_Im% zK2-iZU$r>DOC+zPG;!M@bjwXZT$jarZ?qb!%#G%A*Wd$e9B4rj&fbF08J9|&f;>b? zJ8r}g4ih#b7}wUI#48DLS~A%bq%xfGfl3VB3M`k{9bc&Bcpf2^NW`EW81QZbL5KSb`RZ%} zyXN13BvTgEe;e}JO^7_1dBrKvmrC1!=q{O*U5)D!7ZIYIL`1Kn+X(GIT$YG397zTO zq2OeHkxj*3YAJq&NUll}?+`VBr*8)$TjsmzYv|mEe9~6v+!2|x-wvF9@~fo3-WUy? zydKp$eFqZVlGx+J)d>EQ5I@Q!zqG~8e?4~M`~0XPvMoEe(2DbCJ3;bRk`(pP0(tLm zfmkn@WbHSHDR*Lc+8Gsx^nQmkByuEW@9LVL^3*-zCmAtepSiH95KsIbvfh^B-)X27 zgSHWhk3E7qowExkibP37&BH+4+oVOAa7_s%x-WBnbp+qF;!80?6_uDP zM7`c+j>J_Xg6gD1MQvBZq3i;MPrJw{R62-W+E1cz|0SvM?7!7e(`bppc~GRI$9I}5 zm_CrG!h{Ou@q@HD(*i!_fVl)$cHz9KkMIrWE;W&N-DlQKFJ-z-A7~|Tf0M{?jzoEV zs}(odB`V3NghMFL0fC~g+C;5 z#5?Z{>z3O`of*t0HLw&``_#66T7nNAq*Yb!x=VE#hxoyQ?7oX$sFvi+)?;~qF? z<{}{$O6rK?NNJMck;jpLYnk%u20esdI}XAM5|Oe60wtUP;-NI`gH9lyCz5UHJ$hmO zGes_ute)-D19|C_<|N@2S-Td;qO$nTVHkzTH?rnYNPMs{i$dffS(i|VoFwZi3Xz{= z-AW;Hm8|&RA#$y(b16jLm31kF z$ibRuT}MH3vaH)FM1Gd_Ace@)vYw$3d0WvEC<=*9hw>C6-_2TsLgc<#GbkkXOqx?jYOzM<%YNpxEuOQ%G#H9H5ZcdO1xYa`3EIDMUV=^)7|T&9f>c@kgGXHG)Fq z>{-iDi2OZk6$+8ZXHBJ$*wo3Ukl6C+K%p@4y-aTkid~}N6e17MI*CH$1X^cPNNhoV zOd(qQw63O**n<3qLShSYKZV3T;YkWDB(W}2NbD2dp%ATcTAxx#>`xXd_0BsDN}VpOl8vQ~#WK5&z<2wJoom%>r=Llj@`V zQHt+V)SAj~rTFQ`INZYPoH>ZE`2_9*Xaae_YSml0S&C1(WNxNhE5#Ep;#2tbrTC*- zY67>MH&0+erQdmHL^tbiJSJ1kCSN&>pSp_U|Dr#Fhm6~w5_#D~_$#L`nJe?XPt3Yf z0={W^wJX1x2ru{SMe_uuMrl5>GQ5LF*UdTn)FqhI6hUtx-hCpiNP+xn;!rx`q6C%Z z&DN+bU5>bEy3BHXD>X&l%G6|r8flv5mg)O2#^<$eT%D;#DC zF3p$CRO4|j3`t@7oYE#KD@yaz@2NR_-7Gbl*Sc<=NOZXmVZ<-Dg~Qx$Hf9C|*UdAW zgq`Q8rA#^xyo*K+uKyP z&H457aGo-WcO1{DiJTLDF}KHAMG3zmv(z$Fz+7JDf;o`C{~IK2U50PJ02!+NZk~Z7 zp7#BY$x3!3)yp)3m%a^=5&v5wwKyIx-Zpaw#e>GGAGcn{Iey>EQtUNK0rKft@CG8U z;LxJ)%J8|J)EqiWl@y{=84}xB3dlmGQ0j{4L~5{00a{BjH!>;w#sfzI;w!1W;5do` zyh1*e)b}uIB0dRIq0@hXYh)1;8^O9_@=Fo!C`%JRfGxEkl5!kpVFL&CGjlE(vEyaJuTrDSt1NZu|n(i_dtDwZohj zII8E88@pdT*`c1CEr`NWwVB=(B#v71<)>SskJJ2BiNygQ@q=JxoL42&NpJVgXNTqJ9v?#TJBn7GgBI;)-jW<6rUkz6V8_5T_ zk~_*%La`djd%KdmOJ5{bHhP$dPIQPrLyGUW83*5OG{i?2s*4kH)S}8)ApRAitT76) zy@492oI$}NM8QNEcE|F@4b?Krk4FAK82KME#7FlEQ{EbqzcM68BJ{J0%5x*p(|;vG zkBh`PS9=vTNhyb8L#VQl2AwTIDN|0?Q%PLIPW6P0+zSd>shN~715~28%c3kNRi9;eFKv#D&@W*!{u^3cbi%rgkm(hZDfDTEhA)qSZ05~4U6ng z%eJR=6D1y(VN>B(y{isH#ZU59<9J>vjC18M+3Tpj&ojN%iAplAVkE2GzY~n!GjDYU zOs^n4wa#pIm=~lF{RBpxxKNZs+X7{dQIE_K%3LEyRCgV^6VRU@0-87VQ$OM39%I(+ z<*&}=8)u@^SNsbRd;QhjWHs{w)S(W3C8Ws`YdgIH)%qlU9eMp9ZUpqEI*jCngTS%d z&zSL@3QEQmsUi$3(g$e=HS`)|?bO zj`g9s?-~O3%Qi8UpU;N+Z{@j>s^K4O#$<;^vN=uFAmw5OIaHq~0t^RaX%AK4dFx;# zYc^8@aVwOF$frTzwB#Zz?FnQ=7NsCe)p?~H^ku!GWM$@Q#obs%d%-)o1Om*!M1)}V z=08}K_g206PtDap{y~&F5er`NMbsERwFMAq#nc%JvV<}?Z79kibYp{H<*4Ws*$-Un zZNC>sZ7-;b>L}QT+gMf?MKjKeMl*t>49|{1rS4vgW-M9^OMa#jQZe?Ga8+-Cr#w%4%mhFkL8Ug;QyoN777Eb{T@~peQK_ z4)qPJ0IRW0qEZ{9I|~6eiR2Ce<{1Ly3#>zcLp=Ae)|8*xj86R0s0nzPJxtF88RgAz z{GD(uC$@%FE5@5wMaBWQaP(#*3PZ-+D~@bu1ploq)>Fdcr1c7kBa5Cy1vVT^FCGs9 z{v;8`2T2@WW^w*mWhhsWK?n!aj~{D-n@0=UsXkbLa^*L|m7l}k#0kOek?Bw)(?K#* zUQkPQdPq-SpvN>YoW!-+X5{h&w z19PD2@v=>-#PfZHpqk)z(d_KU!SO;hl>mu$sKzVVNw9W}yB@I3C7SejGMaRHJl8*0EAUAvXw8p2vj8<|zcSP_i|exBv>J{ZnOp@wb<-Ro?i|LA z!d^Ub3>>P9M!x6crSUvF2A;?}3DO07ZIt|8JnuIap2!QMy#I*oYASyto|JI-I7}C7 zWI$L@2EB)#emeug%IG0V2g%Na+f^H?#I8njA8IqO zF$CO%bR_?i{xId1EE%0ZQ-;+8U`=;sxzQ{is75QHiTrdB8XDj+)HH#o4N|Kq0f|x# zd=sU!1-9-5fDlvwQ@#|;eXKXjv6*%wl-6KMBOFZnV5J3EkyFzQ2ZvQtr}E?+2-hQ# zZ&(b^qH}dv^m{oFuD{69SyiAGRnv>JpnzLpQE7>x4d< z0FKm>Un+1xMPkpSVusbS5Sm#q6iK^!Ce1QqiQmX~o+LB!y<=8IHgP|hA5@8 z=7VuHE448O9+byX@dIU7r;Q`!=gK^0h`N!^M0b|>B$YUX+@pcYGb8IKGHcf!_*k;z_~9mce3lASz=hYFkCxzRW88L<}SuyDQTMT(Nxn&AfZ=@fyV8iFn*G~^t7!}qXARcjOMtA91w?|t~BQEtgE zZNf-lkvLJm8ifrNlMHhBgUy(t)iD?(c`}&)wOY$m-Hib>#+?BQ?d-}Zj;I6peQtFC zb3zM0v@ffSt0pZqraIl=NC{4~)PohVA!A^{eCn#<%2Gp;kKH7hUX5ec5X!%;3wyRm zMr=xfNpT8;3oTDkZEQ?diz&wp7Dqf;G)+;fm<~#usEz&qo4#`@OwKbS{S(jhFex=) zO^~Ot2KLaEUiqjRmEKtyBgA7(obpQ|I+PU?T3QjHJ!z#zby*oOD!6QAT%kbz%M|DV z&fc7C7VGx4^gNN)nya6<%yHj3?;L=Ff0pgY7~3{pyGM-4RZ`_tWtVX5qSI* zcIYU$iS~i72dqP+JZa`=S6o?ah=f(bI^2Jr63E}H1Q&aun@ICOQVC9I{`>HOb{Qh= zkRq+d5zFKQ)cXMC*ybkF7B`tTdB_BILZ*BVnYzn9O&jydOG75OU|lc?a8wS1R*FgM zkH6wAg<>`2fE!uEm;lt^-ENu7E8#T^-yfUOK|k z$)SC0nMAA~2H!@LjW&{ua3v9ohes%KsFBwoXF_*Ot|!PGfX z&)b5DdQBa5ycO)om~O5i%Uht+B;63?d=2Sf)R6P@#SF9VpA0!p3pwCr7=;$|^4S)e zm)DeZ{mi_ydL-9(usMVSu9)bKTzU_;=0Bh_A6jL9{*Sm!+WH?GUbS*&{F z@+D_Qn05*V*zZ{Wu{xTsUW8?c$$Zf#YF+;BVysY2=eeJ{MyUbfN%lRf5Zckp>PRa{ zuZ<}2NwSm+dZ`1j8Wyv{QMPhPvb$qpLFFNzDM7sNYaF!RB1tw^Ga@yHhU6qEbh|!q z<(kNdd~)j=Nq(aHXNs_+`-3~xKXwo(M~7fnW%bkRE6Q9$Ff0{y#B!uduo+3R(%XkZ z_qH11Y$gIjoaISE0fYMX9oTD-SOPV63^qt2A=*00Q4C(Ikrg!vlrmhoVQ{?a$x*Bm zeGv}jy5z>?m;c}*)`^xzU|DGDO1S%wCZPyk_^A9jJbmPZVms|JiXv*^L&3&T3)#{x z(>pu-<`-DZ5!(`jmogvzZ5K>v7Jms@#RlK7u2@&-v@9{2D06c>m-ymz@ zFa5Jd?VxD2rLiegTWaF{wQ3Ml6jWF#uPtqBcx`IyvPzlS(zcdF8ggc%1$0(4SWrbP z??|+xrhk?C=6wALulTrR5JO?=W$c2|a+A`>kfx_04HBumY7816_-i!t*xED#!oU6+ z%{`*81`lGa3yhaDDuri_!y|$IkckWP2!grXv8@3@}r>f)jC4`fdhIRO( zt7xUX@tT?Uc~^^27P(S{^7z)8FW!A}CR0AD!<)ZQoAO~DwNlD<7ikcG&`~RkyXBpv zrmtlV8|(0WmtfwGbka&Hm)uj->#UVA{ou9G;ehc-l+?oMavsnx)iqo8}=NhieptEX08S?^9f zycd|RmBgz&iCgv75|vZ##Fu+(38v$c_^6Y3$W?6aPv42L84Y&h4Y~~)T4YzHuNJSo zlk8SIJNjysaXq|{?SQqnaq64%tN?&*C#RIf*yykH%zaeV~pJ@53uGk?iC&lMK??ksC9A-gL za_sBWLW@>bB=gfJv~<3|h1Nh>Dzj5QPL@hKuO)iGKADfQDVe8E(_)m}hD_f|nYJg( zdfDGf!}V+)w1tKGD>sY;SDgt=HZ3Kf`|v^8P3C_vf71N%^D&{sB@<`h`^a1h^LN{z zvdk%>vJ|`wvF`-h0C~BW4PuI>StK$@bQJHc?Dg~-rjn8(i#OBzISMCpL^r}SW@GhWmfq?Pxz_M}X|q`zJ%_Suy+Z)M^@Jaw8M zYyFn6-_hS5`rAi;-_zeg`a4X2KhWPX`a4d4C-K+QIvD?r-{NN-g3wH#7Crmt4)56` zy6vE${pMST0cW!g$Nz`c5h6Si|5J{^lE>lyrw=#!jPuTLG^ezg3Q z7CSF;tgnTxYD1%K@T?jXQB=)r&#K9h4IpD9w``q$9PDgk&U z5|&4Ko5C;F(CC%%6~DpmcoC?~yY5wWMNcK2OXf#vYGFzh7k!x|tpb)Z1%0Lep|8tv zX-o;Fjf;LjEv=fVrKHdK5Bk=%!GDa4eoJkwylJGQANC*g`E|5N_-1kBdGj8J1+1q~GyB^c|I(F4Ff?K#F^6scJ5Jk_v;;H&v^wsAAh>^UYfKS70YQ2l{*Hz-_xXuzA2{_QGDe6#Z9GB&WH&EnRJTzg$^gPZoW4pytKz zH8*?lu8qKWt-*K|-mfO-CA=|wisMG^yXx`LjkSu(QG@8Pk^2Ea@>|+wLDT{l@s2ET zyl)Wy`7h!nO)!cCr_1UE=f9e0rImnmS-rmLvU(kyk7aA2N_7`;Y*VeAQpF%n_!qIc z8923f5f5&r)l}LT#4Z0t{B90Z_B|Kz?i{G>7=w7Ei2RjFKTrqEJIdq;S5>14$d_$ zU}jv`Mf}+X5Z5w@Yy69N#znP?($z(*UQ#oaP6lxY58~F!6c=5m%W4HB&!8LcL06a8 zz5=FSx`@BI0;Ves;^mUqbd2YkwaSh*z>5ZEEs6j08Y%y(%R6$saz~#R& zr7M@fbD@@muONgr)3*-F8zZ0l8GP*5@D*Mf`8+d(dICrlPA~f7e&2omT6!TXh<9y) z`&f*h4g^0er3Y%p5C!_QQ84lJ);}_G(!boQ#lkxl^l-i0>A^plTff6Pd~X+hwQU&E zdPsV_i}x@3x}3f!`r7eku&xA;uuFBkpbZ!u04Nc#Jp^rAlLQw=3FQ|ct@bMG!V`oTOc z1o8(EaMh=v7fx%Ei#~9-Rs}1Mg1(B29$y5+c)RohYZQ2r&cn~5Wt|=LzTAC%eFT<& zNG55?P}4xcPwAKWpB`I?^w{z;;U4vZdjvubqb;r!ZJts>8=Yw=Ub?fOs@)ZyYoOtR~^tedLK;g8~VP}(h{&wY4} z2rYwm{SEK#blj&_<7*?dRNnf9+L%Y~S7Vh6Mr|I+q{ZeVE!}6las* zN8PyjbiC?JA1Ntq8^~^a?3&t4X=U(f-hfY9q+!SOI+n~v8JYEJz+Yd-Hp*~=Xo!*7 zKtSrpKi|OH0ZUxORc@-~6>bpEcM*$DOrOgr-?@nU|B7ncX%O38#O}p_RARJkD#)Db zc2YKrusKhR()b?1Xj`<3<}2^oTDn~g=6hynOnGc%@vs3+SQ_)xK;6vS@4&)rNJAc@ zXc?x4a!wY6N6ab}|Aw+keZ;eK%7XMlmV2JEl$Rqveb}XBHRL%w4&Y>-1p zXDYAgULyu}AKrJ+z+vu5|3}EtQ?ypf9z)1oMgzRx&_kzDJ)!}62r_58plSs=L!upB zH%jUVeO;%NZzS90&fn;1xFIe9W{lRKlv0i4=ym6y9*sq2;g2RY;;D!93M{pbnEN+y zkz)u#(j<&LX&D%m9z4a$#sF8U%zyCCzSWJqw+DIDGc`uZcaeYa47 zHPD6wo}-U!aizKZ95a-g;RTCP+K2^V? zl^z*Om-ygO>C{-Z((!NA7TDCLER?p5sezjDwY${9%6LPJ{*Af%9SS*CiZM!xF}$%f zO4q+r{gmY{(rUZ$w#28BbcrXaWe-Tdcae7915#|DP~pCFlDZot$RkS8iin)0C`_ej z%mXgq_4uy%LNoYHW8)J^>nHdC$@P6CRt%9YZsA@nly|*{)ss_g@ez2T!EisGiENc8 zsDyhc@S4F|h*By`)_ZUkSBGG#ACo05RIx1DuI$E-4Z%FBfglp!#F{OiQg)Hn3=j^5 zlZJ$1hxxss=;vty8OH}4g$5*NNh4QVuyl4Na2AahnI%_b3)*2t_UtfZGu|aj)#0#9 zV+~nG;UhLqh?kFqxA>hwywgRDfun`; ztBda9DAdArgYJrpF848*ZX1nhkA{;+XjX}m`;WoOZXw>ht}@5r!N{eUFy?TS)3 z$}I+~PGd1xRdexbej55#*^O7c8!uEA1jtd^x#&$t_2Lc-(%LOq3(sWkBB14kYCZN) zt(UTckjJUyH<2AAY^v4>mcv;vWqK3Y27gY)Tz-=w#j+-1STn765yD3miKqtfh0^BM zT5_N{yGf%KF57(8Beh(7gf(&I1#9vz7O6bdhHRhyDB| z1n`nX)*SUzMRtWjw}A1W6=I?$hOx*wv|%0<({(n$mMDAT{k|v>x#+~zU%aPnm2z~9T%)-oPpJe z;b}cluwqT6nLU35RhdEL8A=u4PQ!_+|AQ7nLmuc%$viO^e$MH64(2TyJ07+#)u3@^$QEt(@066C)8Z9|Kfmvc)5j<=Dx#R(*?FB8}EOf1$8lTPBLqkc~EPfx0e zm=21(@GX*iUheG%NgX9~jvV-M-jS&oIPf+fNj%?;3o3%f47eE%O7|gSr%Yh?OyHg^ zno?vtR@Sq_W?m-Uch?s>d?EN*jzeF3@IkSgJA$`M$GY5+YV=Ym)&4_lHr&H^8d#E< zfVS~%&d1%yOM{U-W&&cvn@a^rexQcZD$E2ejt=B7GsF47MiQaK`~ykFH#T=4sDY;1 zGNS)cywOpU!m{;D)kIhn0lo`vu7BUrt|85(#jahT`kO{MrI}lRedOVkDhYPn$w&dY zdmA`}H`+ju&-WxZ+Q32S*#;tk-Ic%;B1Cg68K9Pg^|>cn$7*RFUn_?i z6O@%bDK|e=lY?6I={vBy+dS=EXUetTBV{|8vbASQG4xD50H0@qlN{q{ylI>yAMHsl z+^qu#;cl&vP99k*i9hxvCara}?L$}FVvwVTb5z@Va=Jz9+*+zA8K^ro${+;ZsbOjCXhI>5U! zO*{8A+`Lu`HcfI8c3umUG(i%M^B_!Krv;ckcM>jG2aYQw;ZhI6L0`eqKI|ks_!SiX zfF#`KL5La&H~r}(L@m_7kximpc)7`~0)F2BJ@akj(8~H7p=Vxgq@L+*q!%{3rN`s~ zy-IY=fkJs5T@%Zl$*5Mg`=%OveuwVIsK|9%#_ICzVT<4hj~Hd|*v6ymkY9KSbp)An;u1`SFUj+E;ovbkElJVZI*n5uOqp}H zL80CuU<^aAJ=4FCc8$(eQYsrseZ$~m z8~a9W`HgU`jWWVTIw3-Mvx}oOOS$OR7Drc(;eiK1UyOiJ^Qam*I7egWwSkNNakN$wGc`e<_8;_DVo+YI zi+=fGoa)r11bTRHnW%?nBC+ojToURy%av$!N$fjKm-N#-=^<1y?_3J)yU9hrs}zQ- z^^$(=|IpXvOG<GI=e^ZMn71|ps3+<);mj7K1R+_e#jas)ofB$zJ+K^=s zHEeIJDzulLM(5kAzcR!{y!AFViU%6R{anPNIj8@D_00J$;@|$jyQgyv;@K`@;c4x? zgBO(TF5-wkA;wmNc(aSxy$)jA%bs6akU4ukPWYf#^Xa%V<)Kjt*sVxb?iuXvpfvyS zf|apd_olu3c3lEb^tY7d%Y!WzzI3KG*!jj)a0ifu&|et-{=H{6GpNzXG10lhqI07& zhvp9GIqLuIeJa=MR7Jp)UZ*OK*Qx5q_Zc*xXZ+9+0|)lxvu2?r8kUZ6FrLFpM}dS1 z{N1x6a-{vIW8N@=o;sm5<+aYBi&Yb;YbupH{AWEFFPb%=vh_;gZ_a3Ax;l0$I})-p z{dL9P|CHLRUT*h(y@w7OF|fz~!`ox7(st+P&uW=UGtXi{K2fZAiFOQYlie&komhwQ z9A(SkY5)e72}aq*bn+A}S_XQ$21fM2mL9rv?V-Bgn2K7%_l`Dg7d9eTI*npU0% zyw%P2&F5g82^Da|f%5%D%ND3dS1|XBZ^gXr3odAN1uAg49?Bzc;j}!FTDhd<3p{RfB+<9slcfBq zX?##2X0f09!%Y@@g+H~gM7j%iwH|_9+ER#E<_1J8cmV(WQ!}&h@uhWd`?UK=h??k{ zrH9!sKhXLKav=~Xz3meUv>5^=K9zs^w-#ov`50D^YA10UWE}UG)}5a0*ZU2`>Z(2Zr$S&rs#37QWV^>=T}8W|ML%f;(ys{i})DoBK27W#9f>OB9j0 zS&$hbxgrbmZ!1COsxM)-u@EPC;~>Hi{=+Nq?y>DPCTYM&nDlsii#J*p9_&lsYGV!L zHr>K1vz}+7_*~pPYd@*# zoe3MK>mvmA!Y4*5`x&OAust}UuvE~IY4)aGdNvV%;;ql6n4D0=44P-r`Q>?7o4n$U zVvP6IYY0ZD1ta_9`4(os>!&xRw6y~CX_OXX#Mui1_4b5p9IQ_giNv>#Z@c|KeyXs&^8cO6yVl z9=F8vD#i5sIP+0dJI;J;Xv(72p5OnHMhsR4)YS#BKAhn`YID%$P|4J2SPSM zn7W&NbqU?aqy{5*mJ}63Pd@uWIY1d2}cXNi73E*m)dRSHPv&PoQw{8p;_56^q5~an&#s{_A@r>2K<`?P_6toy`wC9A z^ywn-x;6wPmQ*M^()OnmsY@lJ!u+dV%$M65LXoffCkFWVP|UzVlUBXn0>(q~6QbrES{TX44VdR?=>*Hrg1 zVdFrk2#y6U#veD+s{?$P`}Nmb2t2Gzlzrj=y$|t2XK?42 zHJBB(#}CpQ307kVQ|ALK1j_S*!7Rj{J``mj6v=Ie+=YdD&=eD=vKHeBBT$1hJ*sIXvuC64*pTTUQTypRm8U{i#5j0gJKM7^01 z3dYP1E~7Cr{Han~<>J3eMz(QU~(gBVfx~*6O-Jfkb1^zl7NPTWtDr(_McJ3l z*LVGkSKVspHcJ*tiMilayBZ1+x=3FrIKWTA$mUjvg`eUTqUh?7R%F%UWBmg`h!L-s z2%yqWhyawT4+WeRIEOL1r6xR6u!tss;5R-DFap zgxT>qY!MT7W?Mtn*?*l;;1Tc$k zD+14tpwNWDj)5)$UdO1gOQ>51+spq*g(cSES_ofpTz^Eg^G{IGfL(M_&vSSLO8XQZ ze@ZV#_-3c{{Qts-p4PYj7hXN1|M*{cc2?i|A9(v;XGs9Zw=-@TSNvID;J`~4Wphdq z9(Nwz(~F<=9{-mpe(wJg^|LrBI;)U4COS(IXGCY2#R1U(bUHMUbTl-c=v-(}(xK3J zq7$JJN5??}&{@y`bPzNE-JbzKCqM(x@y|#=XFubK4t@rpQ=b9E{TYCC;4^3nWC}X! z8Av+k8GsIXMjV~+3_!;_14&0a1JJq7K+>Vkc%l=X0q8hq06NPVfDUp7pi`VdNk=#X z(D}_kiu*GF>F8!)>HZ7=I7?aW*qZ z=wRk7lQ@+bfR1F&@)O4~XQ|>W<}6(t#GJ*f;{J>*Z*c}QNa+A(q^HxD0qE#u@TPN@ z@kEC%BL$tfj3+v7Im=6&wTve^XBiDchb#lo3CqZdj#ow;ovoZ@5eF-0Y2s9606J0` zade*Y#H_;NG-afqqm&^9oudqa>HZ8L=>TOag^Z)4lkr67CTE3-Lz9sqotTU#IxZP; zbXGEoLA*Aso5=X#>A z^juH$xt{BZzT0y>9Zs3({z#wlxgzPCKGzd{+~<0tul!t3RJZg*b)7FN+4V%V?Rxrd zw0xp#0Q0STMvI${V$m4%c+w;Cw8zs~kEfd+Pq#dt{_=Qw;_>v4$J28>^ _Afmm zy~emp8sYI&*5j#~$5VBWry9;D`}nK+b5mfE2%(O#GqquT2lnpYb3PyRhyJnhTPWXf zM^96VM)1Rr^;^pAP=4XMzCkID3vBM_S#*)jnqT3``SP#+(z!AtjPJaQ=o0W$dfN-)X%~$xtQJ8)gEK=^^6aAUL>yf5ceAW{^Rkv=65*#oS%4t z>Dm(B|EYeLZhPT>>c1$N5q#uh_~Usz_OaeX=^oCn-p~&z<&fEL7}zg|^ZI}5PyJ{l zaf%zu13$y-K5K75+%XUJlFHR^{_1yqD=u#7_CUX;90}u9pXxP~U&DFuACTl$I6qjR zH<(C+3_eq(3jhG5B{U457-WE?GyehTk|qE;?H_=S`Uj9EPK+^lqA>=5#uxw^V*qH3 z0iZDkfW{aIJ<~imx9`yTGfk!V>3{Sh{J?9yR6HH>4-y)90BGO=pn(T~1|9$!c&NxKaO^9+^gG{UZg9N&qw}0nicu05m88(4YiBgA#x= z%VJQ%)8q&~;hEk6n>QDp>26!oGmmcEr zH!nT&kALOKum3B(xI4cEuRM!;>Xlx@JwEWYp6+c_Ur!A3_8M>WqYSH?_Ch) zYO&(HzXkK6){K2#WVJwKz za)&vZ{b|NMg!Y0`tddxFC|-u`_b0Ewm9jXWn}Ad0I#pzhFE5YvWdE}4pc&KQ*dP|o zJ66O*kX2-3%``I;LcN@&d)e0~u+tV(Yx~4ntcaMxd|aCai#f`sI_xk_F8G*awwyfp z$Q0I8IKMXG``U!-YZIQYO*ptGYc!6s~jO_&CounZ7Xq#|e4 zCVW+!a8+%>Q?&`d!6y9FOq=jiZNg2p2`?3`A~GXwM66&z_jcHXe`*u%sZDsNHsPG2 z@+0`VG}cC2od9nyo#*DT!aTAbD~e-?E2U%R->e>smXVG4ht zo;w=te5Nt7OK*;1`es3y4<#b5xw8O4+VUhIHamHTOT<=U7bnAZemsj+)>f0Q6qke% zO`r;6skRNc>tz+M=`0~%m#qN_Lj94#nfaKv0w6h4sBo^h6sg^%bvaCjGw z2476gwp)^j5_fCHB6We?H-@in!br#w zoAexXr0Law7*B<%EW>$xaSp4h3;YzLW&g}!Fh**IN29bI~Z;3eC z0wM-y0dZ3zUbR3=eT-M6tsPKq^eS3{@l-##DVjnsgs=QN67D-#VV_UM?nz-00 zlV`VPavz*y)7#5pXg`QvwPf`rQ4@ZlHR_JGyZOjg%#T=1ZN-ua9%{uh2>P^UwFx$A z&C&_ZZq4cw{JAwtBN*O>)s@_OP?i;WliQk)TW+7UapY#D+$!;t*y!d_ZJAD~%d}&`nUs2M8xq9EET}-UDi^@FEio;I+H|{$2DEf%$^xbz}*=Tu0anfmm&jBL$9 zCAEf@;kFM8UMWzf44Kn0g>Y&SBj#vSsVoV0bNA4 zo4PP;v|$Lho-~M{ks9CFnS}-qA3DNmYz4^~gQQbemIfBfy0R+dUq1{*)f@iz2OoEZ!SyO`jy0aDp_jH%(y?d~h^xU-v_+npk zNe^fi;I$sC8Nq~}NC%kLlQq`JrM7zW6@AcmZuMk!B*Kpn@jP{S1v;?^m6qW>NTL(cT^YJwrSg^pQt&~-X-mIR?3O9ceVnT1&1VIrc5l4Ho zs*rMFAJ&9~ZQ6%r6a2IfYfiAhz$f=*4P`pqT1$+U_hs=!aJnyQ>4z{LVMT2K4z#jv znz&c3jwJlk%34uGYCkqwM%0rLXZo>ZiKs6T<@=+8K{=s6YbPVJWCTX}NV@afcL2Hz zV6y?JS-@oj7`_t2t&9WEhXJDoq9w2^*mfXmqLK55VOk112+I@a24Xl8*j^Hgy71;N z`{>b*ZjPkMgHTRE)Zdx3ibM>Oi2H-!l?jTW5>a_Dt3$aC9*n93++#q$A*_WYoFECu z4q;_9@_CB?&(qjF$msjbh~}cKayw84hTya)T;ns0cIWoY7J!KX6XXFS7;lHojdJccK6&){nrF>ySrL=hXtqfFSN`*l1M zyLyomFy!F5+XQ3`_{9XYBjEiBtTIiVV~?|abtq$rhNcAifa|yzvrIS z6--@?tVDn6>JiHzgAptHj7My|D;BkS9XX)(Ugtp|)Jf4v$QWg=MUcumiFKG*1qGQp z-#CvGGA!t;yV2KhqkqQ@Z*s$z zcf(h3;Hj;X+#+f@B7jeD!za4o3%TLVZum-W_&7IwkQ+YO4POUgi=*x9+U-+Vu8Hm< zDe?j9ZJ{ZDAI+LHi8q_hQu*8WF?ZiI6>le9{(yP=$OQpZhBbXGkD2X3P=6{5^cDn} zM39M(kysyzXheuceDH@d0UX6?%$KsPIE`89Qkg~5SZ{)+4_OayxtKsns!@_Q6mjH3 z)|D=lD{o`%7%d|}#+H2F43@!9*jRwKTyGeIG`D&5Oo{ah&mB56cT614Dd~^JTUt5z zlPLZiLuKnE)7&S_eg0r3OZVzu%R$P`GvNK;w#eKWtR2B`XRr?5a+QJ-9HC4)_z1)? zLL3u3)AjPKMVuJ}5na!*|ay5epuaDvRv)KTN`IRtO z$+-R*E3)vmQktKdjlrPR92P(+d(B}z6`UA+d=5keET7Lhddu|=s*T!mbL`ETY?|sBV1$S!-QKWF+d8jgE+j|}xres#aJC$rG!JPT5e}G&~A;L)f zO`Fe8=M}2U>&!>_LKa{+16}L_HVz9-pD$qV0mLk1!@T8^3#FRDmn~#Hfmb;jh%*s} zbC%1nVu7MYw|9$tv?*^A&5$1h^cS1i#``qucP@~86Ri{MGlImOh% zxx?fFMXX%70TotnhJ42A@rR382|vQVOKItE8h`YmlFYksrg_(LCFBDavr(qW{P)Fd zqJ>s*AkTM`s7WJv^mL^xoxEPbN3Q)4tCeGU^Usk1&=I`e$1L1iE(1~AmptzPOP5h& z_v1C1IZN?Z>4~lfT8#xFP^}?h=JT|tg+iS<1n^p)u)+|d*(YqQ(ypeAD?p(m4M^8L%82kR@hrEFH!7ne*F;gM^q($f!#+~`kTgAR4o)Hvl9n- zKV1ry1b?=S4N$yl@KMWHFM`*Wu^v8hVT#hu5!IQ_Pc4I^_UUpK;%zKXAr7C*OvRKe z;WHL1<9$}J2$^;PrNy#U;tJN9xPG{T4N`hk;Li~~QeUueB1!&&%~o*5&51AAEP|cBWD^49 zQWz!afaXowALaTL9){2w)##54z@rQw`7ti0oqWtAr9x>`iHNc1bs)X^qfoc->*~r3( zN$HJf`a>1?{Ee`vv|0ydHK+n+Qw891M86*Au{^oZ+Q3J2x3X&dtF6q}Pegq}QS>K8rsRC&evF>Qzaf$3dLu}dNs;L`3a?sD-hA>mX!yz8 zdmCE<@Z~l(jsJBC>hf8Ef=ijEE3rJks2a}a*;z5~$rZt;3nZNxA-9@;wzCP!p+w$# zJ6lHZ>2@~VM=oQMRL#fonLF5f6yvp%jr3ohgrusxSOAbO-@@wiK|7hnJm0z;m&@#A zoxO?1x|vdMmc`90r^fQZJ5j1d-?9Kd5xJN5dr;S!iQRN>@mbMUgB1Z6w-@z8jWmHO7Ty|AN1@jiWvF5Xy_uI{IPJKCk zZ#Q}zt*?SbzR}~-c(XmQ>fh~Qg?;4GE4BEeG5pFNEMg#0@?JKY?j_v5myIA8zmE;{ zmTR(CoxK-8~3V z0ec=|gT3VvFJ(K7tn*+Wffz}Mk;YKc><|m$n+{_@7ja`Kj{Y#9ci@kXuw-8R2rEV$ zQ;x7nbl1&(Kt^lAsKG-#?JF|+;|hiFl|P^j0O! zF?{(#mc~yUM-E#~u)>t`hZ7JScbV5e2?YS$b&?JAkxSH+X18#|;6t2bHA!qgj|FXG z(HeAExrVtMB2ylqlvuG|wjX}y;M167f${9qXujp;IXi=l04JV7M$2gt`!$ij7CMfYGrmxDzVSRODx;=Q)D#+v>+!DV zn0H_;nR~}B&g`rH!e)zAdDyS%zrjWN^%t~Ck3`<(0-NeBm+Og3HZQm!Bl=%tGwE`Q z7Z;(rfa5P=l#^@uMEC=#XkUuxdzs~H3Wgz6!u89j!mul-LZt%FzrrT_P=wV)DR6vS zv8ym30#j91ns~kE`Wno2c3foxwOg>VGeda5H7xR^Ut_~8gg}L*PNDu>Pu^NQ=Q@_X zH(f)T$PLY}^yn?^pIA z!~O)MYcoY!Q`~YI%yVwB;=;OBB36~8F%>Z$!xeab3-fS?)}Al1RkRCFbnTmeklgnmhJ%D`Ge_`AE0jhc_2pr=Sq$;3b(?*p ztj0Yex7joc?TdhKe?v0xP4t#~CB&q+luBHN}zJtXZz^ev~ z`4fw)cpmvD7C-^F|HPm3~U5qYhvC zl=YD5HxbQy1u~;Vifj81YcJ!rQ(VVK*ap4$5B6kmY4SK0{uBN1s6+z{<}t z=m9Qxjy3@N^EnC**yaU>Wx(?@Jb=eB!XSdmX8SjZMG~VI8(KZBWTg&^9s$tmEp!~+0EyZ~|W@%1w>zJh7E2sKFE2}J zf{9+1#tKe<81H4tA$ZculBKn3gId9v#om^1Uenw1E=4Txwpa<8eB^UyA4^ku-r!^D zK+ww7QmgDjmb#LD_DG5RzB z;%^DEh~xO51zEZhO^0CAU0PedCm7iS7AuVU0vu8p#RI%j7_AGK6Ji-ea9@a}Bf;XK zmTm;6gj$9Xd=_dMPH?H11^X}n*iR9MAZS-D+)aT{H&;@7eTKmlpk<#l*FHk zk}_5;CiBQICS`w6%+g2c)quAvj&y)~i(8rz42(vT0S=G0^d)#LTE;hsLH>CDJjT+N z;OiLh18iTy(ni5y&6`VrFQ9)($Oo8P(lUYIjgpoz+7Y}Q4TG6>P%Xm8mV#i2xL68; z0;ZORAb@L2Tl!jv(Aw(*6n^&s+!bH9j3tt;_UKRsiU~NWjHNEYy=5#t36?EuX|BCZ z5sEpn7LG$)Sk{tE5$DQU8WN0-wX`BQG8WPS{uFB&C=-<7Matou{z2s|Z6zXvZ!BjC zQ_ik4J@9V=RJ zx?2k86(#;+MYJQHV=7tN5gbjq9vOm&L&C@6)K}6{-3hWJiy1Qi{shdv1Tu_zLXRqWF1@fC0mSr%nati4933w z#%>r4CJ)(*NQel9A|^|Oq*7^L6jHBx)AoA5=bn4NE$=_hJ)d*#x#!+z{f+ZH5A;#B zOti=sY9V{bpK7VSV{Owx^i{Pn8_3UUo6bf?3~ovG*B&x=hut4Gc!g*0aKgjpVUar? zHdRGlde}6~);cU+$BHg>Om%3fb&x>up5fU#Sa!%Vb+N3Fz3U=#yqR&Qlez1e=AyT& zXNKgi-3e1H6D~X@4;|Mt1H@405i?Q^CBlV|VD7IyV!Dcp`XlDykSbHy*-i2G6I^lm?nEdjl!~88V zMabSQaZo_6Zi$l%w7!`J05v^Pbh!`JO` z27k{bG8ZBjx&`*)5%m5 zrEVwFFn>O)%BM&fRc&f)eS5wS&y+hD$GGneI5nL5}Z^DMRk>jvX4ZN)PQk zsRwps=tp}XA;`jyL&v+pVj%O)>1MC~QzVr|z0CdL#m7w{v3~V9qCz(7iBTX|IC-Nd zF5=L;_rk>(@?gBlblFVp6%i>FTCXE+<5G1$KtW4LHQvbyCY=n1RSxD(-V+9 zvFb&1F zI8fiq0gg-P_YE_nv*SJKtB0Aie8cfJa{T&>kzSt;F=dty$7wiuxG5kW(}v^R0{Q81 zOdqoD2-C2D^hm#Vw7i)o<-u_MFw;8B8iDHs>=lx*8$f0zVYwl{O~Ph^te=cKhQ@L& zC>B0H5s!?2G7;z2tYlfAj^QuKSZv7lBXRo#xpyQ+vEHTqD1UZ(aFi@m$8gjrT#_I! zj>0_{WR=m_mGQ#f1*36437IVgTNbii3MLP^A_b{Hew||KiYzzAWQg1~26s7-g~sA& zh3q+2`>h{~Jq@2r`Eji2m+yK@yGZ+Gkrs_N4}}ZI;lP3wXPzOs#flTi596?1%Z}G> zI3Dpl!Fb$rzzcg#f=C?sqebHEQXlmmm^Bn^1-uqyqG_pd{#>BAY}dp2qfL`=#w6?$ z@Wj4=%fuv8MwBv>HCD!CoV=lb18F3a;D}_2JW7Qvdf=MgX*^!dk~Re!6kaQ);NHV} zofI#-E9RJr-2}F#Q*mrVZkTG4)#sx492th=K6)CC3)oVpnFO_67TfyUxypo55$u|< zb&i;X+&R1cZ7oWLUq(#L>^ZxJB~!5-AQMut7Lcb?@w)-C+H`C;$c*XO)gW(9$4&ux z?+k25$Tc&teIS3EfgK;R{Y;IsawZlU`t_MO=pgIQLjOu7!_~7)OCyyc*r^+&g*E1y zws~XYV@G77EI({88#@i;+Sw*9zbz-}fd6a{I!q3mEHV|tj5(%SRP~fG_>!M>kDr6x z8t#YZAVDRInz0hy?v z32!e#0PTp9!^NfrDiYT&Hqj6tEjHaCYGsX&;m;}G9wn8bXxjB%X=UKd6$$LT-{ zII{=w;R{R50JUxs>!$GRQqwwb!l<#a_z(a1aM)54gBV#$O)rSD%S-~qtYu~>#PwyS zH$iFbH%_}B^D=p<*F`}5#l4mWf0;pr!A|2oTY*jm?< z;(AhtP8k|2rS9?JwdH1rMmj5IlxhAMNh>tt!)>7%i9zpKVH!hV6-tFEE6f8@L$m=* zd|_Ju6I5`SnwP0{LgaN4>OYY64LmH0IWne?QYFY?zXO{U0&@@#@V+RM1$;Egav#C7R@WDWWIeq2!@hrEP8nm}H7 z3BMg6AAMOiHcC2Q#zh3O_5s{I|6};|2e3@2R=aWlH|LP|9mHBgrX57;kpDS|BP`op z$YiUevo$RAqA44uzKW~GQ-{o5;&SMab}9P`(t$qj70d+k+AA6&=2e_up}+Vl78UaD z!)l*)SnXF2<2C}k*%4eTAlDzkz7F~85uEEG`@M$qE#&^!v|pK{SY_z5j+$gm?XskH z`7fz$J!VScz>?0#@P{eLH;-wMs#zLjVU`YdEek(BV88!$oQZmbvtP$qut%8nI?h== z!g9wgoOB%Lh92Sm`(xz9FX(yR#HAgwzLR&JN0zhS#9j;7 z_q?ecUVqcvEs8m-o(<39{0Tkrtd6w!tf?gWp0l_chQx?v@P#-0QiFnFONVvNnR`UR z*cHOD=kR+GO4>OMv+o>k#G!xTBob&VI>v4z@|p8$zi{5%EBf!}O+IcWEH?$7ZrLvF}bReC) zJ#Zbm2(Z;~T{S`v4{U^yelk-$Zm zBEVMCO+^bHsUFyfGrSgL>BgBw;QZ$TL;_nbHxErjSRgK1dk1Zy*KDaBz+wWatOHm= zAk}mL%LrV=jury!^Z)@OnZXNQwdHoO?;+@=A@>qUQ5`(?6S$BE1lV%7gJ{9yRS#^E zN4$noI%_`aK_qxaNtP$JRt^!46S$D41lSU{H_(E|n;zIP&Uwui%)$H?!7Dn%+XPY` z2ak7T|NmRaOX6b7-QGtFE|)#9V|?s26v;wp{ME?0*QE9c3Ao z*a$hjW-IAn&P{Mz{fz)ApbMhVf=2-lY=A;u3(jZ?cM>@NVir`D^)HSlB9wAO&j)vV zE%-?f|1t#5znlPDI#(Vo1gPYJO`)>af;dg#UIOQTzkrCXnX85-B2*WmC3etidd*hT z0n{RJ{&fV{Lb>3yh}Fm_Ul<;2%9h&j0$ zZ9K4JwDTG&<*c~_f%ESyz!tPUh86;J^FRVbf*xKCq+Aa6o&-`K2M|NBPC*|67qY(q z*14g}AP;Pk@m>pxYJkB65h;vAheRQ^1};!A!UG#2*=wkdv;Lz9oc|aBwuWsiT8KEo z0~=tH*KCy>%u^J|`b$Y1$TYf06&ye+feSfPfGu~Mg%&*KdSJ&$^IA|&11unL{)+_I zQn$ruA;8jzCpJQ+*H8s#?aK*Vhm`_sk;s#1A;KCDY=CuM3o2;}8wjK>4*pLQNL`$q z|2L7ikXr=U`nPA%LZ59O*fDl^4YhLCypupm<>3DUfeY}W09)v`7cF?a7qsBUvE6&yel0W4PoXzqax(9&x`Nll>@ zft0t&`M<3YTfx@OlAxmpHbQ5w+1fS?(1pPHcNg%wJa69vEqL_uzy|2;wLr?+VD3u* zfBXAmfDl`#HV`ei#Cc#NBzVo1u)#cp!1)IPY?0b9wBV8CfekRyYrzmrVKhO+br>te zR(Op=3lS!IU?WWSS};Y;5rR|&GYMuXm`gBE!2*JG1&bjfI;fPDVbEoC$y5*$tWdCu zKnl#zWgWqK1y2)fRIr&~i-P9}w#oj7AkULX*%`oYf;|fM5lHbFJPr`J1$%|SEzuDI zw?xMX+!7s^?XL^q*60*n+!~!Ba7%QKz%9`Q0=Go(5V$3}MBtX_LxPR69Wk4aN!%KJ zMzBpiz9eu*8FM&~zpTK2NhycUdl|dthgOuWEAsyHD-ayghh8K@EbM3ThL$kaY=MjQRvFMk4|jBU*qh?rVyc-2b%j z#OC#=*Me4J&kWiUv{TTLpp$|w1X3@EEOLz$G$- zz$Fq8xI{(}xI{)0xI|J2Tq2QiBrcJO0_5$W!6dXWo2eey^@(`Rn`a1+%En-(`p@ye z`p@%Pkf!Ezf`w?w{YM7L5_QQWctXJn0yoAg0vB~HfkZ{n4FoReMgkXfvw(=a-89&u zeV!8{z-GSPYu>z5z;Dg)&o1@f$PB?nqMZ6x=G~p3c;%iUYjNRzYTd*$?J4+ zW1J*#QBM=NsAmaW)VBy+(2D|WQRF*lA(2ZS42{U2AwTeH@S)m2CXgyhczjOqg@UgM zt|+)la81Dtg6|dFB=}Lm&kzyK>z0z==<>UQ+XQ!@I1Y*AfY2^E733kvs~{gieg%aH z-0X`Gd?@RWsKrU#d`l6y`IaVd^DRr@=39Zl&G%mfZoc;txark_#6))z3iHU4RU7G~Gj1G}3>do5^+mK=XANLr!=(3+r)g7yS1WG4a% zf-YSMT#W7nE=ErQwm7wycIhJ^BE;s^kM{m*k0ltSAb~*2TQO)NfeSgDz{N-=a4|*` zXpBfOR*0=09fua8PV~U0HQ8&y6g5W(QWeZ3n5AGY!8`>E2+|cSCWvGxSw@nnAS76! zU=_h?1?vdbD|nhIKn^e@V+BnK zP_=CDe_N8cFSF{_3yp>ACcxG+cUREU1Dkk^YO?;l)!xtBZ2>eQ z#1gm&@dU2R5CW;0MwdWoch%H7QqaDV3U^`6oS};k?QwgRi zm`)&-&q!f5!5jr?1oIUvBv>T-ANnjIS*k8i5J*KdJXR7&JvP890+;w&0+;Fr0+;GW z0+;G$+5S3vm+Mx#xLmgrEJ6$8?j&%j?j~@l?iFAQt@mk{mp!mcdeCdZA++TBdzj=1 zS^&ogvJ{*kIH}+?!5IbT2+k{bo8Y2?_Xw`)3cfEO^4CN!(?wE4BA*br%swY@nSDjz zGW&+WWp<6gWp;xAnc3s--$HCv_)WAh?teV6D|X9k!7pn5o!}1zcc8>s17t%B0df-L zQjnKGYR=&ir9h59H)sL6xM2ztxM7MCxM4~VxMA)RAYUv9?nVp4+~a|rNja~1bH#`d zTX$YbJ5=$&cDT=Lwk#d-9w2y7{c94q0JRCEk{w;@3Sdz>Km!jj1b+WE@@mjnJ2WL| zrl2LkqYBy(v{lf7KnmY6MrQ&Sv@3xN+QWi~6wAA)y@Xsr#b^+N7J~Hkz^+AquLT3t zJcuAp!C- zXknQ@Byh|8u|59m0=RYlj4p1Sza(($e1*WR^Hl=3&fgKZb^d|CE%T2aL;|F8d4RwTQ-i<_Q;Wb2Q%3-wc|fZ5J+L!r=(V5` zS};coh}aHIm9(HsO9ib7+9+sGAkS4GNGAdpwF`j@+MU1!?I}Q>nh1K$)9YU!Pi&(7 zycYCF3uD9*3{sFlFjzq%L7-p+0mhIRBMDs46a{kpyQt&n;-XFzAP-&ylh8ttsUFxo zWz(rSRn0RAW+|9UFi*h(0vB=7{{>k>7Z)T`z>o5f;S(BUg$Fi^C%qP|QuA7Zbqby$ zcv`_T1e@n!{+QTS5;w+n0vB~Bfs4AEz(w6Fz&=Z{4=n_J*#n#BL9Yde)O^^2NK5pR zM>Npk7+tayoFI_LGvINW;EaNE1m_jJO>j}cdjyvhd`KYAY{>oRCnTS$%NGP+D!4-6 z=6039&E`7-H<=#@++=BK=9^p&QJ1Ai+chg9xT5h$oPTZ_s5h!3+gM31%w@2;6oVApnoy;P~$sU=^~E_q0dtUrxk1@kSB%U@eILR3bqhjRIru6ZI|r= z#N?QgFnBNbrr4 zqn_Buk1(+;f*a~_oZ#OIP7?g2;0=OX3eFJxrr<1rn@Qv?A@-f_x7FpM2X=1ndM(I~ zXE%`6C4yWEJ|M`e;4(oz1s@X>RPZUmoi&tvPEt(4mjophe61j?o;|8mMBhQLhO6`} zui!dCB?UJKswnt@psIqK1P>_qiNGcJGeNB>deHnr;uh|A0rutfbv4Ls59~^2oA1r_ z)trN%k%C+V(F*bqG*@60$VKZ>CHd&mMnM6B_6iCSxU`B0kneE@ozykyB^5ldAuD+;=&KPb6Ua-w;eVe1zQ-G&ng=$(gI){b#2e=7_Fc_!B_4yrdw7;GlxB1g|O>Pw<+8i3C{+CKH@cFqI(kh7x-m*hJn`Fr6;v70e`f zTfuCCcNNSfcwa#pfjljTC0ao6iGqcHj{CWi#dP^f!4iUR6f7gSrr-$zw<%W$uwM`O zUOiTMV0Y6sUJGtc(TnCflK*Ij4FoR2MgjJ_1HY=rW)E!0XT28uq2}iZ?!dElnEG}C z7htD=8xeUNFQ>ZfwgkY2e9>z`9yRYHh*IzpfjrNLF%A$ER&a>G4RKh2e1|wFrXG=_ zp4dUNycU#H`*8x-;gkS<;twO9p(e#2XT28ul+7me7Qy#9Ex1U~S3%@GlI}`AAh@F7 zBZ98EZIDk13g)-q3xbCWTkti(0}8$+$Wn0K0UZCqowm>SbUC5mrUyeq%p>3D2H%sXS@XF)zgGVPPjY&v~#{=)yR!(hZ@aWhP3G!YJ$MZ}M z%jJtIp&xV5uRLggIP{NAOiCE-9Q8vF>G>siT=IyKiNk5qZ#|?J95Om~+(l0)w7qQuPADa|6CNViFc6j;Nk%?}|ikkDC%(?u~*rfPB$Bj~Zp+T{6 z!!Xrm`0|5Y7Jkw6TMy~Q z@VbYj_}JmeNeTbwqF;STFOrl1r$NL2-$6hBkX{_?IW8e7F(D~VeZm|0qw+Mc+eW_x zk)A&(c1+^9g!1;22W|=UV-V>^7U{3N=;W|w0YACM`+60KdZ1wT-gvcH*(m$;?4Ht5 z-Ll6-ho($a%3t}mGEuR@3*8en_^*7^J<9Wz{X1V6~_ zQg#xGEfS)li2Po!d*9E-hp)eX_PpNbcAazXx#!*;*x&lV{?czFbwc&F@(X53 z>Zhu)geuER`V?t!(elZr-d4=I8&xwY{a%Gg|1k>jpSAi})himxp(v}qGg zinEg3^9m~pN(*Ie7^-qGOSQ90%S!TO?j(d~F1FI;$So>Pt{Gzo%iOc1m0B(Ain0Qv zcpjg+RqfwKNgqC_dda3t%Pp??2+)1F;U`r`)*Mx>g`H(S|(3?W(7-Xv6?Qaxe85-u)509N0lw@>)N5x^q`7aw_J6U^ei<{ zZg^Q`%Eq@XuS&~fn&z@CTXpr!D$B_$$S;=cHL8W~uAqu}xpVR*>Pa;uC@+70L9T3i z2mQRMukA6(mM&7=JSAmixh45CW%Gx~=xCYhE?<3PMat=q(V&C#R0nyjjWtMKdmJOq zehA7hDy_I$QnT1EpP;0Xy=)&kIzjqQu`zU4`hw-U3o6kyLi$Ep1LdVxluzF0s5TsF zdrcp63_Ljt3yS6yRm-+aD^W6ERmpPOdX5{$S$Z_H>d4;pL6~!Isy4DR)~<&l(j{>f zx-~Lbh05MOR*W2-t&$|$i|#-5BzkV|U22MyRw%ctwUmyq;v{B-6~Ukuvin`Dy=*#Y zd4tpPs#gRR6zAnHl+BN*A@a>0R4pMG!4VH)PNn*+sWSRmPAx4xYE*%~4xcd1~p z=BrT>{|9QgbSuVY>f?w!*K4(uj!iJXIDy@>a*_7{>3d4`l#8P+ud7-TuD7D)Vkf(i zG`U8FNs|}Qnlo$Fl%Sbq`3p-~x8{;^5`CW59Jz4O$G&$o- zZJ81}&w#-3pmUvFFxIWAi3kLDF{&`k?d-kZT48XK4c4bP@S*tn}*86KYjG z+k?*RE(eF$-DUe(H2;Gl6(!eyW%rU@DkxlHr>G2jW)W7zvajsE^6MUNu>AhHij~v} zX#TZ3FreYd==7(~qG&AG`a1KZU^@nt+LM4;kR58bkd$SZ$e6I`#Z)UvmCcmtAy$$k zUXPZhjK-=s+T9Kj7Z)AkH<$JycBDkz?sXPepBu11PF!zAp|VY7ZjP!e5g&UnF@MH7 z-&BJ6@=LN6FXd-Zz=>F^9Y-iyGU{1rK{*)SGD*B!^>n4l>0Vade zL2+)$yy6O3*3KFwYA)Kf`VFhgC5zzSu~^3M_pl~Nda;_?Ft5C{u%M!PMcusoqLT8I z1qG!kW%=dB`4w4dT{XwleUMrQQ#?5bBR#0mCF2<`QSYd3^4rI#D%Mb%^gXVo%C>(k zJ1A#i^@~~dAEMsm{T}^SCSABU5ZQ*PJ4{0w=x?)*oG_-BAh%q>+X02hhCrWq+ ztFfFqu3EWrW$rZ9L`r^8gQR>ss(!Jnor=L|C}Yle8%pYRSg21oLo@Xho&F&PE>LT) zDlU=JqgAXf@b=MQ_8DhYiv0Sn~P6lfwpa$rII}5#W}^*D|&L;ww98`7;D|1x`F$yM*}g6SJm`!3pu#T8!CMt0mB=% z3)B1AztIA;u!V&Fp~59E&dQK~r(vmW&jgpoDoPf`F(Z$YRV7&6Yu01EX?D~w7VN0r zY&AiwE$T{Hn#Hvr4@Qx7Cs2Ptp<&o1D&{tva zqC%VBQEesSE0jBTJX&^SpGue9H7d_a&#RWxi8h$pD6oS-rCLbjWQ)tSo9yXhcLRu* zLu2iD$-Wk;(ea(+B;^GlLJ-wcXOb9;(k_MFjNkb_~XuC$XdhEIJsC zERKfNo;L3 zH_Tx;1s3FMp}d-4n*~JnXBSlD7ioP#Hui>^vaOFDq?vwDX<2^ZJUR3zDy6y0fwv$9 z(aq-5o;kB3-AH*o-M8KCjnu+SPt_ZnSy8h0Q#HJ%u((-R$t@F6KC4Oe(#^@>vIyH@3fRpb|!my~5ylw{4% z$KuBP)0I!CZ--IiX(7j7LZ9j8g@*@4xccdg++|>=B}IWX+f4p>90K6OH!#8_D#^xh zl$riK`m{I6EQ@=d!W<}%hjw=2F{(Ax6^1qeo9SN{d|C_4ZO^GBl~XK-rl1|1Ad*o8 zW(QfABpXj~3XN04b@jgT*`b&c%_MBN)eNAy=9ZEif#_OAh+JiLkb734AT2xsvcw~c z|HTx)?sqWK5$RB(C}}i5>Qf(*C3g!(tN({;ik-`Ghscbj-U$(Kwdy0kW*hLr@1{C9&xpHqZ-Kb-9C}6TbJP#kZL@ry{JbnZr;I9G5R@XR z4|~HXO0jgGQ|&EGThn!#^KLwe7Cq1c6G1EAr3Jkg+2|i@@G}cn3pYZt<%;}d4C2puT5v65@AvG3)0&h=^JYGk$tI9{2>gQ8lFR}Yo%-+^mPOoY5%fHwr{dNHp zQg4$6+yvQ#88$(hA5?waB{M6Eau(KVIw9C{6@%^MSFcDmN^wTDig6`LT7)l2Hva-W zw~T|LZN1<1b3R6Xs#{n#n!p3WN%4vZVs4MH`(6H?qArO8{~5F>=Lk6Ov{{MTS%x%p@?MEW!-`UadU zE#B(t#eOb};zZ9ly9~Ol^xc8ktF``(zbUsHS~CRCy6sTmw2poB9+eVQK0Bv0Uk)UA z21yw;e=ZNZq!>e^c_&k^`v_AO8xw4meM1oy#8>w#5KGwr10Weil#lMo?)zU6E~Ua61Wt!5g! zE3zN9g238Rj8gM&7?v0HH7y60Mq#Xy%&OQu0!&p`J>glayQ@Nu?n0|-Wzxm7kS|~` zy`^*!rgkkqg`VLP|62^5kN(dbrBdBscSZ9GjiA;FGLvFOJk>?NhIqYeCo1v=+wO!{)0UX=j~zT&8*-;pB^-yn-il)7Zl~pGPV~j z9I$Z=mB{8nA=1%?sUc$z8enCk(=Z!4N!0tESScH?`UVx07Zk$;KxL6rB1CWUvkD95 z+CZE!g*Rm26k!|jV53?Ppw8UVk8dk zRbAw%C5ACNR*EI%s15YIrp9ix_yh(K6TC=1dlF?#ap?CeX@pV9c zrw&3dI~0nshmCKFyC^@e0P5gcpEcO+2qA1HN7KA8#?{qq`o13o13}I=sz>dfSX(rD zMA`ME4$GinO?sw4$X?$LvYx$Z!)7>}U9Ly*y>!eh&EBmDU5OBMGKr zlBC;K^L0^HZ&!U;dsNjoLM58r*F#4C1&v8-snAV*GWs-hwhw2hsqUGDFmGzLe4yUx z24P(mrOD=T5F`o9(E#jTXPYftufBFO7<$XVN_6QO{h+->MCS+W{1jso4oY~N<2FnQ$h-OCe*N%b`qWg1>-^? zbOUXtW((z!zSse1{s!sMQWC;!*j_ZV$o@<9@yyCE&M(U;q~x7$&nzj-yF?d!?y!n> z^)&fMY=tMa6OzDm#&z&Ed$ji_GHsixYoH7Zj(3(Vf^pf#_bSyob%l~)K3 zJ4akw)I?uyX_nb48d;oFsU!LGF z>QeKl`@>qOjWF6|i@DxfzAi#Vu*a1x{lQVx-hi#1{242~nQY(Tt|uou`y!-GXRKFB zvY?#YlJeO`W(PKclCuW;gD=lON6=N^ZYLDRIdtlxwk04eD+P>zoY~E$(aL>YK4jeaY&pI~|K-maKUa$4;nMKP#v78e;@1ecwt^GiS=0=b=IDrj82c zk|7&k2M;8&b1EReYNV^AT#s`IV|bAlFJfAvH=;2TcFW-6lHzOf%Sx(Ow33|pkO8^{ zknySV&0FYuy?Ph{rXKFHw>_)+xQZpU#N8BPo~B~yHHcHBROP^ak1^WxDoz}0G@cR`v|QL`%39GACvXy+xP=xQ6~52 z8FGdeg1{W9Lz_B>cHM_qi|@aI_Um^2x&?Mz7?NOB_&{}{t~ODn=aIKp7}JzyO6?or zM5N$NB+@J^qZ8CMZKLb$$tla7%`FsmRc+*Wk+U>Dw;&Rp>Wn|yIj2uHIh|7l zsq3O)K-898EdjAsZ4Xu`R5xdv(>om7oEq6=>pek~f&oF#5za3w|LS}>n5mk&3MJ<- z)^t~>+|Vtwg3SowIWYUp%CEjdUE#XoiYuff9ET4y+F?UBn^x=&JhGZ3_w}~wYhzCE zY>aWOemK1i1edl7pXzCKk@4qLS1-+>U zWB0OX)jjO9`qqx#XLT@or`DSO=;_Lngqh&*OB;cokYj7pnq=LF)$aNUE98SmF_L;S z{rlIj=)!uMB^SSghETKHk;if{+tHyzxJ9WaO`!RPz*IG_D8HEIQ;C}7gKk;oi!(}i z$)8yBX5o>EZ0(Dp93yi}$&7(P`EVgrKz(M8L-KU9K?r*U+S%7*psH><=dD}Iw(eLD zCdT!n=9ZZ{>A8FOB-Ai%D&=s<#T%eU-`4`{K#%!Pu~cWc)5aX_7L*Ios!x$x$mVcG zdzC&Z-LwQnqEl&Z>nX23jcIe$YY?@!ceI+hS{Z%z{0{8VU}K-dEn%`%g6@VXAXY~C zp}=5gGuE6f=t^XiXggseBlvb7atF)l4puK?8(O&peX8w%SfJfy6u&8;Wfioi*7|;nu zwTD1yfn*7CYy^bL(dVH4;Y1MI5Smp+z6QhV)`RX?agDtx>jpBm4ZVGJriN_s&9I2^kx<2YGd|A%g5T$D5s6Y4zt<-7<0Rf&cxoFn-DZ9 z*=&0C>d%}FUD%u|aI&m=4jT~6!RazB)$$ru(@aF3rLXS=V^Xaxb@WPXPsYlj$xvuY z_JTL-GihyV2|Iz}j1^)J+zM(%?UBalTI{fTa?2iv`e78;`?_lzrQR3J%QISt?w8aa z(19S&XG5K&Wbw_&FLO>HGw)T4r1=^sBwAh^yb-go_j2%ctTpmNxux89A{7UXeRG1k@LY% zBcBPvoEr;v40s^Kkfk?SdfI8$ zcigt>7={Gji;e+{=B#-I(EMtw9m6FIekO7z5%LOK=kAjJscIBt4xOM@jR@G~w+4f) zbZCM$=*4`p7iL`3ndl8YQI7VrxxH+>mJzlCu(8 z0+G0Tjq(K1Ic9DRuk9s^&Rcc4nJ`P}LkYKc0uq1m;KHle#`!YYDgJ^C1Q)079iG?^scPsKL~ z+Sb+u(Bie50gSOdESxrRld83I@OG}I^((L^rx8gu{EWDe;~BEsg*C1ZRkOcR%|mhu z=jCS=lxJZZPAP;fIF`(kFw9`si8@PcL!iVP(6E34qxZEzL3DtFy22B|Q4=u0ns;H= zrNbHn6Mua)q@|1*=fgpFjXi^2Mhf-}Z3bQ176YP<)~vk@^l-(6jnz zTh=s!4gn^fv97Zf1e-L)x3l)aZ2C#^2At8flFdV`R`T0Y)zh8jSUTx3*6Ka97_KLw zHP+?cg1r#fmgB>fC_7tY{Xg9nhgzu<;P~-)N6Qz4O+E}UeSe1B(JJ+YU(kDXxhqiAqP%KvUQ1S8d${?$e z+&<8%=f0A~w$>6=-WZ5O`o~y8A43>%ol5WpQqPnogRCy@CJc8rcR1M&k)?y+KlYlu zJP77REb`FcK!ShbSWcQ+5GSVwS)JSqnKETvk!n*D<)v7eKG;fE?PBD%!B#i*be!xP zY;|aI8$KForj9ox}dGriD)l0eD}aq_@0tD9?=9EM`1isHmK+)8on zm2ShW1a~G2Z70Wk=+DK&tq9dMURDi17VD693!bCtnLaM zpu!R8@vwMgm0ojf)Ijx*m9Iv?t8^7pwv@#Eu)?K`MEj4j(DsrOVzsJiOh$|pkF**z zD`g|<)SMS+*AO%99%ZU#2$8hER3o>Zim7s7q}5&}#mc`Utv;?p(tDIOz)3PNKwho-aMyYV@=_Vi;-iqPSZ^JXK zOm%mhWM^6<)IZToI!3)0Bd#&lSamK&au7GdF_oIkc4GXIfBhO~6GPt4CK$yyjJwZ# zLmr{C&ImV-EQYo_PL@r9Ajx+8Wb3Jm@E=5;;pP~?#KJihDv=>eL!mw|9cQ`SFPOH| z*)mL<)lI~`u{v>>aau97XW6j6b<5#1r?=aNIsh3+&R?o`2+U4~bRkwZkv>~tYH5sw zPq4yCYyg^O`Jaw$NetH zIaB+>Mo@Kt0oTN;7b8t3Bd5nEVm2<*y)YzPyXiXF1jjI&$?l3C!BdwP;p$Nqse z-+n9H^57g6rk3lBCb~;l(nu2z4xu3`J%(L7G)il5rqHb%m@8{`6k&3BtmRglb?M{X zRm{OD36{k=?%yxTa?w?=Tihc{kt40Ep{{QvXCg56wLVFiYPnq{oLS9<-W0NQDzx>} zC{5<}u?C0Zd;xY2Q->J%2~M>p+mA7n&8W-CUr=$i30}Y|I_AwUrdi?c6t;h=ndNXs z>~u*_AB~eWS+GJpJl%?Lf5^(ts)+~VXcpR*3-6LFYcieo!qp=EG0RWTyRe5;*2pJPSXUvgMZ z&xAE7GY98qm5r>Z5WRS-S+Nd0WrDx_bO_mu8CH<$?WA2ZMFo3wyk7D0WG-@pC%wl| zeu!o{aM@m>LQP&*vwB_3_I~L|6=tY=*k{hB|L8NyYk0sosm!;MXc=(|$cbYCUEFDG zem9fJsTQ#G9vKT2eqg@Up1WU<$@7ldlGfd;!rhdJkH*U8JaFP`^=~_gd`ShFvc8b; ze5;FU=`KLF9o0vK~(Dm&*R7hB83i87pH}p@RDS?5H0(G>7Boya1)w94pM_l3nka z_?_ggIaZ|WsY?jwNVrFe!_iH&s)QMPo~h;-SysQ6juUf3{w!9~EL2-tVZJOx5xH`D z7K+e>)IjH?lJb6o*gpKNFR{zf&{In@x*BV5->W(kDW!WbD-f@9e)OTZX& z(1|55Pqi*Z|NQ~po@yG`MU9WCZE3i3CSuAwCpp(Ubqk?ijG?B;rgecD!x9%}SNkjC zE~x@cRuT3s|6ASFRbH>V+W&X-|2Cq`3Rb^Dlsa|Me#()^ul$mpl}2m4ArL%zO6s=b zY%Ls-K6R#%-Z8=+5$a5xz3Y}+@w`;i$?2d^bw5D5^Y%cNc!QDn7wmCvN2h5T{8#IN z_8`vXIa4*Qbb~k2s`fu)$_-ra33Gift7oJ2Aaqs55Eb*`4u*YNoQlwMa*BE%-FXd& z+Oo3yVXqH4@6-_|si|?2wkQw=Zvgh)jTnnoC>0(8-DJ&HuMOG-XGrv+_rV2}O3sLZ z(na~5xd|sz_@Mh=fIG7lw=N+lLsG6r+y^0vk6E!Gq|!?z8W~P9Db_iM2VRiUoyzZi z*&Bn;nTT->l#0>2ymeGp-G;HMdyMI&fY}gRY5y8I+7>go#zD*J^%j!4$eQGG#zcok zzUzfB*W3lm=0m%Uz`_GGHAg^X~o-ek#s&mn@XMbS)v|~^2&tcWv_Mq;++mIFeSzi@7`njg1IC<&F2fy^f zz~mnVCwR0u;27kSZAZLrHP+!bdLHPogkxT~j`)LR>3l>_9s`M%d0gj;qZ#%!=S-({ zOX1;wD>00-=?C4b>tH2!s@X|k6pnJ;K*l!B_8m92ogqoJQ)h-(3d1>Rg;T zZ_wNOnCrmFW|##S@F5A4lIx&wEaw2k(+{$j>s`ZvbPTw?)KiOMrSbJvKU+cAk&ASZ z_3(zV+dvpg&b5%zI%?pSNsOz%WUj(24^W%B{$#Us?)oxXoQz(MA^SDjtX&-s7b_y2 z$uN!m>cqy4w+7B|{uFK4gf^d!pnYrGjh5R^4OA+kcwSM~tkQW7qxnlVlQrttFt*01 zEqeK&TFb3os&Oo3fc{97AD3GR=+k4NoS9Qq2dBU*9FYeS?8!G-(dvxDZ8QarvUSwY z4tD@WJJ3hDj>#C78z8tN10MB;|J|#Z(-3w3(#GQkL8MdY%Gx3l1(z`b^tn*=D1VV} zqQH-$p3_;oacFE^>3YWq0v!q~PK1+N-FWs{e|fJ8!r}pPqX80sD}43f(7zJq2|w{K zoDl8h(s;l`Uk_8z$90?7vKa^?o{I{svrYkZJw15 zhh!5eG2To~7@d-&+gj`Z>c_MG1Egv#GX2wJ8j@c&)5P!NlmeTnA!M7rpv$v2-H?9c z#265!{f7+Y5lq6{tWoND%_t|hel(R|b363HV3ccO&%S zYN!^cr1U;?$nFBw#ToV!(K>M`H;g917>BjeKP|%XPctD)oPp7Pi-vS%4GC60Ln?8m zCDTjF1{LI#)JjjV5w5D5u}=zyUEd^n%`kfmMp9JGrBxI3vtG;tf=itG)x%m7bVU~k zk~^_S99olKvd`(i`dY@|mg!#A(JB47vqC|Fd(K_fR96qqg#p^%HKe%2*^JJ1rV%QV zEW7W9f?j$zY(nQHd$oxh;^a3`cPnmK>fZrjaO1k$x4S(Q;OL=}hbfQ0^&5G1> zE%+X&bl-v#QU%ZyIGl#7kxrdSi9&shqom1jwlgF;HqQ0E5`M4cR_(Pm)IS(*S|;92 zdVb2o_hP8e)^tm|P~P)0F$!zj*G`6P0F!^isP8)KdpAI->%&zzAe7$C&J=?6iV7*C zgwkcjWEE*jmo*!)nBK3AB8NAEQ~Y5#Nc&BglV=>ALYHyvChTHoIX%R+2QSocSC(ch zlCT+h?KCy#xwn*%03Upg)GM2@7p`M)M3NPlS0Csl(O*CcXl64w%_o9eVbq|Z@xm$` z0DKM~>~H3p_6xuXE{`@j)#+z@K^VZWI^ z)KOl100aKElUd-3Yq)B9X*Stj%j46#&j#3KQ7|@>Z4ZE3C;W>{3d^!x)dJxk-vMDdCN#E(D17Gu@dR1J3%a6T30IwGgHSkt8;E-k5da7cLpCvVFWw4lIv<0($u1{RsJ?AxX77EMBn{ny{z%0Ykf%(< zZn9ttR>r@w`(=}Rx7xbEe(`}rl+3N@iC9x4ZeImE^XtW$th-6(vnsHCY6gw#F@`G6A(D8i*Pn)UvsyU^CR!#I!+K?r_eca>?PJ~ zyERA^1lqja>KIvEoMkQsnRbgTJAimP`7JvzaA7#|{R(x^6x<_f>gp>?cL$>IVo~^| z>5s>-n~K$GrwpA8{tW>`=b}sUhu?LWt4z{%Sd-|R=5c1R3-gA9jHKP*_Gs#bYa(x& zLi;+=?suZ$YCvB#x%Q*G&*9YrAbWNrA3QoRP@ToO=$=3`aNb|Xb+2rG4!*Sqr0;8i z*5K-113R33xOr@#4?(K~S1VJCp8qE-Di~M&OyHAuxNN8A;3E*`bo?fE{B&vaBIaX) znH)T;3E^3yN%t2gcuRAFQ(93o9~wDh3@5n3u87(=bUO8$lz!%2=o%rTUbg1C{;rAB z)9Iokx(BAoO|PJ%Z#2OfdsI)SYA{7z2oyYZCp4#AXO8Q`q}O&rA$qR1#-TiOHRYa+ z@7awOdO5eJht0maG$1iMK>OHj`BeveJ{|98&A0l=-UF&vl>d+G9-*hZ0fK-6`>Aap=Nv2_r&{a+>?jUNrY>uFmNaxe%Um zCi{i7_~CBOUR;6P^cprJJ@p)&7P=63860cN{@RMk;@80!|CPw!QKzl1!?1W9yNypV zhXO}mjht@o887?auqFrl=Q|Awn%Nz16ioP)W1`CFD247m<_^g;h{G! zwMMJ^V`Tf=)>U{4!PM4czJ2M=cc^T8+sbo2LzQ)W2yO|OXiahWyA=Dr44hc` zj>eJ1yVf{aItymtWZds|`Q^g9@H7I!BWvD;%90_6-m$Lob#SsTV|cC$TZ#9qX(|dj zAbz3eH{NHJ*#jYk)}_LxuB!|G(r9M}UF7a@dts%FWtIvf!7~Q+$OceNOgDZhgZT5!El|x?U`Y2ud41&4HDVMIM?iaxkaFsXUSW#CUhN<&0CrT)ms?)!75VzDoU_;3_i~55<^?azcJydZ{S4b!SG**Cfh_UNNu+`sL`}VUP#q9U!Ew_5 zbE`}xK|TN6TB1IVW1@03CAOwPz2)yO&=p;1z;=90;4$xxsAwu(Eg|us^BAtWz|x}VU%;5q z(k$74>rQ|SJ1N<>Ca?I~st2P7*q9$KkZU>Mbgq?zoi+B;)*J}kDjo9GH&(PAX6ijn zcCCT#KJ_>zyN%Aol5kE13ucuQ>V((4rLA-eUdZY zc?+QA4V=(q{0RPX11GZ6+J}F{R7_^U*}OEmdDO!KW-iiM<_Y~%Jg5YV0!~;dc|npJ{@rAS8#+KI0D>e`mmpjJZXj6 z8!QNm>f8Xu8Eb%ZKi8_@Sbo$F}SGJ1zoF+V-#+coWem@2G>w&%|i=O&MIDy z)9%w&f%_B+!eypqXYkC$`O}zdzw1nJ-?>M4Nom#`(+3>_69u;$B5_8l$9CjzR;c@+ zS$E6$jsxz6#^PoX0%wHq85NT@lY~O`2io{MZo1)yWu$8$W#9~ZH(PmnE!Lxc5FlcY z3YbSL^&*2m?C(}@)!zBgmq>7tHn1aZ?x1`X$#{d z_RgQsL4VXdSW~*XmQZiQJru{OC9n_c6i*AMj*~1W&p~6qNt;9+3T|bEL7eGH`tTtY zP$HWB)qI>ix}37w!>I6GGbF&J38~FeQ+B`U2`G zocFlsSOlNkicn`9Emu?Ec;%MW7hwpf2XRi0Msm2h)Mv`O#TgR@z#BLW#@m`4@f~!> zK|9zLR#Ta-(#>Uus*|t@QL$#K80Qj|&hHLe`=wuTh5wD(#!H;S11ujM2V2Jtv|;L2 z?C>nRr+f^unxKu!J!Hi><#k$mP=^mw-)T!#toA2*!LlP&?|3=wvwMi!wi~HyoP^o7 z9q#&$=7OFQxSSQG-qD-a46%ajC|9VnwRIj!3zzI5+l@41;*sY5AUn>rjYn@i<*y(+ zOg*PJ;yw7HQh=9khaH~hYw$6{I~Z%WI>d9wO%H6H}>2v<*ea#8V!1)T=S<+exloJe=$)%Y*H3 zdnzTBHpIi32#8{LT4)31}vWkEl6N42jaZ6=3Mj@J;dk%ygd=+ygiZc*mZw$PLgX9 z@>*HI`17rq4mu2Xp+hC9nT;3W@JLh5y1I(J&`Ywzu_AgC4|7eD%|3L@@8RgIZ?P7m z(fN2_CSVhv`u4MR7u}Q^PZ{j%o*u z2Pf_Uf_^0{L^j6RZZ!rxs;=EfaId2-tZ#aK>HP8ZT^(iX(6PAYbF4A!PMVUh1v#wuW?Jw}CGiMOUGg<8f_BP!X#`NiZ`yDA(*2_GZQu} ztdn6_E~(^BcgENe;N(tK^pi-TP808PID~U4J}_w6&S{;#3WCS+;#HhuObuKPspFcb zd4aht!W%-Dc+CvcXG$=9IXC_4!>9~X8}=`6s?JW=yyRFW83k8t>$qO1iPA=JZ8}Ug z#iO0KWBSn6hNmL>s9iXOZD8lBG>3`l{2y+B?te;8>3Z`o@xwLKBsyMpB_KV#bXz$k zXBmd4olfx{WrX?$FP${T{D22)luFl!EV1UjE!?bXsQT#%2ye(R$R~Z7mi24>e-8_&?NHIQTw(wNkHG#iDlb+)ojCuIHwf>@7Fr2hwhz$>U)RD z=@2|$7Am6?k-xwE-9+%b?MG2FRjXu_Jx&IG(BSkw$Md$N|QIP&0ga(L7zM0Pbp zZ9jCX0$=#g7Iug_>6~2X>xdUy*go~09*UuQAMCVmhn};V6zR zVj>RFXSr}eVocnYi*j9Q8mkF-1Tr8*#-f)3IqJ6|8@Gj8aGfL^_#Y}>j10)cWYZ;K z`l_%g?X2#Gaq1(-_OA=6Y-f8_nZpc72``6v3YVcxnvrs}ojpMvkEWM|Q_-bK=+lQW zz>6G8c=`N1ENf>3=hw7eJJ1L8tWRp&Y8>ljMSF}^gLpl3p%rDgTWZQ|U>2ILUe{zy zrol$qnQmH5%DURj(gbft1$6m#dOPOSGw_yFtTX1{JCko%6Wk4hyMH~09;Z(NWBEE+ zvO{|L(x@-AtBE>XFN@JQtlgdpT_i%!idep3B*W9dnYx>fT<1Ko7$RHKFjuGRR0HLF znjNe@chWElo+PWI-o(?F>Gl{k-kG<2qeuQuN8hwZ)Kq(*jOc*Dt~CB;r5)_9DhQpA z;XpC^hEu3`a4Umfp?r_U^x|ZP|KRFnCuglsq&OHPKXpVk3Tm=wFL(y9R=BgPdfC)@YA4fFdBhkd2_A1Rujo|i9Y1l5%#Z5N|ubM{T;6nRTXaa5_*Oen((H))5I0mRuGO{a% zV~0MyjOAO9rmiZ_5ul)?N=i3q=hstyXq_KVowjji>L90{fmcsLWOq-LvWAuE9!?MF zf?{Va*EQXNnEJuq2yFYb2c;(9)?uW*k@~-uP|OZK(fN+u1TU`kvIi@d(`r6kBa3^3 zbCjc&C13-fbWk{w(+V`-?h4aycbTaeg_%77UBip-5zfVT6A~8(*I;{?y}3p-@_~_H z-1jx%H&JC9?0QnPLmtDT@HzyZz;IYa4^~)+{>7@!FFG@ zO8+JaZZp$hb=6T^KOSl? zRgXjT54Epz|HSeZu{`}cVYnO^X1m=-SUWfb@Tow&$`g>?VR+iouQ@@pGnk z-tU<_+zxZ^W82%+T!0RB;w@%8^Z4Mp#<yyx`_EN1AZ@Xy|9*=76u3&SL_>dHy?rrZ4G3VQ_=rW-D?e@`kG#ws$Be)XZ#I4%Q zH+{CZ+TV}~6HMNGBHhXRceW%^65sJ9BGPD<)U@U{Y=n9>PF9Vw2e=<%KzCLi{;@N? zUWpiO2ifCLU&-9)OOsQHxaXenm@X-qCB^9{jQX1SeLpGDmpnmY-sp2?XADE@UJ_dC z?eTZ4>>O=JySp(;tei^r#kQ#ScVT7f*Cd$5+aoz;&RJV52Mfl+9qzgg$6hOGnRa6} zB~Hd<+D+Vz8KE7k7tNczG43~+U277WJDu_`JH?4|5>ZquY+J@)ONysY0vod{U~(X7 z)EG#trzLBQorH6)BV(|My?=~d-(JJMSvFSH2aAGv!O@xy#xY6~uKk6Mg@pelPPUFi zifLo913iE<@v-2qcREBoHyEj!#LB+0c60a5oEmNTAaFhDIS!9$;svOH68Io){xBE3 z3>B&Ny~K`tB~QT66Q-4{saFk?~kd*RogJUP29- zV28SsS&Jr`ip_FBWPPFYZt2cvPDpdko1{v0PsPXx7v9|2JpnoPG+i(z$kzr_bsDEc zGyO=LGipVowA2sBI214I&`SC?b~lrZWZ2d6+8W7?7671WG?bSH=E;Y>0ZSKBs~vS6luof5RPz3$zduU!H$p!C0Yqs?=O0MKdz1b_MBVsjF#qtfq<;v}7N#9a z6wg1y_=guG{lkfPBho*DXeMbRiFgarKZ@uz(niNu;_p8sW|FvoXbcfAJ^IHIy~N_i z5w&BI@kCEEbOI4?Jo>LB;yp+IL?T{r^iLx4@XuuaY0W=V_@^&ZTt&nyjg|hXI)sU* z5%KP#e>xE_D*CgCs)@3R?jp(|;uS^z45AC9G-bBTEU&|gNx z>xTYvqEw;^q9lgSi@&1s3jZO(`6TkTp??9J0AFxsX5~BAQT1j+{XerT7rd>wFD}?^a>j+0M@%2QziEbde$ZT#T@-WGAB3=pf z-$b;Rw3~^ZWj41E@xGtGis%AEZzWpF&=o`t`DZ2n{K|N%h??p7x0>)6iED`dVdAw! zyxHf!ji?^8xt(Yk<5d#{lXeFY@9+875%J=lUx=17^iCq)+VkHa{ecXrZdSFq8Ev_5)ELACyBa} zwvCAQp4AXu>^ch1xCCVlGjOYo* z`Ryzasj8w8KQarsY3E^fwb9CAyBZV?+x{`)ZQ4w`z5{sxikxjIQ z5rc?YFrJ%e5Rr#y8RL109$`Em(PyLu6Fox|LNtpgl;|AW9!7Lq4CQY)VG4sIh(-}b z5{+dcQAEK+b%<6F)g@|5RF7yK3$9Oe15q@QkD)O{w=ln0qH_$5Bbvd`c%VxEa>52A zzRQRWi58L8h)A)|8WZtakG}~~f5uB7`jfOoqF>pjrbN>i+KlKY(wY;cGM5%ae=$W% zqAjdUt4hMgB(^5Sg!X#aYz96kD(R^mujpz_*-HEOstp`ywX+4Ry zF>NoR-lX*=x|Os(M3L-|45G@{nYb_ECI}XM2U6O8u&(IL_vB%*u2{~COXTR{tVH* zjQA|k0T%ZhQ8;PO6ZIr|f#^wwzDTr*w3mnynBU7pf06bIQ6t9NNfbfaE}}|5;cmha zOtOdQZ_-{RIzrlBq8mwjjc6QcuM_2x_6E^&q`gUWlC-yol33i^L|&qIh&qs&y{i%9 zy{Gx#a3{7}M4?Q3jOZE0 z`YH2(`F?84wMqG8N1 zoak+$2%`Jtes2fo%L%S1Q zB&`Qg28-)Sw4StHM5l;)6IK3B*oUwKQ3lbkEVwTbeSH1>h&mGWC(0xmK=cPw3?v#z z+90Ccqzxw0s?89h_M{CZYR-7Wh>D4ZH>CXil5hlxKeGNKiIxzJBI?BYk0!c_@iK`X zAR0r|obkpIH6R*Cw1A=GiEbrr0#Oiixsqr-Lnjiw3RLNzL^zB!oJ zK-yFy4{6hg&Tx57C#uJ+vxshC*4aeM883$@jA#bYNv6mpdV}%uh^$J&e8O8<$V{RM zOfrk;AZfFSz9T9i>doT(MAtCh934tjNc0Z#D zZYH{l=oXC_T1C`b?|*M4oWz!_Ao`ZUD~TQ=T17O7p{t49EN%_a^Q5gMx{X=iM)WMv z?L@1Is)^b#-W^1nnBO|0cFaY9D*a`P z_b5>|<2^~~HWEDOn z`i|%$q8&sZ6McfTmHtl%zhaV4iPkdsGopD!pX*Q-@`XmEeMuC;N`FN(gtWs%S2Era zqOr{HDA9EcJw}vF+Sf#9N&ANABP}G36P7XYw?rd}z9Tx$A^D!@VJ7~8Xg(AFNc0KO zPect^nV&Tx?H8iKOmTu}9cjN3wPVgFiN0s(Db4@lnD{h_FOztNXgJYtL|d8UEKvlr z`JJdcX@3w+XS_d&K4<7TqBlwVi)cJ)e-pJQI!~k(-hYUK7_agI;mgeMU!uv3c#&u# zX;(DDp8`g75xqsEi25;}Mbwrwn<$hG2_pKOG&fN>bMX+ZCe2IKmNXyH`*D=N!GtYH z3?W*|tV4;m5QP!_%g}J5JZ2L?^gKf&iS8gRis)g|>JX)oR+lKAw0cB+NvluPnfXNn zRr+@j#*moDh_OW1Gh!UkAfkApH4JS)RF|kBQ4~WP5p85Hjfo-|+Jwl(&;+7#(h`X* z_EA%!DAJl$62>ucbE3^m(t_wFqLxHYGGZ&D9*ozT=m*l;5WPp#mgotFwj+9(v?QX( ziP{tW$o!ItUT3@%qT99pmrD31Bc>5WFk(7U4C~r~=ufVLjzn&Tb|UJ|(9T3Hh`JC> zW7b`XK4!dbL_acZcOoy#=s|Rm@p=+fmNH^5!j%l}P4o?e`w(?zXa>S=VcsS8M(nb(1CT%3q zr$nQOu3(Et6VWBdpGmZzp<{^l5sfAKfrX4CdXBX5M0H7L^FtDwEmY% z_&14pMBRw;iMlYGnMAQ{@hqaXq|GLpLR3K1n4x~6H%XgAL~j;1=m0aEM|3A?^NE^}wt(nn=CY9JLDH@! z+E3awMEi&q5e;P8%4-S3S^vdEvq@Y+)QS=H^6bEDmXfA>YZ*}&hF(W>EmK@il+0Xi zAo_wSZY0WQyyZltjCT`JPttBCnx^-^w-6RFNfnWo5pN}GNwk6}h@mTqHV~~Mn#yce z6IBzfA^Mr2Yl*IB+S`au5ZzAHn5dfQF2=h9Xr})J6R#t&h)9Txoto-9vN@(Y-_kEMx;wJkds?#OIQ)g#&ZtDCAM)iOYH8?{Q&neY#fVS$pJh z{j~x)RC&hqeN%t&e5}gT@202q7Z0tfJbT8zqQBN5-zv{F@0pm-=sedndrgNe(_i;~ z@~ZwCtJCe=V#@oaQfK<{0&&Tu^4*{z@gA+}j-F3{Ib0+32 zGJCY}X46s6=pr5-@sv&&tP@`Mt7%1r4oj?jRENEab6By1eyU z_19hGEHB;reFzQSFHBHCNZ~TG&;tH(t6qJ3ezqmlEJnl!2 z=r69YD$h-?nsj8ORi4U{2XViL= zj_b0@^Yo{t+GGV)p5yyI(&@+|syrp3bL;%&xAtd$l-rB9V-cCN{VQmM-0+GE;F30&o|l77@NDTS*%Uw`vsrT(NSuJZJH>Sz5$aa`qD zANPy?qTHu zj7)a@p8@3Dm*+zMeL0O>{68}wL%%#S+4|))GIxgtS8sH&SU1>7=p6F-%OgKh8@XmY z$nr0bN5+3SjqLw&8ifF9X_t=-<-z5VDHU|&{~UNq2`5EMHle)?ztxWRP+a_H36LCt z_%%(T`1sGrlq62(HIXS#bmaf64&}?`DJW$wr%~4Y|8t@2`9CTCBWKE?%i~cP>6|a` zTgs*XQ)I(+%kl5wKD|pXBFd`&OiHnJc{vnbPIgILqiq7YP>x+5nbPb(BU7;HfXi!3 z8TUWA*lVyCk(BjzD-U@f!xpc{KUAEy-cGRA_@9$|*4r&yb*1YDyOXPlWNg6y(LS;s zY$EO+ySb0N5J^__l1=y6T_pcrdx0Fg#~$IDXb6k%vGb72xXY7=pxESC>9zrP*y_i~ z$_@6F9`Z*P-)*CvsPJDIb&kj&M3Oh!Oi+RUD6-LR<$6V?ZNvrnCpOxxJ>-;3RJg%z zg14&AZ?tEt-=igelbz@zZ)D~ANx~+(tF+&YtWdfB^7AI!C#yEu@yHa{2zqX|o2dj` zt=Vj+Y4vk;wZj%2{--^$Kr{?ayAt8curcl1gfGLVv_}`d3?tIcTKF=YMmtmC%disd z%!Dt)FdX&(Uq@YM?Vp7}v+(_9t!tks5Y1xN9%%S73srk!;ma&T?L&qyv(E5HIQv2S zi{ZyC8||2eFS8{4)Wh&Kh4O8B9Ygdb{0_@P>aAL>K+p(2DIXh4OA5OWgxMR66iOZ3914 zGw?(G0zXtN@I#FPKbSkO-ES|`b7!%cJNTjO#1F+KemHmjA7}3!AI0s&4d<5IU7c-Q zuyMgQ*rqoZx=k~fZVaaPVme1NHKDfWqtR$r0-*U2fMf@NW<3Cs9RQlv07!NKXvzX0*#V%5 z34mk=fMy;5k{tk=S^$LX0MZNsK(YfsvI9U<0|3bm0O@`Jk{tk2>Hs7=0Hn16NOk~7 zb^u8K0+8$gkd_4?*`X(yCS(VXBs&1476C|h07%mTkn8}EDgz+d0U%ukK(YfsRyP32 z4gkpx0Lcyj$qoR?4gkpx0Lc!3kR3ph9RQLY0FoU5k{tk&9RQLY0FoU5k{tk&9RQLY z0FoU5k{tk&9RQLY0FoU5k{tk&9RMLafFwHrBs%~kI{+j*03ZMtki43g6i;71=B+WJx>LTLbyz&B&Ev)MEpxuwCNxlu@t0Mu&I#7KFAMb@E${ zk73Ru#)6xosqNc-rWWG0zC*+i-kJLF^(K63wUr{yN+QcTsBygT77)RO2cl8?Z&4%o zGQ?OeNFsALfs*f5pd2tz)D5V@V8j4LwDO_}Y81ao5p`sqU&pAp)o&Xb=FDCcdwm1$ zCEU3NeZK{9mcf)Op67KUyh>8&;k352Op=)gWFhlEl<1IL#}n7Bw<97>V(jXx7UwyL z;7iwle4ZWF2E5sEgr00cm(AG$UU6@Os7^Hm=bBkEuw6}{L~9r zN5@BMQA)`;&VIB;S^tW~H%>YGttEKp1dUnnLEjIM;fhAxitV?CD%B+orMD5e_<*&L z($FB>PuA}KL7cJD#)x|*<5G6PXV$}r!(q8J?iQZYf|bEWTmcyulShkG#u;%-W!}Aq ztl`QGBMvv=lB{*zjc@H18*%ew#akZ2cZO?>xcrjdl3j?~V#MJRAIiJ&it4ZA$T<2) zPIN&0KWemc(m)(25kEhr#weGJxbCu$=1~z+#G+DCP9% z_mETd5X5rk9tc_fPqn<33_+D|UX8;BUioTK{AZ-&^EA{ujIT!@^Xi9@A%-3k4uFjz zl8v^KWXN8S3_b!33(5DthcSje#G~beOt%-sh0j-xSc~BUaxoO6j#{f)oHB9i8zfFT zibUK;#50(u_)Ga{7LMy0C7;db$o$AHpIqS%jtc)YCOu4C3ZbWVH!}&#u*dx&+P9Q68bfUyzC%{sa3}4-#V-;`$9KhBV1GM^g z;3@GWVj3IN2b@Gvu&zaN;eC1tKaXTfjHLV`M-SqKPg#?N(PZyj03P5+m^AH!DMY4| zeH?|vHxM%@L8J(EIYZP`0ehzu^f zokC=D**~O^_>AFW3X$bypF<(>>Bv$Fk^ME+zK()qgW0!Jh|Dnij}#(H%zl%FjrVuS_?I{!@8_iyqLW9NTc5@1n zsb9Sn`+N$Kq7Yee z_RAC^C2YS-A+qJ{mN?qnA$!j5ABR6O>FkjdBCF0`j6&oVwO6MQnRfPu6e8=+-iAVC z;MsdnNbEihrjXc~7)K$o5i)~9WbD}&Q%G!ttf7$Dks7;&f@JpDb0|cXpZz3-#1_US z3X%P1|ARuLnC#CfL{^~PuOR-&5VS{7h-^W75ektxXfI14G6?Od6e63@o^* zllIFLBB!MNE`{<^+}{+U#kM_Hp$|T&CwCJA5tO@$(G;R(wY>y|#BO3m3W?psS`-qy ziA^XZcM~aOjO+5}tTkcFo|&T+;!DoqTrpwLK0k*;WM%}ZJ@}%Zto`|>iE2a6^T4VZ zc;32z=ii~@BH~~en8km#F67(J!|Ad7yw%D#Ua*d4w?Tbq7yBcknZd~%R$dq4Iq_;5 z=eMkFFg0vG4>RO?Gu2mlUWg~Xv3B<#TCDiIN%O|f8$GXAq&+`>dJ)rYBrdgnU`%u|?;e`?L-ad)7epIo$#h3%Dn3E|Usp!z<)WS!t^Qx#;;K~i_ zRLe;!yo`++5rrZLc&LQagD6(Hjbq+^v*J){EFP4IBC=5%*1&!9i7Ody30%f>{^%1m z5~l||y@gf^#wYA=tXX{ZWHql+1$T@ls+BCslorp&Rfg4EgjboOmcR)!A}ZzrX6~~5 z#$D7ik)Qb;PUkd-8maV_Ir)X#I3%Q45q`~q`?6~PZk^`BdN5Tjz?1J-$5QIRKhXmR z>f#WGc2iVe{`(#DMIv}bTe_+RzC^WfNX#v38CN^DmhI?X1}W!_8dh(n4x$S>s7j|q zm5eq7YBA-7QLpE+5}TscP~{d5`t6U__iLdRMVFbidn{}BKosm^2Q&v3QAN9yu~N(P zoFRG>vGTH1WQ)y>E1~W-TJv+3!s^LHjHJ_y|jYUGY}aWY z^PE>`QqfU9#rVM|IASMU#t8|`OW`s+^*5`oF)Al| z>QC>UYAOYpmf(sL_c@d5J6urhYuO@6WnaXaWiwBF1FJIob3KEfDWt|K7mM*G6+M^> z!@6U0C-CMdtj1b?k{l)8uog7=fwrKga>?;#lqI!=I~Ix<>;E|=pue&H&x7T-;3lw@ z+7V&WN-$Dmb3uco-nM3NpVn#!;z>^^$;J7Kc90ev^if&Mn?F8l@Q~rz-RBMMRoT7@ zV`TmZ#!|jhsM{ELAsJV26}f@^>ibaeMqSbu1tE9aH(08PINL zjdnOC+aYne+K4ZhiDCM};QTqxN}-A9R&gG<0{u~K783t7D)89gHlB;psW})!WqsALRB+!pp>{;bg#f9!d!_c^OjnDu-{t>#996FXc#7r%kh^o;2i#S^+MUCVY{M99t4*yOH zR_PD?)j9lnMQE@Mm7&X*1gLvywrL-z4sy|aD_ha+6XNxP)Y`mVZ?!jn9Ry-XD8P5+ z0iD1;uoQ*{t9xC7`4D%MqhI)t5Vfp}99Ag>Ao{|Y6r2~7mdpTy`CQEQDG=x(o<_g9zjQK17XF}*F5 zu|hK}p>P?#JWS0k^P_!zgL_kNcp4vP4T7h<3FhIWK84q7$d_u6<+umcBOX+Lyny3e z&}f&#%tl)!Ye^0=9G+BrdXo7*GDR~JBIR~d`)#ifrOH$xiQ z#h?R$qVjy-!VeW4i$;Dt4$^S+Ta^E6tl5?QWGVbYoY|GLWhI4gZ(>1EPx;B(39b{k zfXWp@R|?hA{5;n2e-;8^{by?&|GKcNA0ID-daj(o0(r4ta2{IW(o+4zl{UsrDb5!` zD1Z^fQ=4E!6)0^Cn9|085iBK9)7y)fP2WRmVRA4k-AeN&-7)HMg=a9Q8Y@{Kf+^fm z+M~gNs_{mp)O^ZhgNctz^YKrtwSXn2@OP!u0?K%!_%WsV=D!35&l$60Y1s?y1as~I zxz><_wbm$HShhbN1M<}bbiv6JEPzkez|aA~P$gx*$x#L$@c=HYy9P7A8!d9aG!K1f zO;Ua{7`bk=!xdSiYtVs^kcU0qoY-ZvkW*DD7B8oR%fDK?@Yo~_4@^yrZbopMslQ%? z2jxVPI!37&&j((zmgW=7s8eyr8lk(2iUS>*cnXMEm*jnFC=7UOm8nKako#;4Zh14x z(v^=r3+tVUVe$=+fsJ7Knve`DVNpEEer3xV87Ic`mlRGW&#ea|pe7g@FJeg|8g@{d z2@kRIz+j{T|25n*Q5b+~m>Q@qQb zX$evWaT$xJ6o91Q<2RE#%tLTai9fWDEP%nWx zA&VCo4lOs(V5PsoN(Vd>E9ZxUl|BY5y$n{mC&95zc4_D9laSSLRkrF?Ief*QJQR#(@o4#Oo$az_crw=2l)I8u?cl#8;ZcVavqucX!}JcoYqFz6=bK zDY!%y0o4-JRF#WDSVwX6l&lmGiEed@4GwZHV1px{aw~}j(i-K4QPHbO-13Xog=>je z`RF{U6S8ADA;$1CY#1b}2?~6qqRfAdYP~k9wLS?pW;vNB$;=~^f7dcl{_#e}l4WFj zxH5Jss}{0k$&4M%jQ%^|=gn6R>wtDf#?~?;&QABNC60EdT3+(5Wlvd4+HtZhC)$Sb z0LM%fy6HKLxAuX`_#C83Wh^e^p|=Bk!O#K8(0+rVjb*rC=%_Ck+9MdsL`w*h-6^1Z zJcE`P&s;{k#`9J=jnR&mqLh^iOsx8F3Ai7hQxe>~Gq`ypxXI$Z*N_mFm1bHTAJ`KE z=lXe^^BGi@=UR)kbODOXgr^z+`kuy7L|KxuRy^-lD5q&z{&Wd!K(Cxw_(k!fNVYVT z+3WvLcCqj)sEjp=9_3BIT=gCOTJ__z)~SA$;gZxaZ&IG45S0?m^3uCmpxVd-MEicq zUZYtKe5UrZ?2@E}cH3Uo&~8iA0m==7tE(PdohXadARIK8BpVk@HgN5)XdF+42XaCo zY&DZyy@cHXGOb^2LMz9VlfBfqp4w4~E+-`=A4Hrcmj?CWD@iLShkt50IYtu7@f-Ek zl1fz|)3{72Cncm}IXU$2Hc+FKY$H=YGt(#OYLa3%GWC2f)4Yb*LHgXtwAjofMpk+T zMiw`6&NFj*wmeuCEgvS5-HPC>93r%zs$4dzilufHx>P3e7^0F5yl{W-ptJ(v)16avQ$MUihGRjLI&FF0yJ?)TzdZKlC*%K`U zbdOcg5j>Qa(Jm>tAcd0lk)b_I9^fzRq1PE@c+HKQ!}+1^eP!=+=7%?|0tIxS%$Sif9~dO)g0s zM?8_nKDq8tYLg)_QX18PD#klrlpqYg5DFV^A*ZOay9H1S(E{AN1rEqwpnY?teFe9+ z>S}32q>`1E6+9H?%wlNiu?9nO}o!BUI0`pOy(bx~s;R)<)U<>i^#xWwx8OiZm){zm&$<~Qa;AjE7^ zsghLTssF&V&Z0ch-(=}XNVSxVO8nwKaIChYN5fQYE%S>hwnZh`M#4Gz*2HO=lOqgiA#~{^5(h_5!P!_@R6RyTVeTW1@eIRV84;K}< z9*Qar3@UXcGASX;WximMTGdj^BYzDFoB2Jf48}#3fB4@jPm+T!I}3x(0mnDFf`#t| z^AqFK*E1V0&;=VdxYi6djxsUXWBB2P9LBG9flgd+u=th9qOveqF6O3ng$7>j!RQwz zqhvLLX(48?r6=;BRYn!?E}A<9OC*QXl%>gHxNootiy?(SnG6oeuEUECg2UUM9ImYf zMSboI^wcZd3Ik(;x2O(R@}w`(Q@B);R>ZEdZ+nz|)2r+_IZug~iwdoV_XyiPVw=UE zFaMqS^C_B|j~`zRKa$vntk_>I#wV&o7;*TQ)Kgh_>J0DS)U^3;IC3V8ob{IHIH&OMVdpWu*RTe|K5}Z8zCjfk%8vm zBcfWBl!M;Y`-*3+NB^ysv2qj1KMR{k^lFq6RGH^wt7|R(JZUSid@IYbs||v^T&}Vd zVyu(4Vcf=4=2!=Y^6i7*I)}$$n``ivq`Zdw6{{=<@5aHHM6(P69o+;le^$W2H}kgs zkG$Q6!jD+?Tl5`@^cjY}zVj`*4WvCq8>|Y^W`crCU$vLw;(Ey|f=}7v@-XiohHERX z2f^-2+zOu}P-6L=t?F#)Tz;-&>BqOJdt9@`AxWRlcbe|Rhf+;+D6Ziai0u%F)cl$c z?>9?{;@697L9`_uz_)H!JMm3F>dAaU3A{1ZdxzSJ&u*nzd4XwKZlzHbKIfQPiHGl0 z>+%-6)KWa;2o|HotMGx35uNuGN*h{5>{HK_;zw_yDbuR(8wIsAUNlu}s!WkIlu1>1 z(t52C&s9UqtE{WS#~)PFl*PEruZC7kSu2t7K3(Q6Oo1zT>H)PHPpPT-D<@6VSv9p- z<(Pqb*b_A{SKYKUQ%0YfdA6q^&m$wxeUV35Dfmya5$hPw;Ebw+TYXS?8CQj{9ZJ^! zm1r%$QoO3H5L&Q0HhbqBg#>l}LDiLlRb{1Y1+-!oTxxU>qF1RZ|EPdg0WTA}@hoW+ zPF7N@@)`%!s{Gr+wg?~hMtxs*zN0Z(BAh5@z8>EBzKPX}!=d6TCOS^52*-+v?r@`{ zLhky3Nm0KTf$6GWeyU#szJH{ahv)ynnlJCssvmqXxJyBpg%) z25J#XFsAFn&~j8HdL)p~`3Xg3--Xf!0ihC44aECsxn)B2v05A)VL&RwV}6Hvr;w{V zK^@gihE?_Ss#clD4A$b5`qiYoftX{kR)+e9@`^r8t0w!f_7E*b>1`seAEK4zrBA9u zES>q&vk=EmhXMgNZwSc+B_QPIVZ*={+TBGCQ;-Oc+pp@bjMs)ihBlfRYkjCCS=M{x z`O3_rbgoA1yE_lu8MP6Tv*aU;o~tIQQ<)IFOCF>yc#yhdh}+jqv|tN7dgmaW;M;Ok zFThfz?EmYL^|g0aPcEouX^8Cg5}^)q%vaoFjmGN`AfLt+i&m4zUBFUNv~AhyvTc8{ zXt7u>2oCC1=hYRhoYJzoP%cWd>hua~B_*@E92`Y*X)%^jZrmBUv@*(Y19#YaxPz=( zL0GLWx|gk51!akWyXZaKA62aoE^Bq+CThUlXW;IB4>v;B%35x_ap&q<9p$Ehd+j~k z=}Ze(SgI5YRPH|0N-AoqteleSUAZGRt*lbgL{9SoNTZFyM({J& zAl&gq@J8=y6L)$Mt%UN0fxFxrw|7wp;Sm$}$D&Z-2MycAb)Hkdk!O1K{Ub(??zZe<4CCDVtIe8;nKoo@VedqXkq1h7|^4%kCc5z zNxN%Eom*}+c)xG3bFl`WH5$DCVIbW`Ciimm>_{zC@vkWquFX)mzBP$z&0Kcm6r1z! z#%Mtb6S46;bu8vkwWe%YML@TH0%=jDo1(!plv*`q$AHkPan#l|Wye%AvIEalWIat} zQe;Xu13BwGWKv+tR1=vrn9a~&lZ`wdn|VB&oZ5%vZina*x7=YJO0&Co2mSk+QtsZB z(-M_^2D#m+JDDpx%4-Fbn?})RYRZLFvx9oLtNd$5hRd>i%dh;*Ym6srMJ>pp@~5w$ zbCIomMXivczzl#nrM&Y-En5l7v6vebKG|Tt0dY!U13xZJG`%F9m(Omgmf#bUq4?9? znf^@Hl9hS}e(f~L`_>f9O?})rc>koB(#yc)V(qw-;s0=1%x^bIVfrg%D;7)lD zw{lgjfMv5A7i-Hh$_9zc2l`^xq{)vcdv*kv5*_htO|NLQv+N(yChq>}E&GQ)2f%fe zXvH+%uea7v`O{$Ov8-Z1uKJ#KAKv!Pt<_SjwRlb+yy}vFn&yuST2^S9oa*s`4#E}u z=UdEoZv1M=`uFVvTzuqW=8q*O9cA4=Sz{DRR)Cz-0$OE3Um&-0Bj4`}a|9O$yUS_e zM)zz1@GPqOKs2Yjs{Q0FN?$ox<`T^`zGIzM#WLF@sLa3;dc8Kp@|`SmWi9?-y;dIg zS({~kBg_2SsLxN|pg(_hqhm3Ymp9pq~r@%%nKm0DD4N%0#8@1Awzdg{O zd82pR1Vs{6TaI_&=WN0Ri+dOYwPd_G2~b7~0$B2F2GoU`!7^1)cFkw6WGjg8I-1v( z1G4{lwWOtqAgDB|Emhdv^H_Fvt<7uytS<5!T^n!Uj-|ixwfViD)$z*Y+PvQ{Y7Iy| zmG3eMky#X(E@E9p;!gBOcn$3OQGAXgz8zU_l>6iyDh?+BRRk^ps>uEkkO2z0G8d4q z28r)WE*SY{{{u%^+h(?CUT_9l`n;f^oCW8kNe<7@0+km=bKR-U3(VAtLbgRIf67wC zxOrS#PF=5NV(N;lBbyianX{nL!(q9S3dvhXYGWX;cm;J+ayImJH4}N_Y#1Sx4dhBD zvS&wtG0`fgyehU-c7*syW>_8B5w*8q=nXcgW!I7QiQEc{VS!QPq&j@~R#*&k4W!vd zku&PZ;ni}R7QtUfYqfIOfx2y*R*H|!ucgwWvYg^Vn(xHNLzhj8FPvI}@~c7d=l3XH z+>QzForzq22b$-Nf&9`$KC=P?HgG4}KCZ58OEA!LCq%UXe_F)Q47_=qOKpJ}%Py_0 zQrpB{xeLoO+{Ed^#@;Hz$!@+U?Z!apW#Zr5jb&PQ5Bx4}{PBCVF3L0$wZvYn5?q2N z=}B%>F-_*(hgxnh@w4|qXx4e)ul2@nupiUa854igeyny*df*@P#-E=9!|N{-|F0aa zq~)mx{v$X3)52)TbKj$?VfEY%nRq}eVF}?mWiV8N2pD7D)up+A(DErMCVu}PFtp&j zC4B7pc;b7CCS;66Q|TxA(XA>~DVySBtwHsqY)*Zm*2BBzL{aHmPl{&yr+E43Q=`=J z_4uBrYH6&SMXA$0N_EtuzOKfX{)r8RttP(ZnVM+%R^o5;#uvSE>lr-y7fk&6f2m0r z?t=c=|G+Q(93HCICjPAF*a&$c@t=F+d$t0qBL--1f#T9U^T=d2)Ry=}t!#bS5}Uro ztbtc2Dxz)i!c|41FL0YHgj>+`;s)w-5pqVleZ0F@Ih+S02@lBHOQ@A$SGO`=@I zTQyr{lYCoWiq)2@@L*o3FNOb5eI9pBO+mMd20tq($_ejOeW~;Uu4CW*wTa*VI_9$% z694&s;5WR1?brMb-1N8JP|I5)`R1DF&~O6A-~xRy7?<9Jf24+q|N16ALZ~M3D|_P$ zvAysc#IT!*pK=Rgm?iN${s(^KZR|WwHu1;b#@^Y-5`X-E;P?0)_+Oj&$A1U@8j1hq zf8cMvgB`6CCVq)O)LPie5cNIuANa9%vHShR#Gi6kEepqzz`y5>pL9>{idV7+Hq>fa za1(4Ytigx((0hUDa{kPnF6U2IR~@>qM&bJn!dK9S`rc1LcqxU*zs;DD|guTCJ;WHz;mxDBJVgX?&l1$td<{LvvxFTre=t z8;qW9C{3|kXW=6M_q`nb&*B^5*G7&PW)5MUB%V_P@iJag8!auD-BrfobE>~3Kex0; zXGHRWoiM$j1W!Q$izFz@w}PCzYTczvg+45Xl!9n2K5RR_G)kR>Z?Ibmf=aUtS-VC% zAOXXTl6z(FO*^0whRH$)%R;j=q_8a9sphpTF;UGG)*^|&z>P2buCuRW7vbnGNaMcu zGErMtc1uQf7>u0XjrXjsnTV--)QZ?X6t(|V68_m>q{Lpephe+lx?`w<<#~ItOY=@* zzVXH!y$^#0U#A(EH}_$di{qB=Xi=E&Jr&3(NeTT$>z?<(tTJ>uF)w1}bZjB@5IB~u1f+?9or@L2prKng z#PVReiSBHOG1IH}f4^soLG{dgm|_0F2;MH*{GET<&; zaWC{66HTq2#_^P_+-WTJ677g!b7RhUr~_15Y>50TX}mURxY5O4NFg`6=UzxG4;qUO zdGbj0h2jwEBKElTo~Eb4etyL*M;xz%nJsdmL-4DE@28V@_6<>veTQn2zZg&nar z9`sxCr=zvP(v`QgG^#yHvec&u_l-y64wtx{-{GZ7V2ba`D)M9TSaL6E!cQk^ILakn z3orCV6GMKd2X*e;d)V;!DucTZ8PdCd&uX1J&--8RG4k3Iv?z56W#h3w!I3C7*--3> z1TDp~$b-cN9!)T}3GI}paAzVII3pM+qg-ghtw~zkd&hiGa>pb$S}329gx#-uP53uS zTA}~IwUq%sXa1L;zGbxLSh<>Aa?G0_&n_9(L=N`BZWOC)ptLlSnwd#1ld7NWF*++l zNp31_084YNKJ38pGcge44pvh!aDuE28@9|acbMBWmBXxFQ_~{A42HR}dDAlqHxt4#g z3GFTYy~CgPvX1AR)WS>uUzc*`N=|9UwNsFVM`m4M+nw>KCFVbmT8@yW9i4B2Q#YE- z#Xua=MyreW^OEMfdNp4&sSazm)j}-TjF}7Nk$?}v+hRu>o6{~lypo47j;w+7U^gi+ ztwpUGF{Ti7b!Ysw9o#aVJu-H1XY`a)6icduUZ_G5u5OtqyCu5=6xnBz;UgU|7#EuK zl=%k3GdjZGvP+ixbu<2NN4Sr+n|N5U3WmRJCY9sePEf#C-RP}5W8?Xf2l@p!x+j|` zOtAT>z;v;hhlWcRCA7KQ+u*|+w8f_wvs>DH_@Yl~hHEYjg}~;rd8^IE24scia;Ow; z&iPz;CCeH}iOr=oQMx%7B0p>%M81uQd}5wfTxn?_H+v8H>-j()Wg=S^0C~89JnTK> zs|#o_naJfike3+9i%ev(&InqFDerp|IeVd2QQ2o8?>3Qz+qK;yxLt3X$lonO1#cS2 z*SwK~Gqd`4%Npz)C`)i_5!LlsJz_%Tc1V#IgKgpbc; zJ@G{?-YkLAZDitSeXgZpO(*d2@wX?wX#CboL4Tl$zi}z(_m}v6yzvG7Y0EHm&ol9F zFN0qXpU4tFGyenMZ>{F%pX5<@r!K8m%yFFSC%&-uQwuv|qU5 zFf*aeD#8LYGfn)DOf9}bruAl~EnguMUa@mmXSH`GPaS|EOgccxEri%@<>ZsP>ZPw1 zt=wuUH9$8@8a&C+boaR9L7nXm`lJO1CjSa9h z*ZqjsNQ%1AkN9IZwva?uVp|Da;X)N>Q#Ej-vOw6~bq&;7-l+6u0ZzqoF;O!JOxO+7 zp5CZ2I4cahZZ6abd9-+CMk{`%5=7D)lS~He#knw#2W#b(O$O0#yiw_eIPAl@P>bZ% zsww9T)YIOmV#a#uMjaiBZPmXG)MwtP;+V9k)>2T>wkN`%q#{~N?Hk(KtFeTSqq>Qk zKLW3yR55UqC9d+iC3UxZSO2Pbq;F_QSX?tetejb?qm&O@^PG>h$;uFe(7@JG<)58| zA;fVM<4SnmTJut$Xr+~T2F@H5_8A(pwN&`ICqw7#bfb2g46W=mP`7xY=4sxmcmJ*) zWBQ6a7ZiUmUpEE25*LlEzqqrCku$`B9h48+xER6|AI|SMV4uD<@Lzf3Z=Q+@6m;X8 zZjKl}{+LS-L{m6fnc3Q_)zAiF%=8CE9IB@btunun)=V6XrnGA#2a9;QW#_k=FMnLY z7Qjb!fy|+A+>~4JIVW7^es-p&@`7E#&&W2itL<(0=&qR3Kk~>iRPr(iuUFB#g{`|` zA8e_Kf3O=&iO)Rn7rODq-p7{i*mTP=@xyw+2HNX^zsrp;=)dfNHxq7|_*p%*av1$) z4X(QJJte9I9HwOYz@$Z8T@uw+s*~WocwsuKtzlT4#=C{>Zz_Jg&_yc_SNj$35=68$ zM7!;O8mB>GbE0Hh(>UdcQ5sG$qE)+3lvcOC%Q8(RoSO7k3xD30=?5P)`oC{6@Wmjf zlx-_|*tN(AZ7VxISVp^QH%Hcvj=fX5nYBw$vW)6<{O{`ciRuiN)!}2#Xu~_Z_@6?N zQ|WK|fABxur)E~yK0OBw7}~$v|A*}o)5e~~Tb;#=Xd}I=1@?qIxAU&n30bX(^IAH- zKgfE4*?Yoy?VWNWf^WH|mEeKzbgOgo&v@w*$w^i{j2F3qqx?j4?h9Img)pC9!BRV+ zIrDYS|5d9>n1RcI8F|Zvsa(=#3ru{n9_Czk8R`W2oXD3W0w}7js{kho=$xi*SZnG)TOQ( zJ$VF4{oIOI`$reneVvmZ%4|84^f2e;M_M0~BVhVE$2`%di74^8%in)#Va`f_!tA5w zNZO`{I!8X!y1J``^o}A4<(6=c`x`45d^`XXyb+H+ikD|gyuka5e}r+%TP?~t=7naZ z`CWi1`rNMZ)*VrVsIAynHAH|y@N8aEC zW~b;|XY^Z5rBr+coZxKwFFM`gbS{0TjW8m&`u0-ihZt|v@Squb8jn(R2Xb7Up+|GS z1-2kwd5$g2d0)|MQ(lO~IE&(p;90m4*Lh0SJ5p@Ct`8-O7nT^AoM)MiIy*U1@cCAI zra2q==oy5m~DVd>288FwT^UHIgOt1K&GNW_r6)6qkWE5U)o{c&0`|FJ;Yf7L# znUcXoyz@zr-i9I@1nc7kM>y>&Y{70_6gD)Chtj<>9*1j`QPKNZkx zy0&1g{js4rH%ZOstRJJVvEY>y@$MQ9zifywjX&qwINgsD1PgBxb@+?2SdjBYLA?@1 zQ-RJ#h4m>G9G&UBP()uV0uzeqt3{wh3H>?+M33-y4Rz*BETz|>tf+f52gNX+5Q?)! zgrFZRP1OVX+sb+&9uvw!`PW^UpEDzYx@9%T0Ep(->fi(jPzm7u!ytvxNqTvaC!#g- zxa0YTFf`|qGCEX1GuaL}!!r+0E~i&enuR$BmeUJc5a7$+;q=kiOT2qH^Lg@oj^iq6(B(w6*d*bsl%CfDNURk7J zxFtIK)z+K4pLpVGo4=&%S68nhNHwS@nc~C?k6LXD;h*Ja!On;VXn*1wWX2H(opDv5 z6J67Z9-dsm>^ANjU2~3Vr2AO#g-aHFl(_pC9S+kNO@~Vcgkq?Zsry^#DRDf=Lj)Lq z5)1M(n&{mq-ubMlzCi@OXs-Vt0=-)rG3cq~B4$?`eWeI=YDZ%$uk0tBsT$1xX^+Bi zlYuBKy#oqEGBp-QW9hu_Mhv}i9rZ32Li*fSkJ{E*53*o|Cqx)0u{K6ni16_&omuFN zR%rN8Q8(Ua69)D1BKUYIpex475NUqmwAMxn?nDqpZtJG!wa^pfAewI)tmozni?V#q zpdQd26pv1g<{9Iu-rw57oxCTB^$?z&g6M|hbsI&ieE)a0+&pmrQ=O5$bxbrv!kth~ z&r5L2 zbwp9bw-bDaSS)*FyW;TK{5)|e+I5f7t{)H8b5XJo!ezsBOe}lCoPHmXQC}@vim?=2zlb zZfCPG)Q-Rx;t4wWc>4szUmJ^_14~JT!9Jot5=dYvkw@;b<>kH;(P22kV1wR>*Zo*; zpp-E>Y~#n&|8TCRQ-7_~{dmk!w8y(i&;USkR-3F}rhr=vg81H{P-V>>P-TRGf&HsM z5H%}R4$`r#466Ov7pV5e>3Y1tLbG1=EXJR29L7SNZ)ef419cQrjBhN<^72<@nGZib z6`5zu!PG!SgwECN0t@{W?OZlb-|bDRYI%&H#S0|Il2qmLs6^;OeSyd)PM9iEj)n03 z$Ko=-O6JsfOk=H)6eutqU2wf=siRL-EdL_AY~9Rv%UOzMn$O8jVnlp zqatXI5;#?fg*(vz=vqW!s7LeC<)Fe456w9O6&$k^6)d|-pKE4%R|$!WztH`hdDoCK z^~xy{Gm~98SFY7R5g1^n1fP`*o!#kcy{wBdCpvPwNTxu;jGCN^t!G^-g%w%cs%41l5=h~e#cOib@^wt)9AtH$4FIoq2|?jz1#mGiU0h6NIEZ$ z$WB+p`Pk`JaX2=f=wxg>(XrTgqBF4p=s;`$It?3XbQCt8=p1Z3(IMCXbOJUa>G*2^ zI{F%sbnZ2t=+J8bI`KL^mz|Eg#*?^L1dvX;2B2fE0qBft06O3r`RR0PJkinCc%pNy z0q9I?06NebX>^)3p6DoRJkdGUc%nnB@kA$B1JJ!9h@`Wt=}D%Edqwa_XI3MT?iB%V zbXYZ>=%i|-(J|EkbVfA*9Z(HGr&9xkj;6*Fol6Zshf*VwPNW8)o9E{>K)20B+dJxClXo$ez}l%^6W(kjl9Mm{=7dMxTo$4CRv8Pe$?;sEJ% zUvaMpSfrDqQ6L=~jU04lGyokKogOAmi$*>=DjH98PBhZ!kZ5G56Qa}eh~uGAK{^{6 zm~=2S+KH~G1IiwXEb1f9gHF#U4ub{`odgX)$3UZ8Is+OxFydBS)N78Vromg0cF%Xx z$-_VmLGk~8Ux}o{wJHDmdumi|iZ?tOmEA54Y6wbr-&H`3K=I#q1?mC%`vHI5sRAo5 z=^u?H#&K#3;MQ+cna3SLhY z-A~TZSM`^cK)RF>;y7I!jJFl~cAv-h|E@Pt9)V4D-rm%q8Nzv?8+r}p(=h(a1HF^d zKY|C}(bE(hU-;&UenF`e#s}Tj>(WI!-`_%&SA_G{cfdwU81Hshzh&vk1Af=rqfW1$ z>(>;YaDMMEy^S&?g4-To!af_u+dR@+(Zx62{{fW?;k^8P{jB8xKlBHdI2U-4KlO%6 zopAp1Q@yeBYZ&i&12hNo;^@JoMV&*(&)PmQoX=(wWsRe+h7Lc57&CcpQXx{WVUg`zb z3|n95G5P8017Og#2LLqP0MLa8#KJj#^@UzBKiztOSekVJXx0Icsui;iZ~0PhYx#|D zeyLaW`F#W&wnLEhH~!+Kp6vNt`IR2)`P}1`p5*zw;+0<7^ZCLny`<-J?$_S=E4|i> zdZzb&?|JcSy|`!k3Ge3xZ}hUB$yMLz1wEhbZ@i0N_QspNpWk>FufNsHmNl!7c9_mG zduMm=+q-}FdDC+b={~4mY4@|;MCAS6dbh*cw|YfSM()1V)0!Lj-Np2d)~D$mfNqii zpy?ez&T3+M#}iHO0CaN%08Q@zbZ3O1q+Q7mQO5WKC8@v#X@CM6?TYL7<_m&ww#Rk$m*<-uzwxG{B;QH*CC8whp>Ge z!t`|r%hw?cUx%=J9m4E&2&>m2j9!PZc^$&!bqI^sAq-xJuy-B8+;xbXT^z#JbqG_} zVee0OGCG8%>kx*nL)f_vVdgr7mFo~jE|?IQWa2u6h3gOou0zX|%$02l%Ls+xG5rjy& zID~F-h>KJlLZdi@LP0e|F?4Z?LkPJ;$hbp@xI;)dXy(I=><|L(5c2I1;_VR94JHJS zB+wu#{z;r2LYf^ym>oiv9YT~H!en&_L3Ri^b_g+c2y@jTtW}3FRvp50a0pYijzgHL z4q>S}grVvXb}AZK)PSs1^s5NdeI*WIp*nJav+gRHxCHCRh6p&SgpY@U?~r$l5; z79}GF^Qtvj85thNht_1pv{%VMgzKLWoi$mIHZl&qKCTJFhwn>cCAEx7z+NedZ*Rl``1)IL z;lt*X{Wdz_$%*)n1bt4$cXMdpe`#f!@YQex(w$k6anIol8YyOQN!7FS*R{z4-eKv6o~$A#%QaI%0JZdv!Putcyts7k3zVH>fq^wewWbICs5R_|V?{ zhjjAl_c>J9LXVnuX^fhR*w3h@g~XA50WL8S2}>~)8e{OUEsDIq5KEP`jb#w-DCwkS zqVYQr^oJ=~}l!fcp z@YR65%t-z;4K~1=rs$$;I6TRY<0FZrkl&&Gd-oXbs`W)2>S4d^QDBE=ERwc;M>J!V zHF3vP9iGvG$-Q%qO>!TbA^Jdi(~Q-YNDcX~Em%phlg@`VXZ}Ruljf`%!Gq0NErNb6 zSY?9sTd*{OGh49Q1kbl%H3){cWK|`#Zd7C`-tdm*=TX{{mafw5R9b0%3R~hlx)swY zcac`CCP8~ESXF>qTCoOz3tG!U>b7Pn6g{!EL_5@4GL^dxOQrb6ZCEARigvVNRS6z$ z!|IFsx9zh=l4cF%@oiZ+wn*!?WhuJ2=xc$|%%8PoNk}-+mZbvtw`0v@`Z6Ouup{(V zC#&x3Z?v4qz0ycM&<+Db#H`}u+OtGnyghV;h*)c&WVUA|KzU?)Ruf=vd)AoB>A;!- zWOZP*B(~GQ-q(RulrcL^2I7HQy(7y6nB9@pkm(1E^!pt#6^IfKnmM9qKRFNZ`*jk< zZtBFENTgE+5@b>18#}Vl;30#Cc6UjXpmWwh>Cl+f{|TWBZ7UpvZe(0b(Q&jyRl~U+_@X*V$*YR zH%J!XwQj62!Nl&!2RN=fYoL*VZTICXdSM{k>dvaj2!D!5;Hh8O!u{mzEbxLP-tqxZ zN9%fHdwKsCwmhB)Arb+7>q3ZRey#~#kbv`wii+#WYRaPW$%rvMp*I9Zw2U~~la&LP z3wp7J#B8HpEQ8?Zy;u{1PmK6#y;(h(4@dA5<>kFu0wJ8~jaI@&YJ?rF0odQpx@h8x zxhfLzo}D$Pgw#IlBbk8HVu-@oKCGIIz+nv(QKByz7?@-Fveq&oT_#|LkED&#-2E_I z02}v1%K|Rz$C7Dl^kP4ZVZiAA=m~5dw(8FsYGe!AyGjCR$q4>)f6PE4wug*GTln(V zz4RE@Fh|yE15i(a)YqN0tc(~SBOVTbiWV4yWJH;4R)tE<&PLM#?lYkOK-N?uj**BX z2C^a=8KWiV|{#tvrb1p5z0X9DI7W^E*)#qRP7(8gpalhOyAfkRk%+VfgF1pNy5 zWC&}ii~Il9jN+E&P({9@u&qd&k3OzZ2ees3Q3T-4p{%YZ&^PhZ!?2H7YZz1?62=X~ zr~y1a45JRP(1(yrfw)^DPRYib0y92j#VK|BhZr*=^?OQ<=d`!T>wm<8D7F1Z7(gQR zu*|ECVxi{V;l>Z4l!12ZBbF-BPD-@u!=VX~Fl0EZArpR*38#l+5FkMt!5Ybgi!x!r z2p8rR?lS^&3~d1VoApLtUUy?gh*U1N2dfX2Jailh(FElcBOx4sPex)I5v)IuT>$$$ z8ry&UMnQi^@eQL`Elu39hy!M5O!$pv`DmZ7*l0{o;>yLhGGXj!R+U4M|I~xdpCi!LsHLdcUmgk1Jqozx5r5kwKEFo+1w0D) z!vp`W2Ywz8{9qS8^>wUALYylB@!=lv5gzgPJqmc>Q9xb~{7?`4S04DUJ@5+w$L8we z!cONzhV5-!M38S1>uDnoKrhXnJf1h6isK63eT=32rcdzd(&b6a*H8KfK+B$u3!-Ow zA=Lha1^Ehu!GwU5+CO2vWW+Fv7{;@w$P6$PC$rpCWU0x_PRAK9oXmO>v`k^$e5G%J zvN$PAOG-FAg>|O;T}n7uYerrL@YoDzf3sTrq=Ne}g&9?n}-MG@4^P{H#e=Fx?8mZ|ATAd8C7c@=n0tud2%NDTi zh*vr5kE{5GaF)fe^hf13;3}%=XtPbLm7=`BLKdD|xM!#%?&6Q?ol5b6eAa2Eh8UMD z+KWl24X_^IR+5!C(D3m>7Uxf~k0~$xP3GgTSgY|)oN2x(W=7tB5&O_`ng70sjkS>n z2VCqKPhDwnv1u_Y=_ma@#Qawyc#|(t0HPy!&Cgi4Oj}QB>qqeMKe*CHd=D4JtfkB+ zOvv!yd3M7;1jLQhZaim^0#63j6vP5~$`Td=Mj9_+Bj~o5V@uHFfYm=|ef^~)iOT4L zKR)XsngN%{G>ksBSfu(4x*8>d#edN zaSbaT8aSCn>xwM82^(DU;dfaz{Q4_ieh4KAs(0AXgWx;;ZZ${+CjNn)HF`S!8 z2!UHwoD=XBgdK!Rf5j%@wt?@yVp9OBe9cDsR7QpqlTQ-$oWjBnodt=i^SQc^g>= zU-HwTEhAk=UqfAV3jQUZ@VPBY)Uo_HCA zM}Pd^3!W7D%Z2a)$82W0DAt}ycsRUZD{4W-`lPt2@QIsQAH4edcr)t<(BWIw+gG>| zDN7NYYx^y0i}+ICL8;y<&gXuIs*qO@RcYd`3NA4938hLHE=B2TB*}V4Y9D8%Z(-&6 z`YkNCzexIyN@w_!%|K*$!Y(+9pxyA@!EWeM zf#*wjzOwrW$tOiJK&1`bjY(iIf3zDrb>vb-zf77Sl_)Nl#AneA>U;FWDaQ|Dk9?tys+8gN0ygz_x+KL zrV9n`{|FudyB}oPzS0d$#T_7Rp6zG2fe`^;u$X*O2de&j{UKH`K%^ZZWcr)T_w9ET zRNyefdxDjD^}}quf-7jg2V~?kM&ljiHP+KKF%q{veQ^ZMFMY{GW}ehKNDAT+N1aZ3a|5xgAl>MW2m?o z_3%IY2MUB6l%4)uMufNy`@(VPRTOjoI2)-)-h_%NN z-*IGA)RZ@bes_|EP{t!C!8dNcseKAv54igjx?Xy+Da%5m>&Km9m56KqFi*d?^lcN~ zXCwx7f2C>(I?S=QfI zy27c}zwpcZz%Onh&&}(eLxq9T_8gloJmk~E_=$7aEU^B>K2&fI-RPg#1YhYoCx$xm z=&Q&p?zHQAo<++f>qHEEyrSxZy9V?B1ZBJY7Zw;WsQcideTS45mr>hsrKR#S8(<^n zIvO)@qBNF(7{X8g4BaQa@l-|`{E?X`$b|6fzhE*HspToPywP--qjOc@8-HO@zJ|XZ zX_aVBuPH9+3`&v3x9{XGzuW~jQ@HY>-lpD$k@edJbP}#C?er`A#8>+GsRX=0|Eo;s zdy!37CY0i@E<%t2M_ti3h~)j z*aSZG2Mo@FS24f{#a>Rf*7z})60d)S<6Hv|K)X?@h=Y zGF-mNX5#goKEJUk4Er2lyyZlxG2)vj!94R8D9f1d8H`Y#vSD&II@pntd1Xw~O!m9a<6j zQ|_=&l{!WF$vbSajkZ<5NneAL<$tgwU%AynT%40!fO;?wyTgKP#=MW*>3884#o<(+ z-G%E1@Tvi0@4+>T=VABYJ_X!<56dXPy!Rn6fOGC+(E_MFz?u|rzyle7{{bdYJWqef z7HYjR&;iAHzaMcnPV+}H!;wc2AdwKqQxB^J`Gm)8u#70gPd#RZdCU{IbU|Xs6V{60 zi6^k10INKO2?x0LDZEpFPoA>61e5=i&*T4uIgIBEf3l7QD?MYaZB&wdHUxp^e}H+g z&_66cKm81@P9WTV25THJ<1aQ;A}%4sO%GWS{`4LUA>Yt08>QKdhRJ+fH%qpJE61;y>8k!AXGmUtj|P zaO?||3wZPecmpi+5_2Ko{Fmqtz z)*DH0)*CDV@ci%%>q4-}Tj1lUqIGXUw@;G=|HALw2PX$jkL1zu_&jXLzgQI`{p!DL zjZCP($CS}9#l2(0kT5^R)`7qx+dx9|v)JYn{K8_Jqu}C(3W}}0Z@ub5C~JI-%8q-) z!WSsEFn(OIg=>_8f!IXB$4!=8wvLn~E0=8q!7I6J;|X@Q+CC-tm({j_;B?hClAukK z&nq;U&!XG1D88F+>uMvy_C{3TK&yt$dfirA#xq9WyCgCKT ztr?w$ebHu%C+Op2D@-uS$JRi>k=&zwY?%a4`PkC6m9Qk9+VWef#>P-vDV`dPZ>`=0*g^>hXmgR+J+JQ5JR2dl^_%W zST2vPqm4+}cM+k_1Ht}xd2DHv_9Bn1Gr_jOwyp}!b>0_@;sNuApuGSGhM;1fGgx%{$>+4&{!kMi4kDY(_6bphl9++V=fm|##0x(skgjIB4p zYcVptZY;{j^Ov!pMw=Du01RP()R+ZrXBDU@Xix#yt(GJxYGT5moI&nc! zTQy4fxu~rk!I)yU<^+co10#Sx6|?o18H(^Kf2c+Ifa11RG9oYESlkxMZx*+u6J|mQ zTTg-uOF%jS|0p4gE?Ux7jGmj6v{fNEtE8rxaAbrxP&d1XT;lL2|qjDmO^lSJccFU zWqQUf5a9{n3$PWScBUqpB7`SZz;O>7jf6)DwgxgG6xX*y^R!4rn;^%!L^L*F-XvR7 z7eeDCAbgx;%bqA*W3EB4;lx#8fVFvTT%w*rcb~70aCLjA2 zkr0tl5@NDMMpCIHzcxy#M?Govd!KvmefRV{|IE4PbGhCItC;X?J!}`q==xZ9 z$lmoaiy$`KFxLlZ;Blj z&l{i$TAPcs}wt##TQVUp?%ndhmGWe0PwJEN>mr3v9?M%J! z&(@}}yeq138<}F$uy-3ADUhq%;N${%yNyW_ncNm9amXueRqyhs+A%e}YVuL+{+F9# zMrFft?M&T5S|uYN2`_|w+hI}Bb9p=LE0ABb!)XVyL3?Zv$c*+l_8`A*Z=N)^;~B~B zlX18^ctDH|94?B{tj>wV8)xq7pt45?(?Ilv9k4!-?{>f%Kq9LcNSn~qj;2NlEzFUG zKE@xcbG7hFPdr@Vb_ZOj&UZ8=q}Nv+ah`&_uM;*iWLzhlEg)BS!iqwE*a?SPQcPI( zF^mq`?=kbB$c)FZFE(out{rEpgywNmLzMcDo5oSi@baznJc;oSW`;AW{aH z_Q!EKgDlz^+f$r^YV$B>>l5jW^}*u?&vnL1L$-VZ`v7F>6IegU3r<$*V(N(=+r^}s z_P84-Xdp4Z?QF`01-s%PhOJpwoChK2cEyeinbQ@S;uRAOCYTyw=WbYBD3NYhJjm>B zxDG=`cgOV#a(s787jl1h?A?%6duZoLJ+N0pKiUHcK^A`!Iv%1G3t6a2cl%Lbilnlz zm#H3Jc+wOT>z7X=DrC!^7zJ{aS*!_?mD@Ih}}qM^6#gG)c;{yzAq1X-l74iw*410Ly%GYWX|eyWe`XCk71 z*AE9RWXt|IcR_~z@sSGhv;J6j$m#>IJdi0)?i+w*fF3na2DmU{?`WL!~=Uw zoW@-phqZ_PWt_%uG6>5CJ#7%qjgV&sY5%(i>o|P}W7)yi490!{d1J87vqL=Qh1X!^ zjK^MfEFOCqlpo@;D?-*yz~KuyBLT@no=L#qkQIiQheUQCVg{PxQk_;L6~nEA|c4sp_mBd*`b)osZL?-VYnngt{8?>E#xP|aPft#m54DRrzD!X zB6la6>E=`?j8R|4SbY{3&#r-KEVe~~`d$ifU_!rtxEUocgM4+G>}(DVET~tN1Db(q(}OFqsHTH0iz!X*AF-C!t9Z_P{3X> z3A+JgW)hYg^6MmQCdh`#_)Jk-E)XTdMR(&^{B$BtwAsm6A3PB9mt-t9WXBYI#(~_I zf>Eq@SwG5OogR1!3k9dAp29T=^1@U2Kn7WL6n162lW6`Ze7Jb z|0y_`!nS;h>8!SsVzYZ-o~hV7U~4fIhcx7dsU}%{E{M;O;W*rzPs8B=+w^HBL2Z}B z7FQbI1EV6?BVp?tF$wwS_WIir+!KBgF?Dj!?G=`uj^&3;n2sfYJUt!X9UyDWz~+L? zn1MYE^5zWe3y}BC#O8xsGZUKy^0%4T-yu8B(l{$-VSS;0I}67eWW(9$kDABTvrQW# z1t{2;8>NM{=b4y-aq)2@dfE&tWYZWYX^acMoo70P9p{@u;oKkLxmI#dH&=t`TvKghkWf z`hGh0K3K1&YvA?^a7;i?Ux0y8@cF|6oXsE`EW~$hTX&N#z0<>7^KozwTxcFFQft6~ z#H7SA0|sQGFekjd5CODf>9F@A(>hmHxOS0g4)Mt%(+%RG3^Nd7X@+?c;_D2PSjbjK zu9Lv)!sg3x7LdBo+$cJDX|Wlg*3Dww9G+cb+7(QAYHS?J2(rTAOH3?cWG^wjAj&N@ z2@tcFnqd&%E;YR&+Gm;}5HDt$eh@{TF+&R5(GE+z!;`}&PMGL0Inz`xfX{RIK$jJs ze#Z8%w+u(Cbv-GrCw1u2!{Sn~X|uxX%gj)XbXLr${`@PF7Jg=h+e4FrLGN8|nnGX| z?g>XPH#KvkG-(5v$WNE!qzhSU1%7xysnY6oaN4#4YY64L75GL6nY7Y8E%MiuCR1d_ zDzi{zh1F(BVYx{TM7m$hTaV3ZRWIZmhkOMZLpXeLZujfX5=Z5~_Mq~-u z`&lzVfdoQzL!FO)5(_4;kOv*2cOgaO}D6h{}wY=crBDd*g<3nzHU zYrAmJK*sFGL882DxNSEsji|Q#Ng!n7moO6K=9lm_9J0_J99fVldvH8zLFW`~ybitF;*=p%@h9B94wui`S@_CU{8e0M@I;yt;<{u%vWEP9 zKQ5$@LtnuUCy?h~!S@Hqwy$DiLmqk+mk!9f2k?RUzlL9b0Lz3TxT^>7c^vZo*Ra-* zX|Ex5$bY|vBg~c@Zj*Gjg~eXRXWr?DaJATY(ELMO4j$AlOdzknt|4L% z;rt5y{s{JU$X}1(To2jr4V-Tw_rIb2qK{&g zq0c^Qk~OtUlG>&JNNw9OQyK@BbUub3ry$=xra`J@Ymf!mI@tAWeBXe*`kOctMTc|V z#91&p%zhK+tmv@(aSJCM$GHLb?;OX6Toee_If);jDxWa_6eZ>aJ}N=3J%OYlZ=JyB z4Rz`!RfKa+;u{&{k(2m50$KbNb{WW|Q>J@SdFVk<1UFXMKjDVwv6=gv#8Z=gK7}vI z@GAcnc52Ajx9~#)Y7uw8g=`^jyoG3x%}yh_^1H)~)23uax!HVJn4Z5IE^lK;XX4ve zRPDs1_=E}i|L6*(!|c<@9P*pf_}&6p@eIa*>~jWZJIIwzfAl_`P@0RpFd~r6aDvdW^lw- z);)siEmZC`h6uD$4_Z^Np(xLqn-fSS9z0qSNF^RXYXTSXQ31B_t{qzN=-|Py{Lnhh zkb*@P=7Bu!?SbpiMS!ib>#7lYcwi&+^co8E>;SO@trhekkdizM(T@NTBSHoWvHyaK zLkl3@13ShLuLW5Xt$7%Ml<2`fAdu=jfDr^PVzK~RgqMOAJVqjwjfx zU?PEwFhzi^&zp)CLQeOUUbFRk0E-Bu zTn}I|fmG-LEd2|h1+YwjEzJuRtn|PpxjN!iTeXJ{YYAM34FYVL-bS?GvDpI~VT;#- z3{ByA0_VS7fUU*bfffSn@&ExMnZZk5wZ(j}?>dBkfd)U)QJ9z;-{XGyjvwhRvujuW_$rv%vYxwp`Q$J-v*F><_Si}7H7hd_$( z0Ny2#(mR0nWdHwL$cy4)OX)sD3oe&Duwz{I8Vc~N`3iwl-NFAe0;#zJ_=3Piyeh!f z+Fe5{0+;Ka*fGBIT2M=~{GLEM!2hNITZH$cf}cIG0e)_f;{^Dimjvf<2g{37mg<0k$r$0$T8>?14?8ir0cYn!@}3+S#whYsl9`L^O@R>Na_BP11Dj;L*KCa)%tHtwQd0+#D8!b}1qw!bU?U`Z4TW{q|0x3JKSqG9 zdK-%tB2MtY2AJeE)YVz@6a}*WQb~sn)94~~a{$u`T*z4hY)#y3wBRw%13N~V*Mf2y zU_OEKUns!V!!1G!0hUBOu@N%8hEh3eUq;|MtPo&p;Z~xB2x~mB0oHj96?E3Tfk0~K z;QuUv)XvHIe=~^-xmAFzm3tm7^x5u#9b>20g3=mt7lD-3!T%)!7vN<9wkU2NTJU(q zgNO}zz^lPgjc}0QO$CPtq@oTHju5zz#{}4lxoouHal!*T#3`=@nHu1<1re0q1+K$c zA+`c82Q5T6?}3eQ!E3g(4(9g>KGB`>B7s!T!Q&$W7x5DT_QvkZXu%`$f1cPeKKGg} zpM(8N0@vZ109)SnHCpia)&m>hhSyL>XU#tltWt23U@d@Le|{oyA#Vw=MRC8N1&`l7 zuw(q`wcvf7<{cvN z0@U=t2B_sVTM`Fz9RlZHcb1%gSosE*2I3;XMri1@V2`eJV*;s^gMTvttX%_W<$(>* z#%s3x4dzD)q}EN&|1m;rIa>!yg2z0t5juO#7P=uq7Xs(sUBH`F@TUh_@aW}%4baGA+};|AX;!4?17Dt;5A#&2J=t?=N|~L)oa7if=7}EHb9Ekg7ccf zD1wOVFjj~y{ThcBB24taMwsliV2YX}1k)AFBABgU9zm*t`2^_-7C}UG&5{1+ zBv`Is6@gTqAlHjput~udf~^W(AlNSZAA-C{vP)g|5bRZuMIe=E=yHI-E!gV> zZi$W%xFtG9;FjpPY=2z9UmnPOKc*8Y>)Z+Uz0i-O+? z{!nlS3Y#=!F0>FbFF`&91qqCT!UQghVgwl09)BfB+_*Qep4hzFdM$WV?3qCfK?eno5lGn}Jh~7_%^*Mzf+rQk67*Kk&x1(NUrC%Nfz1oQ z!4SAah7!0$0s@!FNCKBg3V};xG=WPbGLFP0GEsm$hBTOj7G^Wm1G_#EuX*!K0aD!< z%t8zPb3L&Bsa^}x)SOPR04@3akwLOpT`~!tQLvoAjj@WrMO{lEQ4w?lfeX5czy;kR zAYxytxK;bSAVh%8e23QpXWk{i)2z(qYx;G&)-a8chOa6vB!u!WKDp@l>)dN3>^KSO@x)!<{bUnY=BN_c!m z@VSDo2(BvlhTyt_8wB4gxJmG%f}bHGn%6BQztQD)1-A+AKv5hL$pfKX@+v4mP*6c3 zg2D=l5xCixAoy6;A5lw@xcS~g;O1MFz|FTDftznd0yp1(61e%^N8qMgeU4oJ?1pjk zeSj`*zI6!PeCrap`PL_J^KB?#R15rRgcfGk)C0SlHuqZ40xdcIT9dRv3!oiAdj%Z{ zT*$`>BnY~6A#gFe6Sx>X1w0~8YU-t3`Ur>!v3d2Qy}#Py2nH!gAQ++`k-&u<2O>45(f+=c_5KLDvi(s~bc?78n<`bkVSVR!XP_mRH zQ$a|uT)`>=DT76x>j>5>c$Q$3f-MAF6}&*OUBQcg&Bo3CCAzrzzD(feyPv?#_W*&L z@9P9^zDEe$bdPxu3EX^-dlI<$o+5DbJwxE;n?vB{d!E3}_dNnP--`ll;q8ZLVG$#j zJh5B*ve$x7)&3d5=L)_exT@eAg6j%y5PYxTCV^D@V$h!nZpr$C{6^yP`jfyVk_+{h znz>6PFM&&>0D(&+iohjOguo?Ie6C!7?0VeNMD7w7`w)?mXd$!G9@zEyht~pUjuv2F zmUgfDSMb34SMplm%vA)ml49(z0rJ@PV7P)L5A2{RUi0SB5h1pCd5m@#?}6+fNbBWM8}Bgj^8g5acr(*$P}@xzF*_Q+^vugw{v+D#dvl|4+%zpp;mk?VGeiJQ>`)?2Iirw;B@Qa#%C-_6b z9jI*90J+dYfV>3x6ci+oT61_rDUjpO4O)aQZkXZ(ZkW3W+%R_&xMBVwKwgayltBx_ z-0OjzNqMh%bESw7TWnrgJ5=?+cDUbbwiX@nY7#u4{&fgkfVu=yzK$;S1+W$!ppgd{ z0^fg|cr|FM9a<2yRM3W?t%CLhF$y{nNWDA8=uF^(b|r8@dsq;W8hIDBmyoa8;!iAE z2-4RByB7Vu77S4HAcDaPh7b%@5D*MkkVN2yh&)B&qK+YOQO6UwsFMUp^?NWGE#x`P z1Doe`uLU#IJey#Sf>eSu+5U)-PO?Bj2Ek$lnFP-$SWd7)!D@mv3f2>BP_T($vx2Sj zWdFBQd0xqOy6jM}i(t2cy#y~S*iZ0^g4YNRDmYAVM8PqFNVbv_BqtS|COD%Yhrq4+ zc>=f2?-96lzDSUU7MA&A0=LYU?eS+9z^(KD(Z#Lv7X)sduM)U*{)WJ<^LGSpoqr&3 z%lxAUk-)9<&z=Nsoqr{8>--0STjx7abFCZCt#cj%x6b(q+%g*ix6F~kLUQ_FB*cEts1Nh}aG-l(eQx8wKqM+AHWtAh%N>$m0YqY8L_*v^#+d+Eaks zED`id)$3m$Pi&(7ycYCF3uD9)3{sFlFhoHjL7-qH0mhIRDFiO)Xa#coyQt&n;-XFz zAop7Ylh8ttsUFxoWz(s7x|(MZ%vLauAXUM90vB=N{{&e~7Z)T`K;Aa^^Na>r?t#r> zrPqR0YFi_<-P|f{zL0o(=i@`6slgWPT)YllfUd#IBf|&98KEv-yL-&E}3YzsPPj zc?e`S7&kwGn~V`4_n`z)Xu+e12eMrvK{2le#npZnK}iLr3GPu)mLOU|d4dWGDii!u z!F>cSi|PvG_;cevKo>V|9RfFQT>>|5eF8UbLjio=Dkj^+1G^J8^IGtzev4`mA&F7a zia_p#L4-C0ofSMv&{aWuf*uMw5cE>eiJ*^y$34LRKa@P-Nf4)?D?z-1?gT>>JV_8J z=tVG6L2rT-1$_xdD~R+bk(+KX-+=@Z6$~Pnq9C3?ZoWa6Ap|oO3?rDMARuU^V59)t zf`jj$^6Xm#NpVDf4ISmRKyJ~2c?`iK1>*=@fQbU^JuXYtV~PiM+fVaauuRR<1w?Fz z6-s8(WwnCY1adzQvY1P-Q9&w!+|vV(rwO(yNGEtf!9s$allA(SL9$z2mJsY!kV%lG zU>U)y3YHTbRIrjj?hZm`s|k)OSPKx*6?;?3db-GMLg=%R;Ix8G1ahYkJf0(XN5NKt z3ktRoxb3n-z+Li$?wx6R{n_n_-BNqJ2D=?&p8$Jn&?OD|iU-#JfY*Xg)qIfPGX;kT zzEp6;gGg{q$x%=2?MIkcHo*<`I8N{{1t$r9Qt%eREd^%?ep7Ikz|AD`ju88(_}l7o z!2>(D_q`V6#=RRz>moru1s@RWweT{y zh(6k04d2kSf`V@eDl51_P*uSX1l1JWB&ez2Cjyt?&jb%m(Szm}61Q-_3$V|`udhLF zdtg^G*VEqIP|bM=nkdLe&|EsKQ0=a0lRZ@s9?G+Ru=%}C=flI4|0D19e&{;i7 zd0_J_?X{q*n*Tx2LqXXHiHlH90H6Jhy`-WCHe_Y51${L_6#{uyIQ;Jyz{i6F)bPLt zc))AHVDZO~Cbdb1XoLp|5*5@X7@?pZL9&7d1fvu*Bp9opF~I}{O)ZGXO9v(^X-=1E z3R)7#lg=@fHUfAz7eG4??A&6!7R*uqjs$W~8T=n3n6DtxnPj1oE(D7ebR)=A(1RdU z(34=Lf>?qz3i=StRM1}l?lHqfbAysNNA#jO*lWQiH75{kQ81K1?oz|t5(#!F7*4QD z!AOEV3X-3e{omf|wol1Zba_R=XoA-ij3qdvU_8Ma3MLX{E0|1hLcvsm$XiP6abOd9 zTfq#voKrB1;9UiC2;NsPkKjWEX#{e&9F}N4!KVrq{59@pN*2-OO9hJwt|?eba9zPO z1a4C<7hqpX@V$Dh^1$wkNKXk1Zb9kk5N9_(RPv z5Zr-#?J)Hn1TMfX0iEUDd_i7y*<%TS4f(Ryf&yyJB8XD(3W40uhcONi6jyMNzzuO& zz#B4VN%e>v^~4UE?X{q^+K&^s4yOd@9e)_{3^ghKIP10Gr(8CncL=`EYrzGAz6v5A zkaSn_5y4djpAdA-Z-ZPRC|cNp&j}tbZoyXsH5GhKkgecb2XOocciKMR)8&MMn;r}c zF}Htv&Cl%@0ynqc3EbRn6S%46p6}K!a8t`Sf4C=ZZUyP$=2nQn&8;Ybo7ZNyl8Y+U*tY+)|HVizf`=zp7&0n3X-q;=JZ^ZmHhqsox*0Mm zZe)Tyj>GXAlfv?aqVCprMCi*SG{9i=kHhOrM>$7*e?)p=2|hS^WJ=-)n)DSC=|zW* zic1;x-$s3pM0%9;8#5|yFnj5XB+^URY`c$58ayU3IVo;Lg}9VNH>AE&BK=P0Twz#T zQv6@z{!8auY*5_b;h5@wS$~=o7Azc9Ntfx1uukEqGTJU5K2bQTg3kDw3o$ZrLPC6n zAubEQX!;6?^pbeoLsER)h~%V%|8c2gKcJ?UNJ@aypb`J;pl_8(FNO6Smynd0kTh6* z!W)I73N*6Y=DH?PI4N#S;<$tg_966c3G^Kk=|&dmKlyKy!a7C#%#DiT$*XzpY@ z(zaYwO}UMAZ`r7Bxs%$4COT^LfAa0oQE|eH-5WLJKl$c+l@~1ccfPiq@?7Qr&cpJ` zfBi3>Q9=353Q-GP{Ayvwdj;}^yDLW3EtrIV

modes (Optional[Sequence[int]], default: None) – None or int list, optional, default is None

  • transpose (Optional[bool], default: False) – If True, the matrices or vectors in in the list are transposed. For complex tensors, the conjugate transpose is used.

  • -
  • out (Optional[Array], default: None) – optional output array, for writing the result to. It must have a shape that the -result can broadcast to.

  • +
  • out (Optional[Array], default: None) – optional output array, for writing the result to. +It must have a shape that the result can broadcast to.

  • Return type:
    @@ -4863,7 +4863,7 @@

    Notes

    If no modes are specified, just assumes there is one matrix or vector per mode and returns: -\(\\text{x }\\times_0 \\text{ matrix or vec list[0] }\\times_1 \\cdots \\times_n \\text{ matrix or vec list[n] }\) # noqa

    +\(\\text{x }\\times_0 \\text{ matrix or vec list[0] }\\times_1 \\cdots \\times_n \\text{ matrix or vec list[n] }\)

    diff --git a/ivy/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.html b/ivy/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.html index 3c2f0082c0..34d9d8e72e 100644 --- a/ivy/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.html +++ b/ivy/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.html @@ -1431,10 +1431,10 @@ static cp_lstsq_grad(cp_tensor, tensor, return_loss=False, mask=None)[source]#

    G z$!>0ivpQyE#ivcIfThthcWUd>=(uxg`C`5{>{}b%X)o%?An?U#oF2uV=DKU3Z}}}? zar7-(JB6#D=0{F$U$=3%Xc-;BD*Xw&V{`|#}}T) z(P2fF8&RRdY_`$0lCO`>pj(Mdebbq;GTv=m9~JIqaed)gH1sZzo(*OjE|9LF`!sMc zCPzMW;2s)zPirLxR?+Q6GO&`Y>>9^Ao|Bn`GCM@RMA{jc99rKa%@)PA(f5FXhQM4v zb`v&LgpS8X0mfY&g%-=z$Q z1CgLC(m}TriO8E#A)+zD<%49WYSxh871LDRhHxvKv6_(;Z|Kf^*jB(${eRng`gr{E zij}oLt>+u7pGAJP0^f_qswl?lxu%7_(O|$}eKq+Vag!Y%te?&#l!G^AIUfCBeQ$qH z85pJ-IZSSY`Dpz-vd;n|UDyaZzW6jkPy94vDh$_Kt#s|=^2;KeVp#pzyZ4){Lt~&D8cu%SHj>ry2VHgwvv@y<9G*j4UVm*xl-)`|MWO+62Rk%rj(knAdK&Ir9WYE*1|&6WpZ575mA9;e+hJulPkM$+>VSvhff4h=3&TC;_@^5AeL z2%uSe8)u&xAQ8owP42Wpccfwg;!T$snoc(z$3NLoFDyN4!qzje^my7XQ}ig^b|giQkd+gsNZ7|JQ&g80 z+sE!>TsMyaiFoSfQzO9#8ZC3vK{p!7&70dFH^M3QKyHG{o<-*H%%{fzIa3&VmK2?P z03OzInV>Y?awI`>$;ydmo9f%spbcbaVLPwT?-XDGYBpTv=Ulqs zNPgCnmA8F<%6&onTw%`7U=B$>xsCIKxm$|v0ZZwjcZj(Mkg?Hi#anllik!7W_XijW^SUJjAZ6U zvU1|gsCEu|_CE>GJZ28fqhvo}p)uMy=xMV|%_DT1k<>g)R!*E6Rqtebup2I4wkiTN zWA-<$gF8SXo;uj5cj8T!nR$~O*#?rC*U8F>Gb7x++^T4Lo4cI^WagVAla37;qZ6U6 z7R$uUrCW?7W;R(labgZq?C)xBZxVpnU=GZ=WG7)erWGb@;>`xjysW1ijO1ktIxN_J9vcv0@(x`b{pl9!9g%G)e2&FxDt1Hat#IyOHnQSW6D!~n?!UD6 z67F$p%avNb)aSc{`=jJnEb#q^=6hLH*FfJD&jD9(kLYsDui*YLlThBrth`<~`YX7F z?_~uA>0WY>-1nB>zFu9f`$?K|mKB2(WTOj#N4 zHr~H2d@sxOh37hI@Accyf!T)lC_h8@Y2c+ga^yoNokJt=<;rOS-D)H{&$uCN_G*Jmt|oy&f&bc zt(8%^hHfnqm8;0giK8McO*He%fbCnMs(HX1l>5mJ!h#a|)%0*sSX*UGzD>6kiOGFr z<-{>jbVJ^bT%hG;b6Q>^`w2^nK{w=WvJB0Obd!AWzS}A2}mu|rx_2J zrh-H~1E!_=eURN$8It|zrXnHPo2;BTB&y6(gFF6mnV^1Xl{qXc$$n}_X7MyxhUR3t z$w+9Hla&?FXw2pFW~Gg+xYEQ5Sd_?(?dVWWlPV{^bf(3x zKCq*sF?LnCT7^5^ypx_ECBI>TuSeswD836?bnNrZc?T^?=u+%il3)_;@%^+^N5>%- zk6bu1r_g{f^xsvu0)A{5DX^gI+ zVL`%ep=+aOJ%Vl{GV9&Jl$F75<9fujpkR9@=)G^|b6~aUas=I_!OIb#;}3i2U_B)4 zp0-K=JWaP23BZ$NWx3m963Uz$`C`PPU{c&!`R;rvTN%#e;I6J}#wyh+@O3_6P&RqG zF+LMPB9b~=!e^ak)@Xf>FvtONAvJ;C03=c4$;ycnC9F|6X}IOkFqD>>qqKzVFKh=C zx<@`V6S?n_ujMjBN6{@uGPIbioH#?_SqVNAQK?#?S!t6wO8sQFVNo*9Nur`u|<+hp6Qf?r-Eim4NRiNVwQ6qG^$`e^(s?yt5*IGVb zc`n^rWI9~Wl$Eh><9wxXipb*+&qSVg((-aJ-Eh+KQo3IQCoN?PLO-a4qQKK?iHA$* zb|ZPXn5^s?$2+EXGYMtZhxn??|{T*hYt-Et&8L=G44I_7aww z&`XDK^|I4w8JZXAMkAqlfvmhOLu2JjGBnd?7!R_hfO= z%p@ys%ect1zUP|bvYzasHfEQ=+1_<@i;=jTMOIeeqOqHkZwPgEgK0?c-9PJe7wx$f z&VEEAD-JiY0=A`gwfD6Aq*ZWhUny1Vw^H5NYCh*bH~(4TRlDvKcBK1y=f@|UAD?u7 z+{k_ez9)^nd#r(SbzaeaRtBDxai8Vezu4Sj+Ss{b!FPqNQqCGFY=uMQg-;8Jj&6p7 zXk&7&JTREe)iQ8qE8ADe4)(i>pJIy2&4-0Q6&J?rf4`+tp zyl%G7sxWisss8d2@J+PMnOZqhhx2qjR<2yh*2Uw&@?@(cTy$LwDow}1Jy{mWDE zi`5tp(^x&$V6A`Tw12}tjd8i`U@c!RL4&R!XCj>%L19y5aN9Rt+59(sJG+o-WZ^ zJKG`|0DHi->Jyq)75>8h!@}+3+Pay4>?!qpk8sDxxS9Sz&*;tw&Xv155cfGx2+WX$ zyP(xhICq4n>V&iK&6dOtOhPjk7XHiD!KcB(L-ya_8y;EsG5j0LeusElZ0EdY#(}Hl zGg(LwaII{n`O2j9BMx>4Zm20-@^aJUf9Aj@NbP~ zC=0)X-+i#~Ec|*|;W_s2zlUE>?P88|yV&T=6#J}L*w5@>BWuUz;;eIFD1xsqppauN~Y8u)d|Qsjw}p3sj?ZKrJc^Hxvlj8&E>#x zdpHH(f=w0k@JqQjWe-nMzq{@RpX+}ao9pLxIu@n5Md|M0G+30jElQVr)3!xv+af6f zKR1uSPjw~u`|)EY5qUy7cy&2dvf!<#l~eFSRN!6dF4t?Ro@_0fstpfXcB;Da^S(H} z7F(QVcdjm{ZFADKa+;ZwX6B@AbJENlcul|@DM+vAdYHc^FY8Lg9;5||Ahl>t_2hfq znHAQV-{Fhb0kh)jS{AC})v_$@vCQu9?~p^cFPNuQo$}C4(Upijbo-@0eV z4juMC1$&azGw3Pk#+xJ4$0XWVn@m}2)lw&BbDOME53d7#uj3W5xqRIxqd? zm+^9Q&t9r4!C!+*oZyT(tu<%vzX5h<)gMe${ed$GS^=}NHu!9^)_eZ`%dvTWw@&Aw zY3HF*_WPo)w>ZjQ(3Oba;ma#lwie{@M`Luj^H7z;AJO#|clg7)60tjclI!p_ux>Dr zhcCGL^29>y zAFb;z&iWC$67joyT_u|@*+Yv}K&MrcTIE1X3E4GC_=$-46zwiU4YbBNY`Y8rR)u;Os%v#n|gO7sOs`G~$L z8loF}^2MGCdr$@*z9qh}JGa-DG zgqh>+`S8&gkfLXTNruJsLAny0!D+e@Zi;?&$F}Zv+G9c2{9{t9U}IlusG2&7ZS3<_ z?rS58v%3e;PSmgmsI^NJeluU#RybOi&(w7=&(voy31y~^ew)QkYzp4j16HGPY@r); zd@gH@bte4fBt2;ExdB}X{(=;kMC85UxS%rQT6k6zJ1S%+kMC?gPwERlqU$3L=+(Ls zvAcQaW_RJQ=kAHk(Yti=CrYlqOV>}_)nC<>h~3q}_1#mkc{;4VdqUSs+|iHeN{Eiu zD9(6&=cIlO32wz{x(#uA_<3Q2>FE2ON%n%{vZA$RH4Lfkp|7tS+G|cE8L~0U8B|+a zvIB##+dTubps?-VJ{XdPN5g2I{chA@_GB=}u!ftcE5Rc?fk{N(MeXWtdt^IWeNi|v znkW=HLC0SVz|KEsho|#UDT5xa>n;9bFVK~U-Qkl~*jt#+tXTFDA!$+B8xKK3t+EezAy?glsYrCVmezoi{B zq@bLy>roz*&AJk?2W78yRtdiGeR8q986wdW2Ypx=eW0A zY1Kn{yIL8519_}_IK-Ejo{udi^E#VmrERmEjmKbCx|OR0v!q1ztggp-(0;2cAqGvO zn071SN_&?hraMD+7HWG3dKNZ;*{6(Ji^twvxW^&U6vplZr#8I6P&w)NruJou1unhGhZPGj21@Y;le?n<8$5U2aM*Kd-5<{3I6&V!X#oC zW~dGrodXYyVmeIr_-F@=&eru7&sS@7C1Q8@p3dPa`*b4oFl@cizuRj|Y<}O%J=m3Y zx)Jx;Qg>0;^&NMAMOOmte(f#Q`!y4|>wPD|!%4Rref{~zV~fK6olOg%E4O37EP$=k zV1X2i>vSE-W3iP@)rkhWdT)slr zU!3`6x)P$xHHW;;Z5~eVts%j!7-i(3T}jP!UOjt5ag|Mtz`@{pC0m3aHTSIi=ln(0 zP;5ZVa$iL-ChZsl$AWER;0H4X>MJlt;-sn@WX{PTlW1dowX5ff>Xd{V1`YCc!u{0&{7aku|dS0Z+|hty6p z4vlN@uw!SwXMx-kPKO5?7O7KpB}7MSlskOWj?*7&NN_8hib+F)Tj9)|Ye;Y_cGewq zxeF%Gw|Bv0&jnozk4Y`FZ%$g#yu#C$M|z_{y15HHV0ZAsOcpj1@f$=(-9ePoC6;HG zjZC7AmB+4(Ls~60y5ku|4?5u{k<)d+?8R{ls1UeO-yzT^+nV_@&r99kxCAMO`m(N57ye zAv#*4gXVp_llnCzxD^|88{+oyi^8@CEAyiEl+T{6?e%bF!mxAl%h$)xJ}i;>?>!S8|gMNsB6-(b5+hdp)n<^Jr4YeHtwH6fEPq3%n*K-cZO(-_v3;0O*eiOAn| zcTb2tlkR-Q!2TYDcb@Un(FCP%CFuBH`{teyd*YlwTgm{R()As8|0i@MVt4=HtE}4Z zF8UZ;I&0qvz*Z8Qcse(UXH(9GbaR)1H$D%<7N13(VBG9#nwiGd8Jni1?YqX| zZeVU&x@npezWa53&%^g^U5VJkci4I>1z%K2)vNXkbjIqHYuB;sXsfUd#ooSK>(5tH z>+10JfPA*-d#(N$TiDW_>#Z~xm1ahznNjRgS}-bYZ{D?yO1F%X0`_}dZ}WitPFEuK zfX!TI*_#gGV=XEB=!+dE`vR^N!*E$X?657CvpvEMXcN+rbV>pFZx)<2aE(d3#;{Ad zTw~I%F;alWgGGiF5S^Nd@)}ePBr(N_$!68VhakqDQ@w`Zt`-v zAJ>@H=9j8Gcv!9LT^^v*btPgC(1B+b%e7kbO{p~t>;VhD=_PzZtrlBkrgb*0V6RKl zigeQo>76-G*PlEjC0&WwL$deU?2yG07juOD0SD>c*pJ2*i+x~c;U138*f}L7oeUcNvTh?_bp~6CHuxs^L4f=sg>{@%yLg%z7O_*u1JdihUdFodH9MZTPlVw!uh0S z1ty~4`J=8F?+eBl*8NkMgz}|T&jD&@&Ar!^VRYQ;6x|jd>k71zlhAaC}ZzBK~kJ^oC;<`v@~EUqCoMa=kAckHi>`h2C(qY=Cfp4N^EB*7YS1 z$Ah{Ov4>;dMc#0*p{E^-#?`)9{4KUv?AN)-8w!HdUgUxJUtI|?5E`8d z@0Xm4PD6rQv4?I$+;R9W?cMCT$4TzpZO+WSeRrD=utVoX((yI+RoxUfYN0*{EHEt8 zXE6z7pBz& zG#i%R3)wB~ug+D94h#%dpoD=<0`_u!^Y0(6{QLO?O)ywzeu0>4x$$Kx$nY4 z_$Wf*ognId=6ja&neQd2&wR@l9eO_beWERD_Q`JtRHOVe!^8@hLAas4GYFH;VT--6 zGL$;os>0%sFZ-MijftS_Zs6WO-)J{ro^P|RYk4Tqz8>HF#nUQwQfH9zBh7^<(*rHVcaqJJ&m54nkyT3JG zt!In*s+D5y@I~R|*rG70v-Mmj404`duIn@I_7ij^M7L{{u6*?ErLE?r#!j)i=x`qf_1G}juag-7ivz9!>6QV~Ygo|@Cg-8dB-+^f%vf2<*I-v? z{(O52&T6zdtRf#B(_v3a@^u1@Esq#aY7o1;T~evP@$uhNy^^f#QaMcp4A z<@E?#@@>NBY-EFen@u*r4xRN@zOTPlP5th+OU0h*>#>FGXn)A;U4~5qoy~3Bz_e>% z+BHymdA_C_1^)7UMOPyBK+Zj<>eP1w_C_jp-B~ePt>$}&Q^VzY#p&4WS?25gpQ3*< zw$L5g2_~@`gPFvxKXXk=+a@`Ep1mFeCP~41T-Vb)SijVj5QC-BZSkJZ$+sF3+=@2$ ze2eG%dcIv2#5F8X^?YD}#KSnS!mt3{kx6VzJ)hv|xv_bA^qw!s=d;ayK2ukM(|?c? zws!S=i|12%zB6JAnX>0wJfGb2ou(TFo=i{Cm54o%x;@`uY@t)!-ZP-5kljXcw;VkLgL-4Sv&?9p7w&=Q4#0CWgUx4V@}uv} zyhE2?{tDdAB-+@EPhOYpE?V}S>GCq{-zy0hsQw}v-xj_HI{vkmJv!Nw?YYv{lcl=o zXXYOLiLL~Hkse|akuSLH;XC8Th7mrlUxmj;vGyYSeoz1DHs{fj^Z%~vIgayRbtU3= z{uyi}nJdHR<|+YOzV}}kpYz$H;kIngqb29>1J5@c5$vTa5xeuJtSt{%seY>n=~Z!x z@VMCgzjvqo^tAKzuw#SA==zWIf26L27y^w#fY%aEr=lUjt++Lw6gZ{1g|&HpQO<(J z7(wtnoloV+qw~CO6gddJx)QO6VA7ex&UAJ2RtH}nbX9ELpWNv_INf@%lmr{PUgM7c zpsobk@!It++X!GUSof4Sm+VviKF@z8M$b2|8E8FN^8A-{-NrqC8`GrS&hGLwb` zw<4x`DEN}hQ(}vD*d>`ObYsQes%5$oqN6op zE8*ky)o9|_nBh!R$$Przb;EOUU#=h24GoX(fUX3OZh=WeKC`lqyLXsvMeDKbPwHAZ z@kYCAqlrf0y`bZt+S<4I5qmbM@IGJ4sUOkxArHgVx)QO6VGs91llB!(FtDo^g*yfB zi7f(qHor4zZvt#ST5|qfx}M|C|EjJ8+WBU~i{mAEJN52u9qYv%0Hw?8*a@I|oCZz?F zB>4Yn9)f@9N^to9rYpg#IR^xd3V~Y@Q#WMC$GsJ(6(t88SZJx1EB0lczL)aQ!=owd zNu19%LHt9-;LD9&A?ntSib$(KJptR5W zO1=iS=DPXOxj7f&?+fw`(FD1%z!@+Vt!xDj7WZ43?raqvaRhWByTH2_EwiT?sele+wHOM_xirUbiN7_DN^1TDJTo*yfS175&!~{V1Yn zyC?Qxf3Q`97%#}w;C@~B#iT&^Ex|0X>d%6-lsNd0*aD#fXR#3Ia83&wN@9TpJ z%9G*RDeo=iE3EuF-`o63MDd-<_v!TaLU5a<6ij^NYoo^aWnJ&`7{A0M+A;K)Q@9$g zb!Z%NN+mnkpUP!RsctJZrP=ePF(N& z_=NN0lg^JD*$?NYg4OJzg4NE~gl(H(ZyB>-QmQv^?>&N6Rmz*I!m^EHJ*7WujE5Wa ztV#)tysR;{V)fQ5`H{ko@I?Ro%+gNg&ouZm-EF10KiR$8Eq|u7)wJz`v~6X&41d?P zQYrxUV2#R>Ji~72;7skVE5Y-|uDTL@Eai|*@ww{@ZpDkb@0Xjsexp@}XlJi|7j!K+ zCUtTpJ7BRdMz4iC&EyLpH-c*;*oxKY;;9R|C0>Xu$Slb8Hf@0WOqw?MxDB}2VS{eS zIe6zX31u>ieu_Nc>wyQYh$J^QuWOPg z8WzHJWbot+d$O;K3h33Rfi;G+t_Ls)Wv?E2j}!cUE{n#kh54Z4b6V)N>`Tqvw?tQh zzZpmAO7Qp738K;axvz;8Fitx@?EO^NhT7$LYNdUnUuv!AMn7l8#GV>HN4#Zi7+M!W zNz*X6V9$_dza(3f30jyKe?BaI#-oO&+T5z>(yF$ zfbDsxlyeqb5FzZFd@44dPU&) ze*f1Sx*p}Q|5H~Y_Mn8`|25;txRMOw{;%oqaKk!xs;-3Sc8w~F7ivzX(~#g+#MQ^_ zeg-?|*t&kpH|#kp#^|%>@@v23tqiMmL&smb)0spYE2C+?3#ELweM!aXd9gVcb|@%s z`eJ5Cy-vy8*PC=DIOF|JxT5ZL4)=P4ZNIjiK)L5+B(_j3_J;~aF=^X4@*O81*7ZJr zS+3NTh&_P&xOLk=wz|na2-^Ivs4rLD9b1g{ZI*8C^IKxbX5_UqUJGgrQ2&9w+|#oDiQ{meu43tb5@R2r25FD{%;PD6rQ;S?7d65I-B z5<)|QTQL~Vpkt49YzN56u$ea1{QSIk^X8PJ;wo|XgtKz?<`etT>M!5#0nazAa(CC2 zh~4>PPFwaiUz$EDHgE6PX+KLUZ5HeLhQH?vbtPhV@4RJ$_Ti=cmSbAqK`%L1%;sTB z8+`7qRAVO&?E8D90`wiRg<^hZ%Pw}r$u4UgyWrYOuU+=-KEV~~+jM=-!*-6YgcvrB ztY#-hm>$1kTt|m;_@SII)SZ_-Y=t#s70ZKmjg*B&tkO`q2%kSM!-l6+$*QsaE5RFS zFO3F;M%vlG(pS&-Sg^J7aM*I!vLC3%D5w^$R5p(xFtSiCaj0bfkc-`m(Q6s~0E52Z21tjVH+xvb_ITZ@gn)A71 zICfmFWZ~F||63#zj*g@xZNNQ+@Y%b0@~e78roX(|{)8HQ^cZq<%LpHU0jrhc!7#&G zbtfjFd~2g$^$FNdcxW{KE$k0EK9{NY6V5UB+$>!Q{;JGi63RYDxA54BbveE|e>FTQ ziq**=7duarD*e-S{lmMIQ*|X`cd=qG;d!ySIdm^!N!L%@)thuBVs~|LKR*(ir^EXB z59@k~JNimp3DMCSoiy*~owTnZ!L4|UZbRHUe24KmgE8$oe79BE^M_MI)znF_W2xdx zjz5lurN(Sk|Gqd=gokH_su_zt+}BA3^y@#;buGv2`%EI)e*ML0{91StbbKyT_vh9~%JiBk-swhVZhN z$91}olbrmpu7^0H59&(9=w$bter{cP1$@E8+5!ji^CdW_pKX2ux0>4AKb&%3X?EvH zDql_6mp{Wy;kruQN_E2@TfNzO5q2*1Tcs4twU?@c`J%np1AoUp>EBy{&CR|Sy6 zsuTV@mFfe7{u@8Mf7U7$NF+^n-eq)8tH`BaLow#u$|7$U|mmHrl z1>s(-`CgO9ZQKZd9+Ry*boqSca8Id9g71cqQ`dJp**gs1jArjJTn>?Kem}aJhIcsa zzQgvdlJI@$YTEwZcdeYZ-{EvO{IT;6!(X*ZY0o=s{~dUT)Al=@W^Wz)E#vvHG;r4x zV%(vXI3!FC0?;LIk@$;l#^g!&e|06qq)UmJ+k5b0)TvH1B)Aoq=r+VHM$Zge@sECS zd)nP1SuF@z=8iz7vgEPE8tcyYQC2Zu{}b3x>fQ z!%_W!t^^Nvfk{MOP6eKjyEd8t6y6IuV%6&0q+6BW?T_gCh`-xc>q^A#=AG=j=>1El z_r&JpvFzsi02kk->mTmouj)#~?&3-I*DF|!370h6AJFjivron5?a7_)gV_c$_F!qS z@Pw|{xZ@wwl|VaQWBtG#E$p(qJTRE8*v|Jk{ol;#s-k{>$ii?}5c^nPPZ#tE&5M48 zHHfjtdMf8>8#k)|vj|Hz+w_p~KfGm=!NiaT?dxsO6xJaB-;TT;ltLr0FAYfLOFCOo zPpd=1iaFUG(i`%IF5dhN`KJ@I_MOt50EJ87M(yL>02>xC0Z!l5-a4$_p?xeo*sxSN zT33SSnIo7)I@+I?(Igv3b3@J>Gt_+W8q>&vAs`sVfn?^LKB4TrKEe!uw&{3TmZI6$%Tnv|@FmirYFBD?eE`0mV;`hoV{E%BJG)#j_4tP$zlx2OBRjcyFq`C< zm$uDIgL!GkJo`LF)4a56p7d(}LYD)M($91yVh>{LGjKd|aCs-Yv9oFiPa49!9$Um_ zwrt^HYT05(DtJ`$s;+N&c>b;{5qo&1xYcbHF7<_IoMF`}aM8MNcyr)!(JVX3(S}r8i`MFu}0k+ecSI41q?bbf+TE3Y&^l){z?HRp++mLm?@(R;042W@W=J z&bL>ny6gF3kA0bQtvu)p_{wMk-Z;dWm~0+Cf(vxHL2&wrO{F{c_>X$<=w#jK@po`J zlTfadEB&v#2RnFoOFkOk7TyLr{yE36-7UT5?#t;)@b_nFtGyW zN@lkAEpB~r8@|0!8cr4S-IZ*`zefC@(4q+T1*lJ_9NBtv;maGP;Y`yAAAkY-TRy4l zYW~)KoJl18)_yk{4;Q`+IzFd`-i!GybN78iSAxGUU)Po3Z>^M1zo$~I$(um4G!dCIHUfFYmgtRI9+pN#&0|oD_{)3x|V_?*(b>2Dd_a z9x9DbPBeGq@w$%G%~1z8zqxznaIL>wTGVwE+x`XHW9ozK@`_FHWfsf-!5J$y56^CW zg12Q3TT@}?uq8*=9Le|H=DyG9O7K+mPA7a(UzK*y@?yDUv2f(!LS=hXA^c=}nTpjE z++14rC6>!#i_eTsW(kXgZGpWtid&LqmPny_zph_-FY;bpiP%GPNb~*i1jZT7R-KKX z_E(f`zxZcUZjCKOb6c;FCqS-6&Neptt`OS&+1Buq0%T6d9CT>Q4I-h z#j&g*$_WAOo@@8B>oC~@RM_42?=HI8_v-#SHZCT0!gJY+Yd^QED`3OnuXIDlqyG!X zY3*B6P&1frvo4a z%nK>Ltu-(Z2Ob|u!5dJSO|=8zMxym$L3KFx2SW@i-hFf>Vh_ij%{Kx@c!6O!A+|8= z)p{S`*=qM6r|UbOXO7X8h~53Igv54>2L>P)TL5@Ma`vh#_YrK=^&bzx23-j;1RA|G z@93QlM?->J;dJyG65I-B{Hr0st(dBt-`!b`KCM{}-C^T|gxz7DFWgI5F8M0dM9m2l&HPg~Pqm){zF&7jqHDFC1&m6R!yL?z7X)XG>n~H}|Tg zE5UP4w-cDCN9w!VTic*}ufVcNy<+*NB(IFk^^-d7=cYZ+mE8UzU7zt(f0?dC>~3e7 z4W}`*gWrK68`A4{b%fLzF{E?E;kb@vLrY?mQL3fAF&ZXYM`V z0<yYZeVGM;l!^O<759f8JkMT6e_MIduV5n(?zrtDD#36^*ixaeOIv zMXT3Jlc8|q;%NUcP3ef~dy3Y#sWUNbyBpP&OkSOhvN+=Eo(Oeor*vm&G<3w2JxME@ zYfPy6_D1z2s(wbJEaIweV3L>j1kY0qun;NuJ<$LQk%Bkx4X_X?PHFVD8(Lxh){uRz z;g{ez7+>7|)i+x+l!vCU^=13om1{Pwt!aAsTBE~IM)H?6i_~{r>I$OKSKaK@m4H9@ zE4FVg4+M03&Hnc8a-}_C(0aHvDpfxrKCTI7&VtTR2r|O-g+eSLA@on_Bo~&yYhKL{ zHOfLBk_Q`QA&)9|c2ke)7n+fRoV1U5Y%c_#v=p}RU45l)_j`&(t6H*5H5W7Cpkrx= z{@RK@QtjB&Q|{bPzr{r7S%bQ2XZ(4Nvlfy#O)gqb(JUUj2igDa)0M5!t2&?fI7-X> ziehc^>RZ()3wb~a<3}U#g6SO$!xs#P!T^? z=e}HTqb9ZD!->iKawYHmp!VkxPiRz+@@~CVvq*g;(;epoHn~#yWTP6ALHn^rS>#r7!|U#2&Fr9^a#E*=D(^*eFgdP zIIFMHUpI{`+B|eL&ylwbmS_btP^=7$JY!_@&+nfy4TLSGltq{y3X{0~9LN zf$+AOe>d83^5*7_YwFF-b5jE>L<)Z6G{8b0-h<8Pg4Pek$M%;2rd?Ah4FuXHBJt~+ zm#l8d3_P^RKl;yJx~$_MYVV*SmhTrhFC>YYT<4#sS)|VpX{OSKXWa>_^}U9%J3nu1 zjc(P|#K&DsOr#q_`pDUwDoiXQu4`U@yR-Gz`bF8a@FODJUPQ;0&KlwIM@);;&6h${ z?GjX*(Be#hFIgbGtWg$6 zT;(<0e?EQ06ra=m=M#Zb zc-F;NS2wC9QS_CKvWP3Xft{CZ-gsr&01J^~N2BwkNWuGyrleTWj1;tm{OM!sR6i|p zCu&b@Az#p%A)UU3Jjc3sOV{pfhCD|_&uet7%5WdjEb8AvHo6%1&lY#KMz!j7#K%!u z=26kRn^)gE8f78R>029RA#@ zW4pP}GVMHfxjd~koiiS6RJ-z^{#>*8fBm3NTH6xcs((;x@;|8Ksn#YJu45ZzArI>4 zMp?*%%AMHMgL;3XLkUvQgZfBAHrYm}`_rA9@iuMRS_$Z(rQcrE{&*>ux9h$Pm1+Q5Iq6KjX1=j+?Yij*e{4+P)Tb zaPol4nNvI~ru~g7P`YuSW|2A(ryGqMwz{9No_>e4n||)Nr&O%)eUfqG@pD_FQS}7k zLw<7nkHXNB|g@A*AY|c^aWC_|9hdgH?PaL zG|EC|n>TWIwAvm&#e6H3Q2Doxn98T>Up&T_VSa^wy-{t+yzrGqS;Q6I!16#=82kt| zz(S;W`Vs1OdhvJS5GJv)9<{DDi^}BWH5ESrfl8O?N)zW^|8BI;q}v~DltpfZH~ikH z`GMAgBc}MAA856c08K9J=V%rUyp9`vXQY3iwfcyuv(^V%S2VB3OB-b&r5N2U^c)R8OMnr#8wWuIdKfs`6sy zd8z>xBE=DUG5bxjA39?Foppfo{zm&sy8F&XS;Q6HKwn9B^DeOg79vH^=*ogO`-4N% z2g;otbU$DRIZ##TQZ?-=dODc^u5MFbKrmJXWDO$p$*~$OV^k(vE=4|Rpz-P|pt0&QWI0BC9+8vO2|!c>2lsOgI}nUf zHzLaz^&4pSc=cyQPF9a1=TYjjK;zU3u1ImPAHi{IDbmKOQH);5XdHsk>P|$qsU=+B z`G`DLO+e75UXEa#x(LBo)yKiBIJg|;#;EV0T${RtBX2>_rhbF8qgB8>zrktW;^5;* z8?El;a`$nTG6$C+I7a=OMfwVYvFdFocZwS10`Fih??iBtdN-px5wxl6xZLR++`z@p zU^EBCN2?*u`DN_9-@-X}0!>o^qo;G)a}XS-&O&gkx&>*+sqx@4LHz?%I+%@7M{~}{Bj;%K zEM#d@_W(^%-$s^c>IVo$t6`*_s6K~ax_S$;j8jiUFjl=8Tt=%mAsDabBFj-~6VfKD zS1`|A2qvrX^py~?ejm~%s6~hzr(VkiuH^y`GqXn!OjUnHFh;!zSx!`+V)R=U>G#}* zw=$PeC_Y-f9jHw`AE-_JhlAw^#;RX%T8YsZMn^Ha5v<$PAw-TMWg#8O5}7=0R9+SGdxxm8;!Fqc=&|Z4TTMU4K$=r0`nF9%n1 z@Gj2sP7XFR&n+B$owFRp4f{Wi{1xY%&*;4zoW?mnz~}><<##}B>IRN{HV2>J;5N?k z7Y;tj!P(5EozbZr{0XXSQ!ij-Renz)&a1yeNRTW0_xZLwO=Nd$gRhv0-goDGJb1W3ure4gE z3pjWw2S4Iwp2#^r$U;nI%|D4FKhBXKXH-PFG3t37`4i^y8KjL-%YeqJA)vA96U=&; z)6Qk#3!L^v9+E5VWZ-MqlBaujeek;~Lg-xvz5CCs>G2a@yZG_#qd+ zozrG;fgf@3b546JSM*b6{R@sfo`W`4!3@r_gL$s!wC!Brmti>;;vq&SbCv=Zcos)a zXJ#E7`3dIvWDfRlmIYj{o5ekm3tY>QKjU)$=A2*R$S*MZH`jh4XL%_{ex0*?gM)*d zHlBl*apeCnI*QR$E_WM8PT|M_M7F8B8LemZY0mOY4&KV;p1{EX=bX=JPvXc!9Qi|* zb1O&A<=`65`F=*zxY0Kdpjb> zsXngnQ;3|a{)}L<`VWFO^?sxsrFy|^yc%TI7a^FUZs6iy;)-64V4iw8B1fyQa)Aqg z+SGK;ax54B1A?*Y7(`B1$02A_Cv)0~K(o{kqwlkv|7G+Pq#dKS18r2_L~xYag~+k$ zH(b&C5FD>IBN(fGj^g9gWN!3FIp-vxW7SzGzC-?52+qvA)%=!%+`57+vBS!aga1v+vBUk%hF853hdXS|}{f$}wlY;|@9HTDb z;)fZH;{sDSay17ZUmu5EzJ6hjM@>L zsJ@C|j@riMzRhV9xGBHl$Ok$24yWDE!heV(Pvzhv2u7>Nah54u{G(jo9f)jG3pwZM z9Q=dRK8N5KHO!GGpd95yWScsRBOm2pEP|udUr_rgYBYF`SC6nP6OneZ`Zn`?h=uqN zS38wa6x3MA`&ZW!66i8m(3{I>^D}5wxkF zbIx`IwASa~YRF_#YTO0l^scTQ0DK3*5zNb2;b3oc0_9qt$a6 zE#lx`$TC{}jnO|i_&f(=IOqq@G3o+FFJ#su9Q+HCwW*7_?f+#tU&3i$<^o^g;0n$% zk%Px0Xj30$G>x-d#=$BCW7H3r%j-EwFL!emf|c=<;eeG^bO{@le0XX(_X`ozh-nMqd#(ik0BVNb}?Gc<$l9C-^n@8 zX7q8^%L5$wSw_$2a$n=%s~kMaY2Re@c}7ba9mT~*Gx{zEog5s^6#`3PJ5KoR&wNh965>~!!L2#lR0uNXStGtS8>`&jIQA@VuQ_cG=RA*t-y*V2 zJ%Q6+%@uWX+Bdn}w>dbGv%G=Rp26krVRRT-#;WhKxIg2_dl(&H^e)cwGiLTJF20k| zRh;D}j-1GI))qvLRkw4wk8qaXGn&olJ{IZqT<#B?_IFO}VAh{y^f^xJ;^1vu?thWC zKs^h=B=uzklhyMOOiwMdIJYnBABeM zEpb6@G(DFF-FQ75%ZlHGc1)y>2%Lt~Z7a%xZor2&c>OmBrtX>9mtXha* zjJh7deDwf|k5_l0zNu;}a*kKOL*!!hFoMad6KNCGQ;~L@DgcdE??Um>su#i0YBADA ztMh@{)Cgz!JBp7}XEV>&RWErhq1vFh<0cKOwQxQ2q zDMXG|f95Rf5VWZuA#$9$7(tu59Kkg89M1AX6mL_r5R6l!G0?`T*+65}R%Dr?wlSAe zIrtuz`#yq6YA>UiT+*uxeqzpv=b&t{R|YC zG&nR3hWcvINw)euK?Qbtj_NM$wW5xuTmzMWJ~8j>>>2C|?fKs!{&ZV|dW3F+P>+KA zi%6i&#fbk;A4QES6KMk(3vv|51dvG}Q$VJH91U_TkwD!a@;z{fq7H%FN+i(MVetLv zlPKzAAfF%-C`Bzp{FvJ)Y8=RTB7xc;#&1Q`HjwQgJ3w}V>;l;hat+9}AlHFh4{`&@ zjUYFHJPxD-q_q?<^f#)WNo;F%QlbC6$v{E|qZEz=PA!RJuauZRTd z-DBf!qP|dXP7OyblE1ZobA7F2uLJ1OdNkSjn|f~*2r4YCGgEyy~M z^&nS*Yyi0m zLs5@_JPPtJkpF;;`Yn+*kg*^~flL6I1TqC=8pzQg$ATOWG6Uo!kXazJLFR(AgPa0# zD#&R>0tIU|^l|r}De4}Odx-?vG>Z6JmyI5!{s-joAWr~!BFK|KZUcET$WuU`N+eLz z!-m~^E=Ao3@{$4Ipm>c@xN+LEb_nP}u3C{88VcsPP~ZKqe9i^!^`-6TXcokV!-W z1%m+MzmKRNfZPpo56HbB_ksKnj z0{IQdZ$W+s@_Ud!fILhj(3T0v(|tEZ?FHEfQUXyR`$2j@dO`X?%0vQfzd+Hy-bYb? z1Nl41BOw0(d6YOJ z)IUHT1^FkDK*2zQ#P{4!QFns87vy~)?+5t+$Ol0_1oB~!kAQp>-TrAYTOe63CZ9z5?=9kgtJ!od`{(;Sd>kkfH`b4uBj4IRtVT zEJC(JzoDqZAh&}256I&|o&fShkSBrM2J&Pgfr3d1MR)w3qIQDp0@)36 z4al`1*MVFQas$YXAUAO&wO2KflcM?vla`54H@K|TTUNsv#0d>Z64AfE;K9LVR11llZyX8!8$ z6!mM6hd_P<@>`JKf&3oi4wV{s!`QkVioN0rDuwKSBNl@^6s; zfczI^)FVVjgS3H+0T~N24&*41@gNgGCW1@?nG7-oWGcuskm(>tgB$~LEXZ*n$Ag>z zG6Up9kdr`Wg3JOr8Duud9FVyn^FZ1`=7XF9vH;{%kcA+pft(Jq2xKwH86anZoCUH3 zqyTa@$WoAHAj^pa+8zo0|9)H>X&B^TkUxU_iAbPLmB=w`JVl)hGMh-CV6;U1RTC)c zYLJZ}n?N>$YysH{vJGTA$PSR5AiF?zgIoi0Ey#5s*Mr;uawCyIn?q60XQxoq=RiIW z@&zJ+f>{)a7fz?Bi$E?0xdh}=kjp?W2e|@dCCDm})gWs?)`F}9Sr2k0$Oa;Twzh)% z%Z{a}mxH_l29P&`yb0vZAa4PAE6CeG-VX8(kavQ- z3*_A({|E9OkUK%%3-UgY_k(-@+QKt2xg36M{Mdv_+Ain_lCCGyyzakPSShdkH8&9LCO(2^=wt#E} z*#@#5WCzGjkX<0VL9PM07UVjR>p^Y+xe??hkjH^^fZPmH1la@93DN};fOLcG1=$Bu z0#P9QL3%)XLHa<-ApIb>fK))LAOj$SAP0y93I=7gZ(tkZK@JcJ6l}bRzxyVNx(DQ5 zko!P>2=XJ4AA|e^f5J-1QRy&(62{E!H3A;QM~_9+zgJCNUl`~l=)kUxU_3FOZpe*yU` z$lpNz4)O@dKR_M@`6tM~K>iK#ACUiojCv}O(I9OgV?f4&j3W{#So^7W_ur1*g|Qz( zzvNkz{!);afxH~#6(Fw!c@@a3L0$v$T9DU)+yU}>kT-z55#&uEZw7e_$Xh|)2J&{0 zcYwSTfx^KCb;;z{qf20VLnU9QPkYrj zLB0+0U6AjC+zoOs$PbAG+DL~2XP!z?ONh|RJDgUwoJ~>NKz4xa0=Wj{IwFC#W}&3- zrq02kqq|FVQ8T`!tpxh!bM0yhlhpI5%#SG?*0w1@Fj5JEkqM|s;jp$g34+;4(3sm8 z{ho|Y!`jY-G)6Eu34(zN=uJ8&ELDPFvJwOn8PKmO9M-lnK`@#Lg7r)g%xHpOPZI>g znjl!%1i{oM2sSrCFunc3T}luPRDxis5(JZ# zAlR-1!H6XY)+|9VYYBpVOAriQf?)9y1k;xw*uVtA7$yi-F+nho34);!=zI!?wZ%~o zOpk(KgA@c~q##%&1?_gwH4cKoQgXs_Dd>6!-Qb`b9R%y9l!KX55bT|TVE7bNbkH6L zbvmfaL9mhv7nn;0!Tbqy7KOvw4k`!+Q9-bb3WAAL5NxG_9()d?Z&Ns|&8RuBxKK#M6H))rAgFpUa=jZ_efrGj8J6$JCCAlOj_t#c48tC9v2 zt034~1;OYl2-a6YFvALhJysA5vw~ou6$DeQAlPgL!FVeOR$M_a=L&-P66iA&4r@E6 zAQ&_S!SD-o)W?w%7GQ()rP0IM9vq9B`pHBt*otGh=2}t1+JtN}3~O7mAQ+Ve!MZHy zTnEA4ENSZ;w97%A4uVZu%E34-2v%xAuu=nEK;f`9R||sOS`ZA_f?&xO1e3NPn6!cJ zr*K%?wgth+EeO_bK`?s@g8f?%4B>*tItZq5NrR1C5RB!5U^N#6^SL0{(FMVvE(n%& zK`^lkf~{Q;jP8P9eHR2Xydc=)1;H>c=u`*6R4-|;s{?(G!eMP-7X(YYAeh_*!Q>7! zNa3)yy$ga7UJ$JDf?$>x1pB-o80rPVVlN1$dqJ?_3xW+F=ynQ+wJ~21tonjr-WLQr zzaSX=1;O$!2uA>da26m4hXR6dIv@xK9zdNG4(pQ-K{x^tgtHJqI1~|t(-A>9CJ}`5 z54d2MU64vLFaY41!>d2D*&GVQrQc1pBlg7^(%qVl4=!YeBGK3xY9Q5UkpQ zVBQu4JGUShyamDXEeIxXL9m4jf>B%$tmA@UCKm*IxgZ$M1;K(Y2&QyFu&E1zaa|A$ zSU~4fIIJyMf?(1T1lyJ%7`X(&+9e2PFF~+>34$R^5G-PXU>Xwy8<`*&%LKt{CJ5#; zL9n9gn;;n71i|_y2xd4zu*V64VNMV%bb?^269k)`AQj{E^PY^79f?)C!1lyk=7y$*r8Yl>6K|!z&3WA|f5G;m*U^*0p<4>SZQ8=v6 zK?UJJR1i)^1>uNP5Y9>k;m}kNPEQ5l7*!C?Qw8B*RS-^C1>vYw5YAi$;qX-uPGJS% zI93qOWd-4YRuE2V1>wk65YBD|;Sg64PICp}SXU6vcLm{~R}hY}fWAZFus+iggu^XC zIOP(A<1Rrs_Y#ByFhMv86NDo%K{y)|ghMhxI4u)|V>3ZGKNEz5G(k8~6NIBRK{#U* zgu^yLICT?*<2OM#hZBSYIYBs?6NDo=K{%@ughM+)IK2~uV?04P&l7}$JwZ6(6NIBa zK{)dhgu_2UI0Y1h<3K?;7Zij8LP0nw6oex~K{z`UghNC@I879UV?{wYUlfFcMnO1n z6ojKkK{$gHgu_TdIF%HH<4Hj{rxb((OF=lf6oey8K{(44ghNe1INcP4V@^Rh?-YcC zPeC{V6@;TuK{yi?gu_umI3*Q?<5EF5Hx+~fR6#gN6@(*IK{#6#ghN(Aa8dy3pm11w zD+q$yf*|-W2!bPnAb2zgf@^~y_&5lHvx6XbJqUvPgCO`p2!ca|Ab3Uyf{TP8_(}+Z z(}W;+PY8k=g&_D-2!dmUAb3~^!r3d((Wh8Y>9LvVw3vD+mX*f^cFh2uHVq zaE2=ghq;1qsw)V`yMl1eD+mX^f^hOH2uHwza26~Ghr)tzIxGms#DZ{MEC>h3f^dQ? z2uI0+aHcE>hs%O+$}9-S&4O_5EC>hCf^ZTo2uIR_a5gOnhtz^_S}h32)`D<;EeHqM zf^ecO2uIt3aKMaPz--2)sE(izWf^ae}2uI|Ca8@n|hvtHCdM*gZ=z?&b zE(izff^fnv2uJOLaON%uhwp-L3NHx9@q%zJF9-+pf^bqV2uJpUaCR>UhxmeUnlA{) z`hsx2F9-+yf^gz52uJ^d-~%8C&H#eo6(9)i0fOKsAP5cvg5WtI2rdMI;4}yHDhh|S z_naWO(FuY-ogg^Y34({6Ah_BIg3p~GINu3^7oH%v;|YRK3(%<)4r}KYLGW@B1a}uf z@Ou#i2N*%{gb@Un7(wuj5d555e303Q4rh{1;I~I5F8c-!E;d%To?txmr)R$8U?|-Q4ri5 z1;O7@5F8%`!2?ndTpU z7U<94LLb5BRuG(T1;I}c=ne{pwZotwcn%7J3!xzR5(!g5#ke zcpwUbE21FyBnpCaq9AxF3WB?$AUMMTjiYc_d&LQYdz>J+#{r#7;js3T69k7jLGYXt z1Q$9%@TC(3r#eCKt`h_|J3;Wb69mUQLGZv61Xnyk@W~Sd=R861(h~%CJwfo>69fl7 zLGUC6T2A4x_M8R!Dy{a0wF|8v_|gi3Q>`F)*9wB0tspot0^LL5u=ZvY1h+;(@NX0Z zM@K>MHV68{Hz66^&IQ5$To4@51;IfP=-m_!YfnW%a9I=t-$g;)cQco56b@?-ailTY z=cJV!q#U&0K|K!Ybx@y!$_|1HIBI`@!eQ+TE(lKHg5Vu42!2;U$5A+}9k2w!6H5?W zvIN05OAws21i@QN5Ztx|!GB8-9JvI+qe~E6y9B|g6a*(hLGTt71aCp0X%r4?w?RSh9~1;fLP78-6a?2oLGUpY1ZP7* z@H!L(_d`MOLlgvuL_zRO6a*JVLGV=+1gAwo@Lm)IH%3A5XA}g-MnUj!6a-gCLGXDL z1m{OV@PZTscSu3-ixdP0NkQND6|hq#*cA3WD>bAb3#8r6BlT3W5`+Ab4X6f?K8__-6`&qoyEuYzl(wrXcum3W77IAb52Of_tYR_<0I~ z!>1tlbOQZ=!eQ;)DF|Mkg5d5c2!5Y}-~cKJo}hx@5-JG3p@QHfDhS@9g5WkP2>zpj z;7BS69;JfdS}F)Wrh?#XDhOVug5Z8C2!5!7;E*Z^o~eT1qACc!s)FFODhS?`KzC3` zt6vAfzf#iRXekIDmxADWDF{B8g5U`Y^b`t*wM(oZ_{Iu?ldK?k%L;j0a9{`eEQQ0`lU)#8+6BS4T@d`Mfj**n!qHj~ zJgx=7^;!^oum!;xTM)dm1;IUA5d5?S!C_kvJhuhi>!AA_1V4D>+)W|*e34%?&_xuI zpQ(f3LM>_Vr4|IIYC-U>76iX+pcxbnYX@yXaPkIvABDr(+glLaz6HVmTM!(<1;Ha+ z5M09r!ACqogF{pI_LTRKPq)5wpgQurk)dPwHiDqbiJjC{?xkN+>M9Nt;r2Z=x>E;} zE9LS)NA+;;o^sEKdcx#UqlS*!!RUn}i=V7L#9uUL)TqrvQ>vvsJ@g|DEBBNS1S5i1 z1wG}1gvXV-=mul@V{%u}*;A|(2TJ8Wg5$f&oqfe#DxwPQU^Kl{-5%I^ZXcT1(YdeG z(^U!jMs6Azn%Yt9EBCFIn87_m&C>zCFa`YYw$@<7m0gaB2a^e1ZRlX;C2a0|C6VOD3cucNbA9q_T50#+u2ql`Hw zRu?mkk2Q)FVsbj==bKnlK2m`2nBgkMlwdxAS{8nmqWf}5_h4Tq9@vh-zUp9qf4MS1 z^M@WRUM0-~?~F1=S>^D%6P)+fPq%fS+0L2Z?9FWyhx_H_890fCf6A;f39LBTY2?XP5y}x$lU6jV$y0WoTh^nR z<6YI*JOcFsr_)dDF7TkQ976%CO+cl5?Gs9Q~N#)Y((62GxO%1I33ZCH@|wm!*?t%>@AlCe??8~=bp2$-@)>5U?MZUBmZ@V;X~6p`(d!h+ zVp#0Ad-qJc&uVsx9zLlhOa<%h2G8l-7j*9D^_=gi*N=&n$1uS!cgUnYrxH}LEKHlZ zH5V%na|xg8b}PY*k=Purhc8csR%VCGsaAsF;(2iO>nMsZScRAy-5q1=e_pAt#naJvnu`3tYDx7PwKlsGTzHB^S71`9R&uW7o{K zsSlKXm+4eT;#pE4DY7-&CQHtBN_vEjy~`{Pf&Q5o(egZcF87qnJ?T#`_m`c^X$2;~ z7=vVM^pwKG(aG*`I?YMS7?OIk6tx;_LJ@#D2KrZUqM2{8v;OQTchgFEz-X6z~S`yOFw;frbsn*=gp@axz;hUe1_RPdmXcYrlftv>b~Nho{VLYen%&A z8iseWbm7Yd({%Q;XQpY%#hgM0n5HGkXg}72?ldjg9Zs00CCPB|^kZ_GmSW5?(7!Jx zFQd6IHqqSNRqFH`6LeqNnH{>K?7?eu8W zF!bu>q??U-h0iIbjyQ|tdP+}`JVM<34zJVQw2aX)+nsXVa?CSO=h|Jl(DZm**jT6P zDaDi5DDd-IfoiYr0QFxE{?6SoG`7E3s*DVsg6nbymXOWd*aj|!*_@2c#lC7k-Kw*Q zjMzMSOpIZF9y2_bYxy1r6=ttKe>K_B=cX_p>??I224mgn8X2ZXYencEDWv0qbzBAC zF|B{35EGgl1I$`EI6#L#1EtRP)#a{$NZ$dvz?!VR)sdlj13{&CNt9y=auBg{jK#Up z2ps^>MX`|g#MNYJC|64`7Z-cl*M+tZ;x$|Ia*~%wvbu*#3!4*kC4Hr!uQRZj%nF&1 z1e}=8V&XbFUkMJDEBkR3H`*Z)vD%J_QrfR9_I33H)T=YxB1=p{tmyPrG+hLJT~hFP zT`-JJD>iL?rP#lZl--K~Le(9oOX*lra2Ok_YvP6jhuigIWm-fLOE@BybqcbEGLY_% z(cFVwtCfnfZ~8dW2$^PyrJgD>Qvm=}^!W2}o_? z-q+FTLvzYzZIUv5$-TpI{_Z?>GZ}QTT(hfUHJFt2+9qr*^#^n~OJ{ylwGtv6Yt1oR zE2Z9IMHEi$;m06MNU!7g9Ru{>6nkjbVv9Ia*C%P|3})>Z+|yg`f`$Fcpr@bC@J!#5 z5IhYUp#$!2c1EZ@LUB+2HAHGEN+e}eLC5MfcV5vzt&ab;qxK2kB8XL5k zZ|YI0e{7(}gcMC`qX8-6y+XR^d(3r#8XaBG?A2dB*j$&?KYQsa9XV)>R*KC|U-ges zuG5iZElEvw?^0Yvl3+oprtksbQ{Zt*?)7*e*pr3S|jwCd4 zn---0k(-o*#>+ruFz6~BXih2hkC&+0xLyvGE6vGLzg~2eEJvW0>a`&`+35w+Y;q+W zIGlPwq3z|8#c9hti8sqDy^)lalVvZLybg~A5^s3ON-=WZi`mPijA_#-UUM%}E3oLh zAa!BeUF;kvS4y|ScQxp%mMevULE3v)LNqdTe%d0pR!Ls)vQDqushRH7HDs-KYcQp? z@1==}p+=d4UALp^ZJ7&=de}+_uWL#?S}A*$AvrJZENaV=5wXdTeuENbKln#w)TRi}G-nGr? zGZe^?aywbZ`KdHhfwNnytLr0mHrelyNRFgCDSD9H`g*#8t`^F=p*fveLOIfIp@aiL zXA1>g)3l%@k0ayGa31a~_mfGw*>M{6ezO|omji@yr0oc$H4j_!5|e2T=JQDKO-*W; z1vm0J!apt)K70gQFZ;%p$nKjVZZ@KqE4}2IdMo=>G&S$W6~DPP!W#h{%^UHfNu~9= zZ;kkofR6ZkLhW1gOzRu4wI%wuM0A>PlQf|vGh%%7T-_?^8;T+dL_^SiO1$oZff`>rwH$lLeLZR(wAQcsf8m$OSw$a z@Sj@5-V9xh)1{zG?+n)p+pKL-8sEhuFIqB+zE7inLsuj^IIUE{FM!jTyQB5JXX#NV z<92)7aaFTortCa!;sM`5Rypq+T(8XW=O;Ol)yc6S0-BM?zr(EV49~~3`C(SI+&xgG zAGl6DH}ojz&)ZA}=2BEk^a+!^dODi1}sNrHq!&cb?ZX@;$G6ig-{L=Xy|eUi%5X)OtWx5u@CXCOAgjZa~7gD2|}3(0{e&QLo}G`$EzRU9)BSP3uUqrYkr=j+V{JlC;j} zkVV(*NV8fyH#aNH1r2nU^>svO_T5nGqmP_B^gwD>qRSeP$g1Aa(JJzc^_i(^D!jeP zv4eUYNw(TmHaIh}r$e-Hqpq4^h8(&U_DI3$E|gk9Z|39ykVSy$}HvSzSv4{aeE?BnR6 zY2;nlaB@bGhk`CA`{Zxoc?52SS zVb5SUU2ou0hoRk&6}8B~EwDELMv! zF#6h{2UM8uG+?$}DA^a*fbx}YkCl!FPU?VixCH7JZUHy^P9Ix29b7vzCDMkc(HzxfmGb%5b z`kcPpkojuN!%n&_x$n$V-v45}I?Ljdhpl7vO}?}9ut+iW?&ug8=&19s)^u9b3GMMc zz{ON)s_0PIyhR){ZJx%jhT_3$=VhcoVG(n=%)R|HC!Dn(~pX@}`LG zS4|0{_is7vm`V1ij(z^Mx!zuc>5de$?Lx^8u(lVz((SR*o+iZhs}7eyeO&Jj)V=oh zYG$dsBj~Am%?G+2VLG>?sP1z{-%M;Jdy9vB1CV#^obGDDE|jT-Fr!ntJyyE5791{t zDmyKh-4hh|AEx_~d%XAm>Ssc-IFihhcr&VEqtf~)LGn607D&9|;b~B8$1G)-SD-F2 zZPNR`i|W|-!C9MT(B;wY@521Mzj#@D54aH*MuTx9JHZ%Z+7ISgVa7@oTnQYt@2Yce zn9W+IkfaYz^6iw(%fDy5roKI6b`{S4@#-9}r)+j9d&$0He}B(m{V{+ZUvy}SThDP* zhZ*TLR`uD{CbpS3Hs6wTk)6?VGfY+;tGDvdZcS@qChp|9S=|H45z>)=XFXff8ogkh zh3D~r&*tXcvUW#h`qn6nRHrHXM54Ms z8j_;98ne5#Bh2i&o#u3kO!Zhbq*Sh!Y-?>x;#=X}^_o6vh#whfTJYkIM03=BEk&FD zXwCE#$(-j?qwMy>z+{ATq~1XZ`3)l3mB@N7&*nXwm(L>B6K(EeWm}`}_{4L4^CLV> zVD5rI{o8T0?xxSqd&*^Y%8HpK^cLS_;NnH~6?1H*4dVFkC$QGJW-I6ps^bBezk^+l^+u>I?Ut10Ya`Ci zNI5Ta^PW-PnYnc7xhH_ymwH`MMt%AEE^#dpYCB@u1ZPK^R9ouxLru3Wam^4tb?Mg( zWmK2%DNkM}L}Ml6I-!gT^NkhHwLurwx;7}I(n78Q>c1Z7f*RKYWmKDVf=py4vy{1f z$QeD*Z~E;!2{y8_%BkPvH9Itd8mchg2ujvR{Tbb_W0nGr-65lq`T8?r?`W3VnSOmw zMxFWEX1fZCy@R zz3x2{eF(lzP3M*92QI60;X}Q(<(bh8Z>Pqky>&0I7v@lBue-ipp7Oa<=3vS5yd^$o zT3!k0?&BQe%$`Q_)C9hc=2oPAQ<2%I9Fi51-%KoTWK85~75F->I=4!9Np%I)dR3Tb zCJtG1eSsRZkAi0(q@Sq`Qg`n9C{(gAi=ujm+2QiuU7tFn|15#tyIXmjhPPV@=2g2A z8)I2ESbKLXv%}?7E5UGy_UOVXws*G*8Rfjww5)Dt+RpyyIJFLES}A4k?XNKBOj+Ce zPRN=30zD5K$SKk|g6^OsGS}5}H6N7-PY=zbmJlC**7Vp@AHZ{_xO*C%U;W0?VPn z#vhtUn1qSET(VnZ^0%Ra>(B+nlgR9}`e>>-cUdshq@AoabYL zB%4BX8XgMdh$|lxL?s&^rtzcvD;v|ZEwJr36sUKbJ+9uppS-VF>8jFIeBLh#^e3lL z4yVy`qiECC*uLHR1=%R8!{L-D+Hmmf*-u3CqxeEpggFK3PHqikB2ZD)U zqf@zHQC(;IFPy}m)%r?KLP<_GMNhYjo)8@NdeV&4>TozEiZ&b~^~&}$ruL`^a|+ZMwhB%nFSx$FUM*b#|;HtnX7yPN)2Q6PwWuvF}q%3FZ^1w>V>J#@>`K8YW;UBGIXT zW|TcCyH>bvPqN$`yPRj}#J&rXdIPo7=)G?9+JO9sLLKHcDdm{gc5dI<$hYc7gq-HJ zsPclT&ryH9=Cvd{d0O)<s}x;a@s)qS(Rb#s!j2$pBvoGkBKH*cqG^;yl5 zd=pE~JXW(L8~Sx#BZ@O`>_k@6-R9L%!*rJ9o)9vR#V5%ILPo+kV(#V?Wn*-%XWxru46ltL(V+gp(GpG4ut|a`jqWZRI+v5 zpJzK1RU5r|9f9qclD@5W*HCF+h3YjF5}l^bjIw90p%Ufh*yU=kp`?7Eo^IAqdhI$J z$4z_@qSmo*;VfAk+2={T>7LjM*7}xJ@;W>gNW9_UX-(`~Rw={00`(l;5}Xw_&HRMy ze6lk}*U1kKlzOV<>7#$ln)ZR=uVA-x9_`QO&%#ST`91L!kT5tju&LNr+)F>>>;7V_ zmj|u*7GVwTP1L(n;b-)7*%tb(uuI~8t9dxci)~rnN)t;tUHhe-`^x2NfGMMkzFrJ< zml!AhW>K5ZPOsj}*=hRuor9GM-SS_5wc0nzuc#PLr^1ynXCgX@#m~Ug4?O2@@rv{o zr*e0MxU9bt&@aCabQC)~gKCvLD>{okJ;@u%QgyyGT>?LAr}_(!r&J!S)~|K#O5)dg zoT*dgifYh6A8T(We{B{&r=s;%0u~+B{-CqeP5x=r$yNHsIDaqeOH6B4?yJKQ=zIvI ziihggb;byf@pLM@5Q)8q`WjKVc2!Gnv%@u6Y2RQky=Lm3Kx$O#aCIuZ2rZ?%qPoaA zsqR|ON`HisY@KQ^Lpm=Hx_jsv)4Hq9czXS;o$7V}(l1DM?yJA%8me}>ARdlDKUec-Y#?XBcUd2n&7ZdOR58K}nEiA&{ zulFo0eAz?$l78*3>!jN{==OWzn!F!0Hve0BjRf@m)i*!8D)wY7B&&0Dz6C!W)KNT8 zEcF!k(DP)mXizR~2&gSrM!k-J*LC-Gkf(9bp&jzV*<7agFtyh7ZZ*qN;nm5JHPH)%mj7Q{0NqVqf&jwDz7eoYy?%X+EHD>}=){q!5VsD zbd@@jM?{&m>hBO(wcc7i6*wYXqUSN%Obk@$_nk8qnjY@d=z0n=-ZMJr+-by33PIc$+tpq_AF7O#ho(5;?*jmu~>a+Md6<$#8AE2)>dK#$F+OGI& zv>7{9UPj;F)0Q|aQ|hC^l{TSx_)>pbOFT~oTn7_l?^M5z)BDTSY6&mnhKH54Hb@u4 zSB)di6?~;`M|of${a#NcsM7C(q%I0P^^iVlJYK#EScE{0<8|67w*EZGXtJ|vo9&sx z^f56ml^Pj3Ibr?bLu8$5PgpZH^y%LX*`==#UTav43|Z@DDOyO$ZF9WbZ`!HJM65gK zSTlnWsG3r>-@tRsh69IJnx7$GTd9;QBSY3&*_I`d(QeB{wc8ReFU_#5L|GO3TW}n; zU=`c+)*2l+#x|E_BCFks6k}U92Wf|8Y|AdT1c(Ww+w|JY&l$EYe&1_|&TWQll@{ z3>@wcw$iO_WxTU%^@T6D-HKd&;b9`JN$m?yDSxXbP^-dr%t`A7PPZjrmPh}(n8=zs zhv83zBd4%VuN*Lv_rKC@v`4R^GGENy{5qpu;UIrM(G>2NE_@$jnSvKHO`B0&! zq={=~vgJ)&ND(eD9T}vo2%I__NM^spv$Vw8tuHYP+Ln6vQQ6SvFJZT3bspWPFp`GZ z3zC=?ydtExa&viLLvKI-m~YS(b-HsN;kGiZMBS}SVU(klDJA`_#OT{y>=`t#h}6+% zWwP6nYxGH35kGbGNoK#q=dfKY^wGoeDs|Nybv`W){S!%omst=Nc_lbSF9Fq)%*kxp zW;V3h73hVVwVCy0v$c5`a2S4n>lZz}b|8c?QR4W?h$(;9K-;#|B%D(z6>S~M)pB^6Uh*6-+Q{ee=oG|<5c zZAvojE>w?XcFm4VSKBG;XsywdT-r~lQMpjNBinMCV>Z%qw64+YG3q;=W>`8kUF?5< zc*l!jAmhZ^PiL0!kJ`(ELqR9LfFwVG9Li5t?>X`HwzyzbS7x270GBhutsaOtMVdrou z`zi2f%Vprco82_b#PmK4`I#2o!%g`%8=8N>!LZXXkFlm$t&$5ynz6=8wHtI+=f0qG ze+M~Eq;Np_Gs1nPfD)CZ@aC53NE$K`3 z01;-jTGDseVSPEbgf0mpBO-a)bPjZ2@j|~2Z+@r9GYFj8EQ5!{hfVUcbp%)u3Q+1L zXZoxap)jW=T4w+fZz_#gITfAD6$P{-z|R%;l&YyFTVY96SuZn*53917IhC38TLz2y zMxXT*Cu;#0hyB@MTMkhpQkT%ehgxB6q$S=+so6Lcgel!c-w%9*Hhkej{IlfOTpacn zv;2GMg+~TsZ9eZfQ0(#iwu`SW>x4;U2qjLkbSl2gshAG5>#f^bXQb8ba&@X-8dgvD z5oI`(31d>M^-_{}(^%%?RB;JcLG98%aE$}6Y8|?@&Y2R`d3ZWihmSHXu>0uq!#>Y1 z%ldjV>roa~PDNoG_Xm}}0H;1(UHC*5P0cmaXSLD8)2Vt1tG9=|@^aNRFXOEOCJys( zbmGT%4i?E#%GiP7aFMIFtkLP^>Qo>0UlmRiU9fxRsxzzqgq2fKIDGY0S-I-Snq8a= zw~WIoUi>T|q!e+w_?p2)$QdAa%~4(4)}O*(B+xUdhGr1q*c zIuN8IPda&;n^?5E8SEwA<)L#fP2)75lE2geQi`6^({%6fqUqIIy*NpQRL)L^Twt=1 z>qfP+QtD5C9Xsr)X4~d$+$o@esAgg5RC&JMx0MG6=**eNc;2@9j@NaK364&M=Q_y) zseaJ$23iXzCy950rU3&Lr?Lz727Po-|6moP`*81`a!=}jc9>=>9b*t?O_R`W$+!=yH{kg|bYPCM5PPLbZUJHle903P@IDu(b;k->wof=X( zvjBm5g|nXxy$kFqkL1}?COhQek)c_M=}r>uscunce}!hbG~uH{G*V{Cnj?y)yNXcU zNVtpV=J69ojk;+>y^p8wMUL2^V7AzFw@x=*^hlF*XrHlG;!&C{^l5Z*s!Mo3k1<6^ z*(i}KX44GRYq@u?0oT}ImTG2 zc1JJAFCr9iIxsOB2aH~ z#=o;t!FUVk`ig?~2&0V#93JhJiZ6q$pwm}&6?L8$Y@Rnmg%ua^SF;7<|3Obzs0d+M*uVzN6V5*uKNznX?C|-aI|9 zeMfUWU{{mT15{0;JwP?&>jBh}=z+7gz|R+xZ?108CQn}nM{JzFNcawA7L^Xs`?$=! z{$4pRQexJ;8p$dZ>Jz{03M1A|3zt;~0{&^Olu6uES?V~5@=`|y{Z2in?O4AiR}bk` zpRXmvz~Pu!FQpU`CF!+AN-lqY=mSGtBC9{pwA#-iM`Yj(cr=By1r|7RW#$x1X{9=6V*EiTtXO~?a-N6996%B>WQK7Z%Go|$BgMNlw zaiHGHyOL47D|tIFw&g;F+3bt}w3o|XM=d*QDE!##PXP(kaA0Cv* z0GP!{Uq=zoXxRP7W_KoS7+^S{eKVO3NUn||05MPKhy>J&#?%s~g5_MnA{O{W8t9$- zecUF7yMWI9Trw;$OA62&9=m8`I?CucygXwi=Q<@<(|1V4QXjoZqsihj!rMyTm>pCN)e2n<$5AcFAe>9IgJoaxcw9zQ*f@Sa}>3v|91$Jya7p zjgqF@&-B9n${-!cT7%WkQV&&6Uc>aYj^^jmHnbOCq;{1&M|Pz9qcOznOpfN}+bKqO zu|cYD{bc>yxg9)V;q-sSoo5#=xndYz-7nRE=9 z_HxuyT$t`OhsLuM%ADeSrQ2hrqxOm(VpE*MB~X)W70gEK=@hHC=>0iky`GUQMhSgB z7UW>2`zH3PwOLRW!{Sn##X_py9=n+nttYQxy3u|lP9>i@%~YSZ(zn$9$y*P=WLCrS z**4456HiVWSN%%%<~EF1IRj}1-T0L}il-+`-^GSRE*HK-W=7eQ<3}r;pQuE+Id(bE z$k8vJD83-&1GUk4x6?JqdwYxCCFUf|37qW6e6m#}DYc$SSZYt%d2ZQALK*XV9*^Rk z`U7>cBl|3}&6MGg;~TD1Aic@p$Un!#ni(iIlWE;?3rtR@{CpE@%16>lD`Iybn-a_? zQ1_a>oPICPtnM4^?)DEGJ^6&`juf-)LdkBh)>ppL?Xl9HCd4KmhfAPtv)_XA!fnq{>2|wHDxE_eHkUyC z+MWexROv>#TidvgBN+q(|`BKGWhrwi!q2nOFz=&b-aA3)3CR zXWNC6vRhA~ue9Dlm@0D(JBLf4e(cO6Cst`Ym^`y5`FVejR7d(*QXnb2rFWgpDLL0E zSzGTGhd^EHJnl0pWslFid1E5csd;9UJt?yF#!Qr(W0&&?9D8F*`9Qtbez@mW=)Qma z{$!d-Lcaj*Oe}s;{lH#aP&!F<|8}Os=zQUXo&lN?THC--V1arjkF~lAdA~uiEC8(pJ58h-WnH<~dLM?4IIb zat4onXvw$Ol`PC7T(ixScr#)^^W^1`lilHTnv-NWd77vXWukavi{KWRR{qeLFZ7DF zl>7jOW{haXTIzG8(JR)lNOIPQtyp7a^@>%>Mxx4E&$D7RJOcG6XT>_RuiS^Vps#QA zN-s=zq@QgUN{Vm2V|=CCW2HR}h^_P-E`eI=Xn$7qV6ne=$iD^CYZQ~gX~P^7YlcE> zP+4nklhY|b-^7~oo@T_>D5eDS3Dgp&Cr+Xnnm&v0b%Y*8ob1SOvQ;G64b~{~l%406 z^++EZMK+H>eVU(hIlh?DLtn}Igx5<C4ke;}DJ*wIK&Ep&2Z`v=Ao z!=s~t?R56Bl-yhBHFzLcd0_9>a=B+&SK3h>bEb#Wb>`q`cp15DjK*~>7pA(5q!pK^ zvViwqtO?2LV&`>>l(%)uThqGbVW)(()Z03eB04_F)4Jtd{?;ureU^G`9`%{)nq-t7 zc6oGYu635~niMZ4t#FU~H<&HGu)T#R+$D^Fu53%PsswJx*?1wm2OKDHA?uQkv=m(35 zqmx|EgH<@k^I+wUH00EI%9_rBnol+#?z#(}0u^*Pomp$eftsR`qtDZ0V;3y_QWn;b zDsYU&;j=@`$Nz9PwueB^^1>s`Xszx*|bcN5*hKAd6qp(>HX%QE}jK zO{Kc-?uKz#+L1Wj**aEA)a%_L8PWWbFW9(a=cbxcdv%PGj>I)}tn13wF|zn2Jr^G< z;<`lg!qOj9B|q>872{UpIy_rh^w*CLL#H(hHqZ7Lqpd+FK>Z10>D6?eGSoRgwrG7!CUQj{-S`W(yBEa_t_)4bB# zi_*LiZGu(&%AnXq7b{~XEBDo$6a4ig_&8%J zapiJ+-uB25Jr8I53^K_AvC$Q%ZezDQ48v3SL%RAqQTo*zx{#&-+5zU_Zvzy%2mACF zg*shd;^y_x?<2sI^eyw<4B2NDs;ry*r_k|A^%|-W%~~zc+5H~S+yhD%I+Sz7c58~ z^wgms++vV7dm*gP5#s7FQh&Jszx?DGYhM2KKKO~69l@?L$*p+4>U!|w6+2?>h^KaR zAJkVNG^Mw-4Rj-Zm`TrwkpzyQTN8pd-Mg!rl2TXihULGrMwj-gjq7so4h z#JU!#Bn^Me!_O#rX7&+LT4Z%JwYf?p=nk~o6j z>;y6uU-AA*Or^U@kU%&3NByj|1-ACEe8rzKY z_3OT-I8GDR>fzJ;^l*ONV}$E;gt^WVrqz$&)eQ>hlfx1EakkJ$VhC()RPr=o9Pu{} z(C-Z5`zL{4+VCfKN<8I{NJ#T?rb?VEm z*AZ(q?W1gE)-~dz1Aq&1YbjQpBg+a(Bu4gdvd!?mXNewl_h{96%p7i9QJ}tT-0JmI z<@cE7?n&{O4HNAtYT+h5MWszlT!JLkGifxHaCA5!IeMUTl1_Z>+L7oCr;N-r?s=q> zDdH8c!TotVzf^f^U|voQOZL!rk2KlGE+}$jv+pNzFX3~t6+%`H|1;nwwLLZUOn$qd6{QPt{FMJ&j{$}8}g2O{kf5U=oY}o;k+#Jt4|*=@mF|O z1>%VxI(;u=#p#~}&#N5wsMgiI#m;HSxs_lqopRA9PW)ix)t2jS;no#n>C|^Yl&J58 z56llvq^mJ{FDywP+;po;*oug&Q|lR3x`RD$)3W*rd>qcp5z}!nDDB-B9u?+jiN5$Z zWvJQwoSK$a_mvNJ(0;q0f4@9OJy{cpaEsLf&&RrkU1lv2H>Z}f>2=C;LEcVrUH9Da z7BO?`Sf=-T^(idt39{HZ^_)ow^4*ueSM$9*G$V(1K}V5mLf$DL>*Z~DIW?SqATMjz zrOoYu0}ju{oAeT9Q!r4hxs1`jZ{=4S$}`_U^_xwvUTHZ$G8Ppsk~7BvZL*{fl;*L3 z?wn!gu-9CtuidySO;W22t-4$#SZM`f;V2>9uP;_g#)kVK#j?fxUBcJI;`M9S=at=6 zwas2Laim|K>PML|Bc~tI@1XRSmByUuyez$$Q(Ck!DDFSJJ;*z%(pwZUYM@0?**qrOa1ZA$m2_ZOB%x&HM2+!?JZcMtRy54ECI%&Eav zgGPS+=x@QIO}Qt7^!W@t z9QpIjXS(W0{Pg(@`TWu^-kSf(PuIU@;>e#*|6F<0fOP%qjQ$oZ%HM!={ey=ie?I-| zsw45!^^bgh=@%pEynGLIy8bm2NB(^J=gOl7r0ZX2^tWKqj@++~bp3;eBY!^q>#8I1 z)Af&hY0{VSzW6evCmxMRkE-)XPx<`PpIO&y&b6gjb88`Ft4Pk zx~U|sCH1`8GFsw!ujOn>{H2!BlB_q{Svx4Tzh{t)mz_QIt9I?BzEpAPrRG}CoK6Y( zIK7ho^8mi0GP+#zjW4giUl#2w_T^maravFx;j|*()2*wH23GphjeIfb>Boo622!7z z(j`dVs|?3u)l6xQbSIh2l%|hCMU7LDpN~f4rDj{DRwoZa^=&Lsywn+}QaAH~Y-k7KFL~*k@@|*i?Z5BpsX^Q^#i<^?c>vT8GSZ|_+2tU13j^fSzxSUaEt}VESWi|E`*^4ZOL|aoW>zCtA*C*-ccyP3@8e2ku%Fx{cajU|$k6f}oa2R@ zCdOv!T2jV%Nf+X{vd+S>=PtBToQH<3DaOq~HF%Sfv5T#dt6+FLTD`nZ9T+Ck_^eMi z!hsc4?Qiwv^mAT)^sBYnz?Qca&JV<8eU^}rA*{_+14Ry0g2qL7(bQ3+N8z9Tp~t+9 zzz>D#<)=?#sW?j@H zO-cjTm$XSXE{#*C>6nSSW7NZDT@|i&{nsG!YS-LB7{04d>XpN+jMZ+e)NHF%wCIzU zX?(S7N(bs`Mp8YJR_9m&?mOIH9@rODX?iyw^6Ha+gGPo{)gD?knb>1(cTxX@Xr14% z)T)98-<28NU8^{MzZ$;0oYAr|(av!p8xv|UmoW+^zxvO^c#6yaLbG8GiHox5!N;&0^LwU zzj;R2-GuM6k)bt>h?HPszr&`js?cSxn61`UDrNeu^o{jBt1%G^F?M!Uv`p^rpFaza#hPD; z3+IX+nET3F@G_0nOp0$(^tf=2=)JM(`29p*Vt1F1NL#dbIJT9Zn_+7AWBg%DO6xRE zzi^9(N-Z8rb-r+88rC;sK`2Mm-FOl2!FQc47PijSu1{DN%Mn*!Gtf&v8%mdjC0|xe zO*2{74CERi17z@G!5ooyLBsxEN^DBrIv40Z1#77sVQ=g$4pd5qI%vDaE8W&kz0o<&oQcaTQZ`4ENqhQoFiLltJligm zT(N7D4W9>w8J*JYvC`4{T-NQepNnv~1ZsnBfqIi^h+aR>w${(`g;umI4!^K+oqA2G zy#!sdNqZn)8T8OENv58>hb3uU<2o^h@!{80Arqtd|Cj|oo7N5#lWSXIs7-5>=IHDs zlR2qv>mWH^YPMC%qve=sEh-(T`@_u<@8zN|AZ%+8Nvij9@>xSsz1%cV_sIEHkEFev z^Z`Qj;RQZ<-Af0w=hfcBcnjM7xNgm1IzcOSt|OMN|3p2qP%E>JGJR4MtcsmJ+>-NP zu@+N#Ox9#fZ?(Ai4<5Hx$<==#*h|;cHo@CDP-;p@BaWlUo$JD*ops^eBRgp+j((0k zu61_whI(6^DuyHNP0e(BY85gFvM%264uVvk{vmNQ?|Jp3sTXkR=M42#Cr#MZGR+q( zVVz#sYFfR4?gwtoc*$B8Wop6^!IAR1R*V&gy(l?rxtw2I{}{Q^QhPIFBt`TrqfH&6 zTS7Wo-)_dnreI)SS-a9SKbvIjs4``a3E@b3Lo3EdtO6M!S@*ZpBeH*tJkC;oGh-xG z{2h(XA~BAsbI8WlzHe66EpPmF=ZuYAO^uB>YZ(<;rVRh6i1YG~hijW15AkY5h%cVjDu^M83!KbqSh?CMP5<;W8wNH$3mvqTk0JR9&V}Q z;i^`Sh0E)eG*-DY4t6v%4q}XD3}jhiy<;H8$>0CGo9zEsB_eK?0VS8XmSB!{*X(S` zo+Hbj$}3+~ts~7=OUy>ztr1tzT-~eNh)3$PawXqqf}MmG(l#g5xmU|_q4w%cs&*8& ztJ`=9n!8ci2GOj1b+7(XyauzF4?{-{gPAK*zZwWWH zRZ4RjbCSuNXliQ*(TZhKg6yrM^SL2rVnUSqNDeN>Ff#DZL$mO(g zj$O_pZp=|e%9FL-c9h9u(=8q-mU{G&PIraAVK`W>?9XS@^%m4N-J*K6F)eGYozywl zTOI68%+l1w+BJ%k9Sxjp6)}2}x1Hr0{LnNfM_uW6UURe-opM{43YX!k-wS!;=!m zJRbnoWF|G^L!DYR$Lny~e9pR3r8=;&csQu+pi6O6f0oJC0IAmfCe=N5AQJMI_2elQMb|75KHeY6J-XEL(lYn= z=u!*#Tezye@nW|?B)~UH{+=z^1+quW8TGtZ+$#{BHfuJHc30$^W4V4__S1;O(R50q zbWXoM&#Ld8;ohd;v?FBXv?TpD1z%C=pfl3j5?14H&878?4%7BXhZ*l-Q*XQmr@d!f zA5_YDr;v;>q1iZ`bB+nFKWb0Ln9w<6S`5@CvtiUr-8|nRVlPT>DRH&W@f~8kjJ+7% zvX7=P`urzmsz_{VvP@%^JoI4H+T~lh3;xQTp4b%6gVr=5UM=%>mUyVz5pG>59FKq| zq{{kmGS+=YX}qFIQ=sR_>!uL*PBvgnnunw(MT> z)a+C_rsNn;vS-3hEhmmsW#1eg`F~J1kLhPB8S78$oED z2-Jt1=`;N3DDyLJkH0F7hCOtBbm%lWG8BHp3u8i>Otrb#Q|z{Gx*fYYcW75e8f{q? z^P1ApFMvWIXRML6x5Xl6y$5QG2yq+%x3La#&mlFdXj+Rb5DOWoyB(|563c3pHj3yn zE&2@@njXo5byjU>Q!BeYy4G-f2Yw@=v#0F2VySlhq>8LLUurJID|5QYh*BkkYsbLh z{^V^>M?jRQGDnonp`cN!c8{;`n-ys`>F58W?#-htU6Q-7kr;#oNGzJJeebS*-S53F z&3m&*gFtBJy*GNZYBZynku(}z-M*F8b-%t4?+PfZlp3BM(tA78-c`>FgNdjjx;Br`SrJ+^5d8>6r^jO{qZ-ph z%XKU9ZC9@hQ38bobv_f+;rM&4jiIX-pR*2vP$2HNv$*6j6pZ?h+x5$Nc4p1`BzaBO z?z>s=(0r3zAawBdX^++bX{KX5q7nXew%V(EJBS9Ne@8s^dJSib^Jdz$LwBaZbHPCD z?;4EBK@RC6&K@29UUbf8*0;%5K5>=CX$c47KWrzniEu#Y+fI3VO6&PozsxAFhR`l`D(W>T)0WO*Q}PH&oUV`gs#I2v)~7XWFUB(Lj-qa!Fy!)>vWf{lUj=l@1+9; zTFVD#x%T|v8Z56Q1HnHVF4uYvakJ~x>P(A+R3Pw?zi8yh?=0#~$0K^D?tcG#aNG-* zW?ZMoTq!B*5)#z;?ws=a73n&MJF_Be@j!(Ko@VN}t9!mxa-~6Ir<9;jzaYK-O6fWi zI9H{B!GnCD#AinI1ZHo1)SJ?V$m?tuSIYLaP$2F%`;u!Nl`Oc{0IAXeO9KKvIJr2# zpb7OS*38JY3VtOo@01c0`gpve@R|lyUDM$+U0UCO_?KbX#D0RBRyC%y$Lr}@S|mw3 zZ`wjVv-O@23{U%$C$G`okm(zz=acc-laJCrYkT?v2TFQy8%+55z~%+k{f6oWqD~%Z z{|#=x?F408NZLz}zh+@w@jcS^lQ|dA^6O@4nWK|_xG}r(F44!eEQLO z>JT?;x1T~DpjCadwuwzT;bv`1rgG+3X~Y zI(1RtHZ|_G@+Ft-)J4M6Eltok=h>cgHav4Q5#nS!!#vld=NR3TU;jXV@X(zezRA0k zCfI~)|UxX_7_KP!`eDG-~3&nL;UkB-Cyc1qi3cD#t#ICNko6`YG z1rooB+I);(ao6uS&2Pi5wXtpi{Z~P%Z~c@zZw2eT;%7Enxa8;ZCiD^>B%wgqPk(lJ ze*7Gy?HV)9R{TIo1>(M`3VdsKkF#?w&!@)AuYy$Hl64+)3Zb*&RSe25rCc;MILV?Za`H7rPl~%q>Y(gJQ_aye1L$q$c}$Bg=DHZrKB0LY z(-Kgy z(WRr_A^YwO*!539pzd0dsk1mR?_hq9g$^KNiC4?1#VV{K1A@Bl9{7%6|PNSS&>l&ozHUHhXdqT&2^k=Af3^##@;Ge1-%qHU=$#C0gt_d>P>{hjzYzjlJDTO~s%bcTO2^MApsj|+h6ATi zrUTgB5BLdDfBxvz*D*KFIFePiyjAG5>bX0*7#%P#%5@_g3{^iuRp3(W!6Q@!p&evi z;4`CMgIV(PgN&K{5e(A5GYhD>))AFt$AgPO_DGgV?wYUu^0&S1^Uvgen*|)## z>4pZClB>_??1EgO|fKv9Kq}-%HZUNGe z`>Q=V{(ivZ;oGkHZQ>;?_1fXE|G=N!umt~!o{bQI?3?l{!%Fdax*>SEPy&8eeieKa zHo4CdDj^8b<0a`SSdXnRVNP2#-g4$$$3NL~(?lqbE)khn{!E^rlcokf`?^H<7`m;Y zZW<-}{ZOcy4bihZYBUem zd>6>RHaH&BT_z99jV%mU?^4C@NgSqBDo8?lD;SsiE|uK59weVG!k4zK4@kbErxO2L)am&h$Z z8e(T&uQ<5oYr%6i-QzRAmGp3UV)kn+hoS)uc2t45K;}X!)+%D)a!VBm7el8k)+$io z=9;h4o&AkdTOrQesVso{&5r|f?6pY*-Ku{&r8BwZ76Ecac8Z)3RFVt^*_5@+8B7Qf zo&4_Rr5$$S!E3aiWNT3pG1gZ@$le;X*E99b`sLF~q%#LIO$7Sx>JpJH^8^kAL03%; zeD-yT@OiDABh4~DjS~HS8r18-bkHBseoG22JwF#hbD_QdIc+TUhYI;aSw6Spd-g66 z$o)zerRb5_gKswp_UJ;xciz)QDc>>d#mn{a_c`=(%|8eKxP71Z3G|@%x9qm!?Pd{! z9(OGYkw3E&`*X09g#y0!EDGTp^-rS_UILH5cgXFUe*yN`B-f!!_tFqDa~}?yiUy?I zQ3WDgrnCy1iWs=uQU$^#s*+U9!lnWRZm#)-pxM%3G(2N|nMyoZ@P#17Y9ueCn;I+> zxJ`{S#Lfl_3GbSZfV}Vcf|+T4nfJpl#7B9;=&dC!CFK+;_*jNnPZ&c=j*9X3_&wMB zR){`JXT#G+Rh#-kv}q(SB~>;paGM$zrAn@l*)-u@^IJgP&C&Gyq!-r8EwS0V6%9zg zqYA_?>)x%1fy*sbAY2TUGVfNPz|A!uha_!{MxC^jHZ_OC>;*yq()gimf|a$R5@n$T z{I2}kp-Pr03qthxX3%4G`smOLWYrGO>9^$|#fAozN~oDW3%!$}joQd&`hbgT{ugMs zxA~EK+WgX|b4*=5G507IG3a*Jq7Z9m?x%Vb3k7`dSro$8FhSO%SZJxyFO#Wp4o-WA z?(F>dt>Ki9l016V%)&VH%n3o>{k&9U&1|4D&l~~#?&hV!&(J-~JaeSz{oBBk*F%p~ z8TIj`T%-WWw&KqsQl=sgg7~+CND3VG;?KgtP>Ls0;_o>p+NcJRb7jB>mY84GfARn} z6oVA&3Q{&oHHlzgw-NhVnJH%jSk1#VyHFD=G{_)-t;!yXQFaCCl-lk-9~?S!rX$4fP!3XWXizD* zj^74)CqoxO=p$utR-}pQ2C1|rKk`&tH z4eClQr)Ej13~an2#GR7ns11dR5~ai|lQg1T^G||J+x3abct}U7hY!pVDH|$M1fl!Q z=b%zHsg3v-d};RLp`|h>Zi)s}-%$k&E={0@C5jlh+)@R?#V|>hxG7NJ=9>QmG+Xj3 zSC&dVEb)aP#cCukl~4`5!10n?huB#IPk7h-L6G-GrE#;*A=)Fq+LsZ zQeJKgZF=DO0&)wGhIO+UR`qSy{2`F~6`C~mt6Asc-t?h+t2cdeLR)qw!$IwE9?iDh z^rP1qIFR?r1_Suo*Ucc7uNii`=f4<#pHD~Ed<}G-66HGA2iu6^ zX+U;~auF;RNa4DSas?NOa+*ujDsi%-T;k@M9q<);Hu&_=UPK7%A6yLjtSd;Vib@{? z9bmT+YbcPVkD7;TZh`E#r}QqcAHDb`@~$OL9?)6DAlqGwLL4h|V>O_&P{8+|MIn3* z3uFU23my2=lxf(?lJ?`gOt+TNAyD^tKw~?aXzp>C@Vi6JD8_2kA>lLq=09(9h9CSk z+P!lt(4S4*zz-d3ta);wBo&q~hMH`c<-V7h?sxAUy3;ZJ-KXfq2FeCBJTfw9h3T=D z^TkCB5%#ZDEGO*0F2sZ&^G(m*-&?>JMbxao4ZENehVPaRoUO1soYJ1k^C2Cj?)!a? zmIb&I$mjyMJ3*{lS)uq@=D!>!LKw~f!0k>}DBKLM-NZ1P0Rvap{7TSxi>L@zSC@l{ zCIaca!4O`CBee#kse#YFF6mG)TLaQ4(eEMXw?T_1G|@!+O3ZwR)51goGHs{dMWU<< zIZ%cwOtiq`X8K)t7!}9CG5+pXYFd#+r!UoRzvrEq?hqMK{!(rGELu(&*!7!p=~>z7 z*L{*gD`oaJ2+l<#1t_-_e-_;``{>CS`37*y_er2aIYj6qJW8R?L-AL1R|o8j;8 z8=g2?250H4IA+j_iQcD~(t!|f%0AyEQj0Te@tjcDy&}CPTl~f8#n~CX{zPr3t;R6z zZqDq6xL5&zHScw@EgL5Ha;^K$!~d08{Ef=v1<&|9ZN0S>4|=%f-C(DsA#HNCYLCZ% zz7X_ZjpU`SYW!E=HZ?BFnjA12|0TR@e!O;*cZb@a9*^JZ`O7SOZ%ydQM~Xe&833DT zHdI{cr|4L~UEoY-k6j>83d6skb$B5NGDjxB{g+8CjK4}J7@NKYou8c1rV}%<;E|c4 z5hiaytXiXhLH7!unLRTvv@v|- z^xdX?;jZkw&_rU6FK9NedV4MEZsBD644`~&CHO{b##K6zGCVY{pCgIG1ZF4)+tE8` z2~;*ro(E`ykb&OG(1zjJyW{V4n1MehcAsd2ZJ$q`^xTMY=F{=1nU1qKKqaQw*6r># zIbrAzd<^fMxRbGQ!4#Q=yLO9M*#0u`?=9*3>HSr+-{N#k6M?OFb&2?D)+wuWOj84& zeO)4aqKQ*v%+fK93jAF2da%EE5c#yfPlS19T{3%6TMp7}Xi%pIS?HY%ZK#oX5OATz zWL@#?&`bL5S~8%9UYazh)o-3@mTk&1b0EWcPzbm{D@>ngPhaz)VR-J$z0@2ig+SnM z4=a;l4724+eJ60gZ*PYSeyE6q&9Bs|-3|e&f7Xtts_AN&9^jya#KQKbX1kNRotk_c z(UDA8{c6qXPN3mHJR`wlXSd0P^fQM%-#nx%7%3W30X zm+siP3kyTrYOlljI(dIP1ZFy6_LZ`5%^55Obslunp%JSohhbGD2|U^mu$@862Caux zHjkSn52IPWvzYyJam-(6m|r+tESHLpKgW$DER%IL&Ee?VJX#9# zN3ohVGSw3LlR9+0+rzia$6_RF&_u$fA6&kzf#s?L@RYi$_7<>~0A+2dDRqT(%`egR z*ztjYtxydC++vYT#Qz(*#lCztp~o-yJqKnuqXXvowK_yT@kfK9TZQ-9DjCSyx>a}V zra58Y*Rl~WKsKcb)xHdypKD%$8eH>{-Mq|bF)aX==!=HZ(Evh4_1^!H0{5!Q`3 zg8NlcxwAc7dBV31r%orUpLh9r?gjY-WAvL}2hO}ol6Kyb(3XQKH#DfUrD{kPdM860 z*35<@z=g~SZoK6$c&MoJ(57 zV1~OEg_t8Vt6IObP{8+|MIn3*GiU3U7Fx{xry#PdAJgD`{9w{I$Bn!e5Gg>yt@yKu zm8r|U8~=6?NrA&&{8=~{ie+m75hB`rA2jbhe}bUhaZx>3%&{vc1j+XEQV}pyQKfM? z0{Gp{ONF1IFndY-{UAq*-v30>!_YqrAM~mBV76K8No6L&^WF<7q79WhXWCVNmMRgzVz8aeG7cTmATybQMjktz|03_O!UqzTqEtPExCE$1ESHT;~ zWZAYLM2}yj9d&=R;1Iy#NgpI0J`#jCVHGc=HIpitr{>r$!Fl!qrPf>(W zJt0p~rIpIg^Av>uej!g$rNYn9*2+^9GVpcHJ3#Lg!|80c8R9U8dn%AH#qh|WtVk<{ z7o1WI*PIMRYcV`=bj_E_TzTlFX-=+vDNavmr<~PZ*+>=oz`Wml3cB;V;rUD%;KiLWRqhpf zFu}_eBJtxa2=4lL9fDv52;ARUArkI}z4;ow_?LKFKr)c{CYFhynHf}Hfb_uY1uPR@QMnWdv%UavqU$Fin8!|QcuG%a)yCvJPa<7X zqy#B%7sVoIrZjtOsQUr}9OH~c{Gf0&ROgf<{vNx*2o>%BE@;nlb&igin0Y;qQD{!+ zgegF_t@yLZlxeBPD3KI6?8TpjLzF&MXf{TP5YguEz=&&YFrG{XV|TqlI`cEB4DPXN)2-a@VlFr3O_^PEH%uLqW4dNq-iD0d@$QAX7JQR zC@F@llaXc;4jHmV@+uRUv{(@o`llJwnos z^8BiTMjHy0s|tw=%`53tZ`}{I{4L?;ur@Ryp$JO!o1do{tohu}Fa28e$1z_B1b!d9 zekF8n7Mg3{==;_cq%@zZeFM9VSi^W(?Q0&cxe3vCjjki&*Ul~JS$83T`rnja8CGhb z`a7Wn{I2{ecteXU-4{gQSZ+qFsY&MmoUXzE}i!un#ly8t?-2)$!a7oRZ(Xv z3f!i~8G>_Ii@zTvylegh)XD~J>ptmykE4U8Y=^90Wf>9)$WFVy0a|Ln-Vs7Vq6Ho| z)9)SCknK237^#DQD?=l$gLS$H=@A_#v9~^PKN~4PnyvV=2*bjs)LEsfkrX)W#h-;k ztc1iROI0I8w0R%2`5Tp6Bzb^DW$^tKAucOJ4UlrwhC&(gW&@;%cFnH_Us^gEkIdtM z?EAhDWL=HqrLfBP3*4s08RBNXpYU{T7PQq}-z;cVbbR{2eovVe?6}4=I?&=)Rw(tJ zd5$`kngM{@ovcu}8ER(7QZr!S>Y6_T8m~N}o@roSXTtqQC^Cqo-*WWyWa;+kIr-nH>yGQK#gCScsA z6A9?CoqiXaW_6?bl0*wUZl>RbhoMl`mn4kT%FlvYS?9Yi2G#?|6dgFGMhcK7y#Ek^ zW!j5r=`dz*KsPYcLdtn%9ff5qNkK+Bv1zg@E0QPT*$M|G z26(p4mNxTZw!rNKOY=1yBmEj!-ZeAnB~ALK$6vTD5_t zJ!Kkeh@Z7;&4ad}KvZ72p#3NI$be-J#VEUilnq&dSrxuP7p|LPRB=dMZhsNFM8PIuyO>CITn3U43XJSPho(%_qReR!8nJJ+fd<9djIO%R%}L4JyS~ zam+&RWN1TyERF#e*KC0X8~6E`Zf$y>N0*5N^w>_nOMuCGL$+jS;fWS_+)Td<4@04B zbeS-Lmuo%?(P`EZUHa#(BsD%pM8sup;tbBEcm(Rt7MHVgjKplXE-<>*_TOk&KM~`v#t2EI7jAS zDrbzOz+o@`EF27lvYatO0w>peC)5@__4~;6=_~?s%%U>)X+i*!Y|5`9NTv#VOK2-X z3HV+4Rq%!)T+8wI13`!$p9ej*kA}4O#NQ8Gdl!@=5m13ddr%}|Woof)gIYiioNhyr zaEgkgE;L&?0+?v|&p^xAb`&$V3k{R6}g+xLsM>YazU?1SDu(+e=12q>X*v$4w19jml7-T zemBUwTs+T=kkItr>;%UuoaU9bJxhHY+r#FzF8_cX0Ay$e>Rb&Sq+@K6kPrge-6DGjYM zF#}8M7#eGsI?Kc~4_XI@jCpJH>O6C>iU{=BE#Rd#x(}`K*|+!@n&o|H!H;g22mN9k z3jxfBGKx`_FF_mwYS1{wF(8qqJ3Ed63^>O?1SG=QFh(Vg0X%%cHLH+WEKkPg?=y#@ z92dA0WLrysvVv7yD3M!$G_=U#g5uzs-`9?K($1Ro{$c-wPL?_IB{R;6B86zM`FYw= zvlV|9i)MADa-v8I9QNYR!okoc%ZVaH>fsl)-ud+HXZ_*i+0!k$T$;NNHGfzp6=qs4Yz*wQTuY)Yw?Q|__->SntSV)v zOeE+Kd6$ZaunPFPw!+5&`>{{I+4gW8S+Br)blTdgF~JRRl2JdvJEq^T*#F^@k&Wme`V& zbEljT*xWm&bqu;+isyWTNqcfS+2Y89nGOsv-}cwM3`kBor(*BCWuFHsV6f(kNPaVj zv%3fZz+Ujb&Sh}UlT2!0c$daV1AiL)VoLQqN878=1Jiryj<>mFWz%jJVWQ1X=n1pz>Y7Oa(9k)$F-Hw0h5i_!*z16bH}lB zXE37UuykL659qW%heHvN0DAcolQB&-xk&-!I3%S3AL^RNrAi-lr@&@rekNGJx#4Y@xqOWrv(hTlo5LQKaD%eR1M7bCJ79Ei ztHU#i4>=tTq3ETrx?d(L?Ug^p?cAZJ6<}=(`?1u}4zM%$sb|BIj#rS+hG6BdrsHBI zC7X>(kd*G^sE|?#kS?FPxBM)ANghtUh0*|V&52Bu@#x~EZp)od# zzSwC%B-VCZ8PEd+_A*0gs9X$6tp~{I*j$n1UMW%laP5fRe;bX*=4=EhOqf zsJHx@&DfR$hz>{4fhm4*%EIwTDv==ctz(MARY4h=NCMO~7wyz(hzE3EoY}%T9{9ol z>o-4b?$+W_L&_1mTT7zSwS4J`piQ2Wso%8|PM-N$CcGSnt#HRZ_B%OU@2%naaW6_{ z)d$BFn;hz9$#bz7WQJ{n_+9xZrBTz6V4ofK&&}+T$FvptXTRd*w|&Xm{2y)A8%^Jw z9ObA%Wgz+HsDE;Q=40}SCI{06BQvUjo+}a>0Pp$B4o_&;@T7wSCxba5u%VlYY1^e3 z$f^U*aDWOJ?C>lUUu0UVMV<>lvcSSMpOcwt4vu>r!O;)@hv!e8$;_5D8z?kTos~45 ztCPw=nH&96^Tm}weEI~4mqz0bul0pUKBdEUmVw#HeW4iT`=!U=_C_uiJ-~ujCm)uwK+?t*p=fW&5}ja564xJd?D~&qhF{!PfZAmBm@9k9-dM% zYJG;y%B299_Ze-y-TV`_jCm`DL%S?p=}&?fm<$K&e8Xl|2=2EG>#qCD==n-aD) zcn+dPGZDb$f!IZ#!Dhk35thf@!vXF!+V9741IVyUug%%Ab4_w70G7^ZRm7@!_IY0j zxhU0==&o^-pLg+Z;Mx}mg%C!MFVOX~o(4?3>KW4OBvlV@%K@|8j4d*Bm)*pQ)l0)9+EIB1oGAC@x{@Ry-E^VawrcV*L+>;8tnH= zk52mLpqRhq3j?g*{3NOC&|YY62rt_O&vveFnZu^PUdBCtfD3Y6?b(B zJ6>rdwM9o$1D}0eB7CA@QX-sf(a|U|+fR`y=P1%O(@U!z!$-W&j^+qDW_mT9Zs9_j?<_}0YKWD-hcRn4vpDg;|Z2T0?^IT_yI5fRAzoT z7AYD4FP&6mW&M01lGg-ea$gAKtJC3wlkw1OjUfVr@(e`F5*1wnD3k+e&98r*jXG8> zg`k9ykY=;sT-?JvL4djDtAp!>S>pL-JNnJKZsylH1=Merp((U;#^!Dyy5)}>!n3FC zOo7#zMk3t^R{GQ_*q6$2Obx|g*kxXKw;B%Th+GPQ)&8^!;aYFY0Yq0Jo^`xR&aEbq z0Cd@%oSmB^TNaQ@0kFY8(YuuPg*g1JL;}zo?uj{f5k`|waC(08XfmdUT1ID;n=QCG zD;oIHhA+5Jy{pxk9@B7m>byRp4vdoaSz+?E4q ziGDOkJzN345Xjg4FWnUoDG=z_$E)teH5VxWxI{M<)jh-)7UcD=lgP2J*z&)~3r|&( zYa;mCa`nEK7_pcV+VgiHQ$AFFwAl<A-&ZM216D43I5?@EUYa?$OGo zZ8-L6B7kp(v-8!b#<>4dGyq=mhjXji`9dJy3g>A2Q;jEP=wwkf5x`gK&%&^ALNP#A z{kd~`eAtqaBYRs8pe0(Dt_MzE2;|GW|H=A7m|yeTvjDI~O98MpeXD=ge{A%Cpfw+;YwpUT2|<9l z=93Ucx<-)gb8j@JbDbkdO{W{|jsAVpHN&ddeeBei`UCssLN=B!1ihF2FXlP|*CCez z;70$@%!Gn4hd6(;Oi8~zdlR_(QsBPSrzepuzYWq;A&@V7@($^JDFBxGv^A#Ap9+C| z*^|F&(Fgf`X$j~MhyW-MUB`Rw9m6l+THoPVr)c17J5mr1<5_r4B#;bP+>)}9qphOT zg|kEe0(xiza<+3j!u38UQa1Tt|lL z3xS+2>#sM>ysa(Onp)_1sT~4udVTl7tCfuz9LL&n0Ik%YIOYxsUnJ(tZ@GE{GCMik zTFihOZel*N5C)?Y+^ltjI%>-?1My?*jhBenY;J5JUkJ)B(=R8lSlol;z7zqpwaa!2 z25>0=w)iJX4r=d4b9$hO0KRlo+3(2u_`;lgY({~WJm2v6U|>?SX{ii&uRidTH};^O zy{Rn+5Zyw^p!y}*JiGuZV6Zei=~!#`g+RVGoE{BN=|Xp_PPrEr0)Q>k-L|KuOLDbx zX%3+Mht@}0K)yS1WjG~Em>C#1t56KzxG@@-OC(%7R0hOLv`fMaBwX{p5Xfn+cRH;`Q-u~g$`N@YMy z%fW}QQZ`@#xW3wQ04>!58iyQT2;>{|5ZjRU+*3oaKEozYBmiBfr?vY2lKY8;WZOjw z0MZ%p3p*|5Xu_ocSgI|=uuf?arrjuVgSrh%BsMaY<-F~oM$7vYv$v(`7wpTW0yz}| z_Z1p|_a|n*#~n;42FTj<;y!H;8kh+?d$JG!>;{cNs!CHC5Yz4b9ZDCY8NZ$7?0YQk zTwz=a{0Ts3xjFz;3ILkp^@qP^BxIT>z+LlaVZ7dTf?`TL9|y;DFJR{hibSQy>a@`H zptADF^%#mlC5G6J7$KQ2`bSLPqUWVef8nYZ0{GJE>G;%7V_5d)IMJ2^Xu0|!u2U`* z8-E(6G23}lb87X(U*#oN58U%dOyuNmd$Rx&Xv@+q_b2_6QT5^l?nxC5C_%SYcR)D= zMG63J(F~rSVXA(X2LPH#Z1Im^FA7a|*7x7}!T{?xza4gDcbSkDZ|HJ{_VxzLgiN4K zc*`GY_P^3`Sc=E~jUCGsc(7lRf?a6G3$2@aUKR&7Xrut(!QlnXKGKYFyEGPFKj{sQ zsfRG7;gj24AYi}2kEv7z<8CUE0FlRe-zO4)?zMb_eia66ft(Q7 zY@Si)=z7(C2^=C74S@GUf&W0K<8zf7w7~3zf}rLh;m#wLTYcJ71H+qsnNtzi4)29Xh<-~IbofJdnn-~} zv)?P(9&2{xlWco%$W0{UJpyTKCpXKmZveWXdx7XIrhSDa|WkZR1^a?{N-1>zx*mr zI`fyW9v1n_i|xqfFTYEv!d{SVL*O3O8%Gm@&eye}x~;tHyc3{hxpzndlw)2(^qSc9 z!;0pFpy=x1WPC>FhAcDj(6B8B&`LP^XJObELoq-$N7HjT)@Qv(fe?R zl%mj?n%eEByuIBb26i`2?JXaiI#U@CuTRE9Iu2Rc=*t71NCCiuDNULAd!}dt(cf8d zG4T0Shwwb$=>i4zu6Y?|G`hOt_7;lH!@EMGyW-2dam}59pP-YqakO>MV09!5o zAaL6XF8h`%3wxJtl<@<<_D(RmEbjDdRM}q2Jw}BdR9WLI-+D*pTpL?J2mrR{_h0qY z(M79~gt(Ov8f?@Ft!_4o5ZLTeNI9p0Ic;dGKEuo7qKpoh><=y`6MqfYecBJ?=tks834*mOdd)g>nF0{c-b<;lwA!sS%q~Z@d}`R3OK8EIOlQRZ9hA z;HiKCJ$gfz4w=&=9B@N1Kz5GC7n31XAnh})+yKUVM34+v{QG;Nxoyqwles|aqCURr zp#CcKOL{JG1|GCr>?L@1i1sD;p1nrFeL{G@ohaa2FUoC!d|<%`9Dl3Wcw#Pt@xvT7 z0I*&3IrP@tTb{YUPOozhq$Yx|-t{FDM+XKbl-tt3s0~jm3vA&!5St#Dt{wB8n)Z|+ zhfg5@*o$rGmP;GsHIG(fW5d<}!1kt49XdMR;!l)X{CMnDP}+>>?e;ktMM_{qH=uDJ z)p7Xz%mrqpAZ0Si+-gBT!-?gToVC& zuPuq)k@a=%J##`}BX_j7lWp8cEl%8HwVX69Fxw>peaypR#C>Q+2TYdy9u^D9(+$25 z$jSOXfwXTeYpov$GT6C0nO0uH46v2}VE#gd!Ex{5TYh535|S%T69Ige6Lr6|OgmO8 zuW_+~GCE*#+sChYqA3pzEMj2ya=Ni|9;Q5ZR)+xVEiyc%{}Z}q%+3MA#FHWd_=dpk zPKRfi6A3_f{B$O()1wm&W&*=81Id8Ji@q#e07mBz{EWiDRhe;otpR{7-!3ZQs3se? zThC4t0-H51B^R}vko{K(07g@R=RMlJLJ6vUKVLf)n1}$*Gs+%*==@QAYU}oPoj9YM z(E_tL&+RV}4fyW0x1q?RYqRQr>5FElciakU$DjU*$ZdTLbfmK@$-+M71 zGPmi7$t8q?aPM{;V+#P-(o?jY1yt?F4N?;Ue3eQ@G)}6j(v|~gmws%!>FQ^>7s}{> z3BA7S6X`QEkLLg+1OW3l5{K^C5}C&lkph6*eA(iNpNKs*13EhlPyvIza5AvFQ{cdx z69Su;L+QL719z8o2(YFXtbO~^G2b#0?^!5GffYRv;aPP>dhY*_3|P=3*ur8)wCCj$ zlNuQA2NIt>#yD>2$DM~k3(Q(u>0oa0Qnu2hz^auC;}*x6mxs1KjpKz-%Z;fB7@EGQQRqkXT0KaHfgi`}5vo(|&E`{r*X*k5PhGoGRu> z5{uy@Yo7?If{Ei^P7ws8YyLT`fnVt^PP!-&FY@eM+Em1#1znU_aCuFpFw-JpwzR20 zqS@b*Rc@Z=xu(UWeHxa+QWN_^si-;|og+Y7UftJASHjOw*;w7zNYVRKP@~s&(W_ol zcv&txwQi3sjj`)nEc@(11qe2IXN9Q4H2eMw(PZ6Uam^osMej?jiSk`h?J}LHmRyrV zK~UG%eYT#;cSR*^6guI#ua3X-T~We=UV?_&y~Ii~%ibbeYan+AHz=EiMJXOL6@zuAcdFM4* z^O8dc2AD4oJJsY;0PGVz%^68eRcnNu%%BBk+jIuMyD75E169Ug+Pgod=O?Oi1O}Q4 z82H7HnGKkOVNM8acBphls|zbjKn5&s5(`?MI}Vdswa^rn%W_I!#LGcljg|v5eJ!>} zfUBjKs!_A07p4Oy+r+-Ry-U3$Dr7)Q8z*Br?@)DfW&l*c;4T#P#z%fOqKW{-)I?GqiG0GiZU?y)acG zW}aEo9Irbtz`UJe66V#~W=WB0*-BqRf*Cc=9$7_zly{M=v)0*>D)hkgMI`F3d7d|~ z0f6o1j2?*Fw4wp<-s@rK)N3IJeBJv-F@wZ)VGshR^_IY9!692y0CuM>`Jm5=Z3f)> z3o_uc)fRu~w8Dd^5QzE!f8K_XEwtHUGWr&SlwOIO#v6L!^%m z>1IHxxQ;srxa%;fL9-W45;1u;f5CA%C~Crh^MOesoTIvFb|iZQ-h@ky{u`M-W2@Y# zyi344u+^gkZS}X;p_UbyCbkc9)P{V5P=@TBdd1%p+BJU?d~bF1O0}u+@@QKQmfX;w zQfmHos1*ynlcA%O$?_ZuKjxX-hsI(T>S*Jt-@@%KyMV`7&i57U=Ouq|{**YbR z==3un`t9-C!Y8ypjJC2~yi_F2v{XG-jsSjl^HSkwXq-*g=19@|8$fTm z2z7LEa!Nj0xhRu+AWa1F(f0ccUIr1KYzi$;Qv)BG<}UddI=O0{yn{ z`<;JuxP@OFV(Vo`tT@I26-c%RMPmM}IyvbKDgrrhx(!9bDJqkiBPZ$c_XB{5mfsI8 z@&>)8W$DJf6qSJ-D?(gWmFlH()P_Pu*^a;&!9ch1FsjbOn4a@^LRV{-rhMOYKX3{gRU>g zGtc~no*eVDROam7qy}l}fJk^Zx@1^3OqJc6FyMS(l606O%kE9MSmozK?+~MreRLP1 zkvwR0r{N?hMxz#5Ds4ogj7N+{iASu}6k03MNO-ws33OVTp4&I%hI9W^2-aSW-7yHnbFz@c zGi*UQ0|Z=OHVA}kR54W;ZwQIM9~j`k-8CP^nj4JmE%RJ+z7V8ZjpUs*SKu}^?zJ+W zW;K`au6Z14F0_CZdKtCyTs%*9gyJA_zxgb5nOotxLBAW?J~hH=rzQf`cXf%>L{`5l z?bOu3XJ3~HAHyVB+Nn{2pKJaGIQ5#JN2%TOANKjT1R&2Qz{+ans%aafh2PEbhAwQE z`1^q%M2}w%F1gx2Y{oRf$hOH6XP#7O%R!3`4JwsTlL{7^t`JF|By2+!R@{GF!c5)aq>K(KyjU|V5p zMSb6O7@P4PjX)Htq2K(~FggfqHXa`PNs8X2Z|)r7AfHHt#g7eE3@p|kPUxK-IvZ^s zi{?>7q!0$b4I2FZIc;kWb0xGb$y>@&ouj-j1gTaddFhI(e=cyF8fS=~Mfrqx%^t|huS?fXf^jJG zuSSY)XU~%046o` zccF&%=njtYU>M$5qws9DdA3?k2omn+r6OeJgla}HM*u&6l}IU;?ULCnLyi=^{|eMD zokXYGq-mqk_t1Wls*`dTUQmLhw~OM6>RdOW{S^@4NN4XY(QM^;%o;u6pn!_@pM-vn zF7kMAOlj@V2cz++eHAs=dQJ$E?&qZy)m5$M2;g@&FBN`K!PJtoTF;T9_fLj2YfYvf zm~oaVaxWnSAlIh+D)MArt$GQe1iZiOEKT0n6`A!Cf)G7^19IvYuTI-;zZX!3O(W~RW0qcFsCayxo^usB0motL1j0h zl6woilc5bovg97PxaO}xZN>Q;`?@)pzmbjl`TR}V@Sph}x6%++WCl3n5$A6b4@05K z{EhH(&EEo@Rvyv@%b|G{GxzMF80utQLCPvoJ-dP3Myw%!*0XCKu33R7uyfX@8#U=6 zihAJZ)`MiA%S|j3kI(8xwH~AgUN2yo@G^AFS`Xp^PuKi2J*uJw!x256N|Byk5Tn-) z&5;qCE+-7^`pv(?j)R`M=*cdV&IQPv5LDjJOGW9-fU4uj5y0x9OE_9prj`1z0y{UWP=l|%M7xRV$u6B!9Wd5y(v~9?5h_l(1jYBO=SSaA@_Zn9D z8urK*CM>krWE4U`!}8yF)R^}(^J*TI1yH~Fmy&NXYN=1hhPigK{))$yz7UjIjpU_K z)VQ+1ZEBpMG`H{g`$59H=3lq+K7IRHe>i#e^cCugFGkM1eV;aGxCve7K$p9X;(<51 zx%8a@bI-5&$hQ0TKK=@%Jw(Jd`kMQ6TY7JBLD#6B^x`=@;bR$(NBNy7u9r-NKKj)spd3$oWz z8A!1r#HI78HRv3*p-|DqQsSDeK}WP}o`9s=kH(Yxv}gV;GNS#44RZo2kp4Clbr>-l zH3Cem_+zCT;M!e2npCzwg_AJ86l7UTfYO${oi?N}Oa{m;KpOVsd5!q{f#Tqrp9mIR z9ZvZKmsS6qNw($i{S6H&WmlP`g{DIw>63(xawdPsGD+a#n%6)Bf5&lSi7#s}4an}- zUIKY3xQd>h3UGeyCE{M2XYHlMyXN#9(rn~ z>U+Kr>Txxam-;E+D{z|{XUL!R+zC&MTM(mGMi2TYC#J;gd!ZO)URRJ(YUO(xOMU}( z+MQBfJ{=xC=~zGDn3d6iB)76ciQZX$%)1~$ZL*UGx6W%o&As#hzp$WoiXutW7LQ7ik%jrn` z+zD`kv|s)u5QFJC&xx6-avk|XtfNTYSw{tKQ{!gWQNp|Czk!%T&#(KK&YMS2T#5IUtJ&Js#V=Pq&yqJfX`8>bW>uJEH@ut+^+T zZc}?`-U`7}&q4sOonz|6=rYfaPjdu8GGMWJ+&}FSo!v~)0C=@y2p4kZFvJ7U!NWe? zmN@C%r;A7(%@fiX`4KIn)vd=@^>=}Q{dP-P=f_z&PyvIRCnVKdG-pe1q=)5xtI2X= zUQhy~O?uUg?x}MVS|+quuxS+yfLFrBG_!4ejX`ZWfYv8{8bhA+ z24*bfp=_i8;BNafWiMvKyzac0OP7Y1Gigo z>hrtoAV38oUvc(g;cmcRhlg`^C(d4q<&4jy1_iEp@KUn7($weWr#4*kr=cr&SBUGg zy8<`j>&E^2F3+C6I%jX7LApa&qemUnus)l}+?*o?09Sq6r0b0=7(0Gj4j_8)+kQTp{mT~u`L)b( zEIe(n6sLx)MxbYcz6D46iz!D2Y;DmwzA22dsd2N%Hwo{WKQEnHm}y(ApP)6ewp;0x zx9DGJjV$42%bW17`EprLXL&E>-Kjy8QmdIZqh)NX#za^{@@$q@^Ki}I2j94KuelXF zQ*LOb5}X%@xw%LRjc70aEF26~vi+735;(c$?}0Ygo=5r%Rw{{Usj)ggWx_yve|vD9 zvtfzs{FDh7tNgFfp01pF(7m;J?ow*6c5(taXibM34Niu(*_s@{M9aSgE9-00LtBBr z-i2=htW=9<7lIoLC1|uOzjiorwzo|XqQ~zBA6`7qYtzC~b~PJSB9$mV4e z-Zi&C-i5Q1wUo}3BC9#SGOyVJq#<-R=chQh=Jy1t!<_EHyyK=r_lRD0e)jaV?RzA6tp$+*ny8{>3{Ce>mp7Cv`Z)Xql+f%jAp0*Bt zZ{`l1a6TA9+9IpguGxoZaLLgzt+=Z}b!l!Dg@qDCrW-C0Zx}p_!h(<}`~v84>EXv# z9F<6ikgZv&yeN`_E_?B3;b16}H>PGCY0AM#@HZ+=C|)_zpd7I5|A;pB`I4PI!a>V9T^vZI6z_Y=SQZzy<**I-QJ% z<|!Z+F_8dtncfAlO~>EjQUrMV_gV@ufJ*_e>5o*>+Dgq1+{Y*y058$%jJaAFM*UQn zkyjQs+ew0qe8b=EGoxw~34Cdpj+@%`%4XnF0Bm^r8Q)4I09`*nrt4Xc$0M_Ld7>p! z0B|q^`!obEgzZ635l_m&x)Xbqon=D#!hZ{0^MGPw4QU$`rh*`V{5r02W zAkpkbNSne=;pexXwcqTA_}Feqo@-xgzj+z#zTl+qYMdi3yJbYY@4n|iO0NMbZoa>&pkp3t9bK|P+I!7gJW~7(?xNo@4DpZ22o>(yz`(wI)6o7)Arv&ad7%|^G8IQ}FO8)|C-(99C?t6dim zwY4V~{+a;fJEYwn=Jj_Bj1(a1jiU~OP#F*}(GTVh4NlK|A&|FMW6^#3Zs-@M zdUVwqj~J|&!6(nc;JO3=+dKXhbLHnfx{l-2nfq0^SFp)}<u{Z>qiABQKK99Ztp$uIb8d((#c zHZXg?!K_Dj5w+Ve{WDb;ZrY>$eBoVZOYnDjQ!mH|gxL8wOZh1lG7Jmu3`TUZ#?J86 zZ`Hi}>?sc>3o_uc)`jPYrw9VlHUEz!qTI*FAhdYsqr0{tYL-9$u-2F-a+0*yTxdfBpbW>XNqBO3At6WaZ z4E(7zb8>}aurCCwFMgF1e`Ve~@B=Yz{j9OV1_aXoB}EPWi?N&h`}FksRDLo;$rm7**vuZN!R=jCBtRS78-7^NTOeA zz%40c7J0(Ip-_gzJi3U#A4Ifkez!=;uq(`(eV7q{0rg&&}qZ%G0o8VYr=Yd zwBGKDw?YV~LKd;u`zu8Yw)Zs*W^Up@N1P!fttamMczj6ND$5lr1nI%6UcfTp6{{o7 z)n^y+AWn3hLfSX?=!wpm4bSMRo^Wt&-q91Fblq*FcT%hx<6b6_fIY5$Hz3#Y<*vU% zXvh48+;jkWdU2vwbwA2j9A`KIAYARKQ@>-y=)616v>E z)s?m!Kr8;D?UA{gp9KxYCFG*6n}=NB;A!covXISVEnf&Sluz*R_;57@3d_EWqyKV_)g%y&e`;U&Ocd*klXs3ojnBrDVKia z`j3a^1%teeLhwryJs&-!$##gC05aoDyd| z!bdKEXKG*=lkp3B(AwVkz{}CXDUbn+C=*HI1*%_`4Ke{WFx;W1cxkd@OlO^IwGm_j zGGMVh8K1w;^q8=F#+L%%COIc!$EFcoDRQm;pi#t)2SO! zTKUK{5N|UmN%8BCx`Rz9&LN$_=8+0EwA)k$IEy9M{s05{%>2o<0Ca*zW0^;8a^9nx zx z4xn}ZvGys}DN+E?A0?CftE>bt6a&NyNY8Yeov{e$%K@}TYu%?bG&VyLyN?hAm}^#H z~RSz7i6`YJmT){~^qE*sxzOsTNyj=6gf==zeAY;wh z3SQmo)BWaOgP|7MD6=9PB1)UE?}e$3d}G9hLK#-b=AI&&d>>{q+M__T4`ZB;CnvNy z?BzMvtpd638#ee+NxCy&V#Y>JSP}`el8pzG@x@s;G?4&wo3_KyUg3eOqS;bF1q`<6 zT6Qlpzb;^T250-4D1*N`4_pxeobFbpj+r(jPtSbjRaJuB)1U=rTccpZ8LB9v0C&w) zatrR{Vi>RkX1mrQyX-)O7zSEs>GDPx$R>kg7)U&f22cqD!pk*(y^WfjCB8K8I_}h+ zKYRM(oQ=Q}a}(${uYm=n$FWz!b&n%gw#%eY8~j^fX}+?@$v8-llQ+_C5Abn#t5v(3sGC<&WFB=5H)zCkCXvqLe%lO&B5}`A>>b}r^ z^Ft7v=ijz#(MOm*W|oii@oGDax8W{)aG!h3x9lO&IPOkY3)X;+afLG(T;j+); z+GLduiv7cz8fOTd9n?v9*Zc)NPMCM=X}|fKxam!5)$Z!S5v7049Wiy)S-lyKnDK~? zn0OdQs5qkVa?S4mM@(Txl(SnIhM7bQO(lhyL?CS@Q@5+X&l+(GGbLBU0JHjg;qIE> zC6?f{aqfG3r?mNRaLm(-^FAk$AiA60zBrxqAJL7M)!Qa{JOfk`PJUQq=g#8N=NPu) z@rFu0sc;fWq0aZ>&%(i|lPsJ>h-mY3K$`{6ORUmnjBvc7Gn{xT`QAUq@U__1@YP7( z`8`hsmfF-f!$?{9N_f}Y)8T88V-Ef1_kn2_K2x!l4q=qqs(UiZ(->QTH1uWHioYKy z4zAe>QioLhx(~$koBspr-+!9DH=EhyH6mXK^|%_zON;34E5~hWT+};Fc4hUSzU!L* zG|1a^KC35a*ZiB-`4_8g z+EYb)(dVsgrfzHdUxH;8KKZidBUMgW}-tHb~nIJ)M4YPC!!%rA2-!oMBT;o+^goGvnDO;Ppr zkyJEe4(VbA;b7ER*4Jm8=zVpmH)csY11{`MLha4~Dg_zV5}>Rf?QNbfAh!T%NS=FJ z;^3MySrcHXFMD%4gKw!T-8<}(^<=zqCIn!WP5D(s z$((|FrQq^H3HV+4Rq%#kv#WFjA$t6BNm1B5m%E*Wq1)-!5|Jj;M)fv{7WCnrC+fly zaxz1sthdQ|x#k(_ly1tgYKME!L;~_`r{8DmlxTs+&GftQn5|R7NIm_VFdA;y*7M&4 z({H{W8V}v!PVaa7M@lQZ+jtd56M-_jx3#zy63}6jRi#No8zP4N)jTpI!M?Y+_V#)({0Ddi*MI+8eai#=Npv!do(^48Fc1 z#HHXWMaohBcAyS%vlJA}Mg7sgsO@VU=uJAVS0} zYoN{Zd#H@v;5}VWnsrp|i+&O{D%UBb==E11z|r+@3%wG?((Y)G79jQg95|9-@Ya}X zJ`!XI!FsXR&HBx6f;f?;fG&5pX4_-z$7vzWru01?e1#4_M}Q07%}YBfkst9*w#t!G zaep`H-5RaE=7rg2<00P5+?EG$zuD9lU;MeWe)Hdf+uWcxNvu!vP>jmJ7Arzrnp0&Q zIf||oUtlN}(XRRC&~SsDMAi8pwCgv&861qBXrp1drEEAn<4ZwZdZ|+YrNSzsW->sA ziHHtQ$ueri!8QLORM6$FBIee;ovtVrQL;`+OMtT!|=o_D#d~+43g5Ykoh-dzB|~xuxEQ*K);G43V$DO^bb3{XQ^`N(f6}(!{3B?< zlz;TkzJ~?M^1L?xpi)qS@(%%&KBht`lL3LjG-`cQUl0LpCx2F0T0+u{{g3Ocx%Ung>VO_FM|m zuO&b!yRvIV!8LzC)_Z~p>71iKXix7=TW-T)F_D1${>3~EEtOEsDA59s zo9XxYn^D39UatAu(k-w~^sK2p;^1z~7lI7*@_ZUSWPw0+3k8l|o=-TV60&YA;pyZb z*1?EgH0O(w>#0N{0ok|H?_$49162o!7I@rDzY7mTn=F(ijMTv|lkgl`13lj`HfM9V zHE=0Nv6cX(BdOLcw!SAzyibTduZPnvZA?EAhDWM7TsrQpi<3*4s086s!CpYZhT1o%Ep-40E! zXL)@g${Wc$K&~BCAW~)esRa&23|wxh0^wrlmMw57kZAU0(4(!LjifWf)G8v1ZwEUgMoRY0#5}}8GL<3h|6}P zrUG-+hC&(QW{ZyzO{Z)?Qa>lgzGS-+$Hqhga{D z)*paQH%0?9$z$tN8Az}q#HIMk`Z;Ptp$vgD>qoR}elq6Lr2Z@QE0?$wq+LsZQeG8h zOQfF?YClCtL*^{XDh{rBAKI6?Ic_Og*UR>$GLU#hh)a2ueRI@?LK(7V_Kj%QydUhl zembTbH)}l^e?L-y)LZdq2?<$9VQYnu5=nu>Ui?`&7eGe4%GvN z>L%wB>qc=gw5rri~(*Qq5zy5AcQX<<&@Dimdv80=KDghQL`LknpZ~6Xc~CTbfF&TA52hVw$lP zKq<1aa*3oFTZJ@)&aA9BxaPkC?_Tm#ZY8LY%+BKhrR!7x)M5_??D~g%-Jb!CQ*NJt_*eDv1d`A_CELqf6J-s3ZF1J*Ha4{+%>**Cp>foP39W0T~ z^?6ud2vV#@^0FFqE6s5}RSKUWoFR7JN+X_@dZ8xPiBbRXkfOWgIqV6M0wnk2X9X<9 zS0lnm3LN}xO31-bBpVS%h**N_PZnQ)o)2=QNN6(rIN12f3Yii)LuS5sAYRf!G$Q^}6ENp+fR2K_>gSrt*Z4N+GCY8m+D?(h> zl?p&PYD1xnn#uxDM7!qKgom8myIWw!8 z+1CJK%J*vadk@Yodi0=f|51N9sx?r~*>XZ*_m4x(1gG4+n9`|^6L-?#GaTwOI$`#6 zpqg*=@0(-w&=&8+tWQOO?VeuJ*6yMvK` z#dy#k9M5d6ypg0rFDChqbqILDTXe3@gJ%UyYGM4BwbZxf>+ZOXm88P*NvQp{Ha5h$ zJ2omL5~#@S^t-gBtbMAXZlVPqu@h=PuiIT(O3a43IWO9LAp;YRMeDR7wVn-dEQ}N& z%~t%mqL7-5h@`+_Fa9hX3^&atBO)Yla?KCwO23P}S!eIZu3DiF%=^t>22(Bf<5?cF z^`^5svGqnkck3;XTj^7FE$6K_ad6EeZIWGnc&X<@9W~*RnWQtbj807OTcHK)i#tt* z4~{#!F0M6$7V7_wK_H%xH4b$PtN{Y9FB=5H)$p(E7FYuuxRa;pp5Wfu#CzA=sV|RO zIxu4HKc|D^<|BHwfx59;0>>SIq7f$FswJfb<5@XBXTL}$tUj!LY43dA^e-nAcAwYk zy@aigrmgxN*($q06(Jw^im?19E1ylTL&PM171GZel~FX0kf;m{vLeK#J=6#( zN73e%F!Z;5Hya^Ev}?XkM}|A0o$D!~+Jp_yecR+>gdfiQf?Tie7gPvlSoMjq^dDJ^ z(0-BQHZ^VzzleC({NLIy?$WD*14ms=HU_pd;FP99FUIKUzG0iDPEL6tpf0dsNz1;SbPSZzgk+4j5m5T8j$8$DD}BoL**tP3 z4z4)_spAr>>@v$D56dALM%+}^Y7l3s1YGK2EV1TX;?#oTVt8L=i8XR_&2NIpvE=hn z%jH5arNXSy2zjZ5ZZtV=Gk(UdiaeM`JS}zycf9lT?PvYrK z81?;wIR}IB={a41<0c2A{u4K$7j*6f+IxN`qnk9`%Ae-G-`|VI{p|4k_@m5l=MH~r zXL!o944oY5Y5Vui{Op1C6*2h5DNUk(wAa5s=nYTKMmu*d$8Lw-!=4Q9Uz|G<=^HP{ z;~+`_!hN$v#SNQgqtIRCy=AR`HF?$_WC2uzeJ^M`vkI=^eIdm_eQ8AoGd+ z&DSD!5)BjpYp2)JeuP+C9@V(hu-}5UUp-7JNsoICVqb@~wPn}6_%L8X-l#Qly; z+-nWqZ(fhU@?cTxKoT2aux)0k*_t3T$9LIB#E8Oh!Uy(Dxs`AP5MjDquZ_U0eHq8}@%Ky2C);h$+A^!PMT@7VPZdz7TnSa3LwBhqW=Xg+mC z`7QB4k?#^k;NgmE^qG%dQ3H?*L_ZPH+j~(D=`5driu__gbHC4_EuX8M6kwgM#vc-v>J4DLDv{m3N+wd4VbzZo*N>k#$zONt7DfQ;YOm5W`6$d}FA zyW|QQxaJqPv+2zj{Ooc&KW@yW_x+aNg9mg3en{gIno576HkF=Jw(r~WEa1=V@xq#) zLH{OU)isHp@uD2`-9`0fGzZ2fpt?RB=dO(z^f{Qp{CU|=&B38Ed;X#RVc!o!Ts#l~ zW4<{Ur@dj9lPd}U2KxyA+%cM7NV2jYm;-*GL;%@7D;`P9n$xg)S|9b#@u6hFa;P~6 zJT{O_9FX}VqyEYLuGxt>K9uCVoIRBYxonf^7hSd}0?77>@!9$CWcWRFt&k zhwTq?IY7#fP0zdq^0o7fNf5AHT(fA)2lU+OdDvN1Uk;_JFDs;2zwKJHFgYA# zMhmilxZj?U@M)fz%eUs&3VFMxLQD?1ysa=GaBg4P(0S4BR{WydH^>6welWSorTjIH zu)cm_M@?S_i9U37$BaUi8PbgQcK{y;xjx($UBv^VU_bM+*0NkqEOrG~i-KL+V%oP{ z^Gl!?YCD(eh=Vp|9F9+(J-t=yghFrFlIcF^eQ6-@NoLa31!*qS1057~pb69vBX9<1 zc)hFt>0|@F&(|#`LZ$C{gGbn>w=!!_Ry5u={B1|6q#Byf28pd)WZIvq2uq8&74I{l)9CwS;W_Azwfsar|Il=8hLfhB1Rh3Na82J z^;q2^@yAgfx@qv}8Y=H{^61=ceyB`WdP}X{bo18TuHo3*KZO6`u+~eW2vWho%9e!$e%mT!3a zMV2oL0P=lU#Gk#ZC*;g!ev%x2@wk9r2gzQi@f7>_)hcvxKa=l*G;jKGpWMEBHHj8) zi~8Fj6_1EXs zHM(f>XxO>FUGYCl`ZGNNq#YC+*rviQ$}EU%M*l=z*6Hxw`J>WlY%@?DVT z4f>TD=BRQ4eQqaTJTHzP26^7(Jx%_GZ1n=w<=WliQB!|ANadP82YV!5s_yL#mZBGF z++^reRX>sWV)x!EAZ}+fd8YJh7x>BnT^2TcM5o-xr*wGaz4Lz&fO;GG1z^n(u!8YJB?o)yTDYaNM69PLJvG+K11%PQLT{l}WNg%{c!%-Jcll3$**B z>+rJgcs?3=$w8m{^q$SItGB-nWj=fT%COj=$piXnI(%?49(GM!U57f)!P}DTpws=c z$@7l{&!Ki$Y}CXn^4{kh2A+c^EH-Fz?2|xxoZ#O>5cvG{w;LrqXw{!Se@A-`J*SsC z(_{FfF$0*A)Sw4#dp$b;(b{(=*-O^t?Nr=a553(Ltk= z_%j8$e-GWy{p$~Mxdx)&;zLH7(tSkN_AWkT)WFJ+@wLSJjmr-i)raOCGAf7~GFHS9 z+wn~8qC>`ozO?v|aUu5QkdfWt-HXg1(Bc)(A3S^dt_7wKB1${LXVTokYc1ESctOj8 zT%f!NrJQg%5Rr8K8&W{!_ZOTmnDZM@?Q@Mv=VV+~IQ#I?ecHYB@Psxqzcr)-Sm90A zIRvUZh|ZHV@ZA_k`q?^z^$h}**H%M0WW38oW> zZ%YZp>;B0JzoY$)%jc2tBV?A3&EusJpmGRP5V05czJmpmh`GN4X~bL;L36V%6A7;R zR~M>!egyg1(^nR$_khur{z+BoTzZunX9iT=v4uqq)YYsO7T*ZGKTEu?P}k~1RN-^kPC-_Vqdxghb>3vH3p;F%PdB7S?HrFm78nXXCdAPA~{r1zkkwyJa2}* z(D#xqb4~Xy#QVTYo$E1wwzkl>p0gfVrgn6Hc-o)%i{+kkr96ig6Gg|Gp~;!%IVpG}>9ZLDl!ZY*ng$zb7 zs?m*bB0gwF_re|>{pj)&9)jW;TuQ8~hqG1&mQfE=66-n(z_O|r?P z-%QV&o;TM{&%E6iKtKdHx?Z>_iWiEaD9X+Y@WlHT4-|jj`c_wUeY?7Q zs=BLs-)8^l*IQFv_4$13TUFos*2Pd09^G!V7K}!LXDau&FPj87VH1S2UdJ;P5A6U$ zO?W)mi+p#OM$S*W+5(^ni$34m4(nyT_cTWSHA^;lYcql;tb*QUY0WUySsoMPc|)>qcOgfkXi_vFbNG#(RI;Ldg%QHa>8e|zd4;4FZZ&NUaDdq zN(NyQCfz7*VnF7hmrQ^YHmk$#Wm#hoHemv5qh`LVzK8yvp(Z>!!zPTdQ|^s0j+<}^ zpn<*&En|k7@aVu!2a6euip`gYGU2!hm)0!h#p%X@3HcEyY$364$ z&>|b5VW36f%DH;W9Frj;$#gsk&L@n}_v}M}E(o>~u zxjPgShoUYzdX}_G7+EQ1Ept-D_gS_`OH(IBt6y`U(;6*JvY<$QhE2by1W4(L3|PdwtEqE z(KV;UoHZ!C7DGreN4_eeGt3NO2D2~KaECdo8>e6i%iMT@ltEFZ_0VW3x9igl}~_ zCB;eP4=1IcgB#a84y%kd4w_T}6)EBHAb0RtZss(|GOfo(>#__|Oni|ERKnuqY|FR$ z3?adMiiK?PRv#e})ImIqnAPZ0VT|TkOcaJiI^0FFSUKniWL8q7O= zI9Fw|uvqwEFV>V@*AqKJgmCP^77F7%OejlOjm`Rs20IF0EGZMha=@C?9^A#*L@D~Jfr0~J22)0C6+PJGf%(A` z_Dx%AjdwihsLF#doXls7FiZ1fJRyK&yz&!c ztBzYOe<2-o5L>VOT%Nw_5q|Acw_UM~{WCjFigPVRU*HSAzrR?8VI)hyxG^%IBJXoC zo8(@eVk^Z-%Hf{%A-l273-*IXor3{(j*;NLcX+)&p&P9TH_@2{BtZ`Q!r5BkD2`!3 z=S^>nwuu^1$e^WM1dlP?RKNAPWYH2XK|GpF=KZ!$#WI_EGpG?1E8)>$_ZxuyFk6c* z2mQ*T6bUOBcl6s9^Rm}?e zR-;8&>NiRsRfI@L5c}E4aw66;FSXCTU}RibW>C=WMsUA%%w`@!<1v6`#_1Tx$RTf; zdMm|Gifa-;x6p~u$;a+k2f?JbUW*wm{FY|STTa#C2AH;fRGF*(t(2l^33#JBeWoAb1O3T#YxWSYG(Zv{+ z34oWR-J4BDa4`OvML6yl&l*^wNNbzXq>p9lz)@#HxQ5+$Iy67n!!rMrozXG@%hX#O zdzMcl8tI7-!%q3YJWgP~=*Cilp38@0Cwzu*8#Ws>+pT%1Ov`9`$};s9p+MO6*is_! zIeKppjiykod2#TBQOI2VL*t`mEVJ~ie;m8cXW`%O_0m2tJ`1{lt<$r(pRRK07&$~N zQ*SZkq-^^AFxZG<7?*gjKVC*#5xBW9KpHAdLWQs$O&4?6UNwQeaE-K`eoB*YApE+s$^2&j z-L}zrq?WqTLg<9e6sK|I&BhkzURdUx>ZQ@bG0W6j8V$m-Gl#{v-c1uPBNc|6a2d0Z zCM%fHQZd`|%8(!oyYtDk?ccHMrG_DN!X|>*u2GxaisRpo^fGIb;wQYqhI(r+-i(}H z`pjY+fxEp8ZtFPgENoWmTPlCr6!v@=TsjY0ZX1`ePk>|3^0|C{0vp69V1JhAcrqKo z>O-5eMENJ`VhQCe(St0#8mlBQaabNSPIo(aN!I=TnDxl?} zColH^ja#)4F2tx1%3r(20vH*tuB8BrND2$mVE}3 zy_1pMDaOe+YImZnWj}%`*62@o@}_Iqd2FRe(eoG5skD~eAbrxQ7@hWLkZ3`-avBz} zk0*=aFfwf!4Dw3b250CcOd|Y~s}?s?SOGUWX~-bO7DGrdpYBGpsM8;Y##`+Tvhg5s z36r2dWp(wG6>_8V6b({rAw+`u-emE&7acb;`%G{rAO&)4e4l5t2s(ySsXBe|zu8>~ zk$$E&!ODdYM@70dT49+9G{i3-Y-4=l@3I~<>i|mwne(?fKKz0|y&}bol9MTha_NVLj zkB0MFsyhdzy~D)M0vL$8l5B-6P*G1>D{4u~L^+L4;w}ZMDJUh=+TNdJlmjVVqw%6qvU)M2W}Y5~=h*kg zEe;n+xscM<#>gZz!=C^Z1%OJLZ2d9YH3TF3c@)p1PB6T9;rTXgjq;(Ytf!SWCyi1^ zVbfGVY0YGpexjC18mht(vcr;x+1AxgI~q-gS6^e)+NEhO&xt6pS(jsze1S5Dt8nY! zWMO{FlcEv^oa9zrqZtOPv|9o>DWb45naw(r(D=?&t31Vc0yPWU|7nHcXsu1Lk` zjAW~{VOzomVbSRs zpLs<(9@;Yrot92yH2|+j$AhME+?2~GgpCx&n+>)O7mk~7>B2qAqtH7UqxA+>f@&qe z37Z}UHc&Vo>Wzd>7_s}gN0(!(#&HuaOxM_Hou0cJKf1<%6E?6vF&NLIq4C-(EA>u$ z91j+aKrZ;$kCI`D2<%?mw7X?ke54LMlu`0=o~CN$Ti)iGWMDcD#mMta7$0Em?H(CKna}?$LsH@a+e#Vk=?##mERF$Wf z7qyJ2mi7zN(%z9Iw7kGYN>Jw83%H6XO0kRdNy+bCUh*YLk@A0mJ(L11*crrlPh?4R zQ3gsX!YvgLC0SD;btcozwi8G%tNqQlWrDRWV?driKz7t_p(Q}zO!E`qqrWk{u%1k>WLETzGP$KUPqRHB&LzLuA z5skvQzXpdH)ol!_$VlW(5bYiF6NsF&2e(xyIW>QRZ0BSgw)>@rXB(+gm3A}9n&8<5 zf$=4)b24*+=}uT`Kdh@uMHWVhbXzQ64awpXAz2V4yK(1)lY*+!lcc$GRN6 z{eTj2W1h6z3_;2lkL+=blq-jZgqe0>#u-igWm>YY%7{S?g zBe(jkul6;Rfm9O}8UcTw0N;lrbzxS_EpUB_pe=9#i-3m9OSpBJ*f#BM2;-{4o9GPl z)D%YFmSvcd6uXA6oCYkk+R`*6K0-q_l!EPI+JzftoVGXh8%hd}5Ri2sic4I$hGnm5 zQT;j~U=h%=)q!83`||+2eygKGBj8tM1!j#7+vM*7zrG{aun5!YOVJSuQvPtvI2`yn zgB!6NTVwU*uR?-%kHF&uZb`T}}e(Wk%&aB0Is2e3MXdjO-2qQfE$bJXfuq8UcU6jpJ2Llvj5UOCSW_A)Fg?;9->r@2Xtk6etAaec;%4?n;$- ztD7eUun6{JS*K(z#g(9|w-8x8IcOE{F&<(=so<53(l=WT*E=gI))n%CD zgFGO8d~U>7z2B5Th~!pOPo5iy`YB2v3|ILk9>*JMx2;L)tjsr)a6mIo)h@v4#_Y2pW8-Z5WQ-On^TT%UIZV*naw4@+kb`%!en7yZZ1s1BYPU4R?#w8^TF|`Z6ZdHi=;%sP;$ma1<9^+hCY%x;UnW z7A80dx)tGytL@;Fva7CzDi(tBp!lVxCsShFQQ5>zkr0H3iCfT3b*^rQ6EFnl!Q`j9 zzDXC7%y&kf0EBF9S?$Wq(@ASibr*tyhzRpu@q>#Ro`qYzjm)4Tknc%;h~3y;E1QaFpTTv5!%A*ge}|efQZ} zFrDIgS;=bfYfEafjI6HkzP-(Y+i+@Jhiyznv5c?gS(mNu7K!C}RtTH=6!djlSD4d5#;aqP}IIxunmW;w`@U?Jt7L**7 zE_t^ypQr`3LRZM|$Hed8X`3y`r-?(sm1!@HoLNmzGACtOdQ^H5&$86Xiv6+`G3I~^ zmhbn)%xI@S8HVxtvS~*147KTY{bIZ-qLCB70x&6wP||_xKbBcEHMr0PU_wWhN*Jy6FPln6Bo@%C?KcB~;{sF1&R0oXL(P z^NckLWi^Kw@pKX|TQ_d5E*dla5TGgo%a)e}PUy*od$NGV!Iw?Ljc5rGX&1oQ+GES@ z*ji&?2@Sd8{EWxKC|lBHuD4Rb&ddmfHBn>Y;bhJ006;(QwN^z*@Dehze#DdEhQ~VZ z*swvggore3;*I)>?AJLK9f$0(+g#10iwd;ajpb^!T`2$FOTTYo6eHghO@f%2^;J za_%JumBGX>xP05}wC_b{+1^BRg-lmF=_kimvR!lG5=JK+JFlhcIBEfPZ}l;!z7C1k zQ45&$ZJc!Nj+TJSjw>@)xmJ$<`Lq|mvjpyFysUsE8hwBAgJTD?gzv~3rlKVHh4kHe zk|lh%($`$aLBdOVUOlw%jwbiANJ%N2aO@kF@^{oO>dxTfZk@mqup?Vb^ZFij>Ft$h z%hugmw2B$`?kVSPT?x2spScC#JU{LU$KEK3*^v(G4%>OMlsMOJao3XYTvBUm)y>Gc z3_NLEjyd&5%VKe4!ekxLry#(s<5?nhrTjUb=6j{T)}7u++>RFbNr*%{PAhI%57-?U z018Ng{)A(nv6Q)^Mn`uNpLFdUmXIBp=sDitli;0m>IHU=S$F%MR$QlBSFaV2M6ahy z{GlEgg>Jf~CBQk$aPT&=aJ=|3^IpJ?NroMf-8OFnTB|`EmRx3D@PWE$e8=4~(PQBl zu179gDW0ER?)mNcQCr#ENI~y!gLfyIx7)cTYM5ebTj-lt43lUH90XnI>GFmtleOyl z?iIsS3YMquhaCrS_FKWku3_3P#3yhN@$D`=-P;H(fCnfzvT*Q|q)lxZ zY{r3hFxr3}w3Bgs@xrzIgR;$1YJ9at-AA|K+>s_**0iQhW+h!{S<5zFDlsz~WRy%v zQJpZmA;TzP(w3FEDvVMqXw&3rb8F!+|IU|O!4-=`TM1D%5HdtAN1sD_J&ar=*bipi z_-wRv*}YMI8iO*os8Nb?p^d~zlt!*e8HU07Cfsu1sU*tQq}cIDff6EeO$w|OY{!${ zyy$B6x;j<1ki(Kmij+{1^6oQ?x1 zx7N25tP3s3Gq;brw2LHKC$iP->JyIbX$iM%w#--+@(k!B4h?6C)AG2Pp$h^V@6E!&6RuK^LchjffnPKV)?l^tGnOyy<1y7)lH2Gk$sU%J z+4Kme1@j`$Em=~IaWbPIk5<94yGpl}RbECAhG_(x4Q0 z%#u<#$dWQE1x#y6DPWvTDPR^=N}(_@<5DP0AzKR93>M=nw_Vsf3^w6p1oqjI`dgTC zx=L7IhMP{26n@@H5r|s)?_?Qnas|Py`n3Ug*=!5?%{kmS9l;e57cV@ssGjO^RUO&U zzGF5EHcv+L{?RnKGA+^413kG(s~%dcR&GW_R}PldSi=N~zUY&yhN%?j%)SoXmJLT~ z zwyD5gP_+WUu@>hDrro2k;DT^#Q2NFX!z5Y^13|TGRB+{;VTw*9mAUb5x4WuXT~Z7K zl~g=;)IL<#DS(i{t)fhp4}?Ai$O57BK{N)B83xPq z154qQ)=)10EMsKmBO?kwF0&*YWk@WIRbR9UED<=akzZffS-vK^sPv7*s?A%L?e(pd zlbi=+lt^iA2(nFc?fNU#r1-K_Un;2LV(tDcT6#!-EtzYjyY8KFN{p28i&f&V_-xsg zD{g5=jnHPa2y_JF;4qoubL^Tb-YnanGjtZvT*M`s^k}V<;Qpsb`flXTe?cr zkye&nc~mQl7Lp*m#t>w-zpGZxX;bM>FHTzmh`|lozA*{AL;xf4qTLv4z>d^om6!MW1vtPs%pm5s!p`msOG+L_|fR3iI+7c@ga}9%x!* zpeqJyek{HHGs_XDMc&$6t+B_^A`>|Y4;MjZM$_ZfA#7iTy$J2I(YQM~Ytso@AgJJ( zvq-&_AwjfrE!+&-!)SfkKI5uYA*E*Q=eMCI&=XFhelUWyduvS1#Kpvt3@!R9_yiz;3?_UC(5TX3V31zMS zYO3Ikmt9t<>KZ9RUEEvfxo^&vvzJjpQi^#!^=9%L8^yvUN!_Tk^aQM`mV!1cU-PKb zDj!m=Vgds8sZVBe7$(Hw8rz!EF5FE9KCyWa!R6pBXUx5f8IqFBB}PQ>io%!$Th}~D zVB)dtbqQql!xajkX!GUeE`aPtQ_+=eOlGT5?0KZjwXK=1j1VG9zpl0jzPc|tRr8<^ z^;Q`WZe8|^)fB2lcbOL4J-$fM#Yl6#{uXWYbx<#5k$D+a%Ze*g**eh?9g+A4XD)M}5 z6$v+B^l|aR^DJk8yZk#RM%T)O+Q)&g! zh>A=qsEBorL|Kge%huWGYJ<(Rbq!%1v4zigd(YS|ilU99tH2_~cnqoC+KodS#2 zI^UF=@eUB{JX(xJmY1FJYMp08yfO}h@oF><*ahkN2eG&>G>eehd z#)9w~btcnI*d;J-h?~cjL@*)zW}V3boR{Otn4M$U5J_Xlt+kT02pz&S>PEd@Lj*mx znT!SDHS9)fu<|Hqh??<0(Z1{wB7|KO&U*PbxVvvOJ(e0{L3s6h(Yc07%y@aGeTe}H z!fM(ZP6D{iY;v}-p3Zo^O$Bx-8NxE^JtC|x#v;qB;Ka?#s;>25{7-lddNUYTH&ok< zeIyn1km<^-2$pNazUOOQ|*bRo= zM?{T78iW~KIyGymDe-8JFcy>-G@6e9>zJ`1yw=A-;gQJhdo|-}Tl>bJ^B~;D^TAw<}Uwamg%>z8eIF^o^rd<(wdMM#U|75w|5vxGg4_mX98npZj{ z>)SbfDadAA)pF}aGalmu=RiF1FA#=2_2DHr_&0opOPnU8uBwcYBtz zf0fpp?z`OW1!c)?NRih4w!KkY($?JJRL@1X=&n0?m`v zCJDqQ)+Xi(vUEMJh2mMYb7l^NlSg{po9&VOJ9#8A(j|#Dx{+ChY(e{Pqx0q%L_PLD z)sW@uztPer9>m`4jJv*BitkS_q+hI zdG%(T2-!gcg(`PFdRz^o7bC2U_g#LHn8#HWYKh?7}!ZQS>;bk!25aDOyr0xEI9v|+~&GU}iKA*#@+ z(5M^bLR8?SQvwA=Z@oW#7;M6+_V)YJlke2R&+Jd%k15wIeVz>zzw!Qb{zazzbu2^y zs_aiU%!jCe@m^}f#C0X$8;wPe-s@Q{Q#Z_2>&%T!6~hcCd2Ek?vXWwk}fqhUP^12aw~_x5{BC^ zcZS>PHlMT%VPg}P;bqG(B|yqBY)CopHSIr*l~Y!#d_JBF${U}I2Fmie!Ee>_#^(lF zqaNsXy!2{v9A|tDim9RjV4`6Ubp7rHqX<4(8%2a)ZZ=Aao0QKQ z3tx;I7_u2(C1qGSTPkwGsXe>w+GmECaCne~TxRVvLMALC>ND_af*DUtn(7zDPI!q0 zKsjCm9~`rj=f(?wjHxDj6?HF;8Erp}`z52DY4f$x7H#Pxgmy}Yly=PJ@7bl7Eo9?O zz5z89gW5L*$?VV-jd`zSg zAY~@*(^C8nP1HE!6VEJboI-=p6g{0VY5aImvc>4DJ5O1ZlDxca7D2MWW)VMM-Zo3h zf|R7Vv6TJn(+QJRSm)E{NxP%+AVfu9=*u&cCFrX!)ciD}%kbu|$ujfRW$4ZuQD*VH z8Pn5OnKArC8DVXXA4YN-&H4O|$^lnSzKE}YG+#M6gew$-Svwf6g{!mR;)NGlE}_hP zuP&#H=vvDCnA06Rqq?i=2x?eeXYS=AUuIX?6+t9=GOw`Ol8VVRTe9}fc&A&nyb6}$ zoe8>w37Az@R$(O>r?YD2OVui61dFN_R32hD~a$@wLCzw5FBiMwp+0 zUpInb+$3S&JxoH0@O)_>N;sUgC$la*M-z6TT9ce-#tWb-Rh?E2J;MLR(Kwn%!4P(( zw&#n^y50H8)if`y&&K=5t7X*E$Pw=2_1VO3*1l31q;!4vw2Tj7__9&39=79+F1z%o zJr36bw(h@4{f7KD`K_d#VGze*%*=tjE8;7ba4tb2gZU_c2K-z*w7V9g8lJSQjZdPg zmJuwd5v&N?8H^OecEe_eZ`(?6B244aVmObQrs{jVCrJ^m=XkJ?Lz5MF}gMG$+|`aGIM5Mmiq zL(YIKfAd9al}w^m!e4U@h=Z%eX!;Tqz45`-6+7;Px?o63T^yd-O#huNbl)b6V4iUz z2+}Y-y9CAE5NRMsO8R^v3X1X02<72KDB2MI5{Tq%Ga}Kb5`hSdpdqJ4wth5Z5oj)quT1nHcc6a> zbm7I#=t3@Cq7UK#$kY*V38dlMfhP+;*V!SgMKOB31OjNtS`-Y42E0N@r$I+Zwps8! zNs*;U1n_F|tB}zp&;s9H&Rm|kqM(k2N3JL+Pa+D@DloTqZx~tKU|MZVryc9lP^%yq z68c}7C=0)j5GF4JyPMn`iNN>7Rt`%d2H{DX&lckj>^SeTX^=}$9~$x`5t>90VstT| zw-ZxgKB;h7r6aXyXmpW7mIy`MG}PFXCs)^WddT5D44Hh&g6?=Yy!rvsllVkWZrK#sLkdJWi87%CR7MrsnqeL$3~K~ zwdfI`)LAlwa+tQyKH6YuPMM!hVOX3gZo((<*Plo(Cya+ahFo$wkX4UWO%gFaSKqY9 z$m=QA;pQsuJ%prWexin9*<{fZZClT_o?h#ab8cDmgj+-#O0UeEn`RU{;kBM^54|#T zUS?VJf*Xz?UjXw%a1Dw1Cfrdlj;0IPrWV1f`U|)6&#yIY-^kbMXtGCb%L7U-s)bqM zP7^gt7+D%`(N@39SiVK*gk*7)d8WeF+X{J-5vQ>WqC!Rmqt90gv%VLBaa(0aSOqNF zVDwBC1vD&GIjSKHNm+lX5W;i;JFbTlxGf_%7g-I%T}Z*$=~f{#DFsTAh(TJzbJ$>G z(@0jpqp5)L5U)aJk~||uD8F2kJS@c+wI2#+lg3Nkcv`gKRKQHJn#?hHY*oLLc zaoAbd?x(7NOe=rm1)CKzljX0|B;q&|#2^sZ7#mtms#ZXh&Y2kxdn@G9O8F3;XJOOY zq!Z!3xpv$Mto935z>%^wo>8fg3$UfE297tylr zLqziRYJsSX2-g=wp9@QQ+P&Fi)Q&^wg~xUm%hu9py~OvGJT&g7s78&hK!9hM8>}! zPi`gk1SX{HrhT}4Fp6R9*_e8IbvH^ngypFJ2z6+UTigq_Cfrq}tXTxx{A`&Raz^G6NnWxmCGUUQ>5`OuLOwGICDlIp+5cSBr6ix3nG&0kvr{=uE5Gq(TIG1{^zi=rR;UCN3tSnEo!u!33?>fXi1Jx ze`z8SF+bEabK{e8YP8^j+r`&DY1G6~gmv)H6w5TZmR4<%A-WD+W?4qhkIRbqs)I8j!c!f9Fqj8BxU(J^Wyi74bb zqU;K>N9az^L=V_rM};C0gQx`a$+Yc#gTXqn!+ta%q=I%ToZV!U3puUH z_%J=Aqzlex>foiJaMSf{WYe}9WtlFXJms`3S}A5)ENipLVtSczNih>Hy=V-UKWx?a zO~?4aGovDh%i|T;gi#1*IkGf@q2(?pql{BsGd>v9DBYHdI>TrCWywcDo#Df)&gE7< z3TndV3?DhS)5gMm1D73~8}HXL(>;wrF2S?~xm*dR3<$w_!k@G${y7>CbF2!HkRUYU zgr?fk_-AQ6Cbwd#a>ysCG(VRuNrgi`Nu^D?Y)L8{1j%Zbip<~$m&wTfQjz34b-0kZ zROASzTywm@v$45UgnyA4G3Z!?)GA*pVwevZG#FnhVwiZru%QcAiHs+U;V`n%Z^JxO zTh2Kf37Zs7do`Q~UWptt9RL}MsKpQy4&81vi#q*bXm#9`VRjx%M8YO)9$X7XBfmv* z+;x#4WWr)KIS<{dY8kr;49mKefF?|4!W8vc?Rg%lt{Kk)nKH|gAQVUPS3hk*mYwmy z+nQabWe{a2Ynl&r%(C-Uc9H}sJLYtlN1e8}RwGOAwCl!0B|xZ6lV3bGC0TOD2jf_3 zW~O05Yw~7W*K-^OvrZqjyNe}gm!Sa@oq4yY+6aRCZtG- zj>%8{_{wQAh+QwNL@Z^+LbK@uGe2I<{Pbxc>=47^mGzfD<-izmrbd zs#h|t09p@hyiCrVX43oWj0kZta`IZ5S?k+)2SHG~VW>n{74) zjkvtZsj~n-ot-sq3qflSjCZ*xx@sm=d65sNMM{-Wj_mrZ%Y||@&Zj&M#-m3dWloDw z9<4^>&SWvR>$tkuzRxWUU;nga~0b#=r&(&ttul zR0zX$7W_zPH8~H$jp^oeHnBQp-&$|de%!BaG9rZC=*%J*&!eH$O%OHcd9*ME6T(mI z2^Qw3UqcfG(@6`{cu%mkM8%Aa;FU{S*rbm%(t;Nu&9-r|S$FRyceaqt9lF*AYD$Sv z6?2f%2x_)~&F3Ji5|+dWZE;Rv6GmRPkd4nN#1FYs(a_726mpKqCkQuT`87{C#|{)H zb)c2u+Z@a?_UOnnf{LR0Om?iDME=yvBwo=mmjjJr_MoL;UwS*}m?3893 zZU3f-;3dkr+I0H@jL~SmX+PaAK2&FNGSltHdD`k!Nrf%FNk%r)?a3#Z4j~7QkR8rV zSD9`%&WX&}7*DqwCtomAb7nGSQ|!U8y%x^f;V@(yt8FTRF@V$vH$Du*IPF#*3sQ9A zs*Jpde&}Y~IOFSa%vmSBSRN-%J{)}4Rok}RfAN}Y23Yx@Rk+qBn9YLCR#N_Fqd2^H z;h9CVw|ZQ)itlLO!O}Vz&HFpKI2yJ)JnK%OV!s?&^13|Tiq3XMl)r)Gu>JwbMf^NPi zs>u@UQXkTuV7yk~K(aXZKfPtXe!%$s%&0-)3uH6Bg@Zd(_ zYe)+)5L9~@s_kxI)zB>lLdSLKOA&CR$;>_B1yWN>~H6#V* zC6Uy=Zn(C6R&brSbpvyI<+_l-AlUZ897oj6pChz}c3X95h=L&76N1~xk=j?c4-f>w zwJV(EFKV+ES9QGy2pLT0rfwRD8ko*a38vlQxv3-bu6kW$7znC85Hh;njjU>D6$3$W z^@bByJy3OA2!h~R!JxLwR$^!6Rzk%>Q10#(tx>VAl+|^OVIZh>t#uq(>eXu{Kp>d* ztdkk-Fqf50u+Lgl{CuH)$poTNhe4MLMg>9;DZ#x%K9Mp z!S35=v~bk(S06VdFo^v2!N6-vVB;_dw*8~Ua2`#En{JxH>Q=eHLC_rpvyQIqJ`=d$u?Vf^2`hSe?&;j-#PW zbz4o~An10%il9ra_W*%l+RauexdByO!?cxBd!P`f54nL=y*)(`L|TArG45P?TmXXL zT0vY}WR6e8!cm5U_dZ%(d;W~VwdZgj-W)pma0WMbv4!VPFIsq>iKwnRziEd^cdjQJhOcws%Xek$QE+>IaDVfUp=UazPhX3Q}$WIAn=%85Dy2o>Js-c&3K-A9M&DkPzHmjvEF!!*;S; zh6}8HHk$X_Jvj3)S{=gT+}T?GM3kBA%T5l|n~;_TD8lAQ^5JCM0Ud&CVte`isZ!9{ zeM$OYx9oF)U4cL#-pwJh&1Bth*-=}%Xwo+E)+$<&WJ?h3RuIiMr}-9a8RZm{ZtRqO zmxu~6v5bpQ#r@#Ypu&s^sy(T!@W(oJLN~z-g~f9wxbEb*KqX4gInL21@NmFM!t+h& z=WUyC2A7>=Pmru|BI;DEKFd5==KS=(8k^CuQsj3#5nvbEQ+EI@tf z63Z#|N7B}o*I^9?fqGX0b=-^AYK&Jby@E=n1kEw=1LNebv)NNY-4elOKrBOBqw$l@ zvD#=Q2!i&`M7Glkei(_(a$G92BuEbOVB96rj(XtpjF%teqqp~|ucJ!W*2!c~5FX$N z7xPIE;4$~mbe=y6#Ud8fzZ9T8onQ7{Qg3PQ1YaUS8KWPv?a=n^i!9el63k>z5b`le zHw>p>Ce%{7Dq|9vFTr#NmMXaVYBY3~a}FX$f`j*>fP>j4HLz6au992{o;@68)XU#I zQ>Logg(g)Rh%V$z0PWy_m?N@=c=ThL%9!v<*VUY#CpnhI6dWb6s|~#Ga9|Yc)cKT1 zjXI~FIADOU2nUhh3Sx$>T3u)3HGN0raV(MSFqD&Z~-5+{@-qFeZgQn~Y$lGlmOk z<95H>d!9W;CxxDcu?*@UUV0B>%%aA3v*cmqxC!b2|i_? z^TxiHgMK?SD@JIfYj3}PE49PL3b3z*@v^5U{V-n=7&MY!5Fv-NQ!}g z!2lY!fS~sK}RK;*E9E4z?H5E?DdK(v!fdw1YHrf{u?p!4Fkq zKvQMx2{{rRywgah#l&O|TvA;_Si37Y*m5xtth_yBoo;&oS1sG)%huZ}$|kcX(6|wc zzd=Yz4mNb@J)_;`LeDL4+StomzqRh98P%b5V;%0CM7H)@ySk@c~P@QVL!T{{8?tni#gC#9w z!LNO*CaY@|lP(_wLCYt{^CQ*~=-vt)SOE%xmp8?HRaQ8f&g%?;EZ5$lwkbIiTzrBf zvs$c1aaWn($mCA&@s=kOqfP-=nc&D~PY`mya2f>%>ZwgrLzY$i!i6{pX5IqHxOL=N zr3FeeCaCz>C;hSQPLx#^kQ4(UsJSgM3%d&!UY9EK=R9u$iZ_q21sK{UTzD`H$7`^6 zU>J>}I-aX4&0_%yf|q-&lbF+41pQ-Os8u}HIsk%_uN9hw=vhJJRn`irSrcTu zdx4*;uep*vc9rf$$(i8dMuqZgtyM4*Viltz9|S?mS4PA^!3iK{ejr%xy zC~Qw=aOgWgS9Q#*G;e1SX$ugyY6)Zcwf=-I(M` z@bGaq{!(WdfwX|C$Sae3IlgLZ2VCLPmJIObSYc3k!GMHVr8(9C5GnEj0z`7LN}$RB zLCu;VnG!TfA2EwY)hv;0pIT)H;5^Bl087L)13M)DNFk46!b}Mo-pD#S zNTSLh3bQ7VxFNY1;}kH?q}OR4su+?a?>ua{41z&}l`l0aU?ps7-UJ&rCh=60ZrBUp z_*(8Cnha}oP*vPR`5*{dzGMO;!Zwvz6vk{lC~MK`ly;Rl##{^pEALk^9?WR9S7B*F zSa9y6S>>(LuV%9+2o-6v*%C(%>dMm0Vjx(#vkU2P=QKOvbLo}iITOsXkFDbD(()%5 zl@fR3K(AclO7;XHpOjEo3}LfoJDvuedW(*#OiC1>Ab59oH^;#!>WJD?!#!r{w8&&k zQ0?zOuicAar7!cj*tg_aBf)Zjt7cAM9g6#l9vn^8PGZzYW+}5w{si1zG3?smhZodo zsx9q2B~yatmUa}kg|&=w8eh#%54?KG>H|0s=s8QGwA92&wl}nA;glasY?0s7mgdJ& zF?_e9RPQpoON5gs9nThgyklHmG z3;An{BuFIoqOw!?3KAd(@NGBEwk30-0Kn9QvtHPdF1huo2!rfqZZHOr=0p(Ok%V{P z*ysW?XDJAM#a_WDEs`0*acA-qUawqmv`s;(>F!&7YOdfD0VK(dAQ2KN@d6a2ngX$w z2+xe;2nTN@wX9WG%Tmh@-e6%@98JbCoE=(J>w4*jknAGAj`@$%-g4!L3(;dMV0QEGthUbc|SRmT6-LeBV z4Y6~JfnD7JAc@3bSLqxs%;?~?9>q6j)a6iiew#IiG2$dNjyRORY2iv(L=!zD1$M(rkT)N>5ls5Q8UB7#vBv{27p-a@6Z)%Ix@Z7Oz&B+XhUnI^PN zWs9d}yi7%u*-`Z}YnPTLO4_8dN!q0;6|_gPI>+7D&q+AWM^JDUb+OsSU6xA?`pW zHQQIUG{aQF$23bd?KYMs(-JW<@Cb*a!(g=P9Ctl=E0D5SXYrQ9Dj^Z9rzX=mEGvB| zoH++vwrp1vd11rT%HkrZkCO(Zb|Yuhl`e-&Kykd`VE1FxD+x@x(l`ueoj!QgjJnb^ zc1c%yR3vHEmC7`ibfq$0ru&fDkwQCS)|DbmdcWwV;EZ33S@QBnO z5a7p?F|?x-=h(}(l9*#p&=KgT1#~|`FB_Sd1J@;f&{4&d?S9#8$#S4MH4zaysDTa< zW~$tZv#KUBmaU92lA>PHhg{Vu39@YNZaK)jN_4RtGLesK_uJeCR6G_;_03 zIG+1FhZ8s`7zXf9EgHa+XsWq!bLxiQkBOAo8EPtEV6?Q}P>rBC_<72t{kp5nq$o{> z7!mq9lG1Mr%!Y$-d~EDThWf zCYTPw6!I(%FP+r#^5+P{!RHX;{hB59M^?^@7m};Tt}W2*G^SdMZcA&?Q4@omi(IA! zb?Ldw@>8ml%z_lh-sLq)W|)^4saN`1#0=!T6bfqB-6eg#L8@u3(iheleBR3G;}KCo zA8(MP3q+YdeRpY}ZiPvozc=`tNlEE{t{E)GS8ltotE>+PSGD#cu!^~qN;Zxh};^SZG2eswY6TX!1nb`-5(m&3h&X z-N9k>a0M(}l*CPKzL>}YN>O(vp_FGQg#Uh0;gk9NTlLjLToi1XT`+@1Bx~X7EPy3M zON?_GT`h>+sd=#z|E6p5x|1R z<8Y@x8HVwC{$#&R25Ez$&rR8+(-Me?NDrd5UDCi93RI3r3kM=Z*$SnJa0tTv-7tS6 zi4FNwi2BA7n{=R&rWcPN=te>QGJBh3Q+WD--X@(ELqnu@n1#Sbp|WLVwnbc14+SEE zb3fc?;7|)|mNI}L=nk;k797H>S;`Cz!FL!!VC7is5@XF$7KjMWgV7i+(sn4wnyn4O zAqb)KDKq+Pt4d8h1TX~MAvi%Dj-7KTK;6Y@)!uMC1miIXn?>i^V>oZ!Ay9p*k1bFE z>f&o3we5;+?4N4!98X|RCuf~%s6MYz1vjF~74s|@=buGtlTF(HxDhi0MbO@pNOumu z#M4RXx?bBlrr*$QL%o$nMsOdTEMOb8Lp841U?CiW@BoaqT((#>yC#N);M;e`rTFxP z#8zc}CfUD`c$-$@;bhINd8yB9SpiG{5eXiQC&Pk+s%+9u>v&BaL^uTD{&*w*LWgSj zYId3chM-%40A?IHti^RpnFAsykHBR!F&ynPaXHwjIkc6K2-0Ib*tJ&H?0FPW1noiS zath9CtfrkcYY)O92oG(*g&s~jnVLo&$CJSrcHF9FU5to_U_7=FcHq2|EoOKspa|N2 z@&ou=EVx19u(i6sV5ZN^&}uCK%2|bjUnPFx#QR(5s$9$?*r>UA z@j|lDplJ3}#8XZ6TT|!cah}X_w`7tI_#>|?kVXwr`nhh%a zy1>zRTltp3!sJqOplBkv@Y5D#NrZA+FfQ|R7A8~+!#LTZ6b^o!Xx_7y%)AG1Wc&u~ z4ZvVF9cgmQwNOb9G_h!EMv0|pqmmI3{=wxMximqdnMEUjrKuEX z=mI{EQMoJC z>Zlk7f@)tJt&Jv8*+_0_L8N6_G*VxhL@R-j!RAuWYGC6q2)6yK4oruOvH|8&)~Vo% zM!!pwXbBt~T{w6R=@*l&mW3ACC>Tf61zdUvJ>$g-NiSMtmXXM6&$u(~84oB4F7F!E z6rpb{GLO_~O6RENMG9wSdGBbDBeoJfn| zAmU@E`oSg0CB3&5wj$j&NTkJ)5OhZ%j4jicx2FX+Ul~(Rt2xwp4PG?C#T$c{|I*$ABRPDNO!tW`V&>3%pTC)^r! zh9e>94#4#Y{a~8EYpOzZDYAP_v@n4}@a>&VO3%PCNH?t_b=pFPgCN_7$2_@e3X5zI z1AZ+8La-f(;q;)e;Fz$6OErN)@a=hLKpx+Acibh&S zMVnwD2={`Q%UOl3QzsY>g6u$Y9I2~XQKvOYpb&g}H=;2Az~2hxT1RpW2SIj_ZU1y> zx75)(frTRs2VX!&4kqVLg~MUGoUz1l?^7^6|%M??|GmHd&sy5wxXOLx9KGmj6 z=lWB%i3@gH)y3{mZ2%&Xd#X0@%a&IghLONeWe-F0T!UZ>$sQmQ@Tu(Km+fBAJFKz{ zV=??KuQ~vqs!mTdn5z+*5N+_4cqxOj!>8;TeFZ5gi6~127Q}_Kd=FaP`fyU4%C<~V zb^?M82TKUC6V|{f42NSUWit$W^LE^idVWaV=bTgum=J@5wJEWsR}mO#h}PR3bxvqP zmobjBL}su*z-JMicFssaOv*@W7|wYrB=-#iASF~}_t*)e{1yC`l~+?Vccux0NWe>z z(3dstZX}U4##6cbvc(_D7 zmmPj=)M(3&kb@)yq-hwQSrqJ}tBc>AX^0pJd|7qF*|O^!jYOq2JMOA3AS{4>E`NHo zuG}3$KS!slQl&XJ9bNCG+B#GkhLK2K!tV_yo_bt&@DU?{59^Y+X@@_-l%cnl=eV=B zQ-w;%$Ub0g2GfcK3&rc!1b2Nvf|5|^i}FZ*Z2N0UPdFAJOWRSpPs>86-SIk@W-CqO)lXBMgm`2MNtg3+Ru2vomIp^5(3h!7cwpNP#BwI0)Hv z!m{J*uk+IQyK8$8Bau9T@5iuq3!j?SY4x3~`SH}d8_ONJ_=i(9L1r zAb}DhntE-0x34IZtlL+P-e8wZG+OwvmE4Wq5|pGgQVKBGxeO?9l!SsDvBBv%^JqHE z->z7dUVfL;_y6 zMBt0`QVHC(M1YV$SLE(#(Vn~EXz`l8_>8ADN)EvTL?U_VLxmkD!P0x6jE241@~{4A()XV3|lgoLcRu&Qs1S6x6zpv$Vu79@JX?oRu)HIuTt0?nB| zlD_C;kPZFjBX);hm zHxcL7D|Nt0+oO|WbAhXkA5yCI2Yw1PBHMe#4-R*DNZ9qq9TXiw{($%`-5KGwVW{tN z(h(8{C&cfLX1Ju>%kEn?8bQL%ihK)GcKN>uSGGF16?*;o#Tav!)nvRoVcUMcZ z^KUE8wp&QB^?PS+f5jo^#%+CjENk1YK!D?}#DOHUJ0_00+$kZ8e0S}&n0Z?xjyPPH zETQUW8d+M)aETCGE=_9wVRs95CD8izj=tI9kgH7&5@r2*l-<>E$kn1Bml!kK7ghkH zWAnCtU1yjwTIpg7VN>XUln9020A?)a4EnDa`tPXWo{Qd&u?-x5`@I?@hoF8Lvd6f(rvJyXn-a zRbN{fCW7*q*fQc)u=*VzmZVz(7eRa2-4+(9we|Y}ea{NubhTH-DbDQXlp_u|rAVOl z?b4iGD2H6_K9Ml%+k4sVCM(XinMjcJYrM9vvSky_8rpLYw@LD^?^ ziW~-vj&_L1!mr;lAt)kC#OY=$f@7R?@5c&2-*V#;hKWe?ID|Od+#w}e|C~SxjNm;X zgB{D(LERUUq!K;}h@I{`kut9DiBzBwDND?-qS$S_wXK9$QVm0vADhT<+v>3%7o+EP)Zc$Hbluw{YugufRpn9&)vZ zM5=9lYdpJY0#)$Oz)&a`T5< z!1Y@J35?)9>~1%TRD}8?NPYXsinDDe5@vmU)%KYja=uirek+w-sRxpDy-?4EB*%2c z){3(oBQDE3yG7)P!>u6_XMIm*&R!64q?EfwulxwKbef?46kKws8bTzE)C0*c&Ss6X z*z1pQ6@*+E59F2NwVa^dLD@Q*#UUg za+s|ob&}<+h$lTW$1c}v4Ral11|;L#GlHnVdAn)uY0(l0F9>F9adnZm46;{pAX(og ze&CX+K>m7*+;hZ#mjsXsrvi%S+n`8uBC@!#veG}(Aa|ZP$?z67l~7gXpJSG1j>vCg z*`_k6AZ?Q}rxyO&NrYTmkh zZfIOSH{{6YhD#_PHE$xHz1?s+@3RY4+f2{uX_BpGXY(e=?&!`Y)5#)#5sP6}E9z2< zs#=mI!LcI=tk($HwuUm(TrBm9sUnt4ofmScSGg);$<(jghtW6;W@rX%Y___vZ@%3b z25}t5EkjkY?In1Qq;z%;?xHhygH(4am#RUl3;9D@|&GO6dJ z3DSRoR%vtMWp3)0*^$yXQdSxkiIUPObKYTd$pl#hFI!sI3>M6*bibTUjM>+@EsG7_ ztXo{K#1^T^qvZnxM}K)@s5hoT;I!(IRebt2@C+Xh<^!qWJAn+?Xj@n1qZxhaO@n&9n1eg<=mnxzN{ zg@b&2QoA0=;84lK}#Qoq-hSnC<(SzJV}$I@RN42LA*vXxKEl|jWs z(5{Gqg*!bcTUE3islY=}9&j_Dk;1&QmNBE-$p_rn$Byvn2JrzmW|Sj*y4`df`U{8l zlEhhWfI&bJeLMv}xiyR=Im8n{DSwqJ00^RGbSSi`}eU8$}pe5Q$mKHP{p;GMt5z&p>Q zs;>DvGOl@yVd$5~xZsr6=Oh$c2qR@(-a3x`hVJ;{&IE?}q{4wE!=!P51 zbf-9R&23%UF&C$!I2SjFir*_>!ip+D3R>Y1Y^kOjfR&gCM8GMrMA1vK z(jb>jf0m>pAt#6kTzMrGPoO=X%tlV-T(&L96!c`2;3ClFbXx*_F^+nG-l4$D>}Lz? z2`~a)s!7~m^m@;y6#v%yLN51JglYuBai**bYfXM70l^4Jndr z^AjZILs^?pno5BIaYFRO!Eo7a!KKM-4QyEzEKN!F#DIv%GKD%`cHMeu20oyUHwn~T zb)_k5VcBA{QkJc(_;v*~#pVK&kW)DLd*WnBmi6VVu}o`S2lhO(wFMW&CdaadK}J?v zhMlx!*pVb?)-;F|p=~G|>4|8Wx-9Y{YO-S1IxI<&v=3#~Zb>=?EyR7Yg@8_JZP{>s zNgi6=EAtF4Nh@tA5EzlH92W&K&SWhy$Cl)zp)MO2ElDdy&5;q<(pv9Krki}FqGRM` z*19S36dVCBT|ePyI$zd8FUd=jc$w>GNm^3kh>Jj$^2VRq!)V>Le!Gx&3XXu6qoZ)s zHR`fKw6U}|>6Jh7g5KT?OziG(3fsmVD|gvF3#PCYbVS&KXc44}v;0X8wZiZ#jBT?oRTT)!D z1PZ|iSCcv#e@TdC-ri*pQ#2H1IxwhN$(*1}(GZk}6^q&x%sS%}1rEWv!hTqVd8ROb zce%Oo<3yS%8iMkWD{EeYtm83~Un`>MxZ~K{LHLASlrr$HEFI#EOi`DIp_%dy$-B?sk-{PJ;vQyOEdEs zvbyHID`eE3KjN^gCBiywlZuCw?n-JQ*Q`(yXB|s3MZ-~sgMT9Pbk8za3>?G0-)OvM zG=DGRs(DjT_$rX;=62`VB}IdYBRAg4~BB@{06H$9gIIaKcWQGg``? zL{)pV%m$bJn3!3I##39el$}S)bZ0ylQa*-D*-MfmeOXz9P?APLPbQBISdGTPY_r_~ zPi)+VqwL^t$YrYuN^;XWhq7Y>O45;CLmoULWjWK}i$U2?$%FyHMWD+vfXT}lJ1BIE zmO&moLgYkVDJ^NuOGKA8L}e41B?+|h@DRj@T*+E?J7rFQGN=Ry!FVE1?w3-kd3ZSD zaPUg9@VI3%aA93V47~+hN_gSg1Dh|`DqNw)+iXIs4@VMgn;bP;I3vb@-OSr?9c;30$mO^z3EQrU^A`y#r0E4oL&lQhl2Sf}$oBwZx zM>)*@JeB`>FaPsC{%4KgP#MDKRmb|-zSjw!-KEFU+=}|voZXaG0tl+n;p=H>UPU81lRL{t(9b6b!i?pI?PB{|w&`;QROC`#0eG z|HJs-%-=Em^DyLx@O?i%zZjnnVE8J={3wR}JBEA=-=Bx!zk=^;82*3w{11FSAD_>| zU*C(*8HRi!esw24@5Yed#pgd`$baJVEQb6sel^19e_;40WB49?-;3`r!e4&{L!ON9 zcjNO<@YkdGJdMBpEz0U&G3387&M)En4fyK-pX>O%4#T(M``6+7RrvfN47nD+y%9qm zi_dSu=PmdgmH2!PKF?qZkHK&M3%~t(48IEFZ^QQw!>_@RZ^!2;4EZPg_CN9Y?>sg9_2=>Z?=bg&z~}d3_%{6N`|$m1@%>}?+>Xz` z!0-s)KMvm?4ezhrwhh`C`1kPOG$wlvfBHCle-NK9#7{l}!@nIv`uKbUJ|Bf4`ax$54|#`z|E|3Q5JQXUiE zzZJtjh^d{x_X8OI6Zm{ThMdRvZ^P&BW5{1&{O`i|pU3bHzW)M#^(K7(6jZq{!I0-; z$VV~ePvf_5#gJ#?uYZp3@4#ON@H{`b5<^~#zy27$Z^!os@HxSlzlF~mG34Vh&SUWX zQ}F#3eE%1G|2KSo89w*n^9S(Px8U<2rgI3N@5EmpjmY1MA%BH&J|EwI7@tqaI6sE( zKZd{lJ-*+E&#%De&*Jmt`0Kyn^XKsSMfmO2`2JLU{tHUuH5mU{7}Cf0n=s~c@%`)Z zxsK0AVfY-MLkzhYpV#BJ&&B8CG31jl&U^6v<1u_EhD`DO3_d>tf1Tm`=i#qki_g0- zMxP42Jv+z6Tipt1;w*`2LF+ zem%Zl!1tfU)V>DapNBD9`2G$Ie?5kL8$Mr;;opYOE`Q;e$37A3~Lw**2eFZ*O@z*cJ_a6TG=@|1AhWsgp{4d7&H4OPxeE(m} z>t_7*br|wa{PkV zkpIP$zXG36!4%$(xjc*^V~qLp81k?9{1`re6vIcD!UErK!RLMW)vsarx5D%M;F~by zH!x399IwIm zAH)>?2jjm3LvFzLEAaX6nC1&H&WrH*rhgTNycJ{q8OHnqe10K5{}kgq6XX9SzW)Kf zAHn#a2;ZI`yb(iw5#xUV-~R-kpMfd=Gk*1d82>yzhxqG9F#MzV+`y0*;Byn7S7FR2 z;` ze+NSzi)jA}Lq3ep-^K7hL4-enAy38UPvY|d{Pl_W)lXsi-+>`d!(X3)&;P>kU&iOx zV91j({?jnzIT-Ta_`DLI|Au*8f$97wzCRAa&kueFq4QEIwa?&p(Io^MkAL*T2B$J`6vB@9)8MK7`nQ z6vKZUpZ|!@m*Vs9Fy^%w^X(Y&x%m7i4F5`eeic5i!RP2Q+KZxO0{Pq9v{Tnd+*D>aA!1MgzcKr2m_K0gOTz7L;=Fy{AT_$x8w#rXa%2tPkKhQGcF z!@mvR{~F%U51x(h|BNwz8lT7UxgEp*7URDK-@gdoe+IGr8HW54zJD#o|1Es}CO-cg z!+#s!e+A#K!}mwyS6ATsd+^!8=O-ePoALb)%;g^-=J~<9;M?EZLY zG5+u1^V9LyH)8m!@%{JleG`9u52pX881no0zJc#QfWQ7JKHrUB9mDs%`0M=`@;H>( zAq;sKfBi{({|9{kY<&MijQO4T{6`G`4-9YP`!C`9FXMX`pKr#PUxwjdj?Z7m=U3zN z9(=|a=NmBoyCLNK;G6ONQTS^cpO3{j58?A|`20zHz7u0U0pl$2{ogVC=izyN@Ld@G zUJQR9KHrGX-Ta9$KZJ2U2jAa|68j%~e?PweD!%_ZK3{{+FTm%A@vCpd_ow0WUVO4M zpdTK*9n)XIIPActhjBUh!?=L%VO(MHF#0SXMwjKo=&?LMcqYU@kN(Q@gNu;D`2q7* zo=0cp`N0g*KR@_OeBOXDUx&{t@%hd8d^}?K7JR=QQ+OrDA7IG8;``nB`~ZgBiqG5d z`IQ*{NBGre;*&Wh&!b=R{9pxtJ&ez%;`6=ud>=m7@c9%>=WY0W1BQGA-X9(?XC%~C z)UE(i{t*7!$LD`y$g9~`3*l)TybrtqsWbAL3r}K;Ez=z~7oHqX`_cGZ3(m=ft1jc# zbaUQkCtN+@(CQ%U%y+`-x6O-R2j0vV{lgX82G_LVF2=`-JF6}}Jiqvgix)nHC3(ke z7N`ji?){Q0w_P)M^F7UWX;9l~cP1LNr}7n9hC z?b&(Q9?SBIi-c2``ORvpM3%X z>xZ3nev1eZ-pli_VY}Xe#hoEsbh{A@qvZNU^5rY@zI+PHEB~fYRU)s>`}UL6Z}r;s zaNakFROF}JkwTDO$ouliYHspEGxFV6=Y5BTAaYbL=uqjsChtRRJat;H&5Mgg#+8G7 z@k1v-Gj7*)4?FKvGxTqE=-*%ijWOG+(VW)**X4mi0{o65mF(;D;wl8l7wtnp;IDNZ z%@EMP`8)la&tWAftQhU4P*RfLnuqc8$oDxHTdFMIke32Vgx`v!#(iU6Tty<}iw~}V zL_Vss%Sc53=41LdSR3Ht&2R>nX7HPZi7H?(^`<;@SoflFQC)v?@i*!PP(No za>a&Achak)#FyifAdS7cvVImTt5m^@zdfLTi+v<~K`wq08KOwung=!0XB8#TJ_3lJ zr00t5JA72sDE)9=o@mZU@#K8^`UfGmx9PckwkDsVkKe9;j7=dxh1CoFV09Sg7(_po zhZehK_%6Tod|TcpO1GT%;j0b+y?5)1o#~bfKYfq>Db^$SpwMc2dmc_+AJl81h{F7A z-ZxaY^{(NG%&Pt>UHrOk7kvA*`nQM^mU)dP^AInyr0w`GtABO5QlKlYToVYq#S>v z5U={Z-iE$2?>m&M`dv;H#OCJRd0!)6_3Qjv^`5+Mv3jWA>I#Gz|6bn5sJ84L)V9!x zfO!F^BK<+$m)LG z=o^fUvH-EObI(WyFVzX?2P&AR-Wx`6Z+)~jCRw~(&q6=k$ux^$Jde*XJ@1k{Ua9AC zM37s%NL4LTQv8 zj@1J&`=P>tRkKd2+Yjs6=sU-(v&m_keoW73yFtZZJpp9DJ=5MD{U$Jpe)7PT+XioX z<(1obJu^|JOmeN2BzbBYVd_5(sZ-NP-*T)AraS}9Ov0Rgj^#ur%=B&l_E}|3Cd}&> zSzemSblScoGNNk*)9G*%J8mp4Xam`VB3z#%#|N1IujpJ4)z6%r#MjOmxR~Fs>G|!c zpI@f!$DDqX<&t`hGpr6K^57)?7|%XSkKWx8w4epBh)|9^U^o9Teo+R zSFSAoT+hvs|$T7q!P>+L##n?oxWJ?NvrI$g&lB}VX)LYkJ^(+WqhK0AXx}XWKX0#SqmKC%z z|JN1hO|TrRXk~JqsKSqRFw}~yWT<{5p}`4pkiQDcZ)H-VR3Zv%@^AK}1Zq}iHLZl~ zCTiS~2#VHXMJ>h6x)(Q>KTG1~J`#l6jhmsMj_K3gxCx2-ny}t}+$5nCHz9q09yD5V z7Dc=tHzEH(BcI}COL0e0QLp^Q;KMNl!f6?dXyiieN6)lB-g+EmI;U7u{S;1y2YkNOmm%PA`JQME0WF0ITUf_*{N@e?kbIQ+ zQt1o@Em=NMI1LHVa;(wfu0-+WOguAl4C2(mx@51>o1y2sMh^`Q^H?K)y&sxR;2QCD zIc?R*3*yjnveDuP@p-fy#Sv&amFv^WdR9scMIkr-&;w1Uv!<3JR7muugd)kvLG~aJnWh;xfDb@2;Dg)zh zS!w&>QMMn~f^Q0$YDK=B$>!g#d^JoHQMun4J^lurRmh^)xYU6^L-;X2lkxj=NeHa* zd#yBJaA?4Re`)dwXOLc}xrC1Cj*R)uTA4qTY}kUBjNG(ai#On)J`3?jw-!Zpb$Ox| zWlBx|P<4E1%EG`gkQxx1bq>zgdAHA~5c+Gzh2BrQK= zNq+rS8mc6D$;{=nDobk3rTQzgJyC10sMd@w`?c3{HEN7p$~0sMEUV_y%yTCGaG+tg{19qbHjEch!WpV*f%Z8!Z8W-tL;DR{Bw)o-fs`{dkZz zMU%E}3wA5HHtkt zE7c=|AEZfYB|y|siTeaO@Zt@4Yd$8R0Eo&!&khETWqT6TeB%lymWU)L{mF3jC9NP)@YMjdLFXEnUA<4Cqs|1D0DHhe_f!O9ajCnk7@#cmgC zCINAe8Sip(h3zOVG?hqg2hmTm8D!`w0o7=vc z?dg%RqLl4-=zqxchti!w=>x@jfpmP#I(W-{>oo{<$brvHc&Ua{r%zcQe{yX>U%tO+ zPVGt`3WiuWNc@kr45hnqZOY$b^Z29sL z8hO-7G9q0k)wf0@-VT{0#qL@Y5`^DiZ0n3qyQfDoi)Dg*-Uxtd++;M-h_c5#Yr|Va zxs0q6J65}eon}#^t0!NKZcxj;DL3E!`4Hm-k$VRRjFvJ*k&QWk70jmT56yyv8;8DO zipR4ATL&N?GXzJ^d$ZN9nlyNHR2_`|qA|jq6#*kcZSWhRbqniQ-le7EZetv3U(9D` z&COJObNy8#hwD@Vatu4?Tw!-DcL(pDwglky48%GAVx=cjt8~}R^Hq)IA{g&+jo<&p z&8gt-yg&$k#Cp8zCX$e!FcO|t^4s+(jhf|YHsBL^?xF7lmh5>NK~81}$WS{z(}au- zIPe-FvjK0Q^~expBZe$)T0&07mnwy*zoOlq*ZANnlfbV$%o(Q(rS-Y8Xz92oYN*kS z3Ro%L^infcF6P;v2&-SSe4mwqx`I(lz*bVWzc>($h%nYG8ZER&!&n|@@)^QwENfWK z4G^Y3*}4GRf?*Lc`-%e)`=>^1F{33{>dzFSTDt+dtAJj{R36xZ36eZX^R z4YfO?U{JGRE6DT0$c<`zp%Jr27KSZ)PU{!@-|M;#{rN%jnSCs_dAOjaMzLKBo@>)dWh2a#dH_F|+i)jdJ zI8|`#m^*CxIIHl6(-#O4N7uh*&v!q7Qvl>GeHD0|v`zOZA?txL01a1 zH&}x=a;UJk7#0w#^f0j%n-TLskN-f3t;Q|r6VqU8G7Q8@`C4y}e1UW}*9#@tMNo~9 ze}7wuJvtQ=Kl@%T>^D?!9Xof$w;BQbgaJDfZR|iu!qSp2g#0aFVBfO!Ez@d=Qp`PU z_{Y$tA?8^YgJtq$F~%~Eh!>0qf9Yh^G%hn7{L5sH)QZf|?eQvCB(X&%?>uD}hr(+_ zA+bdaR%h@AGf1omr06a37K=%2kw6T!$h$^_-y$j2*k_t!jSt$f#y-<@Yy5|+kzx&z zqFdv?EGESoMhscwbIlrSCi&-HVTX52@+FxB9|pBv5(&`lGXLI)9Cp7Q-IPm$aTa1( zi8hXD$>+;xc7zzPD2oX$tK=ZqF>TlJj$sxzSSOZYKaOS?f$An%iuEUUKO;o+hk@Rf~X$B3>= zs1nGQV6qxp0h5h^dZAd8hX!hLMVWm)�$_{`TVC7X8(XKl*@<9IlAZ#`!RyJEC)W zOQ!3m3&_Y6JzJie>5lG1gs5FKQK?+Y(cBCICTIf2q;Qdqm2&%IwJOI8GO}(U?={!0 z6R426nL(T zy)_Z&EJA;> zM?2HymAeu}9;}H(_f8Ti+cN9%ycE0+)r54Uw3t*7AHmFS%9>KqoF*{MDGN230M@hR zcm@b!-I|; zuyqP2xsbV1HCv!+`5yC?vhf6nxv8k+Hs;ZqXiWKn-s9~Yztaq*Yq>)y<`GV5^IA@( zH(!*?HY07fJ}AifMVmE>S!QkMv5_59X8fGoe53vXHfqVeX8`mPJ|;N5eDZ zE^6eu9}IViP2HMcxe!^ZUXe+;d?rUN!uEuU#aRXR0wo%eP0=wZ0i&J?Oyme(iiP7N z^iYLQl$AV3!Pi-VHA<=m8k{@1lC_Qm!V2Fsa-0UVf=H?uz2TN;UYj*(xR6&zeoj7T zE>JdicsJIP!Eq&)iM%hxn1get${0A&IRXh;t5SWpXi6^@)nN`*W@`QMt-KJr1{1`} ztxK>sTka~x{pW(~O-3mT>Q-O062j2-4HQ0==jYU?WXstePsmPYRo-bsE164|LyZVl z<9L~0i4q~RTyI65I5PLD$h&#|DHq6_Xyp0(1+cY4wNOWHKypn9m<{fsGeFiPO_t(f zAv^E%jpVWALCNhs6HeBoDm@{T+F#8N8iv_iPDW<=aFvsUKgzN}bT3ULX2W`=jmSb} zK%R4P&uKx}KAJFVZ1!8(O#L)D`)YEq$xkO`$uU>A7|$Bymf2sEozlui zc3*am%JV=?meT3N_As(abIJ*|K4b{e$^#|&C;Xm$vxMIPkz<8lC3jIIbmU~;jqDVSWk>lHgwD~(;m#_zmX?5!Trj?5 z2eXADUJ$a1xH^u|bnL-CXbFgQl;ss4$=vZZvC)y^p4}b%YuK|8J0x}t%A62uGmfqs{Ih0}(-Za!O_-I?YIQ_(4L#P0jo^2QCeq5* zl0`P$SDyDsXpu`b(M|j&xCS*-!76+3q+S%8!1p(rQ0x0rus72F_;J$R(hIH@nAHoc zj6DW)ObQmg_r+DL6R^qB@-oP|&Zr+1VHz*(Y;JXi5LQbNN9zKRdxMeduF6>>Zlq6y z4$j>mx5~Fi^ zm^mfdZM=DVaVnnhl3uFf|J2>FX9MC(_<)buM-6%LL0*zFau-fskBxh%Fdd*$VEQ&ablGGM()8E7|1}8S0`B#&C;f9z{Wv*-OyQvWuuS8bQrTNW6)$Z+3A>%pR%+W@4F)ks;sZ39a4386o5l|A1k$R8O3 zUy_m0wkY^~SL0*(l83qXf6{X2v3$>$G}Hx*Lfgryj*8jK=D5=d8ZE2se9%9>CZ>9j zHF#~O!X9QA9Jjkt%9e^U9LF2A7g}Wg`TD+hs4_0$@R?rzB&|H6zQlXec&y_48U%Hb zjR2X(^%AmKL@p$a2EZ*A6>ev1KybsEOM?vUjPmDd<*}QtYd~&u%9-6wS#!QsJ}HWpB{1R?|Nigcw8Vs$_@D|zX?O5?T4S)a~ z0;)Z;WuI>pzThu6Xee8aZ@`;00IJha6V%Fw-J-$JEBmVhve(o(5)5XyX$V+6KqULq zof;B5tO!Z1b&rOHf0*yM$vW@XaA51=WFb&@zLx{voQNEEHzq~E#Qrh8fp}ypr^6(EqD(k?84yobB!CE zD6pK0JachjIFWT>P8&CFGIkPUF)%j}1LcC*$?FikNFxewa)^4+#Xpr+E^=Gp2puui zz!e4~E33(ODu>`NHG)C@-76>D;~Wllzf3D_`9#gd{9=Bw_>)Y<^9c?0G@~%L%vO7> zYj&PqNJgrv78k6!r3=}>5{fbM2cM5z#cjs&HF7AVD#DN6{Ysq9<|B@Z-> zLC7qHy)%M=)EteJm09|r=NA-O?{lTS%uYHT(ohF83X?jv)zKO!Yf|SR&Rs|teanm3O^)NSXE!>vamyGE3Uk$Z1qtJg# z#OWoClhuD6#F?83qno*9y#C9WTN#6KrzZPYbG^YSCC5~+XtWSdgLFUxp1+!~>z_vU z@>XdRp*4mEses>(|J2AK9yQ2WfctkAQa|G6K);JK6uVsjIfo(etDNi#uU4YeWbeO; z_+M(CZ~2vnS#E#9e9nIB`IUzHl2I7hrL1gG3|kPSF4IU^$%YHLdKckz5!cxp*%i<) z83anfjvR;5F;ET>jQE zLgnXNN#86U;vz=CEY!1Z(5P5uu>qsD5H63fWX~)Fd5j@2ORetq@|!d+mRYRwrEx;# z3ho%5S$xD*j0l)`UHg`1Oycqn9Ux4Wn?W(zXW}7NWCWNDW}}a;aFyGdFtN&Sw5>2% zjce#J@eyk>0!*xw^OYAx@~YZ|&uSg3{7W;X{F+=tkBN_1hYnID~+?nsKK{24V$*60rL;En&U$|X(BgC6B(WF>Xxej z^0O<|S<&?LdnOb6sr2x^Wls&S$r+s@E371FS^IhRTv6nFLsDu>PFh3xa^%j`o|-w@ zlnb{pgms4G|1-(D-yzNM`6Q=KlrN{yY~B`s zIrVE__5$9k&9hiB_n>|C1jMeXiEYaqIb63Q9}1;WXU#VMbDDDY&{%LzmIs*h}}iJve8qnMMH@bOIdY}2K@YHX_M z*=3&eu#(L*C2iTtoS=#-Qq4zeD`<)>HSxQ*QwJknqy}dN180)qt}KTK?aP~?Y@2yk zCQqFe%=!I7IVWd;vUNG(BnM&#%Fc-$DBE6BW=_nv9O-&OWoCqOy4{YN>|KW>+aCBZ zZo3_P7fq9SOQq#n1X07dFM>!}3nLRWEp2%+2Jy(t)CSp2Q<9dlg;K&HGDv14C8gks z!A6pRHs3>2(N>!W_0arjPfhlec3Q%b9UX5semo%iQmwNN(*V{v>@fG=1$?GSb&lC1+|%w`$w6ivJy~N#0|KlAC(Sp_;a- zL)F%j>2jLNwh|h1y3!n@?v_F0uz^A~{#*>N@75Hw63kQPbJ0wxh$s&}MsBhaG-Z5_9efF8K=k(0PefHXO`h-2lXU6Td=fp|7 zI%2!c+SY=2=`DDpXKV|CCrPSOtq%0dY;(FbV1Z}B2&99B+qEy1&TT+^k=NqV<~|Ke zb{LxDtyjb$t72q18~fAJdta2!ugd(=l4KI<-K_zh12Cy1&(%Vw?3izy)ofR6T@Lm- zO+QB!yG08v6ZnEevpkF(-KHdoRC&Ov0Q=vrynNg52gdM>rYJyvF#EF_!$BI~Q#7$@ z=}pKt5}QoA-ofWuuLPE-TZg z?n=YFq2ogP3{Cr<^R8XC)|%~>nXKHi>nNP5Dcpbf6q=h+vc-zrNl0zqZ(> z?rsN|^-xV!T3*A{ldcP0&>wH!W%^51yAAHWv0ovpES+#;svkF{yc@DlA;l z^zStc`WsutotrzLv8rjDr#3~h0FPCA$bhCUZQ|LqO&jWP!a_E?Rii!nsNNh+-`?|L zP|{~E2XdU~2u{Db-wsO$61<=d1^p8H!bfF$c0xoZgStI7dUboi7@^yvJ#a1TAPuy znRC0U%QW`&@{D~FePg8(g`TMYSrrkE zjY9m5+i1Vn6s3JSR9stfuzXc6DDymTsV&9xo)!7l^smi?#FN|+-Pz>aVFN`kn2OMf zS(_PxuP@u*FY%$4l{+=%br`v3F1}z3N?+Ej*QO)-I-_XhrP5IN>If*zmpb#o^BHcQ z0EMq<3e5(kHbT2!L+|(GDJ~eip)qK)D|i~^-E^5{T2osndP`H(W~kH@b(-%uQLlrl zcQsXMUvZoFI@HPRMU^Ae(e5-T`#@9HW?a_l(F}N=bE~-jS4L^o4HpuA765VYJI8c*>B!DU43>XHPM0M`OS_;e}T2l zbr0WF<^($pFp9gqU?ELg+Exk0oN_~IryTY5hMv=Qm!W56NvW)%CvD}tso)N|0^Yic z2=Z6cQnog;UYCA{9G{I$1RZN?I_9k=fyyx3fR=SMEgPoz8;%o84r|_Iuojmd-&D+g zrZ}%<_O$P`o|umC>$8y@5`@ejX&qwg)(Lh*>*yr<98Gju-TMpud0A1D_hj+pPsnq> z=~DMwT$f8*>i5KSG_I@LO;!l4E4Lu^Hq$)L7q+xfDP3?!<4V-{_$m!qS#enpdP_hCGm=){fOI$>YrC zwK>t3DOl}cvRYc|4}!`p=7L4LQa|%nAOUJoqA$p z)8BOYm~V_0B~DPb1z9a^g}FUNx(&Bx8}8d~LnYR&BUp)GuiK8bruE6xicXT~qFZwZ zvS!+>u5~54C3ogJrLE(%p)Sda<5^?c1UXe>FxcpJ+?DK@_8GJtHM%8t=X#}mcW6st zk}apO&a~jI>rCz2Q^|^HODC-<(Cs&k>yq~UuSHc!mfMfDrA_rzZKe;WdEfzLyR_w! zR#oWMJBaI(_6fXYWl8qSu)eeuNY$5SyH2uQ+B~ck@w(meT#vNOu_Z-GHtS_wX|q;U z*K~CRo<-JbdtizLCk}sQrk}Q_SEb)MP$YoFOH4=OT7Iul!|4a4&u?Z*em7_qR?~Et zsyG@J(ln$k?s>)tYY|x65xuA;I&H&nf@tErxF)!nliOC2Ran`YC-=k4F(UbNYM*w1 z*_YB3H0!NR6nHC^(DU_?(4(}(H#I%Y=G%6C?28J)e0fdc3NqvBFs}yWy9bIL=3THs zoYaaYhxK)($Gj*zXF;S-4F;fe4+?DCU#gi^M*KXwU(bC5TFLF9KR; zu{5(t?nP64=luqeNbW@jtaJE3=8$ZOspPXO5Q$_<0IjoFnOP)Tf=H}JB$6#*z&eLD znM1NAjF>H*=)Mk-NVWvfI*av~MY1KP`5|OOB9Uwf1J*fg+!lv|7sfVihl7A)4nJN% z9%?ZEHBNb>uWiO;)<}#)S{&Pw_-xP&A5*fKY||DKC4z0=4wJO-wIefGGr3M8slPbj zCNaAZ6*Ga*$IfXD0lHNtFqdS9ot`bbBk*p-BiUgMSm&?@bHJUZQAQ!370uhua&c?e zXZK%SQn}eOOj@bj`i===Oox0i9w_GJ3#%sNa2mGF8c1x)6gg&RLCH)Y=Xl@c!0sp> z#LekApZ@RO4 zH$QFw8s5DdHl#%T1Mua|N`sREuIQ*V%OLU$K|wCzj({7C7rob}>9tWE(y64EmZSU% z@asvho0qE+C^SISjYgE4d79(Nal7iW8V9!IqQipOH|W;xW|rv=DUQsE=2**Q^QOc! zxd0(L=nQtZQbo<#{{(WLAichKFgG_3ak%YTtW+!Yech)9!0c{fX0BgLVCIO?dELjn z+-~6TniM-$7_h zbelcSyxf@N*vu7}TH&Wyu$$^Sg7=bRgH9_vL-kBCmqF{*d!AXigTKRKAKBYhDJfQe ziP)Hxp#-0>rRc0)VOC}rVk`1eZT?S|yLz%*4i*2RYP#u)V=Tb+`u&@ExVfVvNDB?` z5ED0d)CA~U-e)c;@vp%py)S>nB2&yfQ(lj7eftxtT#A_i*Q@p!^H|ntZoK*v>AqxX z88wfP2PLd@)Qyip`Hr2tvhvp1V1DPpo~d#;drY)u0|`f)Cn=l(yF*dRLZ}Xq_8orU zq7_bKT~5ajiPP9FozscT$(?S5c52vXd>FY~B8*zNF&f&E7IE-~UoY5ACvEy|P zXSK&+Gnd2JZE@Hvfy24XVI|Go%*1JoOW=GW;I0QY8X`dI7Wg@9PmwWQo>i*JHDk>EzHMVplCSS_*^s*f`8sd9Ne|9 z7^b(vovc^2!+3c>vsXTkV2#6b&U=W1Y6nk*&gXvSv$7U3##bx-l>yfl4-yZ&x*e_Y zgtiEvy8ee*zdCwM2v0RS9`PtKP)CmltaEsRIjFucapH7G``<{r>I(wX^*+mb-4C7( z15WZ4zd(xJgwew3nqOwk?pM=LLYG|jYCU?6F7PU8S96d_4Xn=KHD;jJee$&FQyine zLE6>28=S8BE!OO2%Z<82f;kG&$ezuCMY(6Lv9bnByvw50kUCk;7sXFN0Qvz{Lk$A~ zQm@E=Si9PFrexqKCk!{_aB@B-PFZE;8%Xy@nkyfiy_W7|Ro?Ih@F zc1RlD7G(~)81vHYZuxB2&gRx{`_fr>#o|Q9ojEsLa|%h(TW2X|C$V z<+(uiVOUchuWO)u$1a6(wmNs5%+zWV%5@3vb0^D>Vb_3|3(a;8$E@xmpFC9|niC{Z zZ6NYuBhpV5UaJ_=oOT2tVV~e3)tD@r*8Cekis@+o+rsTBF<&s zOqXH8uqWeumf_mp<J)FxRL%Fuol0_?EbuhPOKxILZsbW2 z6`fIYq}{^O(kxW7-YtTKZezT=V(hXp_{{8lp{F-K#R)lgvYa&Euk}`DXXLi<{^*-C zq}3NY$33M7Jji6yoTqLs)K=>BFpEj+Mj|GD?F~kGlm(;( zNC=RxAdZ_np_#dBdaTfyV{p zxiD)$a+RUD9Icm|=*(w_IGY4?Ve`_Mqs(<_Lenq`F{AjwGS^~(oXO_Zhj(s7)BP zn9*Zydx&RaAhni8YMGdn3;B7ca5{yhqmg2hDWKCBv@|Hy>ZMF@l|$%G;I*#C3snz{ zRbu!d!PTZ=-o;3h^}qpt6%jWhqm%LB#?b zF(_QlX31z>i;E9Amm%;UL&h9~aawAeM#%CXAGG4ZLTV>AyyrhEY#hVTUXs9uoSr&P z#>|_0lrht4FRT2GTS@tW91W9Rd-;etj6i#tR63-B_L`)b$7(Mda8*W3)5&%8+KV80 zhM>Kqpv=JHlNca0StDe%mk*j$5>hL%M|ka}!d7J%`g@@)sfS~xy);%ReOLgM7qnMnHaXz`MZ`eD>A& zAnTEf_hkHZjJdy7*vfib$km4l|NWSam-Q&10~mxRYup8Ba$<+qff_F>>rrs)9WLbV zV?AEhlZ5;;BVmU|`Tojm&kqmLD8ki)@TviyFcEEcb}S_6ahOenPGP8RM){mR%Q0hC zuqckZ{m^)zmwqz zJo2T}Yw#Y8r4@J_#A97T?J}0_g&oFR&KL|A{Z>?f(fTwx)^K41{yIz8EX+;g4HpC% z#gK(f0&$odl1myDj4MG`h>QQ9A@Vs_5nV0r03P5=24HeoD^_}}^ay6@*SJ`dOAoVw z3CVq2O>c6kp-PN`=iu&mryJHZPL}65h=UIjMq6@?JJt6`x*jg2*6 zS>-=4De7;yp5B1vBYw+>puGmWOqSu;X0FD@ZZ8+JkeMg0!}9(1Qc&wL3bmH6aJ7oO z`Q#?@M{2y#27yl#YMXvxwhQaPK7!b_b=(BT!9Rl1PFtf5kI~p!fnC8}P!N8vvyXUz zJqh_HBjN2>{B&CMIE|a-?GECqIl}5XuD$2&jJbg^NOA^cOR^WZzo!whk{lQEipe7$ zW$9j$qkx`ZP(Uf4^S$e&W|SPr@@6pk88?7Wi9x?$5L#j|Z*D%%P~P=@jhE$D3U1b+ zLaxYqJikgpRv3vj?nZf8ps&r!&(755mgEkCY9Z&nKZ4%y1C8|t@l3ZxS+nL!P5#7< zxUrEG_uzJ<-Okdmmez^S=b4;YXUNDd0P_Jo>_i{@RcL(sU}auvt)-<2c-brxy})+$ z*3z1ac$q~YFekI#Nn?!w7z9lfxt^J$4YDq5LW|9wjGfEaU?Y)yIIHDTj66=GYZsAc42qC+gB5wqrH8nDnK^d8{K zd-JkH=tB%en9a}WH}AuB72?%r7_U>~XoXn?cY0nZUc-94Fq?$@JtN^}-M*XUHENcd z*?>}2I33Cj=}$GKNT38+mfLdV z%RQrhrlH_XL99-|?tZi|{frwB`|ZYsMlmnoYMO!mg3<8Bg4{gsRO}ZTMavg$z$)Jr zUfZw*Jzpfq_6)(yRrYGh_n7!2A)5CRjZjd$o-ftp%&o)!Qmr@$HB9V*`p=X)yvT&S z1=NBD`#ZzXr)2R%4p+~bZQnIu3%e?}97+{hTJUh0?RC|XPe=jSysCyq{#&Do*<2$IHxY8^al(5OW`G?Y7VlQXjAb#1WR1H>9JdDfcQo>7 z5rLSeHyv+zUn_03h=*C_WU1MAn3C5b8tQmPA;plgjr5S~@{z_4ao?Z@O7Thws{V;q z+)A>1(4pUx+Dv0!UXrE4_G4JEgeZN0a+N!Jr(I$2w9k&MK z(4_V1+)TbGqe{6_cBAJP8b1V$fwGCtNXB?D`dX*55P>`{fHlnr7Ssg5{DFY5m(u9D zhz3Mc2S9a@UrYmGo)d$ThWRBmELtPLCJ*$>Xh^G$i9`Le8qiXiJlHR%A(6BOWK)Ox z6*VwIR|sx#z+XiZw3%5!4Lf|Ws1`VvxN@N^yYBNf^H%qO{LieHI5FX_V`Ty0Y;Btk zVuGw<=HxlXD8SwHLn;27Ud2VNnBap}xl%gbj00({z>5hgY$n4%ELW*kbCrB|7@#m*IC<5-6`xahcvjDxufJy~f&$Hi~fh*>S@ zLXJC6Sj}MRp1BmzOa_5cDK8rWqjeeeQdT*#rn6-rasWj#s?Xext{gO#&o^Ny=y zraLrFRu1N2UbaT zcMmk;eHt;#uUyD}KNeQYvUINz70_}F3LDYv?{*sT&l)GU5p7KUY$3HK%jZTU)H;m9 zD0A3=+|ySmMu{Cv^%sqnHT?OYEq^AwPGk+<@TbB~VHl>66)XwKMfm3Ye7=}3$yd(M zcKe+yWAw5bN$cZVnt(ljB80bL&EChirXsdy5$GCbDKanBjW$bSrm?k_FI!!MP*?m~ zXs*iL&+8gGZVkqv#bqH^a;EM|XiQMsPNNo7MT(oJ|J=#$4qACEoCJ9pSAJ&=0mlsn zW(BwHRZ{&tSHt^cm4xhNB$iLIa%{XRt5@Dc+OfxYjV;c>HrS@iIO!5${uDb0PIAS0 zMH42F@(fD}(!*@7H=pT_1_dygp=TZU^x14F8p?tsn6~Ay316JFM4rqpepx= z)@5xuH!E+ZE_HV`bDD<4c+!>c&dMbYj@$01mA1wc53|=z7s{3XTBa%o z-DJ~kPc%ZH0S?dKy;((Gd67`P zl^fezf=$NW!C04Pe?IFrU#3-_HuCTbgy&JLD~Tszk7X=!sQet6IJjZIQzK~QP%h+8 z=L@qMOZRdp1vJPYq#xatfoefM7UX5l?k%(DHEPHtf;QHn<9{g>UuJDs_KhQ03iwq9 zW9L|Sj5Zu+%n`r*AXX}{rGtY+uU3Q6X5}N2C2J|csMTEBEKM5PwI^HejdwVrJD0V> zR=c{8bT@}#g3__9-6wP>FHV@NSS@{y7F8rww%X5Qx`I3(7WgNV~0%slnHsj$CVNKn`?lAJH8ewY?(4i|_C~Pla zZQdY|0=|&JsA>p_uAEPBs?#;z=q$1i3hwCm;19LpR%h`+eHTjw?`Mu)XHj7fGOUpu zn5~H+t>aFS8ToG7jNBSUg1va zRFOB_F9aWCU0!09jD47~$lT>^5Oe=QXb3ReQ)6gl?jC08KM1!M5;}Dp6g1S!j6#E& zU6#dY@&QtNYox3Obs;O?DV(ZYXRkpO&;WxXN&~KsO>cox4Ef_9h0-!CU7_TGmSs?| z-?b87-31%X&c1B{*R%c6b*)zOAvZDvX_MTgF(?}n<4hQgW@?PAw24rc zUMsXNVjW)Eq~m_cIJ8}Ft-n}^rZ*sVutv;sCl_+V?}XLiEZu861#}dH8kFiX%XYfm zp-m~-khAU*N++;q5G4Yg%pe?uENtq~$!T;j4m6U4sCecMq0-AzVb0itO2Ep zM#-8qXuxSV2)D;slQ(Hdgg(VkEZByC;DBI8zTC?So71ROjV zP6m%=F!q$nOH12CK^cASXpNz@r_@1I9~NTEv&SLI#$L;ql^BBwT}|Hg%hY?TdATRC z*kxVj2X5cdxLK3XMD)eC3(rH?2Hu1&9iL@9a;kcER9v1|t1njdW?YoWjc}HH-(04K#?pLq$XWWeD6pf?hehy;x z&BAOYZWhn|7_%y4&_1%Mwv>^Vwc=3`ejxO|$-lYmKfRcMR4C;7=Kd z3{Z*PXK2){q|}9szD;QD&XxBvKm{~~K^TY!$_3eyXRc$c$vRryT1JEA&eG^1Yz3A} zhJSgJP+gd{;?lX;f=vXBVgaz^AgA|dYg8>ux{w_n5_7FGO(B}+lP_ol*Snu4X zlx)a3*9)Zw*mZ~!fgWNIxGiTu`HFrQaHGoawfovnDV7PK18R(17IF1d@w1 zBdGvCHJx_>PC@HRBphW)yL%prK|k3VH_0Rk`rJXm;o4=Y-t;bCJ0FSz3p*Vz-K{T`dfc=g{WG?quwV zj71QTThYvBFgbx(8jw5Tq0V9y+CaVmnJW|;*N$ZEy8>{K;xx^(5ElihoX`lZ3Gf*j z7;2j#&(e?$M@u>gy1I6f1cL>Riex}IYHoZ#TuXykgM|jX^bKi*+szF^?!uEdSR_L4 zVkiRgU@042-~w{%YUB_uvt8Me>>SHS}V+Y3#a$sn2aaSxUJ@TzX$#1*mpo2UsP~#z z7`h6wAun2P2H7t(vS=k!KJ;-E{hD@{6v9*}TJ{0ea%Rt;TRWf^)X>(x(cmetr=2BJcyx7_fwzz7u}3;CumaA)_c-9Yu*hn_#qHS5_WM3CiG0Vt+KLK%u|*h0u9r z+f~>mDD_vhl$;K5NLH3JAHbn7n8~1e{dfCw4XxV6B zy!|dIVMh~5eV0mmos`(nrm3(gJgn(f-x9B$B|*tzjK$#KtZZYKwlPq)o^f8s8vS2E z&R-Vt{=g1Pxp;Faj)U&`NYGD~6g2$PMGp{s(%S+*R)Zs&N|!3gCRekuHLU1Dp9tbV z8Uh`Ee6WRmT&2`6IqG;D2@}0z;ZG~L0fnnwElX7QYZ^K1M zxh|;hzDO%Zx`x(?riB^t5vfMJ@%jO&PLbC4aHJm@U_<|;vZDPH(!NnER!@}G_hh6S zV_HM^zT#h8_0LH8#;qt%7S{KCq#a|iZ$#|L4*m7^MV_aJdB~Pkp<#A#heb!f zC9Yl7TpQyc_PEOMAdig2n6k2xPLC7xikYr1*4AurpM~8y*|P zqHzB`qi-WkALiF#J7ttT?_uR8y(c0r(KsNQnr+Hv=eB7%%w%i6MgJ}MvWADF_Vf>! zNn&;|TPT|Am_oIen>cv92E*sjUdbwo`3$~=28|(i6I2Vfgx8Gm_SYo9dCUgzoG6!L z`SC%b(@f}JShE+}$6$nTWZuh-Z7$PPpc|OtiFO(Nfnaaauoz`zu_Tzk)Kovc{R=_w zrV)jC;>+3+^-nE673!SHTo;S%jJov=@XVk#3rlUnWK{|R{8 zL|YE%9=hZ^f;vf4iSE}JpvF6a6hp&LO@8YnBJ+8(n>g68dIFs+`!|fHw|T&z76x!U*@+$1)C{A~~{^pklnp zc18iFVvKmIW<)HEWOMNzfcuTducfsTR@6<==qaPuOoy7Tl?@1VMawOhn;v_pMj(({ z?ukS8J0^H8rb!LRS~rJgzP5nutkjAIVx?$A_I{I4Kci6y#LDz8H0eSnD(;XhR*H@d z%U=Gel>KIE*@(iDCM&o?qkyEmvrsn;Yp%r!rC&UsRPYc@I`W7R5iDzmpwmpcGpMOS zNDe{8ylg+J^%lCLb?wn6pq#A%kywSmO0@I*9TUUv&;Xb-gn+7fN!C^MnhBAwYe>fw zb7Eb^zYF3YMP)*S_RHnteCH>Bk)lt{Qi{SaEpPwkvr_Uq$wDn>zw2L8bdtsxQ|zvM z&sb}H@%*QybV(D8{SWTlgI7E$g(ql*;l|DZ{pk-&*_RXRmaj(Z0b9Q$CGXXw!U}R& zBXpR}pOBJcw30Bbl#JZ{xre0aLz?=4>YV=4m{9C)&r8{#YhqDWrp$5cc0DL%Z`9;s zY(`l*FJj-=c+futvZU4^VBKw9D)R3Kr06d->5ZcCT_5ZGO^P0%k%rZJa#7zL|EQE4 zrImz3^q8fOc#JspIVt^Ptu)55MrrpZie(-V%$td{3#IrKz(tLB?x-09BUYi-Z5~vQ z28|DmZ~RqbgQhVzCr5r%zhBCpsj+C3wN|QbdqK)xtI37i7iwaZC{23AbiVIvg<wl{_bTd`K%@y zhL8t}#zfmo=R7WD*GnxMb-&54OW7^7whL-k>501E`madQcQmocEQLb0OFrU8qF*)T z|ErY`tPz%v6kPbK02a`=1gr3so`Tu-VGU6)nGTcFR5*xo{N~R7&j@0+h6qVPM;sjH zGtIxO25?kZgT;fU=X|6!D*9$gRzphzk$au-nv@=`RXQjwUB@bY?R`@EL`^ojT5zLw zF}k+B_bDm9mqs47mCj@Keajp#44a#pVD-~P`Q^NviMF;LuJBJOzPv^rE+KYz{rz1N z?6=eSfPR0aRqLgX35kB*R*+VFr>rHMwwlJ5DTU zg37No#;~BdNLlVs61NOx&%9FrJ8H6F5;;99uUuO%2UTy9@(=YX`2sq&?7WLJvTH7v zvZJ)J;9avG6JG8vDLP4`0n=G|Y{#FZQ)8USo}g5pPx} z5jQW}qUA$z?1Y)uWM1||_frRE$sV>RFRz})Fl-;#LJkdE(>Zu8z7tOIuhLkb)?n9B zX1NU=!DGOxjJ~ta3#Yh>|D9&AZ&U(=>3I!ShUOuzmqR|(faUXi%4UiZoWSHUuw`%Owln>+IQMY{X=3B+7Y>x{*K0nw-euNU ze6wTAh3A09LfNd(XNx`g&T4dLB_0sl-0hO83&~4e@nSCC=-SqGJS_;6vgJbmfYjL9 zn1&aC_H!3!Fg5o0%6n%K%Y}?L9_PBOhA|fshi<;bqJlZg#h^VrJ!W@y)HlYOr>6FD z$!X>gSMI7r>B)m8uAS`~QR~1pX@Fd>b*ky~h-BHN6%? z&E`By(^X4|re|DD+G?77(yte4b(3v|8u$L2XuPPoM)P^4P>+(lS6&p@O0H2bwgkI7 zln64@bRl<72m0N(@M^LS1#~cjU=CXghXsV5E{4J+zPX#Vy9+T$w?5Wf*5&k5@z502P^I8+fnzo+@x}HH^{Srg&_G}uZeu?lM86M<|^?3QO zezor2q5ZKEHJw9GY zt<^;x4WmZvUn*=}hGAx6z0L|F-KcSj6YdVH{L^EE&bnM-c!@=4Dk} zqHV#y1qZZl)o59Ew7pS zfLw_heHH@mKWn@Zm)Bl6Aa%}STcRI|~Y${_m}jVz+- ztZIDB1V#U<6}6(O4Oqbhuoak!7gY(eGD8rOOu;-^`f-gB`bNndke3(R<#b+IUMh1J z4pEz@G_2J(QYEZv0^-W-9bVsPE@L&80gK}HnK|<6T(qDK($8q55mN)#V%XlB3Da#@ z3+70%PbC1iXJD|@E2}XXYk&Z`=QVQHAXoB0pO}c<%MI=gaw=>V!{8@agC=G#Y0Ruc zCWJa;f>7Itbs%n8R+FoZ3$`}kHenpB5NPqM1Jk{t5kwO;+7*g?=#kqB%k#L2Fe&v} zs^AM4465OEE=qL!XA`PA^pYutDjUY5ngYIn!EpRqr6~IsCA7))&$0&LhT?x|WP@d0 zi4FFXy=aDiYsD=OHUY&3&2Mt<-~5Eh$d zuGNfIwn6RN8a2yeF68yeLhB5!yk{{5bQXg!Z;<;B$Xq*VoUD0+hxzeXA+-rt*_$_L zsIiPfRpeWFrg2J|>5bFqS<|m1@Ev;!&&${j-t;RKemTQII3!z^ZPH}ViA@M6fiK)d z2rt4W@(8EG7h^a^i(08tkz<-(qrfF6X>_fTUWZ<{yO6E2dA#8>1w6oD*cN+MOY+=` zJRMB7ove|yoFNJPy)A_93^tBu+f?{Wh9e5enFV=%Laq~y#vNRuvyOHs9W@L_M}{qF zqR=?j;zgkZ;6w&Oo4l4%$rZ3q!MuAJ?W_dJ^)!-}J(Iw9nelOVZb8qUsqiTb5A0c& z10A(`CjQO`svBxlZF>@IBNIMPU@g8qb>PVibm+zF<)F85i}YgHz}7_fBKawTg?pyvUvW+2+Cvs%e^T{OB@F6Bb9n+n0Nvvhc6Jn>LK-(*mO5;gaPrj%^R;X4bZPgpupBG6|H zLd9hm!rd|Ey_7H|zVl$wa#>zh?)|UzofTQMeO$|1&G-iat zFGB2bkjU;b2>06^mO)Iu62{?K$A%88qVKef+i0fGdCOU(aYNs4ooGn`sE3+MszCmN{tpcd%qoxVvH&`Fm zdgOpwPIB95$KO(&Qut4rDr>FB2hFGo=(p@k-dc|e`yIou#GaMyxMBT4>UND35{*U{ zYXLUt6+&yUWYi(<(6$ah)@De9Ozi(4b5~O`G2jbR{K7k+N;b7(!F(Xv`ihT#Zs{Jz3yAp>y3uxBWO zEXol0cCOMt*WP-ImU~DeWcjuada++foy*nrd|QQ`&oFdyyjN~MznF`59dkXRv9p#4 zRpjckgyL?j%L@+4*gY7F*6b>DM+ZJ&yvH z!6;a%XrK0imEO}hSyplo(@Mgqn``V@i7^Gnps&fP_~=_b=zOTrvHF?~IQ>9jGt&T4 z`x-$GW(X$BMdxN#(D_)SW6j@PNPT}Hv@uIZRpnE%J7j*U$+oI$1CE#}l6PatURWW> z9t=TM%_EKR+y_3stbA37X_^3 zl~6xDOo&~~I=tjn$Nh?N=*%Wpl+)=>&|5%bW_4x{b8SU zjDp%zSEUnS8n$iaR zVTQ0-n|XJ{qiExp-lSFN{N zC`V7p3|uLI4h?_=&j9R0mV5n9ici#v2ML9o@Q&i*&+d@2TWAL-!A1Im{Z#ImO7mZ2wnW=^Nh(MY35%O}R7EWz5OVNWh&M=7il{!8s^Hac=tUQB5>)Ri|2>|YwM4VrZsS-^4cP2I|*cza1u z=)3-B;k~KrHTQZ&7tc)1^+(Du5o6pPSDV3-P;F({GgG zw`#=^fP1qgxmu*h(=o;P+a($Z9x4~j`K-!U2x3_c5zIHrUG^81zFVa92U=-d!8a=_ zHwRTSopQZ}+~hA?$>oNCE{|fzA4SAdnh0b$4H52o^zO#RdNdb9o>LNKv&~_GaEDpw zYWH3(xS5(Rm_ttA%Z&$e?m51aWP1~9#%P*g4zY&)Ji%n+lmF1YnY~eH@dSlv`WtO-Dz&O(@uXogQk0d+|p)N zUXti$i~UFFgsZqjQCHm5d%;SE^C#)JZHHv#i z9p~=W4i@_CBmy%Wxm#cE6_>re*+H{ktx}A4s2u-OG3EwZIM~FQ*9O7QF8~DZhHN z@^K{(`LW@wF|p;xb-d)~Qobuue!kS1@3J4B?7mpapQDvWO}pcoo_CUzTv%g*^h!!b zVR5ZXr06d+q1d+<^h$ZtAuq3a$xWx`wln(({r7(*@Y^&vwi1|&V=afv$T6gHJ_`IR zoh{(!5@{B!RzCDXDO%R_phoh2BnrfD8A^9)MUm8*qS21Ghkq$$uh+_AY8FrrLsH2U zzD6sIQPZkthdL42-liAKi?J8n>>PnCq>(}-Gj}=2We0XUhxOmu^vyRkWoR{{CM>#&2`O{5iUh+aCdppP zw1vr-Kh!V~U$va#YUAdYX+_}_rfB38bAN4EYh{sP*5q<_&M@yeSwPEcRqbdt^6A%M zVDJBL#Oi%}{XERYn-5*i-5A)+yOmVL60uP;HrhoQ*bBC%RL&Bl-DKnB7WSoFalRRrR(A1Cvn%fo4!n_dfoqJWo{{*J)hVt?F!$IK+l!}3 z7GBF^*)iQpvUOWb(&YAi7IA2r zMk}|S-1I|f=u6#3YTD4=)hGLzu(XUT!#X?EEPvfd+|2vj1WkW96vt@f($g57q(4Ezek=jGcw?^=O&gF}AHyK*sEb$O6LRw77^rBA zD~Y`PU5BE35v97o+ zG3)7Je!4CX*T*k;|jG<4(+&n;C6iuvI;*(3?tJmB&S zRJ6r?6qCzW*dPhoJm5bWXq}5O22p3Gi?T_)V+@JV#Tkmw5co>)!Bm@be$009_IM^^ zKV_`d%V^GeIT!bO89}aOh}Fw@s{0m~_j(y)-en9LIj~&H6nQ0XWdDF@^89*L23!7^ zaMkcGW)0u%+MYiq04Ffe8f^4?iXSnH`K~f=u+edkG0tu?y5o2WF7LM)VU}i$<#}c+ zOgKlw-N=)<`kv?8gYJMeHy1xS)DJZa}X^2yy^JtiH$hS|7vZy}rko;~3-U@bAN3g31r9 ze=2G5QA-o*RBHrHyh(dUHnBH?CPH^%sMR{O$L0@Q+-n_z{E;D+e_0zvur=o_F75f3 zk2sqV)|is8p=S((yfGyKxH$u@eyQ#Tn#2&VU#hUl46{5=HV1hdiMD3n@%)W3+cCzn zUBU*WUS}o9g$%JZ_n8mHZzhad%g~1ik`LvV4Z<*reM&HHh_f#DmIMG&kVhUQ^zgD zIK+HUm$upL-wgF`WQbI1@OKz)ZB9X2)hRU!+ev?yF;$2{2KU>y%+*cL7Qmr`Smj=ukAHdjZxNgOfGAa zTb#mxie|qo%X5_WGk9dd?w*2@O zSUgy`IhXe3dx)(VVfmDN4Ug8t@yy{PTwTwn2=W+1>{g)H5iep!ek%~>myEG=@T-b9 zGbc|6V{T=PHO)hL@4+Oz#<&c3DQ}vW2wj$;R@=~Hj+Ze(uWbl&IYS%`-W!kyv6)GO z2gxwR@?Zby$R)V6=f6H;=>$X&v9t##f5HeaVri(KGRj)CPJXKLZMLvCrYB?HW31IW z^wi}p>@HsG5M)9EB(R?PLgwRa2roNRVNWs4>Y@C&=8w4UUJqr=IgD|1$U)6;P{E^| z*E1*5;bU%Oj5Ts8k9q!p0p7@^fX-x))oc7$K-b{XUa#>HYcs;~EP6ZiHZJaY7D4W0 zh&6{xcyja_Za{AimjL`d18sYG@0Gs5+fB}vuPdoCF5)#3w1>q z3?6b_m`&jOm<}ApKx+X>7^<(pb~8tBzLJD2FjCQ1jxU738?uKpDnXx*Jc^O7HMJLL zmtzoHQv<`b^e!~4cp>{swNl>~o}VFJtyI`T z46{Z;|7qfN*aqH6=p)ukKm>lLJ!pInx2Wge8tQ&VStAuag?t59+Z(9}auq`?OUW6% zFjsu-bJ@+iS(z47JWKhAEg50?m%MN79s|7mL(%duTi5e19rq~Xth!`7qoaA1cSOtS zT-vLPkN6=Ytk%d{3sv`jCJNT&s(Y|yml$K$LcY|5oo}HpM8(cb$*+YE8P5>A7E(M)3orjv zR4mWs{aO%aCB}FpPSirp z2?EY%0ak_+f-BX~#P56{TJL6%m*FG;?_;2KHX;O7ae;tS+1LIfYTsnEcQ&G#gtu7& zuJ6U!_FPe(3dq+wvejyKu6Dai@2lcouOEfM&_0;GwfW|iE}|oY=A2Qe_wJml7Y1>p zH5!>9_)R0&Iia-6P~~=HvYok1q0}E8c7%qvjfPR#y4+^nDUX-_DEJ`%?ICOFvA*9! z!Fz#i^7UR>2@RwVy$;yVGP@9ueNgcss~9)r3dkD|v*tQ?n?T3MtYiGpb;!Fi=3Bo^ zn8H2;C7-gAp|?cIH`D)yQ@VZm3%JjBG$n*P4cS26l|fLjz_2P%tiLcT*m>wR5C#3k z0k=DkVhu^5CRZ^-N=@F0k3`(Fpd5W&=2-dTrHjL}xJhBgf=kCY!3(p}{OnApTz`{~ zherrqR)o_1S@>$NL@-CRq~Btq(1{^zIZfEc35N8Am2qIxk+-5IZ)~gb5^B7PCbXjk zq4NGu&6v`!_3E0yF>MG`YQB~xbIW#QCe(giO)$<7H)(IB;_GX&aEiCNETzt)HF2%j zQK*#@s@tK-#EuS)qIZ$hUv`iI{;I0e>k_@Mfwe~VahkYmM4UUUZ=ckv$r5=$2i4yj z*)*VUI|TXJ8Ujby86o`-M!LI)B58!mrBFBbqX%Khk^aZwk)AL0*XKIdb%FbzSUS#o zr#OMqkR5oZrmNU*J*flnx3l=6v}*T&dArTJY7D~fV&U5jp-JVE2RXr>i>BR>eeW>I zmYe=a_5;HsyOgi>_Q+Faj<-C-vUePUO@bh#c;h21e<8P<%y1 z*VtE{WZ_#4!7k=~8^_*H51ZU*hcArr9LpU_Ofjz~DAst9rDHa%^m_bNeQtl$J>FeP zV*j2MC-!fiV9E$=#f^59!m5bc+8;!6IFQJcs66 zV}=p$4geE|Vv&ycy)=w6u8C%{mZVfXy#}$Cdi1mg%yckoNOHP#4f1kf#=ILBb`?lJ zl%*$yj&$i=)Bw5R65U-Wce^&}9xl-Z5?x@?Nvi&7%Dw0+KnyQd3 zX!2kM>!`4fq4}j$LymGQ8mg>e$c7rwRSd9-q?vlUq2$6X`L3EF7oEcjR!xc#`9ZnC zH0(R$pObiduq;zpGu)&}S@5;U4z?`nP_yFUET1LKmlLFMj0MGQ}X_SeFJB^aW%Ys`iGohF_&)&(pUDVPLI!T1O z&6DKnP33Y!LBnLDff_0))oQNA`VI*Bdl~ueXqYsLv>@F2YzXQ5u=J!%p*88zrxb|a zm&MP6W#Vst5WYVPp9k*tXFrHPkj2k~;jK@8kbVeDp9k{x*FK2PviNx*Z++>5^e&b@ z59IBSd=TF=+~QrQ>|^ms>+H>aKK%4!eGWt&N~~npgaN8`CGIys=;>!Yd(5*Q{%8kX zHP)4s{~lhpemhGadK$;4gP`Ls)-ey}iH`iVs=E&@17e%7KQDS;NprAnQmDgn!Dyhu#;w zvp7)jKUOgGK|*%PM4#CqeZC`TO?l{U%9n~l#{#Tl=uSj;i9*G~tYYYSK-IoR6yis* z_@TFfeT68bFTv7>?w|hZ^3p7PUZ}^%PeA<}!z$gnHx$zUkEIVib9ZkHh5Qv*{?J2@ ze^V$ltjrpQ-n9PO`)VwF=uIoa-L>&GS^Chslyf^MEVIt=inp!>h4}SY{Lt4{w5vd& zWkc4ocGCKR^-53py>!$H^0D(@^8MQS0=-EKcQ#(G`k;R_Z@z<*0~mF{e-n1H2hlm0#_*i zjFrzE8Rd2mg6c0=^^D~M#d0q7xL*_-)ph9Zn+;l+DYX62ofw9@CLBrF?uN z1sLqa3=SPx28HNK3=kOiRTGeRsGT4(kqIOn6;UHnhj%A5YBk9ST{L`MwsCwu=`5`y zHrl!Eken>?tRZ4bD@_zhvf|HpIoN`I-?n2qn)Wixo#COSgt=v93DIsJqn3t-q@&EP z#hm@)F#o=;xf1sX+5clPqbK;EY{L!)|SEq+jXh7Yia7;p89ODm@8J|{qk_f9;4kIOIw;3wW->= zl>%z}z9O|=L@%-05oqVmLOEM4$k{>1q5E0)2v}Nj;XX%gjn$5TZ<)i__7@K{@*u0u zv@$xh=UX}Xj#JN+D`j(7)2aGg);|Ik?~<1~9koZY+5?8a+Fga7Y^juWG#|s7N1(#8 zvoz#%mGsLWHKK)7v{u|t61|0w6g32amV6oSZzzoHtj`f zxs*lj5$l!qgx3hJ^6CJ z8gJ7=75*f$tfiDmZOF0aySoOG6X&|O8^+Eu%CuoqlrYD=%c!I!l&Qm~Hh7iX@xyz$ zVOm<{3bTRe_7F7918&o_w8|ApvKyz7Yt#~(=OJpImby>N$`YFB5w(euE^w1EJpKS; z&Z1yOHL_nWMHpH_N8OE%X{{q|R&(yQfrUxCWa+(!M7 zRkrjMw-v*7<=kZPYw#bk#b>_Re3gsRr-2IO=4x1&rz1q!p7=?kv z>jdo4rH)%%Wy97bjWV}OuEW||noYN2 z&|0xz#t6-#>#^ElvuLgEjTIZRvZVXgocWI2c$?2wGudKKzO(AC25c-Mtr>i4CUeBu z89x4D=Ri$jqQ9xBg)^ORX_t&!iB_~GFYa1rf+Wez^8^||aH&xx9b+`1PbqGGtRmk>q%V6p>z>ciH zrOz}&(eHgO+2yNKoiDg)?F3fcGeT}Bs(UlCN6%QlQubC2cViwS)%%3UV7BNkX6(W0 ziz8%)#+s>Ib1G}6nf|Igj^ja8%weQbHyrPkRRGy> zKIo=TRVFb~gGOEUxd)*^u2oh(o(?dTmNqpFAw(%7#s3p`-2svnMgJs+gS#W+Aq@Et zcgev;!f|kLaCg8RQIKJF=I!pho5X~@JAxt#5=IbR3qb| z>QF>Hh#dL67R4naAG<{6^e_=ao!28E8|v7ljVwSXdZW;lfF-(Am2c!$S#DKNEg)CH zsrS|J$Z*k0zKO$GO|7BaaI2xbfN-gJpjvOZb^tHlH5|`sU5XVRT#DCfRy!T&5-`2K zIY;0Cw1F4z=mvcY2ewNTSZKIYZ#KIVMU$f6#$hv4G;Rfj$kraO8WjC@4!pmO1J_H9 zYO4o>O}Md+1ebRKLnXLa<%(5iijyu=FjQA1csFAKNT9I_$^$}11fBOHI14&fBfLQc zD0PY*9A!GReY}m^&#I9g9KO>mS4F?Q2>ZCH&EL<3$VUfVxUI9(Eo!;@56m#UmdF2} z8HU$#`XA=-R^x_2J)qpI_3909LggYf(J1{d7r<&TJ-7gkGThQ4?qln~3C&JJ-XtOf z`6w5}D%CZpAeBz5rmZOa_>4g_^?z!HpkchMoU1Ps{uvH!HE17H;bT>3s*U-z&v6N? z@+SjJ04*I12}sNH1&*DIyW!xlM$<-LnnCCuZE(KIp{;r<18cllqrhM1z`3;a6HaLo zPDrlMDe3>?=(!ksg2$G}XAGLfmhW(AtKRUS#;)#9YS#BSY%Zo2!~HU(W(oQaIJ(sV zErS-i-kfwwYpQfW`6CW)wZwE#@K%Y|uAgw+TzU~f&TUMu-aq96R0kc1Sd1Np0|A1x zSF=wsB=2%mdQ8Z5<4a=w1F77*=LdOU1ms@%L3(!NrQC-@ zT20!uA=A>Nj`#{-rPOAtNjr~?Qk_=_zLE8LKNOeLXRAp&3z&!+eINp|8l4#^OxZP> zy;`kGT<;KW6svWtHpLv(x1b)*!7?jerP{8RCu$B|+jIm+v|5X7Q#`(5{wR)S)dtw0 z`4e@-cndk+kWJsD1FM3|6MEPBIN+vKDl0vOoRoUCGTZH6k5!Mv7dRd$LQh4bo~$CL9c;~6 zgD(Uz`31%g`YA#t%4;W#sRYq%B z4c4Gb8tBdf9!_r)M~V?OH@MkyfG#)N?Q+wh=eAtPp{=$y4OZ%Mldb~la#X8?(155t zIKqsE^VKs3tSv>nhy&-~+!IiVn{ZYG?Ra0xv2)P2;l#MhW(2tIz{Dz@*n9&Aw#vB; z=3j6c5j$4+N{*a^odq&0_0=3Z2RkFS=G=V_oR7M3QwE8g*K_0?BIkv@Qlnd~(d6D+ zIkZ(T2-1YG_JW=+bR+Omdhu4hAfJ!Y=A7Yij%;7wi4v0@yj3sA3MisoeK$g~-n&&6 z+77k}$9CYJrQ*2LE&9hy5f6C}H`C4$T_Ww!q&w!p%}STRUTU{XYYoh=;>=GR zoH?uxZg-2FUaJLt;tmYtTD6i~TqR0zEeDDkhDDllxC~2Kf<^Xfs#PFdml*;~XLg%y zlIIi%H*kc*2Ub?a87uW_;mAQSp5lxLSB_I{G+Uh_+zJ4;Zpc%c1j0Kw!chZ@9wNZr zyf7RK_BUn9zU9bGsDk}1oc&>gOAl)$y5SUu;Cn0Qd-TA3$C|x%6&ClydP3NjMMBQ) zod4i*!)`a&j7a$2$@vZ*Z9Kk3x!+i* zT4p?plBncf&N=Fe(&+f&2d-kpfvY{#U7teu`?7?9k*ERUV;o{|hYU*5Yr*vh)FD5? z`46uDYNsfg6QchIIp@Ls1~`K^7`Q*gxep#7eeN({+=abrT9ta3BOEiZX97aQTjS0Z z^hFMENCE)a`4>L9feUx)QVqlpA?pmPv2IoC^iv&Z)(HiW9 ztxhTnE`?&g#n~qi-D9uZ7%g~zoAZtuG(^W5y|+~Ksw<6Z-{nYy_c&l>7Oa4#f#CZY zF|I+IO5(uNoblih1|){&qZJO*gw~(ooCk08fHPhrSfcIevz+zdwFpj6fYm4>1cdnz zA^6WY_d--H3XTvBbb9tCFbw)pgA9YB?g@%LCX_Jz2{5EXp~$Ki2&4{%C=dv^yq%KXQPmgl)rG4$Sz)JVYz2jqClFqRSX0n731$5VyB3zN>0Z8+on)MtCx{#`ii&@mFgr8 z!wsYmjB3D$R?kBR;l;BQf@>4GvTFIV2+rPNUx8Sk*$9euAT8f;?3YRbmy%O*1*=0? z38R{|h(pJC83o_Njb)7LXGQUb9^$0jBPbXjfsARyiRzfgbH#%a8l9GMSCim>6z88r zYPq#ga9zl`CXxEUN`%zMasEl9mOB!K)F*JRNu)j~O6rr+^RGCq?!;=ibqrUZPHI|T z#`#Cp-zZ^Z39@Ou=Q#FW!&*NO9 zI+#&*t980{t?3djUF5764HiC!y)$oMcUh$<_7bW)=LN$x- zNMUZ|Fe!ak91=*1@=lJC(jL`DxN1h&JAQ-O`)JC9qzdjNOy6hsN<9dQy=TJ3%GkYTuR3#XU__Z z4{?l?VW6dZ_D48GRQ|zIYZr#;HBpB9IY3l;z!IPXS48QJ%L5!Gr8PRun%q++O7cmL zkuuCE2i6IMPjiH{x|*!02fGTC&vKNM9VBn>uW~4*!1+AKNm=zh9B!FMI8sXML!Fni z+@dsJ;TS2KfJxX;BPXH+$k(z5amu<~zR5vS+QqPDLKNpQj`W&z?Tn9vnfz7G>SAYY zz3#v!*s{McgtVtmaP-K8mpFkf`1*t2hw;e)@U^o1C^F$?KD&*uIv52Zi;p75?q+U$ z1R_K{4EeGVNTlaS@D{gPuPv5wNC4{?x{!SchaUoFgzGVC4N}C}eZ$erkL1h;Er7VR z5Rx&G1vrLd>>lBU>h|-%hBrPB?y$vci91B)2GsAB(bqENG&;g|F0iGp5fxM{ICD1< zqHm2D%uS-QYBo5y6pIvNJA|Mk)TpM>ihmPN>mmp{a)hWx%Mt;mk6}tiIm<*SYbTBq zH7v5ham2w_WG#$<*@eTTF^GBwu;9NN=buJha4BFNZbsnc*puU=F?`!mmw$gnXo3(IYC-@I@{!x8wn<9`S2L!+Y93YL3I&iXrBM&wb z5C?OJRAo@lE)W2Rae%0Xz)DH0ORdrxd3dqF7~vRc46QCq7yOUp{L|Q>hnw!p;V4%? z9K#{f6k)RJgjXL4{);&OG-klFNmz_s%rT-STE!^=K|`?VQP2?IMi=ZyO|*&+l@@q8 zIpP8ty`QbgkD914^5TuH5bp!VW%p4FKh2y)hMufI7Oek=ucwdd&w4wg1HJ7#8;ZLN zEJU&B&w5`fid#XB6A-L+!!<2d{n-d^Tz7)+p2(MVRHC|CQM|=mNuybZ)A@-47Vwog zQ3j7x_|Nnk$IRikD4f%hB=&9rDU*kQ33b<~ z>+9Gt0^CJ~SPvsd=AsALN;mAEwgr2X0vianUqrTa*cTN*xTN6;UcH9gnIYJInX`>* zKqJ{go*QoG4*gN^eU$SZSX{BtGhC-D*nWev-8o9L-f0Pe67SdoT;^~HmrAsY+UFK| zGy!3D1jb$x=^`tICyMHZ!4rL9rx5cf&*x2z>(Q9<>eyzlP&C47z4ApTxQD7UfLx_=CU)HX8$n zTG}HH6=@>*xhj}^N|>GkOsQi*T zA-e3x2<8>eJh|x1YsNYE7r7aoF#7>^*{s^VNPavl2{C_!oLN|k8k0nGSNcwZ?@xFqGXc{^I8`H< z{**J_C8G6M-7d9YH9)w4>QG#iSBLKvn?y}|1>X)A@n6NUUZbq8NEEDED9R=w>FVy( z>!*8FsZuF|z}_xE*h>yk7*CyqNxq3@CG2(yfQ|`ZFIL)c$KP-Xgq(yOdT?ZH z;5+xf8VY@FmlT?}I7Sx3#YMqhLflreFoOAYz??cJUuiQSf9|NF7&jmib5wpT-N0y~ zB`m`+549fA+Y|!Q#+0A@nG|iJ)UI@3k#)G5OqB5*9FiZTkrWc{2U@ijw$N+EyoqC; zZs%puE;5W);lQC^aEI7<5l`?|+G0`ATR3QTmaOY)y){oXrqJ6t8b1~{sS!KX@p`iw zHnBpPcjgLcu-@GqkRRZdxP$=Ms`Y3L`yfZ;D~AR}WHtU?j*>o_$(nv+Y1T_-;eYO{ zFW+F+0#_LCK90#(whvmeh^qcEj>UKW4U830#XrHp(wmG`?FaKfVO9Dej>1op8B}qm zs{C*+K!z&(MGnLlNex^gQ`P-4N8)`pi8NZ0S*_lK(0v)cm~>zGiMI6H;YC5WPl4xmrs0ftp=)dp<7@{O7!rsEfk!xJ zo`H-PSWlt}MI4EISs#rbdK}LhsjxSvxXOWLTN7}cg*bHyFG1 zj_b-tBa6jHMVv4T2UkLqOE>_Zh_TQl9*|RU!VLz3_fpQACopVzch|}VE`s|h8FDAf zX9V{ZoI4-qS;{WBQ@ftQ*$-M5g-3xG5`Q@x`ECNq9$4H2hXO_oP%Q+Uf)X`F_G~*wJMDBA)-;^S2+7b^#T&91`Ca+=Z=*b zmP_H`AJFa*2Xi@ho;HkiFX6Ws2**k_t<|q{=6vCu9dp@?5b;|aVZd+~ir;Pb!kIV` zGCCRY?i5Fx%^G!?NzOZNcxk8up4{HKhQ12n0_EPQXqm|AQKB$w^8PAFkZ(o;t~+kXfecqCf!t`%Q+gKm$4|3(kCLmddt@f>C7E_s7)qM=Xla>QlxqQJ)B z9-Nr2#)BE7m?O|b93@G!fG0}Aj!oGv5QRO=K@urU2ceDU7dc9zqToGrk&XYCGXiPD zBH&83vkLP#6P2+;h`t`p0mSVz!_x{yZTtoY;oF9$uZ?4BNm|wNDmYk%6y{qTC&}nV z;Gmlo)uSjyNxq#8!UU}NhGdg=sJTG+E=NcbZt*~42q{E8-{-88bXR@WUXG9eJk0@; zG;m?Jo-lugGf&c03Yq(H*N_@|mLnyp-4Y308#*xSOoTbiipx!5g8M%>_avROTC+sM^uIaZBu1^5!rj6` z+*y3VbdvA}Y{RY+t+MNLfF!1bMHz+x$VSLqcgaNT;Un3ab?+?qb13dwH@_}7U5Yh=bV$&5xBGhs)-oT)ttsSOvl#X z#Acd18RAe$#&teas}1`t4Ji9_lq3mb|1)4y zE*fOX;|n-Mk`xS_CdQUcl{xDq(hJrR8NIR0Ay_`I${~_eH>DJ&Y+j9{Bx#HR#hlA) za{fsi75KwIqFsXP{fMKsIr}6{nZh2c8f^x893!D2f+7^@PGk{X*Km}Cib7Aq+m(o- zF6Qi$WRXBo4d@p^Ol4Wy*K&j;O&TDyOSIv6J?ETcH4B_ISZ9IsjhuHPsoM}l%S7XE z;+&K89{5_uYdGU1jf;Omkw~dghktWM0OA@u?ULU$y)8fP1 zI8u^~j6lNk6{`;1q1O@4Pj&Wo4wNJi2_Q(M7DpjZ=*XMbM2L77$4Fcl9Fj+l18?R) zNjmSMFy1H-rbhMk2Jht{i8U5A)Vz&jBpEv^1;KNUi*RaXSx-T~pF<7Up{%TJl<-@ZW^5ooDm1L^dEIlmg$@ge9843lqC;a&@?Xd$_B?H~=m#JM^V_&?%CtDX$Clu@H+jpq06Q4LsK>^d z)mKV{uEHJ4rH;sa5R)9nq2kiwwuQo_a$cT=pp9^}xGsw=8kv6)8a$E%Wl<~vL{iKG z?HG<0m!z^T*4nUP7BGuAOx*r2TNrPNPYpUT;rXNjZZU_84PusFIM$O#j|rS594Bs) z$+}p8!%el6gT?JZwgrQJAoc>Oy-vvqt2xfGR^)?KhclMP+j0}WFxVL!D{kMTtqx6B zZVSA#IbIgwunArFiDo$EC7{mbP+9mqK!xK&fpb2`$-?Imhx>eqgJn@D82*N52#P{g za>EHvD-k&394Cub1ka_UR&qH|7OjW?;%2IIw75L=bk)k#+P64FT<&r@h=^9clPyX_ zqdUn_(lokJt>9V?lSX9-GYSXo%G+XuOJBlK()3}mjpYvZIt~(-VwukR#y0Qrj4@1Y z-4)ql7~8n3I7XV78QHd7%W=|FdQ+Qr9fwHcTjn&KA9(7%YoyDa`qbLP}k)J1snUusNdYcq0Y}lox%JAERbro#JSa;PHD`U;_w$_ z3lEdSaRR)93y_Uft4!55aj3XtzP$s%L=YZ8Ver{oIAk`_40E7KgN;bx|Gu+8C&8{aFn<~*z_pe(I3njg115s zWevfj@53A-U7(MSx?ki_={!0%+J2d%rRz-tT2z#Mlw+lVT> zPIme#6ctUs&4G4}>+Cp_FrE+k-Ho|0?0XV8C}Y34ZIEz)27Ij#V>rvFP$)9$i(8)& z!6Bn4@Y0hxg!GQ$6U3sHnf0%wFF*ii3OhHKyhmU;`F7L;d#zF zsVU5||B?g5E$4A+P92uI!SUyz6TbXcu$<>4xHwU9!Z;Zf7Mdp>AHjSX-pWYaF|OKM z@#l^yig79;F~^L{{8^#}$%xT#s3Y)J^7|&^T7?0@%5wfkpq$-Eg@cPMf^a4Z=Ww(P3kPTi61a)H z;ixWGak#ik69%gUqg4?ai*PmzDPx0!o)y!|Cj%81%Y`{PVaf|R?zx%c)||0!u`^K} zqu5=J9XH}nR%W>%UX*t=$2>3d^0x6*Hba3g;^5hP)*7wEmvYeTLPOb+OCp4RFXL$0 zg>=2SdIJZ`uxL$rfr}{Gl^iWDk209MR-Ewz+wuq#0eCeBj9YdzAYgS8j`blisL%1T z3+v8>J$b3IDBkrPE<0Co+TmG!0_?51f~^V9K@ng#aSQ=A7^0sM*!Nad9wcxRF5^@qHZd%*u8 zqQNdq;y!nA#O%Da3SCuN6Yt3vuA%i+Kg8j(3!>EyI8L}GP`J%UI9_&9tyT_?X%}Gk zbFl0hz?##cW6=jVT6X<4L^D)}Pjbu*)!7UWWftoEGzZJBCct%R2kcKO-e(zHZ$Up> zK-w;So&okVbeHBh9kxBf(c-4M28(2%O}KB-(Hh>baLDXB*Z_$~&9kA~*Jc8=A=hmS zSN$dj&9E-|CDj`K$2ey8+SP|IPjJxe+I=`BuUeP)&I-*wnJXYPzdGPk95A~UU!0}a zs)c8?iX#3nPsD~ZPBzmC#2<6S>|z1b4MWTE9EZ$Kt*vIK+O5iSr9>g0=ZM+0RV{fM zkpTN82g|Nrz)18!7?G0J>NgxPyNJ_v%2l||NV&;F6!Lc*Gds6|W7^>OB{(686!Q-p zGP@?Z-Rx<3zdv)h?3!e_g^(t0|Hjd>^H4nn{!b2;Wzn<@_M1pgKsExRfX znrvM}G&wh4IJm%^z-`UpvP;jviI9!5DLu0tM~&NaVb|G*TUtobcH|&&i=!+-^sMqu z93^f^yFCi^!d*B_1{%{QJ$K_E8I+|lE>G7I;b~6}lYwFM24w+9$)GT7E_GiHlR;th zkT=XxGAIn2J3SyT80yRibC~q4MbupBVH_-d;~Rh(=1504UizMIfEO`0dL+k;Tc2ka zgaS-$Tz?G5NyS4wK#m^tsG)a{j9?hqEr}BcK6TI)>Fc~<3 zKCycfM@hfj-aMgu3x~?U--5Yg+84Q%W2GOFL`@pso+p?-S$ro4%S4M}I$Rq}-p#SH z)1p4E`ydBP-)}HY3g4RxkYO_TJ`R+=EjLaAe~crgcM51?i+G%>HmCjxj+MSt#);+! zIa2!AWS(Gth(o0>lyPGDVUCo(CDbRBzsNz-*Co?L@|QVK`bLVa!+VsYq<8O#Y3grq ztn^N2o}T^|hf3dH;nULJ<}m4P#HORa%Tdz%wLWX`eGZaEQM5V5r*lEkr=6eSDCtKm zhUw;KIZpaSMzF(?%^v-XqowaM_-HKS^otz9Sn}l894vhh@=K=YP+s6znQ4)w9DdKi z(l5;M3l@$9X!rb2IYLHsTmH%+GgB#Ru>Qfp(sw6}OFRC}kvNR!%^_dHu~9xS`qGU}IZXPn8@Xg-Hb>h#ZiCC3mIF6P!QOtk1DZjXL+90}zGO7HuV*?h3NXIK51WQW<=tTfZPY@VQP!20x zezJg&;8K);oh;zwCxstw%T6skJyQsB845zzwpDVMLKorY<3o%h@S2`1LZEtul zfKbSlT$bvL$fAZjA<5NTl3MPPbYN93TzJQX>2qQ7_ts8T^VaLR6!|+!r#aR&ILces zg)C?ngDf|4S=`)Rr8@zq7)>;5;q0F9+IMnMUXzementRz$aB=2@(K|l!#!Mv z{8Z3t>wfs5nS@95LrL%IBOE@zE=5#(bw3v(zcAF%E%3mMqU){XCpmh4RUo2u{4|## zzy5;EC1}Cmvs{Y&+C?daDJFcLi;}xScxZTJ9Z10=#8Y%t0`Hml>1T5dNzioXBE*&ANe2%Iz zc9p)`&kvaCdc>zceb)x@$j>070;V8_;O7=r4 zs6iwct-)=Lby!`n8n*1ptY#|#jyP_xUV?jy){t=c zl1WxMV-I&s7!rqD&Dz>YZB}3dj&0q~9z+9vWQvOq8*@=|iBY~N#xSuNm%+LVlRzCY z(P9fO$ygrI!q-Mr(3s1`Se>I7*0E!2F4si+OiH{^Za$$05<$R|x z1(cn*2;(^#1~0ACFUJ!N{w`dOTv|I{6>t-gcMnp>8OO=jV%?D^+zEkp;{r8vR16nL z?idpC?75ER>Bz;WLY@U&o;+*xWV1aA7gQK(^uAn>xNEBt_tPR>cbE%sP9C0u0?=W? z0USA(=8rq4URw_4lH}qIToSFC9Ja0m(d)+u7bKV7a&*Nwl1p%atzU*0tB{`WF~CvD zsl*iO&PYk`k%BrA&F&aVh4m6csK)ZKoL3W}VVgwo(%JTS0YaT^NO*=77h0H=mpZBVe^y z1oaH2MeAYCz`zmuJlm*G>#pM9Vw7sNa;+)vnh~yhE=oa@Qr45L2}FPmL&Of}&oI2! zu#`A_j(#v&ZIs$oxVo6Apu%Oy(E^a$atZu6htJUm%gxqWb#H_4L6?hQJzN>w2g`7< zV7J(4Ht-HNuoHOGE)3E@#|(7zDbwAUC!aHyM_sD z(01fWF2Vz^;P^QP!*SU1SA{$Use@N>5pq<)#M+iTEnBGIT8^J%6smT3m*hGwL5>=z zsVAcg4cx%-bF6|jryU+lAmFEF6u#c9&{pUj9Ns$fGI$k)-9-8r`z9_xj(xI*v!+`b z>uOQ>7A`}Ml>j?La0VO+1GjPsa&$u22uhpc+c~^-5^8WS=(I}hPIYW;vFl(8mnh=S znU%y_?qnP)-OVM*v4h~}v`cym{lRr3g*I@ymrG$iWtqS~Jgb<;PxoOn3}{^nt0tB1H0)~W2oN-+(w9_E7NuMRfS`XZOY zdI@P_b?5`GFLNQRXKj-U5i#z1lnax;UD)vJ8|y|2Z4~w`E`{~7hvbG~gRyUOG4c^FrP|t(+Vz2- zvZx{U0w8rp-sh#wD4*aVM9wB}gwm4*4c2RitpOuukvBzXwwS>>V>bZ2AM@KzrB@Db z#T7MZHaDL2&K!FI48U_Zu=Qe?prc0*RM`qRDt=?V7$)SVdyb#t??n2}wpa$@JJ$7n zAkYZ^*#Y61{|wpIJv{A-I>UUb!PrB2)S4$aY1&(Y+#@x&Gt=Bz1BpEyScJxQHEPUy z`B1I2)@f6x+k>jidijvYN-M@v!9P-Ido!h3ueh;L_S`Sc-# zr|Vp-I~#*ycWTv2#QvlGxfs@y8@6JUDy0@)xLGVsju%_aX6*nv$$HSbkl{co!=W=N z1EkP}9yA$V$z^!8Z2+;hh1mqJnn7r-)JM-C^g-0<$8u=vZKt*hugJR@Mc?H3nZVRy z&50Z{^C0WgN1X~r88TURGDpr_!+K<0&M{-J#8Ml5TdP)evz|5+pn6G9=b+XdMC+0Q zXm}B=@ZhsJYUZtGwE;8Wu#>3NrJcD~bL`ARWDuRTR_Zk~2(5+43uX{n3z20GZM{F+ z*2Pfay@sJZ$RHO_ad+10%YFf@YT*bc5j|RY`rOZ3&+m9@eRt&TBNseaO`o_Pthp!Z%bLFOqU-wPvqg12!Q@`?bgL->A1uKRe>isL-ERi^VGeqzbrKBDNGi39rP{bN+NRT){|juDc@+D;HDRfz zwgqva2N#*){wS7+OsH7T`qvVnM75k)fGFeI$w+Zo`WQ9J(ZEU^JE}=?B zOWpDWoH*6&=}YTB!-cUAZ^?85i*;!t@^f4U>%}q&6;i2|#>XJPLJac-E{A=apG+4O zZM)BxW?lq1gNtb4t6T)@Ls=491CIeK!qFROm1aX*JMeWbPu{f_l*HQR7tT(RE7Gjxch9_J!iFCj`O65RXPt(I!AYr5F&l~-x|biTs{ z$~%~>YBy;r>3duTn0?FDPW93%r`VaS;4bE(ez&7Y8vlR`WxaMbp{2Y-^@@(RrSeBy zlDuOrERJ-F80c|@IUv}mv1m@fh$z=6E0BR9RzWysE|k% zk&9xz<0xUU@kKHAs{X>o$vgH1;%J?#zppb%^ghu+6zB7tf6Grtghy$z{vC-|V}2 zM5k;X7ifkewz2QA4HqZx5n!Mn(IL_Y#oKdv^6t_Td5lVW={gfCrl0mQF4PP;5)OaH zYE^o6MuCfy_n6r?oOf~oeMfPdDXi$J;82msv=^6Yh8nsq9Lg&W zUoUo>rqdqw;gaQ@stgRsvkR}_!sI=4HG1`aTn_7d8xywvk?wpTmnCllMf>p~T$sG8 z`*aR`I2Xx!H(63!anC)1OJTo3p^2AZka%$vuv2Dp>^CR~R{AWCco;c-vk*lm(>L~O zXYJr3=4*~aU^ZW4pO3c%_v6h(ZxoWOa2_XB^$FZ^_LFA=im(c92B}UGOP|Eyt+yj# zS>X1R;-cXCl(VYciKXJ9YVF~ouYuYDy!gvFzI}3TQ2ZutkEnJ!kVIv6ICTaE3500W zYFv<&ToC)&hygXysW+S5iK59cXL2!eGYnpe2;GGCc-3H-bGRV(Yr-t`5m7hK2vF4Rx}}VXZg1+15#u$wxV^{W>(u;=*q1=sM`kfB>;|Z-NVuc`%NtbE`Of<_3tZ zYYi^I!L|+$7m!t3J(%%^OW{Zpb0IKQIuq8*YgC3>BeP7wQkxor+r`3=j)ir{ECF;x zCu21V!8#ciCQ+)T4#MVktP0JGal-o|Zf5IlbRyOG9e`G^3yX)Ea8p}pO_g?oF6AOw zH#ccS>cY$_@tVuHAl3U4|R zlG^Lnkr>*#+PAJFF|@_CH*zs@^^nnavs5XgSvnJ?mNu+@Cl@ByAXjeIdi4elzsjpf zkb5^5#Cm=rNxgwEQZ99iW9?=gZkC3?($G#6c@G!JdLW)eph~Az(+=Q$-;9gE%yP#J zivUY^O4>@vySNC}bLmM85#33-hf89;)GLuB&~=3@D5)nO;xgpwmN>srqsJkCWF3gm zqpj@yTmsA_Vc>T+DD~&eF{tcJLdd*8BFZS<;h#PGGj>}}d#w>+Qkz?*Z zaCxkkbf%JLnxXffxm>x9`21Y3VFdoSbtMVwY}p<5J9oo0tdDJ91&HS2?DrJI1l}PF$8;=WcxS=tJsVxEM3h zX9)(hEUfIt1@x3zln| z##a>|>JD>3tT$PtsPFM3-UGN$xh{q9wS&tJqLxA&%te|BgLRv&BAq2Xj0-Xo?YNrouTCCPPGhOLxY#0AK;{f?_Mi@7YhCh~Y?S;8gAwFd#KVNC0V zmU1z2ouo2U)>F6$xvrp^W~tH&E>5l*F$9e>W?TdoEzag5EJ@Upn|3M3xrnsMSg%nQ zD?zXBPQ8ArKV*y5XtwKg1>E_-Pgy>?Y#>hBn#twJJ#xWl2_+{BMy;1!3$dpIi&!FB zL0Gm#)cQglJ7{sP1RNjJu9Jz(am1!Mos5CU+s$5!1G^m9dSS3#iK`9hYr#4rj$P;2 z);kL9uwivQz9^0{BKmIS4}D++bSHmk&(6HmlN{Q5rrJ*7ez!Wp%h%2neuT4M!tt$} zpn=LC?enkWB3O5j1`;9C^)H_>38HGi6*DG5R7JRoOJKcCvkgo2nlyS}3+$Ap(R!Pv z$4YCiRtWx)jpKDFI%yoOw`p3!MKq5$ATVnlGY5ywnT=+zR;!YDJ;e=nx@`x;^CC#x=y7{Kb{x-@%lNQ$fBYPog&Ki7~RP*n0Wb2f- zJ+dEdrqROpxh&QV_`tH5l<_nd;2>+?N3(Xi)v|UJ_cOp#i97aYmHc$~mXydk^(>Zz z#3B3OE!o=vN7SvKp$IH4Sr%8clQ#nk<|Ao&M0V`x2y zOJbcRg7cE#bdj~B^L!}qQ%1JdSt6g8)@eS&Lx>#Fz7nM;BUR_m z?sIM8Lx)fQx#l(}7??f}OsT6Jo0Kp22qE?_5rKKcNy$-sm6zarJ2*^8Q_^n`jb;az zriW^`OKS~azvEzW>!*C9nynHZ+*g8Qbs_!P>9tyrfb76@L#tMj2PO%f{(%F>g%msB zG8{h>9M_JEK7s%y5dWMTBJ5r0Hrr&KmO%Vl9*9o0(QI{!ZJ6JJiM;W!KP?dd$q|>Q z_MH&1($kFipIqTuj=X(Rl z9UsIocj9>I?N{v-F+_&FSfR{aI8u7Q1SIeQ1KMsJ?bP(%f^I2J@Z`nYlLMwN9vl=3 zd+FP7d5sp27jU$bQx`8l(*nxA94mdx2K}(n8r-~Dom9?B6Mizx;W8+i2iIz@Cf7aZDSaCUNZ^*W z5^YY8Q}#c}%n!X)NJ@ z$$c+>0Vpq^Oa_DOnLQ{!8k`*m>9)4B5*lE@&+g9Bb!G8^*o@= zBY+l%O76%(sSG{;4#!DuA7hVyk|QMdv&f$QT8@&uCnZ|{h#vkW9O%fz4h?4n(@w_g zIQJCh=sNX|a`LR`SYOT&lA9wKE3lEt6&z(zVl4$I+KA*Tj*+}&j2?+x%VAO!#XJJJ zj$cyPpNjA302HK%BN@0)}?71khhNP~0ZaKqvamm?wk+ z1aCmbx>E+9^OH+NiGSyy=}K2C)kjT0|H>Yy-7x|EmjlJ-dqQ>53r3|Hamu|89i+Ai zZM{pG6UL4!rbUC*uo3>gA%`l&1d3|CB&QueRDmdSNRLFBgQxpgivmj+!^43gjV?ze z;mM*^bwR5Hpj zx44|K6kvC8u(;)!Hefiv=2VK6CTyF9jS9Uo+_Z`(xU+)Z!?EKMU~$-nmg_^DdtB~d zdhQXi{UaPFO)0dhdq3x%rWBDa)B_wRO)0dv@JY@+O(`NaT_t=9`>*T;?gxzELg9V;mxGSxOwl zv@OaL94js<9ETO%l03;lk~WprEyzcbFZGyPafbc0y0+M|Yv7K{k5I#Z_1^Nuau@T~#*4l|HSGYX93^#WpR9kH7n85Vu(j6%lV1TjhOZWFfMkYi@t zS4w|uD4GWotj<@8<^=wBQJ~FQ4SmmrPcGlMG4y?5)`};(R zf6wF6#BDMepk5irJlk-%*wMWGn5WFfI@@!sxK;226ipBOFXc$FiFW%^;Xs4f>t!4& zBYPRgGzAWqQOVd?W_J#iQOS&Bn7ue$Y(n4OX8vv^*aHq@m>{)JjJOZS&Zrjfanma} zRz|fz@8#{skz(g#>@{i_CmqPaGV1q;n=cLHqeD1iM*U_Vk&lZG=aAVJl8uLs;D{L| z6#PP($3aJN*o-O!AO9@mSQ&*hHtso&L&eUJ+t&zfymJBvid&~OKvQQL=bXgRGO`x$ z1ux@RquKP9{2b}@(fU*_LPil(A6l*CNLiWDFr+$@qh*w7HxH%G;dmKEv#24|c^ok# zN99AOBFD<8^)n2aM)L#XLnViUWn{OgA<_g#bh4@RgA9#UaVcUKOu}4?6DBS0+!^M{ zzWRDHS$1e#8N}E63=3!Zbzn(n$6{x^qq*|wFd_2)A%8X<7Mpm8!|;PFoIhD=uPur( z8XO1Hh1F!?T$q4;9AWA5$=KRsff)_<9S)YZfE~Dx8yDl@AkcPn%$|VPa{WmdSkeTZ^AGSo`^;BRzhFGkg#l9ZrmtnP+VtC3$mc(OeX>RLk^pzLC181{+Q!s zsb23c5Ik!}o?Ru%`5ed1(vjMZdI*9*e4Zo5jok+|Xxr&blv?4$jDY+lhs@HL?Pe{U zI2L%n;dpU#Y=ah&T&pesf5!o{)M@9!p5t6Zb@~SmnQ0l-E0{$Y|I7j7dI|$8b#&^ovOT7O~Cw}!^9<8Y+;&p;WS#A{>8!K=41u{ z>ouxl%8BiwX#eGCX*JlH=#7oZONa!_dOV>Pmkf(5RFp4l$RXkaMjQmvbRXD+vyaPh zPRHJC`^`B>+=dqm5R=WfS zzm>uD)P(VDJcxrdD{=llEpHwMh4^z2g@wVm*4qNf4~C`oxN;k(fZK|nE|MLVJikt0 zZOgIZ;?qFoS`EkPhZz`wwgX3t3%&Mejb;NoLc}-bbFjFU%N~rEYiAA>cjVmkPzJBq zH4hBU8}{HBaS_X^99&y_bCkH?J3WfY`Y-1oac$J}AiNwy9Af8~c_p~OJn+wbH-n(~ zZ`f6-1jYU1KV{*NGMm-Z1L4S^{CMyaVy=&zS@4T@Z^M=F;bul?!yq>cn*zfGw1C+N zVeC79#@pa^3~{G!IHxXPHsvsJ14}Cyac#FeU`OE0<~Z>!lZDE}!FRMcb2!Wq1KT~q zB3p6ZaUBb@s(juCOKi*8#|_wG*_$k|1LvPue1qoabN0K%X&&x%sy4#K*mv#(b^k8t zS}6e_?sBi#>)V5MJ;Aw*ySAui_>D}7jL zq0Pe=NohX9d!Mo0lR)rA%|^Eb>ml1`Rl5@_gQtF%%Zv4h<%AQrqGb1TwAkh^;2Vzy zZ;>)Rz)|8x?eWSpDeaRSAlCC^i&1Ab`7~#rTuYI*_$)_>J9#2rORNl^=iF120k3a` z?J*4H5stD~T#S&{zy=Ppv;ZOEXTU~@6S2-BS?G0IQV8>3po}D5#CDP;muUXHBO!|M zYeZskBW?y()YlH^wp5El^Q$#n;I7^-DllK*7Kodj85pqB3$M%*c)#a(u>%}Cb@~OY z%ig*G`x6I?4UPkWF;)JRqh(h#U623B6KqmmOC$97Zw?mQnpx@5*s+3SCQyA8*!Z2ft*!&lx&Ew&ZZnBHdNbzIP$U}fijz;WKa~X!p`9!>5IZD z>Q)>jeNj5yu&X5WwQVjSS~T4u4-mcf&*va<9eMwn;GhlNW*camw}k+rG|+J!`Pf^A z3DX@gDv^dct|K4Imp8~l?D>em8ss=%nFhsgr<9?+z}cC{*9<@!;Sz8GvMUFPOEbrp zL@&V}nKIWT-`O#&NOZpI;GoX0jffnBn7m-tOtk)>3OOXY; zkKnNdn}npRyHl^9>c{0T0-=UWl}Zu7i?9sH8-T$+R&a|39E%CN$S0bWFn=L{?l%GL z&7>bI;eEky@Hd>1>olOBJv>^H370L-0Sz=^QJA6uUI)!Qh8KsdPZyknIw+X7aitll zgZ%CVOTNQJ&_uOcEE0eoU&_X7xix}5To+|ngAlBiCoe}GF5|^hM@cy@=H=j{HQRFF z+&tm_TFyPWmf&0i&xZ)a>p29EQMLsDh+bo?S*ytWf-uD!IS5aA4FCe$kw_ul#Q68z z<&P^9@ix&c?QG^JQ>aY|S|y_R*}JdK-{_{Qg<9+zXd)Fl*w0i3dbocQ<+? zynWSYHkh@*U3n8wKebGyE|JtH?gi>U$+wqD>h^B~>I(AhXC?K0Zv^T^OI6OBT@m8G z?ma;L7y0%ENj>Z`pdLcLeOgiBT#oZO{IQaQa61PsIMa5?tN9r`3v~%ZsgmSOX_F84%GF?w`WM| zEe{~)Q&ilWCH3u}25OH`AC%P1{sh#$2=138^_s_ldLY65hNPbM6QEv2sDG2xcYF@0 z*Av`bt`5t4)gwUtUqZc7Qdgp$zd|_QAgP-_2GqR>^=3&u{1-s|D52gfsV6=M)O!eZ zt9~fel9OLD%Uy7$s>wqo^@?MG`tCDS>MJF6`Hn!{YNbm3h@@^m4Ak=JD)rZr`p6+b zeUeaLkks3j0d+Z%>WnvsGGBZkQ12w))+BYyLxK7OLcL2;-+U5K=M&BkNa_>&1N8>- z?Zc9K=IKEF4Egq_lKSYGKz)u-|0}5{9RbvRh$b((E-cZDCj#}qgnEmlcJ~D8Gepn( zUmt#Z_AWqOO{gm+_0d-XbsNI@)sni;aX`JFP(LH7cgz9m#Vb?`zVR&~?yFV+^%hdz z_e$!23P61uk!rmg!fzix8>s7_rE^{5ws`Uk@KLy~&fUhBreW(%m-lW$L!)YqH_)UQ@lnU_my_adO~KCV(9m((XO2kJe9`W;EV z?Pj1JR#m_Ko}^xW4N!NTP^mwV)Ma-A^?CB`k0kZ(yMX#lLj8%Pp7~Co{*7?{siZDk z3)Hzp=ATRIUv2~HTL|Z0N$Slv0d+p1{#H`wzZIyr5Zo6f^^2DQ^%{cvl3PRTe+s|7 zi+sC*q@H;-Q0EfrGq;D|PW%)`iNCm1)#RKzLh6?`fPc=tOr?%U>Nk&qZ|`lZ)JrAx z#Vvulys1(@A*shb4b;~V+^X1hLHlZG_QJ*H%+coOY zg{n3-`v8^dVnRJYqrQt!zok*<5#RWuMtudLZgn@sJ&sU!)u^Wu>MJzrIfQzIMs*1F zB8_?@p?$Yk@8+4sr$|b>Mo?bcS!2j zo&xG|1osP)`l-i(`XJnMC&$h|lGHo40P5j{^WPT-@g1;fO`_LVEMj~TA2W9m*{Ftqpl{@Uux8+ z2=z}I^*KUq-cNClnN-Vrkw#rYs8?vz6@=RQDCNBVYL)XFH0oA_dYwj{PpI$GsCy9V z=^vxG|4XQI9-!2t)~Hgg(5M#@>YG1Kzde7g`t4UV>a~RWPmOvXp>FvJ%K2eJ-BF`H zN~i~G)Mp6wE{%F9X@5T@sp10e=h|wC9{FS_mAEPt?~9dn;YCRe?|GEee@d#j6$)=e zl+-If6>=6Qz2aRNlDhW6kQyEiB&jz`s@NipN0mtG-k%P?4R?1*>YS63zG0Sm|MM(Ss$YtrhV+1vLo@aewDEBCIci|tQ zPo!`|n7XUfT5#fsaKmnM$op%`?G@1t z584KQQrRZtI?`>P7pO$&%UvdH6TXmEQSEBYGYkA<%Kgh3V37^rWcu2a|34_kvB|v} zIe8{P&R~LbJQJLpo~5V#P-^!eR6PEG#A%$>msqg(YP?W~P>p*ig5VE;qzGbxS_Fu! z=L*m(5eR=!|B0(OG8|F3o{hfanHTt`2=lm7nPUt>E{(~u)aRWD+jlkhE@6X^HbgPrHgZB`@y;ghf zm7=$RLI+Zck_B!SJoK>K8?j#F50u2ot|UB=gwpuH??hny0pOLXJR>NP@R0L@zkHZU zbQNL3kN|*7l9v>>AbY+d{x#*k@&a&@4ZS~t{{zIL3?Mw_;16%~{9#!JJcVTx(cSyd z5cmT^AD7q=g5!wF_YJ6dUoU9ml(Nflg8=ad4lh3!l)sts#Q!7gCZ3oT?39aGV2kTL zTcn6OLR?uMteNtWhvW9pD)ipW~(41o!U#DgjK zdGyHHc?o#Q&O5! z<%cdc4Fz;xe$cEukk)_Ljds+LNa)_V|I7t82=0Ih4%skyDQ zHn3t>&zEjr4(8mb)DeG$|A101PN&=eXv#$du-QjFo0?Y?7}aQ5g3bgu)+yGWSK3LCF?@z&(p__yce!rt&>h7r30FwfoV}0`miZa}#G- zoY8i(R4D`hq8M3u-NEqTkoR!PJ?ngMxw-7Q^2q-lW5}s#+%UvY1oH5~A-~``q`7yW zro`x)Io`;qX$ zd4cx`M{_@q9xlBtAOd`^4PrCwwr}g|nFYXJdDVJX8LJZ&G)6Lf*ar9wzwp zh9>wg=?t~Jv8?Wv?l(5I#adAD(`Sy?&W7xk`H?}!r~9Wj%VY?z7?_VntV90 zse3L$;}1Zek%|9yo2u`IK#!r{N)Pf~CROuUE;Wi6o`r(pk0Ja68t9Y3S2qd&7XK9Q zp^useik9I~1@v&hKY!x+r#ZitfU)q+0LepfKY>jq{y+&*wa@`y%_oD$KHP%{hd%(9 zss|qM4dJ9O1|%QyA%w&qfHcl64XDWx;D4THb>R^1kJ10oD?(RD)vGE`IOSEvv0Ag_ zyC42NB>tXqCr<|t++4ikKl1ccxw=I-2C7<7#)ba#A@MvI8_qu! z?6|dw6h2iMpWM#4#7c^0!hk;F zKReG;WjJocGQ0mk2M8>n>pGPlD$ZD`SL?#=W;hhfS);guPZ{zlfisM~8k}KUGckNl z*`Y(EY8N7foN`edaEXmRCv1|c_Zx{KD!-BH;k$JV1NZ|4ok-ypMvM{vDTHy)Mxkq9 z+1(AH6O%55vFxycXyrRd$030dpOm(dT(aPt`Ot?!?%B zW)AV(3(?5<0|h!O10xIG(zq(rT(oJRR;k8R5kDxXXqyeyTs#l#dR7S|eqdLX6h8GD zA}L&|h#w&w46i{DsNOqymd+&7=?cJzZ@~Ak-Or)b@dvD)CgK|qr0s=BVYS9GyYtZn z0t@K6PBkVAB!L6O4Q>EW11H!T*9Xn>Uxz8-fDk@|IYyraM)*`?7^6^AE{Xu=-`g{P zCjKAF9CpSTwukH9iKfRNDBJ}ZRQM2C8Xg{nX2-I+d!g9_om2g$%4h{;?1e&z;s?gX z$AQ@|#opdl21@v_D7m2FSEL!Ln+2P4Q3|m9fu7~7*+Y;xuM|iiyMMxt9{xc2Ml-Oz z1dztZXQB16yzT*L{Xq4amQ#(Clm^_(65n?w7EBt;j2T8i%;iS-kIK=5?k%Rq496JC1CZ;r7b?lB02KLC^}yGY9-lK?8%A_T)9 z09%~K^RQ4OD(6?BclkEYL}kU%YS)_$5HLgdC)j=^xYlOM6aNqKHpUC{5+cj7q2L<= zduZTkOFd6ZZ=H~}7avfGp5UTf?v7|3{DE?umex9gv1g+5RFIR=P@V?8#{ib9`j1uN z>>d&D#lNQ9;wf1Dy+4Bg14ydsAA)%7!6;{CQ2j%$!XAqF?(-O;@dpG?RsAW1SN&C> zUm_6x08lCiqd>Cyt6;xDF#G|qG}T}598o!+DXPEs1ekZyg!*91L$T9qwZy5@URTnK z1_5;_q+=-V%1a;z2{2hqLAdCBXj4b#A zMekz|+RdZJjn>+EZDfby1(roDc5&R!OQZ;uWh{qmG zeTir4RK4Aht7z^N@!h|n`S1q>Pu1K}2(P(Qf&Pg=_ya(x;w=S|&7BJN9|Xf6087){ z37#V==Zn$Je47LFRJjB2C#PKuhN_|q>Qy{^J`@a<#q%lmg%#jzTZ>OLlK+%4LT^u% zJBtv`69nAyTF)(0<<257JSXMK@vz-_*off|6fsTi%z!>3o1^34jy9V$kDFJWJ45&+uw~;cVN3E5 zgit@j%A3xXDmSm=fUsc8_hn&Aox5jC_34z0ckOZzm+inpM=2p z1Hh@Wd}d&!)iHoCLvZ{7@Uv5Ni3s*c71nj5AB8R~G<>V)!bA#yO|>!;aQVD#wWCkj z7O_Q|%bw#S`aQaHs+E~KL(iiTA3XXao=2y3FGGo8K&2x?rx%-o&CtU510_o}Ijr*! zU7L6qkLu{LFt6x|%5Tz36I2P(bIYwFe*@ZR8Q;MVux=9qb$fX_4*=-jDhLK#QTzflD6@2`9Qoz~TY0;-)K&&4SP z4%xtMD{n$u;|~-r%}gjOn=p3(8CqOmehn>d)^EB|DQr#)rmekd1{>Ps?B^BBz|^zB z)bbhrDZfDjr`ph_GV^SUm|)u{J=>;@(OT&|vxX00-#wtY-^6h@{y=Hc)}fF$k6Izg zhkXoT@dsej`f$iQge4IxB>T`$AT<5}beb)Es`-Tb0#N9=Lbu;V&t*Q7Zcs*duLXYV zZ7~a?)Tub}HV0gnJjN&4ZsF7Tc|MHb;KR>*KAhI2)Xj9Ec{SWA7ct#!F*e~3*fq@- zK8?FDt+s_v;Qb7(Ytm`j!Khp!5SSOA1je0>hcm$7b4Yn82BY#bj7(_kt@!066VnR5A~NNqmxY zAN&Rc#~%PsIT)3^g&X6aVTckMei5A*QyKD2^qy2M3?~cLn_WljDfi|9{U<{>i4K!W zyJOS31$`L)?R}Qog_#f@EV%HjhlOTSxiI4{T$nud@Z3kSwZR|IYMR^_;XUI2b)K&* zp;7n0!j|MkRAZ{qF5y;ejzRaQ)$`YS_%zR|L(MVhDIpC`ayT38yL}Wnqt2KA{-*G_2nE1I4YU7%xRgq4~ynfRBg6NXxjJfeP|7 zLfh%!HiB>^mG`%Bk}3ClVk40HsK2@L0eV2H2|tCG*K8pmSbaOs>Z!t-##>lgdFB<) z-4m^gKTwoZ$p?jX*lu_YmO}AC7a%D90BEXqQeho}%En5e`oQ}lF#Z5=nr%-C=MnGU zUTE`SwndNC9VJy2?l`buIdaDfP{SEJKd}~czqUaS-ZAG@AohPwy)4H_$Wk7v14 z4Nz3haxxg6hTh{(1^*jYJI&(+@hlY1dl?j#DsN;IYRW|sz&rN$yd%|^+lautLMght z5qbmuK;hEljTo}#1uEu#XnfQ;*KevWk;+j?Sc-TFw9xc|7KDwR@npvBqsW31im5P7 z-6e_mNUA`xLa%tkSPQO5WS@z9=a;j_@0BvCvM#SGb@r=(g96e;ACi{gNvEcW~)v&s|7 zZuF9n>fyWJLm$B(C}=gK1|`JMJOrMH{(*&ek4OJNgP0XxPcw<7a+RZS<{n52qREMP zZuoYpe<)Nz2<4O<(L>J6M^HGp3nT&;In8sC3-f_tO^i}FA%R=Ob_Rc-tgA9|5(%Pt z2@*m#K?S&{qMM*yBGjL%)fGDsfc@w6fw=(GXug1K07Z^r977i%j}+uz91|R zyr3LSl&W(MD{2)FBTE59)DZNr<yzPq`={ILx@` zFc+tZB-3CC$BB8zlg0fo#uWU4qW4n7lo+HDL5ms9pi5^3c#5I~_e&UJ@F!)6F`zTg zP;oC5A;$0(*3y0VYfd`t$*Kdf#&KH33Y`0iXQ09j@f|;b3x5rXzoy*h+F;C0<%9mF zOD5MAPRCb~*{;(v^H_ixF7?cC;Iv=tj?mS{_)x3ba%$BE9DFLIn9H8`=b|9+YT?x2 zRgh`V=@F`x1AM0I<3IbGow&Bu>`pkHswkBehXW;t1E>0Pj)T*33nw@Yr!DS%LFF7V zy&$XGRZ-Nn&0c$`xwB9HU_*$R&j?pjlcRb7cxPTuQ;NwF0F@TTQgHMEoCsyAf zz-ILR4gs{(oAil8rbiC^3F1S!2?cJpVRk?md217?zjferh2!K0P{@O(hYAW2@C|_G zaYBDyP^c*9B4gFuJR8TSm2^Buk&s&JnVP@3X6WOUvDdx7=){RK-T>q2v^u+sAn zU|m4g1tRIf=_Oq~0VgvzhgLg74acbrO*pj{Y)}aHDg^@WGTm$a!dVk*3zcSJwNpSw z1&>i7WOOuEfRm?}XQH_p&P^ObV>m;)qYXJ@V@??lCawh)Vjuet`um*NTwMSi3FZae zRSPO}5Y|F@VE`(%yVX){s9s$IItv734dUdkJWcGBNHBf3{2BdrC0MJx+ENuc0eIEVKf`h2cIKBjj3&{$@EJ7Q>sMT_QMhiv29 z>O-smWWk9&-irKV8|3|C*$4J5=xwq4cH|t@^bW@|4U`fv51i*FWNB_@kB?=jw3yfo z$`;mZ26deGAkIK-=aI4S&>qIOcAl+oLs+Y(ad9jhG;*@x((O(fE)Vxk#2u`;dsVCe zVV(6GDACf%*4?i$_aLlIW416BOtelT1zFC$3qea(pe>pEVMN@EwN%eu_AYZ<6%VX6 zJ)%tsnkiAo!e+|74}q;4q4*kSYHmC`K7c4u%~5=f^IM35UK2irEX_^N;jvbcO-jLQ zbr|c1ko9zp%h9Ixtx=k+j>9;qF%Xo0VS8f$>tOIt~q%(8*l(ygzqk@G6Xy#H&&Ln5Ytg{|uE{RUcyG;LrZX zOQ0XH@YE%!-opkFeiSa2gkGt_baVAlfAeF#7Xs$S?q!s;QUiP>BXsoAm^b<_mD)N{ z41{PG+}JgXk_2)p9q3EIITNj_=o9)HoW}|Md1rbr7tRP@M#nQ$M+4f3d?tKeRucEm zB77`2*9lW6L$V611e^!WUE2L8ayGc}VU{w7R)AiH^kDbD$kynyreJ517Qmcrh7*jeq}N_zbUJ#_{CylMsyO=#TqzP6gKUEWg`*yw)6rQFyD=F4Y~lo*XB;K#VRVM|?r&$Gy^@e}Z5DH$VFf3a3g2Ac%1Y zZYaR+<4zahF;>D1j7aE}x^Uy*Xs?U6HlfOPihZZQ%L#(T2)41qukx83Rghdjobzq< zf}cxqq(~5iQACj!4xa`C-auuCCj7d8#7d- zE-3EkEK3rfOct(}dnDxAIqO(HnWs51f07bLX3 zbq@aHq44pP`-KWrr>%ky6iR=qmHz96V*@T2hhA=~H^KK5(BlrF=maP!d}_=Inm^s$ z8?s#%}}XPM%#N?rJ6q=7+PKJ zPGA-r5}!_^3`uO^y$h`0?=LtuVC_#X1*{9mx^TQ?4Qe}l0FmoW7~nZ;N_eP0#C{>y z7W83%i)HW<46OZ^0AUcN)Jtos_3A~am0qVb?%>Rbzws~#EO1m#H&lxC`~3yWLe_;d zkTs@+mP6lV(g}O;9&1#JAw&i~B5VIh@Tj1L8h0@Uy@=3aN}>de6y9Ow7hXm~gS!;@ z$Ap0+?Bqu`52|w@!qJ{x-BS@Fy26{9$$*7Yic*2p^+NE94{|z!#MbJg2P;WXD+8RM zG-o4FeBE7chZI&rKN(ExmR@b$^ALET3VD#799Zoj<)zj|_W}gt70|L|vMv=w-NOpv z)xEG$SL&Wy5hWX>R?SyK4UXtUdmRk!e&j+My^;S{f1~5VRKzx>&!${_A6nhlgBVa_ zw^Ou+tl>axZ_J3VxtF1=3d@6amivwNsxC zRKxs9r||5}SFj9CBsz`;C~F^hD+8s!-4YmUQ@jAq(guEEC!lLobK0Q|w8#CegTkHY zy%?a7tX^cHV1m3HGT+GmtH1f_;&I`{_uh0DDrh>Bjs%`jP#wm-8lBJNBWjd3i8c~s z7^J>2+29#WSlhiGc~56pbuP+?1C~>&IARF(c@S?yh!{Jn@yf_OD1~oAh4nj-b)@CA z8m-p_xT+qF=2^!R_1(x%w;IXK3IU0F=!rZsQUMU%X^Z$w%&H1RO+fd z&SEK-zaOyE#RY2K+TSVnUv((ISjr{HQ{E)*LcHb{OM3vT67a32Tgu#H3FZETS8g&| zvJ($G>_VEMa;?;XxF>|1qd)G?IUTb5Le#<{@gfLJ(ld5&y+(CxEp|w~p}AOgBoMbU zQ2JY);lExuMP#?|b-+D-U`6c?wGa|$jaANC$X0dB6Ci?L)U8dV{?-u7A(4h3Kz7Ri z0HBW@9J<=T{$|-3f)v?Avl6IyE_>deyTpIBu*`oI5Lvv5a|+L^g+mELx*tbp7Hb7U zH&eUJ(;96A9HAimqoDYQ`x#_watXDEIX&~h<^|0g+=oRSG+X}|J(R^N1jDaqc*roR zhIb!9j3_&+lhM^*x#C>iepN7NNsvQoM1U{fHtZ{+{g-)N!t82Fx; zOk*8LEJEmqKIIVHMv4OjA7d*61xEbhb&(%k>c0-y)@>Xu6YiBLwW}TQH6L_y^-+KG zMal~Rb8508mV2FU6LK!FM2vb~fcnyyH~KGK6n_2!7HiQ19|t7s9t%ZkI9=>e!(!p;_yn&16E$*<{;9oMxi*mTnB5xM`ZF>-sHLYmA z;Ljs-L$E*AviG2}_rtkt-O&v0uMoi;*wuvucDk1#+|$hq$eadqb*A5rsT#-KKOjdX zhA$de5nhlM@i=g8PuRa8>xgh|+uM}-_9BK7soj4de?35-Jh1#S@)oGe_!Z0j58_M{ zg9kS)MB9QAe%sw*$;Olu6Qo;5Z?{*eK8@UQ@u(POK-8Dj8&I(S$R3xTOO zZHc^D1hwt;OF#0XWEc}Y?QDhIP4RMxZG#V^xvn$Ts}*5r5vDqVhu$Kq-#XASpNk!H z@*Ktj&^KS{e;+KjB6CJ@)(?0Ez*8>bKo5N(lnEmKF^Nk6bNR5g4XS|ICE z!XQnUF6Qpl25hmyjsZ+e`Vh0pv;OQQ>MH0S%9H+Pr${ou9A_Cr zR20!n1`oXDN~ksW7<4S7fmvoUq7xo4Mf;8fHV`Ip7bA1k8n)Ge@FYt27@vfUnfh&m z1mUje+2g$&d21Sv8IeE+ve9Y5?h0?^0oERoK$Op?-1|qNVu>AUI>}omFA{o?X!aT5 z=yySMt&p6t9(&xOIu$`~_%LRmK|kDmtPR6$Twy6w%l;&SkavejdjDmM{ZF;DekV+m z$7CEeDcVg~o(eO(n7RX!NWlyItqhd@_AB6ZoRq=@&*@6?7fK$}FV-+2+QQ;DvEC}^ zl!D_rHK^wTddKJ&`a3TQKQ09QSBN+8aaj21E{~K$CUWI758XW<9Z+naF!+VKl8{DS z$!8?6oR-k{B@|_JD~MuY$jDfu;Gv}gqrhXCkw#us8OSD<#U zP&I_Iu+X-$c8!%T6wM+0f66_!2^DpH{AYjt#S2fvia3wG>b(Xv?ovR5H-_08yVoI$ zg_$hO8~9TnL;iA0@G*h1Q|vqaot8-!g+eeZ6+n){}ik|jL{IIYn_z+-r z<}l-}9vp}db9$2ZZ1Su>`-D@^D1@&7m)$rQQFCE|d#l!5i(`3TzjN91{#;Q{VS#)2 zDsbG3a|~1lF4qOu#w#aQ`&_p%()!y3T7}?%pA;73CuZ)Y9_(AKRAGl|8>FrJX+NRa zZH%=3HVg5S+!%%kxTFfEupqFD;r(PstikoxyVh#3Grm*zOS6~d+x@*) z_-tPxtSj;alO3^SwaP(Jh4u#R-d0utGe7Q?{``fKK|z#mrO5sY22iHmIixo%^CyHLOB__V zd7RLn=OxJe=^*hkFg4T&Yy{EZ{iKTKl&T4#QrQi&m3t-f;X!H- z@*xHw;fNwW6=-~NuR#`Zp=d|K3?hyUF`g=}Lk=wVyo`J%!VBz52xE!&>09wrW1!iU zd>)kDk1+)qW8AkRi^zyV*%$+cC&^8MO;qSOm`D@E0k3*v4JttO_KJuroP+A^aefbS z9wa2}M!@_EFDiD>_4I3xdmFNjuKEiIBc)0ggv@%acke`Y(^c-B2~)57`cr$dUc2`o zD|1Dr{)9bKT8G^asyr>x?z8=wepw!2P6^jhF=9IWHtQ|{6U z=)G*NKI;EJb#DSE*HPUI175USt1VkzxVCI#8@B`|5YrH_R$I0t%aXhV46W8oOX};H z?qPaH3vmb}`3TER2+%BnKpQ>#`b-V9O_sApteyZtvZ`JvqbL!Noy=n#a2e9id5m5LqDrpe;OE>0n{_7`9XhtxF2NVu6d}lF1^I3|QV|WREsDUShf~QtP^gu>rhXhExio zB$s1!H;UmoPex8e9(B;eWa z6N5=S4tyI_9==TyeazJDAI=EX$H0{CKauX0uorBI?qiCN4|5DN^Q|!c4yom=FD$Gv zt!P#)2!H_=wgwKrUj4JDvz#0bn!5Pz*6E*IR zZ*!lkvOOWEy2y)e{74IoublMXB`f#sl~Y&D-B5d>VFf1Rv8lugV$@`nBTqbOBK`ZSf) zJ9DOg!p)tB8W>F;lU|^3w%mJ@EI;HvgP&a?o7tKZMWp7`&O}ot)2Gi=(COrh#tg>L zPom-#pey>uNv_!8lVAgsFDwZ#qA#_;=4%H%Y&k}qslD(z>J_P{)M>j?Xx;XE;`j!wkv#+DCJ z#|~l?WU!kO?L(Q3d0j`yy2*kV>bH}6pM1PISa@(GOifl0O0nUAY4X&KuR8-bvCO?l zmfw%lV`Md$xU5SgiW(dSlZMl zM)LUmZ43ip8_L0+|eh);O^S>&9zQv|EiD`em4T6nn%Yl+VX*{4QxxcyBN* z)@nrNGtA3tQDn(zTG-*V+M#PvxOi3kw6p{&eu3mb7Q*XExTIU9vn2eo!y``>oTE5( zq8mSFmX&S(b+Q(3wn)U9M7-ffdRlJ?E<|0aL5v?zF}$JjQ1s10e_AKgg^%Uln`HT6 z?c%}R6ML&G6+vR!wVv^&#f0RVp7+U`d!j|r7DZV#G9b^%XUKUFjb6T1{Crc06PbGN5@Z|JVb=%e5pAUg zcmEsU3T(#TqK{8duOG-bTOFpq%iJF}5* z`p)+rM|qGvs`?^XK?{`M{aX4dt!_*TaQ)u}7cl=p(2`Ia`U>q{V39PtmDbOD(>FmO zXL@^&pb|znMOpBW@NWpCMH*Gvf0;iIgrUg6$&Z z+%F6Qx`at{g(283()3xq$19jRQxLq2n{J?&))=pGluIgY^TLdB{+*1aXWk_%4{912 z+oVx#axMHkxo%7fCH| zQ#1iSQfIp^`w}f>Z=_V#0(rLBpT1IrU^l5?UMIDG!p(B$hp?k}eyr23sm}_Px?!4G zg0ld;aY8GH`9^<{jt_Ub0dbr!FJ`J5K!|Uo_IuUiMo;_ER&5D~T3}>+QMA zkk(#PV;VO^p-nWnZ%#RrEgt5eMC(QZ#_U<`2e_~H@#GcYkF1)+d zFe6S^856aF;Ry7MI+X_#%M1zeJjiUUzS-fn1eM7RY_H?66EZf3A)LhDNBirW`Dr~+ z3TWQiqN@T=-B*ni>gY|LG^>OY$)ADN?vApTMjbB z8mGswAoh5phINsXb#w8OeaRJ;eA$hUa;|z!&--M}E|VTBLo_Ok*6Vu=#8T2IJx9PW z(t0an2BzKIZnaKV7#IeZxfjW@yZ7&ZAd-)BCEIE>a6}veOV+(emhIoaYj-3cLH6n4 zs&A`RR7R_~VyJ;>Y5ikJugbpUZnEhHCaX;(Kx{On%#!3fH!n}jXH0-=KBid~&KkFu zps#kTmRuGsuFc+;Z4R0 zFdvtM6`c}75&2>8gjC+#d_PWLBopgWa|r-n(skWFmpMH%QfwcxS9R zg>`BS4e1sBt7OHYvF3p@kwz#_7B_H>oxnv*2rXIv6%JzJC)`QF2<6GPW+%a|gqE!T zDp|3Ab`sob1d#P6>jx;|AzUOh(Wp=3#U~SILSy86naLAbVG-l7a({Fb#xBUo0|ys4|HKqDRq4&c8B%*Y$o0MNY2U zCKRGWBpU783!-S<_7E*E`&b>DHELvH$R0k$fzl z7gJ}{ZJEC|FY>RG)d$X~N3#*j^L%V#_B6H<&7$oi^~^H&B3ZT@@398}A3@L?TkfX> z986cie?xAGeN2|zx$S|7A3$pEc5;hv2I!XvufCn+B4q637T->8nF9mkjnkNjZXKWH zdB6UHWx#)zjgVZnbJqjWUXvI*G8`o`u+}ukT;Ve$%?EeVAA01u>fS9{EyxG#w6u*0 zr5eA4&5#@!w<@=Yj8^B-!}=FZ8frcMF=^768lSSbMO;OMP%llLi5`|emdqe?k+KjyEPpJOR|yq0{&G~Lc1DYjb-AVTTA`w~H>tRDHu^|}nl_R;TLeq%T}$%~ zq`3<6x$2pu2WwqxSjZ_gttIznl3QXb;c|quHjN(Ezn0L?2q9D9mQ$HjpV7ne$CCLu zQJGe+q;f~Nnd~eP14OLsBB@j(sZ^tfdn-Uo|J|g&K2T?tV_9lFG{#x^S&~05ENiVu zDg}KFk7ZM}fsWR3meMbg(o$OilGb30aa9%St%u!H<;j-n2S{~QrhY3YtkhE|rmWR0 zu@8%|T91*6o98MrY1U1U6rrW@>!fjkR9xlsWvU;ToK{?x&~J*qY$a8W9acNh!wfBz zPY63wCy|6(eo-V5Y8zN>JtgpI5;&jr5Yx{o%WlbJ*)5i(&yu2_Ww(?hjrstql(c4v z9`|>!Oi7Sw2?7v>LX#YZp@9nC(4ic)#)(hpw|PlU28Kd73%0pzqLi z4}GPG?&O9~Nq4fS$Jdi^^UN{3Do%J>nm#A^xkWglq~4ODOa}K7L>5nB=u483NpFq%#(+g8( zy`0T7J5Dd((hLpcUBNhgM$l>iAzqIx4A3j^8CiPBGI^l_#+Q*)CLi78T5&d3y)2Bc zBng*)Zns3A^s37=>*A|PBb#UCq_KG-*%e=>(%6^CDDOVE3_I9OBGYD=gvSMdI3BTu zH6t>=fU!FJMMkgXOE=!dtLQHde@rgkx3_YyJ+60$B}YRk8b2z;S0t3v?}IEL;2myW zQUIA%5O#G|Vc9*iSQNpt@yO78=%E2`>0x3)kK(Dz@v8Ho_7q1=W){X~+WYpBwJS^` z+f%Zv`1fVPR-EDP`0WxnFGzDn6dZ4tVvxx% zx8$P)Jz1K8oKb4KNzKo#f)-TJ7OQRK%jAS1btg$(cz2pr4;Bo}OwLZsG;1eu9#DH) z$`$8j-0A41gfS9MGGQb)LFC$T-S}c2brcD)e({oMpOCswNSPJHm+te`a3pa9S+bSEWf*~&L4?{%T0TlZ<6Jv@qAdP0E_zEr8IncqHZA0Vmv z1D&bHSQD2}@oYEs0H*BQ4_wlK*3)}=MZ$*Qw`7Bs@ya1XOYR$?^%afv6=5q3O7u%0 z0n&RXot5KVyMj1}#{MvjueHzaL$X$ThX)Uv5v^&df{UgPi&)+~HalLgFfdTd+zSj; z-n(;KBp)Ho<)$p=l*n}%R>3BU^{d%DDAuz(ns%U?s>SH>i)lB7nd#2n8w_IAZF_pt z>`T*x;+GO*S*m(kNx>49kjAUjB|6p!Ex}ii;02;+65C%;`Q@qEbqQgcPrr8KA8Nwz zFUx5ytr;<*c-ehgS*F&{HYVMx^Z|<+VSV{gRFs3C)^gx2?e44llx=A&OIuUe*S6+) zd$dlNC$%y3y9_n_OhD}cD!gog$@11Z$qGxzoiD$W^Y`DU>_r8|BqdA#l;(t zHG9IfQ(?~Z6di{olEiPODfTyqf)-;jX4C2^emkk#Je&s|lYQ|!4IRn7g7qxL{J4yZ z-$O!awmqw$;PLjk+IYLssbSSJ&c03w)aD_?tWfi$H>th z97M5gd|Wom7On3K0xEfwsNVq7uv%}Ud8R}K6U!wn=~_m^=_i7ILsg|o+&_54~n#hl;D#(i@tGJc~tt$%vWWmG-0qPAC9J?bzp%df3T(`Xc< znrox6s2f)f*ya;jRDwSLntS`)a>tEINamPv5#eF(BU6`|I*>A}=Y#W%;3lz^T}WQ4 z5h{#O$@tMCcUjP_=+P>+&4)4LN9gYhoN>X(N-uSI&Ge83lSlC_c_UYt=8QuI) z1A7>7z#c*av%-IsthkGxa1a_J%$@uUZV4R25<`TRy#ESIGWiM13mF0A3mc+gMQP`K z0;g`sim(YRCzYHvgDCz7JBYIPj2T2hWB?XT=@qC;I;sMp9o41#8?)2x1MP9rN~=O; zHuBxEq%jdH0gEhZCc9%;2AF!)5bZ&Y*T4pg$QM;yJ?gF+6N?@;KQO34nc_=GeW^7> zs-a+zq*tR=v8w1{`D5vABE1XM>gGmGjEDzk!-;fY(V4|?PUt~qO`6T?fFLZ`mH#pv9py&$kyb#$VTqrSRKO4F zyrw+zKGQ9J{4G6Ewv0`g$T~METgTa-EuF3#|K&T8+b`Hp*>~WCL@98T{pi9otl)5` zw?SQieB;7H^3K`P%7J=~K3=!|F^_!=|EaoWpstt!n11_WWqL~uo64FqwVKJ}Q)HR} znEu(t%XIzdSdC|d8LnSQt{H&qw=G((Q4Yu2-1Q)(=?BR(1MvLL#mw`uiRM&|H+&ez zUrfdsfbn-NX2vHvGo2UkkS#b|QTdOMa|Yo29gCTB%)vJ>7>Pwm!uLzbHv{nfbBmep zR*h%0V`^I1emU7@0Jax(scd0ioZ&ek&kVrxqAr!>S?&ZgjK7MEGg$15&$LZz#4!FE zGR^>uzk4woHyEF7$??+GpS+H&GXU$0x3XmOuZ{II=!8kJd?UGL0InBryCmlV-%O?% zfa%5SOS1m&t>l>jcz(;GwQSG%y`2m*Sk(5M_k8al*9;al*Lk=1ZgR~4Trb|XNUzU( zFZpHwzJF%X8g<6uy^kz20L#C;Xj#^}g=>k?@T)z9*^TLDZMxnzUiEIYO?242s=L2M(0hs^!bAox(rC0VpMD`hg{o@NdLQ@?}M^_X&Fy^u_ zEe$r@F?4jx{Dz8hsk`x^H(?m$qx&#mwEBRd>E=a3v& zv@>x=dgoHer>5I+W6YebFM@rFf-!(#zjh7@#;b`?+hoejXDAB;$nq=akSuBUL2~4C zl!5`Ic;p3g~aGq{nLCu$ij{TIhN7(hJ>Gdtj*aYEtz zc=dXhlC_V$8%#3*(+e{^G7_d;UsAX}pIkEl*9$YJF$%8JPKofmggi4?)SC9HXW@D| zxn=;a7iO@16q?Rd#=`e1^34EzFU(;3i1?POS6E&{mKlKMg;}dG5|*cHS-W0Owi$r! zg_-vs5!-pwzJ!c30OJcYeLgzIT~kv`m|vKQm{BvIX`Ea`_8EZv1(}FRxyLO)ww+kmdR(C9?#w)!yEa`n z-uPNHcMqbUfadOu6$2_;pysXx*5)q3(cJymf;M-3$Wl$nG{MY_wJ6cjz3fskfO;0F zxtl_lZSJNCEU#X3SD1c)Ofvw}3*S2sP;jV{~ zafA<(c?Mv9fqEDtW0PHVJ55sa_ok^SKg$?$%F38-)%E!t0fTcU3*62K5#Xg1fB^*fg>xbc z(iXq)|8nxr;G8ibuYn{IB$R*wBzXThkppRqx`C}sBEzdF0|UsgK-G4}sgxa7$Rx^m zBHOqY_FqHx8Js&=ppxl^V3FZ)AUB-GB_)^PScx+ z%iwI_ww%0I5|;sR7uF@h=SmvXXAzYFP#3rjGTt~Tdn`rTZNy~&+_8n#@%YS{DXZk2gk=EO$pwZz)2dJ6 zVxz2W-A)D=EPO6EC+k>NA=tZq^o%#Kfm*a&BQOI1KV!g^f46id>x9Iy9Z4<3s1GX&w*cx9zUJKM+_j(>~Qk* zj)w$bx43udxB=B1Ka-3wcvKkCu7EJ|Y%;a5-}i`C#y9@S)=t zqL0Jmg8}$B>%Pp4V+bSnlMx1BBcv|k+(7Sen{5tPOr+a zb9#_-_h>j#Tr_ZBsSVsib5);X*et`Xx;K_xku81&)fpCM|D1(sH99l6Iz&fIsZo7V zF`bSt|2UMnGV?B3xnI&m8U-rcHZ*ECCJ?mORqf5)WA@0=)0xV|2t0Ta#}{!DlL4fA z$gA6bQ*yfAG$t}88m;3qC(zFo<~EQy24L=G zk3Msqsfp%{lTjmN~agA z>SiYzz4!F=#O}sVeFY5W_u$Es^S5)L7?K}a0G1R8<@Oy~ZeO|p7z0X=Xh$_5rAEia zMgFg_I%5FoU$ru0N-y3S)oohh!X#v>@fg)uU#Zc^s6wV#cz{M28$@K4V$_~ zRFwI@$t44D`RYZY%<1~^<7m@Q)~Adr|AkC40F#TwgIgwNCuW)+tN%(?8GzNFTV(pQ ztm1yW+OgS|9F}b~{9Urm0Brx%Vqv>6HBldH)X)>s&V{Wd|C7uz0JDq5%bO`eDN~PO zdz}IJTP)S&Z0jgiBAeVkj|?&ZgM&KyzGo}Z(64&!*KGTJl}BX+d=NI2tk~s@0yYUxLwvv^Zcgf0~h!WW-kn9O1X)8IDnLpDqQzBWF z&?%O%6aT3UbL5$LvQo2^VSPe8oO|3tX=R+&RF|lNZhRjX8rV3UZnA85`q9Z{zZa5J zLXhikRIZyPr~4+W+OLL-_!|@|3%@TU(N+u`H&4RM+O1AVLhtjIH3(w`pIR`J>R=iTd<-2X*!dv9I(ACE>j+QtpNS8^A-` zbV^w(VZy=Y{!49c=se0$7sE^6sA%y=nMVvDOnq3BNQsLU>7djE)At7S5rQ%RXk+xC z&KUE+A0sdW03RIEB2(Jc^p_FuKgIXCw*dS8VWpgC)E_!io3Z3oLep|4N>00^01|Ln}MWfP%tkuTZ0{jhMb#t;1Bj_@9`G3?S0b zo-VIb=U}}r2KfIFm;r#zPNX5qi<2w$?4ISiuLk_z2+jcD_YZ5jj(QbhKA0MbSW$dA zjhCjBz6a*eweqBG3GhcZ{~{25oQYm zX3Mblp8-+t=|R1ePz(Syv@gj(IlJ@VUQRd$%$Fezj%2GI?VD&}n)#qUv}vVPxK`fJ z{S}&){5F3m!mycRLAo*N!?da+GA&D3Ov_0SU(d6`8G!qtO)CSUrsYB1NGJw?8rrln zP|mbGxSI*bfcY|{X_0Kzqy2O-EqMXzW);Ew-E^mUe6rmf7Z+`QcjKRY6%1^NeRRJ7 zc-OFI<^d`YENzck+R#Se(H3K~5{N+Ybu91rcq7aKdPbN5{RM(D0O-(0sFbVL5+uLk z`_%{yDq!v%+A)FF)WmE@U7>mC#(RGfX1J8#{Mhw=0(9>vK@|&@cw8-U=>ETDI&FX3 z7m5^bWiBy*Bt!RYEbSD`8KWpp6dB(_NCto$x=Y>znKefb_Njzr0N4Y=Iz?j&Vvruj zFLIOur5-?ALnEd zgArvENlQj~7_(_c$x9%Gn}oEc>GnkJ*aVi>wx@zq4f!}*#wMp~P4yx8S!rT!>8C1n7)g5CEa z5UW6XkUA4p#xG|6QJ+SQ;aY77yjFWgN}OgHp1Sd`z6N=?%)OA`z~@IwJnEb@EGRHC zGttZp4+o7vR2f$kji%zp`{^_pK)~mPoaS)2Hdh_sE19uWvQz8`t@jvCB$;TprzC6f zP~k&2u5(;*Y5FWbB_8wjzR~5Y53i`m);DOjhHJuksn>^*Qfgl)X8dhtDg#LO+>vFf z1*zi4gQ`7IZ2Wp=DYcubG~DQ&m#ocWwZ?>5GSfU(;qPvIM!F65F5o`3uZq>e{{r^aykL)QKiGkf$D49*qzF_&b=(-W&6f zI*k$La+Zy5Ol;)xuZ=vHvp|x|?v>)kW6Wg+Bh6(8QH+mV!)PUUXze$+@+3X9R(jyf-yI`>=*A=t zy?;UV9-h=FsdvkEIvc6f#`@i{U zcYkmE0INywjXr2>mh_-05TNx56YNA z07?t1`(OZ{LO=!pENHLK6VRDo59ref$^f8u&)c~XEd925O#rlN-n4W+A zA{47W-S1HEMlT>eMDZ7@wTb3K+NP4n3LjBJ{s@b|_r^R(>>-PP7FMy47mxd0QPmK| zKTFtUh%zlQ#Zw&gWdPL;QTzi?TKwGy6)f%$kO2UPDE^LaI_cqxzx!xFPZE>?K<8il z9a%L%wCz*lh#!mW${WQH4UoneV}xg5eedBY_IY^K)eur_n}6HJkXEuVw6$tz!}u!0 zEGrmtDGbM-V}WM?c5j=v&jr1zqq&A!7EOR?!I)B++Cz@+7@wHJk;OVDIo+PD=yNx| z_MK4o3P!Q7^r>bd0D1^z<)9S~*>HtsLwM$~R68O^Sqi-OPLbl{%oYX^qhN@4J{nBB z6I*&AV?r_jWWlJ$d?8(-?}eQtECayaGj9X*=vMjrL2CwLC-LR9NHG@s9%w^ULWDRv zd+eAwmef6VohykjUV>$=nRJe|Bqv{!um@1Ru}R2Qr)T$&>f_azx@E2iwOVelXC&b!4|6*?`s@o?D4DX;C-VoK8Pgb11eW8-X-(;pR z0QW;Qc`Vh`47Ar_UmLJ*5sU%AhUny2swtSOUF;_V_zwhR0KhxvZE}`q)&4Nl@1eap zQ~0s&>x@dsZ|b4#DSpMV>}zgddv--rTpn;P2Oe6nJ0_Jv9k|2Q**0k|K+zgeoO z%TaT)uMOBw5{v=BhVXBeY6|Ae&3-a~uO%P@0M6gPS)x_@!%%OFxuq|GF+~5Pg?ZGI z4R2ImU)XW|GhENPGV{(px?$Wq=U=_%;jyFxh%mt)QWG4a$(1K9X6V0EtoTzL{9*t_ z4$-^vDW?{q=IDPipr0Wq1AsP0r#_LqC_0Jc!y~7V1reVgRTiidP=WSzQ+HEreqLI6YE#J_cuKR`K^i z$zsX-_{V8xGyt3JL-a90MHff&2eJhRDJSR4Z}SHN3^9IS$tz`;)LYb~h8RDvB&|Ie zuHz+CIRkP$@8&hBQ{R^APgB>b5N4&8FCMAXK#x)u;@F2R?WvjOB<|;$R)tQw(})96 zy7AY)4Uh5V10cWr?ldI}@lEAHlnT`PZdI!>1dG>~KX%7$M4$KicpVpS33q=0?qUYu z>Ogs}Bxj09dnfz~#vc=d0WgfCu}SC6{+3Py2j4Q2j38en2m^o^cRT_R58%%UzyJVd zz;$SVQ-=Akkv4-7YUorx8~&Og3;;3;E1IZJ9yR=blcX7d^eC)|r1R{5ix><>q$9z| zThTudgaJTCVMPk!S<(L@0E3Zb!ZiGt6tjOOX$B+91h_eO0KZ^-hZqb-mI=VfXTrY| zgu%!%fgoNc{09LT0Kn|s8mcI#)q=^1|0aC~pl=3oM?*iK9gn*QKnwt6_DzfkD4!=6 z5QzbhM&ZL#l_6sq*b*YvwUi(X0AjlSLy6Nljsp>e@(NOB0Lo?zV_3@hyts%E3;;0- z9|-1qO2%4ZFaX9V3|BC`g0X@08G!ziq=7X^OVu5?<@xHmAhR4gPOa@S9 z-@@rqru}QHc342F9Pg*|%A$>{h{Rw(wmAw__p^^iZ_@_h>`Ze)cVfz~E%i>PF)b%S z3cp^4<-g-(&_6s8;8! zq44x<`e+8=#bp0bWNX-ORd1cC9m8f}0oYCe1^^hI@75VZb{EMq09j*I^XD74O4r8P z)6UWVk15h`vZ2r`F7%h(^ zpJ>Vn$+Wrsq|X5K&6vp$^j|Q`OM^u%_mD6H5H^+65QI;IW2=(Gq|9IxEFY`O);wYP zeiCK?!UxNgJ8^O%m0#Gk2pzA_oWN}l&DPZHOzmWSqRB&tsqyC!g#l1Zt7ra-F(|F^ z0MPRY!~j61BQpdLhXotcMusCK%>bm$Ea?16Lq&4>JTGDHWK=aq7zThDx@a{!m^q%Q zx5m&FmW((?>I_C9#6ykgR%4w7@h8!vHX5o6-DrHPPtUVlY9v3_y2i zJHj|m?Nt3tExj$Lessd>sZAgTqsWC$eX>y-*Na+2J=3Jl0Mv(eK;~`$Av{aM3_#c% zXE1-g>)k;?^_(US1KTvxE5KNojfyv%i>Z4-au#ufSx)_ z(0Rk%NFEq~htApJp>et~R@45f$%Rd1g8|rhXu;W-LfiQmF40MI;!46Z0Q~G(gx^9g zYMrUZn9)N-Mi_t*-FrPRmxk)odHg;#!Gm*^^+dfjK4I3z_Y62#&uJocqYl{i zmn^wM6SDew#t@)N6IIV`TJ_AiF7*ZI_4)QICz~6maT<54ew;=kg51VUj0_;djU4wKVVdk_84}VPauqpPFu*r0n&vF?7Ok z{>KJWF=lGbB{sA(=0E{e<%~SfgembXt=MtC!falySDX)Ra)2$xmKcCPH z78bfSJBjW7*?g}PngO6sER2~`-5f>1fjn94abhz7_5u}gV$WdwwLL8dD`xSJ6Q9At zs(q$CJ$51|dQ4~rfHoThM_tA-K+t1olZ0ge*rN-R+ozf{d10rB$^fX(>er7C^cqdU z!WA~s3^Golr-d^!S7AD{M{SnW{K8w<#0n(n#;^Y$Xl~6yvSj_C*`tv$ugEeBc?*VV zP0WD60UVvUBNm!ru{Oiz+?gw&8)%t?VvgZf7F=}fl!hTD5&ksumH}ja`KU6Xx3%OU zr`aVf`TEIvbAm&gA?AL7%rO9SuRY7mwQ6YJG-~Yk+8WMPdB^mt(cz28CIhhfGmDT- zU$utimyl%!VEG5nF3a?4o;etXev}L`07I{SR2d4lZKSaL7@1@MCV%McGO4veuijok zmKcDg`{wAIJ!-a4R`IUK4VG||&n(bJvsIsNnpM2LuGxI;#>@W&e)xK<14x!`w=W^k zHG`>YTKLr$t6wz>9D6EbpApYJ+1ENl$fHMbRj{yZn7WZG6c~UVvp8nXwBdVOvs0L4 zAFmy2%&;wy#kiRm41jTcI1f#NYA$83$_nJSy)_-|46lC3#_7hd_%br(7L2SU7wy!} zUS!5f!RHO(tjW^QijQ=VL5XJ2-DMMcHCv9Va*+;)37=2pFc1Uqc1uu)St3>QXhrHT zZNYST1M`=&lbo}`)Js^YnJC@(p07ctFQZOZ?UKZiCgv#56T+IwP*9DM3N-q9)u`F6 zl{d?tbe=-9-%QsX6V~Xy!&pyZR!U~c4Zp9XZW(~df?4=1!R&}h_L~KRqv?!IH>bFW zK(z7`L}36FvrupTB1zk#Jv+mxelrCrAg?9}1Ar7*VwT;0qGUj3Fz6)^T|zJzg|?12 zTD95MY=`rNXC{xfC#<&KKokZ*DVT^aFUWCL$wJ=9@Fr4c0P1E(%KY=j-CyVmdY^+(JXIaxsa}jY^ z$H(9TUxgM+vVNC!fioxk+1APcN9d@jJ0wN8!(UN%Sg`sfz>9cn*BA)J7^}B%pfWbL z3D>V-V~YV)ePm8dhJ3Fl##nn2o(g>+EV!v1JyRQRj#O@iVBF zXK=Nm2=!J%F#wb~9(puTvWU3ORYob++lj>hSkE7&kw{CydK*(ei*)ZGA_E{640X>h z%M{T#pavaK&RE_}WClPUX@QuX!aeqlT3c4^O*cBT6Kp4lwC^P*17JQg*wPCK>%5-l zYLs4IS9DuJ2Fg+BTohW+>Px?Oy<0&aM9*eV z8SQmLG2@HcDq*fV#v7#!=k;;`p_aThoP0NWkK1?tM05iKSdy1o@Sqyga z4A%WlH;=+~Hm0ZBsD6d~M@gOm$QLyy=0iR&#v{aG0GxuA*r}S;P{R3g@{AcyOk*2C zK1Kir04Vasc>%si5C%i%h^+0L!Z>D|)x4i0UnT~F zp>rgFkr(I>2*vQla=SVrv{MQJ<01yT97%5l%%K%sYoc7iJ*CfpVq=)ktj&z>=ZxVw6FotvE&6X_p z&pSbr6W<~Z1K<=a>n*LOAWmMee;^=(p#{TrSQre$9uh2rXdsJtEsiwhr5^lW#9=VB zUDB-*?A8`camyi+HgPml_ zUQNJUC|Ggtk<^sPf_0h&I|no2nxmEuC+Ey>j;~|qgRpZWRm1?C6jXzjLRR(mtxjJB zDBn!V3_v-&N5CZF5pUF9k%9_lpwR9)hO49sM(6FF^YprChZ?3iGre zgRqS4Xd4Ug^$rUd|LjDg;?$ac?#6fg6>R0bU?y31pG`z#*&NRKG^JV#Q^Q)e^tF~u z8qZwZ`?0BMujeN+zvaB)L$Oe9TMO@9>&vUaPq%EYj^p&M6O#~1zvb^~2#o{|d> z>1*IEcab#~gnPOQcd`4ldA5bcf{pP?y=iDI_ueGS@72%IwmsD3CNCi-C%Ct_0%-1+ zGO1VRUni??*NBmg2s)Q}bl|yXus)QekgJBwMY*@hMSId{5u<^~Yb<_Iik;| z-Zy%z$cQG#k06pkT$y>7tlYstPa6fv{cOXq{Uoe-##+-d_aa%gBmIa}zS75)0ya+8)4G2VDP6NE|- ztQ!3aHhWCrky4?Fb~DjMo_*7R!TF}1G|uof<(*7fSTa@{sl@I{QxolHqHJkcuQ9VW zudxp@cCYoLz*C;o&^7XXjGQrfOF3i68u>X&Ir9Zl->j5ru+|WpVu+BS*ASJ|^GRwB zw!2O-GA62&j*?Q3u^LS}v((7P7&&X8MlY!?YQ&fkGgkS8t!-2wC!38^TYWC1s_WH_ru6sYBSGQDN_zOXAHvJi)7qlWt=> zEL^E@e${|j$yGgKz^j^T-0tE9YuG5 z99X=4PAq0JMj1@^vIuLN`ou^!WwK2fvdO{9zWK94v#)SHI2O_veHmRv8HPgfk|@I# zOsEqXQl33MJy@oDi)7W}NeLsKG7`U)MLk^pcF&u(F?+zIr6+y|fl8E++sdMfwM797 z7i*0FU*h#G26xU4sn=vxz9=mL@h=dwq=j!Ui=N53taYlS?vmp2C{E znR@3T)c_wW^4N|4C!0LWy*E5Q7tO)Lj7?#$D@9WYLCQZ*nXu}?QBha7r@UT8|# zo{Mb|uPG5TxduJa=>{bga_E0ra#2bSf*1LfoORi>6jGbrb-S$!Ty$VP zy__B_dlmmcH33^6`jo8SJ=>DWg=n`sfemnF%{5KbBishZf%gsOnkI=d0+vKXN34QX znvH25>4xqst;uBVhTu1JQPFqXtPYhS7PRBSn6fWKK`0<~z63Kb`rw$~eE;%ypI`Z6g{B;s6bk4U7Bn|gV2bA~A z@!x1|7jnc~1`@RnCvrYG{uT-LI^G=viHYg;caq}e<8Kq8q)#nq4S89Y%HZ6G!u%6q z3f$-S43x$etjPH-wcPkSq+8@DOV~)r;VH-8CFMeoIG8lbUF17MW~*WPzl1a$PssH> zZJ;_*$0iPpK#um~J`c8wU0gx8!pp)Q%jt1Qs-Fu9RL*@J8Yq$VKXfJHx#&tD7+i^Z zuGE!eJy*P(TzpTFC;Iw}f2yx9Dr$mamX?DVwb?0Ygqz38ET$s9@&PtMy*E5;SYk)_ z%CtjK6EsUx384x46bJyXxV^x`XH#v4{XfLo4xO9I*hIT!Yrg5mRNL@&Mc+8d6{zD$ z0-7F=3<)tKApuTG>I7$lpj|pS*~Ao?>co4KEI)wH9H7T%(5#e`Zt4touHYCfA-Kdo zCQA;S*&!c5YG*l8C!5nVIGMH5XyI48#r8<2(rTxpEP`;=fLKX%pOT4uGEpVk-}c5> zo?4D09sQbYwwkCm#_LAN)%n-SY8?S{5zFU^(!yZiNt-9$8%$Ton4f$G&7z^koW*Ik zz9L)Kki*!(CL>lAn>m_Sj~^5*dHhZp?TPkq51bN`p@YcF+mdE-3WN0RQ|P9snb^l< z$^GU7qu5(UBvq!P#V%D&8p?OL!yjNd?&W>`- z7_x9P(zj&UZnkoYzOsL$+J@hJ7F%?KGsLJ5tioUXadlThz76Wr3#^xIc6-8)({!d8`k8!f6yn zO|w&MQ$)L&06A4OQj~*hjz7(iKaW2%mRFj@t&YU4UEf?vQaIJY!P6q+dHk82cmJWi zl%Z&BAt!_B5sYCGlHBZQi^1C756N27p5Ngj1L&4=mc$7jx2;+jUYU89tUQcqo$Yqd zHYgYL5u5}#rC#e?TP4T0upyAEioY-1?(oQ%x-wiDigM#yNqAtbIhbRwdQ`&C6pphM zQ5#XCv4RQ>m)fsj%QMXp9u`R^b?sJ0ud zOC{(kx_GbXGF!nF%oKRJuL8s4GZ6_lb2P5t5f0=L@TO7t{o^_>bT<>60&}~VA#Rq$aIDBE;~L=GGQNG z8ORM>ag=q>@x!FoLtsm3B$n9gG6XPb;X>a+GJ<1gRAvbTyU6Ew+0O>28U zBr7|fj~q85eP)>W6_?SyXIOR(i&25wLI8& zi9Gtzn7(ySB`o@ZGeesjSRhLJK?lz(u z)-gllhT}&_F6ej*2CzMn*0V>R#hdite&*buf1{ zQOr81lcYzj8V!C%xD%W0@u3AX51!CM*0@Sb@$;nE>oo@xqi@7A0N-K8UlL+HUb3JK z=5Z!oP$Z_m^BiRS2P9eK4-0xh9%0WFa-7-pePl+*bA|Dr5T%r}D;Tx+AdM^2i72#V zJwF%!8F7l8+RX!tf@GoZ&*HCPeBR{1rKrcq5|b$b0RfG~HI+28W3moUednIR zCqLc5!C{SQYz#s3oXV0_L9WUw~%iIHqN=p`5R$qFG!J{KVcxbskRY6@&vA+s-& zRm`2}kc|ZLuAf;bV^u7Yvx;`woC=I1ntsSOog*(MnYuryn>-p##n+Q)*q&SqpqQ-W zDG2(e6yHRe0rPP~RRalv%hYn>Eu`0LE^d6Wn4E71BDX9^aF!C^LfQi?q72{EX_PgF z_-Vp-j|F(W?i}Nun?nBl6iy9IE)-knV1!znl5}9N3iwlXctSu^!UgREJ}l0gj0xi5 znjm&b1jwMS%)Coh?w2T$ut0BkLw^pqqc1~mnR}5e+k*-}rQ}UI1(_4Byj7>7l#6n2 zlZ%92X4Pr2Gf^$G33A-Hkg?g$OnVYjy1Zme*M#dPIzii9CTg;Ik0TfEATgjQc(_(KjKHf{?@iN_wPUiJg)y#@SDVl-tL8k7>w#~)Z$e;{?`$!<0Rc?T_ zhXaB3mf%uv@pDKbkTZqlwu60GX{H2q2ri9)&nNM+IuEuG%)$y>P$zR4(n7FH$;`WM zT>m&*2>I8^>g{?HTXaYh7q$=rAW9U)a~dMRAf6p6OM!Ho&5^E^JU7bZ#-h*3#+~MP z+W^yh%Ys`_4kp=UMip$8;?)?H&g>L#WHaizwp85YTFVZHoYIw@_bJKfkRb^Lg=$O# zVKdL(uoq=AE`9-xB$QXxKtafpv?u7A_c_w1NV=b9Z!ZC1NmBz>sgY4?lu>H@1H>z> zGH+LmE30;^LXEv5bXGbwY}IYBAFH-+c6p^+!npZYK6m3QzKUXy-KIkVE=F#L14eE- z(E*#Bc^I^_{MNJ#LyC%W@^URFhvrUVvneFM0~8Dz$E%n9HDo-f+mrXEE*Uu ziDZ2@nk617jC({vDk3RJxn~|MA~P@q*}I2KRDMap*W{AJV8u)3?H}`23zyD&p7SVI zKnv;;`78n?aioo9jisEBeMsu3%Q9w#Mo=l3*@-B*4})=aJ1=8`C&l!LbmA zhh^?XqQ6-PDRi*mGNA0@B+Hp5)?2|Mj$z4)!C0Mto!B=#>+;wZLZmH7cDV%H=K47ua=yFNu3uv&)WYK;C3VX#=7cz%i>> z>nCta)8~XgYw`)C-R8S8lzX>o^1utPnv7q@nmW7T4}L9M9qtb`4hn0-D*Tn*8EUJs zY~3Rg#y>&iQWe$Cx#7cIhbkLIeGO6j)JJZub}9YZx<`q>p2YoH$Sss8MU9-piMv`w z$-aqXgH?{(c3O%)a|Xr~t|}Dkt;D*@)G4wgI$WzfV{UnJiJsZ*>lr~I%ur=PwN29 zfL|o-a1AlXa&Y8`V)*_(72#J1Q&1ty(Q1zz@!frj@F61f)C6ufO357V@$4zUM@3UT z-=zkhTV5PFk~;U)kEbxdA)4xqK%8LDtk^T66c|^YQvW!qXFPmxj0r6uoh#SjAotjf zf9=oE+ga|tNtW+OW0T2iLiM|gFD*Htg5Jx&fE^?WHVLvxHm8qR;EVHUc%sB)1IH7L zV@ybR+SDgTvT29q5i@3*JlbcHgMr`}NJ`I)JYs630D1$bO?tj18?bjT2p61;2*B|K zN48wEg03f8{!_A^V23n;FIsR~B8Sz&_-v*TVs*MM@FiKd-$ak>CQuo84UK>~9675+ zrY{Zc_@8NtIor84P>@12unfdxVn#Lbzmw*Gybg_+co>{mD4_nIq+Xb*p&5Z3U6W~1 zmg&cS5oC+9FEqUFQMLJ#ZppOTy?{guaw^#LC(&kWwv8)o(}6~FcBuOVBR6A^yfflY zJ_1*8Nx|3Tk{u~UnWdKTWF$jz+fw8r!VD-9+{I-O3dw^#U&ls(e{S}vOwD#qRHmkJ z&{*?0?y1Js0nSUv^pr?q=JNZ*ORmvP|Ck`@to1ax5Lk zO(yGR!chdhrbNu-+Cxe%x`88&j^2&ZtJr4E-IUCHF04g1vZ8vkKa(o(paEqVe z^YK~J>5Y~=K5I+$iD*9wMYmf*;4L_?-p9C@jXb(ZHiJ}n;@z2gGndy__K%c2p4rR; zn+{FY#~RTMhRRlx!8g(n=jvFn2wWz2bx{Ham@qs|K2Kq77Vj)JO5xL)HMmPiMr+5L zdJehzn%vvuqJvcb4(v13XaJhCui*+5f2oQft=4%@Hja$z3@rzks}6Z$L>pH!2TWAICYY%;$_3F$nj&+){7%lNizBJv z5LX|L{Z-J0SJ8RZvsArSk*nOU0}dpF@gi7424;m!RR+;Tv0jK56yT$#bYtT=FF5i)R2!AdF;mb{Z9^cdT)~DJMlR>%-C!)1cy4a1eFTLF5U)ykR;e9$|l*I zB4VEoZz3?9tm%25tl4S#iS}t!Km-PWTOR31&I#J%re9Y_C#{H zEv)G(BCaNLdA}&h<@-UP4-df}N{)y6^l>@;UrxJ_i!#&sV|W%(z!iPtBv)*+B+$@| zghX~Y*E?{|mFFBAW)&81cEA`1?s?I5X?SMDOfkCFed`k!?Ho%&MmX+uB%__y)TQVh zEMa(MAS>xDl2&nB=b9|pT88Opo4u}5_%Bm%>=-|8R7?v_=3TPV4*2h26c})DM@25z z%)&aCN0>H0Zl%AZ;A?WpcC)H8%?F&Ji(~*TQ(9AlsPKMB)U@IbEb7Lh&sarhvps^0 zOeju5aDxLBq~!T?WF|&F8aTt+TBKW$Ddl8SpBTv|dWQg=lsBBUD2slWRq-#AWIy*EYEpXCJ+~Z%5q^~jgB*0IdFi2~e%CoxyI9AV zd;Af?4D`V6JiL$tuEK7)uDCHSp3-x^5t+%@-6O;+?OONs&+9U{QQoV@zeN`2<0uDM zo}E&2J~I9!p?W-HXdjT5Yj(A9syiHWZ=GWN8B*-y00&sLqiKAfloM+VpC|EtZZ6aT z^EkKu%VoP;9WBM?O9U9;$$~rh^oClU{Wib5@lX6N8pTWOW3ptYT#+mO`0>FyS-}n%i`Z`%{#7o~mZ|*h}&oL-%YzgI!#jq{Xi~oaJ?`Ki4#>ym3>lq>N zxZeYTUKM|D$VC`3{r#U%y^vG~`oCbw&+?jTMa5lCx*?5)TMAfsh+$8hrD<;jqLFUq z0yKGz^P=qyS!eznM!zobC0V!AM#uVE6CGJ}Q?Mx5s2RX+OzJ2VmxFsG4eka=p)*Nk zD;d_pD2Zf=%p>Dber@3g&>GlM+y^6%LDpa0j&CnM4IS&?bt*6f-AC*P^ z0==Mz>*27PDgn#b{G5q5G2aVv!tM6<3QI3-s7@3ng2xdFQk_==igK6c}ce<1@I?hP8D?g1GP9>_?esPiTjnCa8O4Uz;s zNt(jt6@Y4vxw$DCF}QKI%HSM@eb~cWVr~=9;T@?>~ekFvF7pF zX<5g`b~sOE;>C$$5AkZfF|^A?T~`l|m|VTXBPRVVIf?QRiDAVHiGjP|o|gjdC^lQc zl~dDLP=OsUQy6}h@m68#(!%e_rPK|R)=bjqfJq7#yu*cD=`LVF>WYR_KK8&g#;_y+ zGciUrm-ma3TydLz_AYnE*u13xW^N1l`~qf>2{^D6YjMZUun{7+w4kJjGA<5(OfE*Q z*hK7G$YnCc9pM6GZo0*O7>q&LUWtKS7xS+(m+= zaENNA38ALo!tO8v%I8q25@mXEcbdcTCK)O(}%OPJ5lPq543*cMq%c0i9K=R$3XeN2|z zcL*ybbxO1ho%F~urDGp6r*H>bsX2bs#?1k;=1zsY%vbi0lw7$(U8UTVl{1%fHI70uHZjX5eM`&`4i+#IyhTiJ@>twZ< z{_d0kmcmfi+L5ZdpGq};8@)uXB;Obqp>qkV6&6^f`NZymx!I*Q5_}vspHQpev4T6kHVX zP~!|%0AevkDxE4L8W=B$4sbt-kdo=ZyOb1;60>@RwBg2Zn6+kW3daM>l6rUuk$7e1 zU9xfyqv&B}G72#l@;rOkifPGb-X$w}y0B%RUU65@bBDPf=d8Qv)J&*YEGx^VJ~0yg zD0wOz?Y)^ilP2~ zuXI)W%F8V=-1r-GRRzu?G_Y?8IR}7|EIZ*q?&H5F#ihIKODH8Yx)Y$|O0t-jDe*lV z|0C&_D$~JEOHZM|*>NnZesPZfnHW8VxFkImPFpCn{Ko$(^zx-PwD%#P7b%Y65~q3i ze@T5n!3=Ho4`7+%#^Qv#1*J@;BSfY&#Q#mW!38ha2@h#si&3u3#pitqDB(g@(&lX` z>JeZGNf+$@4Q>ff6(tLnvbD2W!}O;-@9!cT(Jb#vF4}DbcI#rpjcluz6rdZEB5LC& zfLWBG@R(LlG7MpO12+gS8D z*@(`MOPIwDF3$~MPc~0uA*KBQ!xYTb`Pa$neTiaYzr3b`TpE!l7=O_CKi+>`8uw56p-t8+Q$pnqkX8aF58a0^tE zb!-nFr+5M%Wz5^Y&x#m22f*5f8mz1Tyy6;PPd^YSqM?=bIeMlv`L2Z~7~d>jD_E{V zb2mAvnKIKu`$?qTuk?hLH|7w;n0qLH4=IPrN(r7#IlwhxENK?bSZjQ%@Z6_F1bfjL z>%@LATNrxCKa=DOO+VN#%+j`2-$VH}QZA??`qpe>VC-|Iwwl+;PLk#fP8wskVM-dT z{e6T?^rqvNCY{b4%arlWpOsmbo)5`d3liPWX=X-7wGy6Wu{!d>x-m(kLaKv(r0nlk z{FGR#X6DK&=)v*28ewvE{xw%8nTU}_1Wf-1bp}RsuII|id)d`3Q0qgVlJ$}Wl0bFB z1c2=C#4?c0)-g;B(Tn8}*9E>L>-N~_8NB`#QU=fO2D-J{BIAbOw`9ZJURTjypB(rGtzS(ty`y~rDRq1WwMF~gJjn2%)wmKiQqiST-FJN2g!qm zGl_E}8xs@tRs(}?`66;j!Pn%HeSWe`QR!P-SY5ix-oDW+i;vLphW%jQs=|`N0@AF1 zk}Qgkk!;9!_3fvmM4e?t@-B5-aZJKRUaD^;loC(fP@Z;+v7bkG+rv${Hoha*T*-mFkRT zFA_;YE~D=_Ln;X!gSU1_6#v7d+3O<8*-Gji@>E|+ss$^Of}{LBnVBi-c~g7^$@eMr z!D}dR`olQ-59WfN^a%?pzl8?SGWQ}`cDs#AcO1HvXlojqU3(>ghR*xJ7g7W#7c(g~ z+gTQazBGMKmfnp_XHF42xF|47$&95{W;;A92RG31L?j!9$GRAZs|QC+t~O(E(Y++b z+vs=_((OhY5zfRTQ-?xB#}-kS%aR8!LTsFFjLpuVt-}i<(uvhULEQ(N`l+lk&SVacwl7mE{fI)-zXvgdbbp4V^|Eo-&@%EvkdtGwpC_LY6Kl27JL-!-3Th5c;XRDp9ZtBfa?8r5s(lV~{ zGD9_>%ds-J1e@ zi2#G#;K9B|VVsz|L4*3rd%zxNr0{=0`1!lD{w259L9uP`J0E4@Psl_$R}~y1z_jE9 z7Sq>er?8>boWNq&9>T5?Z^f^RJWDdo*!$uZakM7~IAh08yf7|Nb`wK)T>U z=Rms6{s5HWj0+XqS_WOWVEc@000n2;LbS))Q@j{XR~i`NtFkW>c}}~eBp+O`7$VOW zI*PYw^8$THF1Sx#f=sACmZQQ+Wad_s$(i`SXak|l2(fJy@)n=}Wzdt=AE_?D zUuga#PmH>9x)Dj^rKHxYwa~(|JULHc@k)|$+6t~4LX}gq7gcH75^vJ`z@Yl~{uK;) zRrY1FY7aJi*c-m2rEy(Qae3lO4kmmhSYrm3O2zB?rg4x2E?Vaa&cYGa^?2{NB*1$F zaxY}OMuSC*zITz*}_Ja2`;%3ey%AIGr1-$BB_e7j@ppJalIsmQd81mvGxU(j6Foi8j3xW z$MAL4fLKX{6=?^~q_+)hGxio$>=`}esAM^|I>2_!*(r2`(GD>EVZ+U)J~5I_Ry&<& zr%jG^Q|wNYhtTS-OoqvJyA(hX<13`j*pv6mp=Gi;V!r2;JdUp+tsa*eYS?B;!DYHz z4}EVMUr&lf&NDPrnI&wzq9dO3oAFJgKfphRE}zN5h|_Z*LDv{>Ayf(X7n=0X!l{Q# zD}PhM;#&w1^mU=Df3hS~H|GvkQQwpvvB5$dKaCKj99iftpe&^EPvQZs4|A7A2watL z13gt}o*)ZlZQcpz9f{;QsrXq0Ea`*>D^)xTPF$6HP15Xw<1i=Vm=d^Mlv>8i3^sTx zDK0EbJ%n}}4cKmi4R9pE`Rj~Ey^W!G?-~W>#M1Bk2HJk>0$(se-+JX}h1#U06kggzYu0<$(4r&n&u97`%SpCcXO*=Y`0xC$C6nsrC**%Rd4GrAL zzyqN(XR8cue0%8BI1fTmICnw{uh`(>9yiFr|Ka|h-{j7bJT}WiQbYtfBt@Q+aK+}%1JAeiEssXW*t5OTf zwdGtH3mzg_Bz|AKyj@>kGInx(UoMBUdpSWylqGi0M_hmh6U8sJ&^fua6KAG)SQd_; zsBnv_%;5|5b%8I*x;xV75%(;cg-5|lR0gWtjYnDI$8eM$(4ZYz;p2u>>4V}YH>7G$ z$Jxa!SV%C;?vaM^hSmxMSkAO1?Mc;SEPjYJOo5*dEyN5G&$KOt>2h zDZZR2C0ygaQGn*H>cegSiIW%&c>Vtldj5e*J=PqPcoqxyZ@&dq8wA zh*r(b;AT#qTi5M2d*lA2qIQ5~up1K^P1%n_c=+Dn;$2$5P2ep|5vGe4rW7{uQbLW> zIFSi?(W{8{p-;*BT_!@owD( zjKok^Vaq?2QVvexP_0cS_Y1-A3-ZRI&&j27yb6bGZ9=(Is3Ql(6pl}(u&|B>=G0hQ z%NU?6{xP5zhd(A4?{SHwPb`akC}w!l!?y~QCmiB@e?bZvJFRWyiJDt&9@HncB44&n)>}c$W~q2lM#b1;A?BdC~+ zifo@}i#0_b^7({h0LT&45P3-77=73}VHp7SzzD2SXu}+RjLT?`sht4m?h)i44hC0i zloP@~zXbm9d_5gp{{ZIB(ZO_MBESM~R0|x1SGN+d?$&dl7I}DKf~J_2v{tb!Pf$R<4P(b|m>`g)B2nve_tIfBYIFP~?K8Q5gTvR&hIrLVZFD+L z+jJ%atPylTW||XPL-PmDF@Fp@AoAP%0n7+GAQnauV2U$piX-TNSkjV3PKx+f=_(jN zf)P~y85s429@wuDi~+z#&;iMSIkWQsf1Q8~m_I|C90^xF>K&SzngQsKpe=~26zNl? z{F>k0_|yN%ffxJeegSd>Z9xxGptL5}re=;7&z(-Im`>=`zt9*@GWlKF*E!)=y z^m7Dd0MHRs%a(cy>P*vqGQeLXFarP|8rnx%;#K~5P;5fXC4M!{Q*6c>N`d!k%+!OE ze|W#;SbMTQIZ?y)RZ}9EK4Tw$19Od^{w^Hl3jdXTk_5EPZQ=IL93T}2=J<9s$AS*m z94LwfdV(oJ++nsb0NZm<=CCFx35c0zrXg3LmBf7Dmg+16A(TpXSBiP8>Et0qR z1S~=R@9Flg_4o zJf6SLRGTyO&3S`t>z^`Z@y>2?C;>pGz9N~5cXpHO(+P6Uh<0@Y^FjfGqn+Jk`mum$ zb(iGBDE=~&po8NA(w&~e?g1*i8Nb)s#YDF+Z_X}aIf!|gl6}Go&miLmtg!aw`0^8f zkf~Sj=JmatlGty&!x0STF}_-8Y+M{-L?u}ymLav@kks~ThzvW^adwCe>LL<=0-i2U zU6|tl8t&j$34^ZF_T^hm{)_=%CsFboMIy!|#IHJ!O@eTRKhcFN%;0XOUiwq;;vlcZ z>^Q1EdHRHeaDssh|AS;WKG08PKk}Jlh<^1*W{(0PI(_QwODVh|GgZ<5gE6o!n^uX|_lHs+BIhk88IO#ufN6Vg2bAKB*-*5?2xZ%hPAR`0u1 zsDC9NOg>^3!ldeA;wDcc^3UVAg?OwtaWZLj?F-wSukmZO>sc7- zh@rpO0soL^l1C07&~2d#cDSb}g+0_Gb0Y#H35QD(;x`NuTr?>O5i>Vj>5BBD8tO3Sk6{h}gdr^Ns_P;OX_K-%ooAg##SZCK-yr=5Fe%}DsouMp;6p`qjIb7z)@t{h3IvPQRkQ zJ%{$rJ9kK=PX8VL4N={NQG(3)N{B3?{N7kUu&j+n%NedoSGJR zdFu2<6fr>{k)Fp(dJ;zTh}IxS)@JRT`Zg0q0T-Szbp;i$@@$154W`V5F$h|E^`J-f zQ-8mWCyZ(~v@%2W^3xqMLdYxl!?75)>9 zQ~fgHabP8kM}`5?KSNEB6g@0ax9aoUOn=Mh^$bZ? z!gv%@8>CE+AkIVeXigj{;KlUgQ4uXqA7QpObDVRTJQL0^b_th-S9@zK?PhyuRDcv1WNNEqD&aJ|piw8uYZC-D!~9Ud?C9-OreNfd z;puDW?X4yVI!fviCPhM(2Pa_?FEF$uygH`ai>GC$^9k3ZVuwttKkvkaG&(;0NHxMF zOsN5nye&xH5+?B@G<*3A0wIX%CF~$6;Lh}u_z0%WC&7Y?U35^*GqV!p;c!;rv^#eh zN~D}h9L%MLcZnY~?Y?39j}V%K;dLlB*0fB~2;{maxsI<+nV^2Wd|KV{Z0D}44>8{q zaH=`=EG6nwG~*uRWz4yRJQmu7iCMor@HLrh-e@h>^gsPKYWm3G1G+6#!Fo=()DkrX zQ+EI(!&gd%6S}UbUY*^cBZ8)`W@ahi$n=+5hO{=&61mhu$JFzgQHFImgymgzREB;( zpTem3{G7dX?2vBt4bp#rU?lX?1=p-exDO6^O@Y9C|HE?*}>ExvhH>W>IsCRASWt<$`>^b z!99s^6o89Q_$GC%p>?Bg!5^5gy@rGn4!E?(bJW9I!Mn>bqRA1tzO~X_?%*XSyeOp4 zhh#rfw{aQW!G2S?2jAjXAEt#BC=l-LLb&*4m1(tV&iU4Bht%2Z9VkXJAqhx$Hwu{@B%>babsO1{s8xTHTleTrY_io zPVNA^n{NRoe$qD$jHn0MJ|tv|_t4X5)I_t^YU9@Q({x$Ns$_%-ajIlT&|%!vG@gE_lKr0lNLR0w(!#8>kkI04he~#l z1OYk|=Q{nxwfTATD6iSh)Z6yqT*vO_TYyQN>v%At9&!GG#5r-U<7w2TZLQVDtG{Bj zDPVHqT&D;i#T>%?HDM?Klh_LvVe;|~p}t8d3P7dJb&S47sP_)C$mJT!5$l_#LTd!N|BL*x>4*N( z^y;kWsR}_l_?F1ohgf=HPk^uipwjdbAVC1V4!B*%r!>8c{Tv>AAJo~LK~li>cwaI_ z76K4UFB>j(E}J^Ksg`sr-Y;cWb}g5l!&CAum3J2UQP<2#Fvjv2(!{%;q&3TYct!K+RT^z9AJ0z zEr7*mr_+N82v~QVur5AXnqIHwg0);bqAp@LKmqgPR~`~!WM&qET}&_vfW_}PPAnhnR|KN~*l8uEW?E;% z*ZfFQ%H$l%{*?kA@~6zB}ra3y~5E7(S{mnId9xQo#vW4D57*Q2=bz zm^dZa5ZeOp&LSWM0Hd#`m^3SnbAkG2kamU;9sx$30<7m+XJrSz_9Ab!Gb}SrnYv^K z+&iq$Y8&tvg#JtRZ1JTI>-*_}3mWLx68eoA%%<_j>*1`i+9&nw^N}J7*goo1a9W_C zrwie>5{?3JqfP{-g&X2v2-zeg1t8CkkDwDGIu?cimy(8t8$K0MdqDZ-oj<7Buizba zq1OYNMppo4A6};RfH`oc2n7nRmg@m?jeZYkEY%q5o9rVfV0dZ|Sbz!m7l8dO!6*Qh z+5;BAhS(PXewTn008H!wMW5qdpuX$(faVC1;@2d)J$_OxI-iq6ydc%broF(%?M!|0 zabVp6=1`Vz0VsYqhkrIXkN|*dFA%PcD4VHtnky078PTscUw}+d!0Zt{Y6^t8*pWv{ z9YP=q0F5B@^gubwY#wx4)Zql909gF=U}7v@;PBkI>UQ*MF6&S~;)=ui`j@FyQ%Y}P z5yB%usQqQf{tti=-PRNUq8e0sC5(s0~S}Lc@s(+GIis9K%+za zA7zDIfRDI5yS`h#UXoYvz^yk6w~|Y{s91BrZxkf8d>(Q`0WU^Om8SQ?BU}V>m5>yG zjIW(x?APhqeZ9KsSwcDe{KLl6K4B>U8+{k-l&H8#UgU|ok(><40<;kqxF&ECKhe(7 zv`pRl6i{(Ly>0%3^7!+~llWqki(XLfeL}ermuRN2mZ``sR@YyEz*E55 zR6)Ep-bH4JC!1JT@hB3{?7599h?j#23W)bjI0V(DiI=O^{hsfO`W$D| z6aX4=Ep76w6o7X5B)UM&C_!a)JHgtp@8+J=Y;`?^jRL% z#|cFNsL~x|0OirjDj8`|ZqA6f{`F_fSFqGo*KRTk`LLdqNmG7rK zAdgTE?Ck`j09fgM3JV$Yckm4Yx!jMQ)ogzMG1h?{geR^$;LD5lC?;{WefJ*mMK2T1m9PEPxqX1ahehOOgp-bz={dGUZeW)%^CUZil zPdmTzY)vLykpP(>0Z^Vy0)VfVLpjLw$g0R>4A*4hH5BSsM_q)lQ^54{Wbz;knHK_~zceNuKZ41Nd6 zn0>A$2lt^eogC&R#rpNThw_f!zT6ZE#p&b_#hIc~kmJ&_S^M{&lgYgl^}Fg2YV zzG@){Uq(#B)yoM$0f2OJcmN(b9LRM9p#VrSIaYQx^0+jG96*4|Q&S6kscXIo%8g7t z@o>;%KfP`KgYx(d;R)Dmm5W|5q$>=G-w>Wcq3%C&i`5Q3#6m%9V`m~0>TY;CR~TOj zMVSEiTRUWFE;llD2S@n*^tSo0On|L&(Tf0IQ8K_*p$>3vu{w_Qr6>_#s%v;Ucj*A@ z256lV1~0akR31|LIM0U_nzKvYJ{YAvdI&sH6!2tYEa94J>VjTv) z2{6~*ffpK@ygZ7QP{5KG?iovTbmqKFJ(f06z^1hgx5+c4K|?5D$j*8V(Vd8&rTMj$ zS@t0&Pfw&N6fkA6UQ_gPXI<$A`^m(n0QM90;5Ahz*vR`sqcGOJO;M6NTAiiVHhhnE zzK0s$+3jtY$C@VSXd{1`sh41(hI$jmj@?H;#s1*Fxo&p8W(n;iep?L%>jVbf@Qr`1 z11ayaN>tcrSrp&SNgP?7m^+q$nh98%sL$Wl4{`C&GWGPkBfNLUD#YDKoMuRUU(y{q z8QLe7vPje;tnZYtKChIvabsN3F}E?jj<0q3sRcys1^-IYOm1#@K` z_`A^>3Rv^}jkE?QxP6AFV9z~i4+ZS$ZJ<5<<`UKu;tPH{D)*rk6dP*=sIp_wTf^Y1 zt+*eppxD^l%=X%?0Uj{MV+qaeJNcin=UCc90eddnxZKPywFY3UG2(a{K>;H+u$qk# zdNRWAhT?l7I!6ztITSEw1FPAZQ>dO9T0;SAUbNvEa<$x?-^tQ;L3$X?qJUYG&mxC< zR6GqZRS#SYQee{~X%of9CT;<*2DeFT_S#rSt!eZaT0;SAUbbv)V)pX8Jg1=jOdSZcm_X6tHdbDR^mSEm+$)Q88h9 z5>26iDKFW;6k1dKvjcs)WV`K?Xcz?yyL#gclc9q(r$>^Na4b2MMp3}14eS#1d6cU^ z%L9|aGiVb9Y`SXW0u|b{+#W1)6@jMrQ)v+eEZRVNi$!6jJ)Nddz?4^Pba0F*&26pO z?U=h_PQARk#zka20oIXv2F;^@d9U76<}LK_5{hpdMv6TULf2!B4&g;K zk75sm(3!VR2rs6M6tHpfYd^NmgLBm}*DHs9uL~lm%;(S$3K(+j2J=k}8B+|G(l`nj z_sTtE+&X!jrG*r*a05>}2ffxTCODmW%z7?c>-6|eU)_Do(;f=gvw?&6&K^F>J2V{W z0n-@PpHFSn6(TElqlb&HOr3$85n>pINNE z+kL?4qJbBC9+d(s%5aV6`*Mw^o1$dgiG_7>cCFXrgw!Pr=j-#G1>?*-R})gekA=ES zz~?dAz24d?F4VJ6GSD4DQviDMD|ptebxy17&kE36nwXe(2F<3iVTm?Sz=lifa-TlW zwFWJN*(D|gFgtZ)79H*poC4sJUvjt6oG|Ft;Vttk%@thDHjb|mn_{D|2fen%zMR+; zz*e;fz0+^naaVU4&m%eo&?mnqkQ(*kU9qM;vC_6&MO!E~Bnx^DGLQML#=e@^6u_RZ zD+_pi)*7w_tai-p9*z8BB2xf)d%ei6qxJf_YY0yP_!?`z)tl??Tq*kga)MI;eDd4W zQ?t*2$K1b;7Er)~$4+{)%^1)y{~HPojlR#EIGc;RR=b16b|2MgrX%|HPu@IZnltrz zJ_T{-$dTQ5KEr9bul+f^GRwIpnC9e4eJcbK(}9D(uA?OH9!pZ!$Pt`{+97oibdPf2 zGbO?}Zrw<3jB{5nDs_7tQ`Wx&x1O3zz5Q&=&7O`My1Ng33fG!B-;tfkFS!rnlyy!l zLuQYX%-+5y13l*SaoBU*3`87VqGXS&KDPC+Y;CrMhx>VP)2so}@qY&5uP6}o&+Xlg zZtHfJa4}N5bw1sqfLmYRyWKKfip&Wx8J_Q&1RGZ`qN@~e^^1GAs~vopZ?@fUwl443 zL|#nqDB#`K{{Qd}mlUxut-G?|`}rLDNdZ6q$KLIyeTAVe#7pTH1^oJ-d$nJnC3@1< zC$nm9M^$(Uy|*P(9|@a@Zct8cg} zgjJNdO3_?suY^Ow68)oqf8X3|{gd?}aB~*xL{{|7MbBvZ?(|sqFkL!J0cXFompi+H z3s1aoyn->p)M1bAQS8lisIO<}{xcXH*614re7kjTO`Y*g&%E*C{2rc{(Y(Bz&QZX* zul#@GToVa24nB_#QtbWN6IS~3v8(7D1)Tf*-kLpm(^5D#TusL);MiU}q1MZrI=B$g z?01)Tv~iDeFuT}XZVh@JycAf{|X34g8 z=mt7Ou{Rgp^4eexkH+naT^F?HNUx)#6maxYdu!(8O*uMoZ=gRE@aM&o-q9Go#9HR! zGG4*&U*?ty8F2x81F!DO1lC+;obdUY;lOMO)ZlB|kHFRa-^U%K-G`pShuQYf)&0OK zIwzLl>i*esb$D-eE8MlY0;d{!&-JQf``Zl+Jg!Byd#xoy@k!U~MLN5JqD&q37z`-iLd*4Hknt3V^#-1U6>VE* zJ=^*`+R|EG#l*MYnr{zwHRoHi1LxxR=pqGN+`zj6)w}2t=_h@%evH%N=h~4?u4*v@srhvm6IE^isr_UIsTc%Rf!0}b? z`D?%am3~pcuP^M~i5xVy@mU?r8?6w9xO!Ul*S2AywCzcLMYky6)&}0jsot%@&hCiIkh=Kx;TzQ`;O7S3BCg)g%jM~J zeO<#Qaeq2T0q0(}Vb>%JzBSCgJDXbPOzY;28C% z-oQ)S1(T+q_Y@T1;WX>f{pb+|Jlc!1Bo3M^9ZR1m;L}SttUn54+>l*Yk>iVX@~2~# z*Omqy+z-O~;{N3C5i9&vroQ$tbRE}Y+}(Zn*`Y>0So(yC`^JJ|seLL(?O!joKPaPY z+$m@g+diw$=ok+(PA@3n)Z`Dq7ZtBlZ^fUx2a!BOUQa_PV94o{QnH}9QP^KEi<6UT zwX@pBn%TA)qV%co`j5sG{wh-!o)1!e8g;k(@NRZuLXqH>Vx%|fcl-}4z! zHjY%qpBqvwV$t*x@8oD7Z)OKWfox9x{CiRLI!a>$A>ZOb2N+s zhE4u{ts+t>!@wJ?n$ThT05B>pn_p+@ix;9V{|7j= z`+)OA!*p+)@L)w5`tFZO->oLDI8VvAKHL7xrbixump311KfcclQ6NM8jYIc%tIhZU z&7go8FWf*g+}n5M9TdU>lj0xICJNXz`Ap45e4UZP{%klgTlCv7 zHigv|-w=)UEKR)paADFOCHAM8I_vT1ULJ%?M!Szb9}kP%*Xh2m*3G_V^0!3CAY{@= z7<4?hO2;$#&Gk_l$Mr(dznR;GTy|#ZlyUl@yjVs77bl;4M3t|@`sm+y26^3+PR9wf zjAGAQ2I69JyMSjMwk_nKcD>`F0v%8fRQozFNe?2T5&To@OQozW`--umVe&e~_Mx!WT)XO(M zas{J`d2Q1=3RrjDp0{o|r;9X@0tQZg39Yi67JK3CG=~D_?1AZ?Gbb`fS)pkZFm3XC z>Xk)m+gfL7PM>g_bD_&<4+ZSmgL9^)JsFaV0mirijiZ2ZdtfNACu(v<$De8Lq+t|$ zhG5Px={JIyT|v_*VA|wY1uG+1G>=!(CJNZJ2PSJAIn9eqgHXMYW>LVbtM*j48d&rq zT0{YhCjJOnEO!ky4qXPDF`&nn3|Grkl+84o(>ltnb0A#`+z8 zRRa%-$%nsmX&gp#C}7U-Ow~(OYmR%YL|b(vt)ke|Rs{??npRQ3s-=yJRlm(I8R)1S zLwpM0PkisTKw#Z%6c1F+8|yT(jswulfM#RqwACAo=(W2jSFdY;_#|Vg%UTb1;5yTZR+8 zm8oklhTZ$i&hGs$;9=gOoG*s+sn5)H8QaboH5*3uE^mKXAO>ajH52Ysr5S`Kj0ZB7V0 z(bw6bKiN|pr=!2g)ZjRb%HPGOFLodNl>Be$+(V|o5k2tn$>QUqr}*3ZyPJ5TW%uU1 zVfW^9?cGC~biy=hJ97^=3ist^LDd;ksTvjH_R^XO;otKUA`~$58CB`_t`F!u{S!eb z0CH9(APemU=fWM-P66%bRj0k^#19EW0hlu@f^k0l8dL=F_;%)T(ot^%oq0|2+0tFB*surQ>%zqJzqB3We+O6%odUEVuBcIPK0R zLQqudjzARM*-R`7U{%w9Av+zM-)K(`p>_&rucrUf+KWycP8bTnRMUSg=XHN)DyM+* zYWgoKFS>9SqEJ+phgGlK??&wumE}QeFFJ8g!cbI}2hWH5P&q|qd7$#53-==mMP+#) z%41AD982vKmE}QeFFJ8NVJIrgLq8un9!%vFmF0oTi!RI%g`zqaI&MnxFe<00&IKqh zy6{M%Pypp=m5fT^sP`D^r-1$os?=X}cB?86h>vBAaD13TJ1ETkQMYM=ikQ_uQMoZ0Wh zRCxD6C%eDoS@eU)aV6IvOJS)6=k;%r^ZK#Vs_;*_<~6_O;2o0{(|Loj^a{@0DPZB; zDAU89(@auUrJ<(T3yCFt@t`@-{orwOab88I+BbJ zuty@jo3IpsJ+}f_prEQk*Iq>o3Sf-uiSlGN^35^5#L46AjlV86XNNhCCkSvQS{==s zeg~YADjqtCB z92+~%^Y(P7wS?D0kLkhvA7$!6ryzVEVfYR?)B9`2&|JliSFW!``f+MPAU`dEJZD@2 zihmq-vB6O=2?ng-3|w3KaYmB@_Km$X5-2fu&~o+!M=gXmplhs85{m*@msae~mRb4w z%8pjA!!NI3#-%YoMNA4{j-7D@9*p;Io-guWYV86k@TqKkc~m3aL?j9zH7oM2fK&|V zErg^1I>uMv;} zfMe%nUXa#{X9zf=$iGft3ILD2*ER)k7oRpVf&3e)r>HPtR9}qWw~0dmoUzmPDctDc zbq3w#fERy97z)5_t*DxPn4(+%Ks*ZIjXh0BbZbnqdhF9z^O1fl@Y*n3w~0EHd=zY~E12xISEO^;A?=EsDh08~}Oq;X~x5q?TY3P4sx z1k4D#wtx5;^;1B9RYcJGi?RD}0#N|yQDdgQewG^kj_J_i(^K;pZhU$w(;aMa_69RVn+G2BJ|)znK-jp4%)zkvW0)foOrOPSYE zFGV$mKXQmFZy*2#04D8BBE85KUhHrcdn1)nKCv+3p?z9)3co$(PDu}zI`MarQxyZ@bj<4*jiZYL52kjfB!e%^-s8`MYvjb(@qjRmXKx2T!|s-IMXBc0sZ z?@%QLRE}N!yADC9vS{x2sG9=1$KE(uPxoAVWzZSm1vZ+~|46kIP+Ml+-!W>7X8$ww zQZtsLN-3bU%)C>S7US}t)J_5IW%?#83JuP0e@?v=&|9W&a(at~|AGJ% z)fnyuvR_dzMKy*G&p7wtO;?I)40rRj{i&Ct8pDUDYzGp6qAUR4{=C@6l@Yw?2whee zH?B0(4<-Nw0LI=TTc<|#ON#@5B6$uY5(SVRIOh7505#-4V`cH8()dE}@~NuPSF7~l zOg-V5xLWmQJQIeiRni2*#$T;+isi3ywW|3|?a%n$&HY*7+K9Ao>#VeTyJm4kv5(AP zHnVF9o5sGk^1(F<*mm*QaWw_ROOcMoJBUUBwDEJY@n|EQ`F*OVfcmj_EExck!SE7+ zv=`ME-FOdiD1b9|h1NPaSWdp$?ezQI6)z+2qjCx;AA5IlD&<8NK1dV_po}dR9g&7$ zjo|dyVv*~)Ba1~2XX=;tMX}s~;@!RJY+0xS!^Rd%u2}vW#nP8znbe*j^+sJ_&+FKu zP{5Y4qjYXdSb>33q+k}GnQk_Xw{M_!imJ48_TsePNbMBRK9-}C*}iRUex8eUBvEgn zatbIPJJFw1IbKd;RKK07DWH1n6n6^MTp)$%oaWfOsGp)b({cKvRll36DWH1n3B_cl z&$V}SX06%prEZF9%+_B^HD-T+swtrQv~fegWM;Q_aE*Wt$cLzzq8iQkf{JCyN2!?t zn#ayWC$m|8)tu|_nvFL769k|Dz}UfeGJsxtq0{FpZ>5e5$e$2|0w80@t0_Ueg~i&L zPZNitnmqJdJ1i}4re+Fg9((h6G7qS^xwG9_SmcLgwC$fG0tFB%=nwjf-JQ*aUTYPr z&9(k7P(MXQ`g!K)6X{m!r-1&kQ=Z8pgcYAbzwl+Mr-1qj3IW$#XWK!1ZX*B%04nI} z0novzfe!s&QZ)rsS1`P4)mWxvwBJtc6wp5Q63k?Q-(l2#gK8in}+4$y(Od!xV~ zPjCu=U!=KM*6D_e@76HDe~NU*$z#rUrbae*dbmE@-1W)SjhFCkFLpQIf`8^bvjmK& z2Q|MW)HHos35~)?dn1g-s|T@rpn%C{oj_Rt!@mILp@gAe<`Ze>C7{5z0O|xnQ2^?c zG?IzFhRv%^v-%<#<#G+>X2LUVxXe{~^2lEGf6F$|Xp`A<8-RFnTBve}Oi?#D^f$sG zGr*LvS$FN`ZUuF#YZz||*lSLPN~#wE`N2^yCkO>V%sR)CAbDpM09{8Q3ILsy#2!)C z2(*5a+_4ER5hvW{YOd*Tvgu)zx29%fA77o1%M#~jE9UGN|7Yr{^Pu;> z+!P7to|qP4qgGUcs|Wmz4pm}@ZH*)~ouTTJ9NH*g<`a@~09}n--zM1T{7#&l_PU)W z9&%k+(VYnPX7paBp0kF~Zq6I@w)~WRgt=xjZ66W92?&CHX9;%VyYYuOR9I)6d@MeI9tRH^%tx}3V3Y3 z7gx2%nuszsOkmL0Xb=Sqy1K^L8B^S3^!Uuy0DWmSi z@-nO*P1_MOQ+=9*x?E^)>$RfS$bw&NnO*GS@$v1ubhX)?OkFaI$~w^Pdz*-iSp`t! zPoQ{8XhB4^JXES>#6-9Zgr=wSNPDQRXTB-m)rf0ir6Hvv3cwkGDF8g;npkPzocRUt z*Atuq;1@<&o{HTlAU%Xs&S?a^5oc~w19J6{aF$z{`pI)a*!}fFnautVxO3t?OER1Q zfv1lbo<6%`{X){*C3OLFMFD53Dhe07{Ipa8r=zHzMMw%jjyPvaj-UAFF53FAmk^c$ zu;*68N;=x`F&gBfVF_SHOuwe}ZmvDhRK)+8dhAXRabIqV1k8wuY9fq4fP!ZU1uLp3 z>jXLB98quPJdy%#R5arFK+-qnaBn3X1>h=TyAPN5h&kjt2uT6Rr&U5b=*B$)Lj`pv zDW~}WfDxCwr)EN@wIGbcMy8&(1C-luj@#xxK#jPhkqRX!VBNEYbtA5*r>fWeg7!dr zqi$eUDBy{C2TR%M2DR&;<-MK<_&Neo0I*d}ryc-$)N?sgZy+cI^HmM^puFL^^(?Ya zr~!ISGp2RzZe2PnZOhPu4v9U1RT;d&#O9_;1mF_X3l7_HC;WV1yVMr5%4M+ zrm>7mGZz16>TLrK)7%sZn2LsJ10xV%=T2c~MZ>gpg2Z%=sOPaGp@16|6}b;2bj;zd zA{+(aDyljkE+=6Qc{L#^09nm24c(1g{|>TF^8o-A4b#xRXc>p)eIIOcm}Vn}Y5gCd zDjKFOl%RlhFBR5RG)!Cdx^vQ|Yj0GOy#fV1sc4uEpd9f`_|!H6QUI``VLAW|sAoaj z1f^iUDjBAUN%C2Qmymsq6V+8PmOkU<`n>NCFujwhGnY9`yM1pH?o~8QTkSGT6A_er ztx&SM4kP!@^oE{?>KJwy6!5B|VcPe~8>VfugjU^yz!U(kXqdJLI+OG@psDZmy$MbM z@M?x>i%q)vNEs=c(+GGKjc}b6F6Sa=^;V|-p#{S3FFW>sz*Tf<$H55@c=}G^X+@WI zoPNz1&n0ywyA=vJQ&CZbVA6Z~kS`=81t2TBv=c(+#PnfbL|6*IR&!}bYsbsJKo!ZG zdI$MvSOS=e=8T<{9fpcnZ~aew&Kc2!IU^-tDw;DI7=Zuhes=OKZ(} zyw<-fJ>b&XjO=CVdS2k(oHuaW{FFqjXv*qz%E(Pn(D4?bV?`6L07G-dwTPSQ8SF18 z;MlV(nQ%FT#?snW8#WzN^;u>y3}!{M=H=D^OGtG8A)A@{&}GQtCbQ=@;HG)|dfAIy zIiz4Ad0&y_RaD|RfXi8=_(t}}!YqER#57^yQG%^W>Gee-k z*}oOeR+rDfSpj70pXc>{q)x&Dn%B%;<(p-Oh{EhXieQ7oWez z-;7xrH0@1}qA7w7n*UH}K4N)jSs2?vGXtL2>U55-6iD-OrA*6%%@PZk?i+9x4WNJl zm(^&%5Z8Sp&ZZF*FaoP=X8R{pF!s7oJGT3f|3bPO&gCSlZlokS-pRS$@6oxRshha8 z(e~)N$?oYtsJ=(HW(YK>{(tJ|(JhM4^xR=}E&DSHq`2B1Jpc}P?!oUSJO$vZ?a>4H zA(ne4yox4Jz=TSBbYeJ;dw@Updvx7idFT#JdrfuKX2j1^6)@yby%<*XuNO2> zZ`8gVV=3TCMHc}BC?TN-xQT!i0IX>87y#xJ^guTgl!E!Hq{F20hKKL~@=vG%jEXv^ z%j7!hWw=Xl7gBE@Y-s@q^Y)&yW4}O%evs}lLb{5|$Jo!)DeHs!IXeRi_)t+F>%j=! z9M~@iMgg#j*zJMkRC9p8A|M3-&#HuIm-QM>`=d!RlAyZS_3_q3yU5gR{iim*8; zL+E8fQvmw>N|BetEs2gM2?BDF9i`jdeKK$RoIo zl(S5zs=L@R$K^|wbllF={(M=)0RYy!`4;@Dj^`Fu;6TEjkg%#@+H=ehF?UYgkEx=7 zOI3AD1wcng5B6BXQUJE9VY&bt5YvM`p3oG4u4tGRWD?ZFxr`)r+yPic`NZq$``sQM z5!O_7dzm_M6=dC6d`qPqqT!a?Wcb;k_+sf4Eh{Ie>VWjch0+cH=$B!xXj0kYBz=d&h3 zHq(kXcR=KW{ibjaW>hpldl*7zLW9n)7CKk7zMz2O5!!QD{S)VE6jk#ok8+XJKKvbo zrvQ9KccWr{7m4kg@I#tF0TZ@XNNtT_$nE33iu4Y6Rw1+aVq#s+xW3P~qJQvmo=nM( z{U2}@olI%HLSX`d!fz1@S2R0v`h~o?OX@@Hk0{_wMbpa=%=E$@z-Q0REg#v$nrN=!+GO_J20g3h)>{rK zSYYG_gpn1U^5g)TlD=Q+HfD+f{!}zz72t%F0q9>6lmeg?4IBl~oR$Ib?F6O(a5W1J zMSUYcc|VzH2?M06sM(&iQ`sGQGgHU#cH}0r=QaRY6*V2CV1b&Su9lh(K&a{YrQXCb zjspHvMa>Y-P}2wfJ%UmIv?^+bpdK}S;I|Q&0>BkfQ>$rd>B_mFG@Gh%%Kl)ld zePoM#RR@4nY&bh=uT_pry#h81Nk$Kmh|rEQBv*Kwds$jQAdnpnwta_avv- z&=5p?B7-ks+iD4EBL4%{f+629%SKGB)-z+6`31@!&j-m54I9nAvkyTyJ>JJn4UY$V z00?&fT-ZJ0Qq9zQHLU|@1xfXpNeVbI;!;f-m=HMzxr2}tfK2SS0<~_6m{T`6Zam#Z zSPH;CBiheT<*2+P&?6}mr+!9~3SE49B)ZwhNAUXXknGx9IZ*7L-|{?m&(UMHIn-66 zdmd#PzT^QbK;Q%aR!2Iqdmg1;^Eh@;aMd?Cm{TChiQRKdyQ7$}I`$J|z~9mU3K)>s zJ;$^=19FbXerAmLE{&jo5oz6XOnE~Zhr4HHTpfUXk7il?lJ;_IrL(%W)Z(YMW3v?h z_?FqF&Z-UrH!}5X1+wp_x6OZWHvYveU(LiYf&d~PBSenhDos)?ow4&m{X2Um3V0Cj z@Y7*TH=Kk0m|zqDi{E`t2g}Ks=ScmOfE3J6tlym)uiHKkUf&;=mKnNGVn3||uDCha3&SW1!Q4tTE9~#Qg&If!N z0Vx0&zsgzCH}g?9KWpk7f>Ho9x&%D|vk@R1M*>=M03|+&nii%%XszJ;1}$0e20+~~ zgN96X7C^^Cg0_5@f5Txt{!*?|W(YC}`e-3&d{R>i!qU{aFPQ3ovJatvXYmU{^CND4s4CpD>%ISC`M2NIS7u+bagQ=&FH zxMm8X;OjvAw6bJQwMfb#e#EP7a=_d%kD#s*S8QJmk{)45nzyq_6E$yw^YPQDL}LUS zguP4%8z0gWmHVX4UC`dD+nG)ZcoZMf%YX*tEkb{T&=i2aIM%HtAm?lwi1iVb-P1X8f$H zknzKj@t~P4P5+OX>8F+$_9SCCbw8UhW!c!tS!-H+EBR1 zWju%z2|)pf_-V`(0nv>1iDhH2oY=X!)%bG9*+tuCcFo_EI+ZVi3m$0qS)pC>seDnfrk>v@ zNa_|Qi2@;vuDF-;U2l&$j#M`Q_tJg|G}4pp!cSzQkM(#TBs0)8Li0WjV3HdErWPxxL)&$!CjkK+Z039c^Vs4rJ<=*C4S+M~~^| zAzduc_#-G21Z9+QVh8g4b;)z`TznLOPIl~|AgfhooC4nAQJmrT+$K8L0H&FV^HS9c zR=etq7}&pN`WgLbnB%KyCa`3+*TKEi*3#0DTD_b^AD+SC2p?X+%UJgq^9yq@s-4`3 ze<;4R(V3!UV94JKL)KE~hwH?K>(WR6M66JMLAFr9-_=C6j0S1wLtxF)Qk*)Bg!&$- zBZ(TBi{w!p6VL%(kJ+5ZN+nGh(=fw^OkMgij^aU^+tq(lY7{Sm3m#Jcuaf%YQM{;F zcM5)^AgKYcHohEkR<7s6>E1-e| zM*cz=S-Q@QFQiEBo}j2hm?H|jE(PcP|QigPigLTuUuV&7Yc z{oFFd9tGl4T!&yZ#gk{{q})h+-Sv<7L8fSu`VZbOpg^Rzmmpxw1}Ok{WUD0B)`Et= z7s*LxM4e#zql=qLP}Q#wZNhI2*GH)ir?axUG*lO+(bU6LFGM{Y!FmYVbra6#^1o*Q zl5guXs=hMeJ+Z<26NLB4xAkMnUFYhfW{QaFuIyeZ;8E(m^&+P5%Ya#0X|yfODFYk? zfYD68-=LM@Vy2$zU}uJxJ2Q3T%aO_h-M-#z>O%lazTe=32?kQukd&p*aTyNlf$bV{ zFVw4fhN?UgQ|T6hzKt0U~scZ}`x5BXGyR6njPoH#?Gy+*Y zSF)PCFlB`PAh{m4IIn)hL74)sMIStyaQq{6Jndepy;g&H4l~ZE$KsoQ&IWy41=HHL zRG2B+Rx>2t!K5F_q=yG|Td1ORH*OK!)D^dMCEb@ux|476F?>VX{b`_fbM!Q@RDlfx z+fF_>BF?J+O^#83W6?JPPROx9w=m2$*&&%utBc7mCO8ZblUb%4vsgNp{@hN3UP{pL z+^5vsZnf8*?ch=3;3VBN+H)N)K+to$pj~Do{@>H{Qgb_BnRHq&1vWaZWnpphMRO*p zsN5$pVRnxuaj7}w5U%C0e*ot$FhRYOLm>qsS!Pb@s}=^E7E54_wnQ%JIi>%5W-<99 zXCcl$eKllnn7*ZY;>*_BYwhNsv)snlhui?HTW3sbrW!A{J#lzIiZ@VEx+e~_35N*} z4!=M+T&hDH((Z=c;E1@aP9d8pkkK+7VxU{-q?>U1D}gt7S24M|Lk#|cF-^Wt%gXI9 zwpPtD(6FD<2ZBqAm%ak2J{o^CGjvQh59y+D$@ghT8Hd{jumd@Nx#T?lVZaH8qp0`Z zB{A*t=)NoY9`PvW9Oa6JiP!3P$vO%|HuWBH3|ok&K?~O)83A=I$;Zq`Q+z>*v%jLB zey66PUq$F}Oun+r)wlj)cW0B&05x~^TC1zL!5FzN$sf(|M>FO}!S%_jUWz)nFQS1u z81p;*69jBD9_wRkozCED3T#EK+$gm&UniJ9=IaoRuA8fCwZqN<#)e);Mm?AHM1f3P zS&GJ^vutatyA!u0!Ktm5d4(&SjG1~9=}vB~OPth45Z2S}SD-fOZNn9qyoQ+IgXL8` z6`G&XV;@f=Ih8n=b!D6Mp8W$>%jso^;{gj83gZJ(7^P0(JiV^}Hf@5Vo<^Ec zz=h}wt0x?;j837mRA)5Pdi6E98+WX{K}Oudq;CimCfb!PvEH&01Uhy@VU zNW~{570GM&v~AjC-2vogt1mG86fijbdZ;y6=h)o2_CRhW2n9e+O6^LhuOUI!5m$fA zteUVxaXL@sn#x>fN5|eU)-9+!wqWh(YmnbV<&)X5DHNaXzs zlK1p=1w*ds{QIqfrM}M;QNWS((@tNpqnqJ_f6RdXfS?orO`oaziXEu8p20tEfPX|_ z3ILy%N=RRCLvqMYC+Cd%JQ-?;V~+qaz0L%3wYyWgAH6$+-AujjI&kzL!%?=_ohEkx zn!dIs02L%q^LC+T`n`uhtqcyXNl?@uF-;V(zibWIps@e~M!N8+j}VRmaOqbEoD-wD zm_vS?kQ9JSUR&c39Sd`SuaSa=7nTa?!wBBHJl8g#ACv7&{T-+L2lUNuz6Fm?P96bs zAOQg3{!s{*euE;{Y1pQn5&dc#6F~v9OK>`mkIyq7s7)XW0HxpJD){2}c0Sl5!6*QB zT5><9HG*5d=6@isT-KpJeI?A=>T0();CgtuUB9+E*BV%snS(Rt;EXwlbN=4}?e5ke zbv!>*)XUB=eI?8oW5p&g^(VsA^pz-MK!my@ejpa8hcfFF@N{Q#368*Uy_)GnNBqo~ zaso}EfGN+b%@mLR%O*-U9R0HuxfRgb(jQm$MkgPyGhG8ID@=U<$ycPTzbWu{*4}|((WnXL1?&(~%TIRlY!?9LT?Y9%KjPb($wbEDn7mq! z$ZN~1@{k}?#vP2VFF^_qbo<BWhGY#lGzNw!=%PriBpsTQQYOmB_{ zH0&!NKq}e8sS%ggZq6IH-82W`)2XR5I;Ta5Mi>z7F+#NDE9ik%%QW8=bq^+l0>+ma zFT7|4LsI~DZ-P+(EP1WWuulQo0>JwckOF{DO&_2{r{-Ir{?Q~{NPzTm?d@u|m$3e4 zrMn{6(g(d=Gi;e*3s&m#!RJH6M!lc^8GE|qYp&3oYZ4X`5-dDbSeV{D6g3MI{Z?^L zEiqpda3uPX?+I>w1b*NvotU#Siu^j44Wl}RiDN8tj~TmUPOh!+R*LRm^K}urF<2Av z%d3&XBZk^dllS*DCVBl<%oyBS0yc7auH-WLf_6-~PG|9eAgTv4qZIHcbsbevbwf84 zmLAYQbq@0?0WL%{`O<@cy9Z5*3jp-t_@hValIJ7c_ZagFb8zJIDaots#v7e!%Rq)p zgbZt`gVuN$j~21;i52P}xmJ_{1nDMr(WC9KRB;9rZlg0r>SD4+@-#9PB@4!0$#aW4 zg%$Q19-A}u4W8=WIda4_y6YqQ=ZIJQyIm9XkrJ??QDOmjF)zGGz5x|i@A1J$7F6{z zb`%uw>$#N^$DYhXEym3()Q)_ zRlSs{m#7cNx8&IEFUj}vZkkQnZ{b|ejNQQzJHq%{IK3}9cKhmR6uMkkfSkWZa$a)m zE~@v&ZvT*=syjG`qkv!K#%^D^O}J^Z`KF)hdgj}V-TvP&vL)+0STXPATes(rGTg{> zIaBB1A64-@{1M-x_T?wKmi{YN)7r&080qnUO4NgCJ2 zQ(sezeG$|D@fQEbTkK6nJeh>c$#PK=7tK2>a~-@gwYj6Uw1)rqnJ-;Yn!@&OsQw$% z(cvbC`I{N}n;HC#y`ud`5k?yS5^0UF;6lqI>{Vb)eh#Hj$9{^H^a< za)@Me#0t>+R-t!)gQCC@z*+<{}zH0b}A16;_@KUCH^~ z&4NJ}(;x~M6kWPksXdJX`k%3?a;n0H8p~z2+w0AC+w*#?vOAf&{0~?zZr|I4IW?Ax zMU;sWtw6baqxN#~VGT7TED{Oz3-;a=@V>@!88So4#Wovbenn#_U`&nWVo^0S*oEZf zVhfI=kebJPO1a$m@ zSe4KMi>ml%T@|l=^qqd=PW(6G9KA|tQyIo{wTWq`fZw(DP!e)d(AI-BVKYsjfC)8@ zrZ(%vDzIi8LNh2}M)Z13RapS{E#~)0drdxo#&1PbgSxi7+`3#yuQxOG#tgjQG%I^< z17^(CHLC=fB#-UYG)Y$8Ymj9e%F>d_y+V5DFMl=h#$; zMgGlh-rQrB!-|uj+P3kk)F<19SU~Zu0^a+PbMQM5PUNG*MiO^{@i2^1q)i#Vc)P~zK_(!pFJl4XD8po5)LJM;&35(v$)bG5J!uq+m#1 z9)U3z(-;aEQ{Q+Zkc|NOxAb^ont)zoNi4VLIxYFAtZd?;n)kCL%%0nT88wzfZie8a zBpy+FN#vlqBz*tXSv=FEfZsKiM8O0piNKJvX$S=jsj(yqhU6s?7;`R-p@1>pN)rE;#6N{u~u zfSVUf9uDp;%Q7uiWmKv{W<)E%qcvX-7t0Tw) z3iw@f!Fm^yWXk0yLLEgzC}2p9Q?5cR!t!uYxhsvKfHCz=xx^M-7!LWltO`p?pw~O) z!Uv({Ci0Imgl*3Yb&tgo~Ig4-b2p_2Kvl18VFyFI#J^ z3_45lRK4B7-H_iyi5%$my-k=?Mw7$mYNHAmqB}}&4tK1F!sO<4&aRx`aq_h{<|ojqoc?2 zW?vU?G^+Kl+*f6`ScuZvEv5CMjf2+ZWg`=WKu1kIhGe2ZM6TUnvt(QvW88@}jsnJA zx538c3r-rp=E0f9hiFh@jUcusYg%G407M>Fg;RMh7w3e2d zZS(_6x(2Z~qxbM4;P;^LHs=j`TYkzCJGBx(fkE}WNvbFL6-1#M`pnuoCK&1-yzWB* zaQ{xRRp)Ysn1c~Z;n>rMSTvh9>Azyt$i`$HkyGpbN(NFXi= zf_f*r4hmSF`uZ^hLVMr9248GyL!{orR4`61IO(+yB`f%Xxx84Kq1StO@bZ1S_FV%~ zZ+}{@_N^A?USN=pkCm-`U#rW9=ZZRs)j?6FIxLE0#8>}OsSf)ChA6!w>-AcAUsT>B zbKmyKjSnI(2kS1!G?~4;EKg4-bpVW~>;Z=C+$`Bie&d+7)^o^R^)xnX9JP%ZqCo7@ zJIq4t9F(k;4FKB&qyS)iq4FeyX9O^xTzH;KG}R(ODFAv-Y)&y9CYXqvxt^K{Q#X-| zLXn&l@hhd1fc5+B9=`iic=fV$-TK&!J%(;vzkE4UFMB6gdQ5A?VS8jqX}Pi)ZKxOo zCf_DZj$Z;O84OLexDA4@zQ#d;0=bW0I<3M45@L&lemKB7GwSO!gaU@d&%i4%#H)g_ zQTZDhLjhx=7l+bqX-F9Gl%8R)dq23z$X8h^hNtdF7*&PFFerJ7GuxV7Y&Yj+&4%8Y zna3sctv7Ot%-}9ZI^hSc}k!efuuz^0C&=i199-4}} zBPU74pBVUa2~Pp|)R#pTRX5mxcgJX^@g<;^Rq76sSyQXXqjIF)(VoRO=nJHlMnmc! za~-~r+HW_;cz<7>)Sfb#+7lb3{#g~IE-24Q?H$Mz5!Hv8T8h%7_H;XDd8GCZ8|aS_ znxZtRJ>3pEA5S&&yq_5OKPEgySyFqd4XLHYl3K_4zj9K0zbB89U*GFIYz}s*CKyRL!O#?BILB^h6phDe8Au705>btEp)a|5E=Wmqw0V01tb)3 z=c2^Zg@QMDXb$iF=&ZDRc;^x0EUu|da4Z_eEg%E=yryZ# zTPk(?4BA0q-XuFJcF48*ikRQzs~#f^6C;r0J4=q!$HWni^AsV1Ex78HtX~Sa7JY1T zlF@h=84tneH1Iu^I^LKL+kmShnRFX<`vZNvO#RHY=UZz_a!XX>0Akl+LCZoUPe zlT(Yy0}=ov@7|KUWO8^qbzxeIwFBy>EJzBNeL)3gYX})tLZF`!hyp;TC04%C*a$V> zi#d0RfcoTFNV~JrUF|n}Z91^BAosncamF=fYVi*_3mIy+P5IxKnuWxS5p0m+!9t4U zsdY@bPF?YUAgW_|nTG=5P3}gDy4_Sj_)#E8ZM1RX2JD=>1BV zY7G!bF!hY8m})hLOx2ca_tX{49YrNf4d4n)^+2yAC`Bbq4L~DI^?+YUV2Uc3O1&Oa zJ($x&rs^Z5h;liehn8E6ZM~VP&+tO%CbQ=@0CH05q)K$LpAqe#;YC8jweL+v0G1)xqz9l149BhY&x*<@1< z-N{QY=DTaXPP^A^>z zShZ$F*eq!3J4_Y@d`Uh*4>cEt=HbuS=+9S0`JZ1OquLTj+tmW$1@iFe2I(eO=X z&ut)1$rH{TM6`n)uMl=5PdIaxI{CisY709i3fP=H;Vb~igfoD7IAJINlRV)pz~m!) z0QD$BQ2;7+!YK+Hf!>#sXExQ)oqQ=+v^H1dkvG|!S;0eZZ+#QUv^j6E+xRKF-sF|h z0ieKuRc{nll}x&Ig9D<&5e&7B{RRb$PoADTrEW&&(~F_eaZ_!AQ2;D?t~?A@Bv}r) zNI(hzrml>3c!p}Y7i#@^1L#Y3iPT(fFL!(L32HtSgM;$c z{61FO&B(z_{Wke{w~@#7p{QOOdww0picKKzdxX64r!ptFpf@%mn#&_XCKjmYGWitn zH2Tzf2^$(P4l^|_m6wEZeHoU3=#&}!cat4V&B*wtj}}nc8MI|Z6O+#!d=8aMw-0pt zdQ<<7$xdEIPY*1ZU?904mELbhybD@Esi=SabrXKcsWaN;bP4BwDVP?)KQ-(gc;2}FVNp{jZ^rBa` z+$@?PsRy#eDBwl%x`?3=63h%Bo*f4AA%vs=Wb*t!3h50a!?0TjO99wtCeE*YRN*AT ziFvbQiuw$RNxB65NWPaxMZNZX8>;|%yjhF&0R7Gmxg&#PxLsh5VapuL)C2Si?oo$# zA2UKJiJU%98EvQ-1WtcdINdE%EY9IVFf6?z#|2;gIrC2eH&fRtkBFR5!9nw0XOIl_ z6|!Pn+>^(V#a15=0j)^Sg&jNtw1QsiJ6y1Fpxf7*`gf(q5g$x2kkxNWR+GmOU#T8P zY=a=EUvM!61@e}BQe$-%rnk1)K>dnP6o5*;Q)_iPsJvIQhYZ|4WF!UPQb$OuvVjfE zYhCiyH%K`$z@3-0a2)*Z~$k2rGP&HVB3ad*g0nDakHJd!82 z%1*qW+oGu!)IA zKY1o#jhbuE_VRZFm{wd|G_9HX4}Ngs$l(L74HpdUj}fHg{xNEhz=H=r5gsJZLZaFO z0_0w3m(>xR6;r^eW7UG zR8aazp>*=)$6?h0pM4+I8<|cD_)@xtM6)AP$m9U_&4i@@Z1S!85q=JHIDmdDp(y~J zdaFJ}&e+_BYn<@58vu1u`!U|ztfjfmrSX5fFcLFeQwI{N}W?%C8VfeAkz<# zOeddH`%0yAv!-e<)EAgTic+)_S!{7e-AX75Kqa43Tb-`&^g6N7vo8~l0&uD4 z)E2GL!6~(7g7M|Sq+O8q_$)ejIrnmFrL(%WgipYBSJr*an*U?0@LR1H7#cr=hFSSHs;hw29QI?Np12ixrhxD94zV61 zq+s zj_HN&ih2JTTX5S(S~B&CTTv{BhK;iC{)}CBtu;Jkq?m;YI#Vj>1$8oJ2wfLa&?@$* zTge&<1mqHpe^r7nV0QM9sb9tx&!QPz6E3Ar!v(WBSxUco+ULF zKc%Q1SE|bog!&e*cu~OpUA5Mgmy7)Nt4)K>iuw+Xp@1=0Zlp2!P!$^VJsLy-gQC~L ztIbg(M8Ak7KzI2ijgH**Ep{?Gj-3;aW-f6+y)G(bv7q>a=t+eP$vsgC$-Mz za#&L)42Q%(b=i+n!1r2ba|I*Ju;Zme^=JwOOsRMJlJkM}>X(QYnKhb20dwk{%}HQT zARhKS>%-C$__deEnw;#=h&8Ox`_n(Q<$*mh1RF4<_VN%z!~&GZjtwdg<3H)($3PuQ z5>UYR+RMW;A}U7_?Yyc+ zuwGg1RF*15-Ey$I|b{tE(zzk`UvL@6!5y< z$(?V2DTmyQkJAham{D(C`et~gkel*JnnFPy)OjWXNIZLIIjCODA`l|hor}eGYe%Qw zF;9=Wy-fYVM^Fr#^9Fw#M%7xE4prt;GzGPhNo~~1i2zwosa%VMM7@Qapg<66o$fne zciJqa;@XWtZ>K>NFzD(!&p#ZnGbk?_cgz^|E*eDvqgHCH9EaO*TgHMLSVJCvVMwjL z>SBKt-~7;_kxg99_#;lW%%0nTA+=7mazn%dRL(o3a%w#j$zi2zbU4HUwUcb1fbaE| zZ=Qtwblp#fx`L)qz?532T7`IcrQ%2CN}59fbLyOGi8YNN6mMsRSb74#=JFWeWoxE9 zxS6RN{)d!@-lHLU1BTRG9@Y@C0Oj%F4Ji)`Ysy1At7D*E#Q8P_e6P7Y0wc_LB5@Z} zUP@CaU`oy95t!nahZmV^X$}R)YCZk&Ovq{P z%-BvdC}2kPrI!_*`*t4IaF{of>ZDxVuIqO}&vvem1#oUJQ`dZwXB&BgzYU{m<)cGo z35qGGgg=)`sI@;1koCCWTEq_Z@0=e{APBXdZ8%`*hup#w*KQ2@F%6=CLA9Q3IACW` zUM%jIG3uu@iULN}dA8wj8*a;3a2qSg<1Y-Ub+*0S-O+C0)lxb*b|+K+{bwkn1Kqy2 z34<2v97ims)DZ1J4SiQ?DE?`Wiuy4hSW3u*Mxvo^Vt-132-G^G88Sr17u#&ixrOFX zz?@oFDOlWC`GgVrJWZm2NlP`Jt6Pg2cEg0^JFK0Yw6LPqTiUBFx#o-iGd25B6wJQd z6bbP7isXveYQO~;74mOVA@N69tHspC;ha|QVV_9>muu~+jLRBcN+LJneKdjsM%3C% z_(tU8NN&gnX$S=j*;Zo>0I`vy{wtZU*$3EK7c#82dV>x=Fw2X~x<@b#Gji4WyicGE z4hh=auKpX&443L0KZ*usiZ-D_{;yO>t&^W3xG9x9WMYl_3$la)(Rk5DMk6SmA+x?l zvnXIz{GEK2^&~lVWL)vXXd?D?nnnTB)@rS*+%goH-oe+C^eq(Gw3$)U67#o&zWckzDO{Qp@-5?3K;r^J!hytIF2^< z2pUTPW3SzSvJNtv*S9p|t1aEFtSuACgF(nK<+33o$r?URTNr7jDN|qP`n1Drm77-A zfR_O3UJHR;*$5WohKgk<=zB^**Lrquhl(6NsALla9V@kq=O+}1$%YJX1*5{+4NQAJ zO{0Km8#0y@OdGD&z`PgGJPMe%YXizu!1MYHjJXHP((>M;`G&*|y#ohe=`eyZ7)Lk& z%aKg=zvz#_;laF93Dj-a7#yI=7)*0fvJc+CF?h&|pmKww5>EA3q#*@pxFKV3V1&+g zemB_mJi%{_p?^(7DPZV^jKP5s&d}ki4t{5h{U(j2fUz4f1_w6eHI8N(fc*+m4+_TM z;7?gD^^U=7e6?VAWufV=kgl%rMUiNlVN<4F`)NG}hpp(Gg1@Ap^^U;-oD?)ILqVUo z5o7QWyi{_~EU{9@k!%!*NxfrmfbL4djKRS{W7-308U;+NcPt6eooQaR20t+7J%r{_ zz`QH!9D@V!2B^#zaf0&r&v9NoP6pxNx8(WuI_H|b?%+hZzpb}2)w>Plx4-Pz|6xR} zci5c~0*@LyLu#zn+szJDmzL+gI+~|Y6mY!OGx*R1DJ0*JV`vBk45{@RWN1iUHoh_U zpfMCMX1>O1(U=V%`E*u>;UvIoy}Z}&&JUV{#a_F=h_l4b%7X4p*gE64X6hZEMWGxy zd_dX)6|CY~uj5CJ786lS7fCVIIyOWt(1kU0MC?+Ru=AxraIUMfiyJb)4G&UqL&uGQ z&!vGBF!1_4V_;s0ql|3PND3JFf*Ol*2*1G=%r3o3F>$+))v604JPHeIT`MwZZI`tx z+{n}kA4Yxdr?<_2Frd~aMyvsXjl!Fk!mD-hrUlitmV2&V!K?ce@VeF|Q-J|eQJxvE zq!|=2qt^90ff;$-c&1!WQz*!T8cT(c4G*`?dJrN4xz>dRL@l0Qu`M{k`W7FhI=t8{ zE#4n<(5iL*6)`qbG!B)sCY4j`NFTv>MdZgp+oV2C_D~=!*VZ{2j4~@PtzqMCrg0Q7 zuGX=1lyPCf4IB758b|>HpI>wBdFZ+f3+Gy7m>RGqbq#pGuKi?d&|PiHI(ux*V43~S zPw`|+cJ%+v?KGm+lPzb2z@yk+EX7uDu{+m!xlh|5`05zWU?|{tttVT~ab4x6oM@IY zuj9I9&V2Ig(MO$4QUc}lUDTR#n=A_qIZeG#ub!D~W z0J}4KH&Z|4{OusGMRw%ZtP)jgFB}*q)}T~wkW#6a9s#rrNv=sOQLklxN`W}kJEL&O zg|j9m#^ge$O8qWPqJT;Dj@u5|ndH@wJ7^;HCYnV7vo5Q%kQ{J>q1hV5<~1xS&E=fF zwVoAt_ag0$zK7h5dfH_6+ymyycA(^5DsG+w@4b^%Ft*Yvt8FAmpw2X|38;rrQU@#aK77T0d+uWDI*y1pl`!EGX2<4qpb-}gntdvRrCWYPuD1u0p)i4yuUPU{;!%`H1Busde-TPG6^7*oGIvrY4P-ts zVRJT_kqB36n$7vUgok+pW7oz=?lwdwZRXapcgpn;-?95Rn>l;t47{PoY8DlQwe&5gKPXDgTdBXdoqNGgpw3#ZyksuPBEGa#A*PO4`VA zze}1qdkOrB!-FqKOAWYYU!Q*7TQof6&1r^*dxbi2csL_87>h8gl4jfDT~3 zFENn)gq3eZH)$&|*y*9s>CLsXFmP9FB>epE5DCZUFJ|XH9-8&G369Up8XF2hNc>7e zqUL&ef={9%cU2XbWx4_l$|7PgQL!xi4i{xoRw#uAQX&Qu)um(+QYL3eIW&;dskNcV zvEeI0>as3W=osdg3>ELD-YskHJ#=>oa;xh$hw1K;Fp&#ma~5aFj>}!+Y4$e^;4A8l zln|a(nW{jb9Q$=CiHK*JTXBpcoy19aQTfgPqchMT#WiXzKHSMxxW8?jtwOO;Bw+_9lFgwX9Ygd*OPs)1D_X;P7@F{g8wN`q`z ztF`wbC6LeShFqKV7hP9``C@KMPttPpKaiqk3DsTU>i9M2kgS9i?vpfM96>ji1 zDJt9mUMpOxfVbQ!O@&*aQ#T1Njt%+EYv~^}D1^E@BmtYR=WK^0xMhXBo}kpkJH6>jh|I%C8X&j24l>@RORB< zZEt(f>#ugZ9mx=XHa2f!^|~{=5FSIw<(qfYD+p0~1jShz6cN=z1vZI^ETxikvxh}b zgTzLRrmNE1X--!fngQl66hQ+K5m8xHL>3Fh+&F_mXdqd(0 zwXE-tT4VDe&h8(vw~b@_A4nfwzq2c;^1;t9R6lQ}BC;;-QfOYr@}xoP64WU+OS2dD zB|{~1%_~Sv1L_2E9Z-kv>{I?K($lb9H|+>*)ssgpII-t?DE(KRDMdcdcLtrgrEXh4 zSm4jb=HA>vbZ2%UJcf|k>u%4)KvH`6bSqKaonsTn_E(hK{2!Jv4H8>>-R;SI7eec9 zf8C1sdy1feh}!FJPv%8r&hGD7A^(>`XdtBSy4!O#{E=mSl+@kXRggzaf^RL}7F)~9 zT6xRS*u3+jaQq|n#QhKAN7P-ddSa!7v#+SL&n06LM-P%|zQJOpK>{OQmz*|dvpPH^ z{}#z>chjJA!~m*6n72040V?KVDtB_U=KzB~I;9C*<@T?-W*4%jk52FAY2&ldB zC<@4&J1^o=ilBjrD{6Lc%hbp-K8`N#y$!SxZPu{e8q6(W>w`^4oBo$r`a5W?wY$wu zZ@zs%S}%KLMy_CAq&LFtkI!H9=lW-nBVkWkMV<;mIQ+SWL&Tg!ExZyMxy(`}=81er zLW44jc%!F2F&ZpolAc0IG>{bWMo)c`vhXRB^>oUjfvnBn=&7s<>z>86XRVWpC!1>+ zSI(U?_lXED35N&Xs;%2Tz(0{@#2$~$Lq5QMlRM3hAR%Jp zTS0BxRw%VAR%Hmk*X51=*Y{s zjxuN&FlhCv{40@#+K+Yy6nP3-r_?UWFon-lhTc%o`*F*$$NCiDaVr2_1_D zS@hJ+>)JYVsL>gsYq554))qRps~8Mg2Q|~o-_!dxD$HvVXJilEjkR{EGwQ8^KVC(D zJQ@C2c9%DrC5ZIOwHqcOV?)Jo%=fEf{>2R=L#q4@GDj4eAJRQ(kXO%4>z*YgBp#~Q zC!CZSXx>LBJw)*)tuadkOO2`53m&?Mo6DY5cFSGOd3*92a|7{XL!ofYPi{kvxq$}p z%94Ak&HN!qM)JICVY{3Wa@ zx_IkfYFeF?l?yY{VD<2A^6#PykIP-Nr}l4Hg6Gynu6!uBf7fy=f0_}IlM|_8v4t0v z$-MIllo}0EQU1(kS~49mlu*8hlr*3$pIx7pG8-Y3(7vCvG@!k3O8*RD8*+kP8hUEI zmh}|#4SJ`#OW+@8PwgMetre+R)^IR3fASqT;}LRf|3hN#Qx#ls;dDP$r<=MyqA(qp z(Am6V^S8`;8mgT(>jBpYF#nSotyuxoi^}t0(3qkIR_#2S z;n~=n_9+XI84bBX9-UwAq@!2*S$UCSp&juOL!SKFeenTe| z2k}l(z35g~=367(v{qbC&&TF(kN=&+){hM@=~>hM0Lgq%L zJqyaXQkE6S$A*L`j`OuRD)o5_*izdB*Obeg&KROWK2{nU1<*c_wN?r4Skm1jr2%QB zK5qc+NweA`xNC{;Okx@kSLyQx$PFH66$1;fQdra>tX?#M_MoSKVqkl&X+ zoH%hkxa5RF&;?bRInNOY8XNM%efO#RR;qx?2*ihrHyRHKa2-rZ zKCk#mhp|~Y0ey$#^B48p{}}_W(r9r)gwn#fuTtmU;F(I?fNla^94vQL`OHr_mqddE zRf?w^xOXb`>D)a_{9h!d0de^nI9EiQi~(}so;a(ebN4Ozf0LXB#&eVT+WeKA~{cUTC_%q!&N9N?kT7M492n zSF0OWYLzD8#gFrsmC^i`9Yh+Wsq|f+NO#JEyJvOCF)dlk_6(M)W^XPx%ZGLxS1qje z=D6It)jf@;Eu5^$`fL4GNpLcD8UWwF3UIgG+IJ9}iFnDMCNd3> z%g6hX+0gATHu?R+<<j_I!88(-zUnMLJV9V!!BMXd$wbEV1=fOqp*NID02QG2~kMsrio5ZC7?!C%d znM2EMgcX1yUdL*uSQV5n^(etco5)@NMq1-6_vcr;ZLR|@)=mC*WAl$+LUDc=lh^Az z&vJjw>gUd}k?675N+}*HpEqdbbN8uGq?*7dIYrw?IlE2+QTLc0Zlz=KK0!Ph;N5e2 zJXzNv0zXYanreWZ-hx&5IRerE@XQJd+xzuv;iB>j1f>CJBhpoU(Kh^%m0031<(=hn z=Nk?B-R45KzrWdEQC|fCFV67d3@&20{VyDePF!C<@htu6Dg5av{3%kj6~~w$S1vg1 z`_yTpn+hu~pAx2c4h#P}HVx*>%y}BO6xdd10s&y!tMZza1LrTKV!p616}v304Xm<2;wh@ zNCU*^4x7s@?WxQ)u{*st9z>Mx(O<>OTR}Q*&I7I4i2uo8b@$Kc65#9vk>Ri3Fqp;C-j|`UULc7M9XUM5O_0e0QQ) zN?mLyjVyIVbuvL|s)66^xulW zGytByM(Ow3%_X+xBKA~b(g1UMmjWg_9|CwA0@46*dY2+#=u)>ODorKSQ9mE1e@axE zN{PqUG+jKMMnIaXfS3c3+}uS#8URl3OHjDVEdV-mzL@SrU>X2V-`?3T;fmC|5|IXo z)3;567?ym4urz>;?%QbSc~-qcA;{; zo9K=SR@k}JR6(4{xK$8cV-vXcis;-Pm!CD96eyp5hyJBPbdAmBs_Wo zEQg{UD1BRXK2vLYoHC_>zUaY0DYC8qLhvgIP6P1h`mYQ;5IiC#4KSm}N|Ts-2mRLk zTx&SeeibT17M|HpbQ+*n$mk4x)VIi25t#82wd`@~CFgV6*GWJFg6OgD#@ahvqZmZdvj|TE`17jg z{%R5b*~F&-{*?79d%mIM=Ma(xkkMWLk{n?!H1~E!F65t2T$*Z97ce{LV*N#gqyc34 z%S9y<7n4%m3{}65&@_Oq(7NG;)Upck z4Me8_dh}%7q+bGkvch^3v1x!^p~3?8Qfs)>+Kb7wFk{|AcpAW0XqW+Ctg7BdWEvn> z=m7z_qzCj51g8Ob6)(i{!J_VW5t^nN^a|!I`gk9Q)uO9d-b-j2KtFW))*%Po>@Ohe zS5|$!`vH>BfTTj#1t0rh`yaGzA0{vjfGgC#d_CV)EM>v;QPR+Wrh>zVG@-+Pg77re z${>WF4BAhVga#xPI$-`3K~$9uLg{2q(X{`Q1}8lXuwgSF_E5ub6T0laRKoq z63~F4LQAVV9~{c5t|t*qwUp$ELbv)V31~o2Avp2`laBRu($IjWLJg9qDZ17-NkRjX z3#YH9@+1?^^&PU%fTcn`HQ9~$K7nZfT)}ItJJ~8KEbAYUfCdB=+DuCjBL9TQG(fIU z_gQ3dpAi0Mgr@;~g(lg;!)-$FUl5!I;1#-97M$)9qW_ZUG(eAii0*q>4Ib%qkxob4 z1XDhRNu)EP9lgDV=|g!gH7|!_^PbP(;oed9Z2hSF>18P0y>(DU!?e_6bXqF<>5kHi zE^K<%T5gZ{xJ0Dw%r30&yujat!04wE0Xo~2mYwlxuPKFjAfL+805pCSnPsH~bzMD= zdp>b#fLp$tvaFfQWGu{bPMwcLec;-zA?!|mW`$57ii*zWR@f} zAc=1nHy}Zil8vNuG)>abfF`~>l&4ul&$NXnc%2<^q;<_HB!2o(;Qcey>K^6Q$pu>j6jC4()Dx8QUJ<^$G3#2j^q+ z+5h5OCE=y@W6#e1U`ub61SqVF6dVJB59)v*x`YZi`lNa<8d!=o*YKG?4N54w!YPHE z>pRSAiAe*@=#j-nn0QG=gkDEbnyq+eDd;>FCJE$o2}x5~XK#^RI01bDL1`*y=&*yg z90c>l#H6V#6qqhUUrJD#%0ltNgBAL6V$xI=3e4RW^pymqsRPud{?!Df0cdomqs*P~ zsFQU8Us1DqUrT5jKu6Dj912=L^I*|mPjnifNB39{h2CvrpfFtOEZ8c>ypaqvV2EzH z4#mLknE3IViA)3J==tzNArCr>OL_5cB?S#AYAM$PUj5q%O#|pkRpnfpV{gfkcMy{X zn3ZbutoD63A!#bh?DGvlk@-Gi(g1VnmXb3x^XI#|TOT&`Jf>9^fq_(fLV2(o}{#fY(I?@-u{_0c0f?Z68>1 z)$iwtNmDsH53DTjvO>Q|P@1ZsnB4XO`Y!~f0ciB|_cC`9P;6@*IMtVlO;a^z7nXgq z{xxFKRLAVQkopEOX@FVDPZ#GLCJrTV%vge$nJ^;blt0cs_e?anRRqWUc%X#iQN9_+S+=nB`^(utNDNfc9Q=Gk!gTjsox689ZV<&lgG)-O5^6slt z2)86OO%3@Ws(o923Xy5*5}ozqZ%t?#Kv!zduo*>XdDYc9e@s}K%CKl0GT7S@mIknu zTAgLA-*(4nM$U1>cRhG{CLYu&wm>TgbZ;k_M2Kd>4bT-588n*n1I{2C$VX z;hN5Ql<3+@zsf>B$z|BrwLQEQ9R_cQeF}feP zP<;eZX@FX(mL0C{9S!gZ(z@y_acO{Csi3ks)+Qlos%9!6-Tcm8V$uM!lH()oD_7aH zw+Tv99TZPVE$9+KX#iSjj6WLi(Q9suzmM27z>eKaDCjjdf@7=p1ANd_d;%0-WgWoM zf)1ZHVMjAO0=hLiqW;3zG{1$1O~>V~tsi%G_!Fe#Zm}zlLL7bGM0`ANYJXEQr1aZB zC5x^?9DL%SDA>#cZc=9SHbwUHQ<5F_cx;|>6TBF@!=0}0I7hz^$H#4ZV$&Z0DH-=J150lHFs;FdZB?^Mt8C%KnII>&x5bR3Fh62NdwI3 zg#xpOm7YVw;#Y_E{Z{&v%Tc82{e`SOZvl_YW>L2MdeN4M=oxgL9dl`Dq@ zc$UC4wE(YR^4$VA2}}dv=*=!B6d&je`L>xz-AhCoAVv@NiiivS)jr%;>{eIn3t*_fxvH=~z_gTbjL1O)j;R|-a^U%jt7Z2S zlLna4gS#@_TuD6NS$3Xs6>({RJ9UFbt%EjRvmUhZtpUt+tPX}Ug(TVWSW?hb$qu~n z%den1*-s!Q4KSxJM%(VX1@eA9zAeTllY<5v(GT~ES?)OI+t^%&!ypU(G=kIA0p985 z!LKGb4Zx?a$((ZcNeL;-bt2OMIr2y@t3nz@56N^zjL%q4D&#)5FBMWbNw+O#|rY_fv{R z#b#xL=I{-~rvZNS+apE%?DdfiSl&bynkpF&_ZVSy2llS;{mi!zmj<}ebG1eF4%c@> z-bPd!piW&w^Mw(~ji$bdBBl8cM5Y1q)GZ^Cbt7DSilE8K;C9IIE^^R-W9ll89IlNC z^uL$bG{BxZ&;>i|Jbi$eG{BrXD2a)6PZ;ZQ_hHHF4-=OLxKmfp4tKuY>jS?fZ~h4U zM+r{@_^CS}glE+++oc5g{0V~70K8HeuJG9w77qv5pC&dUvI} zBRCDfr>?G;E7(E?+dNGK&=-hL1N?_iJ9bihY)#HlTXR32C}0wKGLXJRE*fx6JxfKd z5%vn7@3@BTdcx8GcB+YA&WTI*SV#XV0cij@_4I)CLHD>qT>R?u3k_M1dcSpG5LKa8l)c%anG=QGE0no)9E3WVV3u4j$bLy!CVCK4y zza%IPK&K80*>WEH*<;qT=bDw@5SRwQQ&-LUV&6pVb|Y>+K?CfmJ7bD{hz`OLWT62| z^y?$VPLr~fbP;wCod)Prcb*iz(4ZefWEvnxzfoDPo5+(*`tc;70m0Ng29;jcsGmr9 zn(Fyp(yX6Ebeiho%Nq8R2~Pv~=(mE(Gk=4o{bppK0mEg}Htm}G!=+6d_gj#S25eK; z56YHr-fu-<8URn-PUr{BWbp2u5}it18sJVnW?x%wVWp`w!?z(G4e+L}b)^Oi`j)pP zC=EcT?lM{D4q*S3urz?ZOXQom*7q9rf1B!ME)EDE-^Xr4?cfSe-ObYpnBVIrzEguW za{R)%ejmqw+iq-Lay=Ga?948#?>xu-bW0y@@(8-#g0NV0aF=gwv3wl2tchUnvo+sZ z#^ba$e2JLm7kmqw2IUhUOy#g{MpJ-)NnjcP$9L=|fZGQ!>y14U_jg81{tJ%i*a^pP z$Uy^+_-9oU9L#Hrcq4w@g9eDv``zTqN}egXD`=^Py8p)t_Lo9GL}VX95*m=i4a0dZt09c_AgO77trNBl@*Se3>D*A~;rvZ9= zFM0w!_jys9BPS7>2GH?+$O&j|CH#j#RrblmrU7>B24>FFh7EsYmEIY3MWObI-oUKe zI*2DuQfcVn*!? z>+yu9si<|2(|RHSX)0>nGpY3?Lel^`dJs@jWKG*+z|0TktNHLuJmO@+(*Qnt5OXN_ zqF>yM1T+=0W*#3|Tarx&7#!Y1Zb4`oKu5Qf1?}^L{)$W&N^abWh%`W)HsJ8tBCMCO z*?TGhX#f~KWmS;a9gdcLQy?;LLsS}|PU{o$c&EA4Zp}CO7^BDU2wTy&B|Ht_qc`v? zi0*OGfQbE5qR{{?dWxoiHt2V-8<>0rRWMH@CJiv7pDY(JIX%N2@bPX8Ubet0Bs?D} zWW+Ag(10d(Hy>qb=zlf~9>!KHXkDV`=hc^x^u_kxK}(x1ajzMBX>4BnHT2C-&>#A% z>nEHiKRdzlc+R6jUH2Opmx5)m#qc%K7^$KY}NcFEWZkF zq0b^TO%3_b?l{5sCn`-1`2bYBnIZY`0K(GLkPm=GpOl+=2=sY`rU7(SKkM|cM%3ay zgt#;{|E7vs~$dahaer0F9pS-vD%ocgwSi ze}%|2HRSHF-{o7gQffou(g3$=Gc{a8$6ip^h)PpOKCI2N9<|5^iA)3JsudGDp2PkC zeK3pt7-G`^yK4QR*kMjTp6E0{uNoh+&c&*J5^-sOTeUh}!~BU4yr&YFrViltT$azz zATUi0`J8(bLwxUJ)S-HlFoGeq!YTMZ9C~Chhy`fpGJ@UD168cH^vwi=mCVsPda%}MMKa0 z1KKl>Zxua+^vL&OEfKzFF1=^Gj(~53^Km$pntO6Snub{$U6^_JGTi$Rmj<}g%EqUB z2Y4J_27eaeX#gKRb`#YNTQr*d_v_eA?r>%>I=+`%z0S%i=2|eYmXTX{VQgOhQ@+fa zyS9GZ`N7|iEc#{E5Qk)n55M@F`bBi}S_IPZ8eZm7MDqx4G(-b+(OrRZ(0&gKC@t(P zVQByxJv!b97Hfy_n$-%Qe=wI#li)M}k8ZF^!SQ-8r?>T$2*KVnm6|O6 z+uvGg9pLIW0e&ojX#iX;B=E@&mj_QEC{5+O#UhCy7oJR9n##Gr4_613&eI4?1K`-L z1VRsMgeNvZ%~nb^2R(OatWT z4&b4XgB*B0v1x!E-Hhh3xlf&zT0-{kGE~(45hBw}ohJq4K=sFn zO#|%MMwjVt&{&^67VTTsPDbw^#Jx;(I!BJiW;e(2N9xJ?kq_o=HoUuH`%xZHq0sW) zU0dFG=k$`;N0A55c3Tu`GZ(TWN&{89BYP+!s-cOJ6q*LJD@$JV{1+a8%=ee2o1%wf z^D%DYb(B3@Kk7pH1@kO={wo7jG-TTSHPfO8a~XtmSfrNVD|LKmN`dADoKd8Ku;~70 z0hOm{o-N{wiAV#)=-RggvA-y^HgxHQ0xZh^{iS9_fW*{nyh;N=9S0dVwcwgT|5 z&80>H_e#RiRLIfc((1wj2Ze(8Y9i7AF?Nnm^)>WAi*q)eJ8;D4=5~mcK66WWJ6asv zpN-8wABoQR&g{ba&Wqen>FLpZe2<`$dW40uKXQvTL=Hte=z~RU=Bql*fYm7tlttG% z<(S;+pCZjFF=>Dq9h9Y*wxc1a2Z%}o)aW7HBr0B?;%MDUeKbL706JyKv*HbPK8}zy zfQ()A>SZ?kkrj9u-81h%(YySi5w*UFYUoFwLd|9shVZ_h%40S${NpJN51yb<4||)u(!tR zJ1(*}o<3f^ZT$9<0klHGXCALU6CY%OJeD%IxWFaFGuJc7Xpm{qi!}pT+VBT}UnL+7 z0HYh|BA^B@ud?A|UYf5Hmj<}euS!keW(of$@o0b-`}&cEYuNv-vd7VDf&z|zAb>g4 z5#I3S9`;(lWane^&@ZB%IX3voc>UOmf*(M4bcZ`Y(Ke9a@TF_jm!h9w6mX>Q=T?`w z^iu_!S274`ATPeY$dV=bKsN>KkekC(sd+U~X{w@P!@LajwM3->YJ51AXq8@o2z@;v zX#g4D3n+tZ^YeIu`9@;WRF=t(g+RWUkTg|g1||PiV$xKVIUG4>dOIO$DnoitdIuqC zszPEbEt{F|CL|3YV>f^f0;v%kTf}FvMkxk+bbG{)w0B0BXvf~q_IPZ*{uR_FJKX8| zj*In2?7c*Hg92a$L=EyftwE*|C#?~?FBE5P$#Dn`Bux*;X*z*Bg>W>0i*7H16iVIJ z?eqD!;N6;dG*$41EiPCSygw!$4e(;yA1kk6|F=kgEA7w4S%H>U=en5wbY{BS*b>bS zPxa1ed@V$rMqi%#tUTG0jh zX{fZU2N;Fi$kK1#!MydUuON5Vyw6&`NcOHjLig|}65-4rKz4bf5v5xx6dPIm5zXTA zRY6+-^qK5*n@joTHVyQaKP}oSyu5NQ4(LfPBMA*iE-oEkZIuMMty}%&i7qD*4T$bL zwbSgH7q{{9KTOAQ1q|dzR!Ktk?p@$SGr_{;N8bkSbfUUbaNS+X{+{)H`2=`mZe~!F zGB#v}vwcyWtyyC#r4uLtl5r}ZX|c#?keYVQl%Xq55YLmC2E?73iHq(zLB2?G8jxRF z!BI0{>$0=i6`R3dp!ZsT3T}e9LKV0>s{;A<;o-gt#F>T)4nR?%3RDWkhF5;8ausMb zJ709V&G{?~8tAQ11qSe$-+7V?NJ0aW3RPf0lJ_xBbPzEr zD^!8u>&Lzd+&v#ub>=^hbyZ;Qx_WW=_Z6$a5K5~+GQ-(^UbzY^Li?6CynzM9;4`0M zSBC}}TcHXJktJj4>7gqI(XYgxB{2<%D^!7{#6|ax3~TFtHsbh^zO zIDnyn-U?M<0H67tCwUV|Xh2e-3Jgf{KIVzuLLwRvO(JIiR9)a8s%e6uk818D| ztH3?ED)5=7x+*YtU8}(G?<-b;A(U2uWQMcdRGqCtFR%#htHAKa*pSbh!B&d~MOL8- z43SH!!0@&uz6XhEKwO~;43Rx?(LKW|P*QzwlGA{E`YJHwmMU;hz6unoljyzD3k-iw z=b4+n?_1nL!~61#-CJYE@2zq6cTqjwl-1+JJ-uASqO|g5fKj8HBAog*Rlv7zt-ifj zbIM({TI3!Z@|w4^TB1S99yN8JzX&cRKI^W|X1kdP=cz1q$#(Y({{yI~BLn=%b+YjN zt+8495{m!iT=8dj^@bOi-GIdMb(&jq0S~B7KrL{B)6@y})!+m<0$jbQUYZr*7yM4&IOD^gxmn2JXu&>g$HCaV;T~wy zj^M?y{STz&n?#3bQ<5ql3i=E!=vK1SG43T*l0x%;=1{yeNL_h^)sQ;zGVNpq)PGNE z8c>%zc3sq2+ZNFOU((aCT+1B0B0Cn^uiqN^?>DiMUI_K%3H=dsN#wne*kymgI zBglI%WIR4~-t6UYqvoM);+k3I6#*65w$$!Y6rR@@-{0O!M4YuUr?o)3^ za5e|bN9Y_hNPY4~H7CMPpE)TXqZAtY>2?)_8_HylTAiFvQVtFMB5~L-V>q;N+-=5) z_sZ4OnZdo|_(dyeuiVMleC~b-k)!>2aEL7FZl@^Kf^b>Ya5=c0)nz zG{}kMeG11d#Uq_j=>fXSnmOiFN}_?J2U7Eq!t2VM$L5yP;x}hQ#5k=$s@-moPH{M zPciZ4R92=mNP7C}ERdkBOeW+u6hZ?b>1&ZdNDv^-CCqIph6Z95QpZMrgttoje$@C#M91Y$W=&yD}Jfs1^c}2ZI$bHY7(dT(?cZ;1bSY@QF7A7CQ}+o;(;r z2^tKUkW~tyfso|E5DLkHAro_eVrU>HbufUnkug78f`R9teroCp5=qe^1e)8$z^dL^Qozqbd2wyfo)*Xyvk0m6=Df>p_DY zde#k*L%|GoQM;9R1troz;&nHe#9TO*iY1%e(!K{WK`Z3sD6E`^x}=N(d7=J6Co15v4`$}KbFD#(^MFq%T2 zOh60C5>jqyh1{93UuqbeyWJfD_Iu?w{dH`rgI(Gk92>{vJ(~>^qLLAc z@77REUc+ywM4Yemu4*(dWABRw8TNwIQBf*HN}lzH25sqYtk_pjEDglI-Fu=MIH~NGyP5-H6_C6Q+#mre78SrJwE{?9r*5D_!oTF6>ND@6d(t4Q zo^wN$br$+%LZ35x*o_Y3KPi6mUMi-6;^fs;i5_2BW$|C~E1SI^pjaA+eMaKwFHzCZ zYj_IB@S3&pWwm{Rk#B=(B5a@#QMY?)n*>bekKhv=`U`e()CUJMj{_Z zku(sQygHf?Q4-n{zp=S_DTUHN=#vu%_JoE;b_Jtji5@HKdd74REbcB;ChrUHTWVpX z-W;_0l8<^igVV8j{(TX{#{^g034hI~?WK0eyf{^aaQ%UXYx2=)o?hZKyQFH&;dCh) z9BwwT9L?}P} z;}_~5$=7H&V)YE41LpVW6EsMD@}6u?gbu}|0HiR??^6m5q$FRXk&}{jv;sLdryLsk zMe1llfiwc{|6+isb8c6;w0#$eI^=9@{+re6&g?>X3}M?6vtF3WLCoy@vNG-MiM>(k%1N z4DQU}&WyV=Hn-$Dh2JZ`sn;jqwq=5C!-S}0xZ6$C-I7nRZKyojW;XscNzZ@S~pY(p<8~Si52&@0^sQkPO*pA9`?)i+n932o$%M&(l58)<+S2d z5rX;;HK>#K%k%U$l3jMG8gmyq7!4dO`Rck7K`v$svd*9^8pujMTT>z{jLw3zdr%q; zq@^CoWXceS)G;f*E3R!$Vdz=^b}pTKf@rxvk1uf9^- zOKL+=V?!;7vO8*&C7&4x$u-7o7O4``W4QG>7*2)< zv6Yv#kFsbW>&n!PouzIt$MEVkR}j*1%;}6O@nq+|$%m%;Sq~pn{Dg`|)wO4H2qd@V zf<1P^k`IA$!p4Sj5Loxtz)C($&arD`$=7A1tfKPt_6Ec1F?2O z;i|oWM@!o3u{9f{p3T)Vb(HMZjt$iz^d79Cw@q#pN(kc5T~<}*dF&6-Aa9aC8Jf%+ z5f(;bLEZ}~j|TFdwf#jW@`^E8koXcxq=Cf8ZA)M}0WLauZex_5X3l4fYB1z{KY5_y z8_0Zc8a#ZwwY}t?jG9-R&p<6)^%sI?LdgSlQtVjNAy6;hra+yPAP$$mtg6iOSpU;( zN1)~v_*oAP)cj2=?}d~{vmJq&SK#Gkftvq;mG}}$q=Cf8CJxlRfQCKIo`^CG%&f#| z{-LP8wQ-B_j6O$$97?@Jy(j@+*g!GM8ueU}ntk*;E!RRJCZB-dygxrL zE-}lge*MsypX16ipjARKiA2eay_;y7lFu|-ez?wfp~ zc+~FUTRMnjd?r|ONiT3;Uw*6P{`W>~9hbZ2PW5jXV=Jlq)tThrt-R|gj|TD%ChlK_ z^bI{>L+2gdJe6^1y*_jEBeT zX4Ie2>ti!}7NYc|QOPY{od9CQCV$RQ!pj7xSj6osG;Wj6l5Ly*hQ1JE@{E8sWta`)GUAM++=n zQFTf4*NpUy!X+oD9?Fu~Q)NrK=gzK9$T$7KuGir@c zyCk0~%pSTA4e}uQ1Hpn28;7BsyHE}dku-4-Wl~7NZtUVjT0=RV;py0X;? zg$7dEn}@`dN*cmDtG*_#Xx_tEP=E9;*s9wF_jR#Pzkb1SUl(6dSR0#fpT}myp7DUc zp#NW%j$B#c`=3_dZ>OV@X2B*((rT_@rALD_?n_Lp{+^@1mh?2B?++Kk*1gQ9q@K4LKsr}yZfsj17t5 z++S7aj@f8!OVvo2Sk~$;UBYYbzzU28`CNOOQlwV@&I>r50%#y0rXO4>?U{$?MeL>s z8i>G3p3PoBnMOmSyUSJJEO7G`I(g`1F`eJ75%(9HEB(%Jh*wK|pQhVioUs?J-@jKL zY))KXKM|L5f6rQezV=8ckm#_0nh+8{(vXOG>{LBxBsL0a#)eAFD_H~5AO~Xl;`NBJ z(NZqy)s#d7NinmN^+*chr(D)+DT@ZOBHrYxq^bc2#V#r8;V!nMyne{oD)rymgUkh3 zuiMRn%mo-O+93O@)6uw`IC0%yYP!Eq5@cl}$A+2^WWPxiWM!n%y(->NCFTg$!89p? ztjHln(SNf2a3%7(pwx23x1r0HOoo@0J3 zL00@d{kQgJe7M~2kCvKYcS0}CxbB*H^8*oJCls!_3+^u|Zg1T!*rd3zs6l8Q|2-+A z+AEz&N(rp|WmRGNtdVJu_Lym{Emg^RM(@EIRQa1$&VX`gAgA`GG|%YeWC4}`ft9pM zNi>iYv9Vu;3~DGp!pQdp>9^)M_(_?s*6%p|1x{QK7CS+gaEOa|?8A$;wR-BE*;-9p z*Gu8wCuyz78bm&_2--sYvZuL4V zSQ|R(^n07mC5Jygtu<^8v5IuQt?M6J!x?)zHpk11a&Tq+nC#aS7V#h^UJ(s)CSpBG3Sl-5OXWR~ z@@OD0VwFb%d0|YJN<5zuX&`a)S1jsNi1_q+5U4&7%o)-K26w&dr)>jA-F9m@YVNXa zpq|d`!UDiM@M+R9t?Y_F!LQS|fjMES2GRI{?PvpY)EbBWk}5GzrvK2uf6}&rp1IJ` zv<1VmkfJhAqa+$gO4|lbN($o5-?Xx>rYsuBO4fOS)!j&wpaDrS)+qcXKQ#FXIhi_wC**uXMKCecVn8&ckM6+FS6^hX|ttjd7 zlti;#aTQ3Kj4S6s=1G)AvrTcedp?URFXGZ%T&eqROMA5^A6I)2S3l+F4SairEB>U3 zlkJKt6{czsSBu*iS2j<=xN`YoUQ2JG*{-+>#pL43OL{#e(QH>-1(GJ?%FB8qWzlR? zTO<76Y1Abhvy};uzGCr)sxnWbU(q0Ek`9WB{J!6qIeqabR^ru^NCSx}2Sr8t zhQELzk+`1~w8}8Z+|AvDyofpG=?8820{z@Rj=$U+=W>D57Pv4rcj1n)$K|fsQ~Nh` z{)o-U>JzA%;P_8g$B%fEvp#Zh`Y_8>jrlFTi3Yi``383N=xK-!8Cd(GGEbrxX?X<& z6tSSHil%;lsC&iEE%9({zQGTsA7#({0rF;H^M{^w2vG&_kv~@-iFgoP2d(vvEDy|Q z=@&Fe`{tWYSJeQI2)M7IE4V@cf7)uK-(6kqVK%lkw@)hJIk|wR47e~hXWm7sk?(m>|(lD59$Sa}aBjo}TYUPq}kkovSu7eCjV zp@?bf!mc3*8br1YCtKF9VsP8g$)}JplC*aCts0(5dsi8)1Z0>8<^(zn4bmR*{?+szQxKs+my`0lltKe35v$v3lae)#IXO3_ z92&?;+3!@+MvnU}3>N2};7=SLzQ;Llo8zm_)bNnTnL^|MLK26E6EZebfbjU>wuFbH zwc#O&6$R#JbOIWrJ#l#CM7Zz>r2K+XXdoqVc;uvn;StFBCFRgSPTKGwDZ(S*{(ub+ zxdi@*+H-Euj$88Oes~%d#dPs)*7?qyo!;by8GB)Dc3;ThSnishy1!ww7V(OWN|;5e!u%5--_juU5f8d+5|a67iKKs~BpOIs-n36t zO%b++>0oJn&P&Ya=&s@_{syGXZQhfdPRpuv87X9SY#uZVH$75M-2WiIJSn--!Xy7p zJu>1w$SO(Y6RaS)rqxD))3CskCRCz8>*`RzJO$7|K(e|?i1cZ^@7pIcu8X~gWy)=PbrTLQ{9WbH+Mx4OC9wkrnR9Sqmy&J6F2&7461{9gIZ z>^ep(8C>Lmq(<>769MyM4VZ`-q8i!7i(L-ob3(Gu+5FYV3tv=zZ5z%|t_oZ+no+H;szCrN1 zoHHl08K6O~M6CU-S=dIQ>*d{y@@OD0;xTv4^0JoG`B%=7#P`fCD3JydH~$VoJqk<1 z)@Ryp8MQtna+0BOdxCbjx-9jd%QzpjxG^@5dq`=}@?ME>UWV}P30f;$H6mzlyq!U7 z$;*S5*&sP*-oPOX4RU3Bf;JSkLC|LM-b8sckheWS8_GLG&}I_fLWwkxxGg~o>aw8C z6rBJ++t~Lbw&2=&&9c@X?ClJj`!O8t@0V!RD>Hg!Y#w_N!u0t3MR#uhjDZ=kNmC8t zR1PBYe`-WV%(vCRDxsLmDAi%UMGvAu1|+FcbEGAG$=rP_>bn$015y11eaIYVL(gWN zCy2Y4ThfoM&$v5Ovw63>-EDKow!brMZ#wZ5{Pwg~w>yW;3iQFOI~kix2XNk_{dsT* zIS~`p0mamER0VwYPt|85!nh7vaax~p$qDls4lihs`iONZ^~uoXy0(loL(JX??F=ht&SMm2)S`p@E!;ho$w&$pWP)>8_MS14-Rv z(c)Pf{>Wy@rHq@vYtwov^1()mi0ue`21Pw$atS53Ja5BQzl~8{MLXM^o8kT>uC?FvhOj~8Jn-H!2OT*=fNT5BpgsXMr|&r0->;`p^$Ju9n#ux&}`A1 zFwbRGNQ2ZT98gclaAA=X^8$*YftZ8?>IpIMMjswIK`*8t8VE`^pmur?COP(1hDzqD zsY_@T3k`bx9(q}Q+g#wvjJ+~8x7vrmIexAmUbN@#&p7%>I06=K$E9&ZQHZ0bY8)l? znPT?nqLkpOW|29YK0|}dh*%vmZGUGXGjv`+Mku*^R@S+cMFUw8D=+Gm6$aR3jy;Id zXdrF#cXMh{hERhJ>=CQ}Zu96V3^;Xhe+QZpjw0qe3kwo#JQ$njb=fzQWBVWI6ZXv< zy)q+^#u`WogV<4uyJo32kDwFKAjJv$W;uFogaQ$>6hT8zOgD{^6OqM6Af!nlG%WvQ zeKQg^0@my3|LT6=jaXGUZ7j}r7F)~9E$jJmJT`al!TERCTjT5qQraoY!b?#Jh=RY? zC`jstp4A3IkO}5WmOc%V9`S&%j#7}>HEBFt0Z4h65v9;TO2Wy6&>`}xJ@az*Qw|N} zY`!4BV#Xje!cuuTqr>|r1SD)1+Jl8Ti4GoM+r|BC7v$Lf2l|BVf}>YvM8yA2-Yz&w z35P7z=D%6uG)Qs6fXvZryAX)@HAT=sM8b9=Ih{VWSsA&r;E>lG-0GKbo+QC zf2F_QKGKkLeCG(~V{^YXIR3HWC3~iSz)^Nex6DgZIS7bPX+R{LBr0Z#1V*Mtm6&g{ zE~Y^?Bz&GwCdLNJgrx6L5)C9J9P*b*3Ib^aG?{STRuu;=9Hl^J346%Ct&BWgz}J*OiY>N5+r?+Y-udAq?;eI_dtV0r|iVI zL`(G91|pF0W6Gd`jD$n^d_DvL5J>qcrO-gie7XoAV?+H;oY4G$F7H>{0pC49PQ78L&!<^$j>oSj;cUR{90oop-YCe;+5`#YA_FBw}1wzPuQDt ztUfw5INW6`=0b|0ftZAkZyc)^lZA-8Wd&VKK{ODQ?vbA(ZMXx={wu~x=Bm(;u+3OH zxYE~Hk)yHsFV4UosVDA#NJ!XbcnM05_&DwdlJyDO49_XS5hUF_nq^OeL?;Z;yZ{Z0 zP{!jZg9b7Zwi$UDSwMtRo=7P)kdm&=5XMHxdn~*l@W6!L&>3d0UD)HX`7k?AJKSk@ zgj`5C`xQu02?&RqYd9qAzXz-m5H8h{3Fa5EBzzQ6l#&HT zUe0eQhX!)eJ&LfLjXd`sFg(0}LO{Y+qC4+K7IHK;7cH}u&=dDRBqVGlyaXjjSlm8& zE8#gMD1xM$Io63ZNOZzhA}>G#B9yT}88ncQu$9Qm$buo1(xDU@NJ-a92xBAUy`8iY zdIi)8XO+6`fsU?uFgDM6BtqZ_Ikx|SKH;pAqgQ75{~7B431^iYrMkaQwYik@C^SfM z!d59qZ=F9AaT!I>Kt#e>rJRVs^)n%tQwR;qKiQa?IvO-u{^oAzbyN+$H!LFWfxPgwab_vdwy91q6k(U-CEm1FxK=o41Hj$WDJdlx6K zd>y5DUY2TeHjA4EDNb1V=IFKZ4Mdzv5i}5yu=34`$SU7J$b%?^hUK5k`AOIaSRW>p zuUr6c!pgVT>bV_3^l)sx$Jd;XvS#a6&X-IIv7u6s z^VgI^133xTZA{7u0;VA8e^C+*B&B-~)GKQEBU?fPMo!?hkdbhvlP|;VwVw#E$7A!R zJ_2WlJI#(DCE-kGAVno0WS*oUld$#(SS4UwswET5Q|SyeNP5Egl%fa?mb{c_PznvC zB#hjmlq^v4a-K;!G?0^SrqgmZ^4w2kh&?j&K?4y98`4}JgdyN_<7N~> z!}3oy&Y%uBzh}Lcp0Dl)-h|J_hbyhYu(NQmIcjs?X?aBMuFdGRu{rz^2!Y4S;9wd2fF>m zgHn=mG&b*I^c|@u?te%~_{hymP;$iA-)Vd$jBd{<%~6nab9Z_K4HBL3ky~DXMo=i@ zUX(!t840_Hc^O%>gi_9=6dFiL_sC5c8zJxO84lJHL7lKSc2#?%FNpGBZ2taI_QvGc z{s;Pmy)j3x%<%trs{beKjX6qj|18z!6qYp&Qk<|imZMka4@BIWB4{8YVQ(xaB6Iyf z$RAS(4a+}S>p;Rr!1@mQy}BQGBP!m-Hn!VobvNB~)&B0ZL3@7HewI@Y$L2o#D8Nzn z%pZV$cJnrSdV1xB!+%^IJ|e`YClgl>(`$}n@zNlj5p7LHYIXCRfE!Z)4Fp6)TSWnx zi|0h#gd%7lV)O6XOsAodWBeE$+&LRqpA+F@cDeO%b0>GdJPli+%{S*(ha-H8)~$VQ zF0A(EMxDNH)x=-S=r3m6FJ{~?#^x}-3Vq8%|48p|NW(!&MDy*)YfYXe0MYfY8eK2A zp|Y6+mqQkYDm6dh;FkuOcHO4cZS8r+z4PX0ZBfp8m%;Z}tV_6N4!8h zO%lwSt`5TgW3!hYdN>c&BI7PkQ_7ZBDdAJ!QlDxkWs@q~C)E6${y~Fe&L;5>a5XZ% zZ?d2zcR`q_IM<98C;lIsdvlN7!+EGSU2$4kr9^T5Bx!NFM6x3A2{mu$s#cn0#R;xP z#`j|>PM*i*E7iKtZ*@=ODVC?U2OVy@j|(j{Bx~{!%%KdRgY&UDX^5gcHoUZc?3vjg zP{KnukDV<_P+An{ueCTYtDQk2a<0uUAu@&Ltqe&Tq~{T7*fO%WlZ*yrk4i(f)EdkW zmj<2QKAXUIkdp?SSES<{wR%gI@!e#k0planFk;T9gV)5Q1m8zGnsk{8Iy`Av?sw)b z=LgA2lP-xXgUoL}LOPmsbY#1WP2I;xM+3TuR%44XE)h7KYjxZ6&A@9uNm3e+CJOsu zmZP5`8%;ts`P{0w=;z5s1GYqQKkP4za&iAfa?*e^Q550}%s%M*FOl1R2(62DAN z8gMq#R5YWdL3_B=@4CSM8YyW&8SyskG@;=s5g$Pv@C`E4fcfE@_8qrC+z8uvtx|u* zjz+Pye?s*f#sHo^Gt%w`mIbbM+cTR<^?x)rcg3p&<{=pAukSp|L9rw9kea0_6S^U{ z`Jv?Z!z$;uPXxDj);!oaIhWRu9Q$>1>DRfBVvWuFxWmWM{(SxDv+VDfiw~}sR@sn= zr)efe%s+4H3Sp}Fv-{$IQb#5PbvJ=i%l9L9U zHFRkw>Kuf8x0$bLUrkCHP(D0CO-oA5wn*|`OD-C4EhXS`-yY7sfGl4&7w*@Sn+Dtw z&*`=tl#|^2_LES*k<>KXMJ*qh73w#Wng-MyNtd6xEvqE)-^fM-wi;&BN|UHNZwlSNla2;-iGtp( zTCv&rZ8FlNOQ7AZO%nJ$($Rn}QTX`{u!Qi3B&11~KD*J7(EXTnG@wh=_UiU7!uC_L z(SWUnsg^SDbX$1{-+z&hCSB^#9mdWb!uH=}qe+)K_jYHi8b`;rYz!tIAY?>a0dl|>QZ=8%cO4|1 z$B~XEU9Rd1b78wN*=WF4{b6Vj^o`)y#^8YS48?)c#np$Kb|JEi)9mrs^!dfr9qx2} z$2qz(o@2A~Yo$~wjLY7vfzXou7Z0WWzW`+I!}H<$E;zZETdB%c;zS5D{FXUnStxX&U|YH zt5n;~*4iSziPG=x!crV2&ipYy??r<|Z3FLa$9p^S(xm0Z^pd34^WK5HG~lgas9DTs z%(COb5Vi}#qfB{9E17&cNohb@LocF8S}fDuq@zhn=d<+Aq@zhnx5s(T-AG3Rx`)*o z^)lx&ho=HkXm=+MO&XpB$8#_8(153gkzT<$<_GJ;mxBl6OKxBl9iNwh@!Nkjvp8fN$lIjXY`ekG^G`c-74Ns_cd zR((B|L^L3(zxpDPtG=Eo`F_LGNJImo>Ps&) zX$}3)y5Pq-3=amyH9YI>b{JaCR(G+zcc7cG=%pEZX>7jmB#g;VC|q4X;XL`vQ{2yx z=sG%O6LORvWA&T;NOHD@)nFxQX5XqcZ~ABemC(G7rAdQ?)$q#92Aq3aqq!xl;Kqo7 ziz%7a<_%<~0dpNy_e7S;3z~DIeCT+w}bd`DnmbN9VpgeOwdY#8OpeZokKs+)|?NA~_An(*+F3v3MMF zgu?k=a?*gaS3@7TJi&JA9D@t&z0+J7;AJd!_eH@6sDK6vy2%tQAka=5n7e zrCa_Flb;6sCK-RH*BNzM-Og3*rdxw8ssAY1X~3SQVPGY>Z;9_;GzYD|P4p*7O9R?; zwbi~sA6*DZ=ch?X1Hu~K8rYy>CShAwxC`s&$Vvm&bl$z(+ShIl*XEnOey`bUFJi#H zhBr?{!5652CTaQV>oraJzOc}KiL^AJP1iVJ@j$yd?x~@)}H83km)@scDi@<4qV=9r=3Wo1~@zb-IRX*ze+L2&#@&Z*jHTa($iekemkO z>AZ^(wb1S0y(4ky?~{}Uq%|yV*q{c{ZFQ047T3TE@sCJM1LAaj%FzJ(CgEAgJZlom z{1Y z;HsmlD{%GsoVha`qT>+c_-0zQ;n)%Fq04Zsb zq?5ap;Kk#?Vkeim=aG~Kq%}v|ZbAlKC`4w|Gs{}f)DR&>3SF2nYz{eIZlh%+qxqvH6e11M zRYRw51JYrCt|OiKCbkelcR;BBgw!y8JeRiUo3j^#} zFvPR-c5lw5`rf3cNtn&^!<8=gij!=3Nk;>^8s@r7>6Y59wayT|2Aijsk&`B2o-Tzoz~v;QNlF;h z0FNRe4G3#kk6xOqojcm>oFf@c!XlK3%{k1PTh0Y?(ttBXx0;R4a(}JeI?!>wf(|KZ zKv~1W!_qumX}K`$l8pvzsrn#pLUADr$3AIkKwHC1(*}vO^O*8AD^518wedAKsSXC@ zrvZNrlY58cU+o16UnMckHY6O$4X4;7;Rnc1lQQ9}BPqnf=3&?{9)~97`h>!WX59s{d z1FL5*Kfko0^cu3UhXteZnrdV=^7mu&H?KlAenPVG!MspUHaabek8J#SUD-%ve06#Q z={0=opw}NP>ysxr8kO$ESmNiHX53Vyh zZnJ8jFg2+?E{peDKvjgG8&Lo-}A<%v0?wW95+E8=E|yuDR|jX3R78wK})}^t`}zH z!q~k332>C-a@W?6yNF+iZ=a$+L3(Rg*;16D%Y zVzSbJwfYQQNZQa78_E*x=2om_CStsX0XGKNqt0;D!MISnV%hoFyqzu5vB6Kq>&IRc z`~XR>VOl1@*De`pQOn#}Ynd7rGZYwf%+u+~PQaQ<^BOi4G)Pk-#<~7rFxPKmYe^>1 zypD`CV63Ah%*w^b@?0OwgN5u3B%=XY4YMX?89KL$@ee-tB7AQmA5B_5zK!cqgAq@x5gc2tJF!(Pwn#M$&+x1fOBS{3ZI3ancr}M-?sR>}#rh)- zWNR3n1(ZsK2Jqq90M_uhJV2Mmua7PL_>y&Vu{~6>-w?LHc<$z2PjRdm;9u$$qG+x6usFG9(lRCX)78g74xoQYUp zUyI*cut;Hq z*CX45L*&}&6h{Mb2R5Cds_Z`vmrb)Qz*)a}Cq2sSWe9qo4@(&0(ud>j`SNh&dln5& z0efjaQgJK0>ILH}1g8&26|CYAj)UzAN1IWl;pj5UJdKV;gRDp&j-jOTaP-2irZ5@^ zOCOGbutS8S7q?DvG!U0O9Cy!`g`?MUWqCN_KE$O9N4J%n%{fM4RYYh zx_ej!$_7hfHka>`9p+hd9x12XO-PDZD7(c%@%wkH&jf>-$Gr^Ra!fGHkrUSmgqVow zfGT3fh6>;tFH+x#cwAG3POD^}9m;MVLw}$_dWW?;r)Mix!2X7n@p#IhfsFmzAS0-5 zi&CCMDKwDMt~)|JStB>#pd*+UGAihgfeR*!2iKpm@xXfh+w8{pc)*oR3{FzUgNjiF zh=~h~P!012-1(t= z-+YFpPlNO(Yac=Zxp?q0K2I4mkddr?2xLsggO~C}N}++2RPDo_ARavN-{;~1mmwhH zy|k_M8L*+gwAHe){tKUn2soUFYC#yWNz+t>V?#1H`-j!pBOXys#Us5SpE&bF&gIjv zFzfDjxV+TvI9DoV#6Ko64Tx*6)I#FSlQZ(4lAH$Qm(<+F0ZSue`Vf6qJP1_vJL`gV zR_@FF7q1p)#UTh`L0G@DDxs3WS-+6VS#84TIZTTr&ipHD9vURAerF9Rb(SO}{tAg{ zKwQ7G2E>80`c(fL$!S1dyR$C9Sv}J~sk5r@)IMSEKNh6*Yxe1&4`bQy`c8j)93CUh z5i1L}SQ9#G3K<*H!h=5 z&0-n+Gz1LjF z9!G2`-iHQ&zivgmkRoVO z1b`>=BC-JR_pFeYPzX(e0PtK5e`Hy2A_0(H1$pfQR(u^x(l4Lmdf_wR^oR3MEeLBL zuv$XQu7C_KeyX~7?XxQ`VH~jf#F?Yml+z$-wGUWBN_FUrcqfTzKwSHPH6+fQI3quf zZf@in$R(!_v)K|b=kKo0z{STxOuWoN`yyi%i4<5Tq zJvQRCqPr98i;9|yd&i0A* zXJqbEqW1H|))7bH0-_oB<>EhhF5K{Bto$##D>uS*EAE5G5Fhcv>sDQGBk^NHm2kiZ zr~@Vl;f<)J_TqaH!Qv~I38KpUE1N(X#fwcD4(~*u1`QRK6Q|G9?^>jqy3RwzGkF^dBQdfKHnIqNK zGoZeb)HI;3eGVf>opt&G`Vr}ASgtj@JZTyM*F|(@btbUY@4DzGsO#cjY<|E-`3QcP z934OTk4db%nkKL|tmK31&ZTl)pE@+6k{n5)c|Qw~2C1vxbwg6?y3A0e{t&5YKwZD< zhSY)UX7v9^dK#8%-L4CoMv%*U)pbb@w%W&`WcvTqy?KBnXF>iSOg47_xlciX9|+%F zNH}c-1Og$L5J(8;Leo3bGt;#_-IMN~JwkvGM35{Q|>P;gUj9qN9nlw({2{|D0 z!dJ59$@3=mv41xL014Q5yNMan+}PN&U4W0BuS8gU1KZId(QDSp=HoC~#mdLpKG!h) zKx_-Ii&JvTDmOpVy16+&Dr@H;uE{mzD4;m*F1lVaL^YS1CT)|8$y1-e;w-)@Hl$sh z5z-8D)?5#hFFr@vds5J))>b0nl>`-EUFHQ@5z6gDHn+R;$?YHkXo52hmOuF!8^-{O za^cV713H@rlHeNTF(JP|2p}Pazqv65P&fdl}SZ#T#>Jj+8MW4t`1Qoe>1V2!dQ59c ziSRdu$;Ag$CUm%OaL-)U)1OGxCeF~?+CUjsdICgQ9V!`rXG=!m>w8BD)4r2eVHG4h z=qmv8vZd!sJ1$xI@LxG8$0G%hl)^Wzn3x{KloVW= zx`wh+c&c=?LwZvO_l}Oa-2Lz|-!QokZ#~^`(pTx-FdzgMK3_aVuob7`^eJ1Mo>BAw zeG0EBRTI9mdXoR7q6L%``wOtH=0d_KPjR1H3gmz!{k=% zC~%DV?EWZ03V%}KNiCnu@Nd=(h0j5HB9r@B43h)&GXY{(aCSpe3%I^ae%d4zTj3K@ zz2@S&PS4q|&6~UXO-|Z7JMEoea?d|gmY$No>95^?qXH;A?Z<>!Da!5twz*yS6u=mx z$@bh`t0DP5`41@Kg-?s+2uB*z+;>jQj}QY$%+rdl4s(R5n5;R?eeVSQ1VMlV?Jc-; z#kp5-NPHmd`K+YCz zY|+$$$o|w+`{st&3V-fF!1gh*`7}%p>cGQ8JM4x3E8@Z*6Q{(MQVu@pe@ucF{+Kvr zN-eBMmqau9Px28^1Ph;~$K!IUw@Fhs1gEyotSl?;rq>fTAB08-8PB&vv46 zH}F&8!{2_pwWwoq!VZkPmG)phz^=^K9l4v{2%3mZoD8wG$$)Wj!vr;Q{VlBP3xB#d zPHF6)zim|{H)YfU$O(myIP;8Y*TEKu{FhG7Esz69PT}LaJYy;+D;D*4$;*nZYQ@%_%j~M7@Uw`|j<;$+Z0Y3G`&g$=c|C5{Xz@}*784V-q7?7O|86dLwrXWWa7%w2a9)y4hC!h4bMH|!t3nUN4Y+3$CS4jQVvK_eb zVVKZ?HLa_nD_^Nhd-Nza;*+0Jt^r9uzaZ&3OL?OIg9s2&boCgL>NdfhgC9&blQG>$jDW{%3Sr&uj zj-);y^##;Z0f`$Jr-_x^87e?j1=LdkRnAr}Z<3wR0pv@(uU0UY54-Q`DVyu@*1Di) zXWskzFif6xjj`Vl78v!sVy%$GSu3Mjh6*Ue zS|L?nt&A>#4k*G}3bvNzdvb}j7Gw%NzJH>(wR`s6gueMWOdjwS+3Q$$m3|P}!=u}j zl+3coWPe~y7T;W@K|7lfEz6R0$PS>G+)opXs?u96pt}G%Ky*`{V{E>EZL=Y5>_fW+ zlmjRMQJxiBmzk85<$~}p!*t#f;)u_#^*w`L!@V!vcNfFt=U2&k$EVl9M21Cxmt)AxC}N5p3=A5!Pp!Yhjt&PsDVzPR@qYZsbYSS{$kn!(RBmibnLrs|gVzOCf*#qxDzx#A_O|HCPsn4{qnvYXpvLJSsKnRF1cH-6W)xzj}1fMw{h@b$Yt#=lj(e!DUob^}MXk0+VUlA2x zG)H79WVA07W;7SFGa8CbG?Ej@3P2Gkz-S?jtIJICShABL14LGU(L%D&Xj$y82O%KB zc%vy?87&L_^Ui48DJ(|y#n!&oq8*7EvYqzEF!{r)WxJDe_uQrXKZtl_?BKwJABeEL z^5TD4FGfF$93{vs>7!v{n*1hR96+&(equh6G%#qM`T4n#J`9sTdWT$njQQ;Th<+0bvVtIIqPNWQ^-ry@r{r@Gi})DR{ARIE-by|L zitz=L%WdKG*7JdgcOU|gi1i~RB6EKrS&G{vOcfB$F zzr0nZKbnsgMLnfnEh5g2TBoXsR*paMdnS=Lu>yA1Lgpij;nN5wFC>QnMYlWul+HT4 znS?(?0w4*Sc#our_-AI%WV{#|fMh&nZeAB(E#o{vxt_Xhj&WaU^cMRoy;f(hspYfF zVY2=v+5W`fPVPc!u`)kbWUO{5hZdEEo7=Lm|40#=-cF{)rb)63KLARDryWr#wmldV zbSi=X33}!c6_gd1F;VwG6d+N0Yi*%_*Clms=z*v^qSAiXW)ZbzMqA51x_r7BWhgYT zl+3XvgFl_K@fXA7oIh7FIzGJ)K1$Bgd~?gou_{!6?qmzloGTPhn-(8CuS7~D55*RM zVt??+#NNoricTQrOvC^ZGv|_=OOt%D2?U*mAV7kWxfU8oO_2%M??{2ktSSw2>~*xe z%PqS;zh zM7Yaga{OP@{R-~nE+lJ?-LH(*cE8Y~((zDRI_B$&Fg+L)WLj*RBsatrfYM-&m3GE! zddAuKB>Tb%x(R{+37TW~E8|TC<%&(tImyit1xVEVx?h2F9|dTKz3_h}VUF!dD#4Pg#GF6(_9W#r?MV>zX zTVw!|F~^!CFC!}$p_JPp1(1~awI_zL7V6a+zxx; z|4PCf3qdNulB*Cb&b<(%oTd;2QBMxgp#~J`ITnJv09yz`8Baw9AQ^Kk1bG=*Aqb^B z9VvjM%&!m_M!nJ{J6azk3#Jg*JEETB>~&wS%QhG5>4?i-@3aG*&%a#-;-v7FzcT-U zr*d;FpCi(S3360K`nHJ7aX>u6Yzj(n&nii-#2kQz zC4KS=L;w;o&-yeJ5tNB6H7-X8K>p9KFo>`gME{w%-`Y>S^R#`-jV${5Fic+Xeq(z+ zi=ID3dyXb>^p;t+zij@tca+xlMA5`Lc@jNnKrx=D?L&IkFk~X0f(Sq&=4ty-L}2?& z$O1wD@_&A|7olF$O7q}_*7n>G?;Ja|{qE8rcs7__4qtTFqpoul|B`pUQDx!8;H%t) z^v!XWDr2R^9vUqw9hckEF~@Fpp4gU=G_9oe>2{)cj_tGEKGYqsymPQkp^oOUXP30NJR-jz>;qo#2kXx$u7_VU7cI z!(~eh&+Y&R!ryeP%Ei75oll$NRK#`u`aMbYEY$_+jI(ZZM?$TYUAE5RO?&K~cYmT*N#%jHQ7J1=abFV$~#KsWWEt@7uhn5vk8qBfw%y`o=pRGN! zFPxwY5Cllj9Ba>vHx-oCp4pd9)BsU{M9r`E%xKN~A=b)H!8=Xunf-zu$sGHIgB5L$ zzS3>mr)BBYF!?UqAD@uj2tP~G9LEMJr!7SYQ7QV6Ek$$eo#uFLA@Yf1lOy>BJ4gab zfTzxHbTTf)6`>J1zeGh3NX{Immd51-1!zRl4kQ7R)Sg@aJyldoKe-(GJ4#RB+9Q-Q znj2*r*3>Ymq~_vIZVr<-y<0`;`eXNVx6J>itapxpuL8MNoyymzZTXtxd|;3OS!yv0 zGx~+ql>7%?0+cGhcVtt=l>U)I=Mv3{`!B=+68HQP#7!uId4bu*@>qIK20ifsE_43vD0;+9(5XQ(u7Vj#YCQO$$R zdb_pPzO<){om>o)N550$>-hBAd^EqKo!i6#RB=KqzlzciZBg39SUir;PbgdHB@xrGpz=YW!^{<8P1wNXA_1ThEuu$jXWT%1L=YQUFQW_~_2rbEGET-PUc! zh{+Eq61Xw7;3mcrTjyVCtgepi%kFNa?atXeFu(4|-SkFKSU0hjy$FHB1Vt(-JHBtS zWfRZLi=Z{-C7)bYN%9&z0>~qq=#UmBCNu3sS$~QwK(aP|Kpm?}OUaFsvYMS-N{&$; zP4dbnUc;D0Q76}hT4{7Tsf{~q(sWXI%U%Tr-o%`1w5VZ%5V`jT*1dD7W{IVXS6amd z_pFBGh8P5pK{heR79Dj{f%6@F&ijJ+PMj*nH%apgVrrgAOiYPwg1Rqlq z@#K5tJ)r1r{3vy1cAXk;lHSHR`4zG}O>3)#bT)VE7F>ZC(-}tX5bI^eulo2uQ@GI@|)t#-cUQ~t%W46O(fmNA& z3I_s8tyh*NG^-ysA^EdN1|<3S=P-OboP?VFa<{Xb_NlPG&MH;%KKXS@m^1Hmch031 zbn3^;nLjh};XHji#s18fHhFh`!nVC(hKn7Cnr9F>)O+p;p3fzKFgSUAFDNtSuE z1jt%*nMau{Wz7CLQ3;{|iR#YJ@0K$)cuvB-@U!zw;E}n^e66ar*xzg|uMFy|jX|$< zz;qaNcc;C()7~8>A7tOhUmpL$+{*_+TQHYdm5E}lG@1HzYwArr_t|<;n#gR7J@$>& zlRSZX6HsEzWj=0H zIWZ+*w<`iJp&m>z#PQ?qp3BfuXBu_ZSDU@Yz)l+m*TdvDd2#uq@K*jx={1+3Wx$BP ztPmBp^K4<8OQSl%X^L5J&uU0crJ@ED^^IR+-@1(h##->%v7d`Ma`_<{a~a5KFd=$d zFT2m$sgDP!$N9_blSIsAAQy+Wt9s@bYu51rk zpG20YX+E#)UhB3G?rZpy)XnE%@|O(Hj&omW-0nZkE4u>`mR#B0nqzhcd?ven{7l4? zFOuDWqC1xv>QVZvoyrUOGD3hk`OdNF%=aMQlNIATe^1nNDRI4qR(Gw|7uHNS!d~rM zSQ{q)$>~2QWH#9^(@$bFkY$t6@3fRbSzPrXN2Q_uKhaWXE(IWDtuSu@W% zWZ;hGG&Rc3L2sD6h>f^?9ikilb6ub3T!&aOR)QRIX#RDGi+JVVQb;zKX z`XQyhG^|5xvd`56cH1RaO$;<}_y?Xnq#n=#O};|Ym-F_35o0CD11~uO9Zfc z`4Ke(FlP@8G7os_7w0@+l6@`%I9E9h)))5rV|ra(VD1c)>vL4^Dc&6RroXP+|Ar^# zGAlYJ&dQN5UTu9b&!#m4fr%ces5oZIZ@mPNoazNydo!Eb#iM!^Qb{mrz7bREW zUvDLEp0i`kv(RkWVL2bPS@=K7ui7VCpWPot>|sTb*zje|cUx;ds;Gd?*d~iX@+rC` z0NGL~iFIK>^;xI@QAO7!glh&Ul(Ecr0o@m%1IU+1!x5}D3HSM)T#LhO<}38yj!w6( zU8u3p?GKY1eNM(YnvWJma7IA{HgLJ>@2#t%D^#frGQo*Yo=H&$B>nt?q#NHlOZikv zeg`5zMA2uJ4_3`yoNRpb$Q=J7BAgcI! zDx?bPsVrvaKnIX7vGtUK#aKQnpRx56Hx&ALv1M_wxqMo$Vc(2&pNGlIKO=)3=P$EQ zB8;vW142tAr~QX@TC@p*u#MS#3`~TQRZ2UcXgsONbfdkpmdg{aK?sO&%B1S%J4mB( z%Z!&N?L!KP^bwKXb0OFA4Bx@K|@1eh^vo!MqvSFo8w> z`?2+3bi?@D~B8#qC^JJOXLc*^@2#7HD&^HrqEe!ows^E53v{;k0n6_~e5WbU@Oh>r5xz z_}3ZBr&97^hyW4AdpL+oV5*etBai_iiyaIoQnf6-Zj7Bwjw|SRGaaxGbafEQFuBLS z7&Gak2!tYtHfy+#HD9TJuxG|F#pPWjv1CkzZrhvkkDJ8lGM1Y9m%@hy?W=hHK z4H+P^XfqvHtEHKp+}@hW=5_SQQsLT%!hFykr5}-!|2{ zqYv0NerXJnkI*^*QXf62$dRO`a*36E6e>Ve(cQWnRnAtP?&Ht_%rDv@x3b_vNxEIM)FF^ zH=qazSsMC-@L87s(MDTp zciqz`^J$nY{sTs{7yfS%MoWn-g^YG?K}JhMHbx7gk-U=v4-{dvJdLf(Lb7*51{7hm zJXvP6knpb{1PU;k3AYx8{wQNKd#A7%xdU`f#b$y|&u-rRRoU+3+&y<09J(8QcC!gT z5HU>Pl@}YJhu<>2C-< zAo|#|o5P4(^JZr^ld;KDFtK%&S0UQyj^C0taIhZMhhg$xAEx8S&7u1vlIV_~C$Ztn zqifcq(H%b@u=QpdgXFc;CxFyPcl>fB&Wjn<>!AWf72Wa6Q3c-1=&pngAYURoez4U5 zn=eThi`mRq=ml7-Yo8}9t#%iO$?ZRFt)|Jv|nt!ETwEvKHoSQdli z@$`uRsV~4<0g1PkPpo7&RDh@ouvS17S}UciLkEyA(bnoN%35jIPj}X`xgI_DvAkfN zrN6`E^pD9{NAuC5V;#fRD5y*DGx|`^xQ{CVJ(#roeU8m zqUhmDNR$~WBfB1CfXHI!J``##3;FrD$>g|#jvn1Dv*Vsy&FDT4lS7}EsgCoP*(VXk zyEh}WL^9YbtihsdlrS>JWR}bFBrhUM07WBu1UX9O%$6hkBM1QzM)ycZ2?NvRNM8mi zAkx@JpN_NU{qmo9zfDG^o*Csxcv2 zL@R1p^eSu7DKDdL{t5ONgXz8H?pn^|n{;*nMXVKF^;(YvDV)u+Od|gl8$7!3`i}P?Dk=6 zx9C2V7i|lSI*I;j!F!(RBmB8q<6krG)7dGIsVgVFur zG-O-n5h2TwTtar8$t$%EV{3nk5g#6jPNB80wRok+F|%)w=DEe z<2C045foswPQ%XJwfg!rO#b?d)@WQn#9t8=U^GW$DP**76lOFRvNIZrO*E3XQ1}5w zpa7$VG~Q?#+1nrkL{@;&LbA|k8R0u21Vk8bG=(dpWubrF8I3z4i0=XQ)p2$&WSEb` zLxFG+ns>Z8Y?ITB~8G_jJuh6)f>bOo8C3T&0p{Vj9=`4ZXrhpiT*+Kq6Q z&3uI(UqlpqFsB5OpR#-X-^*qv26ya5Hn;MK*yfV3GxA{qql|ZZYrN>rOg{M3el7xr zExDRrGoZwb9v)60%&eHBy#`u9w9%^$CeY?>nWKIy)PShZFTk8OaAVPQMvjb3ZiiEi ze;mIEj7FFyGkH3dLs zL>H%k!uc*G`XWSth~g`afGBWUO7>;Q0FgzvtKH>Vn%T)|c*^H>5qWaz-E70!T|V`0 z!{opxWT+jY(}n-5I7AOZO^6U#3fbyG)>hH89cjq6dds4b+>uNG3d(VpQrS}nn@lFn zk~>2Nh%CO|CKe`JAj=udXHv2gLO_JEgHRI@OqPcJKy2oGAc8`SW?y%JMK3&@^$l+{ zz4Bm)%u5f27|jq_3K{KD1scsp!PQ_s8p%DGaR-VrT1J!BVky~uAOngrT1J*Pn#-i* zz7PTh8EwrN&4>QT)MzIE<3|eJW&0w8e5M8QclvkP>=^Ue{ZTC9M+%O_hA)pj#d<7$ zq~O&%i@6vi-=?qwQXfB32uV_dd8+?`3J_KNNFk)k*~`=Y06KttiS3Mu4RiUh>v+p% zenIKhSk!*Mw!nzTUJaA4V6qdk8{uaW7vbrQ*wV>!UF*3b@+b@4H=<$GlK&--07a%z zKp$;{F128e^knPchT&A>AvE239wIno-?T@I7W zzaopCn2I=Un7a^p{7}|M(2!e3x%BDQrA2g!!nnEmF&Dq&Xj&>j@rfVG=Hg?@#fVW= z&5*3gvCsmdjUUR6(@wCer#=B{K-7;e%B!Xh&8O_saBFBE@fA_=v=$oex;7y6LlCZa z>Ux-biPgp@$*}3I^osw$NVkYiX(+&w%Cpb6o~;*9>xAL^y4Byae8~d!4WK9$QPKI} z)A2)UTmOwCUV<19acdrN%^7!uyahQR^4LA+oJ;Tp^(;)gjY*7)l0%r+TgjWJF!y%4 zc0*BbRb3C0$9*<*FSjxQTovhFC%}@*y)Q4=y)OKmdx?XIWU`-p1d4QTNSSwUMtmW} zK#}eZiO1cWkv|P`pg{L3^vt~()ys13<-RzJ=qi{3>0Y?>=4H3fqj*+FUC$48>P~u5 zw|jjS(Nze@Eu)Nkr8RC5U4ut>;KV*(giT(`3djB}f6js~%{b{{D&Hl9iz|v}8!J92>(<{HlXkmQ? zCqO$^+eOvyD!8`w5p*3~lfh{ulOOQt0#GIv)>jBA^S;f9e+)4o;==k0A@R6#GxDE8 z4v4&{zJfx}yqi(IGgsSkU!2i%)T@mHt<`nA9>RSdCNKQDTzj0q%sz=Q`XNz3Xo*z4 ze#kmCdip2`+tjT-1|~wuT^Nx7ibixzK1yZXnJ3%@At1u&$%#?I%$0f4Qy~RJ8vBNd z3%QnO_&bc4xX4Fh}@22muksn{b3MFkz1L`H%u4jW(eTx#siVrsJoq2_36wqMy*N zuD1uRwYJV?=?`w_FNVp=r)0z9)9c`)NTXN$`*0z(Tyo;qtrMer(qZ7%iY|(lDLIFJ z7oeC#&nS$MIWy)d&xH~YWpw9uj54rep7wlb0nx^;`1h|3cr>Qe<<3EOr!I%d-Pldx#Ndv(aKEN!5Iq#ilUqia^M}@)(REiocw^7(mSsy` zMl}Ky;g&4)k?E)G3rG7W&;p{39tvflr?i<(vo9U>tDpu%{g}vE(=70sKJJz`c4H;S z^aJdQfdbD&*P)%}a$}%F`fwq&T(aqoADJ|aFM?r= z82NZM%aq)d?iQe!MAxA{?9?f?4)wPkXO&`mj^Vz?`}KOKuGBITWO`~FNVo;|CvfNy$(JqiqVy(57$812^9E zH*BnuU(m_{ib-^(>BCNIFzZZz+fn`!{s2T7U1|ETQ_9Sj{wqhj16n||v6ZF|S|`0) z!#Iv#GnHm~Q%uq0&x$cqHbz#gcP+x2=H8kN=*G`)aUGd*cZD+pS>Au}*zTIiQ9VU1AUm5V` z(|_Q;n-ui)r|hY&2+>xWyj!>4-9NwNAt|ROpw*H5Qb#@jlv5W>@dkxOoX4Cg_rF)~#*U=S4KZH$fDQ zisWL915l_7GfqY`<{Z9CtwTa21FU0nX-ZZ^72ti1c55+crOdT=$c`V&At!~m+?A^k zl`50_=bNlOM#zT=gv$DhZPrijS%`y=7yj3j+S4Z& zrmaz09%a*|Hk&4o3AY*#+W$bTiA&NWdjM&lxSPlpSZa;_Zqh%^3+33|58Vf7U#rkS? zipS&@a%*fl+|`VaO&*dyCK;0}$wr@+LDD^NHa{zEU6!d?{QA$7Pe<#P=Bz=*=UhR?a#lcc^rXxaVc6!cCmhRMbMDQg^`UYn2R zcbMcsGiPf`Wf|m@4_K$np5kec-Y!8H)={q?oAZf~F#SD~r~usde?uXm? zI36hex4M+K|7`Pi$^=Jbx=_fb>#!P<|3`@f6xa4l`9Gba=D*sVC4;ZLUEU-g#UyD4 zWxw+|OdiB0k0vS(Z=B!w_ABCNhev^G&555kiKPJ*X6N0q{LY)lsd2664 zv#Xmn&=eX|VfYl77{vq~$!n-Y0AjHd0kS&#p}WTKl-|AF~#a?m(`#sTtS<*Mf`QS#2$t#_tO zAa3NH!*UqoO#OvbkaTbjK)%f6nyCymeWMp-+j>h@wV*!HmC+zR8vrN?lCNPIGG}@Q z%-Bs{UR$rX`t`=XMyuV})3%RsbaQ8`zcal#Os-@e_4;G?&8^)3#|x8puC*=Q#0NDd z2X{@9Vwq)u|FIUBym)4&pl!~NMBnlyze9!tip}F@%kYtaYl@w+SUEeAs>yfBTatDx z9cT3Wir&3$H|zcG5)bO=UexzBdaX2f?e{zR-nAh+{rBpg(^n@h;qm`9=p>#bP|4s zZCpkbofTR%U0;wP7rH&ybJd-ly0g>V879x?VeTpUo8~(EZ#ZGbdA>1vOQ^g*{>LWC zXPoC73)kd!?yhA@j-{^&C=#>H^W{RV=}Hqk)Br&OCdVl@6H;x)(I1SeMeImJ7dyF7 zeMaZ-`1IO*G`}N*W*q&6RF*+`b3>aqGmiekAk%EgVvxL^5(i+bnM#~zu$d7AeFL(A z6iSn2@N9o6$hA!;BN|hmkoDJMrc?3NEW%} z;eO)2olJmLX6%}6AbXe~O?J75wabiMvkh3RWu_;fRgwG;bqS#8PF_E?Q5W$rI%?*- z!;aTTisbJ2$7a>^%$RX36Ry9rO_G_Y)@}9X&0`1Gt5;u!_T>f>zA-m7IIyeuY$*6+ z@>>=gHhhyMS$^5#0oE3i-$Ix%aN~w?Udx%h2NM8_)9#rXl<}ZzxI*61}>n>t?BMfZg4#-S4)nSQB=Ef*WH)NG@%wnCEK*bNYM zV`jUJ25t?<-E0t;Wp;8Vo+HP{@&eb*_84Zmr$YLgL24 z!0msfn>+j5+-YxW`kz%L*B`rYZq?0C-Tx=zGfqBDl46IJl_%%!xl6B0k$&im zrFXwo0gAynvsD5?1ZsvM%PpdkERkC_^@8M@ zaW=$7K@0u0rlf5j8k>7Nd5)q*L2W%de)bQQU)LMG?e5h1q501gyfdS6&4=V3I*L{q z*RvTn`Ng7*I}SEE!;o!7p1*G+nS6yh98gpyZbYzEzBC6VfYm)dIg<;>MVqGi6g+#j z6x43v7_Pf!7(nz3O^gG{NicYf0E9NovD11Li?)f;JuHFmtPUT}e5 zgxB)fK68`?+8=mi{otUho4I+6uYZTOdhEWt75x8*w%UXq1VtiiR$R<7;vs9q8Qbbf zL7Pfr^b5~hkqYp z4dC_1?wea<53OeGe<}1_P&Q9tR-V2jE>9-}ZS!>G3q9>+A^ZQ4r+^Z6w*J>>WNNxG z_VCYez1U{ys1PyFIBe9qgRxPl$yW2l*bKokPyKH+@jG{0^~vZg!HmPkY0}hxvXA*+ zZL@jC!P~UpO;%6((()z=*$pVspE6Sso)q}lTQ9y^Ca%e=$ab6T6Vf*-0Y*oWLFV(7 z>m2N~1Ia6XuI#^w(LX+?;J%nRynN(reFvLTlO$^PPFhsf-)K#+w`hXE2BZ9zJE_ru z2V{h1gb_xA_g3J(Z=O}Zn`s*&om_<*Y%WYp>=`@wlb%0}J$E?e+j7A5MsM3YBaO_A z9sCJ0h6%LF?04AAp0R^JA!M7&`3EnSEqN~G98mU7+_`qc4*m#VjqA~dnusNDCqqr5 zjwIpaN4w2-b5#$F_P6>I--!yo-qqM+pYQ7LFzJ$aNAuC5A~yMndl15;^*6!Sp1=mK z9Qs?EL+4B^j=_K2WVj}OQt`s*00aV{s1yS zWU>2{DAZaO^50-Alj90{@^Eo0@mT0OH|c{qKg`V>)8MoFBa+Flb<99w!3H}Wn(6hVB0XbEiKve$R4z2ZxV6K-#l>2h*~z!DlgV)f9iJziWw!#l!KY#JZPq#N zuowQXh~jH4Ph=@%t6vmVYx$6Et(8S1IgxS=6q4h48f&hA>=eiVk;T_qIkLcD0pax_ z1Vk8JYY}cOut4&Ew$?IyB8cyK^;;d=I_kqPsbA-48ecxUKO%|mc{vgrzC3o_|24@I z-}Cb7P2H8oAXy;~0I84fdF4o~!7{47PywQf?|Fq(fxR-i4s-zd65I1quzK;|=X-LB zawW_4_&Q7>yPg-H)a_>5q#Y2h=yYfMSJ8;C!#t6tkiTwi{T1Ky@*&$gEQ?0+SsD^R z5r}WK@-(T%T$&|cfD8~>d>xh}%bUy-ehETAgwb^ve8y%z^jqPxEdS%{utCGsVfvu0 zW>~;_j5d)obr^pXi}*Usk=XF%vHw?89p(bI7DKLyL2`deIw1A&by$wX8Z4uFAXI>; z;_I-GDzH~ZcRF+c`4U@)DcG9HYny6!v2_?^3O&9KQ$Y6ITsU;V>Xkn+b(p!3hs|FR z#n)k;$Wq8(_bsXp^C71ObJ0j{L_PqDKztpRr%5g5$!-c6AhP&6EJv0%nJ2sjgn$U6 z>oE9?&3x!JTZeJKFr&G~Qemp5JcWI4jKNG}X>Jx}G&fBFg^c#_0*z*)V0vR&G?J@m zPJp6}7SN)=y3SGjOJJ8DA8-9QdEG=rOmSsEu4irH zOP)+M0VwyHvCkHQ;7#J1f?ymPeB+245CbA^&4V~|>p1x$*sMOEISaz9t z#hSS=XJr(oInO79Wli=`ApwfpCJi; z3T?^cjaFvxMiwl!o>e06@3-DxEy@FVnw9;B$ue@k{=OYz369lUM4^P@r96j(1;D+V?{Xh<5TS zu{hdsL#Nb#2Q?t-*fYzs6wVBs5hTFWbwYIJkoSLt8prH31O2Zvv! zck4kwRO-=FMLtP_aBZ!Q7@7M;*4%})>?1rmmj~bJsk-=+Z;<(bqB{BQ-Whxs&`jyJ z2fuJazKIY(LJk&Hvj;S(knxfb{K|>>7GeO2nfQi!T%u%U!%(NSyUCFurNn!5)Q$UW z%9wq<7ut<}zp2Jp!`r&QFzu&VvK8J=S0CtbHf{6V?by{ptKG%*c9Z=p>^UGVknvyZ zT-dK@Z1;_)N!m#d)cGMU6bguYvpA%iU6LhIskp+Hif0!Z-;E=>%WmaEo^z0hTH=vznxB=LFGkht7zuRC?$MIBI`1YBwK7W-PC zsmUjkfZsy(}4jghoIbFRO^g?y_0nyxKV667naA1ghi2)hwHT zjyj+^>VgbD>giGkNZs?Rk-`1e@@luGIVe*~jz%C*A%R+hpSkZ?1OgKHf{LV|1g^E& zxXUEr2`B`l(7w_i--2pA-e{XOvB{3>MW_R%Il}%XdlA8}hsg(yQKYYbF};WfXQ9OR zA_5ZIw}wc)i1!xJix>&qbg09;a^0oyXSNq%jw5gGukUFr>}@iCYodQcMLz+Q@oowu z3~dX2r;t(eM4J+(H%iqDa#C)B6hKlgj4CBFO0g$oI5js%4InkoC`HX!Ufl{wfFwQj zNK0z;mit&J%dguY2auenmnA2cXTOFbK#HDKnxe6My92TS$tt$8n=*t5{h!OSJD~)S z5;v?pa;05La=CRE!~kXZ2QgzAwF^an6h*ayK?c-<&xdPr*5drCQ#ct(n|X!952P2| zPlw4r-e05Wt9xqyj(@PfshGRfF0&dVP+}?6@_oU!d>0iL$7#;@?Age9B)-=uz6qe1 z{%)Ci!qKwHiMOH*kh0$?Rav8NCT^TV-hnPax}H<2u7&QJ+x65*yB29c>C&33YlDOJ zc5AOz^PAj!57Gchdv2+zw$$sc))(7r>i0Qq??oFRZRM7MrFESl5Tx4sPzFd@+-#dK z_UTM(SfBY$^7PtbSG(2eE6IFzeh^_m`NF!(p|B4l3@BaLYO}wx++$R33cyDY21wZN zm0AF7ufw(oPTWTk2S{AGb#1rPtgm$SFx4d5$I%5ySGgrqy82tqk^E%~|u+tc&}2 zZ?YHV6(cV__Wkf3+w`}?2({63({xP)MxDz&kx5yb zX&iK&^`3-2K>Ff(yczY(xx3KlXfH&TtC{?L3fcf^i|bbwplvZQ-U7maDhOL@b(VZ? zE+Gu4g0NN~tc5T@!r~rB6_AxW(rQn)+ja+$Td%bd2uNVu)1G1kF15Q2Z5SSyu8TrI z3QMm^l!P2s5bEop52#2Mua62`M<5`9mzG@>>+GcU_Mjf*?*Zfil6Ou_H!n3{jZd~4 zHMMiqj!Ou$UHc~HFZ~90r+;33yeH|Q`JrP^H~*IhcWxUFquVb+%3U0GMUoBL_U;H? zy}Mtxy}P(+`z+k4T{|25pry4@N=z)D!ukL}F}%2_RG!xCPgWB4<&35UGy&2S_q1;2 z)UhWq8#PO)0ZL3EJyNhy8QNTHp$U*CyWwumiMfkS*pkzP%^BY&!lTBIGib1Ya1$jk z`1LUP+#6L4A9^7V(I1lSFBkt1Js`0K5+W7I->?NTt`j#B__R_P{wyn+!Ce>qGZp;= zP)^4!#S6kV88M}hhCiDqEG(`jht5JGAc=9~!jStg-ShBglO>w%=8U*=5C=$H+&aOK zHBOw_4$Y`L7j=Nt#WnVYs?!=lBkz3V0Ts$wc4RW*9)~!fLTP7r^D*+Ch&-S|#?yux zF7cj>I-o*{$95l1UITeRg%VG%Ry%czr~@jLcv7bw28{ETkq1;up3mC^d4S}_E$S_- z&hu}sn0Jp&8m=M|kjPu1UIQqYjX|xXIGOit}P~`LtfccMzY8KtKZHrXq_I*xJ|Ps6&&0m!c1l zzKV4In-{D%e9?FT@&L)JNYQBamR#ChhB%-?;ts4iaYMub5?7HbuX$k2cMo5JI-o+f zJFvETs!P0=A`hsJJU!(|o3mFS50Jb+s743D$g3}gRm_~f$tq$gF-+GE7Ch?X@P+A_5C}+MMf&`!T3y## zYipYVQ&_%DQZ=eeZFYA^v-w+S1gevYo#wLMP~PW9PTxf#AcYla163d9`iI{~ zB2b+~T0JdgTd!f zPn9}A>MByr^qLE;wO&^p9G8MeqY;qCiWK5rbG6axET$82$08As#EOigdfj!l-!YBJ z3CIJg<3a7M<=4=hj5tD~-mIG{>NmoARF0qTGXsk@-(JN!3B9UyfTnR)B$ zsb8}u3+%7&8T7QHnJc)rL?IxB6)76o+P7ap98ewe*)vZ}o%gG#1Ej7Z zRkCt+?LwEcw?`gOC3)+e1t;&0$O9y=BF{DlJ;}>I+q^R>0jZ4INhx@8Qwu)3#F+Tr z!GXBvZ3otxz1C{8GibCo^Dad2^I>wr&Ga(Ff9S=lLnl8Z{6eX4cA=^)m0pMV%uh@j zzp~KKr@jvn#A#QsyQAJV;24~deTp@kn5Lvlns4)B8lVJuL&YVBuTYqL{U5{w691a2 zi(fDs^cvkiKsO-WS5#ehCi}<81|<8>sxI4X+`Q6jb+pBjN%Wth9+3LiZwK|Zfi~Lz z5AA@ozqabynQ~XB%m}~EnuG(}!7>t_ZewiJAA@>eJ0$y>-5}ZsKMvu*b`Xy4dpW!Tak7P?y;7+`#ULv#buUHKNNuMNKY zVT*JV)C1c=Juc6wzd7mwsjqy`aj>F28CJS&&GH%J+zRo4#Q%BK>zP!%Dx08^zYTE! z6o(Q<8^JER!Du76J7KhO2P6aKcqS0HvE;GQ#+?ukNPOf=PQf_rurHN|zw`ULh05KY zZxd2_7h(a4En$eUNwH&Td@8bmk__S!bb~bBwWqDETUYgrcfX!&@O;fwD)&G9&zHs_%_zK&ngVa&1=iYO`J6-!zA~tv0mbq|T8s@@vQkB)^PWaFdQ< zi%j2ZxgU}NNxr(eK3VVdyS;(hoPKke*|+*?lZC=2)qjg90E)t!wo?>%o5IB4!NdUA zW-;iqq{PJFp~L`C3@#}#57xTvgZp>_ZB(6!DnP1UcH~u=J$%@BE2zTLdlTBpbC3&2 zZV59hskDvcjzL7nP9ClQ*TBkiw5cC?KIFRM2iOt86~p-Ux+`rR@`u43r}| zc&ZZEBDfohcg3!OWI&Qj7>xzuHkLe=-iwF_B)){H*{z9hwA%~qZeI_^O?|hFc0k%o znDW`8c5?!n(Vd_h*dDsmc6$}wz;-bDo>r&PYiZMOXO=a@1KT0dHCj%b?moH!>8^YM zQ15g*Y!vSj{~!?nwu5OFTT6P^(Iosu=mw>9x>T1JDe+JTl?U3Z!-a$)IOp;%MZa}(AnDyD3*O$^U{Iih_NOlQR5L=XO zHgDFd>anHDDfNns#OBl0l(Jnpp)?M+u4B>!;SH2lt z*4q4*rhT0DA=-iMkmxH1*LaoA)QK-aI3VGbZ-!d^aBT5XqyyU_&D-{6Rg>ngKsX@b zl^+zfn>}AZFGn{Z-LI>9m!%!{Sgt@hupLr-wY%s$iLXO9upLrdZ}nxx zap^P<3>r&jHyl$yuR=T^@s+O>8O&*~QCFW|jdWl;I9)Ht_`dly=mw;_gr`1R>$T`S zL!IEhbg({X@)XD={ac9wpeR(n<8?sG`SgacvHLp^4r~X{T-Y4=ap<+^2BiBXN4`B; zZg!eIExOMp&)uB~6VUHPDj=z^s;JbliRbqr8j$EesjBE+b8($hPmPm5h+;sBOL)BI z2L=7m6KHoq!Pjjy>1HN0{b%Li&CZ znSf-z;>a6#Lz!dg`WXZR5?sP#%XZ^nvlp7z-k6ZG|B6sRLQ8mTxe1|TY5Q+T1|+$J z9_eNzHx?UfY?n}P>|3s{>72Gx{iM!U5f5x5@uzw5-#|RD4a95y&!l`R{+oygB>wUv zUx#eUHluF&7Mg+TYfjVoyJ!ZgulerY*xyGpAk8JLdEJaR7I_2Q^o@RmSfIjUm%P}Y zAQq6=incG!)jiF{#a2h#vzYY#Ig)|urteakzDHdkv4F(Bw3@Y=#A@d}le9;p7O1Y; zR#woCMJ-TawV4x6KrQf`;rgA*7&L9B7Sm(%fnS<>GJ*jmZwW)`P08(OE>R0VwZXP? z@bwT4NOVPe5x(b>_Bn5WW}y0-(_X}l(F{~ybJ~lz8JYoUF5$(9%@`VQtaoxFl3Su0 zkm?c^Q*1`Hof^u&h4L%N1|++p4PP&-oPQOyfYg>SpS7t(4yxwcBNvd|5*}=BMsB~| zqR*B$#U0TNRM!;!LE3k_Girg7Qn}S>HhT3&d%3x%*9c}h+vW>*f5M#6-Ovq4cL{IB zSb1B~JvN1OcVYl223M8PYu<9o?`kY2T^$DRdLj2hKOp_rYzzH+8iR!uy=2v0&z{cy z2C)DXi!vtiww?=GE9|EXeiQM4#Fwz%c7{T**lH{0+k` zp&i&Z+Vx7OOZSJM9gz07Zi}+Z>!@|T*@=O=o%9vBhY=A#5!oJe)zJg%x^~3X6H{NDA3w@Y17>LYL|C!UCum; zxB!aF+qOkqIGd@}XzLxA`e1!wZ@Oms(ZmE$Otwc8x3|~z6Eu%SJg{vF$ZBJ6v)E3&a3W4BoOWswNwQk&IX(8o;)RhF0oP!{)2k7SRB& z@b9knsbK;?55a&0m+(T+rUZ9cN!RN4)w2(*@qCm6)m83QciQbx`3q4FNO>90STD+eqej)Pgl0Q3H^ZdmoRU$)l#s~ zZLhC(RFbuQsq2!xnHT_yK?zgJTaQ6!p)sg0^}4Itm-2%3W+#0$>Mw{1pqP~K+-|Ee zS?sU1)0bM`j&@+XXb&9pF0=#NL%X^Xjr3vlU!on5_7dj4x9XXtmb%I#PaFT5C;*B= z2~SeC90m3BG$rF|pT9*susyuP1ZCU54gCSM1KUUYy6?Sx2jSOm?rK4QP%(XnH~@-63EMYq)l$9g;5U4O_C2Hn zl3v0(k*!KMGv?_5Oxe4zKO`D}qOlD+&;zaia!vC8q8yO&5>{4hH3LvSUI2bZB!KNv z00!N)x}R|S1=0aY-v$%^n)F|-vm3SV6#Y_9`T^>h~(vJ1xy{ z*7b5lzqzo^zA3H@A5T1h?U4uj!cpW&Xa}~7_FxowU9ps^d$OHf?}J*Px(U44>a`YD+D-rR*?o}=NOB2VHEbqrti zB|I?Syzuo-udz?Z-s+6ura$iXY{UZ+|NBRN1lw;8a_K#oV2tyS2uNZHdj=j>;+Pp8 zgIGXfOW0wX6Lv?6oV_z4U3ViDkkk@7@SBo4mcDgF0}@?A-)D28+sy;~(AC3xkPMV0 zd7xFQ{XuIXxAD4$M*i*uYpfs{kmNF|v`k!BJ7jl5$zvATi+DidOPEj$Qg##Kb)us= zqtAJzgLYs$XkX~|dJEmAKYHZ?v;)#!!v1DkOZSDYe}`y*Y(TP0c=EDE+3Pw~(6``y87or@H^2*mQE2=%a+WFs4)jbXIz;;OX+%c3Fqa4@{%2%6OnCjPcJ`3f5 zl$Y>;dTWJL$2zSxQ|Z5pbYMGp-AE78{r3y6H!)%H&k{{ZcPw3jgc(L+tW1aUCvc)2@akI^ObA0ZWx)Dp%&o02-#xqTU; z0f{c*Y5(R#cXcKQ`h z4PVyV&7D)!xnB;G*ZlI)I=vb#$DLu1!9vEvijrXoR^FC8=VvBK4;B^h?G7KYprqxa z`V2)i0Tjz;l_n-EKPCq*K^9Q1tcKpZ(c5Nh@n>W`8(Dy4J-fWrG9@Y}?70X7BU7uo^`4$&=<&<4x7$ll2T0v> z%1g3TojuOaB-~4p22@1aT9a*XjkH%F4Un{pOH4Jrjxo^ML!;?(Gy&4|-10Onb=P|> z?Zl&(kF|}T({=^gfO6AoxiQe@p-$85&;&?RiH*9|ROhW*lZ|gc79d%_TV6KO+wH8c z>V?`>Z?LOS21wZ@JdsRT|9Xl)VRKfRvTk zb9BnIFngfg9@Fafy{H4E?)OS8r&J#HluZWWE>qu!I6&f_UZyyv{7k*^K@wDVTzPPo|yx49s^P@-uN=`B> zZLPcCne5}}0;KB?O3ccUk#OBM1HOg-Bq{-^EOAt)_g1yVh;N)egD9YMQEiO@Tz-BY zQGi61*h5oFsq47rE7yNT6(Ch5cC@8Rbw<14`~UxjEI_hKY{+%CgkED(qp3cv%f_#w z43M(lj+st&vzWE~Z06X+Z7;6q`y=jmZDI!5|8|%>?s&~1f3c%Ek<6c_Z=nPeZ8a4y;3bCLeCBAoz=ZDdc#hisC5+T?cnBimct-x{oF1;AoU zM`!TD)SiWUYjsVNwb?-=L!T&`dAc5yZwQ{~J*F1xIj?Dd|It5nuyX+xBhSw&^Kz#B=8?UQ?<< z`-7|j2_x861QS59ds+!H!ZysLco#u{1f3C`EVVGMBbnKbimp4cbmMN5{oyeA%VQO> z(-g5o$DY+V*zEN&)ENb7u))hwKedk9S5UaqTGuJ(wYpf|lRN|z!?-6bK`Ku%_Y@_e zuT09{2Tee<(P!7BX|;XqaBKwK7eRmo#Z7s{3gT#&PJgZ2*Z9~-yFb!^lGBRal#QSV zA_yostxj7UORLk729%su?A&b9>I?({C8yQh$J6TJNCQfgw%A-7tn6>~&F&-nQiq+5 zG(ghgCXr_^jf=hRnoi4g`S?f_0a8>}CF&HVb=G-k0?OBv=GIHzhE;DtlO-cC%fqoBf+vFzOO* z5Ap!Xi`x`uc6rQt>d-PBsOV3B9h2EaCLoz-#`Ku2%9{P-(qOd1dQn`*GJgQ~COXf# z|1eD6{{>Av?thv((bql8e05uQXg!_ja|+gG>C~yd!_Q6P#*M^Bjz~Mq+|bA`vw@ra z!pGPq#)V3Z1W*FR&0CGoMhgtP;3nUmhEzaOUtDlrO&zG@3?xZBIA#_#mzKL0R=VwG zf3Kc;7^N4Z6p+%$lAq^~Pt*l%Sf?oxBlB6v1SB(VO>E(LzsT+yM&$1z5|GHa=aj{Z z)bZv{qsGc{oV-ZYx9zrQly-YVp-W!p>k4T_;naj1-?AJ1&x3-#_d>GxW<0F zyPS1K--b}2dd}>3+iZhu3eY=|2}oweI`-!HbR+WJhy*H_>H8M7G|LZ@{tBUhgjQ^b zY|n7l?2gO$zdsTFJUt<=z^??)^ku@$T4)gtjyrt#_DArp|yiuL#QX{*(=Ir@8a z0u|KRT*y57kLU!d=h56-r6%+L8L@!GzOh=JeJ7Tst$UmM>-~ePt4$qBu;AX@b?*HH z5dai{$4AZX=4PU5wxLa@Pi;||HnSSJRKgxSzKPjh^TT0s)n_!zd#d8Br4sg*A|JU_ zBGq7n*R1Z|pPNLDTq==e&U&) zqJ4Iusw|Z%lBfOLBx>9%m|-Liw<0|EyR1?PZ@VIdwx+ z0#X_GfUQWC?4aS2@g@iaBrtAc;z9*>IWF8uyg3p9NsJqQ7c5cl(`oU#Ilj?k_N@>K zNN8MFyhx$it4aNE_qM#zc^h;Bl`kZ&mYaVM^Wsp@4)|r}Xri zc0Ul4*>^%BAc=7kY(<)~*X*w})-;AS8t;Nepi+kHb=!JaVFd0%ARvJ+D72ZK*00Vb z_T+|emph)zC_EK~K&7&|uXE6voGNTI-UE$5wNlX@6lN6O8-;)r#?4IT^6xO~B67c* zme2beYmEaT_fO0f$ZSQO{!V#27 z@z)~=kf6Aw>oW>63r79nc6i`Q6ai8c^$wR2R0~so#9na|lkO;^jSX&pI85$xvSN1| zz1)B3*mKP(Y4PuHWg2Yo^7uQg$Kxg@vv8-G-2EbRxxL|H`D^TB04NXRCMIWA5<1mtxc(#{o?{3 zt-<2<5XsK{+PET3e>+V6{B485f|f z)9o-ma?&1yG(ghgnu7wQg=zM9gaHzEPRuj+R97wi+pqrIq}*x|fljYCM$T(=(Rz=fl>my>{v#?NtVvA@ zzZWThq{KZB^?5tB4joC0UFzLvUa_vt{av!W4=sSSJoU&Xi_>Bbm(v8DNtzEL2aue& zHwtG>8m+I@796T1jh+vq2PiFh%uaGXc|L+1Kyn@&SN{xD^Gq!Aap#Ws<0m&!@FKKa-}Bo#TAqQ;S9Lv!G7P?z-ro zqv$7qVjcHHe>5YeRkWD|)n@+v?eISb`(T;3z&j>sp zfq(=aD$+So0{iPaS=8uz9QuIj=+hxHnZ75Y50Jjd8I-_WQ5kIJDNN!$8F7HbJ+B&> zYfk|+>Kdp6DwK3gq!@9Fhy$vVbU~?IMjcR{r0WmVD=0&Rf!novNEV3(dOTwp-~gYR=7Q>!S^jwzFee z0Z&`=AEsvXhD#XIW0=N|98SO5)ldrWGq1Sx59_{(|6`cEH$uq4bH+)@T7LxJCA`K;%T=n!eJAwrX>5}CIN|pprYP@nDsSzzSY*$)<0#pfkDK>n@>(s0O6^PphqZrO{jLYyVj7%w!V$B}fM({q@zB-flMb z9@HVSX|lf*?SQnuq2k)R%k_SDX<&xgCgER!c%b@DU(M`tIjVu`s}78E1*!q5er>gl z(r+!Vc3T=18nfh&628`6S4YYu`Bf+fq2W2T=@2@e?-~f^SuD zZG3b$anL&`#EW|x{llL$mCE16Plw6+wHk%*da6d@$2^D|N`bQrRbnYL?mlS8-5V|f zOBEijWlrNcHXW4ycN4)~>17bzQx)9=P-Hh;nVJSryqsNi4Mhj7L36cUcR6tnqydt) z;R_V=mDcLC2C1%lqYEfM$+WC2mt-}h0g|@idWE?rS#~IiHg&1PTg{mlZCaHGPHsa1g93XKUZWMNe#0?Iz zX@-$^4)TEN$a8yo7526^Ttm3{he_^oBYpEuUFG4XO#T)J;HU9!+)3~*$ zon~7aKsb@lKqMfMFDr8-78)THsXmC&}(UDY1VzBs=CZGg0GxYz95(@ok|yPcrR>-={a zDgmi1b;i;7Pq5U|`E#Z|93l;nv<=UwI06aSncmpE1gSvvq>k2zFGVUKsih8KU52xV zxykNVAPkVO@|(YfUbCTXTU$$dk*cpI(22Ypk$^;QxH0PdJ-I&UE=eI1P&&ffX}kiB zKs6FF)wsejgFYc&he$vo%OA@uHk)heL8e}O1L^>&EA?TADJ0qK;#KGZq^tb4Si0zN zIon;0HbC0SuUHmaOG{4JH3$PFY{S=<=U!$PgW1@(q70C-V%7!4jH(vb*EC;4t!LgS zrLSNg$+&cU2WkPS-SBLqxu@e&OZ$^g8u(p{OrTmaN891|AQOsaYE_%6Vnl3Rvh)SRuDtp?CaIw|j%d^&%#ie^Xl^;eW zP(77NUx$|1-r`442}orzFHFQ#ol9X_uC*5Sw%MA(bZb9~P(VVxDV)O3 zqY#k7@;lqnmfvV+Qq|kiyoqlOzlusgDmOe* zX6_xeOyy`7=o{z+s$t8ex>m#V2R;?Qi8?^)%CERxby#0tTT~C-m7H%O5s<|4hpE|W zgzusYkggY({*WMh4Co&c>8)g!g5O6ePzejtCfAcLdw-Z#??9nWeu6we^2#6ax4RAB=lVIq00}Fs)ITb{rJF3(C+m&T3P@|Iiz`iQ zVwd1GSJwu99Cb7F0n%6gvz3u0f-b*riAF#g%YR5UqS0scuOJeT$nvL^Gm&QUA?uB~ zB>h#?0#aLkWt6J*iFteE0g_k#f|pEQeR68v5xIcmmj67z*IZm*@S~MGBMp$W^6Sc8 zb5+%)nec8mJIi_-qTO0;`6;oTXa%IT{AV3b>sn9e+2my24Vi#smcP8oozE$SdwrhY z9f5!Zmfz+`;K=&0d!Y}IzVf>ofxhfXjIW4(1F3+dmOt9+H}?5F{!N4d5>|ejsF(02 zb<`e!NI)XXpSc?q>GSwOs05_4{Nj?S^!grxK0x})f0Q1+IrK1;0a8|eyO*0Z{%xcI zl2(C&yVBKZp=KEP2!sI=R(>Pbm#}m`Ld&|FeqqU@kO@d;`P13`)`iV_x3{R{gckF| z)<>fgkk0ZuvSaVwJQjI?nq=%X23_Cq_0R`MU-=#DKp%CY?-H&f5~zw9 zeInNV`BA2?a{!q@Rq~qh+|b?&t}pgf^a0XW{?lgVbw^`m^>Bh^LQh8`Ac^I7u_dwB z@IBdQA`OtV@?Y#6^jfPyx8ZjX2UH{7dg{_FIM+P~X@I1aKb{LW`FI}604XcKx4O;- z*$aEk`T<|@Js*WYH58h4AqdP~pn4$+0Vynha?9*Ev)Ei}=&>oKLt5KuQ}>5R1thin zXQxK0Ui#^^ntfKsQVIHOe=$k{DJ{QIHcGYdroKn^Y z0Ld%0m)O_aOm>e5UvyA&Jeq_4lmonvzP-uB!shyTiwoP5BLcF$1pke6WUtzpB3jrCp|a|skj3^ z0y2AcC4|~&^f|vU$z06)DkCI^+sH8dsb2%DMNQfQF!;tL%O~&yAU_nd>s7!p`J5d6 zfLH6AJ@!OR^L47w@PH4Klb=E|Ajz*Oq$GtpCLX7=Wyx;$MJ7?$w9V-LEV=>d{?p3q z?r8f+p7|Q-UqCt_>BVfwS$LA?lKM;N1*+?6=3K%g{&yq;l3d8v&p`^;g3pJm4mUiA zJ}n1_+W^$;rJ%ZclV>scpAVC#+*nC)muIS;KK{Y%$DlB%q#spGS#crS8X79q&@Zz! zbTPBRJ|Y{|dS1y$mFJ^u(_xp=Apw*E#SD=P(ihgpCdW=iDIlfAESW1zsjG$?y+&tQ zb(xWS599)pTTor*GjyZ2!~bq_#_#fb_BQ%veYDeiZ}bAvTTlz_brhtRoiyyTaVNQk zWI&ROS&>?_Biuq{V~G2q7N~3j8?|nooss-oNCqUin6ZE134G9(w+EvYkk(@Mf-PFB zeVx0l84JDYWYYJcXa=PDj|*>p4%>J4Wpjf%VrjjtJ^GB;GZ70&Y%!ZP7M{Qo8`}3Q z6a!LR%!c$uE7lwqGg#ik=O7rUuHf!+DEM3i1C^NEI!E!( zrpi90N&*yC+%gFp^bE5fPSF}Zh%{Mv5V3&77Sonx8sf$JXOVroBe+p~5sCpRetq$7 zJKTeYENWAe*D2o9(^hK>4eeFuw{0@opMiEj+KX9+lSwKpwKMI5t}E!5pc|0xV)_qr z(7m7o6-jcZ`Ppa&r1_0i^@(5Xud`>?bkc0yZGCUd@?0VSC<0ejJpxPGTX2w*e<|_- z$uH)C)f_w%ruPdF3{+XL_Vi!!rSdWa0}}k^sv2Zzy|cioB<)+Uwx;*R^}?J@{!P6PLreY5~2ZA**vYlJTFBsAi=M#YPxGlI7ckz>Xla@9FXwJw*L}7 zsY<^b?SQnuuEL2vUYlQmazM%}+jCK>v;9|CslN{0K*epoJ}UeT2nQtmimF;gyK(WV zV$eIk3fX{U7c+}jV5_grp*iQ>G(1oNq_vpmIR$DBtF&to3RF>O*gt&_LV+p@4f{gxMJOPll^d!| z>I1zG!GHu;uI`%B_xT{20coz>Op`Q^_jx{yVnB*3SKChL>wE;gKt*jl*2noMf&mFG z<}HW7i^fL4^Ne~1WrS!x&y~$*GE^~ zH`(JQF*wTOYs4zes{~I0@Ndrs_!6(vQKKjKQsSoo{&!{rf7zLA<{Q(cNzI{24iw;! z%=+kd>pgV=;vJWwUEf0N6u_R$j)v`yy}D0PK`kNvA%k()y(YO_2f6Tk%m{ zQLt|!Xo?IJkgYS7r3&^d37aDQu(32~I>=WOHU(hcmhK^Xk1z@LqkWy-(g6iJ>oy1K6+$rzv%f*T++IJB&1wf~K zu2Xgz+B<$XQBweQ%IEh)?P~_#N9+_CC?>TjRZQ+7XbON%c?(#sO)XubV1J0PDY5}u zk7n;DYzn|md!?*RX=n4th?)YZlewpQyY=rVBZY|x$4nnSLFg2Ko^p2;pqGmHn4{-# z{xrc;WCwheSIdbp?dJ%d0^rl$lB<+A)1WUBJ4JR9-g9z(h2SXwKIOBZN?~iM($XWA zuM;>$27qG{;Q{{!fl~l@%I7~7oMYFaDS$oY)wAwY@bMXZ&s{x7ow&B>Xf%A-Uh9|6EsB@lG^Og`WI1CWB~Q0X4A@!R{}K!P^a8y z*uVl|U3->yB5n%cPWhOy(Hd{o3q?I~+m*;EfIQ_@(%Z(j2SHP$zi9A$iJk)Jley|=#@F}mE-lEqT1Wf_ZDIIWHJNnlUEd|h~bS&?Uj@J?_MT(Qw+rfV> z(NX|yGPfNi-dy;1?w?P<6abveJv_++wl~>sB3=sMP3dIG-kW+M;Zgu@N~@Z;L;oUz zrARSYv$f`#1WN(1DQ$AG4@mD}DiAG2ii@pveqe%dDbfqqJ~uE$xD3>9Pgcye02QL80NRwcWK%_b9&LtTDF8O5-LU@%MuUJU063+t_^_iFvxH5N-XdJ8 z6!eaUZA41}w8`9(nD|&Ha6sg8BBlW1l#X`ngCSQEE=8K*dIv(TCR_@@P3hRzcM#-S z;-vuIls3WM0gx9EECs-(bbMwV{CE-3QUGmA-8@|fKCUNbiWCAgZ2)a+)B_CsV*Jjc#l~mcpEWOq(7lOKl|GWngXCxI6B=}qOpftL>uF$EB( zw9gJ6bh($1DbkzBfdel05itc2r*wkn9c=k1!BPNhO50-pftHUGFa-dobdYS_`tT{D zr2yKLHfvqSZaz!Q6u_L)Mk09J<_m;O0mvzxm)gf{zD&3j=`F+7@tUs@Ed|h~v_127 zGyWgJQlvR)&EEY7iIyV8XuV@J-yvEGpiQZ#)pva6A>yR~-jpsV>ig)e-NQd5Y6_rE z>4aaQwpPY}LeLbc2W>5e{+ysG06L|evr1`iP4rj9Op*G8wwCOEOVAVmozjE6DxrIy>iAD0rU2rU4v)O^2s`j&Llgj; z(%F-BwDI9YO98Yg9oE}N8h0UFiZsLZjxz2}xDP z^|w0j8Txsu=O%Nj?baEmUg8I|3gwue8^nmqywY(ert$r(W((iXTCm!FfRx#^T@cDB z@dd4Gb`&2Vykon>((@Bq7SB-}H!scNKA&2(G3x*3llLSf#V$jNxfDpJ_hyTM{mm_r z`&W<)1-N`5Yh2WrtLT(lsxV(gIuxMu{*2P`*jz(46ku~-M%hdk>JyFWda1fuWzq9U ziUOoQlwneGm?0|Bb)-ZAO7~}!QUli}ITLw{Rhz6Rz$&XvL!)Gxh8swSBEyxbQJZY~ zD$`3ziXy|LSmb=9ZXziPkos^&t5b6tAGe;am9Z6FG!d^PCkk-7D`T9j{`J+QK>-?f zW{if{ufCQnD8S-<8Dr7apT2=)C_v_aGDybiao$WS6rl3%j8WkpHe6mMD*Ic>gCc|F z3p}uNSE-eB%XJ&cP-HMuX6jz0znwfNGRT88PEv*Io#a6Q9$A~>bPqD`A{z>@$y&eI z@Cw)6q(PBI8r~TBeWXDF8d>WYyT-=%kPHRLWNrT9ttOdHDWEZCrF0^bTZe|G~w4R=B+0B(_}*dHvgNk!KJD{W>N`9jWx3Q z9GOvoS=L(ZuF3xwNrnPsvgTYj`J;wvUm+I?aLJmh({S;ZwXc&B1t<-9^`=_j zS8%vy3%;PhFK!4Y%&$p?0%V5lsvLxjv(3quOPg^OtYGmwvY-HqA$Ny^u$V4XaA(Yv zKS%yZE)?MMp5czb2IEo<6s^CI2nC1?c_=vukQ-T@yST1oX59DO0($PeU;|# zWJUpI8EVWFGar?IkqQN<40-xLNG4T~HCvq0)O0gnDKzV)t*Rl|aTataK<8cAsXQ~a z^0rxikVmv;JCOthNDSGBF-V@Mt}?uz*_E6qz$rtWrs5RnZuTG<3XmD{jAafP6x!?T zMM@N)bWe6Fj>@0uLa_7MmwYI|=d+pP6Qd8>p9CpD@ZPKv^mRoCk`V|1{}%GNJ&ZyR%aUL)wW^GNAyIcVvr+-t)bb6evI;Lu1zNmcVP{P9PH0RE8uiUwvJ_+3j0XOIX5h$Qrp=(#TEOgOU`O$J#AWk?RJC2$G=A961e6L?qJ zpGyi9!>3>!A`E1J^&})0Hjx4aC=A&XWdV&xp({TwBpC{j8S?CMa59B*xmd0>^dinh z1L*Cas2QIkEPz~gtNgfp0SPhnk69u(j)sfidP-8 z6;<7@B@qe`$y_%-g{x#sSdUO#UO+AsSmtt-6!flL|!^YYJ{q)+72ikp~5M40%Cr@S4(? zDd0@WcZTY zA0RJ^43|91i+L~UP=L;mH&o3zoBYnq`^bnQ!x?1xG(So@6reNYlk;=VAkVe=ak8NR zn;~yso;#Z^59g=IiXy{B&T@2qmUJjGO~?221reirs ze@HqMpp&^x56Yq7^OOFBgeX8Lt8?(6yY%PeL;+4&ZRGr3(_fJhMTTpU^q zkPmLndEgW7L;VApQGi)ihjd$UJ?b{)6aF*#P-M8^UFJ0PexkpT4h86BZij)LFaIPF z3J}TM!l{)ZJ8S_D3h+qiqi1tH4KU?YojN`;dr)~sP~^QAQK8O8S_Y|=U@+tpN_rL?yt2*cL+Zmq z!lwZIA-AmtX0S4=txXLZepj71m_#T*ca?|0MfNx>*A?S* za-aZ*Az#)Tw=7K*b^o!N;3+Z$-gJIXA$SUa&&VLesf;@l?Do_M_H0t1$WHougO76v zo&w-+%SJ0&@{0a>L{E_+^j_L;Bzg*CAJq6Hbq;VyB-ME$sp91iQyiyXk2!%QWYUDuy z9z$NJkIh4!$%ym`)X9k=`~hlGq2aWZoG8F)$mh=nEqg&n!Lvw(BC}LX zt~{GmC^AdM^z+Xl6$((v$e2-ipS>y6bIE}sdmM}t;rZl10S-f64j!h>CRt6DioQeV!HF!kqQNR#PID){YkFRlMe;>d}7GEAm&zqrjb$jfNZUfZ^z~L=GYT-vW~a2dUegPH50DH6$b2f3MX*xX z?BpA>6TF{1Uv;MN&G}h<%;lS8M*((2zGGpIg;0L+H;*y7s#o78B??f=<|qOO#GSm? z^L~$nC_pHibBju=+$>p)en3VPVDyn})+xa#kWoJ-EsD(2!bOg3(f!T&&q#|Rv$T{q z&OagiC23KB)+aMr2ofqsfjU>y?d8xXE%!d#ZBeMFC#f^lqy%DZl%G^@xJGjDHciQGi>fXV=Yot6Idl zv_R7TL$ch52vgsQRG$D&g zhysM}%j7UJr0rNnQWTjjdtr^niDX3qR@rRrqg#uU$&CWshJ4HL9H*eZ1~O0#Oba~63}fX9&U;$!N@s1Kugl_%w;c807Y5eg6)_EPGg zL~6VNtJG*<5#K6e>&b{BdyF)jYPoDP+CWAWU^MJKOataoqf)Cir}O?Y_f+zs$X*UL zYLlEG)Tc_mGWRqxq5z{|AFqs=LtRbtGsuAg9NwOdp3>JO=ZT*J_=kKwXWS;)UoFN- zfC2=DeKs^^A;LxGVNI|@CKTCW64CTdlL-ZwWMsS&+T?B~4~p#MNJLXxB@+rT8S-hd zN}*bsX<>7Fsa6e~j-p&o*mjqW0L5ap===?3efrZaJ!B<(NQDg$r8q0 zf&Jr`ks1Z44cSLAA8IqLCeCrys#E#G){>r#T|sUX;5Ov3|9rSLv71*-%dR3L3NRY- zBILXn)k~H9Wlp`ObLtxMq5!WUZ?%~ZuU55mY0KgF9~w@vWo^2C9{Ev#-;ifGbKzHL zU~-M4CyrhYxsH4&z-P#71#{!ms1-|MSA4!vEa;8@ZL*@sXf8F&PNC7vo4XBeARmfs z^D!43yp((>vdzcba&Qy*P-L?fjn`|1i6To}W4bWo=(hZoWJLj18SHh7wQ{Rcr8BX( zS@pWFCL@aHcUs2`dt1|7+B1OiU`~0zm0T#mWyssz=TgSPrcJkz5(Ov?`M~3xC}C2M zWq8%T-A*zT*(__^UsbLvF7G54itKV}=~4Dw1Lw1>wLCl88jRu{3s zu!u_n6rGQe4h87EKYQ-eN^RD$yo#S78w#))^45sC6tbCuZj?VwA`~E!!HJsQI6moh zGoK?P3NXr`pI$T48zgJ_S*NJ#&=*OK0@Q|lB5H1>P98IFRjus$3OP|^JG+oc`QT>i zuag=@MzbqyIprJVL;+4izV&r3MX+9Lo}xS0Z;=WGs0{h&>s+XarQ_yw-Dymt@$y5#(trO)5~KjZ4Ek2p&J>>;|1YFO zk#S0vW8&|mM3HGqKBxY_NQnZJGB_d8TcUi9@Ex~-6Gf)8$>$H>iIgZZPszB&cO@kX zP#W@)&Uv)y);xF*5~2X14DO~;RVnBs-;1m$GF|d~zVdxZi6Y~ate$CqQlbE*46e+m zvS&Q!2a*m&rmIrWf&NIcq5!KQpZT6gix=>tA4*abAeF&Ak*ef*?)1ly4+Z#ScMhd} z&{p?!1c_0A*ypmhd}A_7U3BVH8?`zeww`nSv1CXAh8bKp2r%^d*pDGKivNhr3v;y} zPlgm=n89T%m3g*zdX$VPz-Y)fSIwijk8)BkB|8eR%ixI*L9Y0*tcjU-C7HW28ipX-c#9CZ1DCi6Y~atcl5!Nr?iKGPwE8I<&QtOenx4 zgQNHGmhKFaq5!E3E(Y68+!|7$0F?|*L~t<6f0%A9`A~pQ2DkM4+Uj%3g#uhMc;GSe zK;Zf0MUl-s@^wC&$b}-ST&!N_LUN%1m)E6euG`}T&qahx0myF}F63&hUJ2e@CUhZJ z1QZCH0wEF9~EB>!6%{W6}6{uiVP^S!eFXiYt7gUTr!{l zgCSp*5w8%Hs+d3G^qozjLJ|}pG33jY;*r3$J`5ljSrL~VJ+2_1L!R^v z#3iJ`x|&odvPPx5-MW@kD6&SSyZL$nsZfB*kgwsbdt7xDpeq5!8M-)u7&r!X@2k_-jN4B4IEaGG6ZtQk@{K1#?Gfc&=M zwzPdAcU6dw6FddLzjesqYuNAC-7HCMNVEB(Jf5)>dYHvod#S!mHWXkpYsjO?ft$8sO@B-6&!j;C8pG}` z2d7~-W`83SimWm*RsNr3LIEb3>oun_PN+@Q3wj^V4wr!pMHaKAWIN~{P9_vtWKwbP zZ52It*@a9fz+}iv<%9Pr>>V9LWp`4c$YNa)RIGeiKr$3rEMdM;%RXd6k~)B_vI!1q4ksrHa2oP0FLSO(zOl`bBt(&6LcSr+(Ii9x zLYZ^cs5;~y=^RH!6dA5Z!2!<*IZt;X;FaI#S^t+WAQ|xS;!a5g+{{({J@F1W}#Gd>WfRW+eYnh zqvp}5U7pA6AIbySZ0)o|d%^0hSeq;{c?;zZqP{Eyk zh3>cyu6Q^uL#_kYu4hUMgtR_sNHU`7yWLmpv@?_Yx}+mm)Sqmi4e}?!kB|f|1;D*5 zHQ?-)MdZ{^36laaU!5YDsoM2Lb&yMVVe)|uL+m}fRouS zW7o^MmQk}7$c71f8yc;d8Egt@V5ikgxxkO_iNf(af~NrZH>NMOi}q5c;kQ=}a7j8nj(sVLDqHUOCdkYAa;dg$Pj=1qKFRbbtTSSf(@_36VpS!>lx zPCbuLjMn(QG=X_nVx~xE`c4&^(+)l$D6sB9tQ5eS!VX(v&GXxu0`6XfO98mAOIemzy@v(FGP&C^8iIxIrlet|Z(FRzJC-M_cv92b7qF5YA z*c9o8jlC;A*pDP^3cyZb8>E%Yk0oe|bS85Hp962Am!8Du4^+W8hKMPE_%-QE zW{uc%e8&?n1@NYDWQ_Usc-cX}H!D6HD;nidLZ(P*5=+Q4wJoYhEG1qF;7#T@b)tP= za8jL@&9d&fPat{AI!c=M)+lmbX!njWM9FP=-36hN7x0ju^W1-*9_!lg(j+@RNP zhHxnWH${zVJrLZX1zO0BMS5+2LNf%L$eOV6RV4 zV^wPKT$-5pT}gx#DJz~$r_v~0rd{4w6D38uil_DwT3*d-iIf6JJL$=BjnsHEUqGA` zz?q^EewY{YMTAO`vLp?9FRv#~3gAqUb3$#rvg-Ve1WEy*DQZGBP=D3$5G)12rl_x1 zU>o=t%7mjmz^@=y3Shl4MU~$N@@9gh0LT>W0qf&jzlEqN(v`G+r~2y&k^&%8G&c!2 z)89mt6hN7xDQVD&ek);80A`AYq#@4pw-G4?kZwp~m$+KB8dLwPp<34->}My_#MBED zC2Tcs#N8OK!*|^CzlyElKfWAW!*@T^Xpso#Cl5?UhV9{tb{5;iZ%96ho*Tq9z2Fvc ztyhWhGbDyffmBGSYt=D`?CG^X*aXa*^9EZ=&1u}*pz=3g7%%2al^N{47CHAzf~5f1 zWG+AV;^HBL`GGY(EItmY?JD5EA#jQ`rgCATP{}u%&Wr;4dxE6^*o0g`CP(L;$^xwR zSBOIKC&Hxw++CBT2%)APPHihkHjUw7CwF0kF`mcmek;arR7b@d^xc?wrigd!Q zH~et_O}G?*o6uIdC2YS}aa5_|FONR0P|!P zs#TnQ#w$IL*=17X&}GC(0gTCb+Y-R2#;h2B&o0G*2?6v90;K@ZWcH0F4K&}x39!aY ztpRttfP57pQ=~L)m+7>bE0M@kizGYm(!L8V$u)dZ+DF8H?J*~+V z)^ej+G4oY{_6U&P3pSEAdhQZ!(`VN)9g%5;zn2i5fmofeR~J#b#G>-$wWpfS=5KasKdq zL*Cm7kOBac*<6qmz^>ugI|-E{Woc=8g}VrlB4ueAGPJ#$P$^QDmZsNw9|2ONEGbNV})cS2I34{); z8Hl9NDIpW-{oD&hfrLqB`#=Cfza<2JcJ}~muPBK8{UD)J0Qw!!uKA0`6|Fi2=#>&KK};%f%=S_3Q60{%w`p91icxmt1il^q3tf?uK+;QyE4 zDF8m1yDPRo_)=j?q5mY&Q)H*?;~Oheyp32f_zW3PWGDTd($us<|9PUP$WHnLJ@&#j zG=ndZ0Rk3-?ZM|#75E1To&w4#zc~WT?-!81PKa|$Vm5v9+)@Fi+Zp#;Zp#9 zM#j~%h3bUqes?2&iVWd*ie4SqllUpJQwMxEzllP$H%U-{#K*GH7AX=uk-OR1l5cFQ zR2-ZkFRE{IsM_%e5~BdIThmRf==YNzK;#rap3o}H_VSY!E&u32giQh1$y_SA-KNRj zIPOsdO##r!TsN@&KzshsM-w$g`pb5}51J!#iu9+q<^Nnn)D-DY?||R)C?cl-^1IUA z3aaY_@J%TAJ@xKF)tDbk8WfE*jWwBSzzHJ(HLzfH|3~RJI#tznk?e0;foS$+jI! z>j;|yu-~8VE>!Il={5LTPc{@_lk!oF=Oo@h&=eUc@;>MAQwf{`z*D|OE$9?}8lh7F zddf#&-Ok`=5IhCIr@Rxjoxpj*rU2}ekJf$8-*Mum$N+BJ>FW?TMf%Hlx3hPe;3)w9 zgX!*<;yHOYlMn?66%yI`?emn5$zhJ!PA%76qIOy*bSn&YoI0^@g%N=}?yZL*9X|OS zaVv~eAwd$l6~^F^(O}2-LA!`c4imZ+#@O$<`&fnwY?zi*CHv2Sy-NY+37w*vFEV=% zx5%N-6C(vMCe+8wAEO!pj+d&1`nJ6A=;L$6OuHw0g3Zw#g_uW~>{mK&>zO#n^l5bG?FH*B zTRg_JX}chlQKCy*EW5O1E{w5B^*h4k3+wOR>_;kXKF9G61yUp#mzf<&LRjr?Pvqzq ziJAhalW{+77u5R9Pq~E4aRun{uE1+me8*Tp|2m;l0D3YzEVnasq&{xU zohe|KpGf;}kN^b;B(u9|dlGQA&R}a3zHeN?CO?7yTf|S1i9$c=75eWII7KE(&Wuy9 zU`w~1^4})`3J^$tt*txq8;qjR{D{yg06m#K-P^O!*PX_6VFud~1@@m3J4Gf6e7#o2 z`5poM7X(fL;K}S1+n$Num?@WZBmZk6r^rNcX#ZurGp5A+i`XeL zQDSgUea#w(?a1r3DF8m1OCGjIapz~aRT1BbfGGetnJbOA3t)S+zAGV90CIY3C2r9R zj?(uaa0&oVX8CD*q;>b`d@tgrNOhsMM&e*&if@buP3-zfY*LZ$%Z zWVZNhk3#JqeLs?zDNFm94STV~Lmoh?CiEEj8QBGqNtKZ+hD zW{OmojKJu5DM3>J^uPDvS!{uQ5`o*#8FXT?*uPGW&Sujm)k!B8PrY zj1<6_%x4=Cz^Ill#Wl3mTBXFh=LFh65iJGKCiCr<AlAr2x`oHX0?1 zv{n%yniP$xNZ@}HFhvTBLSwo$IZ1b~K>9FlgP{P@WbUD! zf6{hWt(}RI0w|N|KIe~;7Q8C88xc|fVKTe4l0g`(N_!F~1#l+w$)3b;`m5011WJ*j zEcaKPM-U+e5GJyNOs3?R{7==-;2mDbkL(gb!hfG+s!= z6hNGeU)xK%B-41yv{T18Kwv(Ym??lcndO7+fVo<$((R)lA413!fSk;za63S@)A%p~ zrU2k%CI|@v_SLz=iIgI(NKIWkl1M3lG?`t+$)>5D|3?!m1+XUbL9_(1`s>zlgh~OZ z$qW+{glebh2!T=n=mkl*tqjgF^OtIGLIyqcghnLI*yAt^ijLm{Bd~wsGc4_gZ@`BK zKzwbIFk}Q6b$wEfx~@plc<=F6b2K+ydthK65Y?>1=cPC5=z)WTmom5id+9n6*$rR27#7U952@;ekn-wGd4d)Ez02g>V{h9o0GpZr7FCtsIz1U>s@ zl{A6=#+L-Q(HBMm_6c<`D%O4z-d^DBzFOqe?Sx4ImPMzO_6@kvju!;OO%g)5;O%sC$tu2 zH4XjdKvvM`R>a?W>~J*zQvh%>Tfh=8&;aa}iiZ;~MSAf%rK*Q_7viM=-h^hFRxT$} zAjA^8D80KAECs+Ov(GZ|!ccJvx-DKnv=k{$TGMgtL$DO-O=1&b0N9HXncsPB*O=8bsLnHVGL?*5w}rDA< z>*`qh^k6zzC^&l#Cvxf#!lVGqWah^@{`tWaMZGB3VFl2`2$UkFK&!ZlQ~*7kKq&w; znFCdcq^MZY766YVK#G(BG%0vA0a5^9B0e&efMe?as7C7YM4V7t>V+A6j3e&;U>&^U zzIz=ur`(PYmbQ1hK-pl^d0yhEWK?K7SID+AnX5H5k$%1=6E4rc@{_G1ZCMywuF+733BnQvh<`jo6;C|G$t6J~_IHQ$` zMdEkI{mu&XN;}IR?VVRK5WA;+gW+XJ^eB_EM;QqQSX6{2Myj=@GhVB09>KxY z5!zPq9NIHX`_PrjM6QrKN14dMM2@hCYCnNfkr)#{q-ECuDhvLxzJNMbnAOOHSq4(? zZ|3`b<6o*sbI)wEv3SW+R3)^pg{CuFn%PzzU(~FP;2x?nzVJRa(kwN37WRP?kid`F zc<#vgtJkkxv2yj;$VTyix}4VKqz)7x(VY_vzF6Xauyc1MXKSE zFHw;@TMMA&H1arznimm>VUJdiKrONrBfYW3ptoPhllFeAm6aTVi!2l+>(M>qkOo2T zN=ff{Nl)AN0F7ytur5N$cim@`Uqs}mMn=B4PaeS2T3a<&SQojn*EE8R=gNgO4^G9T-yRH3Y7wLz(%Kv9VTb^pS3MD;?=Jp z;<14ub_-j(V%+Pj6&G5{Hh=r$xM-j_Fe!I%>U`_SF)a1P+Jqw-Z(aO3jC3masEo+{ zV-@Yu73MAGhIva@j^JBu^Fr#9iZjRI#_)mar2r^VkCH5PWO&bT)* zmKgOycCCwb6YI6Q{xtV0gjMon8oi1!MHc_%@i?K}cNxBghPw;<#&{NWDbKN#d&N%| zoM7>jT;9Ma=TLHcG~we;-PhAB8UdaWYE?&b^>TDH`z#tk$sIYJ>Q(Gipvkc;Q)322 z$41xlKr|hfX3@ud0E~J!e}Ol32Q$)~c7Tvgg;Ol?IEVmxkg5z_kK6i54lkl!dM_gS zC&mW82pNNYe8N0th%F3FRLuLW>3-5yN)e|Hj`(^sx&TW;b9$uV;D{A_JaIUyG>Pqmvda}1j$@Gsys<&Qv69ERyf@km>{X#0 z&F6IBTp%z~Xx(7AIax0Uv3QMw%A!RC+%IUGp>iTr5U*tr5YI>eBH9&&?a)YUXCX|R zkHbOnG0;3E0W_+C7MUvsHQ{Mx4Qj%ZNdy3<=#I^ly|G2P5}5I~>MR+%`+hcbVNFbQ zf8d!^L(r~@E?Nlp!!+HiF*vb*jTw`zfUjCh>mQ}{h*}@r*Lc{wJ7tj`pP<>$@$9-d zXuGSPuGzV;n(cmu(G6H*&xi>myvT?_D+jc)I=EjTg19yDwE0ABs-XK7#@V-`t(Z?_ zRt<9>V02;#6rLoy78RmvcBxXBa`Fvl%8ZBeY*_QCQgBn@_^k8=h+t^Uy$opC37vdy4b6>g=n99nXJiwmm>m@a4Yy}XHsuJC6G2ezpFCf{5)VcPe?$`XZrfs~ z0DEn8)q?1*va4=%+U76Bg5|rYt}x)E^c4FY2E;etwys}5yORgt>~Zwu1+b= z2dtFOI34z$wUt`Tl07w2BR_92fbeL8#zMFNVcf)QP4qIb~I!A^Q&I{Er_yXi)0O{Q@%|dJ5 z+2n(&8!y?EVIGSwnd91kiIFW%X==LJ7*iErtXfv!HQaNR~3v$YMj>ct;YoOx8IJj(> zHy3X>KQfN*>tH6SK<~HF^P%Y{ZA+QcO2Ak(Zx~_#A~N;i@SJtpLc;RQye(@V16BZ# zWvno&eq;D*`OrpclXhKStX*mHHP)5L*W{?cdqZR&-pI)}kY{#8x!R;@4W2&dHXDO) zw9&e3hzY5zkRX`zhBNLTIKGl&nmz-T=pmhms>c9JO$5}y!u=bgw8s=@&7EcUOn_y? z{THJMoe7*X_qb$RBboWFT7<-H%z?!+^Fnz!3 z(q+VZFygT8ejYK2Hq-Md$i~LqTf`L7wa+7M?T%7cMKSfT>&Jc~ZS8(Byx)d{Ey9D; zzjj!o1~JcP^^}#>>#%dG!`8j0%zy)lZqD8Bd2`3C>OxodDPcW|uzGc|#kt3fzBOj| zC$StxEQ58LYv+#6>n%<9Ct(~x7!keWsdJCdbc^m$j6nB_rMX))-JxuDdi7FPH*y?f zpGyz-wCMi3f-|mi%$diA5-?R0^+K`elpU^XV#MbKlB2DL9Ic9UId3)Q>qoD!gRfhM z0qI7LfqlWnkir)-=Y^CW#fGer42fZf-dPZ`J`HZGIwZ;nH)xKq$3P>}cQGQJ8z%C$FOYwrWC8)< z#GDag_F{nb^=XKFJK2ZZYoC^%(ATfwd(~>kmY)#AxAD|LICeP<)Plpd5RZXibzGOn zAo`6q1N+BJI&i4ZAb~P`;*#EF7|)~1Fdijch7B5D@eC`&#N`VVR)!_QB+BrKOXgRG z_4{b8qkMBwW%$G;G0O1bLCSDxVyVjXhx5-tOI`GWqHKu77-US0KExzRYGsUWfkU3q z@y61~VU}%HErwcy1$T-j{UZjH%g4ntXO9is&9r0&2rv?lYPV~HHQ%iXsvHyqH|;$s z7BwSA&;Iz#SlI23*zb)9M0gD&?Au7mp}@t1M@|2rjh@6Z*slJo*|FSY?C8cQFCpFz-~{%O!Y{g zLtybd1_x%vr6-beeA_rfzzrx6)Qq^s|FPCfVeR(d38 zHzw?aL99s7FUtfyA$rKt{j%Dph*__IZu)3nZ@p|Fi%qA&9TdXe&Kt##w)&qv&Oo-< zgVNa|HgTfES7!HJYw0-)BP_R(#d zR=2grj;Y6NFC?Z)4PGN>>vRG8WVi=H`9D<=IA~qOqRq({=?K#==G2Rz*JI;NNCJ0rnylmOJC5))NQ;vK#buGk;So5) z4k}v)6UswtLJ_cTEKVON6I5f-s8tCH*9g>0MV-bARaI6G*QtkXOV5b49w`((pRg0i z-wCQGvf~iFA2Znf5_`Y?U5wbZAG+V$7o*(3s))G{(6;F#fIITA+hU&;t4nYnqz$h> zh(0Xiv!FTx(Ykvj!2K?bg*N@ukppUwlp2UXATD;-!n%%I0*7ghQ#Sxs$CdE3s~6b9O81{)Hgs z(PBpL9`L0^H!#yw5}Q>~{y{)-Tf!&AOChfbWMsZ3(A{Bo#24M(9jw~gsTS608{(+0 z{Ila8cqE3m3;wBi~~Y8$#?aam#ndY=iDG#A6wIhR>Kd7mZJi zHfC@`T6HR4z|;!oHuGXiqz_7a&v9N{k2gdJ?1LN`ZS#J8! zhh$V2;DteR&M>tyE}*Mb3*`}n-cqY?9x;1EI_}F)M)7&vDr2|LJ6M;+;))j>N#ctl zr=rNo1t11Tjn>Ydfrvbvmi~V1y%GM&&-8IWRD}qg8&Fu(fcj z7$h`X=$LT|p&|S*dh1cgz2S7E^??yj+XrscujN+YVvp78mJg=izQHJ@Eu_taOq;`l z0Tz|Ys92a#J+Er9upG=6>}C96fqvuWl*NOA`v$7S=9B4W^UhWB2Wx+ zugMXzF&C*jX3|c~bhLd5$}KYcdZgl^wk44cHffPNZizNRQ)EB;Z96gC3g59tZHL(* zHAee76{dlEDc_2?PDOiG1;{)yF)wpQl&-EEbl<%Qe zS}2(U>Ouf&MN_=Dr(iO$vCzKj*bJoi#2?XKYsAvHiO2h`qggp%Lh~|1?PwjD#??jG z8miK4e;^+@T^?E)d5U_}rZ%UvIjsdh?d6Tlj}y$1Mzh{3Hd|ORRgvyPkJ`uvPu&)p zoTWiz+T9jAGP2Z%l+fcAW=bl){Ydf*b?YdetXRJW7jKcHr_51_SoN9Hfnw#=#m;2Q zj#J#Iv_b1djN;A~ti(d(|grs*n3-+K#9$rwo)Zx}I3Z z|BJ>$YexK{=1s|2CET~uq;E8@XF%PlunfoBOOw3$*YtlvAufLExJ!7PeUD8HA~ouV zxMzpWh2ECqmTU2Bc{VE{&_eYa(44r%{jzqIdu z*GhYVY2dWCO>#b5bX3~Yocm3Y_JXIO7Mb=wQ(n0jhQ8O8_R%As6O1P$nEt}urt{zp zt2p)pHd|{c4B+UoUwBL%m!^>)zmWM6-3^AnZ{>-=7?mfHolMZI@l)u$p;`CmOj3`( zp&QvYb(!_@NErNWS03qQ?CyGYV!m9sY+HV|k#}%TwXTNe)L|iaMCdy1H%~zh?X^}Z zS2JKo{>HLvPX0z)GaA`2gvKK6B76QJvnRT#3VnT%XkZk$okjE6X{-NxHhkgMM3vFj zL`8u$`9G{h7oA9JvNS7;yPM+OXB&%SF1NvUBfdj-QXG0MnCJgk7Au$ z_>|CxLQmH^w_;i^p*Tg4LVBW*@u4mr4qh-5-C*=IqwAyq-(4r?YE_j5X;l^jt8PZm zrg~$wN{6s)6^uY3iJp@7jzN?eu~a1@h^nirqsm}}^)VEgklYtV#?7%{vfPA(K*mP4 z3sG^YR+a?ZqiEZ!%LCi8^3gp`*pitET#;k^C|rTub4O{<%0k$TobN>0^y;{vyNo7d z*73(%W1T{ETfSTxuNUguR2?^9;VRuWqMmi!cXEMtA<{sNeC&so9=^qGIsFoNMc473 zC}e!7<7a>u%tV*!o@T5bNZ=p1R7Y6121hnukx1@pW`&nh!4!$i>8QB8oF)hN?5>>F zHxzbvpeF}%TC5X?=CgRxxoM{zcHDvg+>;)M?B3s>-7<`&71X2_c@#Y+>H!1mrHBa` z{ZyIJ(H_GdMyzZWxK%b|O_6v$-BQ^0jMF%P`d@ux$i!zGk~HDM%n z_aZBMC2GAHup9O%%3)oQtG4K~;UuN|T4k~HTo=^BtF_Yhc3xP2kaS`DAFqKwNjWG<(c!t0$XX>b(nIJR5@dTSL)f4G$Dm1{$Qv$|P1t zx!a_-T9_TgTdfyB!%|y2+bq*@ozi+eF=%!QpYNI;L62GF0)jxh;7p-I%Sl~Z{^b5& z{_K-wBG+L}cCp%`$TIN=R`et3I29$r(!zceRQA_8c{S7(wywPZKaInaP>+bneVWo; zyd=FREooJozw9wUu7@4fs*0rBomQlx&A(;yLnM!uqfV3jW2~~mMekKvx61l2>aDMy zszqDxUDUjsNVq`FbDK0E{JPyWZBY;bt*Bj^o?n|Z+^sYd<=1{p&`y{8TG+UpHp1N3 zp=@-%7Ru6*EKFQw*qmWjdh{ZTxDmLq*q=V&UW}vUI0QTWCBzU3-E0Y5bbn zrQU@L$tSySyU+@ggEiNY#8D=#_F95PLH2ar?X_Rzk|O>a?uabz!z%{xo0iD#G2bs?r2UX}nxRBMr?GxeBW02TMkmjNu+n zta*0a$8+D@9zvts_~J)S{s4EqUn-VqX%Fr9E_;gh`$SdoV!dq5dIhSes-)b;eQb`A z6K*jyEZv=fNmBLLjmiw_XUod~B6IhoC0_>U%ax)GEyW^e1!oKN9;_v!OUKY|3suMc z_EE@$1wyw{>EzFx{)vpxD?BlykXDfu2g?BYi^>djDMepU$d09BsO=VG zcOjEe(6)K@$zFrgax@U3dq`KNXeV0~IB)a1mo3Y1m#vly96 zso)eyDUdn(EJp08q-|u+Q8IhMce#^a%mTuc28spi^z4W#qXUUdL>m@d;%?ct1ng?)yIf0 zlibs2#?BwB7WFX{$QXAeOlQ4~XdJ@{#8Z#68^l5s3AuX+6-$NKs!e z0zFu<`{+Po_pqXCtsu}{YqfuWz=SfzLYOrr!dEuz?rQ+NRzVTQtuhiQFM9XTfY`l} zfv_J{kJa@)agC!kV}M}F4sLDN1wfP?_vtL7q5wse5^E?DC%JU}CJFZvTKDR=TJngE z-Ity21dW+IMai@J;8@54S?EsFpp}m>srEg^M(EXe!M99{z8bIZzzDIpEMLH9b-mpa zrm|yLB>cE$8$`!#9gljx|5A>aR&X_7mEKl?!@1PvR?zA1X+gyvI|Y&_JZ2dSD)v=i z0RtyR_e9|abe$GpyX&-G5{jP`CjW&+ll8trpg-jo->Ov%gk7ry1WH4XZayLfyh)n?h3zVpg6c!vam(ve*C=C6_$YAYiZM~u+d##kU#dVt2v0Ua~IflEi1kBz8@+*K$acHGyDp`IQnp01Lw@+m!$r6Se>`5>nraL}wCFnyvkEE0u` z4i)w-AO#yedg4eMixde3eOCnzU*^((!Elc{7H!yWsO|@fSNG8tqxx!IsJ?a)ci+sGrAG~q z9!G`Lp)nPUEH3VCv~AbO=;k!cm=EV2v}IMpe@6C2VWvd=8#vQh|6*s=C6|b7H+KVx ztiR-v$Jv=L>frzuz3ew;Q3NizMAb+4PA1BKM2WULl4WYo9zM^!co}>?n``xIsi4N0 z%joQpnvQ$-Y3R516sogDppN{NQ@>DE^qvXUm0pIWG4x6wL7L({b+2*sYh#QyXCra% zXLblU765xZx?FB$YAjw3S~E_)=-|pYz14p?nHgor-J3gg_7>XpI%r2Ka-JeUu~!Vz zBq)AHQnWg<@Ylu|c`g9S{WMt$Tz(k#oWZiUltYm5GWJ`SCMU5=t5#Jxxt#6+`E0~I z>$ndwPZx@Z8^ntvtMrRlwWXfp4;ajOdL)AF5RVbNj0b7)Rhbsn(6;B>ND=^$sB;0- z?pK&H(Gcwf635K*HKZ-ZSh&hAc(;UjKH@#MmbIUGBogS6r}MIbk#mg!8GuXJ>RHZv z=3Cy@yQ)~S`=IE!j0=hMZJ9{+RH)CZi_|Gje%0@#_ew)JX<0?em2q8zPf9y|tjvCB-%XSr%r!UrNNWy_iM zo7Z*ltwNC%MW z6URx`Y7Lj8AdN6|#kRmYQf|D4fvVVZ*W5PaFz>GaF9rFibK-?=BOoqBaqwlhT27eF z3A5tLvz#!CG61sxt8WRK2UwHjqTO=p{MNlF)9+Hamqy_3@nReAgitiY&OCN%&Zf!hox{S00>RxJ|_ND&T5_2HB_NICyf z+uytxRXQ!)fQR}Hg)_AC8(kCh<`xA{kC+E()G)tb?NyrsMEkN}mDH_6jVq&3lRtCv z=YZymbq9AB_|31BI&EJ5^vv7S^L`~vnXk>@X2jBE+%+l~?5m4S@p^j}ZI;u5BzftP3!;dO4e^M$$HAq)ht~DCo&Ll}`ueDU_y zO0W$?7oDq=eNBY!%-x?ej+mYGx;Qb*UfPQ+x+9e&e@y^`b-(J${GJWlST($N5gT-^ z4pM^nJwXi6r>ZL+=Y+s(sX3hX^=}f)p9yAey`!~y99=eaw;1f*WbA)u?7ezGb<(3Z zchtA8UMf%ob=T+qn=!`k*VK8v-tp6mrT2521XnG~_)?_#0v$m(O7VMiW=Tvn5Dr9Y7ypF{^MA*~4i|I}5k(^u=5i`?#Z4#?}GIjO#NHu}CLUFoL zkQd-tJ>}uYVy60-m12oS7?Z(H7gJZS@3cd3YEi&23X@x3Z)z_KTJc7s>$r>^bJz8t zi%!R0-i~D;ID-{rOlOASC%UI*+wI34=tU?s*eSUKpH- zxb~NmWOdn_dW3zm0+qTAN@CjBp-u46lD7hQTwlQQ)WRM?~wOqFAuO)?que_=)dl zVN^;QXIpdrcr?@`!K5ta((*;zqa*V4QEJK%7NV^lnr4P`X8k(g=+CCcPgV7@xC2wi zsDK=>Qm(K1pW(ysQY~&aG_N4?!E0%8+9_`47cj9vh8yQ(EnVqTw)Yah`4KM>2=Qzh zIL#$Vj?o(>k;PS~Rkv<>{mtv%s!Q~dl3ky$Z7*0(n#A;`doPY>LNZ1DUwTm7P7l^T0_b{1l0Zo*)EE%Q}ooPZc8fe zx$N@ebhFk*qJA+4CVV91ZW2Qa?d3HSK5GM2U#q@ppD_9~8r3}_8-L--wI;vuY^pmC z?Y_^wn5Lt;I%|=&Ukthl>+YsRgX9(%Pw&o5UEvX<7>!wjd6mBo?FT!r0a9J|TB=Ku zkV_)fgMHO1Z_3**O=KHnN}}D%$QUY&p-*R|zTg=rRU{tA-=)ZyE@e!Sea--7UUW95 zACbmiOyk{k_?-ADC6S}M=+zI%$hI-E*d50JB|znt)nm9@E5alewPOOCoxUDc`UXf~|HKi3*NOgPR=1vh4Ui@EtyO-+wj z0KD@f91ZBuM>o86-V*L)_{dVsla5&>!ed@04w5kZDp+3!>j-ZaeAk@YQ9;d_6P6q= zsJAGKpy;6VaaPtL4Il)rM1lFzhrk=J+3w38uPu^Gv|_bMU(YP)JYpl)XgT5Y?rD}f zPVtNmG1=P{d&MNOp2>n$2tDc$QSG;i4s!pKwo!@(!HhuSMkZdss2U5Fyv`U)v?`nS zTUUb{-v6X6m1zB~;9zD?PoX{U_ETr+#dSXPi*xFPf*95&GB1b93_3eF?DrbTsnx%2;ILy&JmpVjt?Llk&_9U;zuz$el;+RIY(?*%x zO}lDv-;end=Ik90y;7WCTSGP~YrFCjoc!4~e+>Z5+bAs9?sh)E2H5?{pQm`8Unnws zGXia+Z~vSQcXY$saH88r_g=Qe$B70qwAFj)s#i6F?VjZy)3$xh-k97(B9^l4mdpJp zBMWb;tPQ;3Hgy|i)eTWD+)vPGM4Qyts%VV-t&6n!8DUklNdCvjQfojNj+L!WcLO2~ ze}RUho0z_~t+u5rDZV0Xqa^Fr#|i=5mWMbTxBe`YX%-~p2WU35&FE`UH5OhAAT2&9 zEQU1?$Mr4Wfp)?DE^P(cgJb$xK`M%VO;%m^2ejd90@P z%VIwiKOZ+;t1cfsSuALy-)hZ>QO;(kUd5WfOrfLHyc%DQ>lwPO1LC7`Dxg@W5N1VP zQ)Yql%vkBRs3`VoaFBq7EP;{#i)N_--`fnvup(IwU)eWcTZR!h#HtuJO?$>Lw}LSM zJ2xIM<%FNK=?M7+?}VTI#>d%N+D3XA1jZ1aY3fme*W z>{E%|?UpG^^_Kir5Uc*^DE9FRSo@qGP`9ZO5$J$O6MK6^k0@Z4AF7ha0E};2Mzk>e zVO#4lOUH)}Z5MdV3J$v}R_}{w+L11!KBQNWwt1TK_B`7#dXL*p@@f>=B^_YCf7qk8 z*5>en9o>LQEze%~`RXK92Q&0TFRA4z0j)>=icwKxaa5au$FdQ%2S{uKO(W_afOf5K zTd6+M8yQV^bLT#acDoumbz5!^L!x!#cN}Hw7Tyer;^7{~CnH7u1kYAs09QxFTPeoMsyq_^0g=rU3Dv4 zS!<;`)SRj_fmT5p9i`EQFvP|t5F$ol)~!KUeU}j|V+4mF0@1L9g+nww$IeI)&A_hT z()>v@zrV(BKOZ1r{B>9w9`hxPKLku)X!UFkJV&^VT>PiTdU-vp&6ldyWv2+jEwkc3 zy)R6M9Kn$?^i3W2dR}Y0XtfN=|MYZmWWAbgGw2%b5w}8dMkR)sIUNd)U@rWM5;7OG z5(&mx7b7V^SzqDHmI4f7QpPe{t&hvG+gHetc-vWlVelu}{r~0zT{4 zgxgJij+LVblh~qfEsS{Gl-JRS^k25N&zl>&d&stYNqy9p;|d*}+^*;QZm88`6y`*2 zi!)NFJL=n%m1?OWw_np;GFhu*%!Ct&`ul$>#UFQp{m!~`)@;})wru;}(Vtbs;h77Z z9HLNn>x$rFD>j1X5CxhjoUAj!kw;IP6OpFFB7)1k4HoVPRcFw!ms0v=M6MjU(S%hK zIx&o0rB1u5ux&3`PS5)|@>9XEi$<6PVEZIN{35O017ci?Dr=S&Wz{{{=g342963jR zN3_#6k3{p1M>+jy?y0BS5$+9=$4Bt_(sHTkUBjm<+>yG87~$U2sIW*q-I6evEV|01 z-$i-;oU(hSTx*K=DA2mZNz-79EoXf$B3V^jlwK2X0}l!IrOF3@ah^B6iGgAaVO0M>ubOPmO&fyd9EDASai78N zDQ@$>VlWh@$+lWxkp%8IWA)l?>p8eyGFU94Y3|WhdQGz#(n}DN1aSh|XW=iDUr>+V z*gkzQlw0g3P_(k$O`yM(bzR~cxa~ZDFkGh5G;r9$sYX+`a5BBB#1p$ov^HYLDY3dO z6vZFK(`>4can~7l&sJ|x-nv?_xr=I>WZbiow|=2dV|Mmn>91QcuiA6O;%mj+%Lt%< zQ)R8j$4POvQC_Uv1n;#`?z0(XkM_vEe`tC#@6|Ef1XI%2{!X{1rod(r*Cg8mB!=j? zJMq$|L!KgooWUU0NNAN)+6XtF_0;}Ux_F9)Lf-+)fn*d284(7buLUE#V~>%d-dQBC zIxiNgBjXOPXK1tvWt?A`5MzXiQUiAdY~!!S$aIq@mT+|=U6bSW+Li{Fegw5s<=yCW zHPV*v=kR`R+`+{J8ibfN8xY(^P7pbQ;Ot+609ET|p>C#QR_54~DKB%}TUZAA<-s$( z;vN!-yeK;chf6LY3mj_?@(_vXzKKxgpCWc=jy6VKU4#x&-ql#g91E^pwO)_s@_3r} z9MdJ+^?TeXN-$?eGTcUEXT<0K6+z^7e=kVR7X+DQpTq3~t>ZFg6zMx;k+ywueO|@Q zBjSTrYG|T(k4cO8hIjZ=J`kU@V(;iB#~7zmc0RH=T zGsTn|(c1g$`bLY}!q}i<$Ro0B_l-t@8+pv%uzH3y5bbAm>8QDT1*dM+t@Awg*?FUi z=MV%jw9Mf!6{L-)X7SQ7o7)@M(FOwpVp(Qmkyj66whJsTyIEsF5D&{*@ew2wq${`Aydl%#CQGcvPxBS{Wv@Dh~qK`A8o@Mt)tNLKqdDUs=m!7P;8Tor; z>B$}UPTusq`}raO75eWS{zeUWRJ0ZOE_#IT0SkgY+RH8z-m!UdLU`UrY3_6ZwlmJR9RL3i0by{<`gH__o%Q z@E2ZPp%vosO8v_%o-H1)Hi}89IMXOfQnAJ;l*P4FwDO2z9sWWT>$O5ealZcL-X;xf zGzt~|0xJHr2?j32UodcyRtN(Z>tF72X&`SDCrL%YC{B@zqERS|lT=)L7NVHKUx>oh z3K2zF|8j3TOFXU`#qCltV-)X{in>uKi!CZXaWSHp#b1bGn^uS@o~3`eH%W|F7{x24 z;!2}X2Ck;!luKao8vF%|&(jKF@df&qd#5z;LZeXOUrfbu7s0^w_zMPZ)CytXW%`%f zk_K)vimg)d3ZraJ&BHULy^>!zfhvJE?fnIWTY+{(^zKwL%zpum0seC^PQ;M)4h~xW_0S zl8SqcLRq|ziVL2JDDKB!h~i^fA)@%W{^h<#V*I30yiO`UZ4_^miq9H_viJom+7}{< zFXAsm@fEEQQG8ARayLl>4;aOTQt=I=xJW7sY((*0{DmmKuN5MSAL?K3 zdu1~G*eE_A6+bnKd!^#%MxiYJii+8dh~n4y3sL+|D?}83(7)WnCB{D)g$n;yDh^o> z1AoI`Fz`>U5C;COf4RSr2zLB%ApA~LOgYu$xv01AFLSZbc$kU=%9+K2&^y z2KL2YFtEQ?2m=fCFZWVu;2@(=;U7iC1qB#51b@N6VOk*!8{(^xMv_cp-N&j;HAQSOqqfp_WK*gO; zg@GsHFBmvYD};d+`j>mEM6l8*o-7rsjbf!#oM{xw;#oqm0a2WdzYxVaS|OrXuYb9Z zlm^Z>3Kf1675Q^v;Hmfv2A-xB!oWrPm-{10@?xX-sZ`{R;ulg;FbZXHf{It4hbSEU zg(#-ALPX)}U+%*s#`m70)$_e@Vsjj6zwwj*4HMk0@S`~?GV(h6bVE&7*xrZn(Y zqc}?{-ewf*q~gDgLRq|niabfa1AifkJGDYY@oxRg-9s9<+bH&uiuW3YGVlQ^Ud_Jw z9{dH1AJPh8@jm^_y;~aih*7*xDn4cu_ejOZJq7-P#ZOUj8+*o2OU383LPYTe{mXs6 zH1H*(P~pEy#kK2T;A{8`7XMExgn@7BU+(8*+4z=Gd{HXCV-#PJitibPviJik*0UP_ z5PuEYk{M-~|24-9;KW$tYC#Q>ZwML+mm9 z1p}vQg)nfM{^i~(lX-!U`Y z66oVbp%Um*Mxheuvqqs3=nF=n66niDp%Un8Mxheu|BON<(1S*y66iZdp%UmJqfiO- zL!(d$^b?~{3G{QLPzm%aqfiO-Tcc13^am=QbScWyAMqE;(_gegl&8PxU+&-K<9`{& zzop_~_iFH;5QS2iX`x%7-vCt?~vOER%{8jp8J!IK?QG#U~ntvT>SG zC>y66g|e}lijPbH)fxB;sMctOKy|kM<*t>F&ozqmQnA4(HcG_>MscB3Tx1l_kczxf zTp|@kqnMD2DWg!RT%%ApDn_Aj%ov5j(J%^yW7a4Xj%`Mva9nN_3dfaHeA`9pT!p`o zI@f50NS$l-Fa7uhR6LsDuan{1S|P$;uYb8W$j2`=ikC^n%Z=g{QgO3Uyjm(=YZNMq zHyDL7`evh0M&D`_%IIxIp^V;6MPVy&-+{lt^IcjYaNnhW>Bo0d@sA3^|Bnp+eytGU z@6o^956Z_MHj4YC;-g0KF{${3QG8M=K4TOriq9K`GWsQ>P)5IM6w2rWMxl&;lZqY6 z!2KZp0?+Sgg~0ti{mXqwKK`Lm{75Q(Y7{?{ieDPVucYF)M)5nT_@hz$Nh@5|KFpB-8Vxdte?gtx%Vta^DD7J?g zg<^ZSQ7E=Y8iitev{5Lw#~FoUJ7N@y?GmFu{V3T5MBD()Hw zs%PRapeksEKvmSg+zI)3$|$C#VzW_{rJ`mO%3|Fpl#P~AC>vXiLfLp06{pvL>T>)A zR99++K=mB`%e`7YzSbz7Cl%Kj#S5k4#YS8aSOI@St=H2vP#l-Q6YK0*er& zK}xz2kZu7fX+e;Zl193_TRE=p`Mm^v+EWC5+Oq_G z+6x4I+RGj)wUJNyicIoJUpEM!^iA8`EnL1!xCeMhcm#MtcnWwhSniyXgv?0mf}V6eK~K7opeNlNpoP59Ei%amu-zcM&>gn9ow&S*@E2e|;Q-(;;RxUu;W*$F z;WXeJ;XL3HVK4q0$rXYg^EyEfc8j0~yGzi6Js{}89uxFnPYHUk=L9|2D-X3>%jU=P{m}@~0kH_N0Ur~N;MwC5v@-!gTM`nqB?&=Wk`uHg zm500jms)C>pRXzu^GX(E%n zx#kApm@RE{t#G*wp)H_2p#z{3p);T>K`VL?G_*HCL;DgmbbyDs{5%eWT*kfNXeaVpt`jVp&^d-k6 z=u7^Hpf5QtL0|I!JdFBAzQze;lCN<>gYY#@Y@17h%gG5T0I3OS0O<(n0T~II09gpy znVq05ISJa5o1iWE2-;H6LuvotPpAN>OsE2=PSA>4 z1P!fA(9rq>4Q=G%)9|mlGRZNU8H8iDu+6o^<<^8YfOdrTfNu$%09^=;0o@52+KZr} z-xD;nzlWv%zkCglNsc+lARKduZEh$ok06W$j3JB#{7BHmNd(Q9LePxq9{RVHL(Gs# z4l&yx9Ad6*ZXPZ#AS?tdCM*FgC;SRnMbL`11PxtJ(9n$p4c+XafNu!D0NN0i0vzF2KzqU}Ku5w_ zKqta_z;^`wl)8DSIbA-sO_jsP*3%$-Y`txBTX6Y%!gfGE!cM>d!XCg6gnfX)goA*g zgd>3Agkyk_gp+{LgfoD#g!6#$giC-4gsXr_gd2d#gxi3rgnNML1btnzJe*i5@9!<% z@LYrN{^r}}-sAEDLd2@!eJ>(J0W2m&2P`GT0xT!Q0jwaz1FRw>0IVS-1gs+@0jwt^ z2mDS*1=vJL3)oE1XW!-_(L{L}HSoH27=)Lx%QjaVm-i692J9s?0PH6;1{@?b0~{u_ z1pG~C4LC+{fD?ocfK!A{fHQM6AQs_Qz(<5tfR73KLgRbrKU?1L|74Ose?K({Z#a={ z?gKueB!o!#aZN^u3P?eS0Z2uN4M;=y81NY(J|I2e6Ts($M1V|$q=3wX6o9OR)PU@S z&j2|H834HmnE<&7Spazn*#Y?pIROO;xdDX<`2a-;1p&ngMF1rU#Q~)Wr2u6KWdY?0 z6#x|pl>wCr)c{oqH38KLbpSO9^#HXA4FPotO#t->`h9BXA@2bBf;Ey!zF1BMdxg^uu$Wvaa4kuu2}9%B&R@HpG-@&pgZ#>o8> zasOn4aQ{@>+{gHlpH7Gmm`V5qFq@DFFqfbeKYPeMQab;}Q!FwFor`UA$8mWn;S^vw z;VfVU;R0Y4;WA(i;Tm8a;U-``;SS(;!hOId!Xv%h-91Fgn%f7Er4i*?SL2rO^oef$~39?NG7R>YY-~p z+vZl`lT1KZ3;2|<9*~HjiAg=|oFx^>WRi-M2B9LgZSE-o(h{Bn(h*((G7vN|lZRJ7 zNyQg3NkvwJP?6m>HwXba2txt62qOTw37VMCLxVL^kzXdMC}a>SirD5d;P1}G2$=vS z2w4E72%1>d!}xJhQBEeQsAv!>D%6{u1r!<-yl>p zw9PF-Kx4uZKvTkUKy!j7w(?MEyi|N6lT@@d2o>#YbJ-ElfshmMEg?6cGeHx(dPp=v zD!R!e6+I0?MQ_{O4*YKTo}l;l_fU431PqW#0tOj`fFZWIz4);iM$r35diZUE1dNhN z0>&DIfbq7uDtLqm1ik+!56%1!#blWzV46V)m|>fHgn(HDy??HUUjCDuCzAv$FbDyQ zY;*Gwu$Z9tFY_?f|Grx;lLV|Z2mz~YbC>ZB))Mso^&WOCkbn&`Nx&w95U|-c*8%}s z33~sZ9{yS`0Xt-pfZYZm;4jbne93%k|Ws-m>1|cAtZLSl3 zo?;NX0Adlk13n^XVq6bP{7+mwnWQ3tL8$oDHg^zbOhnN8lX^(!|MO!qnIs^kK?q1~ zn`@1Lv;+r8N9X{^K+wcY9%A@!!xu71MOK4Qk=-_zAD?v&LLopdf(GRAFvTb4l}Qo{ z7=*+^wz*;mC_>Qti+hOee?&^iBmt!jLO@yD+~0Vn@`U4niiA^u$^=cU=Aq#Vsi-cK zRMavE6?JTLw-N9);U1tq;USwz=pC_?e*hFY<8hkpvv876O(Sgn(tXxs$m3E8z@aCE+|^HQ^FqE#WHQ zH^L3T2EuK?M#4S7AB2a1Erfpn+X&A9e-d5*b`o9#b`#zK{vvz;>?1^~9^TFYLR7#Z zLJYtWLTtcM!pDH)g!q7ygiipc3HqU&^N{(Od`gLN$3=tiDP6YBCBx;bgp`2m1P!?5 zA?9gGEQCkBYY-Ce+vbYm@*PXJ#L5&`lMk^=G(QUD4NQUeMR^g)Vxn6=)2U-37m5(eSPO4;U$;c^*5 zNkBP589)U>c|avXB|sHIRX{aD4L}V-Z9px;*MK^N27s>#jRExu%>WGvEdh-QtpQC5 z4$z#?0nn1r3GfX;-(On~lQ+u??S?zr8-y3y(Kgo;mpc*q0KOyi19T+}1av112J|Eh z1N0`01bk1>Q}y={>t8u$2K*-b!5|!Sux&0AE)OMS0SqT-z$gzRk4a)qeAmVrgv9Z- zx!kxsfuQ&Q9)C1xIB|E7BHLeBVaCJ5@0@I3Sa?YI$#lD7GN=9 zE?_C)XTWm8BESlQKFDehQ?|>Kjl;*W&LBM5dfVItT>hQ#6JQfzDqu5V24E{;Hefqp z9$*Jy0bm#57r-9EQovqew#}`>c zfOCYMfD42@fJ=mZfGdQ9fNO*!fE$EkfLnx21Gb$AKN=XB!Yg9Q9ac3e_h>+?{Ex*@WIBi z%^kqyj|hhW9}_enzK7UHB{2i;_{1P2CbZ3E!sWz-EP$j04M^c3-yKO@hdWXmgv7MA zxed6Sj<5-kfv^RTk+2=`1wkvadMI~YI+x;(FAYLxPTSnCxcn7C@6YQY+Exk3CzJe5 zqo6?uC~TW6g3HATB><%fWdP*~6#$h9RRGlqH2}2k_l-vHVY z9H0Y1AGH%fAFc~QAFew=AFdZcAMSgCK3so-KHLukeYhb6eYoKSeYjBseYmj%eYhV9 z`f!sxJ{Unooj#CZ7=Q!OqyFAOo7kB0U*|>k6LAd{C+uQOd2Ms~aJe9%5TGcb7@#Df6re1j z9H1hh5}+!f8lWbj7N9QSYd`}+LqHQkQ$PzsOF(Nv8$dfkd%(AZPJk|iu7Dndo`61t z?*aV@`a*vo=qnsT&{sH|ps#QgL0{omg1*8Z3Hk~r5%d*KA?U+RC+I7jMbM|6OVC&N zGeKYBB7(lcB?Nsz%L)2|Ruc3Dt?{tugnZ-H$|T>o^#PKA;hyF`yYi zD_RmXv^7CP9YI4o5Hz%thh{tE+?{2Tb9Xfe=k9Ks>w(L?34H+l2pTYup#R8Vg8n1J zJS0Caox^34&QS)TbBt|nEH3{@m;m^RFc~n7FdZ<9FdHzBFdwjxun4e(uoUnsVFh3{ zVGZCn!g|0)!Y05L!dAeagdKq01brEM3Hta42>SSk3Hta)3Htaa2>SS^3Htcw2>SRJ z3Hta~2>STf3HtcA2>SSU3HtaC2>SSs3Hta?J^X%Az6;M}lJCL`gYaE=Wt)4A%kK#P z0U{i+fQT|lKomk$Kn#Lb#3pFy#{>Xp$ecnp$4Ef zp$?!Pp+2Ayp)sHtp*f%xL0@Pag1*9b1bu}a3Hk~<6Z92!CFm>cLC{y&o1m|-FF{}7 z0D`{4K?Hq;Lkao{M-cQCjwa|U97oVsIDw$A@F#-4!l?v(g)<2H3TJz$^FY3nb7Ye5 zTZqex2}=OW3BLkX5mp1%5q<;wPS^<8OxOb0PWThBi?AE8m#`0TkZ=g_ zH{mGY1VJD5G(jKk96=xMB0(SS3PB(4Izb=q7C|5GEz!=PxiAxc(R4Ixkb3Vgs>FwD`5p- zHDL|lH^O?rM#3h*7Q$A*pM)KN-Gn`WeFQ!CL4y7xM+kb-V+1|vNrImA3_(wNo}eea zM9`C7CFsF!csP1kUg%Akydb;;ydk^=yeE7BL^^7R zh%A#FA{rq&AQnN78Hb<;i$~CdB_Qa*5)$-aNeFtddj zlA~ub2=6bmZ7vHgXD56K$VK=Hke84TP>@gvP?S&%P?AszP?n&lszA_lR3_*-suA=Y zH3@o-Is`pOJ%XO2Awkd4#6y+?@^+faByXpML3lf@Y;)h>a$AA}bRcvDbS8WU=tk%c z=tbxa=u7Aa7)ba5FoZA^FoG}=FovKHGM=DEpGeT7PbTQmrxEn%GYNY1IRriWe1aZ* zAwiG6n4m{rM$n_L@Q~=9dT+2(%3<=+V#0hdPgOC%Dn~(>PpHKi$m{0^z zoKON#notH%o}dp>iJ(WXO3=phtHe z3g48^pq)(e8FVxVpFtgl}X;tdxP+HA{@8NBdUkX zkqDy!Q3&Gz(FmFt)5E}zBg+3kP9~{{V-PCh+UDBT2$$m%Isy_9Is-l>Xkuay4`0bs zB#}ufk{g7Il(xABIAdx;V?bI$GeA0mCVuYWP;_~Uj50|@W`j_X)i#$1XUtAW3dli7 z0mwzr#5^A2`-;3WNksvJP*KP>7Y6}F2=M^L2nhfs2%1>h!?ws$QAQ@IC~pudD%$3* z;x$wz+yGQ1+y+!9Xksl7t6#`xQClXd_}U;;)VIwQML zOPQpiwLz$8Yny9^*U*m863~Ir8t^Sa6TkD&A%awNkx44L8-$9Uwz=PM#@>YA0pAn; z0Q4hh;y@37{UY>9+30NkR1gtO! z0jq3tgTPt{?*bCFuPxJ;aYC zpTaAdB;c(<2>8!7mjj=|2ZG)o>4XGSjwu0=Ws-ns1|cAZZ7vf6ViENII3Di%@4?41 zNkDvq5Rkw&mmUG167>GW9?JUfK@yoHAh|&ZNNJl}f_IRbp!a{~;i3N&(#a$NpBsdL zOt!ha2*^y(`?Gnt`CbCD%On9g4MM)yNdgKRgn**9xr+!W zPSE>Hc^KqRP+BGlC}$7?D%j@cA)pdL@2~2ii~k-}lSu+<8iat_wz=H+6zUT6{`wwP z`tLylnIxdGK?rDSo6CxT<^;XJm4~wauQcDtBmr#=LO?s)+z>oM2ZG+;$wO@ayT7wc z642Ek1a!B}twumkg5KZ9!_BvHg70OLfc^#{V4!VoAOZ#v^!}k9mb{jLVKPa;NP`eC z+BVk;0b>bz|BoI{`cGkkOcL;uK?s;)o6C=vIE_#UFoRGOFpHpxb3GjKzqjYfBozw` zLd7E6TxFbbF`*h@DWN7{IYARwdZ-;uo??|uQnA(`RQzU}i;OdFAVdRfB*X;#LD0ml z9)651729NziX8@_VwY{MBm(vj$^iBf$^-TjH1Uv!*#1w*!!k+5QG-x%+&0%1ui+%2 zJ>WFqTfkX@CSLH+CyG49MVX}Hib1HjW}CZ@fExt8|F(yDktE=bOcHS4AOt+L%^gR; zW5OxG6T(@*GlC|*@Q}&>UF4-qQt`$hRJ^mzZ9~9&!VW-$lNPWW5Q(6PQ9V@tNGhVq zBo#3YLPc!bTxEPzaR}7_aS1g6@d=vviHD2+O@AtrR3tVC6-jM#k8#H2gr|U%gy(?N z1Wo+RLrnj-+jKHX#ped0B9m>dF3y;lP#=($&Op7WNxnz=xJO-g6pKb0n z&RBr(4p4~j0Z@dXiN!r+^1lO1$Rrh|4MIg(+guL>lqd8CR3!8TR3>O*H4nEc$x~F9 zNh)d?go--0xl(n)<*x~40rd$L01XM6*u+DFtWwcbCaGv)5Gq>P=IYf7ms=AW0@@Oq z0NN2Wv7?8N>qy17GD*dE2BD&>ZSE}2*qv|z(35Z((3_x%eLZZE)~mUl8O}up<Um2o>9GbFcAX{z-TT*h%;R*iF#Hy&hJVkcxdWNyR~f zP;uBcH>bA0EdPHc{7sr4$Q>gr1e_pf=4lU=zmk$OGD*pKgHUqOHn$TW=Vihkz*WLN zz;%Kq-tsUfi&Wf}NhvJxs4D6)$9xiq{6A;;n6N zE#CEig!OCgd~8%1WhdFAxi_klz<9^G=NG3O|0tSN`0xQCX-auGzb;7ZF4Dc#=3+wfO>>Q=7!;n-w;Lu+7QM796=L1cqklKDmuy}6`c)2MHky#cl-^b8$s{y z>EVul)4gPpfbR`LKtJ1DdYoVYLGK^rp?pON$XF)?3^fP=!)Lp zosb`}gHQ;ti%=A>hfo5rmrxq8pHL2PkWdkDm{0}qH=#P<7@-#61feeA6rn!g451O= z9HA-T0-*)q65$)b6+&CUHG+N@ZhAzcf zKlWnDB)?95=?UKeJ}0yVWFoW&WF~wI$V&JQke$#Ckb}?@kc-d?VTP?#_hP?RtRP@FIxP?9haP?|6qP?j(aP@bTlV@t02w#<|2H}IPZkt9)x#*UW5;TK7>g4Gp;WoDxg0>U&ap}##E5E zlMEl?5QFe`hS}y);_?VW8o($*I=~o$CXV-T;!COc5yzZp5GsDM%}v7PDTFD2X#@?J z>7h<7N!)_YIR+tdo^5VBF8@r}30O$j1Neoo53q!A5U`AJ1n?{27+@vgBw#f`kGamn ze*d2ouH%jk2I1TrZF9G9`47Tfz!t&-z&65Tz@LPtfSrWrfZYT=#9j{-3d*T6;Y)JB zAe`!uZ7vHgA0cE193|ug94F)koFwD}oF)_moFx&JRvj(JR`IMJSVgPyd<;(ye4!6yd`u7{72{t z_(13ZhnS9-%MbXTku$Lc$=xFNC3h zC4>=xWrWdyUkT#?D+zkcH6Hf+-wU7M_t|d-;oKW+bBS>*Pr30R9ewi$$g zKW%gCad{_UBVadSGvF`6Ho!i@4!{AzZonbJUceE;0l-nhVZd?1QNT&U3BYN>X~0>+ zIly_sMZiVE6~JY}b--1^Ex>icUBFGk1Hf&xav42?GKD5e5T35QYIFp0$dRfXIX~fT)D=farvYfS82I zfY^j-fH;JifVhM?fcS*@fCPkvfKLgF0f`9907(cd0Lcie0VxRU0I3KY0BH!D0G|=I z0MZk-13oA01Y{!Y0c0lZ17sx}1Y{>10puVY1LPu{1mq^10pul|2jnMQ0u&@%1r#RS z02C$M1{5dU1C%5@1e7NH11L*)1}IN>0jNlL4X8|b2dGN;0H{uggx{Jq2~h#H2{8b5 z39$k72p1vmPLPhUlFDN@(?sJzlUdyrJ{gLQc>6-R1~$%)kZ*Z!qG4ojijQrOj6+tLPdMqTw%P1j)Y=>PK1(x?+BXM&BMH|Qqf%|spw@8D*D*w`rwRx z3H<>52?GHG37RiQxtpMW*nmExz`3_PsNhYb7 zVh}2(+2#`Aj57#H0ka4x0CNbMIN!tdW>WF9Oj5DPAXF^2&Gp3@ml6g5mJx?sQByV#U9&Sb)0c8 zLGM4{VRdH-I4F|@95Dz1M{RR8af0K7I)IaedVtdeO+4q}^WIW%UM8uyWDqK@*yeU4 z;2L2s;0ECU;1)p>?|L}tf3WV!Boz-0Ld9d-Tv@z^Cxi-sXN1at=LAiBuF zNI=lUgdUE!l!`<$NkvkFP?6j=w-5m-35x-#3CjR!37VMR!_jt9kwGS@$Yc;IGTY`N z<27U@L<3|e#02CZXyR8MKJ^v3Ws-_~2BD&WZSFPBScvcrP=xRSP>i67B|T*FKf9%5 zl8Ukhp`yHPt~JhBk>CK82^|1c37S~LL!*XLQBx+VsACW+zP8Qf!Wrum@&FnV@&g(Z zG_je7Xa0}P<}yh|D}zwc+BWwK&e)c)6wr?FE1&~G6FYf`>i?eBSthCIY7i>A+vd_B zpeG?6pf}-j!1n}A?C&9eC#e`9lT-{c2o*zYb43v_j8FnFf>0VTilB*OJYE(88Y(8NzY)N@jiP$sEJVh}2l+2$VOj423D0jUVj0ci-Dn9jp<{|h9& zOj422AXI!|n=6kqW+7ApWFu4sd`Zy6TprrCmWr=rl8U?rp(4L+?k}9NAYnhCFyRoO zC_xiTco^48DoV;E6=e)UMLFBtN(59OtN~Oa{068((8THC+6JMbu5GRn zUPC=XQ$Pbk3qT`+CN}jDt-n+>lSwLC8ia~(Y;%$7h0ARSQ2~w+1JItJiQjs-I$kO| z$s`qB3_?XW+uTV6^dOu8^de}$_a63-mBhX>N#X#5kobdbZYu%?6ZHOJ9xC*cfZ;Mp zz$k+dFvd3b3a@P(;Vs}t!h66(f+kM(kbIC-Op!?{rW=HcnYOt+IOA+We!yHpA;5fs zCNA`FXS7r-l1VC-7=(&twz%{*xZw z50ijXGD*N$gAj1uHrELO7YTa*6%YOW_xGwy5^%#H1l+RC9Yw$$g5H1ML(}0B@IWRB zcx(^?p4jHPBH$UJ2jDrOH{c~f6W@5);eU+Z$|M!<4MIhPi+1@V1Vkdl1wP zp70NT3O^@kz!wDlN3we8H$W<~$s`py3_?XN+gw5%IyXV@&*x$0ND0US|J=igFQnIxcwK?ta2n|pwlQiq`T z*Yj}42h^8I0vZ{FfF`!NrnuaK@GlZu5j3C;LI06<9)|i~P3>ipif;`WcDh3*aib1xyQb-&^(EEpbXgW#)M#v-qqYXm9Sliq< zT%JIfio{6-4VXgEe`LCcenX{VhD=g1+aOfTwav}Lj--P1`lKXZ|L7;l7K%9LckW=+#UpMBkTkGNzi~@9|K~<-nWQ40L8vHTn@fs-LWC56B81d{VgyYr>0ze-i%Kb( zq@t`rs3>onYmb161iinChxY>|psGv~P{SYu)UwTGL_i&a-e1o{gYPAvzDyF($RGqX zvCZAUp99SZdVfm~XZ)9?l}r-Q#vlYZ+uU%RpglqF|JK6}|2w&pOcKz=AOv)?&CNtW z4}#v`+rv!%>#&bZ641{e1Prjvl|#S}1igQVhXVeO=bPJ8UbSndjEJ2 zJN!%hQ6>qPWDo)-+ve`zB~B&i{WCnw^dI9)nIvG2K?s;Gf9{x930=CE`0ox5i zzz*A7()!`@E`r|wmxtslBw(*h5^%sE1RS!>)oKtfA0gBQ93|8T94BbvDGxn=k&4qY zNyRyXP;tRF_YP;gMEC%>LWqQlYXnWa>EWxzQgKTrskmzpD(>6nq9NcRAtvB4;UmBk zf+qg!VfrMgcrKGvyfO$CZ)|hXaOii0n1J_$j{p%a|G&h@9`ekSiYPKkMRbEu5z{ue z7y+>f%K&i*D*$l`n)p8tv8G8y0-2;Dp+TrfY?~{FfTVm&DBCcCPH06W7nVbQjtR@srbquROGSERltXtk5CyRD3U!RP;9p6$5Q^gAp)@Fbpt+ zFcL6~pot?rRGBIjqhykbu?C@HylpNI0wxgh111p)0VWePahiwaOQd4DOj0q+AXLn; z%_YV6WgZ~~;AcW=z(Rs1F7|L@u2d|MNh+2bgo+imxdk}mDuUj>*2B!@60lAt3D{r| z0yf&_O5g;45cK}79ty0KfNe5Kzz%~Du*){r907X>tpIxoZ2hAXHql&9z6s4T9c(+ru9Ji}sF8 z5^&!j1U$6ORY1UFLS?`cLN&lMf+oK3@YMft@lqzKcw-PM-r45XAmBaWH$a3d7VtYD z57@2@zg~L+W^H0I{+mKnpnm|?^#k&Rwk*aU=S)Q z+2(p9pbDWcpc-KSpaww`YkS!0e+KHvBo*}xLPZ1HTqguHB6I;XA#?{cBWPkv52Y4L zMJt)4qK!eQaJIQi2xw2Z3g}3<0q8`~#4aAr_`l$Gl}Rdk7=(&mwz1|eXuZEiA7FqEM8kMNMr|5ak7OcF50AOwuF&1J(0ek9}oOeA~-_=%v2 zQ$5U`Ar;ePl8TuIp<=det~t&)m(U6@pU?)dfS`%Lcqrm47Rw|R%M3!rueQ0y2v|wb z``37Q@Bd_3E0YAQHwXd0+vdvPAvY29{w*H9oFV~RWs-nD4MM<9+gwJRU^gK%;4eZp zz&?T|9`umG|H*PlCaL(_AXFT)&Hasl69m2gw1-Rn*VP%BB;dS32)JmQdxzgnmkA#L zR|%0&ah;%vw>&)Xui>^#QgP29R6MZFc> zJic&^36}s(30DEl37Xi-L$aMx@r_JU(bgbTw6o29i!*j0d6~5573X005E`{iGw_(`b{bZ%On-U3_`^S+uT~bhEas|fH8!P zfN=y(oZ#V?wNf!rCaIWg5GtnH=H?(^I$=IwCSf69HbE2TdDyT@D(1^16$=eQ#V@wG z9tc=M=nYs#=nMFjpoyzIOxz_Et7Vdkbq1kgy=`s~-t_N;p@2<<5rEAEP2A?8$quR5 zE|XO3Gzb;DZF8*<@E4&CU>~6!-~d4r4|^E4Q7VqeBo)UDLd6N&++)0kQ-r60Glb`W za|BJi=;7^NskkJQR9rO(71wQZ+i=F4gdKp}gx!F<1WkP4p~X6>cqo%p{9_O*p4#S? z;EewgmIGc8RsvoTH1Vy6nj56zolH{k!5~ybyk?h=A|Nv11RyHmG$1-b6JvQ;e^@GF z%On*a8-$8@wz*i1!sY)F;s8D&!~-NGXkro%r~U7!q%uiG3WHFQ$~M;vZ#oU(d%$Oe z{($rZP0Z+_%YLcIB$HHRF$fjeY;(sE@Fn3CASdB0;46YA=JoK?7OBW5lT;Km2o;5G zbLkOKl#mfnoRAq%lAwuYJbZUVD$2?v6%`CZMJ3zZCwS9U2#EmI2uT4o2%1>i!_R+8 zMID)>qMkvhXkeRbfHO8CGzK&wGy^mvXktqb+1E%#E19ICjX|hzwz*OGO13AA1#~3* z29oanvAG9JkH= zg*SbYupe-ma0qagpotee#NHzn7iE%)D+ZzBnr&_h&Uk|`9dL^<3vh>^iT6Dm@PFZa zAd^%)HV73@Y;!kp#%F{(faiq!fR_YKeBoHFDry;oiaNHrc?kHLumDh>@C%?JK@*#JDC+;N*Hk8{Xkid4TG{4)LqKc7?|`<1 zKLG6rn%L39)&o-UtxQt!ok6JRYMZ-(fbN9bfS!bVfZha6?CasS|5e>jCaD-`5Gn@Q z=BguL2%#2W7@;m;1VIx=d+4%SD#pkp72^#;#RS{jK>XNDA`AvhCJX~iC1~Od583^T znkkc1%rOWR^K5e$amJqsR{#qM8nD!jd zH+Z;kP%3_xNh`CX}aCX-aWFbEZ|Y;(&I@P?rG|K}mw-xBa% zCJBgmLm>o2w#}u&@8qb2w1DV@^njQIP5j8i@;H&?|L1U-q#~X{sQ904?q1Vy`4hrJ zKtjSlfW!n%Oy=RjLwSniGD$@$gHVyiHungx;WL8XpTR@HixTj;OcL;gK?ulVn|p$X z%tp}rb9gBGnLK1pnIs^$K?ulen=9EoT+UA@11Lx+4=7B~#9|(L`-dzplT?&42o+^) zbNBF&;RIkV;WS`A;T&KA;UZuW;R;|e z;W}U`;TB*yK_6tLhyCZ|$@b!hZH+;AvURq(1Gv1Na2W7A;V57e;RIka;WS_?K|BBS zaOJ!lVuwufdUqRyL;Pi%yM%y!gsXr9gd2cEgxi24gnNLagol9R1UAMxd}4>c?q)t`3ds? z1qllPg$cg^iV~IriW7bXlq9SIlqReNlqIYOlqYNiR3vN$R3>Z#R3+>HR442P)FkW$ z)FvDN)Fm7S)FT`PG$5P+G$Nb^G$EV=G$ULDv>;pov?5#wv?kmFv?bgHv?DwKbRawi zd`ox==uCJH=t6h}=tg)8=t0mQr`{g^JSM+5`^Y3eU;PZi&({Fk+(29&OsIfg#X|{| z0mBK^03!)C0iy|Z0AmUD0OJV_0TT#K0FwyK0h0->08~M0Im^M18xx30d5gC0PYYr0qzmD03Hyw z10E4}0{$WF0X!w_1N=)k2zWs_0(eC@26#g_33x|119(q34~THfKIuzkkAIun9vT;l%T&ETX<-4TYgoxlu3S7wl)aAD%;v- zm)m<7{6G1dZwK7p$spYSoo%iQE_WyN0Q4sG0rVsE2mC-71Q<#f1{g`m*DM@*G@&41 zETITsJfS#X0-+RO5}_<$GNA%sDxor9I-we1CZQ%^HlYq+E}DxgcESk2 z4#H@_F2Xp#9>N5`Ucyg+{e-E2gM=A?!-Uy@zX|gI#|R4mCkVd)P7#&@&JcbDoFl9P zTp+9kTq3LoTp?@(TqA4-+#qZN+#>7%+#&1++#~D-JRlqZJR%$h{6jbjcuF_{_?K`R z@Pcp-@QQE|@P=>&@Q!dD@SboB5aG7{zPSsCM0fy*LU;^_MtBN{L3j>`MR*1Hi0~Hh zG2uNR9w8$Bo#lUoD1c80(E$kwu>gq)aR5mP@c_vQ2>>Yx2?41INdRdH$pPsIsQ?)W zX#p7t=>cC5G6J#?G6S*^^w)k4g8oka%EK)GpX77PB!7_PGYEe$6tK;`!r$Tx5#9od z5Z(id5hCKhb(J7Q0hA&{2b3Yi0+b`f0aPHw15_d;08}9)1XLsFlhyQ)F0T9;SW6~( z)Vc=YQR~^}BI3K#fDi@Hh!7pngb)kRj1ULVf)EeTijV-%nvf9CmXHL{j*uMCfshLD zEg>zSGa)^o3n3$*8zD2G2O%4v7a<3r4?*8wKMymn%6F%~O!7j1FbFSnux&0cK9Qk> z0)XL!!hn&4Vt~eTWEddJ%tpSS&4zQTe0kD+N39y{d1+aq99k7bf3$TXpJzyQ7KVUuK2f*)yA%IPU z;egGAQGl(4v4HIa{c`N|@a(93TXxAL-UNIM5O9Ie1aOJa9B_ru3UH0k25^JW4seUm5pajl8E}u# z74U%21MrB@8}JXIFW@O*0N`K3AixX4P{1pKzOJ_(qDGhBknd!Y_xHgdyuXNd?D7!& zYe{6na6nYTC_r?ACdTrRJBC!mmPsl;HV75*Y;%(l@IS&dz$b*6fP{oOfW(CPfTVNxd1&0c>ui$TG7|T z%8%s1`^gmkzd{&j6j}$_<}TvcLkL#@!wA;_BM7$uqX;N*V?9(qBTqU`CVA2c2BCA3 zZEhisJ(;i=FqN6)CU|TGy)taXyPdkebP(CX_=(roI$9#V4G`( zfJ=myfGdR7fNKOzyy+pbe~Mc&NyS}*P;uWjR~Z2h3Dp3P2{i#v2%7k>hi9>+;<-#x z@yZ}nys^#wjW_*{a2)WSa0(FN?*B`S>|uoepNB<}Nh+cngo>E9xmEZ!#3rl-#38H) z#3g9r|2&LJD^HO?CaFkh5GoSe=JMk;BqbCABqtOFq$Fr!8V{xY|Bf!LOj42FAXI#A zo7;plW+LeQSv<7y|BI5WGD*Of1|cA)ZEhES5Wgbm{dqmCDkKk?PbLW{Xb=Jl+va|2 z5iS=c{0=Bi_ybUqpowKXY%L}gWo43z3I?H~l5Orj0;&)m0jd$60BR64v9^c*@<>G; znWUngL8xe8n`?uBMuc{NCWMZFW&}-a=^DinRuz;y2q|F9d8Ld=J=2=nwdV zpov>OECvFM$07O+4hGePO9MER$3mH3${QZFAcY zaFVbCaGJ0iaF(En7d#9oClwcEl8P$^q2iitt~y@B4MHuzEka$u9fBs__b|1DR6LML zDjpkziYKg0+InD5i~KXhd2I= z(PWZ}m_W5GvB!=JFumb3%SVCPE=VW`ZVW^YF_5WM-F1Dsmcximz;Qt?(N15ZVCp z5!wL?5Hzu{hw-JQqKHgVQQRO@l(fxdLO^Lk7C>1-c0hT8CRXzBeF3ScER$4JGYAzm zY;#la8fp=y1L_cF0lp?^VgnBgDoaH}nWUnLL8xeEo120&wjfLgv?9y`v?gex^U$=4 zRJ4;xDmog3icYqrNh+oogoyb zDoMrPGD*d8gHUnOHa7-mJWUu6I7^raI8V^TOCEm8DHWGxl8S2vq2h*ZE(^|hi;x{~ zhmaF+kD!SUJ?!v5SdV0qiYEr4;+bu3AD@IjiPNRuWaARtXjq=QHk=_0)oLI@!fl8{F4 zML>dpGyxGX6cLanO$0>1NC)X1q#J1h(gfZy=RL>m-uqnVy}t8)=lqd9#&6DbkNG@n zWo1Rs19+L>6Ej%&uAz*`D3y%Jtl&mu)y_oWjM)h>fE3Nj+ER5IcX z1vjFAcBUoH_$HwZpfI65;4OkrEN&r_ebJVXN=B4Ya3jiSXKErKkWdFuj_?7X0>LL% zwy?v#fmD%7M!c)wM!ct;sfXK8lh6=Qo6rRCKEWr}v+%b4zNjyijA*3bMl{jRj6^_F z!pDGSgmHit1fSU2LVRTz(MBp6(O$ug=%}3;gxk=WFci>*Fapq(;1feF+_xWSyGtb_ z!WGFv)p&Q_LLKxr=f=|3{A;idtJ5tGrdkSvE1MN(;?r!-Z;XS}(LM^~kf=_&I z;qTTm;)PT);-x=4xDlzfGdXd_w1hl>mkF-}(i41QCJRHF%7|B_k`Y-I+=%SjnU%QH zIS6Y2xd`h3c?dr7bqj-A$cTJW$%q09Zp53~nQI6rO!yt}7QqJ;x6md=5=%%WiKP@= zVj1nsH@LBZgyn#8gq45_1fN*hLYW>iqKZ^9;#~zd;yvw5J_OVx6adsF6au_Y@QL*- z%>PJ6)R#&|G*WOQnrLUX;5IZRYy&hS>;SYN_{7#07Kh7-Hd4um_6lx9N9{}?&e)ky z9?*qQ3DA|`6GJVGY9%AOOC=-172JrP+L@Q|3XCA60YnjA21FBlVw{EZy=6qaR5GHU zf*UbFJ2M?;97LE27()00FpS_6M_S0=Q$~!EN=A%Pa3jWPXX+wgJfS{d0-+ILBEctq zW?@Dz88JmF88KbKjrd$U(+&Z%2ps`m5P|?-5`5x(3)LcJ#8*BGLKm=qX3<11K7!Jru@QHaW{9c90R3rIHcV6x@jF z+L<>R072Jr%+L;mv_>fQv@DafWw6HL+y(G4j zN)p>BxWsnanYsw*K&TJsL}&yEBKX9v7Lx6c>JX`9M0W)@qK9^-C~mAFlmPT1lmbK& zd}6eP+0im0Mk*N*ui!@X)y~XAKz~9aU?5=;U@*Za4zsW(N=6KqN=A%Qa3em}&WuLD zSi)GqCxr2U1cFbTXdyOCMof}QModv~Bc^F*vLj#yAtzuaArD|S!6$xcAyqpWF;^-X z@s)xbu|PW$h$nLqp*-MgLM6aA1fRIv!d5%tTd8EkDg`%UjdrFQ0@f1V1FR?10&FDs z#2+kdXd@#wOC=+IRB$7H(#{k>zz#woz|VxY0KX7?;vNe%?MM5)Qptz|3U0(9?My}l z942H293^A}94Gk1Qx;O#AJwO&k`d<=+=vU>nLqJl{zmZouUP161FlLX0XGy}K(cn` zF9h5q`2BY*)Ucm$?@A>B_Z3{gU)q`P{f{4l-~ZG?_E-t{TPg{7q2K~i-qPjuI6*4H z_kc8n&46@-9{~Y`?SKq~p8=T&y8xL9djVMq2LRa#zXEa)jskKKP5|-{P6P51&H?ff zE&}osE&~b@{Ou}ip_2WP(G)L|q6+T*71vIe-?p&berPErmE7;L3U2>9+L?ZcD^C~* zs7M$Bs7x3Rs7e?Gc$Y8+@E+k4Kuy8~KyAV#!25(LfDZ`M0rd$p0SyUX02&kK0zM>s z1^9@t5YU|PHJ~M7DWEmsTR>aFDnNU}cYuzB^?=R<|D*(42(iy<3+(8o;GU)K+Uat* zh0OL7Rs>!ry%gO3NbPhv+QKVcWq*uR@+yc|aQpjeXSQH`f5JAvK*A2dU_ugLC}B5X zIAI@PB;g=nG~qB{4B;4H9N{EjJmCyr0^vMhBH=f{WWp7|6vB1DG(s|92H_T9CgCn% zHsL;C4&fnSF5wAaKH(W4k&psU;zB|yz+ysLz!E|LU@0LZU^yW(UiMuiBZn@Ehk5LUF(`!rOoogff6rgm(aE2o(V52$caB2-N_;5#9q_ zCe#94CA<%~PN)a?ozM{Q2cZez7U3hn9YPDhpM=(c`-FCYzX%-xj|f44CxotmzX_p$ z=Y$@B6u0$R>Iry>5D7?4hz6u3!~tF=^aZ3R3;<*#30V)xW0ICp<1F8{D0jd+u0%{O00BR8~0qPL00_qZO0O}F` z05l-n1~el431~ui0BA~h1ZYO^Pi#vIUwt9ZbStUknQp7#p6T}5nX2J#xg()EpfjN+ zpbMc6pex}6KsQ1IKzBl8Ko5dHRZj~eK9OVgl1h#lrQnVkt(_^{!!5@WiUQ&ZB>;U1 zr2zd2WdQ>TH@|Q>I23T8UZE{J_Jl8Gy_Z~ zv;<5cv;j;bvs{LE@?Hx|7R&zq*ndF5?LVZQE+4Vb`g7TTR4VztIicY8pVH1e#R1O{ zo&(MiQexl*LTbQogmi$*g!F)`giL_z1b?bz3$^;oG5?TCj(JX9ui&$JSOA^JSF&<&n^7*l^o)QRC0)y?s#yANUfcjf~!bN@cRQSd@)M`@?u9u z1sCv&cDkI^Lf+40e>SOPU=9VhKbLl99-fOlghW7If)9AZ!j55*m|rSMd{efv zwoui6CqzpnBjOa?h(6kxj}g$1Fb*()kN_A&@QFh$y#1w&7$%jB7^&b!jMmP4gn%)G z7JzYt)`0N@pZKYTn)aj3M5$!NX9{k_RP9VT1WYIR{WC2LnJ)peq>_L+3NB!-c4iO) z<`aej5(y&!3kg2)YYW%yZCE0ej98}NMtrNCX^()Fgie6fgf4*Z2tIMWg`@UI#s;Zm z#3ltdVzYMUR|IS&90hD6oB(Vm_{5(r%$gx1lBALmyA|Asz1o>ucunso+yxvY+z0$h z@QFt)O#WI%9Fs~$oK$clPHSh*;EZPp=K<#lzX2{1eBxybzu33$D^kgb>k4kf@7kIC z2>65WCg2vK2;dIEC*HHrd76y4FO`gVsNhCC*3SHj+whcd6!4620`P+16JNS3BNoh+ z5vin-5os0Nh?li9-EhYAgfKuxf&sij@QGP1bWfBK*`$&YITYN8T-uo#2*^X21;|U7 z1IS14i3Kdo8Y?3TN+lx-E4UGFX=l>nHWVWS07?)t0^TP0#4;A%Tp%OLN+l!8DYy|8 zv@`Q@#!7?*fGPwZ@UDgNizKnSRFYUz!6nw#&isgg_X&P~Jqxc*mw@_GNkAh77tlmI za|YMcl;HO_x6oyt1hkM!0$MA$fVSG1NSvTOAsWz;5C`Z?@QJ||ZrY3NDwT`~Rd6H1 zv@<&p5Kc$}^d#&CL=b#pZwm(&%7|#GWJH{T8_`EQvkn3M2pa(d2tNP@5q#oM3lVn2 zFsWq3NCh`yw034S0>%*h{!c8N8zTYZrILV86-Mw6 zMX4m2f-)iw(zt4h@D3&8S%P;8}WvACKsNp0)*E9ZxZqW3KM){Q48(2%ZOr9 z$%v8)ZbT{VOpTsyxeTE;AdpZOP>$deD_V&8UPe@sN=8&wa3kK;&g?U8`8~oxKuyA7 zKy89gtZQNQQW^1qR5GH0f*a9DI}?C_CWMTDri9FZW(1$u(n8K1GNP4KGNP@58_`}n z(*U=jBcU;%GodM<3&AIbSSY;m6r2s<+K5@8(k*j6I2&rVmXazT7jCQ6Q4n2+#1{hB; zfC&VjILShdH8NtdR5D_!f*UbiI}?e3&k50hS%f&i7X+U;*TS=9GGd-oG9ppIjaaCi zc?|)J3Hbm^2n7I32|n>#3mI0)h!s-Fh}8;i#CO`6j}Wkq&;qc5&>HYP!6$CE@T+~% zZjnkxY*TO}wrgiv;K|%cXbngrv;*uS_{6;y9wy0%eNxGYg9>iMuiBYG2slC*3OGg> z0XRYMiKi_z-YO%`NF^iAE4UFCwKD+-xJ1YZxI)MbxJK}azgw8HLPjJ@B_nPrxDj`> zGw15ZA6xi*gN%40m5g|%;6}XA&a6d1%6qzh10WS)6Ce%2C%$aq z=vo;OAeD^BsNhDtqMez9fGmV5fNX^6fL94VF_(q-Z)HSosboZ61ves}cBV7}@)H69 z1qtN=g$O?JEelOo%7~&;$%qmPZp7Q#nGX<9n$Q4Hme3gR4#6i@u<+$iGNPhXGNOut z8&OR=Qvt7+>V(RG8iZY0YE20AwUqpCw8^))V|Y(NF^h>E4UFov@`v1rww5s zpci2XAd=t{qb;0SFC${4k`eI=ZbV=0%u)pOCwvPSNLU3JOz?@rEKFV}BZf;QBStB> z5g%)3W+7lKVGiIE!aP6%!6#0%@aaw&F-a;JF-5_Rn5LcSggZTh&;>A)5CWJ@@QGhq z*tlFq%#}(;e5K$5qEs}$UbHQJfV2v|$- z`!`rP`LhIUlu81AP;dcTv@?;o$R7#OfS(9)fE@&%m}KFu{r%w=sbs_+1vg@!cIE{> zRUaU{ghL-9qyZcz_{3utzWqT)9G6N)oKkQj&S+AL&1$m*3Nv4fSZJIfZK!wz+Hk*yl&5h&I}pK%B81!SC;Ap|Sn0>Lir}bWv~tU9~e; zaDr|Gzdy{vX8T0+kV*o2D!70M?aVm@L=i3mq6t1A&cg5ZH?DZ8B(a}@OB|q`NrP(| zMDY8ET3G*`1Pqf(0!AvhfYI8S5jepZg5Up%g=zNV^LVKw;8O(`FiAVp4=4DH;P+3n zu-Cr4r%NRPGZkFGZ0*cLoL~;Y@1JKOi~aR{zEl#hK*0qp($4Hcz}E!7f2oCDze&I{ zsU%>9f(uxsow?G>Ew3S52dpI|1J)CK;`bIl-!CIJNhKq;D7Xy z%Ye*;Yk;f-pZKbU$`@or4yj~BZUr~uHSJ6i&iFcEH{cDzK0pD2Pb_4i{81TESSlG& zRKblXuAK=)KuJP*Kq*2cKpBEhe8<9>eKMk)R5GHXf*Vm;JF^eBp(^1Z;9bIDzSVx)Ga9q#mKLPx+DLJ(ja z!6znIc>h-!F+nOBF-gIV_)I$!fPkrljDYEc%z)1cK5@2%gflYY3#nwpTm?5`zIJ9B z0ul+I0~Qiy0~Ql};x`tu9F!4DrIHcfD!36VwKK`M)2j)$0N)Yr0@e|H;zkQE+c)#? zrIHbw72Jre+L;=7y=)`Y25cwP1?(jF#9u7jx9?HAq>>SP72JsZ+L=SR4F?HF0KXEB z1C9`U;&BUcyJW-(sbs`y1vlcXc4jhe!+F9~z(v9gz$JoDylUacb28$ZR5Ids1vlak z?aUgS@fKkn;0|FU;7@{2d|=_A{n`DOR5IeRf*bKvJ2M^u&j_CaUJxb&QvUTHiK#98 za9Bp9kxE9qtl&nZ*UscaKt@6Vz$=78fGh-`nBBsl^D^R9sboYh1ves(c4jjI@)CXo z>s}Rlssu3;%suO%-O$+^w$cS1}$%ywA+=vgfGer?lpHKqOkWdQHnBWte zT4;P-MtmfdjA)_YMzqq-RKWLc8$xA3J3=);2ZB%RY@ygC84)CvjOeQ1Ms(B8+{PKZ z6aEDBAUpsVf=`UFaM_NCluAZKE4UG{+L^})h$s9F=u3D3=uhy8gDlLuEF%U>B_oC@ zxDg|?GpTSJMiJ5iJ|+YJ#u9wucncToPrU@GWW+=TH)67OCIn}kLg)^dMhFMYAo#>t z7TTVY5woR|5nn2}5%aV&eG%{#VE|wOVK873!6z=Ukix!!d?S^NSgznktkBM6N5CpV zPQV&M9>7|HPuyT(ul=dFQ7RengMu5eMLY8V-@88&9szzLJO%6^_{1a&ldj2#U!;-| zdlcM=ecG9lcrp(VN&^lN0s)5!KJl1^HNVJ+<5J0pQwnax8STs%obept6Tk(+1i)_u zpLoSWkK;1ps#G%KhJqWBtet6!JAIST9B`Y^3UHU;6YpCnYd;M>kV-~8Qg9=lXlG{Q zjDHip1Ux6q2c&rTABm|fL|Do zb+t3waTWClKLZ*Nb^#g@eBy@|Qrpi_O{J0%%@y2;mfD#mxDBld%K&W&D*){YKCzR9 zl8(Ge zsU)DUf(z)cof(FJfds#Qh=nwdBw(mi5->u+1&q?p{Dpvz34Z@L3ngz#z$a2kzyt*s zFi|@bgMi5dzkjNQLN6p>np6_-xq=IrrJZSvoA?F6@1JX7*PjwFPbvvWRB!C{~HTo_8u&iN&>!BZ~-f|Gfxn(n&9`ZwQ%ik30NnU1Z-4r0h_clWpN3c3FQD= z2^9g`2tIL#g<-$Th@Dc&h+h=kh~3(mmN?^Hg5Q6@!f1QOgHlPrVFed(R6FxFPH>#y z_n)%R;I0ImmP!K7DY$?O+L;A7!EXe=|B8iOe@MVpsU+Zrf(uC2&O{>MCc*E&V_~U% zvEP+S0`4ogfWNdeqY&_j;P*eZaLwMtzon9Z7YZ&QEO?-vm_h+@R)ZWBwQb|A#1s9M@JM%S8kcZ&+ziy%AJqgGsl>`(}Z~<>> zXTC>3VS?XZ)WWvs5>QMk2`H)H0!nFT>f;j15d8jkEF?aZfO1kvKt%-?P+2?kCr(h6 z;P+RzFu`8Jds0b2Ed>`)M?13x0d)y}e|-xLk|m&lR1(lw!3BJ%ooR~Y=7f$&Y)S9| zZ3zA$?JbP9Z%Q4ck`bL1+=wpPnU8Rnx)S{UPzzyCC7`=h5)iK70(xp^-atSE!SC;F zVf0@T5G|Di#3{IdKH8bfxTbytzki^GrS~OZkW>;dRKW!d*Us!kz(~RYz-Yp+fH4H0 z_=$yUcVxtPsbs{b3U0(C?aVv`d`9s5r&-u#-+8A?B>^)PT)=GY%yR_HA^83CEQHzj zl=)Igzybvqut+;&5b!m@?_X*m@tFiHlS%?sD7b)C+L@|&p4Jfj{&f~I-Ijp$Qc1w~ z3NGLW?aWx5U<<+T-)14o2K*$I1ng9B0ZH1K1O)6NOa$y9dNx_Y{qMd1pfNO*{fE$GNfMkMC zyk%jj{kFd?m5lgP!Hu}Do#}$x@E0Kj@QBbI@PyzKpINwV-`}50B_mQk_TWaO($1vE z8PgCl0n!n&00Ia;F{6c`l&R!JBbAKEqTohk)6Vojz^jCwfSiO#KyHFh%xhtn{Z#q7 zR5BvJf*Vm#J97%Rp%CFLpa|gtpeVs7mave<{uC)Gm5eB@;6{|y&b)^+zC)-5C{K7F zP?6vht5{h2L`GDVN=8&ya3gAHXI@1>EkZ6p9l~pXx&)tC-$Ew)$+3Y{GNQ498}Xrb zW*Kh7M}!rC=7iONmIR;J#zJBWdAi$5B_ld0xDlPSGo5k9AVM%8n9vOnLhy;*EljYV zz{8}H5k|p{=%tGI_EW)Vsbs`h1vlao?aWUINFeM4d`kEQFp1z3r&zdVf22;8N=D33a3f}F zXRae)HX#`>hj0rpm*5k>ve4tQJl)p^yAcZ&+=#{6nPe<4A>0BiCENupC)@|DAUp)D zB0K@CAv^=DC8QYQPPLwp3b2uo7O;sB0N70MSN5ZYpHs`1EW=#rb_I8-JGC>}v7AK6 z3D`x*1K2}&9k7p(A8>&1Cg2dE2;eZG7~m+OB;YuqG~gt`U&t8?``?o%aYc-~vhxb= z$}VbWR%7`RVJ+YaVFTbAVH4m6VGAIcunlmNumfk^A>yl)HcF6x{s_(9Sf&at1<6Kqf*PKxRUF zKvqI0Kz2eGKn_9(AQz!KAP*rNkeAR4kdF`r$WMp?6ePq03K9ANiV*zGC}!dPGjex2 z;k&b>g1bAVv@>0>T!s(=2qbg|lp}-#DiHjL$`(#9mzf_7aL-6J1vj(0cBTQAYY-X( zY7v?O>JXX(>JnN3>Ji!k8W1`F8WB1Jnh=5kO$prq%?M$D76b!mMTh{jA@l~cBg6ta z5c&W*5&8py2!jB@grR^C!U#YpVKg9&FcuI_7!T-4_!JO9m<)&_Oa(*}W&mOdvjFjg zIe@-|d4T?eM8H78BEVq662MTxGQe=c3cyIhYQSj1TEG~>2EaJNCct>Y7Qh6;Ho!!} z4!~qW5?~5pH((lJA7BRIAYdlpFkm*}7+?5U_^u1hAIy46vS%VxW7k*hokP*hEMR*h~ljY$ap_Y$Id_ zY$s#`>?Gs>BoT50b`kOd_7L6x>?0He93T`193m72943?i93}X-$`cj>a?5+?4ZNeD zR&ei~XSFl8v3#EJC*UIC0pJqh5#S2pDc~C6Ip78%WpDSSBok5tZW7V~ZWGc2?h-Nq z?hYuTqv9ujf_9ux8ao)TUMJR{@>ydV?-q3ArO#`P#zFKs07GB zs0zqLs1C?Xs0qkQr~}AO_yCZD&;XE&&=in|&>WDL&=!!7&;gL25DX|t=msc62m=%$ z7(h`%1fV#fH=raT7Ep@N2T+F49}q|w1Sm%s3aCIB0jNY64X8pG3#djI52#M~6i|aO z8BmKb6;OvT15lSR3s8?R2he~p573B^2xvlB1ZYZF0%%59253Q80cb^74QNAH3us5! z0O&y21n5NA1_&bT00a|~03n2ZfKb9gKp5c|Ae?X#(35Z;5JC725Jk8Gh$dVI#1fJL z@q}A|zJ$Ag{)GF0frN*E!GtG(p@e6E;e-^??!9m%Ar)XWAuV7GA;5wB2MflLGGfno zLT11OLN>reLJq)WLT;j}B>;5;U)Z2pyGryfRcol0i_5T0A&cT00IfG0?H9`0V)t)15_g915_at08}Fs0#qlw z1*kzN4yZ*a1E@oI2T+$#0Z@-n8PI@G4bX`29-s-K7N9Ai9-tYaA)p1J37{3B1)vR~ zHJ}}#BcKBz2+)bp6%a(|0SG4a1cVSG0ilFwKo}to5Kia|=t&p=h#(9GL=lDoq6s4b zv4oES@q}@JzJvrof5Jq-K*DE$!GzBNLkY71!wFvkMiTt*h#y;6kX3$Z9E4xs#woa8 z8pmsAhGKaFVFX|zVKiVeVJu(@VLV_O;Zwj2!eqcq!c@R)!VJJ1!YsgC!W_VS!aP7C zArY{Uun4f2umrG#une%2umZ50uo|#}uoke2umP}!unDl1um!N5unn-0umiA(kObIF z*bUf9*az4~I0)EII1JcHI0i@}oCNG5oB`}1oCoY9{02BcxB@st@UOTd7TUfnFTr#8 zgTvzr?j?9qJ981srwNw4MR*uu`U@>=UV*!@aYRKeZQ;@X)3ST0Ez3@Aky1}H-q2?!*73@Aq!2dF?u z08}DO1XLk>2B=1u2B=Q>98iNW8&HezC7=#rKA z8bC9`IzS7;MnEgV4}dm=t$=ofp8y>QI{}>tzW{;=djP?N{eTd{AwVeM2q28$UoFPM zvXiM&Ok19i!u_8K#MTI1aj&B&?M!(rM-wUmVhL3N@r3GtzJ!{9{scdBkcDYi<;9!{ zfAl?6!5w0_b|wp!M-s9FMiX)Z#t`xV#t~izj3?v=Odz}om`ErBm`o@Jm_jHCm_{fK zm_Y~x%p{Zt%qCO<%pp_-%q3I@%qP?YBogWX77{)HEGGCn{EdYG`zP*S;RDrj1$WC= zXlE8;c@^Pnz#76*z*>S&++d+(Mj4SGKQK2bxDlJRGjC#fE1?Kr8=)9rJE0_CC!sVT zi4X|bMJNy0L-42CZ(+|VIp+I=-8<jaGKBpaF);- zaGuZ(aFO6ob=kuAzsfN;4RXi4rr?fwLp!qt%gKaofSZIJfZK#5z+J*_z&*k~zypFm z#3Ks}GRdhbATCR z8ppePm07`^Dyw#;DVDPnngenWS^;tq+5++rIsoz#Is@_%f&uvn-2ep%VSqve11Lg> z02C$k1{5dwOMTlypG$J>CkDG~FQeeDJy1Jy8q4Jf=KvK57Xg(BmjP7>e#E;LD%uYt z5!g{f!Og6to#~C`I)qq2U4jp&Z(&V)NgN;NuA-5GOKhT@`4r1d36lZM2vY$q2r~e! z2(tif2y+1K2=f3P2#J7BghhZL!V*9*VHqHVumTWDSPcjxtObMYHLV3V&LM6aRLRG+MLUq6x zLQTLpLLI<(!Uuo}ga&|#gvNl$grJisnOB47_;5nvx-3E%)>8Q>6M1>i7YHQ*>= zE#Np|1K=cK6W}yq3*ana8{j-)2jC(h32=$98*qiN4{(ie5O9NV7?4aj2DnK$3Ajx- z1Gq~#54cD84e)?)1@Mq?9q^ct40uYo1$aid3wS}e4@mh!-+&$hQW2g2(h!~j(h*YN z6H5Rg6(9p4Eg%yi0FarG5s;OT8IYZj4UmJ71CWc58<2;P7m%0m1|T1yARs@XFrXlz zD4-Cb1fU3^6rd=fETA}{9H1njBA^tZ3ZM+(T|gkA2A~|FHlPBbE}#;jKA;Mr5uh63 zLqK&xGe8YOOF%6`8$caGdq7=6CqO+y7eE6-2%r(6JD>?69MF`|3($-Z1!zHt0kk5- z1KJS!0ooA;0y+?e06Gzd1A+*n0KtSYfDpnbfKb8&Kp0^XAe=A-(33D75J8v;h$4Ie zh$hSh#1g&j?*`Vzhd^d~F@3?zID7))3N7)tmKFr2U+Fp}Uu(R^$n?GgEia|k=e zDY%a~)7BGcy0Wghl2{41;4>8L^mmKn?mzgRRK!~)d5QhH37>BbpR^}9{^Sn8UWT18Uxl6ngZ4nngccx zS^+i@+5$EcIsmp3Is>*5f&tqJ-2giYVSprp0qi0~0QL}i1NISO0S5?u0EY zKz_n%KtaMygAP=Rn5P>JAQ zK2*mG(136Q(1_p<@u7thzst{* zhC|%DcQXZdsutRrCRlDo_z2L3&;rno&>GNz&<@av&=C+s2m%BXx&lH7p@2|A4?q~9 zCm@^<3Ft|P21F3z08xa#fM~)1KrCS}Af7M`(3db0(4X)zU?5=}U@##8FqAM6Fr4ri zU?gE0U^L-#z!<`8z&OH}fboR+fC+>JfQf{~fXRe!084%kCTIn=#1>?5QG z93Z3v93rF#942G}93^A{94BN4oFwD~oF?P}oF%*tI8VqAxJY;taEVX^aD`9|aE(wB zaDz}9kW2^!+$59-+$K~4+$B^6+#^&6JRsBrJS5ZsJSKbqcuHshct&UpctL0iNSRXK z<(mUi5n2J#5ZVIL5jp?@2%P~L2*H3%gl>S$gfKu>f&pYFL;!LSdING1VgY#weE@k0 z{Q>z1g8=ynLjeT|BLIa6qX9(-V*y18;{nA9p8`q}CIdSvjF7?a{v_x z^8l3yiGV7EMSyCAC4lOLWq=xl6@XfV)qpyLwSc;W4S;%tO@Ic3Er3RZZGa|(9e}2U zBtSF5Za@pdK0qtNK|mYAVL&^=F+c~xNkAvU89)%>JRq3x8z6*m1rSQO4hSP81HuWn z06htJ0TG1zfGEO4Ks4bAAeQh95Kl;fPk4O^sQ~>6X#oQX0f51TjDVp8|DkY%g>F6M zQ(_$cAaAsS`;<6FJ2L>w;|PNR;|aq669^*#6A2#!CKJX1rVtVU(+Cp*GYFpnW)h|W zW)nUK%puGM%q4sYm`|7wNF*!(EF>%jEGB#dSVCA1SV~w4SWZ|2SV33^SVhD&6U=QIcU?1TI z-~izdz#+nIz+u9lfTM&5fa8QmfRlu$fYXHMfU|^@ecXqj^MurZi-dH5ON8`*D}+pd zYlJL-8-(nDWI|5BO+p^PZNlq-yM+9JdxSRu4+up74++Hpj|n9KPYI;~&j^8l7liVF zlrQOfMI}HgLRCN-LUlkoLLEQ=;R8ShLSsNCLQ_CyLMuR4LR&y~LI*$<5lOLNFi? zp&KACAq+%326bN2?2mHgp7c3gv@~PgdBhggxr9Mgf{?_2?YUD2t@(Y2qgeB2&Dis31tDZ z3FQED2o(Wy2~_~|3GV_D2{ix<3AF)>33UNW2=xI=35@{D2_FJh5Sjs25n2M)5ZVCN z650dS6FLDl61o635kdf)3Ecr(3E_ZkgkFH{gebsHLJS~@5D(Zz=m*$C7zo%$7y>vz z7!Ei@7zH>?7y~#;_ylmAFadCqFbQy)Fa>ayFdcB7FcWZ*@CD!!VJ_eb;VZy3!a~3e z!q-LD&mOnMyx@ z8~~&u{0c}zI0{HdH~|PCoCahdoC9PcTm)n$Tn1z%Tmxh${0_)LxCzKbxC6*TxCh8f z_zRGa@EDMv@He0!;RT=&;iZ1=4Ymj&4WKCDWk7L420%%|D}Yjjtbj6vR{?>9T!3!63~+n2Z$i_1w;`B0HO(l0kMQ(fOx`4KwrYgfc}JWfPsVrz+l2ez)-?xfZ>E` zfRTjH0iy}C9mszzVhrg^>={Rx4;W8a0GL2n446px1~8eh9598j5-^Rh1~7xL4lt9j z5ipzZ17HqeD_}0+C%}BdPCz2z7r;Wo9>8M4e!vpKA;40?5x{c7ali_~DZnbiS-={? z1;ARuCBS;ZRlr8V4ZtSCAArq-+kmZvKLOha4*=TObC@E$^H zz&=7czyU&fz#&2=z+plbz)?bWz;QxOz)3z)eCWz->ZRz+FOhz&%1uzym@Zz(c|ZfX9RefTx7UfMtHQ%n9_=o0?5 z%9#r8&xK}dXRcy-4&er1F5wTre8O!&BH>TKLc#;UV!|W962eo!Qo?hV1u&;OG7%;NG83i(vJz$hvJ++jauDVK zauMbM@(>aMc?pXE`3Oq@`3e3F=uHdFkIFmJHT-?`A`0#usi=15cPtkt+ys;)+yRs# z+yj&$`~?UkJO-2_{0*o;cmb$Hc**};s)RIvY6O2F?^#&hO|Gm0{%Eq6g1fRh+L_8& zu1lx}s7LSt4K3t-NfKl6pH^w2;1Zi^XZm8f8DRjR1z|9t6=4{l4Phjp9pPg@2f{c& zCqe=sh%gZlO!y2CLYM{!C43GDBg_Vb6TSrWB+Lgy5EcNU2#W#Hgl_<`gyn#E!b(72 z!Wuw-!aBe}!bZSg!ViFW6mNZ18fOxO!p zLO1|eO86D9oNyGdf^Y(`if|gRhHwtBmT(cUo^Tnkk#G&LiSRpMGvOv+E8z}c8{r;c zJK-Pobx3BjR(f|$+UIrW@WB?o{yaG5%$O<@4colGxkPC2{ z@EYJOAs^s8p#b0_p%CB_;Vr-wLUF(~!rOowgff6+!aIPQgbIM$gvx-sgld3$g!cds z2(l>_a%1W-_XgU;NC0pYG?LhIUnHwAV1+(KtaM$Kq0~j zKoP=eKvBXuKykuFKuLl>W@!uYo#j1l53Vdw!JWIDc4j}8D-aF=DiMwVst}F?su4~B zsuRuvY7i~}Y7s60>JY91>Jn}M>Jk0`G$7mtG$Q;7XhL`ZXi9hlXhwJnXhC=mXhleg z&n;~TsR8W>=>Q!F=>eSxnE*kAEP!A_c0dRrCm@uN2M|Vh9S}~)59mpF6A(ct0*E3M z14I)_0%8fJ0r7-DKwpA?feo-wH&kA6HLzo_f_udc)y~w$@^C_3z(_)Uz-WR`9BbkG ztn$rx6Msc?yn-7sK|6B?%M%Ir0Fw!S0j3Zh1EvxF2FxJ50L&!3gzvrCgfxITgqHzx z2^j$M39kSW30VOP3I0;Qw$S{z+};3uG+(OVu6?<7CL@+t5HbT+5wZc+5OM(45^@99 z6Y>H!65ar8A`}E{CKLv2B@_j0Ba{GaCzJy0B=}4H#X`ySa_!IXk#3KIyY_wBnH2bs z8yz5|0vsZw1so;>0FDwe0*(_h15OgM0ZtQg0L~I}1I`oj0xlB#gW4Rn5FQ5Y94L~JAK|mEkVL&xPQ9yNqKSWIn-!+l%)#douUPr;5s;+is zC6?|12l;1GFIw1hgXz0dyb?2XrEg z0t6Ap0D=krnB6R#uO-hNgAAN0fz}k0LKX@0H+E5RObl(92W`x9G40H9M=f`9KRF%Ic^gC zIqnerIqq2)TT$-LeW~Q`JXCOZ=dpI?36`G`o&!?8tN|}cB>`y&X#oL*^ngr+R{&WF z*#J2RIRSYHuL1HA-T)LNya^~mcneURPy$ej;IF+b!C!4Tg1_2|1b?+v2>xo{CHSkY zLGV{wo8YguF2P@IeS*K*Mg)Jg9}@i4HY50}ZAtJ~+r~n(y7El7l}etd4hrs>?xdYA zcd;VlUzq@uO49kYl6A(#=0>ltv0euL40RspF0YeBw0V4<_0Ur~_06rm% z2YgDH2>6UJ1u&g312Bs)8}KE;-;DVLfB6dt{_+YPoDZ+QprnYuY!B(_iLxihb)Y!Ci{QI z{-X+R|8eci2`rx`oB^CCTmW1mTn1btTn8i*{s7!2+yUGp+y^`)JOVr={0(?PND<&J zJeB;Ev;P)RV_#LM#{A6E;r}2<;3NG=2cIG0MFBAO!YXraJcMJ31m&9Z|>vBq|+AALT-AAJGAAAK>wAN?DG zKl*ZlKl)07Kl&PiKl(a?Kl(<3Kl%?A2HOw*o28Q1)sG79IrvFCvmMJn6OsVC33~wh z2?qeb5)K275sm{+5l#cn5zYgCBU}PpCHQmSAo!F1LGUNNP4FlEli*MKfZ$L1h~Q89 zl;BVLoZwHIGK1bwf6~+zD%np7X{3@n{IY_(!|Am%8QgM0#*nC9!CgyrjgO0qikxaz zzm+=0f0$&v!bkbgtOUfES1p{A2b&x&*W^}kV_(zG2!F7UE0Fxra(6=N_Tp&OJ&yGaAcd3F80>gb9F2gvo%Z1V3U1!H3Qw z_|Q27A3BfVLlZ50QB}^pKq@)+Vg+~ZCEA&9u)Lh`EnpR4HDE2lCvG74j7 zwpmzLLr(RRRC21F3hq=%+UfFc3$NH8cYCmZzk=I;P&-{dY~eSXe+2uFE4ck9wbSJ@ z7CPHs;m%_J1qHYNH|@+NEMFyD1N=@%2HYat2K-652l$Kd5b%WX6!4tz0`O8sJ!UGY zvy(1j2T=tc+y^dN)-dJ!T3y$R8PI6^$2AE7^B5MeN2 z7-2YI6k#-AEMXiVfiM9uiQw~MV@5k2! ze?OKI{7Jth`1`Sn;P1zG1b;u)6a4-7p5X7tW((T`<;Af@DtU2iQ*bYi?b?|gSWY7R z0@y>?3phYH2slhQ0ys`M0XR)K12|8(0JucB47f(P4oD{a0k}=@SN12tU&{l6zm`V? ze=Sc5{#u?B{I#Uar1#HXOKO6@mUIMvE$IpVS~3y*wPYdqYsqe*y!|J!uSzA)QZ5De zEalP8yoTj`gf{>M32y?55Z(e5CzJq`B9sOM65at+AXEfYAyfraC-`&MB>0ooA^4Mi zK=3DRK=3DROzrGiUbt({qe z<#mMhfbR*L09y!K0Y4G81AZnX0d^DoA@&jc*nCN4B4B6jNFsl^gr?j7Dcv{!g!=u}g&XNnXi zb7TA0UlKBg_vv4tYj8-<(8zAFe(7!_x0J~)b&rXPjQf|hCs+&U9upi9+BYhur+>_E z@K@|(;$ng$V|$193XSoLsW8h0hDctp97ES0;(_iQAyE!caH-9v6zg- z^nPFn15;pFHh22?$dI`3sL0@61%i8r`_nwbBeU`n3iJq$?Do%TuV6j1zbpT-dL65; z1;@ulMFhu%hseRYh02%6KA|zOGE48`2|uQHOn5|ajND0o7G2MVbLO(w6%`xqkNKaw z&iKPbg!c>W_Fpp6BIDKAIJtu0UQv;u|7A-Ke>);WWmDH)|8+w~Y{=oRATm5OGUUJR zIge9hjFb!R6IviRCMLMQzncMgc!0g#|LV8=eTt3m8WGhkUIzCF?bSOp=D!>;w+o1m zk55P|H!3VNc4|U~*xo(DBm0$(j|=ZLH6hCf@=}VFms_jI@aXr$L*k}RnOc1K)M6$& zXNnXP<$vwpV40Lqs#|D8RBTXazu<`8y+UJy4PPDKgr9qBH0{Qp{Lm48A%`QHjHSN@;SvHx44<;w;I>g5meq4w`B{NG+F zF`==1p#<7P`B%y$|9Ja{*^?6f`&UZ8u&z;2vHq1-zVbf@nDYM=Q01S1&;DNmDwO*t zVDkS{K>2?HruhK-M-h_}D&xi8D>OJJGAOP`Xi(SS*zl0ppt6;M`1UW~g8hSfg?EjS zx4)pkvj05C)Bk@){maW`h>x&b3#JpT`MLiJSwPs z;6E2M(?8UHj-HfI^#ArydE`6)a{k%>vq!%3&&<#NXOH}s3!U{pdt}9bX7=%qw4Y`t zB~<+9I_1ZDP+U}y`=1#3nH(M&7NnmNg2E%++f%uJc@r7ogY3t;NePAj3F^^3NIoOP zM#XgR71dYne0W??rGK970sdk3v)iPElK(u+zWoKu8}&c077`z6kP`PhDGXTN-8zl7Q^E$o*b_R9eK zrM3Oi#D3{$zl^kBg6x;U_De(irKkPU*M8}0zeL(E_2kQ>t_kV7_3AD^r{t%5ZGnVL z???5G>=hN<&HnI;#ZRn+Y*8`cVd3&=BnUqd;$y<)vspqwTxf*6V1wg=ZI>Y?w0n^K zloZ-8&i1d$502oN5cz2l*)6nRP+WMN4U~mk|Gr?S+n4~-Zs5d$BO*dvI3depd&WKE$KbZJnU%OFQcHXBkK#`u_`Ysek0&$E zX5o<3#M4#X?ykpI)fKpb~4)}?N86&jQfy z);tBMPc*$|2>01GY4_7#=2M_JjmZJXEWrJh0`~C`XO^o%VK1=8->g{fkD9J9@7uR@ z|JW^vJxTzUvk)5y4}n{*H0RU9;Zwbg;`IK|1P0S^=rcDosal?vDs3urXZG7A3@3#K zH`yEqb!!g#k71lgT0{BfQ?5(S8Rrx)Ce;nTxXVs|@67W|&9WRn)Ux%C-^kqFB}`qC7$bR1v!_e1uo# zn^C?2x)Kg{6F#sf*nBv?%}I#C9$*g)=W2f*n4KqH+e2#T-Rw{(Q_k6!rNUFoJ!^( zt7HRL4@rajaE!0{riOXiSWfj8F19VnQEhXbAuXW|4>{PDG|pjP5YBAK!M3CEm0kEP z+2mqtQJ>81c%N5r9&jty@W99wYk3{^^_W*~|F&P}b(q2HK#f|RVpHR)j&R&sn2Bh| znMVMvFtd+FPHubV?*=bPG`yi-Y?v{ZV~hU2Ke@;;VeQldU?!QF{WIpdV=t7BgDTOn ze96WR^O^hdk5(auG*R8iw`@uf8vIfrvt*mh5|X3F_u#tzpda1 z6MF{4g2tHE7Uh+bjRB%KWP>mD83z71*{uV-mNysfm3MHRhQ8nfl#(;vR;4VISL4Hl z-kb5v;Z(0W!p56vb2d8Vd6=w#a#T!x#Q~sNB%HiGHeand&-z3Ou_iz+sUjK8 zyW`>LbEgwJ0PokFA5JHYE>^YwZ`HlGVC-~d~&&|7|o zH;BV6b4Ty08`TsJ%Sn)emMo5mn)z})&(1te1~WD56ODjJx;CSOJun;NYDP>l8F={gqtSnx&Lb+LWI$1y|Bj>BZQS!>{&mk zAR!WH)?UKHMTwrJHBY^vzfs8yNdl6+m+rqvT=nX}4~W_uq=cQh46>?7gSstoVG{7V cC4k4VKS>qqz((!h7@wOuMdT0xT{}7c7lY#Li~s-t diff --git a/ivy/.doctrees/index.doctree b/ivy/.doctrees/index.doctree index c568b40e4e41a44f0d47b5b5d8b8e1f4298dd322..f819614fc15f0b3e758abd381eb255b7a7e082d5 100644 GIT binary patch delta 95419 zcmZ_1cR*Fg^FHi7=Wq)hRGJMe*a5L&qu4vxOH?3$%9SQyjf%z;gAF4(Nla|%&1ia8 z)0-{5*iARFr8j+_XZKw2^LzdN!+p+d-<_SAoh=+X*zVB5cFS*aJZ+RX91Wf;br_$F zkd|kSmXdSQOpxDBo1s$vx)CY+VyyO(8e;{@sVVrpu)yr%sFjOxR-_y*GLqc+g}Jjz zOLB{3-(bHqW1bxp+r~#92~W zUR+Ttj@Qjrvix=cd(8+|yO+tlj*PV$$;)Fc4?^~TV@{VfbBu6DYdJE+ zjFQPgMzFj-0j;iCh`N^UHbao8tIQ2F+ez7EBS6-!LER1?H9A`51x52DcC9f{-nh+3 zcUG3qE6J;sjNeiE_6Ln#W^wL9+5aSCziqUY=vXscz794U%eGXjt$#^r$>M_Y(%Lms z#Sv+alaPB2kK8ofXeImJH#^IP4-L23CBJs_Xfs(Z%tu(c#Y_ zMn`8sVM)cjV#!*9l9o?0`uJ5;&aAAJG0|3p>|Scb$%(T@Gx=o|I`?qA)eX&QDf)d^@JV@|Q54Cwp4aaw-1@8=NPeONpXc-oMX&z&aSA;&6^`FZa31@ zfcOb_AJir0hl`!J0XR)7sROhn5lmt3e&UM{B4+`G*T`KuP(q_SeEMt+{`zs(q6<)X&2A_^iy&9TBa zjgX+g()k7D^9u_WB+ks8t9iVp5;H43*YML5t?Ub|qM2kWWy+hRMbd zNxao?J0{D;@nF@=xkmSh>vJm#YS)Bl#xE|c$V)8EugH_oLex|hyZjNuUnY3W7P9eU zqmztXf?i-Xt-}1gO4)zNNSD(~osDEzWbs&ntj0U|2tr^eV$=SzQb(1`2+?g(}R4+yMAJ}G_xqTQqC6}P35*O zX0Y`C9bBx%GR9g>g_%W#Wkuz7OP(|aNZ5z2C^16K8ItfhrsjR~P>IqwtF5${3Ql?b zN$@i!Q;K7H{Se7@M~wi-LODFtDwKZ1tq^&wmDyKXQsZo2jX4$C6T;e8c!~>*mRGwb zUdD{`#6!|Wt2yIQjjO1I9?O^tsU3TVGf*mDN9js1SI;v2sS-2ELlKfS9V4Cdpy}rm zPHkMd6}o#cRYyvrCK%@B8zCcJ&BaKfcN=SFY5EdcaU>8^VQr8RZfgWeo-e|!AXH|7 zZbkYguxGb4be9^?-IqJ%o9$203dRCdtmfQJ?j1 zncXCE0JvRiv!g~2`DL-5M`?cZ^5)n)E!%$uTRB3(4i}y^(`3vGMsLXuw%k-!{rzT@ z7l1WtGR*kRUopT1_NX^XVvie6M=z}*?+iiaxnbtq`kCcd2-#FCu`4NtlpyYH1xU>} z^lG0U(7!4p%*~dPG7oc(ye&!LmSvH_<%wQqGs#;A#k2ci)1{{k42=|-_NeLB<9Wh} zcUI)(7Uh<6!p)HJ=}>8-uSahv`>3p|l^j;PCKx)cBC&A(q6Dh53e{(RMWwU4B+*QQ z7QoDq$J<#RS#b_iGxk}tmyuVd4J&F0cRmDIcIBcnapXgK)Laf5$ouvG@w;dP*ExCU+~#H zU%mo<{_|!dEg(0qvT%NGWg(P?ti2zFR%U|16+1lfeX1acGr1?m|HyJ!n-`vi>C)my808H&x|J=|PkQ*9E!E^KeFN&m zrz_JW<%Ah1H(taTV%7|F*x7IS0hX&Wz4kqAbeDl2VfMwIH3w*w&Z>Ee=M_~#+Aq4w z{(^dgSX1_l67nirrIBmCG%ee%O^3ue`4~8=<7F%onoC?XdM78&3}_Upwes9~g?V#e zzLdk@YOSS4LI}ot#Tf`J#b_b_8O>$;0VB$hqz7z!Ll4&;bH_r1z0bL$IQT>>t9!i- zBBP%(+!WRwr999X?wGG-^Gm~&q>hzSBTX!NTxNe~VFkol5gEWMzsxc69rg;R?>LOF z&(4OeiY0<-Yg&%c24-g1E^sPmjjOV_EIYrjT#vFcmpV6tL{hJAb%#rK7}RU& zzh*<(+t6(1sFpol&Fe@=RO;~5BrDR)gPlhKOXGLbVJJE*n|jNYo4_Z^NTUFgZ4X05 z*V$!K))Vn6HW?9{V*L`t%11>x4dnPfOekA!_4C7&EvV4;lj7$!8IVtq(J)jOKv}E0 z9{$fMU%BU z_gHYcvdz@mA}8CJCYM)2H&mQKgJC)kkhdopQzh+Xv7!RSM zmPLmqB4Auoze&>nD~zY=JE*fha(uGURY`kTlC9BG5mvo?52c)JNG1C3+%~<@}YUrdB9& zF&C;AW%aVKn6MYcIUBGjhKZ$?^XZq2G>k_J>GHOxh5VagcBnTct)hbRGV1+dj`ngT z!)z`ugqzxMmxGC@IUxcnYfJSTHnQ z+)A`}Unt5@Jd^Z~F+fQTrBc9#eXP>5>^WL4VpSe5?*^fdm9Yn>O*=Wf&F#`FQr`kK zQc7M2yDO6@tIX_DZ=uVm<7Cj6jZxD7V~9cDD&HlY1FeSjD-E%JHsbX}&U^+H&1_~S z*+z*hyAG-W%5=Jw?XMumSz_f!f;To12rxSTVVQf-7gnzFg%VZ*+0;XqLJQF z8qbG;_CJO$j7F{@(Db4IyTFiO6Fo`?hP%9U9@rk5t;-zvRv_p4Ts0<8v3Xi@(&CcE zQD9}Y!sp7$#C%~@vSiP%n3P$+7=5|2)q^DGN(^^UpytQ1gE9t=8YH=q<|K)ugFu<{ zO?yD1EB%T=^BBo+Up)MqQY$&8)*Vf* zKzM|k5Ch=h1eh~e&lRBmij5AA9+ZZOk{<1*dkJ@i2E)4Y>fra&uO3X<@$X>TSl?H@~o;1i2``8HJ@>xgYM7 zmIvUMyl}!y4Jat7C@s&fEYHQdURyY^Sh6R7j@D_bG_P2Dd5Q{Puq(5MJ|@}O3G$9z z1^v-YZhQ(;(r5j7Xj%=|5)qEcc4%fN?U+k1MA?qjei?FZKP=;`y2(HgvD60F+X2B*|x`8PJ6y-!M5!UGlW6Ojufazv%6eLhAE?FSe=$OOQ5)w zsLg2(ISTgzM0J>7AL%ty+b;34d=ywB?4Z#|URsYoU3-|F^r{(+8b==PD}Vk59jVkB zeMJ5R#n%_)=hqMP@@9}PXi>Vo29uoED7`76)O=2FYFXN$t=zr4?{bIA{%lNSWoT{v z2xgyh!!2*`2VeP%Zi~}yv@&BTSzKJt(D}S$t+S=JLQb|c6C~t*$fQ=UW4O{|{d&{# z>MOBt!us9!pxciYUaD;W9+Nxhq}zjmfTNy{#gpTqZ`Brn&&YPk2b2AAN9v1_6s9q2ld%UNiW@>_6i?#!o$ z*4}hzF%%+^E-AnH6=g+*l5re%0n|gX?45x`-99%4$$*yjI(D-M-Q}o6AX+y@PM7)` zw);k|!{D#hqt$6F_(82yF*WiE6ytLk{OK60EGVH_v451+0$q@&>kpUXU`J2Q=Q;18 zd$-+cBx-9D&Vmv)LyxtqNG&aGFG%nbXqRS3P*G)@kr~XHh4$75bZ{?uZLnW&s}#aO z&v-QqX*Xfvlbi-^3u&LO4Jmev1wX@ls^M&D@h!SiiQ(eAA%@jnlw!4YY3PFREUbX& zmX@vWQ{eA~2&`Xvj9P=`_Sh;2Ej6)e088;vBvYQhc_nIX%`KJ9Ul`ZPz~gYPb^0B} zq5lTy(N+@v(H>T~T=GN5mc8TdAfw)J(`S&ToEyp=4pA^lx=eeSbq3C>JO6Ya7X#kI#iUwxQsL1HA-}r2+}th$S5i@z%1f1m1zJZ-U(@maM!| zY_-*IW<24BfrO2tWHs87UTRv6YuAL;xv8*3t}K{2ugGqe&)n~!9lW{av$6{@D6(uL zWP?(;N_p?T2@(j6ijWd6r+RZ0+*=%-&7rg^;i-y+rrz_7k?BwitYGG2xEN_)9vdluTHOeyYty?+Z> zN}2vjF046i27?#W!mKHPZ619Q3@)n3_QQ52y&1}|ePS(o?x`DLsrI}8TP@*3XO!wl zwWWrh^3bn6k1m60^2z7m5VZ(V%4oAcmMTh;^p3*fQ17^+Jysr^*OJ@89OT;6rGcYC zg9b9D6x^UR#;Yk{bfpR|n;9e^A(x!EYtAq%@T=Vni z=N9<}mfBV=QL)RGDt&9gv1)s-Vs1G$7r3*jMB?TU_--5vjKPxM3QAe+U#9*=W~E&*p^0=k5h%GKWeC(=56u>;-`c-w#OR@>FF=A<8-bg@h4?AyXa*zkm`&ixjkBPe zl$xXDqdix0ePQM14`J&4vjY71S|)6!gUz9nUe88!N>I61urN`63N>%frGq1P7Qut^ z*H@_Jm|j?XD__KU2iRNLimDBVnp*)Fjvaqv3>EMBeSjP*Juo%s?86!r`-XI-yJunV zRk^d(0=q28a(S?2RtWXi8o^%_Tv|*1$H+w{9%vj ztvXwfWW9#1lRZ`7D@@s*N(`$hf}PVqxV2#ON65D8uu4E%ZRc8tZ?NU)b07>blQCR% zGRaz8P?;+$zJX=cPOzig9PUooY;f6X|2TJ! z<9~rU>a0kARZh0@eb-shRxz8Qy81F4^BAK2nP!|)eST_#P?n$Z4cUVWV66Do8`vc7 z4gYLHA8@W(#B;?XzyEHAb0YP>N`vm3V)|)K`^0nT6Yxa3tGKX)(~8?S9i@0ErnuU6 zJbW`2dTRMbru7HA`_>rRJf&kG{S)-5vNNH*;96P??V(KWz#kxWl+Pq_HF$JOFEhf? zR~sMM+@DwdqI?TwcVNygI)zErwGym!7!GCUyfSQBz>wL5zD(|Gj<44fPQ4#N$1%q%NiAn@qf_VliFG(*kPg!|C~t z8FL9LIu+Yi+B(2~S@*y^ICZhJ4>Q8IWIQPl7x#Aa3Fwe}5Fd&(&2Lr#r)~Nz&`}s% z>;>I|Z4=cAYWc*iab;EV*oy2fCd^9hKT% z#JDHQ;dijafwUYUIY0R|r3j3W(OyU-WdMdozyPdU_+uN&Z_{C}G*YnygS~>ivM`gU zPNqukzp&F#^B~RRKJn%hXuM`TlhK8{B=&M8D;!g+$p{Gc89!nkPIw*xNWzYQ0637oavcN=l0hbBpBiH^u~ZXaS9mBDsAW%wQ@CfB0+* z$_te(u>A+PIG-rPYL=5hiP_yd{cK+mmQ?*IWT#2c&*&@Pa=gFRDp-PcH0k<PS+$z;vLwUZ7)&7A%g05HgK2$8%?cb#YPz6=X-cUq{A6nChW^HZuI&N z;P~l1ayZaNOIe`VT~|x(u&@6NE)J|->N%$^ZK7LcMk#6rWv2EA;!SUEo_3}9%VchrZzVP(>>cnDR=(`xn;Qv>6}srkZ>w*s^Ram&6FOb7_}-& zi{{IzVAz=yo(`P7*@Z2J^{2r_$`O#h6&gTzT%`*b zi9H2NL7BKU8!-!OPDAEgqJQdKmf9?h;W5G(lu2uYrh}tUmJKxHqwb1s(7<~{Dg9N%Dh9PBy^A&+oB>8!4d!O24g~D*`ku` zYrVfq<{-0;aet(|G8kenpag<_+aS~J+{9el)gA8h$RSeQ%q*?$Ktrs@m(NydG1%;B z-G&;=j!WPKY+MG&^1-It_`}W{M`r^4eep{bv5Qd?B^L&p-Hn!!(sl@br$ow(A!f33 z28-`1SdGyVkKrV_7;3ZSEQaYR@{o6fG}<+TwG@ZLGVs z?lhIJbrU1y%rG<22#=CR!_g}L7#T6#?C5-+HE*pZRA^zTFLo;y&{YnvHage!XG1v- z$z)896we4V(Ge)UMwqdVXqh^~Og1J)$+{6Z&^n)WNUYni36KjTP~R!+4YdK^uCCd` zq9kdg+1q)76-cx<=X;o;!M-|t%tXm`YpEtiL9`qjX?Ait7=SZIn;@AJM|-9yoQh4Kl|!S<&PMY{xjf2DbEHe^ zXmg-tAg07NhG`00E(~6KGh9cXB!@?vLyV`RWmgt7eIm{_x^?C&BQ*&p5W zIL?d&J6@3BEHle^3I{;5%#p@Wm3EAg8Y7M|=2+wJXvsy~5M{gM7U|qRjFu1Y1{HHl*3 z>0E9F%JOlh(^`gZW0O;Z)EP(}t&g3*wn;VZ88#<_CZi`%Q(j|_4^WPz0Gz9|OVG`t z6FkUx0lu9H<`|fmITOs$j(+mQ1T)j<8YN+q;r!X;=G2+oAFX3x zofTkr!y4A}3QnzX)68x6Ls68pn1Y-hnPi4IMzRBj1?Lyc#~y{wXP(MuigP<_I$mvb zb7>kV`zE95i<#xcn~`Pc6jZiMWj4vVnw)04La?d`a6H0{hfC6}hM(Q?@#Lt9a%74* zNQ$PK4UMWOSuxcd@9fRAs-P@8>hCPt&h3WlkXx9lrr`-c!I3YHmC6DpGS7jFrCf?jEhr{_QB18(jpr?1hcM&@s?+s!A39mX0pv$ z&TedEL0#1D+%ATNnuA<288lW0VW&FLrRz0V_U4#5j!P1oi%Iucv}ER*eT~krFbm9% z@_a6upU$dh?0_c4)_Q~_&M|`n)J!$mfnDu2%2%jv`t_!tqmNV-K&fH7&fle?t&Nf= z@{n0prs2|*15qrdqwK@6C7o5M7OB32@HX|Y2ozu+TE@nkThI7AbOG2!aQ|3XsQo)h3Bj4=q_)@m#qyFm; z8-BXHy%Jnt_LR2y$fc&A<#tk;Zi;3P^|tnqH*l7#L$Gg}S?m>6=>&T&^tYQEdxx*N zZP{GAVK@V3H|#y>ayw4W(`XFf;YK||>m+HhrgoFGSs3}vk#eeo6;*e9Gt{Vx6vr*F zd6c<{E!r?+Wt3#hHU|W9i%)0sprVX2{)Ry`+stx2CZ}ebV+;?R&z3JUSgLNRDnuD! zF;|h_D}>B!FLUolHMsr@((6B+?=d;J+@^=ttqXO~A=wjxbL31SC%s_P=cDDwJk%4E zzINZ#!eabDle){u55Y4!?QN2K(9V{=D1TelELDPGzoAa=2uwGp9Y0xCG`6C-(g;$P zxXvXwM!J|*lv;osErNG+=S(w3eZk-AZ&zVhwCq@A>PS3BZ|B%SjfRR0s;>eytiXm1 zb_GI9OpgQS3)h;eX!^hc?Bpxt;w+o`P>C68C2$t)co7@=^j_OVcSq5i?V>>rag33y zQgbAv4}Q{UTDt6*J!9yC?I&x$#SkTxVTe* zB->ZnO>I`=4sg6v-*Y(O7i`sfPug6zJkIQD_s1)Keq zu(_k<)NR;V#?E@YU_Y=CiaIK%0>M&hi?D2~Dt(mdXkP76r$mArdF1S95>kwxBV@&V z^ki(XUqibm+eDHHr#f(KW(oAIZ!^$?YJLq}G2fi*_(76x&_Q9c`-IzRBt=SYTl6({ zMSDrjF1LlqM|79-ic%*zyZ|F|2?~}Y0!mNgn+P=`a`I_+5@NT<*^qc&keZ%a8m z4<#U0psdG+tsa~UQ8H#7`p~zuBE$8K(c_N0Tn#1bYgNdFh`PRRt2TW%FNb{~cGqGT zm|fevew=h9fp;y;@g}9*bjLSZDk=6;+s4gyVr@@`KE>{RtmF1ICC!UhqD=n z<9*WRW~doVdA(A_#f~5;y%CI%8Oa`iPQTIYXZ)vRwH?R3(rjdOj+W*t&HmOwsvFEs z`|=fTXt?d(pQPpU|M-W)aC{F#uvN=pUr6ihz`T1H< zw+H*)4)vW|GONfom}4na2L|vmk&ZJQ`zYqXAQEP4%2u%Q9p-=l?x$-CPLr%PGjTwX zQ3FZ0qxO(7F_`%3O3u$~QJuw-(^eDGjK%22b>?-(KM`7VFqWsZTxU5;>wA@Q^m>>Y z*^rIv&GE)Lh+32`f3HW2;+0w%;19=?PL{0OPZwz*y;YhT6C;Q3LK-+teTwc|yZ@Cl z6`oh8q;3F%O=e35%559W03$^4;D7*}htt^{)%`~gq$d1RUs?c&$(kC%AgPdrWIA#U0OWflYbdo|ibB-$?@Q zh7I+pjsk+u*7#YQ(2NpNT6uNX%+mIR$`0r6+!A~bWY9Lvy#d%W(WSntYBE3`yvGc3 zd{xg}SB=cwww_g44c%&n8X-z&+PmgBk`@AKggHMjNFDOj8PC`J7RaqvP3fe|mYQvt zl^@p^CC9gcC8yf_*?BuYvag;hOSWUx`ubJP8U13NZb*{tn>j=~Oph_n&Y@%nEUcA! zR=u(VtKZ40auT!?Gwk08PK^OFeJ5n-St;9TPIA1#agNa&P{H?_A%;6fiwA5qcDFg? zZ!K2T=Hm;Dv)i5miV||48EC}CaNZ0OT$l;e>#H~Q=wSc4o1M*qtBblH9d}x{OXY%7 z8!nGpSoWr=I%WwMraX&@U2}WMSFSlgQE`&rrOScmgd$E+aXT|eQ-|q!rl_wzfL^`V z?o~wzc@VwyjAl?pz}2__W5w02`Z>t73wYtGYGdowUqT+j`f~^S*zULM9>Sn@(d|{) z9lYpU)ndNa)ec)ycI{5F?+5dkX`o)E-lx=2c=cK4MM}tKWXr ztoekb?X{BzmGQ2tCU=gyDucks!Ae7A*;9xJhy4Is3D7>L{J@=xX| zYoA?yqs||fnu3gPB4zK>X1?PmsrnC%i^ZvLPoAyfp3n^@P0l`p$}h4<9h3|sqyD3} z$Ck-o;6A9T*0bgy<4&x*_oI&39!<4p-ErCRoSEksAsKI=u%v&mqfz=i2IXaGen1lj z+oM?tf7}5iMw|iuxcj4rAZL>U+w-b7as92K@m8enO`I)Bw~M&K0nhQzU8qz17eTI= zE>~W}EGyFu!lj@g4u84$IEv({lmHz5@apJrHN9jOITB^`%jR68iQ@ZNMn~1#)8*Dz z&|_aI;`BfsmDhg63`vZ0ccZqurxppy$TECSbdp+yu788Ur@7Sw(&@P zV^YMm5B>e3;?L1O6W}WOfZ8uzS5Ygw|2*n)@9~oB_e7xvYJ+4~z-s{jzOH_8jyaudGxq&N?j1^#V z6$yud8yg?k^;Y-%bhOWPugTIkA^&PIWqw2VV4JnCL96_8eE2TMHnY78o0L<)#Euw3 z`dQyz{n^bQr>S(txOVckS!^UgUcHTxTg}hu;(Z6xyWD0#-xhvjINo-@YfkfYv5hT< z>^Y2M7<{Y3lWfyAGD<#JMfseT^PDlRqU*9oarud5vm(y4iS5YKkT5)w%`5%V>3w)` z2i8^B7vSsBAO4^CfnDvAXZ}x;(7Myjy6n%mR-MjO&_Q#20N)qT^bAg&a_6s5RBH_T<5B`wXMNu3ULt<;JVU^0+`!Z1d$2J&QvBs`Kz&uUjbzA0tD*NXeugP-jhW zU_Z!uR;_3+fJGGz?-evO#^I>(BX%sT7E0_f7#~fs6EFKtW83xjPvDd+q0DHj2>v+L zs=KTWxl9q$?N;U~5uGPEz~o!mJ^)X5T}AMcOOWwPgzWgz%oAJ&ZfvL9huVH_F0pQ= zp;7Y!&XuSqQgA&n(g?zUe1+(beSzMFey^*r@Pem3O)jy|)%;V9Lr9468VtNI&1J@; zDuW6~8hJ#w0sccYs*4uDzEj1)Mx$t1demItj367$mAFMlHlJw;wrgps)-5tVu)8Pp zxH-ZxQ)qSq+y@ne5&hDAv^l5i3lT{s!r z)?J|sHTo%jj8~N4IYm6HqVqloU-T*LDDAV{rHx|XjXD5=v^8*Y zC@BW^ZTdG*#~($?vNJf}jdyo^WBq%C?ES`^>j;)E-!zX<$N&gj;Dc{4wzFXlSeLqpRxThK~l}*nL+(6|R ztY3uCY33?*k{v|aJe$4mP_kboJO3l*%1LD?wBcprVa7R~K;AoxN}SUf>ep6uhFz5i zSB3f)CTUuFj8b$eM;x^YF)k~^PS*@~pM6Hs54Hu!Ct2j&&$vyUBCmdf7W1OG%s6NI zTc47V)eKMvkyHR)$_SF<=g{Xxk+iZftIuOlMx8eUtv~B#Onv;<&ZBe2DuYZ#?ZX4h z4UJ4tE@8kPy3CP^LEa(^ zGC8d6|Uv=vgh6cC1zoK^YA0i_=h>L&-^apfRJLx8D!gCDh>`v zMxjc+IGw}m?}*uso-K0ZJ!G)8quJALe+ngXyj=dnOtIF~=^;c&kkx-;b+kvqKGG=? z1h=gMj3<;=8Fv>L1;_h?9P!$Kz#Xe0jwfkB$Jbqu3%5(zpv%R*xqil39EJVcTu5E$X?l?jMZw+tCcj)_1H)!KP`*zvd=KL-tyH-776V*2=fdCS1cv5!??9Hf~lb zWv0>BmI*3^&w$ifg}2$3fiEP`sL(S?=Z>p;A;!k~)Ty%m3hEK4nS_ag^+O_>4XSNp zoB=rf7lhtYD+T+Trvd#PC+ZXPDveXp9JojIE7&Txaann(o}il=sH5-=8h9(OZdJ5l z1v`_-ScUr5CXV9{w1<8h9G<4tS3X4?YcPi{EY<84>bsDjYnY-U4L6P{cN4Ya^u9(Z975Rf(k1=nhfYc20=uu^IZF@&bE1zfavh7E z0UUjk^CSe(=c@>IRwwjt;Ay&I_sut%cYOt_L1)l#$`$Z?_JVOfYH;8l{=g1BZMuTVH1Fzc6+^yXj z$N_7?AgiHc6&()PA|b(dra91Ny=QC|cq_*cvcb0@8)KyzzamZ(E6?$;YKo5f zU=u6IaNGN6YO-HWF?}O`-kuJMj*F-M@ab|7Ut-g-JyS!%huY@{Lb5$Nzo=aixO4gD z8y+!f>hQ2PWAx)5>zZLyn&~Y|72}g;Rx`&CwKJ}g1mJkD9+k#eEHt+=q^davt^y`m zb6gO+$(~tA>r?x9U`2W1Ssor5Xy_=lo$4guMTlVA7#huq6jlf~sJd&{0#|^Im*6>y zwffbq4PUW0y3%-i`SDmQ)JTnHj6nt-B~zQ$zI%Fsk{O2#5>;?Nk8k~ZQIDwa!7|@& z<~-$nkLEe;&cXIAdfiG~kGc&#ifn!DnXj|p>1O#W)x;4@<;6Wo9>gg| zfCIWcCadpgc~iO48VzWZ$DjWgO@#j<2Vct zR z1MLGiz9`bX19-hyVh`CF`fe@x{2`(>4C4pkkq=)@(^S8Yg9)I{52(6Tb+p_@joQXm zb>QVc-wNuwx@>w#VkgWLZ(W}zd*<8gpZ9noK{YfvNZ%CHm7jK12k@YHK;26JrK_4F z>MG8f&Q^fY4jU8b+CX(RS?6&@bEB$gN&>X;^!iTZ+gpLg`&adz;9i#R6zQGHTc~@L zm)~00;-JcAy`6pk~9BYiQWtzGy zgbTDjX_cUM&0%5S7Kz;31#I6?DbqoM*W@g@(goam&(&#h(J0*UDl;9-m!5os@SpB; zmCc{Y5Rc!h@(0Ptu3!S3wC64yF5{&*9@Q~@uW$vz-J}k2kPyhbXu4BxQSHLf5|Bge zGyXax-mc(}-7J6OM|(o3g8Otw!S~n+LFsOH+j=Z4x?6*do6wL!uvC0+l7v{xDc+Pl z2wHn7=>hinSsQV_ThviFDwHz_b6OEHm(@8)AJCgBii|g;S{lK&TeXQml#2e3ZK;Mc?07mm1cmfWd!&mx#wVeAgTzpuUt{>>~urs1!81jXJNT z;&rx_FSZe4?K<*#Q%}hv-C1~_NuBr6ml_(wX1O|^D**R3bi}u9!-{p~eGa*+w-sVF zUI$yM$j$%NiO!YhB)SE`-l%=$D$+} zPF*xPkPi9LS)Dhmd+*3)=Y}J_{ZI!ygOmUhLe*0}iG&xU!i|A8^N|vOXGLr)?K(ZV zcnK-6Zn5e0s40Xi8!ho9$JYKB7TlZRi2yzhEI;&z$g)(62Y^BB&5FNldk0Yx?RoVz z#%iE7z#kVbbz>UqS}~WaN^7p7jWps_mIM8LdpfvF&g8f_VtI@JRB4da*HdIG96S^{ z2o^*)Wow{qgRIWR7j_%*(JGXW>grMl(2>wXJ)RL>|Coyodm6PKibdtN!B&j5o{QxD zl|~1?vEj2lzn9B{t=`UPo|;WnxAg7S^#zX)u`-O-VBaBJmkt3#FN%~agRM@%6?ii{ zuhKRHwn+L=Yl!iyOoRaR*s!GHBzcZS}g?6=lI)4%paxoX!oT;;{$5N{C11g6+s{ zbfa+Rxt%kTUD2uT{&Rrdq~5Fw0;}%x@Gu^vGs?xxeB0wMS#NtRcdd53GXS&@Il4z;_CL?D`r*8(tM!e?H?%q`aDG zML4q<1xMKa;!-Hl<80N8gvNDgX7O@IZn-VvZ)8`(6SdLl+h)m5Xd)KJHZ#GT~$ z7^qY{auH&8b01bmKdBw891Qj>SsE!P5Z|#+0>@e@#y_}0GY(P)uWpALec>)2Yjrht zMrqsjgRb#Ez&NNQV_WJdEybbA=goAZTxP?4E4#oEwhxj=6I%*tL$VXAKY#cPj zud0N$&fRQQdp;4>RQ?zTtu_TUl+c5?G>KOxd^;U;qnQda(G9=F(tC&MwA*JE8j~Aj1w!+Fr)^dD??@&$2q7bjyq ztKOPT7!3h%h{a$#iqA&x9^;9$Tk;Ppk8T*}>Ev9ZYoemmO!S00mdS<57}!Xh+n!=| zx0=y9$-2Q4C0FKn;++?n6j#xhBVKKb!m-))a&U^(+v?A{?jH+v#}Kt7Z7k6gqH#pLs^}e0G>2#c z5w9qEClc{)qIVL}9}sWe$wap>bP7>VqNzjyMAs4V7Gjlm8X>P9dZ+UbuN!)25KUyn zY@%>xokQf$Ke_zF8;0KNiFm8fo5w#5Ny{giOjJM=NHmiunrIf$MCLb}XnqxoDuttEPz=s*&*Hkq8=>nWujoB zSBSo3yjO|#lD3!VP15!eZDQK}L{+?K=6#Kj7tFk`6ZI$U4WhRE^Cthi$86prT1WIY z(PpA|h^mO*C0fa}?-4yn^ghwwY|;lrkCAqO$iox|mHZ3i_aXjiPvT*sW30>(6+rYM z(ep$f5!Eu@$3(X=!%v8Kh0FUXQ8NF0#y`RQ^EvL$-asT&(yddTMfrvMwygw3s$BsKo6hzujMDGy&Omvdy9MKG>Jx{cpv{YTWEp_hr$h^`QQ$FvQa;LmZ=svLx&ga%PdW@8e)MVdtvLz*AaU8FgQ29xF@ zie;{Dq83CRqNWV>CkkV60YpcL0*QJtUJ#L`_%E3746_a)YRTYGq6?&j5%nc4T+!IN zhD5^9Mnuht8WX+Af+L8&AuW<9fGCQH7k9kTL^l(~09AQ237e4kA0sv;>db7K5%FS< zw>i-y#%n>em7%dj0Yq^`|1w@nq92J`5zS<1YoaJtzYWnY(&C9eB5GSjxPwXB5jj~% zd!iVk4n%Q`*pX;0X`P6kBds%0HPa>#-AqI;R53(*ONCKDyFGF^$@h@|}M zM)(SobSJun5ql6dV&a}e?U^KnD3-KdM8k=C6K!RRK16=Zr7zKFhV~=s!O&Eq#YAZe zF*Kd1>K~402H`9w?oX7>-~mME7&?$Bo{0w$B{SY&q8L_d2+_Bs4JDdPG>j;OXgJYP z<~M@qAJRq=g_1U^3H9$r!qFslV1}7Q{fM%NMzY{BL^+H%mS_yoIHD~?<5fJO2}Fa4 zCKCBEmq|pAvf#-?-5ENC$Ux3j-l>GIvXJYD_7Y7aTFWHUiOw*|45G)0vWfZ=v`joUeL_d>O zL^O*T787kFDj|B8@k)ulA}S-gn`kak2>YX)=sBjSXhQy*PgqG}C!%>oA2Z2(qN$`U zAj&3fA<^rkEh0){hKq^Dk#+;oO2%74G?}!eME{bHmJyw0sG4nTuBti(3^^RFGJT5J)`Wu zwS+4eypHGv2CpaDK~zK3g`pdWx--MuiB2(eBhj6t)e=3xc$8E+fWON_UjXgJXhqOn9fiOw?Z zy+nU7#eGD7av<&}YR>!~P$SWU@Iey)W5kDu0-4RjL=BkDBSe1^JxcT)Lmwl$ohcqC zx{owN50E&C z#Dhdm(hd==BRWhJN_2$C%Xl9WEg|hAq8nJ;$3!16^b?}bN&A$jmhnC#GC0_u6Y;Ql zmG=w6ZyE7RqS=i26;T4SIZCvev|~i&jCY*qOVUmdIY>K6w2`z^L}f&$iAFK>3{gAM zz9!;1aql-oKdANZw}dlE{Ep}|7W_R?6wwbv84UfA=vQWQmgq^MpNOV1^k<^&MCXXI znD#u;5yrbfbeiZQ(Vq;xq~u>A;V&d!&&0nHEg|hUqJ2ca6YV1UgQ$S<{v;Yt+FwME z5dBSbJq!7V$dB>j{}GKN?K07L#;dwQSVCfhrufr_L}^Q&BjYt9`h>K`L_%5wQ9sfmi4Kw$1ytqj$qb`OJjdV| zqCC=?5Dh14N_2*8Z$?zic+H7!C2B$RB{PgAGD(Xg`iQiaM87j_E23cL*P3VsL)%ml z-c1-!G>*Y-i7aN*PK6S+C+bPmfoK&`N1_Hy(TQj-bLmWU2WbgJCmAo1=o~|n6k=!> zqOQvROD0U`h;=2p%;0WBKQKvmq7P?hM)Q5;if4zN) z+LG3fr~|8&N>ueOVH#mBQ998>L>WYlnWR6_PecQV{$S`pqB~fHK|~>>4JHa_ydgvj zNE=ENN!l=?K}5re9wHjil>E1a5l51kLNtnK4YM9iw1*KhiJo9+7EwHDV~Cz4Z7k6S zqH#oL+2Zj;+nCD)qPLl1B2gIQO(JRtROOvan9qn)h;C-^RHD8_*Ad;u&}l>!q)jK< zNHl{ekXdIFRWn`=(H^2)q7w|gp6FMm$Rny`Xg*Prl79t++Zb^s(O?G8B1$1`HqkNC z3W>%r8!yp1qB%sp$vs6xPcmLH(S1x?LNu1NQle7Q%7~Jfc5YMJe}f3iNxaD53Zfup zSV>e!+B~A4*sb%4!Wp`N=o^MEBx=fB77<-0T1>Q%p*IlSO0O@;=xdF)iT0Y zSVJ`xN0Ydmv?$V65H(?OHxfO|(3M29naxc^a~SVtqTLL=g=iJgtwhfdts=UfDQ+Wb z#Qds>?o#q^HQ{V#vxewpCRs~#fM^|24$*p|Q;b(bbeI`#AZox2ZzpO;+D4-98LyV; zQ_?mO-ACGHqECnfsLI=k@D37hCAyO+l}YX*YC*Jx=rX(iZlYGK%soVLOtFjL60Qc%0}LhVCL-L-YjE*KEjcq76#^?IHY?#3zX!W;Ra|xtZi?qVq)0 z5Pe1TEYXKV&k_B?6wecRNPB^(8PSVGLm2uJQDau?WugjJ{}rODn+RVe^bqYODrMq* zM5BrJ6TQT2UL$&iwAYDJnc@v17in)2C6e|Q(M6_sn`j=J9x`4Q0p#`~D)H|F;VQESHg zl;~T;tMYzE=wigriMlZO3!>Xe`;w>+X zp{Iz1w9`asL}!SCl>Gaeu!a%8A-ayi-x7IA`;O>6X8k?UG=}~_^b*mJMD19?vqV=I z?YnRfhgW^dD(|6MawGKSTqF{v~>pp;iA8o+i9ZbPI#85XCd=2F>v2M~

    Compute (for a third-order tensor)

    -\[\begin{split}\nabla 0.5 ||\\mathcal{X} - [\\mathbf{w}; \\mathbf{A}, \\mathbf{B}, \\mathbf{C}]||^2 # noqa\end{split}\]
    +\[\begin{split}\nabla 0.5 ||\\mathcal{X} - [\\mathbf{w}; \\mathbf{A}, \\mathbf{B}, \\mathbf{C}]||^2\end{split}\]

    where \([\\mathbf{w}; \\mathbf{A}, \\mathbf{B}, \\mathbf{C}]\) is the CP decomposition with weights -\(\\mathbf{w}\) and factor matrices \(\\mathbf{A}\), \(\\mathbf{B}\) and \(\\mathbf{C}\). # noqa +\(\\mathbf{w}\) and factor matrices \(\\mathbf{A}\), \(\\mathbf{B}\) and \(\\mathbf{C}\). Note that this does not return the gradient with respect to the weights even if CP is normalized.

    diff --git a/ivy/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.html b/ivy/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.html index 076d5aa0f1..55a8b02d7d 100644 --- a/ivy/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.html +++ b/ivy/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.html @@ -1459,7 +1459,7 @@
    static tt_to_tensor(factors)[source]#

    Return the full tensor whose TT decomposition is given by ‘factors’.

    -

    Re-assembles ‘factors’, which represent a tensor in TT/Matrix-Product-State format # noqa: E501 +

    Re-assembles ‘factors’, which represent a tensor in TT/Matrix-Product-State format into the corresponding full tensor

    Parameters:
    @@ -1523,8 +1523,8 @@
    • tensor_shape – shape of the tensor to decompose

    • rank (default: 'same') – way to determine the rank, by default ‘same’ -if ‘same’: rank is computed to keep the number of parameters (at most) the same # noqa: E501 -if float, computes a rank so as to keep rank percent of the original number of parameters # noqa: E501 +if ‘same’: rank is computed to keep the number of parameters (at most) the same +if float, computes a rank so as to keep rank percent of the original number of parameters if int or tuple, just returns rank

    • constant_rank (default: False) – if True, the same rank will be chosen for each modes if False (default), the rank of each mode will be diff --git a/ivy/docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.html b/ivy/docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.html index 22df1a2a2a..3ef18ab887 100644 --- a/ivy/docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.html +++ b/ivy/docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.html @@ -2422,7 +2422,7 @@

      Layers#

      [[16., 17., 18., 19.]]])

      >>> x = ivy.arange(0, 24.).reshape((2, 3, 4))
      ->>> print(ivy.max_pool1d(x, 2, 2, [(1,0)], data_format="NCW", dilation=2, ceil_mode=True)) # noqa
      +>>> print(ivy.max_pool1d(x, 2, 2, [(1,0)], data_format="NCW", dilation=2, ceil_mode=True))
       ivy.array([[[ 1.,  3.],
               [ 5.,  7.],
               [ 9., 11.]],
      diff --git a/ivy/docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.html b/ivy/docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.html
      index 746ef2181f..53f1298b01 100644
      --- a/ivy/docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.html
      +++ b/ivy/docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.html
      @@ -2132,7 +2132,7 @@ 

      Linear algebraNotes

      If no modes are specified, just assumes there is one matrix or vector per mode and returns: -\(\\text{x }\\times_0 \\text{ matrix or vec list[0] }\\times_1 \\cdots \\times_n \\text{ matrix or vec list[n] }\) # noqa

      +\(\\text{x }\\times_0 \\text{ matrix or vec list[0] }\\times_1 \\cdots \\times_n \\text{ matrix or vec list[n] }\)

    diff --git a/ivy/docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.html b/ivy/docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.html index 019a279430..26e03b5918 100644 --- a/ivy/docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.html +++ b/ivy/docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.html @@ -1436,7 +1436,7 @@

    max_pool1d

    @@ -1429,8 +1429,8 @@

    multi_mode_dotOptional[Sequence[int]], default: None) – None or int list, optional, default is None

  • transpose (Optional[bool], default: False) – If True, the matrices or vectors in in the list are transposed. For complex tensors, the conjugate transpose is used.

  • -
  • out (Optional[Array], default: None) – optional output array, for writing the result to. It must have a shape that the -result can broadcast to.

  • +
  • out (Optional[Array], default: None) – optional output array, for writing the result to. +It must have a shape that the result can broadcast to.

  • Return type:
    @@ -1442,7 +1442,7 @@

    multi_mode_dotNotes

    If no modes are specified, just assumes there is one matrix or vector per mode and returns: -\(\\text{x }\\times_0 \\text{ matrix or vec list[0] }\\times_1 \\cdots \\times_n \\text{ matrix or vec list[n] }\) # noqa

    +\(\\text{x }\\times_0 \\text{ matrix or vec list[0] }\\times_1 \\cdots \\times_n \\text{ matrix or vec list[n] }\)

    diff --git a/ivy/docs/functional/ivy/ivy.functional.ivy.losses.html b/ivy/docs/functional/ivy/ivy.functional.ivy.losses.html index de07accf24..5b3c60a3b6 100644 --- a/ivy/docs/functional/ivy/ivy.functional.ivy.losses.html +++ b/ivy/docs/functional/ivy/ivy.functional.ivy.losses.html @@ -1429,7 +1429,7 @@

    Losses#
    >>> x = ivy.array([[0, 1, 1, 0]])
     >>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]])
     >>> pos_weight = ivy.array([1, 2, 3, 4])
    ->>> z = ivy.binary_cross_entropy(x, y, pos_weight=pos_weight, from_logits=True, reduction='sum', axis=1) # noqa: E501
    +>>> z = ivy.binary_cross_entropy(x, y, pos_weight=pos_weight, from_logits=True, reduction='sum', axis=1)
     ivy.array([8.05393649])
     
    diff --git a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html index 5f7e8d90e8..dadf684aee 100644 --- a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html +++ b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html @@ -1388,7 +1388,7 @@

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fcffd1dae60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fe2d1812e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1442,7 +1442,7 @@

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fcffd1dae60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fe2d1812e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • @@ -1519,7 +1519,7 @@

    Meta#

    variables (Container) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fcffd1dae60>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fe2d1812e60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.html b/ivy/docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.html index 244b651db3..46d8314025 100644 --- a/ivy/docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.html +++ b/ivy/docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.html @@ -1431,7 +1431,7 @@

    binary_cross_entropy
    >>> x = ivy.array([[0, 1, 1, 0]])
     >>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]])
     >>> pos_weight = ivy.array([1, 2, 3, 4])
    ->>> z = ivy.binary_cross_entropy(x, y, pos_weight=pos_weight, from_logits=True, reduction='sum', axis=1) # noqa: E501
    +>>> z = ivy.binary_cross_entropy(x, y, pos_weight=pos_weight, from_logits=True, reduction='sum', axis=1)
     ivy.array([8.05393649])
     
    diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html index 75c81e2b32..258603bb51 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html @@ -1391,7 +1391,7 @@

    fomaml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fcffd1dae60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fe2d1812e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html index 632c6d163e..d793aa4163 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html @@ -1391,7 +1391,7 @@

    maml_stepContainer) – Variables to be optimized during the meta step

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fcffd1dae60>) – The function used for the inner loop optimization. +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fe2d1812e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  • inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  • diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html index a2b15b5062..b9472eee26 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html @@ -1388,7 +1388,7 @@

    reptile_stepContainer) – Variables to be optimized.

  • inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  • inner_learning_rate (float) – The learning rate of the inner loop.

  • -
  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fcffd1dae60>) – The function used for the inner loop optimization. It takes the learnable +

  • inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7fe2d1812e60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  • diff --git a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html index 39622df1ea..177f4abb58 100644 --- a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html +++ b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html @@ -1377,7 +1377,7 @@

    Should not be used inside any of the test functions.

    -ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7fcff073dcb0>#
    +ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7fe2c4d39c90>#
    diff --git a/ivy/docs/stateful/ivy.stateful.layers.html b/ivy/docs/stateful/ivy.stateful.layers.html index e6662559fb..3bfbd0778b 100644 --- a/ivy/docs/stateful/ivy.stateful.layers.html +++ b/ivy/docs/stateful/ivy.stateful.layers.html @@ -1504,8 +1504,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fcffcdd1b10>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fcffcdd1b70>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fe2d13e1ab0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fe2d13e1b10>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1542,8 +1542,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fcffcdd1bd0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fcffcdd1c30>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fe2d13e1b70>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fe2d13e1bd0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  • @@ -1581,8 +1581,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fcffcdd1c90>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fcffcdd1cf0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fe2d13e1c30>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fe2d13e1c90>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1619,8 +1619,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fcffcdd1d50>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fcffcdd1db0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fe2d13e1cf0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fe2d13e1d50>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • @@ -1658,8 +1658,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fcffcdd1ed0>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fcffcdd1f30>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fe2d13e1e70>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fe2d13e1ed0>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1696,8 +1696,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fcffcdd1f90>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fcffcdd1ff0>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fe2d13e1f30>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fe2d13e1f90>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • output_shape (default: None) – Shape of the output (Default value = None)

  • data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  • @@ -1760,8 +1760,8 @@
  • strides – The stride of the sliding window for each dimension of input.

  • padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  • -
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fcffcdd1e10>) – Initializer for the weights. Default is GlorotUniform.

  • -
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fcffcdd1e70>) – Initializer for the bias. Default is Zeros.

  • +
  • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fe2d13e1db0>) – Initializer for the weights. Default is GlorotUniform.

  • +
  • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fe2d13e1e10>) – Initializer for the bias. Default is Zeros.

  • with_bias (default: True) – Whether or not to include a bias term, default is True.

  • data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  • dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  • @@ -1917,7 +1917,7 @@
    • input_channels – Number of input channels for the layer

    • output_channels – Number of output channels for the layer

    • -
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fcffcdd2050>) – Initializer for the weights. Default is GlorotUniform.

    • +
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fe2d13e1ff0>) – Initializer for the weights. Default is GlorotUniform.

    • num_layers (default: 1) – Number of lstm cells in the lstm layer, default is 1.

    • return_sequence (default: True) – Whether or not to return the entire output sequence, or just the latest timestep. @@ -1976,8 +1976,8 @@

      • input_channels – Number of input channels for the layer.

      • output_channels – Number of output channels for the layer.

      • -
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fcffcf38b50>) – Initializer for the weights. Default is GlorotUniform.

      • -
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fcffcf38d00>) – Initializer for the bias. Default is Zeros.

      • +
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7fe2d1574b80>) – Initializer for the weights. Default is GlorotUniform.

      • +
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7fe2d1574d30>) – Initializer for the bias. Default is Zeros.

      • with_bias (default: True) – Whether or not to include a bias term, default is True.

      • device (default: None) – device on which to create the layer’s variables ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. Default is cpu.

      • diff --git a/ivy/searchindex.js b/ivy/searchindex.js index fec924b0da..1ab5433d77 100644 --- a/ivy/searchindex.js +++ b/ivy/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 567, 573, 578, 579, 580, 581, 583, 585, 586, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 706, 708, 710, 711, 716, 717, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 765, 774, 775, 777, 778, 780, 781, 782, 783, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "repo": [0, 11, 40, 802, 805, 807, 810, 812, 813, 818, 826, 828, 843], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 458, 486, 510, 511, 516, 563, 564, 620, 623, 633, 664, 744, 760, 836, 855], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 421, 426, 434, 435, 437, 440, 461, 472, 480, 485, 515, 521, 524, 541, 561, 562, 578, 585, 586, 600, 603, 615, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 630, 634, 645, 647, 648, 653, 666, 671, 672, 675, 680, 689, 693, 695, 701, 702, 703, 704, 705, 706, 715, 716, 717, 718, 724, 727, 732, 757, 759, 762, 763, 764, 765, 777, 778, 784, 787, 792, 794, 798, 799, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 850, 851, 852, 853, 854, 855, 857, 860, 861], "jupyt": [0, 844, 856], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 430, 432, 435, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 491, 492, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 560, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 583, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 770, 787, 791, 792, 796, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 824, 825, 828, 829, 833, 835, 836, 837, 838, 839, 845, 851, 852, 855, 857, 860, 861], "tab": [0, 803, 804, 812, 818, 836], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 799, 800, 801, 802, 804, 806, 807, 809, 811, 813, 814, 816, 818, 819, 820, 821, 822, 824, 831, 832, 839, 841, 844, 845, 846, 850, 861], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 419, 423, 429, 438, 442, 444, 445, 461, 463, 464, 472, 488, 489, 490, 499, 509, 519, 537, 538, 544, 558, 580, 581, 602, 604, 605, 606, 607, 609, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 627, 633, 637, 639, 641, 643, 648, 655, 666, 673, 674, 680, 716, 750, 752, 763, 777, 778, 779, 780, 781, 782, 783, 787, 798, 799, 800, 801, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 841, 844, 845, 846, 847, 848, 849, 850, 853, 854, 855, 857, 858, 859, 860], "web": 0, "relev": [0, 48, 71, 133, 615, 782, 798, 803, 804, 805, 808, 811, 812, 813, 815, 818, 822, 823, 826, 827, 828, 836, 840, 844, 852, 859, 860], "link": [0, 17, 26, 27, 41, 798, 803, 804, 805, 810, 812, 813, 819, 825, 848, 850, 852], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 416, 421, 425, 428, 433, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 456, 457, 458, 467, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 501, 509, 510, 511, 512, 521, 523, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 541, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 584, 585, 586, 587, 599, 600, 605, 610, 615, 616, 617, 618, 620, 622, 623, 625, 627, 628, 631, 632, 636, 637, 638, 639, 640, 641, 644, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 675, 677, 682, 683, 684, 685, 686, 689, 692, 693, 694, 695, 696, 699, 700, 704, 705, 706, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 749, 750, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 778, 784, 791, 792, 802, 803, 804, 807, 808, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 833, 836, 837, 838, 839, 847, 854, 855, 860], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 615, 629, 725, 727, 798, 799, 800, 804, 805, 810, 813, 816, 818, 825, 826, 831, 840, 843, 844, 845, 847, 848, 852, 853, 854, 856, 857], "task": [0, 43, 626, 701, 702, 703, 798, 799, 804, 805, 825, 826, 854, 860, 861], "avil": 0, "discuss": [0, 803, 805, 810, 813, 814, 824, 825, 827, 828, 831, 834, 835, 836, 839, 845, 850, 855], "suggest": [0, 803, 804, 805, 810, 813, 819, 823, 825, 828, 829, 830, 840], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 448, 456, 457, 471, 477, 516, 532, 533, 534, 536, 539, 540, 542, 563, 564, 567, 569, 576, 578, 579, 585, 602, 605, 607, 608, 609, 615, 616, 618, 620, 621, 622, 625, 627, 628, 648, 660, 668, 688, 692, 696, 709, 721, 722, 723, 775, 778, 781, 782, 787, 792, 798, 799, 803, 804, 805, 806, 808, 809, 811, 812, 813, 815, 816, 818, 819, 822, 824, 825, 826, 827, 828, 829, 831, 832, 835, 838, 840, 841, 843, 844, 845, 847, 852, 856, 860, 861], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 425, 434, 440, 446, 471, 472, 495, 496, 509, 510, 511, 526, 544, 549, 600, 602, 605, 607, 608, 609, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 642, 643, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 665, 666, 668, 669, 670, 671, 672, 673, 675, 677, 679, 680, 692, 708, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 743, 744, 745, 746, 747, 748, 749, 751, 752, 759, 760, 762, 764, 774, 775, 777, 778, 780, 781, 782, 783, 791, 792, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 842, 844, 848, 850, 851, 854, 856, 861], "comprehens": [0, 15, 805, 807, 827], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 441, 450, 451, 452, 458, 460, 462, 463, 464, 471, 486, 559, 618, 620, 622, 633, 645, 688, 689, 690, 692, 694, 695, 697, 699, 746, 748, 762, 778, 792, 795, 798, 799, 801, 803, 804, 805, 807, 810, 811, 813, 815, 816, 818, 819, 821, 823, 824, 825, 826, 828, 831, 833, 836, 839, 844, 852, 854, 860], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 414, 419, 421, 425, 429, 431, 433, 434, 436, 437, 438, 440, 445, 462, 466, 470, 472, 480, 488, 490, 494, 495, 496, 497, 498, 499, 500, 501, 502, 509, 516, 519, 537, 538, 547, 548, 559, 560, 567, 569, 570, 572, 578, 579, 591, 592, 594, 601, 602, 607, 608, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 631, 633, 646, 648, 651, 656, 658, 666, 670, 674, 677, 680, 682, 691, 692, 693, 697, 701, 702, 703, 704, 706, 707, 713, 714, 715, 717, 724, 725, 726, 727, 729, 730, 731, 732, 735, 737, 745, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 787, 791, 792, 796, 799, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 828, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 841, 845, 849, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "easi": [0, 26, 27, 40, 804, 805, 808, 809, 811, 821, 823, 826, 828, 831, 844, 852, 854, 860, 861], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 445, 460, 472, 488, 490, 547, 548, 549, 578, 579, 602, 605, 607, 608, 609, 615, 616, 617, 618, 620, 621, 622, 623, 627, 631, 648, 651, 664, 670, 680, 710, 716, 735, 736, 737, 738, 778, 782, 798, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 847, 851, 854, 857], "attract": 0, "visual": [0, 9, 44, 796, 798, 804, 818, 825, 828, 839, 854, 856, 859], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 631, 735, 736, 737, 738, 770, 798, 811, 821, 825, 827, 831, 833, 838, 839, 841, 845, 846, 847, 848, 849, 850, 854, 857], "nice": [0, 828, 845, 854], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 439, 505, 532, 612, 616, 617, 620, 622, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 745, 755, 756, 757, 774, 798, 804, 805, 806, 812, 813, 814, 815, 816, 817, 825, 827, 836, 848, 850, 852, 854, 855], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 423, 424, 426, 427, 429, 430, 431, 432, 433, 435, 439, 441, 442, 443, 444, 446, 447, 449, 456, 457, 460, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 532, 533, 534, 539, 540, 544, 549, 556, 563, 564, 601, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 707, 710, 711, 713, 717, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 764, 770, 784, 792, 796, 798, 801, 803, 805, 807, 808, 810, 811, 812, 813, 815, 816, 818, 820, 821, 823, 824, 825, 826, 828, 829, 833, 836, 839, 847, 848, 849, 855, 857], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 495, 496, 498, 499, 615, 629, 631, 724, 725, 726, 727, 735, 736, 737, 738, 762, 765, 777, 778, 779, 780, 781, 782, 783, 803, 804, 805, 807, 808, 809, 810, 811, 813, 815, 817, 820, 825, 826, 828, 829, 833, 835, 836, 839, 841, 845, 847, 852, 854, 860], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 416, 436, 480, 497, 509, 615, 616, 618, 622, 623, 625, 629, 633, 645, 671, 672, 675, 678, 700, 724, 725, 727, 728, 750, 762, 765, 770, 782, 791, 803, 804, 805, 806, 807, 808, 810, 813, 814, 815, 816, 817, 820, 821, 824, 825, 826, 829, 832, 833, 835, 837, 838, 839, 841, 852, 853, 854, 855, 856, 857, 858, 859, 860], "tone": [0, 4], "feel": [0, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 840, 847], "free": [0, 5, 40, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 800, 801, 802, 803, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 840, 847, 855, 857], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 417, 420, 422, 463, 464, 466, 469, 471, 473, 476, 497, 499, 500, 508, 512, 514, 515, 517, 518, 519, 545, 599, 615, 618, 620, 623, 627, 629, 630, 633, 634, 657, 678, 680, 704, 727, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 765, 777, 778, 781, 794, 798, 803, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 844, 847, 848, 851, 852, 854, 856, 859, 860, 861], "emoji": [0, 803], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 798, 803, 804, 805, 812, 813, 814, 819, 823, 828, 831, 837, 839, 840, 845, 847], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 421, 549, 567, 581, 603, 620, 621, 622, 627, 646, 647, 712, 757, 778, 798, 800, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 818, 819, 821, 822, 823, 824, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 844, 845, 847, 848, 849, 852, 854, 856], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 440, 625, 699, 802, 803, 804, 805, 807, 810, 811, 812, 817, 824, 825, 828, 829, 831, 836, 838, 840, 848], "thing": [0, 24, 38, 40, 791, 802, 803, 804, 805, 809, 825, 828, 831, 835, 836, 843, 844, 845, 854], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 421, 798, 817, 833, 836, 837, 838, 848], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 421, 426, 439, 442, 443, 444, 446, 447, 448, 449, 459, 460, 461, 468, 470, 482, 487, 491, 492, 493, 494, 495, 496, 497, 498, 499, 509, 510, 511, 512, 518, 540, 544, 563, 564, 574, 601, 602, 605, 607, 608, 609, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 681, 682, 683, 684, 685, 688, 689, 690, 691, 693, 694, 698, 699, 711, 712, 721, 722, 725, 726, 727, 729, 741, 742, 743, 744, 757, 762, 763, 764, 765, 770, 774, 775, 777, 778, 780, 781, 782, 783, 784, 791, 792, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 834, 835, 837, 844, 845, 851, 856, 857, 860, 861], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 417, 420, 421, 422, 444, 445, 449, 450, 451, 452, 456, 457, 458, 460, 467, 471, 472, 478, 480, 485, 486, 488, 489, 490, 493, 495, 496, 498, 501, 502, 507, 508, 509, 510, 511, 512, 513, 516, 517, 520, 525, 527, 528, 536, 539, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 558, 564, 567, 568, 577, 581, 585, 586, 587, 600, 603, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 710, 723, 725, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 765, 767, 770, 774, 775, 777, 778, 780, 781, 782, 783, 792, 798, 800, 801, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 858, 860, 861], "intern": [0, 9, 69, 100, 101, 102, 627, 704, 714, 715, 777, 778, 779, 780, 781, 783, 808, 811, 814, 816, 824, 826, 828, 830], "releas": [0, 41, 803, 804, 813, 829, 831, 839, 845, 854, 860], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 798, 825, 832, 834, 839, 841, 848, 849, 850], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 418, 419, 420, 421, 423, 424, 425, 426, 428, 431, 432, 433, 434, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 473, 475, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 559, 560, 563, 564, 565, 567, 573, 577, 578, 579, 581, 583, 585, 586, 587, 599, 600, 602, 603, 604, 605, 607, 608, 609, 610, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 710, 711, 712, 713, 714, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 784, 787, 788, 791, 792, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 472, 480, 803, 805, 807, 808, 810, 814, 820, 821, 825, 829, 835, 839, 841, 847, 852, 854, 861], "corner": [0, 52, 75, 368, 403, 804, 805, 818, 825], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 804, 805, 807, 813, 818, 821, 824, 825, 829, 833, 838, 847, 857, 860], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 462, 465, 473, 475, 484, 518, 615, 764, 791, 799, 803, 804, 805, 806, 812, 813, 815, 816, 818, 819, 820, 825, 828, 831, 832, 833, 835, 836, 837, 839, 847, 848, 854, 860], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 519, 623, 627, 674, 711, 712, 716, 721, 722, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 824, 825, 826, 828, 829, 832, 833, 835, 837, 838, 840, 845, 847, 848, 849, 852, 854, 856, 858, 861], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 622, 627, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 715, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 792, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 843, 844, 847, 848, 849, 854, 855, 856, 858], "worri": [0, 26, 27, 803, 804, 819], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 616, 798, 800, 802, 803, 804, 805, 806, 807, 810, 812, 813, 814, 819, 820, 824, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 845, 849, 855, 856, 859], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 417, 418, 420, 421, 426, 427, 430, 431, 432, 433, 438, 441, 442, 443, 444, 445, 446, 447, 451, 452, 457, 458, 460, 465, 473, 474, 475, 476, 478, 480, 482, 484, 491, 492, 494, 495, 496, 498, 499, 500, 502, 509, 510, 511, 512, 516, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 567, 601, 602, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 774, 775, 777, 778, 780, 781, 782, 783, 791, 792, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 860, 861], "access": [0, 23, 26, 27, 69, 798, 803, 804, 805, 812, 813, 819, 824, 825, 840, 848, 854, 856, 858], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 769, 770, 803, 804, 817, 818, 825, 832, 833, 834, 841, 846, 847, 849, 854, 860, 861], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 516, 525, 533, 534, 549, 563, 567, 581, 617, 620, 622, 623, 625, 644, 665, 666, 667, 696, 796, 798, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 826, 828, 831, 832, 833, 834, 835, 836, 837, 838, 839, 841, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 858, 859, 860, 861], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 778, 779, 780, 798, 804, 807, 808, 809, 810, 811, 812, 813, 814, 818, 820, 822, 825, 826, 828, 829, 831, 835, 836, 838, 839, 845, 847, 848, 849, 854], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 460, 516, 539, 540, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 648, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 854], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 426, 431, 433, 438, 445, 457, 488, 496, 497, 502, 509, 556, 567, 600, 603, 612, 615, 616, 617, 620, 621, 622, 623, 625, 629, 648, 656, 663, 673, 677, 692, 696, 725, 726, 727, 735, 759, 762, 763, 764, 765, 770, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 857, 858, 860, 861], "style": [0, 9, 40, 42, 371, 472, 630, 733, 805, 819, 854], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 414, 419, 421, 423, 425, 426, 431, 433, 435, 436, 438, 439, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 467, 471, 477, 478, 479, 480, 481, 482, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 568, 578, 579, 581, 583, 585, 586, 599, 600, 603, 605, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 655, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 716, 717, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 777, 778, 780, 781, 787, 792, 798, 799, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 838, 839, 840, 843, 847, 848, 849], "anyon": [0, 798, 799, 805, 812, 839, 844, 860], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 435, 444, 455, 479, 481, 485, 508, 510, 511, 513, 545, 615, 617, 618, 622, 623, 625, 630, 631, 633, 647, 648, 663, 664, 672, 673, 675, 677, 680, 688, 695, 733, 736, 737, 738, 743, 744, 747, 749, 750, 751, 752, 762, 765, 787, 803, 805, 807, 809, 810, 811, 812, 813, 814, 815, 816, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 837, 838, 839, 840, 843, 844, 845, 847, 849, 850, 853, 854, 856, 857, 860], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 421, 426, 461, 472, 480, 488, 489, 490, 509, 512, 515, 516, 517, 521, 531, 532, 533, 534, 535, 539, 543, 545, 547, 551, 553, 554, 572, 579, 586, 587, 594, 600, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 707, 710, 711, 713, 714, 721, 723, 727, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 757, 760, 764, 774, 775, 777, 778, 780, 781, 782, 783, 787, 791, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 852, 853, 854, 855, 857, 860, 861], "question": [0, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 843, 844, 845], "ping": 0, "me": [0, 805], "guillermo": 0, "commun": [0, 41, 799, 803, 804, 805, 839, 844, 853, 854, 856], "ux": 0, "team": [0, 798, 799, 803, 804, 805, 825, 840, 856], "discord": [0, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 488, 489, 490, 493, 532, 536, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 444, 573, 618, 620, 777, 803, 804, 807, 808, 809, 810, 813, 815, 817, 818, 819, 821, 822, 825, 826, 827, 828, 829, 836, 837, 838, 840, 847, 848], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 436, 549, 620, 757, 798, 803, 804, 805, 808, 813, 814, 815, 817, 819, 820, 822, 824, 825, 826, 827, 828, 829, 840, 854], "similar": [0, 17, 26, 27, 277, 618, 622, 648, 778, 801, 803, 804, 811, 812, 813, 814, 817, 818, 819, 821, 822, 823, 825, 826, 828, 829, 836, 839, 843, 848, 850, 851, 852, 853, 860], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 420, 421, 425, 433, 434, 436, 440, 441, 445, 446, 450, 451, 452, 462, 463, 464, 466, 472, 475, 479, 480, 488, 490, 495, 496, 497, 498, 499, 509, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 535, 541, 546, 550, 561, 562, 571, 581, 593, 603, 615, 617, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 645, 646, 648, 651, 653, 657, 658, 659, 663, 664, 666, 669, 670, 673, 674, 678, 679, 680, 685, 686, 689, 693, 695, 705, 710, 715, 716, 717, 725, 726, 727, 730, 731, 732, 733, 735, 737, 757, 759, 762, 763, 764, 765, 770, 777, 780, 783, 784, 791, 792, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 854, 855, 856, 857, 858, 859, 860, 861], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 490, 493, 524, 545, 580, 617, 618, 620, 622, 627, 630, 645, 648, 710, 730, 731, 778, 803, 807, 813, 815, 817, 820, 821, 823, 828, 831, 852, 854, 859], "templat": [0, 798, 810, 816, 828], "help": [0, 15, 42, 44, 49, 522, 567, 620, 633, 751, 777, 798, 799, 800, 803, 804, 808, 809, 810, 811, 812, 813, 815, 819, 821, 822, 824, 825, 828, 829, 835, 836, 837, 840, 841, 850, 854, 856, 860], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 477, 523, 541, 562, 580, 616, 617, 620, 623, 627, 680, 706, 762, 777, 778, 791, 799, 802, 803, 804, 806, 807, 812, 813, 814, 818, 821, 822, 823, 824, 825, 826, 827, 828, 833, 834, 835, 836, 837, 841, 845, 848, 849, 854, 860], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 415, 417, 418, 426, 427, 430, 431, 432, 433, 441, 442, 443, 444, 446, 447, 457, 460, 465, 473, 474, 475, 476, 478, 480, 484, 488, 491, 492, 494, 495, 496, 498, 499, 509, 510, 511, 512, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 565, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 672, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 703, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 742, 743, 744, 747, 749, 750, 752, 753, 754, 777, 778, 798, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 815, 816, 822, 824, 825, 826, 827, 828, 829, 830, 831, 833, 835, 836, 837, 846, 849, 852, 854, 855, 857, 858, 859, 860, 861], "locat": [0, 42, 136, 380, 510, 615, 627, 629, 632, 708, 724, 741, 792, 803, 805, 809, 810, 814, 825, 826, 828, 829, 840, 852], "asset": [0, 841], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 787, 798, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 840, 844, 845, 848, 852, 854, 855, 856, 857, 860, 861], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 448, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 568, 578, 585, 586, 615, 616, 617, 618, 620, 625, 627, 632, 688, 689, 690, 692, 694, 695, 697, 699, 705, 740, 742, 770, 792, 804, 805, 807, 809, 812, 813, 816, 825, 826, 833, 839, 847, 848, 849], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 808, 813, 815, 816, 817, 821, 822, 824, 831, 836, 850, 860], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 477, 549, 563, 564, 567, 568, 590, 601, 602, 605, 607, 608, 609, 620, 621, 622, 626, 627, 645, 647, 701, 702, 703, 711, 712, 716, 721, 722, 770, 775, 781, 782, 787, 792, 798, 803, 804, 805, 806, 807, 808, 811, 812, 813, 815, 820, 822, 823, 825, 826, 828, 831, 833, 835, 836, 838, 839], "file": [0, 40, 41, 42, 53, 69, 576, 598, 620, 780, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 814, 816, 817, 818, 819, 821, 825, 826, 827, 828, 829, 833, 836, 840, 850, 853, 854, 855], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 414, 420, 482, 485, 522, 523, 618, 620, 623, 631, 657, 658, 662, 670, 671, 673, 674, 678, 735, 736, 737, 759, 763, 770, 780, 787, 788, 790, 803, 804, 805, 809, 810, 811, 812, 815, 816, 817, 820, 825, 826, 828, 829, 830, 831, 833, 836, 838, 854], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 455, 477, 481, 559, 616, 618, 620, 623, 658, 659, 664, 680, 757, 801, 803, 808, 810, 811, 815, 818, 826, 855, 860], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 822, 835, 854], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 798, 799, 801, 802, 803, 804, 807, 809, 810, 812, 816, 818, 819, 823, 825, 827, 829, 831, 836, 837, 839, 840, 844, 845, 847, 848, 854], "Then": [0, 45, 622, 648, 800, 803, 804, 805, 809, 810, 812, 818, 819, 822, 824, 828, 829, 839], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 462, 472, 477, 480, 496, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 548, 549, 563, 567, 581, 586, 590, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 782, 798, 801, 802, 805, 806, 807, 810, 811, 812, 814, 815, 816, 818, 820, 821, 825, 826, 828, 829, 831, 838, 841, 856], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 414, 485, 512, 536, 584, 612, 614, 616, 617, 618, 620, 623, 625, 627, 663, 688, 692, 693, 697, 710, 759, 792, 798, 803, 804, 808, 811, 812, 813, 814, 816, 817, 818, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 838, 839, 841, 847, 853, 854, 860], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 798, 804, 805, 807, 810, 812, 818, 821, 825, 828, 829, 830], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 616, 777, 782, 798, 803, 804, 805, 809, 813, 815, 816, 818, 819, 822, 834, 835, 836, 845, 854, 856], "edit": [0, 803, 804, 805, 819], "titl": [0, 9, 12, 14, 25, 41, 44, 798, 803, 805, 810], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 805, 816, 823, 824], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 615, 618, 623, 630, 631, 633, 634, 680, 731, 735, 736, 737, 738, 746, 747, 748, 749, 750, 751, 752, 753, 754, 825, 833, 840], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 616, 618, 623, 626, 629, 631, 678, 701, 702, 724, 735, 757, 783, 798, 802, 803, 804, 806, 807, 809, 810, 811, 812, 813, 814, 815, 817, 819, 821, 822, 824, 825, 828, 829, 831, 833, 835, 836, 837, 838, 839, 847, 851, 854, 856, 857, 860, 861], "render": [0, 810, 816], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 515, 516, 517, 518, 519, 623, 630, 664, 730, 803, 804, 805, 808, 811, 813, 815, 817, 819, 820, 826, 828, 831, 837, 839, 847, 848], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 516, 803, 805, 810, 814, 824, 827, 833, 836, 840], "behind": [0, 17, 26, 798, 806, 820, 828, 832, 834], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 450, 451, 457, 458, 460, 462, 463, 464, 471, 486, 531, 567, 620, 625, 686, 688, 689, 690, 692, 694, 695, 697, 699, 782, 784, 798, 803, 804, 807, 809, 814, 815, 816, 821, 822, 824, 825, 828, 831, 833, 839, 841, 843, 844, 852, 854, 857, 860], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 622, 647, 778, 812, 833], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 414, 420, 421, 425, 426, 428, 434, 440, 441, 450, 451, 452, 466, 472, 488, 489, 490, 493, 495, 496, 498, 499, 509, 517, 518, 519, 549, 563, 600, 615, 618, 620, 622, 623, 625, 627, 629, 630, 633, 634, 648, 653, 657, 658, 662, 664, 666, 668, 669, 670, 673, 674, 677, 679, 685, 687, 688, 690, 696, 700, 708, 715, 724, 725, 726, 727, 732, 733, 748, 750, 752, 753, 754, 762, 777, 781, 792, 798, 799, 801, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 840, 843, 844, 845, 847, 852, 861], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 418, 419, 420, 421, 423, 425, 435, 436, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 459, 461, 462, 463, 464, 468, 471, 472, 477, 478, 480, 481, 482, 483, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 500, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 522, 524, 525, 526, 527, 528, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 558, 560, 563, 564, 567, 569, 570, 573, 576, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 765, 770, 774, 775, 777, 778, 780, 781, 782, 787, 791, 792, 798, 799, 800, 801, 803, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 826, 828, 829, 831, 832, 833, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 804, 805], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 458, 467, 486, 631, 735, 736, 737, 738, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 836, 837, 849, 850, 857, 860], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 803, 804, 805, 807, 812], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 414, 466, 601, 602, 605, 607, 608, 609, 615, 621, 626, 701, 702, 703, 782, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 818, 823, 825, 828, 833, 836, 837, 838, 845, 854], "explan": [0, 1, 12, 14, 25, 803, 804, 805, 811, 816, 820, 825, 829, 835], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 413, 627, 715, 716, 798, 799, 801, 803, 804, 805, 806, 809, 810, 813, 815, 818, 819, 825, 826, 828, 829, 832, 836, 839, 850, 854, 855, 859, 861], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 455, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 559, 560, 563, 564, 567, 568, 573, 577, 578, 579, 581, 583, 585, 586, 599, 600, 601, 602, 603, 604, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 783, 791, 792, 803, 804, 805, 809, 810, 813, 814, 815, 816, 817, 820, 821, 825, 828, 831, 833, 837, 841, 847, 854], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 413, 418, 421, 431, 434, 435, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 477, 478, 479, 480, 481, 482, 488, 490, 491, 492, 494, 495, 496, 497, 498, 499, 501, 502, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 561, 562, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 670, 671, 672, 673, 677, 679, 680, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 709, 710, 711, 712, 717, 719, 720, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 774, 775, 777, 778, 779, 780, 781, 782, 783, 787, 788, 794, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861], "text": [0, 4, 7, 9, 40, 52, 53, 369, 433, 803, 805, 810, 815, 816], "paragraph": [0, 1, 12, 14, 25, 810], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 417, 494, 527, 528, 615, 618, 620, 623, 627, 664, 680, 712, 778, 798, 804, 805, 806], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 573, 587, 620, 625, 627, 631, 692, 705, 735, 736, 737, 738, 762, 765, 791, 804, 805, 808, 809, 811, 812, 813, 814, 815, 817, 820, 821, 825, 828, 829, 831, 835, 836, 837, 839, 847, 851, 854, 855, 856, 860], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 759, 770, 786, 804, 810, 824, 825, 826, 840, 854], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 417, 420, 421, 422, 439, 463, 464, 488, 489, 490, 493, 510, 511, 578, 600, 616, 618, 620, 622, 623, 625, 629, 630, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 653, 657, 658, 664, 671, 672, 692, 693, 724, 730, 731, 735, 736, 737, 738, 743, 744, 749, 750, 751, 752, 759, 762, 764, 791, 798, 803, 805, 808, 809, 811, 812, 813, 815, 816, 817, 820, 821, 823, 825, 828, 831, 833, 847, 848, 849, 854], "toctre": [0, 810], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 426, 428, 433, 455, 462, 465, 473, 475, 477, 480, 481, 484, 500, 501, 510, 519, 522, 540, 542, 563, 564, 568, 613, 615, 617, 620, 625, 627, 630, 631, 632, 692, 696, 706, 707, 708, 711, 712, 713, 719, 721, 730, 731, 733, 735, 736, 737, 739, 741, 763, 778, 792, 794, 811, 812, 817, 821, 822, 823, 824, 826, 828, 835, 854], "rst": [0, 821], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 420, 425, 429, 436, 438, 463, 473, 514, 515, 516, 517, 518, 519, 532, 614, 618, 620, 623, 630, 632, 657, 658, 664, 673, 678, 730, 741, 762, 804, 805, 807, 810, 812, 813, 815, 818], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 531, 567, 615, 617, 618, 620, 623, 631, 632, 633, 671, 680, 735, 736, 737, 738, 739, 742, 746, 747, 748, 750, 762, 792, 802, 803, 804, 805, 807, 811, 812, 813, 817, 818, 821, 822, 823, 825, 826, 828, 831, 834, 835, 837, 845, 861], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 420, 516, 527, 528, 549, 620, 622, 623, 625, 627, 648, 657, 685, 688, 715, 763, 798, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 831, 833, 835, 836, 839, 840, 845, 847, 848, 850, 854, 855, 856, 860], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 445, 477, 559, 587, 618, 620, 622, 623, 628, 633, 648, 677, 723, 751, 759, 770, 778, 781, 798, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 819, 820, 821, 822, 824, 825, 828, 829, 831, 833, 835, 839, 840, 850, 852, 854], "grid": [0, 42, 48, 134, 310, 362, 615, 815, 828], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 529, 539, 540, 544, 578, 579, 615, 616, 617, 620, 627, 634, 709, 710, 711, 712, 716, 721, 722, 756, 798, 803, 811, 813, 833, 835, 836, 838, 847], "card": [0, 52, 75, 353, 365, 859], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 418, 440, 462, 601, 602, 615, 618, 621, 623, 625, 633, 634, 653, 655, 679, 692, 750, 752, 753, 754, 778, 798, 802, 803, 804, 805, 807, 808, 810, 812, 813, 820, 821, 822, 823, 824, 825, 826, 827, 828, 839, 840, 841, 854], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 621, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 714, 715, 716, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 777, 778, 787, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 840, 843, 844, 847, 848, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861], "look": [0, 5, 17, 26, 27, 40, 42, 45, 798, 801, 803, 804, 805, 809, 810, 811, 813, 814, 815, 817, 818, 819, 820, 821, 825, 826, 828, 829, 830, 831, 833, 835, 837, 838, 840, 843, 847, 850, 854], "document": [0, 17, 26, 59, 242, 329, 330, 365, 600, 618, 620, 696, 799, 800, 802, 805, 810, 812, 813, 815, 824, 825, 826, 828, 836, 838], "sphinx": [0, 800, 810], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 618, 798, 806, 810, 812, 813, 824, 825, 826, 827, 831, 833, 835, 839, 843, 844, 850, 852, 854, 857, 858, 859], "websit": [0, 44, 804, 807, 844], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 451, 452, 472, 507, 516, 618, 623, 660, 668, 791, 792, 798, 803, 804, 805, 809, 811, 813, 814, 820, 824, 825, 831, 839, 840, 854, 856, 861], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 800, 804, 805, 809, 810, 818, 819], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 426, 428, 433, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 473, 476, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 763, 791, 810, 821, 828], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 627, 704, 714, 715, 803, 804, 805, 813, 819, 828, 837, 840], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 370, 371, 380, 445, 457, 516, 519, 549, 618, 620, 627, 704, 711, 714, 715, 716, 721, 764, 792, 798, 801, 803, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 829, 831, 833, 835, 836, 837, 838, 839, 841, 845, 855, 860, 861], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 488, 490, 601, 602, 607, 621, 626, 701, 702, 703, 759, 760, 778, 779, 780, 781, 791, 798, 800, 803, 804, 806, 808, 809, 812, 814, 815, 817, 819, 820, 822, 825, 826, 833, 834, 835, 836, 837, 838, 839, 840, 847, 848, 849, 852, 854, 855, 856, 857, 859, 860, 861], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 480, 615, 618, 623, 656, 677, 752, 799, 801, 803, 804, 806, 807, 811, 812, 813, 814, 815, 817, 818, 821, 824, 825, 826, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 847, 848, 849, 850, 852, 857, 859], "mind": [1, 11, 13, 17, 23, 26, 30, 803, 804, 808, 811, 828, 840, 848], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 790, 798, 801, 804, 812, 825, 839, 840, 854, 856], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 533, 617, 620, 623, 674, 763, 798, 804, 805, 811, 812, 813, 814, 816, 817, 825, 828, 831, 839, 840, 843, 847, 848, 849, 859, 860], "click": [1, 3, 42, 803, 804, 805, 812, 816, 818, 819, 834], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 806, 821, 828, 831, 854], "restart": [1, 3, 4, 5, 7, 40, 41, 804, 818], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 801, 804, 810, 819], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 420, 519, 622, 623, 627, 648, 651, 657, 658, 670, 712, 804, 805, 806, 826, 839], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 798, 800, 802, 804, 805, 807, 810, 812, 818, 819, 828, 840], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 798, 800, 805, 818, 840], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 601, 602, 615, 616, 618, 621, 623, 625, 633, 671, 672, 700, 750, 798, 800, 804, 805, 807, 810, 812, 813, 816, 818, 840, 848], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 798, 800, 802, 805, 807, 810, 812, 813, 815, 816, 818, 819, 827, 828, 840, 843], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 798, 800, 804, 805, 807, 810, 812, 813, 818, 840], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 798, 800, 804, 805, 810, 818, 840], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 441, 618, 775, 779, 780, 798, 836, 837, 841, 847, 848, 852, 853, 854, 855, 856, 857, 858, 860, 861], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 459, 532, 544, 615, 620, 622, 640, 641, 805, 812, 836, 837, 838, 840], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 434, 435, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 561, 563, 564, 568, 577, 578, 579, 580, 581, 583, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 767, 770, 774, 777, 778, 779, 780, 781, 782, 783, 787, 791, 792, 798, 801, 804, 805, 807, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 828, 831, 832, 833, 835, 836, 837, 838, 839, 844, 845, 847, 848, 849], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 429, 436, 441, 445, 455, 458, 467, 472, 478, 480, 481, 483, 485, 486, 495, 496, 497, 498, 499, 510, 511, 531, 539, 540, 542, 562, 573, 583, 600, 602, 603, 607, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 630, 631, 633, 634, 636, 644, 645, 653, 656, 673, 677, 678, 679, 686, 689, 692, 695, 701, 702, 703, 705, 716, 717, 718, 724, 725, 726, 727, 731, 734, 735, 737, 743, 744, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 777, 778, 779, 780, 782, 787, 792, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 841, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 860, 861], "repositori": [1, 3, 5, 7, 800, 803, 804, 805, 806, 807, 810, 818, 827, 845], "cd": [1, 3, 5, 7, 26, 43, 798, 800, 804, 805, 818, 840], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 447, 618, 798, 801, 802, 803, 804, 805, 807, 809, 810, 811, 812, 813, 815, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 833, 834, 835, 836, 837, 838, 839, 847, 848, 849, 854, 855], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 488, 489, 490, 491, 492, 493, 494, 509, 512, 625, 628, 629, 686, 696, 723, 724, 726, 777, 778, 781, 798, 803, 824, 825, 831, 836, 847, 849, 852], "resnet": [2, 8, 15, 26, 847, 848], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 532, 618, 620, 622, 635, 636, 637, 638, 639, 642, 643, 644, 778, 798, 804, 818, 831, 833, 834, 836, 838, 840, 847, 848, 854], "classif": [2, 3, 7, 9, 15, 40, 798, 854], "acceler": [2, 15, 798, 813, 825, 852, 856, 857, 858, 859], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 618, 782, 798, 802, 803, 808, 813, 814, 817, 820, 821, 824, 825, 826, 831, 833, 838, 839, 841, 844, 845, 847, 848, 855, 857, 858, 860, 861], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 519, 549, 581, 600, 612, 618, 620, 631, 735, 736, 737, 738, 770, 774, 787, 798, 801, 802, 803, 804, 805, 807, 809, 813, 814, 817, 818, 820, 823, 824, 825, 826, 828, 829, 831, 833, 835, 838, 839, 844, 845, 847, 848, 849, 855, 857, 860, 861], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 450, 451, 452, 500, 565, 582, 584, 585, 586, 588, 615, 616, 617, 618, 620, 623, 627, 681, 705, 716, 717, 759, 787, 791, 798, 803, 808, 809, 822, 823, 825, 828, 830, 833, 839, 841, 845, 848, 852, 853, 860], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 435, 526, 562, 620, 762, 778, 798, 800, 803, 805, 807, 808, 809, 810, 811, 812, 813, 817, 819, 822, 824, 825, 826, 828, 830, 833, 835, 836, 837, 839, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 854, 856, 860], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 438, 623, 673, 800, 802, 810, 841, 856, 859], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 497, 543, 577, 615, 616, 620, 622, 625, 645, 692, 787, 788, 806, 809, 813, 814, 828, 833, 838, 848, 852, 853, 856, 858], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 810, 815], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 450, 451, 452, 458, 460, 462, 463, 464, 465, 467, 471, 477, 478, 486, 488, 490, 522, 542, 549, 567, 617, 618, 620, 623, 625, 629, 671, 688, 689, 690, 692, 694, 695, 697, 699, 727, 798, 803, 804, 805, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 835, 836, 837, 838, 839, 843, 845, 847, 848, 849, 850, 852, 854, 855, 857, 860], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 482, 486, 532, 542, 581, 603, 604, 606, 611, 612, 620, 621, 623, 624, 625, 666, 682, 688, 689, 690, 692, 694, 695, 697, 699, 774, 780, 787, 792, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 854, 855, 859, 860], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 566, 575, 597, 620, 798, 803, 804, 805, 810, 812, 815, 819, 824, 825, 828, 830, 839, 847, 854], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 455, 480, 481, 612, 618, 774, 777, 778, 779, 780, 798, 799, 800, 801, 802, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 822, 823, 824, 825, 826, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 843, 845, 850, 854], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 461, 804, 807, 808, 816, 819, 820, 824, 825, 829, 833, 835, 838, 839, 843, 848, 852, 854, 858, 860, 861], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 798, 799, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 840, 852], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 798, 805, 825, 840], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 549, 551, 555, 562, 567, 584, 615, 616, 617, 620, 759, 770, 775, 787, 798, 801, 803, 813, 814, 817, 818, 821, 822, 824, 825, 826, 828, 833, 835, 836, 841, 847, 848, 849, 852, 861], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 512, 616, 618, 798, 802, 804, 806, 822, 848, 852, 854, 856, 857, 858], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 452, 615, 804, 805, 811, 812, 813, 815, 825, 828, 831, 832, 833, 855, 860], "major": [3, 4, 630, 733, 813, 814, 826, 828, 839, 844, 851, 854], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 798, 799, 802, 825, 832, 833, 834, 836, 837, 838, 842, 844, 845, 848, 850, 851, 852, 853, 854, 857, 859, 861], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 530, 546, 550, 581, 584, 616, 617, 620, 627, 706, 757, 759, 763, 770, 775, 782, 787, 788, 798, 801, 803, 804, 806, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 828, 829, 831, 832, 833, 835, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 858], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 798, 800, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 817, 824, 825, 839, 844, 854, 860], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 460, 618, 780, 798, 799, 800, 803, 804, 805, 810, 812, 814, 817, 819, 821, 822, 823, 824, 828, 831, 836, 837, 838, 839, 840, 844, 848], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 413, 432, 461, 472, 549, 602, 605, 607, 608, 609, 616, 618, 620, 621, 622, 627, 628, 635, 636, 637, 638, 640, 642, 644, 645, 715, 723, 782, 787, 798, 803, 804, 805, 807, 809, 810, 812, 813, 815, 817, 820, 823, 826, 828, 832, 840, 847, 848, 854], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 419, 420, 421, 423, 427, 446, 456, 458, 462, 469, 472, 474, 475, 478, 485, 496, 498, 502, 510, 511, 512, 519, 524, 614, 615, 616, 617, 618, 620, 622, 623, 625, 626, 627, 630, 631, 632, 633, 648, 653, 656, 657, 658, 660, 663, 668, 670, 671, 673, 675, 677, 679, 692, 693, 696, 697, 701, 702, 703, 704, 705, 714, 715, 717, 729, 730, 731, 735, 736, 737, 740, 741, 743, 744, 759, 777, 778, 779, 780, 782, 787, 798, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 814, 815, 819, 820, 821, 822, 824, 825, 828, 831, 833, 835, 836, 838, 840, 843, 844, 847, 848, 852, 854, 855, 859], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 780, 798], "automat": [3, 5, 7, 24, 26, 27, 32, 798, 803, 804, 805, 806, 809, 810, 812, 813, 819, 821, 824, 828, 831, 832, 834, 837, 838, 840, 841, 845, 854, 857, 861], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 803, 804, 805, 807, 812, 817, 818, 825, 826, 828, 831, 840], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 617, 798, 804, 805, 812, 814, 835, 840, 852, 854, 857, 858, 859], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 444, 567, 620, 623, 666, 780, 798, 804, 805, 808, 811, 813, 821, 822, 823, 824, 825, 828, 829, 832, 834, 836, 838, 839, 841, 844, 847, 852, 853, 854, 855, 856, 857, 860, 861], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 775, 798, 838, 845, 848, 854], "exit": [3, 5, 7, 26, 27, 814], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 800, 804, 810, 828, 847, 848], "imagenet": [3, 13, 41, 43, 798], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 420, 515, 516, 523, 532, 536, 549, 559, 581, 615, 616, 617, 618, 620, 622, 623, 624, 627, 628, 643, 647, 651, 657, 668, 672, 673, 675, 682, 698, 705, 716, 723, 738, 745, 749, 750, 759, 760, 767, 768, 769, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 786, 787, 791, 796, 798, 803, 809, 810, 811, 813, 814, 815, 816, 820, 822, 823, 826, 827, 828, 831, 833, 834, 836, 837, 838, 841, 847, 848, 852, 854, 855, 861], "preprocess": [3, 7, 9, 26, 27, 40, 43, 847], "wget": [3, 5, 7, 40, 41, 44, 804], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 798, 816, 848, 855], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 812, 854], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 804, 807, 810], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 603, 621, 623, 625, 670, 699, 804, 805, 806, 823, 826], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 462, 483, 625, 627, 692, 707, 711, 712, 713, 716, 721, 722, 798, 799, 805, 806, 811, 812, 817, 829, 833, 835, 836, 845, 850], "categori": [3, 7, 803, 807, 808, 811, 813, 817, 825, 829, 832], "strip": [3, 7, 19, 29, 844], "readlin": [3, 7, 41], "cat": [3, 7, 41, 826, 831, 833, 838, 847, 848], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 798, 848], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 780, 786, 836], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 432, 435, 437, 440, 441, 442, 443, 444, 445, 446, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 491, 492, 493, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 563, 564, 577, 578, 579, 583, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 765, 778, 791, 792, 798, 801, 803, 804, 807, 808, 809, 811, 812, 813, 815, 817, 818, 821, 823, 826, 828, 833, 835, 836, 837, 838, 847, 848, 861], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 509, 544, 560, 617, 620, 626, 631, 702, 703, 738, 770, 787, 788, 798, 802, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 819, 822, 823, 824, 825, 826, 827, 828, 829, 833, 835, 836, 838, 839, 840, 844, 847, 848, 849, 850, 852, 854, 857, 858, 860], "torchvis": [3, 6, 7, 40, 845], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 414, 429, 622, 646, 762, 765, 778, 798, 822, 828, 838, 841, 847, 848, 852, 854, 855, 856], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 798, 848], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 509, 516, 525, 549, 578, 581, 585, 615, 616, 617, 618, 620, 633, 745, 757, 759, 770, 787, 791, 792, 798, 802, 803, 804, 805, 807, 808, 809, 812, 813, 814, 817, 818, 820, 824, 826, 828, 829, 831, 833, 835, 838, 840, 841, 843, 844, 847, 848, 849, 856, 861], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 415, 578, 615, 616, 618, 620, 627, 710, 759, 787, 791, 792, 798, 803, 808, 813, 814, 817, 820, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 841, 849], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 795, 804, 805, 830, 847, 848, 849], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 414, 433, 440, 472, 478, 509, 602, 607, 615, 621, 622, 623, 625, 626, 630, 631, 645, 647, 663, 698, 701, 702, 703, 730, 731, 735, 736, 778, 779, 780, 803, 804, 805, 807, 809, 811, 812, 813, 815, 818, 820, 821, 822, 824, 825, 828, 829, 833, 836, 838, 839, 840, 843, 844, 845, 847, 848, 852, 854, 855, 858, 859, 860], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 421, 435, 474, 475, 479, 517, 615, 622, 623, 627, 648, 662, 715, 716, 782, 804, 810, 812, 815, 828, 839, 860], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 804, 811, 825, 828, 847, 849, 854, 861], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 831], "256": [3, 5, 7, 51, 76, 278, 279, 579, 622, 637, 639, 762], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 798, 848], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 418, 429, 441, 442, 443, 444, 445, 446, 447, 457, 462, 472, 488, 490, 496, 515, 516, 533, 603, 604, 606, 611, 615, 617, 620, 621, 622, 623, 624, 625, 626, 627, 629, 633, 637, 639, 640, 641, 643, 644, 645, 655, 682, 683, 684, 692, 701, 702, 703, 710, 725, 726, 762, 764, 765, 777, 778, 781, 798, 804, 805, 806, 807, 809, 811, 813, 814, 815, 821, 823, 824, 825, 828, 829, 831, 833, 835, 836, 837, 838, 839, 841, 848, 849, 851, 854], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 413, 416, 417, 418, 420, 421, 422, 425, 426, 428, 429, 430, 433, 434, 435, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 455, 457, 458, 459, 462, 463, 464, 465, 466, 467, 468, 469, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 526, 527, 528, 531, 532, 533, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 559, 561, 563, 564, 568, 573, 577, 578, 579, 581, 583, 585, 586, 595, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 767, 774, 775, 777, 778, 779, 780, 781, 782, 783, 784, 787, 791, 792, 798, 801, 804, 805, 807, 809, 811, 812, 813, 814, 815, 816, 817, 818, 823, 824, 825, 826, 828, 829, 833, 835, 836, 837, 838, 839, 847, 848], "485": [3, 7, 40], "456": [3, 7, 40, 828], "406": [3, 7, 40, 52, 75, 389, 527, 620], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 496, 622, 629, 633, 637, 639, 640, 641, 643, 644, 725, 726, 798, 815, 849], "229": [3, 7, 40, 274, 618], "225": [3, 7, 40, 42, 229, 618], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 798, 836, 848], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 429, 435, 441, 442, 443, 444, 445, 446, 448, 450, 451, 452, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 485, 486, 487, 491, 492, 493, 494, 497, 499, 500, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 545, 547, 548, 549, 556, 563, 564, 578, 579, 580, 581, 583, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 642, 643, 644, 645, 646, 647, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 703, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 765, 777, 778, 782, 791, 792, 798, 801, 803, 804, 809, 810, 811, 812, 813, 815, 818, 823, 826, 828, 831, 833, 835, 836, 837, 838, 845, 847, 854, 860, 861], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 804, 810, 812, 817, 828, 836], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 414, 462, 472, 474, 475, 615, 618, 792, 798, 804, 805, 809, 812, 818, 824, 829, 831, 832, 839, 852, 857], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 417, 442, 480, 612, 615, 616, 618, 623, 630, 631, 633, 634, 653, 666, 669, 672, 679, 680, 731, 735, 736, 737, 738, 746, 747, 748, 749, 750, 751, 752, 753, 754, 774, 798, 799, 801, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 818, 819, 820, 821, 825, 826, 828, 831, 833, 835, 836, 839, 843, 850], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 416, 419, 420, 422, 423, 425, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 462, 463, 466, 467, 468, 471, 472, 477, 478, 479, 480, 481, 482, 486, 487, 492, 493, 494, 497, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 516, 519, 525, 526, 527, 528, 531, 532, 533, 534, 536, 539, 540, 542, 545, 547, 548, 549, 563, 564, 568, 578, 579, 580, 581, 583, 587, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 640, 641, 642, 643, 644, 645, 646, 647, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 667, 668, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 778, 791, 792, 798, 803, 804, 805, 807, 809, 811, 812, 813, 815, 817, 818, 820, 823, 826, 828, 835, 836, 837, 848], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 617, 814], "set_soft_device_mod": [3, 9, 213, 617, 814], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 459, 460, 462, 463, 464, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 501, 502, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 563, 564, 565, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 588, 593, 594, 596, 597, 599, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 778, 779, 780, 781, 782, 784, 787, 789, 791, 792, 796, 798, 801, 804, 809, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 826, 828, 830, 831, 833, 836, 837, 838, 847, 848], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 525, 549, 616, 617, 620, 626, 702, 703, 787, 798, 807, 809, 813, 814, 821, 822, 823, 833, 835, 838, 847, 848, 849], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 369, 371, 374, 378, 417, 420, 421, 422, 423, 424, 428, 432, 434, 437, 440, 462, 463, 464, 469, 470, 482, 488, 489, 490, 493, 502, 615, 618, 622, 623, 625, 626, 630, 631, 632, 636, 637, 638, 639, 640, 641, 644, 657, 658, 664, 673, 674, 678, 680, 689, 692, 701, 702, 733, 735, 736, 737, 738, 739, 741, 742, 759, 781, 783, 792, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 825, 826, 827, 828, 829, 830, 831, 836, 838, 839, 843, 850, 853, 854, 855, 857, 860], "quick": [3, 15, 27, 805, 806, 826, 837], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 432, 516, 567, 573, 587, 603, 604, 606, 614, 617, 620, 621, 623, 627, 671, 704, 710, 714, 715, 759, 770, 778, 779, 780, 782, 787, 792, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 839, 844, 847, 848, 849, 854, 855, 858], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 780, 798, 833, 838, 846], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 414, 423, 435, 455, 462, 481, 510, 511, 614, 615, 618, 622, 623, 625, 626, 648, 663, 667, 692, 703, 743, 762, 770, 777, 778, 791, 798, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 824, 825, 826, 828, 831, 833, 835, 837, 838, 839, 840, 845, 847, 848, 851, 852, 860], "moment": [3, 52, 54, 75, 77, 369, 424, 601, 602, 607, 621, 782, 803, 809, 839, 847, 848], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 415, 417, 426, 433, 446, 450, 451, 452, 456, 462, 463, 464, 469, 471, 476, 479, 488, 489, 490, 495, 500, 510, 511, 514, 515, 516, 517, 518, 519, 521, 559, 563, 564, 566, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 628, 630, 631, 633, 636, 637, 638, 639, 640, 641, 644, 660, 663, 664, 668, 670, 679, 680, 688, 689, 690, 693, 695, 699, 723, 730, 733, 735, 736, 737, 738, 743, 745, 762, 764, 781, 784, 787, 792, 795, 798, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 830, 831, 832, 835, 836, 838, 839, 840, 841, 844, 845, 848, 854, 855, 857, 860], "cost": [3, 54, 77, 601, 602, 605, 607, 608, 609, 621, 626, 701, 702, 703, 792, 813, 831, 852], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 587, 614, 615, 617, 620, 757, 759, 774, 775, 778, 779, 780, 784, 787, 791, 796, 798, 808, 813, 814, 817, 823, 824, 825, 831, 833, 837, 847, 848, 849], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 501, 502, 532, 543, 547, 548, 578, 579, 615, 620, 622, 631, 632, 636, 736, 740, 817, 822, 825, 826], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 495, 496, 498, 499, 615, 617, 623, 629, 674, 724, 725, 726, 727, 777, 778, 779, 780, 781, 782, 783, 798, 833, 839, 841, 859], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 413, 416, 419, 430, 441, 442, 443, 444, 446, 447, 450, 451, 452, 456, 458, 462, 467, 468, 471, 472, 477, 478, 480, 481, 483, 486, 487, 497, 499, 500, 507, 510, 511, 513, 514, 519, 525, 527, 528, 532, 533, 536, 547, 548, 549, 556, 563, 564, 578, 581, 601, 602, 604, 605, 606, 607, 608, 609, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 639, 641, 643, 644, 645, 646, 651, 653, 654, 655, 656, 658, 659, 660, 663, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 682, 683, 684, 685, 688, 689, 694, 696, 697, 699, 704, 705, 712, 716, 723, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 743, 744, 745, 747, 749, 751, 752, 762, 804, 805, 809, 811, 812, 815, 821, 824, 828], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 417, 418, 419, 421, 423, 426, 427, 430, 431, 432, 433, 435, 436, 439, 441, 442, 443, 444, 445, 446, 447, 448, 455, 456, 457, 460, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 526, 527, 528, 532, 533, 534, 536, 540, 549, 556, 563, 564, 565, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 762, 777, 778, 791, 792, 798, 800, 804, 805, 806, 807, 808, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 833, 835, 837, 838, 839, 841, 847, 848, 855], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 442, 612, 622, 648, 651, 774, 798], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 370, 371, 374, 375, 380, 442, 462, 488, 490, 495, 515, 516, 549, 614, 616, 617, 618, 620, 626, 701, 702, 757, 759, 763, 770, 775, 779, 780, 782, 783, 787, 791, 796, 798, 801, 803, 805, 807, 808, 809, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 831, 839, 847, 848, 849, 852], "argsort": [3, 7, 64, 87, 632, 741, 825], "descend": [3, 7, 64, 87, 623, 632, 673, 674, 739, 742], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 482, 532, 620, 686, 798, 804, 805, 813, 818, 825, 827, 828, 831, 836, 837, 854, 858], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 495, 498, 624, 682, 684, 774, 798, 847], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 540, 542, 620, 861], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 416, 419, 421, 423, 424, 432, 439, 441, 442, 443, 444, 445, 446, 447, 453, 455, 457, 468, 472, 477, 478, 480, 481, 482, 487, 491, 492, 494, 509, 510, 511, 512, 519, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 559, 560, 562, 563, 564, 568, 569, 570, 573, 576, 577, 578, 579, 581, 583, 585, 586, 587, 591, 592, 595, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 787, 791, 792, 796, 798, 804, 805, 811, 813, 815, 826, 828, 830, 833, 835, 836, 837, 847, 849], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 421, 440, 442, 450, 451, 452, 455, 458, 460, 462, 463, 464, 467, 471, 477, 478, 480, 481, 482, 485, 486, 500, 501, 502, 524, 539, 540, 542, 563, 564, 568, 600, 603, 604, 615, 618, 620, 621, 622, 623, 625, 627, 628, 629, 630, 631, 632, 636, 638, 639, 640, 641, 644, 648, 666, 680, 688, 689, 690, 692, 693, 694, 695, 697, 699, 704, 707, 709, 711, 712, 713, 715, 719, 720, 721, 722, 723, 724, 730, 731, 732, 733, 735, 737, 739, 741, 742, 759, 760, 762, 764, 778, 784, 791, 792, 794, 804, 812, 820, 823, 825, 838, 847], "to_list": [3, 7, 53, 76, 620], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 546, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 559, 561, 562, 563, 564, 565, 567, 568, 574, 575, 577, 578, 579, 580, 581, 583, 584, 585, 586, 587, 588, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 710, 711, 712, 713, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 764, 770, 777, 778, 779, 780, 783, 787, 791, 792, 794, 798, 801, 803, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 818, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 841, 848, 849, 852, 853, 854, 856, 860, 861], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 617, 804, 814, 818, 821, 835, 837], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 510, 601, 612, 618, 621, 623, 633, 660, 668, 726, 745], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 525, 535, 537, 538, 545, 551, 552, 553, 554, 555, 571, 581, 593, 599, 612, 616, 617, 620, 623, 627, 658, 659, 666, 704, 714, 715, 716, 757, 764, 791, 792, 798, 800, 802, 803, 804, 805, 807, 811, 812, 814, 815, 817, 822, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 840, 847], "confirm": [3, 41, 803], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 413, 420, 425, 426, 434, 435, 436, 437, 438, 440, 442, 445, 455, 457, 472, 480, 481, 488, 490, 500, 502, 507, 508, 509, 510, 511, 512, 513, 519, 556, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 651, 652, 653, 654, 656, 657, 658, 659, 661, 663, 665, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 686, 689, 690, 692, 693, 695, 696, 701, 702, 717, 727, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 757, 762, 763, 764, 770, 778, 791, 798, 804, 805, 808, 809, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 843, 845, 847, 849, 851, 853, 860, 861], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 413, 416, 419, 427, 441, 442, 443, 445, 446, 447, 448, 450, 451, 452, 456, 458, 462, 467, 468, 477, 478, 481, 482, 483, 486, 487, 497, 499, 511, 514, 515, 519, 525, 526, 528, 532, 533, 536, 539, 543, 547, 548, 549, 551, 552, 555, 558, 563, 564, 568, 578, 579, 580, 581, 601, 604, 606, 608, 609, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 636, 640, 641, 643, 644, 645, 646, 648, 654, 655, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 689, 696, 697, 699, 705, 712, 716, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 744, 745, 747, 749, 751, 752, 762, 765, 778, 804, 811, 812, 815, 828, 832, 836], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 426, 507, 509, 512, 601, 602, 605, 607, 608, 609, 621, 622, 624, 626, 646, 647, 648, 651, 682, 703, 764, 777, 778, 780, 782, 798, 811, 821, 828, 833, 837, 838, 853], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 622, 648, 651, 778, 836], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 413, 427, 441, 443, 445, 446, 450, 451, 452, 458, 462, 467, 477, 478, 479, 480, 482, 486, 497, 499, 502, 511, 528, 532, 533, 534, 536, 539, 547, 548, 551, 552, 555, 563, 564, 578, 580, 601, 602, 603, 607, 608, 612, 615, 616, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 632, 633, 636, 637, 638, 644, 645, 646, 653, 654, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 685, 689, 693, 694, 696, 697, 699, 704, 705, 710, 712, 715, 716, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 744, 745, 747, 749, 751, 752, 762, 782, 811, 813, 815, 823, 828, 836, 837, 850], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 462, 615, 622, 635, 642, 643, 647, 764, 778, 798, 813, 825, 826, 831], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 414, 416, 423, 424, 425, 426, 429, 431, 433, 434, 437, 439, 440, 442, 445, 446, 462, 465, 470, 473, 474, 475, 476, 479, 484, 515, 520, 563, 564, 615, 616, 618, 620, 622, 623, 624, 625, 629, 645, 647, 648, 662, 675, 682, 692, 694, 724, 778, 787, 792, 798, 808, 809, 813, 814, 818, 820, 821, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 839, 841, 843, 847, 848, 849, 851, 852, 855, 857, 858, 861], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 460, 495, 496, 498, 499, 523, 537, 538, 615, 620, 629, 724, 725, 726, 727, 757, 759, 760, 775, 777, 778, 779, 780, 781, 782, 783, 784, 798, 805, 806, 809, 813, 817, 821, 822, 826, 828, 829, 831, 833, 838, 839, 840, 841, 844, 853, 854, 856, 857, 858, 859], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 604, 611, 621, 836], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 826, 833], "great": [3, 5, 798, 805, 828, 833, 835, 844, 845, 860], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 417, 418, 419, 421, 422, 423, 432, 435, 446, 462, 463, 464, 466, 469, 471, 472, 478, 480, 482, 485, 500, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 525, 526, 527, 528, 531, 532, 533, 534, 535, 539, 540, 543, 545, 547, 548, 549, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 651, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 670, 671, 672, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 804, 813, 815, 825, 828, 831, 833, 844, 845, 847, 854, 857], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 509, 764, 778, 792, 798, 803, 804, 805, 808, 810, 811, 813, 814, 815, 816, 821, 824, 825, 828, 829, 831, 835, 837, 838, 839, 841, 843, 847, 848, 853, 854, 855, 856], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 618, 625, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 705, 716, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 798, 803, 804, 805, 807, 809, 810, 811, 812, 813, 815, 816, 818, 819, 825, 826, 827, 828, 829, 830, 831, 833, 837, 839, 840, 845, 847, 857, 860], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 419, 421, 516, 525, 537, 538, 546, 549, 550, 560, 567, 581, 584, 615, 616, 617, 620, 623, 673, 757, 759, 760, 762, 763, 764, 767, 769, 770, 775, 779, 780, 782, 786, 787, 798, 801, 802, 804, 805, 806, 807, 808, 812, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 828, 830, 831, 832, 834, 835, 838, 841, 843, 847, 848, 849, 854, 857, 860, 861], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 539, 540, 618, 620, 623, 633, 677, 747, 749, 750, 751, 752, 798, 803, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 845, 847, 848, 861], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 429, 436, 438, 623, 627, 652, 658, 659, 673, 712, 798, 799, 804, 805, 806, 811, 812, 819, 822, 824, 825, 826, 827, 828, 829, 831, 837, 839, 844], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 434, 440, 456, 463, 464, 478, 510, 511, 519, 539, 540, 612, 616, 618, 620, 622, 623, 625, 633, 645, 646, 660, 671, 686, 696, 743, 744, 749, 751, 752, 757, 762, 770, 779, 780, 798, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 857, 860, 861], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 798, 799, 801, 803, 804, 805, 810, 815, 818, 819, 823, 824, 836, 840, 845, 847, 848], "try": [3, 18, 28, 38, 41, 45, 69, 587, 620, 777, 787, 798, 803, 804, 805, 807, 808, 811, 812, 813, 817, 819, 824, 826, 833, 835, 839, 842, 844, 845, 849], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 413, 452, 455, 458, 462, 467, 477, 478, 486, 507, 510, 511, 514, 516, 519, 532, 533, 534, 536, 539, 540, 542, 547, 548, 556, 564, 568, 573, 578, 580, 592, 595, 607, 615, 618, 620, 621, 622, 623, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 639, 645, 654, 656, 660, 661, 663, 664, 665, 668, 673, 674, 675, 677, 679, 689, 694, 695, 696, 697, 699, 710, 712, 715, 716, 723, 724, 725, 726, 727, 733, 735, 741, 743, 744, 745, 746, 748, 749, 751, 752, 762, 764, 782, 798, 801, 804, 807, 811, 812, 813, 815, 818, 823, 826, 828, 833, 835, 836, 844, 849, 859], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 775, 798, 808, 813, 814, 820, 824, 825, 828, 829, 831, 833, 838, 839, 841, 847, 848, 849, 854], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 420, 617, 623, 629, 657, 658, 659, 673, 724, 798, 803, 804, 805, 811, 812, 813, 814, 815, 818, 819, 824, 825, 828, 831, 833, 836, 839, 840, 845, 847], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 414, 418, 422, 425, 445, 446, 462, 472, 475, 482, 509, 514, 515, 516, 517, 518, 519, 521, 525, 532, 544, 549, 565, 566, 567, 569, 570, 571, 572, 573, 574, 575, 576, 581, 589, 612, 614, 615, 616, 617, 618, 620, 622, 623, 627, 629, 630, 632, 633, 645, 651, 653, 664, 666, 669, 672, 673, 704, 711, 714, 715, 716, 721, 722, 728, 730, 731, 735, 737, 738, 739, 742, 750, 752, 759, 762, 763, 764, 765, 770, 777, 778, 780, 782, 787, 792, 795, 798, 799, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 817, 819, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 836, 843, 846, 847, 848, 852, 853, 854, 855, 856, 858, 861], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 764, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 800, 802, 803, 804, 805, 806, 807, 808, 810, 811, 812, 813, 815, 817, 818, 819, 822, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 843, 844, 847, 859, 860], "post": [3, 5, 40, 60, 83, 628, 723, 804, 818, 823, 838, 840], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 617, 799, 804, 805, 810, 811, 812, 818, 819, 821, 823, 825, 826, 827, 828, 831, 833, 838, 844, 845, 847, 852, 853, 854, 857, 858, 860, 861], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 413, 422, 455, 456, 458, 462, 467, 469, 486, 510, 511, 526, 532, 533, 539, 548, 564, 618, 620, 622, 623, 624, 625, 627, 629, 630, 631, 633, 636, 637, 645, 646, 656, 659, 660, 661, 663, 664, 668, 672, 673, 674, 675, 677, 679, 682, 684, 689, 694, 695, 697, 699, 710, 712, 722, 725, 726, 727, 734, 735, 743, 744, 745, 752, 811, 812, 813, 815, 823], "st": [3, 4, 6, 762, 807, 826, 828], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 615, 798, 821, 826, 831, 838, 848, 855], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 444, 449, 457, 458, 459, 462, 463, 464, 467, 472, 477, 478, 480, 481, 482, 485, 486, 491, 492, 494, 502, 507, 510, 511, 512, 514, 515, 516, 517, 518, 519, 532, 539, 600, 612, 615, 617, 618, 620, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 644, 653, 656, 664, 677, 679, 680, 682, 683, 684, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 729, 730, 731, 735, 737, 739, 740, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 774, 778, 779, 784, 811, 813, 815, 817, 820, 821, 824, 825, 828, 831, 833, 835, 838], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 463, 464, 478, 632, 742, 803, 808, 810, 825, 831, 837, 838, 850, 854, 855, 858], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 420, 421, 422, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 452, 453, 455, 457, 460, 465, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 527, 528, 532, 533, 534, 536, 539, 540, 543, 549, 556, 563, 564, 574, 582, 584, 596, 600, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 739, 740, 742, 743, 744, 745, 747, 749, 750, 752, 753, 754, 759, 762, 764, 777, 778, 781, 791, 798, 805, 811, 813, 814, 815, 816, 817, 818, 820, 824, 825, 826, 828, 829, 830, 833, 835, 836, 837, 838, 847, 848], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 414, 435, 445, 456, 480, 495, 496, 497, 498, 499, 509, 510, 511, 512, 515, 518, 519, 536, 537, 538, 540, 549, 558, 585, 615, 616, 617, 618, 620, 622, 623, 626, 629, 630, 632, 633, 634, 638, 645, 664, 680, 702, 703, 725, 726, 727, 730, 731, 732, 741, 742, 743, 744, 749, 751, 753, 754, 757, 759, 762, 764, 765, 777, 778, 779, 780, 781, 783, 798, 801, 807, 809, 813, 814, 815, 817, 818, 821, 822, 824, 825, 826, 828, 829, 833, 835, 848], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 500, 510, 511, 512, 540, 549, 585, 615, 616, 617, 618, 620, 629, 630, 633, 725, 726, 727, 731, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 435, 445, 512, 549, 585, 615, 616, 618, 620, 622, 623, 626, 638, 640, 641, 644, 671, 673, 674, 680, 702, 703, 759, 762, 763, 798, 813, 815, 826, 828, 829, 848, 849], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 631, 735, 736, 737, 738, 798, 801, 803, 804, 805, 808, 810, 811, 812, 813, 814, 817, 818, 819, 820, 821, 824, 825, 826, 827, 828, 831, 835, 836, 837, 839, 843, 847, 848, 849, 854, 859], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 445, 523, 616, 618, 620, 624, 668, 682, 777, 778, 798, 804, 805, 807, 813, 814, 817, 819, 822, 824, 826, 828, 831, 839, 840, 845, 847, 848, 849], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 542, 568, 615, 617, 620, 623, 627, 660, 665, 717, 778, 811, 821, 822, 825, 826, 829, 831, 835, 836, 839, 841, 843, 845], "had": [3, 811, 812, 824, 829, 833, 854, 855], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 615, 616, 798, 803, 804, 805, 809, 811, 813, 814, 817, 819, 821, 824, 825, 828, 833, 835, 838, 841, 844, 846, 847, 848, 854, 860], "postprocess": 3, "routin": [3, 812, 824, 825, 831, 839, 854], "feed": [3, 208, 617, 847, 854, 855], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 456, 457, 465, 521, 522, 615, 616, 618, 620, 629, 633, 686, 696, 727, 750, 752, 764, 798, 801, 803, 804, 805, 807, 808, 811, 812, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 840, 841, 844, 847, 848, 850, 852, 853, 854, 860, 861], "carefulli": [3, 273, 618, 777, 825, 852, 857], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 798, 804, 808, 812, 818, 825, 831, 836, 837, 838, 839, 844, 854, 860, 861], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 416, 417, 418, 419, 420, 423, 424, 426, 427, 428, 430, 431, 432, 433, 435, 439, 441, 442, 443, 444, 446, 447, 453, 455, 456, 457, 459, 460, 462, 463, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 523, 527, 528, 532, 533, 534, 536, 539, 540, 549, 559, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 770, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 821, 823, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845, 847, 848, 854, 861], "quickest": 3, "particular": [3, 26, 27, 263, 618, 763, 804, 805, 807, 809, 812, 813, 815, 822, 824, 825, 828, 829, 850, 854, 860], "hardwar": [3, 40, 97, 101, 798, 804, 831, 844, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860], "again": [3, 5, 20, 21, 29, 30, 31, 32, 623, 671, 805, 808, 809, 810, 811, 815, 817, 819, 824, 825, 828, 829, 831, 836, 838, 839, 844, 845, 859, 860], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 556, 620, 828, 843, 857], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 456, 464, 544, 556, 620, 622, 645, 798, 799, 801, 803, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 843, 844, 845, 847, 855, 860, 861], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 413, 455, 456, 458, 462, 467, 486, 499, 510, 516, 517, 518, 528, 532, 533, 564, 570, 578, 592, 618, 620, 622, 623, 625, 627, 628, 629, 630, 631, 633, 636, 640, 645, 646, 656, 658, 660, 664, 668, 672, 674, 675, 677, 679, 689, 693, 695, 697, 699, 716, 723, 725, 726, 727, 734, 735, 743, 744, 745, 749, 751, 762, 804, 809, 811, 813, 815, 823], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 461, 509, 534, 620, 625, 626, 698, 702, 703, 791, 805, 808, 809, 815, 816, 824, 828], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 77, 182, 183, 184, 185, 186, 357, 367, 588, 590, 591, 592, 593, 595, 596, 598, 602, 607, 616, 620, 621, 777, 795, 804, 805, 807, 809, 812, 814, 820, 825, 828, 831, 838, 839, 857], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 551, 552, 555, 566, 575, 589, 597, 620, 623, 759, 770, 780, 782, 798, 807, 811, 813, 825, 830, 831, 833, 838, 839, 846, 847, 848, 855, 860], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 413, 456, 463, 464, 465, 472, 510, 511, 617, 622, 623, 625, 626, 627, 631, 633, 635, 636, 637, 638, 640, 642, 644, 647, 648, 651, 663, 680, 686, 701, 702, 716, 735, 736, 737, 738, 743, 744, 749, 751, 778, 787, 791, 803, 804, 805, 807, 808, 810, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 833, 836, 839, 847, 848, 854], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 413, 455, 456, 458, 462, 467, 486, 499, 510, 511, 527, 528, 532, 533, 548, 570, 578, 601, 612, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 630, 631, 633, 636, 637, 645, 646, 656, 660, 668, 672, 674, 677, 699, 703, 716, 725, 726, 727, 734, 735, 743, 744, 745, 811, 813, 815, 825], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 413, 417, 423, 424, 456, 458, 462, 467, 486, 510, 578, 601, 616, 618, 620, 621, 622, 623, 625, 627, 631, 633, 636, 637, 639, 641, 643, 645, 656, 658, 660, 668, 675, 677, 679, 699, 716, 725, 726, 727, 735, 744, 745, 811, 815, 828], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 509, 615, 808, 810], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 520, 567, 590, 618, 620, 631, 735, 736, 737, 738, 803, 810, 811, 812, 813, 824, 825, 826, 828, 831, 833, 839, 851], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 519, 534, 547, 578, 612, 615, 618, 620, 623, 627, 629, 636, 661, 668, 712, 727], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 450, 451, 458, 460, 462, 463, 464, 471, 486, 516, 562, 567, 590, 615, 617, 620, 622, 625, 647, 688, 689, 690, 692, 694, 695, 697, 699, 792, 812, 813, 814, 824, 825, 831, 833, 839, 847, 854, 856, 857, 858], "temporari": [3, 5, 576, 598, 620, 792, 813, 830], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 369, 440, 622, 648, 798, 801, 804, 805, 807, 813, 819, 828, 829], "until": [3, 5, 792, 805, 824, 833, 839, 844, 847, 861], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 455, 481, 612, 617, 618, 623, 633, 677, 749, 751, 774, 782, 799, 806, 811, 812, 813, 819, 820, 821, 823, 824, 825, 826, 827, 828, 830, 831, 837, 851, 861], "o": [3, 5, 39, 40, 41, 42, 44, 559, 620, 622, 648, 798, 804, 806, 812, 833, 840], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 798, 799, 805, 840, 854, 856], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 800, 802, 804, 810, 852, 856, 858], "jit": [3, 6, 8, 26, 29, 833, 839, 847, 854], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 413, 419, 458, 462, 467, 486, 510, 528, 532, 533, 536, 547, 548, 573, 578, 595, 615, 616, 618, 620, 622, 623, 625, 627, 629, 630, 631, 633, 636, 646, 656, 659, 660, 661, 668, 674, 675, 693, 699, 704, 716, 725, 726, 733, 735, 743, 744, 745, 759, 804, 812, 815, 823, 857], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 437, 440, 480, 509, 532, 601, 602, 616, 618, 620, 621, 623, 625, 627, 633, 671, 672, 674, 700, 711, 750, 805, 816, 824, 836], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 421, 431, 465, 473, 475, 480, 484, 510, 511, 512, 532, 600, 615, 618, 620, 631, 633, 735, 743, 744, 749, 751, 762, 764, 765, 777, 798, 803, 813, 817, 821, 828, 833, 836, 837, 838, 854, 860], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 413, 445, 462, 510, 516, 533, 536, 558, 578, 579, 611, 616, 618, 620, 621, 622, 623, 625, 627, 629, 630, 633, 644, 646, 652, 656, 659, 660, 668, 670, 674, 699, 712, 725, 726, 727, 734, 744, 745, 762, 765, 798, 805, 813, 815, 836], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 444, 445, 631, 735, 737, 764, 774, 804, 805, 807, 815, 833], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 420, 425, 433, 434, 440, 462, 480, 616, 618, 622, 623, 625, 631, 633, 648, 657, 658, 670, 671, 673, 692, 696, 736, 738, 747, 778, 792, 801, 803, 804, 805, 808, 813, 815, 816, 819, 824, 825, 826, 828, 829, 831], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 618, 622, 648, 803, 804, 805, 813, 817, 819, 823, 824, 826, 828, 829, 831, 833, 847, 854, 855, 860], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 562, 563, 564, 567, 568, 571, 573, 575, 578, 579, 580, 581, 583, 585, 586, 587, 593, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 706, 708, 710, 711, 712, 714, 715, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 760, 762, 763, 764, 765, 770, 774, 777, 780, 787, 788, 794, 798, 801, 804, 805, 806, 807, 808, 809, 810, 812, 815, 816, 818, 824, 827, 832, 834, 835, 836, 837, 841, 843, 847, 849, 851, 852, 853, 854, 855, 860, 861], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 421, 445, 472, 488, 490, 516, 556, 618, 620, 623, 624, 633, 659, 668, 671, 682, 683, 684, 746, 747, 748, 749, 750, 751, 752, 762, 764, 777, 778, 781, 803, 816, 833, 844, 847], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 413, 462, 612, 618, 623, 629, 633, 640, 656, 663, 668, 675, 725, 726, 727, 744, 745, 749, 811, 813, 815], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 413, 419, 424, 462, 510, 618, 623, 627, 629, 632, 656, 664, 677, 715, 725, 726, 727, 742, 815], "006431100999861883": 3, "258": [3, 622, 637, 639], "104": [3, 65, 623, 633, 668, 745], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 812], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 441, 444, 447, 624, 682, 683, 684, 798, 813], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 464, 804, 828, 841, 854, 860], "itself": [3, 21, 31, 51, 92, 269, 522, 587, 618, 620, 627, 716, 792, 801, 804, 805, 807, 810, 811, 812, 813, 814, 817, 818, 819, 824, 825, 837, 839, 843, 847, 853, 854, 855, 860], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 514, 519, 600, 618, 620, 623, 658, 659, 759, 787, 788, 798, 804, 805, 810, 812, 813, 816, 824, 826, 833, 843, 844, 845, 848, 860, 861], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 769, 770, 775, 777, 778, 780, 782, 787, 788, 791, 792, 793, 794, 795, 798, 804, 805, 808, 811, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 847, 848, 849, 855], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 413, 455, 477, 532, 539, 540, 542, 564, 568, 578, 618, 620, 623, 629, 630, 633, 636, 637, 647, 656, 661, 664, 668, 675, 725, 733, 734, 743, 744, 745, 749, 751, 798, 812, 831, 835], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 844], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 760, 762, 763, 764, 766, 767, 768, 769, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 803, 804, 805, 807, 808, 810, 811, 812, 825, 827, 843, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 413, 417, 455, 510, 564, 615, 616, 618, 620, 623, 624, 627, 633, 656, 668, 672, 684, 710, 725, 726, 743, 744, 745, 817, 823], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 560, 620, 634, 755, 759, 774, 775, 776, 778, 779, 781, 783, 786, 787, 798, 800, 804, 808, 809, 810, 817, 821, 824, 825, 827, 828, 833, 834, 836, 838, 839, 845, 847, 849, 854, 855, 857], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 526, 544, 614, 620, 626, 627, 702, 703, 710, 791, 798, 801, 803, 804, 807, 808, 811, 813, 814, 815, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 847, 848, 849], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 760, 767, 768, 769, 774, 777, 778, 779, 780, 781, 782, 783, 786, 787, 791, 793, 796, 798, 803, 808, 809, 813, 817, 825, 829, 833, 835, 836, 837, 838, 848], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 622, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 782, 791, 798, 805, 808, 811, 817, 825, 826, 833, 835, 836, 837, 838, 848], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 798, 838, 848], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 615, 798, 836, 848], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 421, 429, 436, 437, 461, 618, 622, 626, 632, 648, 651, 702, 703, 741, 759, 778, 779, 780, 781, 782, 783, 798, 800, 804, 805, 806, 810, 818, 833, 836, 837, 838], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 565, 566, 567, 569, 570, 571, 572, 574, 575, 576, 578, 579, 581, 583, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 709, 710, 711, 715, 716, 717, 719, 720, 721, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 783, 786, 787, 790, 792, 798, 801, 804, 807, 808, 809, 811, 812, 813, 814, 815, 817, 818, 820, 821, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 847, 848, 849], "_build": [3, 5, 779, 780, 798], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 472, 559, 587, 615, 617, 620, 757, 759, 774, 775, 778, 779, 780, 787, 796, 798, 808, 813, 814, 817, 821, 824, 825, 831, 833, 837, 847, 848, 849], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 777, 778, 798, 803, 804, 805, 808, 809, 812, 813, 820, 829, 831, 836, 839, 848, 854, 855, 856, 860], "sequenti": [3, 5, 7, 24, 26, 27, 42, 798, 810, 811, 837, 848], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 622, 639, 778, 798], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 532, 533, 579, 607, 616, 618, 620, 621, 622, 623, 627, 633, 637, 639, 641, 643, 644, 665, 668, 678, 712, 716, 726, 745, 749, 798, 804, 813, 836, 837, 859], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 430, 432, 435, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 485, 486, 487, 491, 492, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 561, 563, 564, 568, 577, 578, 579, 580, 581, 583, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 765, 774, 777, 778, 787, 791, 792, 798, 801, 804, 805, 807, 809, 810, 811, 812, 813, 815, 817, 818, 820, 821, 823, 824, 825, 826, 828, 832, 833, 835, 836, 837, 838, 839, 847, 848, 849, 860, 861], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 488, 489, 490, 493, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 762, 778, 781, 798], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 493, 622, 635, 638, 639, 642, 643, 644, 778, 798], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 612, 774, 798, 826, 836, 837], "maxpool2d": [3, 5, 7, 40, 778, 798], "192": [3, 42, 762, 791], "384": [3, 77, 601, 621, 627, 704], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 778], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 413, 416, 419, 422, 423, 427, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 456, 458, 462, 463, 467, 468, 471, 472, 477, 478, 480, 481, 486, 487, 497, 499, 500, 502, 507, 509, 510, 511, 512, 514, 516, 518, 519, 525, 527, 528, 531, 532, 533, 539, 540, 547, 548, 549, 564, 578, 579, 580, 581, 583, 587, 601, 602, 603, 604, 605, 606, 607, 608, 609, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 653, 654, 655, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 704, 705, 715, 716, 722, 723, 724, 725, 726, 727, 729, 730, 731, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 762, 777, 798, 801, 804, 807, 809, 811, 812, 813, 815, 818, 823, 828, 831, 833, 835, 836, 837], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 798, 803, 847, 848], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 495, 622, 629, 645, 724, 778, 798], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 435, 472, 519, 536, 559, 612, 620, 622, 627, 648, 672, 711, 762, 764, 765, 777, 778, 798, 811, 816, 821, 822, 824, 825, 828, 831, 833, 836, 837, 838, 848, 852, 853, 854, 857], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 798, 816, 833, 836, 837], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 415, 417, 418, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 457, 459, 460, 462, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 479, 480, 482, 484, 485, 487, 488, 489, 490, 491, 492, 493, 494, 501, 502, 503, 504, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 568, 569, 570, 573, 576, 577, 578, 579, 580, 581, 583, 585, 586, 587, 599, 600, 602, 603, 604, 606, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 707, 710, 711, 712, 713, 714, 715, 716, 721, 722, 723, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 778, 781, 784, 787, 791, 796, 798, 801, 803, 806, 808, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 847, 848, 849], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 417, 432, 456, 462, 600, 620, 622, 623, 625, 638, 640, 644, 664, 680, 798, 824, 825, 828, 831, 833, 835, 838], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 536, 620, 624, 682, 798, 836, 844, 848], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 420, 480, 525, 537, 546, 549, 550, 567, 581, 615, 616, 617, 618, 620, 622, 623, 646, 657, 658, 659, 662, 664, 673, 680, 757, 763, 770, 782, 787, 788, 791, 798, 800, 801, 803, 804, 805, 807, 808, 810, 814, 815, 816, 818, 820, 821, 823, 824, 826, 828, 829, 831, 832, 833, 835, 836, 838, 840, 841, 843, 844, 845, 848, 851, 853, 854, 857, 859, 860, 861], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 812, 844], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 757, 759, 762, 763, 764, 765, 769, 770, 774, 777, 778, 779, 780, 784, 787, 791, 792, 793, 796, 798, 803, 804, 805, 806, 807, 808, 811, 814, 815, 816, 817, 820, 822, 824, 826, 828, 829, 831, 833, 835, 836, 847, 848, 849, 854, 855, 858], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 617, 618, 630, 631, 633, 734, 735, 736, 737, 738, 746, 747, 748, 750, 762, 798, 803, 804, 805, 822, 828, 834, 838, 847], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 617, 618, 623, 631, 633, 658, 659, 735, 736, 737, 738, 746, 747, 748, 750, 798, 803, 804, 807, 813, 838, 839, 843, 844, 845, 847, 850, 851, 852, 854, 858, 861], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 798, 848], "save": [4, 7, 40, 52, 69, 75, 380, 516, 576, 598, 617, 620, 634, 780, 804, 812, 819, 828, 839, 845, 853], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 601, 602, 605, 607, 608, 609, 617, 618, 621, 627, 715, 778, 798, 801, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 835, 836, 837, 839, 840, 841, 844, 845, 847, 848, 850, 851, 853, 854, 855, 860, 861], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 436, 634, 780, 798, 828, 839, 853, 860], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 847, 848], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 413, 436, 501, 569, 579, 591, 615, 616, 618, 620, 623, 625, 631, 633, 664, 688, 735, 736, 737, 738, 745, 760, 763, 764, 767, 768, 769, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 786, 787, 792, 793, 796, 798, 804, 805, 807, 811, 812, 813, 817, 820, 822, 823, 824, 826, 827, 828, 829, 830, 831, 833, 854, 859, 861], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 780], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 432, 445, 469, 611, 618, 621, 627, 634, 714, 715, 753, 754, 779, 780, 805, 811, 813, 821, 822, 854], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 414, 445, 475, 495, 496, 497, 498, 499, 615, 618, 629, 633, 724, 725, 726, 727, 750, 752, 778, 826, 828], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 556, 614, 616, 618, 620, 634, 753, 754, 757, 760, 763, 792, 798, 800, 801, 802, 806, 810, 813, 815, 817, 819, 822, 825, 827, 829, 839, 840, 845, 847, 848, 849, 854], "did": [4, 40, 803, 810, 838, 844, 860], "realli": [4, 38, 804, 811, 818, 839, 847, 859, 860], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 420, 442, 451, 452, 461, 462, 501, 502, 519, 615, 616, 618, 623, 625, 629, 632, 657, 692, 727, 740, 792, 798, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 844, 847, 848, 854, 859], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 425, 426, 427, 430, 432, 433, 434, 435, 436, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 455, 456, 457, 458, 460, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 563, 564, 565, 571, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 588, 593, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 763, 770, 774, 777, 778, 779, 780, 781, 791, 792, 807, 808, 809, 811, 813, 814, 815, 816, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 847, 848, 855, 858], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 536, 620, 622, 625, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 687, 700, 764, 778, 798], "longest": 4, "return_tensor": [4, 8, 26, 43, 847, 848], "pt": [4, 8, 26, 847], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 622, 637, 678, 798], "input_id": 4, "101": [4, 9, 41, 622, 623, 627, 646, 661, 710], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 725], "token_type_id": 4, "attention_mask": [4, 56, 79, 622, 648], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 517, 521, 524, 620, 631, 632, 633, 735, 736, 737, 738, 739, 742, 748, 759, 798, 809, 815, 817, 826, 828, 831, 836, 850, 852, 854, 860, 861], "no_grad": [4, 40, 847], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 418, 431, 435, 437, 439, 478, 482, 495, 496, 497, 498, 499, 502, 512, 524, 614, 615, 620, 622, 623, 627, 629, 630, 648, 651, 655, 663, 664, 670, 672, 673, 674, 677, 712, 725, 726, 727, 733, 798, 806, 807, 825, 826, 833, 847, 850, 854], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 823], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 623, 666, 669, 757, 759, 801, 818, 826], "005": [4, 7, 52, 75, 328, 344, 365, 441], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 623, 666, 757, 759, 801, 818, 826], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 435, 458, 467, 480, 486, 491, 492, 494, 512, 521, 524, 600, 615, 616, 618, 620, 623, 624, 625, 629, 630, 631, 632, 633, 656, 665, 666, 669, 671, 677, 682, 685, 687, 692, 694, 700, 727, 733, 735, 736, 737, 738, 739, 742, 747, 749, 750, 751, 752, 770, 777, 778, 810, 811, 813, 815, 817, 826, 828], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 369, 375, 425, 434, 438, 440, 496, 531, 535, 616, 618, 620, 622, 627, 629, 647, 714, 717, 725, 726, 727, 757, 791, 792, 798, 803, 804, 805, 807, 809, 813, 814, 817, 821, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 855], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 449, 522, 537, 538, 587, 616, 617, 620, 627, 710, 711, 712, 714, 715, 716, 757, 759, 784, 787, 793, 794, 796, 814, 817, 824, 825, 833, 847], "finish": [4, 15, 26, 27, 38, 41, 798, 799, 803, 804, 806], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 616, 623, 633, 675, 726, 727, 751], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 419, 510, 618, 629, 630, 726, 727, 734], "procedur": [4, 810, 812, 815, 826], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 477, 540, 548, 564, 578, 600, 618, 620, 623, 627, 633, 668, 707, 725, 743, 745, 749, 792, 812], "big": [4, 777, 799, 839, 854], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 798, 813, 814, 817, 820, 824, 829, 833, 838, 848, 849], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 627, 717, 798, 804, 807, 810, 812, 819, 826, 836, 847, 855], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 798], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 618, 625, 696, 804, 824], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 425, 434, 440, 517, 518, 622, 633, 647, 748, 775, 778, 779, 780, 782, 783, 798, 805, 809, 813, 814, 818, 826, 828, 833, 844, 847, 848, 849, 854, 860, 861], "fast": [4, 21, 31, 52, 368, 390, 854], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 414, 418, 421, 425, 429, 434, 436, 438, 440, 441, 443, 444, 445, 446, 455, 461, 466, 472, 477, 479, 480, 481, 482, 485, 488, 490, 495, 496, 498, 499, 505, 507, 510, 511, 512, 515, 516, 517, 518, 519, 525, 527, 528, 529, 531, 536, 539, 540, 542, 547, 548, 549, 556, 563, 564, 568, 569, 570, 573, 581, 586, 591, 592, 595, 598, 599, 600, 601, 602, 603, 607, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 648, 651, 655, 658, 659, 664, 665, 666, 669, 670, 671, 672, 673, 674, 677, 680, 685, 686, 687, 691, 692, 700, 701, 702, 706, 708, 709, 710, 711, 712, 717, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 757, 759, 762, 763, 764, 765, 767, 769, 774, 777, 778, 779, 780, 781, 782, 801, 804, 805, 807, 810, 811, 813, 814, 815, 816, 817, 818, 820, 821, 824, 825, 828, 830, 831, 833, 835, 839, 847, 854, 855], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 798], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 436, 617, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 804, 810, 814, 817, 818, 821, 824, 828, 829, 833, 848, 852, 860, 861], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 436, 745, 787, 791, 798, 803, 804, 805, 807, 809, 812, 813, 814, 816, 817, 818, 819, 820, 821, 825, 826, 828, 829, 833, 835, 837, 838], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 427, 488, 489, 490, 608, 612, 617, 621, 622, 628, 645, 648, 651, 723, 762, 764, 765, 777, 778, 782, 792, 854, 856], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 422, 440, 493, 508, 532, 534, 578, 601, 602, 603, 605, 607, 608, 609, 620, 621, 622, 627, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 710, 798, 806, 823, 833, 836, 837, 848], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 493, 532, 534, 620, 622, 627, 635, 638, 639, 640, 641, 642, 643, 644, 707, 711, 713, 716, 721, 806, 810, 811, 812, 848, 850], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 413, 414, 421, 424, 434, 440, 442, 456, 458, 470, 480, 482, 489, 490, 493, 497, 502, 514, 515, 516, 517, 518, 519, 558, 563, 615, 617, 620, 622, 623, 625, 629, 630, 634, 648, 651, 653, 656, 660, 664, 668, 670, 673, 679, 688, 693, 694, 695, 724, 730, 733, 753, 754, 762, 764, 765, 778, 792, 798, 824, 826, 828, 831, 836, 847, 849], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 421, 423, 424, 425, 426, 428, 431, 433, 434, 437, 438, 440, 444, 448, 449, 453, 457, 458, 461, 462, 465, 467, 470, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 484, 485, 486, 489, 491, 492, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 522, 532, 533, 534, 536, 539, 540, 543, 544, 558, 561, 563, 578, 579, 580, 584, 600, 601, 602, 603, 604, 607, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 653, 655, 656, 664, 665, 670, 675, 677, 678, 679, 680, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 707, 710, 711, 713, 715, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 733, 735, 737, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 774, 777, 778, 791, 792, 811, 813, 814, 815, 817, 820, 821, 824, 826, 828, 829, 831, 833, 838, 847], "assert": [5, 9, 41, 43, 45, 69, 525, 620, 770, 801, 806, 807, 818, 821, 824, 825, 826, 828, 829, 835, 836], "too": [5, 52, 75, 218, 235, 242, 268, 371, 480, 618, 777, 803, 804, 805, 807, 813, 817, 829, 839], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 429, 445, 488, 489, 490, 618, 623, 628, 666, 669, 671, 723, 777, 781, 798, 804, 812, 815, 821, 826, 831, 833, 837, 839, 847, 848, 855], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 450, 451, 458, 460, 462, 463, 464, 471, 475, 486, 612, 617, 688, 689, 690, 692, 694, 695, 697, 699, 764, 774, 778, 798, 799, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 815, 816, 818, 820, 822, 824, 825, 826, 828, 829, 831, 832, 833, 835, 837, 838, 839, 840, 844, 847, 854, 860], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 519, 618, 831], "bicub": [5, 52, 75, 368, 403, 831], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 419, 421, 432, 435, 456, 466, 471, 472, 483, 501, 510, 511, 528, 532, 539, 559, 564, 601, 602, 607, 608, 609, 610, 612, 615, 616, 618, 620, 621, 622, 623, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 642, 644, 645, 646, 648, 651, 652, 654, 658, 659, 661, 662, 663, 664, 665, 666, 667, 669, 671, 677, 679, 680, 687, 688, 689, 690, 692, 693, 700, 723, 725, 726, 727, 730, 731, 732, 733, 735, 736, 737, 738, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 777, 778, 782, 808, 811, 813, 814, 815, 820, 822, 823, 826, 833, 836, 837, 845, 853], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 502, 510, 511, 615, 616, 630, 632, 633, 725, 730, 731, 732, 741, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "enumer": [5, 40, 42, 767, 798], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 433, 434, 440, 450, 451, 452, 465, 473, 475, 484, 600, 620, 623, 630, 670, 673, 733, 811, 821, 828], "newaxi": [5, 613], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 415, 431, 433, 435, 508, 622, 623, 635, 637, 639, 641, 642, 643, 663, 667, 669, 675, 764, 778, 798, 818, 824, 835, 838, 848], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 618, 644, 798, 848], "car": 5, "full_img": 5, "from_numpi": [5, 836], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 501, 502, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 559, 563, 564, 565, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 588, 593, 594, 596, 597, 599, 602, 603, 605, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 714, 715, 716, 717, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 774, 775, 778, 779, 780, 782, 784, 787, 791, 792, 793, 796, 798, 801, 804, 807, 809, 812, 813, 814, 815, 817, 818, 824, 825, 826, 828, 830, 831, 833, 836, 837, 838, 847, 848], "permut": [5, 7, 40, 59, 82, 97, 378, 501, 625, 690, 697, 848], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 495, 496, 498, 499, 615, 617, 623, 629, 662, 724, 725, 726, 727, 759, 777, 778, 779, 780, 781, 782, 783, 798, 801, 804, 805, 810, 813, 814, 818, 825, 828, 839, 852, 854, 857, 859], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 414, 421, 425, 434, 440, 445, 488, 490, 496, 516, 519, 549, 565, 573, 579, 615, 616, 618, 620, 622, 623, 624, 625, 627, 629, 630, 633, 635, 648, 666, 671, 682, 683, 684, 692, 715, 716, 725, 726, 727, 730, 731, 733, 734, 746, 748, 750, 752, 762, 765, 777, 778, 779, 780, 781, 787, 799, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 838, 839, 840, 843, 844, 847, 848, 852, 854, 857, 858, 859, 860], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 775, 777, 778, 780, 782, 798, 804, 809, 816, 823, 828, 829, 831, 838, 839, 847, 854, 855], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 429, 444, 572, 594, 620, 623, 666, 798, 804, 805, 811, 821, 822, 824, 828, 830, 833, 836, 839, 848, 854, 856, 857], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 434, 477, 515, 516, 585, 615, 620, 787, 791, 803, 808, 813, 814, 817, 820, 824, 825, 826, 829, 831, 833, 835, 838, 841], "isinst": [5, 9, 24, 26, 27, 817, 825, 828, 829, 837, 838], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 423, 426, 434, 440, 519, 615, 623, 658, 678, 798, 811, 812, 817, 824, 825, 828, 835, 838, 847], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 616, 762, 763, 813, 828], "elif": [5, 6, 812, 817, 824, 825, 826], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 414, 421, 425, 428, 431, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 467, 471, 475, 478, 480, 481, 482, 486, 488, 490, 491, 492, 493, 494, 496, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 563, 564, 568, 577, 578, 579, 581, 583, 585, 586, 599, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 645, 646, 647, 648, 651, 652, 653, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 670, 671, 672, 673, 677, 678, 680, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 764, 774, 778, 781, 782, 791, 792, 796, 813, 815, 817, 824, 825, 828, 829, 831, 833, 838, 847, 848], "argmax": [5, 41, 42, 43, 62, 85, 371, 477, 630, 798, 825, 847], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 519, 622, 648, 831, 854], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 423, 425, 431, 433, 434, 440, 455, 465, 470, 472, 473, 475, 477, 480, 481, 484, 565, 566, 567, 571, 572, 574, 575, 588, 589, 593, 594, 596, 597, 617, 618, 620, 623, 670, 770, 778, 779, 780, 795, 804, 805, 806, 811, 814, 815, 818, 831, 839, 854, 857], "bilinear": [5, 52, 75, 368, 403, 831], "torch_mask": 5, "squeez": [5, 40, 59, 82, 625, 854], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 620, 798, 818, 826, 836], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 413, 616, 622, 625, 635, 636, 637, 638, 640, 642, 644, 692, 777, 798, 804, 805, 806, 809, 812, 813, 815, 816, 818, 819, 820, 828, 845, 854, 858], "img_tf": 5, "math": [5, 43, 93, 285, 618, 813, 824, 825, 826, 838, 852], "ve": [5, 9, 15, 24, 26, 61, 84, 629, 724, 803, 804, 805, 818, 828, 831, 832, 835, 841], "lot": [5, 812, 813, 822, 828, 839, 844, 845, 853], "far": [5, 26, 27, 627, 704, 715, 792, 814, 815, 834, 859, 860], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 442, 532, 536, 615, 618, 620, 831, 844], "del": [5, 812], "empty_cach": 5, "permute_dim": [5, 59, 82, 625, 818], "usr": [5, 40, 41, 42, 45, 804], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 493, 544, 620, 799, 804, 807, 810, 818, 821, 826, 828], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 798, 804, 805], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 814, 825, 830], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 425, 434, 440, 448, 456, 472, 477, 495, 496, 497, 498, 499, 567, 583, 600, 611, 615, 618, 620, 621, 629, 668, 724, 725, 726, 727, 729, 759, 770, 775, 777, 778, 779, 780, 781, 782, 783, 799, 804, 805, 808, 809, 810, 812, 813, 814, 817, 821, 822, 824, 825, 826, 828, 831, 833, 834, 837, 840, 841, 844, 847, 848, 849, 854, 855, 860], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 615, 625, 694, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 820, 821, 822, 824, 825, 826, 828, 831, 833, 835, 836, 839, 843, 844, 845, 850, 854, 857, 860, 861], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 615, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 804, 805, 817, 854], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 429, 567, 618, 620, 623, 670, 673, 764, 812, 813, 815, 827, 829, 839, 844, 845], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 839, 847, 857], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 434, 449, 502, 510, 511, 532, 533, 534, 547, 548, 549, 565, 575, 612, 615, 617, 618, 620, 622, 623, 626, 627, 633, 634, 645, 647, 673, 675, 680, 701, 702, 703, 711, 712, 743, 744, 753, 754, 757, 774, 778, 792, 807, 808, 809, 811, 813, 814, 815, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 836, 839, 845, 847, 848, 851, 854, 855, 856, 857, 858, 859, 861], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 523, 525, 546, 549, 550, 567, 568, 620, 627, 711, 712, 716, 721, 722, 769, 770, 775, 782, 806, 808, 815, 818, 820, 822, 825, 831, 835, 837], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 413, 462, 533, 548, 601, 603, 612, 615, 618, 620, 621, 622, 623, 627, 629, 636, 645, 646, 656, 660, 712, 725, 726, 727, 729, 811], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 425, 426, 434, 437, 439, 440, 493, 601, 602, 607, 608, 617, 621, 622, 623, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 652, 762, 764, 765, 777, 778, 782, 817, 844], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 532, 542, 616, 618, 620, 622, 623, 637, 639, 644, 668, 798], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 798], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 435, 466, 509, 521, 524, 616, 617, 618, 620, 623, 630, 632, 653, 660, 663, 668, 672, 675, 676, 679, 734, 741, 759, 784, 798, 807, 813, 815, 817, 820, 824, 825, 848, 849], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 423, 435, 466, 509, 521, 524, 616, 617, 618, 620, 623, 630, 653, 660, 663, 668, 672, 675, 676, 679, 734, 759, 784, 807, 813, 815, 817, 820, 824, 825], "x3": [5, 49, 53, 148, 521, 616, 620], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 778, 798, 837, 848], "batchnorm2d": [5, 7, 781], "downscal": [5, 53, 76, 527, 528, 549, 620], "maxpool": [5, 7], "doubl": 5, "conv": [5, 622, 778, 831], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 831], "align_corn": [5, 52, 75, 368, 403, 831], "conv2dtranspos": [5, 778], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 413, 432, 440, 552, 616, 620, 622, 625, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 688, 696, 753, 754, 762, 763, 778, 791, 804, 809, 813, 815, 819, 823, 826, 828, 847, 855], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 472, 625, 687, 700], "constant_pad": [5, 59, 82, 625], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 536, 617, 620, 625, 700, 826, 831, 833, 847], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 525, 549, 581, 615, 616, 617, 618, 620, 623, 626, 673, 702, 703, 759, 770, 775, 787, 798, 801, 804, 805, 807, 808, 809, 810, 812, 813, 814, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 839, 841, 847, 848, 849, 860], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 499, 617, 798, 799, 803, 815, 819, 829, 831, 845, 848], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 825], "checkpoint": [6, 7, 43, 839], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 436, 616, 625, 633, 685, 750, 752, 759, 762, 798, 801, 803, 805, 806, 811, 812, 813, 814, 817, 818, 820, 821, 824, 826, 828, 848], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 515, 516, 517, 518, 519, 556, 616, 618, 620, 623, 630, 663, 664, 666, 669, 730, 828, 833, 839, 843, 854], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 567, 587, 601, 602, 607, 617, 620, 621, 622, 623, 626, 633, 645, 663, 701, 702, 703, 750, 752, 770, 781, 782, 804, 811, 813, 814, 817, 821, 822, 824, 825, 826, 827, 828, 831, 839, 847, 854, 855, 860], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 618, 630, 730, 798, 803, 804, 805, 817, 822, 828], "get_scal": 6, "cfg": [6, 819], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 456, 457, 478, 480, 482, 488, 490, 491, 492, 494, 496, 502, 509, 510, 511, 512, 521, 522, 524, 525, 527, 528, 529, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 620, 622, 626, 627, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 707, 713, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 762, 763, 769, 775, 778, 782, 798, 810, 811, 812, 821, 824, 825, 826, 828, 836, 848, 854, 857, 861], "input_shap": [6, 13, 24, 26, 27, 798], "block": [6, 26, 27, 30, 31, 32, 33, 369, 427, 798, 805, 811, 813, 817, 821, 828, 832, 834, 838, 839, 841, 848, 859, 861], "url": [6, 8, 23, 26, 27, 40, 43, 798, 848], "cocodataset": [6, 8, 23, 26, 27, 43, 798, 848], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 601, 602, 615, 616, 618, 621, 623, 625, 633, 671, 672, 700, 750, 798, 816, 848], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 617, 798, 848, 858], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 798, 807, 810, 819, 821, 828, 847], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 536, 614, 615, 620, 622, 647, 648, 792, 803, 805, 807, 808, 810, 812, 813, 815, 816, 821, 823, 824, 825, 827, 831, 832, 836, 847, 848, 850, 860], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 764, 792, 798, 803, 805, 806, 811, 812, 815, 816, 819, 820, 822, 823, 824, 825, 826, 828, 832, 833, 835, 836, 837, 838, 839, 844, 845, 850, 855, 856, 859], "improv": [6, 8, 9, 26, 29, 805, 813, 820, 821, 831, 833, 841, 845, 847, 852, 854, 856, 857], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 431, 433, 452, 472, 475, 615, 618, 623, 625, 631, 633, 671, 673, 677, 685, 696, 735, 736, 737, 738, 746, 748, 749, 751, 763, 775, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 851, 852, 855, 860, 861], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 618, 770, 798, 804, 825, 829, 833, 839, 841, 848, 850, 853, 854, 855, 858, 861], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 434, 465, 471, 473, 476, 510, 511, 515, 516, 517, 518, 519, 618, 623, 625, 633, 664, 692, 693, 744, 759, 764, 787, 788, 798, 800, 803, 804, 805, 809, 810, 812, 813, 818, 822, 824, 825, 826, 833, 845, 847, 848, 854, 855], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 456, 480, 485, 615, 618, 623, 666, 669, 672, 680, 787, 824, 825, 831, 836, 838, 840, 848], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 433, 615, 623, 633, 666, 745, 770, 778, 798, 801, 804, 805, 807, 809, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 828, 833, 835, 836, 839, 844, 845, 848, 854, 855, 860], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 798, 838, 848], "rng_kei": [6, 8, 26, 798, 848], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 425, 434, 440, 445, 495, 496, 497, 498, 499, 622, 645, 724, 725, 726, 727, 728, 729, 762, 764, 777, 791, 792, 798, 803, 814, 826, 828, 829, 838, 848, 849, 854], "prngkei": [6, 8, 19, 20, 26, 27, 40, 798, 838, 848], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 601, 605, 612, 618, 621, 623, 628, 629, 633, 664, 668, 723, 724, 725, 726, 727, 728, 743, 745, 798, 833, 838, 848], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 522, 539, 540, 620, 784, 798, 838, 848], "init": [6, 8, 26, 40, 42, 52, 75, 369, 425, 434, 440, 798, 807, 838, 848], "rng": [6, 8, 26, 40, 798, 838, 848], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 616, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 668, 669, 670, 671, 673, 677, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 710, 713, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 764, 765, 774, 778, 781, 798, 803, 804, 805, 808, 811, 813, 814, 815, 816, 817, 819, 820, 821, 822, 824, 825, 828, 829, 831, 835, 836, 837, 838, 839, 847, 848, 855], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 466, 472, 480, 483, 495, 509, 512, 539, 543, 545, 547, 556, 586, 610, 611, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 778, 798, 801, 803, 805, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 824, 825, 828, 831, 833, 835, 836, 837, 838, 839, 847, 848, 854, 857, 859, 860, 861], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 444, 445, 523, 609, 620, 621, 626, 701, 702, 703, 777, 792, 798, 813, 824, 831, 834, 836, 838, 845, 848, 852, 853, 854, 855, 856, 857, 858, 861], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 420, 421, 426, 433, 434, 438, 440, 450, 451, 452, 456, 457, 458, 463, 464, 466, 467, 469, 471, 472, 475, 477, 485, 486, 493, 495, 502, 507, 508, 509, 510, 511, 512, 521, 524, 532, 539, 540, 556, 580, 600, 602, 603, 605, 607, 608, 609, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 652, 653, 654, 657, 658, 659, 663, 665, 666, 667, 669, 671, 672, 673, 678, 687, 691, 693, 694, 696, 698, 700, 710, 717, 724, 733, 735, 736, 738, 744, 745, 752, 762, 764, 778, 781, 782, 783, 792, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 838, 839, 843, 844, 845, 847, 848, 850, 851, 855, 857, 860], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 607, 612, 616, 621, 727, 757, 759, 828, 836], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 420, 425, 426, 428, 441, 452, 463, 464, 478, 495, 496, 497, 498, 499, 615, 623, 627, 629, 652, 654, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 712, 725, 726, 727, 798, 804, 805, 806, 812, 833], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 433, 479, 622, 636, 638, 639, 640, 641, 644, 648, 778, 805, 812, 822, 825, 836], "loop": [6, 8, 9, 19, 34, 67, 90, 117, 120, 614, 626, 701, 702, 703, 798, 809, 839, 847], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 434, 440, 477, 540, 548, 564, 615, 618, 620, 623, 627, 661, 710, 798, 812, 813, 828, 836, 837, 838, 839, 844, 845, 847], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 445, 618, 726, 727, 752, 757, 762, 819], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 427, 450, 451, 452, 696, 803, 805, 807, 808, 811, 812, 817, 819, 821, 823, 824, 825, 829, 831, 833, 835, 844, 854], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 438, 623, 673, 812, 843, 852], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 618, 798, 804, 807, 808, 812, 814, 815, 817, 825, 828, 831, 834, 835, 836, 837, 845, 848, 857], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 472, 509, 618, 804, 805, 807, 809, 812, 813, 814, 816, 820, 821, 824, 825, 826, 831, 835, 836, 837, 838, 839, 844, 845, 860], "better": [6, 9, 29, 38, 44, 45, 803, 806, 825, 826, 829, 831, 832, 835, 836, 837, 845, 857], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 472, 512, 623, 625, 678, 687, 700, 764, 813, 817, 825, 829, 831, 843, 847, 854], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 587, 614, 617, 620, 804, 805, 810, 811, 812, 813, 814, 815, 817, 821, 822, 824, 828, 831, 833, 835, 838, 839, 841, 847, 850, 854, 855, 856, 857, 858, 860], "train2017": [6, 8, 23, 26, 27, 798, 848], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 622, 623, 648, 673], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 445, 488, 489, 490, 569, 570, 578, 591, 592, 601, 602, 607, 609, 616, 620, 621, 623, 624, 628, 673, 682, 683, 684, 723, 757, 759, 779, 781, 782, 798, 801, 811, 818, 821, 824, 826, 837, 838], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 444, 618, 791, 804, 805, 808, 828, 835, 836, 837, 855], "pretti": [6, 8, 26, 27, 40, 801, 818, 836, 860], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 777, 803, 804, 805, 808, 811, 813, 821, 824, 825, 826, 829, 830, 831, 833, 835, 836, 844, 852, 854, 860, 861], "achiev": [6, 8, 9, 26, 798, 812, 813, 821, 822, 828, 831, 836, 838, 841], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 449, 512, 618, 623, 666, 669, 681, 759, 805, 813, 821, 822, 825, 826, 828, 839], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 375, 495, 496, 497, 498, 499, 600, 615, 617, 618, 620, 629, 724, 725, 726, 727, 729, 787, 791, 792, 802, 804, 805, 807, 810, 811, 812, 817, 818, 825, 827, 828, 833, 835, 836, 839, 841, 842, 843, 844, 847, 851, 854, 855, 856, 860, 861], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 578, 579, 601, 602, 607, 615, 618, 620, 621, 624, 628, 629, 682, 723, 726, 727, 826], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 510, 532, 533, 548, 601, 618, 620, 621, 622, 623, 633, 646, 668, 727, 745, 791], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 536, 579, 618, 620, 623, 624, 659, 670, 682, 762, 819, 828], "resolv": [7, 40, 42, 52, 65, 242, 380, 510, 511, 618, 625, 633, 688, 743, 744, 749, 751, 805, 810, 813, 819, 833], "185": [7, 40, 68], "199": [7, 40, 221, 618], "110": [7, 40], "133": [7, 40, 56, 528, 620, 646], "111": [7, 40, 627, 722], "108": [7, 9, 21, 22, 23, 24, 40, 622, 633, 646, 745], "connect": [7, 40, 778, 798, 800, 804, 810, 827, 837, 838, 844, 852], "443": [7, 40, 280, 618], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 493, 805, 812, 813], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 540, 564, 618, 620, 791, 836], "ok": [7, 40, 804], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 414, 426, 433, 472, 481, 497, 502, 600, 615, 620, 622, 623, 624, 625, 631, 648, 673, 674, 682, 692, 735, 762, 778, 828, 836], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 617, 618], "mb": [7, 40, 42, 45, 812], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 536, 578, 579, 601, 602, 607, 615, 618, 620, 621, 623, 626, 629, 659, 670, 702, 703, 726, 727, 762, 809, 838], "109": [7, 40, 57, 623, 660], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 413, 778, 784], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 413, 448, 620, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778, 824, 829, 854], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 493, 509, 559, 620, 622, 628, 635, 636, 637, 638, 639, 640, 641, 642, 643, 646, 647, 648, 723, 778, 821, 828, 833, 837], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 421, 445, 488, 489, 490, 616, 623, 628, 666, 669, 723, 774, 781], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 488, 489, 490, 547, 569, 591, 601, 602, 607, 615, 618, 620, 621, 623, 628, 664, 723, 757, 762, 777, 781, 826, 828], "momentum": [7, 40, 52, 75, 374, 488, 490, 781, 844], "affin": [7, 781], "track_running_stat": [7, 781], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 413, 472, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 778], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 622, 650, 778, 798, 848], "fc": [7, 13, 40, 798, 837, 848], "in_featur": [7, 56, 79, 622, 646, 828], "out_featur": [7, 56, 79, 622, 646, 828], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 516, 532, 533, 616, 618, 620, 622, 623, 629, 646, 665, 726, 727, 814], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 618, 800, 803, 804, 805, 810, 818, 825, 836], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 526, 617, 620, 787, 819, 821, 824, 828], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 510, 528, 618, 620, 622, 623, 646, 660, 726], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 601, 615, 618, 621, 622, 623, 627, 633, 637, 639, 641, 643, 646, 668, 704, 726, 745, 815], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 434, 450, 451, 452, 463, 464, 483, 516, 549, 610, 620, 621, 625, 689, 762, 827, 828, 838, 839, 848], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 432, 458, 467, 486, 493, 502, 521, 528, 559, 601, 602, 605, 607, 608, 609, 610, 615, 618, 620, 621, 622, 623, 625, 628, 630, 633, 634, 637, 638, 639, 640, 652, 661, 663, 664, 677, 685, 688, 693, 694, 723, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 792, 798, 803, 805, 808, 809, 811, 815, 817, 819, 821, 824, 825, 826, 828, 831, 833, 839, 845, 847, 852, 853, 854, 861], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 421, 616, 623, 666, 669, 798, 804, 807, 821, 841, 844, 852, 854, 856, 857, 858, 859, 860], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 444, 445, 509, 602, 605, 607, 608, 609, 621, 623, 625, 632, 656, 666, 669, 677, 689, 693, 739, 742, 757, 759, 805, 812, 826, 831, 854, 856], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 622, 648, 778, 798, 800, 803, 804, 805, 808, 809, 810, 828, 837, 839, 843, 844, 845, 848, 850, 852, 854, 857, 861], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 420, 618, 623, 633, 657, 658, 745, 779, 780, 807, 808, 812, 813, 819, 824, 833, 843, 855], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 488, 489, 490, 578, 579, 618, 620, 622, 623, 625, 648, 658, 659, 688, 778, 783, 798, 801, 802, 803, 804, 805, 807, 808, 810, 811, 812, 813, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 837, 839, 844, 847, 853, 854], "home": [7, 8, 21, 22, 23, 24, 812], "workspac": [7, 8, 21, 22, 23, 24, 804, 818], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 601, 605, 609, 612, 621, 623, 629, 660, 726, 727], "builtin": [7, 804, 835, 837], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 414, 449, 472, 522, 526, 531, 533, 537, 538, 559, 587, 600, 604, 606, 611, 614, 616, 617, 620, 621, 626, 627, 701, 702, 703, 710, 711, 712, 714, 715, 716, 717, 757, 760, 770, 782, 793, 811, 817, 823, 825, 833, 846, 847, 848, 849], "track": [7, 17, 26, 27, 39, 40, 544, 620, 804, 805, 807, 823, 824, 847, 854], "properli": [7, 804, 806, 817, 819, 825, 828], "might": [7, 32, 53, 93, 174, 531, 616, 620, 801, 803, 804, 805, 812, 813, 815, 818, 819, 822, 825, 828, 829, 831, 833, 835, 836, 841], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 444, 445, 618, 623, 674, 757, 817], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 618, 803, 804, 805, 807, 810, 812, 813, 815, 817, 819, 820, 825, 826, 828, 829, 830, 833, 835, 839], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 605, 618, 621, 726], "8m": 7, "8mb": 7, "bottleneck": [7, 843], "conv3": 7, "bn3": 7, "2048": [7, 579, 620], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 369, 420, 436, 581, 614, 615, 616, 618, 620, 623, 630, 632, 657, 658, 670, 671, 672, 673, 734, 739, 742, 752, 798, 800, 801, 803, 804, 805, 810, 813, 814, 816, 818, 822, 824, 825, 826, 827, 828, 831, 833, 839, 840, 844, 847, 852, 854, 855], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 803, 804, 818, 839, 840, 847, 848, 849], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 511, 615, 798, 799, 802, 803, 806, 815, 816, 819, 820, 828, 833, 836, 837, 847, 848, 849], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 472, 567, 618, 620, 778, 779, 780, 791, 798, 804, 805, 806, 808, 809, 811, 812, 813, 814, 817, 822, 823, 824, 825, 828, 830, 831, 832, 833, 839, 840, 843, 844, 852, 854, 860, 861], "broken": [8, 21, 22, 23, 24, 850, 854], "permiss": [8, 21, 22, 23, 24, 804, 812], "conflict": [8, 21, 22, 23, 24, 32, 804, 805, 812, 825, 836], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 612, 618, 802, 805, 806, 807, 808, 811, 813, 814, 816, 817, 820, 821, 822, 824, 825, 828, 829, 835], "system": [8, 21, 22, 23, 24, 42, 369, 435, 623, 672, 762, 798, 804, 805, 809, 812, 813, 839, 848, 852, 854, 857, 859, 861], "manag": [8, 17, 21, 22, 23, 24, 26, 567, 590, 620, 798, 799, 809, 813, 814, 824, 827, 839, 845, 856, 858], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 442, 618, 633, 747, 750, 800, 804, 809, 810, 819, 822, 823, 847], "virtual": [8, 21, 22, 23, 24, 805, 825, 844, 857, 858], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 509, 512, 617, 618, 623, 666, 762, 803, 804, 805, 807, 810, 812, 813, 815, 816, 817, 820, 821, 822, 824, 825, 826, 828, 831, 833, 835, 836, 839, 847, 848, 849, 852, 854, 860, 861], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 804, 812], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 798], "hug": [8, 26, 847], "face": [8, 26, 799, 804, 807, 818, 819, 823, 831, 833, 847, 854, 860], "arch_nam": [8, 26], "microsoft": [8, 26, 844, 847, 848, 854, 859, 861], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 419, 427, 477, 534, 540, 547, 548, 564, 578, 618, 620, 623, 627, 630, 633, 661, 668, 679, 705, 707, 733, 745, 762, 765, 823, 835, 847, 848], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 413, 455, 510, 516, 615, 618, 622, 623, 627, 630, 641, 643, 656, 660, 664, 672, 674, 675, 705, 712, 716, 725, 726, 727, 734, 798, 812, 828, 833], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 423, 426, 432, 445, 480, 495, 496, 497, 498, 499, 510, 511, 520, 613, 615, 616, 617, 618, 622, 623, 625, 627, 629, 631, 632, 633, 648, 653, 658, 659, 663, 664, 666, 669, 672, 673, 674, 677, 680, 688, 696, 707, 711, 712, 713, 716, 721, 722, 725, 726, 727, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 778, 791, 792, 798, 799, 801, 803, 804, 805, 806, 807, 809, 811, 813, 817, 818, 823, 825, 828, 833, 836, 839, 840, 841, 844, 845, 847, 850], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 421, 581, 615, 617, 620, 757, 770, 787, 798, 801, 802, 803, 804, 805, 807, 812, 813, 814, 818, 820, 824, 825, 826, 828, 829, 831, 833, 838, 839, 841, 844, 845, 848, 849, 852, 855, 857, 858, 860, 861], "xla": [8, 825, 839, 841, 854], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 818], "9342": 8, "unabl": [8, 805, 831], "regist": [8, 780, 805, 840, 847], "cudnn": 8, "factori": [8, 52, 370, 444, 445, 792], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 804, 830, 839], "plugin": [8, 804], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 479, 532, 533, 534, 617, 618, 620, 629, 724, 791, 792, 803, 805, 807, 809, 811, 812, 813, 814, 816, 817, 820, 821, 824, 828, 833, 835, 839, 840, 847, 854, 861], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 510, 616, 618, 623, 665, 762, 815], "trt": 8, "could": [8, 26, 27, 32, 63, 631, 735, 736, 737, 738, 803, 804, 805, 807, 812, 813, 815, 822, 824, 825, 826, 828, 833, 835, 836, 837, 844, 845, 854, 859, 860], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 623, 627, 631, 666, 706, 735, 736, 737, 738, 791, 792, 798, 799, 800, 802, 803, 804, 805, 807, 810, 812, 818, 823, 828, 831, 833, 836, 840, 841, 843, 847], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 420, 444, 445, 515, 516, 520, 549, 615, 618, 620, 623, 625, 657, 694, 757, 792, 801, 803, 805, 806, 809, 812, 813, 815, 816, 818, 819, 820, 821, 824, 825, 826, 828, 831, 833, 835, 836, 839, 841, 844, 847, 850, 854, 855, 861], "placement": [8, 803], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 421, 425, 434, 509, 612, 615, 618, 623, 631, 655, 666, 735, 736, 737, 738, 764, 777, 808, 812, 813, 821, 823, 829, 831, 834, 835, 836, 843, 844, 847, 851, 855, 859, 861], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 456, 480, 496, 515, 516, 531, 549, 566, 581, 587, 616, 620, 623, 625, 629, 630, 634, 669, 686, 688, 696, 725, 726, 727, 733, 753, 754, 757, 760, 764, 798, 805, 806, 807, 808, 812, 813, 814, 816, 818, 820, 824, 825, 829, 830, 831, 835, 839], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 419, 420, 472, 480, 537, 538, 541, 544, 546, 550, 561, 562, 581, 614, 616, 617, 620, 623, 627, 657, 704, 714, 715, 759, 763, 779, 780, 787, 788, 792, 795, 798, 800, 803, 804, 805, 807, 809, 811, 812, 813, 814, 817, 818, 819, 821, 824, 825, 826, 827, 828, 831, 833, 838, 839, 845, 847, 854, 860, 861], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 455, 481, 567, 615, 620, 623, 655, 811, 813, 814, 823, 824, 825, 826, 831, 835, 836, 841, 847, 854, 860], "set_inplace_mod": [8, 21, 22, 23, 24, 590, 620], "strict": [8, 21, 22, 23, 24, 567, 590, 620], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 445, 450, 451, 458, 460, 462, 463, 464, 471, 480, 486, 496, 515, 516, 525, 549, 567, 569, 579, 581, 587, 591, 616, 618, 620, 623, 625, 629, 630, 631, 633, 634, 663, 665, 679, 688, 689, 690, 692, 694, 695, 696, 697, 699, 725, 726, 727, 733, 738, 746, 748, 753, 754, 757, 764, 782, 798, 805, 807, 809, 813, 814, 817, 824, 825, 829, 830, 833, 835, 840, 844], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 434, 440, 441, 443, 480, 516, 520, 567, 612, 618, 620, 622, 623, 633, 651, 671, 674, 746, 748, 764, 782, 795, 799, 802, 803, 804, 805, 807, 808, 809, 812, 813, 814, 815, 819, 820, 825, 828, 829, 830, 835, 839, 845, 854], "whenev": [8, 21, 22, 23, 24, 778, 805, 809, 812, 813, 817, 824, 827, 828, 830, 836], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 510, 618, 623, 627, 633, 652, 668, 705, 716, 745], "122": [8, 49, 163, 233, 618], "134": [8, 56, 623, 646, 665], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 844], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 436, 844], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 436, 532, 602, 605, 607, 608, 609, 620, 621, 626, 701, 702, 703, 782, 798, 799, 802, 803, 804, 806, 807, 813, 818, 819, 821, 823, 832, 841, 843, 844, 852, 856, 857, 858, 859, 860, 861], "cryptographi": 9, "frontend": [9, 566, 620, 759, 760, 763, 767, 770, 798, 802, 805, 806, 812, 813, 817, 818, 823, 827, 828, 831, 832, 834, 841, 848, 854], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 798, 836, 847, 848], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 817, 825, 835], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 798], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 420, 471, 509, 622, 623, 648, 657, 658, 798, 802, 803, 804, 805, 807, 811, 813, 815, 816, 820, 821, 824, 825, 828, 833, 834, 836, 837, 838, 839, 841, 843, 844, 845, 848, 854, 858, 860, 861], "sole": [9, 38, 820, 829, 853, 854, 855], "verifi": [9, 23, 319, 320, 362, 803, 813, 814, 825, 828, 829], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 439, 473, 474, 532, 617, 620, 623, 625, 630, 675, 693, 732, 734, 799, 800, 803, 804, 805, 806, 807, 810, 813, 818, 823, 824, 825, 826, 827, 829, 831, 835, 838, 839, 842, 843, 844, 854], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 821], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 417, 421, 427, 432, 439, 441, 443, 444, 445, 446, 447, 457, 459, 468, 472, 480, 481, 482, 487, 491, 492, 494, 502, 508, 509, 510, 511, 512, 515, 517, 518, 519, 521, 524, 527, 528, 531, 532, 534, 535, 536, 539, 540, 541, 545, 547, 548, 549, 551, 552, 555, 556, 561, 568, 569, 570, 573, 576, 577, 578, 579, 581, 583, 585, 586, 587, 591, 592, 595, 598, 599, 600, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 637, 639, 641, 643, 644, 645, 646, 652, 653, 654, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 671, 673, 674, 675, 677, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 707, 710, 711, 713, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 796, 798, 809, 811, 814, 815, 823, 825, 826, 828, 829, 831, 833, 835, 847], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 441, 442, 443, 444, 445, 446, 447, 617, 757, 778, 780, 786, 798, 801, 804, 806, 809, 818, 819, 826, 827, 832, 836, 837, 838, 848, 849, 850, 852, 853, 854, 857, 859, 860], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 442, 804, 805, 807, 809, 811, 812, 813, 815, 824, 826, 828, 839], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 413, 493, 510, 511, 531, 551, 559, 560, 568, 587, 612, 614, 615, 618, 620, 622, 623, 626, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 663, 668, 671, 675, 701, 702, 703, 743, 744, 749, 751, 764, 778, 779, 780, 787, 800, 803, 804, 805, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 824, 825, 826, 827, 828, 831, 833, 836, 839, 840, 848, 854], "fit": [9, 59, 82, 625, 691, 803, 825, 833, 850, 851, 854], "consol": [9, 562, 620, 798, 805, 819, 828, 835, 840], "gpu_hist": 9, "captur": [9, 823, 828, 838, 855], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 578, 605, 615, 618, 620, 621, 627, 633, 708, 716, 726, 745], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 419, 420, 515, 516, 537, 538, 616, 617, 618, 620, 622, 623, 631, 632, 633, 648, 657, 658, 659, 668, 677, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 763, 765, 787, 798, 801, 803, 806, 807, 808, 809, 811, 813, 814, 816, 817, 818, 820, 821, 822, 824, 826, 828, 829, 831, 833, 835, 836, 837, 838, 839, 841, 851, 852, 853, 854, 857, 860, 861], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 79, 81, 225, 228, 230, 265, 285, 370, 444, 447, 618, 622, 624, 645, 648, 682], "tabular": 9, "pulsar": 9, "emploi": [9, 860], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 623, 625, 626, 627, 656, 663, 677, 695, 701, 702, 718, 792, 795, 798, 803, 809, 810, 812, 813, 816, 821, 827, 828, 831, 838, 847, 848, 854], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 544, 617, 620, 798, 802, 804, 808, 810, 811, 819, 823, 828, 840], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 420, 426, 436, 456, 461, 463, 464, 468, 470, 502, 508, 509, 615, 623, 657, 658, 664, 670, 672, 673, 678, 762, 777], "well": [9, 26, 27, 40, 41, 42, 76, 370, 444, 545, 620, 623, 672, 764, 798, 800, 803, 805, 810, 812, 813, 817, 824, 825, 826, 828, 837, 838, 848, 853, 854, 855, 859], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 438, 480, 509, 600, 615, 616, 618, 620, 623, 625, 628, 629, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 723, 726, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 764, 777, 781, 791, 792, 798, 803, 806, 807, 808, 811, 813, 816, 820, 824, 827, 828, 829, 839, 842, 848, 850, 852, 853, 856, 857, 859], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 432, 474, 475, 508, 614, 615, 616, 618, 622, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 735, 747, 750, 760, 801, 803, 804, 805, 808, 809, 810, 812, 813, 814, 815, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 835, 837, 838, 839, 840, 843, 844, 847, 854, 860, 861], "extra": [9, 27, 69, 98, 117, 600, 614, 620, 808, 813, 815, 822, 824, 825, 826, 831, 833, 847, 848, 851, 856], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 415, 417, 420, 436, 444, 450, 451, 452, 456, 462, 473, 474, 475, 476, 478, 480, 488, 489, 490, 493, 497, 499, 502, 512, 514, 515, 516, 517, 518, 519, 532, 533, 534, 536, 543, 577, 580, 600, 612, 615, 620, 622, 623, 624, 625, 626, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 648, 652, 653, 654, 656, 657, 658, 659, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 680, 683, 684, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 699, 701, 702, 703, 729, 730, 731, 733, 735, 736, 737, 738, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 774, 778, 781, 815, 817, 823, 825, 826, 828, 831, 833, 836], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 441, 443, 444, 445, 446, 447, 624, 682, 683, 684, 798, 803, 807, 825, 832, 833, 834, 838, 840, 854], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 836], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 444, 481, 777, 778, 804, 839], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 420, 421, 425, 429, 434, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 456, 457, 467, 472, 478, 480, 481, 482, 485, 488, 490, 491, 492, 493, 494, 496, 497, 499, 500, 501, 509, 510, 511, 512, 514, 515, 516, 517, 518, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 568, 578, 579, 580, 581, 583, 584, 585, 586, 599, 600, 601, 602, 603, 605, 607, 610, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 651, 652, 653, 657, 658, 659, 660, 661, 662, 663, 664, 666, 668, 669, 670, 671, 673, 675, 676, 677, 680, 682, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 711, 712, 713, 715, 716, 719, 720, 721, 722, 724, 725, 726, 727, 729, 732, 733, 735, 736, 737, 738, 739, 740, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 777, 778, 780, 791, 792, 808, 813, 820, 821, 824, 826, 828, 833, 836, 837, 839, 847, 848, 849], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 622, 625, 644, 798, 825, 833, 836, 848], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 616, 622, 638, 640, 641, 644, 798, 813, 824, 825, 831, 849], "csv": [9, 42, 798], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 574, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 770, 775, 803, 804, 805, 807, 808, 809, 813, 815, 816, 817, 818, 820, 821, 822, 823, 824, 828, 836, 837, 838, 841, 847, 855], "117564": 9, "variou": [9, 20, 30, 32, 38, 798, 803, 804, 805, 807, 812, 813, 816, 817, 820, 822, 823, 825, 826, 827, 828, 840, 850, 852, 853, 854, 857, 860], "structur": [9, 27, 69, 72, 98, 160, 163, 529, 620, 627, 708, 717, 798, 803, 805, 808, 811, 821, 826, 827, 828, 829, 836, 837, 853, 854], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 437, 512, 516, 559, 615, 618, 620, 632, 633, 741, 748, 762, 763, 764, 765, 779, 780, 792, 796, 798, 803, 805, 808, 809, 812, 813, 817, 819, 821, 822, 823, 824, 825, 826, 828, 831, 833, 835, 839, 841, 844, 847, 848, 849, 852, 854, 858, 859], "navig": [9, 801, 804, 805, 806, 818], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 436, 455, 633, 750, 752, 798, 804, 812, 824, 825, 836, 845, 848, 854, 861], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 420, 572, 594, 615, 620, 623, 657, 658, 795, 798, 802, 803, 804, 808, 811, 812, 813, 814, 818, 820, 821, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 839, 844, 854, 855, 857, 858, 860, 861], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 529, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 621, 623, 624, 627, 630, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 671, 673, 674, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 715, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 770, 776, 777, 778, 779, 780, 803, 805, 807, 808, 812, 813, 814, 815, 816, 820, 828, 829, 833, 834, 837, 838, 839, 847, 848, 849, 855, 861], "signific": [9, 52, 370, 445, 830, 839, 843, 844, 854], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 496, 544, 560, 603, 615, 616, 617, 620, 621, 627, 629, 707, 708, 709, 711, 712, 713, 719, 720, 721, 722, 729, 757, 759, 760, 767, 768, 769, 775, 776, 778, 779, 780, 787, 791, 798, 808, 809, 811, 812, 821, 822, 825, 826, 828, 831, 835, 838, 846, 847, 848, 849, 854, 860], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 413, 421, 422, 431, 433, 435, 440, 452, 458, 461, 465, 467, 478, 486, 488, 489, 490, 493, 495, 496, 497, 498, 499, 502, 509, 519, 615, 618, 622, 623, 625, 627, 629, 630, 633, 634, 635, 636, 637, 638, 640, 642, 644, 648, 653, 656, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 673, 674, 677, 678, 679, 680, 687, 688, 690, 696, 700, 712, 725, 726, 727, 733, 747, 749, 750, 751, 752, 753, 754, 778, 781, 791, 798, 806, 810, 812, 828, 840, 848], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 547, 601, 605, 612, 618, 620, 621, 623, 627, 633, 668, 705, 726, 745], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 798, 800, 802, 804, 807, 808, 809, 810, 812, 813, 814, 824, 825, 826, 828, 831, 835, 836, 837, 838, 839, 840, 843, 844, 849, 856, 860, 861], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 424, 434, 440, 450, 451, 452, 519, 777, 813, 824, 832, 833, 838, 839, 851, 854, 855, 858, 860, 861], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 417, 434, 440, 463, 464, 510, 511, 512, 551, 552, 555, 572, 594, 615, 616, 617, 618, 620, 622, 623, 625, 629, 630, 631, 633, 651, 653, 663, 664, 665, 666, 669, 680, 685, 689, 695, 727, 733, 736, 737, 738, 743, 744, 749, 750, 751, 752, 778, 792, 801, 805, 807, 811, 812, 813, 815, 817, 818, 824, 825, 826, 828, 829, 830, 831, 833, 836, 837, 838, 839, 840, 844, 851, 852, 853, 854, 860, 861], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 514, 515, 516, 517, 518, 519, 533, 617, 620, 623, 630, 633, 634, 670, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 791, 792, 812, 817, 825, 831, 833, 835, 847, 852, 856, 857, 858], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 512, 513, 519, 615, 618, 623, 629, 652, 658, 659, 666, 727, 764, 777, 798, 805, 813, 815, 825, 828, 833, 839, 841, 850, 851, 852, 854, 855, 860, 861], "although": [9, 623, 671, 798, 800, 808, 810, 811, 825, 831, 852, 854], "experi": [9, 15, 42, 804, 817, 828, 834, 836, 839], "demonstr": [9, 23, 26, 27, 41, 813, 815, 817, 835], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 623, 673, 762, 803, 804, 805, 808, 809, 813, 816, 817, 819, 821, 824, 825, 828, 831, 837, 839, 844, 847, 848, 851, 854, 860], "substanti": [9, 805, 808, 813, 828, 844, 854], "dive": [9, 15, 17, 26, 38, 799, 800, 802, 803, 805, 807, 811, 813, 819, 826, 832, 835, 836, 839, 860], "stuff": 9, "tool": [9, 17, 26, 27, 798, 804, 805, 815, 819, 834, 838, 839, 842, 845, 848, 852, 853, 854, 855, 857, 860, 861], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 455, 477, 500, 532, 534, 539, 540, 547, 548, 564, 573, 578, 618, 620, 623, 627, 633, 661, 668, 713, 725, 726, 744, 745, 749, 764, 777, 792, 812], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 441, 444, 446, 510, 519, 547, 548, 564, 578, 615, 618, 620, 623, 624, 627, 628, 633, 636, 652, 656, 661, 678, 683, 705, 712, 716, 723, 725, 726, 727, 744, 745, 747, 752, 811, 823], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 413, 419, 455, 500, 510, 533, 564, 599, 612, 618, 622, 623, 627, 630, 633, 645, 646, 656, 661, 668, 672, 712, 722, 725, 726, 727, 734, 744, 745, 804, 811, 817], "201": [9, 74, 75, 220, 389, 618], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 413, 510, 532, 533, 618, 620, 623, 627, 633, 636, 656, 664, 668, 705, 716, 725, 726, 727, 743, 745, 759, 817, 836], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 421, 509, 572, 594, 616, 618, 620, 623, 658, 659, 664, 671, 673, 674, 680, 770, 812, 825, 830, 831, 858], "recal": 9, "f1": [9, 813], "score": [9, 56, 79, 370, 447, 622, 649, 651, 798], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 605, 617, 621, 727], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 437, 455, 510, 528, 578, 605, 618, 620, 621, 622, 623, 627, 633, 645, 646, 668, 722, 725, 745, 752, 762, 765], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 813], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 532, 533, 605, 618, 620, 621, 623, 633, 668, 727, 745], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 510, 532, 533, 578, 604, 606, 618, 620, 621, 623, 660, 727], "73": [9, 38, 51, 80, 282, 380, 510, 623, 629, 652, 726, 828], "92": [9, 38, 42, 52, 53, 84, 353, 365, 599, 609, 621, 623, 654, 726, 727], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 419, 516, 547, 601, 618, 620, 621, 622, 623, 628, 633, 637, 639, 641, 643, 644, 646, 668, 723, 725, 726, 727, 745, 749, 798], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 548, 618, 620, 623, 627, 633, 663, 668, 678, 705, 712, 726, 745, 749, 762], "852": [9, 622, 646], "449": [9, 528, 620], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 510, 532, 533, 605, 618, 620, 621, 622, 623, 629, 646, 660, 726, 727], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 510, 532, 533, 603, 607, 618, 620, 621, 623, 660, 725, 726, 727], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 510, 601, 621, 726, 727, 801, 818], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 612, 615, 618, 623, 628, 679, 723, 726, 727], "nevertheless": 9, "fall": [9, 40, 782, 803, 813, 832], "short": [9, 38, 52, 75, 414, 622, 647, 803, 805, 813, 833, 837], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 455, 510, 527, 612, 615, 618, 620, 726, 727, 836], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 419, 423, 455, 510, 532, 548, 612, 616, 618, 620, 622, 623, 629, 630, 633, 637, 639, 640, 644, 646, 663, 668, 679, 725, 726, 727, 734, 745, 762, 765, 798, 812, 813, 823, 836, 859], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 578, 579, 602, 607, 615, 618, 620, 621, 623, 624, 661, 682, 726], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 618, 628, 629, 723, 725, 727], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 424, 510, 532, 533, 579, 618, 620, 623, 627, 633, 646, 665, 668, 678, 715, 745], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 618, 622, 623, 630, 633, 646, 653, 660, 726, 734, 745], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 500, 618, 622, 623, 627, 629, 646, 665, 712, 726, 812], "surpass": 9, "remark": [9, 839], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 618, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 798, 803, 804, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 824, 825, 826, 828, 831, 833, 837, 838, 839, 841, 855, 860], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 420, 456, 457, 459, 468, 487, 566, 575, 597, 615, 620, 623, 625, 627, 654, 656, 657, 658, 659, 661, 663, 665, 666, 667, 669, 670, 671, 673, 674, 677, 704, 714, 715, 778, 798, 802, 807, 824, 833, 850, 852, 859, 860], "x_doubl": 9, "vstack": [9, 52, 75, 371, 468], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 803, 804, 805, 813, 818, 831, 834, 838, 854, 857], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 429, 500, 510, 527, 528, 612, 618, 620, 623, 633, 652, 660, 751], "315": [9, 274, 618], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 477, 532, 534, 539, 540, 564, 578, 600, 603, 618, 620, 621, 623, 627, 633, 661, 668, 713, 726, 745, 749, 798, 812], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 528, 547, 601, 618, 620, 621, 623, 633, 668, 726, 727, 745, 812], "380": 9, "seem": [9, 803, 804, 831, 837, 838, 839, 854], "observ": [9, 52, 75, 380, 508, 509, 805, 813, 817, 833, 847, 856], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 540, 812], "plot": [9, 41, 798, 854], "conduct": [9, 858], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 540, 564, 618, 620, 623, 661, 828], "400": [9, 76, 79, 368, 391, 392, 540, 564, 620, 623, 661], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 440, 540, 620], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 414, 434, 473, 474, 475, 476, 516, 537, 538, 606, 616, 617, 620, 621, 623, 662, 763, 765, 779, 780, 805, 810, 831], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 618, 623, 625, 656, 663, 688, 792, 798, 812, 828, 833, 836], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 803], "loc": 9, "best": [9, 40, 559, 620, 792, 798, 799, 801, 802, 803, 804, 805, 806, 812, 813, 817, 818, 827, 828, 829, 840, 857, 858], "xlabel": 9, "ylabel": 9, "obviou": [9, 836, 854], "trend": 9, "longer": [9, 804, 813, 824, 828, 854], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 413, 419, 423, 441, 442, 443, 444, 445, 446, 447, 472, 519, 615, 616, 618, 622, 624, 625, 627, 629, 631, 645, 668, 682, 683, 684, 688, 696, 710, 725, 736, 737, 738, 763, 770, 782, 798, 808, 809, 813, 815, 820, 821, 822, 824, 825, 826, 827, 828, 831, 832, 834, 835, 836, 838, 843, 847, 848, 850, 851, 853, 854, 855, 860], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 413, 450, 451, 452, 493, 615, 629, 727, 792, 803, 805, 808, 812, 813, 825, 826, 827, 828, 837, 839, 848, 850, 851, 855], "slightli": [9, 306, 362, 811, 825, 828, 833, 837], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 559, 560, 563, 564, 567, 568, 569, 570, 573, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 777, 778, 779, 780, 781, 782, 783, 787, 788, 791, 792, 794, 798, 803, 808, 816, 817, 820, 825, 826, 828, 829, 833, 835, 836, 847, 848, 849, 855], "x_train": 9, "y_train": [9, 42, 798], "train_siz": [9, 40], "random_st": [9, 369, 425], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 440, 618, 727, 762], "clear": [9, 190, 617, 803, 805, 809, 813, 814, 815, 825, 831, 833, 835, 843, 844, 845, 854], "amount": [9, 58, 81, 210, 617, 624, 682, 683, 684, 792, 804, 812, 814, 826], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 792], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 480, 488, 490, 567, 618, 620, 623, 671, 673, 787, 803, 804, 807, 808, 809, 811, 813, 814, 815, 816, 817, 819, 820, 821, 824, 825, 826, 828, 831, 833, 835, 836, 837, 838, 839, 844, 847, 853, 854, 860], "tend": 9, "outperform": 9, "proce": [9, 803, 804], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 540, 564, 623, 633, 668, 745, 844], "77": [9, 38, 42, 76, 579, 623, 633, 668, 745], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 532, 533, 617, 620, 726, 727], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 575, 578, 579, 580, 581, 583, 585, 586, 597, 599, 601, 602, 605, 607, 608, 609, 610, 620, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 798, 806, 807, 808, 809, 811, 812, 813, 814, 816, 817, 820, 821, 824, 825, 828, 833, 835, 838, 839, 841, 847, 848, 850, 854, 855, 860, 861], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 604, 606, 616, 617, 621, 623, 628, 660, 723, 727], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 616, 618, 623, 627, 633, 675, 712, 726, 745], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 510, 601, 618, 621, 762, 818], "171": [9, 57, 623, 660, 762], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 478, 510, 618, 623, 633, 668, 745, 792, 844], "86": [9, 38, 61, 75, 84, 368, 380, 399, 510, 601, 621, 726, 727], "88": [9, 38, 77, 84, 107, 380, 510, 605, 612, 621, 623, 629, 633, 668, 727, 745], "perfectli": [9, 764, 845], "align": [9, 52, 69, 75, 368, 369, 403, 418, 622, 650, 792, 804, 812, 825, 827, 833, 835, 841, 860], "gain": [9, 777, 805, 807, 832, 837, 854], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 509, 537, 538, 620, 623, 653, 663, 805, 808, 811, 812, 813, 815, 817, 821, 828, 838, 854], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 631, 735, 736, 737, 738, 778, 779, 780, 798, 799, 804, 806, 812, 813, 821, 823, 832, 834, 837, 838, 839, 841, 844, 848, 852, 854, 856, 859, 860, 861], "timm": [10, 11, 15, 26, 27, 798, 848], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 775, 798, 845, 848, 860], "seen": [11, 13, 18, 24, 26, 369, 375, 426, 497, 544, 620, 787, 812, 813, 815, 817, 825, 828, 833, 835, 836, 843, 844, 860], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 618, 623, 671, 764, 802, 803, 804, 805, 810, 811, 813, 814, 815, 817, 818, 820, 821, 824, 825, 826, 828, 829, 831, 834, 836, 837, 838, 839, 843, 844, 850, 851, 852, 854, 855, 856, 859, 860, 861], "guid": [11, 24, 798, 799, 803, 804, 805, 810, 819, 825, 827, 860], "focu": [11, 24, 803, 823, 852, 853, 856, 861], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 415, 417, 429, 432, 444, 450, 451, 452, 457, 478, 567, 612, 615, 616, 618, 620, 623, 625, 631, 656, 662, 663, 666, 669, 671, 673, 680, 689, 696, 735, 736, 737, 738, 764, 774, 792, 798, 800, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 815, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 848, 849, 852, 853, 854, 855, 856, 857, 860, 861], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 616, 618, 792, 799, 803, 806, 812, 813, 815, 826, 831, 838, 844, 854, 860], "develop": [11, 25, 26, 27, 798, 799, 800, 801, 802, 803, 804, 805, 807, 810, 812, 818, 827, 829, 839, 841, 843, 844, 845, 847, 848, 852, 853, 854, 855, 856, 859, 860, 861], "usual": [11, 13, 43, 235, 268, 618, 791, 804, 807, 813, 825, 828, 831], "own": [11, 13, 17, 26, 27, 32, 798, 804, 807, 812, 813, 816, 817, 824, 825, 829, 833, 839, 841, 844, 845, 850, 853, 854, 859, 860], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 426, 627, 716, 798, 803, 804, 805, 807, 808, 811, 812, 813, 814, 816, 819, 821, 822, 824, 825, 826, 829, 830, 833, 835, 837, 838, 839, 840, 845, 847, 848, 849, 858, 859, 860], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 477, 478, 486, 488, 490, 497, 520, 537, 538, 542, 549, 563, 564, 565, 615, 616, 617, 618, 620, 623, 625, 627, 633, 671, 677, 688, 689, 690, 692, 694, 695, 697, 699, 707, 713, 746, 747, 748, 749, 750, 751, 752, 762, 763, 782, 792, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 844, 847, 848, 849, 853, 857], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 421, 426, 438, 440, 450, 451, 452, 462, 495, 496, 512, 526, 612, 615, 616, 617, 618, 620, 622, 623, 625, 627, 629, 630, 632, 633, 648, 663, 670, 673, 674, 689, 692, 704, 705, 711, 712, 714, 715, 716, 721, 722, 725, 726, 727, 730, 731, 741, 747, 750, 760, 762, 763, 765, 778, 782, 791, 798, 799, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 820, 821, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 843, 847, 848, 853, 854, 855, 860, 861], "retriev": [11, 13, 17, 522, 544, 569, 620, 805, 825], "mlp_encod": [11, 26, 27, 798, 848], "create_model": [11, 26, 27, 798, 848], "mixer_b16_224": [11, 26, 27, 798, 848], "nois": [11, 13, 26, 27, 798, 847, 848], "randn": [11, 13, 26, 27, 798, 848], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 370, 371, 444, 445, 472, 625, 627, 628, 687, 710, 723, 777, 781, 798, 821, 826, 829, 837, 838, 839, 847, 849], "output_dens": [11, 26, 27, 798], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 628, 647, 648, 723, 775, 777, 779, 780, 781, 782, 783, 798, 816, 825, 829, 831, 833, 834, 837, 843, 848, 852, 854, 858, 861], "dens": [11, 24, 26, 27, 310, 362, 778, 798], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 491, 492, 612, 798, 804, 807, 813, 825, 826, 828, 839, 855, 858], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 581, 622, 648, 651, 777, 778, 798, 803, 804, 805, 813, 819, 829, 830, 837, 848, 854, 857], "mention": [11, 13, 26, 27, 32, 803, 804, 805, 808, 815, 820, 821, 824, 825, 828, 831, 844, 849, 854], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 479, 798, 799, 803, 815, 828], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 516, 778, 798, 808, 813, 820, 823, 831, 833, 834, 835, 836, 837, 838, 839, 845, 849, 852, 853, 854, 860, 861], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 775, 779, 780, 783, 798, 816, 834, 836, 837, 848, 849], "fine": [11, 13, 26, 27, 804, 805, 813, 815, 825, 835, 838, 860], "tune": [11, 13, 26, 27, 859, 860], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 437, 488, 490, 601, 602, 607, 621, 622, 645, 648, 651, 777, 778, 779, 780, 781, 798, 811, 814, 821, 836, 837, 838, 839, 845, 848, 852, 853, 858, 860, 861], "ground": [11, 13, 370, 441, 757, 759, 770, 801, 818, 825, 828, 843], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 427, 430, 432, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 558, 559, 560, 561, 563, 564, 568, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 710, 711, 712, 713, 714, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 775, 780, 782, 787, 792, 794, 798, 813, 814, 816, 817, 823, 824, 825, 826, 829, 833, 838, 848], "op": [11, 17, 38, 774, 787, 829, 833, 839], "eagertensor": [11, 17, 38, 787, 826], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 803, 804], "deepmind": [12, 845], "perceiverio": [12, 845], "backbon": [12, 40, 798, 833, 836], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 477, 480, 563, 564, 568, 615, 618, 620, 625, 629, 685, 724, 762, 805, 810, 811, 813, 814, 822, 825, 828, 835, 838, 839, 844, 848, 861], "efficientnet": 13, "include_top": [13, 798], "eff_encod": [13, 798], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 440, 622, 623, 627, 633, 648, 651, 677, 710, 711, 712, 716, 717, 749, 751, 798, 804, 812, 813, 814, 822, 837, 851, 852, 854, 856, 858, 860], "efficientnet_v2": [13, 798], "efficientnetv2b0": [13, 798], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 418, 420, 438, 455, 477, 480, 481, 483, 495, 496, 497, 498, 499, 505, 509, 510, 511, 515, 518, 519, 536, 549, 551, 552, 555, 581, 612, 615, 617, 618, 620, 622, 623, 625, 627, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 652, 653, 654, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 686, 689, 690, 692, 693, 695, 696, 700, 708, 725, 726, 727, 729, 730, 731, 733, 734, 739, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 774, 777, 778, 779, 780, 784, 792, 798, 804, 806, 807, 808, 809, 810, 811, 814, 816, 820, 821, 822, 824, 826, 829, 831, 833, 835, 841, 842, 844, 854, 855, 856, 858, 859, 860], "storag": [13, 40, 41, 836, 844], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 798], "1280": [13, 532, 620, 798], "state": [14, 25, 40, 56, 79, 95, 182, 183, 184, 185, 186, 268, 588, 590, 593, 595, 596, 616, 618, 620, 622, 647, 760, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 798, 801, 804, 810, 813, 814, 816, 817, 818, 819, 820, 825, 828, 832, 833, 834, 836, 844, 848, 860, 861], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 801, 804, 805, 806, 808, 810, 813, 814, 815, 816, 817, 818, 820, 822, 824, 825, 826, 828, 831, 832, 834, 836, 839, 841, 842, 843, 850, 852, 854, 856, 859, 861], "welcom": [15, 41, 798, 799, 804, 805, 827], "goal": [15, 40, 242, 618, 798, 803, 844, 854, 860], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 414, 419, 423, 434, 435, 439, 440, 456, 458, 467, 486, 488, 490, 519, 531, 563, 564, 614, 615, 616, 617, 618, 620, 622, 623, 625, 627, 630, 633, 634, 648, 665, 668, 679, 688, 689, 696, 708, 730, 750, 752, 753, 754, 763, 778, 782, 787, 788, 798, 803, 804, 805, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 823, 824, 825, 826, 828, 829, 831, 835, 837, 839, 843, 847, 848, 849, 852, 853, 854, 855, 856, 857, 858, 861], "varieti": [15, 807, 812, 813, 814, 828, 830, 850, 852, 856, 857, 860, 861], "organ": [15, 808, 811, 821, 825, 827, 829, 841, 844], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 418, 461, 615, 623, 655, 656, 677, 798, 803, 804, 805, 807, 810, 811, 818, 822, 824, 852, 854, 855, 860], "exactli": [15, 19, 29, 38, 39, 43, 285, 618, 803, 811, 812, 813, 814, 815, 817, 828, 831, 843, 845], "rush": [15, 845], "jump": [15, 826], "straight": [15, 798, 812, 825, 828, 835], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 854], "capabl": [15, 23, 27, 828, 831], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 420, 438, 441, 495, 496, 497, 498, 499, 509, 510, 511, 519, 613, 615, 616, 618, 623, 629, 630, 631, 632, 633, 652, 654, 657, 658, 659, 661, 664, 665, 666, 669, 670, 671, 672, 673, 674, 675, 677, 680, 726, 727, 733, 735, 736, 737, 738, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 787, 788, 798, 801, 803, 804, 805, 807, 808, 810, 812, 813, 815, 816, 818, 820, 824, 825, 828, 829, 831, 833, 835, 836, 845, 847, 860], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 481, 600, 615, 616, 618, 620, 623, 625, 627, 630, 670, 673, 685, 706, 733, 803, 804, 805, 808, 811, 812, 813, 822, 824, 825, 826, 828, 831, 843, 851], "who": [15, 806, 817, 832, 839, 854, 856], "deeper": [15, 17, 27, 47, 627, 715, 716, 805, 806, 828, 832, 843], "showcas": [15, 798], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 420, 421, 612, 615, 618, 623, 630, 633, 657, 658, 659, 664, 671, 673, 674, 677, 680, 733, 746, 748, 749, 750, 751, 811, 856], "world": [15, 23, 805, 856], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 414, 429, 435, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 460, 462, 463, 464, 467, 471, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 559, 563, 564, 565, 566, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 593, 594, 597, 599, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 633, 634, 636, 637, 638, 639, 645, 646, 647, 648, 651, 652, 653, 658, 659, 660, 661, 662, 663, 664, 666, 668, 670, 671, 672, 677, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 757, 759, 762, 774, 775, 778, 779, 780, 781, 782, 791, 798, 799, 803, 804, 808, 811, 813, 815, 820, 824, 825, 828, 830, 831, 847, 848], "beginn": [15, 799, 854], "advanc": [15, 38, 804, 853], "got": [15, 38, 817], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 803, 807, 808, 810, 813, 815, 816, 821, 822, 828, 831, 832], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 417, 418, 426, 427, 430, 431, 432, 433, 439, 441, 442, 443, 444, 446, 447, 456, 457, 460, 461, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 731, 732, 734, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 760, 798, 802, 803, 805, 806, 807, 809, 810, 812, 813, 815, 816, 817, 821, 824, 826, 829, 833, 835, 838, 845, 854, 861], "familiar": [15, 16, 17, 798, 803, 804], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 798, 808, 813, 820, 833, 835, 838, 839, 860, 861], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 617, 806, 807, 808, 812, 813, 817, 822, 823, 825, 831, 833, 839, 842, 844, 846, 848, 850, 851, 852, 854, 858, 861], "alongsid": [15, 16, 17, 18, 28, 622, 648, 844], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 622, 645, 778, 804, 810, 811, 814, 815, 825, 828, 845], "wrapper": [15, 16, 19, 770, 808, 810, 811, 813, 817, 821, 824, 825, 835, 841, 850, 854], "unus": [15, 16, 19, 815, 824], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 421, 472, 519, 612, 615, 618, 623, 658, 659, 759, 798, 803, 804, 805, 807, 810, 813, 819, 821, 824, 825, 828, 829, 831, 833, 834, 838, 839, 847, 848, 849, 852, 854, 859, 860, 861], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 811, 839, 854], "understand": [15, 16, 17, 21, 38, 44, 801, 802, 803, 804, 805, 806, 807, 810, 815, 816, 820, 826, 827, 832, 845, 850, 860], "decor": [15, 16, 21, 23, 24, 32, 44, 526, 620, 762, 764, 770, 801, 807, 808, 811, 813, 814, 818, 821, 824, 825, 826, 831], "kornia": [15, 16, 23, 26, 27, 40, 44, 798, 848], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 433, 449, 462, 477, 480, 481, 502, 512, 518, 567, 600, 614, 620, 623, 628, 629, 633, 634, 653, 664, 675, 677, 679, 680, 723, 727, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 781, 787, 791, 798, 804, 805, 809, 815, 816, 823, 824, 826, 829, 833, 835, 839, 843, 845, 852, 854], "indep": [17, 26], "futur": [17, 24, 26, 40, 623, 658, 659, 798, 804, 805, 812, 813, 828, 829, 831, 835, 839, 843, 845, 860], "proof": [17, 26], "delv": [17, 27, 798], "theori": [17, 800, 810], "deep": [17, 24, 26, 38, 69, 532, 620, 798, 799, 800, 802, 803, 805, 807, 810, 811, 813, 819, 823, 826, 832, 835, 836, 843, 852, 854, 857, 858, 860, 861], "esenti": [17, 26], "abstract": [17, 26, 27, 777, 782, 798, 811, 813, 824, 825, 828, 831, 837, 843, 852, 854, 856, 857, 861], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 480, 499, 532, 533, 534, 560, 616, 617, 618, 620, 623, 625, 626, 629, 632, 633, 658, 659, 675, 696, 701, 702, 703, 724, 741, 746, 747, 748, 750, 757, 759, 779, 780, 787, 788, 794, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 817, 819, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 837, 838, 839, 840, 841, 843, 847, 848, 849, 850, 852, 853, 855, 856, 857, 861], "quirk": [17, 26], "perk": [17, 26, 798, 808, 811], "under": [17, 26, 27, 52, 370, 444, 445, 791, 798, 803, 804, 806, 807, 814, 815, 816, 819, 825, 826, 828, 831, 832, 833, 836, 838, 839, 847, 848, 854, 857, 861], "hood": [17, 26, 27, 798, 806, 814, 815, 819, 825, 828, 831, 832, 833, 836, 838, 847, 848, 861], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 413, 421, 472, 483, 511, 530, 616, 617, 620, 622, 623, 635, 636, 637, 638, 640, 642, 644, 659, 757, 759, 763, 791, 792, 809, 810, 812, 813, 814, 817, 825, 833, 836], "simplest": [17, 804, 815, 828, 831], "interact": [17, 26, 41, 44, 803, 853, 854, 859], "submodul": [17, 26, 40, 42, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 803, 804, 805, 807, 810, 812, 814, 818, 821, 822, 828, 832, 833, 837, 841], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 518, 601, 615, 617, 618, 621, 622, 640, 641, 725, 726, 727, 763, 798, 803, 808, 812, 815, 820, 821, 827, 828, 835, 836, 854], "likewis": [17, 22, 26, 33, 798, 805, 811, 813, 816, 820, 821, 825, 831, 836, 847, 848, 860], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 455, 456, 457, 458, 460, 461, 462, 463, 464, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 509, 510, 511, 512, 513, 521, 524, 525, 527, 528, 532, 533, 534, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 552, 555, 556, 558, 563, 564, 565, 568, 577, 578, 579, 580, 581, 583, 585, 586, 588, 599, 601, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 705, 706, 707, 711, 712, 713, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 783, 808, 811, 815, 817, 820, 821, 822, 824, 825, 829, 830, 833, 835, 841], "alia": [17, 26, 329, 330, 365, 613, 803, 825, 846, 849], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 421, 432, 480, 481, 510, 511, 633, 743, 744, 803, 804, 805, 812, 818, 824, 828, 833, 835, 838, 839, 854, 857, 858], "lastli": [17, 26, 808], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 568, 571, 573, 578, 579, 580, 581, 583, 585, 586, 593, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 707, 711, 712, 713, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 769, 770, 778, 779, 780, 782, 783, 787, 791, 792, 798, 800, 801, 803, 804, 806, 807, 808, 809, 810, 812, 813, 815, 816, 818, 820, 821, 822, 823, 824, 826, 828, 830, 831, 832, 833, 834, 837, 839, 840, 841, 843, 847, 854, 855, 860], "subclass": [17, 26, 27, 822, 825, 831, 848], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 472, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 522, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 585, 586, 599, 610, 614, 616, 617, 620, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 704, 705, 707, 710, 711, 712, 713, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 759, 760, 775, 778, 780, 787, 792, 808, 811, 836, 837, 841, 847, 848, 849], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 437, 537, 538, 544, 616, 617, 620, 627, 704, 705, 708, 714, 715, 716, 757, 804, 807, 810, 811, 818, 821, 824, 837, 839], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 413, 414, 477, 479, 525, 532, 533, 534, 581, 612, 615, 616, 617, 618, 620, 622, 623, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 648, 675, 677, 749, 751, 762, 765, 778, 792, 798, 803, 804, 806, 807, 808, 811, 813, 814, 815, 816, 817, 821, 824, 825, 828, 831, 833, 836, 837, 841, 843, 847, 850, 851, 852, 853, 854, 855, 857, 858, 859, 860, 861], "fashion": [17, 764, 828, 848], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 446, 472, 478, 482, 521, 524, 551, 552, 555, 585, 612, 615, 616, 617, 618, 620, 622, 623, 624, 625, 629, 630, 633, 634, 636, 637, 644, 651, 654, 658, 659, 665, 666, 670, 674, 675, 677, 680, 682, 684, 685, 692, 724, 733, 742, 748, 751, 753, 759, 769, 787, 801, 818, 826, 828], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 532, 536, 673, 698], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 413, 622, 629, 635, 636, 637, 638, 640, 642, 644, 725, 727, 764, 811, 817, 824, 825, 831, 833, 850, 852, 854, 855, 856, 858, 860], "level": [17, 26, 27, 29, 52, 75, 76, 369, 437, 524, 792, 798, 799, 803, 804, 805, 811, 813, 817, 821, 823, 824, 825, 827, 830, 831, 832, 833, 836, 837, 838, 839, 841, 845, 850, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 415, 417, 419, 420, 422, 432, 450, 451, 452, 462, 480, 488, 489, 490, 493, 511, 524, 532, 533, 534, 535, 543, 547, 548, 586, 601, 602, 605, 607, 608, 609, 612, 615, 616, 618, 620, 621, 622, 623, 625, 627, 630, 631, 633, 636, 637, 638, 639, 640, 641, 643, 657, 659, 661, 692, 696, 704, 707, 711, 712, 713, 715, 716, 721, 722, 733, 738, 744, 745, 750, 752, 781, 791, 792, 799, 804, 806, 809, 810, 811, 815, 821, 823, 832, 833, 834, 836, 839, 841, 842, 844, 845, 848, 850, 854, 858, 859, 861], "fundament": [17, 26, 812, 825, 831, 833, 843, 854], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 616, 618, 799, 801, 803, 804, 810, 813, 814, 815, 821, 822, 825, 829, 831, 839, 843, 851, 854, 861], "signatur": [17, 26, 371, 380, 472, 509, 813, 814, 815, 816, 820, 824, 828, 829, 831, 844, 851, 860], "matmul": [17, 26, 27, 43, 57, 80, 369, 435, 600, 620, 623, 673, 809, 828, 829, 833], "to_n": [17, 26, 27, 38, 47, 70, 833], "jaxlib": [17, 23, 41, 787, 804, 808, 813, 814, 820, 829, 833, 835], "xla_extens": [17, 23, 787, 808, 813, 814, 820, 829, 833, 835], "arrayimpl": [17, 23, 787], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 420, 421, 472, 480, 509, 512, 539, 543, 545, 547, 549, 586, 610, 612, 615, 616, 618, 620, 621, 622, 623, 625, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 725, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 801, 803, 804, 805, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 831, 833, 835, 836, 837, 838, 854, 859], "why": [17, 798, 805, 824, 835, 842, 844], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 445, 462, 618, 623, 625, 671, 692, 811, 824, 831, 847, 854], "disabl": [17, 26, 52, 75, 371, 480, 780, 810], "array_mod": [17, 26, 565, 588, 620, 830], "set_array_mod": [17, 26, 588, 620, 830], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 427, 537, 538, 616, 617, 618, 620, 763, 765, 803, 806, 808, 809, 811, 813, 814, 822, 824, 825, 826, 828, 831, 833, 837, 838, 839, 841, 847, 855], "ultim": [17, 26, 847], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 495, 612, 774, 833, 836, 837], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 441, 443, 444, 445, 446, 447, 453, 457, 468, 508, 509, 512, 519, 524, 536, 539, 540, 547, 548, 564, 577, 578, 579, 587, 600, 615, 617, 618, 620, 623, 624, 625, 627, 629, 630, 631, 633, 653, 663, 668, 669, 673, 680, 682, 683, 684, 685, 707, 711, 713, 721, 725, 726, 727, 730, 735, 745, 746, 748, 749, 750, 777, 798, 809, 811, 814, 815, 833, 835, 847], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 442, 488, 489, 490, 493, 578, 618, 620, 625, 694, 808, 811, 815, 819, 828], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 445, 612, 618, 623, 671, 823, 825], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 413, 572, 620, 622, 629, 635, 636, 637, 638, 640, 642, 644, 725, 727, 764, 803, 817, 823, 825, 836, 841, 845, 850, 851, 852, 853, 854, 858, 860, 861], "network": [17, 24, 26, 27, 38, 40, 45, 622, 646, 774, 777, 778, 798, 811, 821, 833, 837, 844, 848, 850, 852, 853, 854, 858, 860, 861], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 472, 512, 545, 617, 618, 633, 634, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 792, 803, 804, 805, 807, 808, 811, 813, 815, 817, 824, 825, 826, 828, 831, 833, 836, 837, 838, 839, 844, 845, 848, 854, 860, 861], "further": [17, 69, 98, 764, 805, 807, 808, 812, 815, 817, 820, 821, 824, 825, 827, 828, 832, 833, 836, 837, 844, 845, 859, 860], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 764, 798, 803, 804, 805, 807, 808, 810, 811, 813, 814, 815, 817, 819, 821, 823, 825, 826, 830, 833, 836, 839, 843, 847, 855, 856, 860, 861], "come": [17, 40, 803, 804, 805, 808, 812, 825, 830, 831, 837, 841, 854], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 493, 495, 618, 623, 629, 653, 672, 724, 798, 807, 813, 815, 822, 833, 838, 848, 852], "good": [17, 26, 27, 798, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 826, 828, 829, 831, 833, 834, 837], "foundat": [17, 844, 857], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 414, 569, 579, 591, 618, 620, 623, 627, 665, 678, 710, 777, 830, 835, 836, 837, 854, 856, 860], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 419, 472, 478, 512, 547, 548, 568, 612, 615, 618, 620, 623, 633, 653, 658, 659, 672, 746, 747, 748, 750, 798, 803, 804, 808, 809, 812, 813, 816, 820, 823, 825, 826, 828, 829, 835, 837, 839, 841, 849, 851, 852, 853, 854, 855, 858, 860, 861], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 849], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 421, 458, 467, 486, 515, 516, 544, 620, 623, 625, 626, 656, 677, 694, 701, 702, 703, 803, 805, 806, 811, 817, 825, 826, 828, 835, 836, 837, 849, 850], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 444, 445, 480, 502, 509, 512, 567, 618, 620, 623, 624, 625, 633, 634, 653, 679, 682, 691, 743, 746, 747, 748, 749, 750, 751, 752, 753, 754, 804, 809, 813, 815, 817, 821, 823, 824, 825, 833, 837, 838, 847], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 512, 629, 724, 725, 727, 777, 798, 827, 837, 848, 849, 861], "x_": [18, 28, 93, 279, 618, 849], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 616, 618, 623, 625, 630, 633, 634, 653, 666, 669, 672, 675, 679, 680, 692, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 804, 809, 820, 825, 826, 829, 833, 839, 844], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 433, 762, 804, 805, 829, 839, 852, 858], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 777], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 622, 623, 645, 656, 677, 777, 778, 804, 818, 832, 845, 847, 860], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 423, 444, 462, 472, 474, 480, 502, 510, 511, 615, 617, 622, 623, 624, 625, 630, 632, 633, 634, 647, 648, 653, 656, 668, 677, 679, 683, 684, 686, 689, 692, 693, 694, 696, 730, 731, 739, 741, 742, 743, 744, 753, 754, 778, 787, 798, 805, 807, 809, 810, 813, 815, 824, 826, 828, 831, 833, 839, 845, 848, 854], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 615, 618, 623, 671, 805, 806, 808, 811, 812, 814, 815, 817, 820, 821, 822, 825, 827, 828, 831, 832, 835, 841, 853, 855, 858, 859, 860], "illustr": [19, 29, 809, 833], "trigger": [19, 29, 780, 803, 819], "unif": [19, 21, 22, 29, 31, 799, 835, 844, 850, 860], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 417, 457, 535, 612, 615, 618, 631, 656, 663, 669, 673, 696, 735, 736, 737, 738, 774, 798, 803, 805, 807, 809, 810, 811, 812, 819, 820, 821, 822, 825, 826, 827, 828, 829, 830, 833, 835, 836, 837, 856, 860], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 442, 450, 451, 452, 603, 615, 616, 621, 820, 821, 823, 824, 825, 828, 837, 839, 847, 849, 855, 860], "constitu": [19, 29, 69, 838], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 480, 618, 804, 807, 812, 817, 824, 825, 844, 847, 848, 854], "manner": [19, 27, 29, 39, 47, 70, 627, 716, 804, 813, 814, 816, 821, 825, 829, 836, 839, 843, 850, 852, 860, 861], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 421, 425, 429, 451, 452, 512, 515, 615, 616, 618, 623, 627, 629, 630, 633, 634, 653, 654, 664, 666, 673, 675, 679, 680, 717, 726, 730, 731, 732, 733, 746, 747, 748, 749, 750, 752, 753, 754, 762, 777, 779, 780, 782, 808, 811, 815, 833, 847, 848, 849, 854], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 803, 831], "985": 19, "000": [19, 74, 269, 762, 801, 812, 818], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 605, 618, 621, 623, 664, 665, 726, 828, 836], "slower": [19, 825], "On": [19, 26, 27, 804, 813, 814, 819, 825, 828, 831, 834, 838], "hand": [19, 51, 369, 435, 762, 798, 807, 813, 814, 819, 821, 828, 839], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 432, 496, 586, 599, 603, 618, 620, 621, 622, 629, 631, 648, 725, 726, 727, 735, 762, 778, 803, 804, 805, 807, 812, 815, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 845], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 418, 419, 420, 432, 442, 446, 451, 472, 478, 482, 509, 519, 524, 614, 615, 616, 618, 620, 623, 625, 631, 652, 654, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 697, 735, 736, 737, 738, 762, 764, 770, 778, 803, 804, 807, 808, 813, 814, 815, 816, 821, 825, 826, 828, 831, 832, 836, 838, 845, 851, 859], "workflow": [20, 30, 41, 803, 805, 809, 813, 823, 825, 836, 841, 845, 853, 860, 861], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 572, 594, 620, 813, 830, 860], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 442, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 488, 489, 490, 526, 542, 544, 567, 572, 594, 618, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 764, 765, 804, 805, 809, 810, 811, 812, 813, 817, 822, 825, 828, 829, 830, 831, 854], "conveni": [20, 30, 803, 813, 814, 820, 826, 834, 836, 837, 841, 860], "act": [20, 30, 52, 75, 356, 366, 805, 815, 830, 839, 861], "shorthand": [20, 30, 32, 828], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 413, 618, 622, 623, 635, 636, 637, 638, 640, 642, 644, 651, 653, 792], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 811], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 420, 421, 472, 618, 623, 625, 657, 658, 659, 696, 762, 770, 775, 792, 800, 803, 804, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 822, 825, 826, 827, 828, 829, 831, 833, 835, 839, 848, 854, 860], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 421, 813, 815], "opt": [21, 22, 23, 24, 44, 804, 809, 813, 824, 828, 831], "fw": [21, 22, 23, 24, 56, 79, 380, 509, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 759, 804, 828], "mxnet": [21, 22, 23, 24, 787, 803, 804, 844, 861], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 424, 432, 547, 601, 618, 620, 621, 622, 623, 627, 628, 633, 644, 656, 668, 675, 705, 723, 725, 726, 745], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 532, 533, 534, 620, 813, 844], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 855], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 858, 859], "535": [21, 22, 23, 24, 46, 68, 113, 612, 817], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 532, 533, 605, 620, 621, 623, 633, 668, 745], "wheel": [21, 22, 23, 24, 40, 42, 45, 843], "six": [21, 22, 23, 24, 40, 45, 804, 831], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 622, 648], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 810], "prompt": [21, 22, 23, 24, 803, 805], "toolkit": [21, 22, 23, 24, 854, 855, 861], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 775, 787, 803, 804, 813, 818], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 798, 816, 820, 825, 831, 835, 838, 839, 854, 860, 861], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 798, 847, 848, 849], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 798, 847, 848, 849], "actual": [21, 31, 801, 805, 806, 812, 818, 821, 822, 824, 825, 826, 828, 831, 832, 837, 839, 855, 860], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 616, 618, 630, 631, 730, 731, 735, 736, 737, 738, 807, 812, 814, 817, 830], "becaus": [21, 29, 31, 41, 52, 368, 390, 757, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 831, 833, 837, 838, 839, 854, 857, 860], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 414, 421, 472, 480, 509, 512, 516, 522, 523, 525, 526, 531, 533, 534, 539, 543, 545, 547, 549, 559, 563, 564, 581, 586, 587, 600, 610, 615, 616, 618, 620, 621, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 703, 710, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 770, 775, 778, 779, 780, 787, 791, 794, 798, 803, 806, 807, 808, 809, 810, 811, 815, 816, 819, 821, 826, 828, 829, 831, 833, 835, 836, 841, 843, 847, 848, 849, 854], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 798, 803, 804, 810, 824, 836, 857], "dummi": [21, 22, 31, 32, 33, 39, 805], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 425, 434, 440, 495, 496, 497, 498, 499, 622, 629, 631, 645, 724, 725, 726, 727, 729, 735, 770, 775, 777, 792, 822, 826, 828], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 433, 435, 472, 480, 509, 512, 539, 543, 545, 547, 556, 586, 610, 615, 616, 618, 620, 621, 622, 623, 624, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 682, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 791, 798, 804, 807, 809, 812, 813, 816, 826, 828, 831, 835, 836, 839], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 425, 434, 439, 440, 617, 804, 814, 818, 828, 838, 843, 852, 853, 854, 855, 859, 861], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 798, 803, 804, 807, 817, 819, 826, 828, 840, 852, 855, 858, 860], "critic": [21, 22, 24, 26, 27, 854, 860], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 442, 509, 617, 622, 648, 759, 770, 781, 805, 813, 814, 824, 825, 826, 828, 847, 848], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 417, 421, 491, 492, 494, 527, 528, 549, 620, 623, 664, 680, 723, 778, 782, 829], "slow": [21, 31, 800, 804, 810], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 445, 509, 558, 615, 616, 620, 623, 629, 658, 659, 664, 680, 726, 727, 744, 759, 762, 763, 813, 826, 828], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 631, 735, 736, 737, 738, 800, 803, 805, 814, 822, 826, 828, 831, 845, 849, 855], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 591, 601, 602, 604, 605, 606, 607, 618, 620, 621, 624, 683, 684, 726, 779, 782, 837], "981554": 22, "happen": [22, 26, 27, 287, 618, 798, 804, 805, 814, 824, 828, 836, 845, 847, 848], "wherea": [22, 33, 805, 808, 811, 813, 814, 815, 820, 821, 828, 838, 851], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 472, 615, 618, 808, 811, 815], "begin": [22, 52, 75, 279, 371, 456, 472, 473, 474, 475, 476, 618, 627, 704, 715, 762, 804, 807, 812, 826], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 802, 804, 805, 816, 818, 819, 828, 851, 854, 861], "sympi": [23, 844], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 813, 823], "often": [23, 802, 807, 817, 820, 821, 825, 828, 839, 845, 855, 858, 861], "fortun": [23, 24, 807], "everyth": [23, 41, 791, 798, 803, 804, 805, 806, 812, 815, 824, 825, 826, 828, 834, 839, 840, 845], "practic": [23, 805, 809, 812, 825, 827, 857], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 421, 431, 433, 438, 444, 445, 446, 448, 462, 465, 474, 475, 477, 478, 480, 496, 507, 509, 510, 511, 514, 515, 519, 522, 539, 540, 542, 544, 545, 558, 560, 568, 600, 612, 615, 616, 617, 618, 620, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 648, 651, 653, 655, 656, 658, 659, 664, 672, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 693, 695, 696, 699, 700, 708, 709, 711, 712, 719, 720, 721, 722, 725, 726, 727, 729, 730, 731, 733, 736, 737, 738, 739, 743, 744, 745, 749, 751, 753, 754, 762, 765, 774, 778, 779, 780, 792, 804, 806, 810, 813, 814, 820, 821, 822, 824, 825, 826, 828, 833, 836, 837, 847, 848, 849, 860], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 485, 521, 615, 620, 803, 805, 807, 809, 810, 812, 813, 815, 819, 820, 821, 822, 824, 825, 826, 828, 833, 835, 837, 847, 848, 849, 854], "jax_kornia": [23, 26, 27, 798, 848], "though": [23, 802, 803, 805, 813, 814, 816, 821, 824, 825, 831, 836, 839], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 417, 419, 420, 421, 422, 424, 425, 427, 430, 432, 434, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 466, 469, 482, 488, 490, 501, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 526, 527, 528, 572, 594, 601, 603, 604, 606, 610, 611, 617, 618, 620, 621, 622, 623, 624, 625, 627, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 652, 653, 657, 658, 659, 662, 663, 664, 666, 668, 670, 672, 673, 675, 677, 679, 680, 682, 683, 684, 688, 710, 735, 736, 737, 738, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 759, 764, 778, 781, 792, 798, 804, 811, 812, 813, 821, 823, 825, 828, 830, 831, 833, 836, 839, 841, 844, 845, 847, 848, 850, 852, 854, 855, 857, 858, 860], "000000000034": [23, 26, 27, 798, 848], "raw_img": [23, 26, 27, 798, 848], "enhanc": [23, 26, 27, 798, 827, 848], "sharp": [23, 26, 27, 798], "prefer": [23, 26, 27, 242, 618, 798, 804, 811, 817, 818, 822, 825, 840, 854], "leverag": [23, 26, 27, 798, 804, 824, 848, 852, 854], "whole": [24, 52, 75, 371, 374, 479, 491, 492, 494, 805, 810, 819], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 438, 439, 444, 445, 473, 476, 566, 575, 589, 597, 615, 616, 618, 620, 622, 623, 637, 639, 640, 641, 643, 666, 670, 672, 673, 763, 770, 798, 804, 805, 810, 813, 816, 817, 820, 821, 825, 828, 831, 833, 839, 844, 845, 852, 854, 860], "advantag": [24, 26, 27, 798, 804, 805, 813, 824, 825, 840, 848, 854], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 415, 420, 421, 422, 431, 433, 517, 518, 578, 579, 612, 615, 616, 618, 620, 623, 630, 633, 657, 658, 659, 664, 671, 673, 675, 677, 680, 733, 748, 749, 751, 763, 774, 792, 803, 810, 813, 815, 822, 825, 828, 829, 831, 836, 837, 838, 839, 841, 848, 850, 852, 854, 856, 860, 861], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 764, 778, 848, 852, 854], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 418, 461, 471, 475, 480, 481, 485, 507, 514, 515, 516, 517, 518, 519, 532, 536, 620, 623, 625, 630, 631, 660, 668, 680, 686, 691, 693, 730, 731, 735, 736, 737, 738, 757, 759, 798, 824, 831], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 414, 472, 509, 523, 526, 559, 587, 615, 618, 620, 623, 627, 633, 674, 710, 751, 757, 759, 763, 779, 780, 791, 803, 808, 811, 813, 814, 822, 824, 825, 826, 828, 829, 831, 836, 847, 848, 849], "input_arrai": [24, 26, 27, 824], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 612, 622, 646], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 780, 782, 807, 811, 821, 826, 828, 835, 836, 837, 860], "_transpil": 24, "thank": [24, 836, 844], "fledg": [24, 804, 833, 834], "rand": [24, 26, 27, 42, 791, 792, 798, 847], "output_arrai": [24, 26, 27, 52, 442], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 618, 798, 800, 802, 803, 804, 805, 810, 817, 825, 828, 829, 830, 831, 848, 857], "interest": [24, 26, 38, 235, 268, 618, 803, 805], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 614, 618, 798, 802, 803, 804, 806, 807, 818, 824, 827, 828, 839, 844, 845, 854], "regress": [25, 854, 861], "checkout": [26, 41, 805, 807, 828], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 799, 823, 836, 854], "switch": [26, 38, 770, 809, 817, 821, 822, 861], "easiest": [26, 798, 800, 804, 840], "defer": [26, 27, 803, 808, 813, 814, 821, 824, 825, 828, 860], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 615, 618, 809, 813, 825, 831, 835, 860], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 622, 648, 764, 825, 847], "essenc": [26, 855, 860], "becom": [26, 52, 75, 92, 339, 365, 371, 452, 625, 685, 787, 805, 811, 813, 815, 817, 824, 839, 843, 845, 847], "regardless": [26, 27, 38, 69, 799, 813, 817, 835, 838, 845], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 429, 456, 472, 573, 615, 620, 623, 659, 759, 765, 777, 798, 804, 805, 807, 808, 809, 811, 813, 814, 815, 818, 820, 822, 824, 825, 826, 828, 829, 831, 833, 836, 839, 844, 845, 850, 852, 853, 854, 855, 860, 861], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 413, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 414, 421, 432, 435, 442, 446, 457, 460, 478, 482, 483, 488, 489, 490, 491, 495, 496, 497, 498, 499, 507, 516, 519, 524, 526, 535, 544, 547, 548, 578, 579, 580, 583, 611, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 627, 629, 633, 634, 645, 648, 656, 658, 661, 662, 667, 668, 672, 673, 685, 688, 690, 694, 696, 704, 707, 709, 711, 712, 713, 714, 715, 719, 720, 721, 722, 724, 725, 726, 727, 729, 735, 745, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 777, 792, 796, 798, 802, 803, 804, 806, 811, 813, 814, 817, 820, 821, 825, 826, 828, 833, 836, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 854, 855], "regressor": [26, 27, 798], "input_dim": [26, 27, 41, 798], "output_dim": [26, 27, 41, 798], "linear0": [26, 27, 38, 798, 836, 837], "linear1": [26, 27, 38, 798, 836, 837], "instanti": [26, 27, 770, 816], "adam": [26, 27, 38, 42, 54, 77, 523, 601, 602, 607, 620, 621, 782, 798, 836, 837, 838, 854], "n_training_exampl": [26, 27, 798], "2000": [26, 27, 75, 308, 362, 798], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 532, 620, 622, 623, 629, 637, 639, 640, 641, 643, 644, 647, 673, 798], "linspac": [26, 27, 48, 71, 121, 615, 798, 820, 831, 833, 861], "loss_fn": [26, 27, 38, 40, 42, 798, 836, 837, 838], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 441, 444, 624, 682, 683, 684, 798, 811, 821, 824], "epoch": [26, 27, 40, 42, 798], "loss": [26, 27, 40, 42, 52, 75, 92, 441, 442, 443, 444, 445, 446, 447, 572, 594, 620, 682, 683, 684, 798, 812, 813, 821, 825, 829, 830, 836, 837, 838, 854, 861], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 617, 626, 701, 702, 703, 759, 770, 782, 798, 806, 829, 836, 837, 839, 854], "grad": [26, 27, 38, 42, 601, 621, 782, 798, 823, 836, 837, 838], "execute_with_gradi": [26, 27, 38, 42, 621, 798, 836, 837, 838, 839], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 531, 603, 604, 606, 611, 614, 620, 621, 623, 627, 658, 711, 712, 716, 798, 803, 821, 822, 823, 826, 831, 833, 836], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 431, 438, 451, 461, 509, 778, 798, 825, 831], "5f": [26, 27, 798], "nonetheless": [26, 27], "slight": [26, 27, 813, 828, 837], "introduc": [26, 27, 242, 618, 625, 631, 693, 735, 803, 811, 812, 813, 822, 826, 828, 831, 836, 843], "address": [26, 27, 52, 53, 75, 371, 480, 585, 620, 803, 805, 807, 808, 820, 827, 833, 845, 850, 852, 854, 860], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 455, 481, 825, 827, 829, 850, 854, 855, 860], "gc": [26, 27, 544, 620], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 429, 434, 437, 440, 825, 838], "said": [26, 27, 764, 829, 845, 847], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 423, 436, 438, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 462, 463, 464, 471, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 508, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 578, 579, 581, 583, 585, 586, 587, 599, 603, 605, 610, 614, 615, 616, 617, 618, 620, 621, 622, 623, 626, 627, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 654, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 673, 677, 679, 680, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 717, 724, 725, 726, 727, 729, 730, 731, 732, 734, 735, 736, 737, 738, 739, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 762, 763, 778, 780, 781, 787, 798, 805, 808, 811, 813, 814, 815, 821, 822, 824, 828, 833, 840, 847, 848], "x0": [26, 27, 45, 76, 524, 620, 815], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 633, 671, 672, 700, 750, 798, 816, 844], "fname": [26, 27, 43, 45, 780, 836], "anticip": [26, 27], "addition": [26, 27, 811, 824, 825, 860], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 803, 804], "built": [26, 27, 32, 40, 42, 45, 121, 615, 778, 779, 780, 798, 804, 805, 810, 811, 828, 834, 840, 847, 853, 854, 858], "summar": [26, 27, 92, 828], "eager_graph": [26, 27, 798, 847, 848], "lazy_graph": [26, 27, 798, 847, 848], "codebas": [26, 27, 206, 207, 617, 799, 806, 813, 819, 824, 825, 827, 828, 829, 832, 845], "thought": [26, 27, 804, 805, 820, 844, 852], "research": [26, 27, 40, 798, 843, 848, 854, 861], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 439, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 587, 599, 605, 610, 618, 620, 627, 633, 634, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 787, 798, 800, 805, 807, 809, 810, 812, 815, 821, 823, 825, 833, 835, 844, 847, 848, 853, 854, 856], "No": [26, 27, 40, 52, 58, 75, 81, 370, 442, 443, 444, 446, 447, 624, 682, 805, 812, 813, 854], "matter": [26, 27, 32, 815, 843], "job": [26, 27, 798, 810, 812, 848], "haven": [26, 27, 32, 840, 854], "jax_out": [26, 27], "ideal": [26, 27, 812, 813, 825, 831, 836], "But": [26, 27, 764, 811, 812, 816, 819, 822, 831, 838], "bring": [26, 27, 807, 827, 828, 833, 834, 841, 844], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 419, 426, 459, 466, 468, 469, 487, 612, 618, 625, 653, 685, 782, 831], "vision": [26, 27, 45, 850, 860], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 854], "chosen": [26, 27, 45, 95, 121, 223, 615, 618, 630, 734, 803, 812, 825], "plai": [26, 27, 370, 444, 798, 804, 808, 814, 818, 825, 828, 838, 854, 857], "role": [26, 27, 798, 805, 814, 825, 834, 855, 857, 861], "dl": [26, 27], "cnn": [26, 27, 854], "effortlessli": [26, 27], "previous": [26, 27, 589, 620, 787, 804, 809, 821, 823, 828, 833], "pre": [26, 27, 798, 801, 803, 827, 828, 838, 839, 840, 854], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 617, 814, 817, 818], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 616, 617, 813], "certainli": [26, 27, 798, 844, 860], "upon": [26, 27, 44, 805, 815, 824, 828, 831, 839, 853, 854], "unnecessari": [26, 27, 825], "extend": [26, 27, 52, 75, 371, 380, 472, 512, 809, 810, 813, 816, 817, 820, 825, 829, 839, 851, 854, 860], "infrastructur": [26, 27, 798, 850, 856, 857], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 450, 451, 452, 461, 463, 509, 618, 623, 630, 663, 733, 798, 805, 808, 812, 813, 814, 815, 821, 824, 828, 848], "coco": 26, "seamlessli": [27, 828], "benefit": [27, 798, 804, 808, 811, 824, 831, 835, 836, 839, 844, 845, 852, 856, 859], "through": [27, 32, 40, 52, 75, 95, 223, 380, 515, 516, 618, 627, 707, 713, 780, 791, 798, 799, 801, 802, 803, 805, 806, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 824, 825, 826, 828, 830, 831, 832, 833, 836, 837, 838, 847, 852, 854, 855, 856], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 465, 472, 473, 475, 480, 484, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 805, 807, 808, 811, 812, 813, 814, 815, 816, 817, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 837, 839, 843, 851, 854, 860], "wide": [27, 798, 805, 828, 852, 854], "prepar": [27, 40, 42, 45, 798, 812], "plenti": 27, "resourc": [27, 799, 803, 804, 812], "visit": [27, 803, 804, 805, 812], "page": [27, 798, 803, 804, 805, 810, 812, 818, 834, 835, 838, 840, 849], "newli": [28, 29, 41, 43, 49, 72, 147, 526, 616, 620, 805, 812, 824, 828], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 618, 627, 704, 715, 803, 804, 809, 811, 812, 819, 828, 836, 837], "inspect": [28, 32, 522, 620], "__": [28, 29, 30, 31, 32, 33, 69, 815, 836], "exhibit": [29, 860], "via": [29, 32, 242, 369, 371, 434, 437, 440, 480, 618, 627, 714, 715, 805, 807, 811, 813, 814, 824, 829, 831, 833, 835, 836, 854], "script": [29, 798, 804, 805, 807, 812, 815, 833, 839, 854], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 456, 457, 478, 480, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 626, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 706, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 783, 808, 811, 823, 825, 837, 838, 839, 854], "un": [29, 165, 616, 813, 833], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 462, 625, 692], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 618, 784, 792, 816, 825, 833, 838, 854, 855], "fastest": [29, 52, 59, 75, 82, 369, 371, 432, 462, 625, 692], "maxim": [29, 821, 824, 833, 851, 852, 856, 857, 858], "conclud": [30, 829], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 612, 617, 620, 621, 622, 624, 627, 628, 629, 717, 774, 778, 779, 780, 781, 782, 804, 812, 817, 818, 822, 823, 826, 828, 852, 854, 857], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 569, 570, 573, 578, 579, 591, 592, 595, 616, 617, 620, 770, 781, 787, 804, 808, 809, 812, 813, 814, 817, 821, 825, 833, 854], "approach": [31, 801, 803, 804, 805, 808, 811, 813, 814, 818, 821, 825, 828, 829, 831, 835, 836, 839, 851, 858, 860], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 416, 419, 421, 423, 427, 432, 435, 440, 441, 443, 444, 445, 446, 450, 451, 452, 453, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 478, 480, 481, 482, 483, 486, 487, 492, 494, 496, 497, 499, 500, 502, 509, 510, 511, 512, 514, 516, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 578, 579, 581, 585, 586, 599, 601, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 791, 792, 798, 799, 801, 805, 806, 807, 809, 811, 812, 815, 818, 821, 823, 826, 832, 833, 834, 836, 837, 838, 842, 845, 847, 850], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 414, 415, 417, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 455, 456, 457, 458, 460, 462, 463, 464, 465, 466, 467, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 530, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 568, 578, 579, 581, 583, 585, 586, 587, 599, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 710, 711, 715, 716, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 763, 770, 774, 775, 777, 778, 780, 782, 783, 791, 796, 803, 804, 805, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 831, 833, 838, 839, 847, 848, 849, 854, 860], "prioriti": [32, 69, 787, 803, 805, 814, 824], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 421, 441, 480, 509, 521, 524, 545, 546, 550, 551, 552, 553, 554, 555, 581, 599, 615, 616, 617, 618, 620, 623, 625, 626, 631, 634, 652, 653, 654, 656, 660, 661, 663, 665, 666, 668, 669, 671, 672, 677, 679, 680, 686, 701, 702, 703, 735, 736, 737, 738, 739, 753, 754, 764, 770, 777, 781, 811, 813, 814, 816, 821, 825, 828, 830, 831, 843], "think": [32, 803, 805, 812, 815, 831, 855], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 414, 435, 471, 472, 485, 556, 620, 626, 627, 631, 701, 702, 703, 706, 710, 735, 736, 737, 738, 764, 798, 803, 807, 811, 821, 825, 826, 827, 831, 839, 843, 857], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 460, 509, 616, 618, 623, 625, 652, 653, 660, 665, 668, 672, 686, 764, 791, 807, 808, 811, 812, 813, 815, 819, 820, 821, 823, 828, 831, 855], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 415, 417, 418, 426, 427, 430, 431, 433, 441, 442, 443, 444, 446, 447, 453, 457, 460, 465, 473, 474, 475, 476, 478, 480, 482, 484, 488, 491, 492, 494, 495, 496, 498, 499, 509, 510, 511, 512, 515, 516, 517, 518, 519, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 672, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 791, 811, 813, 815, 816, 817, 828, 829, 833], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 623, 628, 678, 723, 821, 829, 833], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 417, 418, 420, 426, 427, 430, 431, 432, 433, 438, 441, 442, 443, 444, 446, 447, 450, 451, 452, 457, 458, 460, 462, 463, 464, 465, 467, 471, 473, 474, 475, 476, 478, 480, 481, 482, 484, 486, 491, 492, 494, 495, 496, 498, 499, 502, 509, 510, 511, 512, 519, 527, 528, 532, 533, 534, 539, 540, 542, 549, 563, 564, 600, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 777, 778, 782, 784, 802, 803, 804, 805, 807, 808, 812, 813, 814, 815, 816, 817, 820, 821, 822, 824, 825, 828, 829, 830, 831, 833, 837, 838, 843, 845, 848, 849, 855, 861], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 623, 656, 677, 803, 812, 825, 829, 838, 855], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 462, 618, 625, 692, 777, 791, 804, 812, 816, 825, 829, 847], "rather": [32, 53, 69, 76, 121, 208, 551, 552, 555, 615, 617, 620, 801, 805, 807, 811, 813, 816, 818, 825, 826, 828, 829, 838, 839, 844, 850, 853, 854], "fact": [32, 92, 805, 807, 812, 825, 828, 833, 836], "consum": [32, 759, 811, 812, 820, 826, 828], "thrown": [32, 549, 620, 804, 808, 814, 817, 819, 839], "doesn": [32, 549, 567, 620, 757, 778, 803, 804, 809, 811, 812, 813, 814, 815, 818, 819, 821, 823, 828, 831, 833, 839, 847, 852], "consider": [32, 803, 815, 820, 831, 843, 851, 852], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 444, 601, 609, 615, 621, 622, 633, 648, 750, 752, 762, 765, 803, 808, 811, 812, 816, 820, 824, 826, 831, 839, 844], "explain": [32, 52, 75, 368, 401, 412, 798, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 828, 829, 831, 833, 834, 835, 836, 837, 838, 850, 857, 860], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 450, 451, 452, 458, 460, 461, 462, 463, 464, 471, 486, 572, 594, 618, 620, 688, 689, 690, 692, 694, 695, 697, 699, 798, 803, 804, 808, 809, 811, 813, 815, 824, 825, 828, 830, 831, 847, 848], "standalon": [33, 803, 808, 828, 841, 850, 855, 860, 861], "dynam": [33, 625, 692, 780, 787, 806, 812, 813, 814, 824, 825, 830, 833, 847, 854, 858], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 414, 434, 440, 478, 489, 581, 615, 622, 648, 668, 775, 780, 825, 830, 839, 853, 854, 855], "flow": [34, 811, 847, 854, 855], "statement": [34, 39, 812, 824, 828, 831, 839, 847, 848], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 510, 511, 615, 629, 727, 743, 762, 765, 787, 815, 833, 847], "todo": [35, 36, 37, 42, 45, 75, 511, 803, 813, 825], "aim": [38, 801, 805, 807, 818, 822, 825, 828, 832, 852, 854, 857], "interfac": [38, 71, 129, 615, 835, 838, 839, 841, 844, 850, 851, 852, 853, 854, 858, 861], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 618, 622, 623, 627, 630, 633, 645, 668, 712, 725, 726, 734, 745], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 510, 516, 601, 607, 618, 621, 623, 625, 633, 668, 694, 726, 727, 745, 762], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 615, 618, 627, 705, 725, 726], "underneath": [38, 812, 852], "sai": [38, 803, 804, 818, 822, 835, 845], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 455, 480, 481, 527, 528, 618, 620, 625, 811, 821, 823, 824, 836, 838], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 838], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 838], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 421, 477, 517, 533, 563, 564, 578, 615, 616, 618, 620, 623, 633, 664, 670, 673, 674, 680, 798], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 421, 477, 479, 480, 527, 528, 533, 549, 563, 564, 616, 618, 620, 623, 633, 664, 666, 669, 762, 778, 782, 812, 825], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 432, 510, 618, 633, 678, 726, 745], "devicearrai": [38, 808, 825, 833, 835], "concaten": [38, 52, 53, 59, 75, 80, 371, 457, 532, 536, 620, 622, 625, 648, 668, 686, 762, 826, 831, 833, 836], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 803, 804, 805, 808, 811, 813, 814, 815, 816, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 835, 841, 852], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 510, 578, 605, 612, 618, 620, 621, 622, 629, 646, 725, 726, 727], "mymodel": [38, 836], "x_in": [38, 836, 837, 838], "reduce_mean": [38, 798, 836, 837, 838], "91": [38, 52, 79, 84, 353, 365, 410, 622, 623, 629, 633, 646, 668, 726, 745], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 510, 618, 622, 623, 633, 646, 665, 668, 725, 726, 727, 745, 812, 815], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 510, 547, 618, 620, 623, 629, 633, 661, 668, 726, 727, 745, 807], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 527, 618, 620], "4678264260292053": 38, "59": [38, 51, 230, 380, 510], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 601, 618, 621, 622, 623, 624, 644, 660, 682, 684, 727, 818], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 618], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 605, 618, 621, 623, 633, 668, 726, 745], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 618, 623, 665], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 607, 618, 621, 623, 629, 633, 668, 726, 745], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 527, 528, 618, 620, 727], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 432, 510, 623, 627, 633, 668, 715, 745, 844], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 510, 616, 618, 623, 627, 629, 633, 660, 665, 678, 712, 727, 745, 828], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 616, 617, 623, 628, 633, 646, 668, 723, 726, 727, 745], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 605, 612, 621, 623, 627, 630, 633, 668, 705, 716, 725, 727, 734, 745], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 839, 844, 860], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 414, 622, 651, 762, 792, 803, 813, 818, 819, 824, 826, 828, 829, 847, 855, 857], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 442, 496, 509, 569, 570, 578, 579, 591, 592, 615, 616, 618, 620, 623, 629, 630, 633, 653, 660, 663, 668, 671, 673, 675, 677, 679, 725, 726, 727, 729, 730, 731, 733, 734, 739, 746, 749, 751, 762, 763, 764, 765, 777, 801, 813, 818, 823, 825, 826, 828, 829, 830, 831, 833, 837, 851, 854, 860], "anyth": [39, 52, 75, 380, 515, 516, 805, 817, 828, 829, 854, 855], "affect": [39, 45, 52, 370, 445, 812, 825], "intermedi": [39, 852, 853, 854, 855, 860], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 369, 375, 380, 436, 497, 508, 509, 525, 549, 550, 551, 552, 555, 581, 602, 603, 605, 607, 608, 609, 614, 620, 621, 623, 626, 628, 672, 701, 702, 703, 723, 759, 770, 775, 777, 778, 779, 780, 781, 782, 783, 805, 809, 813, 816, 820, 823, 824, 828, 829, 833, 836, 837, 838, 839, 840, 847, 855], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 614, 626, 633, 701, 702, 784, 804, 815, 833], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 536, 618, 620, 802, 813, 833, 844], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 536, 618, 620, 808, 833], "tan": [39, 51, 74, 523, 618, 620, 816, 820, 821, 824, 825, 833], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 812, 813, 815], "opeat": 39, "_layer": [39, 833], "net": [39, 44, 45, 833, 838, 844, 845], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 480, 509, 616, 618, 623, 625, 633, 671, 672, 700, 750, 778, 798, 803, 804, 805, 807, 809, 812, 816, 818, 829, 839, 840, 848, 859], "pypi": [40, 42, 45, 803, 804, 829, 839], "pkg": [40, 42, 45], "public": [40, 42, 45, 529, 620, 812, 823, 835, 857], "revis": [40, 42, 805], "tmp": [40, 42, 576, 598, 620], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 798, 800, 804, 807, 810, 812, 818, 819, 840], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 764, 778, 798, 809, 812], "quiet": [40, 42], "commit": [40, 42, 801, 803, 807, 815, 827, 828], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 824], "setup": [40, 42, 45, 804, 805, 810, 812, 818], "done": [40, 42, 45, 623, 659, 802, 803, 804, 805, 807, 810, 812, 814, 815, 818, 819, 824, 825, 828, 836, 847, 848, 854], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 804], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 804], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 419, 423, 435, 439, 536, 620, 623, 625, 677, 694, 759, 760, 778, 779, 780, 800, 805, 808, 809, 811, 816, 822, 824, 825, 826, 833, 835, 836, 837, 841, 847], "directori": [40, 41, 42, 45, 576, 598, 617, 620, 800, 803, 804, 805, 810, 812, 818, 825, 828, 840], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 780, 804, 808], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 457, 510, 617, 627, 656, 663, 696, 715, 735, 792, 803, 804, 805, 808, 809, 810, 811, 813, 814, 816, 819, 822, 824, 825, 840, 856], "cannot": [40, 41, 42, 45, 52, 285, 450, 451, 452, 618, 805, 807, 809, 813, 825, 833, 838, 860], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 804, 818, 836], "psst": 40, "cv2": [40, 42, 44, 836], "pickl": [40, 41, 69, 780, 811, 836], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 617, 814, 854, 857], "back": [40, 52, 59, 75, 82, 371, 462, 483, 565, 588, 620, 622, 625, 648, 692, 777, 782, 792, 804, 808, 813, 814, 817, 822, 823, 830, 832, 839, 840, 844, 852, 856], "tf_cpp_min_log_level": 40, "info": [40, 795, 798, 810, 816, 819], "mkdir": [40, 41, 42, 804, 812], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 569, 601, 602, 607, 612, 615, 616, 618, 620, 621, 762, 804, 828], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 420, 425, 431, 433, 438, 472, 474, 476, 493, 497, 509, 528, 532, 549, 600, 615, 620, 622, 623, 646, 648, 653, 657, 658, 660, 663, 668, 673, 674, 678, 679, 680, 681, 762, 778, 854], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 759, 778, 779, 780, 798, 848], "is_train": 40, "po": [40, 792], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 542, 568, 617, 620, 622, 648, 651, 778, 811, 813, 818, 835, 854], "decod": [40, 836], "cross": [40, 42, 57, 58, 80, 81, 93, 623, 624, 682, 683, 684, 798, 812, 813], "attend": [40, 622, 648], "encoder_queri": 40, "latent": [40, 626, 702, 703], "imagepreprocessor": 40, "deal": [40, 780, 801, 814, 821, 823, 825, 839], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 414, 536, 620], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 536, 620], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 798], "perceiverencod": 40, "At": [40, 803, 804, 805, 807, 818, 828, 829, 844, 854], "almost": [40, 802, 811, 826, 834, 836, 843], "publish": [40, 798, 839, 845, 848], "thankfulli": [40, 828], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 462, 615, 625, 692, 803, 804, 810, 812, 818, 828, 830, 831, 854], "09": [40, 46, 51, 77, 84, 113, 273, 283, 601, 612, 618, 621, 726], "173": [40, 57, 623, 660], "194": 40, "217": [40, 817], "125": [40, 52, 57, 80, 229, 339, 365, 370, 441, 618, 623, 678], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 777], "image_height": [40, 42, 798], "image_width": [40, 798], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 472, 507, 511, 517, 569, 570, 578, 579, 591, 592, 618, 620, 625, 630, 633, 685, 731, 746, 748, 762, 764, 765, 770, 813, 830, 851, 857, 861], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 839], "dummy_input": [40, 798], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 798, 848], "perceiverioclassifi": [40, 798], "max_pool": [40, 798], "huggingfac": [40, 847, 848], "Of": [40, 808, 824, 825, 836, 859, 860], "cours": [40, 804, 805, 807, 808, 815, 824, 825, 831, 836, 839, 859, 860], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 620, 836, 839], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 646], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 798], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 573, 595, 620, 830], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 813], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 627, 704], "2022": [40, 41], "pytz": 40, "2020": [40, 807, 854], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 798, 833, 843], "load_dataset": [40, 847, 848], "n_sampl": [40, 52, 75, 369, 371, 416, 424, 475], "10000": [40, 42, 48, 71, 133, 615], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 458, 467, 486, 532, 559, 612, 617, 618, 620, 622, 625, 635, 642, 643, 697, 759, 774, 778, 798, 799, 805, 812, 832, 833, 839, 861], "wiki_art": 40, "gib": 40, "unknown": [40, 762], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 615, 617, 630, 633, 733, 750, 752, 792, 798, 799, 804, 805, 813, 814, 815, 828, 831, 836, 837, 839, 845], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 787, 804, 808, 812, 813, 815, 820, 821, 824, 828, 837, 855], "reus": [40, 48, 71, 75, 82, 123, 450, 451, 458, 460, 462, 463, 464, 471, 486, 688, 689, 690, 692, 694, 695, 697, 699, 817, 828, 859], "curl": [40, 804], "server": [40, 798, 804, 805, 810, 818, 840, 854], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 426, 436, 464, 470, 487, 502, 508, 509, 615, 623, 629, 630, 664, 672, 673, 678, 724, 733, 777], "2fwikiart": 40, "receiv": [40, 44, 92, 523, 559, 620, 626, 701, 702, 703, 778, 804, 805, 813, 814, 828, 831], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 442, 443, 444, 445, 446, 447, 493, 509, 601, 602, 607, 621, 622, 624, 626, 648, 682, 701, 702, 777, 778], "dload": 40, "upload": [40, 828], "spent": [40, 845], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 414, 417, 420, 424, 425, 426, 434, 438, 440, 450, 451, 452, 472, 473, 474, 475, 476, 478, 480, 482, 485, 488, 489, 490, 507, 509, 510, 511, 512, 518, 536, 543, 561, 578, 579, 586, 599, 600, 613, 615, 616, 617, 618, 620, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 642, 643, 645, 648, 653, 657, 658, 659, 666, 671, 673, 677, 678, 679, 682, 685, 687, 688, 690, 691, 693, 694, 696, 698, 700, 701, 702, 703, 724, 728, 733, 735, 736, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 770, 777, 778, 781, 792, 798, 804, 805, 811, 812, 813, 814, 815, 822, 823, 824, 828, 829, 830, 831, 833, 836, 842, 843, 847], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 792, 816, 824, 826, 831, 833, 847, 852, 860], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 791, 803, 804, 854, 855], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 762, 791, 800, 806, 812, 817, 822, 826, 828, 831, 837, 844, 854, 858, 859, 860], "hugginfac": 40, "customdataset": 40, "__len__": [40, 811], "__getitem__": [40, 69, 811], "idx": [40, 41, 42, 522, 620, 798, 814, 835], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 447, 622, 629, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 724, 798, 836], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 442, 488, 489, 490, 493, 536, 539, 540, 600, 617, 620, 622, 623, 626, 628, 646, 647, 648, 662, 680, 701, 702, 703, 723, 762, 778, 781, 798, 811, 821, 826, 836, 852], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 369, 371, 425, 434, 440, 456, 472, 521, 559, 614, 617, 620, 625, 627, 687, 691, 698, 700, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 719, 720, 722, 791, 792, 807, 809, 811, 833, 836, 845, 847], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 779], "sgd": [40, 782, 854], "lr": [40, 54, 77, 523, 602, 605, 607, 608, 609, 620, 621, 782, 836, 837], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 602, 616, 618, 621, 628, 723, 762, 836, 837], "train_step": 40, "running_loss": [40, 42, 798], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 803, 828], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 618, 623, 634, 653, 679, 753, 754, 778, 829, 839], "adjust": [40, 65, 88, 369, 436, 633, 750, 752, 787], "999": [40, 54, 74, 77, 286, 601, 602, 607, 609, 618, 621, 782, 837], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 779, 780], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 629, 725, 813], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 419, 441, 442, 443, 444, 445, 446, 447, 477, 493, 515, 516, 533, 563, 564, 617, 618, 620, 622, 623, 624, 633, 645, 651, 664, 673, 677, 680, 682, 744, 745, 777, 779, 791, 798, 811, 813, 821, 823, 824, 825, 833, 847, 848, 849], "augment": 40, "mayb": [40, 41, 47, 798, 804, 812, 833, 835], "meta": [40, 701, 702, 703, 808, 829, 854], "finetun": 40, "deploi": [40, 798, 812, 841, 848, 852, 853, 854, 856, 860], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 488, 489, 490, 633, 748, 803, 804, 805, 811, 813, 814, 820, 824, 833, 843, 851, 852, 861], "percieverio": 41, "ai": [41, 812, 852, 856], "contribut": [41, 52, 75, 380, 512, 802, 804, 805, 810, 818, 819, 825, 826, 833, 840, 847, 858], "highli": [41, 798, 803, 854], "invit": [41, 803, 825, 831], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 616, 762, 763, 798, 809, 811, 815, 821, 823, 825, 826, 828, 831, 833, 844, 852, 853, 860], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 812, 853, 860], "tee": [41, 804], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 440, 480, 495, 496, 497, 498, 499, 510, 511, 616, 617, 618, 623, 627, 629, 631, 633, 658, 659, 664, 671, 673, 674, 680, 707, 711, 713, 716, 721, 725, 726, 727, 735, 736, 737, 738, 743, 744, 746, 748, 749, 751, 777, 799, 803, 804, 806, 807, 809, 810, 811, 823, 825, 828, 833, 839, 841, 845, 850], "uuid": 41, "anywai": [41, 808, 822, 825], "bin": [41, 52, 75, 380, 507, 512, 804, 805, 807, 811], "bash": [41, 804, 805, 807], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 442, 509, 615, 812, 855], "sudo": [41, 804], "apt": [41, 804], "yf": 41, "step3": 41, "delet": [41, 805, 812], "xvzf": 41, "rm": [41, 43, 800, 805], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 420, 622, 623, 648, 652, 657, 658, 659, 663, 677, 805, 806], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 418, 432, 452, 458, 460, 463, 467, 481, 483, 486, 493, 495, 501, 524, 535, 612, 615, 616, 618, 622, 623, 625, 627, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 655, 656, 660, 664, 668, 677, 678, 694, 707, 711, 712, 713, 716, 721, 722, 763, 792, 798, 799, 804, 806, 809, 810, 811, 818, 823, 828, 831, 836, 844, 845, 850], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 432, 513, 623, 662, 804, 825, 854], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 489, 536, 620, 622, 648, 804, 805, 808, 811, 812, 815, 826, 827, 828, 833, 835, 836, 855, 859], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 852, 859], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 804], "helper": [41, 757, 759, 760, 766, 768, 769, 798, 801, 810, 813, 817, 818, 827, 836, 841], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 544, 620, 804, 805, 807, 812], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 616, 623, 660], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 435, 471, 472, 478, 491, 514, 515, 516, 517, 518, 519, 532, 600, 617, 620, 623, 625, 630, 633, 634, 653, 664, 672, 675, 676, 680, 687, 689, 690, 693, 695, 697, 700, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 778, 813, 815, 828, 829, 833, 835], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 429, 435, 436, 438, 463, 532, 614, 618, 620, 623, 632, 673, 678, 741, 762, 799, 803, 804, 805, 806, 807, 815, 818, 831, 836, 847], "bottom": [41, 532, 620, 803, 804, 812, 818, 860], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 434, 444, 457, 458, 459, 461, 463, 464, 472, 477, 480, 482, 491, 492, 493, 494, 510, 511, 512, 514, 515, 516, 517, 518, 519, 532, 539, 614, 615, 617, 618, 620, 623, 624, 625, 626, 629, 630, 632, 633, 634, 653, 668, 677, 679, 680, 682, 683, 684, 686, 689, 690, 691, 693, 694, 696, 698, 699, 701, 702, 703, 729, 730, 731, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 778, 798, 803, 806, 815, 824, 827, 829, 831, 833, 854], "figur": [41, 830], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 456, 457, 625, 686, 696, 798], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 797], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 797, 803, 804, 805], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 615, 622, 623, 629, 647, 651, 681, 724, 778, 831, 833, 835], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 835], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 480, 509, 618, 623, 671, 800, 804, 805, 810, 812, 818, 836, 847, 854], "action": [41, 802, 812, 815, 819, 828], "fail": [41, 757, 801, 804, 805, 807, 812, 813, 815, 819, 822, 824, 825, 826], "placehold": [41, 627, 711, 716, 721, 778, 805, 808, 820, 841], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 629, 814, 817, 828, 833, 837], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 839], "declar": [41, 805, 827], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 459, 485, 623, 631, 673, 735, 810, 813, 824, 839, 853, 854, 860], "parti": [42, 810, 813, 839, 844, 853, 854, 860], "mount": [42, 800, 805], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 450, 451, 452, 455, 472, 481, 533, 620, 625, 629, 692, 725, 808, 811, 813, 815, 821, 826, 828, 833, 835, 836], "kaggl": 42, "medium": 42, "articl": [42, 798, 819], "insert": [42, 52, 62, 75, 85, 371, 447, 457, 625, 627, 630, 632, 688, 708, 709, 730, 741, 812, 819], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 833], "readabl": [42, 808, 811, 817, 819, 820, 828, 829, 835, 836], "chmod": [42, 804, 812], "recent": [42, 795, 804, 805, 828, 843, 844], "modifi": [42, 52, 69, 75, 92, 371, 380, 469, 472, 477, 516, 762, 792, 803, 804, 805, 807, 809, 810, 813, 814, 816, 818, 819, 821, 824, 826, 828, 829, 833], "forc": [42, 810, 812, 814], "archiv": [42, 804], "inflat": [42, 813], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 414, 844, 854], "later": [42, 69, 526, 620, 803, 819, 824, 828, 829, 854], "my": [42, 812], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 421, 434, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 455, 456, 457, 462, 478, 480, 481, 482, 483, 488, 489, 490, 491, 492, 494, 496, 498, 509, 510, 511, 512, 519, 521, 522, 524, 525, 527, 528, 530, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 566, 567, 576, 578, 579, 581, 583, 585, 586, 599, 603, 610, 614, 615, 616, 617, 620, 621, 622, 623, 624, 625, 626, 627, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 674, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 710, 711, 716, 721, 724, 725, 726, 727, 729, 732, 735, 736, 737, 739, 743, 744, 745, 747, 749, 750, 752, 753, 754, 759, 760, 762, 763, 768, 770, 778, 780, 781, 791, 792, 813, 814, 817, 821, 824, 825, 829, 833, 838, 847, 848, 849], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 798, 803, 833, 843], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 615, 616, 725, 762, 763, 813, 828], "new_img": [42, 44], "builder": [42, 800], "batchwis": 42, "subset": [42, 764, 808, 812, 816, 820, 823, 825, 828, 833, 854], "goe": [42, 371, 455, 806, 819, 824, 831], "seed_valu": [42, 69, 629, 728], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 497, 629], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 759], "dir": [42, 836], "img_path": 42, "imread": [42, 44, 836], "imread_grayscal": 42, "generate_batch": [42, 798], "dataset_s": [42, 798], "ivyerror": [42, 793, 798, 817], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 509, 510, 511, 532, 620, 625, 633, 685, 693, 743, 744, 749, 751, 798, 805, 817, 833], "yield": [42, 62, 314, 315, 362, 371, 472, 630, 734, 798, 812], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 420, 429, 459, 468, 472, 487, 522, 582, 584, 615, 620, 622, 623, 627, 652, 654, 656, 657, 658, 659, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677, 705, 716, 762, 777, 799, 803, 804, 821, 828, 831, 837, 838, 844, 854, 855, 860], "intialis": 42, "num_epoch": [42, 798], "inherit": [42, 808, 811, 817, 835, 839, 841], "creation": [42, 52, 69, 75, 98, 810, 813, 814, 820, 822, 825, 826, 828, 829, 833, 847, 854, 856, 860], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 522, 610, 616, 620, 621, 626, 703, 798, 802, 803, 804, 805, 807, 811, 812, 817, 821, 822, 824, 826, 828, 857], "insid": [42, 57, 80, 98, 371, 482, 623, 666, 760, 804, 805, 808, 811, 813, 814, 818, 821, 822, 828, 829, 847, 860], "ivynet": [42, 798], "h_w": [42, 798], "input_channel": [42, 778, 798, 833, 837], "output_channel": [42, 778, 798, 837], "gelu": [42, 43, 46, 68, 612, 774, 798], "image_widht": 42, "start_dim": [42, 52, 75, 371, 462, 798], "end_dim": [42, 52, 75, 371, 462, 798], "gpu_is_avail": [42, 617, 798], "120": [42, 65, 88, 98, 623, 668, 743, 798], "model_nam": [42, 798], "__name__": [42, 43, 45, 587, 620, 798, 817], "heavi": [42, 764, 804, 825, 826, 831, 855], "lift": [42, 826, 855], "num_correct": [42, 798], "y_pred": [42, 798], "cross_entropi": [42, 58, 81, 624, 684, 798, 811, 821, 824], "epoch_loss": [42, 798], "field": [42, 57, 63, 80, 86, 369, 371, 420, 485, 623, 631, 657, 658, 670, 671, 673, 735, 736, 737, 798, 812, 852, 860], "training_accuraci": [42, 798], "train_loss": [42, 798], "train_correct": [42, 798], "train_loop": [42, 798], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 418, 436, 446, 471, 480, 526, 536, 600, 613, 615, 616, 618, 620, 623, 624, 625, 629, 630, 634, 652, 655, 677, 682, 688, 693, 728, 733, 753, 754, 759, 762, 770, 775, 779, 780, 792, 798, 803, 805, 807, 811, 825, 828, 829, 836, 847, 856], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 456, 457, 462, 474, 475, 476, 491, 492, 494, 510, 511, 516, 536, 583, 625, 627, 641, 651, 656, 673, 687, 691, 696, 698, 699, 704, 705, 714, 715, 716, 717, 743, 744, 791, 798, 803, 811, 812, 813, 815, 816, 820, 821, 824, 825, 828, 836, 837], "xbatch": [42, 798], "ybatch": [42, 798], "to_devic": [42, 50, 73, 191, 617, 780, 798], "entropi": [42, 58, 81, 624, 682, 683, 684, 798], "hot": [42, 48, 71, 136, 615, 798], "ybatch_encod": [42, 798], "one_hot": [42, 48, 71, 615, 798, 838], "loss_prob": [42, 798], "ret_grad_idx": [42, 603, 621, 759, 823], "xs_grad_idx": [42, 603, 621, 759, 823], "batch_loss": [42, 798], "set_descript": [42, 798], "set_postfix": [42, 798], "accuracy_percentag": [42, 798], "naverag": [42, 798], "6f": [42, 798], "_train_summari": [42, 798], "writer": [42, 798], "writerow": [42, 798], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 622, 641, 643], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 527, 620, 627, 704], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 618], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 836], "close": [42, 57, 240, 258, 278, 306, 362, 618, 623, 625, 673, 688, 801, 803, 804, 805, 813, 816, 818, 825, 831, 854], "save_weight": [42, 780], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 780, 836], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 622, 648, 778, 798, 802, 804, 812, 825], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 622, 645, 762, 763, 764, 765, 770, 778], "henc": [43, 63, 218, 332, 365, 618, 625, 631, 688, 735, 736, 737, 738, 787, 804, 811, 812, 813, 824, 828], "reproduc": [43, 56, 79, 622, 645, 762, 763, 764, 765, 770, 801, 807, 818], "image_processor": [43, 847, 848], "facebook": 43, "distil": [43, 855], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 847], "architectur": [43, 798, 804, 838, 839, 852, 853, 854, 857, 858, 859], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 618, 791, 803], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 442, 495, 509, 512, 516, 622, 624, 629, 645, 648, 651, 682, 724, 764, 777, 778, 798, 828, 840, 845], "ptarmigan": 43, "rf": [43, 805], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 618, 803, 804, 805, 807, 812, 819, 839, 847, 854], "moduleconvert": [43, 775, 780], "mc": 43, "from_keras_modul": [43, 775], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 442, 618], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 510, 511, 616, 618, 623, 633, 680, 743, 744, 749, 751, 763, 821, 826, 833], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 623, 792, 813], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 780], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 544, 615, 620, 847, 848, 849], "combo": [44, 836], "permit": [44, 808, 820, 825, 828, 831], "usabl": [44, 820, 829], "neither": [44, 218, 235, 242, 268, 618, 623, 675, 812, 825, 831], "nor": [44, 218, 235, 242, 268, 618, 812, 825, 858], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 522, 583, 613, 616, 617, 618, 620, 762, 764, 765, 778, 813, 852, 853, 855, 859, 860], "externally_link": 44, "logo": 44, "patch": [44, 286, 618, 813, 854], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 472, 512, 625, 685, 687, 700, 765, 807, 828, 848, 854, 856, 860], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 480, 485, 507, 512, 615, 617, 623, 625, 631, 634, 653, 679, 686, 689, 735, 736, 753, 754, 810, 811, 815, 836], "odsc": 44, "talk": [44, 859], "228": 45, "352": [45, 79, 622, 646, 817], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 623, 672], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 780], "to_ivy_modul": [45, 775, 838], "image_dim": 45, "v0": [45, 837], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 425, 434, 440, 442, 444, 445, 447, 495, 496, 497, 498, 499, 624, 629, 682, 683, 684, 724, 725, 726, 727, 729, 777, 778, 803, 804, 812, 814, 839, 854, 857], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 537, 538, 616, 617, 620, 760, 809, 810, 811, 816, 817, 821, 822, 824, 825, 831, 834, 835, 836, 837], "definit": [45, 51, 57, 74, 80, 287, 618, 623, 652, 798, 801, 805, 808, 813, 818, 821, 835, 848], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 535, 620, 627, 722, 777, 782, 791, 792, 835], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 444, 445, 612, 618, 623, 666, 669, 774, 816, 825], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 822], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 669, 670, 671, 673, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 808, 815, 816, 831], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 600, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 623, 625, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 802, 803, 806, 810, 819, 820, 821, 822, 825, 827, 829], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 425, 429, 434, 437, 440, 472, 493, 612, 618, 623, 632, 664, 680, 741, 774, 831], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 612, 618, 623, 673, 674, 774, 813], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 822], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 419, 420, 421, 450, 451, 452, 462, 463, 464, 466, 469, 479, 480, 482, 485, 507, 508, 510, 511, 512, 513, 514, 515, 517, 518, 520, 524, 527, 528, 539, 540, 556, 558, 578, 579, 581, 585, 586, 612, 615, 618, 620, 622, 623, 625, 627, 629, 630, 631, 632, 633, 634, 645, 653, 655, 657, 658, 663, 668, 670, 671, 673, 677, 685, 688, 689, 690, 691, 692, 693, 694, 695, 704, 707, 713, 724, 732, 733, 734, 735, 736, 737, 738, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 778, 792, 816, 826, 828, 831, 833, 858], "138": [46, 105, 612], "165": [46, 105, 612, 622, 646], "hardswish": [46, 68, 612, 774], "leaky_relu": [46, 68, 75, 290, 612, 763], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 421, 493, 496, 497, 498, 612, 618, 774, 820, 825, 826], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 417, 420, 421, 423, 434, 438, 440, 441, 445, 446, 461, 479, 488, 489, 490, 493, 494, 495, 496, 497, 498, 499, 509, 510, 511, 512, 517, 518, 519, 526, 527, 528, 536, 545, 569, 570, 573, 578, 579, 599, 601, 602, 605, 607, 608, 609, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 633, 645, 648, 651, 652, 654, 657, 658, 659, 661, 664, 665, 666, 669, 670, 671, 672, 673, 674, 675, 677, 680, 682, 683, 684, 701, 702, 703, 710, 723, 726, 727, 733, 735, 736, 737, 738, 743, 744, 746, 747, 748, 749, 750, 751, 752, 759, 762, 763, 765, 774, 777, 778, 781, 782, 801, 807, 811, 813, 816, 817, 818, 820, 821, 823, 824, 826, 828, 829, 831, 833, 835, 837], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 612, 774], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 418, 425, 429, 445, 480, 499, 612, 615, 618, 623, 625, 629, 634, 653, 655, 673, 677, 679, 680, 686, 688, 689, 693, 726, 753, 754, 762, 764, 774, 811, 824], "leaki": [46, 68, 107, 612, 774], "log_softmax": [46, 68, 612, 774], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 612, 774], "30340147": [46, 109, 612], "86509842": [46, 68, 109, 612], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 618], "422": [46, 112, 612], "155": [46, 79, 112, 612, 622, 646], "softplu": [46, 68, 612, 774, 831], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 421, 446, 493, 497, 498, 612, 628, 723, 774, 831], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 441, 446, 479, 612, 618, 774, 831], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 551, 552, 555, 556, 558, 559, 563, 564, 568, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 600, 601, 602, 603, 604, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 777, 782, 783, 808, 811, 813, 814, 815, 817, 820, 821, 824, 829, 831, 833, 838, 847, 848, 849], "3461": [46, 68, 113, 612], "6491": [46, 68, 113, 612], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 627, 715, 716], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 627, 705, 716, 759], "nest": [47, 69, 70, 98, 101, 238, 554, 583, 600, 603, 618, 620, 621, 626, 701, 702, 704, 705, 706, 707, 708, 709, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 782, 808, 810, 811, 821, 823, 829, 836, 837, 839, 841, 854], "unchang": [47, 51, 368, 371, 412, 462, 622, 645], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 601, 602, 605, 606, 607, 608, 609, 615, 621, 626, 627, 703, 705, 716, 780, 782, 783, 813, 814, 835, 837], "word": [47, 121, 371, 465, 615, 629, 727, 775, 778, 811, 824, 825, 841], "args_to_n": [47, 824], "cont_inplac": 47, "decid": [47, 69, 627, 715, 716, 798, 803, 804, 813, 831], "args_to_new_backend": 47, "shallow": [47, 627, 711, 712, 716, 721, 722], "nativevari": 47, "mutabl": [47, 627, 705, 711, 712, 716, 721, 722, 809], "to_ivi": [47, 70, 627, 717, 824], "leaf": [47, 69, 76, 88, 98, 535, 627, 714, 715, 717, 744, 811, 821, 836], "travers": [47, 70, 627, 708, 716, 811, 813, 817, 833], "lowest": [47, 52, 61, 70, 75, 84, 380, 512, 627, 629, 716, 725, 792, 821, 839, 841, 851, 855, 859], "search": [47, 52, 70, 75, 730, 731, 770, 802, 804, 811, 815, 818, 828, 829, 843], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 425, 434, 440, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 480, 486, 521, 524, 535, 542, 545, 546, 550, 551, 552, 553, 554, 555, 556, 565, 568, 571, 572, 574, 575, 599, 614, 615, 616, 617, 618, 620, 622, 625, 626, 627, 630, 633, 648, 688, 689, 690, 692, 694, 695, 697, 699, 701, 702, 714, 732, 733, 734, 746, 748, 762, 763, 764, 765, 770, 781, 811, 813, 821, 825, 828, 831], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 436, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 549, 612, 616, 618, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 764, 798, 803, 804, 805, 808, 809, 811, 813, 816, 819, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 839, 847], "never": [48, 52, 59, 71, 75, 82, 123, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 805, 813, 824, 825, 828], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 445, 450, 451, 458, 460, 462, 463, 464, 471, 486, 625, 688, 689, 690, 692, 694, 695, 697, 699, 738, 764, 793, 817], "buffer": [48, 71, 75, 82, 123, 129, 450, 451, 458, 460, 462, 463, 464, 471, 486, 615, 688, 689, 690, 692, 694, 695, 697, 699, 779, 780, 824, 839], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 495, 496, 497, 498, 499, 509, 510, 511, 512, 515, 518, 615, 616, 622, 623, 629, 630, 632, 633, 645, 680, 725, 726, 727, 730, 731, 741, 743, 744, 749, 751, 777, 813, 814, 820, 829, 833], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 414, 615, 616, 757, 829, 847], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 495, 496, 498, 499, 615, 617, 629, 724, 725, 726, 727, 777, 782, 783, 813, 814, 817, 820, 829], "39999998": [48, 122, 123, 615, 631, 736], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 416, 615, 622, 645, 651], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 615, 747], "10000038": [48, 122, 123, 615], "90786433e": [48, 122, 123, 615], "310": [48, 122, 123, 615], "copy_arrai": [48, 71, 615], "to_ivy_arrai": [48, 71, 124, 615], "empty_lik": [48, 52, 71, 75, 259, 369, 419, 615, 618], "uniniti": [48, 125, 126, 615, 819], "from_dlpack": [48, 71, 615], "full_lik": [48, 71, 615, 829], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 480, 499, 615, 618, 630, 733, 813, 826, 829], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 414, 421, 450, 451, 452, 461, 466, 586, 599, 615, 618, 620, 623, 680, 813, 823, 825, 839, 854], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 425, 429, 434, 440, 461, 480, 481, 496, 498, 499, 615, 618, 629, 630, 725, 733, 777, 803, 826], "000123": [48, 131, 615], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 434, 440, 565, 602, 605, 607, 608, 609, 610, 615, 617, 620, 621, 626, 627, 701, 702, 703, 715, 782, 820, 823, 831, 833, 839, 854], "num": [48, 71, 132, 133, 615, 762, 805, 820, 833], "endpoint": [48, 71, 132, 133, 615, 777, 820], "logspac": [48, 71, 615, 833], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 442, 444, 445, 495, 612, 615, 618, 671, 762, 764, 765, 774, 805, 811, 812, 815, 821, 824, 825, 826, 828, 830, 831, 833, 836], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 416, 424, 425, 426, 428, 432, 433, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 456, 457, 458, 459, 465, 467, 468, 470, 471, 473, 476, 478, 480, 481, 482, 486, 487, 488, 490, 491, 492, 494, 496, 497, 509, 510, 511, 512, 519, 520, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 603, 604, 605, 610, 615, 618, 620, 621, 622, 623, 625, 627, 633, 634, 635, 636, 637, 638, 639, 640, 642, 644, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 680, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 704, 711, 721, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 781, 783, 805, 812, 813, 814, 815, 817, 828, 829, 831, 833, 838, 857], "on_valu": [48, 71, 133, 136, 615], "off_valu": [48, 71, 133, 136, 615], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 413, 615, 618, 622, 625, 635, 636, 637, 638, 640, 642, 644, 694], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 808, 816, 818, 820, 821, 824, 825, 829], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 816, 831, 837], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 806, 815, 816, 824, 828, 841], "464": [48, 51, 84, 133, 222, 223, 618], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 615], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 425, 434, 440, 615, 624, 684], "xy": [48, 71, 134, 615], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 418, 450, 451, 452, 456, 461, 462, 507, 519, 615, 618, 623, 625, 630, 633, 634, 653, 654, 660, 663, 666, 668, 669, 679, 680, 694, 730, 731, 733, 746, 747, 748, 749, 750, 751, 752, 753, 754, 821, 823, 828, 831, 833, 851, 854, 861], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 413, 427, 439, 445, 472, 483, 488, 489, 490, 495, 501, 508, 544, 614, 615, 616, 618, 620, 622, 623, 645, 646, 660, 668, 671, 672, 764, 777, 781, 792, 804, 808, 813, 831, 835, 851, 852, 855], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 500, 615, 618, 630, 733], "conserv": [48, 134, 615], "cartesian": [48, 134, 615], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 417, 420, 421, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 470, 509, 521, 527, 615, 620, 622, 623, 646, 652, 654, 656, 657, 658, 659, 661, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 677, 678, 681, 762, 764, 777, 778, 792, 803, 813, 825, 852, 854], "ij": [48, 65, 134, 615, 633, 745, 792], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 423, 438, 449, 488, 490, 544, 601, 602, 603, 604, 605, 606, 607, 608, 609, 611, 615, 618, 620, 621, 622, 623, 626, 635, 642, 643, 648, 653, 670, 673, 701, 702, 703, 759, 762, 777, 792, 802, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 820, 821, 823, 824, 825, 828, 829, 830, 850, 860], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 425, 426, 434, 437, 440, 472, 480, 519, 615, 623, 625, 630, 634, 653, 655, 664, 666, 670, 672, 677, 679, 680, 687, 688, 696, 699, 700, 733, 753, 754], "ni": [48, 134, 615], "xi": [48, 134, 615], "scatter": [48, 53, 71, 76, 136, 563, 564, 615, 620, 810, 824, 831, 861], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 415, 420, 422, 431, 437, 519, 524, 614, 615, 618, 620, 623, 633, 657, 677, 745, 792, 805, 806, 810, 847, 850], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 615, 618, 623, 666, 809, 814, 824, 839, 848, 849], "ones_lik": [48, 71, 615, 809, 838], "tril": [48, 71, 615], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 420, 439, 471, 480, 485, 526, 581, 615, 618, 620, 623, 625, 631, 633, 652, 654, 656, 657, 658, 659, 660, 661, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 680, 689, 693, 735, 736, 737, 744, 745, 764, 816, 828], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 420, 615, 623, 652, 654, 656, 657, 658, 659, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 615, 623, 656, 664, 666, 667, 669, 670, 674, 677], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 420, 425, 426, 428, 432, 433, 438, 461, 615, 622, 623, 646, 652, 654, 656, 657, 658, 659, 660, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677, 678, 764, 801, 818, 854], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 418, 421, 429, 435, 461, 615, 623, 655, 677], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 435, 615, 623, 652, 658, 659, 666, 670], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 615, 616, 803, 805, 839], "triu": [48, 71, 615], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 435, 512, 615, 623, 629, 652, 658, 659, 670, 727, 813, 824, 828], "zeros_lik": [48, 52, 71, 147, 264, 371, 480, 601, 602, 605, 607, 608, 609, 615, 616, 618, 621, 623, 625, 670, 685, 825, 831], "data_typ": [49, 52, 72, 75, 177, 616, 810, 813, 828, 829], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 616, 623, 673, 811, 824, 835, 861], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 509, 572, 594, 616, 618, 620, 623, 625, 633, 652, 653, 660, 661, 663, 664, 665, 666, 668, 669, 671, 672, 679, 680, 686, 696, 739, 747, 750, 762, 763, 807, 816, 817, 821, 830], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 480, 507, 508, 515, 516, 517, 518, 545, 599, 613, 616, 618, 620, 631, 633, 634, 735, 736, 737, 738, 746, 747, 748, 750, 751, 752, 753, 754, 762, 765, 807, 813, 816, 823, 829, 830], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 545, 613, 616, 618, 620, 623, 633, 634, 671, 680, 746, 748, 753, 754, 807, 816], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 470, 515, 518, 519, 616, 617, 623, 630, 675, 732, 777, 778, 805, 809, 812, 813, 814, 825, 833, 843, 847, 854], "broadcast_arrai": [49, 72, 616], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 446, 516, 535, 537, 538, 539, 540, 549, 583, 586, 616, 617, 618, 620, 622, 623, 624, 625, 628, 633, 636, 638, 641, 643, 644, 646, 651, 652, 675, 682, 684, 685, 723, 745, 747, 750, 763, 765, 803, 806, 813, 814, 815, 824, 831, 833, 841, 854, 858, 860], "broadcast_to": [49, 72, 616, 813], "can_cast": [49, 72, 616, 813, 821, 825], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 472, 539, 542, 563, 564, 616, 618, 620, 623, 625, 633, 679, 687, 700, 750, 752, 757, 764, 784, 791, 803, 804, 807, 813, 819, 821, 825, 828], "finfo": [49, 72, 616, 828], "resolut": [49, 72, 160, 616, 805], "4028235e": [49, 160, 616], "iinfo": [49, 72, 616], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 458, 467, 472, 480, 486, 495, 496, 497, 498, 499, 501, 502, 507, 509, 510, 511, 516, 519, 542, 558, 568, 600, 615, 616, 618, 620, 622, 623, 625, 629, 632, 633, 634, 635, 636, 637, 638, 640, 642, 644, 653, 655, 665, 679, 680, 694, 724, 725, 726, 727, 728, 729, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 770, 778, 792, 805, 811, 813, 823, 826, 828, 833, 835], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 510, 511, 616, 633, 725, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "32768": [49, 72, 163, 579, 620], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 616], "is_float_dtyp": [49, 72, 616, 829], "is_int_dtyp": [49, 72, 616, 826, 829], "is_uint_dtyp": [49, 72, 616, 826, 829], "result_typ": [49, 72, 616, 813], "arrays_and_dtyp": [49, 72, 175, 616], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 471, 615, 617, 780, 798, 805, 814, 829], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 493, 508, 513, 532, 533, 534, 600, 614, 617, 618, 620, 622, 626, 628, 648, 703, 723, 778, 792, 803, 804, 805, 809, 813, 815, 816, 819, 821, 823, 824, 825, 828, 829, 831, 835, 836, 838, 847, 854, 855, 856, 860], "__dlpack__": [50, 73, 128, 209, 615, 617], "caveat": [50, 73, 209, 370, 444, 617], "portabl": [50, 73, 209, 617, 798, 852], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 479, 618, 623, 627, 664, 674, 680, 712, 715, 759, 791, 792, 801, 808, 813, 818, 822, 825, 828], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 421, 436, 441, 443, 618, 623, 664, 665, 666, 671, 757, 759, 762, 764, 765, 799, 804], "aco": [51, 74, 618], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 501, 618, 623, 661, 665, 669, 784, 813], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 618, 778], "acosh": [51, 74, 161, 162, 616, 618, 801, 818], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 413, 618, 824, 831, 844, 850], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 618], "sector": [51, 74, 217, 221, 224, 618, 844], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 419, 420, 421, 423, 427, 446, 478, 485, 496, 498, 502, 509, 512, 524, 573, 595, 601, 602, 607, 614, 615, 616, 618, 620, 621, 623, 625, 626, 627, 631, 653, 656, 657, 658, 660, 663, 668, 670, 671, 673, 675, 677, 679, 696, 697, 702, 705, 735, 736, 737, 782, 804, 807, 810, 813, 815, 819, 824, 825, 828, 830, 835, 845, 859], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 431, 432, 510, 511, 618, 622, 633, 645, 743, 749, 805, 808, 809, 811, 815], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 618], "deg": [51, 74, 219, 618], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 618, 816], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 478, 618, 633, 750, 752, 853], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 578, 618, 620], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 579, 618, 620], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 618], "35619449": [51, 219, 618], "78539816": [51, 219, 618], "135": [51, 219, 527, 618, 620], "asin": [51, 74, 618], "sine": [51, 74, 220, 221, 280, 281, 618], "927": [51, 74, 220], "asinh": [51, 74, 220, 618], "atan": [51, 74, 618], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 618, 816], "785": [51, 74, 222, 223, 618], "atan2": [51, 74, 618], "quotient": [51, 74, 223, 235, 242, 618], "245": [51, 79, 223, 622, 645, 646], "588": [51, 223, 618], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 417, 512, 545, 599, 613, 618, 620, 622, 623, 649, 664, 680, 762, 765, 801, 813, 818, 823], "719": [51, 223, 618], "197": [51, 223, 618], "atanh": [51, 74, 618], "549": [51, 74, 79, 224, 618, 622, 646], "bitwise_and": [51, 74, 618], "bitwise_invert": [51, 74, 618], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 618], "bitwise_or": [51, 74, 618], "bitwise_right_shift": [51, 74, 97, 618], "bitwise_xor": [51, 74, 97, 618], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 615, 618, 778, 824], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 618, 801, 803, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845], "416": [51, 232, 618], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 618], "deg2rad": [51, 74, 618], "convers": [51, 52, 75, 234, 274, 565, 575, 620, 779, 780, 803, 832, 834, 838, 839, 841, 845, 853, 860], "180": [51, 74, 234, 274, 618], "270": [51, 74, 234, 274, 618], "360": [51, 74, 234, 274, 618, 812], "dividend": [51, 74, 235, 242, 277, 289, 618], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 458, 467, 486, 601, 602, 607, 618, 621, 633, 750, 752, 778, 782], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 618], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 430, 618], "gauss": [51, 74, 237, 618], "328": [51, 237, 285, 618], "677": [51, 237], "842": [51, 237, 285, 618], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 618], "exp2": [51, 74, 618], "expm1": [51, 74, 618, 813], "244": [51, 240, 798], "918": [51, 240], "147": [51, 240, 618], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 618, 778, 824], "floor_divid": [51, 74, 618, 770, 813], "fmin": [51, 74, 618, 813], "gcd": [51, 74, 618, 813], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 615, 618, 622, 623, 625, 629, 651, 653, 665, 695, 727, 764, 778, 805, 826], "greater_equ": [51, 74, 97, 98, 260, 618], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 421, 612, 615, 618, 630, 733, 815], "4j": [51, 74, 248, 368, 411, 579, 618, 620], "6j": [51, 52, 74, 248, 252, 332, 618], "isfinit": [51, 74, 618, 825], "out_i": [51, 74, 249, 250, 251, 252, 275, 618], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 618], "isinf": [51, 74, 618], "detect_posit": [51, 74, 250, 618], "detect_neg": [51, 74, 250, 618], "isnan": [51, 74, 618], "isreal": [51, 74, 618], "5j": [51, 74, 75, 252, 275, 332, 365, 618], "lcm": [51, 74, 618, 813], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 434, 440, 509, 512, 618, 623, 629, 633, 664, 665, 666, 669, 680, 727, 750, 752, 778, 804, 805, 811, 813, 815, 817, 820, 825, 828, 831, 832, 833, 844, 854, 856], "less_equ": [51, 74, 97, 98, 618, 817], "log10": [51, 52, 74, 313, 362, 618], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 618, 623, 671], "602": [51, 257, 618], "699": [51, 257, 618], "log1p": [51, 74, 618, 823], "693": [51, 74, 112, 221, 258, 612, 618, 624, 684], "0953": [51, 74, 256, 258, 618], "log2": [51, 74, 261, 618], "logaddexp": [51, 74, 618], "logaddexp2": [51, 74, 618, 801, 818], "169925": [51, 74, 261, 618], "logical_and": [51, 74, 618, 825, 831, 861], "logical_not": [51, 74, 618, 813], "logical_or": [51, 74, 618, 861], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 816, 819], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 480, 616, 618, 625, 633, 700, 750, 816], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 480, 616, 618, 623, 625, 633, 671, 672, 700, 750, 816], "logical_xor": [51, 74, 618], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 434, 437, 440, 472, 510, 512, 517, 527, 528, 536, 544, 607, 617, 618, 620, 621, 623, 625, 630, 633, 664, 685, 730, 731, 746, 748, 762, 764, 765, 770, 792, 805, 813, 815, 824, 836, 861], "use_wher": [51, 74, 266, 267, 618], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 488, 490, 618], "exce": [51, 52, 75, 267, 371, 482, 618], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 416, 419, 423, 426, 427, 428, 431, 432, 433, 510, 511, 518, 618, 622, 623, 633, 648, 651, 653, 660, 663, 668, 675, 679, 743, 744, 745, 749, 750, 792, 803, 833, 854, 856], "nan_to_num": [51, 74, 618], "posinf": [51, 74, 269, 618], "neginf": [51, 74, 269, 618], "5e": [51, 54, 74, 75, 269, 350, 607, 618, 621], "not_equ": [51, 74, 97, 98, 618], "pow": [51, 74, 97, 98, 618, 807], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 493, 579, 618, 620, 623, 665], "rad2deg": [51, 74, 618], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 618], "reciproc": [51, 74, 618], "333": [51, 74, 235, 276, 528, 618, 620], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 618, 625, 694, 807, 824], "modulu": [51, 74, 277, 618, 824], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 436, 479, 480, 510, 511, 615, 618, 623, 631, 633, 671, 735, 736, 737, 738, 743, 744, 749, 751, 798, 804, 813, 833, 838, 844], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 618, 807], "decim": [51, 74, 278, 618, 830], "0001": [51, 52, 75, 278, 279, 369, 434, 440, 762, 765, 782], "678": [51, 278, 279], "np_variant": [51, 74, 279, 618], "841": [51, 68, 74, 105, 280, 612, 618], "909": [51, 74, 76, 280, 618], "141": [51, 74, 147, 280, 616, 618], "sinh": [51, 74, 280, 618], "232": [51, 74, 281, 618], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 618, 777, 778, 798], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 420, 430, 441, 493, 509, 603, 604, 606, 611, 618, 621, 623, 627, 652, 654, 655, 657, 658, 659, 661, 665, 671, 672, 673, 678, 710, 798], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 618, 774, 833], "762": [51, 74, 286, 618], "964": [51, 74, 286, 618], "trapz": [51, 74, 618], "dx": [51, 74, 287, 618], "apart": [51, 74, 287, 618], "trapezoid": [51, 74, 287, 618], "trunc": [51, 74, 618], "025": [51, 288, 370, 446, 618, 626, 703], "trunc_divid": [51, 74, 618], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 774], "elu": [52, 75, 293, 360, 774], "scaler": [52, 75, 291, 360, 762, 765, 828], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 804], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 774], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 623, 671], "01104775": [52, 295], "prelu": [52, 75, 360, 774], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 774], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 612], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 774], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 774], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 455, 480, 481, 762, 813, 817, 825, 828, 833, 860], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 417, 614, 627, 630, 714, 715, 734, 764, 807, 813, 815, 817, 821, 822, 824, 828, 847], "met": [52, 75, 304, 817], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 618, 805], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 413, 414, 493, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778, 800, 805, 810, 818, 859], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 420, 472, 623, 652, 657, 658, 659, 681, 811], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 623, 670, 801, 818], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 615, 630, 734, 804], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 536, 620, 623, 672], "frequenc": [52, 53, 75, 76, 313, 362, 380, 509, 536, 620, 805], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 444, 445, 622, 647, 778, 792, 798, 805, 811, 833, 841, 843, 854], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 540], "band": [52, 53, 75, 76, 313, 362, 536, 620], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 414, 778, 853, 854], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 603, 615, 621, 823, 827, 841], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 784], "num_seg": [52, 75, 324, 325, 326, 362, 784], "identifi": [52, 75, 324, 325, 326, 362, 803, 807, 812, 813, 828, 831], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 418, 425, 519], "distinct": [52, 63, 75, 324, 325, 326, 362, 631, 735, 736, 737, 738, 804, 811, 816, 823, 824, 825, 832, 844, 854], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 435, 623, 672, 782], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 791, 792, 817, 825, 833, 834, 837, 844, 847, 850, 852, 853, 854, 857, 860, 861], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 421, 434, 440, 623, 666, 669, 757, 759, 807, 826, 854], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 477, 514, 515, 516, 517, 518, 519, 623, 625, 630, 633, 634, 664, 680, 699, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 817, 825, 833], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 623, 625, 630, 633, 634, 680, 688, 695, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 833], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 605, 610, 620, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 711, 712, 716, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 792, 808, 811, 813, 820, 821, 825, 828, 829, 836, 839, 841, 848, 855], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 618], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 415, 421, 431, 433, 435, 497, 623, 663, 667, 675], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 480, 510, 511, 633, 743, 744, 749, 751, 763, 813, 833], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 815, 824], "prepend": [52, 75, 335, 365, 623, 625, 663, 688, 804], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 497, 623, 675, 817, 829], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 536, 620, 625, 688, 811, 827], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 624, 683, 778], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 852, 860], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 478, 512, 618, 625, 693, 798, 801, 803, 804, 818, 833, 850, 854], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 618], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 458, 570, 578, 592, 601, 602, 607, 618, 620, 621, 622, 635, 642, 643, 782, 821, 830], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 509], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 629, 727, 854], "33333333": [52, 75, 276, 342, 365, 618], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 807], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 519, 622, 645], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 477], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 607, 621], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 417, 432, 464, 559, 600, 615, 620, 623, 626, 633, 664, 680, 702, 703, 745, 798, 813, 824, 861], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 430, 466], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 441, 442, 443, 444, 445, 446, 447, 477, 533, 563, 564, 620, 624, 634, 682, 683, 684, 753, 754, 779, 813, 821, 824, 828, 835], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 431, 450, 455, 477, 481, 509, 762, 778], "adapt": [52, 75, 77, 368, 382, 383, 384, 608, 621, 778, 782, 844], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 778, 804], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 478, 618], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 413, 488, 489, 490, 493, 622, 635, 636, 637, 638, 640, 642, 644, 781], "Will": [52, 75, 368, 382, 383, 384, 787, 839], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 493, 622, 635, 638, 639, 642, 643, 644, 778], "3d": [52, 57, 75, 368, 383, 391, 392, 452, 623, 660, 778, 831], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 439, 493], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 622, 647, 833, 839, 854, 857, 858], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 622, 635, 636, 637, 642, 643, 778], "count_include_pad": [52, 75, 368, 386, 387, 388, 778], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 434, 436, 440, 623, 636, 638, 639, 640, 641, 644, 671, 774, 778, 792, 813, 825, 831, 839, 854, 856, 858], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 622, 635, 636, 637, 642, 643, 778], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 778], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 622, 635, 640, 641, 642, 643, 778], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 622, 640, 641], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 622, 635, 640, 641, 642, 643, 778], "dct": [52, 75, 368, 778, 836], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 438, 566, 620, 778, 817, 836], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 616, 625, 633, 685, 693, 750, 752, 778, 828, 831, 861], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 778], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 414, 778, 803, 854], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 798, 819, 847, 848], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 622, 648, 764, 778, 854], "max_norm": [52, 53, 75, 76, 368, 394, 527, 528, 620, 778], "ifft": [52, 75, 368, 395, 401, 778], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 445, 613, 618], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 532, 618, 620, 623, 631, 670, 736, 737, 738, 792, 811, 815, 825, 828, 835], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 831], "antialia": [52, 75, 368, 403, 831], "height": [52, 53, 56, 75, 76, 79, 368, 403, 532, 620, 622, 638, 639, 640, 641, 644, 836], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 421, 472, 493, 512, 532, 620, 622, 636, 637, 638, 639, 640, 641, 644, 648], "trilinear": [52, 75, 368, 403, 831], "nearest_exact": [52, 75, 368, 403, 831], "tf_area": [52, 75, 368, 403, 831], "mitchellcub": [52, 75, 368, 403, 831], "lanczos3": [52, 75, 368, 403, 831], "lanczos5": [52, 75, 368, 403, 831], "gaussian": [52, 75, 105, 368, 403, 612, 831], "overwrit": [52, 69, 75, 208, 368, 403, 617, 805, 824, 825, 833], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 420, 618, 623, 657, 658, 803, 812, 817, 822, 825, 829], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 483], "orthonorm": [52, 57, 75, 80, 368, 411, 623, 670, 673], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 413], "frame_length": [52, 75, 368, 414], "frame_step": [52, 75, 368, 414], "fft_length": [52, 75, 368, 414], "window_fn": [52, 75, 368, 414], "pad_end": [52, 75, 368, 414], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 414, 482, 616, 618, 623, 664, 762, 764, 765], "enclos": [52, 75, 368, 414, 855], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 414], "li": [52, 75, 368, 369, 380, 414, 421, 519, 843], "past": [52, 75, 368, 414, 805, 807, 826, 828, 840, 854], "fft_unique_bin": [52, 75, 368, 414], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 414, 616, 618, 623, 671, 673, 674, 763, 813, 818], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 414, 558, 616, 620, 623, 658, 659, 664, 680, 762, 763, 801, 813, 818], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 414, 425, 434, 493, 615, 618, 630, 733, 798, 827, 833, 844, 850, 855, 857], "linear_algebra": [52, 57, 75, 80, 623, 829], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 435, 623, 661, 672, 673, 762], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 416], "jn": [52, 75, 369, 416], "k1": [52, 75, 369, 416], "km": [52, 75, 369, 416], "outer": [52, 57, 75, 80, 92, 369, 416, 623, 626, 701, 702, 703, 792, 803], "30000001": [52, 75, 369, 416, 532, 620, 631, 736], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 416, 612, 622, 631, 651, 736], "60000002": [52, 75, 88, 98, 369, 374, 416, 492, 494, 747], "80000001": [52, 75, 369, 374, 416, 492, 494], "60000001": [52, 75, 369, 416], "90000004": [52, 75, 369, 416, 633, 747], "20000002": [52, 75, 369, 416], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 416, 601], "00000012": [52, 75, 369, 416], "49999994": [52, 75, 369, 416], "00000006": [52, 75, 369, 416], "60000014": [52, 75, 369, 416], "19999993": [52, 75, 369, 416], "80000007": [52, 75, 369, 416], "20000017": [52, 75, 369, 416], "89999992": [52, 75, 369, 416], "60000008": [52, 75, 369, 416], "80000019": [52, 75, 346, 365, 369, 416], "4000001": [52, 75, 79, 369, 416, 622, 645, 651], "cond": [52, 75, 118, 369, 614, 839], "933034373659268": [52, 417], "diagflat": [52, 75, 369, 427, 430], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 418, 488, 489, 490, 615, 623, 628, 656, 677, 723, 769], "padding_valu": [52, 75, 369, 418], "right_left": [52, 75, 369, 418], "num_row": [52, 75, 369, 418], "num_col": [52, 75, 369, 418], "dot": [52, 56, 75, 79, 92, 369, 432, 622, 623, 648, 651, 679, 792, 798, 804, 812], "eig": [52, 57, 75, 369, 623, 658, 659], "37228132": [52, 75, 369, 420, 422, 657], "82456484": [52, 420, 657], "41597356": [52, 420, 657], "56576746": [52, 420, 657], "90937671": [52, 420, 657], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 421], "select_rang": [52, 75, 369, 421], "tol": [52, 75, 96, 369, 421, 434, 440], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 420, 421, 422, 623, 657, 658, 659, 666], "eigenvector": [52, 75, 369, 420, 421, 623, 657, 658], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 421, 512, 615, 623, 625, 629, 634, 653, 679, 685, 688, 696, 725, 727, 753, 754], "togeth": [52, 69, 75, 328, 344, 365, 369, 421, 783, 798, 808, 811, 813, 824, 825, 828, 829, 831, 837, 838, 839, 844, 852, 854, 855, 860], "cluster": [52, 75, 369, 421, 839, 854], "converg": [52, 75, 369, 421, 845], "_2": [52, 75, 369, 421], "eig_val": [52, 75, 369, 421], "decreas": [52, 75, 369, 421, 764], "eig_vector": [52, 75, 369, 421], "38196": [52, 421], "61803": [52, 421], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 423], "tradit": [52, 80, 369, 423], "inner": [52, 57, 71, 80, 101, 136, 369, 420, 423, 615, 623, 626, 657, 658, 663, 701, 702, 703, 792, 803, 824], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 424], "d1": [52, 75, 369, 424], "dn": [52, 75, 369, 424], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 425, 429, 434, 436, 437, 438, 440, 623, 674], "truncated_svd": [52, 75, 369, 425, 434, 437, 440], "non_neg": [52, 75, 321, 362, 369, 425], "mask": [52, 56, 75, 79, 92, 369, 371, 425, 426, 434, 440, 479, 542, 620, 622, 645, 648, 651, 831], "svd_mask_repeat": [52, 75, 369, 425, 434, 440], "tuckertensor": [52, 75, 96, 321, 362, 369, 425, 434, 440], "scheme": [52, 75, 369, 425, 434, 807, 837, 854], "tucker": [52, 75, 321, 362, 369, 425, 434], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 425, 434, 437, 439, 440, 623, 652, 658, 662, 670, 673, 803, 861], "miss": [52, 75, 369, 371, 425, 434, 440, 479, 782, 803, 804, 808, 811, 812, 815, 825, 828, 831], "everywher": [52, 75, 369, 425, 434, 440], "imput": [52, 75, 369, 425, 434, 440], "kron": [52, 75, 369, 430, 861], "make_svd_non_neg": [52, 75, 369, 438], "nntype": [52, 75, 369, 429], "nndsvd": [52, 75, 369, 429], "singular": [52, 57, 75, 80, 369, 425, 429, 436, 438, 623, 664, 666, 669, 673, 674, 762, 764, 813], "nndsvda": [52, 75, 369, 429], "boutsidi": [52, 75, 369, 429], "gallopoulo": [52, 75, 369, 429], "pattern": [52, 53, 75, 76, 369, 429, 532, 533, 534, 620, 813, 816, 827, 845], "recognit": [52, 75, 369, 429], "1350": [52, 75, 369, 429], "1362": [52, 75, 369, 429], "2008": [52, 75, 369, 429, 854], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 430], "3891": [52, 75, 369, 430], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 431], "i_1": [52, 75, 92, 93, 369, 431], "i_k": [52, 75, 92, 369, 431], "i_n": [52, 75, 92, 369, 431], "i_": [52, 75, 92, 369, 380, 431, 512], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 432], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 433], "times_0": [52, 369, 433], "vec": [52, 369, 433], "times_1": [52, 369, 433], "cdot": [52, 268, 369, 433, 618], "times_n": [52, 369, 433], "noqa": [52, 92, 95, 215, 282, 368, 369, 404, 433, 618, 624, 682, 778, 787, 826], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 434, 440], "verbos": [52, 75, 369, 434, 437, 440, 828, 833], "return_error": [52, 75, 369, 434, 440], "variat": [52, 75, 369, 434, 440, 815, 825, 828], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 434, 440, 485, 623, 631, 673, 735, 737, 826], "return_erro": [52, 369, 434, 440], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 436], "basi": [52, 75, 369, 436, 805, 807, 836], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 436, 463, 464, 618, 625, 824, 835, 836, 838], "decis": [52, 75, 369, 436, 798, 807, 813, 831, 833, 835, 854], "u_adjust": [52, 75, 369, 436], "v_adjust": [52, 75, 369, 436], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 437, 439], "kth": [52, 369, 437], "tttensor": [52, 95, 320, 362, 369, 437], "compute_uv": [52, 57, 75, 80, 369, 438, 623, 673], "n_eigenvec": [52, 75, 369, 438], "returnedv": [52, 438], "vh": [52, 57, 75, 80, 369, 438, 623, 673], "eigen": [52, 75, 369, 438], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 420, 438, 485, 623, 631, 657, 658, 670, 671, 673, 735, 736, 737], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 437, 439, 618, 777, 807, 812, 813, 825, 828], "rank_k": [52, 75, 369, 439], "left_dim_k": [52, 75, 369, 439], "right_dim_k": [52, 75, 369, 439], "rank_": [52, 75, 369, 439], "49671414": [52, 75, 369, 439, 629, 726], "1382643": [52, 75, 369, 439, 629, 726], "64768857": [52, 75, 369, 439, 629, 726], "5230298": [52, 75, 369, 439, 629, 726], "23415337": [52, 75, 369, 439, 629, 726], "23413695": [52, 75, 369, 439, 629, 726], "57921278": [52, 75, 369, 439], "76743472": [52, 75, 369, 439], "1163073": [52, 75, 369, 439], "11629914": [52, 75, 369, 439], "03237505": [52, 75, 369, 439], "03237278": [52, 75, 369, 439], "78441733": [52, 75, 369, 439], "38119566": [52, 75, 369, 439], "21834874": [52, 75, 369, 439], "10610882": [52, 75, 369, 439], "15165846": [52, 75, 369, 439], "15164782": [52, 75, 369, 439], "35662258": [52, 75, 369, 439], "35659757": [52, 75, 369, 439], "02283812": [52, 75, 369, 439], "49705869": [52, 75, 369, 439], "40518808": [52, 75, 369, 439], "16882598": [52, 75, 369, 439], "fixed_factor": [52, 75, 369, 440], "tl": [52, 75, 369, 440], "kolda": [52, 75, 369, 440], "bader": [52, 75, 369, 440], "siam": [52, 75, 369, 437, 440], "review": [52, 75, 369, 440, 800, 803, 805, 810, 812, 815, 825, 829], "vol": [52, 75, 369, 440], "pp": [52, 75, 369, 440], "455": [52, 75, 369, 440], "2009": [52, 75, 369, 440], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 441, 601, 621], "transit": [52, 75, 370, 441, 854], "huber": [52, 75, 370, 441], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 442], "contai": [52, 442], "batchmean": [52, 370, 442], "kullback": [52, 75, 370, 442], "leibler": [52, 75, 370, 442], "0916": [52, 442], "l1_loss": [52, 75, 370, 444], "l1": [52, 57, 75, 80, 370, 374, 441, 443, 444, 446, 491, 623, 680, 811, 836], "targetict": [52, 75, 370, 443, 444, 446, 447], "20000000000000004": [52, 443], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 444, 779], "favor": [52, 75, 370, 444], "likelihood": [52, 75, 370, 444, 445], "28402555": [52, 370, 444], "03402555": [52, 370, 444], "1573164": [52, 370, 444], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 445], "poisson": [52, 75, 370, 375, 444, 445], "assumpt": [52, 370, 444, 445], "minu": [52, 370, 444, 445], "omiss": [52, 370, 445], "stirl": [52, 75, 370, 444, 445], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 445, 499, 502, 618, 622, 633, 648, 745, 749, 751, 800, 803, 804, 805, 810, 812, 824, 825, 828, 833, 838, 854], "prevent": [52, 54, 75, 77, 370, 445, 544, 601, 602, 607, 620, 621, 622, 633, 645, 751, 777, 782, 803, 805, 812, 813, 817, 824, 825, 829], "input_tensor": [52, 75, 369, 370, 437, 445, 825], "target_tensor": [52, 370, 445], "1978": [52, 445], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 441, 446, 624, 682, 683, 684, 823], "8125": [52, 446], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 447, 479, 814], "margin": [52, 75, 370, 447, 825], "35667497": [52, 447, 624, 683], "22314353": [52, 447], "60943791": [52, 447], "manipul": [52, 75, 824, 825, 829, 831, 833, 838, 843, 854], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 448, 460, 465, 473, 476, 495, 496, 497, 498, 499, 564, 577, 582, 584, 615, 620, 622, 625, 629, 635, 637, 639, 641, 643, 692, 725, 726, 727, 820, 822], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 448, 558, 615, 620, 859, 860], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 369, 371, 380, 428, 449, 463, 464, 510, 511, 531, 620, 623, 625, 633, 678, 689, 743, 744, 803, 811, 812, 813, 815, 816, 824, 825, 831, 838, 839], "scan": [52, 75, 371, 449, 839], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 450, 451, 452, 458, 467, 486], "a1": [52, 76, 371, 450, 451, 452, 456, 524], "a2": [52, 76, 371, 450, 451, 452, 456, 524], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 457], "new_axi": [52, 75, 371, 457, 838], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 458, 467, 486], "3rd": [52, 75, 371, 458], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 461], "fortran": [52, 59, 75, 82, 371, 462, 625, 692, 854, 858], "layout": [52, 59, 75, 82, 371, 462, 625, 692, 809, 824, 825, 831], "fliplr": [52, 75, 371, 824], "diag": [52, 57, 75, 80, 93, 371, 463, 464, 623, 658, 833], "flipud": [52, 75, 371, 824], "fold": [52, 75, 371, 473, 474, 812], "unfold": [52, 75, 92, 93, 95, 369, 371, 425, 465, 473, 475], "folded_tensor": [52, 371, 465], "heavisid": [52, 75, 371], "5000": [52, 371, 466, 623, 661, 792], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 456, 467, 532, 620], "hstack": [52, 75, 371, 456], "i0": [52, 75, 371, 380, 512], "bessel": [52, 65, 75, 88, 311, 362, 371, 469, 633, 750, 752], "kind": [52, 65, 75, 160, 163, 164, 380, 469, 510, 511, 516, 616, 633, 743, 744, 749, 751, 762, 763, 802, 825, 828, 831, 833, 839], "26606588": [52, 75, 371, 469], "2795853": [52, 75, 371, 469], "88079259": [52, 75, 371, 469], "row_mod": [52, 75, 371, 470], "column_mod": [52, 75, 371, 470], "ascend": [52, 64, 75, 87, 371, 378, 470, 502, 632, 739, 741], "prod": [52, 53, 65, 76, 88, 369, 371, 426, 428, 470, 518, 533, 620, 633, 762, 792, 813, 815, 833], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 471], "unstack": [52, 59, 69, 82, 471, 625, 811, 833, 836, 861], "reorder": [52, 59, 75, 82, 371, 471, 532, 620, 625, 689, 827], "stat_length": [52, 75, 371, 472], "constant_valu": [52, 75, 371, 472], "end_valu": [52, 75, 371, 472], "reflect_typ": [52, 75, 371, 472], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 473, 474, 475, 476], "untouch": [52, 75, 371, 473, 474, 475, 476], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 474, 475], "vectoris": [52, 75, 92, 371, 474, 476], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 475], "n_1": [52, 75, 371, 475], "n_2": [52, 75, 371, 475], "n_i": [52, 75, 369, 371, 426, 475], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 824], "rotat": [52, 75, 371, 478], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 420, 480, 623, 657, 807, 817, 822, 824, 825, 826, 835, 855], "invalid": [52, 66, 75, 89, 371, 480, 623, 625, 634, 679, 688, 753, 754, 762, 804, 813], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 455, 477, 480, 481, 539, 540, 542, 568, 615, 620, 627, 633, 713, 748, 854], "inexact": [52, 75, 339, 365, 371, 480], "largest": [52, 69, 75, 160, 163, 369, 371, 436, 480, 482, 616, 623, 664, 673], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 455, 477, 481, 564, 616, 813, 814], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 420, 482, 502, 516, 618, 623, 631, 657, 658, 673, 674, 735, 739, 740, 741, 764, 798, 802, 812, 827, 829], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 483], "front": [52, 75, 371, 483, 825, 832, 833, 836, 843, 852, 854], "unfolded_tensor": [52, 371, 484], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 486, 487, 532, 620, 805], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 488, 490, 633, 752, 777, 781], "nsc": [52, 75, 374, 488, 489, 490, 781], "braodcast": [52, 75, 374, 488], "running_mean": [52, 75, 374, 488, 490, 781], "running_var": [52, 75, 374, 488, 490, 781], "nc": [52, 75, 374, 488, 489, 490, 781], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 489], "group": [52, 75, 371, 374, 485, 489, 622, 627, 635, 642, 643, 706, 807, 811, 813, 821, 825, 826, 850, 853, 859], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 491, 494, 603, 621, 622, 623, 644, 680], "33333337": [52, 132, 374, 491, 603, 615, 621], "28571439": [52, 374, 491], "l2_normal": [52, 75, 374, 494], "l2": [52, 57, 80, 91, 92, 374, 492, 494, 623, 680, 778, 811], "44721359": [52, 75, 374, 492, 494], "89442718": [52, 75, 374, 492, 494], "lp_normal": [52, 75, 374], "lp": [52, 374, 494], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 495, 828], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 435, 461, 463, 464, 495, 615, 625, 627, 694, 717, 735, 804, 812, 828, 854], "parameter": [52, 61, 75, 84, 375, 495, 496, 498, 499, 629, 724, 726, 727], "odd": [52, 75, 273, 371, 375, 472, 495, 618, 792, 802, 807], "drawn": [52, 61, 75, 84, 375, 495, 496, 497, 498, 499, 629, 724, 725, 726, 727, 762, 763, 764, 777, 828], "dirichlet": [52, 75, 375], "10598304": [52, 375, 497], "21537054": [52, 375, 497], "67864642": [52, 375, 497], "48006698": [52, 375, 497], "07472073": [52, 375, 497], "44521229": [52, 375, 497], "55479872": [52, 375, 497], "05426367": [52, 375, 497], "39093761": [52, 375, 497], "19531053": [52, 375, 497], "51675832": [52, 375, 497], "28793114": [52, 375, 497], "12315625": [52, 375, 497], "29823365": [52, 375, 497], "5786101": [52, 375, 497], "15564976": [52, 375, 497], "50542368": [52, 375, 497], "33892656": [52, 375, 497], "1325352": [52, 375, 497], "44439589": [52, 375, 497], "42306891": [52, 375, 497], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 513, 628, 723], "rate": [52, 54, 75, 77, 368, 375, 409, 499, 602, 605, 607, 608, 609, 621, 626, 701, 702, 703, 782, 812], "lam": [52, 75, 375, 499], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 500], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 502], "statist": [52, 75, 90, 371, 472, 781, 796, 803, 813, 828, 829, 854], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 507], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 508, 509], "relationship": [52, 75, 508, 777, 827], "cov": [52, 75, 380], "ddof": [52, 75, 380, 509], "fweight": [52, 75, 380, 509], "aweight": [52, 75, 380, 509], "overridden": [52, 75, 380, 509, 782, 808], "unbias": [52, 65, 75, 88, 380, 509, 633, 752], "typic": [52, 75, 328, 344, 365, 380, 509, 632, 741, 778, 807, 821, 853, 861], "assign": [52, 75, 92, 380, 509, 803, 805, 809, 813, 824, 827, 835], "covari": [52, 75, 380, 509], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 434, 510, 511, 551, 552, 555, 615, 620, 629, 633, 725, 743, 744, 811, 813, 821, 838, 858, 860], "cumul": [52, 65, 75, 88, 380, 510, 511, 633, 743, 744], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 828, 833], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 510, 511, 616, 618, 633, 743, 744, 749, 751, 798, 802, 803, 804, 811, 812, 813, 815, 821, 833, 835, 860], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 828, 833], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 512], "extend_upper_interv": [52, 75, 380, 512], "densiti": [52, 75, 380, 512], "monoton": [52, 75, 380, 512], "rightmost": [52, 75, 380, 512], "c1": [52, 75, 380, 512, 811], "ff": [52, 75, 380, 512], "c_": [52, 75, 93, 380, 512], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 513, 805], "3614": [52, 75, 380, 513], "2085": [52, 75, 380, 513], "median": [52, 75, 371, 380, 472, 516], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 515], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 516], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 481, 493, 516, 518, 618, 759, 823, 828, 834, 838], "undefin": [52, 75, 371, 380, 381, 472, 516, 520, 813, 817, 823], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 422, 518, 613, 809, 817, 826, 836, 837, 839], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 519, 615, 629, 725, 799, 809, 824, 831], "midpoint": [52, 75, 380, 519], "surround": [52, 75, 380, 519, 831], "whichev": [52, 75, 380, 519], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 472, 520, 527, 564, 615, 620, 623, 627, 633, 634, 677, 680, 718, 748, 749, 751, 753, 754, 803, 804, 808, 810, 813, 814, 824], "_arraywithgener": [53, 97], "all_equ": [53, 76, 620], "equality_matrix": [53, 76, 521, 620], "array_equ": [53, 76, 620], "assert_supports_inplac": [53, 76, 620], "ivybackendexcept": [53, 76, 525, 549, 620, 793, 808, 814, 817, 818], "clip_matrix_norm": [53, 76, 620], "894": [53, 76, 527, 528, 620, 628, 723], "clip_vector_norm": [53, 76, 620], "default_v": [53, 531, 620], "catch_except": [53, 531, 620], "rev": [53, 531, 620], "with_cal": [53, 531, 620], "catch": [53, 531, 620, 822, 828], "einops_rearrang": [53, 76, 620], "axes_length": [53, 76, 532, 533, 534, 620], "arrang": [53, 532, 620], "rearrang": [53, 76, 532, 534, 620, 827], "einops_reduc": [53, 76, 620, 813], "einops_repeat": [53, 76, 620], "fourier_encod": [53, 76, 620], "max_freq": [53, 76, 536, 620], "oppos": [53, 76, 536, 620, 813], "geometr": [53, 76, 536, 620, 623, 678], "0000000e": [53, 76, 536, 620], "2246468e": [53, 76, 536, 620], "4492936e": [53, 536, 620], "6739404e": [53, 76, 536, 620], "batch_dim": [53, 76, 539, 540, 620, 784], "gather_nd": [53, 76, 620], "get_num_dim": [53, 76, 620], "as_arrai": [53, 76, 543, 577, 620, 784], "has_nan": [53, 76, 620], "include_inf": [53, 76, 545, 599, 620], "inplace_decr": [53, 76, 620], "val": [53, 69, 74, 76, 248, 371, 461, 547, 548, 549, 568, 569, 570, 618, 620, 813, 824, 835], "decrement": [53, 76, 547, 620], "inplace_incr": [53, 76, 620], "increment": [53, 76, 548, 620, 805, 854], "inplace_upd": [53, 76, 567, 620, 775, 824], "ensure_in_backend": [53, 76, 549, 620, 824], "keep_input_dtyp": [53, 76, 549, 620, 824], "is_arrai": [53, 76, 620, 824, 825], "is_ivy_arrai": [53, 76, 620, 824, 835], "is_ivy_contain": [53, 620], "is_native_arrai": [53, 76, 171, 552, 616, 620, 835], "isin": [53, 76, 620], "test_el": [53, 76, 556, 620], "assume_uniqu": [53, 76, 556, 620], "invert": [53, 76, 226, 556, 618, 620, 623, 665], "scatter_flat": [53, 76, 620], "occupi": [53, 160, 163, 563, 564, 616, 620], "scatter_nd": [53, 76, 620, 831, 835], "stable_divid": [53, 76, 620, 821], "denomin": [53, 60, 76, 83, 570, 578, 592, 620, 628, 723, 781, 821, 830, 839, 851], "min_denomin": [53, 76, 570, 578, 592, 620, 830], "_min_denomin": [53, 578, 620], "stable_pow": [53, 76, 620], "min_bas": [53, 76, 569, 579, 591, 620, 781, 830], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 502, 569, 570, 578, 579, 591, 592, 615, 620, 632, 739, 742, 764, 804, 809, 813, 825, 830, 833, 839], "00004": [53, 76, 579, 620], "00008": [53, 76, 579, 620], "00004000e": [53, 579], "56002560e": [53, 579], "60001200e": [53, 579], "09602048e": [53, 579], "supports_inplace_upd": [53, 76, 620], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 817, 825], "to_scalar": [53, 76, 620], "value_is_nan": [53, 76, 620], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 621], "mw": [54, 77, 601, 602, 621, 837], "vw": [54, 77, 601, 602, 621, 837], "beta1": [54, 77, 523, 601, 602, 607, 620, 621, 782, 837], "beta2": [54, 77, 523, 601, 602, 607, 620, 621, 782, 837], "epsilon": [54, 57, 58, 77, 80, 81, 523, 601, 602, 607, 620, 621, 623, 624, 666, 669, 682, 683, 684, 774, 779, 781, 782, 811, 821, 824, 837], "dc": [54, 77, 601, 602, 605, 607, 608, 609, 621], "dw": [54, 77, 601, 602, 605, 607, 608, 609, 621], "forget": [54, 77, 601, 602, 607, 621, 782, 798, 813], "dcdw": [54, 77, 601, 602, 605, 607, 608, 621], "adam_step_delta": [54, 77, 601, 621], "2020105": [54, 601, 621], "22187898": [54, 601, 621], "24144873": [54, 601, 621], "10000002": [54, 88, 291, 360, 601, 747], "00300002": [54, 601], "00800002": [54, 601], "adam_upd": [54, 77, 621, 837], "mw_tm1": [54, 77, 602, 607, 621], "vw_tm1": [54, 77, 602, 607, 621], "stop_gradi": [54, 77, 208, 523, 602, 605, 607, 608, 609, 617, 620, 621, 626, 701, 702, 703, 782, 837], "ws_new": [54, 77, 602, 607, 608, 609, 621], "updated_weight": [54, 77, 602, 621], "92558753": [54, 602], "92558873": [54, 602, 621], "92558718": [54, 602, 621], "00000063e": [54, 77, 602, 621], "00000016e": [54, 77, 602, 621], "00000086e": [54, 77, 602, 621], "gradient_descent_upd": [54, 77, 621, 626, 701, 702, 703], "descent": [54, 77, 605, 621, 782, 837, 854], "new_weight": [54, 77, 605, 607, 608, 621, 836], "lamb_upd": [54, 77, 621], "max_trust_ratio": [54, 77, 607, 621, 782], "decay_lambda": [54, 77, 607, 608, 621, 782], "trust": [54, 77, 607, 621, 782], "ratio": [54, 77, 607, 621, 782], "decai": [54, 77, 607, 608, 621, 782], "lamb": [54, 77, 607, 621, 782, 837], "784": [54, 607, 621], "lars_upd": [54, 77, 621], "lar": [54, 77, 608, 621, 782, 837], "34077978": [54, 608, 621], "78025991": [54, 608, 621], "56051969": [54, 608, 621], "78026009": [54, 608, 621], "56051981": [54, 608, 621], "12103939": [54, 608, 621], "optimizer_upd": [54, 77, 621], "effective_grad": [54, 77, 609, 621], "3e": [54, 77, 609, 621], "preserve_typ": [54, 77, 610, 621], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 622, 778], "filter_format": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "channel_last": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 762], "x_dilat": [56, 79, 622, 635, 636, 638, 639, 640, 642], "d_out": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "channel_first": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "wio": [56, 622, 635, 636, 637, 642], "conv1d_transpos": [56, 79, 622], "output_shap": [56, 79, 622, 635, 637, 639, 641, 643, 778], "iow": [56, 79, 622, 637], "woi": [56, 79, 622, 637], "fh": [56, 79, 622, 627, 635, 638, 639, 640, 641, 642, 643, 644, 716], "hwio": [56, 622, 635, 636, 638, 642], "conv2d_transpos": [56, 79, 622], "iohw": [56, 79, 622, 639], "hwoi": [56, 79, 622, 639], "conv3d": [56, 79, 622, 641, 778], "fd": [56, 79, 622, 635, 640, 641, 642, 643], "conv3d_transpos": [56, 79, 622, 643], "iodhw": [56, 79, 622, 641, 643], "dhwoi": [56, 79, 622, 641, 643], "depthwise_conv2d": [56, 79, 622], "randint": [56, 61, 63, 79, 84, 629, 631, 644, 647, 735, 813, 847], "noise_shap": [56, 79, 622, 645], "42857146": [56, 622, 645], "85714293": [56, 622, 645], "28571415": [56, 79, 622, 645], "71428585": [56, 79, 622, 645], "14285755": [56, 79, 622, 645], "5714283": [56, 622, 645], "4285717": [56, 79, 622, 645], "8571434": [56, 79, 622, 645], "2857151": [56, 622, 645], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 622, 646], "inner_batch_shap": [56, 79, 622, 646], "lstm_updat": [56, 79, 622, 833], "init_h": [56, 79, 622, 647, 833], "init_c": [56, 79, 622, 647, 833], "recurrent_kernel": [56, 79, 622, 647, 833], "recurrent_bia": [56, 79, 622, 647, 833], "hidden": [56, 79, 622, 647, 778, 810, 817, 833, 837], "recurr": [56, 79, 622, 647, 833, 854, 858], "timestep": [56, 79, 622, 647, 648, 778, 833], "h_i": [56, 79, 647], "c_i": [56, 79, 647], "rc": [56, 79, 647], "multi_head_attent": [56, 79, 622, 824], "num_head": [56, 79, 622, 648, 778], "in_proj_weight": [56, 79, 622, 648], "q_proj_weight": [56, 79, 622, 648], "k_proj_weight": [56, 79, 622, 648], "v_proj_weight": [56, 79, 622, 648], "out_proj_weight": [56, 79, 622, 648], "in_proj_bia": [56, 79, 622, 648], "out_proj_bia": [56, 79, 622, 648], "is_caus": [56, 79, 622, 648, 651], "key_padding_mask": [56, 79, 622, 648], "bias_k": [56, 79, 622, 648], "bias_v": [56, 79, 622, 648], "static_k": [56, 79, 622, 648], "static_v": [56, 79, 622, 648], "add_zero_attn": [56, 79, 622, 648], "return_attention_weight": [56, 79, 622, 648], "average_attention_weight": [56, 79, 622, 648], "scaled_dot_product_attent": [56, 79, 622], "dropout_p": [56, 79, 622, 651], "num_queri": [56, 79, 622, 651], "feat_dim": [56, 79, 622, 651], "num_kei": [56, 79, 622, 651], "causal": [56, 79, 622, 648, 651], "attent": [56, 79, 622, 648, 651, 778, 805, 808, 844], "29999995": [56, 291, 292, 301, 360, 622, 631, 651, 736], "19994521": [56, 622, 651], "09994531": [56, 622, 651], "30000019": [56, 371, 456, 622, 651], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 623, 824], "625": [57, 75, 341, 623, 652], "vif": [57, 80, 653], "det": [57, 80, 623, 671, 812], "axis1": [57, 59, 80, 82, 623, 625, 656, 677, 697], "axis2": [57, 80, 623, 656, 677], "eigh": [57, 80, 369, 420, 623, 657], "uplo": [57, 80, 623, 658, 659], "eigvalsh": [57, 80, 623], "array_lik": [57, 80, 368, 370, 371, 412, 441, 442, 446, 447, 477, 623, 660, 668, 792], "105": [57, 79, 622, 623, 624, 645, 646, 660, 668, 682], "149": [57, 623, 660], "143": [57, 74, 98, 285, 618, 623, 660, 815], "203": [57, 74, 224, 623, 628, 660, 723], "233": [57, 623, 660], "inv": [57, 80, 623], "transpose_a": [57, 80, 623, 663], "transpose_b": [57, 80, 623, 663], "adjoint_a": [57, 80, 623, 663], "adjoint_b": [57, 80, 623, 663], "matrix_norm": [57, 80, 623], "ord": [57, 80, 623, 664, 680], "fro": [57, 80, 370, 441, 623, 664], "nuc": [57, 80, 623, 664], "matrix_pow": [57, 80, 623], "matrix_rank": [57, 80, 623], "hermitian": [57, 80, 369, 420, 421, 623, 657, 658, 659, 666, 673], "largest_singular_valu": [57, 80, 623, 666, 669], "defici": [57, 623, 666], "matrix_transpos": [57, 80, 623, 835], "pinv": [57, 80, 623], "pseudo": [57, 80, 623, 669, 823], "99999988": [57, 80, 623, 669], "qr": [57, 80, 623, 826], "complet": [57, 69, 80, 623, 670, 763, 803, 804, 805, 807, 808, 811, 812, 815, 817, 821, 825, 826, 828, 831, 835, 836, 844, 852], "12309149": [57, 623, 670], "90453403": [57, 623, 670], "40824829": [57, 623, 670], "49236596": [57, 623, 670], "30151134": [57, 623, 670], "81649658": [57, 623, 670], "86164044": [57, 623, 670], "12403841e": [57, 623, 670], "60113630e": [57, 623, 670], "10782342e": [57, 623, 670], "04534034e": [57, 623, 670], "80906807e": [57, 623, 670], "88178420e": [57, 80, 623, 659, 670], "slogdet": [57, 80, 623], "logabsdet": [57, 80, 623, 671], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 618, 623, 671, 808, 815, 817, 826, 844], "098611": [57, 623, 671], "solv": [57, 80, 369, 429, 623, 762, 798, 804, 807, 818, 825, 834, 856], "full_matric": [57, 80, 623, 673], "svf": [57, 673], "reconstructed_x": [57, 623, 673], "svdval": [57, 80, 623], "tensorsolv": [57, 80, 623], "vander": [57, 80, 623], "vandermond": [57, 80, 623, 678], "vecdot": [57, 80, 623], "vector_norm": [57, 80, 623], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 613, 618, 623, 664, 680, 813, 825, 831, 854, 860], "manhattan": [57, 80, 623, 680], "euclidean": [57, 80, 92, 93, 623, 680], "7416575": [57, 80, 623, 680], "vector_to_skew_symmetric_matrix": [57, 80, 623], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 624, 812], "from_logit": [58, 81, 624, 682, 779], "pos_weight": [58, 81, 624, 682], "crossentropi": [58, 81, 624, 682], "357": [58, 81, 624, 682, 684], "223": [58, 81, 624, 682, 684], "3862944": [58, 624, 683], "sparse_cross_entropi": [58, 81, 624], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 625, 685, 838], "x_max": [59, 82, 625, 685, 838], "before_1": [59, 82, 371, 472, 625, 687, 700], "after_1": [59, 82, 371, 472, 625, 687, 700], "before_n": [59, 82, 371, 472, 625, 687, 700], "after_n": [59, 82, 371, 472, 625, 687, 700], "repetit": [59, 82, 625, 691, 698, 831], "flat": [59, 69, 82, 376, 500, 563, 620, 625, 691], "allowzero": [59, 82, 625, 692], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 618, 625, 627, 630, 692, 710, 733, 792, 804, 805, 812, 815, 817, 821, 829, 831, 839], "roll": [59, 82, 625, 820], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 615, 618, 625, 693, 804, 805, 814, 815, 820, 827], "restor": [59, 82, 625, 693, 819], "num_or_size_split": [59, 69, 82, 625, 694, 833], "with_remaind": [59, 69, 82, 625, 694], "squeezabl": [59, 625, 695], "swapax": [59, 82, 625], "axis0": [59, 82, 625, 697], "swap_ax": [59, 697], "swap": [59, 82, 625, 697, 787, 848], "tile": [59, 76, 82, 534, 625], "unpack": [59, 82, 625, 699, 826, 828], "zero_pad": [59, 82, 625], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 628], "normalized_idx": [60, 83, 628, 723], "new_std": [60, 83, 628, 723, 781], "learnabl": [60, 83, 626, 628, 703, 723, 778, 781, 838], "deviat": [60, 61, 65, 83, 84, 88, 628, 629, 633, 723, 726, 750, 764, 777, 781, 807, 845], "0976": [60, 628, 723], "3452": [60, 628, 723], "2740": [60, 628, 723], "1047": [60, 628, 723], "5886": [60, 628, 723], "2732": [60, 628, 723], "7696": [60, 628, 723, 762], "7024": [60, 628, 723], "2518": [60, 628, 723], "826": [60, 628, 723], "178": [60, 628, 723], "981": [60, 628, 723], "831": [60, 628, 723], "421": [60, 628, 723], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 497, 629], "population_s": [61, 84, 629, 724], "num_sampl": [61, 84, 629, 724], "unnorm": [61, 84, 629, 724, 828], "popul": [61, 65, 69, 84, 88, 629, 633, 724, 750, 752, 813, 814, 824, 828, 833, 860], "draw": [61, 84, 375, 495, 497, 499, 629, 724, 726, 727, 762, 763, 764, 765, 770, 777, 803, 807, 826, 828], "half": [61, 84, 121, 282, 615, 618, 629, 725, 727, 801, 818, 831], "235": [61, 726], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 615, 616, 623, 680, 726, 727, 762, 763, 801, 813, 818, 825, 828], "807": [61, 726], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 630, 730, 731], "occurr": [62, 371, 380, 485, 507, 630, 631, 730, 731, 735], "argmin": [62, 85, 630], "output_dtyp": [62, 85, 630, 731], "argwher": [62, 85, 630], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 618, 630], "as_tupl": [62, 85, 630, 733], "fewer": [62, 85, 630, 733], "_arraywithset": [63, 97], "unique_al": [63, 86, 631], "by_valu": [63, 86, 631, 735], "inverse_indic": [63, 86, 371, 485, 631, 735, 737], "unique_count": [63, 86, 631], "unique_invers": [63, 86, 631], "unique_valu": [63, 86, 631], "admonit": [63, 738], "dask": [63, 631, 735, 736, 737, 738, 844], "difficult": [63, 631, 735, 736, 737, 738, 805, 807, 813, 828, 839], "omit": [63, 278, 618, 631, 735, 736, 737, 738, 820, 824, 825], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 618, 631, 633, 735, 736, 737, 738, 746, 747, 748, 750, 751, 752, 777, 816], "x_j": [63, 631, 735, 736, 737, 738], "impli": [63, 631, 735, 736, 737, 738, 828], "typeerror": [63, 86, 631, 738, 835], "_arraywithsort": [64, 97], "stabil": [64, 87, 578, 579, 620, 632, 739, 742, 813, 823, 829, 831], "maintain": [64, 87, 632, 739, 742, 804, 805, 807, 819, 824, 826, 827, 828, 843, 853], "msort": [64, 87, 632], "searchsort": [64, 87, 632, 763], "side": [64, 87, 343, 365, 369, 435, 632, 741, 762, 778, 791, 792, 804, 805, 810], "sorter": [64, 87, 632, 741], "ret_dtyp": [64, 87, 632, 741], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 633, 825, 838], "cumsum": [65, 88, 633, 813], "einsum": [65, 88, 633], "equat": [65, 75, 88, 308, 362, 369, 435, 623, 633, 672, 745, 762, 791, 812, 854], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 618, 623, 633, 671, 677, 745, 746, 748, 749, 751, 791, 792, 808, 811, 816, 825], "contract": [65, 623, 633, 675, 745, 792], "seq": [65, 633, 745, 762], "ii": [65, 88, 633, 745, 805], "jk": [65, 633, 745, 792], "ik": [65, 633, 745, 792], "126": [65, 105, 274, 612, 618, 623, 633, 665, 745], "510": [65, 633, 745], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 618, 623, 633, 671, 677, 746, 747, 748, 749, 750, 751, 752, 762, 763, 764, 765, 770, 777, 803, 807, 808, 810, 812, 815, 816, 817, 820, 824, 826, 827, 828, 829, 831, 854, 855, 856], "arithmet": [65, 88, 229, 235, 268, 618, 633, 747, 825], "propag": [65, 229, 329, 330, 365, 618, 633, 746, 747, 748, 750, 751, 752, 823], "04999995": [65, 747], "freedom": [65, 88, 633, 750, 752, 809], "constitut": [65, 88, 633, 750, 752, 821, 833, 855], "commonli": [65, 88, 633, 750, 752, 817, 821, 823], "81649661": [65, 633, 750], "6666665": [65, 752, 836], "667": [65, 76, 235, 528, 578, 618, 620, 752], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 617, 618, 634, 753, 754, 803, 808, 812, 813, 814, 817, 821, 822, 823, 824, 825, 827, 828, 831, 835, 848], "AND": [66, 89, 225, 236, 262, 618, 634, 753], "OR": [66, 89, 228, 264, 271, 618, 634, 754, 804, 805, 823], "_wrap_funct": [67, 90, 810, 821, 822], "function_nam": [67, 90, 803, 829], "new_funct": [67, 90, 810], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 847, 848, 849], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 573, 595, 620, 830, 836], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 573, 595, 620, 830], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 779, 780, 809, 830], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 811], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 718, 719, 720, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 760, 763, 812], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 612], "28903052": [68, 109, 612], "10714479": [68, 109, 612], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 612], "7310586": [68, 111, 112, 612], "88079703": [68, 111, 612], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 612], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 627, 704], "166": [68, 105, 612], "dictionari": [69, 86, 98, 207, 587, 603, 617, 620, 621, 738, 757, 759, 792, 808, 812, 813, 821, 825, 826, 836, 839], "asynchron": [69, 98, 854], "wait": [69, 98, 573, 620, 798, 803, 805, 812, 825], "arriv": [69, 98, 573, 620, 831], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 527, 528, 544, 616, 620, 625, 685, 762, 764, 765, 777, 784, 792, 798, 804, 805, 810, 812, 815, 817, 825, 828, 831, 836, 839, 853, 854, 855], "whitespac": [69, 98], "indent": [69, 98, 836], "newlin": [69, 98, 816], "termin": [69, 98, 804, 805, 811, 818, 819, 833, 836], "constructor": [69, 98, 523, 620, 759, 775, 783, 813, 814, 816, 835], "kept": [69, 98, 626, 701, 702, 805, 824, 829], "encount": [69, 98, 778, 801, 803, 813, 817, 818, 828], "node": [69, 76, 98, 525, 535, 581, 627, 714, 715, 777, 786, 810, 811, 825, 844, 847, 848, 855], "alphabet": [69, 98], "__setitem__": [69, 371, 480, 808, 811, 835], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 811, 836], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 803, 804, 836], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 784], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 836], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 477, 544, 620, 627, 706, 809, 816, 822, 823, 826, 837, 860], "configur": [69, 207, 617, 627, 717, 804, 805, 810, 812, 813, 818, 819], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 836], "cont_create_if_abs": 69, "noth": [69, 831, 860], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 529, 616, 620, 804, 805, 828], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 836, 847], "cont_dev": 69, "belong": [69, 803, 807, 837], "cont_dev_str": 69, "cont_diff": [69, 836], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 811, 812, 828, 831, 845, 854], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 836], "above_height": [69, 836], "below_depth": [69, 836], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 836], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 780, 836, 853], "h5py": 69, "filepath": [69, 634, 755, 756, 805, 807], "cont_from_disk_as_json": [69, 836], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 836], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 803, 827, 836, 850, 860], "cont_handle_inplac": 69, "prime": [69, 813], "overwritten": [69, 808, 809], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 812], "cont_has_key_chain": 69, "cont_ident": [69, 836], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 836], "cont_load": 69, "cont_map": [69, 811, 836], "func": [69, 92, 208, 357, 358, 359, 367, 526, 600, 603, 604, 606, 611, 617, 620, 621, 627, 717, 759, 803, 807, 808, 815, 817, 823], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 583, 620, 762, 828, 839], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 627, 717], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 798, 837], "key2": [69, 798], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 442, 615, 804, 805, 807, 813, 821, 827, 828, 831, 839, 847, 848, 849, 858], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 804, 809, 824], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 622, 640], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 450, 451, 452, 481], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 836], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 836], "cont_to_disk_as_pickl": [69, 836], "cont_to_flat_list": 69, "cont_to_iter": [69, 811], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 617], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 826], "cont_with_key_length_limit": [69, 836], "cont_with_print_ind": [69, 836], "cont_with_print_limit": [69, 836], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 428, 615], "n_col": [71, 75, 127, 142, 322, 362, 615], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 615], "234": [71, 74, 131, 154, 237, 288, 615, 616, 618, 622, 646, 762], "123": [71, 72, 131, 163, 535, 615, 620, 792, 828], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 615], "expos": [71, 129, 529, 615, 620, 798, 812, 833, 837, 843], "x00": [71, 129, 615], "xf0": [71, 129, 615], "x01": [71, 129, 615], "x02": [71, 129, 615], "x03": [71, 129, 615], "x04": [71, 129, 615], "x05": [71, 129], "5443469": [71, 133, 615], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 615], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 616], "618": [72, 74, 147, 264, 616], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 616], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 616], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 616], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 616], "7976931348623157e": [72, 160, 616], "308": [72, 160, 616, 762, 828], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 616], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 480, 616], "2147483647": [72, 163, 616], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 616], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 616, 829], "roughli": [72, 804, 807, 857], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 618], "412": [74, 79, 220, 618, 627, 704], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 618], "983": [74, 223, 618], "978": [74, 223, 618], "696": [74, 84, 223, 618, 726], "993": [74, 223, 618], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 618], "873": [74, 234, 274, 618], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 618], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 618], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 618], "38905621": [74, 238, 618], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 618], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 615, 618, 623, 671], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 477], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 618], "0414": [74, 257, 618], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 618], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 618], "static_round": 74, "301": [74, 278, 618], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 618], "959": [74, 240, 280, 618], "279": [74, 280, 368, 389, 399, 527, 618, 620], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 618], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 618], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 618, 837], "305": [74, 79, 220, 618], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 618], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 805, 835, 854], "shrinkag": [75, 292, 301, 371, 479], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 601, 621], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 632, 741, 764, 804, 805, 811, 829, 854], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 854, 855], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 492, 494], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 623, 658], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 623, 661, 762, 765], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 813], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 477], "10240": [75, 345], "60000038": [75, 346, 365, 623, 679], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 618], "515": [75, 629, 726], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 417], "eigenvealu": [75, 420, 657], "xx": [75, 420, 422, 657], "37228107": [75, 420, 657], "3722816": [75, 420, 657], "8245648": [75, 420, 657], "41597357": [75, 420, 657], "56576747": [75, 420, 657], "9093767": [75, 420, 657], "56155": [75, 421], "82842": [75, 421], "450": [75, 427], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 426, 427], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 439], "output_tensor": [75, 95, 369, 439], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 441], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 445], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 445], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 456, 480], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 450, 451, 452], "ary2": [75, 371, 450, 451, 452], "broadcast_shap": [75, 101, 371, 762, 764], "static_concat_from_sequ": [75, 457], "30192195": [75, 469], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 492, 494], "50709254": [75, 492, 494], "84515423": [75, 492, 494], "44183609": [75, 492, 494], "56807494": [75, 492, 494], "69431382": [75, 492, 494], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 497], "32325703": [75, 497], "24031169": [75, 497], "34251311": [75, 497], "31692529": [75, 497], "3405616": [75, 497], "5319725": [75, 497], "22458365": [75, 497], "24344385": [75, 497], "26588406": [75, 497], "61075421": [75, 497], "12336174": [75, 497], "51142915": [75, 497], "25041268": [75, 497], "23815817": [75, 497], "64042903": [75, 497], "25763214": [75, 497], "10193883": [75, 497], "31624692": [75, 497], "46567987": [75, 497], "21807321": [75, 497], "37677699": [75, 497], "39914594": [75, 497], "22407707": [75, 497], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 512, 803, 815, 816, 821, 825], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 509], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 456], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 527, 528, 620], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 533, 620], "53000069": [76, 533, 620], "39666676": [76, 533, 620], "20666695": [76, 533, 620], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 625, 631, 694, 736], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 578, 620], "444": 76, "_static_stable_pow": 76, "00012": [76, 579, 620], "00016": [76, 77, 579, 607, 620, 621], "00001": [76, 579, 620, 762], "00032": [76, 579], "00256": [76, 579], "1679638": [76, 579], "395": [76, 579], "16777383": [76, 579], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 528], "items": [76, 97, 620], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 599], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 601, 618, 621], "49e": [77, 601, 621], "74e": [77, 601, 621], "95e": [77, 601, 621], "024": [77, 601, 621], "096": [77, 601, 621], "216": [77, 80, 601, 621, 678], "626": [77, 601, 621], "en": [77, 601, 602, 621, 812], "wikipedia": [77, 601, 602, 621], "wiki": [77, 601, 602, 621], "stochastic_gradient_desc": [77, 601, 602, 621], "01099": [77, 602], "01003": [77, 602, 621], "01015": [77, 602, 621], "99936122": [77, 602, 621], "99936116": [77, 602, 621], "99936128": [77, 602, 621], "99936104": [77, 602, 621], "w_new": [77, 605, 621], "708": [77, 607, 621], "445": [77, 607, 621], "6e": [77, 607, 621], "00036": [77, 607, 621], "00049": [77, 607, 621], "layerwis": [77, 608, 621], "01132035": [77, 608, 621], "22264051": [77, 608, 621], "2056601": [77, 608, 621], "1324538": [77, 608, 621], "56490755": [77, 608, 621], "96622658": [77, 608, 621], "90848625": [77, 608, 621], "93616199": [77, 608, 621], "77232409": [77, 608, 621], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 623, 633, 637, 668, 745], "_static_conv2d": 79, "ey": [79, 615, 622, 638, 644, 831, 838], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 640], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 622, 644], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 622, 645, 646], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 622, 645, 646], "19999695": [79, 646], "11600018": [79, 646], "88399887": [79, 646], "196": [79, 622, 646], "306": [79, 622, 646], "19999981": [79, 292, 304, 360, 622, 645, 651], "59249449": [79, 622, 651], "68226194": [79, 622, 651], "19603825": [79, 622, 651], "9960382": [79, 622, 651], "26894283": [79, 622, 651], "40236187": [79, 622, 651], "39999437": [79, 622, 651], "59999037": [79, 622, 651], "35046196": [79, 622, 651], "54282808": [79, 622, 651], "39989519": [79, 622, 651], "5998764": [79, 622, 651], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 623, 652], "707": [80, 623, 652], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 623, 659], "17091519": [80, 623, 659], "3448143": [80, 623, 659], "35898387e": [80, 623, 659], "46410179e": [80, 623, 659], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 615], "n2": [80, 134, 615], "static_out": [80, 668], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 623, 670], "9486833": [80, 623, 670], "4472136": [80, 623, 670], "89442719": [80, 623, 670], "16227766": [80, 623, 670], "42718872": [80, 623, 670], "63245553": [80, 623, 670], "47213595": [80, 623, 670], "81377674": [80, 623, 670], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 844], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 618, 678], "729": [80, 678, 837], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 680], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 623, 671], "static_general_inner_product": 80, "3475602": [80, 673], "93765765": [80, 673], "58776021": [80, 673], "10416126": [80, 673], "80644298": [80, 673], "87024701": [80, 673], "48127627": [80, 673], "79101127": [80, 673], "98288572": [80, 673], "68917423": [80, 673], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 624, 682, 684], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 623, 671], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 683], "609438": [81, 683], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 625, 688], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 691], "_containerwithnorm": [83, 98], "34198591": [83, 628, 723], "04274819": [83, 628, 723], "29923761": [83, 628, 723], "24053511": [83, 628, 723], "62221265": [83, 723], "20277636": [83, 723], "41943574": [83, 723], "83710337": [83, 723], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 726], "274": [84, 726], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 749], "23100001": [88, 749], "30800003": [88, 633, 749], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 633, 752], "11555555": [88, 633, 752], "rtype": [88, 745, 791], "respectv": [88, 750], "81649649": [88, 750], "94280904": [88, 750], "509902": [88, 633, 750], "2472192": [88, 750], "44948983": [88, 750], "41421354": [88, 750], "6666667": [88, 752], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 426], "khatri": [92, 369, 426], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 465, 476], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 857], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 831], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 843, 854], "b_i": 93, "ijk": [93, 792], "sum_r": 93, "a_": 93, "ir": [93, 852, 855, 860], "jr": 93, "kr": 93, "coupl": [93, 804, 808, 835, 837, 854], "factoris": 93, "i1": [93, 380, 512], "classmethod": [93, 100, 101, 767], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 420, 434, 440, 623, 657, 658], "sum_": 93, "ijr": 93, "constraint": [93, 792, 812, 813, 823], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 625, 698, 778, 781, 782, 783, 827, 833, 837, 838, 852, 854, 861], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 805], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 439], "e501": [95, 624, 682, 778], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 777], "realiz": [95, 854], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 861], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 600, 620, 627, 715, 812], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 808, 811, 815, 816, 820, 825, 826, 835], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 831], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 835], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 815, 816, 825], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 808, 811, 815, 820, 835], "__truediv__": [97, 98, 808, 811, 815], "__xor__": [97, 98], "referenc": [97, 817, 824], "resid": [97, 101, 625, 688, 825, 833, 837], "mt": [97, 835], "hopefulli": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845], "overview": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 810, 812, 826, 828, 832], "reach": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845, 853, 854], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 494, 603, 621], "nested_arrai": [100, 101, 102, 810], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 612, 618, 820, 824], "24000001": [107, 612], "703": [108, 612], "683": [108, 612], "408": [108, 612], "313": [108, 612], "437": [108, 612], "40337825": [109, 612], "56114835": [109, 612], "20788449": [109, 612], "0768": [112, 612], "231": [112, 612], "\u03b2": [113, 612], "66666667": [114, 380, 509, 612], "body_fn": [117, 118, 120, 614], "bodi": [117, 120, 614, 807, 828], "lst": [117, 614], "orelse_fn": [118, 614], "body1": [119, 614], "body2": [119, 614], "test_fn": [120, 614, 760, 798, 848, 849], "repeatedli": [120, 614, 627, 713, 812, 828], "ml_framework": [121, 615], "distanc": [121, 615], "adjac": [121, 615], "nestedsequ": [122, 123, 615], "typevar": [122, 123, 615], "supportsbufferprotocol": [122, 123, 615], "static_copy_arrai": [124, 615], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 615, 616], "pycapsul": [128, 139, 615], "interchang": [128, 139, 615, 625, 697], "plu": [129, 615], "x00b": [129, 615], "x00d": [129, 615], "x00e": [129, 615], "66666663": [132, 615], "41588834": [133, 615], "7827941": [133, 615], "6227766": [133, 615], "23413252": [133, 615], "n3": [134, 615], "xv": [134, 615], "yv": [134, 615], "x_nativ": [135, 615, 824], "y_nativ": [135, 615], "z_nativ": [135, 615], "d_type": [137, 615], "col": [142, 322, 362, 615], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 502, 537, 538, 615, 616, 617, 620, 763, 765, 803, 806, 809, 813, 822, 824, 825, 827, 828, 831, 839, 841], "upward": [142, 322, 362, 615], "downward": [142, 322, 362, 615], "2xn": [142, 322, 362, 615], "subarrai": [142, 322, 362, 615], "incompat": [149, 616], "closest": [152, 231, 241, 242, 278, 288, 616, 618, 828, 831], "xtype": [152, 616], "ytype": [152, 616], "native_uint16": [152, 616], "complexdtyp": [153, 167, 176, 616], "set_default_complex_dtyp": [153, 182, 616], "4294": [153, 155, 616], "967346": [153, 155, 616], "set_default_dtyp": [154, 183, 616, 813, 821], "floatdtyp": [155, 178, 616], "set_default_float_dtyp": [155, 164, 176, 184, 616, 813], "int_dtyp": [156, 179, 616], "set_default_int_dtyp": [156, 164, 185, 616, 813], "4294967346": [156, 157, 616], "uint_dtyp": [157, 180, 616], "uint": [157, 172, 180, 186, 616, 813, 826], "uintdtyp": [157, 172, 180, 186, 616], "set_default_uint_dtyp": [157, 164, 186, 616], "native_bool": [159, 616], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 613, 616, 618, 844], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 613, 616, 618, 844], "smallest_norm": [160, 616], "bfloat16": [161, 616, 762, 763, 813, 825, 828, 829], "unsupport": [162, 195, 538, 616, 617, 620, 757, 760, 801, 804, 818, 825], "encapsul": [163, 616, 812], "314": [163, 275, 332, 365, 616, 618], "9223372036854775808": [163, 616], "9223372036854775807": [163, 616], "65535": [163, 616], "4294967295": [163, 616], "native_uint8": [165, 616], "hashabl": [169, 616], "type1": [173, 616], "type2": [173, 616], "array_api_promot": [173, 174, 616, 762, 763], "unexpect": [174, 242, 616, 618, 813], "default_complex_dtyp": [176, 616], "default_dtype_stack": [177, 183, 616], "unset_default_dtyp": [177, 616], "native_uint64": [177, 616], "default_float_dtyp": [178, 616, 813], "default_int_dtyp": [179, 185, 616, 813], "default_uint_dtyp": [180, 186, 616], "ret1": [181, 616], "ret2": [181, 616], "reset": [182, 183, 184, 185, 186, 212, 213, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 616, 617, 620, 814], "default_complex_dtype_stack": [182, 616], "default_float_dtype_stack": [184, 616], "native_float16": [187, 616], "unmodifi": [189, 617, 809, 813], "aliv": [196, 201, 203, 541, 561, 562, 617, 620, 814], "139740789224448": [196, 617], "physic": [199, 617], "process_specif": [202, 214, 617], "percentag": [202, 617], "ram": [202, 210, 214, 617], "alon": [202, 214, 617, 798, 819, 828], "036902561555": [202, 617], "7024003467681645": [202, 617], "as_native_dev": [202, 617], "7095597456708771": [202, 617], "attr_onli": [203, 617], "soft_device_mod": [205, 213, 617], "chunk": [206, 207, 208, 617], "split_factor": [206, 617, 817], "max_chunk_s": [208, 617], "chunk_siz": [208, 617], "input_ax": [208, 617], "output_ax": [208, 617], "usag": [208, 617, 813, 821, 824, 828, 833, 839, 844, 857], "fed": [208, 617, 837], "fist": [208, 617], "gb": [210, 214, 617, 804, 818], "66700032": [210, 617], "589934592": [210, 617], "219563008": [214, 617], "902400346": [214, 617], "525205504": [214, 617], "na": [215, 618, 828], "princip": [216, 220, 222, 352, 365, 618], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 618, 816, 852, 854], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 618, 816], "\u03c0": [216, 220, 222, 223, 613, 618], "3\u03c0": [216, 223, 618], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 420, 618, 623, 625, 657, 658, 696, 824], "\u03c0j": [217, 221, 224, 256, 258, 618], "3\u03c0j": [217, 256, 258, 618], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 618, 807], "2019": [218, 235, 240, 258, 268, 618, 854, 857], "overflow": [218, 235, 242, 618, 623, 633, 671, 751, 802, 813], "commut": [218, 618], "tabl": [218, 235, 268, 572, 594, 618, 620, 762, 763, 778, 825, 830, 854], "dj": [218, 235, 268, 618], "bj": [218, 235, 268, 332, 365, 618], "z1": [218, 618], "z2": [218, 618], "yj": [219, 618], "nanj": [221, 618], "809": [221, 618], "569": [221, 618], "733": [221, 618], "notat": [223, 618, 633, 745, 812], "denot": [223, 618, 780], "quadrant": [223, 618], "rai": [223, 618, 844], "bitwis": [225, 228, 230, 265, 618], "170": [229, 618], "243": [229, 618], "xor": [230, 265, 618], "654": [232, 618], "ci": [233, 238, 240, 281, 618, 807, 813, 819, 826, 828, 839], "368": [233, 618], "670": [233, 618], "202": [233, 618, 807], "548": [233, 618], "1490": [233, 618], "57079633": [234, 618], "14159265": [234, 618], "71238898": [234, 618], "28318531": [234, 618], "02617994": [234, 618], "87266463": [234, 618], "01919862": [234, 618], "03839725": [234, 618], "05759586": [234, 618], "07679449": [234, 618], "09599311": [234, 618], "11519173": [234, 618], "35081118": [234, 618], "88139129": [234, 618], "underflow": [235, 242, 618, 623, 671, 813], "textbook": [235, 268, 618], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 488, 490, 618], "ac": [235, 268, 618, 791, 792], "bd": [235, 268, 618], "bc": [235, 268, 618, 791, 792], "versu": [235, 268, 618], "riemann": [235, 268, 618], "sphere": [235, 268, 618], "c99": [235, 268, 618], "infinit": [235, 268, 282, 618], "unlik": [235, 268, 618, 807, 812, 815, 844, 859, 861], "698": [235, 618], "truth": [236, 246, 247, 254, 255, 271, 370, 441, 618, 757, 759, 770, 801, 818, 825, 828], "32862675": [237, 618], "67780113": [237, 618], "11246294": [237, 618], "42839241": [237, 618], "52050018": [237, 618], "16799599": [237, 618], "30787992": [237, 618], "43796915": [237, 618], "98667163": [237, 618], "79690808": [237, 618], "88020504": [237, 618], "91031402": [237, 618], "95228523": [237, 618], "96610528": [237, 618], "cut": [238, 240, 280, 281, 282, 285, 618, 803, 843, 860], "08553692": [238, 618], "567": [238, 618], "00344786": [238, 618], "76297021": [238, 618], "197948": [238, 618], "53253174": [238, 618], "accur": [240, 258, 618, 623, 671, 822], "fdlibm": [240, 258, 618], "compliant": [240, 258, 263, 264, 329, 330, 365, 618, 633, 746, 747, 748, 750], "potenti": [240, 258, 618, 798, 803, 804, 812, 813, 825, 832, 857], "632": [240, 618], "20e": [240, 618], "72e": [240, 618, 762], "greatest": [241, 242, 245, 618], "pep": [242, 618, 820], "disambigu": [242, 618, 823], "former": [242, 618, 804, 813, 816, 825], "latter": [242, 618, 804, 807, 809, 813, 816, 825], "overload": [242, 618, 828], "led": [242, 618, 807, 856], "subtl": [242, 618, 813, 860], "bug": [242, 618, 798, 803, 805, 810, 818, 819, 825, 828, 840], "ambigu": [242, 618], "semant": [242, 277, 371, 480, 618, 813, 833, 838, 843, 855], "ill": [242, 618, 764], "surpris": [242, 618, 839], "arrau": [248, 618], "log_": [257, 259, 618], "742": [258, 618], "negat": [270, 332, 365, 618], "52095687": [273, 618], "92457771": [273, 618], "49372482": [273, 618], "22738838": [273, 618], "156": [273, 618, 762], "5877228": [273, 618], "189": [274, 618, 627, 704], "252": [274, 618], "378": [274, 618], "1150": [274, 618], "2890": [274, 618], "172": [274, 618], "487": [274, 618, 622, 646], "344": [274, 618], "355j": [275, 332, 365, 618], "55j": [275, 332, 365, 618], "primarili": [277, 618, 803, 811, 854], "reason": [277, 286, 618, 803, 805, 807, 808, 811, 812, 813, 815, 821, 824, 825, 828, 829, 831, 833, 835, 844, 860], "counterpart": [278, 618, 811, 822], "deliber": [278, 618, 831], "imprecis": [278, 618], "5654": [278, 618], "034": [278, 618], "433": [278, 604, 606, 618, 621], "signum": [279, 618], "operatornam": [279, 281, 618, 623, 658], "textrm": [279, 618], "932": [280, 618], "746": [280, 618], "657": [280, 528, 618, 620], "indistinguish": [282, 618], "convent": [282, 618, 623, 633, 663, 745, 805, 809, 820, 829, 843, 860], "infti": [282, 618], "32455532": [282, 618], "89897949": [282, 618], "169": [282, 618], "analyt": [285, 618, 854, 856, 860], "pole": [285, 618], "546": [285, 618, 622, 646], "916": [285, 618, 624, 682], "996": [285, 618], "histor": [286, 618], "stem": [286, 618, 824], "older": [286, 618], "advis": [286, 618, 825], "462": [286, 618], "604": [286, 618], "984": [286, 618], "997": [286, 618], "0375": [288, 618], "032": [288, 618], "57258511": [291, 360], "69999999": [291, 360, 611, 621], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 807, 828, 854], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 633, 745, 791, 792], "leakag": [306, 362], "wors": [306, 362, 844], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 854], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 560, 620, 803, 804, 805, 809, 813, 814, 815], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 804], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 633, 746, 748], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 533, 620], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 472, 791, 808, 810, 828], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 803, 823, 853, 854], "upstream": [357, 367, 804, 805, 807, 818, 823], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 606, 621, 839, 854], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 823], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 620], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 762], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 458, 804, 810, 812, 828, 838, 856], "5d": [368, 393, 778], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 625, 688, 793, 817], "interp": [368, 831], "xp": [368, 402, 807], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 831], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 812], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 418, 623, 655], "subdiagon": [369, 418, 623, 655], "eigendecomposit": [369, 420, 623, 657, 658], "qlq\u1d40": [369, 420, 623, 657, 658], "tridiagon": [369, 421], "38196602": [369, 421], "61803389": [369, 421], "35048741": [369, 421], "56710052": [369, 421], "06693714": [369, 421], "74234426": [369, 421], "56155282": [369, 421], "56155276": [369, 421], "82842714": [369, 421], "82842731": [369, 421, 623, 658], "necessarili": [369, 422, 808, 811], "generalis": [369, 423], "skip_matrix": [369, 426, 428], "khatri_rao_product": [369, 426], "kronecker_product": [369, 428], "n_column": [369, 428], "nnmf": [369, 429], "hoi": [369, 434, 440], "solve_triangular": 369, "unit_diagon": [369, 435], "solut": [369, 435, 623, 672, 762, 798, 801, 803, 804, 805, 811, 813, 818, 826, 828, 831, 852, 856], "determinist": [369, 436], "borrow": [369, 436, 806], "extmath": [369, 436], "ivan": [369, 437], "oseledet": [369, 437], "scientif": [369, 437, 854], "2295": [369, 437], "2317": [369, 437], "2011": [369, 437], "convention": [370, 442, 857], "issu": [370, 442, 777, 799, 800, 801, 802, 804, 807, 809, 810, 812, 813, 814, 815, 817, 818, 825, 828, 829, 831, 833, 837, 839, 845, 847], "explicit": [370, 371, 442, 480, 804, 811, 813, 823, 824, 825, 833, 839, 854], "555969": [370, 442], "223876": [370, 442], "111938": [370, 442], "42649534": [370, 442], "68651628": [370, 442], "51119184": [370, 442], "59967244": [370, 442], "mae": [370, 443], "91097307": [370, 445], "3467": [370, 446], "0133": [370, 446], "0250": [370, 446], "0056": [370, 446], "0025": [370, 446], "0675": [370, 446], "hing": [370, 447], "6987": [370, 447], "1606": [370, 447], "3711": [370, 447], "4032": [370, 447], "6931": [370, 447], "whilst": [371, 450, 451, 452, 838, 841, 854], "ary3": [371, 452], "check_scalar": 371, "force_integ": [371, 454], "force_posit": [371, 454], "mod": [371, 455, 807], "tall": [371, 461], "appear": [371, 463, 464, 600, 620, 804, 805, 807, 825, 831, 847], "horizot": [371, 468], "shortcut": [371, 472, 804], "linear_ramp": [371, 472], "reflect": [371, 472, 805, 808, 824, 828], "ramp": [371, 472], "mirror": [371, 472, 803, 854], "padding_func": [371, 472], "iaxis_pad_width": [371, 472], "iaxi": [371, 472], "unalt": [371, 472], "put": [371, 477, 798, 803, 828, 839, 860], "mul": [371, 477, 824, 835], "conceptu": [371, 480, 850, 855], "concern": [371, 480, 805, 806, 811, 813, 815, 824, 831, 832, 860], "regard": [371, 480, 802, 811, 825, 826, 831, 844], "mutat": [371, 480], "elimin": [371, 485, 804], "consecut": [371, 485], "batch_mean": [374, 488, 490], "batch_var": [374, 488, 490], "running_vari": [374, 488, 490], "local_response_norm": 374, "neighbour": [374, 493], "42857143": [374, 494], "5714286": [374, 494], "multivari": [375, 497], "bayesian": [375, 497], "supposedli": [378, 501], "indirect": [378, 502], "secondari": [378, 502], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 505], "crow_indic": [379, 505], "col_indic": [379, 505], "ccol_indic": [379, 505], "row_indic": [379, 505], "dense_shap": [379, 505], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 509, 623, 671, 672, 803, 824, 826], "aw": [380, 509, 844], "48447205": [380, 509], "c0": [380, 512], "ck": [380, 512], "c2": [380, 512], "nearest_jax": [380, 519], "trace_on_next_step": [523, 620, 782, 837], "recalcul": [526, 620], "my_sum": [526, 620], "val1": [526, 620], "val2": [526, 620], "cached_sum": [526, 620], "line_eq": [526, 620], "slp": [526, 620], "itc": [526, 620], "cached_line_eq": [526, 620], "0353": [527, 620], "424": [527, 620], "176": [527, 620], "339": [527, 620], "271": [527, 620], "391": [527, 620], "417": [528, 620], "583": [528, 620], "0667": [528, 620], "267": [528, 620], "131": [528, 620], "263": [528, 620], "394": [528, 620, 629, 729], "526": [528, 620], "788": [528, 620], "default_str": [531, 620], "46999979": [532, 620], "66000009": [532, 620], "93000001": [532, 620], "29000092": [532, 620], "33999991": [532, 620], "6400001": [532, 620], "96000004": [532, 620], "36000013": [532, 620], "51999998": [532, 620], "67000008": [532, 620], "suppos": [532, 620, 813, 828], "960": [532, 620], "3600": [532, 620], "h1": [532, 620], "w1": [532, 620], "40499985": [533, 620], "61000061": [533, 620], "max_depth": [544, 620], "seen_set": [544, 620], "local_set": [544, 620], "referr": [544, 620], "redund": [544, 620, 798, 813, 817, 825, 847], "example_funct": [544, 620], "ref_id_1": [544, 620], "ref_id_2": [544, 620], "ref_id_3": [544, 620], "ivyexcept": [549, 581, 620, 793, 814, 817, 822, 824, 825, 829], "allow_dupl": [559, 620], "fork": [560, 620, 799, 803, 807, 812, 818], "forkserv": [560, 620], "spawn": [560, 620], "mp_default": [560, 620], "defaultcontext": [560, 620], "0x7f4e3193e520": [560, 620], "mp_fork": [560, 620], "forkcontext": [560, 620], "0x7f4e3193e580": [560, 620], "mp_spawn": [560, 620], "spawncontext": [560, 620], "0x7f4e3193e5e0": [560, 620], "mp_forkserv": [560, 620], "forkservercontext": [560, 620], "0x7f4e3193e640": [560, 620], "garbag": [562, 620], "collector": [562, 620], "get_all_arrays_in_memori": [562, 620], "exception_trace_mod": [566, 589, 620, 830], "lenient": [567, 590, 620], "inplace_mod": [567, 590, 620], "break": [567, 620, 798, 809, 813, 820, 829, 839], "infus": [568, 620], "nestable_mod": [571, 593, 620, 830], "precise_mod": [572, 594, 620, 830], "shape_array_mod": [574, 596, 620, 830], "show_func_wrapper_trace_mod": [575, 597, 620, 830], "tmp_dr": [576, 620], "tmp_dir": [576, 598, 620, 830], "my_tmp": [576, 620], "49999999999975": [578, 620], "5015015015010504": [578, 620], "000444502911705e": [578, 620], "9999999999995j": [578, 620], "00000262": [579, 620], "15605032": [579, 620], "01208451j": [579, 620], "00048": [579, 620], "1296": [579, 620], "00864": [579, 620], "isn": [581, 620, 805, 822, 824, 836, 839, 856], "100000023841858": [583, 620], "200000047683716": [583, 620], "299999952316284": [583, 620], "400000095367432": [583, 620], "599999904632568": [583, 620], "hemant": [587, 620], "unset_shape_array_mod": [588, 620], "set_exception_trace_mod": [589, 620, 817], "set_min_bas": [591, 620], "set_min_denomin": [592, 620], "set_nestable_mod": [593, 620], "set_precise_mod": [594, 620], "set_queue_timeout": [595, 620], "set_shape_array_mod": [596, 620], "set_show_func_wrapper_trace_mod": [597, 620, 817], "set_tmp_dir": [598, 620], "my_dir": [598, 620], "451": [599, 620], "in_ax": [600, 620], "out_ax": [600, 620], "thereof": [600, 620], "summaris": [600, 620], "99999998": [601, 621], "19999998": [601, 621], "00000001": [601, 621], "00300001": [601, 621], "00800001": [601, 621], "0125": [601, 621], "17294501": [601, 621], "15770318": [601, 621], "20863818": [601, 621], "90000075": [602, 621], "90000164": [602, 621], "9000032": [602, 621], "50000012e": [602, 621], "92558754": [602, 621], "92558694": [602, 621], "92558682": [602, 621], "92558861": [602, 621], "60000025e": [602, 621], "01024": [602, 621], "retain_grad": [603, 621], "func_ret": [603, 621, 823], "666666": [603, 621], "333332": [603, 621], "66666675": [603, 611, 621], "argnum": [604, 621], "933": [604, 606, 621], "jac_fn": [606, 621], "639": [607, 621], "361": [607, 621], "52565837": [608, 621], "8418861": [608, 621], "68377209": [608, 621], "value_grad": [611, 621], "42333412": [611, 621], "5333333": [611, 621], "93333334": [611, 621], "43333334": [611, 621], "0666666": [611, 621], "softsign": 612, "718281828459045": 613, "euler": 613, "141592653589793": 613, "cmp_i": 614, "cmp_isnot": 614, "for_loop": 614, "if_els": 614, "try_except": 614, "while_loop": 614, "to_dlpack": 615, "as_ivy_dtyp": [616, 825], "as_native_dtyp": 616, "check_float": 616, "closest_valid_dtyp": 616, "default_dtyp": [616, 813, 821], "dtype_bit": 616, "function_supported_dtyp": [616, 813, 828], "function_unsupported_dtyp": [616, 813], "infer_default_dtyp": 616, "invalid_dtyp": [616, 813], "is_hashable_dtyp": 616, "is_native_dtyp": 616, "promote_typ": [616, 813], "promote_types_of_input": [616, 813, 824], "type_promote_arrai": [616, 813], "unset_default_complex_dtyp": 616, "unset_default_float_dtyp": 616, "unset_default_int_dtyp": 616, "unset_default_uint_dtyp": 616, "valid_dtyp": 616, "defaultcomplexdtyp": 616, "defaultdtyp": 616, "defaultfloatdtyp": 616, "defaultintdtyp": 616, "defaultuintdtyp": 616, "as_ivy_dev": [617, 835], "clear_cached_mem_on_dev": 617, "dev_util": [617, 814], "function_supported_devic": 617, "function_unsupported_devic": 617, "get_all_ivy_arrays_on_dev": [617, 814], "handle_soft_device_vari": [617, 814], "num_cpu_cor": [617, 814], "num_gpu": [617, 814, 828], "num_ivy_arrays_on_dev": 617, "percent_used_mem_on_dev": 617, "print_all_ivy_arrays_on_dev": 617, "set_split_factor": [617, 817], "split_func_cal": 617, "total_mem_on_dev": [617, 814], "tpu_is_avail": 617, "unset_default_devic": [617, 814], "unset_soft_device_mod": [617, 814], "used_mem_on_dev": 617, "defaultdevic": [617, 814], "profil": 617, "save_dir": 617, "arg_info": 620, "arg_nam": 620, "cache_fn": [620, 821], "current_backend_str": [620, 828, 833, 835], "function_supported_devices_and_dtyp": 620, "function_unsupported_devices_and_dtyp": 620, "get_item": [620, 824], "get_referrers_recurs": 620, "inplace_arrays_support": 620, "inplace_variables_support": 620, "is_ivy_nested_arrai": 620, "isscalar": 620, "match_kwarg": 620, "num_arrays_in_memori": 620, "print_all_arrays_in_memori": 620, "set_item": 620, "to_ivy_shap": 620, "to_native_shap": 620, "try_else_non": 620, "unset_array_mod": [620, 830], "unset_exception_trace_mod": 620, "unset_inplace_mod": 620, "unset_min_bas": 620, "unset_min_denomin": 620, "unset_nestable_mod": 620, "unset_precise_mod": 620, "unset_queue_timeout": 620, "unset_show_func_wrapper_trace_mod": 620, "unset_tmp_dir": 620, "vmap": [620, 839, 854], "arraymod": 620, "precisemod": [620, 813], "jac": 621, "value_and_grad": [621, 823], "neural": [622, 774, 778, 798, 848, 850, 852, 853, 854, 858, 860, 861], "feature_group_count": [622, 635, 642, 643], "oiw": [622, 635, 636, 642], "oihw": [622, 635, 638, 642], "oidhw": [622, 635, 640, 642], "dhwio": [622, 635, 636, 640, 642], "conv_general_dil": [622, 825], "conv_general_transpos": 622, "depthwis": [622, 644, 764, 778], "overfit": [622, 645], "overal": [622, 645, 792, 811, 813, 814, 816, 838, 847, 850, 852, 853, 854], "1428566": [622, 645], "49000001": [622, 645], "55599999": [622, 645], "21000004": [622, 645], "incom": [622, 646], "666": [622, 623, 646, 664], "4269": [622, 646], "911": [622, 646, 817], "157": [622, 646], "753": [622, 646], "545": [622, 629, 646, 727], "547": [622, 646, 814], "124": [622, 646], "963": [622, 646], "98495483": [622, 646], "0293808": [622, 646], "0159359": [622, 646], "74752808": [622, 646], "20942307": [622, 646], "3205719": [622, 646], "time_major": [622, 647], "long": [622, 647, 804, 805, 812, 813, 815, 817, 818, 825, 833, 854], "unrol": [622, 647, 833, 836], "lstm": [622, 647, 778, 833, 854], "batch_first": [622, 648], "multi": [622, 623, 648, 653, 764, 778, 815, 832, 839, 850, 852, 854, 858], "paper": [622, 648, 798, 845], "vaswani": [622, 648], "al": [622, 648], "num_attention_head": [622, 648], "key_dim": [622, 648, 778], "value_dim": [622, 648, 778], "measur": [622, 648, 778], "attention_weight": [622, 648], "unbatch": [622, 648], "nm": 622, "box": [622, 649, 650, 804], "iou_threshold": [622, 649], "max_output_s": [622, 649], "score_threshold": [622, 649], "roi_align": 622, "spatial_scal": [622, 650], "sampling_ratio": [622, 650], "23333359": [622, 651], "03946018": [622, 651], "0280633": [622, 651], "29981947": [622, 651], "29981089": [622, 651], "06345534": [622, 651], "9634552": [622, 651], "19336844": [622, 651], "09336829": [622, 651], "axisa": [623, 653], "axisb": [623, 653], "axisc": [623, 653], "293": [623, 654], "46997": [623, 654], "explicitli": [623, 658, 659, 675, 759, 778, 779, 780, 801, 807, 808, 809, 811, 813, 816, 817, 818, 821, 822, 823, 824, 826, 828, 833, 839, 848, 854], "17157288": [623, 658], "9238795": [623, 658], "78930789": [623, 658], "59803128": [623, 658], "19127655": [623, 658], "31213903": [623, 658], "63418275": [623, 658], "84632206": [623, 658], "70548367": [623, 658], "70223427": [623, 658], "09570674": [623, 658], "63116378": [623, 658], "56109613": [623, 658], "53554028": [623, 658], "32237405": [623, 658], "43822157": [623, 658], "83906901": [623, 658], "50766778": [623, 658], "71475857": [623, 658], "48103389": [623, 658], "3676433": [623, 658], "68466955": [623, 658], "62933773": [623, 658], "77917379": [623, 658], "14264561": [623, 658], "61036086": [623, 658], "45033181e": [623, 659], "02829754e": [623, 659], "54220343e": [623, 659], "12647155e": [623, 659], "38447177e": [623, 659], "56155300e": [623, 659], "26794919": [623, 659], "7320509": [623, 659], "0012": [623, 661], "00342": [623, 661], "000565": [623, 661], "0104": [623, 661], "000981": [623, 661], "00282": [623, 661], "000766": [623, 661], "0322": [623, 661], "00237": [623, 661], "000151": [623, 661], "00101": [623, 661], "00019": [623, 661], "0214": [623, 661], "00171": [623, 661], "0107": [623, 661], "0167": [623, 661], "0472": [623, 661], "0536": [623, 661], "0177": [623, 661], "000429": [623, 661], "00762": [623, 661], "lu_factor": 623, "pivot": [623, 662], "lu": [623, 662], "frobeniu": [623, 664], "nuclear": [623, 664], "induc": [623, 664], "ranl": [623, 664], "47722558": [623, 664], "776": [623, 664], "6000004": [623, 664], "118": [623, 665], "moor": [623, 669], "penros": [623, 669], "31622776": [623, 670], "94868332": [623, 670], "1622777": [623, 670], "42718887": [623, 670], "deteremin": [623, 671], "logsabsdet": [623, 671], "subject": [623, 671], "ordin": [623, 672], "b2": [623, 672], "usvh": [623, 673], "cetera": [623, 673], "driver": [623, 674, 839], "cusolv": [623, 674], "gesvd": [623, 674], "gesvdj": [623, 674], "gesvda": [623, 674], "86217213": [623, 674], "31816804": [623, 674], "615": [623, 674], "ss": [623, 674], "25994301": [623, 674], "16403675": [623, 674], "61529762": [623, 674], "51231241": [623, 674], "39777088": [623, 674], "15413129": [623, 674], "1029852": [623, 674], "01383495": [623, 674], "86647356": [623, 674], "7786541": [623, 674], "55970621": [623, 674], "16857576": [623, 674], "86412698": [623, 674], "37566757": [623, 674], "88477993": [623, 674], "95925522": [623, 674], "6444726": [623, 674], "54687881": [623, 674], "16134834": [623, 674], "35037804": [623, 674], "31025076": [623, 674], "35769391": [623, 674], "transposit": [623, 675], "success": [623, 633, 677, 749, 751, 804, 812, 844], "0x": [623, 678], "Such": [623, 678, 821, 828], "progress": [623, 678, 804, 805, 838], "alexandr": [623, 678], "theophil": [623, 678], "dot_product": [623, 679], "9000001": [623, 680], "64158917": [623, 680], "skew": [623, 681], "6666193": [624, 682], "67164493e": [624, 682], "05471958e": [624, 682], "32684899e": [624, 682], "30496836e": [624, 682], "05393649": [624, 682], "49992943": [624, 682], "83330965": [624, 682], "35667494": [624, 684], "79329094": [624, 684], "512926": [624, 684], "outsid": [625, 685, 696, 813, 814, 821, 835, 859], "honor": [625, 692], "beyond": [625, 693, 816, 825, 860], "famili": [625, 696], "intxx": [625, 696], "floatxx": [625, 696], "rep": [625, 698], "fomaml_step": 626, "inner_cost_fn": [626, 701, 702, 703], "outer_cost_fn": [626, 701, 702], "inner_grad_step": [626, 701, 702, 703], "inner_learning_r": [626, 701, 702, 703], "inner_optimization_step": [626, 701, 702, 703], "inner_batch_fn": [626, 701, 702], "outer_batch_fn": [626, 701, 702], "average_across_step": [626, 701, 702], "inner_v": [626, 701, 702], "keep_inner_v": [626, 701, 702], "outer_v": [626, 701, 702], "keep_outer_v": [626, 701, 702], "return_inner_v": [626, 701, 702, 703], "num_task": [626, 701, 702, 703], "maml": [626, 701, 702], "0x7fcffd1dae60": [626, 701, 702, 703], "maml_step": 626, "vanilla": [626, 702, 837, 854], "_variabl": [626, 702, 703], "sub_batch": [626, 702], "40069818": [626, 702], "13723135": [626, 702], "reptile_step": 626, "cost_fn": [626, 703], "reptil": [626, 703], "batch_in": [626, 703], "4485182": [626, 703], "139": [626, 703], "9569855": [626, 703], "9880483": [626, 703], "01766968": [626, 703], "02197957": [626, 703], "02197981": [626, 703], "all_nested_indic": 627, "include_nest": [627, 704], "_index": [627, 704, 715], "_base": [627, 704, 714, 715, 824], "themselv": [627, 704, 803, 811, 813, 814, 816, 821, 825, 837, 851, 860], "863": [627, 704, 814], "672": [627, 704], "482": [627, 704], "674": [627, 704], "341": [627, 704], "copy_nest": 627, "to_mut": [627, 705, 716], "deepli": [627, 705, 839, 854], "copied_nest": [627, 705], "1337": [627, 705, 716], "duplicate_array_index_chain": 627, "index_nest": [627, 821], "insert_into_nest_at_index": 627, "insert_into_nest_at_indic": 627, "onto": [627, 710, 716, 842, 843, 854], "special_squar": [627, 710], "6666666666666667": [627, 710], "special_pow": [627, 710], "linear_model": [627, 710], "map_nest_at_index": 627, "_result": [627, 711, 721], "hh": [627, 711, 716], "map_nest_at_indic": 627, "ub": [627, 712], "tb": [627, 712], "multi_index_nest": 627, "nested_ani": 627, "check_nest": [627, 714, 715], "nested_argwher": 627, "stop_after_n_found": [627, 715], "nested_indic": [627, 715], "nested_map": [627, 814, 821], "_tuple_check_fn": [627, 716], "_list_check_fn": [627, 716], "_dict_check_fn": [627, 716], "wherebi": [627, 716, 803, 851], "ah": [627, 716], "bh": [627, 716], "ch": [627, 716], "dh": [627, 716, 807], "eh": [627, 716], "gh": [627, 716, 804, 818], "ih": [627, 716], "1338": [627, 716], "nested_multi_map": 627, "index_chain": [627, 717], "nest0": [627, 717], "ivy_arrai": [627, 717, 808, 825], "unappli": [627, 717], "prune_empti": 627, "prune_nest_at_index": 627, "prune_nest_at_indic": 627, "set_nest_at_index": 627, "set_nest_at_indic": 627, "xyz": [627, 722], "pqr": [627, 722], "mini": [628, 723, 778, 781], "uniformli": [629, 725, 727], "22346112": [629, 726], "0922": [629, 726], "9213753": [629, 726], "12818667": [629, 726], "799": [629, 726], "469": [629, 726], "287": [629, 726], "0366": [629, 726], "26431865": [629, 727], "475": [629, 727], "878": [629, 727], "861": [629, 727], "929": [629, 727], "789": [629, 727], "519": [629, 727], "0435": [629, 727], "381": [629, 727], "4608004": [629, 727], "8458502": [629, 727], "67270088": [629, 727], "31128597": [629, 727], "zeroel": [630, 733], "guarante": [631, 735, 737, 808, 813, 824, 839, 845], "aggreg": [631, 735, 812], "fourth": [631, 735], "1141": [631, 735], "8101": [631, 735], "9298": [631, 735], "8460": [631, 735], "2119": [631, 735], "3519": [631, 735], "6252": [631, 735], "4033": [631, 735], "7443": [631, 735], "2577": [631, 735], "3707": [631, 735], "0545": [631, 735], "3238": [631, 735], "5944": [631, 735], "0775": [631, 735], "4327": [631, 735], "62519997": [631, 735], "40329999": [631, 735], "59439999": [631, 735], "74430001": [631, 735], "81010002": [631, 735], "84600002": [631, 735], "92979997": [631, 735], "einstein": [633, 745, 791], "117": [633, 745], "intend": [633, 751, 760, 777, 807, 820, 823, 852, 854, 858, 859], "07472222": [633, 752], "00666667": [633, 752], "08966666": [633, 752], "simplicit": [634, 753, 754], "ivy_test": [757, 759, 760, 762, 763, 764, 765, 766, 767, 768, 769, 770, 803, 804, 805, 807, 810, 812, 818, 826], "test_ivi": [757, 759, 760, 762, 763, 764, 765, 766, 767, 768, 769, 770, 803, 804, 805, 810, 812, 818, 826, 828], "assert_all_clos": [757, 826], "ret_np": [757, 759, 826], "ret_from_gt_np": [757, 826], "ground_truth_backend": [757, 759, 760, 769, 770, 801, 818, 826], "mark": [757, 803, 805, 807, 828, 833], "assert_same_typ": 757, "ret_from_target": 757, "ret_from_gt": 757, "backend_to_test": [757, 759, 801, 818, 826], "gt_backend": 757, "with_backend": [757, 787], "assert_same_type_and_shap": 757, "this_key_chain": 757, "check_unsupported_devic": 757, "input_devic": 757, "all_as_kwargs_np": [757, 759], "presenc": [757, 811, 824], "check_unsupported_device_and_dtyp": 757, "input_dtyp": [757, 759, 769, 801, 818, 826, 828], "check_unsupported_dtyp": 757, "test_unsupported_funct": 757, "value_test": 757, "ret_np_flat": 757, "ret_np_from_gt_flat": 757, "specific_tolerance_dict": 757, "ret_from_np_gt_flat": 757, "function_test": 759, "args_to_contain": 759, "array_arg": [759, 821], "args_to_frontend": 759, "frontend_array_fn": 759, "arrays_to_frontend": 759, "as_list": 759, "convtru": 759, "nativeclass": 759, "counter": [759, 837], "create_args_kwarg": 759, "args_np": 759, "arg_np_val": 759, "args_idx": 759, "kwargs_np": 759, "kwarg_np_val": 759, "kwargs_idx": 759, "test_flag": [759, 801, 818, 826, 828], "on_devic": [759, 769, 801, 818, 826], "flatten_and_to_np": 759, "flatten_frontend": 759, "flatten_frontend_fw_to_np": 759, "frontend_ret": [759, 826], "isscalar_func": 759, "is_native_array_func": 759, "to_numpy_func": 759, "flatten_frontend_to_np": 759, "get_frontend_ret": 759, "frontend_fn": 759, "frontend_array_funct": 759, "precision_mod": [759, 769, 770, 818], "test_trac": [759, 769, 770, 801, 807, 818], "get_ret_and_flattened_np_arrai": 759, "gradient_incompatible_funct": 759, "gradient_test": [759, 828], "rtol_": [759, 801, 818], "atol_": [759, 801, 818, 826], "tolerance_dict": 759, "gradient_unsupported_dtyp": 759, "kwargs_to_args_n_kwarg": 759, "num_positional_arg": [759, 769, 770, 801, 818, 826, 828], "port": [759, 845], "test_frontend_funct": [759, 826], "fn_tree": [759, 760, 770, 801, 818, 825, 826, 828], "gt_fn_tree": [759, 770], "test_valu": [759, 826, 828], "frontend_function_flag": [759, 769], "functiontestflag": [759, 769, 801, 818], "with_out": [759, 769, 801, 818, 826, 828], "instance_method": [759, 769, 801, 818, 828], "as_vari": [759, 769, 801, 818, 826, 828], "namespac": [759, 803, 813, 822, 825, 826, 829, 833, 838], "test_frontend_method": [759, 826], "init_input_dtyp": [759, 826], "method_input_dtyp": [759, 826], "init_flag": [759, 826, 828], "method_flag": [759, 769, 826, 828], "init_all_as_kwargs_np": [759, 826], "method_all_as_kwargs_np": [759, 826], "frontend_method_data": [759, 826], "init_as_variable_flag": [759, 770], "dictat": [759, 808, 815, 820, 824], "init_num_positional_arg": [759, 770], "init_native_array_flag": 759, "with_v": 759, "ret_gt": 759, "test_funct": [759, 801, 804, 805, 812, 818, 826, 828], "fn_name": [759, 760, 770, 801, 809, 818, 826, 828], "return_flat_np_arrai": 759, "as_variable_flag": [759, 770, 828], "native_array_flag": [759, 770, 828], "container_flag": [759, 769, 770, 828], "test_function_backend_comput": 759, "test_function_ground_truth_comput": 759, "arg_np_arrai": 759, "arrays_args_indic": 759, "arrays_kwargs_indic": 759, "kwarg_np_arrai": 759, "test_gradient_backend_comput": 759, "test_gradient_ground_truth_comput": 759, "test_method": 759, "method_nam": [759, 768, 770, 826], "init_with_v": 759, "method_with_v": 759, "test_gradi": [759, 769, 770, 801, 818, 828], "method_as_variable_flag": [759, 770], "method_num_positional_arg": [759, 770], "method_native_array_flag": 759, "method_container_flag": [759, 770], "test_method_backend_comput": 759, "test_method_ground_truth_comput": 759, "org_con_data": 759, "args_np_method": 759, "met_arg_np_v": 759, "met_args_idx": 759, "kwargs_np_method": 759, "met_kwarg_np_v": 759, "met_kwargs_idx": 759, "v_np": 759, "traced_if_requir": 759, "wrap_frontend_function_arg": 759, "holder": 760, "current_frontend_config": 760, "0x7fcff073dcb0": 760, "interruptedtest": 760, "test_interrupt": 760, "baseexcept": 760, "tri": [760, 813], "testdata": 760, "supported_device_dtyp": 760, "is_method": 760, "setup_api_test": 760, "test_data": 760, "setup_frontend_test": 760, "teardown_api_test": 760, "teardown_frontend_test": 760, "hypothesis_help": [762, 763, 764, 765], "array_help": 762, "array_and_broadcastable_shap": 762, "searchstrategi": [762, 763, 764, 765, 769, 770, 828], "array_bool": [762, 828], "min_valu": [762, 763, 764, 765, 801, 818, 826, 828], "max_valu": [762, 763, 764, 765, 826, 828], "ex": [762, 763, 764, 765, 770, 812, 848], "strategi": [762, 763, 764, 765, 769, 770, 803, 826], "array_helpers_dtype_info_help": 762, "kind_dtyp": [762, 764], "array_indices_axi": 762, "array_dtyp": [762, 763, 828], "indices_dtyp": 762, "get_dtyp": [762, 763, 801, 818, 826, 828], "disable_random_axi": 762, "axis_zero": 762, "allow_inf": [762, 765, 826, 828], "min_num_dim": [762, 764, 826, 828], "max_num_dim": [762, 764, 826, 828], "min_dim_s": [762, 764, 826, 828], "max_dim_s": [762, 764, 826], "first_dimension_onli": 762, "indices_same_dim": 762, "valid_bound": 762, "hypothesi": [762, 764, 770, 803, 805, 807, 812, 822], "65536": 762, "44758124e": [762, 828], "array_indices_put_along_axi": 762, "values_dtyp": 762, "array_valu": [762, 828], "abs_smallest_v": [762, 764, 765], "allow_nan": [762, 765, 828], "allow_subnorm": [762, 765, 828], "exclude_min": [762, 765, 828], "exclude_max": [762, 765], "large_abs_safety_factor": [762, 764, 765, 801, 818, 826, 828], "small_abs_safety_factor": [762, 764, 765, 801, 818, 826], "safety_factor_scal": [762, 764, 765, 826, 828], "subnorm": [762, 765], "safeti": [762, 764, 765, 854], "0002": [762, 765], "get_shap": [762, 764, 826, 828], "1806": 762, "36912": 762, "6955": 762, "59576": 762, "1025": 762, "arrays_and_ax": 762, "available_dtyp": [762, 763, 801, 818, 826, 828], "allow_non": [762, 764, 826, 828], "return_dtyp": 762, "force_int_axi": 762, "26e": 762, "10e": 762, "24322108": 762, "26446279e": 762, "96046448e": 762, "008": 762, "17549435e": 762, "038": 762, "06541027e": 762, "13725760e": 762, "07143888": 762, "arrays_for_pool": 762, "min_dim": 762, "max_dim": 762, "min_sid": 762, "max_sid": 762, "explicit_or_str_pad": 762, "only_explicit_pad": 762, "return_dil": 762, "mixed_fn_compo": [762, 763, 764, 765, 828], "return_data_format": 762, "cond_data_gen_help": 762, "create_concatenable_arrays_dtyp": 762, "min_num_arrai": 762, "max_num_arrai": 762, "concat_dim": 762, "common_shap": [762, 828], "stackabl": 762, "given_common_shap": 762, "create_nested_input": 762, "leaf_valu": 762, "dtype_and_valu": [762, 801, 818, 826, 828], "num_arrai": [762, 763, 826, 828], "shared_dtyp": [762, 763, 826], "ret_shap": 762, "array_api_dtyp": [762, 763], "shape_kei": 762, "37915": 762, "6322": 762, "26765": 762, "12413": 762, "26986": 762, "34665": 762, "000e": 762, "711e": 762, "100e": 762, "955e": [762, 828], "40817": 762, "56193": 762, "29200": 762, "5851": 762, "9746": 762, "9604645e": 762, "103": 762, "41795": 762, "1170789994": 762, "44251": 762, "44209": 762, "433075925": 762, "24791": 762, "24691": 762, "24892": 762, "16711": 762, "972": 762, "15357": 762, "72057594037927936": 762, "dtype_array_queri": 762, "allow_mask": 762, "allow_neg_step": 762, "dtype_array_query_v": 762, "dtype_values_axi": [762, 828], "min_axi": 762, "max_axi": 762, "valid_axi": 762, "allow_neg_ax": 762, "min_axes_s": 762, "max_axes_s": 762, "force_tuple_axi": 762, "29788": 762, "62222885e": 762, "68281172e": 762, "257j": 762, "40129846e": 762, "90000000e": 762, "63426649e": 762, "91931887e": 762, "29488e": 762, "14361019e": 762, "12445": 762, "einsum_help": 762, "get_first_solve_batch_matrix": 762, "choose_adjoint": 762, "get_second_solve_batch_matrix": 762, "get_first_solve_matrix": 762, "allow_simplifi": 762, "choose_sid": 762, "xa": 762, "get_second_solve_matrix": 762, "list_of_s": 762, "sampled_from": [762, 826, 828], "min_siz": [762, 764, 770, 828], "max_siz": [762, 764, 770, 828], "size_bound": [762, 828], "999999999999999": 762, "9394938006792373": 762, "mutually_broadcastable_shap": 762, "num_shap": 762, "base_shap": 762, "dtype_help": 763, "univers": [763, 825, 843], "cast_filt": 763, "cast_filter_help": 763, "current_backend": [763, 787, 803, 809, 817, 821, 826, 829, 833], "get_castable_dtyp": 763, "castabl": 763, "prune_funct": 763, "intersect": [763, 812, 828], "signed_integ": 763, "real_and_complex": 763, "float_and_complex": 763, "general_help": 764, "broadcasterror": 764, "apply_safety_factor": 764, "embedding_help": 764, "general_helpers_dtype_info_help": 764, "get_axi": [764, 828], "allow_neg": 764, "sort_valu": 764, "force_tupl": 764, "force_int": 764, "assertionerror": [764, 801, 807, 817, 818, 826, 828], "get_bound": [764, 828], "get_mean_std": 764, "matrix_is_st": 764, "cond_limit": 764, "instabl": [764, 801, 813, 818], "computation": [764, 804], "prone": [764, 813], "thumb": 764, "gradual": 764, "strong": [764, 839, 844, 854], "collinear": 764, "reshape_shap": [764, 828], "two_broadcastable_shap": 764, "x_and_filt": 764, "number_help": 765, "arbitrarili": [765, 836], "safety_factor": 765, "backend_proc": 766, "input_queu": 766, "output_queu": 766, "frontend_proc": 766, "pipeline_help": 767, "backendhandl": 767, "update_backend": [767, 826], "backendhandlermod": 767, "enum": 767, "setbackend": 767, "withbackend": 767, "withbackendcontext": 767, "get_frontend_config": 767, "frontendmethoddata": 768, "ivy_init_modul": 768, "framework_init_modul": 768, "init_nam": 768, "test_parameter_flag": 769, "dynamicflag": [769, 770], "frontendfunctiontestflag": [769, 818], "with_copi": 769, "generate_frontend_arrai": [769, 770, 818], "testflag": 769, "apply_flag": 769, "args_to_iter": 769, "frontendinittestflag": 769, "frontendmethodtestflag": 769, "initmethodtestflag": 769, "methodtestflag": 769, "build_flag": 769, "frontend_init_flag": 769, "frontend_method_flag": 769, "function_flag": 769, "init_method_flag": 769, "testing_help": 770, "handle_frontend_method": [770, 826, 828], "class_tre": [770, 826], "init_tre": [770, 826], "init_native_arrai": 770, "_as_varaible_strategi": 770, "method_native_arrai": 770, "test_inplac": [770, 828], "_given_kwarg": 770, "test_compil": 770, "handle_frontend_test": [770, 826, 828], "alias": [770, 803, 825, 826], "number_positional_arg": [770, 826], "test_with_out": [770, 826, 828], "test_with_copi": 770, "handle_method": [770, 828], "method_tre": [770, 826, 828], "_gradient_strategi": 770, "handle_test": [770, 801, 818, 828], "test_instance_method": [770, 828], "num_positional_args_help": 770, "num_positional_args_method": 770, "geglu": 774, "leakyrelu": 774, "logsoftmax": 774, "from_flax_modul": 775, "native_modul": 775, "params_fx": 775, "rng_seed": 775, "constructor_arg": 775, "constructor_kwarg": 775, "instance_arg": 775, "instance_kwarg": 775, "flax": [775, 838, 839, 845, 854], "from_haiku_modul": 775, "params_hk": 775, "from_paddle_modul": 775, "from_torch_modul": 775, "dedic": [775, 820, 831, 835, 837], "to_keras_modul": 775, "native_module_class": 775, "modulehelp": [776, 780], "create_vari": [777, 837], "var_shap": [777, 837], "fan_out": [777, 837], "fan_in": [777, 837], "rectangular": 777, "firstlayersiren": 777, "siren": 777, "glorotuniform": [777, 778, 837], "glorot": 777, "xavier": 777, "neuron": 777, "w_1x_1": 777, "w_2x_2": 777, "w_nx_n": 777, "w_i": 777, "vanish": 777, "explod": [777, 842, 843], "kaimingnorm": 777, "fan_mod": [777, 837], "kaim": 777, "he": 777, "negative_slop": 777, "fan": 777, "propog": 777, "fan_sum": [777, 837], "Ones": 777, "randomnorm": 777, "stddev": 777, "w0": 777, "wlim": 777, "predefin": 777, "fan_avg": 777, "adaptiveavgpool1d": 778, "avgpool1d": 778, "implicit": [778, 811, 816, 825, 828, 833, 854], "avgpool2d": 778, "avgpool3d": 778, "filter_s": 778, "weight_initi": [778, 837], "bias_initi": [778, 837], "0x7fcffcdd1b10": 778, "0x7fcffcdd1b70": 778, "conv1dtranspos": 778, "0x7fcffcdd1bd0": 778, "0x7fcffcdd1c30": 778, "filter_shap": 778, "0x7fcffcdd1c90": 778, "0x7fcffcdd1cf0": 778, "0x7fcffcdd1d50": 778, "0x7fcffcdd1db0": 778, "0x7fcffcdd1ed0": 778, "0x7fcffcdd1f30": 778, "conv3dtranspos": 778, "0x7fcffcdd1f90": 778, "0x7fcffcdd1ff0": 778, "depthwiseconv2d": 778, "num_channel": 778, "0x7fcffcdd1e10": 778, "0x7fcffcdd1e70": 778, "bernoul": 778, "num_embed": 778, "embedding_dim": 778, "padding_idx": 778, "lookup": 778, "num_embeddingss": 778, "renorm": 778, "insensit": 778, "num_lay": 778, "return_sequ": 778, "return_st": 778, "0x7fcffcdd2050": 778, "get_initial_st": 778, "0x7fcffcf38b50": 778, "0x7fcffcf38d00": 778, "maxpool1d": 778, "maxpool3d": 778, "multiheadattent": 778, "embed_dim": 778, "head_dim": 778, "dropout_r": 778, "use_proj_bia": 778, "attention_ax": 778, "build_mod": [778, 779, 780], "on_init": [778, 780], "parallel": [778, 810, 854, 858, 859], "binarycrossentropyloss": 779, "store_var": [779, 780], "with_partial_v": [779, 780], "logpoissonloss": 779, "modulemeta": 780, "temporarili": [780, 801, 807, 818], "from_cal": 780, "module_dict": 780, "register_buff": 780, "register_paramet": 780, "weights_path": 780, "randomness_factor": 780, "with_edge_label": 780, "with_arg_label": 780, "with_output_label": 780, "output_connected_onli": 780, "highlight_subgraph": 780, "trace_kwarg": 780, "_unified_ivy_graph": 780, "_call": 780, "num_featur": 781, "trail": 781, "layernorm": 781, "normalized_shap": 781, "elementwise_affin": 781, "set_stat": [782, 837], "adamw": 782, "weight_decai": 782, "init_on_first_step": 782, "fallback_to_non_trac": 782, "ignore_miss": 782, "privat": [782, 825, 828], "_step": [782, 837], "stochast": [782, 854], "sub_modul": 783, "check_al": 784, "messag": [784, 793, 797, 804, 805, 812, 815, 817, 819, 825, 833, 835, 844], "check_all_or_any_fn": 784, "check_ani": 784, "check_dev_correct_format": 784, "check_dimens": 784, "check_elem_in_list": [784, 821, 824, 825], "elem": 784, "check_equ": [784, 825], "check_exist": 784, "check_fals": 784, "check_gather_input_valid": 784, "check_gather_nd_input_valid": 784, "check_great": 784, "allow_equ": [784, 817], "check_inplace_sizes_valid": [784, 824], "check_isinst": 784, "allowed_typ": 784, "check_kernel_padding_s": 784, "padding_s": 784, "check_less": [784, 817], "check_one_way_broadcast": 784, "check_same_dtyp": 784, "check_shapes_broadcast": 784, "check_tru": 784, "check_unsorted_segment_valid_param": 784, "ast_help": 786, "importtransform": 786, "nodetransform": 786, "impersonate_import": 786, "tree": [786, 813], "local_ivy_id": 786, "visit_import": 786, "visit_importfrom": 786, "ivyload": 786, "loader": [786, 836, 839], "exec_modul": 786, "ivypathfind": 786, "metapathfind": 786, "find_spec": 786, "fullnam": 786, "contextmanag": 787, "choose_random_backend": 787, "global_backend": 787, "dynamic_backend_convert": 787, "backend_stack": [787, 833], "prevent_access_loc": 787, "previous_backend": [787, 809], "unset": [787, 809, 833], "Or": [787, 798, 800, 824, 836], "set_backend_to_specific_vers": 787, "set_jax_backend": 787, "set_mxnet_backend": 787, "mx": 787, "set_numpy_backend": 787, "set_paddle_backend": 787, "set_tensorflow_backend": 787, "set_torch_backend": 787, "unset_backend": [787, 809], "sub_backend_handl": 788, "clear_sub_backend": 788, "find_available_sub_backend": 788, "sub_backends_loc": 788, "fn_name_from_version_specific_fn_nam": 788, "fn_name_from_version_specific_fn_name_sub_backend": 788, "sub_backend_vers": 788, "backend_vers": [788, 801, 813, 818], "set_sub_backend": 788, "sub_backend_str": 788, "set_sub_backend_to_specific_vers": 788, "sub_backend": 788, "unset_sub_backend": 788, "check_for_binari": 789, "cleanup_and_fetch_binari": [789, 804], "clean": [789, 805, 829, 833, 834, 836], "dynamic_import": 790, "import_modul": [790, 833], "einsum_pars": 791, "convert_interleaved_input": 791, "interleav": 791, "convert_subscript": 791, "old_sub": 791, "symbol_map": 791, "subscript": [791, 792], "oe": 791, "ellipsi": [791, 792], "find_output_shap": 791, "find_output_str": 791, "canon": 791, "gen_unused_symbol": 791, "abd": [791, 792], "get_symbol": 791, "letter": 791, "resort": 791, "unicod": 791, "charact": [791, 825, 844], "chr": 791, "surrog": 791, "\u0155": 791, "20000": 791, "\u4eac": 791, "has_valid_einsum_chars_onli": 791, "einsum_str": 791, "abaz": 791, "\u00f6ver": 791, "is_valid_einsum_char": 791, "\u01f5": 791, "legalise_einsum_expr": 791, "reproduct": [791, 792], "pars": [791, 792, 810, 815, 839], "intak": 791, "contract_path": 791, "parse_einsum_input": [791, 792], "einsum_eqn": 791, "legalis": 791, "legalise_einsum_eqn": 791, "za": [791, 792], "xza": [791, 792], "xz": [791, 792], "possibly_convert_to_numpi": 791, "myshap": 791, "__main__": 791, "0x10f850710": 791, "einsum_path_help": 792, "can_dot": 792, "idx_remov": 792, "bla": 792, "benefici": 792, "movement": 792, "costli": 792, "gemm": 792, "ijj": 792, "ddot": 792, "ikj": 792, "compute_size_by_dict": 792, "idx_dict": 792, "abbc": 792, "find_contract": 792, "input_set": 792, "output_set": 792, "lh": 792, "rh": 792, "new_result": 792, "idx_contract": 792, "iset": 792, "oset": 792, "bdc": 792, "flop_count": 792, "num_term": 792, "size_dictionari": 792, "flop": 792, "greedy_path": 792, "memory_limit": 792, "exhaust": [792, 824, 828, 851, 860], "indices_remov": 792, "priorit": [792, 803, 827, 831], "hadamard": 792, "cubic": 792, "greedi": 792, "idx_siz": 792, "optimal_path": 792, "siev": 792, "input_str": 792, "output_str": 792, "parse_possible_contract": 792, "path_cost": 792, "naive_cost": 792, "propos": [792, 805, 825, 831, 854], "intermediari": [792, 809], "unoptim": 792, "new_input_set": 792, "update_other_result": 792, "provision": 792, "_parse_possible_contract": 792, "mod_result": 792, "inplaceupdateexcept": 793, "include_backend": [793, 817], "ivyattributeerror": [793, 817], "attributeerror": [793, 817, 835], "ivybroadcastshapeerror": [793, 817], "ivydeviceerror": 793, "ivydtypepromotionerror": [793, 817], "ivyindexerror": [793, 817], "ivyinvalidbackendexcept": 793, "ivynotimplementedexcept": [793, 817], "notimplementederror": 793, "ivyvalueerror": [793, 817], "handle_except": [793, 820, 822], "add_array_spec": 794, "fn_array_spec": 794, "set_logging_mod": 795, "debug": [795, 804, 805, 811, 812, 823, 828, 831, 836, 854], "unset_logging_mod": 795, "print_stat": 796, "viz": 796, "snakeviz": 796, "bonu": 796, "cprofil": 796, "cprint": [797, 833], "grant": 798, "autotun": [798, 858], "grow": [798, 854], "peopl": [798, 802, 804, 805, 806, 854, 856], "wip": [798, 847], "docker": [798, 801, 802, 818], "pull": [798, 799, 803, 804, 807, 815, 819, 829, 831, 839, 840, 845], "sweat_smil": 798, "setting_up": 798, "awai": [798, 852, 854], "jax_fn": 798, "jax_x": 798, "torch_x": 798, "torch_fn": 798, "motiv": [798, 835, 844], "contextu": 798, "problem": [798, 803, 805, 807, 808, 814, 825, 835, 844, 850, 856, 860], "explos": [798, 842, 844], "adher": [798, 807, 813, 816, 820, 831, 833, 838, 843, 844, 850, 851, 860], "focus": [798, 813, 829, 852, 853, 854, 860, 861], "orient": 798, "contributor": [798, 799, 801, 803, 804, 805, 818, 825, 832, 854], "shorter": [798, 835], "ensp": 798, "customiz": [798, 810], "deepmind_perceiver_io": 798, "sm_framework": 798, "segmentation_model": 798, "sm": 798, "torch_sm": 798, "metric": [798, 839], "iou_scor": 798, "rax": 798, "torch_rax": 798, "poly1_softmax_loss": 798, "madmom": 798, "madmon": 798, "torch_madmom": 798, "freq": 798, "audio": 798, "hz2midi": 798, "torch_loss": 798, "maxpooling1d": 798, "pool_siz": 798, "tf_kornia": 798, "tf_rax": 798, "tf_madmom": 798, "tf_loss": 798, "_forward_classifi": [798, 848], "forward_classifi": [798, 848], "hk_eff_encod": 798, "dummy_x": 798, "jax_sm": 798, "jax_madmom": 798, "jax_loss": 798, "np_kornia": 798, "np_sm": 798, "np_rax": 798, "np_loss": 798, "yourself": [798, 803, 805, 819, 828, 831], "favourit": [798, 804], "pipelin": [798, 800, 806, 807, 808, 826, 829, 838, 841, 843, 848, 854, 855, 860], "hyperparam": 798, "idea": [798, 803, 827, 829, 834, 845, 853], "instantli": [798, 848], "essenti": [798, 803, 809, 811, 814, 815, 821, 824, 825, 826, 843, 844, 860], "mainli": [798, 803, 806, 823, 825, 828, 834, 836, 841, 854], "handler": [798, 832, 834, 838, 841], "scene": [798, 806, 832, 834, 842, 843, 854], "facilit": 798, "mse_loss": 798, "jax_ms": 798, "tf_mse": 798, "np_mse": 798, "torch_ms": 798, "someth": [798, 801, 805, 809, 818, 819, 829, 836, 837, 839, 840, 860], "favorit": 798, "flexibl": [798, 811, 813, 820, 823, 829, 831, 854], "everyon": [798, 799, 803, 804, 805, 839, 845], "plan": [798, 840], "interoper": [798, 844, 851, 852, 854, 857], "believ": [798, 805, 844], "feedback": [798, 803, 812], "appreci": 798, "amaz": 798, "journei": [798, 799], "ambiti": 798, "season": 798, "perfect": 798, "ask": [798, 803, 804, 815, 833, 835, 839, 840, 845], "fellow": 798, "twitter": 798, "sneak": 798, "peek": 798, "stai": [798, 812], "proper": [798, 803, 825, 848], "credit": 798, "accompani": 798, "lenton2021ivi": 798, "inter": 798, "author": [798, 803, 805, 852, 856], "lenton": 798, "daniel": 798, "pardo": 798, "fabio": 798, "falck": 798, "fabian": 798, "jame": 798, "stephen": 798, "clark": 798, "ronald": 798, "journal": 798, "arxiv": 798, "preprint": 798, "2102": 798, "02886": 798, "year": [798, 807, 839, 843, 845, 854], "strongli": [799, 804, 825, 860, 861], "engag": [799, 805, 844], "skill": [799, 856], "veteran": 799, "effort": [799, 803, 839, 844, 850, 854, 860], "board": [799, 810], "stage": [799, 805, 806, 807, 810, 828, 844, 854], "excit": [799, 806, 844], "Be": [800, 810], "awar": [800, 810, 817, 819], "linux": [800, 804, 805, 810, 857, 859], "regularli": [800, 810, 812], "internet": [800, 810], "codespac": [800, 810, 818], "make_doc": 800, "sh": [800, 804, 805, 807, 812], "host": [800, 812, 839, 844, 859], "pwd": 800, "ssh": [800, 812], "make_docs_without_dock": [800, 810], "assist": [801, 818], "runtimeerror": [801, 818], "logaddexp2_cpu": [801, 818], "falsifi": [801, 807, 818, 828], "test_logaddexp2": [801, 818], "backend_fw": [801, 818, 826], "dtype_and_x": [801, 818, 826, 828], "reproduce_failur": [801, 807, 818, 822, 828], "axicy2bkaamobaar2waaaacvaai": [801, 818], "decoartor": [801, 818], "with_unsupported_dtyp": [801, 813, 818, 825], "25830078125": [801, 818], "258544921875": [801, 818], "test_acosh": [801, 818], "axicy2baabyqwqgiaabdaai": [801, 818], "quit": [801, 805, 808, 815, 816, 818, 821, 822, 828, 831, 854, 860], "41421356": [801, 818], "41421356e": [801, 818], "34078079e": [801, 818], "154": [801, 818], "test_ab": [801, 804, 818, 828], "000j": [801, 818], "154j": [801, 818], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [801, 818], "experiment": [801, 805, 813, 825, 829, 833, 854], "pycharm": [801, 826, 828], "few": [802, 803, 805, 811, 813, 814, 820, 821, 823, 824, 826, 828, 831, 833, 834, 835, 836, 837, 845, 854, 856], "climb": 802, "steep": 802, "curv": 802, "realpython": 802, "pyn": 802, "exchang": [802, 844, 850, 852], "pilot": [802, 840], "stuck": [802, 803], "spell": 802, "sound": [802, 812, 832], "frequent": [803, 805, 809, 854], "outlin": [803, 804, 805, 806, 811, 813, 816, 821, 824, 825, 828], "broad": [803, 856], "individu": [803, 805, 807, 809, 813, 821, 825, 854, 857, 860, 861], "clearli": [803, 805, 815, 826, 828, 844, 858], "qualiti": [803, 805], "lie": 803, "craft": [803, 827, 828], "fault": [803, 815, 854], "situat": [803, 805, 812, 838], "opportun": 803, "tackl": [803, 825], "challeng": [803, 809, 860], "categoris": [803, 807, 825], "encourag": [803, 819, 839, 844], "comfort": [803, 804, 817], "valuabl": [803, 805], "linkag": 803, "confid": 803, "submit": [803, 819], "merg": [803, 805, 807, 812, 825, 854], "meet": [803, 825], "scipi": [803, 844, 856, 861], "mindspor": 803, "simpler": [803, 805, 819, 847, 855, 861], "member": [803, 805, 825, 840, 844], "comment": [803, 804, 805, 807, 813, 819, 825, 827, 831], "pr": [803, 805, 807, 819, 825, 826, 828], "composition": 803, "feasibl": [803, 812, 844, 847], "pend": 803, "helpfulli": [803, 831, 852], "problemat": [803, 804], "unimpl": 803, "issue_link": 803, "alias_nam": 803, "notic": [803, 808, 812, 818, 819, 828, 831, 847], "push": [803, 805, 807, 826, 828, 860], "liner": 803, "meanwhil": [803, 812], "reselect": 803, "faithfulli": 803, "creation_routin": [803, 826], "indexing_routin": 803, "ma": 803, "manipulation_routin": 803, "mathematical_funct": [803, 825], "sorting_searching_count": 803, "ufunc": [803, 825], "matrix_and_vector_product": 803, "matrix_eigenvalu": 803, "norms_and_other_numb": 803, "solving_equations_and_inverting_matric": 803, "gleam": 803, "uncom": 803, "test_numpy_inn": 803, "test_frontend": [803, 812, 818, 826], "unsur": [803, 828], "statu": [803, 812, 819, 845], "refrain": 803, "checkbox": [803, 804], "aforement": 803, "parent": [803, 812, 835], "arraywithelementwis": [803, 808, 835], "containerwithmanipul": 803, "thorough": [803, 816, 820, 828], "add_reformatting_checklist_": 803, "category_nam": [803, 813, 814, 816, 820, 821], "autom": [803, 812, 819, 828, 841, 856], "bot": [803, 819], "markdown": [803, 810], "patient": [803, 804], "elabor": 803, "struggl": 803, "assigne": 803, "status": 803, "central": [803, 819, 831, 844, 860], "analyz": [803, 841], "relevant_submodul": 803, "roadmap": [803, 812], "soon": [803, 805, 812, 813, 839, 847], "deem": [803, 825], "subtask": 803, "clearer": [803, 817, 826, 836], "backend_nam": [803, 809, 813, 814, 816, 820, 821, 822], "sometim": [803, 804, 805, 807, 813, 821, 825, 828, 831], "rare": [803, 814, 839, 859], "button": [803, 804, 805, 818], "centr": 803, "predetermin": 803, "superset": [803, 806, 821, 824, 839], "reserv": 803, "happi": [804, 818, 839, 845], "your_usernam": [804, 818], "your_fold": [804, 818], "enter": [804, 805, 808, 813, 814, 818, 820, 822], "sync": [804, 807, 818], "remot": [804, 807, 818, 819], "nutshel": [804, 820], "hook": [804, 819, 827], "lint": [804, 806], "succe": [804, 847], "whatev": [804, 811, 839], "elig": 804, "student": 804, "licens": [804, 857], "remind": 804, "expir": 804, "won": [804, 805, 811, 813, 838, 840, 844, 845, 847, 848, 849], "profession": 804, "trial": 804, "jetbrain": 804, "month": [804, 843], "bui": [804, 860], "paid": 804, "rapid": [804, 843, 844, 854], "pace": 804, "person": [804, 805], "abil": [804, 831, 834, 839, 854], "perhap": [804, 835, 836, 837, 839, 860], "conda": [804, 844, 856], "ivy_dev": [804, 805], "icon": [804, 805, 818], "panel": 804, "vscode": [804, 818], "palett": 804, "ctrl": [804, 805], "mac": [804, 805], "intel": [804, 844, 852, 859], "m1": 804, "optional_apple_silicon_1": 804, "optional_apple_silicon_2": 804, "array_api_test": [804, 805, 807, 818], "test_array_api": [804, 805, 807, 818, 828], "suit": [804, 806, 807, 812, 818, 827, 828, 836, 844, 854, 860], "cmd": 804, "bat": [804, 805], "virtualenv": 804, "tick": [804, 805, 812], "nz2": 804, "openssl": 804, "libssl1": 804, "1_1": 804, "1f": 804, "1ubuntu2": 804, "19_amd64": 804, "deb": 804, "dpkg": 804, "mitig": [804, 860], "desktop": [804, 818], "powershel": 804, "admin": 804, "deploy": [804, 848, 853, 856, 857, 860, 861], "menu": [804, 818], "introspect": 804, "dialog": 804, "persist": 804, "earlier": [804, 805, 813, 829], "virtualis": 804, "bio": [804, 844], "dropdown": [804, 812], "dockerfil": 804, "ca": 804, "certif": 804, "gnupg": 804, "lsb": 804, "keyr": 804, "fssl": 804, "gpg": 804, "dearmor": 804, "echo": [804, 812, 840], "arch": 804, "lsb_releas": 804, "null": [804, 818], "ce": 804, "cli": 804, "containerd": 804, "systemctl": 804, "softwar": [804, 805, 843, 844, 852, 857, 858, 859], "press": [804, 805, 836], "4a": 804, "socket": 804, "rwx": 804, "sock": 804, "pid": 804, "editor": 804, "pytest": [804, 805, 807, 812, 818, 822, 828], "keyboard": 804, "screenshot": 804, "pop": [804, 818, 844], "test_elementwis": 804, "bar": [804, 818], "shell": [804, 805, 807, 812], "setup_test": 804, "run_ivy_core_test": 804, "run_ivy_nn_test": 804, "run_ivy_stateful_test": 804, "run_test": [804, 812], "test_depend": 804, "test_ivy_cor": 804, "test_ivy_nn": 804, "test_ivy_st": 804, "unix": 804, "test_": [804, 826], "test_cor": [804, 805, 826], "offici": [804, 813, 833], "wish": [804, 825], "ivy_nn": 804, "ivy_st": 804, "header": [804, 805, 827], "arrow": 804, "test_stat": 804, "test_submodule_nam": 804, "test_function_nam": 804, "debugg": 804, "studio": [804, 818, 828], "especi": [804, 809, 819, 843, 854], "afterward": [804, 836], "background": [804, 810, 818, 854, 856], "overlap": [804, 812, 818, 829, 831, 855], "test_file_path": [804, 818], "test_fn_nam": [804, 818], "engin": [804, 854, 856, 857], "devcontain": 804, "comma": 804, "postcreatecommand": 804, "post_create_command": 804, "poststartcommand": 804, "safe": [804, 825], "containerworkspacefold": 804, "reopen": 804, "test_fle_path": 804, "slash": 804, "isol": [804, 805, 855, 860], "container": 804, "intens": 804, "headach": 804, "arm": [804, 805], "vm": [804, 812], "azur": 804, "cloud": [804, 812, 856], "theme": [804, 810], "ipad": 804, "browser": [804, 810], "quota": 804, "requisit": 804, "pane": [804, 805, 812], "dockerfilegpu": 804, "ivv": 804, "multiv": 804, "multivers": [804, 829], "dockerfilemultivers": 804, "dockerhub": 804, "upto": [804, 805], "minut": [804, 812], "launch": 804, "quickli": [804, 805, 812, 836, 837, 843, 845, 854, 861], "kindli": [804, 827], "guidelin": 804, "colour": 804, "chanc": 804, "troubleshoot": 804, "ever": 804, "flask": [804, 818], "toolbar": [804, 805, 818], "_array_modul": [804, 807, 818], "refresh": [804, 818], "pytestarg": [804, 818], "unittesten": [804, 818], "pytesten": [804, 818], "autotestdiscoveronsaveen": [804, 818], "conftest": 804, "serv": [804, 805, 808, 811, 820, 821, 825, 826, 828, 831, 832, 841, 852], "aren": [804, 813], "record": [804, 839, 855], "available_config": 804, "cp310": 804, "x86": [804, 859], "newer": [804, 828], "_compil": 804, "meantim": 804, "suffici": [804, 815, 825, 828], "bear": [804, 808, 811, 813, 825], "tendenc": 805, "land": 805, "unrel": [805, 844], "fly": [805, 854], "internship": 805, "suspect": 805, "iii": 805, "issue_numb": 805, "12345": 805, "rememb": 805, "respond": 805, "dai": [805, 819], "freed": 805, "obvious": [805, 812], "hypothet": 805, "frustrat": 805, "delai": [805, 847], "busi": 805, "inact": 805, "unfairli": 805, "investig": 805, "name_of_your_branch": 805, "date": [805, 807], "complic": [805, 826, 833], "merge_with_upstream": 805, "abort": 805, "tediou": [805, 815, 831], "stash": [805, 819], "reinstat": 805, "uncommit": 805, "unstag": [805, 819], "untrack": 805, "atlassian": 805, "wrote": 805, "piec": [805, 808, 821, 822, 833, 847, 850, 852], "blame": 805, "eg": 805, "week": [805, 845], "grep": 805, "commit_id": 805, "handi": 805, "histori": 805, "toggl": 805, "highlight": [805, 812, 815, 825, 827], "approv": 805, "someon": [805, 839], "hash": [805, 836], "cancel": 805, "speedup": 805, "unavail": 805, "tickbox": 805, "span": [805, 852, 860], "intent": [805, 824], "discourag": 805, "adopt": [805, 808, 820, 831, 844, 853, 854, 859], "philosophi": 805, "infrequ": 805, "earli": [805, 854], "wast": [805, 812], "spot": [805, 815, 821], "mistak": 805, "mountain": 805, "advoc": [805, 839], "session": [805, 854], "beauti": 805, "particularli": [805, 836, 839, 847, 852], "care": [805, 814, 825, 831, 838, 844], "undo": 805, "stress": 805, "nifti": 805, "reassur": 805, "local_path_to_ivi": 805, "subfold": [805, 826, 828, 829], "dep": 805, "fresh": 805, "arsen": 805, "exec": 805, "ivy_contain": 805, "test_imag": 805, "test_random_crop": 805, "test_creation_funct": 805, "test_arang": 805, "cursor": 805, "alt": 805, "blog": 805, "breakpoint": 805, "gutter": 805, "caret": 805, "f8": 805, "f9": 805, "Into": 805, "f7": 805, "smart": 805, "fragment": [805, 850, 852, 856], "wherein": [805, 821, 828], "failur": [805, 812, 826, 828], "weed": [806, 832], "tour": 806, "formatt": [806, 819], "conjunct": 807, "establish": [807, 856], "popular": [807, 854], "sens": [807, 813, 815, 825, 827, 835], "unconnect": 807, "initialis": [807, 825, 828], "strang": [807, 835], "thoroughli": 807, "test_linalg": [807, 826], "test_set_funct": 807, "test_signatur": 807, "excess": [807, 809, 815], "array_modul": 807, "vv": 807, "test_manipulation_funct": 807, "test_concat": [807, 828], "nb": 807, "liber": 807, "______________________": 807, "test_remaind": 807, "_______________________": 807, "test_operators_and_elementwise_funct": 807, "1264": 807, "1277": 807, "binary_param_assert_against_refimpl": 807, "ctx": 807, "620": 807, "binary_assert_against_refimpl": 807, "324": 807, "scalar_o": 807, "17304064": 807, "binaryparamcontext": 807, "axic42baaowcnp": 807, "rumwmabaear0": 807, "make_binary_param": 807, "numeric_dtyp": 807, "left_strat": 807, "left_sym": 807, "right_strat": 807, "right_sym": 807, "right_is_scalar": 807, "binary_param_assert_dtyp": 807, "binary_param_assert_shap": 807, "recreat": 807, "unexpectedli": 807, "discrep": [807, 826], "test_asarray_arrai": 807, "test_floor_divid": 807, "health": 807, "test_iop": 807, "__imod__": 807, "isequ": 807, "test_matrix_norm": 807, "alter": 807, "tweak": 807, "array_api_methods_to_test": 807, "test_special_cas": 807, "__ipow__": 807, "is_integ": 807, "easier": [807, 808, 809, 813, 826, 829, 841, 854, 856], "revisit": [807, 820], "_data": [808, 824, 825, 835], "organiz": [808, 811, 825], "underpin": [808, 811, 833], "programmat": [808, 811, 855], "backup": [808, 810, 811], "accident": [808, 811, 825], "absent": [808, 811], "auto": [808, 810, 811, 819, 836], "__mul__": [808, 811, 815, 820, 831, 835], "throw": [808, 813, 814, 817, 818, 835, 854], "imposs": 808, "inputs_to_native_arrai": [808, 821, 822], "outputs_to_ivy_arrai": [808, 813, 814, 820, 821, 822], "secondli": [808, 813], "__ivy_array_function__": 808, "inspir": 808, "__torch_function__": 808, "myarrai": 808, "handled_funct": 808, "notimpl": 808, "issubclass": 808, "four": [808, 813, 815, 820, 821, 828, 831, 836], "enough": [808, 812, 813, 814, 828, 835, 836, 837], "ivy_funct": 808, "my_ab": 808, "my_arrai": 808, "implicit_backend": [809, 833], "__dict__": [809, 824, 833], "ivy_original_dict": [809, 833], "fallback": 809, "live": [809, 810, 813, 844, 845, 850, 852], "scope": [809, 855, 859], "dlpack": 809, "set_dynamic_backend": 809, "unset_dynamic_backend": 809, "dynamic_backend_a": 809, "set_": 809, "unset_": 809, "backend_handl": 809, "requires_grad": 809, "memory_format": 809, "preserve_format": 809, "weren": 809, "vast": [809, 813, 854], "minor": [809, 831, 839], "fn_name_v_1p12_and_abov": 809, "fn_name_v_1p01_to_1p1": 809, "heavili": [810, 822, 839], "characterist": 810, "conf": 810, "cleanup": 810, "readm": [810, 839], "maxdepth": 810, "caption": 810, "related_work": 810, "deep_div": 810, "faq": 810, "glossari": 810, "autosummari": 810, "top_functional_toc": 810, "restructuredtext": 810, "discov": [810, 813], "ivy_toctree_caption_map": 810, "stub": 810, "unfortun": [810, 819], "linker": 810, "foo": 810, "discussion_channel_map": 810, "1000043690254946374": 810, "1000043749088436315": 810, "forum": [810, 840], "seri": [810, 813, 825, 828, 854, 856], "discussion_paragraph": 810, "discord_link": 810, "channel_link": 810, "gg": 810, "zvqdvbznqj": 810, "799879767196958751": 810, "channel_id": 810, "autoskippablemethod": 810, "skippable_method_attribut": 810, "__qualname__": 810, "autodoc": 810, "__doc__": 810, "autoivydata": 810, "mutual": [811, 821], "containerwithelementwis": 811, "__repr__": 811, "__getattr__": [811, 847], "__setattr__": [811, 847], "__contains__": 811, "__getstate__": 811, "__setstate__": 811, "unpickl": 811, "num_dim": [811, 838], "restrict": [811, 812, 825, 833, 847, 851], "enforc": [811, 835], "extern": [811, 820, 825, 828, 829], "lefthand": 811, "righthand": 811, "handle_nest": [811, 820, 821, 822, 833], "absenc": [811, 820, 854], "implicitli": [811, 823, 828, 833], "log_pr": [811, 821, 824], "intuit": [811, 828, 836, 837, 850], "chronolog": 811, "concurr": [811, 812, 821, 854], "despit": [811, 813, 814, 826, 833, 844, 851, 854], "__list__": 811, "whatsoev": [811, 821, 841, 860], "children": 811, "shallowest": 811, "deepest": 811, "rollback": 812, "incorpor": [812, 826, 836, 854], "techniqu": 812, "triplet": 812, "test_torch": [812, 826], "test_tensor": [812, 826], "test_torch_instance_arctan_": 812, "12500": 812, "daili": 812, "huge": [812, 836, 842, 844, 854, 860], "shoot": 812, "impact": [812, 828, 837, 856], "_reduce_loss": [812, 821, 824], "test_nn": 812, "test_loss": 812, "test_binary_cross_entropy_with_logit": 812, "test_cross_entropi": 812, "test_binary_cross_entropi": 812, "test_sparse_cross_entropi": 812, "test_loss_funct": 812, "test_torch_binary_cross_entropi": 812, "test_torch_cross_entropi": 812, "binary_cross_entropy_with_logit": 812, "torch_binary_cross_entropi": 812, "torch_cross_entropi": 812, "magic": 812, "readthedoc": 812, "pedagog": 812, "f_1": 812, "t_1": 812, "t_3": 812, "t_7": 812, "t_": 812, "f_m": 812, "cyclic": 812, "intellig": [812, 828, 856], "tests_fil": 812, "file_nam": [812, 828, 829], "tests_lin": 812, "correspondingli": 812, "tests_to_run": 812, "determine_tests_lin": 812, "mongodb": 812, "databas": [812, 828], "mechan": [812, 839], "secret": 812, "db": 812, "ssh_deploy_kei": 812, "suffic": [812, 822, 828], "massiv": 812, "yml": 812, "felicit": 812, "clone_map": 812, "deploy_kei": 812, "user_email": 812, "user_nam": 812, "target_branch": 812, "github_serv": 812, "deploy_key_fil": 812, "ssh_known_hosts_fil": 812, "known_host": 812, "keyscan": 812, "git_ssh_command": 812, "userknownhostsfil": 812, "email": [812, 844], "methodologi": 812, "master1": 812, "restructur": 812, "_map": 812, "t_2": 812, "t_n": 812, "index_map": 812, "test_map": 812, "snowbal": 812, "recalibr": 812, "workflow_dispatch": 812, "schedul": [812, 839, 854, 861], "cron": 812, "saturdai": 812, "night": 812, "pm": 812, "gut": 812, "lesser": [812, 817], "lol": 812, "hour": [812, 845], "cater": [812, 827], "master2": 812, "master32": 812, "synchron": 812, "runner2": 812, "corrupt": 812, "decoupl": [812, 837], "150": 812, "cycl": [812, 828], "yellow": 812, "queu": 812, "redirect": 812, "book": 812, "onrend": 812, "jo": 812, "ran": 812, "badg": 812, "clickabl": 812, "all_dtyp": 813, "all_numeric_dtyp": 813, "all_int_dtyp": 813, "all_float_dtyp": 813, "replic": [813, 823, 824, 825], "thirdli": 813, "native_float32": 813, "importantli": [813, 835, 838], "arguabl": [813, 814, 825], "jaxarrai": [813, 814, 817, 820, 824, 829, 833], "_handle_0_dim_output": 813, "subtli": [813, 824], "promote_types_frontend_nam": 813, "promote_types_of_frontend_name_input": 813, "frontend_nam": 813, "upcast": 813, "nearli": [813, 820, 822, 854], "downcast": 813, "footprint": 813, "concret": 813, "aris": [813, 819, 839, 844], "utterli": 813, "meant": [813, 815, 824], "twice": 813, "disadvantag": 813, "relax": 813, "f64": 813, "unwant": 813, "primaci": 813, "resembl": 813, "compound": 813, "infer_dtyp": [813, 814, 820, 822], "settabl": [813, 814], "handle_out_argu": [813, 814, 820, 821, 822, 824, 833], "infer_devic": [813, 814, 820, 822], "deleg": [813, 861], "shape_to_tupl": 813, "with_supported_dtyp": 813, "unment": 813, "_cast_for_unary_op": [813, 821, 824], "target_typ": 813, "syntax": [813, 843, 844, 854], "unsupported_dtyp": 813, "supported_dtypes_and_devic": 813, "with_unsupported_device_and_dtyp": 813, "globals_getter_func": 813, "f2": 813, "lack": [813, 824, 854, 861], "mandat": [813, 824, 828, 829, 844], "confus": [813, 817, 824, 831, 841, 845], "inconsist": [813, 817, 823], "is_nan": 813, "supported_dtyp": 813, "anytim": 813, "84530": 813, "unwarr": 813, "risk": [813, 860], "needlessli": 813, "bloat": 813, "undergo": [813, 839], "unsupported_devic": 813, "supported_devic": 813, "downsid": 813, "coverag": [813, 828], "undesir": 813, "accomplish": 813, "upcast_data_typ": 813, "downcast_data_typ": 813, "crosscast_data_typ": 813, "cast_data_typ": 813, "downcast_data_dtyp": 813, "vice": 813, "versa": 813, "till": 813, "crosscast": 813, "exmp1": 813, "watch": [813, 825], "handle_numpy_arrays_in_specific_backend": [813, 820], "cate": 813, "understood": 813, "consumpt": [813, 858], "dual": 814, "categor": [814, 821, 825], "210": 814, "_handle_except": [814, 817], "1013": 814, "_handle_nest": [814, 817], "905": 814, "_handle_out_argu": [814, 817], "441": 814, "_inputs_to_native_arrai": [814, 817], "new_arg": [814, 817], "new_kwarg": [814, 817], "_outputs_to_ivy_arrai": [814, 817], "358": 814, "_handle_array_funct": [814, 817], "_handle_device_shift": 814, "handle_device_shift": [814, 822], "crucial": [814, 823], "device_shifting_dev": 814, "__enter__": 814, "__exit__": 814, "mostli": [814, 824, 828], "soft_devic": 814, "eight": [815, 832], "op_nam": 815, "__r": 815, "unsurprisingli": [815, 843], "recap": [815, 837], "combinatori": 815, "okai": [815, 831, 833], "spec": [815, 816], "my_func": [815, 829], "some_flag": 815, "another_flag": 815, "jointli": 815, "5574077": 815, "1850398": 815, "5463025": 815, "8422884": 815, "91601413": 815, "9647598": 815, "3738229": 815, "1597457": 815, "0963247": 815, "9955841": 815, "3278579": 815, "asid": 815, "increasingli": [815, 847], "14254655": 815, "1578213": 815, "380515": 815, "trivial": [815, 824], "failing_fn_nam": 815, "onlin": [815, 816], "minutest": 815, "contrast": [816, 820, 825, 860], "preview": 816, "incorrectli": [816, 847], "needless": [816, 826], "renam": [816, 825], "judgment": 816, "operator_nam": 816, "succinct": 816, "docst": 816, "native_error": 817, "_combine_messag": 817, "truli": [817, 835], "wrong": [817, 819, 822, 825, 831], "198": 817, "392": 817, "_handle_array_like_without_promot": 817, "805": 817, "432": 817, "349": 817, "other_test": 817, "523": 817, "_handle_numpy_out": 817, "396": [817, 837], "_outputs_to_numpy_arrai": 817, "_inputs_to_ivy_arrays_np": 817, "ivy_arg": 817, "ivy_kwarg": 817, "453": 817, "_from_zero_dim_arrays_to_scalar": 817, "truth_value_test": 817, "visibl": 817, "unwieldi": 817, "squash": 817, "hide": [817, 847], "cleaner": [817, 836], "caught": [817, 819], "rethrow": 817, "_print_traceback_histori": 817, "error_stack": 817, "axiserror": 817, "polici": [817, 822, 828, 830], "moreov": 817, "submoodul": 818, "test_jax_transpos": 818, "manipulaiton": 818, "test_jax": [818, 826], "test_numpi": [818, 826], "test_manipul": [818, 826, 828], "preconditionnotmet": 818, "densetensor": 818, "holder_": 818, "phi": 818, "dense_tensor_impl": 818, "array_and_ax": 818, "aaegbaegaqaaaaaaaaaaaaab": 818, "black": 819, "flake8": 819, "linter": 819, "autoflak": 819, "docformatt": 819, "pydocstyl": 819, "yaml": 819, "patch1687898304": 819, "8072": 819, "3516aed563": 819, "reformat": 819, "akshai": 819, "jain": 819, "gui": 819, "cryptic": 819, "garden": 819, "utc": 819, "didn": 819, "human": 819, "intervent": 819, "typo": 819, "ui": 819, "handle_array_like_without_promot": [820, 822], "to_native_arrays_and_back": [820, 822, 833], "handle_array_funct": [820, 822], "inputs_to_native_shap": [820, 822], "rational": [820, 824, 831], "__div__": [820, 831], "484": 820, "annot": 820, "brittl": 820, "freeli": 820, "inde": [820, 831, 839, 852], "technic": [820, 824, 839, 854, 856], "original_typ": 820, "cumbersom": 820, "hinder": [820, 843], "venn": 821, "diagram": [821, 860], "light": [821, 829, 839, 841, 855, 860], "maximis": 821, "encompass": 821, "partial_mixed_handl": [821, 822, 831], "handle_partial_mixed_funct": [821, 822, 831], "fn_decor": 821, "mixed_backend_wrapp": [821, 824], "to_add": 821, "to_skip": 821, "inputs_to_ivy_arrai": [821, 822], "modif": [821, 854], "briefli": [821, 828, 836], "get_all_arrays_on_dev": 821, "outputs_to_ivy_shap": 822, "outputs_to_native_arrai": 822, "handle_view_index": [822, 824], "handle_view": [822, 824], "handle_rag": 822, "handle_backend_invalid": 822, "handle_nan": 822, "to_native_shapes_and_back": 822, "modern": [823, 843, 844, 859], "inter_func": 823, "custom_grad_fn": 823, "args1": 823, "eas": [823, 854], "program": [824, 851, 852, 854, 857, 858, 861], "speak": 824, "val_n": 824, "base_idx": 824, "_manipulation_stack": 824, "base_flat": 824, "_view_ref": 824, "_update_view": 824, "contigu": 824, "c_contigu": 824, "ascontiguousarrai": 824, "copyto": 824, "_is_vari": 824, "tensor_scatter_nd_upd": 824, "is_vari": 824, "_update_torch_view": 824, "predominantli": [824, 829], "support_native_out": [824, 833], "_scalar_output_to_0d_arrai": 824, "_wrap_fn": 824, "dim0": 824, "dim1": 824, "res_floor": 824, "extent": [824, 825], "to_out_fn": 824, "add_wrapp": 824, "paradigm": [824, 839, 854], "expans": 824, "brief": [824, 828], "weak": 824, "_torch_bas": 824, "_torch_view_ref": 824, "_torch_manipul": 824, "weakli": 824, "adequ": 824, "tf_frontend": 825, "lax": [825, 826, 831, 838, 839], "torch_frontend": [825, 826], "numpy_frontend": 825, "jax_frontend": 825, "to_ivy_arrays_and_back": [825, 826], "fidel": 825, "algebra": [825, 852, 853, 854, 857, 861], "dynamic": 825, "mimic": 825, "arithmetic_oper": 825, "handle_numpy_out": 825, "handle_numpy_dtyp": 825, "handle_numpy_cast": 825, "from_zero_dim_arrays_to_scalar": 825, "_add": 825, "same_kind": 825, "subok": [825, 826, 831], "promote_types_of_numpy_input": 825, "underscor": 825, "unhandl": 825, "trigonometric_funct": 825, "_tan": 825, "check_tensorflow_cast": 825, "raw_op": [825, 826], "map_raw_ops_alia": 825, "output_typ": 825, "kwargs_to_upd": 825, "pointwise_op": 825, "sensibl": 825, "ahead": [825, 829, 854], "reduce_logsumexp": 825, "logsumexp": 825, "trick": 825, "max_input_tensor": 825, "preferred_element_typ": 825, "languag": [825, 833, 841, 843, 845, 852, 855, 857, 858, 859, 860], "offer": [825, 837, 845, 854, 860, 861], "finer": 825, "logicaland": 825, "np_frontend": 825, "_ivy_arrai": 825, "radd": 825, "_init_data": 825, "_process_str_data": 825, "_dtype": [825, 826, 835], "_shape": [825, 835], "govern": 825, "promote_types_of_": 825, "_input": 825, "promote_types_of_torch_input": [825, 826], "handle_numpy_casting_speci": 825, "new_fn": 825, "equiv": 825, "unsaf": 825, "array_type_test": 825, "_isfinit": 825, "organis": 825, "grasp": 825, "youtub": 825, "knowledg": 826, "np_frontend_help": 826, "open_task": 826, "test_lax": 826, "test_oper": 826, "test_jax_tan": 826, "test_mathematical_funct": 826, "test_trigonometric_funct": 826, "dtypes_values_cast": 826, "dtypes_values_casting_dtyp": 826, "arr_func": 826, "get_num_positional_args_ufunc": 826, "test_numpy_tan": 826, "handle_where_and_array_bool": 826, "test_tensorflow": 826, "test_math": 826, "test_tensorflow_tan": 826, "test_pointwise_op": 826, "test_torch_tan": 826, "_fill_valu": 826, "test_glob": 826, "test_jax_ful": 826, "test_from_shape_or_valu": 826, "_input_fill_and_dtyp": 826, "dtype_and_input": 826, "dtype_to_cast": 826, "input_fill_dtyp": 826, "test_numpy_ful": 826, "test_raw_op": 826, "test_tensorflow_fil": 826, "test_creation_op": 826, "with_arrai": 826, "test_torch_ful": 826, "add_nois": 826, "all_clos": 826, "_get_dtype_and_matrix": 826, "test_torch_qr": 826, "frontend_q": 826, "frontend_r": 826, "walkthrough": 826, "comparison_op": 826, "test_comparison_op": 826, "test_torch_great": 826, "all_alias": 826, "test_ndarrai": 826, "test_numpy_instance_add__": 826, "test_tensorflow_instance_add": 826, "1e04": 826, "allow_infin": 826, "test_torch_instance_add": 826, "_arrays_idx_n_dtyp": 826, "surprisingli": 826, "closest_relevant_group": 826, "strive": [826, 828, 831, 839, 856], "tailor": 827, "clariti": [827, 828, 831, 854], "weav": 827, "thrill": 827, "brim": 827, "stand": [827, 828], "testament": 827, "landscap": 827, "forese": 827, "refin": 827, "inquiri": 827, "fixtur": 828, "hit": [828, 833, 847], "eleg": [828, 854], "unexplor": 828, "artifact": 828, "bespok": 828, "_array_or_typ": 828, "rigor": [828, 843], "test_default_int_dtyp": 828, "print_hypothesis_exampl": 828, "custom_strategi": 828, "randomis": 828, "simplist": 828, "intricaci": 828, "glanc": 828, "one_of": 828, "datum": 828, "pipe": 828, "array_or_scal": 828, "len_of_arrai": 828, "test_add": 828, "test_gpu_is_avail": 828, "pretest": 828, "snippet": [828, 848], "criterion": 828, "valid_ax": 828, "hoc": 828, "11228": 828, "268": 828, "wherev": 828, "9622": 828, "28136": 828, "6375": 828, "12720": 828, "21354": 828, "900e": 828, "57384": 828, "25687": 828, "248": 828, "test_devic": 828, "array_shap": 828, "test_lay": 828, "some_sequ": 828, "arrays_valu": 828, "36418": 828, "213": 828, "21716926": 828, "none_or_list_of_float": 828, "get_prob": 828, "103515625e": 828, "099609375": 828, "probabilist": 828, "number_positional_argu": 828, "unreproduc": 828, "x_and_linear": 828, "is_torch_backend": 828, "x_shape": [828, 833], "weight_shap": 828, "bias_shap": 828, "ivy_np": 828, "valid_float_dtyp": 828, "test_demo": 828, "failing_test": 828, "traceback": 828, "shrink": 828, "prescrib": 828, "scratch": 828, "therebi": 828, "test_gelu": 828, "test_fil": 828, "phase": [828, 839, 854], "notabl": [828, 854], "max_exampl": 828, "deadlin": 828, "weird": 828, "systemat": 828, "safeguard": 828, "inabl": 828, "test_result_typ": 828, "9090909090909091": 828, "judgement": 829, "some_namespac": 829, "some_backend": 829, "another_backend": 829, "refactor": 829, "ongo": 829, "check_fill_value_and_dtype_are_compat": 829, "_assert_fill_value_and_dtype_are_compat": 829, "_to_devic": 829, "shouldn": [829, 847], "pin": 829, "unpinn": 829, "culmin": 829, "unsett": 830, "array_significant_figur": 830, "array_decimal_valu": 830, "warning_level": 830, "nan_polici": 830, "stablest": 830, "constantli": [831, 843], "answer": [831, 835, 839], "contradict": 831, "entail": 831, "sacrif": 831, "jacfwd": 831, "jacrev": 831, "banner": 831, "expens": 831, "incredibli": [831, 836, 839, 857], "price": 831, "pai": 831, "intrus": 831, "x_beta": 831, "equip": 831, "simplif": 831, "allevi": 831, "ineffici": [831, 839, 854], "fuse": 831, "hybrid": 831, "workaround": 831, "slip": 831, "radar": 831, "stumbl": 831, "gone": [832, 844], "fulfil": 832, "syntact": [833, 838], "power_seq": 833, "_determine_backend_from_arg": 833, "importlib": 833, "_backend_dict": 833, "x_flat": 833, "wi": 833, "wi_x": 833, "wii_x": 833, "wif_x": 833, "wig_x": 833, "wio_x": 833, "wh": 833, "ht": 833, "ct": 833, "hts_list": 833, "wii_xt": 833, "wif_xt": 833, "wig_xt": 833, "wio_xt": 833, "htm1": 833, "ctm1": 833, "wh_htm1": 833, "whi_htm1": 833, "whf_htm1": 833, "whg_htm1": 833, "who_htm1": 833, "ft": 833, "ot": 833, "reliabl": 833, "scalabl": [833, 843, 859, 860], "sacrific": 833, "hear": 833, "virtu": [833, 851], "pure_ivi": 833, "pure_torch": 833, "unclean": 833, "wx": 833, "temp": 833, "ivy_func": 833, "emphas": 833, "torchscript": [833, 841, 861], "example_input": 833, "static_argnum": [833, 847], "static_argnam": [833, 847], "primit": [834, 839, 852, 854], "upcom": 834, "hierarch": [834, 836, 837, 854], "arraywithactiv": 835, "arraywithcr": 835, "arraywithdatatyp": 835, "arraywithdevic": 835, "arraywithgener": 835, "arraywithgradi": 835, "arraywithimag": 835, "arraywithlay": 835, "arraywithlinearalgebra": 835, "arraywithloss": 835, "arraywithmanipul": 835, "arraywithnorm": 835, "arraywithrandom": 835, "arraywithsearch": 835, "arraywithset": 835, "arraywithsort": 835, "arraywithstatist": 835, "arraywithutil": 835, "_init": 835, "_size": 835, "_devic": 835, "_dev_str": 835, "_pre_repr": 835, "_post_repr": 835, "framework_str": 835, "pypep8nam": 835, "immut": 835, "claim": 835, "_native_wrapp": 835, "genuin": 835, "some_method": 835, "rewritten": 835, "littl": [835, 843, 856], "wonder": [835, 843, 845], "compartment": 835, "newshap": 835, "new_shap": 835, "tidi": 835, "crystal": 835, "ton": 836, "ado": [836, 837], "soup": 836, "walk": [836, 837], "cnt": 836, "3333335": 836, "autocomplet": 836, "midwai": 836, "agent": 836, "total_spe": 836, "total_height": 836, "total_width": 836, "ag": 836, "tot": 836, "total_": 836, "total_h": 836, "cnt0": 836, "cnt1": 836, "diff_0": 836, "diff_1": 836, "config0": 836, "config1": 836, "l0": 836, "decoder__l0": 836, "decoder__l1": 836, "encoder__l0": 836, "encoder__l1": 836, "l0__b": 836, "l0__w": 836, "l1__b": 836, "l1__w": 836, "printabl": 836, "foresight": 836, "untidili": 836, "update_ag": 836, "normalize_img": 836, "img_max": 836, "reduce_max": 836, "img_min": 836, "reduce_min": 836, "img_rang": 836, "agent_posit": 836, "agent_veloc": 836, "agent_cam_front_rgb": 836, "agent_cam_front_depth": 836, "agent_cam_rear_rgb": 836, "agent_cam_rear_depth": 836, "agent_cam_lidar": 836, "camera": 836, "front_rgb": 836, "front_depth": 836, "rear_rgb": 836, "rear_depth": 836, "lidar": 836, "rgb": 836, "rear": 836, "veloc": 836, "cam": 836, "cam_max": 836, "cam_min": 836, "cam_rang": 836, "five": 836, "allud": [836, 844], "perman": 836, "thread": [836, 854], "straightforward": 836, "dataload": 836, "_cnt": 836, "img_": 836, "_dataset_s": 836, "_batch_siz": 836, "_count": [836, 837], "__next__": 836, "img_fnam": 836, "loaded_img": 836, "batch_slic": 836, "0145": 836, "addbackward0": 836, "_create_vari": 837, "_input_channel": 837, "_output_channel": 837, "_w_shape": 837, "_b_shape": 837, "_with_bia": 837, "764": 837, "872": 837, "211": 837, "439": 837, "nightmar": 837, "overcom": 837, "v1": 837, "key0": 837, "linear3": 837, "v2": 837, "preced": [837, 844], "_w_init": 837, "_b_init": 837, "misnom": 837, "saw": 837, "_beta1": 837, "_beta2": 837, "_epsilon": 837, "_mw": 837, "_vw": 837, "_first_pass": 837, "_should_trac": 837, "new_v": 837, "_lr": 837, "_inplac": 837, "_stop_gradi": 837, "sparse_funct": 838, "vital": [838, 843], "_linear": 838, "jax_graph": 838, "to_backend": 838, "thinli": 838, "to_haiku_modul": 838, "loss_fn_t": 838, "without_apply_rng": 838, "update_rul": 838, "tree_multimap": 838, "trax": [838, 845], "objax": [838, 845], "matur": [839, 844, 854], "doubt": 839, "grate": 839, "probe": 839, "lock": 839, "gold": 839, "dex": 839, "tricki": [839, 841], "predictor": 839, "tight": 839, "dispatch": [839, 854, 857], "ast": 839, "autodiff": 839, "shine": 839, "merci": 839, "compet": [839, 854], "parallelis": 839, "spmd": 839, "mixtur": 839, "expert": 839, "sophist": 839, "depart": 839, "hundr": 839, "thousand": 839, "broadli": [839, 860], "supplementari": 839, "reusabl": [839, 852, 854], "fanci": [839, 854], "fusion": [839, 858], "lose": 839, "pmap": 839, "eventu": 839, "supplement": 839, "backdoor": 839, "callback": 839, "door": 839, "somewhat": [839, 854], "outsourc": 839, "ivy_root": 840, "pem": 840, "api_kei": 840, "asap": 840, "nail": 841, "scientist": 841, "correl": 841, "collabor": [842, 843, 844], "consortium": [842, 844], "grown": 843, "rapidli": 843, "shareabl": 843, "outdat": 843, "newest": 843, "prototyp": [843, 854], "obsolet": [843, 845], "invent": 843, "simultan": [843, 845], "runner": 843, "principl": [843, 852, 854, 857], "2006": 843, "cloth": 843, "forgiven": 844, "eyebrow": 844, "somehow": 844, "industri": [844, 854, 856], "funni": 844, "comic": 844, "charger": 844, "instant": 844, "contrari": 844, "bumpi": 844, "road": 844, "technologi": [844, 852, 856], "pcie": 844, "motherboard": 844, "raid": 844, "bluetooth": 844, "wireless": 844, "btx": 844, "sata": 844, "tcp": 844, "ip": 844, "smtp": 844, "send": [844, 859], "gmail": 844, "outlook": 844, "innov": 844, "growth": [844, 857], "necess": 844, "2015": [844, 854], "aros": 844, "mission": [844, 856], "ourselv": [844, 860], "quansight": [844, 860], "compani": [844, 850], "apach": [844, 856, 860], "onnx": [844, 852, 860], "cupi": [844, 854, 861], "modin": 844, "spyder": 844, "octoml": [844, 860], "sponsor": 844, "lg": 844, "electron": 844, "shaw": 844, "pursuit": 844, "complianc": 844, "convinc": 844, "celebr": 844, "abund": 845, "streamlin": [845, 857], "awesom": 845, "love": 845, "slew": 845, "inevit": [845, 855], "erron": 845, "poor": 845, "spin": 845, "sake": 845, "wouldn": 845, "frantic": 845, "lucid": 845, "honk": 845, "hasn": 845, "spend": [845, 854], "sonnet": 845, "trainer": [845, 861], "quo": 845, "dopamin": 845, "ignit": 845, "catalyst": 845, "lightn": 845, "fastai": 845, "publicli": [847, 848, 849], "logger": 847, "arg_stateful_idx": 847, "kwarg_stateful_idx": 847, "include_gener": 847, "array_cach": 847, "return_backend_traced_fn": 847, "lazygraph": [847, 848, 849], "sum_j": 847, "traced_fn": 847, "impos": 847, "comp_func": 847, "trade": 847, "bake": 847, "cont": 847, "new_attribut": 847, "resnet50": 847, "breed": 847, "autoimageprocessor": [847, 848], "resnetforimageclassif": [847, 848], "traced_graph": 847, "predicted_label": 847, "debug_mod": 848, "rough": 848, "transformed_with_st": 848, "bigger": 848, "hf": 848, "tf_model": 848, "tf_input": 848, "transpile_kwarg": 849, "transpiled_func": 849, "unified_func": 849, "rwork": 850, "vendor": [850, 856], "complimentari": [850, 860], "acycl": [850, 855], "insert_numb": 851, "insert_t": 851, "scaffold": [852, 860], "heart": 852, "toolchain": [852, 857], "assembli": [852, 859, 860], "idl": 852, "middl": 852, "emit": 852, "gnu": [852, 857], "broader": 852, "heterogen": 852, "aid": 852, "coprocessor": 852, "programm": [852, 859], "gate": 852, "onednn": 852, "sit": [852, 855, 860], "tandem": 852, "possess": 852, "khrono": [853, 859], "appl": 853, "coremltool": 853, "albeit": 853, "promin": 854, "abbrevi": 854, "laboratori": 854, "proprietari": [854, 858, 859], "mathwork": 854, "commerci": 854, "1984": 854, "toolbox": 854, "mupad": 854, "simulink": 854, "graphic": [854, 858, 859], "simul": 854, "million": [854, 857], "worldwid": 854, "scienc": [854, 856], "econom": 854, "2001": 854, "od": 854, "solver": 854, "cython": 854, "friendli": 854, "2002": 854, "lua": 854, "luajit": 854, "idiap": 854, "epfl": 854, "2005": 854, "numarrai": 854, "cpython": 854, "partli": 854, "2007": 854, "forest": 854, "boost": 854, "dbscan": 854, "inbuilt": 854, "esqu": 854, "aesara": 854, "datafram": 854, "2012": 854, "Its": 854, "polymorph": 854, "mpi": 854, "openmp": 854, "glue": 854, "jaot": 854, "nasa": 854, "cern": 854, "climat": 854, "allianc": 854, "influenti": 854, "2014": 854, "scala": 854, "ship": 854, "forgiv": 854, "decemb": 854, "announc": 854, "mainten": 854, "v7": 854, "meaning": 854, "2016": 854, "imper": 854, "amazon": 854, "traction": 854, "cognit": [854, 861], "grade": 854, "dnn": 854, "rnn": 854, "backpropag": 854, "succumb": 854, "came": 854, "monitor": 854, "practition": [854, 858, 859, 860], "hobbyist": 854, "tremend": 854, "ecosystem": 854, "gear": 854, "batteri": 854, "zygot": 854, "jl": 854, "workload": 854, "daggerflux": 854, "frontier": 854, "hessian": 854, "2018": 854, "lightweight": [854, 861], "shortcom": 854, "barrier": 854, "inexperienc": 854, "underdevelop": 854, "fanat": 854, "ounc": 854, "infanc": 854, "emerg": 854, "nich": 854, "mobil": 854, "lite": 854, "enterpris": 854, "reinvent": [854, 856], "inertia": 854, "creator": [854, 856], "paszk": 854, "hi": 854, "bulk": 854, "haskel": 854, "dataflow": 855, "trace_modul": 855, "scriptfunct": 855, "scriptmodul": 855, "fake": 855, "proxi": 855, "graphmodul": 855, "travi": 856, "oliph": 856, "leader": 856, "cornerston": 856, "numba": 856, "numfocu": 856, "pydata": 856, "confer": 856, "consult": 856, "servic": 856, "expertis": 856, "devop": 856, "mlop": 856, "dashboard": 856, "startup": 856, "mlir": [856, 857, 860], "Their": 856, "held": 856, "privileg": 856, "presum": 856, "llvm": [856, 859], "founder": 856, "tvm": [856, 860], "sustain": 856, "empow": 856, "har": 856, "burden": 856, "benchmark": 856, "precompil": 857, "executor": 857, "julia": [857, 860], "fsf": 857, "gpl": 857, "biggest": [857, 860], "throughput": 858, "gpgpu": 858, "classic": 859, "sycl": 859, "dpc": 859, "processor": 859, "maco": 859, "oneapi": 859, "ia": 859, "aka": 859, "xeon": 859, "gen9": 859, "xe": 859, "arria": 859, "gx": 859, "fpga": 859, "lofti": 860, "ambit": 860, "realm": 860, "bedrock": 860, "flux": 860, "bite": 860, "chew": 860, "eagerpi": 860, "tensorli": 860, "thinc": 860, "neuropod": 860, "fx": 860, "retrain": 860, "closer": 860, "greatli": 860, "modular": 860, "anywher": 860, "theano": 861, "plaidml": 861, "partial_svd": 861, "excel": 861, "subsystem": 861}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [601, 0, 1, "", "adam_step"], [602, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [415, 0, 1, "", "adjoint"], [753, 0, 1, "", "all"], [521, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [754, 0, 1, "", "any"], [730, 0, 1, "", "argmax"], [731, 0, 1, "", "argmin"], [739, 0, 1, "", "argsort"], [732, 0, 1, "", "argwhere"], [524, 0, 1, "", "array_equal"], [448, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [525, 0, 1, "", "assert_supports_inplace"], [449, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [450, 0, 1, "", "atleast_1d"], [451, 0, 1, "", "atleast_2d"], [452, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [488, 0, 1, "", "batch_norm"], [416, 0, 1, "", "batched_outer"], [495, 0, 1, "", "bernoulli"], [496, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [682, 0, 1, "", "binary_cross_entropy"], [507, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [652, 0, 1, "", "cholesky"], [685, 0, 1, "", "clip"], [527, 0, 1, "", "clip_matrix_norm"], [528, 0, 1, "", "clip_vector_norm"], [456, 0, 1, "", "column_stack"], [686, 0, 1, "", "concat"], [457, 0, 1, "", "concat_from_sequence"], [417, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [687, 0, 1, "", "constant_pad"], [636, 0, 1, "", "conv1d"], [637, 0, 1, "", "conv1d_transpose"], [638, 0, 1, "", "conv2d"], [639, 0, 1, "", "conv2d_transpose"], [640, 0, 1, "", "conv3d"], [641, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [508, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [509, 0, 1, "", "cov"], [653, 0, 1, "", "cross"], [683, 0, 1, "", "cross_entropy"], [510, 0, 1, "", "cummax"], [511, 0, 1, "", "cummin"], [743, 0, 1, "", "cumprod"], [744, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [531, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [644, 0, 1, "", "depthwise_conv2d"], [654, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [655, 0, 1, "", "diag"], [418, 0, 1, "", "diagflat"], [656, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [497, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [419, 0, 1, "", "dot"], [645, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [458, 0, 1, "", "dsplit"], [459, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [420, 0, 1, "", "eig"], [658, 0, 1, "", "eigh"], [421, 0, 1, "", "eigh_tridiagonal"], [422, 0, 1, "", "eigvals"], [659, 0, 1, "", "eigvalsh"], [532, 0, 1, "", "einops_rearrange"], [533, 0, 1, "", "einops_reduce"], [534, 0, 1, "", "einops_repeat"], [745, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [535, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [460, 0, 1, "", "expand"], [688, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [461, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [462, 0, 1, "", "flatten"], [689, 0, 1, "", "flip"], [463, 0, 1, "", "fliplr"], [464, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [465, 0, 1, "", "fold"], [536, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [498, 0, 1, "", "gamma"], [539, 0, 1, "", "gather"], [540, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [423, 0, 1, "", "general_inner_product"], [543, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [605, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [489, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [545, 0, 1, "", "has_nans"], [466, 0, 1, "", "heaviside"], [424, 0, 1, "", "higher_order_moment"], [512, 0, 1, "", "histogram"], [467, 0, 1, "", "hsplit"], [468, 0, 1, "", "hstack"], [441, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [469, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [513, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [425, 0, 1, "", "initialize_tucker"], [660, 0, 1, "", "inner"], [547, 0, 1, "", "inplace_decrement"], [548, 0, 1, "", "inplace_increment"], [549, 0, 1, "", "inplace_update"], [490, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [661, 0, 1, "", "inv"], [551, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [552, 0, 1, "", "is_ivy_array"], [553, 0, 1, "", "is_ivy_container"], [555, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [556, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [558, 0, 1, "", "itemsize"], [442, 0, 1, "", "kl_div"], [427, 0, 1, "", "kron"], [443, 0, 1, "", "l1_loss"], [491, 0, 1, "", "l1_normalize"], [492, 0, 1, "", "l2_normalize"], [607, 0, 1, "", "lamb_update"], [608, 0, 1, "", "lars_update"], [723, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [502, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [646, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [444, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [494, 0, 1, "", "lp_normalize"], [647, 0, 1, "", "lstm_update"], [429, 0, 1, "", "make_svd_non_negative"], [663, 0, 1, "", "matmul"], [470, 0, 1, "", "matricize"], [430, 0, 1, "", "matrix_exp"], [664, 0, 1, "", "matrix_norm"], [665, 0, 1, "", "matrix_power"], [666, 0, 1, "", "matrix_rank"], [667, 0, 1, "", "matrix_transpose"], [746, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [747, 0, 1, "", "mean"], [514, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [748, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [431, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [471, 0, 1, "", "moveaxis"], [740, 0, 1, "", "msort"], [432, 0, 1, "", "multi_dot"], [648, 0, 1, "", "multi_head_attention"], [433, 0, 1, "", "multi_mode_dot"], [724, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [515, 0, 1, "", "nanmean"], [516, 0, 1, "", "nanmedian"], [517, 0, 1, "", "nanmin"], [518, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [733, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [609, 0, 1, "", "optimizer_update"], [520, 0, 1, "", "optional_get_element"], [668, 0, 1, "", "outer"], [472, 0, 1, "", "pad"], [473, 0, 1, "", "partial_fold"], [474, 0, 1, "", "partial_tensor_to_vec"], [434, 0, 1, "", "partial_tucker"], [475, 0, 1, "", "partial_unfold"], [476, 0, 1, "", "partial_vec_to_tensor"], [690, 0, 1, "", "permute_dims"], [669, 0, 1, "", "pinv"], [499, 0, 1, "", "poisson"], [445, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [749, 0, 1, "", "prod"], [477, 0, 1, "", "put_along_axis"], [670, 0, 1, "", "qr"], [519, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [725, 0, 1, "", "randint"], [726, 0, 1, "", "random_normal"], [727, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [691, 0, 1, "", "repeat"], [692, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [693, 0, 1, "", "roll"], [478, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [651, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [563, 0, 1, "", "scatter_flat"], [564, 0, 1, "", "scatter_nd"], [741, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [577, 0, 1, "", "shape"], [729, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [413, 0, 1, "", "sliding_window"], [671, 0, 1, "", "slogdet"], [446, 0, 1, "", "smooth_l1_loss"], [447, 0, 1, "", "soft_margin_loss"], [479, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [672, 0, 1, "", "solve"], [742, 0, 1, "", "sort"], [684, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [694, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [695, 0, 1, "", "squeeze"], [578, 0, 1, "", "stable_divide"], [579, 0, 1, "", "stable_pow"], [696, 0, 1, "", "stack"], [750, 0, 1, "", "std"], [414, 0, 1, "", "stft"], [610, 0, 1, "", "stop_gradient"], [580, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [751, 0, 1, "", "sum"], [581, 0, 1, "", "supports_inplace_updates"], [673, 0, 1, "", "svd"], [436, 0, 1, "", "svd_flip"], [674, 0, 1, "", "svdvals"], [697, 0, 1, "", "swapaxes"], [480, 0, 1, "", "take"], [481, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [437, 0, 1, "", "tensor_train"], [675, 0, 1, "", "tensordot"], [676, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [698, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [583, 0, 1, "", "to_list"], [585, 0, 1, "", "to_numpy"], [586, 0, 1, "", "to_scalar"], [482, 0, 1, "", "top_k"], [677, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [483, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [438, 0, 1, "", "truncated_svd"], [439, 0, 1, "", "tt_matrix_to_tensor"], [440, 0, 1, "", "tucker"], [484, 0, 1, "", "unfold"], [735, 0, 1, "", "unique_all"], [485, 0, 1, "", "unique_consecutive"], [736, 0, 1, "", "unique_counts"], [737, 0, 1, "", "unique_inverse"], [738, 0, 1, "", "unique_values"], [500, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [699, 0, 1, "", "unstack"], [599, 0, 1, "", "value_is_nan"], [678, 0, 1, "", "vander"], [752, 0, 1, "", "var"], [679, 0, 1, "", "vecdot"], [680, 0, 1, "", "vector_norm"], [681, 0, 1, "", "vector_to_skew_symmetric_matrix"], [486, 0, 1, "", "vsplit"], [487, 0, 1, "", "vstack"], [734, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [700, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[620, 1, 1, "", "ArrayMode"], [616, 1, 1, "", "DefaultComplexDtype"], [617, 1, 1, "", "DefaultDevice"], [616, 1, 1, "", "DefaultDtype"], [616, 1, 1, "", "DefaultFloatDtype"], [616, 1, 1, "", "DefaultIntDtype"], [616, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [615, 1, 1, "", "NestedSequence"], [620, 1, 1, "", "PreciseMode"], [617, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [621, 2, 1, "", "adam_step"], [621, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [634, 2, 1, "", "all"], [620, 2, 1, "", "all_equal"], [627, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [634, 2, 1, "", "any"], [615, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [620, 2, 1, "", "arg_info"], [620, 2, 1, "", "arg_names"], [630, 2, 1, "", "argmax"], [630, 2, 1, "", "argmin"], [632, 2, 1, "", "argsort"], [630, 2, 1, "", "argwhere"], [615, 2, 1, "", "array"], [620, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [616, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [616, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [615, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [620, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [616, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [624, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [616, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [616, 2, 1, "", "broadcast_to"], [620, 2, 1, "", "cache_fn"], [616, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [616, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [623, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [625, 2, 1, "", "clip"], [620, 2, 1, "", "clip_matrix_norm"], [620, 2, 1, "", "clip_vector_norm"], [616, 2, 1, "", "closest_valid_dtype"], [614, 2, 1, "", "cmp_is"], [614, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [625, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [625, 2, 1, "", "constant_pad"], [620, 2, 1, "", "container_types"], [635, 2, 1, "", "conv"], [636, 2, 1, "", "conv1d"], [637, 2, 1, "", "conv1d_transpose"], [638, 2, 1, "", "conv2d"], [639, 2, 1, "", "conv2d_transpose"], [640, 2, 1, "", "conv3d"], [641, 2, 1, "", "conv3d_transpose"], [642, 2, 1, "", "conv_general_dilated"], [643, 2, 1, "", "conv_general_transpose"], [615, 2, 1, "", "copy_array"], [627, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [623, 2, 1, "", "cross"], [624, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [633, 2, 1, "", "cumprod"], [633, 2, 1, "", "cumsum"], [620, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [620, 2, 1, "", "default"], [616, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [616, 2, 1, "", "default_dtype"], [616, 2, 1, "", "default_float_dtype"], [616, 2, 1, "", "default_int_dtype"], [616, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [622, 2, 1, "", "depthwise_conv2d"], [623, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [623, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [623, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [622, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [616, 2, 1, "", "dtype"], [616, 2, 1, "", "dtype_bits"], [627, 2, 1, "", "duplicate_array_index_chains"], [613, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [623, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [623, 2, 1, "", "eigvalsh"], [620, 2, 1, "", "einops_rearrange"], [620, 2, 1, "", "einops_reduce"], [620, 2, 1, "", "einops_repeat"], [633, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [615, 2, 1, "", "empty"], [615, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [621, 2, 1, "", "execute_with_gradients"], [620, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [625, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [615, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [616, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [625, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [626, 2, 1, "", "fomaml_step"], [614, 2, 1, "", "for_loop"], [620, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [615, 2, 1, "", "from_dlpack"], [615, 2, 1, "", "frombuffer"], [615, 2, 1, "", "full"], [615, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [620, 2, 1, "", "function_supported_devices_and_dtypes"], [616, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [620, 2, 1, "", "function_unsupported_devices_and_dtypes"], [616, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [620, 2, 1, "", "gather"], [620, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [612, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [620, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [620, 2, 1, "", "get_item"], [620, 2, 1, "", "get_num_dims"], [620, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [621, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [621, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [612, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [620, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [614, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [616, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [627, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [613, 6, 1, "", "inf"], [616, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [623, 2, 1, "", "inner"], [620, 2, 1, "", "inplace_arrays_supported"], [620, 2, 1, "", "inplace_decrement"], [620, 2, 1, "", "inplace_increment"], [620, 2, 1, "", "inplace_update"], [620, 2, 1, "", "inplace_variables_supported"], [627, 2, 1, "", "insert_into_nest_at_index"], [627, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [623, 2, 1, "", "inv"], [616, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [620, 2, 1, "", "is_array"], [616, 2, 1, "", "is_bool_dtype"], [616, 2, 1, "", "is_complex_dtype"], [616, 2, 1, "", "is_float_dtype"], [616, 2, 1, "", "is_hashable_dtype"], [616, 2, 1, "", "is_int_dtype"], [620, 2, 1, "", "is_ivy_array"], [620, 2, 1, "", "is_ivy_container"], [620, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [620, 2, 1, "", "is_native_array"], [616, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [616, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [620, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [620, 2, 1, "", "isscalar"], [620, 2, 1, "", "itemsize"], [621, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [621, 2, 1, "", "lamb_update"], [621, 2, 1, "", "lars_update"], [628, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [612, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [622, 2, 1, "", "linear"], [615, 2, 1, "", "linspace"], [634, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [612, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [615, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [622, 2, 1, "", "lstm_update"], [623, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [626, 2, 1, "", "maml_step"], [627, 2, 1, "", "map"], [627, 2, 1, "", "map_nest_at_index"], [627, 2, 1, "", "map_nest_at_indices"], [620, 2, 1, "", "match_kwargs"], [623, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [623, 2, 1, "", "matrix_norm"], [623, 2, 1, "", "matrix_power"], [623, 2, 1, "", "matrix_rank"], [623, 2, 1, "", "matrix_transpose"], [633, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [633, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [615, 2, 1, "", "meshgrid"], [633, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [612, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [632, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [622, 2, 1, "", "multi_head_attention"], [627, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [629, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [620, 2, 1, "", "multiprocessing"], [613, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [615, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [627, 2, 1, "", "nested_any"], [627, 2, 1, "", "nested_argwhere"], [627, 2, 1, "", "nested_map"], [627, 2, 1, "", "nested_multi_map"], [613, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [622, 2, 1, "", "nms"], [630, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [620, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [615, 2, 1, "", "one_hot"], [615, 2, 1, "", "ones"], [615, 2, 1, "", "ones_like"], [621, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [623, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [625, 2, 1, "", "permute_dims"], [613, 6, 1, "", "pi"], [623, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [620, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [633, 2, 1, "", "prod"], [616, 2, 1, "", "promote_types"], [616, 2, 1, "", "promote_types_of_inputs"], [627, 2, 1, "", "prune_empty"], [627, 2, 1, "", "prune_nest_at_index"], [627, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [623, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [629, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [629, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [629, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [612, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [625, 2, 1, "", "repeat"], [626, 2, 1, "", "reptile_step"], [625, 2, 1, "", "reshape"], [616, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [622, 2, 1, "", "roi_align"], [625, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [634, 2, 1, "", "save"], [622, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [620, 2, 1, "", "scatter_flat"], [620, 2, 1, "", "scatter_nd"], [632, 2, 1, "", "searchsorted"], [629, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [620, 2, 1, "", "set_array_mode"], [616, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [616, 2, 1, "", "set_default_dtype"], [616, 2, 1, "", "set_default_float_dtype"], [616, 2, 1, "", "set_default_int_dtype"], [616, 2, 1, "", "set_default_uint_dtype"], [620, 2, 1, "", "set_exception_trace_mode"], [620, 2, 1, "", "set_inplace_mode"], [620, 2, 1, "", "set_item"], [620, 2, 1, "", "set_min_base"], [620, 2, 1, "", "set_min_denominator"], [627, 2, 1, "", "set_nest_at_index"], [627, 2, 1, "", "set_nest_at_indices"], [620, 2, 1, "", "set_nestable_mode"], [620, 2, 1, "", "set_precise_mode"], [620, 2, 1, "", "set_queue_timeout"], [620, 2, 1, "", "set_shape_array_mode"], [620, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [620, 2, 1, "", "set_tmp_dir"], [620, 2, 1, "", "shape"], [629, 2, 1, "", "shuffle"], [612, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [413, 2, 1, "", "sliding_window"], [623, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [612, 2, 1, "", "softmax"], [612, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [612, 2, 1, "", "softsign"], [623, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [632, 2, 1, "", "sort"], [624, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [625, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [625, 2, 1, "", "squeeze"], [620, 2, 1, "", "stable_divide"], [620, 2, 1, "", "stable_pow"], [625, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [633, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [621, 2, 1, "", "stop_gradient"], [620, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [633, 2, 1, "", "sum"], [620, 2, 1, "", "supports_inplace_updates"], [623, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [623, 2, 1, "", "svdvals"], [625, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [623, 2, 1, "", "tensordot"], [623, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [625, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [615, 2, 1, "", "to_dlpack"], [620, 2, 1, "", "to_ivy_shape"], [620, 2, 1, "", "to_list"], [620, 2, 1, "", "to_native_shape"], [620, 2, 1, "", "to_numpy"], [620, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [623, 2, 1, "", "trace"], [847, 2, 1, "", "trace_graph"], [848, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [615, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [615, 2, 1, "", "triu"], [615, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [620, 2, 1, "", "try_else_none"], [614, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [616, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [849, 2, 1, "", "unify"], [631, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [631, 2, 1, "", "unique_counts"], [631, 2, 1, "", "unique_inverse"], [631, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [620, 2, 1, "", "unset_array_mode"], [616, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [616, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [620, 2, 1, "", "unset_exception_trace_mode"], [620, 2, 1, "", "unset_inplace_mode"], [620, 2, 1, "", "unset_min_base"], [620, 2, 1, "", "unset_min_denominator"], [620, 2, 1, "", "unset_nestable_mode"], [620, 2, 1, "", "unset_precise_mode"], [620, 2, 1, "", "unset_queue_timeout"], [620, 2, 1, "", "unset_shape_array_mode"], [620, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [620, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [625, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [621, 2, 1, "", "value_and_grad"], [620, 2, 1, "", "value_is_nan"], [623, 2, 1, "", "vander"], [633, 2, 1, "", "var"], [623, 2, 1, "", "vecdot"], [623, 2, 1, "", "vector_norm"], [623, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [620, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [630, 2, 1, "", "where"], [614, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [625, 2, 1, "", "zero_pad"], [615, 2, 1, "", "zeros"], [615, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [601, 0, 1, "", "adam_step"], [602, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [415, 0, 1, "", "adjoint"], [753, 0, 1, "", "all"], [521, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [754, 0, 1, "", "any"], [730, 0, 1, "", "argmax"], [731, 0, 1, "", "argmin"], [739, 0, 1, "", "argsort"], [732, 0, 1, "", "argwhere"], [524, 0, 1, "", "array_equal"], [448, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [525, 0, 1, "", "assert_supports_inplace"], [449, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [450, 0, 1, "", "atleast_1d"], [451, 0, 1, "", "atleast_2d"], [452, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [488, 0, 1, "", "batch_norm"], [416, 0, 1, "", "batched_outer"], [495, 0, 1, "", "bernoulli"], [496, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [682, 0, 1, "", "binary_cross_entropy"], [507, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [453, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [652, 0, 1, "", "cholesky"], [685, 0, 1, "", "clip"], [527, 0, 1, "", "clip_matrix_norm"], [528, 0, 1, "", "clip_vector_norm"], [456, 0, 1, "", "column_stack"], [686, 0, 1, "", "concat"], [457, 0, 1, "", "concat_from_sequence"], [417, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [687, 0, 1, "", "constant_pad"], [636, 0, 1, "", "conv1d"], [637, 0, 1, "", "conv1d_transpose"], [638, 0, 1, "", "conv2d"], [639, 0, 1, "", "conv2d_transpose"], [640, 0, 1, "", "conv3d"], [641, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [508, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [509, 0, 1, "", "cov"], [653, 0, 1, "", "cross"], [683, 0, 1, "", "cross_entropy"], [510, 0, 1, "", "cummax"], [511, 0, 1, "", "cummin"], [743, 0, 1, "", "cumprod"], [744, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [644, 0, 1, "", "depthwise_conv2d"], [654, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [655, 0, 1, "", "diag"], [418, 0, 1, "", "diagflat"], [656, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [497, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [419, 0, 1, "", "dot"], [645, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [458, 0, 1, "", "dsplit"], [459, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [420, 0, 1, "", "eig"], [658, 0, 1, "", "eigh"], [421, 0, 1, "", "eigh_tridiagonal"], [422, 0, 1, "", "eigvals"], [659, 0, 1, "", "eigvalsh"], [532, 0, 1, "", "einops_rearrange"], [533, 0, 1, "", "einops_reduce"], [534, 0, 1, "", "einops_repeat"], [745, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [535, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [460, 0, 1, "", "expand"], [688, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [461, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [462, 0, 1, "", "flatten"], [689, 0, 1, "", "flip"], [463, 0, 1, "", "fliplr"], [464, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [465, 0, 1, "", "fold"], [536, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [498, 0, 1, "", "gamma"], [539, 0, 1, "", "gather"], [540, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [423, 0, 1, "", "general_inner_product"], [543, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [605, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [489, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [545, 0, 1, "", "has_nans"], [466, 0, 1, "", "heaviside"], [424, 0, 1, "", "higher_order_moment"], [512, 0, 1, "", "histogram"], [467, 0, 1, "", "hsplit"], [468, 0, 1, "", "hstack"], [441, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [469, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [513, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [425, 0, 1, "", "initialize_tucker"], [660, 0, 1, "", "inner"], [547, 0, 1, "", "inplace_decrement"], [548, 0, 1, "", "inplace_increment"], [549, 0, 1, "", "inplace_update"], [490, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [661, 0, 1, "", "inv"], [501, 0, 1, "", "invert_permutation"], [551, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [552, 0, 1, "", "is_ivy_array"], [555, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [556, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [558, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [442, 0, 1, "", "kl_div"], [427, 0, 1, "", "kron"], [443, 0, 1, "", "l1_loss"], [491, 0, 1, "", "l1_normalize"], [492, 0, 1, "", "l2_normalize"], [607, 0, 1, "", "lamb_update"], [608, 0, 1, "", "lars_update"], [723, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [502, 0, 1, "", "lexsort"], [646, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [444, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [494, 0, 1, "", "lp_normalize"], [647, 0, 1, "", "lstm_update"], [429, 0, 1, "", "make_svd_non_negative"], [663, 0, 1, "", "matmul"], [470, 0, 1, "", "matricize"], [430, 0, 1, "", "matrix_exp"], [664, 0, 1, "", "matrix_norm"], [665, 0, 1, "", "matrix_power"], [666, 0, 1, "", "matrix_rank"], [667, 0, 1, "", "matrix_transpose"], [746, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [747, 0, 1, "", "mean"], [514, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [748, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [431, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [471, 0, 1, "", "moveaxis"], [740, 0, 1, "", "msort"], [432, 0, 1, "", "multi_dot"], [648, 0, 1, "", "multi_head_attention"], [433, 0, 1, "", "multi_mode_dot"], [724, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [515, 0, 1, "", "nanmean"], [516, 0, 1, "", "nanmedian"], [517, 0, 1, "", "nanmin"], [518, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [733, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [609, 0, 1, "", "optimizer_update"], [520, 0, 1, "", "optional_get_element"], [668, 0, 1, "", "outer"], [472, 0, 1, "", "pad"], [473, 0, 1, "", "partial_fold"], [474, 0, 1, "", "partial_tensor_to_vec"], [434, 0, 1, "", "partial_tucker"], [475, 0, 1, "", "partial_unfold"], [476, 0, 1, "", "partial_vec_to_tensor"], [690, 0, 1, "", "permute_dims"], [669, 0, 1, "", "pinv"], [499, 0, 1, "", "poisson"], [445, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [749, 0, 1, "", "prod"], [477, 0, 1, "", "put_along_axis"], [670, 0, 1, "", "qr"], [519, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [725, 0, 1, "", "randint"], [726, 0, 1, "", "random_normal"], [727, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [691, 0, 1, "", "repeat"], [692, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [693, 0, 1, "", "roll"], [478, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [651, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [563, 0, 1, "", "scatter_flat"], [564, 0, 1, "", "scatter_nd"], [741, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [729, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [413, 0, 1, "", "sliding_window"], [671, 0, 1, "", "slogdet"], [446, 0, 1, "", "smooth_l1_loss"], [447, 0, 1, "", "soft_margin_loss"], [479, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [672, 0, 1, "", "solve"], [742, 0, 1, "", "sort"], [684, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [694, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [695, 0, 1, "", "squeeze"], [578, 0, 1, "", "stable_divide"], [579, 0, 1, "", "stable_pow"], [696, 0, 1, "", "stack"], [750, 0, 1, "", "std"], [414, 0, 1, "", "stft"], [610, 0, 1, "", "stop_gradient"], [580, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [751, 0, 1, "", "sum"], [581, 0, 1, "", "supports_inplace_updates"], [673, 0, 1, "", "svd"], [436, 0, 1, "", "svd_flip"], [674, 0, 1, "", "svdvals"], [697, 0, 1, "", "swapaxes"], [480, 0, 1, "", "take"], [481, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [437, 0, 1, "", "tensor_train"], [675, 0, 1, "", "tensordot"], [676, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [698, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [583, 0, 1, "", "to_list"], [585, 0, 1, "", "to_numpy"], [586, 0, 1, "", "to_scalar"], [482, 0, 1, "", "top_k"], [677, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [483, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [438, 0, 1, "", "truncated_svd"], [439, 0, 1, "", "tt_matrix_to_tensor"], [440, 0, 1, "", "tucker"], [484, 0, 1, "", "unfold"], [735, 0, 1, "", "unique_all"], [485, 0, 1, "", "unique_consecutive"], [736, 0, 1, "", "unique_counts"], [737, 0, 1, "", "unique_inverse"], [738, 0, 1, "", "unique_values"], [500, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [699, 0, 1, "", "unstack"], [599, 0, 1, "", "value_is_nan"], [678, 0, 1, "", "vander"], [752, 0, 1, "", "var"], [679, 0, 1, "", "vecdot"], [680, 0, 1, "", "vector_norm"], [681, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [486, 0, 1, "", "vsplit"], [487, 0, 1, "", "vstack"], [734, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [700, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[612, 3, 0, "-", "activations"], [613, 3, 0, "-", "constants"], [614, 3, 0, "-", "control_flow_ops"], [615, 3, 0, "-", "creation"], [616, 3, 0, "-", "data_type"], [617, 3, 0, "-", "device"], [618, 3, 0, "-", "elementwise"], [619, 3, 0, "-", "experimental"], [620, 3, 0, "-", "general"], [621, 3, 0, "-", "gradients"], [622, 3, 0, "-", "layers"], [623, 3, 0, "-", "linear_algebra"], [624, 3, 0, "-", "losses"], [625, 3, 0, "-", "manipulation"], [626, 3, 0, "-", "meta"], [627, 3, 0, "-", "nest"], [628, 3, 0, "-", "norms"], [629, 3, 0, "-", "random"], [630, 3, 0, "-", "searching"], [631, 3, 0, "-", "set"], [632, 3, 0, "-", "sorting"], [633, 3, 0, "-", "statistical"], [634, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[774, 3, 0, "-", "activations"], [775, 3, 0, "-", "converters"], [776, 3, 0, "-", "helpers"], [777, 3, 0, "-", "initializers"], [778, 3, 0, "-", "layers"], [779, 3, 0, "-", "losses"], [780, 3, 0, "-", "module"], [781, 3, 0, "-", "norms"], [782, 3, 0, "-", "optimizers"], [783, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[774, 1, 1, "", "ELU"], [774, 1, 1, "", "GEGLU"], [774, 1, 1, "", "GELU"], [774, 1, 1, "", "Hardswish"], [774, 1, 1, "", "LeakyReLU"], [774, 1, 1, "", "LogSigmoid"], [774, 1, 1, "", "LogSoftmax"], [774, 1, 1, "", "Logit"], [774, 1, 1, "", "Mish"], [774, 1, 1, "", "PReLU"], [774, 1, 1, "", "ReLU"], [774, 1, 1, "", "ReLU6"], [774, 1, 1, "", "SeLU"], [774, 1, 1, "", "SiLU"], [774, 1, 1, "", "Sigmoid"], [774, 1, 1, "", "Softmax"], [774, 1, 1, "", "Softplus"], [774, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[774, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[775, 1, 1, "", "ModuleConverters"], [775, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[775, 0, 1, "", "from_flax_module"], [775, 0, 1, "", "from_haiku_module"], [775, 0, 1, "", "from_keras_module"], [775, 0, 1, "", "from_paddle_module"], [775, 0, 1, "", "from_torch_module"], [775, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[776, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[777, 1, 1, "", "Constant"], [777, 1, 1, "", "FirstLayerSiren"], [777, 1, 1, "", "GlorotUniform"], [777, 1, 1, "", "Initializer"], [777, 1, 1, "", "KaimingNormal"], [777, 1, 1, "", "Ones"], [777, 1, 1, "", "RandomNormal"], [777, 1, 1, "", "Siren"], [777, 1, 1, "", "Uniform"], [777, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[777, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[778, 1, 1, "", "AdaptiveAvgPool1d"], [778, 1, 1, "", "AdaptiveAvgPool2d"], [778, 1, 1, "", "AvgPool1D"], [778, 1, 1, "", "AvgPool2D"], [778, 1, 1, "", "AvgPool3D"], [778, 1, 1, "", "Conv1D"], [778, 1, 1, "", "Conv1DTranspose"], [778, 1, 1, "", "Conv2D"], [778, 1, 1, "", "Conv2DTranspose"], [778, 1, 1, "", "Conv3D"], [778, 1, 1, "", "Conv3DTranspose"], [778, 1, 1, "", "Dct"], [778, 1, 1, "", "DepthwiseConv2D"], [778, 1, 1, "", "Dropout"], [778, 1, 1, "", "Embedding"], [778, 1, 1, "", "FFT"], [778, 1, 1, "", "IFFT"], [778, 1, 1, "", "Identity"], [778, 1, 1, "", "LSTM"], [778, 1, 1, "", "Linear"], [778, 1, 1, "", "MaxPool1D"], [778, 1, 1, "", "MaxPool2D"], [778, 1, 1, "", "MaxPool3D"], [778, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[778, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[779, 1, 1, "", "BinaryCrossEntropyLoss"], [779, 1, 1, "", "CrossEntropyLoss"], [779, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.module": [[780, 1, 1, "", "Module"], [780, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[780, 0, 1, "", "__call__"], [780, 0, 1, "", "__init__"], [780, 5, 1, "", "buffers"], [780, 0, 1, "", "build"], [780, 5, 1, "", "build_mode"], [780, 5, 1, "", "built"], [780, 5, 1, "", "device"], [780, 5, 1, "", "dtype"], [780, 0, 1, "", "eval"], [780, 0, 1, "", "load"], [780, 5, 1, "", "module_dict"], [780, 0, 1, "", "register_buffer"], [780, 0, 1, "", "register_parameter"], [780, 0, 1, "", "save"], [780, 0, 1, "", "save_weights"], [780, 0, 1, "", "show_graph"], [780, 5, 1, "", "state_dict"], [780, 0, 1, "", "to_device"], [780, 0, 1, "", "trace_graph"], [780, 0, 1, "", "train"], [780, 5, 1, "", "training"], [780, 5, 1, "", "v"]], "ivy.stateful.norms": [[781, 1, 1, "", "BatchNorm2D"], [781, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[781, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[781, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[782, 1, 1, "", "Adam"], [782, 1, 1, "", "AdamW"], [782, 1, 1, "", "LAMB"], [782, 1, 1, "", "LARS"], [782, 1, 1, "", "Optimizer"], [782, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.sequential": [[783, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[783, 0, 1, "", "__init__"]], "ivy.utils": [[784, 3, 0, "-", "assertions"], [785, 3, 0, "-", "backend"], [789, 3, 0, "-", "binaries"], [790, 3, 0, "-", "dynamic_import"], [791, 3, 0, "-", "einsum_parser"], [792, 3, 0, "-", "einsum_path_helpers"], [793, 3, 0, "-", "exceptions"], [794, 3, 0, "-", "inspection"], [795, 3, 0, "-", "logging"], [796, 3, 0, "-", "profiler"], [797, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[784, 2, 1, "", "check_all"], [784, 2, 1, "", "check_all_or_any_fn"], [784, 2, 1, "", "check_any"], [784, 2, 1, "", "check_dev_correct_formatting"], [784, 2, 1, "", "check_dimensions"], [784, 2, 1, "", "check_elem_in_list"], [784, 2, 1, "", "check_equal"], [784, 2, 1, "", "check_exists"], [784, 2, 1, "", "check_false"], [784, 2, 1, "", "check_gather_input_valid"], [784, 2, 1, "", "check_gather_nd_input_valid"], [784, 2, 1, "", "check_greater"], [784, 2, 1, "", "check_inplace_sizes_valid"], [784, 2, 1, "", "check_isinstance"], [784, 2, 1, "", "check_kernel_padding_size"], [784, 2, 1, "", "check_less"], [784, 2, 1, "", "check_one_way_broadcastable"], [784, 2, 1, "", "check_same_dtype"], [784, 2, 1, "", "check_shape"], [784, 2, 1, "", "check_shapes_broadcastable"], [784, 2, 1, "", "check_true"], [784, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[786, 3, 0, "-", "ast_helpers"], [787, 3, 0, "-", "handler"], [788, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[786, 1, 1, "", "ImportTransformer"], [786, 1, 1, "", "IvyLoader"], [786, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[786, 0, 1, "", "__init__"], [786, 0, 1, "", "impersonate_import"], [786, 0, 1, "", "visit_Import"], [786, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[786, 0, 1, "", "__init__"], [786, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[786, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[787, 1, 1, "", "ContextManager"], [787, 2, 1, "", "choose_random_backend"], [787, 2, 1, "", "current_backend"], [787, 2, 1, "", "dynamic_backend_converter"], [787, 2, 1, "", "prevent_access_locally"], [787, 2, 1, "", "previous_backend"], [787, 2, 1, "", "set_backend"], [787, 2, 1, "", "set_backend_to_specific_version"], [787, 2, 1, "", "set_jax_backend"], [787, 2, 1, "", "set_mxnet_backend"], [787, 2, 1, "", "set_numpy_backend"], [787, 2, 1, "", "set_paddle_backend"], [787, 2, 1, "", "set_tensorflow_backend"], [787, 2, 1, "", "set_torch_backend"], [787, 2, 1, "", "unset_backend"], [787, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[787, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[788, 2, 1, "", "clear_sub_backends"], [788, 2, 1, "", "find_available_sub_backends"], [788, 2, 1, "", "fn_name_from_version_specific_fn_name"], [788, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [788, 2, 1, "", "set_sub_backend"], [788, 2, 1, "", "set_sub_backend_to_specific_version"], [788, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[789, 2, 1, "", "check_for_binaries"], [789, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[790, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[791, 2, 1, "", "convert_interleaved_input"], [791, 2, 1, "", "convert_subscripts"], [791, 2, 1, "", "find_output_shape"], [791, 2, 1, "", "find_output_str"], [791, 2, 1, "", "gen_unused_symbols"], [791, 2, 1, "", "get_symbol"], [791, 2, 1, "", "has_valid_einsum_chars_only"], [791, 2, 1, "", "is_valid_einsum_char"], [791, 2, 1, "", "legalise_einsum_expr"], [791, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[792, 2, 1, "", "can_dot"], [792, 2, 1, "", "compute_size_by_dict"], [792, 2, 1, "", "find_contraction"], [792, 2, 1, "", "flop_count"], [792, 2, 1, "", "greedy_path"], [792, 2, 1, "", "optimal_path"], [792, 2, 1, "", "parse_einsum_input"], [792, 2, 1, "", "parse_possible_contraction"], [792, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[793, 7, 1, "", "InplaceUpdateException"], [793, 7, 1, "", "IvyAttributeError"], [793, 7, 1, "", "IvyBackendException"], [793, 7, 1, "", "IvyBroadcastShapeError"], [793, 7, 1, "", "IvyDeviceError"], [793, 7, 1, "", "IvyDtypePromotionError"], [793, 7, 1, "", "IvyError"], [793, 7, 1, "", "IvyException"], [793, 7, 1, "", "IvyIndexError"], [793, 7, 1, "", "IvyInvalidBackendException"], [793, 7, 1, "", "IvyNotImplementedException"], [793, 7, 1, "", "IvyValueError"], [793, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[793, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[794, 2, 1, "", "add_array_specs"], [794, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[795, 2, 1, "", "set_logging_mode"], [795, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[796, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[796, 0, 1, "", "__init__"], [796, 4, 1, "", "print_stats"], [796, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[797, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[757, 3, 0, "-", "assertions"], [758, 3, 0, "-", "available_frameworks"], [759, 3, 0, "-", "function_testing"], [760, 3, 0, "-", "globals"], [761, 3, 0, "-", "hypothesis_helpers"], [766, 3, 0, "-", "multiprocessing"], [767, 3, 0, "-", "pipeline_helper"], [768, 3, 0, "-", "structs"], [769, 3, 0, "-", "test_parameter_flags"], [770, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[757, 2, 1, "", "assert_all_close"], [757, 2, 1, "", "assert_same_type"], [757, 2, 1, "", "assert_same_type_and_shape"], [757, 2, 1, "", "check_unsupported_device"], [757, 2, 1, "", "check_unsupported_device_and_dtype"], [757, 2, 1, "", "check_unsupported_dtype"], [757, 2, 1, "", "test_unsupported_function"], [757, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[759, 2, 1, "", "args_to_container"], [759, 2, 1, "", "args_to_frontend"], [759, 2, 1, "", "arrays_to_frontend"], [759, 2, 1, "", "as_lists"], [759, 2, 1, "", "convtrue"], [759, 2, 1, "", "create_args_kwargs"], [759, 2, 1, "", "flatten"], [759, 2, 1, "", "flatten_and_to_np"], [759, 2, 1, "", "flatten_frontend"], [759, 2, 1, "", "flatten_frontend_fw_to_np"], [759, 2, 1, "", "flatten_frontend_to_np"], [759, 2, 1, "", "get_frontend_ret"], [759, 2, 1, "", "get_ret_and_flattened_np_array"], [759, 2, 1, "", "gradient_incompatible_function"], [759, 2, 1, "", "gradient_test"], [759, 2, 1, "", "gradient_unsupported_dtypes"], [759, 2, 1, "", "kwargs_to_args_n_kwargs"], [759, 2, 1, "", "test_frontend_function"], [759, 2, 1, "", "test_frontend_method"], [759, 2, 1, "", "test_function"], [759, 2, 1, "", "test_function_backend_computation"], [759, 2, 1, "", "test_function_ground_truth_computation"], [759, 2, 1, "", "test_gradient_backend_computation"], [759, 2, 1, "", "test_gradient_ground_truth_computation"], [759, 2, 1, "", "test_method"], [759, 2, 1, "", "test_method_backend_computation"], [759, 2, 1, "", "test_method_ground_truth_computation"], [759, 2, 1, "", "traced_if_required"], [759, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[760, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [760, 7, 1, "", "InterruptedTest"], [760, 1, 1, "", "TestData"], [760, 2, 1, "", "setup_api_test"], [760, 2, 1, "", "setup_frontend_test"], [760, 2, 1, "", "teardown_api_test"], [760, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[760, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[760, 0, 1, "", "__init__"], [760, 4, 1, "", "fn_name"], [760, 4, 1, "", "fn_tree"], [760, 4, 1, "", "is_method"], [760, 4, 1, "", "supported_device_dtypes"], [760, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, 3, 0, "-", "array_helpers"], [763, 3, 0, "-", "dtype_helpers"], [764, 3, 0, "-", "general_helpers"], [765, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[762, 2, 1, "", "array_and_broadcastable_shape"], [762, 2, 1, "", "array_bools"], [762, 2, 1, "", "array_helpers_dtype_info_helper"], [762, 2, 1, "", "array_indices_axis"], [762, 2, 1, "", "array_indices_put_along_axis"], [762, 2, 1, "", "array_values"], [762, 2, 1, "", "arrays_and_axes"], [762, 2, 1, "", "arrays_for_pooling"], [762, 2, 1, "", "broadcast_shapes"], [762, 2, 1, "", "cond_data_gen_helper"], [762, 2, 1, "", "create_concatenable_arrays_dtypes"], [762, 2, 1, "", "create_nested_input"], [762, 2, 1, "", "dtype_and_values"], [762, 2, 1, "", "dtype_array_query"], [762, 2, 1, "", "dtype_array_query_val"], [762, 2, 1, "", "dtype_values_axis"], [762, 2, 1, "", "einsum_helper"], [762, 2, 1, "", "get_first_solve_batch_matrix"], [762, 2, 1, "", "get_first_solve_matrix"], [762, 2, 1, "", "get_second_solve_batch_matrix"], [762, 2, 1, "", "get_second_solve_matrix"], [762, 2, 1, "", "list_of_size"], [762, 2, 1, "", "lists"], [762, 2, 1, "", "mutually_broadcastable_shapes"], [762, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[763, 2, 1, "", "array_dtypes"], [763, 2, 1, "", "cast_filter"], [763, 2, 1, "", "cast_filter_helper"], [763, 2, 1, "", "get_castable_dtype"], [763, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[764, 7, 1, "", "BroadcastError"], [764, 2, 1, "", "apply_safety_factor"], [764, 2, 1, "", "broadcast_shapes"], [764, 2, 1, "", "embedding_helper"], [764, 2, 1, "", "general_helpers_dtype_info_helper"], [764, 2, 1, "", "get_axis"], [764, 2, 1, "", "get_bounds"], [764, 2, 1, "", "get_mean_std"], [764, 2, 1, "", "get_shape"], [764, 2, 1, "", "matrix_is_stable"], [764, 2, 1, "", "reshape_shapes"], [764, 2, 1, "", "subsets"], [764, 2, 1, "", "two_broadcastable_shapes"], [764, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[765, 2, 1, "", "floats"], [765, 2, 1, "", "ints"], [765, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[766, 2, 1, "", "backend_proc"], [766, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[767, 1, 1, "", "BackendHandler"], [767, 1, 1, "", "BackendHandlerMode"], [767, 1, 1, "", "WithBackendContext"], [767, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[767, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[767, 4, 1, "", "SetBackend"], [767, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[767, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[768, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[768, 0, 1, "", "__init__"], [768, 4, 1, "", "framework_init_module"], [768, 4, 1, "", "init_name"], [768, 4, 1, "", "ivy_init_module"], [768, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[769, 1, 1, "", "DynamicFlag"], [769, 1, 1, "", "FrontendFunctionTestFlags"], [769, 1, 1, "", "FrontendInitTestFlags"], [769, 1, 1, "", "FrontendMethodTestFlags"], [769, 1, 1, "", "FunctionTestFlags"], [769, 1, 1, "", "InitMethodTestFlags"], [769, 1, 1, "", "MethodTestFlags"], [769, 1, 1, "", "TestFlags"], [769, 2, 1, "", "build_flag"], [769, 2, 1, "", "frontend_function_flags"], [769, 2, 1, "", "frontend_init_flags"], [769, 2, 1, "", "frontend_method_flags"], [769, 2, 1, "", "function_flags"], [769, 2, 1, "", "init_method_flags"], [769, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[770, 2, 1, "", "handle_frontend_method"], [770, 2, 1, "", "handle_frontend_test"], [770, 2, 1, "", "handle_method"], [770, 2, 1, "", "handle_test"], [770, 2, 1, "", "num_positional_args"], [770, 2, 1, "", "num_positional_args_helper"], [770, 2, 1, "", "num_positional_args_method"], [770, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 803], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 798, 815, 820, 823, 826, 831, 847, 848, 849], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 798, 803, 805, 808, 810, 812, 815, 817, 823, 825, 826, 827, 828, 829, 830, 833, 834, 835, 836, 837, 838, 840, 847, 848, 849, 860], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 798, 840], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 616, 631, 735, 736, 737, 738, 813, 825, 828, 836, 839], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 822], "torch": [3, 4, 5, 7, 34, 41, 854, 855], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 854], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 854], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 819, 827, 829], "implement": [3, 5, 812, 823, 825, 845], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 790], "modul": [4, 780, 813, 814, 837, 848], "sequenc": [4, 820], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 838, 839], "imag": [5, 7, 55, 78, 248, 800, 810], "segment": 5, "unet": 5, "custom": [5, 808, 810, 823, 827, 836, 839], "preprocess": 5, "load": [5, 7, 9, 755, 836], "visualis": [5, 7], "initi": [5, 7, 777, 837], "nativ": [5, 7, 808, 831], "pretrain": [5, 7], "weight": [5, 7, 836], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 759, 803, 811, 813, 814, 817, 820, 821, 822, 823, 825, 826, 828, 829, 830, 831, 833, 838, 839, 848], "us": [5, 7, 14, 22, 25, 42, 44, 798, 800, 803, 804, 807, 823, 826, 836, 840, 847, 848], "your": [5, 7, 805, 828], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 785, 788, 803, 809, 813, 823, 829, 833, 839], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 631, 804, 809, 818, 830, 840], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 854], "xgboost": 9, "test": [9, 40, 759, 769, 770, 773, 803, 804, 805, 807, 812, 818, 826, 828], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 804, 831, 845], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 819, 839, 844, 847], "number": [9, 765, 820], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 827], "fraction": 9, "comparison": [9, 836], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 798, 838, 840, 848], "build": [11, 12, 13, 42, 800, 810, 833], "top": [11, 12, 13, 812], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 804, 818, 827, 840], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 836, 838], "tutori": [15, 42], "And": 15, "learn": [15, 16, 854], "basic": [15, 16, 38, 39, 805, 825], "write": [17, 25, 825, 828], "content": [17, 40], "handler": [17, 26, 787, 788, 833], "structur": [17, 26, 810, 823, 839], "api": [17, 26, 27, 803, 807, 811, 812, 823, 829, 833, 835, 837, 838, 840, 844, 847, 848, 849, 851, 858, 860], "state": [17, 26, 27, 837, 839, 847], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 798, 835, 845, 849, 856, 860], "trace": [19, 21, 22, 27, 677, 817], "lazi": [21, 31, 847], "eager": [21, 31, 847], "how": [22, 803, 810, 818, 827, 828], "decor": [22, 33, 817, 822, 828], "ani": [23, 24, 26, 27, 754], "librari": [23, 26, 27, 42, 44, 848], "odsc": 26, "framework": [26, 32, 38, 758, 771, 823, 826, 834, 854, 857, 860, 861], "graph": [26, 43, 855, 860], "tracer": [26, 833, 838, 840, 847, 855, 860], "quickstart": 27, "get": [27, 798, 805, 840], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 854], "compil": [29, 31, 32, 33, 39, 847, 852, 857, 859, 860], "2": [30, 33, 35, 44, 854], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 790, 809, 839], "static": 34, "todo": [34, 805], "explain": 34, "via": 34, "why": [34, 828, 845], "mode": [34, 813, 817, 830], "i": [34, 798, 810, 831], "true": 34, "default": [34, 531], "when": [34, 798], "from": [34, 41, 840], "numpi": [34, 41, 825, 854], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 820, 830, 835, 839], "ml": [38, 843, 856, 860], "chang": 38, "one": 38, "line": [38, 805], "No": [38, 804, 845], "need": [38, 828], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 616, 813, 821, 825, 839], "differ": 38, "them": 38, "all": [38, 753], "standalon": [38, 821], "defin": [38, 39, 40, 42], "optim": [38, 782, 837], "input": [38, 39, 820], "target": 38, "loss": [38, 58, 81, 370, 624, 779], "loop": [38, 42], "sampl": 39, "check": [39, 819, 839], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 803, 810, 827, 840], "perceiverio": [40, 41], "tabl": [40, 810, 813], "construct": [40, 836], "some": 40, "helper": [40, 761, 762, 763, 764, 765, 767, 770, 776, 786, 792, 826, 828, 829], "pipelin": [40, 42, 767, 810, 812, 828, 839], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 839], "introduct": [41, 44, 825, 826], "python3": 41, "8": 41, "setup": [41, 819], "kernel": 41, "clone": [41, 804, 812], "repo": [41, 804], "ivy_model": 41, "run": [41, 805, 807, 810, 818, 828], "end": 42, "let": 42, "we": [42, 828], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 634, 772], "plot": 42, "save": [42, 756, 836], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 805], "To": [44, 805], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 612, 774], "convers": [47, 70, 822], "creation": [48, 71, 362, 615], "devic": [50, 73, 364, 617, 814, 820, 825], "elementwis": [51, 74, 102, 365, 618], "experiment": [52, 75, 619, 803], "gener": [53, 76, 366, 620, 764, 823, 828, 831, 847], "gradient": [54, 77, 342, 367, 621, 823], "layer": [56, 79, 368, 622, 778], "linear": [57, 80, 369, 623, 646], "algebra": [57, 80, 369, 623], "manipul": [59, 82, 371, 625], "norm": [60, 83, 374, 628, 781], "random": [61, 84, 375, 629], "search": [62, 85, 376, 630], "sort": [64, 87, 378, 632, 742], "statist": [65, 88, 380, 633], "wrap": [67, 90, 822], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 440], "arrai": [97, 100, 122, 379, 762, 807, 808, 812, 820, 835, 844, 847, 851], "contain": [98, 805, 811, 836], "factor": 99, "nest": [100, 373, 627], "class": [103, 771, 808, 817, 825, 835], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 615], "frombuff": 129, "full": [130, 826], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 763, 820], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 565, 566, 571, 572, 574, 575, 617, 620, 769, 774, 830], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 815, 826, 860], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 795, 804], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 820], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 815, 826], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 803, 818], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 613], "meta": [372, 626], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "sliding_window": 413, "stft": 414, "adjoint": 415, "batched_out": 416, "cond": 417, "diagflat": 418, "dot": 419, "eig": [420, 657], "eigh_tridiagon": 421, "eigval": 422, "general_inner_product": 423, "higher_order_mo": 424, "initialize_tuck": 425, "khatri_rao": 426, "kron": 427, "kroneck": 428, "make_svd_non_neg": 429, "matrix_exp": 430, "mode_dot": 431, "multi_dot": 432, "multi_mode_dot": 433, "partial_tuck": 434, "solve_triangular": 435, "svd_flip": 436, "tensor_train": 437, "truncated_svd": 438, "tt_matrix_to_tensor": 439, "huber_loss": 441, "kl_div": 442, "l1_loss": 443, "log_poisson_loss": 444, "poisson_nll_loss": 445, "smooth_l1_loss": 446, "soft_margin_loss": 447, "as_strid": 448, "associative_scan": 449, "atleast_1d": 450, "atleast_2d": 451, "atleast_3d": 452, "broadcast_shap": 453, "check_scalar": 454, "choos": 455, "column_stack": 456, "concat_from_sequ": 457, "dsplit": 458, "dstack": 459, "expand": 460, "fill_diagon": 461, "flatten": 462, "fliplr": 463, "flipud": 464, "fold": 465, "heavisid": 466, "hsplit": 467, "hstack": 468, "i0": 469, "matric": 470, "moveaxi": 471, "pad": 472, "partial_fold": 473, "partial_tensor_to_vec": 474, "partial_unfold": 475, "partial_vec_to_tensor": 476, "put_along_axi": 477, "rot90": 478, "soft_threshold": 479, "take": 480, "take_along_axi": 481, "top_k": 482, "trim_zero": 483, "unfold": 484, "unique_consecut": 485, "vsplit": 486, "vstack": 487, "batch_norm": 488, "group_norm": 489, "instance_norm": 490, "l1_normal": 491, "l2_normal": 492, "local_response_norm": 493, "lp_normal": 494, "bernoulli": 495, "beta": 496, "dirichlet": 497, "gamma": 498, "poisson": 499, "unravel_index": 500, "invert_permut": 501, "lexsort": 502, "is_ivy_sparse_arrai": 503, "is_native_sparse_arrai": 504, "native_sparse_arrai": 505, "native_sparse_array_to_indices_values_and_shap": 506, "bincount": 507, "corrcoef": 508, "cov": 509, "cummax": 510, "cummin": 511, "histogram": 512, "igamma": 513, "median": 514, "nanmean": 515, "nanmedian": 516, "nanmin": 517, "nanprod": 518, "quantil": 519, "optional_get_el": 520, "all_equ": 521, "arg_info": 522, "arg_nam": 523, "array_equ": 524, "assert_supports_inplac": 525, "cache_fn": 526, "clip_matrix_norm": 527, "clip_vector_norm": 528, "container_typ": 529, "current_backend_str": 530, "einops_rearrang": 532, "einops_reduc": 533, "einops_repeat": 534, "exist": [535, 800, 827], "fourier_encod": 536, "function_supported_devices_and_dtyp": 537, "function_unsupported_devices_and_dtyp": 538, "gather": 539, "gather_nd": 540, "get_all_arrays_in_memori": 541, "get_item": 542, "get_num_dim": 543, "get_referrers_recurs": 544, "has_nan": 545, "inplace_arrays_support": 546, "inplace_decr": 547, "inplace_incr": 548, "inplace_upd": 549, "inplace_variables_support": 550, "is_arrai": 551, "is_ivy_arrai": 552, "is_ivy_contain": 553, "is_ivy_nested_arrai": 554, "is_native_arrai": 555, "isin": 556, "isscalar": 557, "items": 558, "match_kwarg": 559, "multiprocess": [560, 766], "num_arrays_in_memori": 561, "print_all_arrays_in_memori": 562, "scatter_flat": 563, "scatter_nd": 564, "set_array_mod": 565, "set_exception_trace_mod": 566, "set_inplace_mod": 567, "set_item": 568, "set_min_bas": 569, "set_min_denomin": 570, "set_nestable_mod": 571, "set_precise_mod": 572, "set_queue_timeout": 573, "set_shape_array_mod": 574, "set_show_func_wrapper_trace_mod": 575, "set_tmp_dir": 576, "shape": [577, 631, 735, 736, 737, 738, 822, 839], "stable_divid": 578, "stable_pow": 579, "stride": 580, "supports_inplace_upd": 581, "to_ivy_shap": 582, "to_list": 583, "to_native_shap": 584, "to_numpi": 585, "to_scalar": 586, "try_else_non": 587, "unset_array_mod": 588, "unset_exception_trace_mod": 589, "unset_inplace_mod": 590, "unset_min_bas": 591, "unset_min_denomin": 592, "unset_nestable_mod": 593, "unset_precise_mod": 594, "unset_queue_timeout": 595, "unset_shape_array_mod": 596, "unset_show_func_wrapper_trace_mod": 597, "unset_tmp_dir": 598, "value_is_nan": 599, "vmap": 600, "adam_step": 601, "adam_upd": 602, "execute_with_gradi": [603, 823], "grad": 604, "gradient_descent_upd": 605, "jac": 606, "lamb_upd": 607, "lars_upd": 608, "optimizer_upd": 609, "stop_gradi": 610, "value_and_grad": 611, "control": [614, 839], "flow": [614, 839], "op": 614, "depend": [631, 735, 736, 737, 738], "output": [631, 735, 736, 737, 738], "conv": 635, "conv1d": 636, "conv1d_transpos": 637, "conv2d": 638, "conv2d_transpos": 639, "conv3d": 640, "conv3d_transpos": 641, "conv_general_dil": 642, "conv_general_transpos": 643, "depthwise_conv2d": 644, "dropout": 645, "lstm_updat": 647, "multi_head_attent": 648, "nm": 649, "roi_align": 650, "scaled_dot_product_attent": 651, "choleski": 652, "cross": 653, "det": 654, "diag": 655, "diagon": 656, "eigh": 658, "eigvalsh": 659, "inner": 660, "inv": 661, "lu_factor": 662, "matmul": 663, "matrix_norm": 664, "matrix_pow": 665, "matrix_rank": 666, "matrix_transpos": 667, "outer": 668, "pinv": 669, "qr": 670, "slogdet": 671, "solv": 672, "svd": 673, "svdval": 674, "tensordot": 675, "tensorsolv": 676, "vander": 678, "vecdot": 679, "vector_norm": 680, "vector_to_skew_symmetric_matrix": 681, "binary_cross_entropi": 682, "cross_entropi": 683, "sparse_cross_entropi": 684, "clip": 685, "concat": 686, "constant_pad": 687, "expand_dim": 688, "flip": 689, "permute_dim": 690, "repeat": 691, "reshap": 692, "roll": [693, 815], "split": 694, "squeez": 695, "stack": [696, 817], "swapax": 697, "tile": 698, "unstack": 699, "zero_pad": 700, "fomaml_step": 701, "maml_step": 702, "reptile_step": 703, "all_nested_indic": 704, "copy_nest": 705, "duplicate_array_index_chain": 706, "index_nest": 707, "insert_into_nest_at_index": 708, "insert_into_nest_at_indic": 709, "map": [710, 812], "map_nest_at_index": 711, "map_nest_at_indic": 712, "multi_index_nest": 713, "nested_ani": 714, "nested_argwher": 715, "nested_map": 716, "nested_multi_map": 717, "prune_empti": 718, "prune_nest_at_index": 719, "prune_nest_at_indic": 720, "set_nest_at_index": 721, "set_nest_at_indic": 722, "layer_norm": 723, "multinomi": 724, "randint": 725, "random_norm": 726, "random_uniform": 727, "seed": 728, "shuffl": 729, "argmax": 730, "argmin": 731, "argwher": 732, "nonzero": 733, "where": [734, 803, 818], "unique_al": 735, "unique_count": 736, "unique_invers": 737, "unique_valu": 738, "argsort": 739, "msort": 740, "searchsort": 741, "cumprod": 743, "cumsum": 744, "einsum": [745, 791, 792], "max": 746, "mean": 747, "min": 748, "prod": 749, "std": 750, "sum": 751, "var": 752, "assert": [757, 784, 817], "avail": 758, "global": [760, 830], "hypothesi": [761, 804, 826, 828], "struct": 768, "flag": 769, "convert": [775, 838], "sequenti": 783, "ast": 786, "sub": 788, "binari": [789, 804], "parser": 791, "path": 792, "except": [793, 817, 822], "inspect": 794, "profil": 796, "verbos": 797, "statu": 798, "ai": 798, "start": [798, 840], "pip": [798, 840], "document": 798, "dive": [798, 806], "deeper": 798, "should": 798, "contribut": [798, 799, 803, 827], "commun": 798, "citat": 798, "doc": [800, 810], "docker": [800, 804, 805, 810, 840], "conveni": [800, 810, 821], "script": [800, 810], "hub": 800, "local": [800, 805, 819], "without": [800, 826], "error": [801, 817, 818], "handl": [801, 808, 814, 817, 822, 839], "help": [802, 805, 818], "resourc": 802, "open": 803, "task": 803, "fail": [803, 818, 828], "frontend": [803, 809, 825, 826, 838], "place": 803, "checklist": 803, "format": [803, 819, 853, 860], "extend": [803, 828, 831], "an": [803, 823], "issu": [803, 805, 819, 840], "github": [803, 804], "templat": 803, "fork": [804, 805], "pre": [804, 819], "commit": [804, 805, 812, 819], "pycharm": [804, 805, 819], "virtual": 804, "environ": 804, "miniconda": 804, "venv": 804, "interpret": 804, "window": 804, "maco": 804, "ubuntu": 804, "detail": 804, "free": 804, "wsl": 804, "codespac": 804, "The": [804, 805, 810, 823, 825, 835, 839, 844], "list": 805, "manag": 805, "who": 805, "ask": [805, 818], "With": 805, "command": 805, "pull": [805, 812], "request": [805, 812], "small": 805, "often": 805, "interact": 805, "most": 805, "out": [805, 820, 822, 824], "id": [805, 807], "deep": 806, "termin": 807, "regener": 807, "failur": 807, "skip": 807, "integr": [808, 812, 819, 827, 828], "version": [809, 829, 839], "support": [809, 813, 822, 825, 839], "builder": 810, "being": 810, "option": 810, "index": 810, "rst": 810, "partial_conf": 810, "py": 810, "prebuild": 810, "sh": 810, "extens": 810, "custom_autosummari": 810, "hide": 810, "discussion_link": 810, "skippable_funct": 810, "ivy_data": 810, "instanc": [811, 825, 826, 835], "method": [811, 825, 826, 835, 836], "special": [811, 813, 825], "nestabl": [811, 820, 821, 822], "continu": [812, 819], "push": 812, "pr": 812, "trigger": 812, "A": [812, 831], "down": 812, "view": [812, 822, 824], "store": 812, "retriev": 812, "repositori": 812, "nitti": 812, "gritti": 812, "storag": 812, "space": 812, "unifyai": 812, "determin": 812, "coverag": 812, "workflow": 812, "multipl": 812, "runner": 812, "race": 812, "condit": 812, "period": 812, "manual": 812, "dispatch": 812, "ci": 812, "dashboard": 812, "promot": [813, 825], "precis": 813, "non": [813, 831], "argument": [813, 814, 820, 822, 824, 825], "other": [813, 814], "unsupport": 813, "attribut": [813, 830], "case": [813, 836], "bug": 813, "cast": [813, 825], "superset": [813, 831], "docstr": [815, 816], "configur": [817, 826, 836], "func_wrapp": 817, "prune": 817, "handle_except": 817, "consist": [817, 828], "prerequir": 818, "common": [818, 819], "lint": [819, 827], "keyword": 820, "integ": 820, "primari": 821, "composit": 821, "mix": [821, 822, 828], "partial": [821, 822, 828], "order": 822, "wrapper": [822, 860, 861], "miscellan": 822, "overview": [823, 827], "usag": [823, 827, 831, 849], "signatur": 823, "design": [823, 829, 832], "our": 823, "polici": [823, 825], "specif": [823, 858, 859, 860], "consider": 823, "inplac": 824, "updat": 824, "copi": 824, "short": 825, "unus": 825, "rule": 825, "duplic": [825, 831], "valu": 826, "alia": 826, "formatt": 827, "functionorderingformatt": 827, "work": [827, 844, 850], "own": 828, "strategi": 828, "do": [828, 844], "effect": 828, "bonu": 828, "featur": 828, "self": 828, "explicit": 828, "test_array_funct": 828, "re": [828, 845], "navig": 829, "categor": 829, "submodul": 829, "unpin": 829, "properti": 830, "getter": 830, "setter": 830, "set_": 830, "unset_": 830, "behaviour": 831, "standard": [831, 844, 851, 860], "what": [831, 860], "balanc": 831, "effici": 831, "maxim": 831, "block": 833, "monkei": 835, "patch": 835, "represent": 836, "recurs": 836, "built": 836, "ins": 836, "access": 836, "compartment": 836, "role": 838, "faq": 839, "maintain": 839, "size": 839, "deploy": 839, "auto": 839, "differenti": 839, "replica": 839, "parallel": 839, "altern": 839, "sourc": 840, "folder": 840, "kei": 840, "question": 840, "glossari": 841, "motiv": 842, "explos": 843, "skeptic": 844, "complimentari": 844, "competit": 844, "infinit": 845, "shelf": 845, "life": 845, "One": 846, "liner": 846, "trace_graph": 847, "cach": 847, "sharp": [847, 848, 849], "bit": [847, 848, 849], "relat": 850, "infrastructur": [852, 860], "llvm": 852, "mlir": 852, "oneapi": 852, "exchang": [853, 860], "onnx": 853, "nnef": 853, "coreml": 853, "matlab": 854, "scipi": 854, "scikit": 854, "theano": 854, "panda": 854, "julia": 854, "apach": [854, 857], "spark": 854, "mllib": 854, "caff": 854, "chainer": 854, "mxnet": 854, "cntk": 854, "flux": 854, "dex": 854, "languag": 854, "tf": 855, "jaxpr": 855, "jit": 855, "fx": 855, "compani": [856, 860], "quansight": 856, "modular": 856, "octoml": 856, "multi": [857, 860], "vendor": [857, 858, 859, 860], "tvm": 857, "xla": 857, "gcc": 857, "tensorrt": 858, "cuda": 858, "icc": 859, "icx": 859, "nvcc": 859, "doe": 860, "eagerpi": 861, "kera": 861, "thinc": 861, "tensorli": 861, "neuropod": 861}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"set_default_float_dtype": [[178, "set-default-float-dtype"]], "triu": [[141, "triu"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "can_cast": [[150, "can-cast"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "promote_types": [[173, "promote-types"]], "is_int_dtype": [[170, "is-int-dtype"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "astype": [[147, "astype"]], "finfo": [[160, "finfo"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "iinfo": [[163, "iinfo"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "set_default_dtype": [[177, "set-default-dtype"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "is_native_dtype": [[171, "is-native-dtype"]], "dtype_bits": [[159, "dtype-bits"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "check_float": [[151, "check-float"]], "result_type": [[175, "result-type"]], "invalid_dtype": [[165, "invalid-dtype"]], "tril": [[140, "tril"]], "dtype": [[158, "dtype"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "broadcast_to": [[149, "broadcast-to"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "ones_like": [[138, "ones-like"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "default_dtype": [[154, "default-dtype"]], "zeros_like": [[144, "zeros-like"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "as_native_dtype": [[146, "as-native-dtype"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "triu_indices": [[142, "triu-indices"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "default_int_dtype": [[156, "default-int-dtype"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [615, null], [615, null]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "zeros": [[143, "zeros"]], "is_float_dtype": [[168, "is-float-dtype"]], "default_float_dtype": [[155, "default-float-dtype"]], "API Standards": [[851, "api-standards"], [860, "api-standards"]], "Array API Standard": [[851, "id1"]], "Multi-Vendor Compiler Frameworks": [[857, "multi-vendor-compiler-frameworks"], [860, "multi-vendor-compiler-frameworks"]], "Apache TVM": [[857, "apache-tvm"]], "XLA": [[857, "xla"]], "GCC": [[857, "gcc"]], "Ivy as a Transpiler": [[838, "ivy-as-a-transpiler"], [26, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[838, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[838, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[838, "converting-network-models"]], "ivy.transpile()": [[848, "ivy-transpile"]], "Transpiler API": [[848, "transpiler-api"]], "Using the transpiler": [[848, "using-the-transpiler"]], "Transpiling functions": [[848, "transpiling-functions"]], "Transpiling Libraries": [[848, "transpiling-libraries"]], "Transpiling Modules": [[848, "transpiling-modules"]], "Sharp bits": [[848, "sharp-bits"], [849, "sharp-bits"], [847, "sharp-bits"]], "Examples": [[848, "examples"], [849, "examples"], [847, "examples"], [798, "examples"], [820, "examples"]], "Superset Behaviour": [[831, "superset-behaviour"]], "Extending the Standard": [[831, "extending-the-standard"]], "What is the Superset?": [[831, "what-is-the-superset"]], "A Non-Duplicate Superset": [[831, "a-non-duplicate-superset"]], "What is not the Superset?": [[831, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[831, "balancing-generalization-with-efficiency"]], "More Examples": [[831, "more-examples"]], "Maximizing Usage of Native Functionality": [[831, "maximizing-usage-of-native-functionality"]], "Ivy Stateful API": [[837, "ivy-stateful-api"], [26, "Ivy-Stateful-API"], [17, "Ivy-Stateful-API"]], "Modules": [[837, "modules"]], "Initializers": [[837, "initializers"], [777, "module-ivy.stateful.initializers"]], "Optimizers": [[837, "optimizers"], [782, "module-ivy.stateful.optimizers"]], "Graph Tracers": [[855, "graph-tracers"], [860, "graph-tracers"]], "tf.Graph": [[855, "tf-graph"]], "Jaxpr": [[855, "jaxpr"]], "torch.jit": [[855, "torch-jit"]], "torch.fx": [[855, "torch-fx"]], "ivy.unify()": [[849, "ivy-unify"]], "Unify API": [[849, "unify-api"]], "Usage": [[849, "usage"]], "Get Started": [[840, "get-started"]], "Installing using pip": [[840, "installing-using-pip"], [798, "installing-using-pip"]], "Docker": [[840, "docker"]], "Installing from source": [[840, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[840, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[840, "ivy-folder"]], "Setting Up the API key": [[840, "setting-up-the-api-key"]], "Issues and Questions": [[840, "issues-and-questions"]], "Vendor-Specific Compilers": [[859, "vendor-specific-compilers"], [860, "vendor-specific-compilers"]], "ICC": [[859, "id1"]], "ICX": [[859, "icx"]], "NVCC": [[859, "nvcc"]], "Building Blocks": [[833, "building-blocks"]], "Backend Functional APIs \u2705": [[833, "backend-functional-apis"]], "Ivy Functional API \u2705": [[833, "ivy-functional-api"]], "Backend Handler \u2705": [[833, "backend-handler"]], "Tracer \ud83d\udea7": [[833, "tracer"]], "Design": [[832, "design"]], "Glossary": [[841, "glossary"]], "Exchange Formats": [[853, "exchange-formats"], [860, "exchange-formats"]], "ONNX onnx": [[853, "onnx-onnx"]], "NNEF nnef": [[853, "nnef-nnef"]], "CoreML coreml": [[853, "coreml-coreml"]], "Ivy Container": [[836, "ivy-container"]], "Construction": [[836, "construction"]], "Representation": [[836, "representation"]], "Recursive Methods": [[836, "recursive-methods"]], "Built-ins": [[836, "built-ins"]], "Access": [[836, "access"]], "Saving and Loading": [[836, "saving-and-loading"]], "Comparisons": [[836, "comparisons"]], "Customized Representations": [[836, "customized-representations"]], "Use Cases": [[836, "use-cases"]], "Compartmentalization": [[836, "compartmentalization"]], "Configuration": [[836, "configuration"]], "Data loading": [[836, "data-loading"]], "Network weights": [[836, "network-weights"]], "Ivy Array": [[835, "ivy-array"], [808, "ivy-array"]], "The Array Class": [[835, "the-array-class"]], "Unifying Operators": [[835, "unifying-operators"]], "API Monkey Patching": [[835, "api-monkey-patching"]], "Instance Methods": [[835, "instance-methods"]], "ML Explosion": [[843, "ml-explosion"]], "Related Work": [[850, "related-work"]], "FAQ": [[839, "faq"]], "Maintaining Backend Versions": [[839, "maintaining-backend-versions"]], "Dynamic Sizes": [[839, "dynamic-sizes"]], "Type and Shape Checking": [[839, "type-and-shape-checking"]], "GPU handling": [[839, "gpu-handling"]], "Model Deployment": [[839, "model-deployment"]], "Dynamic Control Flow": [[839, "dynamic-control-flow"]], "Auto-Differentiation": [[839, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[839, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[839, "support-for-functions"]], "Alternative Data Structures": [[839, "alternative-data-structures"]], "Custom Operations": [[839, "custom-operations"]], "The Pipeline": [[839, "the-pipeline"]], "State": [[839, "state"]], "Navigating the Code": [[829, "navigating-the-code"]], "Categorization": [[829, "categorization"]], "Submodule Design": [[829, "submodule-design"]], "Ivy API": [[829, "ivy-api"]], "Backend API": [[829, "backend-api"]], "Submodule Helper Functions": [[829, "submodule-helper-functions"]], "Version Unpinning": [[829, "version-unpinning"]], "ML-Unifying Companies": [[856, "ml-unifying-companies"], [860, "ml-unifying-companies"]], "Quansight": [[856, "id1"]], "Modular": [[856, "id2"]], "OctoML": [[856, "id3"]], "Ivy Tests": [[828, "ivy-tests"], [812, "ivy-tests"]], "Testing Pipeline": [[828, "testing-pipeline"]], "Hypothesis": [[828, "id1"]], "Data Generation": [[828, "id2"]], "Writing your own strategy": [[828, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[828, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[828, "ivy-test-decorators"]], "Writing Ivy Tests": [[828, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[828, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[828, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[828, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[828, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[828, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[828, "self-consistent-and-explicit-testing"]], "test_array_function": [[828, "id4"]], "Running Ivy Tests": [[828, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[828, "re-running-failed-ivy-tests"]], "ivy.trace_graph()": [[847, "ivy-trace-graph"]], "Tracer API": [[847, "tracer-api"]], "Using the tracer": [[847, "using-the-tracer"]], "Eager vs lazy Compilation": [[847, "eager-vs-lazy-compilation"]], "Array caching": [[847, "array-caching"]], "Generators": [[847, "generators"]], "Stateful": [[847, "stateful"]], "Operating Modes": [[830, "operating-modes"]], "Global Parameter Properties": [[830, "global-parameter-properties"]], "Getter: ivy. attribute": [[830, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[830, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "Compiler Infrastructure": [[852, "compiler-infrastructure"], [860, "compiler-infrastructure"]], "LLVM": [[852, "id1"]], "MLIR": [[852, "id2"]], "OneAPI": [[852, "id3"]], "Ivy as a Framework": [[834, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Vendor-Specific APIs": [[858, "vendor-specific-apis"], [860, "vendor-specific-apis"]], "TensorRT tensorrt": [[858, "tensorrt-tensorrt"]], "CUDA cuda": [[858, "cuda-cuda"]], "Why Unify?": [[845, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[845, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[845, "infinite-shelf-life"]], "Frameworks": [[854, "frameworks"], [860, "frameworks"]], "MATLAB matlab": [[854, "matlab-matlab"]], "SciPy scipy": [[854, "scipy-scipy"]], "Torch torch": [[854, "torch-torch"]], "NumPy numpy": [[854, "numpy-numpy"]], "SciKit Learn scikit-learn": [[854, "scikit-learn-scikit-learn"]], "Theano theano": [[854, "theano-theano"]], "Pandas pandas": [[854, "pandas-pandas"]], "Julia julia": [[854, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[854, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[854, "caffe-caffe"]], "Chainer chainer": [[854, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[854, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[854, "mxnet-mxnet"]], "CNTK cntk": [[854, "cntk-cntk"]], "PyTorch pytorch": [[854, "pytorch-pytorch"]], "Flux flux": [[854, "flux-flux"]], "JAX jax": [[854, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[854, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[854, "dex-language-dex-language"]], "What does Ivy Add?": [[860, "what-does-ivy-add"]], "Wrapper Frameworks": [[860, "wrapper-frameworks"], [861, "wrapper-frameworks"]], "EagerPy eagerpy": [[861, "eagerpy-eagerpy"]], "Keras keras": [[861, "keras-keras"]], "Thinc thinc": [[861, "thinc-thinc"]], "TensorLy tensorly": [[861, "tensorly-tensorly"]], "NeuroPod": [[861, "id1"]], "Standardization": [[844, "standardization"]], "Skepticism": [[844, "skepticism"]], "Complimentary vs Competitive": [[844, "complimentary-vs-competitive"]], "Do Standards Work?": [[844, "do-standards-work"]], "The Array API Standard": [[844, "the-array-api-standard"]], "One liners": [[846, "one-liners"]], "Motivation": [[842, "motivation"]], "Container": [[98, "container"]], "empty_like": [[126, "empty-like"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [618, "elementwise"], [365, "elementwise"], [51, "module-ivy.data_classes.array.elementwise"], [74, "module-ivy.data_classes.container.elementwise"]], "Data classes": [[103, "data-classes"]], "softsign": [[114, "softsign"]], "native_array": [[135, "native-array"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [91, "module-ivy.data_classes.factorized_tensor.base"], [69, "module-ivy.data_classes.container.base"]], "ones": [[137, "ones"]], "Nested array": [[100, "nested-array"]], "logspace": [[133, "logspace"]], "sigmoid": [[111, "sigmoid"]], "softplus": [[113, "softplus"]], "frombuffer": [[129, "frombuffer"]], "full": [[130, "full"]], "asarray": [[123, "asarray"]], "cmp_isnot": [[116, "cmp-isnot"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "mish": [[109, "mish"]], "meshgrid": [[134, "meshgrid"]], "one_hot": [[136, "one-hot"]], "Factorized tensor": [[99, "factorized-tensor"]], "if_else": [[118, "if-else"]], "softmax": [[112, "softmax"]], "leaky_relu": [[107, "leaky-relu"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "for_loop": [[117, "for-loop"]], "log_softmax": [[108, "log-softmax"]], "Array": [[97, "array"]], "while_loop": [[120, "while-loop"]], "from_dlpack": [[128, "from-dlpack"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "hardswish": [[106, "hardswish"]], "array": [[122, "array"]], "cmp_is": [[115, "cmp-is"]], "eye": [[127, "eye"]], "full_like": [[131, "full-like"]], "arange": [[121, "arange"]], "Functions": [[104, "functions"]], "try_except": [[119, "try-except"]], "empty": [[125, "empty"]], "linspace": [[132, "linspace"]], "gelu": [[105, "gelu"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "relu": [[110, "relu"]], "copy_array": [[124, "copy-array"]], "Setting Up": [[804, "setting-up"], [818, "setting-up"]], "Forking and cloning the repo": [[804, "forking-and-cloning-the-repo"]], "Pre-Commit": [[804, "pre-commit"]], "PyCharm": [[804, "pycharm"], [819, "pycharm"]], "Virtual environments - No Docker": [[804, "virtual-environments-no-docker"]], "Using miniconda": [[804, "using-miniconda"]], "Using venv": [[804, "using-venv"]], "Docker Interpreter with PyCharm": [[804, "docker-interpreter-with-pycharm"]], "Windows": [[804, "windows"], [804, "id6"]], "MacOS": [[804, "macos"]], "Ubuntu": [[804, "ubuntu"], [804, "id8"]], "Setting Up Testing in PyCharm": [[804, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[804, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[804, "setting-up-for-free"]], "WSL": [[804, "wsl"]], "GitHub Codespaces": [[804, "github-codespaces"]], "The Binaries": [[804, "the-binaries"]], "Handler": [[787, "module-ivy.utils.backend.handler"]], "Continuous Integration": [[812, "continuous-integration"], [819, "continuous-integration"]], "Commit (Push/PR) Triggered Testing": [[812, "commit-push-pr-triggered-testing"]], "Implementation": [[812, "implementation"]], "A Top-Down View": [[812, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[812, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[812, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[812, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[812, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[812, "determine-test-coverage-workflow"]], "Multiple Runners": [[812, "multiple-runners"]], "Race Condition": [[812, "race-condition"]], "Array API Tests": [[812, "array-api-tests"], [807, "array-api-tests"]], "Periodic Testing": [[812, "periodic-testing"]], "Manually Dispatched Workflows": [[812, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[812, "ci-pipeline"]], "Push": [[812, "push"]], "Pull Request": [[812, "pull-request"]], "Dashboard": [[812, "dashboard"]], "Sub backend handler": [[788, "module-ivy.utils.backend.sub_backend_handler"]], "Status": [[798, "status"]], "Unified AI": [[798, "unified-ai"]], "Getting started": [[798, "getting-started"]], "Installing ivy": [[798, "installing-ivy"]], "Using Ivy": [[798, "using-ivy"]], "Documentation": [[798, "documentation"]], "Diving deeper": [[798, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[798, "when-should-i-use-ivy-as-a-transpiler"]], "Contributing": [[798, "contributing"], [799, "contributing"]], "Community": [[798, "community"]], "Citation": [[798, "citation"]], "Einsum path helpers": [[792, "module-ivy.utils.einsum_path_helpers"]], "Backend Setting": [[809, "backend-setting"]], "Dynamic Backend Setting": [[809, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[809, "backend-and-frontend-version-support"]], "Function Types": [[821, "function-types"]], "Primary Functions": [[821, "primary-functions"]], "Compositional Functions": [[821, "compositional-functions"]], "Mixed Functions": [[821, "mixed-functions"]], "Partial Mixed Functions": [[821, "partial-mixed-functions"]], "Standalone Functions": [[821, "standalone-functions"]], "Nestable Functions": [[821, "nestable-functions"], [820, "nestable-functions"], [811, "nestable-functions"]], "Convenience Functions": [[821, "convenience-functions"]], "Formatting": [[819, "formatting"]], "Lint Checks": [[819, "lint-checks"], [819, "id2"]], "Setup Formatting Locally": [[819, "setup-formatting-locally"]], "Pre-commit": [[819, "pre-commit"]], "VS Code": [[819, "vs-code"]], "Common Issues with Pre-Commit": [[819, "common-issues-with-pre-commit"]], "Lint Formatting": [[819, "lint-formatting"]], "Exceptions": [[793, "module-ivy.utils.exceptions"]], "Devices": [[814, "devices"]], "Device Module": [[814, "device-module"]], "Arguments in other Functions": [[814, "arguments-in-other-functions"], [813, "arguments-in-other-functions"]], "Device handling": [[814, "device-handling"]], "Function Wrapping": [[822, "function-wrapping"]], "Decorator order": [[822, "decorator-order"]], "Conversion Wrappers": [[822, "conversion-wrappers"]], "Inference Wrappers": [[822, "inference-wrappers"]], "Out Argument Support": [[822, "out-argument-support"]], "Nestable Support": [[822, "nestable-support"]], "Partial Mixed Function Support": [[822, "partial-mixed-function-support"]], "Shape Conversion": [[822, "shape-conversion"]], "View Handling": [[822, "view-handling"]], "Exception Handling": [[822, "exception-handling"], [817, "exception-handling"]], "Miscellaneous Wrappers": [[822, "miscellaneous-wrappers"]], "Ast helpers": [[786, "module-ivy.utils.backend.ast_helpers"]], "Function Arguments": [[820, "function-arguments"]], "Positional and Keyword Arguments": [[820, "positional-and-keyword-arguments"]], "Input Arrays": [[820, "input-arrays"]], "out Argument": [[820, "out-argument"]], "dtype and device arguments": [[820, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[820, "numbers-in-operator-functions"]], "Integer Sequences": [[820, "integer-sequences"]], "Running the Tests": [[807, "running-the-tests"]], "Using Terminal": [[807, "using-terminal"]], "Using the IDE": [[807, "using-the-ide"]], "Regenerating Test Failures": [[807, "regenerating-test-failures"]], "Test Skipping": [[807, "test-skipping"]], "Logging": [[795, "module-ivy.utils.logging"]], "Inplace Updates": [[824, "inplace-updates"]], "out argument": [[824, "out-argument"]], "copy argument": [[824, "copy-argument"]], "Views": [[824, "views"]], "Dynamic import": [[790, "module-ivy.utils.dynamic_import"]], "Open Tasks": [[803, "open-tasks"]], "Fixing Failing Tests": [[803, "fixing-failing-tests"]], "How to Contribute": [[803, "how-to-contribute"]], "Frontend APIs": [[803, "frontend-apis"]], "Where to place a frontend function": [[803, "where-to-place-a-frontend-function"]], "Frontend checklist": [[803, "frontend-checklist"]], "Function Formatting": [[803, "function-formatting"]], "Formatting checklist": [[803, "formatting-checklist"]], "Ivy Experimental API": [[803, "ivy-experimental-api"]], "Extending the Ivy API": [[803, "extending-the-ivy-api"]], "Where to place a backend function": [[803, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[803, "creating-an-issue-on-ivy-s-github-using-a-template"]], "The Basics": [[805, "the-basics"]], "Getting Help": [[805, "getting-help"]], "ToDo List Issues": [[805, "todo-list-issues"]], "Managing Your Fork": [[805, "managing-your-fork"]], "Who To Ask": [[805, "who-to-ask"]], "With Command Line:": [[805, "with-command-line"]], "With Browser:": [[805, "with-browser"]], "Pull Requests": [[805, "pull-requests"]], "Small Commits Often": [[805, "small-commits-often"]], "Interactive Ivy Docker Container": [[805, "interactive-ivy-docker-container"]], "Running Tests Locally": [[805, "running-tests-locally"]], "With Docker": [[805, "with-docker"]], "Getting the most out of IDE": [[805, "getting-the-most-out-of-ide"]], "with PyCharm": [[805, "with-pycharm"]], "Error Handling": [[801, "error-handling"]], "Assertions": [[784, "module-ivy.utils.assertions"], [757, "module-ivy_tests.test_ivy.helpers.assertions"]], "Building the Docs Pipeline": [[810, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[810, "how-the-doc-builder-is-being-run"]], "The convenience script": [[810, "the-convenience-script"]], "Options": [[810, "options"]], "The Docker image": [[810, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[810, "how-ivy-s-docs-is-structured"]], "index.rst": [[810, "index-rst"]], "partial_conf.py": [[810, "partial-conf-py"]], "prebuild.sh": [[810, "prebuild-sh"]], "Custom Extensions": [[810, "custom-extensions"]], "custom_autosummary": [[810, "custom-autosummary"]], ":hide-table:": [[810, "hide-table"]], "discussion_linker": [[810, "discussion-linker"]], "skippable_function": [[810, "skippable-function"]], "ivy_data": [[810, "ivy-data"]], "Containers": [[811, "containers"]], "Container Instance Methods": [[811, "container-instance-methods"]], "API Instance Methods": [[811, "api-instance-methods"]], "API Special Methods": [[811, "api-special-methods"]], "Docstring Examples": [[815, "docstring-examples"]], "ivy.tan": [[815, "ivy-tan"]], "ivy.roll": [[815, "ivy-roll"]], "ivy.add": [[815, "ivy-add"]], "Docstrings": [[816, "docstrings"]], "Ivy Exception Class": [[817, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[817, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[817, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[817, "handle-exceptions-decorator"]], "Consistency in Errors": [[817, "consistency-in-errors"]], "Assertion Function": [[817, "assertion-function"]], "Fix Failing Tests:": [[818, "fix-failing-tests"]], "Prerequirement:": [[818, "prerequirement"]], "How to run tests": [[818, "how-to-run-tests"]], "Common Errors": [[818, "common-errors"]], "Where to ask for Help": [[818, "where-to-ask-for-help"]], "Einsum parser": [[791, "module-ivy.utils.einsum_parser"]], "Verbosity": [[797, "module-ivy.utils.verbosity"]], "Ivy Frontends": [[825, "ivy-frontends"]], "Introduction": [[825, "introduction"], [826, "introduction"], [41, "Introduction"]], "The Frontend Basics": [[825, "the-frontend-basics"]], "Writing Frontend Functions": [[825, "writing-frontend-functions"]], "Short Frontend Implementations": [[825, "short-frontend-implementations"]], "Unused Arguments": [[825, "unused-arguments"]], "Supported Data Types and Devices": [[825, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[825, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[825, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[825, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[825, "frontends-duplicate-policy"]], "Ivy Frontend Tests": [[826, "ivy-frontend-tests"]], "Frontend Test Examples": [[826, "frontend-test-examples"]], "ivy.tan()": [[826, "ivy-tan"]], "ivy.full()": [[826, "ivy-full"]], "Testing Without Using Tests Values": [[826, "testing-without-using-tests-values"]], "Alias functions": [[826, "alias-functions"]], "Frontend Instance Method Tests": [[826, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[826, "frontend-instance-method-test-examples"]], "ivy.add()": [[826, "ivy-add"]], "Hypothesis Helpers": [[826, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[826, "frontend-framework-testing-configuration"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[827, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[827, "overview"], [823, "overview"]], "Existing Formatters": [[827, "existing-formatters"]], "FunctionOrderingFormatter": [[827, "functionorderingformatter"]], "How the Formatter Works:": [[827, "how-the-formatter-works"]], "Integration and Usage": [[827, "integration-and-usage"]], "Contribution": [[827, "contribution"]], "Round Up": [[827, "round-up"], [29, "Round-Up"], [31, "Round-Up"], [33, "Round-Up"], [13, "Round-Up"], [40, "Round-Up"], [32, "Round-Up"], [18, "Round-Up"], [19, "Round-Up"], [22, "Round-Up"], [21, "Round-Up"], [11, "Round-Up"], [23, "Round-Up"], [28, "Round-Up"], [17, "Round-Up"], [20, "Round-Up"], [30, "Round-Up"], [27, "Round-Up"]], "Profiler": [[796, "module-ivy.utils.profiler"]], "Building the Docs": [[800, "building-the-docs"]], "Building the Docs using Docker": [[800, "building-the-docs-using-docker"]], "Using convenience script": [[800, "using-convenience-script"]], "Using existing image on Docker Hub": [[800, "using-existing-image-on-docker-hub"]], "Building the image locally": [[800, "building-the-image-locally"]], "Building the Docs without Docker": [[800, "building-the-docs-without-docker"]], "Gradients": [[823, "gradients"], [621, "gradients"], [367, "gradients"], [54, "module-ivy.data_classes.array.gradients"], [77, "module-ivy.data_classes.container.gradients"]], "Example Usage of the Gradient API": [[823, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[823, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[823, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[823, "custom-gradient-functions"]], "Design of the Gradient API": [[823, "design-of-the-gradient-api"]], "Our policy on gradients": [[823, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[823, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[823, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[823, "framework-specific-considerations"]], "Deep Dive": [[806, "deep-dive"]], "Data Types": [[813, "data-types"]], "Data Type Module": [[813, "data-type-module"]], "Data Type Promotion": [[813, "data-type-promotion"]], "Precise Mode": [[813, "precise-mode"]], "Precise Promotion Table": [[813, "precise-promotion-table"]], "Non-Precise Promotion Table": [[813, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[813, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[813, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[813, "special-case"]], "Backend Data Type Bugs": [[813, "backend-data-type-bugs"]], "Data Type Casting Modes": [[813, "data-type-casting-modes"]], "Superset Data Type Support": [[813, "superset-data-type-support"]], "Inspection": [[794, "module-ivy.utils.inspection"]], "Sequential": [[783, "module-ivy.stateful.sequential"]], "Backend": [[785, "backend"]], "Binaries": [[789, "module-ivy.utils.binaries"]], "Arrays": [[808, "arrays"]], "Native Array": [[808, "native-array"]], "Array Handling": [[808, "array-handling"]], "Integrating custom classes with Ivy": [[808, "integrating-custom-classes-with-ivy"]], "Helpful Resources": [[802, "helpful-resources"]], "index_nest": [[707, "index-nest"]], "multi_index_nest": [[713, "multi-index-nest"]], "insert_into_nest_at_index": [[708, "insert-into-nest-at-index"]], "stack": [[696, "stack"]], "maml_step": [[702, "maml-step"]], "multinomial": [[724, "multinomial"]], "duplicate_array_index_chains": [[706, "duplicate-array-index-chains"]], "reshape": [[692, "reshape"]], "set_nest_at_indices": [[722, "set-nest-at-indices"]], "random_uniform": [[727, "random-uniform"]], "fomaml_step": [[701, "fomaml-step"]], "unique_all": [[735, "unique-all"]], "Data-dependent output shape": [[735, null], [737, null], [736, null], [738, null], [631, null], [631, null], [631, null], [631, null]], "set_nest_at_index": [[721, "set-nest-at-index"]], "prune_nest_at_index": [[719, "prune-nest-at-index"]], "permute_dims": [[690, "permute-dims"]], "copy_nest": [[705, "copy-nest"]], "unstack": [[699, "unstack"]], "nested_map": [[716, "nested-map"]], "nested_any": [[714, "nested-any"]], "map_nest_at_indices": [[712, "map-nest-at-indices"]], "all_nested_indices": [[704, "all-nested-indices"]], "prune_nest_at_indices": [[720, "prune-nest-at-indices"]], "tile": [[698, "tile"]], "argmax": [[730, "argmax"]], "zero_pad": [[700, "zero-pad"]], "shuffle": [[729, "shuffle"]], "nested_argwhere": [[715, "nested-argwhere"]], "squeeze": [[695, "squeeze"]], "seed": [[728, "seed"]], "argwhere": [[732, "argwhere"]], "where": [[734, "where"]], "randint": [[725, "randint"]], "split": [[694, "split"]], "roll": [[693, "roll"]], "reptile_step": [[703, "reptile-step"]], "map_nest_at_index": [[711, "map-nest-at-index"]], "map": [[710, "map"]], "prune_empty": [[718, "prune-empty"]], "insert_into_nest_at_indices": [[709, "insert-into-nest-at-indices"]], "nested_multi_map": [[717, "nested-multi-map"]], "layer_norm": [[723, "layer-norm"]], "random_normal": [[726, "random-normal"]], "argmin": [[731, "argmin"]], "nonzero": [[733, "nonzero"]], "swapaxes": [[697, "swapaxes"]], "repeat": [[691, "repeat"]], "load": [[755, "load"]], "Layers": [[778, "module-ivy.stateful.layers"], [622, "layers"], [368, "layers"], [79, "module-ivy.data_classes.container.layers"], [56, "module-ivy.data_classes.array.layers"]], "Function testing": [[759, "module-ivy_tests.test_ivy.helpers.function_testing"]], "searchsorted": [[741, "searchsorted"]], "Converters": [[775, "module-ivy.stateful.converters"]], "Module": [[780, "module-ivy.stateful.module"]], "Activations": [[774, "module-ivy.stateful.activations"], [612, "activations"], [360, "activations"], [68, "module-ivy.data_classes.container.activations"], [46, "module-ivy.data_classes.array.activations"]], "Parameter": [[774, "parameter"], [774, "id1"], [566, "parameter"], [571, "parameter"], [575, "parameter"], [574, "parameter"], [572, "parameter"], [565, "parameter"], [617, "parameter"], [620, "parameter"], [620, "id1"], [620, "id2"], [620, "id3"], [620, "id4"], [620, "id5"], [205, "parameter"]], "max": [[746, "max"]], "unique_inverse": [[737, "unique-inverse"]], "Globals": [[760, "module-ivy_tests.test_ivy.helpers.globals"]], "Multiprocessing": [[766, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "Testing": [[773, "testing"], [40, "Testing"]], "min": [[748, "min"]], "Dtype helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "msort": [[740, "msort"]], "einsum": [[745, "einsum"]], "prod": [[749, "prod"]], "Hypothesis helpers": [[761, "hypothesis-helpers"]], "General helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "argsort": [[739, "argsort"]], "Framework classes": [[771, "framework-classes"]], "Helpers": [[776, "module-ivy.stateful.helpers"]], "var": [[752, "var"]], "save": [[756, "save"]], "Test parameter flags": [[769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "any": [[754, "any"]], "sort": [[742, "sort"]], "Available frameworks": [[758, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "cumsum": [[744, "cumsum"]], "std": [[750, "std"]], "Testing helpers": [[770, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "Number helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "unique_counts": [[736, "unique-counts"]], "Array helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "Losses": [[779, "module-ivy.stateful.losses"], [624, "losses"], [370, "losses"], [58, "module-ivy.data_classes.array.losses"], [81, "module-ivy.data_classes.container.losses"]], "mean": [[747, "mean"]], "Pipeline helper": [[767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "unique_values": [[738, "unique-values"]], "Structs": [[768, "module-ivy_tests.test_ivy.helpers.structs"]], "cumprod": [[743, "cumprod"]], "Norms": [[781, "module-ivy.stateful.norms"], [628, "norms"], [374, "norms"], [60, "module-ivy.data_classes.array.norms"], [83, "module-ivy.data_classes.container.norms"]], "sum": [[751, "sum"]], "Utils": [[772, "utils"]], "all": [[753, "all"]], "dropout": [[645, "dropout"]], "solve": [[672, "solve"]], "diagonal": [[656, "diagonal"]], "matrix_power": [[665, "matrix-power"]], "lu_factor": [[662, "lu-factor"]], "cross": [[653, "cross"]], "eigh": [[658, "eigh"]], "vector_norm": [[680, "vector-norm"]], "cross_entropy": [[683, "cross-entropy"]], "inner": [[660, "inner"]], "linear": [[646, "linear"]], "cholesky": [[652, "cholesky"]], "vecdot": [[679, "vecdot"]], "outer": [[668, "outer"]], "expand_dims": [[688, "expand-dims"]], "nms": [[649, "nms"]], "matrix_transpose": [[667, "matrix-transpose"]], "constant_pad": [[687, "constant-pad"]], "scaled_dot_product_attention": [[651, "scaled-dot-product-attention"]], "binary_cross_entropy": [[682, "binary-cross-entropy"]], "tensorsolve": [[676, "tensorsolve"]], "clip": [[685, "clip"]], "qr": [[670, "qr"]], "pinv": [[669, "pinv"]], "lstm_update": [[647, "lstm-update"]], "eigvalsh": [[659, "eigvalsh"]], "svdvals": [[674, "svdvals"]], "multi_head_attention": [[648, "multi-head-attention"]], "depthwise_conv2d": [[644, "depthwise-conv2d"]], "tensordot": [[675, "tensordot"]], "concat": [[686, "concat"]], "matmul": [[663, "matmul"]], "flip": [[689, "flip"]], "slogdet": [[671, "slogdet"]], "inv": [[661, "inv"]], "eig": [[657, "eig"], [420, "eig"]], "roi_align": [[650, "roi-align"]], "matrix_rank": [[666, "matrix-rank"]], "diag": [[655, "diag"]], "det": [[654, "det"]], "svd": [[673, "svd"]], "trace": [[677, "trace"]], "vector_to_skew_symmetric_matrix": [[681, "vector-to-skew-symmetric-matrix"]], "matrix_norm": [[664, "matrix-norm"]], "vander": [[678, "vander"]], "sparse_cross_entropy": [[684, "sparse-cross-entropy"]], "unset_exception_trace_mode": [[589, "unset-exception-trace-mode"]], "unset_precise_mode": [[594, "unset-precise-mode"]], "set_min_denominator": [[570, "set-min-denominator"]], "set_exception_trace_mode": [[566, "set-exception-trace-mode"]], "set_nestable_mode": [[571, "set-nestable-mode"]], "is_native_array": [[555, "is-native-array"]], "is_ivy_array": [[552, "is-ivy-array"]], "scatter_nd": [[564, "scatter-nd"]], "set_inplace_mode": [[567, "set-inplace-mode"]], "to_scalar": [[586, "to-scalar"]], "unset_queue_timeout": [[595, "unset-queue-timeout"]], "unset_array_mode": [[588, "unset-array-mode"]], "supports_inplace_updates": [[581, "supports-inplace-updates"]], "isin": [[556, "isin"]], "unset_show_func_wrapper_trace_mode": [[597, "unset-show-func-wrapper-trace-mode"]], "set_queue_timeout": [[573, "set-queue-timeout"]], "unset_min_denominator": [[592, "unset-min-denominator"]], "set_tmp_dir": [[576, "set-tmp-dir"]], "to_numpy": [[585, "to-numpy"]], "to_ivy_shape": [[582, "to-ivy-shape"]], "set_show_func_wrapper_trace_mode": [[575, "set-show-func-wrapper-trace-mode"]], "strides": [[580, "strides"]], "try_else_none": [[587, "try-else-none"]], "num_arrays_in_memory": [[561, "num-arrays-in-memory"]], "scatter_flat": [[563, "scatter-flat"]], "to_list": [[583, "to-list"]], "unset_inplace_mode": [[590, "unset-inplace-mode"]], "unset_nestable_mode": [[593, "unset-nestable-mode"]], "set_item": [[568, "set-item"]], "set_min_base": [[569, "set-min-base"]], "set_shape_array_mode": [[574, "set-shape-array-mode"]], "unset_min_base": [[591, "unset-min-base"]], "unset_shape_array_mode": [[596, "unset-shape-array-mode"]], "set_precise_mode": [[572, "set-precise-mode"]], "isscalar": [[557, "isscalar"]], "to_native_shape": [[584, "to-native-shape"]], "stable_pow": [[579, "stable-pow"]], "multiprocessing": [[560, "multiprocessing"]], "is_ivy_nested_array": [[554, "is-ivy-nested-array"]], "match_kwargs": [[559, "match-kwargs"]], "shape": [[577, "shape"]], "set_array_mode": [[565, "set-array-mode"]], "print_all_arrays_in_memory": [[562, "print-all-arrays-in-memory"]], "is_ivy_container": [[553, "is-ivy-container"]], "itemsize": [[558, "itemsize"]], "stable_divide": [[578, "stable-divide"]], "container_types": [[529, "container-types"]], "default": [[531, "default"]], "has_nans": [[545, "has-nans"]], "cummax": [[510, "cummax"]], "nanmin": [[517, "nanmin"]], "native_sparse_array_to_indices_values_and_shape": [[506, "native-sparse-array-to-indices-values-and-shape"]], "nanprod": [[518, "nanprod"]], "get_num_dims": [[543, "get-num-dims"]], "inplace_arrays_supported": [[546, "inplace-arrays-supported"]], "optional_get_element": [[520, "optional-get-element"]], "histogram": [[512, "histogram"]], "clip_matrix_norm": [[527, "clip-matrix-norm"]], "igamma": [[513, "igamma"]], "get_all_arrays_in_memory": [[541, "get-all-arrays-in-memory"]], "gather_nd": [[540, "gather-nd"]], "cache_fn": [[526, "cache-fn"]], "exists": [[535, "exists"]], "einops_repeat": [[534, "einops-repeat"]], "quantile": [[519, "quantile"]], "current_backend_str": [[530, "current-backend-str"]], "inplace_variables_supported": [[550, "inplace-variables-supported"]], "function_unsupported_devices_and_dtypes": [[538, "function-unsupported-devices-and-dtypes"]], "inplace_update": [[549, "inplace-update"]], "arg_info": [[522, "arg-info"]], "cummin": [[511, "cummin"]], "clip_vector_norm": [[528, "clip-vector-norm"]], "einops_reduce": [[533, "einops-reduce"]], "is_array": [[551, "is-array"]], "get_referrers_recursive": [[544, "get-referrers-recursive"]], "assert_supports_inplace": [[525, "assert-supports-inplace"]], "fourier_encode": [[536, "fourier-encode"]], "inplace_increment": [[548, "inplace-increment"]], "nanmedian": [[516, "nanmedian"]], "corrcoef": [[508, "corrcoef"]], "cov": [[509, "cov"]], "inplace_decrement": [[547, "inplace-decrement"]], "all_equal": [[521, "all-equal"]], "einops_rearrange": [[532, "einops-rearrange"]], "gather": [[539, "gather"]], "nanmean": [[515, "nanmean"]], "arg_names": [[523, "arg-names"]], "get_item": [[542, "get-item"]], "median": [[514, "median"]], "bincount": [[507, "bincount"]], "function_supported_devices_and_dtypes": [[537, "function-supported-devices-and-dtypes"]], "array_equal": [[524, "array-equal"]], "instance_norm": [[490, "instance-norm"]], "hsplit": [[467, "hsplit"]], "unravel_index": [[500, "unravel-index"]], "take": [[480, "take"]], "trim_zeros": [[483, "trim-zeros"]], "heaviside": [[466, "heaviside"]], "pad": [[472, "pad"]], "fold": [[465, "fold"]], "take_along_axis": [[481, "take-along-axis"]], "vstack": [[487, "vstack"]], "partial_fold": [[473, "partial-fold"]], "flatten": [[462, "flatten"]], "group_norm": [[489, "group-norm"]], "matricize": [[470, "matricize"]], "l1_normalize": [[491, "l1-normalize"]], "unique_consecutive": [[485, "unique-consecutive"]], "flipud": [[464, "flipud"]], "top_k": [[482, "top-k"]], "native_sparse_array": [[505, "native-sparse-array"]], "put_along_axis": [[477, "put-along-axis"]], "local_response_norm": [[493, "local-response-norm"]], "bernoulli": [[495, "bernoulli"]], "expand": [[460, "expand"]], "unfold": [[484, "unfold"]], "poisson": [[499, "poisson"]], "soft_thresholding": [[479, "soft-thresholding"]], "i0": [[469, "i0"]], "fliplr": [[463, "fliplr"]], "partial_unfold": [[475, "partial-unfold"]], "hstack": [[468, "hstack"]], "lexsort": [[502, "lexsort"]], "batch_norm": [[488, "batch-norm"]], "beta": [[496, "beta"]], "lp_normalize": [[494, "lp-normalize"]], "dirichlet": [[497, "dirichlet"]], "moveaxis": [[471, "moveaxis"]], "fill_diagonal": [[461, "fill-diagonal"]], "partial_vec_to_tensor": [[476, "partial-vec-to-tensor"]], "invert_permutation": [[501, "invert-permutation"]], "gamma": [[498, "gamma"]], "is_native_sparse_array": [[504, "is-native-sparse-array"]], "is_ivy_sparse_array": [[503, "is-ivy-sparse-array"]], "vsplit": [[486, "vsplit"]], "l2_normalize": [[492, "l2-normalize"]], "partial_tensor_to_vec": [[474, "partial-tensor-to-vec"]], "rot90": [[478, "rot90"]], "adam_step": [[601, "adam-step"]], "Set": [[631, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [86, "module-ivy.data_classes.container.set"], [63, "module-ivy.data_classes.array.set"]], "Device": [[617, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [50, "module-ivy.data_classes.array.device"], [73, "module-ivy.data_classes.container.device"]], "Statistical": [[633, "statistical"], [380, "statistical"], [65, "module-ivy.data_classes.array.statistical"], [88, "module-ivy.data_classes.container.statistical"]], "conv_general_transpose": [[643, "conv-general-transpose"]], "Constants": [[613, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "Control flow ops": [[614, "control-flow-ops"]], "grad": [[604, "grad"]], "Utility": [[634, "utility"], [381, "utility"], [66, "module-ivy.data_classes.array.utility"], [89, "module-ivy.data_classes.container.utility"]], "lars_update": [[608, "lars-update"]], "Linear algebra": [[623, "linear-algebra"], [369, "linear-algebra"], [80, "module-ivy.data_classes.container.linear_algebra"], [57, "module-ivy.data_classes.array.linear_algebra"]], "Experimental": [[619, "experimental"], [52, "module-ivy.data_classes.array.experimental"], [75, "module-ivy.data_classes.container.experimental"]], "Random": [[629, "random"], [375, "random"], [61, "module-ivy.data_classes.array.random"], [84, "module-ivy.data_classes.container.random"]], "vmap": [[600, "vmap"]], "conv3d": [[640, "conv3d"]], "conv_general_dilated": [[642, "conv-general-dilated"]], "value_is_nan": [[599, "value-is-nan"]], "jac": [[606, "jac"]], "execute_with_gradients": [[603, "execute-with-gradients"]], "Creation": [[615, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "unset_tmp_dir": [[598, "unset-tmp-dir"]], "optimizer_update": [[609, "optimizer-update"]], "Manipulation": [[625, "manipulation"], [371, "manipulation"], [82, "module-ivy.data_classes.container.manipulation"], [59, "module-ivy.data_classes.array.manipulation"]], "Searching": [[630, "searching"], [376, "searching"], [85, "module-ivy.data_classes.container.searching"], [62, "module-ivy.data_classes.array.searching"]], "Meta": [[626, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "conv": [[635, "conv"]], "Nest": [[627, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "conv2d_transpose": [[639, "conv2d-transpose"]], "Sorting": [[632, "sorting"], [378, "sorting"], [64, "module-ivy.data_classes.array.sorting"], [87, "module-ivy.data_classes.container.sorting"]], "adam_update": [[602, "adam-update"]], "stop_gradient": [[610, "stop-gradient"]], "General": [[620, "general"], [366, "general"], [53, "module-ivy.data_classes.array.general"], [76, "module-ivy.data_classes.container.general"]], "lamb_update": [[607, "lamb-update"]], "conv3d_transpose": [[641, "conv3d-transpose"]], "gradient_descent_update": [[605, "gradient-descent-update"]], "conv2d": [[638, "conv2d"]], "conv1d": [[636, "conv1d"]], "conv1d_transpose": [[637, "conv1d-transpose"]], "Data type": [[616, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [49, "module-ivy.data_classes.array.data_type"], [72, "module-ivy.data_classes.container.data_type"]], "value_and_grad": [[611, "value-and-grad"]], "poisson_nll_loss": [[445, "poisson-nll-loss"]], "dsplit": [[458, "dsplit"]], "make_svd_non_negative": [[429, "make-svd-non-negative"]], "dot": [[419, "dot"]], "l1_loss": [[443, "l1-loss"]], "matrix_exp": [[430, "matrix-exp"]], "as_strided": [[448, "as-strided"]], "huber_loss": [[441, "huber-loss"]], "soft_margin_loss": [[447, "soft-margin-loss"]], "column_stack": [[456, "column-stack"]], "batched_outer": [[416, "batched-outer"]], "atleast_2d": [[451, "atleast-2d"]], "broadcast_shapes": [[453, "broadcast-shapes"]], "concat_from_sequence": [[457, "concat-from-sequence"]], "multi_mode_dot": [[433, "multi-mode-dot"]], "general_inner_product": [[423, "general-inner-product"]], "atleast_3d": [[452, "atleast-3d"]], "stft": [[414, "stft"]], "higher_order_moment": [[424, "higher-order-moment"]], "cond": [[417, "cond"]], "choose": [[455, "choose"]], "tensor_train": [[437, "tensor-train"]], "svd_flip": [[436, "svd-flip"]], "adjoint": [[415, "adjoint"]], "dstack": [[459, "dstack"]], "check_scalar": [[454, "check-scalar"]], "khatri_rao": [[426, "khatri-rao"]], "kronecker": [[428, "kronecker"]], "tt_matrix_to_tensor": [[439, "tt-matrix-to-tensor"]], "kron": [[427, "kron"]], "diagflat": [[418, "diagflat"]], "multi_dot": [[432, "multi-dot"]], "tucker": [[440, "tucker"]], "truncated_svd": [[438, "truncated-svd"]], "associative_scan": [[449, "associative-scan"]], "initialize_tucker": [[425, "initialize-tucker"]], "eigh_tridiagonal": [[421, "eigh-tridiagonal"]], "mode_dot": [[431, "mode-dot"]], "smooth_l1_loss": [[446, "smooth-l1-loss"]], "eigvals": [[422, "eigvals"]], "atleast_1d": [[450, "atleast-1d"]], "kl_div": [[442, "kl-div"]], "partial_tucker": [[434, "partial-tucker"]], "solve_triangular": [[435, "solve-triangular"]], "log_poisson_loss": [[444, "log-poisson-loss"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "vjp": [[359, "vjp"]], "amin": [[330, "amin"]], "tril_indices": [[322, "tril-indices"]], "fix": [[338, "fix"]], "vorbis_window": [[327, "vorbis-window"]], "frexp": [[341, "frexp"]], "isclose": [[344, "isclose"]], "conj": [[332, "conj"]], "reduce": [[356, "reduce"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "zeta": [[355, "zeta"]], "lgamma": [[347, "lgamma"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "xlogy": [[354, "xlogy"]], "modf": [[348, "modf"]], "lerp": [[346, "lerp"]], "trilu": [[323, "trilu"]], "fmax": [[340, "fmax"]], "sinc": [[352, "sinc"]], "amax": [[329, "amax"]], "nansum": [[349, "nansum"]], "binarizer": [[331, "binarizer"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "count_nonzero": [[334, "count-nonzero"]], "gradient": [[342, "gradient"]], "diff": [[335, "diff"]], "ldexp": [[345, "ldexp"]], "digamma": [[336, "digamma"]], "hypot": [[343, "hypot"]], "signbit": [[351, "signbit"]], "copysign": [[333, "copysign"]], "nextafter": [[350, "nextafter"]], "allclose": [[328, "allclose"]], "float_power": [[339, "float-power"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "jvp": [[358, "jvp"]], "erfc": [[337, "erfc"]], "max_unpool1d": [[407, "max-unpool1d"]], "Sparse array": [[379, "sparse-array"]], "max_pool1d": [[404, "max-pool1d"]], "interpolate": [[403, "interpolate"]], "fft": [[395, "fft"]], "sliding_window": [[413, "sliding-window"]], "dropout2d": [[392, "dropout2d"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "max_pool3d": [[406, "max-pool3d"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "dct": [[389, "dct"]], "max_pool2d": [[405, "max-pool2d"]], "dropout1d": [[391, "dropout1d"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "area_interpolate": [[385, "area-interpolate"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "avg_pool2d": [[387, "avg-pool2d"]], "dropout3d": [[393, "dropout3d"]], "idct": [[399, "idct"]], "pool": [[409, "pool"]], "avg_pool1d": [[386, "avg-pool1d"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "embedding": [[394, "embedding"]], "fft2": [[396, "fft2"]], "rfft": [[411, "rfft"]], "interp": [[402, "interp"]], "ifftn": [[401, "ifftn"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "ifft": [[400, "ifft"]], "avg_pool3d": [[388, "avg-pool3d"]], "dft": [[390, "dft"]], "rfftn": [[412, "rfftn"]], "reduce_window": [[410, "reduce-window"]], "threshold": [[304, "threshold"]], "round": [[278, "round"]], "hann_window": [[309, "hann-window"]], "subtract": [[284, "subtract"]], "softshrink": [[301, "softshrink"]], "hardshrink": [[292, "hardshrink"]], "stanh": [[302, "stanh"]], "trunc_divide": [[289, "trunc-divide"]], "hardtanh": [[293, "hardtanh"]], "tan": [[285, "tan"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "sqrt": [[282, "sqrt"]], "square": [[283, "square"]], "relu6": [[297, "relu6"]], "random_parafac2": [[318, "random-parafac2"]], "blackman_window": [[306, "blackman-window"]], "elu": [[291, "elu"]], "selu": [[299, "selu"]], "hamming_window": [[308, "hamming-window"]], "scaled_tanh": [[298, "scaled-tanh"]], "celu": [[290, "celu"]], "eye_like": [[307, "eye-like"]], "random_tucker": [[321, "random-tucker"]], "remainder": [[277, "remainder"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "polyval": [[316, "polyval"]], "ndindex": [[315, "ndindex"]], "thresholded_relu": [[305, "thresholded-relu"]], "indices": [[310, "indices"]], "random_tt": [[320, "random-tt"]], "sin": [[280, "sin"]], "random_cp": [[317, "random-cp"]], "trunc": [[288, "trunc"]], "logsigmoid": [[295, "logsigmoid"]], "prelu": [[296, "prelu"]], "sinh": [[281, "sinh"]], "ndenumerate": [[314, "ndenumerate"]], "logit": [[294, "logit"]], "reciprocal": [[276, "reciprocal"]], "sign": [[279, "sign"]], "tanh": [[286, "tanh"]], "silu": [[300, "silu"]], "kaiser_window": [[312, "kaiser-window"]], "tanhshrink": [[303, "tanhshrink"]], "random_tr": [[319, "random-tr"]], "trapz": [[287, "trapz"]], "minimum": [[267, "minimum"]], "isinf": [[250, "isinf"]], "nan_to_num": [[269, "nan-to-num"]], "fmin": [[243, "fmin"]], "less_equal": [[255, "less-equal"]], "floor": [[241, "floor"]], "rad2deg": [[274, "rad2deg"]], "exp2": [[239, "exp2"]], "ceil": [[231, "ceil"]], "equal": [[236, "equal"]], "greater_equal": [[247, "greater-equal"]], "logical_xor": [[265, "logical-xor"]], "positive": [[272, "positive"]], "gcd": [[245, "gcd"]], "logical_or": [[264, "logical-or"]], "lcm": [[253, "lcm"]], "log10": [[257, "log10"]], "exp": [[238, "exp"]], "not_equal": [[271, "not-equal"]], "divide": [[235, "divide"]], "multiply": [[268, "multiply"]], "fmod": [[244, "fmod"]], "logical_and": [[262, "logical-and"]], "deg2rad": [[234, "deg2rad"]], "logical_not": [[263, "logical-not"]], "cos": [[232, "cos"]], "isreal": [[252, "isreal"]], "greater": [[246, "greater"]], "expm1": [[240, "expm1"]], "real": [[275, "real"]], "isnan": [[251, "isnan"]], "less": [[254, "less"]], "erf": [[237, "erf"]], "isfinite": [[249, "isfinite"]], "log": [[256, "log"]], "bitwise_xor": [[230, "bitwise-xor"]], "log2": [[259, "log2"]], "logaddexp": [[260, "logaddexp"]], "logaddexp2": [[261, "logaddexp2"]], "floor_divide": [[242, "floor-divide"]], "negative": [[270, "negative"]], "pow": [[273, "pow"]], "maximum": [[266, "maximum"]], "log1p": [[258, "log1p"]], "imag": [[248, "imag"]], "cosh": [[233, "cosh"]], "dev_util": [[193, "dev-util"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "add": [[218, "add"]], "unset_default_device": [[212, "unset-default-device"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "bitwise_invert": [[226, "bitwise-invert"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "gpu_is_available": [[197, "gpu-is-available"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "abs": [[215, "abs"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "num_gpus": [[200, "num-gpus"]], "atanh": [[224, "atanh"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "set_default_device": [[204, "set-default-device"]], "bitwise_or": [[228, "bitwise-or"]], "to_device": [[209, "to-device"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "asinh": [[221, "asinh"]], "split_func_call": [[208, "split-func-call"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "valid_dtype": [[187, "valid-dtype"]], "default_device": [[191, "default-device"]], "tpu_is_available": [[211, "tpu-is-available"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "angle": [[219, "angle"]], "atan2": [[223, "atan2"]], "split_factor": [[207, "split-factor"]], "acos": [[216, "acos"]], "function_supported_devices": [[194, "function-supported-devices"]], "dev": [[192, "dev"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "atan": [[222, "atan"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "as_native_dev": [[189, "as-native-dev"]], "set_split_factor": [[206, "set-split-factor"]], "acosh": [[217, "acosh"]], "bitwise_and": [[225, "bitwise-and"]], "asin": [[220, "asin"]], "Wrapping": [[90, "module-ivy.data_classes.container.wrapping"], [67, "module-ivy.data_classes.array.wrapping"]], "Image": [[78, "module-ivy.data_classes.container.image"], [55, "module-ivy.data_classes.array.image"]], "Conversions": [[70, "module-ivy.data_classes.container.conversions"], [47, "module-ivy.data_classes.array.conversions"]], "Learn the basics": [[16, "learn-the-basics"], [15, "learn-the-basics"]], "Guides": [[10, "guides"], [15, "guides"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Installs \ud83d\udcbe": [[38, "Installs-\ud83d\udcbe"], [39, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[38, "Imports-\ud83d\udec3"], [39, "Imports-\ud83d\udec3"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Define Model": [[38, "Define-Model"], [39, "Define-Model"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "Resnet 18": [[45, "Resnet-18"]], "0.1: Compile": [[29, "0.1:-Compile"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "Unify": [[31, "Unify"], [33, "Unify"], [32, "Unify"], [22, "Unify"], [21, "Unify"]], "Compile": [[31, "Compile"], [33, "Compile"], [32, "Compile"]], "Transpile": [[31, "Transpile"], [33, "Transpile"], [32, "Transpile"], [22, "Transpile"], [21, "Transpile"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Installation": [[3, "Installation"], [7, "Installation"]], "Data Preparation": [[3, "Data-Preparation"], [7, "Data-Preparation"], [4, "Data-Preparation"], [5, "Data-Preparation"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "Examples and Demos": [[2, "examples-and-demos"], [15, "examples-and-demos"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Imports": [[7, "Imports"], [5, "Imports"], [9, "Imports"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Load the image example \ud83d\uddbc\ufe0f": [[7, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [5, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[7, "Visualise-image"], [5, "Visualise-image"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "Unify code": [[18, "Unify-code"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Trace code": [[19, "Trace-code"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Trace": [[22, "Trace"], [21, "Trace"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Transpile any library": [[23, "Transpile-any-library"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[26, "Ivy-Backend-Handler"], [17, "Ivy-Backend-Handler"]], "Data Structures": [[26, "Data-Structures"], [17, "Data-Structures"]], "Ivy Functional API": [[26, "Ivy-Functional-API"], [17, "Ivy-Functional-API"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Any function": [[26, "Any-function"], [27, "Any-function"]], "Any library": [[26, "Any-library"], [27, "Any-library"]], "Any model": [[26, "Any-model"], [27, "Any-model"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "0.0: Unify": [[28, "0.0:-Unify"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Transpile code": [[20, "Transpile-code"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [612, "module-ivy.functional.ivy.activations"], [613, "module-ivy.functional.ivy.constants"], [614, "module-ivy.functional.ivy.control_flow_ops"], [615, "module-ivy.functional.ivy.creation"], [616, "module-ivy.functional.ivy.data_type"], [617, "module-ivy.functional.ivy.device"], [618, "module-ivy.functional.ivy.elementwise"], [619, "module-ivy.functional.ivy.experimental"], [620, "module-ivy.functional.ivy.general"], [621, "module-ivy.functional.ivy.gradients"], [622, "module-ivy.functional.ivy.layers"], [623, "module-ivy.functional.ivy.linear_algebra"], [624, "module-ivy.functional.ivy.losses"], [625, "module-ivy.functional.ivy.manipulation"], [626, "module-ivy.functional.ivy.meta"], [627, "module-ivy.functional.ivy.nest"], [628, "module-ivy.functional.ivy.norms"], [629, "module-ivy.functional.ivy.random"], [630, "module-ivy.functional.ivy.searching"], [631, "module-ivy.functional.ivy.set"], [632, "module-ivy.functional.ivy.sorting"], [633, "module-ivy.functional.ivy.statistical"], [634, "module-ivy.functional.ivy.utility"], [757, "module-ivy_tests.test_ivy.helpers.assertions"], [758, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [759, "module-ivy_tests.test_ivy.helpers.function_testing"], [760, "module-ivy_tests.test_ivy.helpers.globals"], [761, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [766, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [768, "module-ivy_tests.test_ivy.helpers.structs"], [769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [770, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [774, "module-ivy.stateful.activations"], [775, "module-ivy.stateful.converters"], [776, "module-ivy.stateful.helpers"], [777, "module-ivy.stateful.initializers"], [778, "module-ivy.stateful.layers"], [779, "module-ivy.stateful.losses"], [780, "module-ivy.stateful.module"], [781, "module-ivy.stateful.norms"], [782, "module-ivy.stateful.optimizers"], [783, "module-ivy.stateful.sequential"], [784, "module-ivy.utils.assertions"], [785, "module-ivy.utils.backend"], [786, "module-ivy.utils.backend.ast_helpers"], [787, "module-ivy.utils.backend.handler"], [788, "module-ivy.utils.backend.sub_backend_handler"], [789, "module-ivy.utils.binaries"], [790, "module-ivy.utils.dynamic_import"], [791, "module-ivy.utils.einsum_parser"], [792, "module-ivy.utils.einsum_path_helpers"], [793, "module-ivy.utils.exceptions"], [794, "module-ivy.utils.inspection"], [795, "module-ivy.utils.logging"], [796, "module-ivy.utils.profiler"], [797, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [612, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [612, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [612, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [612, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [612, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [612, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [612, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [612, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [612, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [612, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [614, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [614, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [614, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [614, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [614, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [614, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [615, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [615, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [615, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [615, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [615, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [615, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [615, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [615, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [615, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [615, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [615, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [615, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [615, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [615, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [615, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [615, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [615, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [615, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [615, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [615, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [615, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [615, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [615, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [615, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [616, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [616, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [616, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [616, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [616, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [616, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [616, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [616, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [616, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [616, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [616, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [616, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [616, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [616, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [616, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [616, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [616, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [616, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [616, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [616, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [616, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [616, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [616, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [616, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [616, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [616, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [616, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [616, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [616, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [616, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [616, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [616, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [616, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [616, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [616, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [616, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [616, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [616, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [616, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [616, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [616, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [616, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [616, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [617, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [617, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [617, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [617, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [617, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [617, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [617, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [617, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [617, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [617, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [617, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [617, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [617, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [617, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [617, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [617, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [617, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [617, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [617, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [617, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [617, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [617, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [617, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [617, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [617, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [617, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [617, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [618, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [618, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [618, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [618, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [618, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [618, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [618, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [618, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [618, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [618, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [618, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [618, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [618, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [618, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [618, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [618, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [618, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [618, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [618, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [618, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [618, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [618, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [618, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [618, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [618, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [618, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [618, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [618, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [618, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [618, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [618, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [618, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [618, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [618, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [618, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [618, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [618, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [618, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [618, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [618, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [618, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [618, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [618, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [618, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [618, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [618, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [618, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [618, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [618, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [618, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [618, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [618, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [618, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [618, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [618, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [618, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [618, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [618, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [618, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [618, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [618, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [618, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [618, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [618, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [618, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [618, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [618, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [618, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [618, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [618, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [618, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [618, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [618, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [618, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [618, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [413, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [414, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [415, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [416, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [417, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [418, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [419, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [420, "ivy.eig"], [623, "ivy.eig"], [657, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [421, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [422, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [423, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [424, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [425, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [426, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [427, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [428, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [429, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [430, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [431, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [432, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [433, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [434, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [435, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [436, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [437, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [438, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [439, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [440, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [441, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [442, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [443, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [444, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [445, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [446, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [447, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [448, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [449, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [450, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [451, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [452, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [453, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [454, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [455, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [456, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [457, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [458, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [459, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [460, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [461, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [462, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [463, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [464, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [465, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [466, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [467, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [468, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [469, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [470, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [471, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [472, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [473, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [474, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [475, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [476, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [477, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [478, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [479, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [480, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [481, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [482, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [483, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [484, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [485, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [486, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [487, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [488, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [489, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [490, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [491, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [492, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [493, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [494, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [495, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [496, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [497, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [498, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [499, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [500, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [501, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [502, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [503, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [504, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [505, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [506, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [507, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [508, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [509, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [510, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [511, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [512, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [513, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [514, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [515, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [516, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [517, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [518, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [519, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [520, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[413, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[413, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[414, "ivy.Array.stft"]], "stft() (ivy.container method)": [[414, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[415, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[415, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[416, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[416, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[417, "ivy.Array.cond"]], "cond() (ivy.container method)": [[417, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[418, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[418, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[419, "ivy.Array.dot"]], "dot() (ivy.container method)": [[419, "ivy.Container.dot"]], "eig() (ivy.array method)": [[420, "ivy.Array.eig"], [657, "ivy.Array.eig"]], "eig() (ivy.container method)": [[420, "ivy.Container.eig"], [657, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[421, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[421, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[422, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[422, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[423, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[423, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[424, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[424, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[425, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[425, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[427, "ivy.Array.kron"]], "kron() (ivy.container method)": [[427, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[429, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[429, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[430, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[430, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[431, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[431, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[432, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[432, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[433, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[433, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[434, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[434, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[436, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[436, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[437, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[437, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[438, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[438, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[439, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[439, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[440, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[440, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[441, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[441, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[442, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[442, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[443, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[443, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[444, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[444, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[445, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[445, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[446, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[446, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[447, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[447, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[448, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[448, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[449, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[449, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[450, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[450, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[451, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[451, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[452, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[452, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[453, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[456, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[456, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[457, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[457, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[458, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[458, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[459, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[459, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[460, "ivy.Array.expand"]], "expand() (ivy.container method)": [[460, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[461, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[461, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[462, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[462, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[463, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[463, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[464, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[464, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[465, "ivy.Array.fold"]], "fold() (ivy.container method)": [[465, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[466, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[466, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[467, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[467, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[468, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[468, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[469, "ivy.Array.i0"]], "i0() (ivy.container method)": [[469, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[470, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[470, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[471, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[471, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[472, "ivy.Array.pad"]], "pad() (ivy.container method)": [[472, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[473, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[473, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[474, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[474, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[475, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[475, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[476, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[476, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[477, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[477, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[478, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[478, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[479, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[479, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[480, "ivy.Array.take"]], "take() (ivy.container method)": [[480, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[481, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[481, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[482, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[482, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[483, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[483, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[484, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[484, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[485, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[485, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[486, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[486, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[487, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[487, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[488, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[488, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[489, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[489, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[490, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[490, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[491, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[491, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[492, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[492, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[494, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[494, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[495, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[495, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[496, "ivy.Array.beta"]], "beta() (ivy.container method)": [[496, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[497, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[497, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[498, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[498, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[499, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[499, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[500, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[500, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[501, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[502, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[502, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[507, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[507, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[508, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[508, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[509, "ivy.Array.cov"]], "cov() (ivy.container method)": [[509, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[510, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[510, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[511, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[511, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[512, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[512, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[513, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[513, "ivy.Container.igamma"]], "median() (ivy.array method)": [[514, "ivy.Array.median"]], "median() (ivy.container method)": [[514, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[515, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[515, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[516, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[516, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[517, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[517, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[518, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[518, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[519, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[519, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[520, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[520, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[521, "ivy.all_equal"], [620, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[521, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[521, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[522, "ivy.arg_info"], [620, "ivy.arg_info"]], "arg_names() (in module ivy)": [[523, "ivy.arg_names"], [620, "ivy.arg_names"]], "array_equal() (in module ivy)": [[524, "ivy.array_equal"], [620, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[524, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[524, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[525, "ivy.assert_supports_inplace"], [620, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[525, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[525, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[526, "ivy.cache_fn"], [620, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[527, "ivy.clip_matrix_norm"], [620, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[527, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[527, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[528, "ivy.clip_vector_norm"], [620, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[528, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[528, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[529, "ivy.container_types"], [620, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[530, "ivy.current_backend_str"], [620, "ivy.current_backend_str"]], "default() (in module ivy)": [[531, "ivy.default"], [620, "ivy.default"]], "default() (ivy.array method)": [[531, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[532, "ivy.einops_rearrange"], [620, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[532, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[532, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[533, "ivy.einops_reduce"], [620, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[533, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[533, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[534, "ivy.einops_repeat"], [620, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[534, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[534, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[535, "ivy.exists"], [620, "ivy.exists"]], "exists() (ivy.array method)": [[535, "ivy.Array.exists"]], "exists() (ivy.container method)": [[535, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[536, "ivy.fourier_encode"], [620, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[536, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[536, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[537, "ivy.function_supported_devices_and_dtypes"], [620, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_unsupported_devices_and_dtypes"], [620, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[539, "ivy.gather"], [620, "ivy.gather"]], "gather() (ivy.array method)": [[539, "ivy.Array.gather"]], "gather() (ivy.container method)": [[539, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[540, "ivy.gather_nd"], [620, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[540, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[540, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[541, "ivy.get_all_arrays_in_memory"], [620, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[542, "ivy.get_item"], [620, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[543, "ivy.get_num_dims"], [620, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[543, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[543, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[544, "ivy.get_referrers_recursive"], [620, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[545, "ivy.has_nans"], [620, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[545, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[545, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[546, "ivy.inplace_arrays_supported"], [620, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[547, "ivy.inplace_decrement"], [620, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[547, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[547, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[548, "ivy.inplace_increment"], [620, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[548, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[548, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[549, "ivy.inplace_update"], [620, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[549, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[549, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[550, "ivy.inplace_variables_supported"], [620, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[551, "ivy.is_array"], [620, "ivy.is_array"]], "is_array() (ivy.array method)": [[551, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[551, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[552, "ivy.is_ivy_array"], [620, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[552, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[552, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[553, "ivy.is_ivy_container"], [620, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[553, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[554, "ivy.is_ivy_nested_array"], [620, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[555, "ivy.is_native_array"], [620, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[555, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[555, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[556, "ivy.isin"], [620, "ivy.isin"]], "isin() (ivy.array method)": [[556, "ivy.Array.isin"]], "isin() (ivy.container method)": [[556, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[557, "ivy.isscalar"], [620, "ivy.isscalar"]], "itemsize() (in module ivy)": [[558, "ivy.itemsize"], [620, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[558, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[558, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[559, "ivy.match_kwargs"], [620, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[560, "ivy.multiprocessing"], [620, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[561, "ivy.num_arrays_in_memory"], [620, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[562, "ivy.print_all_arrays_in_memory"], [620, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[563, "ivy.scatter_flat"], [620, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[563, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[563, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[564, "ivy.scatter_nd"], [620, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[564, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[564, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[565, "ivy.set_array_mode"], [620, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[566, "ivy.set_exception_trace_mode"], [620, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[567, "ivy.set_inplace_mode"], [620, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[568, "ivy.set_item"], [620, "ivy.set_item"]], "set_min_base() (in module ivy)": [[569, "ivy.set_min_base"], [620, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[570, "ivy.set_min_denominator"], [620, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[571, "ivy.set_nestable_mode"], [620, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[572, "ivy.set_precise_mode"], [620, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[573, "ivy.set_queue_timeout"], [620, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[574, "ivy.set_shape_array_mode"], [620, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[575, "ivy.set_show_func_wrapper_trace_mode"], [620, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[576, "ivy.set_tmp_dir"], [620, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[577, "ivy.shape"], [620, "ivy.shape"]], "shape() (ivy.array method)": [[577, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[578, "ivy.stable_divide"], [620, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[578, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[578, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[579, "ivy.stable_pow"], [620, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[579, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[579, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[580, "ivy.strides"], [620, "ivy.strides"]], "strides() (ivy.array method)": [[580, "ivy.Array.strides"]], "strides() (ivy.container method)": [[580, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[581, "ivy.supports_inplace_updates"], [620, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[581, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[581, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[582, "ivy.to_ivy_shape"], [620, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[583, "ivy.to_list"], [620, "ivy.to_list"]], "to_list() (ivy.array method)": [[583, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[583, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[584, "ivy.to_native_shape"], [620, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[585, "ivy.to_numpy"], [620, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[585, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[585, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[586, "ivy.to_scalar"], [620, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[586, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[586, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[587, "ivy.try_else_none"], [620, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[588, "ivy.unset_array_mode"], [620, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[589, "ivy.unset_exception_trace_mode"], [620, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[590, "ivy.unset_inplace_mode"], [620, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[591, "ivy.unset_min_base"], [620, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[592, "ivy.unset_min_denominator"], [620, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[593, "ivy.unset_nestable_mode"], [620, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[594, "ivy.unset_precise_mode"], [620, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[595, "ivy.unset_queue_timeout"], [620, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[596, "ivy.unset_shape_array_mode"], [620, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[597, "ivy.unset_show_func_wrapper_trace_mode"], [620, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[598, "ivy.unset_tmp_dir"], [620, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[599, "ivy.value_is_nan"], [620, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[599, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[599, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[600, "ivy.vmap"], [620, "ivy.vmap"]], "adam_step() (in module ivy)": [[601, "ivy.adam_step"], [621, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[601, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[601, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[602, "ivy.adam_update"], [621, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[602, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[602, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[603, "ivy.execute_with_gradients"], [621, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[604, "ivy.grad"], [621, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[605, "ivy.gradient_descent_update"], [621, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[605, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[605, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[606, "ivy.jac"], [621, "ivy.jac"]], "lamb_update() (in module ivy)": [[607, "ivy.lamb_update"], [621, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[607, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[607, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[608, "ivy.lars_update"], [621, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[608, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[608, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[609, "ivy.optimizer_update"], [621, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[609, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[609, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[610, "ivy.stop_gradient"], [621, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[610, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[610, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[611, "ivy.value_and_grad"], [621, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[612, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[613, "ivy.e"]], "inf (in module ivy)": [[613, "ivy.inf"]], "ivy.functional.ivy.constants": [[613, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[613, "ivy.nan"]], "newaxis (in module ivy)": [[613, "ivy.newaxis"]], "pi (in module ivy)": [[613, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[614, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[615, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[615, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[616, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[616, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[616, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[616, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[616, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[616, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[617, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[617, "ivy.Profiler"]], "ivy.functional.ivy.device": [[617, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[618, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[619, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[620, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[620, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[620, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[621, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[622, "ivy.conv"], [635, "ivy.conv"]], "conv1d() (in module ivy)": [[622, "ivy.conv1d"], [636, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[622, "ivy.conv1d_transpose"], [637, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[622, "ivy.conv2d"], [638, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[622, "ivy.conv2d_transpose"], [639, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[622, "ivy.conv3d"], [640, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[622, "ivy.conv3d_transpose"], [641, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[622, "ivy.conv_general_dilated"], [642, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[622, "ivy.conv_general_transpose"], [643, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[622, "ivy.depthwise_conv2d"], [644, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[622, "ivy.dropout"], [645, "ivy.dropout"]], "ivy.functional.ivy.layers": [[622, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[622, "ivy.linear"], [646, "ivy.linear"]], "lstm_update() (in module ivy)": [[622, "ivy.lstm_update"], [647, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[622, "ivy.multi_head_attention"], [648, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[622, "ivy.nms"], [649, "ivy.nms"]], "roi_align() (in module ivy)": [[622, "ivy.roi_align"], [650, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[622, "ivy.scaled_dot_product_attention"], [651, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[623, "ivy.cholesky"], [652, "ivy.cholesky"]], "cross() (in module ivy)": [[623, "ivy.cross"], [653, "ivy.cross"]], "det() (in module ivy)": [[623, "ivy.det"], [654, "ivy.det"]], "diag() (in module ivy)": [[623, "ivy.diag"], [655, "ivy.diag"]], "diagonal() (in module ivy)": [[623, "ivy.diagonal"], [656, "ivy.diagonal"]], "eigh() (in module ivy)": [[623, "ivy.eigh"], [658, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[623, "ivy.eigvalsh"], [659, "ivy.eigvalsh"]], "inner() (in module ivy)": [[623, "ivy.inner"], [660, "ivy.inner"]], "inv() (in module ivy)": [[623, "ivy.inv"], [661, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[623, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[623, "ivy.lu_factor"], [662, "ivy.lu_factor"]], "matmul() (in module ivy)": [[623, "ivy.matmul"], [663, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[623, "ivy.matrix_norm"], [664, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[623, "ivy.matrix_power"], [665, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[623, "ivy.matrix_rank"], [666, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[623, "ivy.matrix_transpose"], [667, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[623, "ivy.outer"], [668, "ivy.outer"]], "pinv() (in module ivy)": [[623, "ivy.pinv"], [669, "ivy.pinv"]], "qr() (in module ivy)": [[623, "ivy.qr"], [670, "ivy.qr"]], "slogdet() (in module ivy)": [[623, "ivy.slogdet"], [671, "ivy.slogdet"]], "solve() (in module ivy)": [[623, "ivy.solve"], [672, "ivy.solve"]], "svd() (in module ivy)": [[623, "ivy.svd"], [673, "ivy.svd"]], "svdvals() (in module ivy)": [[623, "ivy.svdvals"], [674, "ivy.svdvals"]], "tensordot() (in module ivy)": [[623, "ivy.tensordot"], [675, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[623, "ivy.tensorsolve"], [676, "ivy.tensorsolve"]], "trace() (in module ivy)": [[623, "ivy.trace"], [677, "ivy.trace"]], "vander() (in module ivy)": [[623, "ivy.vander"], [678, "ivy.vander"]], "vecdot() (in module ivy)": [[623, "ivy.vecdot"], [679, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[623, "ivy.vector_norm"], [680, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[623, "ivy.vector_to_skew_symmetric_matrix"], [681, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[624, "ivy.binary_cross_entropy"], [682, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[624, "ivy.cross_entropy"], [683, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[624, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[624, "ivy.sparse_cross_entropy"], [684, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[625, "ivy.clip"], [685, "ivy.clip"]], "concat() (in module ivy)": [[625, "ivy.concat"], [686, "ivy.concat"]], "constant_pad() (in module ivy)": [[625, "ivy.constant_pad"], [687, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[625, "ivy.expand_dims"], [688, "ivy.expand_dims"]], "flip() (in module ivy)": [[625, "ivy.flip"], [689, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[625, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[625, "ivy.permute_dims"], [690, "ivy.permute_dims"]], "repeat() (in module ivy)": [[625, "ivy.repeat"], [691, "ivy.repeat"]], "reshape() (in module ivy)": [[625, "ivy.reshape"], [692, "ivy.reshape"]], "roll() (in module ivy)": [[625, "ivy.roll"], [693, "ivy.roll"]], "split() (in module ivy)": [[625, "ivy.split"], [694, "ivy.split"]], "squeeze() (in module ivy)": [[625, "ivy.squeeze"], [695, "ivy.squeeze"]], "stack() (in module ivy)": [[625, "ivy.stack"], [696, "ivy.stack"]], "swapaxes() (in module ivy)": [[625, "ivy.swapaxes"], [697, "ivy.swapaxes"]], "tile() (in module ivy)": [[625, "ivy.tile"], [698, "ivy.tile"]], "unstack() (in module ivy)": [[625, "ivy.unstack"], [699, "ivy.unstack"]], "zero_pad() (in module ivy)": [[625, "ivy.zero_pad"], [700, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[626, "ivy.fomaml_step"], [701, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[626, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[626, "ivy.maml_step"], [702, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[626, "ivy.reptile_step"], [703, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[627, "ivy.all_nested_indices"], [704, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[627, "ivy.copy_nest"], [705, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[627, "ivy.duplicate_array_index_chains"], [706, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[627, "ivy.index_nest"], [707, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[627, "ivy.insert_into_nest_at_index"], [708, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[627, "ivy.insert_into_nest_at_indices"], [709, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[627, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[627, "ivy.map"], [710, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[627, "ivy.map_nest_at_index"], [711, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[627, "ivy.map_nest_at_indices"], [712, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[627, "ivy.multi_index_nest"], [713, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[627, "ivy.nested_any"], [714, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[627, "ivy.nested_argwhere"], [715, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[627, "ivy.nested_map"], [716, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[627, "ivy.nested_multi_map"], [717, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[627, "ivy.prune_empty"], [718, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[627, "ivy.prune_nest_at_index"], [719, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[627, "ivy.prune_nest_at_indices"], [720, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[627, "ivy.set_nest_at_index"], [721, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[627, "ivy.set_nest_at_indices"], [722, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[628, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[628, "ivy.layer_norm"], [723, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[629, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[629, "ivy.multinomial"], [724, "ivy.multinomial"]], "randint() (in module ivy)": [[629, "ivy.randint"], [725, "ivy.randint"]], "random_normal() (in module ivy)": [[629, "ivy.random_normal"], [726, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[629, "ivy.random_uniform"], [727, "ivy.random_uniform"]], "seed() (in module ivy)": [[629, "ivy.seed"], [728, "ivy.seed"]], "shuffle() (in module ivy)": [[629, "ivy.shuffle"], [729, "ivy.shuffle"]], "argmax() (in module ivy)": [[630, "ivy.argmax"], [730, "ivy.argmax"]], "argmin() (in module ivy)": [[630, "ivy.argmin"], [731, "ivy.argmin"]], "argwhere() (in module ivy)": [[630, "ivy.argwhere"], [732, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[630, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[630, "ivy.nonzero"], [733, "ivy.nonzero"]], "where() (in module ivy)": [[630, "ivy.where"], [734, "ivy.where"]], "ivy.functional.ivy.set": [[631, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[631, "ivy.unique_all"], [735, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[631, "ivy.unique_counts"], [736, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[631, "ivy.unique_inverse"], [737, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[631, "ivy.unique_values"], [738, "ivy.unique_values"]], "argsort() (in module ivy)": [[632, "ivy.argsort"], [739, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[632, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[632, "ivy.msort"], [740, "ivy.msort"]], "searchsorted() (in module ivy)": [[632, "ivy.searchsorted"], [741, "ivy.searchsorted"]], "sort() (in module ivy)": [[632, "ivy.sort"], [742, "ivy.sort"]], "cumprod() (in module ivy)": [[633, "ivy.cumprod"], [743, "ivy.cumprod"]], "cumsum() (in module ivy)": [[633, "ivy.cumsum"], [744, "ivy.cumsum"]], "einsum() (in module ivy)": [[633, "ivy.einsum"], [745, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[633, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[633, "ivy.max"], [746, "ivy.max"]], "mean() (in module ivy)": [[633, "ivy.mean"], [747, "ivy.mean"]], "min() (in module ivy)": [[633, "ivy.min"], [748, "ivy.min"]], "prod() (in module ivy)": [[633, "ivy.prod"], [749, "ivy.prod"]], "std() (in module ivy)": [[633, "ivy.std"], [750, "ivy.std"]], "sum() (in module ivy)": [[633, "ivy.sum"], [751, "ivy.sum"]], "var() (in module ivy)": [[633, "ivy.var"], [752, "ivy.var"]], "all() (in module ivy)": [[634, "ivy.all"], [753, "ivy.all"]], "any() (in module ivy)": [[634, "ivy.any"], [754, "ivy.any"]], "ivy.functional.ivy.utility": [[634, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[634, "ivy.load"], [755, "ivy.load"]], "save() (in module ivy)": [[634, "ivy.save"], [756, "ivy.save"]], "conv1d() (ivy.array method)": [[636, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[636, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[637, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[637, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[638, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[638, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[639, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[639, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[640, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[640, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[641, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[641, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[644, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[644, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[645, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[645, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[646, "ivy.Array.linear"]], "linear() (ivy.container method)": [[646, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[647, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[647, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[648, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[648, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[651, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[651, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[652, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[652, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[653, "ivy.Array.cross"]], "cross() (ivy.container method)": [[653, "ivy.Container.cross"]], "det() (ivy.array method)": [[654, "ivy.Array.det"]], "det() (ivy.container method)": [[654, "ivy.Container.det"]], "diag() (ivy.array method)": [[655, "ivy.Array.diag"]], "diag() (ivy.container method)": [[655, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[656, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[656, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[658, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[658, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[659, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[659, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[660, "ivy.Array.inner"]], "inner() (ivy.container method)": [[660, "ivy.Container.inner"]], "inv() (ivy.array method)": [[661, "ivy.Array.inv"]], "inv() (ivy.container method)": [[661, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[663, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[663, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[664, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[664, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[665, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[665, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[666, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[666, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[667, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[667, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[668, "ivy.Array.outer"]], "outer() (ivy.container method)": [[668, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[669, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[669, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[670, "ivy.Array.qr"]], "qr() (ivy.container method)": [[670, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[671, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[671, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[672, "ivy.Array.solve"]], "solve() (ivy.container method)": [[672, "ivy.Container.solve"]], "svd() (ivy.array method)": [[673, "ivy.Array.svd"]], "svd() (ivy.container method)": [[673, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[674, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[674, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[675, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[675, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[676, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[676, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[677, "ivy.Array.trace"]], "trace() (ivy.container method)": [[677, "ivy.Container.trace"]], "vander() (ivy.array method)": [[678, "ivy.Array.vander"]], "vander() (ivy.container method)": [[678, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[679, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[679, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[680, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[680, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[681, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[681, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[682, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[682, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[683, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[683, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[684, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[684, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[685, "ivy.Array.clip"]], "clip() (ivy.container method)": [[685, "ivy.Container.clip"]], "concat() (ivy.array method)": [[686, "ivy.Array.concat"]], "concat() (ivy.container method)": [[686, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[687, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[687, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[688, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[688, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[689, "ivy.Array.flip"]], "flip() (ivy.container method)": [[689, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[690, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[690, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[691, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[691, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[692, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[692, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[693, "ivy.Array.roll"]], "roll() (ivy.container method)": [[693, "ivy.Container.roll"]], "split() (ivy.array method)": [[694, "ivy.Array.split"]], "split() (ivy.container method)": [[694, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[695, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[695, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[696, "ivy.Array.stack"]], "stack() (ivy.container method)": [[696, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[697, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[697, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[698, "ivy.Array.tile"]], "tile() (ivy.container method)": [[698, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[699, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[699, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[700, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[700, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[723, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[723, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[724, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[724, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[725, "ivy.Array.randint"]], "randint() (ivy.container method)": [[725, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[726, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[726, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[727, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[727, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[729, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[729, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[730, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[730, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[731, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[731, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[732, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[732, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[733, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[733, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[734, "ivy.Array.where"]], "where() (ivy.container method)": [[734, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[735, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[735, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[736, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[736, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[737, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[737, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[738, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[738, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[739, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[739, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[740, "ivy.Array.msort"]], "msort() (ivy.container method)": [[740, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[741, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[741, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[742, "ivy.Array.sort"]], "sort() (ivy.container method)": [[742, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[743, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[743, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[744, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[744, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[745, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[745, "ivy.Container.einsum"]], "max() (ivy.array method)": [[746, "ivy.Array.max"]], "max() (ivy.container method)": [[746, "ivy.Container.max"]], "mean() (ivy.array method)": [[747, "ivy.Array.mean"]], "mean() (ivy.container method)": [[747, "ivy.Container.mean"]], "min() (ivy.array method)": [[748, "ivy.Array.min"]], "min() (ivy.container method)": [[748, "ivy.Container.min"]], "prod() (ivy.array method)": [[749, "ivy.Array.prod"]], "prod() (ivy.container method)": [[749, "ivy.Container.prod"]], "std() (ivy.array method)": [[750, "ivy.Array.std"]], "std() (ivy.container method)": [[750, "ivy.Container.std"]], "sum() (ivy.array method)": [[751, "ivy.Array.sum"]], "sum() (ivy.container method)": [[751, "ivy.Container.sum"]], "var() (ivy.array method)": [[752, "ivy.Array.var"]], "var() (ivy.container method)": [[752, "ivy.Container.var"]], "all() (ivy.array method)": [[753, "ivy.Array.all"]], "all() (ivy.container method)": [[753, "ivy.Container.all"]], "any() (ivy.array method)": [[754, "ivy.Array.any"]], "any() (ivy.container method)": [[754, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[757, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[758, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[759, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[760, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[760, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[760, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[761, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[766, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[766, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[766, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[768, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[770, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[774, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[774, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[774, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[774, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[774, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[774, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[774, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[774, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[774, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[774, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[774, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[774, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[774, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[774, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[774, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[774, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[774, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[774, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[774, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[775, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[775, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[775, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[775, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[776, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[776, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[777, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[777, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[777, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[777, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[777, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[777, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[777, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[777, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[777, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[777, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[777, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[777, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[777, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[777, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[777, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[778, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[778, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[778, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[778, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[778, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[778, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[778, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[778, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[778, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[778, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[778, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[778, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[778, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[778, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[778, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[778, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[778, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[778, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[778, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[778, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[778, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[778, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[778, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[778, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[778, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[778, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[779, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[779, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[779, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[779, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[780, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[780, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[780, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[780, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[781, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[781, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[781, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[781, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[781, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[782, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[782, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[782, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[782, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[782, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[782, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[782, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[782, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[782, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[782, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[782, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[782, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[782, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[782, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[783, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[783, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[783, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[784, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[785, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[786, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[786, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[787, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[787, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[788, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[789, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[789, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[789, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[790, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[790, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[791, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[792, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[793, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[793, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[793, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[793, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[793, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[793, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[793, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[793, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[793, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[793, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[793, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[793, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[793, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[793, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[793, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[793, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[793, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[793, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[793, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[793, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[793, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[793, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[793, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[793, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[793, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[793, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[794, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[794, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[794, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[795, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[795, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[795, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[796, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[796, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[796, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[796, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[796, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[797, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[797, "module-ivy.utils.verbosity"]], "automatic code conversions": [[841, "term-Automatic-Code-Conversions"]], "backend handler": [[841, "term-Backend-Handler"]], "compositional functions": [[841, "term-Compositional-Functions"]], "convenience functions": [[841, "term-Convenience-Functions"]], "framework": [[841, "term-Framework"]], "framework handler": [[841, "term-Framework-Handler"]], "graph compiler": [[841, "term-Graph-Compiler"]], "ivy array": [[841, "term-Ivy-Array"]], "ivy backends": [[841, "term-Ivy-Backends"]], "ivy compiler": [[841, "term-Ivy-Compiler"]], "ivy container": [[841, "term-Ivy-Container"]], "ivy frontends": [[841, "term-Ivy-Frontends"]], "ivy functional api": [[841, "term-Ivy-Functional-API"]], "ivy tracer": [[841, "term-Ivy-Tracer"]], "ivy transpiler": [[841, "term-Ivy-Transpiler"]], "mixed functions": [[841, "term-Mixed-Functions"]], "native array": [[841, "term-Native-Array"]], "nestable functions": [[841, "term-Nestable-Functions"]], "pipeline": [[841, "term-Pipeline"]], "primary functions": [[841, "term-Primary-Functions"]], "standalone functions": [[841, "term-Standalone-Functions"]], "submodule helper functions": [[841, "term-Submodule-Helper-Functions"]], "built-in function": [[847, "ivy.trace_graph"], [848, "ivy.transpile"], [849, "ivy.unify"]], "ivy.trace_graph()": [[847, "ivy.trace_graph"]], "ivy.transpile()": [[848, "ivy.transpile"]], "ivy.unify()": [[849, "ivy.unify"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 567, 573, 578, 579, 580, 581, 583, 585, 586, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 706, 708, 710, 711, 716, 717, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 765, 774, 775, 777, 778, 780, 781, 782, 783, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "repo": [0, 11, 40, 802, 805, 807, 810, 812, 813, 818, 826, 828, 843], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 458, 486, 510, 511, 516, 563, 564, 620, 623, 633, 664, 744, 760, 836, 855], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 421, 426, 434, 435, 437, 440, 461, 472, 480, 485, 515, 521, 524, 541, 561, 562, 578, 585, 586, 600, 603, 615, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 630, 634, 645, 647, 648, 653, 666, 671, 672, 675, 680, 689, 693, 695, 701, 702, 703, 704, 705, 706, 715, 716, 717, 718, 724, 727, 732, 757, 759, 762, 763, 764, 765, 777, 778, 784, 787, 792, 794, 798, 799, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 850, 851, 852, 853, 854, 855, 857, 860, 861], "jupyt": [0, 844, 856], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 430, 432, 435, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 491, 492, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 560, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 583, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 770, 787, 791, 792, 796, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 824, 825, 828, 829, 833, 835, 836, 837, 838, 839, 845, 851, 852, 855, 857, 860, 861], "tab": [0, 803, 804, 812, 818, 836], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 799, 800, 801, 802, 804, 806, 807, 809, 811, 813, 814, 816, 818, 819, 820, 821, 822, 824, 831, 832, 839, 841, 844, 845, 846, 850, 861], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 419, 423, 429, 438, 442, 444, 445, 461, 463, 464, 472, 488, 489, 490, 499, 509, 519, 537, 538, 544, 558, 580, 581, 602, 604, 605, 606, 607, 609, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 627, 633, 637, 639, 641, 643, 648, 655, 666, 673, 674, 680, 716, 750, 752, 763, 777, 778, 779, 780, 781, 782, 783, 787, 798, 799, 800, 801, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 841, 844, 845, 846, 847, 848, 849, 850, 853, 854, 855, 857, 858, 859, 860], "web": 0, "relev": [0, 48, 71, 133, 615, 782, 798, 803, 804, 805, 808, 811, 812, 813, 815, 818, 822, 823, 826, 827, 828, 836, 840, 844, 852, 859, 860], "link": [0, 17, 26, 27, 41, 798, 803, 804, 805, 810, 812, 813, 819, 825, 848, 850, 852], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 416, 421, 425, 428, 433, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 456, 457, 458, 467, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 501, 509, 510, 511, 512, 521, 523, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 541, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 584, 585, 586, 587, 599, 600, 605, 610, 615, 616, 617, 618, 620, 622, 623, 625, 627, 628, 631, 632, 636, 637, 638, 639, 640, 641, 644, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 675, 677, 682, 683, 684, 685, 686, 689, 692, 693, 694, 695, 696, 699, 700, 704, 705, 706, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 743, 744, 747, 749, 750, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 778, 784, 791, 792, 802, 803, 804, 807, 808, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 833, 836, 837, 838, 839, 847, 854, 855, 860], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 615, 629, 725, 727, 798, 799, 800, 804, 805, 810, 813, 816, 818, 825, 826, 831, 840, 843, 844, 845, 847, 848, 852, 853, 854, 856, 857], "task": [0, 43, 626, 701, 702, 703, 798, 799, 804, 805, 825, 826, 854, 860, 861], "avil": 0, "discuss": [0, 803, 805, 810, 813, 814, 824, 825, 827, 828, 831, 834, 835, 836, 839, 845, 850, 855], "suggest": [0, 803, 804, 805, 810, 813, 819, 823, 825, 828, 829, 830, 840], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 448, 456, 457, 471, 477, 516, 532, 533, 534, 536, 539, 540, 542, 563, 564, 567, 569, 576, 578, 579, 585, 602, 605, 607, 608, 609, 615, 616, 618, 620, 621, 622, 625, 627, 628, 648, 660, 668, 688, 692, 696, 709, 721, 722, 723, 775, 778, 781, 782, 787, 792, 798, 799, 803, 804, 805, 806, 808, 809, 811, 812, 813, 815, 816, 818, 819, 822, 824, 825, 826, 827, 828, 829, 831, 832, 835, 838, 840, 841, 843, 844, 845, 847, 852, 856, 860, 861], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 425, 434, 440, 446, 471, 472, 495, 496, 509, 510, 511, 526, 544, 549, 600, 602, 605, 607, 608, 609, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 642, 643, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 665, 666, 668, 669, 670, 671, 672, 673, 675, 677, 679, 680, 692, 708, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 743, 744, 745, 746, 747, 748, 749, 751, 752, 759, 760, 762, 764, 774, 775, 777, 778, 780, 781, 782, 783, 791, 792, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 842, 844, 848, 850, 851, 854, 856, 861], "comprehens": [0, 15, 805, 807, 827], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 441, 450, 451, 452, 458, 460, 462, 463, 464, 471, 486, 559, 618, 620, 622, 633, 645, 688, 689, 690, 692, 694, 695, 697, 699, 746, 748, 762, 778, 792, 795, 798, 799, 801, 803, 804, 805, 807, 810, 811, 813, 815, 816, 818, 819, 821, 823, 824, 825, 826, 828, 831, 833, 836, 839, 844, 852, 854, 860], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 414, 419, 421, 425, 429, 431, 433, 434, 436, 437, 438, 440, 445, 462, 466, 470, 472, 480, 488, 490, 494, 495, 496, 497, 498, 499, 500, 501, 502, 509, 516, 519, 537, 538, 547, 548, 559, 560, 567, 569, 570, 572, 578, 579, 591, 592, 594, 601, 602, 607, 608, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 631, 633, 646, 648, 651, 656, 658, 666, 670, 674, 677, 680, 682, 691, 692, 693, 697, 701, 702, 703, 704, 706, 707, 713, 714, 715, 717, 724, 725, 726, 727, 729, 730, 731, 732, 735, 737, 745, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 787, 791, 792, 796, 799, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 828, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 841, 845, 849, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "easi": [0, 26, 27, 40, 804, 805, 808, 809, 811, 821, 823, 826, 828, 831, 844, 852, 854, 860, 861], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 445, 460, 472, 488, 490, 547, 548, 549, 578, 579, 602, 605, 607, 608, 609, 615, 616, 617, 618, 620, 621, 622, 623, 627, 631, 648, 651, 664, 670, 680, 710, 716, 735, 736, 737, 738, 778, 782, 798, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 847, 851, 854, 857], "attract": 0, "visual": [0, 9, 44, 796, 798, 804, 818, 825, 828, 839, 854, 856, 859], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 631, 735, 736, 737, 738, 770, 798, 811, 821, 825, 827, 831, 833, 838, 839, 841, 845, 846, 847, 848, 849, 850, 854, 857], "nice": [0, 828, 845, 854], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 439, 505, 532, 612, 616, 617, 620, 622, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 745, 755, 756, 757, 774, 798, 804, 805, 806, 812, 813, 814, 815, 816, 817, 825, 827, 836, 848, 850, 852, 854, 855], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 423, 424, 426, 427, 429, 430, 431, 432, 433, 435, 439, 441, 442, 443, 444, 446, 447, 449, 456, 457, 460, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 532, 533, 534, 539, 540, 544, 549, 556, 563, 564, 601, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 707, 710, 711, 713, 717, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 764, 770, 784, 792, 796, 798, 801, 803, 805, 807, 808, 810, 811, 812, 813, 815, 816, 818, 820, 821, 823, 824, 825, 826, 828, 829, 833, 836, 839, 847, 848, 849, 855, 857], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 495, 496, 498, 499, 615, 629, 631, 724, 725, 726, 727, 735, 736, 737, 738, 762, 765, 777, 778, 779, 780, 781, 782, 783, 803, 804, 805, 807, 808, 809, 810, 811, 813, 815, 817, 820, 825, 826, 828, 829, 833, 835, 836, 839, 841, 845, 847, 852, 854, 860], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 416, 436, 480, 497, 509, 615, 616, 618, 622, 623, 625, 629, 633, 645, 671, 672, 675, 678, 700, 724, 725, 727, 728, 750, 762, 765, 770, 782, 791, 803, 804, 805, 806, 807, 808, 810, 813, 814, 815, 816, 817, 820, 821, 824, 825, 826, 829, 832, 833, 835, 837, 838, 839, 841, 852, 853, 854, 855, 856, 857, 858, 859, 860], "tone": [0, 4], "feel": [0, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 840, 847], "free": [0, 5, 40, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 800, 801, 802, 803, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 840, 847, 855, 857], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 417, 420, 422, 463, 464, 466, 469, 471, 473, 476, 497, 499, 500, 508, 512, 514, 515, 517, 518, 519, 545, 599, 615, 618, 620, 623, 627, 629, 630, 633, 634, 657, 678, 680, 704, 727, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 765, 777, 778, 781, 794, 798, 803, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 844, 847, 848, 851, 852, 854, 856, 859, 860, 861], "emoji": [0, 803], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 798, 803, 804, 805, 812, 813, 814, 819, 823, 828, 831, 837, 839, 840, 845, 847], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 421, 549, 567, 581, 603, 620, 621, 622, 627, 646, 647, 712, 757, 778, 798, 800, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 818, 819, 821, 822, 823, 824, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 844, 845, 847, 848, 849, 852, 854, 856], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 440, 625, 699, 802, 803, 804, 805, 807, 810, 811, 812, 817, 824, 825, 828, 829, 831, 836, 838, 840, 848], "thing": [0, 24, 38, 40, 791, 802, 803, 804, 805, 809, 825, 828, 831, 835, 836, 843, 844, 845, 854], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 421, 798, 817, 833, 836, 837, 838, 848], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 421, 426, 439, 442, 443, 444, 446, 447, 448, 449, 459, 460, 461, 468, 470, 482, 487, 491, 492, 493, 494, 495, 496, 497, 498, 499, 509, 510, 511, 512, 518, 540, 544, 563, 564, 574, 601, 602, 605, 607, 608, 609, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 681, 682, 683, 684, 685, 688, 689, 690, 691, 693, 694, 698, 699, 711, 712, 721, 722, 725, 726, 727, 729, 741, 742, 743, 744, 757, 762, 763, 764, 765, 770, 774, 775, 777, 778, 780, 781, 782, 783, 784, 791, 792, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 834, 835, 837, 844, 845, 851, 856, 857, 860, 861], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 417, 420, 421, 422, 444, 445, 449, 450, 451, 452, 456, 457, 458, 460, 467, 471, 472, 478, 480, 485, 486, 488, 489, 490, 493, 495, 496, 498, 501, 502, 507, 508, 509, 510, 511, 512, 513, 516, 517, 520, 525, 527, 528, 536, 539, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 558, 564, 567, 568, 577, 581, 585, 586, 587, 600, 603, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 710, 723, 725, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 765, 767, 770, 774, 775, 777, 778, 780, 781, 782, 783, 792, 798, 800, 801, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 858, 860, 861], "intern": [0, 9, 69, 100, 101, 102, 627, 704, 714, 715, 777, 778, 779, 780, 781, 783, 808, 811, 814, 816, 824, 826, 828, 830], "releas": [0, 41, 803, 804, 813, 829, 831, 839, 845, 854, 860], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 798, 825, 832, 834, 839, 841, 848, 849, 850], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 418, 419, 420, 421, 423, 424, 425, 426, 428, 431, 432, 433, 434, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 473, 475, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 501, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 559, 560, 563, 564, 565, 567, 573, 577, 578, 579, 581, 583, 585, 586, 587, 599, 600, 602, 603, 604, 605, 607, 608, 609, 610, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 710, 711, 712, 713, 714, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 784, 787, 788, 791, 792, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 472, 480, 803, 805, 807, 808, 810, 814, 820, 821, 825, 829, 835, 839, 841, 847, 852, 854, 861], "corner": [0, 52, 75, 368, 403, 804, 805, 818, 825], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 804, 805, 807, 813, 818, 821, 824, 825, 829, 833, 838, 847, 857, 860], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 462, 465, 473, 475, 484, 518, 615, 764, 791, 799, 803, 804, 805, 806, 812, 813, 815, 816, 818, 819, 820, 825, 828, 831, 832, 833, 835, 836, 837, 839, 847, 848, 854, 860], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 519, 623, 627, 674, 711, 712, 716, 721, 722, 798, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 824, 825, 826, 828, 829, 832, 833, 835, 837, 838, 840, 845, 847, 848, 849, 852, 854, 856, 858, 861], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 622, 627, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 715, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 792, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 843, 844, 847, 848, 849, 854, 855, 856, 858], "worri": [0, 26, 27, 803, 804, 819], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 616, 798, 800, 802, 803, 804, 805, 806, 807, 810, 812, 813, 814, 819, 820, 824, 826, 827, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 845, 849, 855, 856, 859], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 417, 418, 420, 421, 426, 427, 430, 431, 432, 433, 438, 441, 442, 443, 444, 445, 446, 447, 451, 452, 457, 458, 460, 465, 473, 474, 475, 476, 478, 480, 482, 484, 491, 492, 494, 495, 496, 498, 499, 500, 502, 509, 510, 511, 512, 516, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 567, 601, 602, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 774, 775, 777, 778, 780, 781, 782, 783, 791, 792, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 849, 850, 851, 852, 853, 854, 856, 860, 861], "access": [0, 23, 26, 27, 69, 798, 803, 804, 805, 812, 813, 819, 824, 825, 840, 848, 854, 856, 858], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 769, 770, 803, 804, 817, 818, 825, 832, 833, 834, 841, 846, 847, 849, 854, 860, 861], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 516, 525, 533, 534, 549, 563, 567, 581, 617, 620, 622, 623, 625, 644, 665, 666, 667, 696, 796, 798, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 826, 828, 831, 832, 833, 834, 835, 836, 837, 838, 839, 841, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 857, 858, 859, 860, 861], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 778, 779, 780, 798, 804, 807, 808, 809, 810, 811, 812, 813, 814, 818, 820, 822, 825, 826, 828, 829, 831, 835, 836, 838, 839, 845, 847, 848, 849, 854], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 460, 516, 539, 540, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 648, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 854], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 426, 431, 433, 438, 445, 457, 488, 496, 497, 502, 509, 556, 567, 600, 603, 612, 615, 616, 617, 620, 621, 622, 623, 625, 629, 648, 656, 663, 673, 677, 692, 696, 725, 726, 727, 735, 759, 762, 763, 764, 765, 770, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 855, 857, 858, 860, 861], "style": [0, 9, 40, 42, 371, 472, 630, 733, 805, 819, 854], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 414, 419, 421, 423, 425, 426, 431, 433, 435, 436, 438, 439, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 467, 471, 477, 478, 479, 480, 481, 482, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 568, 578, 579, 581, 583, 585, 586, 599, 600, 603, 605, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 655, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 716, 717, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 777, 778, 780, 781, 787, 792, 798, 799, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 838, 839, 840, 843, 847, 848, 849], "anyon": [0, 798, 799, 805, 812, 839, 844, 860], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 435, 444, 455, 479, 481, 485, 508, 510, 511, 513, 545, 615, 617, 618, 622, 623, 625, 630, 631, 633, 647, 648, 663, 664, 672, 673, 675, 677, 680, 688, 695, 733, 736, 737, 738, 743, 744, 747, 749, 750, 751, 752, 762, 765, 787, 803, 805, 807, 809, 810, 811, 812, 813, 814, 815, 816, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 837, 838, 839, 840, 843, 844, 845, 847, 849, 850, 853, 854, 856, 857, 860], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 421, 426, 461, 472, 480, 488, 489, 490, 509, 512, 515, 516, 517, 521, 531, 532, 533, 534, 535, 539, 543, 545, 547, 551, 553, 554, 572, 579, 586, 587, 594, 600, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 707, 710, 711, 713, 714, 721, 723, 727, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 757, 760, 764, 774, 775, 777, 778, 780, 781, 782, 783, 787, 791, 792, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 852, 853, 854, 855, 857, 860, 861], "question": [0, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 843, 844, 845], "ping": 0, "me": [0, 805], "guillermo": 0, "commun": [0, 41, 799, 803, 804, 805, 839, 844, 853, 854, 856], "ux": 0, "team": [0, 798, 799, 803, 804, 805, 825, 840, 856], "discord": [0, 41, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 488, 489, 490, 493, 532, 536, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 444, 573, 618, 620, 777, 803, 804, 807, 808, 809, 810, 813, 815, 817, 818, 819, 821, 822, 825, 826, 827, 828, 829, 836, 837, 838, 840, 847, 848], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 436, 549, 620, 757, 798, 803, 804, 805, 808, 813, 814, 815, 817, 819, 820, 822, 824, 825, 826, 827, 828, 829, 840, 854], "similar": [0, 17, 26, 27, 277, 618, 622, 648, 778, 801, 803, 804, 811, 812, 813, 814, 817, 818, 819, 821, 822, 823, 825, 826, 828, 829, 836, 839, 843, 848, 850, 851, 852, 853, 860], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 420, 421, 425, 433, 434, 436, 440, 441, 445, 446, 450, 451, 452, 462, 463, 464, 466, 472, 475, 479, 480, 488, 490, 495, 496, 497, 498, 499, 509, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 535, 541, 546, 550, 561, 562, 571, 581, 593, 603, 615, 617, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 645, 646, 648, 651, 653, 657, 658, 659, 663, 664, 666, 669, 670, 673, 674, 678, 679, 680, 685, 686, 689, 693, 695, 705, 710, 715, 716, 717, 725, 726, 727, 730, 731, 732, 733, 735, 737, 757, 759, 762, 763, 764, 765, 770, 777, 780, 783, 784, 791, 792, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 849, 850, 851, 854, 855, 856, 857, 858, 859, 860, 861], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 490, 493, 524, 545, 580, 617, 618, 620, 622, 627, 630, 645, 648, 710, 730, 731, 778, 803, 807, 813, 815, 817, 820, 821, 823, 828, 831, 852, 854, 859], "templat": [0, 798, 810, 816, 828], "help": [0, 15, 42, 44, 49, 522, 567, 620, 633, 751, 777, 798, 799, 800, 803, 804, 808, 809, 810, 811, 812, 813, 815, 819, 821, 822, 824, 825, 828, 829, 835, 836, 837, 840, 841, 850, 854, 856, 860], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 477, 523, 541, 562, 580, 616, 617, 620, 623, 627, 680, 706, 762, 777, 778, 791, 799, 802, 803, 804, 806, 807, 812, 813, 814, 818, 821, 822, 823, 824, 825, 826, 827, 828, 833, 834, 835, 836, 837, 841, 845, 848, 849, 854, 860], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 415, 417, 418, 426, 427, 430, 431, 432, 433, 441, 442, 443, 444, 446, 447, 457, 460, 465, 473, 474, 475, 476, 478, 480, 484, 488, 491, 492, 494, 495, 496, 498, 499, 509, 510, 511, 512, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 565, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 672, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 703, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 742, 743, 744, 747, 749, 750, 752, 753, 754, 777, 778, 798, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 815, 816, 822, 824, 825, 826, 827, 828, 829, 830, 831, 833, 835, 836, 837, 846, 849, 852, 854, 855, 857, 858, 859, 860, 861], "locat": [0, 42, 136, 380, 510, 615, 627, 629, 632, 708, 724, 741, 792, 803, 805, 809, 810, 814, 825, 826, 828, 829, 840, 852], "asset": [0, 841], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 787, 798, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 840, 844, 845, 848, 852, 854, 855, 856, 857, 860, 861], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 448, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 568, 578, 585, 586, 615, 616, 617, 618, 620, 625, 627, 632, 688, 689, 690, 692, 694, 695, 697, 699, 705, 740, 742, 770, 792, 804, 805, 807, 809, 812, 813, 816, 825, 826, 833, 839, 847, 848, 849], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 808, 813, 815, 816, 817, 821, 822, 824, 831, 836, 850, 860], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 477, 549, 563, 564, 567, 568, 590, 601, 602, 605, 607, 608, 609, 620, 621, 622, 626, 627, 645, 647, 701, 702, 703, 711, 712, 716, 721, 722, 770, 775, 781, 782, 787, 792, 798, 803, 804, 805, 806, 807, 808, 811, 812, 813, 815, 820, 822, 823, 825, 826, 828, 831, 833, 835, 836, 838, 839], "file": [0, 40, 41, 42, 53, 69, 576, 598, 620, 780, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 814, 816, 817, 818, 819, 821, 825, 826, 827, 828, 829, 833, 836, 840, 850, 853, 854, 855], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 414, 420, 482, 485, 522, 523, 618, 620, 623, 631, 657, 658, 662, 670, 671, 673, 674, 678, 735, 736, 737, 759, 763, 770, 780, 787, 788, 790, 803, 804, 805, 809, 810, 811, 812, 815, 816, 817, 820, 825, 826, 828, 829, 830, 831, 833, 836, 838, 854], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 455, 477, 481, 559, 616, 618, 620, 623, 658, 659, 664, 680, 757, 801, 803, 808, 810, 811, 815, 818, 826, 855, 860], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 822, 835, 854], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 798, 799, 801, 802, 803, 804, 807, 809, 810, 812, 816, 818, 819, 823, 825, 827, 829, 831, 836, 837, 839, 840, 844, 845, 847, 848, 854], "Then": [0, 45, 622, 648, 800, 803, 804, 805, 809, 810, 812, 818, 819, 822, 824, 828, 829, 839], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 462, 472, 477, 480, 496, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 548, 549, 563, 567, 581, 586, 590, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 782, 798, 801, 802, 805, 806, 807, 810, 811, 812, 814, 815, 816, 818, 820, 821, 825, 826, 828, 829, 831, 838, 841, 856], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 414, 485, 512, 536, 584, 612, 614, 616, 617, 618, 620, 623, 625, 627, 663, 688, 692, 693, 697, 710, 759, 792, 798, 803, 804, 808, 811, 812, 813, 814, 816, 817, 818, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 838, 839, 841, 847, 853, 854, 860], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 798, 804, 805, 807, 810, 812, 818, 821, 825, 828, 829, 830], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 616, 777, 782, 798, 803, 804, 805, 809, 813, 815, 816, 818, 819, 822, 834, 835, 836, 845, 854, 856], "edit": [0, 803, 804, 805, 819], "titl": [0, 9, 12, 14, 25, 41, 44, 798, 803, 805, 810], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 805, 816, 823, 824], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 615, 618, 623, 630, 631, 633, 634, 680, 731, 735, 736, 737, 738, 746, 747, 748, 749, 750, 751, 752, 753, 754, 825, 833, 840], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 616, 618, 623, 626, 629, 631, 678, 701, 702, 724, 735, 757, 783, 798, 802, 803, 804, 806, 807, 809, 810, 811, 812, 813, 814, 815, 817, 819, 821, 822, 824, 825, 828, 829, 831, 833, 835, 836, 837, 838, 839, 847, 851, 854, 856, 857, 860, 861], "render": [0, 810, 816], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 515, 516, 517, 518, 519, 623, 630, 664, 730, 803, 804, 805, 808, 811, 813, 815, 817, 819, 820, 826, 828, 831, 837, 839, 847, 848], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 516, 803, 805, 810, 814, 824, 827, 833, 836, 840], "behind": [0, 17, 26, 798, 806, 820, 828, 832, 834], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 450, 451, 457, 458, 460, 462, 463, 464, 471, 486, 531, 567, 620, 625, 686, 688, 689, 690, 692, 694, 695, 697, 699, 782, 784, 798, 803, 804, 807, 809, 814, 815, 816, 821, 822, 824, 825, 828, 831, 833, 839, 841, 843, 844, 852, 854, 857, 860], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 622, 647, 778, 812, 833], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 414, 420, 421, 425, 426, 428, 434, 440, 441, 450, 451, 452, 466, 472, 488, 489, 490, 493, 495, 496, 498, 499, 509, 517, 518, 519, 549, 563, 600, 615, 618, 620, 622, 623, 625, 627, 629, 630, 633, 634, 648, 653, 657, 658, 662, 664, 666, 668, 669, 670, 673, 674, 677, 679, 685, 687, 688, 690, 696, 700, 708, 715, 724, 725, 726, 727, 732, 733, 748, 750, 752, 753, 754, 762, 777, 781, 792, 798, 799, 801, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 840, 843, 844, 845, 847, 852, 861], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 418, 419, 420, 421, 423, 425, 435, 436, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 459, 461, 462, 463, 464, 468, 471, 472, 477, 478, 480, 481, 482, 483, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 500, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 522, 524, 525, 526, 527, 528, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 558, 560, 563, 564, 567, 569, 570, 573, 576, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 694, 695, 696, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 765, 770, 774, 775, 777, 778, 780, 781, 782, 787, 791, 792, 798, 799, 800, 801, 803, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 826, 828, 829, 831, 832, 833, 836, 837, 838, 840, 841, 842, 843, 845, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 804, 805], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 458, 467, 486, 631, 735, 736, 737, 738, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 836, 837, 849, 850, 857, 860], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 803, 804, 805, 807, 812], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 414, 466, 601, 602, 605, 607, 608, 609, 615, 621, 626, 701, 702, 703, 782, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 818, 823, 825, 828, 833, 836, 837, 838, 845, 854], "explan": [0, 1, 12, 14, 25, 803, 804, 805, 811, 816, 820, 825, 829, 835], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 413, 627, 715, 716, 798, 799, 801, 803, 804, 805, 806, 809, 810, 813, 815, 818, 819, 825, 826, 828, 829, 832, 836, 839, 850, 854, 855, 859, 861], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 455, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 559, 560, 563, 564, 567, 568, 573, 577, 578, 579, 581, 583, 585, 586, 599, 600, 601, 602, 603, 604, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 783, 791, 792, 803, 804, 805, 809, 810, 813, 814, 815, 816, 817, 820, 821, 825, 828, 831, 833, 837, 841, 847, 854], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 413, 418, 421, 431, 434, 435, 436, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 477, 478, 479, 480, 481, 482, 488, 490, 491, 492, 494, 495, 496, 497, 498, 499, 501, 502, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 556, 561, 562, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 670, 671, 672, 673, 677, 679, 680, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 709, 710, 711, 712, 717, 719, 720, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 774, 775, 777, 778, 779, 780, 781, 782, 783, 787, 788, 794, 798, 800, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 841, 843, 844, 845, 847, 848, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861], "text": [0, 4, 7, 9, 40, 52, 53, 369, 433, 803, 805, 810, 815, 816], "paragraph": [0, 1, 12, 14, 25, 810], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 417, 494, 527, 528, 615, 618, 620, 623, 627, 664, 680, 712, 778, 798, 804, 805, 806], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 573, 587, 620, 625, 627, 631, 692, 705, 735, 736, 737, 738, 762, 765, 791, 804, 805, 808, 809, 811, 812, 813, 814, 815, 817, 820, 821, 825, 828, 829, 831, 835, 836, 837, 839, 847, 851, 854, 855, 856, 860], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 759, 770, 786, 804, 810, 824, 825, 826, 840, 854], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 417, 420, 421, 422, 439, 463, 464, 488, 489, 490, 493, 510, 511, 578, 600, 616, 618, 620, 622, 623, 625, 629, 630, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 653, 657, 658, 664, 671, 672, 692, 693, 724, 730, 731, 735, 736, 737, 738, 743, 744, 749, 750, 751, 752, 759, 762, 764, 791, 798, 803, 805, 808, 809, 811, 812, 813, 815, 816, 817, 820, 821, 823, 825, 828, 831, 833, 847, 848, 849, 854], "toctre": [0, 810], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 426, 428, 433, 455, 462, 465, 473, 475, 477, 480, 481, 484, 500, 501, 510, 519, 522, 540, 542, 563, 564, 568, 613, 615, 617, 620, 625, 627, 630, 631, 632, 692, 696, 706, 707, 708, 711, 712, 713, 719, 721, 730, 731, 733, 735, 736, 737, 739, 741, 763, 778, 792, 794, 811, 812, 817, 821, 822, 823, 824, 826, 828, 835, 854], "rst": [0, 821], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 420, 425, 429, 436, 438, 463, 473, 514, 515, 516, 517, 518, 519, 532, 614, 618, 620, 623, 630, 632, 657, 658, 664, 673, 678, 730, 741, 762, 804, 805, 807, 810, 812, 813, 815, 818], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 531, 567, 615, 617, 618, 620, 623, 631, 632, 633, 671, 680, 735, 736, 737, 738, 739, 742, 746, 747, 748, 750, 762, 792, 802, 803, 804, 805, 807, 811, 812, 813, 817, 818, 821, 822, 823, 825, 826, 828, 831, 834, 835, 837, 845, 861], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 420, 516, 527, 528, 549, 620, 622, 623, 625, 627, 648, 657, 685, 688, 715, 763, 798, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 831, 833, 835, 836, 839, 840, 845, 847, 848, 850, 854, 855, 856, 860], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 445, 477, 559, 587, 618, 620, 622, 623, 628, 633, 648, 677, 723, 751, 759, 770, 778, 781, 798, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 819, 820, 821, 822, 824, 825, 828, 829, 831, 833, 835, 839, 840, 850, 852, 854], "grid": [0, 42, 48, 134, 310, 362, 615, 815, 828], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 529, 539, 540, 544, 578, 579, 615, 616, 617, 620, 627, 634, 709, 710, 711, 712, 716, 721, 722, 756, 798, 803, 811, 813, 833, 835, 836, 838, 847], "card": [0, 52, 75, 353, 365, 859], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 418, 440, 462, 601, 602, 615, 618, 621, 623, 625, 633, 634, 653, 655, 679, 692, 750, 752, 753, 754, 778, 798, 802, 803, 804, 805, 807, 808, 810, 812, 813, 820, 821, 822, 823, 824, 825, 826, 827, 828, 839, 840, 841, 854], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 621, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 714, 715, 716, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 777, 778, 787, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 840, 843, 844, 847, 848, 850, 851, 852, 853, 854, 855, 857, 859, 860, 861], "look": [0, 5, 17, 26, 27, 40, 42, 45, 798, 801, 803, 804, 805, 809, 810, 811, 813, 814, 815, 817, 818, 819, 820, 821, 825, 826, 828, 829, 830, 831, 833, 835, 837, 838, 840, 843, 847, 850, 854], "document": [0, 17, 26, 59, 242, 329, 330, 365, 600, 618, 620, 696, 799, 800, 802, 805, 810, 812, 813, 815, 824, 825, 826, 828, 836, 838], "sphinx": [0, 800, 810], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 618, 798, 806, 810, 812, 813, 824, 825, 826, 827, 831, 833, 835, 839, 843, 844, 850, 852, 854, 857, 858, 859], "websit": [0, 44, 804, 807, 844], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 451, 452, 472, 507, 516, 618, 623, 660, 668, 791, 792, 798, 803, 804, 805, 809, 811, 813, 814, 820, 824, 825, 831, 839, 840, 854, 856, 861], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 800, 804, 805, 809, 810, 818, 819], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 426, 428, 433, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 473, 476, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 763, 791, 810, 821, 828], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 627, 704, 714, 715, 803, 804, 805, 813, 819, 828, 837, 840], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 370, 371, 380, 445, 457, 516, 519, 549, 618, 620, 627, 704, 711, 714, 715, 716, 721, 764, 792, 798, 801, 803, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 829, 831, 833, 835, 836, 837, 838, 839, 841, 845, 855, 860, 861], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 488, 490, 601, 602, 607, 621, 626, 701, 702, 703, 759, 760, 778, 779, 780, 781, 791, 798, 800, 803, 804, 806, 808, 809, 812, 814, 815, 817, 819, 820, 822, 825, 826, 833, 834, 835, 836, 837, 838, 839, 840, 847, 848, 849, 852, 854, 855, 856, 857, 859, 860, 861], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 480, 615, 618, 623, 656, 677, 752, 799, 801, 803, 804, 806, 807, 811, 812, 813, 814, 815, 817, 818, 821, 824, 825, 826, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 847, 848, 849, 850, 852, 857, 859], "mind": [1, 11, 13, 17, 23, 26, 30, 803, 804, 808, 811, 828, 840, 848], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 790, 798, 801, 804, 812, 825, 839, 840, 854, 856], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 533, 617, 620, 623, 674, 763, 798, 804, 805, 811, 812, 813, 814, 816, 817, 825, 828, 831, 839, 840, 843, 847, 848, 849, 859, 860], "click": [1, 3, 42, 803, 804, 805, 812, 816, 818, 819, 834], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 806, 821, 828, 831, 854], "restart": [1, 3, 4, 5, 7, 40, 41, 804, 818], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 801, 804, 810, 819], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 420, 519, 622, 623, 627, 648, 651, 657, 658, 670, 712, 804, 805, 806, 826, 839], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 798, 800, 802, 804, 805, 807, 810, 812, 818, 819, 828, 840], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 798, 800, 805, 818, 840], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 601, 602, 615, 616, 618, 621, 623, 625, 633, 671, 672, 700, 750, 798, 800, 804, 805, 807, 810, 812, 813, 816, 818, 840, 848], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 798, 800, 802, 805, 807, 810, 812, 813, 815, 816, 818, 819, 827, 828, 840, 843], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 798, 800, 804, 805, 807, 810, 812, 813, 818, 840], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 798, 800, 804, 805, 810, 818, 840], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 441, 618, 775, 779, 780, 798, 836, 837, 841, 847, 848, 852, 853, 854, 855, 856, 857, 858, 860, 861], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 459, 532, 544, 615, 620, 622, 640, 641, 805, 812, 836, 837, 838, 840], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 434, 435, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 561, 563, 564, 568, 577, 578, 579, 580, 581, 583, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 767, 770, 774, 777, 778, 779, 780, 781, 782, 783, 787, 791, 792, 798, 801, 804, 805, 807, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 828, 831, 832, 833, 835, 836, 837, 838, 839, 844, 845, 847, 848, 849], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 429, 436, 441, 445, 455, 458, 467, 472, 478, 480, 481, 483, 485, 486, 495, 496, 497, 498, 499, 510, 511, 531, 539, 540, 542, 562, 573, 583, 600, 602, 603, 607, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 630, 631, 633, 634, 636, 644, 645, 653, 656, 673, 677, 678, 679, 686, 689, 692, 695, 701, 702, 703, 705, 716, 717, 718, 724, 725, 726, 727, 731, 734, 735, 737, 743, 744, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 777, 778, 779, 780, 782, 787, 792, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 841, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 860, 861], "repositori": [1, 3, 5, 7, 800, 803, 804, 805, 806, 807, 810, 818, 827, 845], "cd": [1, 3, 5, 7, 26, 43, 798, 800, 804, 805, 818, 840], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 447, 618, 798, 801, 802, 803, 804, 805, 807, 809, 810, 811, 812, 813, 815, 818, 819, 820, 822, 823, 824, 825, 826, 828, 829, 833, 834, 835, 836, 837, 838, 839, 847, 848, 849, 854, 855], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 488, 489, 490, 491, 492, 493, 494, 509, 512, 625, 628, 629, 686, 696, 723, 724, 726, 777, 778, 781, 798, 803, 824, 825, 831, 836, 847, 849, 852], "resnet": [2, 8, 15, 26, 847, 848], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 532, 618, 620, 622, 635, 636, 637, 638, 639, 642, 643, 644, 778, 798, 804, 818, 831, 833, 834, 836, 838, 840, 847, 848, 854], "classif": [2, 3, 7, 9, 15, 40, 798, 854], "acceler": [2, 15, 798, 813, 825, 852, 856, 857, 858, 859], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 618, 782, 798, 802, 803, 808, 813, 814, 817, 820, 821, 824, 825, 826, 831, 833, 838, 839, 841, 844, 845, 847, 848, 855, 857, 858, 860, 861], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 519, 549, 581, 600, 612, 618, 620, 631, 735, 736, 737, 738, 770, 774, 787, 798, 801, 802, 803, 804, 805, 807, 809, 813, 814, 817, 818, 820, 823, 824, 825, 826, 828, 829, 831, 833, 835, 838, 839, 844, 845, 847, 848, 849, 855, 857, 860, 861], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 450, 451, 452, 500, 565, 582, 584, 585, 586, 588, 615, 616, 617, 618, 620, 623, 627, 681, 705, 716, 717, 759, 787, 791, 798, 803, 808, 809, 822, 823, 825, 828, 830, 833, 839, 841, 845, 848, 852, 853, 860], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 435, 526, 562, 620, 762, 778, 798, 800, 803, 805, 807, 808, 809, 810, 811, 812, 813, 817, 819, 822, 824, 825, 826, 828, 830, 833, 835, 836, 837, 839, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 854, 856, 860], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 438, 623, 673, 800, 802, 810, 841, 856, 859], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 497, 543, 577, 615, 616, 620, 622, 625, 645, 692, 787, 788, 806, 809, 813, 814, 828, 833, 838, 848, 852, 853, 856, 858], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 810, 815], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 450, 451, 452, 458, 460, 462, 463, 464, 465, 467, 471, 477, 478, 486, 488, 490, 522, 542, 549, 567, 617, 618, 620, 623, 625, 629, 671, 688, 689, 690, 692, 694, 695, 697, 699, 727, 798, 803, 804, 805, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 835, 836, 837, 838, 839, 843, 845, 847, 848, 849, 850, 852, 854, 855, 857, 860], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 482, 486, 532, 542, 581, 603, 604, 606, 611, 612, 620, 621, 623, 624, 625, 666, 682, 688, 689, 690, 692, 694, 695, 697, 699, 774, 780, 787, 792, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 850, 854, 855, 859, 860], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 566, 575, 597, 620, 798, 803, 804, 805, 810, 812, 815, 819, 824, 825, 828, 830, 839, 847, 854], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 455, 480, 481, 612, 618, 774, 777, 778, 779, 780, 798, 799, 800, 801, 802, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 822, 823, 824, 825, 826, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 843, 845, 850, 854], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 461, 804, 807, 808, 816, 819, 820, 824, 825, 829, 833, 835, 838, 839, 843, 848, 852, 854, 858, 860, 861], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 798, 799, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 840, 852], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 798, 805, 825, 840], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 549, 551, 555, 562, 567, 584, 615, 616, 617, 620, 759, 770, 775, 787, 798, 801, 803, 813, 814, 817, 818, 821, 822, 824, 825, 826, 828, 833, 835, 836, 841, 847, 848, 849, 852, 861], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 512, 616, 618, 798, 802, 804, 806, 822, 848, 852, 854, 856, 857, 858], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 452, 615, 804, 805, 811, 812, 813, 815, 825, 828, 831, 832, 833, 855, 860], "major": [3, 4, 630, 733, 813, 814, 826, 828, 839, 844, 851, 854], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 798, 799, 802, 825, 832, 833, 834, 836, 837, 838, 842, 844, 845, 848, 850, 851, 852, 853, 854, 857, 859, 861], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 530, 546, 550, 581, 584, 616, 617, 620, 627, 706, 757, 759, 763, 770, 775, 782, 787, 788, 798, 801, 803, 804, 806, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 828, 829, 831, 832, 833, 835, 838, 839, 840, 841, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 855, 858], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 798, 800, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 817, 824, 825, 839, 844, 854, 860], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 460, 618, 780, 798, 799, 800, 803, 804, 805, 810, 812, 814, 817, 819, 821, 822, 823, 824, 828, 831, 836, 837, 838, 839, 840, 844, 848], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 413, 432, 461, 472, 549, 602, 605, 607, 608, 609, 616, 618, 620, 621, 622, 627, 628, 635, 636, 637, 638, 640, 642, 644, 645, 715, 723, 782, 787, 798, 803, 804, 805, 807, 809, 810, 812, 813, 815, 817, 820, 823, 826, 828, 832, 840, 847, 848, 854], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 419, 420, 421, 423, 427, 446, 456, 458, 462, 469, 472, 474, 475, 478, 485, 496, 498, 502, 510, 511, 512, 519, 524, 614, 615, 616, 617, 618, 620, 622, 623, 625, 626, 627, 630, 631, 632, 633, 648, 653, 656, 657, 658, 660, 663, 668, 670, 671, 673, 675, 677, 679, 692, 693, 696, 697, 701, 702, 703, 704, 705, 714, 715, 717, 729, 730, 731, 735, 736, 737, 740, 741, 743, 744, 759, 777, 778, 779, 780, 782, 787, 798, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 814, 815, 819, 820, 821, 822, 824, 825, 828, 831, 833, 835, 836, 838, 840, 843, 844, 847, 848, 852, 854, 855, 859], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 780, 798], "automat": [3, 5, 7, 24, 26, 27, 32, 798, 803, 804, 805, 806, 809, 810, 812, 813, 819, 821, 824, 828, 831, 832, 834, 837, 838, 840, 841, 845, 854, 857, 861], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 803, 804, 805, 807, 812, 817, 818, 825, 826, 828, 831, 840], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 617, 798, 804, 805, 812, 814, 835, 840, 852, 854, 857, 858, 859], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 444, 567, 620, 623, 666, 780, 798, 804, 805, 808, 811, 813, 821, 822, 823, 824, 825, 828, 829, 832, 834, 836, 838, 839, 841, 844, 847, 852, 853, 854, 855, 856, 857, 860, 861], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 775, 798, 838, 845, 848, 854], "exit": [3, 5, 7, 26, 27, 814], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 800, 804, 810, 828, 847, 848], "imagenet": [3, 13, 41, 43, 798], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 420, 515, 516, 523, 532, 536, 549, 559, 581, 615, 616, 617, 618, 620, 622, 623, 624, 627, 628, 643, 647, 651, 657, 668, 672, 673, 675, 682, 698, 705, 716, 723, 738, 745, 749, 750, 759, 760, 767, 768, 769, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 786, 787, 791, 796, 798, 803, 809, 810, 811, 813, 814, 815, 816, 820, 822, 823, 826, 827, 828, 831, 833, 834, 836, 837, 838, 841, 847, 848, 852, 854, 855, 861], "preprocess": [3, 7, 9, 26, 27, 40, 43, 847], "wget": [3, 5, 7, 40, 41, 44, 804], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 798, 816, 848, 855], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 812, 854], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 804, 807, 810], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 603, 621, 623, 625, 670, 699, 804, 805, 806, 823, 826], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 462, 483, 625, 627, 692, 707, 711, 712, 713, 716, 721, 722, 798, 799, 805, 806, 811, 812, 817, 829, 833, 835, 836, 845, 850], "categori": [3, 7, 803, 807, 808, 811, 813, 817, 825, 829, 832], "strip": [3, 7, 19, 29, 844], "readlin": [3, 7, 41], "cat": [3, 7, 41, 826, 831, 833, 838, 847, 848], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 798, 848], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 780, 786, 836], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 432, 435, 437, 440, 441, 442, 443, 444, 445, 446, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 491, 492, 493, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 563, 564, 577, 578, 579, 583, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 765, 778, 791, 792, 798, 801, 803, 804, 807, 808, 809, 811, 812, 813, 815, 817, 818, 821, 823, 826, 828, 833, 835, 836, 837, 838, 847, 848, 861], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 509, 544, 560, 617, 620, 626, 631, 702, 703, 738, 770, 787, 788, 798, 802, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 819, 822, 823, 824, 825, 826, 827, 828, 829, 833, 835, 836, 838, 839, 840, 844, 847, 848, 849, 850, 852, 854, 857, 858, 860], "torchvis": [3, 6, 7, 40, 845], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 414, 429, 622, 646, 762, 765, 778, 798, 822, 828, 838, 841, 847, 848, 852, 854, 855, 856], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 798, 848], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 509, 516, 525, 549, 578, 581, 585, 615, 616, 617, 618, 620, 633, 745, 757, 759, 770, 787, 791, 792, 798, 802, 803, 804, 805, 807, 808, 809, 812, 813, 814, 817, 818, 820, 824, 826, 828, 829, 831, 833, 835, 838, 840, 841, 843, 844, 847, 848, 849, 856, 861], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 415, 578, 615, 616, 618, 620, 627, 710, 759, 787, 791, 792, 798, 803, 808, 813, 814, 817, 820, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 841, 849], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 795, 804, 805, 830, 847, 848, 849], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 414, 433, 440, 472, 478, 509, 602, 607, 615, 621, 622, 623, 625, 626, 630, 631, 645, 647, 663, 698, 701, 702, 703, 730, 731, 735, 736, 778, 779, 780, 803, 804, 805, 807, 809, 811, 812, 813, 815, 818, 820, 821, 822, 824, 825, 828, 829, 833, 836, 838, 839, 840, 843, 844, 845, 847, 848, 852, 854, 855, 858, 859, 860], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 421, 435, 474, 475, 479, 517, 615, 622, 623, 627, 648, 662, 715, 716, 782, 804, 810, 812, 815, 828, 839, 860], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 804, 811, 825, 828, 847, 849, 854, 861], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 831], "256": [3, 5, 7, 51, 76, 278, 279, 579, 622, 637, 639, 762], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 798, 848], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 418, 429, 441, 442, 443, 444, 445, 446, 447, 457, 462, 472, 488, 490, 496, 515, 516, 533, 603, 604, 606, 611, 615, 617, 620, 621, 622, 623, 624, 625, 626, 627, 629, 633, 637, 639, 640, 641, 643, 644, 645, 655, 682, 683, 684, 692, 701, 702, 703, 710, 725, 726, 762, 764, 765, 777, 778, 781, 798, 804, 805, 806, 807, 809, 811, 813, 814, 815, 821, 823, 824, 825, 828, 829, 831, 833, 835, 836, 837, 838, 839, 841, 848, 849, 851, 854], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 413, 416, 417, 418, 420, 421, 422, 425, 426, 428, 429, 430, 433, 434, 435, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 455, 457, 458, 459, 462, 463, 464, 465, 466, 467, 468, 469, 471, 472, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 526, 527, 528, 531, 532, 533, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 559, 561, 563, 564, 568, 573, 577, 578, 579, 581, 583, 585, 586, 595, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 661, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 767, 774, 775, 777, 778, 779, 780, 781, 782, 783, 784, 787, 791, 792, 798, 801, 804, 805, 807, 809, 811, 812, 813, 814, 815, 816, 817, 818, 823, 824, 825, 826, 828, 829, 833, 835, 836, 837, 838, 839, 847, 848], "485": [3, 7, 40], "456": [3, 7, 40, 828], "406": [3, 7, 40, 52, 75, 389, 527, 620], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 496, 622, 629, 633, 637, 639, 640, 641, 643, 644, 725, 726, 798, 815, 849], "229": [3, 7, 40, 274, 618], "225": [3, 7, 40, 42, 229, 618], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 798, 836, 848], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 429, 435, 441, 442, 443, 444, 445, 446, 448, 450, 451, 452, 455, 456, 457, 458, 459, 462, 463, 464, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 485, 486, 487, 491, 492, 493, 494, 497, 499, 500, 502, 507, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 545, 547, 548, 549, 556, 563, 564, 578, 579, 580, 581, 583, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 642, 643, 644, 645, 646, 647, 651, 652, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 703, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 765, 777, 778, 782, 791, 792, 798, 801, 803, 804, 809, 810, 811, 812, 813, 815, 818, 823, 826, 828, 831, 833, 835, 836, 837, 838, 845, 847, 854, 860, 861], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 804, 810, 812, 817, 828, 836], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 414, 462, 472, 474, 475, 615, 618, 792, 798, 804, 805, 809, 812, 818, 824, 829, 831, 832, 839, 852, 857], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 417, 442, 480, 612, 615, 616, 618, 623, 630, 631, 633, 634, 653, 666, 669, 672, 679, 680, 731, 735, 736, 737, 738, 746, 747, 748, 749, 750, 751, 752, 753, 754, 774, 798, 799, 801, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 818, 819, 820, 821, 825, 826, 828, 831, 833, 835, 836, 839, 843, 850], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 413, 416, 419, 420, 422, 423, 425, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 462, 463, 466, 467, 468, 471, 472, 477, 478, 479, 480, 481, 482, 486, 487, 492, 493, 494, 497, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 516, 519, 525, 526, 527, 528, 531, 532, 533, 534, 536, 539, 540, 542, 545, 547, 548, 549, 563, 564, 568, 578, 579, 580, 581, 583, 587, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 638, 640, 641, 642, 643, 644, 645, 646, 647, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 667, 668, 669, 670, 671, 673, 674, 675, 677, 678, 679, 682, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 778, 791, 792, 798, 803, 804, 805, 807, 809, 811, 812, 813, 815, 817, 818, 820, 823, 826, 828, 835, 836, 837, 848], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 617, 814], "set_soft_device_mod": [3, 9, 213, 617, 814], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 459, 460, 462, 463, 464, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 501, 502, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 563, 564, 565, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 588, 593, 594, 596, 597, 599, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 778, 779, 780, 781, 782, 784, 787, 789, 791, 792, 796, 798, 801, 804, 809, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 824, 825, 826, 828, 830, 831, 833, 836, 837, 838, 847, 848], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 525, 549, 616, 617, 620, 626, 702, 703, 787, 798, 807, 809, 813, 814, 821, 822, 823, 833, 835, 838, 847, 848, 849], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 369, 371, 374, 378, 417, 420, 421, 422, 423, 424, 428, 432, 434, 437, 440, 462, 463, 464, 469, 470, 482, 488, 489, 490, 493, 502, 615, 618, 622, 623, 625, 626, 630, 631, 632, 636, 637, 638, 639, 640, 641, 644, 657, 658, 664, 673, 674, 678, 680, 689, 692, 701, 702, 733, 735, 736, 737, 738, 739, 741, 742, 759, 781, 783, 792, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 825, 826, 827, 828, 829, 830, 831, 836, 838, 839, 843, 850, 853, 854, 855, 857, 860], "quick": [3, 15, 27, 805, 806, 826, 837], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 432, 516, 567, 573, 587, 603, 604, 606, 614, 617, 620, 621, 623, 627, 671, 704, 710, 714, 715, 759, 770, 778, 779, 780, 782, 787, 792, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 839, 844, 847, 848, 849, 854, 855, 858], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 780, 798, 833, 838, 846], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 414, 423, 435, 455, 462, 481, 510, 511, 614, 615, 618, 622, 623, 625, 626, 648, 663, 667, 692, 703, 743, 762, 770, 777, 778, 791, 798, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 824, 825, 826, 828, 831, 833, 835, 837, 838, 839, 840, 845, 847, 848, 851, 852, 860], "moment": [3, 52, 54, 75, 77, 369, 424, 601, 602, 607, 621, 782, 803, 809, 839, 847, 848], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 415, 417, 426, 433, 446, 450, 451, 452, 456, 462, 463, 464, 469, 471, 476, 479, 488, 489, 490, 495, 500, 510, 511, 514, 515, 516, 517, 518, 519, 521, 559, 563, 564, 566, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 628, 630, 631, 633, 636, 637, 638, 639, 640, 641, 644, 660, 663, 664, 668, 670, 679, 680, 688, 689, 690, 693, 695, 699, 723, 730, 733, 735, 736, 737, 738, 743, 745, 762, 764, 781, 784, 787, 792, 795, 798, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 830, 831, 832, 835, 836, 838, 839, 840, 841, 844, 845, 848, 854, 855, 857, 860], "cost": [3, 54, 77, 601, 602, 605, 607, 608, 609, 621, 626, 701, 702, 703, 792, 813, 831, 852], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 587, 614, 615, 617, 620, 757, 759, 774, 775, 778, 779, 780, 784, 787, 791, 796, 798, 808, 813, 814, 817, 823, 824, 825, 831, 833, 837, 847, 848, 849], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 501, 502, 532, 543, 547, 548, 578, 579, 615, 620, 622, 631, 632, 636, 736, 740, 817, 822, 825, 826], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 495, 496, 498, 499, 615, 617, 623, 629, 674, 724, 725, 726, 727, 777, 778, 779, 780, 781, 782, 783, 798, 833, 839, 841, 859], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 413, 416, 419, 430, 441, 442, 443, 444, 446, 447, 450, 451, 452, 456, 458, 462, 467, 468, 471, 472, 477, 478, 480, 481, 483, 486, 487, 497, 499, 500, 507, 510, 511, 513, 514, 519, 525, 527, 528, 532, 533, 536, 547, 548, 549, 556, 563, 564, 578, 581, 601, 602, 604, 605, 606, 607, 608, 609, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 639, 641, 643, 644, 645, 646, 651, 653, 654, 655, 656, 658, 659, 660, 663, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 682, 683, 684, 685, 688, 689, 694, 696, 697, 699, 704, 705, 712, 716, 723, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 743, 744, 745, 747, 749, 751, 752, 762, 804, 805, 809, 811, 812, 815, 821, 824, 828], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 417, 418, 419, 421, 423, 426, 427, 430, 431, 432, 433, 435, 436, 439, 441, 442, 443, 444, 445, 446, 447, 448, 455, 456, 457, 460, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 526, 527, 528, 532, 533, 534, 536, 540, 549, 556, 563, 564, 565, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 762, 777, 778, 791, 792, 798, 800, 804, 805, 806, 807, 808, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 833, 835, 837, 838, 839, 841, 847, 848, 855], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 442, 612, 622, 648, 651, 774, 798], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 370, 371, 374, 375, 380, 442, 462, 488, 490, 495, 515, 516, 549, 614, 616, 617, 618, 620, 626, 701, 702, 757, 759, 763, 770, 775, 779, 780, 782, 783, 787, 791, 796, 798, 801, 803, 805, 807, 808, 809, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 831, 839, 847, 848, 849, 852], "argsort": [3, 7, 64, 87, 632, 741, 825], "descend": [3, 7, 64, 87, 623, 632, 673, 674, 739, 742], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 482, 532, 620, 686, 798, 804, 805, 813, 818, 825, 827, 828, 831, 836, 837, 854, 858], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 495, 498, 624, 682, 684, 774, 798, 847], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 540, 542, 620, 861], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 416, 419, 421, 423, 424, 432, 439, 441, 442, 443, 444, 445, 446, 447, 453, 455, 457, 468, 472, 477, 478, 480, 481, 482, 487, 491, 492, 494, 509, 510, 511, 512, 519, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 559, 560, 562, 563, 564, 568, 569, 570, 573, 576, 577, 578, 579, 581, 583, 585, 586, 587, 591, 592, 595, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 787, 791, 792, 796, 798, 804, 805, 811, 813, 815, 826, 828, 830, 833, 835, 836, 837, 847, 849], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 421, 440, 442, 450, 451, 452, 455, 458, 460, 462, 463, 464, 467, 471, 477, 478, 480, 481, 482, 485, 486, 500, 501, 502, 524, 539, 540, 542, 563, 564, 568, 600, 603, 604, 615, 618, 620, 621, 622, 623, 625, 627, 628, 629, 630, 631, 632, 636, 638, 639, 640, 641, 644, 648, 666, 680, 688, 689, 690, 692, 693, 694, 695, 697, 699, 704, 707, 709, 711, 712, 713, 715, 719, 720, 721, 722, 723, 724, 730, 731, 732, 733, 735, 737, 739, 741, 742, 759, 760, 762, 764, 778, 784, 791, 792, 794, 804, 812, 820, 823, 825, 838, 847], "to_list": [3, 7, 53, 76, 620], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 546, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 559, 561, 562, 563, 564, 565, 567, 568, 574, 575, 577, 578, 579, 580, 581, 583, 584, 585, 586, 587, 588, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 710, 711, 712, 713, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 764, 770, 777, 778, 779, 780, 783, 787, 791, 792, 794, 798, 801, 803, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 818, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 841, 848, 849, 852, 853, 854, 856, 860, 861], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 617, 804, 814, 818, 821, 835, 837], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 510, 601, 612, 618, 621, 623, 633, 660, 668, 726, 745], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 525, 535, 537, 538, 545, 551, 552, 553, 554, 555, 571, 581, 593, 599, 612, 616, 617, 620, 623, 627, 658, 659, 666, 704, 714, 715, 716, 757, 764, 791, 792, 798, 800, 802, 803, 804, 805, 807, 811, 812, 814, 815, 817, 822, 824, 825, 826, 827, 828, 829, 830, 832, 833, 835, 836, 837, 840, 847], "confirm": [3, 41, 803], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 413, 420, 425, 426, 434, 435, 436, 437, 438, 440, 442, 445, 455, 457, 472, 480, 481, 488, 490, 500, 502, 507, 508, 509, 510, 511, 512, 513, 519, 556, 610, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 629, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 651, 652, 653, 654, 656, 657, 658, 659, 661, 663, 665, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 686, 689, 690, 692, 693, 695, 696, 701, 702, 717, 727, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 757, 762, 763, 764, 770, 778, 791, 798, 804, 805, 808, 809, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 843, 845, 847, 849, 851, 853, 860, 861], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 413, 416, 419, 427, 441, 442, 443, 445, 446, 447, 448, 450, 451, 452, 456, 458, 462, 467, 468, 477, 478, 481, 482, 483, 486, 487, 497, 499, 511, 514, 515, 519, 525, 526, 528, 532, 533, 536, 539, 543, 547, 548, 549, 551, 552, 555, 558, 563, 564, 568, 578, 579, 580, 581, 601, 604, 606, 608, 609, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 636, 640, 641, 643, 644, 645, 646, 648, 654, 655, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 689, 696, 697, 699, 705, 712, 716, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 744, 745, 747, 749, 751, 752, 762, 765, 778, 804, 811, 812, 815, 828, 832, 836], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 426, 507, 509, 512, 601, 602, 605, 607, 608, 609, 621, 622, 624, 626, 646, 647, 648, 651, 682, 703, 764, 777, 778, 780, 782, 798, 811, 821, 828, 833, 837, 838, 853], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 622, 648, 651, 778, 836], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 413, 427, 441, 443, 445, 446, 450, 451, 452, 458, 462, 467, 477, 478, 479, 480, 482, 486, 497, 499, 502, 511, 528, 532, 533, 534, 536, 539, 547, 548, 551, 552, 555, 563, 564, 578, 580, 601, 602, 603, 607, 608, 612, 615, 616, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 632, 633, 636, 637, 638, 644, 645, 646, 653, 654, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 673, 674, 675, 677, 678, 679, 685, 689, 693, 694, 696, 697, 699, 704, 705, 710, 712, 715, 716, 724, 725, 726, 727, 729, 734, 735, 737, 739, 740, 742, 744, 745, 747, 749, 751, 752, 762, 782, 811, 813, 815, 823, 828, 836, 837, 850], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 462, 615, 622, 635, 642, 643, 647, 764, 778, 798, 813, 825, 826, 831], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 414, 416, 423, 424, 425, 426, 429, 431, 433, 434, 437, 439, 440, 442, 445, 446, 462, 465, 470, 473, 474, 475, 476, 479, 484, 515, 520, 563, 564, 615, 616, 618, 620, 622, 623, 624, 625, 629, 645, 647, 648, 662, 675, 682, 692, 694, 724, 778, 787, 792, 798, 808, 809, 813, 814, 818, 820, 821, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 839, 841, 843, 847, 848, 849, 851, 852, 855, 857, 858, 861], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 460, 495, 496, 498, 499, 523, 537, 538, 615, 620, 629, 724, 725, 726, 727, 757, 759, 760, 775, 777, 778, 779, 780, 781, 782, 783, 784, 798, 805, 806, 809, 813, 817, 821, 822, 826, 828, 829, 831, 833, 838, 839, 840, 841, 844, 853, 854, 856, 857, 858, 859], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 604, 611, 621, 836], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 826, 833], "great": [3, 5, 798, 805, 828, 833, 835, 844, 845, 860], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 417, 418, 419, 421, 422, 423, 432, 435, 446, 462, 463, 464, 466, 469, 471, 472, 478, 480, 482, 485, 500, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 525, 526, 527, 528, 531, 532, 533, 534, 535, 539, 540, 543, 545, 547, 548, 549, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 651, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 670, 671, 672, 673, 674, 675, 677, 678, 679, 682, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 804, 813, 815, 825, 828, 831, 833, 844, 845, 847, 854, 857], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 509, 764, 778, 792, 798, 803, 804, 805, 808, 810, 811, 813, 814, 815, 816, 821, 824, 825, 828, 829, 831, 835, 837, 838, 839, 841, 843, 847, 848, 853, 854, 855, 856], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 618, 625, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 705, 716, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 798, 803, 804, 805, 807, 809, 810, 811, 812, 813, 815, 816, 818, 819, 825, 826, 827, 828, 829, 830, 831, 833, 837, 839, 840, 845, 847, 857, 860], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 419, 421, 516, 525, 537, 538, 546, 549, 550, 560, 567, 581, 584, 615, 616, 617, 620, 623, 673, 757, 759, 760, 762, 763, 764, 767, 769, 770, 775, 779, 780, 782, 786, 787, 798, 801, 802, 804, 805, 806, 807, 808, 812, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 828, 830, 831, 832, 834, 835, 838, 841, 843, 847, 848, 849, 854, 857, 860, 861], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 539, 540, 618, 620, 623, 633, 677, 747, 749, 750, 751, 752, 798, 803, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 845, 847, 848, 861], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 429, 436, 438, 623, 627, 652, 658, 659, 673, 712, 798, 799, 804, 805, 806, 811, 812, 819, 822, 824, 825, 826, 827, 828, 829, 831, 837, 839, 844], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 434, 440, 456, 463, 464, 478, 510, 511, 519, 539, 540, 612, 616, 618, 620, 622, 623, 625, 633, 645, 646, 660, 671, 686, 696, 743, 744, 749, 751, 752, 757, 762, 770, 779, 780, 798, 801, 802, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 848, 849, 851, 852, 853, 854, 857, 860, 861], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 798, 799, 801, 803, 804, 805, 810, 815, 818, 819, 823, 824, 836, 840, 845, 847, 848], "try": [3, 18, 28, 38, 41, 45, 69, 587, 620, 777, 787, 798, 803, 804, 805, 807, 808, 811, 812, 813, 817, 819, 824, 826, 833, 835, 839, 842, 844, 845, 849], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 413, 452, 455, 458, 462, 467, 477, 478, 486, 507, 510, 511, 514, 516, 519, 532, 533, 534, 536, 539, 540, 542, 547, 548, 556, 564, 568, 573, 578, 580, 592, 595, 607, 615, 618, 620, 621, 622, 623, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 639, 645, 654, 656, 660, 661, 663, 664, 665, 668, 673, 674, 675, 677, 679, 689, 694, 695, 696, 697, 699, 710, 712, 715, 716, 723, 724, 725, 726, 727, 733, 735, 741, 743, 744, 745, 746, 748, 749, 751, 752, 762, 764, 782, 798, 801, 804, 807, 811, 812, 813, 815, 818, 823, 826, 828, 833, 835, 836, 844, 849, 859], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 775, 798, 808, 813, 814, 820, 824, 825, 828, 829, 831, 833, 838, 839, 841, 847, 848, 849, 854], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 420, 617, 623, 629, 657, 658, 659, 673, 724, 798, 803, 804, 805, 811, 812, 813, 814, 815, 818, 819, 824, 825, 828, 831, 833, 836, 839, 840, 845, 847], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 414, 418, 422, 425, 445, 446, 462, 472, 475, 482, 509, 514, 515, 516, 517, 518, 519, 521, 525, 532, 544, 549, 565, 566, 567, 569, 570, 571, 572, 573, 574, 575, 576, 581, 589, 612, 614, 615, 616, 617, 618, 620, 622, 623, 627, 629, 630, 632, 633, 645, 651, 653, 664, 666, 669, 672, 673, 704, 711, 714, 715, 716, 721, 722, 728, 730, 731, 735, 737, 738, 739, 742, 750, 752, 759, 762, 763, 764, 765, 770, 777, 778, 780, 782, 787, 792, 795, 798, 799, 805, 806, 807, 808, 810, 811, 812, 813, 814, 815, 817, 819, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 836, 843, 846, 847, 848, 852, 853, 854, 855, 856, 858, 861], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 764, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 800, 802, 803, 804, 805, 806, 807, 808, 810, 811, 812, 813, 815, 817, 818, 819, 822, 825, 826, 827, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 843, 844, 847, 859, 860], "post": [3, 5, 40, 60, 83, 628, 723, 804, 818, 823, 838, 840], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 617, 799, 804, 805, 810, 811, 812, 818, 819, 821, 823, 825, 826, 827, 828, 831, 833, 838, 844, 845, 847, 852, 853, 854, 857, 858, 860, 861], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 413, 422, 455, 456, 458, 462, 467, 469, 486, 510, 511, 526, 532, 533, 539, 548, 564, 618, 620, 622, 623, 624, 625, 627, 629, 630, 631, 633, 636, 637, 645, 646, 656, 659, 660, 661, 663, 664, 668, 672, 673, 674, 675, 677, 679, 682, 684, 689, 694, 695, 697, 699, 710, 712, 722, 725, 726, 727, 734, 735, 743, 744, 745, 752, 811, 812, 813, 815, 823], "st": [3, 4, 6, 762, 807, 826, 828], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 615, 798, 821, 826, 831, 838, 848, 855], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 444, 449, 457, 458, 459, 462, 463, 464, 467, 472, 477, 478, 480, 481, 482, 485, 486, 491, 492, 494, 502, 507, 510, 511, 512, 514, 515, 516, 517, 518, 519, 532, 539, 600, 612, 615, 617, 618, 620, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 644, 653, 656, 664, 677, 679, 680, 682, 683, 684, 686, 687, 688, 689, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 729, 730, 731, 735, 737, 739, 740, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 774, 778, 779, 784, 811, 813, 815, 817, 820, 821, 824, 825, 828, 831, 833, 835, 838], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 463, 464, 478, 632, 742, 803, 808, 810, 825, 831, 837, 838, 850, 854, 855, 858], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 420, 421, 422, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 452, 453, 455, 457, 460, 465, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 527, 528, 532, 533, 534, 536, 539, 540, 543, 549, 556, 563, 564, 574, 582, 584, 596, 600, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 739, 740, 742, 743, 744, 745, 747, 749, 750, 752, 753, 754, 759, 762, 764, 777, 778, 781, 791, 798, 805, 811, 813, 814, 815, 816, 817, 818, 820, 824, 825, 826, 828, 829, 830, 833, 835, 836, 837, 838, 847, 848], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 414, 435, 445, 456, 480, 495, 496, 497, 498, 499, 509, 510, 511, 512, 515, 518, 519, 536, 537, 538, 540, 549, 558, 585, 615, 616, 617, 618, 620, 622, 623, 626, 629, 630, 632, 633, 634, 638, 645, 664, 680, 702, 703, 725, 726, 727, 730, 731, 732, 741, 742, 743, 744, 749, 751, 753, 754, 757, 759, 762, 764, 765, 777, 778, 779, 780, 781, 783, 798, 801, 807, 809, 813, 814, 815, 817, 818, 821, 822, 824, 825, 826, 828, 829, 833, 835, 848], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 500, 510, 511, 512, 540, 549, 585, 615, 616, 617, 618, 620, 629, 630, 633, 725, 726, 727, 731, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 435, 445, 512, 549, 585, 615, 616, 618, 620, 622, 623, 626, 638, 640, 641, 644, 671, 673, 674, 680, 702, 703, 759, 762, 763, 798, 813, 815, 826, 828, 829, 848, 849], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 631, 735, 736, 737, 738, 798, 801, 803, 804, 805, 808, 810, 811, 812, 813, 814, 817, 818, 819, 820, 821, 824, 825, 826, 827, 828, 831, 835, 836, 837, 839, 843, 847, 848, 849, 854, 859], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 445, 523, 616, 618, 620, 624, 668, 682, 777, 778, 798, 804, 805, 807, 813, 814, 817, 819, 822, 824, 826, 828, 831, 839, 840, 845, 847, 848, 849], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 542, 568, 615, 617, 620, 623, 627, 660, 665, 717, 778, 811, 821, 822, 825, 826, 829, 831, 835, 836, 839, 841, 843, 845], "had": [3, 811, 812, 824, 829, 833, 854, 855], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 615, 616, 798, 803, 804, 805, 809, 811, 813, 814, 817, 819, 821, 824, 825, 828, 833, 835, 838, 841, 844, 846, 847, 848, 854, 860], "postprocess": 3, "routin": [3, 812, 824, 825, 831, 839, 854], "feed": [3, 208, 617, 847, 854, 855], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 456, 457, 465, 521, 522, 615, 616, 618, 620, 629, 633, 686, 696, 727, 750, 752, 764, 798, 801, 803, 804, 805, 807, 808, 811, 812, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 840, 841, 844, 847, 848, 850, 852, 853, 854, 860, 861], "carefulli": [3, 273, 618, 777, 825, 852, 857], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 798, 804, 808, 812, 818, 825, 831, 836, 837, 838, 839, 844, 854, 860, 861], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 416, 417, 418, 419, 420, 423, 424, 426, 427, 428, 430, 431, 432, 433, 435, 439, 441, 442, 443, 444, 446, 447, 453, 455, 456, 457, 459, 460, 462, 463, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 523, 527, 528, 532, 533, 534, 536, 539, 540, 549, 559, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 770, 774, 775, 777, 778, 780, 781, 782, 783, 798, 799, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 821, 823, 825, 826, 827, 828, 829, 831, 832, 833, 834, 835, 836, 837, 838, 840, 843, 844, 845, 847, 848, 854, 861], "quickest": 3, "particular": [3, 26, 27, 263, 618, 763, 804, 805, 807, 809, 812, 813, 815, 822, 824, 825, 828, 829, 850, 854, 860], "hardwar": [3, 40, 97, 101, 798, 804, 831, 844, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860], "again": [3, 5, 20, 21, 29, 30, 31, 32, 623, 671, 805, 808, 809, 810, 811, 815, 817, 819, 824, 825, 828, 829, 831, 836, 838, 839, 844, 845, 859, 860], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 556, 620, 828, 843, 857], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 456, 464, 544, 556, 620, 622, 645, 798, 799, 801, 803, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 839, 843, 844, 845, 847, 855, 860, 861], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 413, 455, 456, 458, 462, 467, 486, 499, 510, 516, 517, 518, 528, 532, 533, 564, 570, 578, 592, 618, 620, 622, 623, 625, 627, 628, 629, 630, 631, 633, 636, 640, 645, 646, 656, 658, 660, 664, 668, 672, 674, 675, 677, 679, 689, 693, 695, 697, 699, 716, 723, 725, 726, 727, 734, 735, 743, 744, 745, 749, 751, 762, 804, 809, 811, 813, 815, 823], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 461, 509, 534, 620, 625, 626, 698, 702, 703, 791, 805, 808, 809, 815, 816, 824, 828], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 77, 182, 183, 184, 185, 186, 357, 367, 588, 590, 591, 592, 593, 595, 596, 598, 602, 607, 616, 620, 621, 777, 795, 804, 805, 807, 809, 812, 814, 820, 825, 828, 831, 838, 839, 857], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 551, 552, 555, 566, 575, 589, 597, 620, 623, 759, 770, 780, 782, 798, 807, 811, 813, 825, 830, 831, 833, 838, 839, 846, 847, 848, 855, 860], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 413, 456, 463, 464, 465, 472, 510, 511, 617, 622, 623, 625, 626, 627, 631, 633, 635, 636, 637, 638, 640, 642, 644, 647, 648, 651, 663, 680, 686, 701, 702, 716, 735, 736, 737, 738, 743, 744, 749, 751, 778, 787, 791, 803, 804, 805, 807, 808, 810, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 828, 833, 836, 839, 847, 848, 854], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 413, 455, 456, 458, 462, 467, 486, 499, 510, 511, 527, 528, 532, 533, 548, 570, 578, 601, 612, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 630, 631, 633, 636, 637, 645, 646, 656, 660, 668, 672, 674, 677, 699, 703, 716, 725, 726, 727, 734, 735, 743, 744, 745, 811, 813, 815, 825], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 413, 417, 423, 424, 456, 458, 462, 467, 486, 510, 578, 601, 616, 618, 620, 621, 622, 623, 625, 627, 631, 633, 636, 637, 639, 641, 643, 645, 656, 658, 660, 668, 675, 677, 679, 699, 716, 725, 726, 727, 735, 744, 745, 811, 815, 828], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 509, 615, 808, 810], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 520, 567, 590, 618, 620, 631, 735, 736, 737, 738, 803, 810, 811, 812, 813, 824, 825, 826, 828, 831, 833, 839, 851], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 519, 534, 547, 578, 612, 615, 618, 620, 623, 627, 629, 636, 661, 668, 712, 727], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 450, 451, 458, 460, 462, 463, 464, 471, 486, 516, 562, 567, 590, 615, 617, 620, 622, 625, 647, 688, 689, 690, 692, 694, 695, 697, 699, 792, 812, 813, 814, 824, 825, 831, 833, 839, 847, 854, 856, 857, 858], "temporari": [3, 5, 576, 598, 620, 792, 813, 830], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 369, 440, 622, 648, 798, 801, 804, 805, 807, 813, 819, 828, 829], "until": [3, 5, 792, 805, 824, 833, 839, 844, 847, 861], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 455, 481, 612, 617, 618, 623, 633, 677, 749, 751, 774, 782, 799, 806, 811, 812, 813, 819, 820, 821, 823, 824, 825, 826, 827, 828, 830, 831, 837, 851, 861], "o": [3, 5, 39, 40, 41, 42, 44, 559, 620, 622, 648, 798, 804, 806, 812, 833, 840], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 798, 799, 805, 840, 854, 856], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 800, 802, 804, 810, 852, 856, 858], "jit": [3, 6, 8, 26, 29, 833, 839, 847, 854], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 413, 419, 458, 462, 467, 486, 510, 528, 532, 533, 536, 547, 548, 573, 578, 595, 615, 616, 618, 620, 622, 623, 625, 627, 629, 630, 631, 633, 636, 646, 656, 659, 660, 661, 668, 674, 675, 693, 699, 704, 716, 725, 726, 733, 735, 743, 744, 745, 759, 804, 812, 815, 823, 857], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 437, 440, 480, 509, 532, 601, 602, 616, 618, 620, 621, 623, 625, 627, 633, 671, 672, 674, 700, 711, 750, 805, 816, 824, 836], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 421, 431, 465, 473, 475, 480, 484, 510, 511, 512, 532, 600, 615, 618, 620, 631, 633, 735, 743, 744, 749, 751, 762, 764, 765, 777, 798, 803, 813, 817, 821, 828, 833, 836, 837, 838, 854, 860], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 413, 445, 462, 510, 516, 533, 536, 558, 578, 579, 611, 616, 618, 620, 621, 622, 623, 625, 627, 629, 630, 633, 644, 646, 652, 656, 659, 660, 668, 670, 674, 699, 712, 725, 726, 727, 734, 744, 745, 762, 765, 798, 805, 813, 815, 836], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 444, 445, 631, 735, 737, 764, 774, 804, 805, 807, 815, 833], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 420, 425, 433, 434, 440, 462, 480, 616, 618, 622, 623, 625, 631, 633, 648, 657, 658, 670, 671, 673, 692, 696, 736, 738, 747, 778, 792, 801, 803, 804, 805, 808, 813, 815, 816, 819, 824, 825, 826, 828, 829, 831], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 618, 622, 648, 803, 804, 805, 813, 817, 819, 823, 824, 826, 828, 829, 831, 833, 847, 854, 855, 860], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 562, 563, 564, 567, 568, 571, 573, 575, 578, 579, 580, 581, 583, 585, 586, 587, 593, 597, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 706, 708, 710, 711, 712, 714, 715, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 760, 762, 763, 764, 765, 770, 774, 777, 780, 787, 788, 794, 798, 801, 804, 805, 806, 807, 808, 809, 810, 812, 815, 816, 818, 824, 827, 832, 834, 835, 836, 837, 841, 843, 847, 849, 851, 852, 853, 854, 855, 860, 861], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 421, 445, 472, 488, 490, 516, 556, 618, 620, 623, 624, 633, 659, 668, 671, 682, 683, 684, 746, 747, 748, 749, 750, 751, 752, 762, 764, 777, 778, 781, 803, 816, 833, 844, 847], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 413, 462, 612, 618, 623, 629, 633, 640, 656, 663, 668, 675, 725, 726, 727, 744, 745, 749, 811, 813, 815], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 413, 419, 424, 462, 510, 618, 623, 627, 629, 632, 656, 664, 677, 715, 725, 726, 727, 742, 815], "006431100999861883": 3, "258": [3, 622, 637, 639], "104": [3, 65, 623, 633, 668, 745], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 812], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 441, 444, 447, 624, 682, 683, 684, 798, 813], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 464, 804, 828, 841, 854, 860], "itself": [3, 21, 31, 51, 92, 269, 522, 587, 618, 620, 627, 716, 792, 801, 804, 805, 807, 810, 811, 812, 813, 814, 817, 818, 819, 824, 825, 837, 839, 843, 847, 853, 854, 855, 860], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 514, 519, 600, 618, 620, 623, 658, 659, 759, 787, 788, 798, 804, 805, 810, 812, 813, 816, 824, 826, 833, 843, 844, 845, 848, 860, 861], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 769, 770, 775, 777, 778, 780, 782, 787, 788, 791, 792, 793, 794, 795, 798, 804, 805, 808, 811, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 847, 848, 849, 855], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 413, 455, 477, 532, 539, 540, 542, 564, 568, 578, 618, 620, 623, 629, 630, 633, 636, 637, 647, 656, 661, 664, 668, 675, 725, 733, 734, 743, 744, 745, 749, 751, 798, 812, 831, 835], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 844], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 760, 762, 763, 764, 766, 767, 768, 769, 770, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 803, 804, 805, 807, 808, 810, 811, 812, 825, 827, 843, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 413, 417, 455, 510, 564, 615, 616, 618, 620, 623, 624, 627, 633, 656, 668, 672, 684, 710, 725, 726, 743, 744, 745, 817, 823], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 560, 620, 634, 755, 759, 774, 775, 776, 778, 779, 781, 783, 786, 787, 798, 800, 804, 808, 809, 810, 817, 821, 824, 825, 827, 828, 833, 834, 836, 838, 839, 845, 847, 849, 854, 855, 857], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 526, 544, 614, 620, 626, 627, 702, 703, 710, 791, 798, 801, 803, 804, 807, 808, 811, 813, 814, 815, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 847, 848, 849], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 760, 767, 768, 769, 774, 777, 778, 779, 780, 781, 782, 783, 786, 787, 791, 793, 796, 798, 803, 808, 809, 813, 817, 825, 829, 833, 835, 836, 837, 838, 848], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 622, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 782, 791, 798, 805, 808, 811, 817, 825, 826, 833, 835, 836, 837, 838, 848], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 798, 838, 848], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 615, 798, 836, 848], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 421, 429, 436, 437, 461, 618, 622, 626, 632, 648, 651, 702, 703, 741, 759, 778, 779, 780, 781, 782, 783, 798, 800, 804, 805, 806, 810, 818, 833, 836, 837, 838], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 565, 566, 567, 569, 570, 571, 572, 574, 575, 576, 578, 579, 581, 583, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 709, 710, 711, 715, 716, 717, 719, 720, 721, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 759, 760, 762, 763, 764, 765, 770, 774, 775, 777, 778, 779, 780, 781, 782, 783, 786, 787, 790, 792, 798, 801, 804, 807, 808, 809, 811, 812, 813, 814, 815, 817, 818, 820, 821, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 847, 848, 849], "_build": [3, 5, 779, 780, 798], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 472, 559, 587, 615, 617, 620, 757, 759, 774, 775, 778, 779, 780, 787, 796, 798, 808, 813, 814, 817, 821, 824, 825, 831, 833, 837, 847, 848, 849], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 777, 778, 798, 803, 804, 805, 808, 809, 812, 813, 820, 829, 831, 836, 839, 848, 854, 855, 856, 860], "sequenti": [3, 5, 7, 24, 26, 27, 42, 798, 810, 811, 837, 848], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 622, 639, 778, 798], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 532, 533, 579, 607, 616, 618, 620, 621, 622, 623, 627, 633, 637, 639, 641, 643, 644, 665, 668, 678, 712, 716, 726, 745, 749, 798, 804, 813, 836, 837, 859], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 427, 430, 432, 435, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 455, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 477, 478, 479, 480, 481, 482, 485, 486, 487, 491, 492, 494, 497, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 559, 561, 563, 564, 568, 577, 578, 579, 580, 581, 583, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 707, 708, 710, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 765, 774, 777, 778, 787, 791, 792, 798, 801, 804, 805, 807, 809, 810, 811, 812, 813, 815, 817, 818, 820, 821, 823, 824, 825, 826, 828, 832, 833, 835, 836, 837, 838, 839, 847, 848, 849, 860, 861], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 488, 489, 490, 493, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 762, 778, 781, 798], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 493, 622, 635, 638, 639, 642, 643, 644, 778, 798], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 612, 774, 798, 826, 836, 837], "maxpool2d": [3, 5, 7, 40, 778, 798], "192": [3, 42, 762, 791], "384": [3, 77, 601, 621, 627, 704], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 778], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 413, 416, 419, 422, 423, 427, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 456, 458, 462, 463, 467, 468, 471, 472, 477, 478, 480, 481, 486, 487, 497, 499, 500, 502, 507, 509, 510, 511, 512, 514, 516, 518, 519, 525, 527, 528, 531, 532, 533, 539, 540, 547, 548, 549, 564, 578, 579, 580, 581, 583, 587, 601, 602, 603, 604, 605, 606, 607, 608, 609, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 653, 654, 655, 656, 658, 659, 660, 663, 664, 665, 668, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 693, 694, 695, 696, 697, 698, 699, 700, 704, 705, 715, 716, 722, 723, 724, 725, 726, 727, 729, 730, 731, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 762, 777, 798, 801, 804, 807, 809, 811, 812, 813, 815, 818, 823, 828, 831, 833, 835, 836, 837], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 798, 803, 847, 848], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 495, 622, 629, 645, 724, 778, 798], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 435, 472, 519, 536, 559, 612, 620, 622, 627, 648, 672, 711, 762, 764, 765, 777, 778, 798, 811, 816, 821, 822, 824, 825, 828, 831, 833, 836, 837, 838, 848, 852, 853, 854, 857], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 798, 816, 833, 836, 837], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 415, 417, 418, 420, 422, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 438, 439, 440, 441, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 457, 459, 460, 462, 465, 468, 469, 470, 471, 472, 473, 474, 475, 476, 479, 480, 482, 484, 485, 487, 488, 489, 490, 491, 492, 493, 494, 501, 502, 503, 504, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 568, 569, 570, 573, 576, 577, 578, 579, 580, 581, 583, 585, 586, 587, 599, 600, 602, 603, 604, 606, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 707, 710, 711, 712, 713, 714, 715, 716, 721, 722, 723, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 778, 781, 784, 787, 791, 796, 798, 801, 803, 806, 808, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 837, 838, 847, 848, 849], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 417, 432, 456, 462, 600, 620, 622, 623, 625, 638, 640, 644, 664, 680, 798, 824, 825, 828, 831, 833, 835, 838], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 536, 620, 624, 682, 798, 836, 844, 848], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 420, 480, 525, 537, 546, 549, 550, 567, 581, 615, 616, 617, 618, 620, 622, 623, 646, 657, 658, 659, 662, 664, 673, 680, 757, 763, 770, 782, 787, 788, 791, 798, 800, 801, 803, 804, 805, 807, 808, 810, 814, 815, 816, 818, 820, 821, 823, 824, 826, 828, 829, 831, 832, 833, 835, 836, 838, 840, 841, 843, 844, 845, 848, 851, 853, 854, 857, 859, 860, 861], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 812, 844], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 757, 759, 762, 763, 764, 765, 769, 770, 774, 777, 778, 779, 780, 784, 787, 791, 792, 793, 796, 798, 803, 804, 805, 806, 807, 808, 811, 814, 815, 816, 817, 820, 822, 824, 826, 828, 829, 831, 833, 835, 836, 847, 848, 849, 854, 855, 858], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 617, 618, 630, 631, 633, 734, 735, 736, 737, 738, 746, 747, 748, 750, 762, 798, 803, 804, 805, 822, 828, 834, 838, 847], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 617, 618, 623, 631, 633, 658, 659, 735, 736, 737, 738, 746, 747, 748, 750, 798, 803, 804, 807, 813, 838, 839, 843, 844, 845, 847, 850, 851, 852, 854, 858, 861], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 798, 848], "save": [4, 7, 40, 52, 69, 75, 380, 516, 576, 598, 617, 620, 634, 780, 804, 812, 819, 828, 839, 845, 853], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 601, 602, 605, 607, 608, 609, 617, 618, 621, 627, 715, 778, 798, 801, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 835, 836, 837, 839, 840, 841, 844, 845, 847, 848, 850, 851, 853, 854, 855, 860, 861], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 436, 634, 780, 798, 828, 839, 853, 860], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 847, 848], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 413, 436, 501, 569, 579, 591, 615, 616, 618, 620, 623, 625, 631, 633, 664, 688, 735, 736, 737, 738, 745, 760, 763, 764, 767, 768, 769, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 786, 787, 792, 793, 796, 798, 804, 805, 807, 811, 812, 813, 817, 820, 822, 823, 824, 826, 827, 828, 829, 830, 831, 833, 854, 859, 861], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 780], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 432, 445, 469, 611, 618, 621, 627, 634, 714, 715, 753, 754, 779, 780, 805, 811, 813, 821, 822, 854], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 414, 445, 475, 495, 496, 497, 498, 499, 615, 618, 629, 633, 724, 725, 726, 727, 750, 752, 778, 826, 828], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 556, 614, 616, 618, 620, 634, 753, 754, 757, 760, 763, 792, 798, 800, 801, 802, 806, 810, 813, 815, 817, 819, 822, 825, 827, 829, 839, 840, 845, 847, 848, 849, 854], "did": [4, 40, 803, 810, 838, 844, 860], "realli": [4, 38, 804, 811, 818, 839, 847, 859, 860], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 420, 442, 451, 452, 461, 462, 501, 502, 519, 615, 616, 618, 623, 625, 629, 632, 657, 692, 727, 740, 792, 798, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 832, 833, 835, 836, 837, 838, 839, 844, 847, 848, 854, 859], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 425, 426, 427, 430, 432, 433, 434, 435, 436, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 455, 456, 457, 458, 460, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 563, 564, 565, 571, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 588, 593, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 710, 711, 712, 713, 715, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 763, 770, 774, 777, 778, 779, 780, 781, 791, 792, 807, 808, 809, 811, 813, 814, 815, 816, 821, 822, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 847, 848, 855, 858], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 536, 620, 622, 625, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 687, 700, 764, 778, 798], "longest": 4, "return_tensor": [4, 8, 26, 43, 847, 848], "pt": [4, 8, 26, 847], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 622, 637, 678, 798], "input_id": 4, "101": [4, 9, 41, 622, 623, 627, 646, 661, 710], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 725], "token_type_id": 4, "attention_mask": [4, 56, 79, 622, 648], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 517, 521, 524, 620, 631, 632, 633, 735, 736, 737, 738, 739, 742, 748, 759, 798, 809, 815, 817, 826, 828, 831, 836, 850, 852, 854, 860, 861], "no_grad": [4, 40, 847], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 418, 431, 435, 437, 439, 478, 482, 495, 496, 497, 498, 499, 502, 512, 524, 614, 615, 620, 622, 623, 627, 629, 630, 648, 651, 655, 663, 664, 670, 672, 673, 674, 677, 712, 725, 726, 727, 733, 798, 806, 807, 825, 826, 833, 847, 850, 854], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 823], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 623, 666, 669, 757, 759, 801, 818, 826], "005": [4, 7, 52, 75, 328, 344, 365, 441], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 623, 666, 757, 759, 801, 818, 826], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 435, 458, 467, 480, 486, 491, 492, 494, 512, 521, 524, 600, 615, 616, 618, 620, 623, 624, 625, 629, 630, 631, 632, 633, 656, 665, 666, 669, 671, 677, 682, 685, 687, 692, 694, 700, 727, 733, 735, 736, 737, 738, 739, 742, 747, 749, 750, 751, 752, 770, 777, 778, 810, 811, 813, 815, 817, 826, 828], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 369, 375, 425, 434, 438, 440, 496, 531, 535, 616, 618, 620, 622, 627, 629, 647, 714, 717, 725, 726, 727, 757, 791, 792, 798, 803, 804, 805, 807, 809, 813, 814, 817, 821, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 855], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 449, 522, 537, 538, 587, 616, 617, 620, 627, 710, 711, 712, 714, 715, 716, 757, 759, 784, 787, 793, 794, 796, 814, 817, 824, 825, 833, 847], "finish": [4, 15, 26, 27, 38, 41, 798, 799, 803, 804, 806], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 616, 623, 633, 675, 726, 727, 751], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 419, 510, 618, 629, 630, 726, 727, 734], "procedur": [4, 810, 812, 815, 826], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 477, 540, 548, 564, 578, 600, 618, 620, 623, 627, 633, 668, 707, 725, 743, 745, 749, 792, 812], "big": [4, 777, 799, 839, 854], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 798, 813, 814, 817, 820, 824, 829, 833, 838, 848, 849], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 627, 717, 798, 804, 807, 810, 812, 819, 826, 836, 847, 855], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 798], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 618, 625, 696, 804, 824], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 425, 434, 440, 517, 518, 622, 633, 647, 748, 775, 778, 779, 780, 782, 783, 798, 805, 809, 813, 814, 818, 826, 828, 833, 844, 847, 848, 849, 854, 860, 861], "fast": [4, 21, 31, 52, 368, 390, 854], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 414, 418, 421, 425, 429, 434, 436, 438, 440, 441, 443, 444, 445, 446, 455, 461, 466, 472, 477, 479, 480, 481, 482, 485, 488, 490, 495, 496, 498, 499, 505, 507, 510, 511, 512, 515, 516, 517, 518, 519, 525, 527, 528, 529, 531, 536, 539, 540, 542, 547, 548, 549, 556, 563, 564, 568, 569, 570, 573, 581, 586, 591, 592, 595, 598, 599, 600, 601, 602, 603, 607, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 628, 629, 630, 631, 632, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 648, 651, 655, 658, 659, 664, 665, 666, 669, 670, 671, 672, 673, 674, 677, 680, 685, 686, 687, 691, 692, 700, 701, 702, 706, 708, 709, 710, 711, 712, 717, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 757, 759, 762, 763, 764, 765, 767, 769, 774, 777, 778, 779, 780, 781, 782, 801, 804, 805, 807, 810, 811, 813, 814, 815, 816, 817, 818, 820, 821, 824, 825, 828, 830, 831, 833, 835, 839, 847, 854, 855], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 798], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 436, 617, 784, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 804, 810, 814, 817, 818, 821, 824, 828, 829, 833, 848, 852, 860, 861], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 436, 745, 787, 791, 798, 803, 804, 805, 807, 809, 812, 813, 814, 816, 817, 818, 819, 820, 821, 825, 826, 828, 829, 833, 835, 837, 838], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 427, 488, 489, 490, 608, 612, 617, 621, 622, 628, 645, 648, 651, 723, 762, 764, 765, 777, 778, 782, 792, 854, 856], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 422, 440, 493, 508, 532, 534, 578, 601, 602, 603, 605, 607, 608, 609, 620, 621, 622, 627, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 710, 798, 806, 823, 833, 836, 837, 848], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 493, 532, 534, 620, 622, 627, 635, 638, 639, 640, 641, 642, 643, 644, 707, 711, 713, 716, 721, 806, 810, 811, 812, 848, 850], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 413, 414, 421, 424, 434, 440, 442, 456, 458, 470, 480, 482, 489, 490, 493, 497, 502, 514, 515, 516, 517, 518, 519, 558, 563, 615, 617, 620, 622, 623, 625, 629, 630, 634, 648, 651, 653, 656, 660, 664, 668, 670, 673, 679, 688, 693, 694, 695, 724, 730, 733, 753, 754, 762, 764, 765, 778, 792, 798, 824, 826, 828, 831, 836, 847, 849], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 421, 423, 424, 425, 426, 428, 431, 433, 434, 437, 438, 440, 444, 448, 449, 453, 457, 458, 461, 462, 465, 467, 470, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 484, 485, 486, 489, 491, 492, 494, 495, 496, 497, 498, 499, 500, 502, 507, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 522, 532, 533, 534, 536, 539, 540, 543, 544, 558, 561, 563, 578, 579, 580, 584, 600, 601, 602, 603, 604, 607, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 653, 655, 656, 664, 665, 670, 675, 677, 678, 679, 680, 682, 683, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 707, 710, 711, 713, 715, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 733, 735, 737, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 774, 777, 778, 791, 792, 811, 813, 814, 815, 817, 820, 821, 824, 826, 828, 829, 831, 833, 838, 847], "assert": [5, 9, 41, 43, 45, 69, 525, 620, 770, 801, 806, 807, 818, 821, 824, 825, 826, 828, 829, 835, 836], "too": [5, 52, 75, 218, 235, 242, 268, 371, 480, 618, 777, 803, 804, 805, 807, 813, 817, 829, 839], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 429, 445, 488, 489, 490, 618, 623, 628, 666, 669, 671, 723, 777, 781, 798, 804, 812, 815, 821, 826, 831, 833, 837, 839, 847, 848, 855], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 450, 451, 458, 460, 462, 463, 464, 471, 475, 486, 612, 617, 688, 689, 690, 692, 694, 695, 697, 699, 764, 774, 778, 798, 799, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 815, 816, 818, 820, 822, 824, 825, 826, 828, 829, 831, 832, 833, 835, 837, 838, 839, 840, 844, 847, 854, 860], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 519, 618, 831], "bicub": [5, 52, 75, 368, 403, 831], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 419, 421, 432, 435, 456, 466, 471, 472, 483, 501, 510, 511, 528, 532, 539, 559, 564, 601, 602, 607, 608, 609, 610, 612, 615, 616, 618, 620, 621, 622, 623, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 642, 644, 645, 646, 648, 651, 652, 654, 658, 659, 661, 662, 663, 664, 665, 666, 667, 669, 671, 677, 679, 680, 687, 688, 689, 690, 692, 693, 700, 723, 725, 726, 727, 730, 731, 732, 733, 735, 736, 737, 738, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 777, 778, 782, 808, 811, 813, 814, 815, 820, 822, 823, 826, 833, 836, 837, 845, 853], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 502, 510, 511, 615, 616, 630, 632, 633, 725, 730, 731, 732, 741, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "enumer": [5, 40, 42, 767, 798], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 433, 434, 440, 450, 451, 452, 465, 473, 475, 484, 600, 620, 623, 630, 670, 673, 733, 811, 821, 828], "newaxi": [5, 613], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 415, 431, 433, 435, 508, 622, 623, 635, 637, 639, 641, 642, 643, 663, 667, 669, 675, 764, 778, 798, 818, 824, 835, 838, 848], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 618, 644, 798, 848], "car": 5, "full_img": 5, "from_numpi": [5, 836], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 459, 460, 461, 462, 463, 464, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 501, 502, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 559, 563, 564, 565, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 588, 593, 594, 596, 597, 599, 602, 603, 605, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 710, 714, 715, 716, 717, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 774, 775, 778, 779, 780, 782, 784, 787, 791, 792, 793, 796, 798, 801, 804, 807, 809, 812, 813, 814, 815, 817, 818, 824, 825, 826, 828, 830, 831, 833, 836, 837, 838, 847, 848], "permut": [5, 7, 40, 59, 82, 97, 378, 501, 625, 690, 697, 848], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 495, 496, 498, 499, 615, 617, 623, 629, 662, 724, 725, 726, 727, 759, 777, 778, 779, 780, 781, 782, 783, 798, 801, 804, 805, 810, 813, 814, 818, 825, 828, 839, 852, 854, 857, 859], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 414, 421, 425, 434, 440, 445, 488, 490, 496, 516, 519, 549, 565, 573, 579, 615, 616, 618, 620, 622, 623, 624, 625, 627, 629, 630, 633, 635, 648, 666, 671, 682, 683, 684, 692, 715, 716, 725, 726, 727, 730, 731, 733, 734, 746, 748, 750, 752, 762, 765, 777, 778, 779, 780, 781, 787, 799, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 838, 839, 840, 843, 844, 847, 848, 852, 854, 857, 858, 859, 860], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 775, 777, 778, 780, 782, 798, 804, 809, 816, 823, 828, 829, 831, 838, 839, 847, 854, 855], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 429, 444, 572, 594, 620, 623, 666, 798, 804, 805, 811, 821, 822, 824, 828, 830, 833, 836, 839, 848, 854, 856, 857], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 434, 477, 515, 516, 585, 615, 620, 787, 791, 803, 808, 813, 814, 817, 820, 824, 825, 826, 829, 831, 833, 835, 838, 841], "isinst": [5, 9, 24, 26, 27, 817, 825, 828, 829, 837, 838], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 423, 426, 434, 440, 519, 615, 623, 658, 678, 798, 811, 812, 817, 824, 825, 828, 835, 838, 847], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 616, 762, 763, 813, 828], "elif": [5, 6, 812, 817, 824, 825, 826], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 414, 421, 425, 428, 431, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 460, 461, 462, 463, 464, 467, 471, 475, 478, 480, 481, 482, 486, 488, 490, 491, 492, 493, 494, 496, 508, 509, 510, 511, 512, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 563, 564, 568, 577, 578, 579, 581, 583, 585, 586, 599, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 645, 646, 647, 648, 651, 652, 653, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 670, 671, 672, 673, 677, 678, 680, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 721, 722, 724, 725, 726, 727, 729, 730, 731, 732, 733, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 760, 762, 763, 764, 774, 778, 781, 782, 791, 792, 796, 813, 815, 817, 824, 825, 828, 829, 831, 833, 838, 847, 848], "argmax": [5, 41, 42, 43, 62, 85, 371, 477, 630, 798, 825, 847], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 519, 622, 648, 831, 854], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 423, 425, 431, 433, 434, 440, 455, 465, 470, 472, 473, 475, 477, 480, 481, 484, 565, 566, 567, 571, 572, 574, 575, 588, 589, 593, 594, 596, 597, 617, 618, 620, 623, 670, 770, 778, 779, 780, 795, 804, 805, 806, 811, 814, 815, 818, 831, 839, 854, 857], "bilinear": [5, 52, 75, 368, 403, 831], "torch_mask": 5, "squeez": [5, 40, 59, 82, 625, 854], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 620, 798, 818, 826, 836], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 413, 616, 622, 625, 635, 636, 637, 638, 640, 642, 644, 692, 777, 798, 804, 805, 806, 809, 812, 813, 815, 816, 818, 819, 820, 828, 845, 854, 858], "img_tf": 5, "math": [5, 43, 93, 285, 618, 813, 824, 825, 826, 838, 852], "ve": [5, 9, 15, 24, 26, 61, 84, 629, 724, 803, 804, 805, 818, 828, 831, 832, 835, 841], "lot": [5, 812, 813, 822, 828, 839, 844, 845, 853], "far": [5, 26, 27, 627, 704, 715, 792, 814, 815, 834, 859, 860], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 442, 532, 536, 615, 618, 620, 831, 844], "del": [5, 812], "empty_cach": 5, "permute_dim": [5, 59, 82, 625, 818], "usr": [5, 40, 41, 42, 45, 804], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 493, 544, 620, 799, 804, 807, 810, 818, 821, 826, 828], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 798, 804, 805], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 814, 825, 830], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 425, 434, 440, 448, 456, 472, 477, 495, 496, 497, 498, 499, 567, 583, 600, 611, 615, 618, 620, 621, 629, 668, 724, 725, 726, 727, 729, 759, 770, 775, 777, 778, 779, 780, 781, 782, 783, 799, 804, 805, 808, 809, 810, 812, 813, 814, 817, 821, 822, 824, 825, 826, 828, 831, 833, 834, 837, 840, 841, 844, 847, 848, 849, 854, 855, 860], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 615, 625, 694, 798, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 820, 821, 822, 824, 825, 826, 828, 831, 833, 835, 836, 839, 843, 844, 845, 850, 854, 857, 860, 861], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 615, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 804, 805, 817, 854], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 429, 567, 618, 620, 623, 670, 673, 764, 812, 813, 815, 827, 829, 839, 844, 845], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 839, 847, 857], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 434, 449, 502, 510, 511, 532, 533, 534, 547, 548, 549, 565, 575, 612, 615, 617, 618, 620, 622, 623, 626, 627, 633, 634, 645, 647, 673, 675, 680, 701, 702, 703, 711, 712, 743, 744, 753, 754, 757, 774, 778, 792, 807, 808, 809, 811, 813, 814, 815, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 836, 839, 845, 847, 848, 851, 854, 855, 856, 857, 858, 859, 861], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 523, 525, 546, 549, 550, 567, 568, 620, 627, 711, 712, 716, 721, 722, 769, 770, 775, 782, 806, 808, 815, 818, 820, 822, 825, 831, 835, 837], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 413, 462, 533, 548, 601, 603, 612, 615, 618, 620, 621, 622, 623, 627, 629, 636, 645, 646, 656, 660, 712, 725, 726, 727, 729, 811], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 425, 426, 434, 437, 439, 440, 493, 601, 602, 607, 608, 617, 621, 622, 623, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 652, 762, 764, 765, 777, 778, 782, 817, 844], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 532, 542, 616, 618, 620, 622, 623, 637, 639, 644, 668, 798], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 798], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 435, 466, 509, 521, 524, 616, 617, 618, 620, 623, 630, 632, 653, 660, 663, 668, 672, 675, 676, 679, 734, 741, 759, 784, 798, 807, 813, 815, 817, 820, 824, 825, 848, 849], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 423, 435, 466, 509, 521, 524, 616, 617, 618, 620, 623, 630, 653, 660, 663, 668, 672, 675, 676, 679, 734, 759, 784, 807, 813, 815, 817, 820, 824, 825], "x3": [5, 49, 53, 148, 521, 616, 620], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 778, 798, 837, 848], "batchnorm2d": [5, 7, 781], "downscal": [5, 53, 76, 527, 528, 549, 620], "maxpool": [5, 7], "doubl": 5, "conv": [5, 622, 778, 831], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 831], "align_corn": [5, 52, 75, 368, 403, 831], "conv2dtranspos": [5, 778], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 413, 432, 440, 552, 616, 620, 622, 625, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 688, 696, 753, 754, 762, 763, 778, 791, 804, 809, 813, 815, 819, 823, 826, 828, 847, 855], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 472, 625, 687, 700], "constant_pad": [5, 59, 82, 625], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 536, 617, 620, 625, 700, 826, 831, 833, 847], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 525, 549, 581, 615, 616, 617, 618, 620, 623, 626, 673, 702, 703, 759, 770, 775, 787, 798, 801, 804, 805, 807, 808, 809, 810, 812, 813, 814, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 835, 836, 838, 839, 841, 847, 848, 849, 860], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 499, 617, 798, 799, 803, 815, 819, 829, 831, 845, 848], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 825], "checkpoint": [6, 7, 43, 839], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 436, 616, 625, 633, 685, 750, 752, 759, 762, 798, 801, 803, 805, 806, 811, 812, 813, 814, 817, 818, 820, 821, 824, 826, 828, 848], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 515, 516, 517, 518, 519, 556, 616, 618, 620, 623, 630, 663, 664, 666, 669, 730, 828, 833, 839, 843, 854], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 567, 587, 601, 602, 607, 617, 620, 621, 622, 623, 626, 633, 645, 663, 701, 702, 703, 750, 752, 770, 781, 782, 804, 811, 813, 814, 817, 821, 822, 824, 825, 826, 827, 828, 831, 839, 847, 854, 855, 860], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 618, 630, 730, 798, 803, 804, 805, 817, 822, 828], "get_scal": 6, "cfg": [6, 819], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 456, 457, 478, 480, 482, 488, 490, 491, 492, 494, 496, 502, 509, 510, 511, 512, 521, 522, 524, 525, 527, 528, 529, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 620, 622, 626, 627, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 707, 713, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 762, 763, 769, 775, 778, 782, 798, 810, 811, 812, 821, 824, 825, 826, 828, 836, 848, 854, 857, 861], "input_shap": [6, 13, 24, 26, 27, 798], "block": [6, 26, 27, 30, 31, 32, 33, 369, 427, 798, 805, 811, 813, 817, 821, 828, 832, 834, 838, 839, 841, 848, 859, 861], "url": [6, 8, 23, 26, 27, 40, 43, 798, 848], "cocodataset": [6, 8, 23, 26, 27, 43, 798, 848], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 601, 602, 615, 616, 618, 621, 623, 625, 633, 671, 672, 700, 750, 798, 816, 848], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 617, 798, 848, 858], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 798, 807, 810, 819, 821, 828, 847], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 536, 614, 615, 620, 622, 647, 648, 792, 803, 805, 807, 808, 810, 812, 813, 815, 816, 821, 823, 824, 825, 827, 831, 832, 836, 847, 848, 850, 860], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 764, 792, 798, 803, 805, 806, 811, 812, 815, 816, 819, 820, 822, 823, 824, 825, 826, 828, 832, 833, 835, 836, 837, 838, 839, 844, 845, 850, 855, 856, 859], "improv": [6, 8, 9, 26, 29, 805, 813, 820, 821, 831, 833, 841, 845, 847, 852, 854, 856, 857], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 431, 433, 452, 472, 475, 615, 618, 623, 625, 631, 633, 671, 673, 677, 685, 696, 735, 736, 737, 738, 746, 748, 749, 751, 763, 775, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 833, 835, 836, 837, 838, 839, 840, 843, 844, 845, 847, 851, 852, 855, 860, 861], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 618, 770, 798, 804, 825, 829, 833, 839, 841, 848, 850, 853, 854, 855, 858, 861], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 434, 465, 471, 473, 476, 510, 511, 515, 516, 517, 518, 519, 618, 623, 625, 633, 664, 692, 693, 744, 759, 764, 787, 788, 798, 800, 803, 804, 805, 809, 810, 812, 813, 818, 822, 824, 825, 826, 833, 845, 847, 848, 854, 855], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 456, 480, 485, 615, 618, 623, 666, 669, 672, 680, 787, 824, 825, 831, 836, 838, 840, 848], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 433, 615, 623, 633, 666, 745, 770, 778, 798, 801, 804, 805, 807, 809, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 828, 833, 835, 836, 839, 844, 845, 848, 854, 855, 860], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 798, 838, 848], "rng_kei": [6, 8, 26, 798, 848], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 425, 434, 440, 445, 495, 496, 497, 498, 499, 622, 645, 724, 725, 726, 727, 728, 729, 762, 764, 777, 791, 792, 798, 803, 814, 826, 828, 829, 838, 848, 849, 854], "prngkei": [6, 8, 19, 20, 26, 27, 40, 798, 838, 848], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 601, 605, 612, 618, 621, 623, 628, 629, 633, 664, 668, 723, 724, 725, 726, 727, 728, 743, 745, 798, 833, 838, 848], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 522, 539, 540, 620, 784, 798, 838, 848], "init": [6, 8, 26, 40, 42, 52, 75, 369, 425, 434, 440, 798, 807, 838, 848], "rng": [6, 8, 26, 40, 798, 838, 848], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 612, 616, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 668, 669, 670, 671, 673, 677, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 710, 713, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 764, 765, 774, 778, 781, 798, 803, 804, 805, 808, 811, 813, 814, 815, 816, 817, 819, 820, 821, 822, 824, 825, 828, 829, 831, 835, 836, 837, 838, 839, 847, 848, 855], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 466, 472, 480, 483, 495, 509, 512, 539, 543, 545, 547, 556, 586, 610, 611, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 778, 798, 801, 803, 805, 809, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 824, 825, 828, 831, 833, 835, 836, 837, 838, 839, 847, 848, 854, 857, 859, 860, 861], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 444, 445, 523, 609, 620, 621, 626, 701, 702, 703, 777, 792, 798, 813, 824, 831, 834, 836, 838, 845, 848, 852, 853, 854, 855, 856, 857, 858, 861], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 420, 421, 426, 433, 434, 438, 440, 450, 451, 452, 456, 457, 458, 463, 464, 466, 467, 469, 471, 472, 475, 477, 485, 486, 493, 495, 502, 507, 508, 509, 510, 511, 512, 521, 524, 532, 539, 540, 556, 580, 600, 602, 603, 605, 607, 608, 609, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 627, 629, 630, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 648, 652, 653, 654, 657, 658, 659, 663, 665, 666, 667, 669, 671, 672, 673, 678, 687, 691, 693, 694, 696, 698, 700, 710, 717, 724, 733, 735, 736, 738, 744, 745, 752, 762, 764, 778, 781, 782, 783, 792, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 838, 839, 843, 844, 845, 847, 848, 850, 851, 855, 857, 860], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 607, 612, 616, 621, 727, 757, 759, 828, 836], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 420, 425, 426, 428, 441, 452, 463, 464, 478, 495, 496, 497, 498, 499, 615, 623, 627, 629, 652, 654, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 712, 725, 726, 727, 798, 804, 805, 806, 812, 833], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 433, 479, 622, 636, 638, 639, 640, 641, 644, 648, 778, 805, 812, 822, 825, 836], "loop": [6, 8, 9, 19, 34, 67, 90, 117, 120, 614, 626, 701, 702, 703, 798, 809, 839, 847], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 434, 440, 477, 540, 548, 564, 615, 618, 620, 623, 627, 661, 710, 798, 812, 813, 828, 836, 837, 838, 839, 844, 845, 847], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 445, 618, 726, 727, 752, 757, 762, 819], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 427, 450, 451, 452, 696, 803, 805, 807, 808, 811, 812, 817, 819, 821, 823, 824, 825, 829, 831, 833, 835, 844, 854], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 438, 623, 673, 812, 843, 852], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 618, 798, 804, 807, 808, 812, 814, 815, 817, 825, 828, 831, 834, 835, 836, 837, 845, 848, 857], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 472, 509, 618, 804, 805, 807, 809, 812, 813, 814, 816, 820, 821, 824, 825, 826, 831, 835, 836, 837, 838, 839, 844, 845, 860], "better": [6, 9, 29, 38, 44, 45, 803, 806, 825, 826, 829, 831, 832, 835, 836, 837, 845, 857], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 472, 512, 623, 625, 678, 687, 700, 764, 813, 817, 825, 829, 831, 843, 847, 854], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 587, 614, 617, 620, 804, 805, 810, 811, 812, 813, 814, 815, 817, 821, 822, 824, 828, 831, 833, 835, 838, 839, 841, 847, 850, 854, 855, 856, 857, 858, 860], "train2017": [6, 8, 23, 26, 27, 798, 848], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 622, 623, 648, 673], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 445, 488, 489, 490, 569, 570, 578, 591, 592, 601, 602, 607, 609, 616, 620, 621, 623, 624, 628, 673, 682, 683, 684, 723, 757, 759, 779, 781, 782, 798, 801, 811, 818, 821, 824, 826, 837, 838], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 444, 618, 791, 804, 805, 808, 828, 835, 836, 837, 855], "pretti": [6, 8, 26, 27, 40, 801, 818, 836, 860], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 777, 803, 804, 805, 808, 811, 813, 821, 824, 825, 826, 829, 830, 831, 833, 835, 836, 844, 852, 854, 860, 861], "achiev": [6, 8, 9, 26, 798, 812, 813, 821, 822, 828, 831, 836, 838, 841], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 449, 512, 618, 623, 666, 669, 681, 759, 805, 813, 821, 822, 825, 826, 828, 839], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 375, 495, 496, 497, 498, 499, 600, 615, 617, 618, 620, 629, 724, 725, 726, 727, 729, 787, 791, 792, 802, 804, 805, 807, 810, 811, 812, 817, 818, 825, 827, 828, 833, 835, 836, 839, 841, 842, 843, 844, 847, 851, 854, 855, 856, 860, 861], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 578, 579, 601, 602, 607, 615, 618, 620, 621, 624, 628, 629, 682, 723, 726, 727, 826], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 510, 532, 533, 548, 601, 618, 620, 621, 622, 623, 633, 646, 668, 727, 745, 791], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 536, 579, 618, 620, 623, 624, 659, 670, 682, 762, 819, 828], "resolv": [7, 40, 42, 52, 65, 242, 380, 510, 511, 618, 625, 633, 688, 743, 744, 749, 751, 805, 810, 813, 819, 833], "185": [7, 40, 68], "199": [7, 40, 221, 618], "110": [7, 40], "133": [7, 40, 56, 528, 620, 646], "111": [7, 40, 627, 722], "108": [7, 9, 21, 22, 23, 24, 40, 622, 633, 646, 745], "connect": [7, 40, 778, 798, 800, 804, 810, 827, 837, 838, 844, 852], "443": [7, 40, 280, 618], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 493, 805, 812, 813], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 540, 564, 618, 620, 791, 836], "ok": [7, 40, 804], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 414, 426, 433, 472, 481, 497, 502, 600, 615, 620, 622, 623, 624, 625, 631, 648, 673, 674, 682, 692, 735, 762, 778, 828, 836], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 617, 618], "mb": [7, 40, 42, 45, 812], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 536, 578, 579, 601, 602, 607, 615, 618, 620, 621, 623, 626, 629, 659, 670, 702, 703, 726, 727, 762, 809, 838], "109": [7, 40, 57, 623, 660], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 413, 778, 784], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 413, 448, 620, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778, 824, 829, 854], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 493, 509, 559, 620, 622, 628, 635, 636, 637, 638, 639, 640, 641, 642, 643, 646, 647, 648, 723, 778, 821, 828, 833, 837], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 421, 445, 488, 489, 490, 616, 623, 628, 666, 669, 723, 774, 781], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 488, 489, 490, 547, 569, 591, 601, 602, 607, 615, 618, 620, 621, 623, 628, 664, 723, 757, 762, 777, 781, 826, 828], "momentum": [7, 40, 52, 75, 374, 488, 490, 781, 844], "affin": [7, 781], "track_running_stat": [7, 781], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 413, 472, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 778], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 622, 650, 778, 798, 848], "fc": [7, 13, 40, 798, 837, 848], "in_featur": [7, 56, 79, 622, 646, 828], "out_featur": [7, 56, 79, 622, 646, 828], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 516, 532, 533, 616, 618, 620, 622, 623, 629, 646, 665, 726, 727, 814], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 618, 800, 803, 804, 805, 810, 818, 825, 836], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 526, 617, 620, 787, 819, 821, 824, 828], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 510, 528, 618, 620, 622, 623, 646, 660, 726], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 601, 615, 618, 621, 622, 623, 627, 633, 637, 639, 641, 643, 646, 668, 704, 726, 745, 815], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 434, 450, 451, 452, 463, 464, 483, 516, 549, 610, 620, 621, 625, 689, 762, 827, 828, 838, 839, 848], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 432, 458, 467, 486, 493, 502, 521, 528, 559, 601, 602, 605, 607, 608, 609, 610, 615, 618, 620, 621, 622, 623, 625, 628, 630, 633, 634, 637, 638, 639, 640, 652, 661, 663, 664, 677, 685, 688, 693, 694, 723, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 792, 798, 803, 805, 808, 809, 811, 815, 817, 819, 821, 824, 825, 826, 828, 831, 833, 839, 845, 847, 852, 853, 854, 861], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 421, 616, 623, 666, 669, 798, 804, 807, 821, 841, 844, 852, 854, 856, 857, 858, 859, 860], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 444, 445, 509, 602, 605, 607, 608, 609, 621, 623, 625, 632, 656, 666, 669, 677, 689, 693, 739, 742, 757, 759, 805, 812, 826, 831, 854, 856], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 622, 648, 778, 798, 800, 803, 804, 805, 808, 809, 810, 828, 837, 839, 843, 844, 845, 848, 850, 852, 854, 857, 861], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 420, 618, 623, 633, 657, 658, 745, 779, 780, 807, 808, 812, 813, 819, 824, 833, 843, 855], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 488, 489, 490, 578, 579, 618, 620, 622, 623, 625, 648, 658, 659, 688, 778, 783, 798, 801, 802, 803, 804, 805, 807, 808, 810, 811, 812, 813, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 837, 839, 844, 847, 853, 854], "home": [7, 8, 21, 22, 23, 24, 812], "workspac": [7, 8, 21, 22, 23, 24, 804, 818], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 601, 605, 609, 612, 621, 623, 629, 660, 726, 727], "builtin": [7, 804, 835, 837], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 414, 449, 472, 522, 526, 531, 533, 537, 538, 559, 587, 600, 604, 606, 611, 614, 616, 617, 620, 621, 626, 627, 701, 702, 703, 710, 711, 712, 714, 715, 716, 717, 757, 760, 770, 782, 793, 811, 817, 823, 825, 833, 846, 847, 848, 849], "track": [7, 17, 26, 27, 39, 40, 544, 620, 804, 805, 807, 823, 824, 847, 854], "properli": [7, 804, 806, 817, 819, 825, 828], "might": [7, 32, 53, 93, 174, 531, 616, 620, 801, 803, 804, 805, 812, 813, 815, 818, 819, 822, 825, 828, 829, 831, 833, 835, 836, 841], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 444, 445, 618, 623, 674, 757, 817], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 618, 803, 804, 805, 807, 810, 812, 813, 815, 817, 819, 820, 825, 826, 828, 829, 830, 833, 835, 839], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 605, 618, 621, 726], "8m": 7, "8mb": 7, "bottleneck": [7, 843], "conv3": 7, "bn3": 7, "2048": [7, 579, 620], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 369, 420, 436, 581, 614, 615, 616, 618, 620, 623, 630, 632, 657, 658, 670, 671, 672, 673, 734, 739, 742, 752, 798, 800, 801, 803, 804, 805, 810, 813, 814, 816, 818, 822, 824, 825, 826, 827, 828, 831, 833, 839, 840, 844, 847, 852, 854, 855], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 803, 804, 818, 839, 840, 847, 848, 849], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 511, 615, 798, 799, 802, 803, 806, 815, 816, 819, 820, 828, 833, 836, 837, 847, 848, 849], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 472, 567, 618, 620, 778, 779, 780, 791, 798, 804, 805, 806, 808, 809, 811, 812, 813, 814, 817, 822, 823, 824, 825, 828, 830, 831, 832, 833, 839, 840, 843, 844, 852, 854, 860, 861], "broken": [8, 21, 22, 23, 24, 850, 854], "permiss": [8, 21, 22, 23, 24, 804, 812], "conflict": [8, 21, 22, 23, 24, 32, 804, 805, 812, 825, 836], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 612, 618, 802, 805, 806, 807, 808, 811, 813, 814, 816, 817, 820, 821, 822, 824, 825, 828, 829, 835], "system": [8, 21, 22, 23, 24, 42, 369, 435, 623, 672, 762, 798, 804, 805, 809, 812, 813, 839, 848, 852, 854, 857, 859, 861], "manag": [8, 17, 21, 22, 23, 24, 26, 567, 590, 620, 798, 799, 809, 813, 814, 824, 827, 839, 845, 856, 858], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 442, 618, 633, 747, 750, 800, 804, 809, 810, 819, 822, 823, 847], "virtual": [8, 21, 22, 23, 24, 805, 825, 844, 857, 858], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 509, 512, 617, 618, 623, 666, 762, 803, 804, 805, 807, 810, 812, 813, 815, 816, 817, 820, 821, 822, 824, 825, 826, 828, 831, 833, 835, 836, 839, 847, 848, 849, 852, 854, 860, 861], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 804, 812], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 798], "hug": [8, 26, 847], "face": [8, 26, 799, 804, 807, 818, 819, 823, 831, 833, 847, 854, 860], "arch_nam": [8, 26], "microsoft": [8, 26, 844, 847, 848, 854, 859, 861], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 419, 427, 477, 534, 540, 547, 548, 564, 578, 618, 620, 623, 627, 630, 633, 661, 668, 679, 705, 707, 733, 745, 762, 765, 823, 835, 847, 848], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 413, 455, 510, 516, 615, 618, 622, 623, 627, 630, 641, 643, 656, 660, 664, 672, 674, 675, 705, 712, 716, 725, 726, 727, 734, 798, 812, 828, 833], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 423, 426, 432, 445, 480, 495, 496, 497, 498, 499, 510, 511, 520, 613, 615, 616, 617, 618, 622, 623, 625, 627, 629, 631, 632, 633, 648, 653, 658, 659, 663, 664, 666, 669, 672, 673, 674, 677, 680, 688, 696, 707, 711, 712, 713, 716, 721, 722, 725, 726, 727, 735, 736, 737, 738, 739, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 778, 791, 792, 798, 799, 801, 803, 804, 805, 806, 807, 809, 811, 813, 817, 818, 823, 825, 828, 833, 836, 839, 840, 841, 844, 845, 847, 850], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 421, 581, 615, 617, 620, 757, 770, 787, 798, 801, 802, 803, 804, 805, 807, 812, 813, 814, 818, 820, 824, 825, 826, 828, 829, 831, 833, 838, 839, 841, 844, 845, 848, 849, 852, 855, 857, 858, 860, 861], "xla": [8, 825, 839, 841, 854], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 818], "9342": 8, "unabl": [8, 805, 831], "regist": [8, 780, 805, 840, 847], "cudnn": 8, "factori": [8, 52, 370, 444, 445, 792], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 804, 830, 839], "plugin": [8, 804], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 479, 532, 533, 534, 617, 618, 620, 629, 724, 791, 792, 803, 805, 807, 809, 811, 812, 813, 814, 816, 817, 820, 821, 824, 828, 833, 835, 839, 840, 847, 854, 861], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 510, 616, 618, 623, 665, 762, 815], "trt": 8, "could": [8, 26, 27, 32, 63, 631, 735, 736, 737, 738, 803, 804, 805, 807, 812, 813, 815, 822, 824, 825, 826, 828, 833, 835, 836, 837, 844, 845, 854, 859, 860], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 623, 627, 631, 666, 706, 735, 736, 737, 738, 791, 792, 798, 799, 800, 802, 803, 804, 805, 807, 810, 812, 818, 823, 828, 831, 833, 836, 840, 841, 843, 847], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 420, 444, 445, 515, 516, 520, 549, 615, 618, 620, 623, 625, 657, 694, 757, 792, 801, 803, 805, 806, 809, 812, 813, 815, 816, 818, 819, 820, 821, 824, 825, 826, 828, 831, 833, 835, 836, 839, 841, 844, 847, 850, 854, 855, 861], "placement": [8, 803], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 421, 425, 434, 509, 612, 615, 618, 623, 631, 655, 666, 735, 736, 737, 738, 764, 777, 808, 812, 813, 821, 823, 829, 831, 834, 835, 836, 843, 844, 847, 851, 855, 859, 861], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 456, 480, 496, 515, 516, 531, 549, 566, 581, 587, 616, 620, 623, 625, 629, 630, 634, 669, 686, 688, 696, 725, 726, 727, 733, 753, 754, 757, 760, 764, 798, 805, 806, 807, 808, 812, 813, 814, 816, 818, 820, 824, 825, 829, 830, 831, 835, 839], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 419, 420, 472, 480, 537, 538, 541, 544, 546, 550, 561, 562, 581, 614, 616, 617, 620, 623, 627, 657, 704, 714, 715, 759, 763, 779, 780, 787, 788, 792, 795, 798, 800, 803, 804, 805, 807, 809, 811, 812, 813, 814, 817, 818, 819, 821, 824, 825, 826, 827, 828, 831, 833, 838, 839, 845, 847, 854, 860, 861], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 455, 481, 567, 615, 620, 623, 655, 811, 813, 814, 823, 824, 825, 826, 831, 835, 836, 841, 847, 854, 860], "set_inplace_mod": [8, 21, 22, 23, 24, 590, 620], "strict": [8, 21, 22, 23, 24, 567, 590, 620], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 445, 450, 451, 458, 460, 462, 463, 464, 471, 480, 486, 496, 515, 516, 525, 549, 567, 569, 579, 581, 587, 591, 616, 618, 620, 623, 625, 629, 630, 631, 633, 634, 663, 665, 679, 688, 689, 690, 692, 694, 695, 696, 697, 699, 725, 726, 727, 733, 738, 746, 748, 753, 754, 757, 764, 782, 798, 805, 807, 809, 813, 814, 817, 824, 825, 829, 830, 833, 835, 840, 844], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 434, 440, 441, 443, 480, 516, 520, 567, 612, 618, 620, 622, 623, 633, 651, 671, 674, 746, 748, 764, 782, 795, 799, 802, 803, 804, 805, 807, 808, 809, 812, 813, 814, 815, 819, 820, 825, 828, 829, 830, 835, 839, 845, 854], "whenev": [8, 21, 22, 23, 24, 778, 805, 809, 812, 813, 817, 824, 827, 828, 830, 836], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 510, 618, 623, 627, 633, 652, 668, 705, 716, 745], "122": [8, 49, 163, 233, 618], "134": [8, 56, 623, 646, 665], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 844], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 436, 844], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 436, 532, 602, 605, 607, 608, 609, 620, 621, 626, 701, 702, 703, 782, 798, 799, 802, 803, 804, 806, 807, 813, 818, 819, 821, 823, 832, 841, 843, 844, 852, 856, 857, 858, 859, 860, 861], "cryptographi": 9, "frontend": [9, 566, 620, 759, 760, 763, 767, 770, 798, 802, 805, 806, 812, 813, 817, 818, 823, 827, 828, 831, 832, 834, 841, 848, 854], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 798, 836, 847, 848], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 817, 825, 835], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 798], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 420, 471, 509, 622, 623, 648, 657, 658, 798, 802, 803, 804, 805, 807, 811, 813, 815, 816, 820, 821, 824, 825, 828, 833, 834, 836, 837, 838, 839, 841, 843, 844, 845, 848, 854, 858, 860, 861], "sole": [9, 38, 820, 829, 853, 854, 855], "verifi": [9, 23, 319, 320, 362, 803, 813, 814, 825, 828, 829], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 439, 473, 474, 532, 617, 620, 623, 625, 630, 675, 693, 732, 734, 799, 800, 803, 804, 805, 806, 807, 810, 813, 818, 823, 824, 825, 826, 827, 829, 831, 835, 838, 839, 842, 843, 844, 854], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 821], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 417, 421, 427, 432, 439, 441, 443, 444, 445, 446, 447, 457, 459, 468, 472, 480, 481, 482, 487, 491, 492, 494, 502, 508, 509, 510, 511, 512, 515, 517, 518, 519, 521, 524, 527, 528, 531, 532, 534, 535, 536, 539, 540, 541, 545, 547, 548, 549, 551, 552, 555, 556, 561, 568, 569, 570, 573, 576, 577, 578, 579, 581, 583, 585, 586, 587, 591, 592, 595, 598, 599, 600, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 637, 639, 641, 643, 644, 645, 646, 652, 653, 654, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 671, 673, 674, 675, 677, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 707, 710, 711, 713, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 796, 798, 809, 811, 814, 815, 823, 825, 826, 828, 829, 831, 833, 835, 847], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 441, 442, 443, 444, 445, 446, 447, 617, 757, 778, 780, 786, 798, 801, 804, 806, 809, 818, 819, 826, 827, 832, 836, 837, 838, 848, 849, 850, 852, 853, 854, 857, 859, 860], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 442, 804, 805, 807, 809, 811, 812, 813, 815, 824, 826, 828, 839], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 413, 493, 510, 511, 531, 551, 559, 560, 568, 587, 612, 614, 615, 618, 620, 622, 623, 626, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 663, 668, 671, 675, 701, 702, 703, 743, 744, 749, 751, 764, 778, 779, 780, 787, 800, 803, 804, 805, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 824, 825, 826, 827, 828, 831, 833, 836, 839, 840, 848, 854], "fit": [9, 59, 82, 625, 691, 803, 825, 833, 850, 851, 854], "consol": [9, 562, 620, 798, 805, 819, 828, 835, 840], "gpu_hist": 9, "captur": [9, 823, 828, 838, 855], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 578, 605, 615, 618, 620, 621, 627, 633, 708, 716, 726, 745], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 419, 420, 515, 516, 537, 538, 616, 617, 618, 620, 622, 623, 631, 632, 633, 648, 657, 658, 659, 668, 677, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 763, 765, 787, 798, 801, 803, 806, 807, 808, 809, 811, 813, 814, 816, 817, 818, 820, 821, 822, 824, 826, 828, 829, 831, 833, 835, 836, 837, 838, 839, 841, 851, 852, 853, 854, 857, 860, 861], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 79, 81, 225, 228, 230, 265, 285, 370, 444, 447, 618, 622, 624, 645, 648, 682], "tabular": 9, "pulsar": 9, "emploi": [9, 860], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 623, 625, 626, 627, 656, 663, 677, 695, 701, 702, 718, 792, 795, 798, 803, 809, 810, 812, 813, 816, 821, 827, 828, 831, 838, 847, 848, 854], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 544, 617, 620, 798, 802, 804, 808, 810, 811, 819, 823, 828, 840], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 420, 426, 436, 456, 461, 463, 464, 468, 470, 502, 508, 509, 615, 623, 657, 658, 664, 670, 672, 673, 678, 762, 777], "well": [9, 26, 27, 40, 41, 42, 76, 370, 444, 545, 620, 623, 672, 764, 798, 800, 803, 805, 810, 812, 813, 817, 824, 825, 826, 828, 837, 838, 848, 853, 854, 855, 859], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 438, 480, 509, 600, 615, 616, 618, 620, 623, 625, 628, 629, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 723, 726, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 764, 777, 781, 791, 792, 798, 803, 806, 807, 808, 811, 813, 816, 820, 824, 827, 828, 829, 839, 842, 848, 850, 852, 853, 856, 857, 859], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 432, 474, 475, 508, 614, 615, 616, 618, 622, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 735, 747, 750, 760, 801, 803, 804, 805, 808, 809, 810, 812, 813, 814, 815, 818, 819, 820, 821, 823, 824, 825, 826, 827, 828, 829, 831, 835, 837, 838, 839, 840, 843, 844, 847, 854, 860, 861], "extra": [9, 27, 69, 98, 117, 600, 614, 620, 808, 813, 815, 822, 824, 825, 826, 831, 833, 847, 848, 851, 856], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 415, 417, 420, 436, 444, 450, 451, 452, 456, 462, 473, 474, 475, 476, 478, 480, 488, 489, 490, 493, 497, 499, 502, 512, 514, 515, 516, 517, 518, 519, 532, 533, 534, 536, 543, 577, 580, 600, 612, 615, 620, 622, 623, 624, 625, 626, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 648, 652, 653, 654, 656, 657, 658, 659, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 680, 683, 684, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 699, 701, 702, 703, 729, 730, 731, 733, 735, 736, 737, 738, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 774, 778, 781, 815, 817, 823, 825, 826, 828, 831, 833, 836], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 441, 443, 444, 445, 446, 447, 624, 682, 683, 684, 798, 803, 807, 825, 832, 833, 834, 838, 840, 854], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 836], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 444, 481, 777, 778, 804, 839], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 420, 421, 425, 429, 434, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 453, 456, 457, 467, 472, 478, 480, 481, 482, 485, 488, 490, 491, 492, 493, 494, 496, 497, 499, 500, 501, 509, 510, 511, 512, 514, 515, 516, 517, 518, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 568, 578, 579, 580, 581, 583, 584, 585, 586, 599, 600, 601, 602, 603, 605, 607, 610, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 626, 627, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 651, 652, 653, 657, 658, 659, 660, 661, 662, 663, 664, 666, 668, 669, 670, 671, 673, 675, 676, 677, 680, 682, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 704, 705, 707, 708, 709, 711, 712, 713, 715, 716, 719, 720, 721, 722, 724, 725, 726, 727, 729, 732, 733, 735, 736, 737, 738, 739, 740, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 777, 778, 780, 791, 792, 808, 813, 820, 821, 824, 826, 828, 833, 836, 837, 839, 847, 848, 849], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 622, 625, 644, 798, 825, 833, 836, 848], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 616, 622, 638, 640, 641, 644, 798, 813, 824, 825, 831, 849], "csv": [9, 42, 798], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 574, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 770, 775, 803, 804, 805, 807, 808, 809, 813, 815, 816, 817, 818, 820, 821, 822, 823, 824, 828, 836, 837, 838, 841, 847, 855], "117564": 9, "variou": [9, 20, 30, 32, 38, 798, 803, 804, 805, 807, 812, 813, 816, 817, 820, 822, 823, 825, 826, 827, 828, 840, 850, 852, 853, 854, 857, 860], "structur": [9, 27, 69, 72, 98, 160, 163, 529, 620, 627, 708, 717, 798, 803, 805, 808, 811, 821, 826, 827, 828, 829, 836, 837, 853, 854], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 437, 512, 516, 559, 615, 618, 620, 632, 633, 741, 748, 762, 763, 764, 765, 779, 780, 792, 796, 798, 803, 805, 808, 809, 812, 813, 817, 819, 821, 822, 823, 824, 825, 826, 828, 831, 833, 835, 839, 841, 844, 847, 848, 849, 852, 854, 858, 859], "navig": [9, 801, 804, 805, 806, 818], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 436, 455, 633, 750, 752, 798, 804, 812, 824, 825, 836, 845, 848, 854, 861], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 420, 572, 594, 615, 620, 623, 657, 658, 795, 798, 802, 803, 804, 808, 811, 812, 813, 814, 818, 820, 821, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 839, 844, 854, 855, 857, 858, 860, 861], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 529, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 621, 623, 624, 627, 630, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 671, 673, 674, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 715, 716, 717, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 770, 776, 777, 778, 779, 780, 803, 805, 807, 808, 812, 813, 814, 815, 816, 820, 828, 829, 833, 834, 837, 838, 839, 847, 848, 849, 855, 861], "signific": [9, 52, 370, 445, 830, 839, 843, 844, 854], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 496, 544, 560, 603, 615, 616, 617, 620, 621, 627, 629, 707, 708, 709, 711, 712, 713, 719, 720, 721, 722, 729, 757, 759, 760, 767, 768, 769, 775, 776, 778, 779, 780, 787, 791, 798, 808, 809, 811, 812, 821, 822, 825, 826, 828, 831, 835, 838, 846, 847, 848, 849, 854, 860], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 413, 421, 422, 431, 433, 435, 440, 452, 458, 461, 465, 467, 478, 486, 488, 489, 490, 493, 495, 496, 497, 498, 499, 502, 509, 519, 615, 618, 622, 623, 625, 627, 629, 630, 633, 634, 635, 636, 637, 638, 640, 642, 644, 648, 653, 656, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 673, 674, 677, 678, 679, 680, 687, 688, 690, 696, 700, 712, 725, 726, 727, 733, 747, 749, 750, 751, 752, 753, 754, 778, 781, 791, 798, 806, 810, 812, 828, 840, 848], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 547, 601, 605, 612, 618, 620, 621, 623, 627, 633, 668, 705, 726, 745], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 798, 800, 802, 804, 807, 808, 809, 810, 812, 813, 814, 824, 825, 826, 828, 831, 835, 836, 837, 838, 839, 840, 843, 844, 849, 856, 860, 861], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 424, 434, 440, 450, 451, 452, 519, 777, 813, 824, 832, 833, 838, 839, 851, 854, 855, 858, 860, 861], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 417, 434, 440, 463, 464, 510, 511, 512, 551, 552, 555, 572, 594, 615, 616, 617, 618, 620, 622, 623, 625, 629, 630, 631, 633, 651, 653, 663, 664, 665, 666, 669, 680, 685, 689, 695, 727, 733, 736, 737, 738, 743, 744, 749, 750, 751, 752, 778, 792, 801, 805, 807, 811, 812, 813, 815, 817, 818, 824, 825, 826, 828, 829, 830, 831, 833, 836, 837, 838, 839, 840, 844, 851, 852, 853, 854, 860, 861], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 514, 515, 516, 517, 518, 519, 533, 617, 620, 623, 630, 633, 634, 670, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 791, 792, 812, 817, 825, 831, 833, 835, 847, 852, 856, 857, 858], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 512, 513, 519, 615, 618, 623, 629, 652, 658, 659, 666, 727, 764, 777, 798, 805, 813, 815, 825, 828, 833, 839, 841, 850, 851, 852, 854, 855, 860, 861], "although": [9, 623, 671, 798, 800, 808, 810, 811, 825, 831, 852, 854], "experi": [9, 15, 42, 804, 817, 828, 834, 836, 839], "demonstr": [9, 23, 26, 27, 41, 813, 815, 817, 835], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 623, 673, 762, 803, 804, 805, 808, 809, 813, 816, 817, 819, 821, 824, 825, 828, 831, 837, 839, 844, 847, 848, 851, 854, 860], "substanti": [9, 805, 808, 813, 828, 844, 854], "dive": [9, 15, 17, 26, 38, 799, 800, 802, 803, 805, 807, 811, 813, 819, 826, 832, 835, 836, 839, 860], "stuff": 9, "tool": [9, 17, 26, 27, 798, 804, 805, 815, 819, 834, 838, 839, 842, 845, 848, 852, 853, 854, 855, 857, 860, 861], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 455, 477, 500, 532, 534, 539, 540, 547, 548, 564, 573, 578, 618, 620, 623, 627, 633, 661, 668, 713, 725, 726, 744, 745, 749, 764, 777, 792, 812], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 441, 444, 446, 510, 519, 547, 548, 564, 578, 615, 618, 620, 623, 624, 627, 628, 633, 636, 652, 656, 661, 678, 683, 705, 712, 716, 723, 725, 726, 727, 744, 745, 747, 752, 811, 823], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 413, 419, 455, 500, 510, 533, 564, 599, 612, 618, 622, 623, 627, 630, 633, 645, 646, 656, 661, 668, 672, 712, 722, 725, 726, 727, 734, 744, 745, 804, 811, 817], "201": [9, 74, 75, 220, 389, 618], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 413, 510, 532, 533, 618, 620, 623, 627, 633, 636, 656, 664, 668, 705, 716, 725, 726, 727, 743, 745, 759, 817, 836], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 421, 509, 572, 594, 616, 618, 620, 623, 658, 659, 664, 671, 673, 674, 680, 770, 812, 825, 830, 831, 858], "recal": 9, "f1": [9, 813], "score": [9, 56, 79, 370, 447, 622, 649, 651, 798], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 605, 617, 621, 727], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 437, 455, 510, 528, 578, 605, 618, 620, 621, 622, 623, 627, 633, 645, 646, 668, 722, 725, 745, 752, 762, 765], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 813], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 532, 533, 605, 618, 620, 621, 623, 633, 668, 727, 745], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 510, 532, 533, 578, 604, 606, 618, 620, 621, 623, 660, 727], "73": [9, 38, 51, 80, 282, 380, 510, 623, 629, 652, 726, 828], "92": [9, 38, 42, 52, 53, 84, 353, 365, 599, 609, 621, 623, 654, 726, 727], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 419, 516, 547, 601, 618, 620, 621, 622, 623, 628, 633, 637, 639, 641, 643, 644, 646, 668, 723, 725, 726, 727, 745, 749, 798], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 548, 618, 620, 623, 627, 633, 663, 668, 678, 705, 712, 726, 745, 749, 762], "852": [9, 622, 646], "449": [9, 528, 620], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 510, 532, 533, 605, 618, 620, 621, 622, 623, 629, 646, 660, 726, 727], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 510, 532, 533, 603, 607, 618, 620, 621, 623, 660, 725, 726, 727], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 510, 601, 621, 726, 727, 801, 818], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 612, 615, 618, 623, 628, 679, 723, 726, 727], "nevertheless": 9, "fall": [9, 40, 782, 803, 813, 832], "short": [9, 38, 52, 75, 414, 622, 647, 803, 805, 813, 833, 837], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 455, 510, 527, 612, 615, 618, 620, 726, 727, 836], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 419, 423, 455, 510, 532, 548, 612, 616, 618, 620, 622, 623, 629, 630, 633, 637, 639, 640, 644, 646, 663, 668, 679, 725, 726, 727, 734, 745, 762, 765, 798, 812, 813, 823, 836, 859], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 578, 579, 602, 607, 615, 618, 620, 621, 623, 624, 661, 682, 726], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 618, 628, 629, 723, 725, 727], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 424, 510, 532, 533, 579, 618, 620, 623, 627, 633, 646, 665, 668, 678, 715, 745], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 618, 622, 623, 630, 633, 646, 653, 660, 726, 734, 745], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 500, 618, 622, 623, 627, 629, 646, 665, 712, 726, 812], "surpass": 9, "remark": [9, 839], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 618, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 798, 803, 804, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 824, 825, 826, 828, 831, 833, 837, 838, 839, 841, 855, 860], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 420, 456, 457, 459, 468, 487, 566, 575, 597, 615, 620, 623, 625, 627, 654, 656, 657, 658, 659, 661, 663, 665, 666, 667, 669, 670, 671, 673, 674, 677, 704, 714, 715, 778, 798, 802, 807, 824, 833, 850, 852, 859, 860], "x_doubl": 9, "vstack": [9, 52, 75, 371, 468], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 803, 804, 805, 813, 818, 831, 834, 838, 854, 857], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 429, 500, 510, 527, 528, 612, 618, 620, 623, 633, 652, 660, 751], "315": [9, 274, 618], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 477, 532, 534, 539, 540, 564, 578, 600, 603, 618, 620, 621, 623, 627, 633, 661, 668, 713, 726, 745, 749, 798, 812], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 528, 547, 601, 618, 620, 621, 623, 633, 668, 726, 727, 745, 812], "380": 9, "seem": [9, 803, 804, 831, 837, 838, 839, 854], "observ": [9, 52, 75, 380, 508, 509, 805, 813, 817, 833, 847, 856], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 540, 812], "plot": [9, 41, 798, 854], "conduct": [9, 858], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 540, 564, 618, 620, 623, 661, 828], "400": [9, 76, 79, 368, 391, 392, 540, 564, 620, 623, 661], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 440, 540, 620], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 414, 434, 473, 474, 475, 476, 516, 537, 538, 606, 616, 617, 620, 621, 623, 662, 763, 765, 779, 780, 805, 810, 831], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 618, 623, 625, 656, 663, 688, 792, 798, 812, 828, 833, 836], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 803], "loc": 9, "best": [9, 40, 559, 620, 792, 798, 799, 801, 802, 803, 804, 805, 806, 812, 813, 817, 818, 827, 828, 829, 840, 857, 858], "xlabel": 9, "ylabel": 9, "obviou": [9, 836, 854], "trend": 9, "longer": [9, 804, 813, 824, 828, 854], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 413, 419, 423, 441, 442, 443, 444, 445, 446, 447, 472, 519, 615, 616, 618, 622, 624, 625, 627, 629, 631, 645, 668, 682, 683, 684, 688, 696, 710, 725, 736, 737, 738, 763, 770, 782, 798, 808, 809, 813, 815, 820, 821, 822, 824, 825, 826, 827, 828, 831, 832, 834, 835, 836, 838, 843, 847, 848, 850, 851, 853, 854, 855, 860], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 413, 450, 451, 452, 493, 615, 629, 727, 792, 803, 805, 808, 812, 813, 825, 826, 827, 828, 837, 839, 848, 850, 851, 855], "slightli": [9, 306, 362, 811, 825, 828, 833, 837], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 553, 554, 555, 556, 558, 559, 560, 563, 564, 567, 568, 569, 570, 573, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 764, 765, 770, 775, 777, 778, 779, 780, 781, 782, 783, 787, 788, 791, 792, 794, 798, 803, 808, 816, 817, 820, 825, 826, 828, 829, 833, 835, 836, 847, 848, 849, 855], "x_train": 9, "y_train": [9, 42, 798], "train_siz": [9, 40], "random_st": [9, 369, 425], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 440, 618, 727, 762], "clear": [9, 190, 617, 803, 805, 809, 813, 814, 815, 825, 831, 833, 835, 843, 844, 845, 854], "amount": [9, 58, 81, 210, 617, 624, 682, 683, 684, 792, 804, 812, 814, 826], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 792], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 480, 488, 490, 567, 618, 620, 623, 671, 673, 787, 803, 804, 807, 808, 809, 811, 813, 814, 815, 816, 817, 819, 820, 821, 824, 825, 826, 828, 831, 833, 835, 836, 837, 838, 839, 844, 847, 853, 854, 860], "tend": 9, "outperform": 9, "proce": [9, 803, 804], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 540, 564, 623, 633, 668, 745, 844], "77": [9, 38, 42, 76, 579, 623, 633, 668, 745], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 532, 533, 617, 620, 726, 727], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 526, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 575, 578, 579, 580, 581, 583, 585, 586, 597, 599, 601, 602, 605, 607, 608, 609, 610, 620, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 759, 798, 806, 807, 808, 809, 811, 812, 813, 814, 816, 817, 820, 821, 824, 825, 828, 833, 835, 838, 839, 841, 847, 848, 850, 854, 855, 860, 861], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 604, 606, 616, 617, 621, 623, 628, 660, 723, 727], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 616, 618, 623, 627, 633, 675, 712, 726, 745], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 510, 601, 618, 621, 762, 818], "171": [9, 57, 623, 660, 762], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 478, 510, 618, 623, 633, 668, 745, 792, 844], "86": [9, 38, 61, 75, 84, 368, 380, 399, 510, 601, 621, 726, 727], "88": [9, 38, 77, 84, 107, 380, 510, 605, 612, 621, 623, 629, 633, 668, 727, 745], "perfectli": [9, 764, 845], "align": [9, 52, 69, 75, 368, 369, 403, 418, 622, 650, 792, 804, 812, 825, 827, 833, 835, 841, 860], "gain": [9, 777, 805, 807, 832, 837, 854], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 509, 537, 538, 620, 623, 653, 663, 805, 808, 811, 812, 813, 815, 817, 821, 828, 838, 854], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 631, 735, 736, 737, 738, 778, 779, 780, 798, 799, 804, 806, 812, 813, 821, 823, 832, 834, 837, 838, 839, 841, 844, 848, 852, 854, 856, 859, 860, 861], "timm": [10, 11, 15, 26, 27, 798, 848], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 775, 798, 845, 848, 860], "seen": [11, 13, 18, 24, 26, 369, 375, 426, 497, 544, 620, 787, 812, 813, 815, 817, 825, 828, 833, 835, 836, 843, 844, 860], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 618, 623, 671, 764, 802, 803, 804, 805, 810, 811, 813, 814, 815, 817, 818, 820, 821, 824, 825, 826, 828, 829, 831, 834, 836, 837, 838, 839, 843, 844, 850, 851, 852, 854, 855, 856, 859, 860, 861], "guid": [11, 24, 798, 799, 803, 804, 805, 810, 819, 825, 827, 860], "focu": [11, 24, 803, 823, 852, 853, 856, 861], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 415, 417, 429, 432, 444, 450, 451, 452, 457, 478, 567, 612, 615, 616, 618, 620, 623, 625, 631, 656, 662, 663, 666, 669, 671, 673, 680, 689, 696, 735, 736, 737, 738, 764, 774, 792, 798, 800, 802, 803, 805, 806, 807, 808, 809, 810, 811, 812, 813, 815, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 848, 849, 852, 853, 854, 855, 856, 857, 860, 861], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 616, 618, 792, 799, 803, 806, 812, 813, 815, 826, 831, 838, 844, 854, 860], "develop": [11, 25, 26, 27, 798, 799, 800, 801, 802, 803, 804, 805, 807, 810, 812, 818, 827, 829, 839, 841, 843, 844, 845, 847, 848, 852, 853, 854, 855, 856, 859, 860, 861], "usual": [11, 13, 43, 235, 268, 618, 791, 804, 807, 813, 825, 828, 831], "own": [11, 13, 17, 26, 27, 32, 798, 804, 807, 812, 813, 816, 817, 824, 825, 829, 833, 839, 841, 844, 845, 850, 853, 854, 859, 860], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 426, 627, 716, 798, 803, 804, 805, 807, 808, 811, 812, 813, 814, 816, 819, 821, 822, 824, 825, 826, 829, 830, 833, 835, 837, 838, 839, 840, 845, 847, 848, 849, 858, 859, 860], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 477, 478, 486, 488, 490, 497, 520, 537, 538, 542, 549, 563, 564, 565, 615, 616, 617, 618, 620, 623, 625, 627, 633, 671, 677, 688, 689, 690, 692, 694, 695, 697, 699, 707, 713, 746, 747, 748, 749, 750, 751, 752, 762, 763, 782, 792, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 837, 838, 839, 844, 847, 848, 849, 853, 857], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 421, 426, 438, 440, 450, 451, 452, 462, 495, 496, 512, 526, 612, 615, 616, 617, 618, 620, 622, 623, 625, 627, 629, 630, 632, 633, 648, 663, 670, 673, 674, 689, 692, 704, 705, 711, 712, 714, 715, 716, 721, 722, 725, 726, 727, 730, 731, 741, 747, 750, 760, 762, 763, 765, 778, 782, 791, 798, 799, 800, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 820, 821, 823, 824, 825, 826, 828, 829, 830, 831, 833, 835, 836, 837, 838, 839, 843, 847, 848, 853, 854, 855, 860, 861], "retriev": [11, 13, 17, 522, 544, 569, 620, 805, 825], "mlp_encod": [11, 26, 27, 798, 848], "create_model": [11, 26, 27, 798, 848], "mixer_b16_224": [11, 26, 27, 798, 848], "nois": [11, 13, 26, 27, 798, 847, 848], "randn": [11, 13, 26, 27, 798, 848], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 370, 371, 444, 445, 472, 625, 627, 628, 687, 710, 723, 777, 781, 798, 821, 826, 829, 837, 838, 839, 847, 849], "output_dens": [11, 26, 27, 798], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 628, 647, 648, 723, 775, 777, 779, 780, 781, 782, 783, 798, 816, 825, 829, 831, 833, 834, 837, 843, 848, 852, 854, 858, 861], "dens": [11, 24, 26, 27, 310, 362, 778, 798], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 491, 492, 612, 798, 804, 807, 813, 825, 826, 828, 839, 855, 858], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 581, 622, 648, 651, 777, 778, 798, 803, 804, 805, 813, 819, 829, 830, 837, 848, 854, 857], "mention": [11, 13, 26, 27, 32, 803, 804, 805, 808, 815, 820, 821, 824, 825, 828, 831, 844, 849, 854], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 479, 798, 799, 803, 815, 828], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 516, 778, 798, 808, 813, 820, 823, 831, 833, 834, 835, 836, 837, 838, 839, 845, 849, 852, 853, 854, 860, 861], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 775, 779, 780, 783, 798, 816, 834, 836, 837, 848, 849], "fine": [11, 13, 26, 27, 804, 805, 813, 815, 825, 835, 838, 860], "tune": [11, 13, 26, 27, 859, 860], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 437, 488, 490, 601, 602, 607, 621, 622, 645, 648, 651, 777, 778, 779, 780, 781, 798, 811, 814, 821, 836, 837, 838, 839, 845, 848, 852, 853, 858, 860, 861], "ground": [11, 13, 370, 441, 757, 759, 770, 801, 818, 825, 828, 843], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 417, 418, 419, 420, 422, 427, 430, 432, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 478, 480, 481, 482, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 558, 559, 560, 561, 563, 564, 568, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 710, 711, 712, 713, 714, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 765, 775, 780, 782, 787, 792, 794, 798, 813, 814, 816, 817, 823, 824, 825, 826, 829, 833, 838, 848], "op": [11, 17, 38, 774, 787, 829, 833, 839], "eagertensor": [11, 17, 38, 787, 826], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 803, 804], "deepmind": [12, 845], "perceiverio": [12, 845], "backbon": [12, 40, 798, 833, 836], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 477, 480, 563, 564, 568, 615, 618, 620, 625, 629, 685, 724, 762, 805, 810, 811, 813, 814, 822, 825, 828, 835, 838, 839, 844, 848, 861], "efficientnet": 13, "include_top": [13, 798], "eff_encod": [13, 798], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 440, 622, 623, 627, 633, 648, 651, 677, 710, 711, 712, 716, 717, 749, 751, 798, 804, 812, 813, 814, 822, 837, 851, 852, 854, 856, 858, 860], "efficientnet_v2": [13, 798], "efficientnetv2b0": [13, 798], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 418, 420, 438, 455, 477, 480, 481, 483, 495, 496, 497, 498, 499, 505, 509, 510, 511, 515, 518, 519, 536, 549, 551, 552, 555, 581, 612, 615, 617, 618, 620, 622, 623, 625, 627, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 652, 653, 654, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 686, 689, 690, 692, 693, 695, 696, 700, 708, 725, 726, 727, 729, 730, 731, 733, 734, 739, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 774, 777, 778, 779, 780, 784, 792, 798, 804, 806, 807, 808, 809, 810, 811, 814, 816, 820, 821, 822, 824, 826, 829, 831, 833, 835, 841, 842, 844, 854, 855, 856, 858, 859, 860], "storag": [13, 40, 41, 836, 844], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 798], "1280": [13, 532, 620, 798], "state": [14, 25, 40, 56, 79, 95, 182, 183, 184, 185, 186, 268, 588, 590, 593, 595, 596, 616, 618, 620, 622, 647, 760, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 798, 801, 804, 810, 813, 814, 816, 817, 818, 819, 820, 825, 828, 832, 833, 834, 836, 844, 848, 860, 861], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 801, 804, 805, 806, 808, 810, 813, 814, 815, 816, 817, 818, 820, 822, 824, 825, 826, 828, 831, 832, 834, 836, 839, 841, 842, 843, 850, 852, 854, 856, 859, 861], "welcom": [15, 41, 798, 799, 804, 805, 827], "goal": [15, 40, 242, 618, 798, 803, 844, 854, 860], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 414, 419, 423, 434, 435, 439, 440, 456, 458, 467, 486, 488, 490, 519, 531, 563, 564, 614, 615, 616, 617, 618, 620, 622, 623, 625, 627, 630, 633, 634, 648, 665, 668, 679, 688, 689, 696, 708, 730, 750, 752, 753, 754, 763, 778, 782, 787, 788, 798, 803, 804, 805, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 823, 824, 825, 826, 828, 829, 831, 835, 837, 839, 843, 847, 848, 849, 852, 853, 854, 855, 856, 857, 858, 861], "varieti": [15, 807, 812, 813, 814, 828, 830, 850, 852, 856, 857, 860, 861], "organ": [15, 808, 811, 821, 825, 827, 829, 841, 844], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 418, 461, 615, 623, 655, 656, 677, 798, 803, 804, 805, 807, 810, 811, 818, 822, 824, 852, 854, 855, 860], "exactli": [15, 19, 29, 38, 39, 43, 285, 618, 803, 811, 812, 813, 814, 815, 817, 828, 831, 843, 845], "rush": [15, 845], "jump": [15, 826], "straight": [15, 798, 812, 825, 828, 835], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 854], "capabl": [15, 23, 27, 828, 831], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 420, 438, 441, 495, 496, 497, 498, 499, 509, 510, 511, 519, 613, 615, 616, 618, 623, 629, 630, 631, 632, 633, 652, 654, 657, 658, 659, 661, 664, 665, 666, 669, 670, 671, 672, 673, 674, 675, 677, 680, 726, 727, 733, 735, 736, 737, 738, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 787, 788, 798, 801, 803, 804, 805, 807, 808, 810, 812, 813, 815, 816, 818, 820, 824, 825, 828, 829, 831, 833, 835, 836, 845, 847, 860], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 481, 600, 615, 616, 618, 620, 623, 625, 627, 630, 670, 673, 685, 706, 733, 803, 804, 805, 808, 811, 812, 813, 822, 824, 825, 826, 828, 831, 843, 851], "who": [15, 806, 817, 832, 839, 854, 856], "deeper": [15, 17, 27, 47, 627, 715, 716, 805, 806, 828, 832, 843], "showcas": [15, 798], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 420, 421, 612, 615, 618, 623, 630, 633, 657, 658, 659, 664, 671, 673, 674, 677, 680, 733, 746, 748, 749, 750, 751, 811, 856], "world": [15, 23, 805, 856], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 414, 429, 435, 440, 441, 442, 443, 444, 445, 446, 447, 449, 450, 451, 452, 456, 457, 458, 460, 462, 463, 464, 467, 471, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 559, 563, 564, 565, 566, 568, 571, 572, 574, 575, 577, 578, 579, 581, 583, 585, 586, 593, 594, 597, 599, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 629, 633, 634, 636, 637, 638, 639, 645, 646, 647, 648, 651, 652, 653, 658, 659, 660, 661, 662, 663, 664, 666, 668, 670, 671, 672, 677, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 710, 711, 712, 714, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 757, 759, 762, 774, 775, 778, 779, 780, 781, 782, 791, 798, 799, 803, 804, 808, 811, 813, 815, 820, 824, 825, 828, 830, 831, 847, 848], "beginn": [15, 799, 854], "advanc": [15, 38, 804, 853], "got": [15, 38, 817], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 803, 807, 808, 810, 813, 815, 816, 821, 822, 828, 831, 832], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 415, 417, 418, 426, 427, 430, 431, 432, 433, 439, 441, 442, 443, 444, 446, 447, 456, 457, 460, 461, 462, 463, 464, 465, 466, 469, 470, 471, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 731, 732, 734, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 760, 798, 802, 803, 805, 806, 807, 809, 810, 812, 813, 815, 816, 817, 821, 824, 826, 829, 833, 835, 838, 845, 854, 861], "familiar": [15, 16, 17, 798, 803, 804], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 798, 808, 813, 820, 833, 835, 838, 839, 860, 861], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 617, 806, 807, 808, 812, 813, 817, 822, 823, 825, 831, 833, 839, 842, 844, 846, 848, 850, 851, 852, 854, 858, 861], "alongsid": [15, 16, 17, 18, 28, 622, 648, 844], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 622, 645, 778, 804, 810, 811, 814, 815, 825, 828, 845], "wrapper": [15, 16, 19, 770, 808, 810, 811, 813, 817, 821, 824, 825, 835, 841, 850, 854], "unus": [15, 16, 19, 815, 824], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 421, 472, 519, 612, 615, 618, 623, 658, 659, 759, 798, 803, 804, 805, 807, 810, 813, 819, 821, 824, 825, 828, 829, 831, 833, 834, 838, 839, 847, 848, 849, 852, 854, 859, 860, 861], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 811, 839, 854], "understand": [15, 16, 17, 21, 38, 44, 801, 802, 803, 804, 805, 806, 807, 810, 815, 816, 820, 826, 827, 832, 845, 850, 860], "decor": [15, 16, 21, 23, 24, 32, 44, 526, 620, 762, 764, 770, 801, 807, 808, 811, 813, 814, 818, 821, 824, 825, 826, 831], "kornia": [15, 16, 23, 26, 27, 40, 44, 798, 848], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 433, 449, 462, 477, 480, 481, 502, 512, 518, 567, 600, 614, 620, 623, 628, 629, 633, 634, 653, 664, 675, 677, 679, 680, 723, 727, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 781, 787, 791, 798, 804, 805, 809, 815, 816, 823, 824, 826, 829, 833, 835, 839, 843, 845, 852, 854], "indep": [17, 26], "futur": [17, 24, 26, 40, 623, 658, 659, 798, 804, 805, 812, 813, 828, 829, 831, 835, 839, 843, 845, 860], "proof": [17, 26], "delv": [17, 27, 798], "theori": [17, 800, 810], "deep": [17, 24, 26, 38, 69, 532, 620, 798, 799, 800, 802, 803, 805, 807, 810, 811, 813, 819, 823, 826, 832, 835, 836, 843, 852, 854, 857, 858, 860, 861], "esenti": [17, 26], "abstract": [17, 26, 27, 777, 782, 798, 811, 813, 824, 825, 828, 831, 837, 843, 852, 854, 856, 857, 861], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 480, 499, 532, 533, 534, 560, 616, 617, 618, 620, 623, 625, 626, 629, 632, 633, 658, 659, 675, 696, 701, 702, 703, 724, 741, 746, 747, 748, 750, 757, 759, 779, 780, 787, 788, 794, 798, 801, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 817, 819, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 834, 835, 837, 838, 839, 840, 841, 843, 847, 848, 849, 850, 852, 853, 855, 856, 857, 861], "quirk": [17, 26], "perk": [17, 26, 798, 808, 811], "under": [17, 26, 27, 52, 370, 444, 445, 791, 798, 803, 804, 806, 807, 814, 815, 816, 819, 825, 826, 828, 831, 832, 833, 836, 838, 839, 847, 848, 854, 857, 861], "hood": [17, 26, 27, 798, 806, 814, 815, 819, 825, 828, 831, 832, 833, 836, 838, 847, 848, 861], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 413, 421, 472, 483, 511, 530, 616, 617, 620, 622, 623, 635, 636, 637, 638, 640, 642, 644, 659, 757, 759, 763, 791, 792, 809, 810, 812, 813, 814, 817, 825, 833, 836], "simplest": [17, 804, 815, 828, 831], "interact": [17, 26, 41, 44, 803, 853, 854, 859], "submodul": [17, 26, 40, 42, 97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 803, 804, 805, 807, 810, 812, 814, 818, 821, 822, 828, 832, 833, 837, 841], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 518, 601, 615, 617, 618, 621, 622, 640, 641, 725, 726, 727, 763, 798, 803, 808, 812, 815, 820, 821, 827, 828, 835, 836, 854], "likewis": [17, 22, 26, 33, 798, 805, 811, 813, 816, 820, 821, 825, 831, 836, 847, 848, 860], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 455, 456, 457, 458, 460, 461, 462, 463, 464, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 509, 510, 511, 512, 513, 521, 524, 525, 527, 528, 532, 533, 534, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 552, 555, 556, 558, 563, 564, 565, 568, 577, 578, 579, 580, 581, 583, 585, 586, 588, 599, 601, 602, 603, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 705, 706, 707, 711, 712, 713, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 783, 808, 811, 815, 817, 820, 821, 822, 824, 825, 829, 830, 833, 835, 841], "alia": [17, 26, 329, 330, 365, 613, 803, 825, 846, 849], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 421, 432, 480, 481, 510, 511, 633, 743, 744, 803, 804, 805, 812, 818, 824, 828, 833, 835, 838, 839, 854, 857, 858], "lastli": [17, 26, 808], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 544, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 568, 571, 573, 578, 579, 580, 581, 583, 585, 586, 593, 599, 600, 601, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 707, 711, 712, 713, 716, 717, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 769, 770, 778, 779, 780, 782, 783, 787, 791, 792, 798, 800, 801, 803, 804, 806, 807, 808, 809, 810, 812, 813, 815, 816, 818, 820, 821, 822, 823, 824, 826, 828, 830, 831, 832, 833, 834, 837, 839, 840, 841, 843, 847, 854, 855, 860], "subclass": [17, 26, 27, 822, 825, 831, 848], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 472, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 522, 524, 525, 527, 528, 532, 533, 534, 535, 536, 537, 538, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 585, 586, 599, 610, 614, 616, 617, 620, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 704, 705, 707, 710, 711, 712, 713, 715, 716, 717, 721, 722, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 759, 760, 775, 778, 780, 787, 792, 808, 811, 836, 837, 841, 847, 848, 849], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 437, 537, 538, 544, 616, 617, 620, 627, 704, 705, 708, 714, 715, 716, 757, 804, 807, 810, 811, 818, 821, 824, 837, 839], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 413, 414, 477, 479, 525, 532, 533, 534, 581, 612, 615, 616, 617, 618, 620, 622, 623, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 648, 675, 677, 749, 751, 762, 765, 778, 792, 798, 803, 804, 806, 807, 808, 811, 813, 814, 815, 816, 817, 821, 824, 825, 828, 831, 833, 836, 837, 841, 843, 847, 850, 851, 852, 853, 854, 855, 857, 858, 859, 860, 861], "fashion": [17, 764, 828, 848], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 446, 472, 478, 482, 521, 524, 551, 552, 555, 585, 612, 615, 616, 617, 618, 620, 622, 623, 624, 625, 629, 630, 633, 634, 636, 637, 644, 651, 654, 658, 659, 665, 666, 670, 674, 675, 677, 680, 682, 684, 685, 692, 724, 733, 742, 748, 751, 753, 759, 769, 787, 801, 818, 826, 828], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 532, 536, 673, 698], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 413, 622, 629, 635, 636, 637, 638, 640, 642, 644, 725, 727, 764, 811, 817, 824, 825, 831, 833, 850, 852, 854, 855, 856, 858, 860], "level": [17, 26, 27, 29, 52, 75, 76, 369, 437, 524, 792, 798, 799, 803, 804, 805, 811, 813, 817, 821, 823, 824, 825, 827, 830, 831, 832, 833, 836, 837, 838, 839, 841, 845, 850, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 415, 417, 419, 420, 422, 432, 450, 451, 452, 462, 480, 488, 489, 490, 493, 511, 524, 532, 533, 534, 535, 543, 547, 548, 586, 601, 602, 605, 607, 608, 609, 612, 615, 616, 618, 620, 621, 622, 623, 625, 627, 630, 631, 633, 636, 637, 638, 639, 640, 641, 643, 657, 659, 661, 692, 696, 704, 707, 711, 712, 713, 715, 716, 721, 722, 733, 738, 744, 745, 750, 752, 781, 791, 792, 799, 804, 806, 809, 810, 811, 815, 821, 823, 832, 833, 834, 836, 839, 841, 842, 844, 845, 848, 850, 854, 858, 859, 861], "fundament": [17, 26, 812, 825, 831, 833, 843, 854], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 616, 618, 799, 801, 803, 804, 810, 813, 814, 815, 821, 822, 825, 829, 831, 839, 843, 851, 854, 861], "signatur": [17, 26, 371, 380, 472, 509, 813, 814, 815, 816, 820, 824, 828, 829, 831, 844, 851, 860], "matmul": [17, 26, 27, 43, 57, 80, 369, 435, 600, 620, 623, 673, 809, 828, 829, 833], "to_n": [17, 26, 27, 38, 47, 70, 833], "jaxlib": [17, 23, 41, 787, 804, 808, 813, 814, 820, 829, 833, 835], "xla_extens": [17, 23, 787, 808, 813, 814, 820, 829, 833, 835], "arrayimpl": [17, 23, 787], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 420, 421, 472, 480, 509, 512, 539, 543, 545, 547, 549, 586, 610, 612, 615, 616, 618, 620, 621, 622, 623, 625, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 725, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 801, 803, 804, 805, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 828, 831, 833, 835, 836, 837, 838, 854, 859], "why": [17, 798, 805, 824, 835, 842, 844], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 445, 462, 618, 623, 625, 671, 692, 811, 824, 831, 847, 854], "disabl": [17, 26, 52, 75, 371, 480, 780, 810], "array_mod": [17, 26, 565, 588, 620, 830], "set_array_mod": [17, 26, 588, 620, 830], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 427, 537, 538, 616, 617, 618, 620, 763, 765, 803, 806, 808, 809, 811, 813, 814, 822, 824, 825, 826, 828, 831, 833, 837, 838, 839, 841, 847, 855], "ultim": [17, 26, 847], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 495, 612, 774, 833, 836, 837], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 441, 443, 444, 445, 446, 447, 453, 457, 468, 508, 509, 512, 519, 524, 536, 539, 540, 547, 548, 564, 577, 578, 579, 587, 600, 615, 617, 618, 620, 623, 624, 625, 627, 629, 630, 631, 633, 653, 663, 668, 669, 673, 680, 682, 683, 684, 685, 707, 711, 713, 721, 725, 726, 727, 730, 735, 745, 746, 748, 749, 750, 777, 798, 809, 811, 814, 815, 833, 835, 847], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 442, 488, 489, 490, 493, 578, 618, 620, 625, 694, 808, 811, 815, 819, 828], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 445, 612, 618, 623, 671, 823, 825], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 413, 572, 620, 622, 629, 635, 636, 637, 638, 640, 642, 644, 725, 727, 764, 803, 817, 823, 825, 836, 841, 845, 850, 851, 852, 853, 854, 858, 860, 861], "network": [17, 24, 26, 27, 38, 40, 45, 622, 646, 774, 777, 778, 798, 811, 821, 833, 837, 844, 848, 850, 852, 853, 854, 858, 860, 861], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 472, 512, 545, 617, 618, 633, 634, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 792, 803, 804, 805, 807, 808, 811, 813, 815, 817, 824, 825, 826, 828, 831, 833, 836, 837, 838, 839, 844, 845, 848, 854, 860, 861], "further": [17, 69, 98, 764, 805, 807, 808, 812, 815, 817, 820, 821, 824, 825, 827, 828, 832, 833, 836, 837, 844, 845, 859, 860], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 764, 798, 803, 804, 805, 807, 808, 810, 811, 813, 814, 815, 817, 819, 821, 823, 825, 826, 830, 833, 836, 839, 843, 847, 855, 856, 860, 861], "come": [17, 40, 803, 804, 805, 808, 812, 825, 830, 831, 837, 841, 854], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 493, 495, 618, 623, 629, 653, 672, 724, 798, 807, 813, 815, 822, 833, 838, 848, 852], "good": [17, 26, 27, 798, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 826, 828, 829, 831, 833, 834, 837], "foundat": [17, 844, 857], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 414, 569, 579, 591, 618, 620, 623, 627, 665, 678, 710, 777, 830, 835, 836, 837, 854, 856, 860], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 419, 472, 478, 512, 547, 548, 568, 612, 615, 618, 620, 623, 633, 653, 658, 659, 672, 746, 747, 748, 750, 798, 803, 804, 808, 809, 812, 813, 816, 820, 823, 825, 826, 828, 829, 835, 837, 839, 841, 849, 851, 852, 853, 854, 855, 858, 860, 861], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 849], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 421, 458, 467, 486, 515, 516, 544, 620, 623, 625, 626, 656, 677, 694, 701, 702, 703, 803, 805, 806, 811, 817, 825, 826, 828, 835, 836, 837, 849, 850], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 444, 445, 480, 502, 509, 512, 567, 618, 620, 623, 624, 625, 633, 634, 653, 679, 682, 691, 743, 746, 747, 748, 749, 750, 751, 752, 753, 754, 804, 809, 813, 815, 817, 821, 823, 824, 825, 833, 837, 838, 847], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 512, 629, 724, 725, 727, 777, 798, 827, 837, 848, 849, 861], "x_": [18, 28, 93, 279, 618, 849], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 616, 618, 623, 625, 630, 633, 634, 653, 666, 669, 672, 675, 679, 680, 692, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 804, 809, 820, 825, 826, 829, 833, 839, 844], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 433, 762, 804, 805, 829, 839, 852, 858], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 777], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 622, 623, 645, 656, 677, 777, 778, 804, 818, 832, 845, 847, 860], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 423, 444, 462, 472, 474, 480, 502, 510, 511, 615, 617, 622, 623, 624, 625, 630, 632, 633, 634, 647, 648, 653, 656, 668, 677, 679, 683, 684, 686, 689, 692, 693, 694, 696, 730, 731, 739, 741, 742, 743, 744, 753, 754, 778, 787, 798, 805, 807, 809, 810, 813, 815, 824, 826, 828, 831, 833, 839, 845, 848, 854], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 615, 618, 623, 671, 805, 806, 808, 811, 812, 814, 815, 817, 820, 821, 822, 825, 827, 828, 831, 832, 835, 841, 853, 855, 858, 859, 860], "illustr": [19, 29, 809, 833], "trigger": [19, 29, 780, 803, 819], "unif": [19, 21, 22, 29, 31, 799, 835, 844, 850, 860], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 417, 457, 535, 612, 615, 618, 631, 656, 663, 669, 673, 696, 735, 736, 737, 738, 774, 798, 803, 805, 807, 809, 810, 811, 812, 819, 820, 821, 822, 825, 826, 827, 828, 829, 830, 833, 835, 836, 837, 856, 860], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 442, 450, 451, 452, 603, 615, 616, 621, 820, 821, 823, 824, 825, 828, 837, 839, 847, 849, 855, 860], "constitu": [19, 29, 69, 838], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 480, 618, 804, 807, 812, 817, 824, 825, 844, 847, 848, 854], "manner": [19, 27, 29, 39, 47, 70, 627, 716, 804, 813, 814, 816, 821, 825, 829, 836, 839, 843, 850, 852, 860, 861], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 421, 425, 429, 451, 452, 512, 515, 615, 616, 618, 623, 627, 629, 630, 633, 634, 653, 654, 664, 666, 673, 675, 679, 680, 717, 726, 730, 731, 732, 733, 746, 747, 748, 749, 750, 752, 753, 754, 762, 777, 779, 780, 782, 808, 811, 815, 833, 847, 848, 849, 854], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 803, 831], "985": 19, "000": [19, 74, 269, 762, 801, 812, 818], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 605, 618, 621, 623, 664, 665, 726, 828, 836], "slower": [19, 825], "On": [19, 26, 27, 804, 813, 814, 819, 825, 828, 831, 834, 838], "hand": [19, 51, 369, 435, 762, 798, 807, 813, 814, 819, 821, 828, 839], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 432, 496, 586, 599, 603, 618, 620, 621, 622, 629, 631, 648, 725, 726, 727, 735, 762, 778, 803, 804, 805, 807, 812, 815, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 836, 837, 838, 839, 845], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 418, 419, 420, 432, 442, 446, 451, 472, 478, 482, 509, 519, 524, 614, 615, 616, 618, 620, 623, 625, 631, 652, 654, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 679, 697, 735, 736, 737, 738, 762, 764, 770, 778, 803, 804, 807, 808, 813, 814, 815, 816, 821, 825, 826, 828, 831, 832, 836, 838, 845, 851, 859], "workflow": [20, 30, 41, 803, 805, 809, 813, 823, 825, 836, 841, 845, 853, 860, 861], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 572, 594, 620, 813, 830, 860], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 442, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 488, 489, 490, 526, 542, 544, 567, 572, 594, 618, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 764, 765, 804, 805, 809, 810, 811, 812, 813, 817, 822, 825, 828, 829, 830, 831, 854], "conveni": [20, 30, 803, 813, 814, 820, 826, 834, 836, 837, 841, 860], "act": [20, 30, 52, 75, 356, 366, 805, 815, 830, 839, 861], "shorthand": [20, 30, 32, 828], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 413, 618, 622, 623, 635, 636, 637, 638, 640, 642, 644, 651, 653, 792], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 811], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 420, 421, 472, 618, 623, 625, 657, 658, 659, 696, 762, 770, 775, 792, 800, 803, 804, 808, 810, 812, 813, 814, 815, 816, 817, 819, 820, 822, 825, 826, 827, 828, 829, 831, 833, 835, 839, 848, 854, 860], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 421, 813, 815], "opt": [21, 22, 23, 24, 44, 804, 809, 813, 824, 828, 831], "fw": [21, 22, 23, 24, 56, 79, 380, 509, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 759, 804, 828], "mxnet": [21, 22, 23, 24, 787, 803, 804, 844, 861], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 424, 432, 547, 601, 618, 620, 621, 622, 623, 627, 628, 633, 644, 656, 668, 675, 705, 723, 725, 726, 745], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 532, 533, 534, 620, 813, 844], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 855], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 858, 859], "535": [21, 22, 23, 24, 46, 68, 113, 612, 817], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 532, 533, 605, 620, 621, 623, 633, 668, 745], "wheel": [21, 22, 23, 24, 40, 42, 45, 843], "six": [21, 22, 23, 24, 40, 45, 804, 831], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 622, 648], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 810], "prompt": [21, 22, 23, 24, 803, 805], "toolkit": [21, 22, 23, 24, 854, 855, 861], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 775, 787, 803, 804, 813, 818], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 798, 816, 820, 825, 831, 835, 838, 839, 854, 860, 861], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 798, 847, 848, 849], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 798, 847, 848, 849], "actual": [21, 31, 801, 805, 806, 812, 818, 821, 822, 824, 825, 826, 828, 831, 832, 837, 839, 855, 860], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 616, 618, 630, 631, 730, 731, 735, 736, 737, 738, 807, 812, 814, 817, 830], "becaus": [21, 29, 31, 41, 52, 368, 390, 757, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 828, 831, 833, 837, 838, 839, 854, 857, 860], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 414, 421, 472, 480, 509, 512, 516, 522, 523, 525, 526, 531, 533, 534, 539, 543, 545, 547, 549, 559, 563, 564, 581, 586, 587, 600, 610, 615, 616, 618, 620, 621, 622, 623, 625, 626, 627, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 703, 710, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 763, 770, 775, 778, 779, 780, 787, 791, 794, 798, 803, 806, 807, 808, 809, 810, 811, 815, 816, 819, 821, 826, 828, 829, 831, 833, 835, 836, 841, 843, 847, 848, 849, 854], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 798, 803, 804, 810, 824, 836, 857], "dummi": [21, 22, 31, 32, 33, 39, 805], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 425, 434, 440, 495, 496, 497, 498, 499, 622, 629, 631, 645, 724, 725, 726, 727, 729, 735, 770, 775, 777, 792, 822, 826, 828], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 433, 435, 472, 480, 509, 512, 539, 543, 545, 547, 556, 586, 610, 615, 616, 618, 620, 621, 622, 623, 624, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 682, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 791, 798, 804, 807, 809, 812, 813, 816, 826, 828, 831, 835, 836, 839], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 425, 434, 439, 440, 617, 804, 814, 818, 828, 838, 843, 852, 853, 854, 855, 859, 861], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 798, 803, 804, 807, 817, 819, 826, 828, 840, 852, 855, 858, 860], "critic": [21, 22, 24, 26, 27, 854, 860], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 442, 509, 617, 622, 648, 759, 770, 781, 805, 813, 814, 824, 825, 826, 828, 847, 848], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 417, 421, 491, 492, 494, 527, 528, 549, 620, 623, 664, 680, 723, 778, 782, 829], "slow": [21, 31, 800, 804, 810], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 445, 509, 558, 615, 616, 620, 623, 629, 658, 659, 664, 680, 726, 727, 744, 759, 762, 763, 813, 826, 828], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 631, 735, 736, 737, 738, 800, 803, 805, 814, 822, 826, 828, 831, 845, 849, 855], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 591, 601, 602, 604, 605, 606, 607, 618, 620, 621, 624, 683, 684, 726, 779, 782, 837], "981554": 22, "happen": [22, 26, 27, 287, 618, 798, 804, 805, 814, 824, 828, 836, 845, 847, 848], "wherea": [22, 33, 805, 808, 811, 813, 814, 815, 820, 821, 828, 838, 851], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 472, 615, 618, 808, 811, 815], "begin": [22, 52, 75, 279, 371, 456, 472, 473, 474, 475, 476, 618, 627, 704, 715, 762, 804, 807, 812, 826], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 802, 804, 805, 816, 818, 819, 828, 851, 854, 861], "sympi": [23, 844], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 813, 823], "often": [23, 802, 807, 817, 820, 821, 825, 828, 839, 845, 855, 858, 861], "fortun": [23, 24, 807], "everyth": [23, 41, 791, 798, 803, 804, 805, 806, 812, 815, 824, 825, 826, 828, 834, 839, 840, 845], "practic": [23, 805, 809, 812, 825, 827, 857], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 421, 431, 433, 438, 444, 445, 446, 448, 462, 465, 474, 475, 477, 478, 480, 496, 507, 509, 510, 511, 514, 515, 519, 522, 539, 540, 542, 544, 545, 558, 560, 568, 600, 612, 615, 616, 617, 618, 620, 622, 623, 624, 625, 627, 629, 630, 631, 632, 633, 634, 648, 651, 653, 655, 656, 658, 659, 664, 672, 675, 677, 678, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 693, 695, 696, 699, 700, 708, 709, 711, 712, 719, 720, 721, 722, 725, 726, 727, 729, 730, 731, 733, 736, 737, 738, 739, 743, 744, 745, 749, 751, 753, 754, 762, 765, 774, 778, 779, 780, 792, 804, 806, 810, 813, 814, 820, 821, 822, 824, 825, 826, 828, 833, 836, 837, 847, 848, 849, 860], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 485, 521, 615, 620, 803, 805, 807, 809, 810, 812, 813, 815, 819, 820, 821, 822, 824, 825, 826, 828, 833, 835, 837, 847, 848, 849, 854], "jax_kornia": [23, 26, 27, 798, 848], "though": [23, 802, 803, 805, 813, 814, 816, 821, 824, 825, 831, 836, 839], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 417, 419, 420, 421, 422, 424, 425, 427, 430, 432, 434, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 466, 469, 482, 488, 490, 501, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 526, 527, 528, 572, 594, 601, 603, 604, 606, 610, 611, 617, 618, 620, 621, 622, 623, 624, 625, 627, 631, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 652, 653, 657, 658, 659, 662, 663, 664, 666, 668, 670, 672, 673, 675, 677, 679, 680, 682, 683, 684, 688, 710, 735, 736, 737, 738, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 759, 764, 778, 781, 792, 798, 804, 811, 812, 813, 821, 823, 825, 828, 830, 831, 833, 836, 839, 841, 844, 845, 847, 848, 850, 852, 854, 855, 857, 858, 860], "000000000034": [23, 26, 27, 798, 848], "raw_img": [23, 26, 27, 798, 848], "enhanc": [23, 26, 27, 798, 827, 848], "sharp": [23, 26, 27, 798], "prefer": [23, 26, 27, 242, 618, 798, 804, 811, 817, 818, 822, 825, 840, 854], "leverag": [23, 26, 27, 798, 804, 824, 848, 852, 854], "whole": [24, 52, 75, 371, 374, 479, 491, 492, 494, 805, 810, 819], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 438, 439, 444, 445, 473, 476, 566, 575, 589, 597, 615, 616, 618, 620, 622, 623, 637, 639, 640, 641, 643, 666, 670, 672, 673, 763, 770, 798, 804, 805, 810, 813, 816, 817, 820, 821, 825, 828, 831, 833, 839, 844, 845, 852, 854, 860], "advantag": [24, 26, 27, 798, 804, 805, 813, 824, 825, 840, 848, 854], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 415, 420, 421, 422, 431, 433, 517, 518, 578, 579, 612, 615, 616, 618, 620, 623, 630, 633, 657, 658, 659, 664, 671, 673, 675, 677, 680, 733, 748, 749, 751, 763, 774, 792, 803, 810, 813, 815, 822, 825, 828, 829, 831, 836, 837, 838, 839, 841, 848, 850, 852, 854, 856, 860, 861], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 764, 778, 848, 852, 854], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 418, 461, 471, 475, 480, 481, 485, 507, 514, 515, 516, 517, 518, 519, 532, 536, 620, 623, 625, 630, 631, 660, 668, 680, 686, 691, 693, 730, 731, 735, 736, 737, 738, 757, 759, 798, 824, 831], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 414, 472, 509, 523, 526, 559, 587, 615, 618, 620, 623, 627, 633, 674, 710, 751, 757, 759, 763, 779, 780, 791, 803, 808, 811, 813, 814, 822, 824, 825, 826, 828, 829, 831, 836, 847, 848, 849], "input_arrai": [24, 26, 27, 824], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 612, 622, 646], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 780, 782, 807, 811, 821, 826, 828, 835, 836, 837, 860], "_transpil": 24, "thank": [24, 836, 844], "fledg": [24, 804, 833, 834], "rand": [24, 26, 27, 42, 791, 792, 798, 847], "output_arrai": [24, 26, 27, 52, 442], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 618, 798, 800, 802, 803, 804, 805, 810, 817, 825, 828, 829, 830, 831, 848, 857], "interest": [24, 26, 38, 235, 268, 618, 803, 805], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 614, 618, 798, 802, 803, 804, 806, 807, 818, 824, 827, 828, 839, 844, 845, 854], "regress": [25, 854, 861], "checkout": [26, 41, 805, 807, 828], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 799, 823, 836, 854], "switch": [26, 38, 770, 809, 817, 821, 822, 861], "easiest": [26, 798, 800, 804, 840], "defer": [26, 27, 803, 808, 813, 814, 821, 824, 825, 828, 860], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 615, 618, 809, 813, 825, 831, 835, 860], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 622, 648, 764, 825, 847], "essenc": [26, 855, 860], "becom": [26, 52, 75, 92, 339, 365, 371, 452, 625, 685, 787, 805, 811, 813, 815, 817, 824, 839, 843, 845, 847], "regardless": [26, 27, 38, 69, 799, 813, 817, 835, 838, 845], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 429, 456, 472, 573, 615, 620, 623, 659, 759, 765, 777, 798, 804, 805, 807, 808, 809, 811, 813, 814, 815, 818, 820, 822, 824, 825, 826, 828, 829, 831, 833, 836, 839, 844, 845, 850, 852, 853, 854, 855, 860, 861], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 413, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 414, 421, 432, 435, 442, 446, 457, 460, 478, 482, 483, 488, 489, 490, 491, 495, 496, 497, 498, 499, 507, 516, 519, 524, 526, 535, 544, 547, 548, 578, 579, 580, 583, 611, 614, 615, 616, 617, 618, 620, 621, 622, 623, 625, 627, 629, 633, 634, 645, 648, 656, 658, 661, 662, 667, 668, 672, 673, 685, 688, 690, 694, 696, 704, 707, 709, 711, 712, 713, 714, 715, 719, 720, 721, 722, 724, 725, 726, 727, 729, 735, 745, 753, 754, 757, 759, 760, 762, 763, 764, 765, 770, 777, 792, 796, 798, 802, 803, 804, 806, 811, 813, 814, 817, 820, 821, 825, 826, 828, 833, 836, 839, 840, 841, 842, 843, 844, 845, 847, 848, 849, 854, 855], "regressor": [26, 27, 798], "input_dim": [26, 27, 41, 798], "output_dim": [26, 27, 41, 798], "linear0": [26, 27, 38, 798, 836, 837], "linear1": [26, 27, 38, 798, 836, 837], "instanti": [26, 27, 770, 816], "adam": [26, 27, 38, 42, 54, 77, 523, 601, 602, 607, 620, 621, 782, 798, 836, 837, 838, 854], "n_training_exampl": [26, 27, 798], "2000": [26, 27, 75, 308, 362, 798], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 532, 620, 622, 623, 629, 637, 639, 640, 641, 643, 644, 647, 673, 798], "linspac": [26, 27, 48, 71, 121, 615, 798, 820, 831, 833, 861], "loss_fn": [26, 27, 38, 40, 42, 798, 836, 837, 838], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 441, 444, 624, 682, 683, 684, 798, 811, 821, 824], "epoch": [26, 27, 40, 42, 798], "loss": [26, 27, 40, 42, 52, 75, 92, 441, 442, 443, 444, 445, 446, 447, 572, 594, 620, 682, 683, 684, 798, 812, 813, 821, 825, 829, 830, 836, 837, 838, 854, 861], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 617, 626, 701, 702, 703, 759, 770, 782, 798, 806, 829, 836, 837, 839, 854], "grad": [26, 27, 38, 42, 601, 621, 782, 798, 823, 836, 837, 838], "execute_with_gradi": [26, 27, 38, 42, 621, 798, 836, 837, 838, 839], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 531, 603, 604, 606, 611, 614, 620, 621, 623, 627, 658, 711, 712, 716, 798, 803, 821, 822, 823, 826, 831, 833, 836], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 431, 438, 451, 461, 509, 778, 798, 825, 831], "5f": [26, 27, 798], "nonetheless": [26, 27], "slight": [26, 27, 813, 828, 837], "introduc": [26, 27, 242, 618, 625, 631, 693, 735, 803, 811, 812, 813, 822, 826, 828, 831, 836, 843], "address": [26, 27, 52, 53, 75, 371, 480, 585, 620, 803, 805, 807, 808, 820, 827, 833, 845, 850, 852, 854, 860], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 455, 481, 825, 827, 829, 850, 854, 855, 860], "gc": [26, 27, 544, 620], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 429, 434, 437, 440, 825, 838], "said": [26, 27, 764, 829, 845, 847], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 423, 436, 438, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 458, 460, 462, 463, 464, 471, 478, 480, 481, 482, 486, 488, 490, 491, 492, 494, 496, 508, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 578, 579, 581, 583, 585, 586, 587, 599, 603, 605, 610, 614, 615, 616, 617, 618, 620, 621, 622, 623, 626, 627, 630, 631, 632, 633, 634, 636, 637, 638, 639, 645, 646, 648, 651, 652, 653, 654, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 673, 677, 679, 680, 682, 683, 684, 685, 688, 689, 690, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 717, 724, 725, 726, 727, 729, 730, 731, 732, 734, 735, 736, 737, 738, 739, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 762, 763, 778, 780, 781, 787, 798, 805, 808, 811, 813, 814, 815, 821, 822, 824, 828, 833, 840, 847, 848], "x0": [26, 27, 45, 76, 524, 620, 815], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 633, 671, 672, 700, 750, 798, 816, 844], "fname": [26, 27, 43, 45, 780, 836], "anticip": [26, 27], "addition": [26, 27, 811, 824, 825, 860], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 803, 804], "built": [26, 27, 32, 40, 42, 45, 121, 615, 778, 779, 780, 798, 804, 805, 810, 811, 828, 834, 840, 847, 853, 854, 858], "summar": [26, 27, 92, 828], "eager_graph": [26, 27, 798, 847, 848], "lazy_graph": [26, 27, 798, 847, 848], "codebas": [26, 27, 206, 207, 617, 799, 806, 813, 819, 824, 825, 827, 828, 829, 832, 845], "thought": [26, 27, 804, 805, 820, 844, 852], "research": [26, 27, 40, 798, 843, 848, 854, 861], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 439, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 587, 599, 605, 610, 618, 620, 627, 633, 634, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 787, 798, 800, 805, 807, 809, 810, 812, 815, 821, 823, 825, 833, 835, 844, 847, 848, 853, 854, 856], "No": [26, 27, 40, 52, 58, 75, 81, 370, 442, 443, 444, 446, 447, 624, 682, 805, 812, 813, 854], "matter": [26, 27, 32, 815, 843], "job": [26, 27, 798, 810, 812, 848], "haven": [26, 27, 32, 840, 854], "jax_out": [26, 27], "ideal": [26, 27, 812, 813, 825, 831, 836], "But": [26, 27, 764, 811, 812, 816, 819, 822, 831, 838], "bring": [26, 27, 807, 827, 828, 833, 834, 841, 844], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 419, 426, 459, 466, 468, 469, 487, 612, 618, 625, 653, 685, 782, 831], "vision": [26, 27, 45, 850, 860], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 854], "chosen": [26, 27, 45, 95, 121, 223, 615, 618, 630, 734, 803, 812, 825], "plai": [26, 27, 370, 444, 798, 804, 808, 814, 818, 825, 828, 838, 854, 857], "role": [26, 27, 798, 805, 814, 825, 834, 855, 857, 861], "dl": [26, 27], "cnn": [26, 27, 854], "effortlessli": [26, 27], "previous": [26, 27, 589, 620, 787, 804, 809, 821, 823, 828, 833], "pre": [26, 27, 798, 801, 803, 827, 828, 838, 839, 840, 854], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 617, 814, 817, 818], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 616, 617, 813], "certainli": [26, 27, 798, 844, 860], "upon": [26, 27, 44, 805, 815, 824, 828, 831, 839, 853, 854], "unnecessari": [26, 27, 825], "extend": [26, 27, 52, 75, 371, 380, 472, 512, 809, 810, 813, 816, 817, 820, 825, 829, 839, 851, 854, 860], "infrastructur": [26, 27, 798, 850, 856, 857], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 450, 451, 452, 461, 463, 509, 618, 623, 630, 663, 733, 798, 805, 808, 812, 813, 814, 815, 821, 824, 828, 848], "coco": 26, "seamlessli": [27, 828], "benefit": [27, 798, 804, 808, 811, 824, 831, 835, 836, 839, 844, 845, 852, 856, 859], "through": [27, 32, 40, 52, 75, 95, 223, 380, 515, 516, 618, 627, 707, 713, 780, 791, 798, 799, 801, 802, 803, 805, 806, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 824, 825, 826, 828, 830, 831, 832, 833, 836, 837, 838, 847, 852, 854, 855, 856], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 465, 472, 473, 475, 480, 484, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 805, 807, 808, 811, 812, 813, 814, 815, 816, 817, 820, 821, 822, 824, 825, 826, 828, 829, 831, 833, 835, 837, 839, 843, 851, 854, 860], "wide": [27, 798, 805, 828, 852, 854], "prepar": [27, 40, 42, 45, 798, 812], "plenti": 27, "resourc": [27, 799, 803, 804, 812], "visit": [27, 803, 804, 805, 812], "page": [27, 798, 803, 804, 805, 810, 812, 818, 834, 835, 838, 840, 849], "newli": [28, 29, 41, 43, 49, 72, 147, 526, 616, 620, 805, 812, 824, 828], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 618, 627, 704, 715, 803, 804, 809, 811, 812, 819, 828, 836, 837], "inspect": [28, 32, 522, 620], "__": [28, 29, 30, 31, 32, 33, 69, 815, 836], "exhibit": [29, 860], "via": [29, 32, 242, 369, 371, 434, 437, 440, 480, 618, 627, 714, 715, 805, 807, 811, 813, 814, 824, 829, 831, 833, 835, 836, 854], "script": [29, 798, 804, 805, 807, 812, 815, 833, 839, 854], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 456, 457, 478, 480, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 626, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 706, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 783, 808, 811, 823, 825, 837, 838, 839, 854], "un": [29, 165, 616, 813, 833], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 462, 625, 692], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 618, 784, 792, 816, 825, 833, 838, 854, 855], "fastest": [29, 52, 59, 75, 82, 369, 371, 432, 462, 625, 692], "maxim": [29, 821, 824, 833, 851, 852, 856, 857, 858], "conclud": [30, 829], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 612, 617, 620, 621, 622, 624, 627, 628, 629, 717, 774, 778, 779, 780, 781, 782, 804, 812, 817, 818, 822, 823, 826, 828, 852, 854, 857], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 569, 570, 573, 578, 579, 591, 592, 595, 616, 617, 620, 770, 781, 787, 804, 808, 809, 812, 813, 814, 817, 821, 825, 833, 854], "approach": [31, 801, 803, 804, 805, 808, 811, 813, 814, 818, 821, 825, 828, 829, 831, 835, 836, 839, 851, 858, 860], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 416, 419, 421, 423, 427, 432, 435, 440, 441, 443, 444, 445, 446, 450, 451, 452, 453, 456, 457, 458, 459, 462, 463, 464, 466, 467, 468, 469, 471, 472, 478, 480, 481, 482, 483, 486, 487, 492, 494, 496, 497, 499, 500, 502, 509, 510, 511, 512, 514, 516, 519, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 556, 563, 564, 578, 579, 581, 585, 586, 599, 601, 602, 603, 605, 607, 608, 609, 610, 612, 615, 616, 618, 620, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 651, 652, 653, 654, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 682, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 704, 707, 710, 711, 712, 713, 715, 716, 721, 722, 723, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 791, 792, 798, 799, 801, 805, 806, 807, 809, 811, 812, 815, 818, 821, 823, 826, 832, 833, 834, 836, 837, 838, 842, 845, 847, 850], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 414, 415, 417, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 455, 456, 457, 458, 460, 462, 463, 464, 465, 466, 467, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 527, 528, 530, 532, 533, 534, 535, 536, 539, 540, 542, 543, 544, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 568, 578, 579, 581, 583, 585, 586, 587, 599, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 662, 663, 664, 666, 667, 668, 669, 670, 671, 672, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 710, 711, 715, 716, 721, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 763, 770, 774, 775, 777, 778, 780, 782, 783, 791, 796, 803, 804, 805, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 824, 825, 826, 828, 829, 831, 833, 838, 839, 847, 848, 849, 854, 860], "prioriti": [32, 69, 787, 803, 805, 814, 824], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 421, 441, 480, 509, 521, 524, 545, 546, 550, 551, 552, 553, 554, 555, 581, 599, 615, 616, 617, 618, 620, 623, 625, 626, 631, 634, 652, 653, 654, 656, 660, 661, 663, 665, 666, 668, 669, 671, 672, 677, 679, 680, 686, 701, 702, 703, 735, 736, 737, 738, 739, 753, 754, 764, 770, 777, 781, 811, 813, 814, 816, 821, 825, 828, 830, 831, 843], "think": [32, 803, 805, 812, 815, 831, 855], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 414, 435, 471, 472, 485, 556, 620, 626, 627, 631, 701, 702, 703, 706, 710, 735, 736, 737, 738, 764, 798, 803, 807, 811, 821, 825, 826, 827, 831, 839, 843, 857], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 460, 509, 616, 618, 623, 625, 652, 653, 660, 665, 668, 672, 686, 764, 791, 807, 808, 811, 812, 813, 815, 819, 820, 821, 823, 828, 831, 855], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 415, 417, 418, 426, 427, 430, 431, 433, 441, 442, 443, 444, 446, 447, 453, 457, 460, 465, 473, 474, 475, 476, 478, 480, 482, 484, 488, 491, 492, 494, 495, 496, 498, 499, 509, 510, 511, 512, 515, 516, 517, 518, 519, 527, 528, 532, 533, 534, 539, 540, 549, 563, 564, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 666, 667, 668, 669, 670, 672, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 695, 696, 697, 698, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 734, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 791, 811, 813, 815, 816, 817, 828, 829, 833], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 623, 628, 678, 723, 821, 829, 833], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 417, 418, 420, 426, 427, 430, 431, 432, 433, 438, 441, 442, 443, 444, 446, 447, 450, 451, 452, 457, 458, 460, 462, 463, 464, 465, 467, 471, 473, 474, 475, 476, 478, 480, 481, 482, 484, 486, 491, 492, 494, 495, 496, 498, 499, 502, 509, 510, 511, 512, 519, 527, 528, 532, 533, 534, 539, 540, 542, 549, 563, 564, 600, 601, 602, 605, 607, 608, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 741, 742, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 777, 778, 782, 784, 802, 803, 804, 805, 807, 808, 812, 813, 814, 815, 816, 817, 820, 821, 822, 824, 825, 828, 829, 830, 831, 833, 837, 838, 843, 845, 848, 849, 855, 861], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 623, 656, 677, 803, 812, 825, 829, 838, 855], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 462, 618, 625, 692, 777, 791, 804, 812, 816, 825, 829, 847], "rather": [32, 53, 69, 76, 121, 208, 551, 552, 555, 615, 617, 620, 801, 805, 807, 811, 813, 816, 818, 825, 826, 828, 829, 838, 839, 844, 850, 853, 854], "fact": [32, 92, 805, 807, 812, 825, 828, 833, 836], "consum": [32, 759, 811, 812, 820, 826, 828], "thrown": [32, 549, 620, 804, 808, 814, 817, 819, 839], "doesn": [32, 549, 567, 620, 757, 778, 803, 804, 809, 811, 812, 813, 814, 815, 818, 819, 821, 823, 828, 831, 833, 839, 847, 852], "consider": [32, 803, 815, 820, 831, 843, 851, 852], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 444, 601, 609, 615, 621, 622, 633, 648, 750, 752, 762, 765, 803, 808, 811, 812, 816, 820, 824, 826, 831, 839, 844], "explain": [32, 52, 75, 368, 401, 412, 798, 803, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 828, 829, 831, 833, 834, 835, 836, 837, 838, 850, 857, 860], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 450, 451, 452, 458, 460, 461, 462, 463, 464, 471, 486, 572, 594, 618, 620, 688, 689, 690, 692, 694, 695, 697, 699, 798, 803, 804, 808, 809, 811, 813, 815, 824, 825, 828, 830, 831, 847, 848], "standalon": [33, 803, 808, 828, 841, 850, 855, 860, 861], "dynam": [33, 625, 692, 780, 787, 806, 812, 813, 814, 824, 825, 830, 833, 847, 854, 858], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 414, 434, 440, 478, 489, 581, 615, 622, 648, 668, 775, 780, 825, 830, 839, 853, 854, 855], "flow": [34, 811, 847, 854, 855], "statement": [34, 39, 812, 824, 828, 831, 839, 847, 848], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 510, 511, 615, 629, 727, 743, 762, 765, 787, 815, 833, 847], "todo": [35, 36, 37, 42, 45, 75, 511, 803, 813, 825], "aim": [38, 801, 805, 807, 818, 822, 825, 828, 832, 852, 854, 857], "interfac": [38, 71, 129, 615, 835, 838, 839, 841, 844, 850, 851, 852, 853, 854, 858, 861], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 618, 622, 623, 627, 630, 633, 645, 668, 712, 725, 726, 734, 745], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 510, 516, 601, 607, 618, 621, 623, 625, 633, 668, 694, 726, 727, 745, 762], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 615, 618, 627, 705, 725, 726], "underneath": [38, 812, 852], "sai": [38, 803, 804, 818, 822, 835, 845], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 455, 480, 481, 527, 528, 618, 620, 625, 811, 821, 823, 824, 836, 838], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 838], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 838], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 421, 477, 517, 533, 563, 564, 578, 615, 616, 618, 620, 623, 633, 664, 670, 673, 674, 680, 798], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 421, 477, 479, 480, 527, 528, 533, 549, 563, 564, 616, 618, 620, 623, 633, 664, 666, 669, 762, 778, 782, 812, 825], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 432, 510, 618, 633, 678, 726, 745], "devicearrai": [38, 808, 825, 833, 835], "concaten": [38, 52, 53, 59, 75, 80, 371, 457, 532, 536, 620, 622, 625, 648, 668, 686, 762, 826, 831, 833, 836], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 798, 803, 804, 805, 808, 811, 813, 814, 815, 816, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 835, 841, 852], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 510, 578, 605, 612, 618, 620, 621, 622, 629, 646, 725, 726, 727], "mymodel": [38, 836], "x_in": [38, 836, 837, 838], "reduce_mean": [38, 798, 836, 837, 838], "91": [38, 52, 79, 84, 353, 365, 410, 622, 623, 629, 633, 646, 668, 726, 745], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 510, 618, 622, 623, 633, 646, 665, 668, 725, 726, 727, 745, 812, 815], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 510, 547, 618, 620, 623, 629, 633, 661, 668, 726, 727, 745, 807], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 527, 618, 620], "4678264260292053": 38, "59": [38, 51, 230, 380, 510], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 601, 618, 621, 622, 623, 624, 644, 660, 682, 684, 727, 818], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 618], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 605, 618, 621, 623, 633, 668, 726, 745], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 618, 623, 665], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 607, 618, 621, 623, 629, 633, 668, 726, 745], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 527, 528, 618, 620, 727], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 432, 510, 623, 627, 633, 668, 715, 745, 844], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 510, 616, 618, 623, 627, 629, 633, 660, 665, 678, 712, 727, 745, 828], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 616, 617, 623, 628, 633, 646, 668, 723, 726, 727, 745], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 605, 612, 621, 623, 627, 630, 633, 668, 705, 716, 725, 727, 734, 745], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 839, 844, 860], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 414, 622, 651, 762, 792, 803, 813, 818, 819, 824, 826, 828, 829, 847, 855, 857], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 442, 496, 509, 569, 570, 578, 579, 591, 592, 615, 616, 618, 620, 623, 629, 630, 633, 653, 660, 663, 668, 671, 673, 675, 677, 679, 725, 726, 727, 729, 730, 731, 733, 734, 739, 746, 749, 751, 762, 763, 764, 765, 777, 801, 813, 818, 823, 825, 826, 828, 829, 830, 831, 833, 837, 851, 854, 860], "anyth": [39, 52, 75, 380, 515, 516, 805, 817, 828, 829, 854, 855], "affect": [39, 45, 52, 370, 445, 812, 825], "intermedi": [39, 852, 853, 854, 855, 860], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 369, 375, 380, 436, 497, 508, 509, 525, 549, 550, 551, 552, 555, 581, 602, 603, 605, 607, 608, 609, 614, 620, 621, 623, 626, 628, 672, 701, 702, 703, 723, 759, 770, 775, 777, 778, 779, 780, 781, 782, 783, 805, 809, 813, 816, 820, 823, 824, 828, 829, 833, 836, 837, 838, 839, 840, 847, 855], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 614, 626, 633, 701, 702, 784, 804, 815, 833], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 536, 618, 620, 802, 813, 833, 844], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 536, 618, 620, 808, 833], "tan": [39, 51, 74, 523, 618, 620, 816, 820, 821, 824, 825, 833], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 812, 813, 815], "opeat": 39, "_layer": [39, 833], "net": [39, 44, 45, 833, 838, 844, 845], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 480, 509, 616, 618, 623, 625, 633, 671, 672, 700, 750, 778, 798, 803, 804, 805, 807, 809, 812, 816, 818, 829, 839, 840, 848, 859], "pypi": [40, 42, 45, 803, 804, 829, 839], "pkg": [40, 42, 45], "public": [40, 42, 45, 529, 620, 812, 823, 835, 857], "revis": [40, 42, 805], "tmp": [40, 42, 576, 598, 620], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 798, 800, 804, 807, 810, 812, 818, 819, 840], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 764, 778, 798, 809, 812], "quiet": [40, 42], "commit": [40, 42, 801, 803, 807, 815, 827, 828], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 824], "setup": [40, 42, 45, 804, 805, 810, 812, 818], "done": [40, 42, 45, 623, 659, 802, 803, 804, 805, 807, 810, 812, 814, 815, 818, 819, 824, 825, 828, 836, 847, 848, 854], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 804], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 804], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 419, 423, 435, 439, 536, 620, 623, 625, 677, 694, 759, 760, 778, 779, 780, 800, 805, 808, 809, 811, 816, 822, 824, 825, 826, 833, 835, 836, 837, 841, 847], "directori": [40, 41, 42, 45, 576, 598, 617, 620, 800, 803, 804, 805, 810, 812, 818, 825, 828, 840], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 780, 804, 808], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 457, 510, 617, 627, 656, 663, 696, 715, 735, 792, 803, 804, 805, 808, 809, 810, 811, 813, 814, 816, 819, 822, 824, 825, 840, 856], "cannot": [40, 41, 42, 45, 52, 285, 450, 451, 452, 618, 805, 807, 809, 813, 825, 833, 838, 860], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 804, 818, 836], "psst": 40, "cv2": [40, 42, 44, 836], "pickl": [40, 41, 69, 780, 811, 836], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 617, 814, 854, 857], "back": [40, 52, 59, 75, 82, 371, 462, 483, 565, 588, 620, 622, 625, 648, 692, 777, 782, 792, 804, 808, 813, 814, 817, 822, 823, 830, 832, 839, 840, 844, 852, 856], "tf_cpp_min_log_level": 40, "info": [40, 795, 798, 810, 816, 819], "mkdir": [40, 41, 42, 804, 812], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 569, 601, 602, 607, 612, 615, 616, 618, 620, 621, 762, 804, 828], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 420, 425, 431, 433, 438, 472, 474, 476, 493, 497, 509, 528, 532, 549, 600, 615, 620, 622, 623, 646, 648, 653, 657, 658, 660, 663, 668, 673, 674, 678, 679, 680, 681, 762, 778, 854], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 759, 778, 779, 780, 798, 848], "is_train": 40, "po": [40, 792], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 542, 568, 617, 620, 622, 648, 651, 778, 811, 813, 818, 835, 854], "decod": [40, 836], "cross": [40, 42, 57, 58, 80, 81, 93, 623, 624, 682, 683, 684, 798, 812, 813], "attend": [40, 622, 648], "encoder_queri": 40, "latent": [40, 626, 702, 703], "imagepreprocessor": 40, "deal": [40, 780, 801, 814, 821, 823, 825, 839], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 414, 536, 620], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 536, 620], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 798], "perceiverencod": 40, "At": [40, 803, 804, 805, 807, 818, 828, 829, 844, 854], "almost": [40, 802, 811, 826, 834, 836, 843], "publish": [40, 798, 839, 845, 848], "thankfulli": [40, 828], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 462, 615, 625, 692, 803, 804, 810, 812, 818, 828, 830, 831, 854], "09": [40, 46, 51, 77, 84, 113, 273, 283, 601, 612, 618, 621, 726], "173": [40, 57, 623, 660], "194": 40, "217": [40, 817], "125": [40, 52, 57, 80, 229, 339, 365, 370, 441, 618, 623, 678], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 777], "image_height": [40, 42, 798], "image_width": [40, 798], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 472, 507, 511, 517, 569, 570, 578, 579, 591, 592, 618, 620, 625, 630, 633, 685, 731, 746, 748, 762, 764, 765, 770, 813, 830, 851, 857, 861], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 839], "dummy_input": [40, 798], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 798, 848], "perceiverioclassifi": [40, 798], "max_pool": [40, 798], "huggingfac": [40, 847, 848], "Of": [40, 808, 824, 825, 836, 859, 860], "cours": [40, 804, 805, 807, 808, 815, 824, 825, 831, 836, 839, 859, 860], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 620, 836, 839], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 646], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 798], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 573, 595, 620, 830], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 813], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 627, 704], "2022": [40, 41], "pytz": 40, "2020": [40, 807, 854], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 798, 833, 843], "load_dataset": [40, 847, 848], "n_sampl": [40, 52, 75, 369, 371, 416, 424, 475], "10000": [40, 42, 48, 71, 133, 615], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 458, 467, 486, 532, 559, 612, 617, 618, 620, 622, 625, 635, 642, 643, 697, 759, 774, 778, 798, 799, 805, 812, 832, 833, 839, 861], "wiki_art": 40, "gib": 40, "unknown": [40, 762], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 615, 617, 630, 633, 733, 750, 752, 792, 798, 799, 804, 805, 813, 814, 815, 828, 831, 836, 837, 839, 845], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 787, 804, 808, 812, 813, 815, 820, 821, 824, 828, 837, 855], "reus": [40, 48, 71, 75, 82, 123, 450, 451, 458, 460, 462, 463, 464, 471, 486, 688, 689, 690, 692, 694, 695, 697, 699, 817, 828, 859], "curl": [40, 804], "server": [40, 798, 804, 805, 810, 818, 840, 854], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 426, 436, 464, 470, 487, 502, 508, 509, 615, 623, 629, 630, 664, 672, 673, 678, 724, 733, 777], "2fwikiart": 40, "receiv": [40, 44, 92, 523, 559, 620, 626, 701, 702, 703, 778, 804, 805, 813, 814, 828, 831], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 442, 443, 444, 445, 446, 447, 493, 509, 601, 602, 607, 621, 622, 624, 626, 648, 682, 701, 702, 777, 778], "dload": 40, "upload": [40, 828], "spent": [40, 845], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 414, 417, 420, 424, 425, 426, 434, 438, 440, 450, 451, 452, 472, 473, 474, 475, 476, 478, 480, 482, 485, 488, 489, 490, 507, 509, 510, 511, 512, 518, 536, 543, 561, 578, 579, 586, 599, 600, 613, 615, 616, 617, 618, 620, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 642, 643, 645, 648, 653, 657, 658, 659, 666, 671, 673, 677, 678, 679, 682, 685, 687, 688, 690, 691, 693, 694, 696, 698, 700, 701, 702, 703, 724, 728, 733, 735, 736, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 763, 764, 770, 777, 778, 781, 792, 798, 804, 805, 811, 812, 813, 814, 815, 822, 823, 824, 828, 829, 830, 831, 833, 836, 842, 843, 847], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 669, 670, 671, 673, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 792, 816, 824, 826, 831, 833, 847, 852, 860], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 791, 803, 804, 854, 855], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 762, 791, 800, 806, 812, 817, 822, 826, 828, 831, 837, 844, 854, 858, 859, 860], "hugginfac": 40, "customdataset": 40, "__len__": [40, 811], "__getitem__": [40, 69, 811], "idx": [40, 41, 42, 522, 620, 798, 814, 835], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 447, 622, 629, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 648, 724, 798, 836], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 442, 488, 489, 490, 493, 536, 539, 540, 600, 617, 620, 622, 623, 626, 628, 646, 647, 648, 662, 680, 701, 702, 703, 723, 762, 778, 781, 798, 811, 821, 826, 836, 852], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 369, 371, 425, 434, 440, 456, 472, 521, 559, 614, 617, 620, 625, 627, 687, 691, 698, 700, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 719, 720, 722, 791, 792, 807, 809, 811, 833, 836, 845, 847], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 779], "sgd": [40, 782, 854], "lr": [40, 54, 77, 523, 602, 605, 607, 608, 609, 620, 621, 782, 836, 837], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 602, 616, 618, 621, 628, 723, 762, 836, 837], "train_step": 40, "running_loss": [40, 42, 798], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 803, 828], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 618, 623, 634, 653, 679, 753, 754, 778, 829, 839], "adjust": [40, 65, 88, 369, 436, 633, 750, 752, 787], "999": [40, 54, 74, 77, 286, 601, 602, 607, 609, 618, 621, 782, 837], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 779, 780], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 629, 725, 813], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 419, 441, 442, 443, 444, 445, 446, 447, 477, 493, 515, 516, 533, 563, 564, 617, 618, 620, 622, 623, 624, 633, 645, 651, 664, 673, 677, 680, 682, 744, 745, 777, 779, 791, 798, 811, 813, 821, 823, 824, 825, 833, 847, 848, 849], "augment": 40, "mayb": [40, 41, 47, 798, 804, 812, 833, 835], "meta": [40, 701, 702, 703, 808, 829, 854], "finetun": 40, "deploi": [40, 798, 812, 841, 848, 852, 853, 854, 856, 860], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 488, 489, 490, 633, 748, 803, 804, 805, 811, 813, 814, 820, 824, 833, 843, 851, 852, 861], "percieverio": 41, "ai": [41, 812, 852, 856], "contribut": [41, 52, 75, 380, 512, 802, 804, 805, 810, 818, 819, 825, 826, 833, 840, 847, 858], "highli": [41, 798, 803, 854], "invit": [41, 803, 825, 831], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 616, 762, 763, 798, 809, 811, 815, 821, 823, 825, 826, 828, 831, 833, 844, 852, 853, 860], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 812, 853, 860], "tee": [41, 804], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 440, 480, 495, 496, 497, 498, 499, 510, 511, 616, 617, 618, 623, 627, 629, 631, 633, 658, 659, 664, 671, 673, 674, 680, 707, 711, 713, 716, 721, 725, 726, 727, 735, 736, 737, 738, 743, 744, 746, 748, 749, 751, 777, 799, 803, 804, 806, 807, 809, 810, 811, 823, 825, 828, 833, 839, 841, 845, 850], "uuid": 41, "anywai": [41, 808, 822, 825], "bin": [41, 52, 75, 380, 507, 512, 804, 805, 807, 811], "bash": [41, 804, 805, 807], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 442, 509, 615, 812, 855], "sudo": [41, 804], "apt": [41, 804], "yf": 41, "step3": 41, "delet": [41, 805, 812], "xvzf": 41, "rm": [41, 43, 800, 805], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 420, 622, 623, 648, 652, 657, 658, 659, 663, 677, 805, 806], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 418, 432, 452, 458, 460, 463, 467, 481, 483, 486, 493, 495, 501, 524, 535, 612, 615, 616, 618, 622, 623, 625, 627, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 655, 656, 660, 664, 668, 677, 678, 694, 707, 711, 712, 713, 716, 721, 722, 763, 792, 798, 799, 804, 806, 809, 810, 811, 818, 823, 828, 831, 836, 844, 845, 850], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 432, 513, 623, 662, 804, 825, 854], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 489, 536, 620, 622, 648, 804, 805, 808, 811, 812, 815, 826, 827, 828, 833, 835, 836, 855, 859], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 852, 859], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 804], "helper": [41, 757, 759, 760, 766, 768, 769, 798, 801, 810, 813, 817, 818, 827, 836, 841], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 544, 620, 804, 805, 807, 812], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 616, 623, 660], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 435, 471, 472, 478, 491, 514, 515, 516, 517, 518, 519, 532, 600, 617, 620, 623, 625, 630, 633, 634, 653, 664, 672, 675, 676, 680, 687, 689, 690, 693, 695, 697, 700, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 764, 778, 813, 815, 828, 829, 833, 835], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 429, 435, 436, 438, 463, 532, 614, 618, 620, 623, 632, 673, 678, 741, 762, 799, 803, 804, 805, 806, 807, 815, 818, 831, 836, 847], "bottom": [41, 532, 620, 803, 804, 812, 818, 860], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 434, 444, 457, 458, 459, 461, 463, 464, 472, 477, 480, 482, 491, 492, 493, 494, 510, 511, 512, 514, 515, 516, 517, 518, 519, 532, 539, 614, 615, 617, 618, 620, 623, 624, 625, 626, 629, 630, 632, 633, 634, 653, 668, 677, 679, 680, 682, 683, 684, 686, 689, 690, 691, 693, 694, 696, 698, 699, 701, 702, 703, 729, 730, 731, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 778, 798, 803, 806, 815, 824, 827, 829, 831, 833, 854], "figur": [41, 830], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 456, 457, 625, 686, 696, 798], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 797], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 797, 803, 804, 805], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 615, 622, 623, 629, 647, 651, 681, 724, 778, 831, 833, 835], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 835], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 480, 509, 618, 623, 671, 800, 804, 805, 810, 812, 818, 836, 847, 854], "action": [41, 802, 812, 815, 819, 828], "fail": [41, 757, 801, 804, 805, 807, 812, 813, 815, 819, 822, 824, 825, 826], "placehold": [41, 627, 711, 716, 721, 778, 805, 808, 820, 841], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 629, 814, 817, 828, 833, 837], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 839], "declar": [41, 805, 827], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 459, 485, 623, 631, 673, 735, 810, 813, 824, 839, 853, 854, 860], "parti": [42, 810, 813, 839, 844, 853, 854, 860], "mount": [42, 800, 805], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 450, 451, 452, 455, 472, 481, 533, 620, 625, 629, 692, 725, 808, 811, 813, 815, 821, 826, 828, 833, 835, 836], "kaggl": 42, "medium": 42, "articl": [42, 798, 819], "insert": [42, 52, 62, 75, 85, 371, 447, 457, 625, 627, 630, 632, 688, 708, 709, 730, 741, 812, 819], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 833], "readabl": [42, 808, 811, 817, 819, 820, 828, 829, 835, 836], "chmod": [42, 804, 812], "recent": [42, 795, 804, 805, 828, 843, 844], "modifi": [42, 52, 69, 75, 92, 371, 380, 469, 472, 477, 516, 762, 792, 803, 804, 805, 807, 809, 810, 813, 814, 816, 818, 819, 821, 824, 826, 828, 829, 833], "forc": [42, 810, 812, 814], "archiv": [42, 804], "inflat": [42, 813], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 414, 844, 854], "later": [42, 69, 526, 620, 803, 819, 824, 828, 829, 854], "my": [42, 812], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 417, 421, 434, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 455, 456, 457, 462, 478, 480, 481, 482, 483, 488, 489, 490, 491, 492, 494, 496, 498, 509, 510, 511, 512, 519, 521, 522, 524, 525, 527, 528, 530, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 560, 563, 564, 566, 567, 576, 578, 579, 581, 583, 585, 586, 599, 603, 610, 614, 615, 616, 617, 620, 621, 622, 623, 624, 625, 626, 627, 633, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 674, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 701, 702, 703, 710, 711, 716, 721, 724, 725, 726, 727, 729, 732, 735, 736, 737, 739, 743, 744, 745, 747, 749, 750, 752, 753, 754, 759, 760, 762, 763, 768, 770, 778, 780, 781, 791, 792, 813, 814, 817, 821, 824, 825, 829, 833, 838, 847, 848, 849], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 798, 803, 833, 843], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 615, 616, 725, 762, 763, 813, 828], "new_img": [42, 44], "builder": [42, 800], "batchwis": 42, "subset": [42, 764, 808, 812, 816, 820, 823, 825, 828, 833, 854], "goe": [42, 371, 455, 806, 819, 824, 831], "seed_valu": [42, 69, 629, 728], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 497, 629], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 759], "dir": [42, 836], "img_path": 42, "imread": [42, 44, 836], "imread_grayscal": 42, "generate_batch": [42, 798], "dataset_s": [42, 798], "ivyerror": [42, 793, 798, 817], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 509, 510, 511, 532, 620, 625, 633, 685, 693, 743, 744, 749, 751, 798, 805, 817, 833], "yield": [42, 62, 314, 315, 362, 371, 472, 630, 734, 798, 812], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 420, 429, 459, 468, 472, 487, 522, 582, 584, 615, 620, 622, 623, 627, 652, 654, 656, 657, 658, 659, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677, 705, 716, 762, 777, 799, 803, 804, 821, 828, 831, 837, 838, 844, 854, 855, 860], "intialis": 42, "num_epoch": [42, 798], "inherit": [42, 808, 811, 817, 835, 839, 841], "creation": [42, 52, 69, 75, 98, 810, 813, 814, 820, 822, 825, 826, 828, 829, 833, 847, 854, 856, 860], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 522, 610, 616, 620, 621, 626, 703, 798, 802, 803, 804, 805, 807, 811, 812, 817, 821, 822, 824, 826, 828, 857], "insid": [42, 57, 80, 98, 371, 482, 623, 666, 760, 804, 805, 808, 811, 813, 814, 818, 821, 822, 828, 829, 847, 860], "ivynet": [42, 798], "h_w": [42, 798], "input_channel": [42, 778, 798, 833, 837], "output_channel": [42, 778, 798, 837], "gelu": [42, 43, 46, 68, 612, 774, 798], "image_widht": 42, "start_dim": [42, 52, 75, 371, 462, 798], "end_dim": [42, 52, 75, 371, 462, 798], "gpu_is_avail": [42, 617, 798], "120": [42, 65, 88, 98, 623, 668, 743, 798], "model_nam": [42, 798], "__name__": [42, 43, 45, 587, 620, 798, 817], "heavi": [42, 764, 804, 825, 826, 831, 855], "lift": [42, 826, 855], "num_correct": [42, 798], "y_pred": [42, 798], "cross_entropi": [42, 58, 81, 624, 684, 798, 811, 821, 824], "epoch_loss": [42, 798], "field": [42, 57, 63, 80, 86, 369, 371, 420, 485, 623, 631, 657, 658, 670, 671, 673, 735, 736, 737, 798, 812, 852, 860], "training_accuraci": [42, 798], "train_loss": [42, 798], "train_correct": [42, 798], "train_loop": [42, 798], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 418, 436, 446, 471, 480, 526, 536, 600, 613, 615, 616, 618, 620, 623, 624, 625, 629, 630, 634, 652, 655, 677, 682, 688, 693, 728, 733, 753, 754, 759, 762, 770, 775, 779, 780, 792, 798, 803, 805, 807, 811, 825, 828, 829, 836, 847, 856], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 456, 457, 462, 474, 475, 476, 491, 492, 494, 510, 511, 516, 536, 583, 625, 627, 641, 651, 656, 673, 687, 691, 696, 698, 699, 704, 705, 714, 715, 716, 717, 743, 744, 791, 798, 803, 811, 812, 813, 815, 816, 820, 821, 824, 825, 828, 836, 837], "xbatch": [42, 798], "ybatch": [42, 798], "to_devic": [42, 50, 73, 191, 617, 780, 798], "entropi": [42, 58, 81, 624, 682, 683, 684, 798], "hot": [42, 48, 71, 136, 615, 798], "ybatch_encod": [42, 798], "one_hot": [42, 48, 71, 615, 798, 838], "loss_prob": [42, 798], "ret_grad_idx": [42, 603, 621, 759, 823], "xs_grad_idx": [42, 603, 621, 759, 823], "batch_loss": [42, 798], "set_descript": [42, 798], "set_postfix": [42, 798], "accuracy_percentag": [42, 798], "naverag": [42, 798], "6f": [42, 798], "_train_summari": [42, 798], "writer": [42, 798], "writerow": [42, 798], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 622, 641, 643], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 527, 620, 627, 704], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 618], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 836], "close": [42, 57, 240, 258, 278, 306, 362, 618, 623, 625, 673, 688, 801, 803, 804, 805, 813, 816, 818, 825, 831, 854], "save_weight": [42, 780], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 780, 836], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 622, 648, 778, 798, 802, 804, 812, 825], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 622, 645, 762, 763, 764, 765, 770, 778], "henc": [43, 63, 218, 332, 365, 618, 625, 631, 688, 735, 736, 737, 738, 787, 804, 811, 812, 813, 824, 828], "reproduc": [43, 56, 79, 622, 645, 762, 763, 764, 765, 770, 801, 807, 818], "image_processor": [43, 847, 848], "facebook": 43, "distil": [43, 855], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 847], "architectur": [43, 798, 804, 838, 839, 852, 853, 854, 857, 858, 859], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 618, 791, 803], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 442, 495, 509, 512, 516, 622, 624, 629, 645, 648, 651, 682, 724, 764, 777, 778, 798, 828, 840, 845], "ptarmigan": 43, "rf": [43, 805], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 618, 803, 804, 805, 807, 812, 819, 839, 847, 854], "moduleconvert": [43, 775, 780], "mc": 43, "from_keras_modul": [43, 775], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 442, 618], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 510, 511, 616, 618, 623, 633, 680, 743, 744, 749, 751, 763, 821, 826, 833], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 623, 792, 813], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 780], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 544, 615, 620, 847, 848, 849], "combo": [44, 836], "permit": [44, 808, 820, 825, 828, 831], "usabl": [44, 820, 829], "neither": [44, 218, 235, 242, 268, 618, 623, 675, 812, 825, 831], "nor": [44, 218, 235, 242, 268, 618, 812, 825, 858], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 522, 583, 613, 616, 617, 618, 620, 762, 764, 765, 778, 813, 852, 853, 855, 859, 860], "externally_link": 44, "logo": 44, "patch": [44, 286, 618, 813, 854], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 472, 512, 625, 685, 687, 700, 765, 807, 828, 848, 854, 856, 860], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 480, 485, 507, 512, 615, 617, 623, 625, 631, 634, 653, 679, 686, 689, 735, 736, 753, 754, 810, 811, 815, 836], "odsc": 44, "talk": [44, 859], "228": 45, "352": [45, 79, 622, 646, 817], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 623, 672], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 780], "to_ivy_modul": [45, 775, 838], "image_dim": 45, "v0": [45, 837], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 425, 434, 440, 442, 444, 445, 447, 495, 496, 497, 498, 499, 624, 629, 682, 683, 684, 724, 725, 726, 727, 729, 777, 778, 803, 804, 812, 814, 839, 854, 857], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 537, 538, 616, 617, 620, 760, 809, 810, 811, 816, 817, 821, 822, 824, 825, 831, 834, 835, 836, 837], "definit": [45, 51, 57, 74, 80, 287, 618, 623, 652, 798, 801, 805, 808, 813, 818, 821, 835, 848], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 535, 620, 627, 722, 777, 782, 791, 792, 835], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 444, 445, 612, 618, 623, 666, 669, 774, 816, 825], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 822], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 601, 602, 605, 607, 608, 609, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 655, 656, 657, 658, 659, 660, 661, 663, 664, 666, 669, 670, 671, 673, 677, 678, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 808, 815, 816, 831], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 494, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 527, 528, 531, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 553, 555, 556, 558, 563, 564, 578, 579, 580, 581, 583, 585, 586, 599, 600, 601, 602, 605, 607, 608, 609, 610, 615, 616, 618, 620, 623, 625, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 802, 803, 806, 810, 819, 820, 821, 822, 825, 827, 829], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 425, 429, 434, 437, 440, 472, 493, 612, 618, 623, 632, 664, 680, 741, 774, 831], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 612, 618, 623, 673, 674, 774, 813], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 612, 618, 774, 822], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 419, 420, 421, 450, 451, 452, 462, 463, 464, 466, 469, 479, 480, 482, 485, 507, 508, 510, 511, 512, 513, 514, 515, 517, 518, 520, 524, 527, 528, 539, 540, 556, 558, 578, 579, 581, 585, 586, 612, 615, 618, 620, 622, 623, 625, 627, 629, 630, 631, 632, 633, 634, 645, 653, 655, 657, 658, 663, 668, 670, 671, 673, 677, 685, 688, 689, 690, 691, 692, 693, 694, 695, 704, 707, 713, 724, 732, 733, 734, 735, 736, 737, 738, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 757, 759, 762, 764, 778, 792, 816, 826, 828, 831, 833, 858], "138": [46, 105, 612], "165": [46, 105, 612, 622, 646], "hardswish": [46, 68, 612, 774], "leaky_relu": [46, 68, 75, 290, 612, 763], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 421, 493, 496, 497, 498, 612, 618, 774, 820, 825, 826], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 417, 420, 421, 423, 434, 438, 440, 441, 445, 446, 461, 479, 488, 489, 490, 493, 494, 495, 496, 497, 498, 499, 509, 510, 511, 512, 517, 518, 519, 526, 527, 528, 536, 545, 569, 570, 573, 578, 579, 599, 601, 602, 605, 607, 608, 609, 612, 613, 615, 616, 617, 618, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 633, 645, 648, 651, 652, 654, 657, 658, 659, 661, 664, 665, 666, 669, 670, 671, 672, 673, 674, 675, 677, 680, 682, 683, 684, 701, 702, 703, 710, 723, 726, 727, 733, 735, 736, 737, 738, 743, 744, 746, 747, 748, 749, 750, 751, 752, 759, 762, 763, 765, 774, 777, 778, 781, 782, 801, 807, 811, 813, 816, 817, 818, 820, 821, 823, 824, 826, 828, 829, 831, 833, 835, 837], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 612, 774], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 418, 425, 429, 445, 480, 499, 612, 615, 618, 623, 625, 629, 634, 653, 655, 673, 677, 679, 680, 686, 688, 689, 693, 726, 753, 754, 762, 764, 774, 811, 824], "leaki": [46, 68, 107, 612, 774], "log_softmax": [46, 68, 612, 774], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 612, 774], "30340147": [46, 109, 612], "86509842": [46, 68, 109, 612], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 618], "422": [46, 112, 612], "155": [46, 79, 112, 612, 622, 646], "softplu": [46, 68, 612, 774, 831], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 421, 446, 493, 497, 498, 612, 628, 723, 774, 831], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 441, 446, 479, 612, 618, 774, 831], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 455, 456, 457, 458, 460, 461, 462, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 484, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 541, 542, 543, 545, 547, 548, 549, 551, 552, 555, 556, 558, 559, 563, 564, 568, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 599, 600, 601, 602, 603, 604, 605, 607, 608, 609, 610, 612, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 711, 712, 713, 715, 716, 721, 722, 723, 724, 725, 726, 727, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 759, 762, 777, 782, 783, 808, 811, 813, 814, 815, 817, 820, 821, 824, 829, 831, 833, 838, 847, 848, 849], "3461": [46, 68, 113, 612], "6491": [46, 68, 113, 612], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 627, 715, 716], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 627, 705, 716, 759], "nest": [47, 69, 70, 98, 101, 238, 554, 583, 600, 603, 618, 620, 621, 626, 701, 702, 704, 705, 706, 707, 708, 709, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 782, 808, 810, 811, 821, 823, 829, 836, 837, 839, 841, 854], "unchang": [47, 51, 368, 371, 412, 462, 622, 645], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 601, 602, 605, 606, 607, 608, 609, 615, 621, 626, 627, 703, 705, 716, 780, 782, 783, 813, 814, 835, 837], "word": [47, 121, 371, 465, 615, 629, 727, 775, 778, 811, 824, 825, 841], "args_to_n": [47, 824], "cont_inplac": 47, "decid": [47, 69, 627, 715, 716, 798, 803, 804, 813, 831], "args_to_new_backend": 47, "shallow": [47, 627, 711, 712, 716, 721, 722], "nativevari": 47, "mutabl": [47, 627, 705, 711, 712, 716, 721, 722, 809], "to_ivi": [47, 70, 627, 717, 824], "leaf": [47, 69, 76, 88, 98, 535, 627, 714, 715, 717, 744, 811, 821, 836], "travers": [47, 70, 627, 708, 716, 811, 813, 817, 833], "lowest": [47, 52, 61, 70, 75, 84, 380, 512, 627, 629, 716, 725, 792, 821, 839, 841, 851, 855, 859], "search": [47, 52, 70, 75, 730, 731, 770, 802, 804, 811, 815, 818, 828, 829, 843], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 425, 434, 440, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 480, 486, 521, 524, 535, 542, 545, 546, 550, 551, 552, 553, 554, 555, 556, 565, 568, 571, 572, 574, 575, 599, 614, 615, 616, 617, 618, 620, 622, 625, 626, 627, 630, 633, 648, 688, 689, 690, 692, 694, 695, 697, 699, 701, 702, 714, 732, 733, 734, 746, 748, 762, 763, 764, 765, 770, 781, 811, 813, 821, 825, 828, 831], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 436, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 549, 612, 616, 618, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 764, 798, 803, 804, 805, 808, 809, 811, 813, 816, 819, 820, 821, 824, 825, 826, 827, 828, 829, 831, 833, 839, 847], "never": [48, 52, 59, 71, 75, 82, 123, 371, 450, 451, 452, 458, 460, 462, 463, 464, 467, 471, 478, 486, 542, 620, 625, 688, 689, 690, 692, 694, 695, 697, 699, 805, 813, 824, 825, 828], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 445, 450, 451, 458, 460, 462, 463, 464, 471, 486, 625, 688, 689, 690, 692, 694, 695, 697, 699, 738, 764, 793, 817], "buffer": [48, 71, 75, 82, 123, 129, 450, 451, 458, 460, 462, 463, 464, 471, 486, 615, 688, 689, 690, 692, 694, 695, 697, 699, 779, 780, 824, 839], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 495, 496, 497, 498, 499, 509, 510, 511, 512, 515, 518, 615, 616, 622, 623, 629, 630, 632, 633, 645, 680, 725, 726, 727, 730, 731, 741, 743, 744, 749, 751, 777, 813, 814, 820, 829, 833], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 414, 615, 616, 757, 829, 847], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 495, 496, 498, 499, 615, 617, 629, 724, 725, 726, 727, 777, 782, 783, 813, 814, 817, 820, 829], "39999998": [48, 122, 123, 615, 631, 736], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 416, 615, 622, 645, 651], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 615, 747], "10000038": [48, 122, 123, 615], "90786433e": [48, 122, 123, 615], "310": [48, 122, 123, 615], "copy_arrai": [48, 71, 615], "to_ivy_arrai": [48, 71, 124, 615], "empty_lik": [48, 52, 71, 75, 259, 369, 419, 615, 618], "uniniti": [48, 125, 126, 615, 819], "from_dlpack": [48, 71, 615], "full_lik": [48, 71, 615, 829], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 480, 499, 615, 618, 630, 733, 813, 826, 829], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 414, 421, 450, 451, 452, 461, 466, 586, 599, 615, 618, 620, 623, 680, 813, 823, 825, 839, 854], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 425, 429, 434, 440, 461, 480, 481, 496, 498, 499, 615, 618, 629, 630, 725, 733, 777, 803, 826], "000123": [48, 131, 615], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 434, 440, 565, 602, 605, 607, 608, 609, 610, 615, 617, 620, 621, 626, 627, 701, 702, 703, 715, 782, 820, 823, 831, 833, 839, 854], "num": [48, 71, 132, 133, 615, 762, 805, 820, 833], "endpoint": [48, 71, 132, 133, 615, 777, 820], "logspac": [48, 71, 615, 833], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 442, 444, 445, 495, 612, 615, 618, 671, 762, 764, 765, 774, 805, 811, 812, 815, 821, 824, 825, 826, 828, 830, 831, 833, 836], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 416, 424, 425, 426, 428, 432, 433, 434, 437, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 456, 457, 458, 459, 465, 467, 468, 470, 471, 473, 476, 478, 480, 481, 482, 486, 487, 488, 490, 491, 492, 494, 496, 497, 509, 510, 511, 512, 519, 520, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 559, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 603, 604, 605, 610, 615, 618, 620, 621, 622, 623, 625, 627, 633, 634, 635, 636, 637, 638, 639, 640, 642, 644, 645, 646, 648, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 680, 682, 683, 684, 685, 686, 688, 689, 691, 692, 693, 694, 695, 696, 699, 700, 704, 711, 721, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 778, 781, 783, 805, 812, 813, 814, 815, 817, 828, 829, 831, 833, 838, 857], "on_valu": [48, 71, 133, 136, 615], "off_valu": [48, 71, 133, 136, 615], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 413, 615, 618, 622, 625, 635, 636, 637, 638, 640, 642, 644, 694], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 808, 816, 818, 820, 821, 824, 825, 829], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 539, 543, 545, 547, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 816, 831, 837], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 421, 472, 480, 509, 512, 516, 525, 533, 534, 539, 543, 545, 547, 549, 563, 581, 586, 610, 615, 616, 618, 620, 621, 622, 623, 625, 628, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 644, 645, 646, 648, 651, 652, 653, 654, 655, 656, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 681, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 723, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 803, 806, 815, 816, 824, 828, 841], "464": [48, 51, 84, 133, 222, 223, 618], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 615], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 425, 434, 440, 615, 624, 684], "xy": [48, 71, 134, 615], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 418, 450, 451, 452, 456, 461, 462, 507, 519, 615, 618, 623, 625, 630, 633, 634, 653, 654, 660, 663, 666, 668, 669, 679, 680, 694, 730, 731, 733, 746, 747, 748, 749, 750, 751, 752, 753, 754, 821, 823, 828, 831, 833, 851, 854, 861], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 413, 427, 439, 445, 472, 483, 488, 489, 490, 495, 501, 508, 544, 614, 615, 616, 618, 620, 622, 623, 645, 646, 660, 668, 671, 672, 764, 777, 781, 792, 804, 808, 813, 831, 835, 851, 852, 855], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 500, 615, 618, 630, 733], "conserv": [48, 134, 615], "cartesian": [48, 134, 615], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 417, 420, 421, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 470, 509, 521, 527, 615, 620, 622, 623, 646, 652, 654, 656, 657, 658, 659, 661, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 677, 678, 681, 762, 764, 777, 778, 792, 803, 813, 825, 852, 854], "ij": [48, 65, 134, 615, 633, 745, 792], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 423, 438, 449, 488, 490, 544, 601, 602, 603, 604, 605, 606, 607, 608, 609, 611, 615, 618, 620, 621, 622, 623, 626, 635, 642, 643, 648, 653, 670, 673, 701, 702, 703, 759, 762, 777, 792, 802, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 820, 821, 823, 824, 825, 828, 829, 830, 850, 860], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 425, 426, 434, 437, 440, 472, 480, 519, 615, 623, 625, 630, 634, 653, 655, 664, 666, 670, 672, 677, 679, 680, 687, 688, 696, 699, 700, 733, 753, 754], "ni": [48, 134, 615], "xi": [48, 134, 615], "scatter": [48, 53, 71, 76, 136, 563, 564, 615, 620, 810, 824, 831, 861], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 415, 420, 422, 431, 437, 519, 524, 614, 615, 618, 620, 623, 633, 657, 677, 745, 792, 805, 806, 810, 847, 850], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 615, 618, 623, 666, 809, 814, 824, 839, 848, 849], "ones_lik": [48, 71, 615, 809, 838], "tril": [48, 71, 615], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 420, 439, 471, 480, 485, 526, 581, 615, 618, 620, 623, 625, 631, 633, 652, 654, 656, 657, 658, 659, 660, 661, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 677, 680, 689, 693, 735, 736, 737, 744, 745, 764, 816, 828], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 420, 615, 623, 652, 654, 656, 657, 658, 659, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 615, 623, 656, 664, 666, 667, 669, 670, 674, 677], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 420, 425, 426, 428, 432, 433, 438, 461, 615, 622, 623, 646, 652, 654, 656, 657, 658, 659, 660, 661, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 677, 678, 764, 801, 818, 854], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 418, 421, 429, 435, 461, 615, 623, 655, 677], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 435, 615, 623, 652, 658, 659, 666, 670], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 615, 616, 803, 805, 839], "triu": [48, 71, 615], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 435, 512, 615, 623, 629, 652, 658, 659, 670, 727, 813, 824, 828], "zeros_lik": [48, 52, 71, 147, 264, 371, 480, 601, 602, 605, 607, 608, 609, 615, 616, 618, 621, 623, 625, 670, 685, 825, 831], "data_typ": [49, 52, 72, 75, 177, 616, 810, 813, 828, 829], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 616, 623, 673, 811, 824, 835, 861], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 509, 572, 594, 616, 618, 620, 623, 625, 633, 652, 653, 660, 661, 663, 664, 665, 666, 668, 669, 671, 672, 679, 680, 686, 696, 739, 747, 750, 762, 763, 807, 816, 817, 821, 830], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 480, 507, 508, 515, 516, 517, 518, 545, 599, 613, 616, 618, 620, 631, 633, 634, 735, 736, 737, 738, 746, 747, 748, 750, 751, 752, 753, 754, 762, 765, 807, 813, 816, 823, 829, 830], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 545, 613, 616, 618, 620, 623, 633, 634, 671, 680, 746, 748, 753, 754, 807, 816], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 470, 515, 518, 519, 616, 617, 623, 630, 675, 732, 777, 778, 805, 809, 812, 813, 814, 825, 833, 843, 847, 854], "broadcast_arrai": [49, 72, 616], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 446, 516, 535, 537, 538, 539, 540, 549, 583, 586, 616, 617, 618, 620, 622, 623, 624, 625, 628, 633, 636, 638, 641, 643, 644, 646, 651, 652, 675, 682, 684, 685, 723, 745, 747, 750, 763, 765, 803, 806, 813, 814, 815, 824, 831, 833, 841, 854, 858, 860], "broadcast_to": [49, 72, 616, 813], "can_cast": [49, 72, 616, 813, 821, 825], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 472, 539, 542, 563, 564, 616, 618, 620, 623, 625, 633, 679, 687, 700, 750, 752, 757, 764, 784, 791, 803, 804, 807, 813, 819, 821, 825, 828], "finfo": [49, 72, 616, 828], "resolut": [49, 72, 160, 616, 805], "4028235e": [49, 160, 616], "iinfo": [49, 72, 616], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 458, 467, 472, 480, 486, 495, 496, 497, 498, 499, 501, 502, 507, 509, 510, 511, 516, 519, 542, 558, 568, 600, 615, 616, 618, 620, 622, 623, 625, 629, 632, 633, 634, 635, 636, 637, 638, 640, 642, 644, 653, 655, 665, 679, 680, 694, 724, 725, 726, 727, 728, 729, 741, 743, 744, 746, 747, 748, 749, 750, 751, 752, 753, 754, 762, 763, 764, 765, 770, 778, 792, 805, 811, 813, 823, 826, 828, 833, 835], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 510, 511, 616, 633, 725, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "32768": [49, 72, 163, 579, 620], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 616], "is_float_dtyp": [49, 72, 616, 829], "is_int_dtyp": [49, 72, 616, 826, 829], "is_uint_dtyp": [49, 72, 616, 826, 829], "result_typ": [49, 72, 616, 813], "arrays_and_dtyp": [49, 72, 175, 616], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 471, 615, 617, 780, 798, 805, 814, 829], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 493, 508, 513, 532, 533, 534, 600, 614, 617, 618, 620, 622, 626, 628, 648, 703, 723, 778, 792, 803, 804, 805, 809, 813, 815, 816, 819, 821, 823, 824, 825, 828, 829, 831, 835, 836, 838, 847, 854, 855, 856, 860], "__dlpack__": [50, 73, 128, 209, 615, 617], "caveat": [50, 73, 209, 370, 444, 617], "portabl": [50, 73, 209, 617, 798, 852], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 479, 618, 623, 627, 664, 674, 680, 712, 715, 759, 791, 792, 801, 808, 813, 818, 822, 825, 828], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 421, 436, 441, 443, 618, 623, 664, 665, 666, 671, 757, 759, 762, 764, 765, 799, 804], "aco": [51, 74, 618], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 501, 618, 623, 661, 665, 669, 784, 813], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 618, 778], "acosh": [51, 74, 161, 162, 616, 618, 801, 818], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 413, 618, 824, 831, 844, 850], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 618], "sector": [51, 74, 217, 221, 224, 618, 844], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 419, 420, 421, 423, 427, 446, 478, 485, 496, 498, 502, 509, 512, 524, 573, 595, 601, 602, 607, 614, 615, 616, 618, 620, 621, 623, 625, 626, 627, 631, 653, 656, 657, 658, 660, 663, 668, 670, 671, 673, 675, 677, 679, 696, 697, 702, 705, 735, 736, 737, 782, 804, 807, 810, 813, 815, 819, 824, 825, 828, 830, 835, 845, 859], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 431, 432, 510, 511, 618, 622, 633, 645, 743, 749, 805, 808, 809, 811, 815], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 618], "deg": [51, 74, 219, 618], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 618, 816], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 478, 618, 633, 750, 752, 853], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 578, 618, 620], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 579, 618, 620], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 618], "35619449": [51, 219, 618], "78539816": [51, 219, 618], "135": [51, 219, 527, 618, 620], "asin": [51, 74, 618], "sine": [51, 74, 220, 221, 280, 281, 618], "927": [51, 74, 220], "asinh": [51, 74, 220, 618], "atan": [51, 74, 618], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 618, 816], "785": [51, 74, 222, 223, 618], "atan2": [51, 74, 618], "quotient": [51, 74, 223, 235, 242, 618], "245": [51, 79, 223, 622, 645, 646], "588": [51, 223, 618], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 417, 512, 545, 599, 613, 618, 620, 622, 623, 649, 664, 680, 762, 765, 801, 813, 818, 823], "719": [51, 223, 618], "197": [51, 223, 618], "atanh": [51, 74, 618], "549": [51, 74, 79, 224, 618, 622, 646], "bitwise_and": [51, 74, 618], "bitwise_invert": [51, 74, 618], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 618], "bitwise_or": [51, 74, 618], "bitwise_right_shift": [51, 74, 97, 618], "bitwise_xor": [51, 74, 97, 618], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 615, 618, 778, 824], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 618, 801, 803, 804, 805, 807, 808, 809, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845], "416": [51, 232, 618], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 618], "deg2rad": [51, 74, 618], "convers": [51, 52, 75, 234, 274, 565, 575, 620, 779, 780, 803, 832, 834, 838, 839, 841, 845, 853, 860], "180": [51, 74, 234, 274, 618], "270": [51, 74, 234, 274, 618], "360": [51, 74, 234, 274, 618, 812], "dividend": [51, 74, 235, 242, 277, 289, 618], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 458, 467, 486, 601, 602, 607, 618, 621, 633, 750, 752, 778, 782], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 618], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 430, 618], "gauss": [51, 74, 237, 618], "328": [51, 237, 285, 618], "677": [51, 237], "842": [51, 237, 285, 618], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 618], "exp2": [51, 74, 618], "expm1": [51, 74, 618, 813], "244": [51, 240, 798], "918": [51, 240], "147": [51, 240, 618], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 618, 778, 824], "floor_divid": [51, 74, 618, 770, 813], "fmin": [51, 74, 618, 813], "gcd": [51, 74, 618, 813], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 615, 618, 622, 623, 625, 629, 651, 653, 665, 695, 727, 764, 778, 805, 826], "greater_equ": [51, 74, 97, 98, 260, 618], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 421, 612, 615, 618, 630, 733, 815], "4j": [51, 74, 248, 368, 411, 579, 618, 620], "6j": [51, 52, 74, 248, 252, 332, 618], "isfinit": [51, 74, 618, 825], "out_i": [51, 74, 249, 250, 251, 252, 275, 618], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 618], "isinf": [51, 74, 618], "detect_posit": [51, 74, 250, 618], "detect_neg": [51, 74, 250, 618], "isnan": [51, 74, 618], "isreal": [51, 74, 618], "5j": [51, 74, 75, 252, 275, 332, 365, 618], "lcm": [51, 74, 618, 813], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 434, 440, 509, 512, 618, 623, 629, 633, 664, 665, 666, 669, 680, 727, 750, 752, 778, 804, 805, 811, 813, 815, 817, 820, 825, 828, 831, 832, 833, 844, 854, 856], "less_equ": [51, 74, 97, 98, 618, 817], "log10": [51, 52, 74, 313, 362, 618], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 618, 623, 671], "602": [51, 257, 618], "699": [51, 257, 618], "log1p": [51, 74, 618, 823], "693": [51, 74, 112, 221, 258, 612, 618, 624, 684], "0953": [51, 74, 256, 258, 618], "log2": [51, 74, 261, 618], "logaddexp": [51, 74, 618], "logaddexp2": [51, 74, 618, 801, 818], "169925": [51, 74, 261, 618], "logical_and": [51, 74, 618, 825, 831, 861], "logical_not": [51, 74, 618, 813], "logical_or": [51, 74, 618, 861], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 480, 509, 615, 616, 618, 623, 625, 630, 631, 632, 633, 634, 652, 653, 654, 655, 656, 658, 659, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 679, 680, 686, 688, 689, 690, 692, 693, 695, 696, 700, 730, 731, 733, 734, 735, 736, 737, 738, 739, 742, 746, 747, 748, 749, 750, 751, 752, 753, 754, 816, 819], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 480, 616, 618, 625, 633, 700, 750, 816], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 480, 616, 618, 623, 625, 633, 671, 672, 700, 750, 816], "logical_xor": [51, 74, 618], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 434, 437, 440, 472, 510, 512, 517, 527, 528, 536, 544, 607, 617, 618, 620, 621, 623, 625, 630, 633, 664, 685, 730, 731, 746, 748, 762, 764, 765, 770, 792, 805, 813, 815, 824, 836, 861], "use_wher": [51, 74, 266, 267, 618], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 488, 490, 618], "exce": [51, 52, 75, 267, 371, 482, 618], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 416, 419, 423, 426, 427, 428, 431, 432, 433, 510, 511, 518, 618, 622, 623, 633, 648, 651, 653, 660, 663, 668, 675, 679, 743, 744, 745, 749, 750, 792, 803, 833, 854, 856], "nan_to_num": [51, 74, 618], "posinf": [51, 74, 269, 618], "neginf": [51, 74, 269, 618], "5e": [51, 54, 74, 75, 269, 350, 607, 618, 621], "not_equ": [51, 74, 97, 98, 618], "pow": [51, 74, 97, 98, 618, 807], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 493, 579, 618, 620, 623, 665], "rad2deg": [51, 74, 618], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 618], "reciproc": [51, 74, 618], "333": [51, 74, 235, 276, 528, 618, 620], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 618, 625, 694, 807, 824], "modulu": [51, 74, 277, 618, 824], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 436, 479, 480, 510, 511, 615, 618, 623, 631, 633, 671, 735, 736, 737, 738, 743, 744, 749, 751, 798, 804, 813, 833, 838, 844], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 618, 807], "decim": [51, 74, 278, 618, 830], "0001": [51, 52, 75, 278, 279, 369, 434, 440, 762, 765, 782], "678": [51, 278, 279], "np_variant": [51, 74, 279, 618], "841": [51, 68, 74, 105, 280, 612, 618], "909": [51, 74, 76, 280, 618], "141": [51, 74, 147, 280, 616, 618], "sinh": [51, 74, 280, 618], "232": [51, 74, 281, 618], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 618, 777, 778, 798], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 420, 430, 441, 493, 509, 603, 604, 606, 611, 618, 621, 623, 627, 652, 654, 655, 657, 658, 659, 661, 665, 671, 672, 673, 678, 710, 798], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 618, 774, 833], "762": [51, 74, 286, 618], "964": [51, 74, 286, 618], "trapz": [51, 74, 618], "dx": [51, 74, 287, 618], "apart": [51, 74, 287, 618], "trapezoid": [51, 74, 287, 618], "trunc": [51, 74, 618], "025": [51, 288, 370, 446, 618, 626, 703], "trunc_divid": [51, 74, 618], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 774], "elu": [52, 75, 293, 360, 774], "scaler": [52, 75, 291, 360, 762, 765, 828], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 804], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 774], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 623, 671], "01104775": [52, 295], "prelu": [52, 75, 360, 774], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 774], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 612], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 774], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 774], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 455, 480, 481, 762, 813, 817, 825, 828, 833, 860], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 417, 614, 627, 630, 714, 715, 734, 764, 807, 813, 815, 817, 821, 822, 824, 828, 847], "met": [52, 75, 304, 817], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 618, 805], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 413, 414, 493, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 778, 800, 805, 810, 818, 859], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 420, 472, 623, 652, 657, 658, 659, 681, 811], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 623, 670, 801, 818], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 615, 630, 734, 804], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 536, 620, 623, 672], "frequenc": [52, 53, 75, 76, 313, 362, 380, 509, 536, 620, 805], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 444, 445, 622, 647, 778, 792, 798, 805, 811, 833, 841, 843, 854], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 540], "band": [52, 53, 75, 76, 313, 362, 536, 620], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 414, 778, 853, 854], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 603, 615, 621, 823, 827, 841], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 784], "num_seg": [52, 75, 324, 325, 326, 362, 784], "identifi": [52, 75, 324, 325, 326, 362, 803, 807, 812, 813, 828, 831], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 418, 425, 519], "distinct": [52, 63, 75, 324, 325, 326, 362, 631, 735, 736, 737, 738, 804, 811, 816, 823, 824, 825, 832, 844, 854], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 435, 623, 672, 782], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 791, 792, 817, 825, 833, 834, 837, 844, 847, 850, 852, 853, 854, 857, 860, 861], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 421, 434, 440, 623, 666, 669, 757, 759, 807, 826, 854], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 477, 514, 515, 516, 517, 518, 519, 623, 625, 630, 633, 634, 664, 680, 699, 730, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 817, 825, 833], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 623, 625, 630, 633, 634, 680, 688, 695, 731, 746, 747, 748, 749, 750, 751, 752, 753, 754, 833], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 600, 605, 610, 620, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 711, 712, 716, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 792, 808, 811, 813, 820, 821, 825, 828, 829, 836, 839, 841, 848, 855], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 618], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 415, 421, 431, 433, 435, 497, 623, 663, 667, 675], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 480, 510, 511, 633, 743, 744, 749, 751, 763, 813, 833], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 815, 824], "prepend": [52, 75, 335, 365, 623, 625, 663, 688, 804], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 497, 623, 675, 817, 829], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 536, 620, 625, 688, 811, 827], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 624, 683, 778], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 852, 860], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 478, 512, 618, 625, 693, 798, 801, 803, 804, 818, 833, 850, 854], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 618], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 458, 570, 578, 592, 601, 602, 607, 618, 620, 621, 622, 635, 642, 643, 782, 821, 830], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 509], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 629, 727, 854], "33333333": [52, 75, 276, 342, 365, 618], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 807], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 519, 622, 645], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 477], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 607, 621], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 417, 432, 464, 559, 600, 615, 620, 623, 626, 633, 664, 680, 702, 703, 745, 798, 813, 824, 861], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 430, 466], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 441, 442, 443, 444, 445, 446, 447, 477, 533, 563, 564, 620, 624, 634, 682, 683, 684, 753, 754, 779, 813, 821, 824, 828, 835], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 431, 450, 455, 477, 481, 509, 762, 778], "adapt": [52, 75, 77, 368, 382, 383, 384, 608, 621, 778, 782, 844], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 778, 804], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 478, 618], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 413, 488, 489, 490, 493, 622, 635, 636, 637, 638, 640, 642, 644, 781], "Will": [52, 75, 368, 382, 383, 384, 787, 839], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 493, 622, 635, 638, 639, 642, 643, 644, 778], "3d": [52, 57, 75, 368, 383, 391, 392, 452, 623, 660, 778, 831], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 439, 493], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 622, 647, 833, 839, 854, 857, 858], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 622, 635, 636, 637, 642, 643, 778], "count_include_pad": [52, 75, 368, 386, 387, 388, 778], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 434, 436, 440, 623, 636, 638, 639, 640, 641, 644, 671, 774, 778, 792, 813, 825, 831, 839, 854, 856, 858], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 622, 635, 636, 637, 642, 643, 778], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 778], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 622, 635, 640, 641, 642, 643, 778], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 622, 640, 641], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 622, 635, 640, 641, 642, 643, 778], "dct": [52, 75, 368, 778, 836], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 438, 566, 620, 778, 817, 836], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 616, 625, 633, 685, 693, 750, 752, 778, 828, 831, 861], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 778], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 414, 778, 803, 854], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 798, 819, 847, 848], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 622, 648, 764, 778, 854], "max_norm": [52, 53, 75, 76, 368, 394, 527, 528, 620, 778], "ifft": [52, 75, 368, 395, 401, 778], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 445, 613, 618], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 532, 618, 620, 623, 631, 670, 736, 737, 738, 792, 811, 815, 825, 828, 835], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 831], "antialia": [52, 75, 368, 403, 831], "height": [52, 53, 56, 75, 76, 79, 368, 403, 532, 620, 622, 638, 639, 640, 641, 644, 836], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 421, 472, 493, 512, 532, 620, 622, 636, 637, 638, 639, 640, 641, 644, 648], "trilinear": [52, 75, 368, 403, 831], "nearest_exact": [52, 75, 368, 403, 831], "tf_area": [52, 75, 368, 403, 831], "mitchellcub": [52, 75, 368, 403, 831], "lanczos3": [52, 75, 368, 403, 831], "lanczos5": [52, 75, 368, 403, 831], "gaussian": [52, 75, 105, 368, 403, 612, 831], "overwrit": [52, 69, 75, 208, 368, 403, 617, 805, 824, 825, 833], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 420, 618, 623, 657, 658, 803, 812, 817, 822, 825, 829], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 483], "orthonorm": [52, 57, 75, 80, 368, 411, 623, 670, 673], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 413], "frame_length": [52, 75, 368, 414], "frame_step": [52, 75, 368, 414], "fft_length": [52, 75, 368, 414], "window_fn": [52, 75, 368, 414], "pad_end": [52, 75, 368, 414], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 414, 482, 616, 618, 623, 664, 762, 764, 765], "enclos": [52, 75, 368, 414, 855], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 414], "li": [52, 75, 368, 369, 380, 414, 421, 519, 843], "past": [52, 75, 368, 414, 805, 807, 826, 828, 840, 854], "fft_unique_bin": [52, 75, 368, 414], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 414, 616, 618, 623, 671, 673, 674, 763, 813, 818], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 414, 558, 616, 620, 623, 658, 659, 664, 680, 762, 763, 801, 813, 818], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 414, 425, 434, 493, 615, 618, 630, 733, 798, 827, 833, 844, 850, 855, 857], "linear_algebra": [52, 57, 75, 80, 623, 829], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 435, 623, 661, 672, 673, 762], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 416], "jn": [52, 75, 369, 416], "k1": [52, 75, 369, 416], "km": [52, 75, 369, 416], "outer": [52, 57, 75, 80, 92, 369, 416, 623, 626, 701, 702, 703, 792, 803], "30000001": [52, 75, 369, 416, 532, 620, 631, 736], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 416, 612, 622, 631, 651, 736], "60000002": [52, 75, 88, 98, 369, 374, 416, 492, 494, 747], "80000001": [52, 75, 369, 374, 416, 492, 494], "60000001": [52, 75, 369, 416], "90000004": [52, 75, 369, 416, 633, 747], "20000002": [52, 75, 369, 416], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 416, 601], "00000012": [52, 75, 369, 416], "49999994": [52, 75, 369, 416], "00000006": [52, 75, 369, 416], "60000014": [52, 75, 369, 416], "19999993": [52, 75, 369, 416], "80000007": [52, 75, 369, 416], "20000017": [52, 75, 369, 416], "89999992": [52, 75, 369, 416], "60000008": [52, 75, 369, 416], "80000019": [52, 75, 346, 365, 369, 416], "4000001": [52, 75, 79, 369, 416, 622, 645, 651], "cond": [52, 75, 118, 369, 614, 839], "933034373659268": [52, 417], "diagflat": [52, 75, 369, 427, 430], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 418, 488, 489, 490, 615, 623, 628, 656, 677, 723, 769], "padding_valu": [52, 75, 369, 418], "right_left": [52, 75, 369, 418], "num_row": [52, 75, 369, 418], "num_col": [52, 75, 369, 418], "dot": [52, 56, 75, 79, 92, 369, 432, 622, 623, 648, 651, 679, 792, 798, 804, 812], "eig": [52, 57, 75, 369, 623, 658, 659], "37228132": [52, 75, 369, 420, 422, 657], "82456484": [52, 420, 657], "41597356": [52, 420, 657], "56576746": [52, 420, 657], "90937671": [52, 420, 657], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 421], "select_rang": [52, 75, 369, 421], "tol": [52, 75, 96, 369, 421, 434, 440], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 420, 421, 422, 623, 657, 658, 659, 666], "eigenvector": [52, 75, 369, 420, 421, 623, 657, 658], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 421, 512, 615, 623, 625, 629, 634, 653, 679, 685, 688, 696, 725, 727, 753, 754], "togeth": [52, 69, 75, 328, 344, 365, 369, 421, 783, 798, 808, 811, 813, 824, 825, 828, 829, 831, 837, 838, 839, 844, 852, 854, 855, 860], "cluster": [52, 75, 369, 421, 839, 854], "converg": [52, 75, 369, 421, 845], "_2": [52, 75, 369, 421], "eig_val": [52, 75, 369, 421], "decreas": [52, 75, 369, 421, 764], "eig_vector": [52, 75, 369, 421], "38196": [52, 421], "61803": [52, 421], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 423], "tradit": [52, 80, 369, 423], "inner": [52, 57, 71, 80, 101, 136, 369, 420, 423, 615, 623, 626, 657, 658, 663, 701, 702, 703, 792, 803, 824], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 424], "d1": [52, 75, 369, 424], "dn": [52, 75, 369, 424], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 425, 429, 434, 436, 437, 438, 440, 623, 674], "truncated_svd": [52, 75, 369, 425, 434, 437, 440], "non_neg": [52, 75, 321, 362, 369, 425], "mask": [52, 56, 75, 79, 92, 369, 371, 425, 426, 434, 440, 479, 542, 620, 622, 645, 648, 651, 831], "svd_mask_repeat": [52, 75, 369, 425, 434, 440], "tuckertensor": [52, 75, 96, 321, 362, 369, 425, 434, 440], "scheme": [52, 75, 369, 425, 434, 807, 837, 854], "tucker": [52, 75, 321, 362, 369, 425, 434], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 425, 434, 437, 439, 440, 623, 652, 658, 662, 670, 673, 803, 861], "miss": [52, 75, 369, 371, 425, 434, 440, 479, 782, 803, 804, 808, 811, 812, 815, 825, 828, 831], "everywher": [52, 75, 369, 425, 434, 440], "imput": [52, 75, 369, 425, 434, 440], "kron": [52, 75, 369, 430, 861], "make_svd_non_neg": [52, 75, 369, 438], "nntype": [52, 75, 369, 429], "nndsvd": [52, 75, 369, 429], "singular": [52, 57, 75, 80, 369, 425, 429, 436, 438, 623, 664, 666, 669, 673, 674, 762, 764, 813], "nndsvda": [52, 75, 369, 429], "boutsidi": [52, 75, 369, 429], "gallopoulo": [52, 75, 369, 429], "pattern": [52, 53, 75, 76, 369, 429, 532, 533, 534, 620, 813, 816, 827, 845], "recognit": [52, 75, 369, 429], "1350": [52, 75, 369, 429], "1362": [52, 75, 369, 429], "2008": [52, 75, 369, 429, 854], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 430], "3891": [52, 75, 369, 430], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 431], "i_1": [52, 75, 92, 93, 369, 431], "i_k": [52, 75, 92, 369, 431], "i_n": [52, 75, 92, 369, 431], "i_": [52, 75, 92, 369, 380, 431, 512], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 432], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 433], "times_0": [52, 369, 433], "vec": [52, 369, 433], "times_1": [52, 369, 433], "cdot": [52, 268, 369, 433, 618], "times_n": [52, 369, 433], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 434, 440], "verbos": [52, 75, 369, 434, 437, 440, 828, 833], "return_error": [52, 75, 369, 434, 440], "variat": [52, 75, 369, 434, 440, 815, 825, 828], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 434, 440, 485, 623, 631, 673, 735, 737, 826], "return_erro": [52, 369, 434, 440], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 436], "basi": [52, 75, 369, 436, 805, 807, 836], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 436, 463, 464, 618, 625, 824, 835, 836, 838], "decis": [52, 75, 369, 436, 798, 807, 813, 831, 833, 835, 854], "u_adjust": [52, 75, 369, 436], "v_adjust": [52, 75, 369, 436], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 437, 439], "kth": [52, 369, 437], "tttensor": [52, 95, 320, 362, 369, 437], "compute_uv": [52, 57, 75, 80, 369, 438, 623, 673], "n_eigenvec": [52, 75, 369, 438], "returnedv": [52, 438], "vh": [52, 57, 75, 80, 369, 438, 623, 673], "eigen": [52, 75, 369, 438], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 420, 438, 485, 623, 631, 657, 658, 670, 671, 673, 735, 736, 737], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 437, 439, 618, 777, 807, 812, 813, 825, 828], "rank_k": [52, 75, 369, 439], "left_dim_k": [52, 75, 369, 439], "right_dim_k": [52, 75, 369, 439], "rank_": [52, 75, 369, 439], "49671414": [52, 75, 369, 439, 629, 726], "1382643": [52, 75, 369, 439, 629, 726], "64768857": [52, 75, 369, 439, 629, 726], "5230298": [52, 75, 369, 439, 629, 726], "23415337": [52, 75, 369, 439, 629, 726], "23413695": [52, 75, 369, 439, 629, 726], "57921278": [52, 75, 369, 439], "76743472": [52, 75, 369, 439], "1163073": [52, 75, 369, 439], "11629914": [52, 75, 369, 439], "03237505": [52, 75, 369, 439], "03237278": [52, 75, 369, 439], "78441733": [52, 75, 369, 439], "38119566": [52, 75, 369, 439], "21834874": [52, 75, 369, 439], "10610882": [52, 75, 369, 439], "15165846": [52, 75, 369, 439], "15164782": [52, 75, 369, 439], "35662258": [52, 75, 369, 439], "35659757": [52, 75, 369, 439], "02283812": [52, 75, 369, 439], "49705869": [52, 75, 369, 439], "40518808": [52, 75, 369, 439], "16882598": [52, 75, 369, 439], "fixed_factor": [52, 75, 369, 440], "tl": [52, 75, 369, 440], "kolda": [52, 75, 369, 440], "bader": [52, 75, 369, 440], "siam": [52, 75, 369, 437, 440], "review": [52, 75, 369, 440, 800, 803, 805, 810, 812, 815, 825, 829], "vol": [52, 75, 369, 440], "pp": [52, 75, 369, 440], "455": [52, 75, 369, 440], "2009": [52, 75, 369, 440], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 441, 601, 621], "transit": [52, 75, 370, 441, 854], "huber": [52, 75, 370, 441], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 442], "contai": [52, 442], "batchmean": [52, 370, 442], "kullback": [52, 75, 370, 442], "leibler": [52, 75, 370, 442], "0916": [52, 442], "l1_loss": [52, 75, 370, 444], "l1": [52, 57, 75, 80, 370, 374, 441, 443, 444, 446, 491, 623, 680, 811, 836], "targetict": [52, 75, 370, 443, 444, 446, 447], "20000000000000004": [52, 443], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 444, 779], "favor": [52, 75, 370, 444], "likelihood": [52, 75, 370, 444, 445], "28402555": [52, 370, 444], "03402555": [52, 370, 444], "1573164": [52, 370, 444], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 445], "poisson": [52, 75, 370, 375, 444, 445], "assumpt": [52, 370, 444, 445], "minu": [52, 370, 444, 445], "omiss": [52, 370, 445], "stirl": [52, 75, 370, 444, 445], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 445, 499, 502, 618, 622, 633, 648, 745, 749, 751, 800, 803, 804, 805, 810, 812, 824, 825, 828, 833, 838, 854], "prevent": [52, 54, 75, 77, 370, 445, 544, 601, 602, 607, 620, 621, 622, 633, 645, 751, 777, 782, 803, 805, 812, 813, 817, 824, 825, 829], "input_tensor": [52, 75, 369, 370, 437, 445, 825], "target_tensor": [52, 370, 445], "1978": [52, 445], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 441, 446, 624, 682, 683, 684, 823], "8125": [52, 446], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 447, 479, 814], "margin": [52, 75, 370, 447, 825], "35667497": [52, 447, 624, 683], "22314353": [52, 447], "60943791": [52, 447], "manipul": [52, 75, 824, 825, 829, 831, 833, 838, 843, 854], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 448, 460, 465, 473, 476, 495, 496, 497, 498, 499, 564, 577, 582, 584, 615, 620, 622, 625, 629, 635, 637, 639, 641, 643, 692, 725, 726, 727, 820, 822], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 448, 558, 615, 620, 859, 860], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 369, 371, 380, 428, 449, 463, 464, 510, 511, 531, 620, 623, 625, 633, 678, 689, 743, 744, 803, 811, 812, 813, 815, 816, 824, 825, 831, 838, 839], "scan": [52, 75, 371, 449, 839], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 450, 451, 452, 458, 467, 486], "a1": [52, 76, 371, 450, 451, 452, 456, 524], "a2": [52, 76, 371, 450, 451, 452, 456, 524], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 457], "new_axi": [52, 75, 371, 457, 838], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 458, 467, 486], "3rd": [52, 75, 371, 458], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 461], "fortran": [52, 59, 75, 82, 371, 462, 625, 692, 854, 858], "layout": [52, 59, 75, 82, 371, 462, 625, 692, 809, 824, 825, 831], "fliplr": [52, 75, 371, 824], "diag": [52, 57, 75, 80, 93, 371, 463, 464, 623, 658, 833], "flipud": [52, 75, 371, 824], "fold": [52, 75, 371, 473, 474, 812], "unfold": [52, 75, 92, 93, 95, 369, 371, 425, 465, 473, 475], "folded_tensor": [52, 371, 465], "heavisid": [52, 75, 371], "5000": [52, 371, 466, 623, 661, 792], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 456, 467, 532, 620], "hstack": [52, 75, 371, 456], "i0": [52, 75, 371, 380, 512], "bessel": [52, 65, 75, 88, 311, 362, 371, 469, 633, 750, 752], "kind": [52, 65, 75, 160, 163, 164, 380, 469, 510, 511, 516, 616, 633, 743, 744, 749, 751, 762, 763, 802, 825, 828, 831, 833, 839], "26606588": [52, 75, 371, 469], "2795853": [52, 75, 371, 469], "88079259": [52, 75, 371, 469], "row_mod": [52, 75, 371, 470], "column_mod": [52, 75, 371, 470], "ascend": [52, 64, 75, 87, 371, 378, 470, 502, 632, 739, 741], "prod": [52, 53, 65, 76, 88, 369, 371, 426, 428, 470, 518, 533, 620, 633, 762, 792, 813, 815, 833], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 471], "unstack": [52, 59, 69, 82, 471, 625, 811, 833, 836, 861], "reorder": [52, 59, 75, 82, 371, 471, 532, 620, 625, 689, 827], "stat_length": [52, 75, 371, 472], "constant_valu": [52, 75, 371, 472], "end_valu": [52, 75, 371, 472], "reflect_typ": [52, 75, 371, 472], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 473, 474, 475, 476], "untouch": [52, 75, 371, 473, 474, 475, 476], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 474, 475], "vectoris": [52, 75, 92, 371, 474, 476], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 475], "n_1": [52, 75, 371, 475], "n_2": [52, 75, 371, 475], "n_i": [52, 75, 369, 371, 426, 475], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 824], "rotat": [52, 75, 371, 478], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 420, 480, 623, 657, 807, 817, 822, 824, 825, 826, 835, 855], "invalid": [52, 66, 75, 89, 371, 480, 623, 625, 634, 679, 688, 753, 754, 762, 804, 813], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 455, 477, 480, 481, 539, 540, 542, 568, 615, 620, 627, 633, 713, 748, 854], "inexact": [52, 75, 339, 365, 371, 480], "largest": [52, 69, 75, 160, 163, 369, 371, 436, 480, 482, 616, 623, 664, 673], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 455, 477, 481, 564, 616, 813, 814], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 420, 482, 502, 516, 618, 623, 631, 657, 658, 673, 674, 735, 739, 740, 741, 764, 798, 802, 812, 827, 829], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 483], "front": [52, 75, 371, 483, 825, 832, 833, 836, 843, 852, 854], "unfolded_tensor": [52, 371, 484], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 486, 487, 532, 620, 805], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 488, 490, 633, 752, 777, 781], "nsc": [52, 75, 374, 488, 489, 490, 781], "braodcast": [52, 75, 374, 488], "running_mean": [52, 75, 374, 488, 490, 781], "running_var": [52, 75, 374, 488, 490, 781], "nc": [52, 75, 374, 488, 489, 490, 781], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 489], "group": [52, 75, 371, 374, 485, 489, 622, 627, 635, 642, 643, 706, 807, 811, 813, 821, 825, 826, 850, 853, 859], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 491, 494, 603, 621, 622, 623, 644, 680], "33333337": [52, 132, 374, 491, 603, 615, 621], "28571439": [52, 374, 491], "l2_normal": [52, 75, 374, 494], "l2": [52, 57, 80, 91, 92, 374, 492, 494, 623, 680, 778, 811], "44721359": [52, 75, 374, 492, 494], "89442718": [52, 75, 374, 492, 494], "lp_normal": [52, 75, 374], "lp": [52, 374, 494], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 495, 828], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 435, 461, 463, 464, 495, 615, 625, 627, 694, 717, 735, 804, 812, 828, 854], "parameter": [52, 61, 75, 84, 375, 495, 496, 498, 499, 629, 724, 726, 727], "odd": [52, 75, 273, 371, 375, 472, 495, 618, 792, 802, 807], "drawn": [52, 61, 75, 84, 375, 495, 496, 497, 498, 499, 629, 724, 725, 726, 727, 762, 763, 764, 777, 828], "dirichlet": [52, 75, 375], "10598304": [52, 375, 497], "21537054": [52, 375, 497], "67864642": [52, 375, 497], "48006698": [52, 375, 497], "07472073": [52, 375, 497], "44521229": [52, 375, 497], "55479872": [52, 375, 497], "05426367": [52, 375, 497], "39093761": [52, 375, 497], "19531053": [52, 375, 497], "51675832": [52, 375, 497], "28793114": [52, 375, 497], "12315625": [52, 375, 497], "29823365": [52, 375, 497], "5786101": [52, 375, 497], "15564976": [52, 375, 497], "50542368": [52, 375, 497], "33892656": [52, 375, 497], "1325352": [52, 375, 497], "44439589": [52, 375, 497], "42306891": [52, 375, 497], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 513, 628, 723], "rate": [52, 54, 75, 77, 368, 375, 409, 499, 602, 605, 607, 608, 609, 621, 626, 701, 702, 703, 782, 812], "lam": [52, 75, 375, 499], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 500], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 502], "statist": [52, 75, 90, 371, 472, 781, 796, 803, 813, 828, 829, 854], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 507], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 508, 509], "relationship": [52, 75, 508, 777, 827], "cov": [52, 75, 380], "ddof": [52, 75, 380, 509], "fweight": [52, 75, 380, 509], "aweight": [52, 75, 380, 509], "overridden": [52, 75, 380, 509, 782, 808], "unbias": [52, 65, 75, 88, 380, 509, 633, 752], "typic": [52, 75, 328, 344, 365, 380, 509, 632, 741, 778, 807, 821, 853, 861], "assign": [52, 75, 92, 380, 509, 803, 805, 809, 813, 824, 827, 835], "covari": [52, 75, 380, 509], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 434, 510, 511, 551, 552, 555, 615, 620, 629, 633, 725, 743, 744, 811, 813, 821, 838, 858, 860], "cumul": [52, 65, 75, 88, 380, 510, 511, 633, 743, 744], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 828, 833], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 825, 828, 833], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 510, 511, 616, 618, 633, 743, 744, 749, 751, 798, 802, 803, 804, 811, 812, 813, 815, 821, 833, 835, 860], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 510, 511, 616, 633, 743, 744, 749, 751, 762, 763, 813, 828, 833], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 512], "extend_upper_interv": [52, 75, 380, 512], "densiti": [52, 75, 380, 512], "monoton": [52, 75, 380, 512], "rightmost": [52, 75, 380, 512], "c1": [52, 75, 380, 512, 811], "ff": [52, 75, 380, 512], "c_": [52, 75, 93, 380, 512], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 513, 805], "3614": [52, 75, 380, 513], "2085": [52, 75, 380, 513], "median": [52, 75, 371, 380, 472, 516], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 515], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 516], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 481, 493, 516, 518, 618, 759, 823, 828, 834, 838], "undefin": [52, 75, 371, 380, 381, 472, 516, 520, 813, 817, 823], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 422, 518, 613, 809, 817, 826, 836, 837, 839], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 519, 615, 629, 725, 799, 809, 824, 831], "midpoint": [52, 75, 380, 519], "surround": [52, 75, 380, 519, 831], "whichev": [52, 75, 380, 519], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 472, 520, 527, 564, 615, 620, 623, 627, 633, 634, 677, 680, 718, 748, 749, 751, 753, 754, 803, 804, 808, 810, 813, 814, 824], "_arraywithgener": [53, 97], "all_equ": [53, 76, 620], "equality_matrix": [53, 76, 521, 620], "array_equ": [53, 76, 620], "assert_supports_inplac": [53, 76, 620], "ivybackendexcept": [53, 76, 525, 549, 620, 793, 808, 814, 817, 818], "clip_matrix_norm": [53, 76, 620], "894": [53, 76, 527, 528, 620, 628, 723], "clip_vector_norm": [53, 76, 620], "default_v": [53, 531, 620], "catch_except": [53, 531, 620], "rev": [53, 531, 620], "with_cal": [53, 531, 620], "catch": [53, 531, 620, 822, 828], "einops_rearrang": [53, 76, 620], "axes_length": [53, 76, 532, 533, 534, 620], "arrang": [53, 532, 620], "rearrang": [53, 76, 532, 534, 620, 827], "einops_reduc": [53, 76, 620, 813], "einops_repeat": [53, 76, 620], "fourier_encod": [53, 76, 620], "max_freq": [53, 76, 536, 620], "oppos": [53, 76, 536, 620, 813], "geometr": [53, 76, 536, 620, 623, 678], "0000000e": [53, 76, 536, 620], "2246468e": [53, 76, 536, 620], "4492936e": [53, 536, 620], "6739404e": [53, 76, 536, 620], "batch_dim": [53, 76, 539, 540, 620, 784], "gather_nd": [53, 76, 620], "get_num_dim": [53, 76, 620], "as_arrai": [53, 76, 543, 577, 620, 784], "has_nan": [53, 76, 620], "include_inf": [53, 76, 545, 599, 620], "inplace_decr": [53, 76, 620], "val": [53, 69, 74, 76, 248, 371, 461, 547, 548, 549, 568, 569, 570, 618, 620, 813, 824, 835], "decrement": [53, 76, 547, 620], "inplace_incr": [53, 76, 620], "increment": [53, 76, 548, 620, 805, 854], "inplace_upd": [53, 76, 567, 620, 775, 824], "ensure_in_backend": [53, 76, 549, 620, 824], "keep_input_dtyp": [53, 76, 549, 620, 824], "is_arrai": [53, 76, 620, 824, 825], "is_ivy_arrai": [53, 76, 620, 824, 835], "is_ivy_contain": [53, 620], "is_native_arrai": [53, 76, 171, 552, 616, 620, 835], "isin": [53, 76, 620], "test_el": [53, 76, 556, 620], "assume_uniqu": [53, 76, 556, 620], "invert": [53, 76, 226, 556, 618, 620, 623, 665], "scatter_flat": [53, 76, 620], "occupi": [53, 160, 163, 563, 564, 616, 620], "scatter_nd": [53, 76, 620, 831, 835], "stable_divid": [53, 76, 620, 821], "denomin": [53, 60, 76, 83, 570, 578, 592, 620, 628, 723, 781, 821, 830, 839, 851], "min_denomin": [53, 76, 570, 578, 592, 620, 830], "_min_denomin": [53, 578, 620], "stable_pow": [53, 76, 620], "min_bas": [53, 76, 569, 579, 591, 620, 781, 830], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 502, 569, 570, 578, 579, 591, 592, 615, 620, 632, 739, 742, 764, 804, 809, 813, 825, 830, 833, 839], "00004": [53, 76, 579, 620], "00008": [53, 76, 579, 620], "00004000e": [53, 579], "56002560e": [53, 579], "60001200e": [53, 579], "09602048e": [53, 579], "supports_inplace_upd": [53, 76, 620], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 817, 825], "to_scalar": [53, 76, 620], "value_is_nan": [53, 76, 620], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 621], "mw": [54, 77, 601, 602, 621, 837], "vw": [54, 77, 601, 602, 621, 837], "beta1": [54, 77, 523, 601, 602, 607, 620, 621, 782, 837], "beta2": [54, 77, 523, 601, 602, 607, 620, 621, 782, 837], "epsilon": [54, 57, 58, 77, 80, 81, 523, 601, 602, 607, 620, 621, 623, 624, 666, 669, 682, 683, 684, 774, 779, 781, 782, 811, 821, 824, 837], "dc": [54, 77, 601, 602, 605, 607, 608, 609, 621], "dw": [54, 77, 601, 602, 605, 607, 608, 609, 621], "forget": [54, 77, 601, 602, 607, 621, 782, 798, 813], "dcdw": [54, 77, 601, 602, 605, 607, 608, 621], "adam_step_delta": [54, 77, 601, 621], "2020105": [54, 601, 621], "22187898": [54, 601, 621], "24144873": [54, 601, 621], "10000002": [54, 88, 291, 360, 601, 747], "00300002": [54, 601], "00800002": [54, 601], "adam_upd": [54, 77, 621, 837], "mw_tm1": [54, 77, 602, 607, 621], "vw_tm1": [54, 77, 602, 607, 621], "stop_gradi": [54, 77, 208, 523, 602, 605, 607, 608, 609, 617, 620, 621, 626, 701, 702, 703, 782, 837], "ws_new": [54, 77, 602, 607, 608, 609, 621], "updated_weight": [54, 77, 602, 621], "92558753": [54, 602], "92558873": [54, 602, 621], "92558718": [54, 602, 621], "00000063e": [54, 77, 602, 621], "00000016e": [54, 77, 602, 621], "00000086e": [54, 77, 602, 621], "gradient_descent_upd": [54, 77, 621, 626, 701, 702, 703], "descent": [54, 77, 605, 621, 782, 837, 854], "new_weight": [54, 77, 605, 607, 608, 621, 836], "lamb_upd": [54, 77, 621], "max_trust_ratio": [54, 77, 607, 621, 782], "decay_lambda": [54, 77, 607, 608, 621, 782], "trust": [54, 77, 607, 621, 782], "ratio": [54, 77, 607, 621, 782], "decai": [54, 77, 607, 608, 621, 782], "lamb": [54, 77, 607, 621, 782, 837], "784": [54, 607, 621], "lars_upd": [54, 77, 621], "lar": [54, 77, 608, 621, 782, 837], "34077978": [54, 608, 621], "78025991": [54, 608, 621], "56051969": [54, 608, 621], "78026009": [54, 608, 621], "56051981": [54, 608, 621], "12103939": [54, 608, 621], "optimizer_upd": [54, 77, 621], "effective_grad": [54, 77, 609, 621], "3e": [54, 77, 609, 621], "preserve_typ": [54, 77, 610, 621], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 622, 778], "filter_format": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "channel_last": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643, 762], "x_dilat": [56, 79, 622, 635, 636, 638, 639, 640, 642], "d_out": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "channel_first": [56, 79, 622, 635, 636, 637, 638, 639, 640, 641, 642, 643], "wio": [56, 622, 635, 636, 637, 642], "conv1d_transpos": [56, 79, 622], "output_shap": [56, 79, 622, 635, 637, 639, 641, 643, 778], "iow": [56, 79, 622, 637], "woi": [56, 79, 622, 637], "fh": [56, 79, 622, 627, 635, 638, 639, 640, 641, 642, 643, 644, 716], "hwio": [56, 622, 635, 636, 638, 642], "conv2d_transpos": [56, 79, 622], "iohw": [56, 79, 622, 639], "hwoi": [56, 79, 622, 639], "conv3d": [56, 79, 622, 641, 778], "fd": [56, 79, 622, 635, 640, 641, 642, 643], "conv3d_transpos": [56, 79, 622, 643], "iodhw": [56, 79, 622, 641, 643], "dhwoi": [56, 79, 622, 641, 643], "depthwise_conv2d": [56, 79, 622], "randint": [56, 61, 63, 79, 84, 629, 631, 644, 647, 735, 813, 847], "noise_shap": [56, 79, 622, 645], "42857146": [56, 622, 645], "85714293": [56, 622, 645], "28571415": [56, 79, 622, 645], "71428585": [56, 79, 622, 645], "14285755": [56, 79, 622, 645], "5714283": [56, 622, 645], "4285717": [56, 79, 622, 645], "8571434": [56, 79, 622, 645], "2857151": [56, 622, 645], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 622, 646], "inner_batch_shap": [56, 79, 622, 646], "lstm_updat": [56, 79, 622, 833], "init_h": [56, 79, 622, 647, 833], "init_c": [56, 79, 622, 647, 833], "recurrent_kernel": [56, 79, 622, 647, 833], "recurrent_bia": [56, 79, 622, 647, 833], "hidden": [56, 79, 622, 647, 778, 810, 817, 833, 837], "recurr": [56, 79, 622, 647, 833, 854, 858], "timestep": [56, 79, 622, 647, 648, 778, 833], "h_i": [56, 79, 647], "c_i": [56, 79, 647], "rc": [56, 79, 647], "multi_head_attent": [56, 79, 622, 824], "num_head": [56, 79, 622, 648, 778], "in_proj_weight": [56, 79, 622, 648], "q_proj_weight": [56, 79, 622, 648], "k_proj_weight": [56, 79, 622, 648], "v_proj_weight": [56, 79, 622, 648], "out_proj_weight": [56, 79, 622, 648], "in_proj_bia": [56, 79, 622, 648], "out_proj_bia": [56, 79, 622, 648], "is_caus": [56, 79, 622, 648, 651], "key_padding_mask": [56, 79, 622, 648], "bias_k": [56, 79, 622, 648], "bias_v": [56, 79, 622, 648], "static_k": [56, 79, 622, 648], "static_v": [56, 79, 622, 648], "add_zero_attn": [56, 79, 622, 648], "return_attention_weight": [56, 79, 622, 648], "average_attention_weight": [56, 79, 622, 648], "scaled_dot_product_attent": [56, 79, 622], "dropout_p": [56, 79, 622, 651], "num_queri": [56, 79, 622, 651], "feat_dim": [56, 79, 622, 651], "num_kei": [56, 79, 622, 651], "causal": [56, 79, 622, 648, 651], "attent": [56, 79, 622, 648, 651, 778, 805, 808, 844], "29999995": [56, 291, 292, 301, 360, 622, 631, 651, 736], "19994521": [56, 622, 651], "09994531": [56, 622, 651], "30000019": [56, 371, 456, 622, 651], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 623, 824], "625": [57, 75, 341, 623, 652], "vif": [57, 80, 653], "det": [57, 80, 623, 671, 812], "axis1": [57, 59, 80, 82, 623, 625, 656, 677, 697], "axis2": [57, 80, 623, 656, 677], "eigh": [57, 80, 369, 420, 623, 657], "uplo": [57, 80, 623, 658, 659], "eigvalsh": [57, 80, 623], "array_lik": [57, 80, 368, 370, 371, 412, 441, 442, 446, 447, 477, 623, 660, 668, 792], "105": [57, 79, 622, 623, 624, 645, 646, 660, 668, 682], "149": [57, 623, 660], "143": [57, 74, 98, 285, 618, 623, 660, 815], "203": [57, 74, 224, 623, 628, 660, 723], "233": [57, 623, 660], "inv": [57, 80, 623], "transpose_a": [57, 80, 623, 663], "transpose_b": [57, 80, 623, 663], "adjoint_a": [57, 80, 623, 663], "adjoint_b": [57, 80, 623, 663], "matrix_norm": [57, 80, 623], "ord": [57, 80, 623, 664, 680], "fro": [57, 80, 370, 441, 623, 664], "nuc": [57, 80, 623, 664], "matrix_pow": [57, 80, 623], "matrix_rank": [57, 80, 623], "hermitian": [57, 80, 369, 420, 421, 623, 657, 658, 659, 666, 673], "largest_singular_valu": [57, 80, 623, 666, 669], "defici": [57, 623, 666], "matrix_transpos": [57, 80, 623, 835], "pinv": [57, 80, 623], "pseudo": [57, 80, 623, 669, 823], "99999988": [57, 80, 623, 669], "qr": [57, 80, 623, 826], "complet": [57, 69, 80, 623, 670, 763, 803, 804, 805, 807, 808, 811, 812, 815, 817, 821, 825, 826, 828, 831, 835, 836, 844, 852], "12309149": [57, 623, 670], "90453403": [57, 623, 670], "40824829": [57, 623, 670], "49236596": [57, 623, 670], "30151134": [57, 623, 670], "81649658": [57, 623, 670], "86164044": [57, 623, 670], "12403841e": [57, 623, 670], "60113630e": [57, 623, 670], "10782342e": [57, 623, 670], "04534034e": [57, 623, 670], "80906807e": [57, 623, 670], "88178420e": [57, 80, 623, 659, 670], "slogdet": [57, 80, 623], "logabsdet": [57, 80, 623, 671], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 618, 623, 671, 808, 815, 817, 826, 844], "098611": [57, 623, 671], "solv": [57, 80, 369, 429, 623, 762, 798, 804, 807, 818, 825, 834, 856], "full_matric": [57, 80, 623, 673], "svf": [57, 673], "reconstructed_x": [57, 623, 673], "svdval": [57, 80, 623], "tensorsolv": [57, 80, 623], "vander": [57, 80, 623], "vandermond": [57, 80, 623, 678], "vecdot": [57, 80, 623], "vector_norm": [57, 80, 623], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 613, 618, 623, 664, 680, 813, 825, 831, 854, 860], "manhattan": [57, 80, 623, 680], "euclidean": [57, 80, 92, 93, 623, 680], "7416575": [57, 80, 623, 680], "vector_to_skew_symmetric_matrix": [57, 80, 623], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 624, 812], "from_logit": [58, 81, 624, 682, 779], "pos_weight": [58, 81, 624, 682], "crossentropi": [58, 81, 624, 682], "357": [58, 81, 624, 682, 684], "223": [58, 81, 624, 682, 684], "3862944": [58, 624, 683], "sparse_cross_entropi": [58, 81, 624], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 625, 685, 838], "x_max": [59, 82, 625, 685, 838], "before_1": [59, 82, 371, 472, 625, 687, 700], "after_1": [59, 82, 371, 472, 625, 687, 700], "before_n": [59, 82, 371, 472, 625, 687, 700], "after_n": [59, 82, 371, 472, 625, 687, 700], "repetit": [59, 82, 625, 691, 698, 831], "flat": [59, 69, 82, 376, 500, 563, 620, 625, 691], "allowzero": [59, 82, 625, 692], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 618, 625, 627, 630, 692, 710, 733, 792, 804, 805, 812, 815, 817, 821, 829, 831, 839], "roll": [59, 82, 625, 820], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 615, 618, 625, 693, 804, 805, 814, 815, 820, 827], "restor": [59, 82, 625, 693, 819], "num_or_size_split": [59, 69, 82, 625, 694, 833], "with_remaind": [59, 69, 82, 625, 694], "squeezabl": [59, 625, 695], "swapax": [59, 82, 625], "axis0": [59, 82, 625, 697], "swap_ax": [59, 697], "swap": [59, 82, 625, 697, 787, 848], "tile": [59, 76, 82, 534, 625], "unpack": [59, 82, 625, 699, 826, 828], "zero_pad": [59, 82, 625], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 628], "normalized_idx": [60, 83, 628, 723], "new_std": [60, 83, 628, 723, 781], "learnabl": [60, 83, 626, 628, 703, 723, 778, 781, 838], "deviat": [60, 61, 65, 83, 84, 88, 628, 629, 633, 723, 726, 750, 764, 777, 781, 807, 845], "0976": [60, 628, 723], "3452": [60, 628, 723], "2740": [60, 628, 723], "1047": [60, 628, 723], "5886": [60, 628, 723], "2732": [60, 628, 723], "7696": [60, 628, 723, 762], "7024": [60, 628, 723], "2518": [60, 628, 723], "826": [60, 628, 723], "178": [60, 628, 723], "981": [60, 628, 723], "831": [60, 628, 723], "421": [60, 628, 723], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 497, 629], "population_s": [61, 84, 629, 724], "num_sampl": [61, 84, 629, 724], "unnorm": [61, 84, 629, 724, 828], "popul": [61, 65, 69, 84, 88, 629, 633, 724, 750, 752, 813, 814, 824, 828, 833, 860], "draw": [61, 84, 375, 495, 497, 499, 629, 724, 726, 727, 762, 763, 764, 765, 770, 777, 803, 807, 826, 828], "half": [61, 84, 121, 282, 615, 618, 629, 725, 727, 801, 818, 831], "235": [61, 726], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 615, 616, 623, 680, 726, 727, 762, 763, 801, 813, 818, 825, 828], "807": [61, 726], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 630, 730, 731], "occurr": [62, 371, 380, 485, 507, 630, 631, 730, 731, 735], "argmin": [62, 85, 630], "output_dtyp": [62, 85, 630, 731], "argwher": [62, 85, 630], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 618, 630], "as_tupl": [62, 85, 630, 733], "fewer": [62, 85, 630, 733], "_arraywithset": [63, 97], "unique_al": [63, 86, 631], "by_valu": [63, 86, 631, 735], "inverse_indic": [63, 86, 371, 485, 631, 735, 737], "unique_count": [63, 86, 631], "unique_invers": [63, 86, 631], "unique_valu": [63, 86, 631], "admonit": [63, 738], "dask": [63, 631, 735, 736, 737, 738, 844], "difficult": [63, 631, 735, 736, 737, 738, 805, 807, 813, 828, 839], "omit": [63, 278, 618, 631, 735, 736, 737, 738, 820, 824, 825], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 618, 631, 633, 735, 736, 737, 738, 746, 747, 748, 750, 751, 752, 777, 816], "x_j": [63, 631, 735, 736, 737, 738], "impli": [63, 631, 735, 736, 737, 738, 828], "typeerror": [63, 86, 631, 738, 835], "_arraywithsort": [64, 97], "stabil": [64, 87, 578, 579, 620, 632, 739, 742, 813, 823, 829, 831], "maintain": [64, 87, 632, 739, 742, 804, 805, 807, 819, 824, 826, 827, 828, 843, 853], "msort": [64, 87, 632], "searchsort": [64, 87, 632, 763], "side": [64, 87, 343, 365, 369, 435, 632, 741, 762, 778, 791, 792, 804, 805, 810], "sorter": [64, 87, 632, 741], "ret_dtyp": [64, 87, 632, 741], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 633, 825, 838], "cumsum": [65, 88, 633, 813], "einsum": [65, 88, 633], "equat": [65, 75, 88, 308, 362, 369, 435, 623, 633, 672, 745, 762, 791, 812, 854], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 618, 623, 633, 671, 677, 745, 746, 748, 749, 751, 791, 792, 808, 811, 816, 825], "contract": [65, 623, 633, 675, 745, 792], "seq": [65, 633, 745, 762], "ii": [65, 88, 633, 745, 805], "jk": [65, 633, 745, 792], "ik": [65, 633, 745, 792], "126": [65, 105, 274, 612, 618, 623, 633, 665, 745], "510": [65, 633, 745], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 618, 623, 633, 671, 677, 746, 747, 748, 749, 750, 751, 752, 762, 763, 764, 765, 770, 777, 803, 807, 808, 810, 812, 815, 816, 817, 820, 824, 826, 827, 828, 829, 831, 854, 855, 856], "arithmet": [65, 88, 229, 235, 268, 618, 633, 747, 825], "propag": [65, 229, 329, 330, 365, 618, 633, 746, 747, 748, 750, 751, 752, 823], "04999995": [65, 747], "freedom": [65, 88, 633, 750, 752, 809], "constitut": [65, 88, 633, 750, 752, 821, 833, 855], "commonli": [65, 88, 633, 750, 752, 817, 821, 823], "81649661": [65, 633, 750], "6666665": [65, 752, 836], "667": [65, 76, 235, 528, 578, 618, 620, 752], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 617, 618, 634, 753, 754, 803, 808, 812, 813, 814, 817, 821, 822, 823, 824, 825, 827, 828, 831, 835, 848], "AND": [66, 89, 225, 236, 262, 618, 634, 753], "OR": [66, 89, 228, 264, 271, 618, 634, 754, 804, 805, 823], "_wrap_funct": [67, 90, 810, 821, 822], "function_nam": [67, 90, 803, 829], "new_funct": [67, 90, 810], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 847, 848, 849], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 573, 595, 620, 830, 836], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 573, 595, 620, 830], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 779, 780, 809, 830], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 811], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 430, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 717, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 427, 429, 431, 432, 433, 434, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 459, 468, 470, 472, 473, 474, 476, 477, 478, 479, 480, 481, 482, 485, 487, 488, 489, 490, 491, 492, 494, 496, 501, 502, 509, 510, 511, 512, 519, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 636, 637, 638, 639, 640, 641, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 663, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 441, 442, 443, 444, 445, 446, 447, 450, 451, 452, 456, 457, 478, 480, 481, 482, 488, 490, 491, 492, 494, 496, 509, 510, 511, 512, 521, 524, 525, 527, 528, 532, 533, 534, 535, 536, 539, 540, 543, 545, 547, 548, 549, 551, 552, 555, 563, 564, 578, 579, 581, 583, 585, 586, 599, 605, 610, 627, 636, 637, 638, 639, 645, 646, 651, 652, 653, 658, 659, 660, 661, 663, 664, 666, 668, 670, 671, 677, 682, 683, 684, 685, 689, 692, 693, 694, 695, 696, 699, 700, 717, 718, 719, 720, 724, 725, 726, 727, 729, 732, 735, 736, 737, 738, 739, 743, 744, 747, 749, 750, 752, 753, 754, 760, 763, 812], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 612], "28903052": [68, 109, 612], "10714479": [68, 109, 612], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 612], "7310586": [68, 111, 112, 612], "88079703": [68, 111, 612], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 612], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 627, 704], "166": [68, 105, 612], "dictionari": [69, 86, 98, 207, 587, 603, 617, 620, 621, 738, 757, 759, 792, 808, 812, 813, 821, 825, 826, 836, 839], "asynchron": [69, 98, 854], "wait": [69, 98, 573, 620, 798, 803, 805, 812, 825], "arriv": [69, 98, 573, 620, 831], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 527, 528, 544, 616, 620, 625, 685, 762, 764, 765, 777, 784, 792, 798, 804, 805, 810, 812, 815, 817, 825, 828, 831, 836, 839, 853, 854, 855], "whitespac": [69, 98], "indent": [69, 98, 836], "newlin": [69, 98, 816], "termin": [69, 98, 804, 805, 811, 818, 819, 833, 836], "constructor": [69, 98, 523, 620, 759, 775, 783, 813, 814, 816, 835], "kept": [69, 98, 626, 701, 702, 805, 824, 829], "encount": [69, 98, 778, 801, 803, 813, 817, 818, 828], "node": [69, 76, 98, 525, 535, 581, 627, 714, 715, 777, 786, 810, 811, 825, 844, 847, 848, 855], "alphabet": [69, 98], "__setitem__": [69, 371, 480, 808, 811, 835], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 811, 836], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 803, 804, 836], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 784], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 836], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 477, 544, 620, 627, 706, 809, 816, 822, 823, 826, 837, 860], "configur": [69, 207, 617, 627, 717, 804, 805, 810, 812, 813, 818, 819], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 836], "cont_create_if_abs": 69, "noth": [69, 831, 860], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 529, 616, 620, 804, 805, 828], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 836, 847], "cont_dev": 69, "belong": [69, 803, 807, 837], "cont_dev_str": 69, "cont_diff": [69, 836], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 811, 812, 828, 831, 845, 854], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 836], "above_height": [69, 836], "below_depth": [69, 836], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 836], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 780, 836, 853], "h5py": 69, "filepath": [69, 634, 755, 756, 805, 807], "cont_from_disk_as_json": [69, 836], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 836], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 803, 827, 836, 850, 860], "cont_handle_inplac": 69, "prime": [69, 813], "overwritten": [69, 808, 809], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 812], "cont_has_key_chain": 69, "cont_ident": [69, 836], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 836], "cont_load": 69, "cont_map": [69, 811, 836], "func": [69, 92, 208, 357, 358, 359, 367, 526, 600, 603, 604, 606, 611, 617, 620, 621, 627, 717, 759, 803, 807, 808, 815, 817, 823], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 583, 620, 762, 828, 839], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 627, 717], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 798, 837], "key2": [69, 798], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 442, 615, 804, 805, 807, 813, 821, 827, 828, 831, 839, 847, 848, 849, 858], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 804, 809, 824], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 622, 640], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 450, 451, 452, 481], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 836], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 836], "cont_to_disk_as_pickl": [69, 836], "cont_to_flat_list": 69, "cont_to_iter": [69, 811], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 617], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 826], "cont_with_key_length_limit": [69, 836], "cont_with_print_ind": [69, 836], "cont_with_print_limit": [69, 836], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 428, 615], "n_col": [71, 75, 127, 142, 322, 362, 615], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 615], "234": [71, 74, 131, 154, 237, 288, 615, 616, 618, 622, 646, 762], "123": [71, 72, 131, 163, 535, 615, 620, 792, 828], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 615], "expos": [71, 129, 529, 615, 620, 798, 812, 833, 837, 843], "x00": [71, 129, 615], "xf0": [71, 129, 615], "x01": [71, 129, 615], "x02": [71, 129, 615], "x03": [71, 129, 615], "x04": [71, 129, 615], "x05": [71, 129], "5443469": [71, 133, 615], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 615], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 616], "618": [72, 74, 147, 264, 616], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 616], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 616], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 616], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 616], "7976931348623157e": [72, 160, 616], "308": [72, 160, 616, 762, 828], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 616], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 480, 616], "2147483647": [72, 163, 616], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 616], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 616, 829], "roughli": [72, 804, 807, 857], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 618], "412": [74, 79, 220, 618, 627, 704], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 618], "983": [74, 223, 618], "978": [74, 223, 618], "696": [74, 84, 223, 618, 726], "993": [74, 223, 618], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 618], "873": [74, 234, 274, 618], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 618], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 618], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 618], "38905621": [74, 238, 618], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 618], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 615, 618, 623, 671], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 477], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 618], "0414": [74, 257, 618], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 618], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 618], "static_round": 74, "301": [74, 278, 618], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 618], "959": [74, 240, 280, 618], "279": [74, 280, 368, 389, 399, 527, 618, 620], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 618], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 618], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 618, 837], "305": [74, 79, 220, 618], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 618], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 805, 835, 854], "shrinkag": [75, 292, 301, 371, 479], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 601, 621], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 632, 741, 764, 804, 805, 811, 829, 854], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 854, 855], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 492, 494], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 623, 658], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 623, 661, 762, 765], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 813], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 477], "10240": [75, 345], "60000038": [75, 346, 365, 623, 679], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 618], "515": [75, 629, 726], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 417], "eigenvealu": [75, 420, 657], "xx": [75, 420, 422, 657], "37228107": [75, 420, 657], "3722816": [75, 420, 657], "8245648": [75, 420, 657], "41597357": [75, 420, 657], "56576747": [75, 420, 657], "9093767": [75, 420, 657], "56155": [75, 421], "82842": [75, 421], "450": [75, 427], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 426, 427], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 439], "output_tensor": [75, 95, 369, 439], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 441], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 445], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 445], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 456, 480], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 450, 451, 452], "ary2": [75, 371, 450, 451, 452], "broadcast_shap": [75, 101, 371, 762, 764], "static_concat_from_sequ": [75, 457], "30192195": [75, 469], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 492, 494], "50709254": [75, 492, 494], "84515423": [75, 492, 494], "44183609": [75, 492, 494], "56807494": [75, 492, 494], "69431382": [75, 492, 494], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 497], "32325703": [75, 497], "24031169": [75, 497], "34251311": [75, 497], "31692529": [75, 497], "3405616": [75, 497], "5319725": [75, 497], "22458365": [75, 497], "24344385": [75, 497], "26588406": [75, 497], "61075421": [75, 497], "12336174": [75, 497], "51142915": [75, 497], "25041268": [75, 497], "23815817": [75, 497], "64042903": [75, 497], "25763214": [75, 497], "10193883": [75, 497], "31624692": [75, 497], "46567987": [75, 497], "21807321": [75, 497], "37677699": [75, 497], "39914594": [75, 497], "22407707": [75, 497], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 512, 803, 815, 816, 821, 825], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 509], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 456], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 527, 528, 620], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 533, 620], "53000069": [76, 533, 620], "39666676": [76, 533, 620], "20666695": [76, 533, 620], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 625, 631, 694, 736], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 578, 620], "444": 76, "_static_stable_pow": 76, "00012": [76, 579, 620], "00016": [76, 77, 579, 607, 620, 621], "00001": [76, 579, 620, 762], "00032": [76, 579], "00256": [76, 579], "1679638": [76, 579], "395": [76, 579], "16777383": [76, 579], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 528], "items": [76, 97, 620], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 599], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 601, 618, 621], "49e": [77, 601, 621], "74e": [77, 601, 621], "95e": [77, 601, 621], "024": [77, 601, 621], "096": [77, 601, 621], "216": [77, 80, 601, 621, 678], "626": [77, 601, 621], "en": [77, 601, 602, 621, 812], "wikipedia": [77, 601, 602, 621], "wiki": [77, 601, 602, 621], "stochastic_gradient_desc": [77, 601, 602, 621], "01099": [77, 602], "01003": [77, 602, 621], "01015": [77, 602, 621], "99936122": [77, 602, 621], "99936116": [77, 602, 621], "99936128": [77, 602, 621], "99936104": [77, 602, 621], "w_new": [77, 605, 621], "708": [77, 607, 621], "445": [77, 607, 621], "6e": [77, 607, 621], "00036": [77, 607, 621], "00049": [77, 607, 621], "layerwis": [77, 608, 621], "01132035": [77, 608, 621], "22264051": [77, 608, 621], "2056601": [77, 608, 621], "1324538": [77, 608, 621], "56490755": [77, 608, 621], "96622658": [77, 608, 621], "90848625": [77, 608, 621], "93616199": [77, 608, 621], "77232409": [77, 608, 621], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 623, 633, 637, 668, 745], "_static_conv2d": 79, "ey": [79, 615, 622, 638, 644, 831, 838], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 640], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 622, 644], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 622, 645, 646], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 622, 645, 646], "19999695": [79, 646], "11600018": [79, 646], "88399887": [79, 646], "196": [79, 622, 646], "306": [79, 622, 646], "19999981": [79, 292, 304, 360, 622, 645, 651], "59249449": [79, 622, 651], "68226194": [79, 622, 651], "19603825": [79, 622, 651], "9960382": [79, 622, 651], "26894283": [79, 622, 651], "40236187": [79, 622, 651], "39999437": [79, 622, 651], "59999037": [79, 622, 651], "35046196": [79, 622, 651], "54282808": [79, 622, 651], "39989519": [79, 622, 651], "5998764": [79, 622, 651], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 623, 652], "707": [80, 623, 652], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 623, 659], "17091519": [80, 623, 659], "3448143": [80, 623, 659], "35898387e": [80, 623, 659], "46410179e": [80, 623, 659], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 615], "n2": [80, 134, 615], "static_out": [80, 668], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 623, 670], "9486833": [80, 623, 670], "4472136": [80, 623, 670], "89442719": [80, 623, 670], "16227766": [80, 623, 670], "42718872": [80, 623, 670], "63245553": [80, 623, 670], "47213595": [80, 623, 670], "81377674": [80, 623, 670], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 844], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 618, 678], "729": [80, 678, 837], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 680], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 623, 671], "static_general_inner_product": 80, "3475602": [80, 673], "93765765": [80, 673], "58776021": [80, 673], "10416126": [80, 673], "80644298": [80, 673], "87024701": [80, 673], "48127627": [80, 673], "79101127": [80, 673], "98288572": [80, 673], "68917423": [80, 673], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 624, 682, 684], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 623, 671], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 683], "609438": [81, 683], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 625, 688], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 691], "_containerwithnorm": [83, 98], "34198591": [83, 628, 723], "04274819": [83, 628, 723], "29923761": [83, 628, 723], "24053511": [83, 628, 723], "62221265": [83, 723], "20277636": [83, 723], "41943574": [83, 723], "83710337": [83, 723], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 726], "274": [84, 726], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 749], "23100001": [88, 749], "30800003": [88, 633, 749], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 633, 752], "11555555": [88, 633, 752], "rtype": [88, 745, 791], "respectv": [88, 750], "81649649": [88, 750], "94280904": [88, 750], "509902": [88, 633, 750], "2472192": [88, 750], "44948983": [88, 750], "41421354": [88, 750], "6666667": [88, 752], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 426], "khatri": [92, 369, 426], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 465, 476], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 857], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 831], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 843, 854], "b_i": 93, "ijk": [93, 792], "sum_r": 93, "a_": 93, "ir": [93, 852, 855, 860], "jr": 93, "kr": 93, "coupl": [93, 804, 808, 835, 837, 854], "factoris": 93, "i1": [93, 380, 512], "classmethod": [93, 100, 101, 767], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 420, 434, 440, 623, 657, 658], "sum_": 93, "ijr": 93, "constraint": [93, 792, 812, 813, 823], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 625, 698, 778, 781, 782, 783, 827, 833, 837, 838, 852, 854, 861], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 805], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 439], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 777], "realiz": [95, 854], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 861], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 600, 620, 627, 715, 812], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 808, 811, 815, 816, 820, 825, 826, 835], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 831], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 835], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 815, 816, 825], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 808, 811, 815, 820, 835], "__truediv__": [97, 98, 808, 811, 815], "__xor__": [97, 98], "referenc": [97, 817, 824], "resid": [97, 101, 625, 688, 825, 833, 837], "mt": [97, 835], "hopefulli": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845], "overview": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 798, 810, 812, 826, 828, 832], "reach": [97, 98, 612, 613, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 774, 775, 777, 778, 780, 781, 782, 783, 801, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 828, 829, 831, 833, 834, 835, 836, 837, 838, 843, 844, 845, 853, 854], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 494, 603, 621], "nested_arrai": [100, 101, 102, 810], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 612, 618, 820, 824], "24000001": [107, 612], "703": [108, 612], "683": [108, 612], "408": [108, 612], "313": [108, 612], "437": [108, 612], "40337825": [109, 612], "56114835": [109, 612], "20788449": [109, 612], "0768": [112, 612], "231": [112, 612], "\u03b2": [113, 612], "66666667": [114, 380, 509, 612], "body_fn": [117, 118, 120, 614], "bodi": [117, 120, 614, 807, 828], "lst": [117, 614], "orelse_fn": [118, 614], "body1": [119, 614], "body2": [119, 614], "test_fn": [120, 614, 760, 798, 848, 849], "repeatedli": [120, 614, 627, 713, 812, 828], "ml_framework": [121, 615], "distanc": [121, 615], "adjac": [121, 615], "nestedsequ": [122, 123, 615], "typevar": [122, 123, 615], "supportsbufferprotocol": [122, 123, 615], "static_copy_arrai": [124, 615], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 615, 616], "pycapsul": [128, 139, 615], "interchang": [128, 139, 615, 625, 697], "plu": [129, 615], "x00b": [129, 615], "x00d": [129, 615], "x00e": [129, 615], "66666663": [132, 615], "41588834": [133, 615], "7827941": [133, 615], "6227766": [133, 615], "23413252": [133, 615], "n3": [134, 615], "xv": [134, 615], "yv": [134, 615], "x_nativ": [135, 615, 824], "y_nativ": [135, 615], "z_nativ": [135, 615], "d_type": [137, 615], "col": [142, 322, 362, 615], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 502, 537, 538, 615, 616, 617, 620, 763, 765, 803, 806, 809, 813, 822, 824, 825, 827, 828, 831, 839, 841], "upward": [142, 322, 362, 615], "downward": [142, 322, 362, 615], "2xn": [142, 322, 362, 615], "subarrai": [142, 322, 362, 615], "incompat": [149, 616], "closest": [152, 231, 241, 242, 278, 288, 616, 618, 828, 831], "xtype": [152, 616], "ytype": [152, 616], "native_uint16": [152, 616], "complexdtyp": [153, 167, 176, 616], "set_default_complex_dtyp": [153, 182, 616], "4294": [153, 155, 616], "967346": [153, 155, 616], "set_default_dtyp": [154, 183, 616, 813, 821], "floatdtyp": [155, 178, 616], "set_default_float_dtyp": [155, 164, 176, 184, 616, 813], "int_dtyp": [156, 179, 616], "set_default_int_dtyp": [156, 164, 185, 616, 813], "4294967346": [156, 157, 616], "uint_dtyp": [157, 180, 616], "uint": [157, 172, 180, 186, 616, 813, 826], "uintdtyp": [157, 172, 180, 186, 616], "set_default_uint_dtyp": [157, 164, 186, 616], "native_bool": [159, 616], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 613, 616, 618, 844], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 613, 616, 618, 844], "smallest_norm": [160, 616], "bfloat16": [161, 616, 762, 763, 813, 825, 828, 829], "unsupport": [162, 195, 538, 616, 617, 620, 757, 760, 801, 804, 818, 825], "encapsul": [163, 616, 812], "314": [163, 275, 332, 365, 616, 618], "9223372036854775808": [163, 616], "9223372036854775807": [163, 616], "65535": [163, 616], "4294967295": [163, 616], "native_uint8": [165, 616], "hashabl": [169, 616], "type1": [173, 616], "type2": [173, 616], "array_api_promot": [173, 174, 616, 762, 763], "unexpect": [174, 242, 616, 618, 813], "default_complex_dtyp": [176, 616], "default_dtype_stack": [177, 183, 616], "unset_default_dtyp": [177, 616], "native_uint64": [177, 616], "default_float_dtyp": [178, 616, 813], "default_int_dtyp": [179, 185, 616, 813], "default_uint_dtyp": [180, 186, 616], "ret1": [181, 616], "ret2": [181, 616], "reset": [182, 183, 184, 185, 186, 212, 213, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 616, 617, 620, 814], "default_complex_dtype_stack": [182, 616], "default_float_dtype_stack": [184, 616], "native_float16": [187, 616], "unmodifi": [189, 617, 809, 813], "aliv": [196, 201, 203, 541, 561, 562, 617, 620, 814], "139740789224448": [196, 617], "physic": [199, 617], "process_specif": [202, 214, 617], "percentag": [202, 617], "ram": [202, 210, 214, 617], "alon": [202, 214, 617, 798, 819, 828], "036902561555": [202, 617], "7024003467681645": [202, 617], "as_native_dev": [202, 617], "7095597456708771": [202, 617], "attr_onli": [203, 617], "soft_device_mod": [205, 213, 617], "chunk": [206, 207, 208, 617], "split_factor": [206, 617, 817], "max_chunk_s": [208, 617], "chunk_siz": [208, 617], "input_ax": [208, 617], "output_ax": [208, 617], "usag": [208, 617, 813, 821, 824, 828, 833, 839, 844, 857], "fed": [208, 617, 837], "fist": [208, 617], "gb": [210, 214, 617, 804, 818], "66700032": [210, 617], "589934592": [210, 617], "219563008": [214, 617], "902400346": [214, 617], "525205504": [214, 617], "na": [215, 618, 828], "noqa": [215, 282, 618, 778, 787, 826], "princip": [216, 220, 222, 352, 365, 618], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 618, 816, 852, 854], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 618, 816], "\u03c0": [216, 220, 222, 223, 613, 618], "3\u03c0": [216, 223, 618], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 420, 618, 623, 625, 657, 658, 696, 824], "\u03c0j": [217, 221, 224, 256, 258, 618], "3\u03c0j": [217, 256, 258, 618], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 618, 807], "2019": [218, 235, 240, 258, 268, 618, 854, 857], "overflow": [218, 235, 242, 618, 623, 633, 671, 751, 802, 813], "commut": [218, 618], "tabl": [218, 235, 268, 572, 594, 618, 620, 762, 763, 778, 825, 830, 854], "dj": [218, 235, 268, 618], "bj": [218, 235, 268, 332, 365, 618], "z1": [218, 618], "z2": [218, 618], "yj": [219, 618], "nanj": [221, 618], "809": [221, 618], "569": [221, 618], "733": [221, 618], "notat": [223, 618, 633, 745, 812], "denot": [223, 618, 780], "quadrant": [223, 618], "rai": [223, 618, 844], "bitwis": [225, 228, 230, 265, 618], "170": [229, 618], "243": [229, 618], "xor": [230, 265, 618], "654": [232, 618], "ci": [233, 238, 240, 281, 618, 807, 813, 819, 826, 828, 839], "368": [233, 618], "670": [233, 618], "202": [233, 618, 807], "548": [233, 618], "1490": [233, 618], "57079633": [234, 618], "14159265": [234, 618], "71238898": [234, 618], "28318531": [234, 618], "02617994": [234, 618], "87266463": [234, 618], "01919862": [234, 618], "03839725": [234, 618], "05759586": [234, 618], "07679449": [234, 618], "09599311": [234, 618], "11519173": [234, 618], "35081118": [234, 618], "88139129": [234, 618], "underflow": [235, 242, 618, 623, 671, 813], "textbook": [235, 268, 618], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 488, 490, 618], "ac": [235, 268, 618, 791, 792], "bd": [235, 268, 618], "bc": [235, 268, 618, 791, 792], "versu": [235, 268, 618], "riemann": [235, 268, 618], "sphere": [235, 268, 618], "c99": [235, 268, 618], "infinit": [235, 268, 282, 618], "unlik": [235, 268, 618, 807, 812, 815, 844, 859, 861], "698": [235, 618], "truth": [236, 246, 247, 254, 255, 271, 370, 441, 618, 757, 759, 770, 801, 818, 825, 828], "32862675": [237, 618], "67780113": [237, 618], "11246294": [237, 618], "42839241": [237, 618], "52050018": [237, 618], "16799599": [237, 618], "30787992": [237, 618], "43796915": [237, 618], "98667163": [237, 618], "79690808": [237, 618], "88020504": [237, 618], "91031402": [237, 618], "95228523": [237, 618], "96610528": [237, 618], "cut": [238, 240, 280, 281, 282, 285, 618, 803, 843, 860], "08553692": [238, 618], "567": [238, 618], "00344786": [238, 618], "76297021": [238, 618], "197948": [238, 618], "53253174": [238, 618], "accur": [240, 258, 618, 623, 671, 822], "fdlibm": [240, 258, 618], "compliant": [240, 258, 263, 264, 329, 330, 365, 618, 633, 746, 747, 748, 750], "potenti": [240, 258, 618, 798, 803, 804, 812, 813, 825, 832, 857], "632": [240, 618], "20e": [240, 618], "72e": [240, 618, 762], "greatest": [241, 242, 245, 618], "pep": [242, 618, 820], "disambigu": [242, 618, 823], "former": [242, 618, 804, 813, 816, 825], "latter": [242, 618, 804, 807, 809, 813, 816, 825], "overload": [242, 618, 828], "led": [242, 618, 807, 856], "subtl": [242, 618, 813, 860], "bug": [242, 618, 798, 803, 805, 810, 818, 819, 825, 828, 840], "ambigu": [242, 618], "semant": [242, 277, 371, 480, 618, 813, 833, 838, 843, 855], "ill": [242, 618, 764], "surpris": [242, 618, 839], "arrau": [248, 618], "log_": [257, 259, 618], "742": [258, 618], "negat": [270, 332, 365, 618], "52095687": [273, 618], "92457771": [273, 618], "49372482": [273, 618], "22738838": [273, 618], "156": [273, 618, 762], "5877228": [273, 618], "189": [274, 618, 627, 704], "252": [274, 618], "378": [274, 618], "1150": [274, 618], "2890": [274, 618], "172": [274, 618], "487": [274, 618, 622, 646], "344": [274, 618], "355j": [275, 332, 365, 618], "55j": [275, 332, 365, 618], "primarili": [277, 618, 803, 811, 854], "reason": [277, 286, 618, 803, 805, 807, 808, 811, 812, 813, 815, 821, 824, 825, 828, 829, 831, 833, 835, 844, 860], "counterpart": [278, 618, 811, 822], "deliber": [278, 618, 831], "imprecis": [278, 618], "5654": [278, 618], "034": [278, 618], "433": [278, 604, 606, 618, 621], "signum": [279, 618], "operatornam": [279, 281, 618, 623, 658], "textrm": [279, 618], "932": [280, 618], "746": [280, 618], "657": [280, 528, 618, 620], "indistinguish": [282, 618], "convent": [282, 618, 623, 633, 663, 745, 805, 809, 820, 829, 843, 860], "infti": [282, 618], "32455532": [282, 618], "89897949": [282, 618], "169": [282, 618], "analyt": [285, 618, 854, 856, 860], "pole": [285, 618], "546": [285, 618, 622, 646], "916": [285, 618, 624, 682], "996": [285, 618], "histor": [286, 618], "stem": [286, 618, 824], "older": [286, 618], "advis": [286, 618, 825], "462": [286, 618], "604": [286, 618], "984": [286, 618], "997": [286, 618], "0375": [288, 618], "032": [288, 618], "57258511": [291, 360], "69999999": [291, 360, 611, 621], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 807, 828, 854], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 633, 745, 791, 792], "leakag": [306, 362], "wors": [306, 362, 844], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 854], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 560, 620, 803, 804, 805, 809, 813, 814, 815], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 804], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 633, 746, 748], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 533, 620], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 472, 791, 808, 810, 828], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 803, 823, 853, 854], "upstream": [357, 367, 804, 805, 807, 818, 823], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 606, 621, 839, 854], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 823], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 620], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 762], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 458, 804, 810, 812, 828, 838, 856], "5d": [368, 393, 778], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 625, 688, 793, 817], "interp": [368, 831], "xp": [368, 402, 807], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 831], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 812], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 418, 623, 655], "subdiagon": [369, 418, 623, 655], "eigendecomposit": [369, 420, 623, 657, 658], "qlq\u1d40": [369, 420, 623, 657, 658], "tridiagon": [369, 421], "38196602": [369, 421], "61803389": [369, 421], "35048741": [369, 421], "56710052": [369, 421], "06693714": [369, 421], "74234426": [369, 421], "56155282": [369, 421], "56155276": [369, 421], "82842714": [369, 421], "82842731": [369, 421, 623, 658], "necessarili": [369, 422, 808, 811], "generalis": [369, 423], "skip_matrix": [369, 426, 428], "khatri_rao_product": [369, 426], "kronecker_product": [369, 428], "n_column": [369, 428], "nnmf": [369, 429], "hoi": [369, 434, 440], "solve_triangular": 369, "unit_diagon": [369, 435], "solut": [369, 435, 623, 672, 762, 798, 801, 803, 804, 805, 811, 813, 818, 826, 828, 831, 852, 856], "determinist": [369, 436], "borrow": [369, 436, 806], "extmath": [369, 436], "ivan": [369, 437], "oseledet": [369, 437], "scientif": [369, 437, 854], "2295": [369, 437], "2317": [369, 437], "2011": [369, 437], "convention": [370, 442, 857], "issu": [370, 442, 777, 799, 800, 801, 802, 804, 807, 809, 810, 812, 813, 814, 815, 817, 818, 825, 828, 829, 831, 833, 837, 839, 845, 847], "explicit": [370, 371, 442, 480, 804, 811, 813, 823, 824, 825, 833, 839, 854], "555969": [370, 442], "223876": [370, 442], "111938": [370, 442], "42649534": [370, 442], "68651628": [370, 442], "51119184": [370, 442], "59967244": [370, 442], "mae": [370, 443], "91097307": [370, 445], "3467": [370, 446], "0133": [370, 446], "0250": [370, 446], "0056": [370, 446], "0025": [370, 446], "0675": [370, 446], "hing": [370, 447], "6987": [370, 447], "1606": [370, 447], "3711": [370, 447], "4032": [370, 447], "6931": [370, 447], "whilst": [371, 450, 451, 452, 838, 841, 854], "ary3": [371, 452], "check_scalar": 371, "force_integ": [371, 454], "force_posit": [371, 454], "mod": [371, 455, 807], "tall": [371, 461], "appear": [371, 463, 464, 600, 620, 804, 805, 807, 825, 831, 847], "horizot": [371, 468], "shortcut": [371, 472, 804], "linear_ramp": [371, 472], "reflect": [371, 472, 805, 808, 824, 828], "ramp": [371, 472], "mirror": [371, 472, 803, 854], "padding_func": [371, 472], "iaxis_pad_width": [371, 472], "iaxi": [371, 472], "unalt": [371, 472], "put": [371, 477, 798, 803, 828, 839, 860], "mul": [371, 477, 824, 835], "conceptu": [371, 480, 850, 855], "concern": [371, 480, 805, 806, 811, 813, 815, 824, 831, 832, 860], "regard": [371, 480, 802, 811, 825, 826, 831, 844], "mutat": [371, 480], "elimin": [371, 485, 804], "consecut": [371, 485], "batch_mean": [374, 488, 490], "batch_var": [374, 488, 490], "running_vari": [374, 488, 490], "local_response_norm": 374, "neighbour": [374, 493], "42857143": [374, 494], "5714286": [374, 494], "multivari": [375, 497], "bayesian": [375, 497], "supposedli": [378, 501], "indirect": [378, 502], "secondari": [378, 502], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 505], "crow_indic": [379, 505], "col_indic": [379, 505], "ccol_indic": [379, 505], "row_indic": [379, 505], "dense_shap": [379, 505], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 509, 623, 671, 672, 803, 824, 826], "aw": [380, 509, 844], "48447205": [380, 509], "c0": [380, 512], "ck": [380, 512], "c2": [380, 512], "nearest_jax": [380, 519], "trace_on_next_step": [523, 620, 782, 837], "recalcul": [526, 620], "my_sum": [526, 620], "val1": [526, 620], "val2": [526, 620], "cached_sum": [526, 620], "line_eq": [526, 620], "slp": [526, 620], "itc": [526, 620], "cached_line_eq": [526, 620], "0353": [527, 620], "424": [527, 620], "176": [527, 620], "339": [527, 620], "271": [527, 620], "391": [527, 620], "417": [528, 620], "583": [528, 620], "0667": [528, 620], "267": [528, 620], "131": [528, 620], "263": [528, 620], "394": [528, 620, 629, 729], "526": [528, 620], "788": [528, 620], "default_str": [531, 620], "46999979": [532, 620], "66000009": [532, 620], "93000001": [532, 620], "29000092": [532, 620], "33999991": [532, 620], "6400001": [532, 620], "96000004": [532, 620], "36000013": [532, 620], "51999998": [532, 620], "67000008": [532, 620], "suppos": [532, 620, 813, 828], "960": [532, 620], "3600": [532, 620], "h1": [532, 620], "w1": [532, 620], "40499985": [533, 620], "61000061": [533, 620], "max_depth": [544, 620], "seen_set": [544, 620], "local_set": [544, 620], "referr": [544, 620], "redund": [544, 620, 798, 813, 817, 825, 847], "example_funct": [544, 620], "ref_id_1": [544, 620], "ref_id_2": [544, 620], "ref_id_3": [544, 620], "ivyexcept": [549, 581, 620, 793, 814, 817, 822, 824, 825, 829], "allow_dupl": [559, 620], "fork": [560, 620, 799, 803, 807, 812, 818], "forkserv": [560, 620], "spawn": [560, 620], "mp_default": [560, 620], "defaultcontext": [560, 620], "0x7f4e3193e520": [560, 620], "mp_fork": [560, 620], "forkcontext": [560, 620], "0x7f4e3193e580": [560, 620], "mp_spawn": [560, 620], "spawncontext": [560, 620], "0x7f4e3193e5e0": [560, 620], "mp_forkserv": [560, 620], "forkservercontext": [560, 620], "0x7f4e3193e640": [560, 620], "garbag": [562, 620], "collector": [562, 620], "get_all_arrays_in_memori": [562, 620], "exception_trace_mod": [566, 589, 620, 830], "lenient": [567, 590, 620], "inplace_mod": [567, 590, 620], "break": [567, 620, 798, 809, 813, 820, 829, 839], "infus": [568, 620], "nestable_mod": [571, 593, 620, 830], "precise_mod": [572, 594, 620, 830], "shape_array_mod": [574, 596, 620, 830], "show_func_wrapper_trace_mod": [575, 597, 620, 830], "tmp_dr": [576, 620], "tmp_dir": [576, 598, 620, 830], "my_tmp": [576, 620], "49999999999975": [578, 620], "5015015015010504": [578, 620], "000444502911705e": [578, 620], "9999999999995j": [578, 620], "00000262": [579, 620], "15605032": [579, 620], "01208451j": [579, 620], "00048": [579, 620], "1296": [579, 620], "00864": [579, 620], "isn": [581, 620, 805, 822, 824, 836, 839, 856], "100000023841858": [583, 620], "200000047683716": [583, 620], "299999952316284": [583, 620], "400000095367432": [583, 620], "599999904632568": [583, 620], "hemant": [587, 620], "unset_shape_array_mod": [588, 620], "set_exception_trace_mod": [589, 620, 817], "set_min_bas": [591, 620], "set_min_denomin": [592, 620], "set_nestable_mod": [593, 620], "set_precise_mod": [594, 620], "set_queue_timeout": [595, 620], "set_shape_array_mod": [596, 620], "set_show_func_wrapper_trace_mod": [597, 620, 817], "set_tmp_dir": [598, 620], "my_dir": [598, 620], "451": [599, 620], "in_ax": [600, 620], "out_ax": [600, 620], "thereof": [600, 620], "summaris": [600, 620], "99999998": [601, 621], "19999998": [601, 621], "00000001": [601, 621], "00300001": [601, 621], "00800001": [601, 621], "0125": [601, 621], "17294501": [601, 621], "15770318": [601, 621], "20863818": [601, 621], "90000075": [602, 621], "90000164": [602, 621], "9000032": [602, 621], "50000012e": [602, 621], "92558754": [602, 621], "92558694": [602, 621], "92558682": [602, 621], "92558861": [602, 621], "60000025e": [602, 621], "01024": [602, 621], "retain_grad": [603, 621], "func_ret": [603, 621, 823], "666666": [603, 621], "333332": [603, 621], "66666675": [603, 611, 621], "argnum": [604, 621], "933": [604, 606, 621], "jac_fn": [606, 621], "639": [607, 621], "361": [607, 621], "52565837": [608, 621], "8418861": [608, 621], "68377209": [608, 621], "value_grad": [611, 621], "42333412": [611, 621], "5333333": [611, 621], "93333334": [611, 621], "43333334": [611, 621], "0666666": [611, 621], "softsign": 612, "718281828459045": 613, "euler": 613, "141592653589793": 613, "cmp_i": 614, "cmp_isnot": 614, "for_loop": 614, "if_els": 614, "try_except": 614, "while_loop": 614, "to_dlpack": 615, "as_ivy_dtyp": [616, 825], "as_native_dtyp": 616, "check_float": 616, "closest_valid_dtyp": 616, "default_dtyp": [616, 813, 821], "dtype_bit": 616, "function_supported_dtyp": [616, 813, 828], "function_unsupported_dtyp": [616, 813], "infer_default_dtyp": 616, "invalid_dtyp": [616, 813], "is_hashable_dtyp": 616, "is_native_dtyp": 616, "promote_typ": [616, 813], "promote_types_of_input": [616, 813, 824], "type_promote_arrai": [616, 813], "unset_default_complex_dtyp": 616, "unset_default_float_dtyp": 616, "unset_default_int_dtyp": 616, "unset_default_uint_dtyp": 616, "valid_dtyp": 616, "defaultcomplexdtyp": 616, "defaultdtyp": 616, "defaultfloatdtyp": 616, "defaultintdtyp": 616, "defaultuintdtyp": 616, "as_ivy_dev": [617, 835], "clear_cached_mem_on_dev": 617, "dev_util": [617, 814], "function_supported_devic": 617, "function_unsupported_devic": 617, "get_all_ivy_arrays_on_dev": [617, 814], "handle_soft_device_vari": [617, 814], "num_cpu_cor": [617, 814], "num_gpu": [617, 814, 828], "num_ivy_arrays_on_dev": 617, "percent_used_mem_on_dev": 617, "print_all_ivy_arrays_on_dev": 617, "set_split_factor": [617, 817], "split_func_cal": 617, "total_mem_on_dev": [617, 814], "tpu_is_avail": 617, "unset_default_devic": [617, 814], "unset_soft_device_mod": [617, 814], "used_mem_on_dev": 617, "defaultdevic": [617, 814], "profil": 617, "save_dir": 617, "arg_info": 620, "arg_nam": 620, "cache_fn": [620, 821], "current_backend_str": [620, 828, 833, 835], "function_supported_devices_and_dtyp": 620, "function_unsupported_devices_and_dtyp": 620, "get_item": [620, 824], "get_referrers_recurs": 620, "inplace_arrays_support": 620, "inplace_variables_support": 620, "is_ivy_nested_arrai": 620, "isscalar": 620, "match_kwarg": 620, "num_arrays_in_memori": 620, "print_all_arrays_in_memori": 620, "set_item": 620, "to_ivy_shap": 620, "to_native_shap": 620, "try_else_non": 620, "unset_array_mod": [620, 830], "unset_exception_trace_mod": 620, "unset_inplace_mod": 620, "unset_min_bas": 620, "unset_min_denomin": 620, "unset_nestable_mod": 620, "unset_precise_mod": 620, "unset_queue_timeout": 620, "unset_show_func_wrapper_trace_mod": 620, "unset_tmp_dir": 620, "vmap": [620, 839, 854], "arraymod": 620, "precisemod": [620, 813], "jac": 621, "value_and_grad": [621, 823], "neural": [622, 774, 778, 798, 848, 850, 852, 853, 854, 858, 860, 861], "feature_group_count": [622, 635, 642, 643], "oiw": [622, 635, 636, 642], "oihw": [622, 635, 638, 642], "oidhw": [622, 635, 640, 642], "dhwio": [622, 635, 636, 640, 642], "conv_general_dil": [622, 825], "conv_general_transpos": 622, "depthwis": [622, 644, 764, 778], "overfit": [622, 645], "overal": [622, 645, 792, 811, 813, 814, 816, 838, 847, 850, 852, 853, 854], "1428566": [622, 645], "49000001": [622, 645], "55599999": [622, 645], "21000004": [622, 645], "incom": [622, 646], "666": [622, 623, 646, 664], "4269": [622, 646], "911": [622, 646, 817], "157": [622, 646], "753": [622, 646], "545": [622, 629, 646, 727], "547": [622, 646, 814], "124": [622, 646], "963": [622, 646], "98495483": [622, 646], "0293808": [622, 646], "0159359": [622, 646], "74752808": [622, 646], "20942307": [622, 646], "3205719": [622, 646], "time_major": [622, 647], "long": [622, 647, 804, 805, 812, 813, 815, 817, 818, 825, 833, 854], "unrol": [622, 647, 833, 836], "lstm": [622, 647, 778, 833, 854], "batch_first": [622, 648], "multi": [622, 623, 648, 653, 764, 778, 815, 832, 839, 850, 852, 854, 858], "paper": [622, 648, 798, 845], "vaswani": [622, 648], "al": [622, 648], "num_attention_head": [622, 648], "key_dim": [622, 648, 778], "value_dim": [622, 648, 778], "measur": [622, 648, 778], "attention_weight": [622, 648], "unbatch": [622, 648], "nm": 622, "box": [622, 649, 650, 804], "iou_threshold": [622, 649], "max_output_s": [622, 649], "score_threshold": [622, 649], "roi_align": 622, "spatial_scal": [622, 650], "sampling_ratio": [622, 650], "23333359": [622, 651], "03946018": [622, 651], "0280633": [622, 651], "29981947": [622, 651], "29981089": [622, 651], "06345534": [622, 651], "9634552": [622, 651], "19336844": [622, 651], "09336829": [622, 651], "axisa": [623, 653], "axisb": [623, 653], "axisc": [623, 653], "293": [623, 654], "46997": [623, 654], "explicitli": [623, 658, 659, 675, 759, 778, 779, 780, 801, 807, 808, 809, 811, 813, 816, 817, 818, 821, 822, 823, 824, 826, 828, 833, 839, 848, 854], "17157288": [623, 658], "9238795": [623, 658], "78930789": [623, 658], "59803128": [623, 658], "19127655": [623, 658], "31213903": [623, 658], "63418275": [623, 658], "84632206": [623, 658], "70548367": [623, 658], "70223427": [623, 658], "09570674": [623, 658], "63116378": [623, 658], "56109613": [623, 658], "53554028": [623, 658], "32237405": [623, 658], "43822157": [623, 658], "83906901": [623, 658], "50766778": [623, 658], "71475857": [623, 658], "48103389": [623, 658], "3676433": [623, 658], "68466955": [623, 658], "62933773": [623, 658], "77917379": [623, 658], "14264561": [623, 658], "61036086": [623, 658], "45033181e": [623, 659], "02829754e": [623, 659], "54220343e": [623, 659], "12647155e": [623, 659], "38447177e": [623, 659], "56155300e": [623, 659], "26794919": [623, 659], "7320509": [623, 659], "0012": [623, 661], "00342": [623, 661], "000565": [623, 661], "0104": [623, 661], "000981": [623, 661], "00282": [623, 661], "000766": [623, 661], "0322": [623, 661], "00237": [623, 661], "000151": [623, 661], "00101": [623, 661], "00019": [623, 661], "0214": [623, 661], "00171": [623, 661], "0107": [623, 661], "0167": [623, 661], "0472": [623, 661], "0536": [623, 661], "0177": [623, 661], "000429": [623, 661], "00762": [623, 661], "lu_factor": 623, "pivot": [623, 662], "lu": [623, 662], "frobeniu": [623, 664], "nuclear": [623, 664], "induc": [623, 664], "ranl": [623, 664], "47722558": [623, 664], "776": [623, 664], "6000004": [623, 664], "118": [623, 665], "moor": [623, 669], "penros": [623, 669], "31622776": [623, 670], "94868332": [623, 670], "1622777": [623, 670], "42718887": [623, 670], "deteremin": [623, 671], "logsabsdet": [623, 671], "subject": [623, 671], "ordin": [623, 672], "b2": [623, 672], "usvh": [623, 673], "cetera": [623, 673], "driver": [623, 674, 839], "cusolv": [623, 674], "gesvd": [623, 674], "gesvdj": [623, 674], "gesvda": [623, 674], "86217213": [623, 674], "31816804": [623, 674], "615": [623, 674], "ss": [623, 674], "25994301": [623, 674], "16403675": [623, 674], "61529762": [623, 674], "51231241": [623, 674], "39777088": [623, 674], "15413129": [623, 674], "1029852": [623, 674], "01383495": [623, 674], "86647356": [623, 674], "7786541": [623, 674], "55970621": [623, 674], "16857576": [623, 674], "86412698": [623, 674], "37566757": [623, 674], "88477993": [623, 674], "95925522": [623, 674], "6444726": [623, 674], "54687881": [623, 674], "16134834": [623, 674], "35037804": [623, 674], "31025076": [623, 674], "35769391": [623, 674], "transposit": [623, 675], "success": [623, 633, 677, 749, 751, 804, 812, 844], "0x": [623, 678], "Such": [623, 678, 821, 828], "progress": [623, 678, 804, 805, 838], "alexandr": [623, 678], "theophil": [623, 678], "dot_product": [623, 679], "9000001": [623, 680], "64158917": [623, 680], "skew": [623, 681], "6666193": [624, 682], "67164493e": [624, 682], "05471958e": [624, 682], "32684899e": [624, 682], "30496836e": [624, 682], "05393649": [624, 682], "49992943": [624, 682], "83330965": [624, 682], "35667494": [624, 684], "79329094": [624, 684], "512926": [624, 684], "outsid": [625, 685, 696, 813, 814, 821, 835, 859], "honor": [625, 692], "beyond": [625, 693, 816, 825, 860], "famili": [625, 696], "intxx": [625, 696], "floatxx": [625, 696], "rep": [625, 698], "fomaml_step": 626, "inner_cost_fn": [626, 701, 702, 703], "outer_cost_fn": [626, 701, 702], "inner_grad_step": [626, 701, 702, 703], "inner_learning_r": [626, 701, 702, 703], "inner_optimization_step": [626, 701, 702, 703], "inner_batch_fn": [626, 701, 702], "outer_batch_fn": [626, 701, 702], "average_across_step": [626, 701, 702], "inner_v": [626, 701, 702], "keep_inner_v": [626, 701, 702], "outer_v": [626, 701, 702], "keep_outer_v": [626, 701, 702], "return_inner_v": [626, 701, 702, 703], "num_task": [626, 701, 702, 703], "maml": [626, 701, 702], "0x7fe2d1812e60": [626, 701, 702, 703], "maml_step": 626, "vanilla": [626, 702, 837, 854], "_variabl": [626, 702, 703], "sub_batch": [626, 702], "40069818": [626, 702], "13723135": [626, 702], "reptile_step": 626, "cost_fn": [626, 703], "reptil": [626, 703], "batch_in": [626, 703], "4485182": [626, 703], "139": [626, 703], "9569855": [626, 703], "9880483": [626, 703], "01766968": [626, 703], "02197957": [626, 703], "02197981": [626, 703], "all_nested_indic": 627, "include_nest": [627, 704], "_index": [627, 704, 715], "_base": [627, 704, 714, 715, 824], "themselv": [627, 704, 803, 811, 813, 814, 816, 821, 825, 837, 851, 860], "863": [627, 704, 814], "672": [627, 704], "482": [627, 704], "674": [627, 704], "341": [627, 704], "copy_nest": 627, "to_mut": [627, 705, 716], "deepli": [627, 705, 839, 854], "copied_nest": [627, 705], "1337": [627, 705, 716], "duplicate_array_index_chain": 627, "index_nest": [627, 821], "insert_into_nest_at_index": 627, "insert_into_nest_at_indic": 627, "onto": [627, 710, 716, 842, 843, 854], "special_squar": [627, 710], "6666666666666667": [627, 710], "special_pow": [627, 710], "linear_model": [627, 710], "map_nest_at_index": 627, "_result": [627, 711, 721], "hh": [627, 711, 716], "map_nest_at_indic": 627, "ub": [627, 712], "tb": [627, 712], "multi_index_nest": 627, "nested_ani": 627, "check_nest": [627, 714, 715], "nested_argwher": 627, "stop_after_n_found": [627, 715], "nested_indic": [627, 715], "nested_map": [627, 814, 821], "_tuple_check_fn": [627, 716], "_list_check_fn": [627, 716], "_dict_check_fn": [627, 716], "wherebi": [627, 716, 803, 851], "ah": [627, 716], "bh": [627, 716], "ch": [627, 716], "dh": [627, 716, 807], "eh": [627, 716], "gh": [627, 716, 804, 818], "ih": [627, 716], "1338": [627, 716], "nested_multi_map": 627, "index_chain": [627, 717], "nest0": [627, 717], "ivy_arrai": [627, 717, 808, 825], "unappli": [627, 717], "prune_empti": 627, "prune_nest_at_index": 627, "prune_nest_at_indic": 627, "set_nest_at_index": 627, "set_nest_at_indic": 627, "xyz": [627, 722], "pqr": [627, 722], "mini": [628, 723, 778, 781], "uniformli": [629, 725, 727], "22346112": [629, 726], "0922": [629, 726], "9213753": [629, 726], "12818667": [629, 726], "799": [629, 726], "469": [629, 726], "287": [629, 726], "0366": [629, 726], "26431865": [629, 727], "475": [629, 727], "878": [629, 727], "861": [629, 727], "929": [629, 727], "789": [629, 727], "519": [629, 727], "0435": [629, 727], "381": [629, 727], "4608004": [629, 727], "8458502": [629, 727], "67270088": [629, 727], "31128597": [629, 727], "zeroel": [630, 733], "guarante": [631, 735, 737, 808, 813, 824, 839, 845], "aggreg": [631, 735, 812], "fourth": [631, 735], "1141": [631, 735], "8101": [631, 735], "9298": [631, 735], "8460": [631, 735], "2119": [631, 735], "3519": [631, 735], "6252": [631, 735], "4033": [631, 735], "7443": [631, 735], "2577": [631, 735], "3707": [631, 735], "0545": [631, 735], "3238": [631, 735], "5944": [631, 735], "0775": [631, 735], "4327": [631, 735], "62519997": [631, 735], "40329999": [631, 735], "59439999": [631, 735], "74430001": [631, 735], "81010002": [631, 735], "84600002": [631, 735], "92979997": [631, 735], "einstein": [633, 745, 791], "117": [633, 745], "intend": [633, 751, 760, 777, 807, 820, 823, 852, 854, 858, 859], "07472222": [633, 752], "00666667": [633, 752], "08966666": [633, 752], "simplicit": [634, 753, 754], "ivy_test": [757, 759, 760, 762, 763, 764, 765, 766, 767, 768, 769, 770, 803, 804, 805, 807, 810, 812, 818, 826], "test_ivi": [757, 759, 760, 762, 763, 764, 765, 766, 767, 768, 769, 770, 803, 804, 805, 810, 812, 818, 826, 828], "assert_all_clos": [757, 826], "ret_np": [757, 759, 826], "ret_from_gt_np": [757, 826], "ground_truth_backend": [757, 759, 760, 769, 770, 801, 818, 826], "mark": [757, 803, 805, 807, 828, 833], "assert_same_typ": 757, "ret_from_target": 757, "ret_from_gt": 757, "backend_to_test": [757, 759, 801, 818, 826], "gt_backend": 757, "with_backend": [757, 787], "assert_same_type_and_shap": 757, "this_key_chain": 757, "check_unsupported_devic": 757, "input_devic": 757, "all_as_kwargs_np": [757, 759], "presenc": [757, 811, 824], "check_unsupported_device_and_dtyp": 757, "input_dtyp": [757, 759, 769, 801, 818, 826, 828], "check_unsupported_dtyp": 757, "test_unsupported_funct": 757, "value_test": 757, "ret_np_flat": 757, "ret_np_from_gt_flat": 757, "specific_tolerance_dict": 757, "ret_from_np_gt_flat": 757, "function_test": 759, "args_to_contain": 759, "array_arg": [759, 821], "args_to_frontend": 759, "frontend_array_fn": 759, "arrays_to_frontend": 759, "as_list": 759, "convtru": 759, "nativeclass": 759, "counter": [759, 837], "create_args_kwarg": 759, "args_np": 759, "arg_np_val": 759, "args_idx": 759, "kwargs_np": 759, "kwarg_np_val": 759, "kwargs_idx": 759, "test_flag": [759, 801, 818, 826, 828], "on_devic": [759, 769, 801, 818, 826], "flatten_and_to_np": 759, "flatten_frontend": 759, "flatten_frontend_fw_to_np": 759, "frontend_ret": [759, 826], "isscalar_func": 759, "is_native_array_func": 759, "to_numpy_func": 759, "flatten_frontend_to_np": 759, "get_frontend_ret": 759, "frontend_fn": 759, "frontend_array_funct": 759, "precision_mod": [759, 769, 770, 818], "test_trac": [759, 769, 770, 801, 807, 818], "get_ret_and_flattened_np_arrai": 759, "gradient_incompatible_funct": 759, "gradient_test": [759, 828], "rtol_": [759, 801, 818], "atol_": [759, 801, 818, 826], "tolerance_dict": 759, "gradient_unsupported_dtyp": 759, "kwargs_to_args_n_kwarg": 759, "num_positional_arg": [759, 769, 770, 801, 818, 826, 828], "port": [759, 845], "test_frontend_funct": [759, 826], "fn_tree": [759, 760, 770, 801, 818, 825, 826, 828], "gt_fn_tree": [759, 770], "test_valu": [759, 826, 828], "frontend_function_flag": [759, 769], "functiontestflag": [759, 769, 801, 818], "with_out": [759, 769, 801, 818, 826, 828], "instance_method": [759, 769, 801, 818, 828], "as_vari": [759, 769, 801, 818, 826, 828], "namespac": [759, 803, 813, 822, 825, 826, 829, 833, 838], "test_frontend_method": [759, 826], "init_input_dtyp": [759, 826], "method_input_dtyp": [759, 826], "init_flag": [759, 826, 828], "method_flag": [759, 769, 826, 828], "init_all_as_kwargs_np": [759, 826], "method_all_as_kwargs_np": [759, 826], "frontend_method_data": [759, 826], "init_as_variable_flag": [759, 770], "dictat": [759, 808, 815, 820, 824], "init_num_positional_arg": [759, 770], "init_native_array_flag": 759, "with_v": 759, "ret_gt": 759, "test_funct": [759, 801, 804, 805, 812, 818, 826, 828], "fn_name": [759, 760, 770, 801, 809, 818, 826, 828], "return_flat_np_arrai": 759, "as_variable_flag": [759, 770, 828], "native_array_flag": [759, 770, 828], "container_flag": [759, 769, 770, 828], "test_function_backend_comput": 759, "test_function_ground_truth_comput": 759, "arg_np_arrai": 759, "arrays_args_indic": 759, "arrays_kwargs_indic": 759, "kwarg_np_arrai": 759, "test_gradient_backend_comput": 759, "test_gradient_ground_truth_comput": 759, "test_method": 759, "method_nam": [759, 768, 770, 826], "init_with_v": 759, "method_with_v": 759, "test_gradi": [759, 769, 770, 801, 818, 828], "method_as_variable_flag": [759, 770], "method_num_positional_arg": [759, 770], "method_native_array_flag": 759, "method_container_flag": [759, 770], "test_method_backend_comput": 759, "test_method_ground_truth_comput": 759, "org_con_data": 759, "args_np_method": 759, "met_arg_np_v": 759, "met_args_idx": 759, "kwargs_np_method": 759, "met_kwarg_np_v": 759, "met_kwargs_idx": 759, "v_np": 759, "traced_if_requir": 759, "wrap_frontend_function_arg": 759, "holder": 760, "current_frontend_config": 760, "0x7fe2c4d39c90": 760, "interruptedtest": 760, "test_interrupt": 760, "baseexcept": 760, "tri": [760, 813], "testdata": 760, "supported_device_dtyp": 760, "is_method": 760, "setup_api_test": 760, "test_data": 760, "setup_frontend_test": 760, "teardown_api_test": 760, "teardown_frontend_test": 760, "hypothesis_help": [762, 763, 764, 765], "array_help": 762, "array_and_broadcastable_shap": 762, "searchstrategi": [762, 763, 764, 765, 769, 770, 828], "array_bool": [762, 828], "min_valu": [762, 763, 764, 765, 801, 818, 826, 828], "max_valu": [762, 763, 764, 765, 826, 828], "ex": [762, 763, 764, 765, 770, 812, 848], "strategi": [762, 763, 764, 765, 769, 770, 803, 826], "array_helpers_dtype_info_help": 762, "kind_dtyp": [762, 764], "array_indices_axi": 762, "array_dtyp": [762, 763, 828], "indices_dtyp": 762, "get_dtyp": [762, 763, 801, 818, 826, 828], "disable_random_axi": 762, "axis_zero": 762, "allow_inf": [762, 765, 826, 828], "min_num_dim": [762, 764, 826, 828], "max_num_dim": [762, 764, 826, 828], "min_dim_s": [762, 764, 826, 828], "max_dim_s": [762, 764, 826], "first_dimension_onli": 762, "indices_same_dim": 762, "valid_bound": 762, "hypothesi": [762, 764, 770, 803, 805, 807, 812, 822], "65536": 762, "44758124e": [762, 828], "array_indices_put_along_axi": 762, "values_dtyp": 762, "array_valu": [762, 828], "abs_smallest_v": [762, 764, 765], "allow_nan": [762, 765, 828], "allow_subnorm": [762, 765, 828], "exclude_min": [762, 765, 828], "exclude_max": [762, 765], "large_abs_safety_factor": [762, 764, 765, 801, 818, 826, 828], "small_abs_safety_factor": [762, 764, 765, 801, 818, 826], "safety_factor_scal": [762, 764, 765, 826, 828], "subnorm": [762, 765], "safeti": [762, 764, 765, 854], "0002": [762, 765], "get_shap": [762, 764, 826, 828], "1806": 762, "36912": 762, "6955": 762, "59576": 762, "1025": 762, "arrays_and_ax": 762, "available_dtyp": [762, 763, 801, 818, 826, 828], "allow_non": [762, 764, 826, 828], "return_dtyp": 762, "force_int_axi": 762, "26e": 762, "10e": 762, "24322108": 762, "26446279e": 762, "96046448e": 762, "008": 762, "17549435e": 762, "038": 762, "06541027e": 762, "13725760e": 762, "07143888": 762, "arrays_for_pool": 762, "min_dim": 762, "max_dim": 762, "min_sid": 762, "max_sid": 762, "explicit_or_str_pad": 762, "only_explicit_pad": 762, "return_dil": 762, "mixed_fn_compo": [762, 763, 764, 765, 828], "return_data_format": 762, "cond_data_gen_help": 762, "create_concatenable_arrays_dtyp": 762, "min_num_arrai": 762, "max_num_arrai": 762, "concat_dim": 762, "common_shap": [762, 828], "stackabl": 762, "given_common_shap": 762, "create_nested_input": 762, "leaf_valu": 762, "dtype_and_valu": [762, 801, 818, 826, 828], "num_arrai": [762, 763, 826, 828], "shared_dtyp": [762, 763, 826], "ret_shap": 762, "array_api_dtyp": [762, 763], "shape_kei": 762, "37915": 762, "6322": 762, "26765": 762, "12413": 762, "26986": 762, "34665": 762, "000e": 762, "711e": 762, "100e": 762, "955e": [762, 828], "40817": 762, "56193": 762, "29200": 762, "5851": 762, "9746": 762, "9604645e": 762, "103": 762, "41795": 762, "1170789994": 762, "44251": 762, "44209": 762, "433075925": 762, "24791": 762, "24691": 762, "24892": 762, "16711": 762, "972": 762, "15357": 762, "72057594037927936": 762, "dtype_array_queri": 762, "allow_mask": 762, "allow_neg_step": 762, "dtype_array_query_v": 762, "dtype_values_axi": [762, 828], "min_axi": 762, "max_axi": 762, "valid_axi": 762, "allow_neg_ax": 762, "min_axes_s": 762, "max_axes_s": 762, "force_tuple_axi": 762, "29788": 762, "62222885e": 762, "68281172e": 762, "257j": 762, "40129846e": 762, "90000000e": 762, "63426649e": 762, "91931887e": 762, "29488e": 762, "14361019e": 762, "12445": 762, "einsum_help": 762, "get_first_solve_batch_matrix": 762, "choose_adjoint": 762, "get_second_solve_batch_matrix": 762, "get_first_solve_matrix": 762, "allow_simplifi": 762, "choose_sid": 762, "xa": 762, "get_second_solve_matrix": 762, "list_of_s": 762, "sampled_from": [762, 826, 828], "min_siz": [762, 764, 770, 828], "max_siz": [762, 764, 770, 828], "size_bound": [762, 828], "999999999999999": 762, "9394938006792373": 762, "mutually_broadcastable_shap": 762, "num_shap": 762, "base_shap": 762, "dtype_help": 763, "univers": [763, 825, 843], "cast_filt": 763, "cast_filter_help": 763, "current_backend": [763, 787, 803, 809, 817, 821, 826, 829, 833], "get_castable_dtyp": 763, "castabl": 763, "prune_funct": 763, "intersect": [763, 812, 828], "signed_integ": 763, "real_and_complex": 763, "float_and_complex": 763, "general_help": 764, "broadcasterror": 764, "apply_safety_factor": 764, "embedding_help": 764, "general_helpers_dtype_info_help": 764, "get_axi": [764, 828], "allow_neg": 764, "sort_valu": 764, "force_tupl": 764, "force_int": 764, "assertionerror": [764, 801, 807, 817, 818, 826, 828], "get_bound": [764, 828], "get_mean_std": 764, "matrix_is_st": 764, "cond_limit": 764, "instabl": [764, 801, 813, 818], "computation": [764, 804], "prone": [764, 813], "thumb": 764, "gradual": 764, "strong": [764, 839, 844, 854], "collinear": 764, "reshape_shap": [764, 828], "two_broadcastable_shap": 764, "x_and_filt": 764, "number_help": 765, "arbitrarili": [765, 836], "safety_factor": 765, "backend_proc": 766, "input_queu": 766, "output_queu": 766, "frontend_proc": 766, "pipeline_help": 767, "backendhandl": 767, "update_backend": [767, 826], "backendhandlermod": 767, "enum": 767, "setbackend": 767, "withbackend": 767, "withbackendcontext": 767, "get_frontend_config": 767, "frontendmethoddata": 768, "ivy_init_modul": 768, "framework_init_modul": 768, "init_nam": 768, "test_parameter_flag": 769, "dynamicflag": [769, 770], "frontendfunctiontestflag": [769, 818], "with_copi": 769, "generate_frontend_arrai": [769, 770, 818], "testflag": 769, "apply_flag": 769, "args_to_iter": 769, "frontendinittestflag": 769, "frontendmethodtestflag": 769, "initmethodtestflag": 769, "methodtestflag": 769, "build_flag": 769, "frontend_init_flag": 769, "frontend_method_flag": 769, "function_flag": 769, "init_method_flag": 769, "testing_help": 770, "handle_frontend_method": [770, 826, 828], "class_tre": [770, 826], "init_tre": [770, 826], "init_native_arrai": 770, "_as_varaible_strategi": 770, "method_native_arrai": 770, "test_inplac": [770, 828], "_given_kwarg": 770, "test_compil": 770, "handle_frontend_test": [770, 826, 828], "alias": [770, 803, 825, 826], "number_positional_arg": [770, 826], "test_with_out": [770, 826, 828], "test_with_copi": 770, "handle_method": [770, 828], "method_tre": [770, 826, 828], "_gradient_strategi": 770, "handle_test": [770, 801, 818, 828], "test_instance_method": [770, 828], "num_positional_args_help": 770, "num_positional_args_method": 770, "geglu": 774, "leakyrelu": 774, "logsoftmax": 774, "from_flax_modul": 775, "native_modul": 775, "params_fx": 775, "rng_seed": 775, "constructor_arg": 775, "constructor_kwarg": 775, "instance_arg": 775, "instance_kwarg": 775, "flax": [775, 838, 839, 845, 854], "from_haiku_modul": 775, "params_hk": 775, "from_paddle_modul": 775, "from_torch_modul": 775, "dedic": [775, 820, 831, 835, 837], "to_keras_modul": 775, "native_module_class": 775, "modulehelp": [776, 780], "create_vari": [777, 837], "var_shap": [777, 837], "fan_out": [777, 837], "fan_in": [777, 837], "rectangular": 777, "firstlayersiren": 777, "siren": 777, "glorotuniform": [777, 778, 837], "glorot": 777, "xavier": 777, "neuron": 777, "w_1x_1": 777, "w_2x_2": 777, "w_nx_n": 777, "w_i": 777, "vanish": 777, "explod": [777, 842, 843], "kaimingnorm": 777, "fan_mod": [777, 837], "kaim": 777, "he": 777, "negative_slop": 777, "fan": 777, "propog": 777, "fan_sum": [777, 837], "Ones": 777, "randomnorm": 777, "stddev": 777, "w0": 777, "wlim": 777, "predefin": 777, "fan_avg": 777, "adaptiveavgpool1d": 778, "avgpool1d": 778, "implicit": [778, 811, 816, 825, 828, 833, 854], "avgpool2d": 778, "avgpool3d": 778, "e501": 778, "filter_s": 778, "weight_initi": [778, 837], "bias_initi": [778, 837], "0x7fe2d13e1ab0": 778, "0x7fe2d13e1b10": 778, "conv1dtranspos": 778, "0x7fe2d13e1b70": 778, "0x7fe2d13e1bd0": 778, "filter_shap": 778, "0x7fe2d13e1c30": 778, "0x7fe2d13e1c90": 778, "0x7fe2d13e1cf0": 778, "0x7fe2d13e1d50": 778, "0x7fe2d13e1e70": 778, "0x7fe2d13e1ed0": 778, "conv3dtranspos": 778, "0x7fe2d13e1f30": 778, "0x7fe2d13e1f90": 778, "depthwiseconv2d": 778, "num_channel": 778, "0x7fe2d13e1db0": 778, "0x7fe2d13e1e10": 778, "bernoul": 778, "num_embed": 778, "embedding_dim": 778, "padding_idx": 778, "lookup": 778, "num_embeddingss": 778, "renorm": 778, "insensit": 778, "num_lay": 778, "return_sequ": 778, "return_st": 778, "0x7fe2d13e1ff0": 778, "get_initial_st": 778, "0x7fe2d1574b80": 778, "0x7fe2d1574d30": 778, "maxpool1d": 778, "maxpool3d": 778, "multiheadattent": 778, "embed_dim": 778, "head_dim": 778, "dropout_r": 778, "use_proj_bia": 778, "attention_ax": 778, "build_mod": [778, 779, 780], "on_init": [778, 780], "parallel": [778, 810, 854, 858, 859], "binarycrossentropyloss": 779, "store_var": [779, 780], "with_partial_v": [779, 780], "logpoissonloss": 779, "modulemeta": 780, "temporarili": [780, 801, 807, 818], "from_cal": 780, "module_dict": 780, "register_buff": 780, "register_paramet": 780, "weights_path": 780, "randomness_factor": 780, "with_edge_label": 780, "with_arg_label": 780, "with_output_label": 780, "output_connected_onli": 780, "highlight_subgraph": 780, "trace_kwarg": 780, "_unified_ivy_graph": 780, "_call": 780, "num_featur": 781, "trail": 781, "layernorm": 781, "normalized_shap": 781, "elementwise_affin": 781, "set_stat": [782, 837], "adamw": 782, "weight_decai": 782, "init_on_first_step": 782, "fallback_to_non_trac": 782, "ignore_miss": 782, "privat": [782, 825, 828], "_step": [782, 837], "stochast": [782, 854], "sub_modul": 783, "check_al": 784, "messag": [784, 793, 797, 804, 805, 812, 815, 817, 819, 825, 833, 835, 844], "check_all_or_any_fn": 784, "check_ani": 784, "check_dev_correct_format": 784, "check_dimens": 784, "check_elem_in_list": [784, 821, 824, 825], "elem": 784, "check_equ": [784, 825], "check_exist": 784, "check_fals": 784, "check_gather_input_valid": 784, "check_gather_nd_input_valid": 784, "check_great": 784, "allow_equ": [784, 817], "check_inplace_sizes_valid": [784, 824], "check_isinst": 784, "allowed_typ": 784, "check_kernel_padding_s": 784, "padding_s": 784, "check_less": [784, 817], "check_one_way_broadcast": 784, "check_same_dtyp": 784, "check_shapes_broadcast": 784, "check_tru": 784, "check_unsorted_segment_valid_param": 784, "ast_help": 786, "importtransform": 786, "nodetransform": 786, "impersonate_import": 786, "tree": [786, 813], "local_ivy_id": 786, "visit_import": 786, "visit_importfrom": 786, "ivyload": 786, "loader": [786, 836, 839], "exec_modul": 786, "ivypathfind": 786, "metapathfind": 786, "find_spec": 786, "fullnam": 786, "contextmanag": 787, "choose_random_backend": 787, "global_backend": 787, "dynamic_backend_convert": 787, "backend_stack": [787, 833], "prevent_access_loc": 787, "previous_backend": [787, 809], "unset": [787, 809, 833], "Or": [787, 798, 800, 824, 836], "set_backend_to_specific_vers": 787, "set_jax_backend": 787, "set_mxnet_backend": 787, "mx": 787, "set_numpy_backend": 787, "set_paddle_backend": 787, "set_tensorflow_backend": 787, "set_torch_backend": 787, "unset_backend": [787, 809], "sub_backend_handl": 788, "clear_sub_backend": 788, "find_available_sub_backend": 788, "sub_backends_loc": 788, "fn_name_from_version_specific_fn_nam": 788, "fn_name_from_version_specific_fn_name_sub_backend": 788, "sub_backend_vers": 788, "backend_vers": [788, 801, 813, 818], "set_sub_backend": 788, "sub_backend_str": 788, "set_sub_backend_to_specific_vers": 788, "sub_backend": 788, "unset_sub_backend": 788, "check_for_binari": 789, "cleanup_and_fetch_binari": [789, 804], "clean": [789, 805, 829, 833, 834, 836], "dynamic_import": 790, "import_modul": [790, 833], "einsum_pars": 791, "convert_interleaved_input": 791, "interleav": 791, "convert_subscript": 791, "old_sub": 791, "symbol_map": 791, "subscript": [791, 792], "oe": 791, "ellipsi": [791, 792], "find_output_shap": 791, "find_output_str": 791, "canon": 791, "gen_unused_symbol": 791, "abd": [791, 792], "get_symbol": 791, "letter": 791, "resort": 791, "unicod": 791, "charact": [791, 825, 844], "chr": 791, "surrog": 791, "\u0155": 791, "20000": 791, "\u4eac": 791, "has_valid_einsum_chars_onli": 791, "einsum_str": 791, "abaz": 791, "\u00f6ver": 791, "is_valid_einsum_char": 791, "\u01f5": 791, "legalise_einsum_expr": 791, "reproduct": [791, 792], "pars": [791, 792, 810, 815, 839], "intak": 791, "contract_path": 791, "parse_einsum_input": [791, 792], "einsum_eqn": 791, "legalis": 791, "legalise_einsum_eqn": 791, "za": [791, 792], "xza": [791, 792], "xz": [791, 792], "possibly_convert_to_numpi": 791, "myshap": 791, "__main__": 791, "0x10f850710": 791, "einsum_path_help": 792, "can_dot": 792, "idx_remov": 792, "bla": 792, "benefici": 792, "movement": 792, "costli": 792, "gemm": 792, "ijj": 792, "ddot": 792, "ikj": 792, "compute_size_by_dict": 792, "idx_dict": 792, "abbc": 792, "find_contract": 792, "input_set": 792, "output_set": 792, "lh": 792, "rh": 792, "new_result": 792, "idx_contract": 792, "iset": 792, "oset": 792, "bdc": 792, "flop_count": 792, "num_term": 792, "size_dictionari": 792, "flop": 792, "greedy_path": 792, "memory_limit": 792, "exhaust": [792, 824, 828, 851, 860], "indices_remov": 792, "priorit": [792, 803, 827, 831], "hadamard": 792, "cubic": 792, "greedi": 792, "idx_siz": 792, "optimal_path": 792, "siev": 792, "input_str": 792, "output_str": 792, "parse_possible_contract": 792, "path_cost": 792, "naive_cost": 792, "propos": [792, 805, 825, 831, 854], "intermediari": [792, 809], "unoptim": 792, "new_input_set": 792, "update_other_result": 792, "provision": 792, "_parse_possible_contract": 792, "mod_result": 792, "inplaceupdateexcept": 793, "include_backend": [793, 817], "ivyattributeerror": [793, 817], "attributeerror": [793, 817, 835], "ivybroadcastshapeerror": [793, 817], "ivydeviceerror": 793, "ivydtypepromotionerror": [793, 817], "ivyindexerror": [793, 817], "ivyinvalidbackendexcept": 793, "ivynotimplementedexcept": [793, 817], "notimplementederror": 793, "ivyvalueerror": [793, 817], "handle_except": [793, 820, 822], "add_array_spec": 794, "fn_array_spec": 794, "set_logging_mod": 795, "debug": [795, 804, 805, 811, 812, 823, 828, 831, 836, 854], "unset_logging_mod": 795, "print_stat": 796, "viz": 796, "snakeviz": 796, "bonu": 796, "cprofil": 796, "cprint": [797, 833], "grant": 798, "autotun": [798, 858], "grow": [798, 854], "peopl": [798, 802, 804, 805, 806, 854, 856], "wip": [798, 847], "docker": [798, 801, 802, 818], "pull": [798, 799, 803, 804, 807, 815, 819, 829, 831, 839, 840, 845], "sweat_smil": 798, "setting_up": 798, "awai": [798, 852, 854], "jax_fn": 798, "jax_x": 798, "torch_x": 798, "torch_fn": 798, "motiv": [798, 835, 844], "contextu": 798, "problem": [798, 803, 805, 807, 808, 814, 825, 835, 844, 850, 856, 860], "explos": [798, 842, 844], "adher": [798, 807, 813, 816, 820, 831, 833, 838, 843, 844, 850, 851, 860], "focus": [798, 813, 829, 852, 853, 854, 860, 861], "orient": 798, "contributor": [798, 799, 801, 803, 804, 805, 818, 825, 832, 854], "shorter": [798, 835], "ensp": 798, "customiz": [798, 810], "deepmind_perceiver_io": 798, "sm_framework": 798, "segmentation_model": 798, "sm": 798, "torch_sm": 798, "metric": [798, 839], "iou_scor": 798, "rax": 798, "torch_rax": 798, "poly1_softmax_loss": 798, "madmom": 798, "madmon": 798, "torch_madmom": 798, "freq": 798, "audio": 798, "hz2midi": 798, "torch_loss": 798, "maxpooling1d": 798, "pool_siz": 798, "tf_kornia": 798, "tf_rax": 798, "tf_madmom": 798, "tf_loss": 798, "_forward_classifi": [798, 848], "forward_classifi": [798, 848], "hk_eff_encod": 798, "dummy_x": 798, "jax_sm": 798, "jax_madmom": 798, "jax_loss": 798, "np_kornia": 798, "np_sm": 798, "np_rax": 798, "np_loss": 798, "yourself": [798, 803, 805, 819, 828, 831], "favourit": [798, 804], "pipelin": [798, 800, 806, 807, 808, 826, 829, 838, 841, 843, 848, 854, 855, 860], "hyperparam": 798, "idea": [798, 803, 827, 829, 834, 845, 853], "instantli": [798, 848], "essenti": [798, 803, 809, 811, 814, 815, 821, 824, 825, 826, 843, 844, 860], "mainli": [798, 803, 806, 823, 825, 828, 834, 836, 841, 854], "handler": [798, 832, 834, 838, 841], "scene": [798, 806, 832, 834, 842, 843, 854], "facilit": 798, "mse_loss": 798, "jax_ms": 798, "tf_mse": 798, "np_mse": 798, "torch_ms": 798, "someth": [798, 801, 805, 809, 818, 819, 829, 836, 837, 839, 840, 860], "favorit": 798, "flexibl": [798, 811, 813, 820, 823, 829, 831, 854], "everyon": [798, 799, 803, 804, 805, 839, 845], "plan": [798, 840], "interoper": [798, 844, 851, 852, 854, 857], "believ": [798, 805, 844], "feedback": [798, 803, 812], "appreci": 798, "amaz": 798, "journei": [798, 799], "ambiti": 798, "season": 798, "perfect": 798, "ask": [798, 803, 804, 815, 833, 835, 839, 840, 845], "fellow": 798, "twitter": 798, "sneak": 798, "peek": 798, "stai": [798, 812], "proper": [798, 803, 825, 848], "credit": 798, "accompani": 798, "lenton2021ivi": 798, "inter": 798, "author": [798, 803, 805, 852, 856], "lenton": 798, "daniel": 798, "pardo": 798, "fabio": 798, "falck": 798, "fabian": 798, "jame": 798, "stephen": 798, "clark": 798, "ronald": 798, "journal": 798, "arxiv": 798, "preprint": 798, "2102": 798, "02886": 798, "year": [798, 807, 839, 843, 845, 854], "strongli": [799, 804, 825, 860, 861], "engag": [799, 805, 844], "skill": [799, 856], "veteran": 799, "effort": [799, 803, 839, 844, 850, 854, 860], "board": [799, 810], "stage": [799, 805, 806, 807, 810, 828, 844, 854], "excit": [799, 806, 844], "Be": [800, 810], "awar": [800, 810, 817, 819], "linux": [800, 804, 805, 810, 857, 859], "regularli": [800, 810, 812], "internet": [800, 810], "codespac": [800, 810, 818], "make_doc": 800, "sh": [800, 804, 805, 807, 812], "host": [800, 812, 839, 844, 859], "pwd": 800, "ssh": [800, 812], "make_docs_without_dock": [800, 810], "assist": [801, 818], "runtimeerror": [801, 818], "logaddexp2_cpu": [801, 818], "falsifi": [801, 807, 818, 828], "test_logaddexp2": [801, 818], "backend_fw": [801, 818, 826], "dtype_and_x": [801, 818, 826, 828], "reproduce_failur": [801, 807, 818, 822, 828], "axicy2bkaamobaar2waaaacvaai": [801, 818], "decoartor": [801, 818], "with_unsupported_dtyp": [801, 813, 818, 825], "25830078125": [801, 818], "258544921875": [801, 818], "test_acosh": [801, 818], "axicy2baabyqwqgiaabdaai": [801, 818], "quit": [801, 805, 808, 815, 816, 818, 821, 822, 828, 831, 854, 860], "41421356": [801, 818], "41421356e": [801, 818], "34078079e": [801, 818], "154": [801, 818], "test_ab": [801, 804, 818, 828], "000j": [801, 818], "154j": [801, 818], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [801, 818], "experiment": [801, 805, 813, 825, 829, 833, 854], "pycharm": [801, 826, 828], "few": [802, 803, 805, 811, 813, 814, 820, 821, 823, 824, 826, 828, 831, 833, 834, 835, 836, 837, 845, 854, 856], "climb": 802, "steep": 802, "curv": 802, "realpython": 802, "pyn": 802, "exchang": [802, 844, 850, 852], "pilot": [802, 840], "stuck": [802, 803], "spell": 802, "sound": [802, 812, 832], "frequent": [803, 805, 809, 854], "outlin": [803, 804, 805, 806, 811, 813, 816, 821, 824, 825, 828], "broad": [803, 856], "individu": [803, 805, 807, 809, 813, 821, 825, 854, 857, 860, 861], "clearli": [803, 805, 815, 826, 828, 844, 858], "qualiti": [803, 805], "lie": 803, "craft": [803, 827, 828], "fault": [803, 815, 854], "situat": [803, 805, 812, 838], "opportun": 803, "tackl": [803, 825], "challeng": [803, 809, 860], "categoris": [803, 807, 825], "encourag": [803, 819, 839, 844], "comfort": [803, 804, 817], "valuabl": [803, 805], "linkag": 803, "confid": 803, "submit": [803, 819], "merg": [803, 805, 807, 812, 825, 854], "meet": [803, 825], "scipi": [803, 844, 856, 861], "mindspor": 803, "simpler": [803, 805, 819, 847, 855, 861], "member": [803, 805, 825, 840, 844], "comment": [803, 804, 805, 807, 813, 819, 825, 827, 831], "pr": [803, 805, 807, 819, 825, 826, 828], "composition": 803, "feasibl": [803, 812, 844, 847], "pend": 803, "helpfulli": [803, 831, 852], "problemat": [803, 804], "unimpl": 803, "issue_link": 803, "alias_nam": 803, "notic": [803, 808, 812, 818, 819, 828, 831, 847], "push": [803, 805, 807, 826, 828, 860], "liner": 803, "meanwhil": [803, 812], "reselect": 803, "faithfulli": 803, "creation_routin": [803, 826], "indexing_routin": 803, "ma": 803, "manipulation_routin": 803, "mathematical_funct": [803, 825], "sorting_searching_count": 803, "ufunc": [803, 825], "matrix_and_vector_product": 803, "matrix_eigenvalu": 803, "norms_and_other_numb": 803, "solving_equations_and_inverting_matric": 803, "gleam": 803, "uncom": 803, "test_numpy_inn": 803, "test_frontend": [803, 812, 818, 826], "unsur": [803, 828], "statu": [803, 812, 819, 845], "refrain": 803, "checkbox": [803, 804], "aforement": 803, "parent": [803, 812, 835], "arraywithelementwis": [803, 808, 835], "containerwithmanipul": 803, "thorough": [803, 816, 820, 828], "add_reformatting_checklist_": 803, "category_nam": [803, 813, 814, 816, 820, 821], "autom": [803, 812, 819, 828, 841, 856], "bot": [803, 819], "markdown": [803, 810], "patient": [803, 804], "elabor": 803, "struggl": 803, "assigne": 803, "status": 803, "central": [803, 819, 831, 844, 860], "analyz": [803, 841], "relevant_submodul": 803, "roadmap": [803, 812], "soon": [803, 805, 812, 813, 839, 847], "deem": [803, 825], "subtask": 803, "clearer": [803, 817, 826, 836], "backend_nam": [803, 809, 813, 814, 816, 820, 821, 822], "sometim": [803, 804, 805, 807, 813, 821, 825, 828, 831], "rare": [803, 814, 839, 859], "button": [803, 804, 805, 818], "centr": 803, "predetermin": 803, "superset": [803, 806, 821, 824, 839], "reserv": 803, "happi": [804, 818, 839, 845], "your_usernam": [804, 818], "your_fold": [804, 818], "enter": [804, 805, 808, 813, 814, 818, 820, 822], "sync": [804, 807, 818], "remot": [804, 807, 818, 819], "nutshel": [804, 820], "hook": [804, 819, 827], "lint": [804, 806], "succe": [804, 847], "whatev": [804, 811, 839], "elig": 804, "student": 804, "licens": [804, 857], "remind": 804, "expir": 804, "won": [804, 805, 811, 813, 838, 840, 844, 845, 847, 848, 849], "profession": 804, "trial": 804, "jetbrain": 804, "month": [804, 843], "bui": [804, 860], "paid": 804, "rapid": [804, 843, 844, 854], "pace": 804, "person": [804, 805], "abil": [804, 831, 834, 839, 854], "perhap": [804, 835, 836, 837, 839, 860], "conda": [804, 844, 856], "ivy_dev": [804, 805], "icon": [804, 805, 818], "panel": 804, "vscode": [804, 818], "palett": 804, "ctrl": [804, 805], "mac": [804, 805], "intel": [804, 844, 852, 859], "m1": 804, "optional_apple_silicon_1": 804, "optional_apple_silicon_2": 804, "array_api_test": [804, 805, 807, 818], "test_array_api": [804, 805, 807, 818, 828], "suit": [804, 806, 807, 812, 818, 827, 828, 836, 844, 854, 860], "cmd": 804, "bat": [804, 805], "virtualenv": 804, "tick": [804, 805, 812], "nz2": 804, "openssl": 804, "libssl1": 804, "1_1": 804, "1f": 804, "1ubuntu2": 804, "19_amd64": 804, "deb": 804, "dpkg": 804, "mitig": [804, 860], "desktop": [804, 818], "powershel": 804, "admin": 804, "deploy": [804, 848, 853, 856, 857, 860, 861], "menu": [804, 818], "introspect": 804, "dialog": 804, "persist": 804, "earlier": [804, 805, 813, 829], "virtualis": 804, "bio": [804, 844], "dropdown": [804, 812], "dockerfil": 804, "ca": 804, "certif": 804, "gnupg": 804, "lsb": 804, "keyr": 804, "fssl": 804, "gpg": 804, "dearmor": 804, "echo": [804, 812, 840], "arch": 804, "lsb_releas": 804, "null": [804, 818], "ce": 804, "cli": 804, "containerd": 804, "systemctl": 804, "softwar": [804, 805, 843, 844, 852, 857, 858, 859], "press": [804, 805, 836], "4a": 804, "socket": 804, "rwx": 804, "sock": 804, "pid": 804, "editor": 804, "pytest": [804, 805, 807, 812, 818, 822, 828], "keyboard": 804, "screenshot": 804, "pop": [804, 818, 844], "test_elementwis": 804, "bar": [804, 818], "shell": [804, 805, 807, 812], "setup_test": 804, "run_ivy_core_test": 804, "run_ivy_nn_test": 804, "run_ivy_stateful_test": 804, "run_test": [804, 812], "test_depend": 804, "test_ivy_cor": 804, "test_ivy_nn": 804, "test_ivy_st": 804, "unix": 804, "test_": [804, 826], "test_cor": [804, 805, 826], "offici": [804, 813, 833], "wish": [804, 825], "ivy_nn": 804, "ivy_st": 804, "header": [804, 805, 827], "arrow": 804, "test_stat": 804, "test_submodule_nam": 804, "test_function_nam": 804, "debugg": 804, "studio": [804, 818, 828], "especi": [804, 809, 819, 843, 854], "afterward": [804, 836], "background": [804, 810, 818, 854, 856], "overlap": [804, 812, 818, 829, 831, 855], "test_file_path": [804, 818], "test_fn_nam": [804, 818], "engin": [804, 854, 856, 857], "devcontain": 804, "comma": 804, "postcreatecommand": 804, "post_create_command": 804, "poststartcommand": 804, "safe": [804, 825], "containerworkspacefold": 804, "reopen": 804, "test_fle_path": 804, "slash": 804, "isol": [804, 805, 855, 860], "container": 804, "intens": 804, "headach": 804, "arm": [804, 805], "vm": [804, 812], "azur": 804, "cloud": [804, 812, 856], "theme": [804, 810], "ipad": 804, "browser": [804, 810], "quota": 804, "requisit": 804, "pane": [804, 805, 812], "dockerfilegpu": 804, "ivv": 804, "multiv": 804, "multivers": [804, 829], "dockerfilemultivers": 804, "dockerhub": 804, "upto": [804, 805], "minut": [804, 812], "launch": 804, "quickli": [804, 805, 812, 836, 837, 843, 845, 854, 861], "kindli": [804, 827], "guidelin": 804, "colour": 804, "chanc": 804, "troubleshoot": 804, "ever": 804, "flask": [804, 818], "toolbar": [804, 805, 818], "_array_modul": [804, 807, 818], "refresh": [804, 818], "pytestarg": [804, 818], "unittesten": [804, 818], "pytesten": [804, 818], "autotestdiscoveronsaveen": [804, 818], "conftest": 804, "serv": [804, 805, 808, 811, 820, 821, 825, 826, 828, 831, 832, 841, 852], "aren": [804, 813], "record": [804, 839, 855], "available_config": 804, "cp310": 804, "x86": [804, 859], "newer": [804, 828], "_compil": 804, "meantim": 804, "suffici": [804, 815, 825, 828], "bear": [804, 808, 811, 813, 825], "tendenc": 805, "land": 805, "unrel": [805, 844], "fly": [805, 854], "internship": 805, "suspect": 805, "iii": 805, "issue_numb": 805, "12345": 805, "rememb": 805, "respond": 805, "dai": [805, 819], "freed": 805, "obvious": [805, 812], "hypothet": 805, "frustrat": 805, "delai": [805, 847], "busi": 805, "inact": 805, "unfairli": 805, "investig": 805, "name_of_your_branch": 805, "date": [805, 807], "complic": [805, 826, 833], "merge_with_upstream": 805, "abort": 805, "tediou": [805, 815, 831], "stash": [805, 819], "reinstat": 805, "uncommit": 805, "unstag": [805, 819], "untrack": 805, "atlassian": 805, "wrote": 805, "piec": [805, 808, 821, 822, 833, 847, 850, 852], "blame": 805, "eg": 805, "week": [805, 845], "grep": 805, "commit_id": 805, "handi": 805, "histori": 805, "toggl": 805, "highlight": [805, 812, 815, 825, 827], "approv": 805, "someon": [805, 839], "hash": [805, 836], "cancel": 805, "speedup": 805, "unavail": 805, "tickbox": 805, "span": [805, 852, 860], "intent": [805, 824], "discourag": 805, "adopt": [805, 808, 820, 831, 844, 853, 854, 859], "philosophi": 805, "infrequ": 805, "earli": [805, 854], "wast": [805, 812], "spot": [805, 815, 821], "mistak": 805, "mountain": 805, "advoc": [805, 839], "session": [805, 854], "beauti": 805, "particularli": [805, 836, 839, 847, 852], "care": [805, 814, 825, 831, 838, 844], "undo": 805, "stress": 805, "nifti": 805, "reassur": 805, "local_path_to_ivi": 805, "subfold": [805, 826, 828, 829], "dep": 805, "fresh": 805, "arsen": 805, "exec": 805, "ivy_contain": 805, "test_imag": 805, "test_random_crop": 805, "test_creation_funct": 805, "test_arang": 805, "cursor": 805, "alt": 805, "blog": 805, "breakpoint": 805, "gutter": 805, "caret": 805, "f8": 805, "f9": 805, "Into": 805, "f7": 805, "smart": 805, "fragment": [805, 850, 852, 856], "wherein": [805, 821, 828], "failur": [805, 812, 826, 828], "weed": [806, 832], "tour": 806, "formatt": [806, 819], "conjunct": 807, "establish": [807, 856], "popular": [807, 854], "sens": [807, 813, 815, 825, 827, 835], "unconnect": 807, "initialis": [807, 825, 828], "strang": [807, 835], "thoroughli": 807, "test_linalg": [807, 826], "test_set_funct": 807, "test_signatur": 807, "excess": [807, 809, 815], "array_modul": 807, "vv": 807, "test_manipulation_funct": 807, "test_concat": [807, 828], "nb": 807, "liber": 807, "______________________": 807, "test_remaind": 807, "_______________________": 807, "test_operators_and_elementwise_funct": 807, "1264": 807, "1277": 807, "binary_param_assert_against_refimpl": 807, "ctx": 807, "620": 807, "binary_assert_against_refimpl": 807, "324": 807, "scalar_o": 807, "17304064": 807, "binaryparamcontext": 807, "axic42baaowcnp": 807, "rumwmabaear0": 807, "make_binary_param": 807, "numeric_dtyp": 807, "left_strat": 807, "left_sym": 807, "right_strat": 807, "right_sym": 807, "right_is_scalar": 807, "binary_param_assert_dtyp": 807, "binary_param_assert_shap": 807, "recreat": 807, "unexpectedli": 807, "discrep": [807, 826], "test_asarray_arrai": 807, "test_floor_divid": 807, "health": 807, "test_iop": 807, "__imod__": 807, "isequ": 807, "test_matrix_norm": 807, "alter": 807, "tweak": 807, "array_api_methods_to_test": 807, "test_special_cas": 807, "__ipow__": 807, "is_integ": 807, "easier": [807, 808, 809, 813, 826, 829, 841, 854, 856], "revisit": [807, 820], "_data": [808, 824, 825, 835], "organiz": [808, 811, 825], "underpin": [808, 811, 833], "programmat": [808, 811, 855], "backup": [808, 810, 811], "accident": [808, 811, 825], "absent": [808, 811], "auto": [808, 810, 811, 819, 836], "__mul__": [808, 811, 815, 820, 831, 835], "throw": [808, 813, 814, 817, 818, 835, 854], "imposs": 808, "inputs_to_native_arrai": [808, 821, 822], "outputs_to_ivy_arrai": [808, 813, 814, 820, 821, 822], "secondli": [808, 813], "__ivy_array_function__": 808, "inspir": 808, "__torch_function__": 808, "myarrai": 808, "handled_funct": 808, "notimpl": 808, "issubclass": 808, "four": [808, 813, 815, 820, 821, 828, 831, 836], "enough": [808, 812, 813, 814, 828, 835, 836, 837], "ivy_funct": 808, "my_ab": 808, "my_arrai": 808, "implicit_backend": [809, 833], "__dict__": [809, 824, 833], "ivy_original_dict": [809, 833], "fallback": 809, "live": [809, 810, 813, 844, 845, 850, 852], "scope": [809, 855, 859], "dlpack": 809, "set_dynamic_backend": 809, "unset_dynamic_backend": 809, "dynamic_backend_a": 809, "set_": 809, "unset_": 809, "backend_handl": 809, "requires_grad": 809, "memory_format": 809, "preserve_format": 809, "weren": 809, "vast": [809, 813, 854], "minor": [809, 831, 839], "fn_name_v_1p12_and_abov": 809, "fn_name_v_1p01_to_1p1": 809, "heavili": [810, 822, 839], "characterist": 810, "conf": 810, "cleanup": 810, "readm": [810, 839], "maxdepth": 810, "caption": 810, "related_work": 810, "deep_div": 810, "faq": 810, "glossari": 810, "autosummari": 810, "top_functional_toc": 810, "restructuredtext": 810, "discov": [810, 813], "ivy_toctree_caption_map": 810, "stub": 810, "unfortun": [810, 819], "linker": 810, "foo": 810, "discussion_channel_map": 810, "1000043690254946374": 810, "1000043749088436315": 810, "forum": [810, 840], "seri": [810, 813, 825, 828, 854, 856], "discussion_paragraph": 810, "discord_link": 810, "channel_link": 810, "gg": 810, "zvqdvbznqj": 810, "799879767196958751": 810, "channel_id": 810, "autoskippablemethod": 810, "skippable_method_attribut": 810, "__qualname__": 810, "autodoc": 810, "__doc__": 810, "autoivydata": 810, "mutual": [811, 821], "containerwithelementwis": 811, "__repr__": 811, "__getattr__": [811, 847], "__setattr__": [811, 847], "__contains__": 811, "__getstate__": 811, "__setstate__": 811, "unpickl": 811, "num_dim": [811, 838], "restrict": [811, 812, 825, 833, 847, 851], "enforc": [811, 835], "extern": [811, 820, 825, 828, 829], "lefthand": 811, "righthand": 811, "handle_nest": [811, 820, 821, 822, 833], "absenc": [811, 820, 854], "implicitli": [811, 823, 828, 833], "log_pr": [811, 821, 824], "intuit": [811, 828, 836, 837, 850], "chronolog": 811, "concurr": [811, 812, 821, 854], "despit": [811, 813, 814, 826, 833, 844, 851, 854], "__list__": 811, "whatsoev": [811, 821, 841, 860], "children": 811, "shallowest": 811, "deepest": 811, "rollback": 812, "incorpor": [812, 826, 836, 854], "techniqu": 812, "triplet": 812, "test_torch": [812, 826], "test_tensor": [812, 826], "test_torch_instance_arctan_": 812, "12500": 812, "daili": 812, "huge": [812, 836, 842, 844, 854, 860], "shoot": 812, "impact": [812, 828, 837, 856], "_reduce_loss": [812, 821, 824], "test_nn": 812, "test_loss": 812, "test_binary_cross_entropy_with_logit": 812, "test_cross_entropi": 812, "test_binary_cross_entropi": 812, "test_sparse_cross_entropi": 812, "test_loss_funct": 812, "test_torch_binary_cross_entropi": 812, "test_torch_cross_entropi": 812, "binary_cross_entropy_with_logit": 812, "torch_binary_cross_entropi": 812, "torch_cross_entropi": 812, "magic": 812, "readthedoc": 812, "pedagog": 812, "f_1": 812, "t_1": 812, "t_3": 812, "t_7": 812, "t_": 812, "f_m": 812, "cyclic": 812, "intellig": [812, 828, 856], "tests_fil": 812, "file_nam": [812, 828, 829], "tests_lin": 812, "correspondingli": 812, "tests_to_run": 812, "determine_tests_lin": 812, "mongodb": 812, "databas": [812, 828], "mechan": [812, 839], "secret": 812, "db": 812, "ssh_deploy_kei": 812, "suffic": [812, 822, 828], "massiv": 812, "yml": 812, "felicit": 812, "clone_map": 812, "deploy_kei": 812, "user_email": 812, "user_nam": 812, "target_branch": 812, "github_serv": 812, "deploy_key_fil": 812, "ssh_known_hosts_fil": 812, "known_host": 812, "keyscan": 812, "git_ssh_command": 812, "userknownhostsfil": 812, "email": [812, 844], "methodologi": 812, "master1": 812, "restructur": 812, "_map": 812, "t_2": 812, "t_n": 812, "index_map": 812, "test_map": 812, "snowbal": 812, "recalibr": 812, "workflow_dispatch": 812, "schedul": [812, 839, 854, 861], "cron": 812, "saturdai": 812, "night": 812, "pm": 812, "gut": 812, "lesser": [812, 817], "lol": 812, "hour": [812, 845], "cater": [812, 827], "master2": 812, "master32": 812, "synchron": 812, "runner2": 812, "corrupt": 812, "decoupl": [812, 837], "150": 812, "cycl": [812, 828], "yellow": 812, "queu": 812, "redirect": 812, "book": 812, "onrend": 812, "jo": 812, "ran": 812, "badg": 812, "clickabl": 812, "all_dtyp": 813, "all_numeric_dtyp": 813, "all_int_dtyp": 813, "all_float_dtyp": 813, "replic": [813, 823, 824, 825], "thirdli": 813, "native_float32": 813, "importantli": [813, 835, 838], "arguabl": [813, 814, 825], "jaxarrai": [813, 814, 817, 820, 824, 829, 833], "_handle_0_dim_output": 813, "subtli": [813, 824], "promote_types_frontend_nam": 813, "promote_types_of_frontend_name_input": 813, "frontend_nam": 813, "upcast": 813, "nearli": [813, 820, 822, 854], "downcast": 813, "footprint": 813, "concret": 813, "aris": [813, 819, 839, 844], "utterli": 813, "meant": [813, 815, 824], "twice": 813, "disadvantag": 813, "relax": 813, "f64": 813, "unwant": 813, "primaci": 813, "resembl": 813, "compound": 813, "infer_dtyp": [813, 814, 820, 822], "settabl": [813, 814], "handle_out_argu": [813, 814, 820, 821, 822, 824, 833], "infer_devic": [813, 814, 820, 822], "deleg": [813, 861], "shape_to_tupl": 813, "with_supported_dtyp": 813, "unment": 813, "_cast_for_unary_op": [813, 821, 824], "target_typ": 813, "syntax": [813, 843, 844, 854], "unsupported_dtyp": 813, "supported_dtypes_and_devic": 813, "with_unsupported_device_and_dtyp": 813, "globals_getter_func": 813, "f2": 813, "lack": [813, 824, 854, 861], "mandat": [813, 824, 828, 829, 844], "confus": [813, 817, 824, 831, 841, 845], "inconsist": [813, 817, 823], "is_nan": 813, "supported_dtyp": 813, "anytim": 813, "84530": 813, "unwarr": 813, "risk": [813, 860], "needlessli": 813, "bloat": 813, "undergo": [813, 839], "unsupported_devic": 813, "supported_devic": 813, "downsid": 813, "coverag": [813, 828], "undesir": 813, "accomplish": 813, "upcast_data_typ": 813, "downcast_data_typ": 813, "crosscast_data_typ": 813, "cast_data_typ": 813, "downcast_data_dtyp": 813, "vice": 813, "versa": 813, "till": 813, "crosscast": 813, "exmp1": 813, "watch": [813, 825], "handle_numpy_arrays_in_specific_backend": [813, 820], "cate": 813, "understood": 813, "consumpt": [813, 858], "dual": 814, "categor": [814, 821, 825], "210": 814, "_handle_except": [814, 817], "1013": 814, "_handle_nest": [814, 817], "905": 814, "_handle_out_argu": [814, 817], "441": 814, "_inputs_to_native_arrai": [814, 817], "new_arg": [814, 817], "new_kwarg": [814, 817], "_outputs_to_ivy_arrai": [814, 817], "358": 814, "_handle_array_funct": [814, 817], "_handle_device_shift": 814, "handle_device_shift": [814, 822], "crucial": [814, 823], "device_shifting_dev": 814, "__enter__": 814, "__exit__": 814, "mostli": [814, 824, 828], "soft_devic": 814, "eight": [815, 832], "op_nam": 815, "__r": 815, "unsurprisingli": [815, 843], "recap": [815, 837], "combinatori": 815, "okai": [815, 831, 833], "spec": [815, 816], "my_func": [815, 829], "some_flag": 815, "another_flag": 815, "jointli": 815, "5574077": 815, "1850398": 815, "5463025": 815, "8422884": 815, "91601413": 815, "9647598": 815, "3738229": 815, "1597457": 815, "0963247": 815, "9955841": 815, "3278579": 815, "asid": 815, "increasingli": [815, 847], "14254655": 815, "1578213": 815, "380515": 815, "trivial": [815, 824], "failing_fn_nam": 815, "onlin": [815, 816], "minutest": 815, "contrast": [816, 820, 825, 860], "preview": 816, "incorrectli": [816, 847], "needless": [816, 826], "renam": [816, 825], "judgment": 816, "operator_nam": 816, "succinct": 816, "docst": 816, "native_error": 817, "_combine_messag": 817, "truli": [817, 835], "wrong": [817, 819, 822, 825, 831], "198": 817, "392": 817, "_handle_array_like_without_promot": 817, "805": 817, "432": 817, "349": 817, "other_test": 817, "523": 817, "_handle_numpy_out": 817, "396": [817, 837], "_outputs_to_numpy_arrai": 817, "_inputs_to_ivy_arrays_np": 817, "ivy_arg": 817, "ivy_kwarg": 817, "453": 817, "_from_zero_dim_arrays_to_scalar": 817, "truth_value_test": 817, "visibl": 817, "unwieldi": 817, "squash": 817, "hide": [817, 847], "cleaner": [817, 836], "caught": [817, 819], "rethrow": 817, "_print_traceback_histori": 817, "error_stack": 817, "axiserror": 817, "polici": [817, 822, 828, 830], "moreov": 817, "submoodul": 818, "test_jax_transpos": 818, "manipulaiton": 818, "test_jax": [818, 826], "test_numpi": [818, 826], "test_manipul": [818, 826, 828], "preconditionnotmet": 818, "densetensor": 818, "holder_": 818, "phi": 818, "dense_tensor_impl": 818, "array_and_ax": 818, "aaegbaegaqaaaaaaaaaaaaab": 818, "black": 819, "flake8": 819, "linter": 819, "autoflak": 819, "docformatt": 819, "pydocstyl": 819, "yaml": 819, "patch1687898304": 819, "8072": 819, "3516aed563": 819, "reformat": 819, "akshai": 819, "jain": 819, "gui": 819, "cryptic": 819, "garden": 819, "utc": 819, "didn": 819, "human": 819, "intervent": 819, "typo": 819, "ui": 819, "handle_array_like_without_promot": [820, 822], "to_native_arrays_and_back": [820, 822, 833], "handle_array_funct": [820, 822], "inputs_to_native_shap": [820, 822], "rational": [820, 824, 831], "__div__": [820, 831], "484": 820, "annot": 820, "brittl": 820, "freeli": 820, "inde": [820, 831, 839, 852], "technic": [820, 824, 839, 854, 856], "original_typ": 820, "cumbersom": 820, "hinder": [820, 843], "venn": 821, "diagram": [821, 860], "light": [821, 829, 839, 841, 855, 860], "maximis": 821, "encompass": 821, "partial_mixed_handl": [821, 822, 831], "handle_partial_mixed_funct": [821, 822, 831], "fn_decor": 821, "mixed_backend_wrapp": [821, 824], "to_add": 821, "to_skip": 821, "inputs_to_ivy_arrai": [821, 822], "modif": [821, 854], "briefli": [821, 828, 836], "get_all_arrays_on_dev": 821, "outputs_to_ivy_shap": 822, "outputs_to_native_arrai": 822, "handle_view_index": [822, 824], "handle_view": [822, 824], "handle_rag": 822, "handle_backend_invalid": 822, "handle_nan": 822, "to_native_shapes_and_back": 822, "modern": [823, 843, 844, 859], "inter_func": 823, "custom_grad_fn": 823, "args1": 823, "eas": [823, 854], "program": [824, 851, 852, 854, 857, 858, 861], "speak": 824, "val_n": 824, "base_idx": 824, "_manipulation_stack": 824, "base_flat": 824, "_view_ref": 824, "_update_view": 824, "contigu": 824, "c_contigu": 824, "ascontiguousarrai": 824, "copyto": 824, "_is_vari": 824, "tensor_scatter_nd_upd": 824, "is_vari": 824, "_update_torch_view": 824, "predominantli": [824, 829], "support_native_out": [824, 833], "_scalar_output_to_0d_arrai": 824, "_wrap_fn": 824, "dim0": 824, "dim1": 824, "res_floor": 824, "extent": [824, 825], "to_out_fn": 824, "add_wrapp": 824, "paradigm": [824, 839, 854], "expans": 824, "brief": [824, 828], "weak": 824, "_torch_bas": 824, "_torch_view_ref": 824, "_torch_manipul": 824, "weakli": 824, "adequ": 824, "tf_frontend": 825, "lax": [825, 826, 831, 838, 839], "torch_frontend": [825, 826], "numpy_frontend": 825, "jax_frontend": 825, "to_ivy_arrays_and_back": [825, 826], "fidel": 825, "algebra": [825, 852, 853, 854, 857, 861], "dynamic": 825, "mimic": 825, "arithmetic_oper": 825, "handle_numpy_out": 825, "handle_numpy_dtyp": 825, "handle_numpy_cast": 825, "from_zero_dim_arrays_to_scalar": 825, "_add": 825, "same_kind": 825, "subok": [825, 826, 831], "promote_types_of_numpy_input": 825, "underscor": 825, "unhandl": 825, "trigonometric_funct": 825, "_tan": 825, "check_tensorflow_cast": 825, "raw_op": [825, 826], "map_raw_ops_alia": 825, "output_typ": 825, "kwargs_to_upd": 825, "pointwise_op": 825, "sensibl": 825, "ahead": [825, 829, 854], "reduce_logsumexp": 825, "logsumexp": 825, "trick": 825, "max_input_tensor": 825, "preferred_element_typ": 825, "languag": [825, 833, 841, 843, 845, 852, 855, 857, 858, 859, 860], "offer": [825, 837, 845, 854, 860, 861], "finer": 825, "logicaland": 825, "np_frontend": 825, "_ivy_arrai": 825, "radd": 825, "_init_data": 825, "_process_str_data": 825, "_dtype": [825, 826, 835], "_shape": [825, 835], "govern": 825, "promote_types_of_": 825, "_input": 825, "promote_types_of_torch_input": [825, 826], "handle_numpy_casting_speci": 825, "new_fn": 825, "equiv": 825, "unsaf": 825, "array_type_test": 825, "_isfinit": 825, "organis": 825, "grasp": 825, "youtub": 825, "knowledg": 826, "np_frontend_help": 826, "open_task": 826, "test_lax": 826, "test_oper": 826, "test_jax_tan": 826, "test_mathematical_funct": 826, "test_trigonometric_funct": 826, "dtypes_values_cast": 826, "dtypes_values_casting_dtyp": 826, "arr_func": 826, "get_num_positional_args_ufunc": 826, "test_numpy_tan": 826, "handle_where_and_array_bool": 826, "test_tensorflow": 826, "test_math": 826, "test_tensorflow_tan": 826, "test_pointwise_op": 826, "test_torch_tan": 826, "_fill_valu": 826, "test_glob": 826, "test_jax_ful": 826, "test_from_shape_or_valu": 826, "_input_fill_and_dtyp": 826, "dtype_and_input": 826, "dtype_to_cast": 826, "input_fill_dtyp": 826, "test_numpy_ful": 826, "test_raw_op": 826, "test_tensorflow_fil": 826, "test_creation_op": 826, "with_arrai": 826, "test_torch_ful": 826, "add_nois": 826, "all_clos": 826, "_get_dtype_and_matrix": 826, "test_torch_qr": 826, "frontend_q": 826, "frontend_r": 826, "walkthrough": 826, "comparison_op": 826, "test_comparison_op": 826, "test_torch_great": 826, "all_alias": 826, "test_ndarrai": 826, "test_numpy_instance_add__": 826, "test_tensorflow_instance_add": 826, "1e04": 826, "allow_infin": 826, "test_torch_instance_add": 826, "_arrays_idx_n_dtyp": 826, "surprisingli": 826, "closest_relevant_group": 826, "strive": [826, 828, 831, 839, 856], "tailor": 827, "clariti": [827, 828, 831, 854], "weav": 827, "thrill": 827, "brim": 827, "stand": [827, 828], "testament": 827, "landscap": 827, "forese": 827, "refin": 827, "inquiri": 827, "fixtur": 828, "hit": [828, 833, 847], "eleg": [828, 854], "unexplor": 828, "artifact": 828, "bespok": 828, "_array_or_typ": 828, "rigor": [828, 843], "test_default_int_dtyp": 828, "print_hypothesis_exampl": 828, "custom_strategi": 828, "randomis": 828, "simplist": 828, "intricaci": 828, "glanc": 828, "one_of": 828, "datum": 828, "pipe": 828, "array_or_scal": 828, "len_of_arrai": 828, "test_add": 828, "test_gpu_is_avail": 828, "pretest": 828, "snippet": [828, 848], "criterion": 828, "valid_ax": 828, "hoc": 828, "11228": 828, "268": 828, "wherev": 828, "9622": 828, "28136": 828, "6375": 828, "12720": 828, "21354": 828, "900e": 828, "57384": 828, "25687": 828, "248": 828, "test_devic": 828, "array_shap": 828, "test_lay": 828, "some_sequ": 828, "arrays_valu": 828, "36418": 828, "213": 828, "21716926": 828, "none_or_list_of_float": 828, "get_prob": 828, "103515625e": 828, "099609375": 828, "probabilist": 828, "number_positional_argu": 828, "unreproduc": 828, "x_and_linear": 828, "is_torch_backend": 828, "x_shape": [828, 833], "weight_shap": 828, "bias_shap": 828, "ivy_np": 828, "valid_float_dtyp": 828, "test_demo": 828, "failing_test": 828, "traceback": 828, "shrink": 828, "prescrib": 828, "scratch": 828, "therebi": 828, "test_gelu": 828, "test_fil": 828, "phase": [828, 839, 854], "notabl": [828, 854], "max_exampl": 828, "deadlin": 828, "weird": 828, "systemat": 828, "safeguard": 828, "inabl": 828, "test_result_typ": 828, "9090909090909091": 828, "judgement": 829, "some_namespac": 829, "some_backend": 829, "another_backend": 829, "refactor": 829, "ongo": 829, "check_fill_value_and_dtype_are_compat": 829, "_assert_fill_value_and_dtype_are_compat": 829, "_to_devic": 829, "shouldn": [829, 847], "pin": 829, "unpinn": 829, "culmin": 829, "unsett": 830, "array_significant_figur": 830, "array_decimal_valu": 830, "warning_level": 830, "nan_polici": 830, "stablest": 830, "constantli": [831, 843], "answer": [831, 835, 839], "contradict": 831, "entail": 831, "sacrif": 831, "jacfwd": 831, "jacrev": 831, "banner": 831, "expens": 831, "incredibli": [831, 836, 839, 857], "price": 831, "pai": 831, "intrus": 831, "x_beta": 831, "equip": 831, "simplif": 831, "allevi": 831, "ineffici": [831, 839, 854], "fuse": 831, "hybrid": 831, "workaround": 831, "slip": 831, "radar": 831, "stumbl": 831, "gone": [832, 844], "fulfil": 832, "syntact": [833, 838], "power_seq": 833, "_determine_backend_from_arg": 833, "importlib": 833, "_backend_dict": 833, "x_flat": 833, "wi": 833, "wi_x": 833, "wii_x": 833, "wif_x": 833, "wig_x": 833, "wio_x": 833, "wh": 833, "ht": 833, "ct": 833, "hts_list": 833, "wii_xt": 833, "wif_xt": 833, "wig_xt": 833, "wio_xt": 833, "htm1": 833, "ctm1": 833, "wh_htm1": 833, "whi_htm1": 833, "whf_htm1": 833, "whg_htm1": 833, "who_htm1": 833, "ft": 833, "ot": 833, "reliabl": 833, "scalabl": [833, 843, 859, 860], "sacrific": 833, "hear": 833, "virtu": [833, 851], "pure_ivi": 833, "pure_torch": 833, "unclean": 833, "wx": 833, "temp": 833, "ivy_func": 833, "emphas": 833, "torchscript": [833, 841, 861], "example_input": 833, "static_argnum": [833, 847], "static_argnam": [833, 847], "primit": [834, 839, 852, 854], "upcom": 834, "hierarch": [834, 836, 837, 854], "arraywithactiv": 835, "arraywithcr": 835, "arraywithdatatyp": 835, "arraywithdevic": 835, "arraywithgener": 835, "arraywithgradi": 835, "arraywithimag": 835, "arraywithlay": 835, "arraywithlinearalgebra": 835, "arraywithloss": 835, "arraywithmanipul": 835, "arraywithnorm": 835, "arraywithrandom": 835, "arraywithsearch": 835, "arraywithset": 835, "arraywithsort": 835, "arraywithstatist": 835, "arraywithutil": 835, "_init": 835, "_size": 835, "_devic": 835, "_dev_str": 835, "_pre_repr": 835, "_post_repr": 835, "framework_str": 835, "pypep8nam": 835, "immut": 835, "claim": 835, "_native_wrapp": 835, "genuin": 835, "some_method": 835, "rewritten": 835, "littl": [835, 843, 856], "wonder": [835, 843, 845], "compartment": 835, "newshap": 835, "new_shap": 835, "tidi": 835, "crystal": 835, "ton": 836, "ado": [836, 837], "soup": 836, "walk": [836, 837], "cnt": 836, "3333335": 836, "autocomplet": 836, "midwai": 836, "agent": 836, "total_spe": 836, "total_height": 836, "total_width": 836, "ag": 836, "tot": 836, "total_": 836, "total_h": 836, "cnt0": 836, "cnt1": 836, "diff_0": 836, "diff_1": 836, "config0": 836, "config1": 836, "l0": 836, "decoder__l0": 836, "decoder__l1": 836, "encoder__l0": 836, "encoder__l1": 836, "l0__b": 836, "l0__w": 836, "l1__b": 836, "l1__w": 836, "printabl": 836, "foresight": 836, "untidili": 836, "update_ag": 836, "normalize_img": 836, "img_max": 836, "reduce_max": 836, "img_min": 836, "reduce_min": 836, "img_rang": 836, "agent_posit": 836, "agent_veloc": 836, "agent_cam_front_rgb": 836, "agent_cam_front_depth": 836, "agent_cam_rear_rgb": 836, "agent_cam_rear_depth": 836, "agent_cam_lidar": 836, "camera": 836, "front_rgb": 836, "front_depth": 836, "rear_rgb": 836, "rear_depth": 836, "lidar": 836, "rgb": 836, "rear": 836, "veloc": 836, "cam": 836, "cam_max": 836, "cam_min": 836, "cam_rang": 836, "five": 836, "allud": [836, 844], "perman": 836, "thread": [836, 854], "straightforward": 836, "dataload": 836, "_cnt": 836, "img_": 836, "_dataset_s": 836, "_batch_siz": 836, "_count": [836, 837], "__next__": 836, "img_fnam": 836, "loaded_img": 836, "batch_slic": 836, "0145": 836, "addbackward0": 836, "_create_vari": 837, "_input_channel": 837, "_output_channel": 837, "_w_shape": 837, "_b_shape": 837, "_with_bia": 837, "764": 837, "872": 837, "211": 837, "439": 837, "nightmar": 837, "overcom": 837, "v1": 837, "key0": 837, "linear3": 837, "v2": 837, "preced": [837, 844], "_w_init": 837, "_b_init": 837, "misnom": 837, "saw": 837, "_beta1": 837, "_beta2": 837, "_epsilon": 837, "_mw": 837, "_vw": 837, "_first_pass": 837, "_should_trac": 837, "new_v": 837, "_lr": 837, "_inplac": 837, "_stop_gradi": 837, "sparse_funct": 838, "vital": [838, 843], "_linear": 838, "jax_graph": 838, "to_backend": 838, "thinli": 838, "to_haiku_modul": 838, "loss_fn_t": 838, "without_apply_rng": 838, "update_rul": 838, "tree_multimap": 838, "trax": [838, 845], "objax": [838, 845], "matur": [839, 844, 854], "doubt": 839, "grate": 839, "probe": 839, "lock": 839, "gold": 839, "dex": 839, "tricki": [839, 841], "predictor": 839, "tight": 839, "dispatch": [839, 854, 857], "ast": 839, "autodiff": 839, "shine": 839, "merci": 839, "compet": [839, 854], "parallelis": 839, "spmd": 839, "mixtur": 839, "expert": 839, "sophist": 839, "depart": 839, "hundr": 839, "thousand": 839, "broadli": [839, 860], "supplementari": 839, "reusabl": [839, 852, 854], "fanci": [839, 854], "fusion": [839, 858], "lose": 839, "pmap": 839, "eventu": 839, "supplement": 839, "backdoor": 839, "callback": 839, "door": 839, "somewhat": [839, 854], "outsourc": 839, "ivy_root": 840, "pem": 840, "api_kei": 840, "asap": 840, "nail": 841, "scientist": 841, "correl": 841, "collabor": [842, 843, 844], "consortium": [842, 844], "grown": 843, "rapidli": 843, "shareabl": 843, "outdat": 843, "newest": 843, "prototyp": [843, 854], "obsolet": [843, 845], "invent": 843, "simultan": [843, 845], "runner": 843, "principl": [843, 852, 854, 857], "2006": 843, "cloth": 843, "forgiven": 844, "eyebrow": 844, "somehow": 844, "industri": [844, 854, 856], "funni": 844, "comic": 844, "charger": 844, "instant": 844, "contrari": 844, "bumpi": 844, "road": 844, "technologi": [844, 852, 856], "pcie": 844, "motherboard": 844, "raid": 844, "bluetooth": 844, "wireless": 844, "btx": 844, "sata": 844, "tcp": 844, "ip": 844, "smtp": 844, "send": [844, 859], "gmail": 844, "outlook": 844, "innov": 844, "growth": [844, 857], "necess": 844, "2015": [844, 854], "aros": 844, "mission": [844, 856], "ourselv": [844, 860], "quansight": [844, 860], "compani": [844, 850], "apach": [844, 856, 860], "onnx": [844, 852, 860], "cupi": [844, 854, 861], "modin": 844, "spyder": 844, "octoml": [844, 860], "sponsor": 844, "lg": 844, "electron": 844, "shaw": 844, "pursuit": 844, "complianc": 844, "convinc": 844, "celebr": 844, "abund": 845, "streamlin": [845, 857], "awesom": 845, "love": 845, "slew": 845, "inevit": [845, 855], "erron": 845, "poor": 845, "spin": 845, "sake": 845, "wouldn": 845, "frantic": 845, "lucid": 845, "honk": 845, "hasn": 845, "spend": [845, 854], "sonnet": 845, "trainer": [845, 861], "quo": 845, "dopamin": 845, "ignit": 845, "catalyst": 845, "lightn": 845, "fastai": 845, "publicli": [847, 848, 849], "logger": 847, "arg_stateful_idx": 847, "kwarg_stateful_idx": 847, "include_gener": 847, "array_cach": 847, "return_backend_traced_fn": 847, "lazygraph": [847, 848, 849], "sum_j": 847, "traced_fn": 847, "impos": 847, "comp_func": 847, "trade": 847, "bake": 847, "cont": 847, "new_attribut": 847, "resnet50": 847, "breed": 847, "autoimageprocessor": [847, 848], "resnetforimageclassif": [847, 848], "traced_graph": 847, "predicted_label": 847, "debug_mod": 848, "rough": 848, "transformed_with_st": 848, "bigger": 848, "hf": 848, "tf_model": 848, "tf_input": 848, "transpile_kwarg": 849, "transpiled_func": 849, "unified_func": 849, "rwork": 850, "vendor": [850, 856], "complimentari": [850, 860], "acycl": [850, 855], "insert_numb": 851, "insert_t": 851, "scaffold": [852, 860], "heart": 852, "toolchain": [852, 857], "assembli": [852, 859, 860], "idl": 852, "middl": 852, "emit": 852, "gnu": [852, 857], "broader": 852, "heterogen": 852, "aid": 852, "coprocessor": 852, "programm": [852, 859], "gate": 852, "onednn": 852, "sit": [852, 855, 860], "tandem": 852, "possess": 852, "khrono": [853, 859], "appl": 853, "coremltool": 853, "albeit": 853, "promin": 854, "abbrevi": 854, "laboratori": 854, "proprietari": [854, 858, 859], "mathwork": 854, "commerci": 854, "1984": 854, "toolbox": 854, "mupad": 854, "simulink": 854, "graphic": [854, 858, 859], "simul": 854, "million": [854, 857], "worldwid": 854, "scienc": [854, 856], "econom": 854, "2001": 854, "od": 854, "solver": 854, "cython": 854, "friendli": 854, "2002": 854, "lua": 854, "luajit": 854, "idiap": 854, "epfl": 854, "2005": 854, "numarrai": 854, "cpython": 854, "partli": 854, "2007": 854, "forest": 854, "boost": 854, "dbscan": 854, "inbuilt": 854, "esqu": 854, "aesara": 854, "datafram": 854, "2012": 854, "Its": 854, "polymorph": 854, "mpi": 854, "openmp": 854, "glue": 854, "jaot": 854, "nasa": 854, "cern": 854, "climat": 854, "allianc": 854, "influenti": 854, "2014": 854, "scala": 854, "ship": 854, "forgiv": 854, "decemb": 854, "announc": 854, "mainten": 854, "v7": 854, "meaning": 854, "2016": 854, "imper": 854, "amazon": 854, "traction": 854, "cognit": [854, 861], "grade": 854, "dnn": 854, "rnn": 854, "backpropag": 854, "succumb": 854, "came": 854, "monitor": 854, "practition": [854, 858, 859, 860], "hobbyist": 854, "tremend": 854, "ecosystem": 854, "gear": 854, "batteri": 854, "zygot": 854, "jl": 854, "workload": 854, "daggerflux": 854, "frontier": 854, "hessian": 854, "2018": 854, "lightweight": [854, 861], "shortcom": 854, "barrier": 854, "inexperienc": 854, "underdevelop": 854, "fanat": 854, "ounc": 854, "infanc": 854, "emerg": 854, "nich": 854, "mobil": 854, "lite": 854, "enterpris": 854, "reinvent": [854, 856], "inertia": 854, "creator": [854, 856], "paszk": 854, "hi": 854, "bulk": 854, "haskel": 854, "dataflow": 855, "trace_modul": 855, "scriptfunct": 855, "scriptmodul": 855, "fake": 855, "proxi": 855, "graphmodul": 855, "travi": 856, "oliph": 856, "leader": 856, "cornerston": 856, "numba": 856, "numfocu": 856, "pydata": 856, "confer": 856, "consult": 856, "servic": 856, "expertis": 856, "devop": 856, "mlop": 856, "dashboard": 856, "startup": 856, "mlir": [856, 857, 860], "Their": 856, "held": 856, "privileg": 856, "presum": 856, "llvm": [856, 859], "founder": 856, "tvm": [856, 860], "sustain": 856, "empow": 856, "har": 856, "burden": 856, "benchmark": 856, "precompil": 857, "executor": 857, "julia": [857, 860], "fsf": 857, "gpl": 857, "biggest": [857, 860], "throughput": 858, "gpgpu": 858, "classic": 859, "sycl": 859, "dpc": 859, "processor": 859, "maco": 859, "oneapi": 859, "ia": 859, "aka": 859, "xeon": 859, "gen9": 859, "xe": 859, "arria": 859, "gx": 859, "fpga": 859, "lofti": 860, "ambit": 860, "realm": 860, "bedrock": 860, "flux": 860, "bite": 860, "chew": 860, "eagerpi": 860, "tensorli": 860, "thinc": 860, "neuropod": 860, "fx": 860, "retrain": 860, "closer": 860, "greatli": 860, "modular": 860, "anywher": 860, "theano": 861, "plaidml": 861, "partial_svd": 861, "excel": 861, "subsystem": 861}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [601, 0, 1, "", "adam_step"], [602, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [415, 0, 1, "", "adjoint"], [753, 0, 1, "", "all"], [521, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [754, 0, 1, "", "any"], [730, 0, 1, "", "argmax"], [731, 0, 1, "", "argmin"], [739, 0, 1, "", "argsort"], [732, 0, 1, "", "argwhere"], [524, 0, 1, "", "array_equal"], [448, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [525, 0, 1, "", "assert_supports_inplace"], [449, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [450, 0, 1, "", "atleast_1d"], [451, 0, 1, "", "atleast_2d"], [452, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [488, 0, 1, "", "batch_norm"], [416, 0, 1, "", "batched_outer"], [495, 0, 1, "", "bernoulli"], [496, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [682, 0, 1, "", "binary_cross_entropy"], [507, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [652, 0, 1, "", "cholesky"], [685, 0, 1, "", "clip"], [527, 0, 1, "", "clip_matrix_norm"], [528, 0, 1, "", "clip_vector_norm"], [456, 0, 1, "", "column_stack"], [686, 0, 1, "", "concat"], [457, 0, 1, "", "concat_from_sequence"], [417, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [687, 0, 1, "", "constant_pad"], [636, 0, 1, "", "conv1d"], [637, 0, 1, "", "conv1d_transpose"], [638, 0, 1, "", "conv2d"], [639, 0, 1, "", "conv2d_transpose"], [640, 0, 1, "", "conv3d"], [641, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [508, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [509, 0, 1, "", "cov"], [653, 0, 1, "", "cross"], [683, 0, 1, "", "cross_entropy"], [510, 0, 1, "", "cummax"], [511, 0, 1, "", "cummin"], [743, 0, 1, "", "cumprod"], [744, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [531, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [644, 0, 1, "", "depthwise_conv2d"], [654, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [655, 0, 1, "", "diag"], [418, 0, 1, "", "diagflat"], [656, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [497, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [419, 0, 1, "", "dot"], [645, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [458, 0, 1, "", "dsplit"], [459, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [420, 0, 1, "", "eig"], [658, 0, 1, "", "eigh"], [421, 0, 1, "", "eigh_tridiagonal"], [422, 0, 1, "", "eigvals"], [659, 0, 1, "", "eigvalsh"], [532, 0, 1, "", "einops_rearrange"], [533, 0, 1, "", "einops_reduce"], [534, 0, 1, "", "einops_repeat"], [745, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [535, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [460, 0, 1, "", "expand"], [688, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [461, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [462, 0, 1, "", "flatten"], [689, 0, 1, "", "flip"], [463, 0, 1, "", "fliplr"], [464, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [465, 0, 1, "", "fold"], [536, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [498, 0, 1, "", "gamma"], [539, 0, 1, "", "gather"], [540, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [423, 0, 1, "", "general_inner_product"], [543, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [605, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [489, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [545, 0, 1, "", "has_nans"], [466, 0, 1, "", "heaviside"], [424, 0, 1, "", "higher_order_moment"], [512, 0, 1, "", "histogram"], [467, 0, 1, "", "hsplit"], [468, 0, 1, "", "hstack"], [441, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [469, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [513, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [425, 0, 1, "", "initialize_tucker"], [660, 0, 1, "", "inner"], [547, 0, 1, "", "inplace_decrement"], [548, 0, 1, "", "inplace_increment"], [549, 0, 1, "", "inplace_update"], [490, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [661, 0, 1, "", "inv"], [551, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [552, 0, 1, "", "is_ivy_array"], [553, 0, 1, "", "is_ivy_container"], [555, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [556, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [558, 0, 1, "", "itemsize"], [442, 0, 1, "", "kl_div"], [427, 0, 1, "", "kron"], [443, 0, 1, "", "l1_loss"], [491, 0, 1, "", "l1_normalize"], [492, 0, 1, "", "l2_normalize"], [607, 0, 1, "", "lamb_update"], [608, 0, 1, "", "lars_update"], [723, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [502, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [646, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [444, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [494, 0, 1, "", "lp_normalize"], [647, 0, 1, "", "lstm_update"], [429, 0, 1, "", "make_svd_non_negative"], [663, 0, 1, "", "matmul"], [470, 0, 1, "", "matricize"], [430, 0, 1, "", "matrix_exp"], [664, 0, 1, "", "matrix_norm"], [665, 0, 1, "", "matrix_power"], [666, 0, 1, "", "matrix_rank"], [667, 0, 1, "", "matrix_transpose"], [746, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [747, 0, 1, "", "mean"], [514, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [748, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [431, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [471, 0, 1, "", "moveaxis"], [740, 0, 1, "", "msort"], [432, 0, 1, "", "multi_dot"], [648, 0, 1, "", "multi_head_attention"], [433, 0, 1, "", "multi_mode_dot"], [724, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [515, 0, 1, "", "nanmean"], [516, 0, 1, "", "nanmedian"], [517, 0, 1, "", "nanmin"], [518, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [733, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [609, 0, 1, "", "optimizer_update"], [520, 0, 1, "", "optional_get_element"], [668, 0, 1, "", "outer"], [472, 0, 1, "", "pad"], [473, 0, 1, "", "partial_fold"], [474, 0, 1, "", "partial_tensor_to_vec"], [434, 0, 1, "", "partial_tucker"], [475, 0, 1, "", "partial_unfold"], [476, 0, 1, "", "partial_vec_to_tensor"], [690, 0, 1, "", "permute_dims"], [669, 0, 1, "", "pinv"], [499, 0, 1, "", "poisson"], [445, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [749, 0, 1, "", "prod"], [477, 0, 1, "", "put_along_axis"], [670, 0, 1, "", "qr"], [519, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [725, 0, 1, "", "randint"], [726, 0, 1, "", "random_normal"], [727, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [691, 0, 1, "", "repeat"], [692, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [693, 0, 1, "", "roll"], [478, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [651, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [563, 0, 1, "", "scatter_flat"], [564, 0, 1, "", "scatter_nd"], [741, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [577, 0, 1, "", "shape"], [729, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [413, 0, 1, "", "sliding_window"], [671, 0, 1, "", "slogdet"], [446, 0, 1, "", "smooth_l1_loss"], [447, 0, 1, "", "soft_margin_loss"], [479, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [672, 0, 1, "", "solve"], [742, 0, 1, "", "sort"], [684, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [694, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [695, 0, 1, "", "squeeze"], [578, 0, 1, "", "stable_divide"], [579, 0, 1, "", "stable_pow"], [696, 0, 1, "", "stack"], [750, 0, 1, "", "std"], [414, 0, 1, "", "stft"], [610, 0, 1, "", "stop_gradient"], [580, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [751, 0, 1, "", "sum"], [581, 0, 1, "", "supports_inplace_updates"], [673, 0, 1, "", "svd"], [436, 0, 1, "", "svd_flip"], [674, 0, 1, "", "svdvals"], [697, 0, 1, "", "swapaxes"], [480, 0, 1, "", "take"], [481, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [437, 0, 1, "", "tensor_train"], [675, 0, 1, "", "tensordot"], [676, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [698, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [583, 0, 1, "", "to_list"], [585, 0, 1, "", "to_numpy"], [586, 0, 1, "", "to_scalar"], [482, 0, 1, "", "top_k"], [677, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [483, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [438, 0, 1, "", "truncated_svd"], [439, 0, 1, "", "tt_matrix_to_tensor"], [440, 0, 1, "", "tucker"], [484, 0, 1, "", "unfold"], [735, 0, 1, "", "unique_all"], [485, 0, 1, "", "unique_consecutive"], [736, 0, 1, "", "unique_counts"], [737, 0, 1, "", "unique_inverse"], [738, 0, 1, "", "unique_values"], [500, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [699, 0, 1, "", "unstack"], [599, 0, 1, "", "value_is_nan"], [678, 0, 1, "", "vander"], [752, 0, 1, "", "var"], [679, 0, 1, "", "vecdot"], [680, 0, 1, "", "vector_norm"], [681, 0, 1, "", "vector_to_skew_symmetric_matrix"], [486, 0, 1, "", "vsplit"], [487, 0, 1, "", "vstack"], [734, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [700, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[620, 1, 1, "", "ArrayMode"], [616, 1, 1, "", "DefaultComplexDtype"], [617, 1, 1, "", "DefaultDevice"], [616, 1, 1, "", "DefaultDtype"], [616, 1, 1, "", "DefaultFloatDtype"], [616, 1, 1, "", "DefaultIntDtype"], [616, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [615, 1, 1, "", "NestedSequence"], [620, 1, 1, "", "PreciseMode"], [617, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [621, 2, 1, "", "adam_step"], [621, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [634, 2, 1, "", "all"], [620, 2, 1, "", "all_equal"], [627, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [634, 2, 1, "", "any"], [615, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [620, 2, 1, "", "arg_info"], [620, 2, 1, "", "arg_names"], [630, 2, 1, "", "argmax"], [630, 2, 1, "", "argmin"], [632, 2, 1, "", "argsort"], [630, 2, 1, "", "argwhere"], [615, 2, 1, "", "array"], [620, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [616, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [616, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [615, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [620, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [616, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [624, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [616, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [616, 2, 1, "", "broadcast_to"], [620, 2, 1, "", "cache_fn"], [616, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [616, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [623, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [625, 2, 1, "", "clip"], [620, 2, 1, "", "clip_matrix_norm"], [620, 2, 1, "", "clip_vector_norm"], [616, 2, 1, "", "closest_valid_dtype"], [614, 2, 1, "", "cmp_is"], [614, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [625, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [625, 2, 1, "", "constant_pad"], [620, 2, 1, "", "container_types"], [635, 2, 1, "", "conv"], [636, 2, 1, "", "conv1d"], [637, 2, 1, "", "conv1d_transpose"], [638, 2, 1, "", "conv2d"], [639, 2, 1, "", "conv2d_transpose"], [640, 2, 1, "", "conv3d"], [641, 2, 1, "", "conv3d_transpose"], [642, 2, 1, "", "conv_general_dilated"], [643, 2, 1, "", "conv_general_transpose"], [615, 2, 1, "", "copy_array"], [627, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [623, 2, 1, "", "cross"], [624, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [633, 2, 1, "", "cumprod"], [633, 2, 1, "", "cumsum"], [620, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [620, 2, 1, "", "default"], [616, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [616, 2, 1, "", "default_dtype"], [616, 2, 1, "", "default_float_dtype"], [616, 2, 1, "", "default_int_dtype"], [616, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [622, 2, 1, "", "depthwise_conv2d"], [623, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [623, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [623, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [622, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [616, 2, 1, "", "dtype"], [616, 2, 1, "", "dtype_bits"], [627, 2, 1, "", "duplicate_array_index_chains"], [613, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [623, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [623, 2, 1, "", "eigvalsh"], [620, 2, 1, "", "einops_rearrange"], [620, 2, 1, "", "einops_reduce"], [620, 2, 1, "", "einops_repeat"], [633, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [615, 2, 1, "", "empty"], [615, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [621, 2, 1, "", "execute_with_gradients"], [620, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [625, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [615, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [616, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [625, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [626, 2, 1, "", "fomaml_step"], [614, 2, 1, "", "for_loop"], [620, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [615, 2, 1, "", "from_dlpack"], [615, 2, 1, "", "frombuffer"], [615, 2, 1, "", "full"], [615, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [620, 2, 1, "", "function_supported_devices_and_dtypes"], [616, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [620, 2, 1, "", "function_unsupported_devices_and_dtypes"], [616, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [620, 2, 1, "", "gather"], [620, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [612, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [620, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [620, 2, 1, "", "get_item"], [620, 2, 1, "", "get_num_dims"], [620, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [621, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [621, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [612, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [620, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [614, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [616, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [627, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [613, 6, 1, "", "inf"], [616, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [623, 2, 1, "", "inner"], [620, 2, 1, "", "inplace_arrays_supported"], [620, 2, 1, "", "inplace_decrement"], [620, 2, 1, "", "inplace_increment"], [620, 2, 1, "", "inplace_update"], [620, 2, 1, "", "inplace_variables_supported"], [627, 2, 1, "", "insert_into_nest_at_index"], [627, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [623, 2, 1, "", "inv"], [616, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [620, 2, 1, "", "is_array"], [616, 2, 1, "", "is_bool_dtype"], [616, 2, 1, "", "is_complex_dtype"], [616, 2, 1, "", "is_float_dtype"], [616, 2, 1, "", "is_hashable_dtype"], [616, 2, 1, "", "is_int_dtype"], [620, 2, 1, "", "is_ivy_array"], [620, 2, 1, "", "is_ivy_container"], [620, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [620, 2, 1, "", "is_native_array"], [616, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [616, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [620, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [620, 2, 1, "", "isscalar"], [620, 2, 1, "", "itemsize"], [621, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [621, 2, 1, "", "lamb_update"], [621, 2, 1, "", "lars_update"], [628, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [612, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [622, 2, 1, "", "linear"], [615, 2, 1, "", "linspace"], [634, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [612, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [615, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [622, 2, 1, "", "lstm_update"], [623, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [626, 2, 1, "", "maml_step"], [627, 2, 1, "", "map"], [627, 2, 1, "", "map_nest_at_index"], [627, 2, 1, "", "map_nest_at_indices"], [620, 2, 1, "", "match_kwargs"], [623, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [623, 2, 1, "", "matrix_norm"], [623, 2, 1, "", "matrix_power"], [623, 2, 1, "", "matrix_rank"], [623, 2, 1, "", "matrix_transpose"], [633, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [633, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [615, 2, 1, "", "meshgrid"], [633, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [612, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [632, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [622, 2, 1, "", "multi_head_attention"], [627, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [629, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [620, 2, 1, "", "multiprocessing"], [613, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [615, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [627, 2, 1, "", "nested_any"], [627, 2, 1, "", "nested_argwhere"], [627, 2, 1, "", "nested_map"], [627, 2, 1, "", "nested_multi_map"], [613, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [622, 2, 1, "", "nms"], [630, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [620, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [615, 2, 1, "", "one_hot"], [615, 2, 1, "", "ones"], [615, 2, 1, "", "ones_like"], [621, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [623, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [625, 2, 1, "", "permute_dims"], [613, 6, 1, "", "pi"], [623, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [620, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [633, 2, 1, "", "prod"], [616, 2, 1, "", "promote_types"], [616, 2, 1, "", "promote_types_of_inputs"], [627, 2, 1, "", "prune_empty"], [627, 2, 1, "", "prune_nest_at_index"], [627, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [623, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [629, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [629, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [629, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [612, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [625, 2, 1, "", "repeat"], [626, 2, 1, "", "reptile_step"], [625, 2, 1, "", "reshape"], [616, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [622, 2, 1, "", "roi_align"], [625, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [634, 2, 1, "", "save"], [622, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [620, 2, 1, "", "scatter_flat"], [620, 2, 1, "", "scatter_nd"], [632, 2, 1, "", "searchsorted"], [629, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [620, 2, 1, "", "set_array_mode"], [616, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [616, 2, 1, "", "set_default_dtype"], [616, 2, 1, "", "set_default_float_dtype"], [616, 2, 1, "", "set_default_int_dtype"], [616, 2, 1, "", "set_default_uint_dtype"], [620, 2, 1, "", "set_exception_trace_mode"], [620, 2, 1, "", "set_inplace_mode"], [620, 2, 1, "", "set_item"], [620, 2, 1, "", "set_min_base"], [620, 2, 1, "", "set_min_denominator"], [627, 2, 1, "", "set_nest_at_index"], [627, 2, 1, "", "set_nest_at_indices"], [620, 2, 1, "", "set_nestable_mode"], [620, 2, 1, "", "set_precise_mode"], [620, 2, 1, "", "set_queue_timeout"], [620, 2, 1, "", "set_shape_array_mode"], [620, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [620, 2, 1, "", "set_tmp_dir"], [620, 2, 1, "", "shape"], [629, 2, 1, "", "shuffle"], [612, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [413, 2, 1, "", "sliding_window"], [623, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [612, 2, 1, "", "softmax"], [612, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [612, 2, 1, "", "softsign"], [623, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [632, 2, 1, "", "sort"], [624, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [625, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [625, 2, 1, "", "squeeze"], [620, 2, 1, "", "stable_divide"], [620, 2, 1, "", "stable_pow"], [625, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [633, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [621, 2, 1, "", "stop_gradient"], [620, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [633, 2, 1, "", "sum"], [620, 2, 1, "", "supports_inplace_updates"], [623, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [623, 2, 1, "", "svdvals"], [625, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [623, 2, 1, "", "tensordot"], [623, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [625, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [615, 2, 1, "", "to_dlpack"], [620, 2, 1, "", "to_ivy_shape"], [620, 2, 1, "", "to_list"], [620, 2, 1, "", "to_native_shape"], [620, 2, 1, "", "to_numpy"], [620, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [623, 2, 1, "", "trace"], [847, 2, 1, "", "trace_graph"], [848, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [615, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [615, 2, 1, "", "triu"], [615, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [620, 2, 1, "", "try_else_none"], [614, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [616, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [849, 2, 1, "", "unify"], [631, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [631, 2, 1, "", "unique_counts"], [631, 2, 1, "", "unique_inverse"], [631, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [620, 2, 1, "", "unset_array_mode"], [616, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [616, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [620, 2, 1, "", "unset_exception_trace_mode"], [620, 2, 1, "", "unset_inplace_mode"], [620, 2, 1, "", "unset_min_base"], [620, 2, 1, "", "unset_min_denominator"], [620, 2, 1, "", "unset_nestable_mode"], [620, 2, 1, "", "unset_precise_mode"], [620, 2, 1, "", "unset_queue_timeout"], [620, 2, 1, "", "unset_shape_array_mode"], [620, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [620, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [625, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [621, 2, 1, "", "value_and_grad"], [620, 2, 1, "", "value_is_nan"], [623, 2, 1, "", "vander"], [633, 2, 1, "", "var"], [623, 2, 1, "", "vecdot"], [623, 2, 1, "", "vector_norm"], [623, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [620, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [630, 2, 1, "", "where"], [614, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [625, 2, 1, "", "zero_pad"], [615, 2, 1, "", "zeros"], [615, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [601, 0, 1, "", "adam_step"], [602, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [415, 0, 1, "", "adjoint"], [753, 0, 1, "", "all"], [521, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [754, 0, 1, "", "any"], [730, 0, 1, "", "argmax"], [731, 0, 1, "", "argmin"], [739, 0, 1, "", "argsort"], [732, 0, 1, "", "argwhere"], [524, 0, 1, "", "array_equal"], [448, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [525, 0, 1, "", "assert_supports_inplace"], [449, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [450, 0, 1, "", "atleast_1d"], [451, 0, 1, "", "atleast_2d"], [452, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [488, 0, 1, "", "batch_norm"], [416, 0, 1, "", "batched_outer"], [495, 0, 1, "", "bernoulli"], [496, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [682, 0, 1, "", "binary_cross_entropy"], [507, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [453, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [652, 0, 1, "", "cholesky"], [685, 0, 1, "", "clip"], [527, 0, 1, "", "clip_matrix_norm"], [528, 0, 1, "", "clip_vector_norm"], [456, 0, 1, "", "column_stack"], [686, 0, 1, "", "concat"], [457, 0, 1, "", "concat_from_sequence"], [417, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [687, 0, 1, "", "constant_pad"], [636, 0, 1, "", "conv1d"], [637, 0, 1, "", "conv1d_transpose"], [638, 0, 1, "", "conv2d"], [639, 0, 1, "", "conv2d_transpose"], [640, 0, 1, "", "conv3d"], [641, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [508, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [509, 0, 1, "", "cov"], [653, 0, 1, "", "cross"], [683, 0, 1, "", "cross_entropy"], [510, 0, 1, "", "cummax"], [511, 0, 1, "", "cummin"], [743, 0, 1, "", "cumprod"], [744, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [644, 0, 1, "", "depthwise_conv2d"], [654, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [655, 0, 1, "", "diag"], [418, 0, 1, "", "diagflat"], [656, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [497, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [419, 0, 1, "", "dot"], [645, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [458, 0, 1, "", "dsplit"], [459, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [420, 0, 1, "", "eig"], [658, 0, 1, "", "eigh"], [421, 0, 1, "", "eigh_tridiagonal"], [422, 0, 1, "", "eigvals"], [659, 0, 1, "", "eigvalsh"], [532, 0, 1, "", "einops_rearrange"], [533, 0, 1, "", "einops_reduce"], [534, 0, 1, "", "einops_repeat"], [745, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [535, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [460, 0, 1, "", "expand"], [688, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [461, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [462, 0, 1, "", "flatten"], [689, 0, 1, "", "flip"], [463, 0, 1, "", "fliplr"], [464, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [465, 0, 1, "", "fold"], [536, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [498, 0, 1, "", "gamma"], [539, 0, 1, "", "gather"], [540, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [423, 0, 1, "", "general_inner_product"], [543, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [605, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [489, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [545, 0, 1, "", "has_nans"], [466, 0, 1, "", "heaviside"], [424, 0, 1, "", "higher_order_moment"], [512, 0, 1, "", "histogram"], [467, 0, 1, "", "hsplit"], [468, 0, 1, "", "hstack"], [441, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [469, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [513, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [425, 0, 1, "", "initialize_tucker"], [660, 0, 1, "", "inner"], [547, 0, 1, "", "inplace_decrement"], [548, 0, 1, "", "inplace_increment"], [549, 0, 1, "", "inplace_update"], [490, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [661, 0, 1, "", "inv"], [501, 0, 1, "", "invert_permutation"], [551, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [552, 0, 1, "", "is_ivy_array"], [555, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [556, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [558, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [442, 0, 1, "", "kl_div"], [427, 0, 1, "", "kron"], [443, 0, 1, "", "l1_loss"], [491, 0, 1, "", "l1_normalize"], [492, 0, 1, "", "l2_normalize"], [607, 0, 1, "", "lamb_update"], [608, 0, 1, "", "lars_update"], [723, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [502, 0, 1, "", "lexsort"], [646, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [444, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [494, 0, 1, "", "lp_normalize"], [647, 0, 1, "", "lstm_update"], [429, 0, 1, "", "make_svd_non_negative"], [663, 0, 1, "", "matmul"], [470, 0, 1, "", "matricize"], [430, 0, 1, "", "matrix_exp"], [664, 0, 1, "", "matrix_norm"], [665, 0, 1, "", "matrix_power"], [666, 0, 1, "", "matrix_rank"], [667, 0, 1, "", "matrix_transpose"], [746, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [747, 0, 1, "", "mean"], [514, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [748, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [431, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [471, 0, 1, "", "moveaxis"], [740, 0, 1, "", "msort"], [432, 0, 1, "", "multi_dot"], [648, 0, 1, "", "multi_head_attention"], [433, 0, 1, "", "multi_mode_dot"], [724, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [515, 0, 1, "", "nanmean"], [516, 0, 1, "", "nanmedian"], [517, 0, 1, "", "nanmin"], [518, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [733, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [609, 0, 1, "", "optimizer_update"], [520, 0, 1, "", "optional_get_element"], [668, 0, 1, "", "outer"], [472, 0, 1, "", "pad"], [473, 0, 1, "", "partial_fold"], [474, 0, 1, "", "partial_tensor_to_vec"], [434, 0, 1, "", "partial_tucker"], [475, 0, 1, "", "partial_unfold"], [476, 0, 1, "", "partial_vec_to_tensor"], [690, 0, 1, "", "permute_dims"], [669, 0, 1, "", "pinv"], [499, 0, 1, "", "poisson"], [445, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [749, 0, 1, "", "prod"], [477, 0, 1, "", "put_along_axis"], [670, 0, 1, "", "qr"], [519, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [725, 0, 1, "", "randint"], [726, 0, 1, "", "random_normal"], [727, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [691, 0, 1, "", "repeat"], [692, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [693, 0, 1, "", "roll"], [478, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [651, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [563, 0, 1, "", "scatter_flat"], [564, 0, 1, "", "scatter_nd"], [741, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [729, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [413, 0, 1, "", "sliding_window"], [671, 0, 1, "", "slogdet"], [446, 0, 1, "", "smooth_l1_loss"], [447, 0, 1, "", "soft_margin_loss"], [479, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [672, 0, 1, "", "solve"], [742, 0, 1, "", "sort"], [684, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [694, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [695, 0, 1, "", "squeeze"], [578, 0, 1, "", "stable_divide"], [579, 0, 1, "", "stable_pow"], [696, 0, 1, "", "stack"], [750, 0, 1, "", "std"], [414, 0, 1, "", "stft"], [610, 0, 1, "", "stop_gradient"], [580, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [751, 0, 1, "", "sum"], [581, 0, 1, "", "supports_inplace_updates"], [673, 0, 1, "", "svd"], [436, 0, 1, "", "svd_flip"], [674, 0, 1, "", "svdvals"], [697, 0, 1, "", "swapaxes"], [480, 0, 1, "", "take"], [481, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [437, 0, 1, "", "tensor_train"], [675, 0, 1, "", "tensordot"], [676, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [698, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [583, 0, 1, "", "to_list"], [585, 0, 1, "", "to_numpy"], [586, 0, 1, "", "to_scalar"], [482, 0, 1, "", "top_k"], [677, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [483, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [438, 0, 1, "", "truncated_svd"], [439, 0, 1, "", "tt_matrix_to_tensor"], [440, 0, 1, "", "tucker"], [484, 0, 1, "", "unfold"], [735, 0, 1, "", "unique_all"], [485, 0, 1, "", "unique_consecutive"], [736, 0, 1, "", "unique_counts"], [737, 0, 1, "", "unique_inverse"], [738, 0, 1, "", "unique_values"], [500, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [699, 0, 1, "", "unstack"], [599, 0, 1, "", "value_is_nan"], [678, 0, 1, "", "vander"], [752, 0, 1, "", "var"], [679, 0, 1, "", "vecdot"], [680, 0, 1, "", "vector_norm"], [681, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [486, 0, 1, "", "vsplit"], [487, 0, 1, "", "vstack"], [734, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [700, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[612, 3, 0, "-", "activations"], [613, 3, 0, "-", "constants"], [614, 3, 0, "-", "control_flow_ops"], [615, 3, 0, "-", "creation"], [616, 3, 0, "-", "data_type"], [617, 3, 0, "-", "device"], [618, 3, 0, "-", "elementwise"], [619, 3, 0, "-", "experimental"], [620, 3, 0, "-", "general"], [621, 3, 0, "-", "gradients"], [622, 3, 0, "-", "layers"], [623, 3, 0, "-", "linear_algebra"], [624, 3, 0, "-", "losses"], [625, 3, 0, "-", "manipulation"], [626, 3, 0, "-", "meta"], [627, 3, 0, "-", "nest"], [628, 3, 0, "-", "norms"], [629, 3, 0, "-", "random"], [630, 3, 0, "-", "searching"], [631, 3, 0, "-", "set"], [632, 3, 0, "-", "sorting"], [633, 3, 0, "-", "statistical"], [634, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[774, 3, 0, "-", "activations"], [775, 3, 0, "-", "converters"], [776, 3, 0, "-", "helpers"], [777, 3, 0, "-", "initializers"], [778, 3, 0, "-", "layers"], [779, 3, 0, "-", "losses"], [780, 3, 0, "-", "module"], [781, 3, 0, "-", "norms"], [782, 3, 0, "-", "optimizers"], [783, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[774, 1, 1, "", "ELU"], [774, 1, 1, "", "GEGLU"], [774, 1, 1, "", "GELU"], [774, 1, 1, "", "Hardswish"], [774, 1, 1, "", "LeakyReLU"], [774, 1, 1, "", "LogSigmoid"], [774, 1, 1, "", "LogSoftmax"], [774, 1, 1, "", "Logit"], [774, 1, 1, "", "Mish"], [774, 1, 1, "", "PReLU"], [774, 1, 1, "", "ReLU"], [774, 1, 1, "", "ReLU6"], [774, 1, 1, "", "SeLU"], [774, 1, 1, "", "SiLU"], [774, 1, 1, "", "Sigmoid"], [774, 1, 1, "", "Softmax"], [774, 1, 1, "", "Softplus"], [774, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[774, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[774, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[775, 1, 1, "", "ModuleConverters"], [775, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[775, 0, 1, "", "from_flax_module"], [775, 0, 1, "", "from_haiku_module"], [775, 0, 1, "", "from_keras_module"], [775, 0, 1, "", "from_paddle_module"], [775, 0, 1, "", "from_torch_module"], [775, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[776, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[777, 1, 1, "", "Constant"], [777, 1, 1, "", "FirstLayerSiren"], [777, 1, 1, "", "GlorotUniform"], [777, 1, 1, "", "Initializer"], [777, 1, 1, "", "KaimingNormal"], [777, 1, 1, "", "Ones"], [777, 1, 1, "", "RandomNormal"], [777, 1, 1, "", "Siren"], [777, 1, 1, "", "Uniform"], [777, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[777, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[777, 0, 1, "", "__init__"], [777, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[777, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[778, 1, 1, "", "AdaptiveAvgPool1d"], [778, 1, 1, "", "AdaptiveAvgPool2d"], [778, 1, 1, "", "AvgPool1D"], [778, 1, 1, "", "AvgPool2D"], [778, 1, 1, "", "AvgPool3D"], [778, 1, 1, "", "Conv1D"], [778, 1, 1, "", "Conv1DTranspose"], [778, 1, 1, "", "Conv2D"], [778, 1, 1, "", "Conv2DTranspose"], [778, 1, 1, "", "Conv3D"], [778, 1, 1, "", "Conv3DTranspose"], [778, 1, 1, "", "Dct"], [778, 1, 1, "", "DepthwiseConv2D"], [778, 1, 1, "", "Dropout"], [778, 1, 1, "", "Embedding"], [778, 1, 1, "", "FFT"], [778, 1, 1, "", "IFFT"], [778, 1, 1, "", "Identity"], [778, 1, 1, "", "LSTM"], [778, 1, 1, "", "Linear"], [778, 1, 1, "", "MaxPool1D"], [778, 1, 1, "", "MaxPool2D"], [778, 1, 1, "", "MaxPool3D"], [778, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[778, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[779, 1, 1, "", "BinaryCrossEntropyLoss"], [779, 1, 1, "", "CrossEntropyLoss"], [779, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[779, 0, 1, "", "__init__"]], "ivy.stateful.module": [[780, 1, 1, "", "Module"], [780, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[780, 0, 1, "", "__call__"], [780, 0, 1, "", "__init__"], [780, 5, 1, "", "buffers"], [780, 0, 1, "", "build"], [780, 5, 1, "", "build_mode"], [780, 5, 1, "", "built"], [780, 5, 1, "", "device"], [780, 5, 1, "", "dtype"], [780, 0, 1, "", "eval"], [780, 0, 1, "", "load"], [780, 5, 1, "", "module_dict"], [780, 0, 1, "", "register_buffer"], [780, 0, 1, "", "register_parameter"], [780, 0, 1, "", "save"], [780, 0, 1, "", "save_weights"], [780, 0, 1, "", "show_graph"], [780, 5, 1, "", "state_dict"], [780, 0, 1, "", "to_device"], [780, 0, 1, "", "trace_graph"], [780, 0, 1, "", "train"], [780, 5, 1, "", "training"], [780, 5, 1, "", "v"]], "ivy.stateful.norms": [[781, 1, 1, "", "BatchNorm2D"], [781, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[781, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[781, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[782, 1, 1, "", "Adam"], [782, 1, 1, "", "AdamW"], [782, 1, 1, "", "LAMB"], [782, 1, 1, "", "LARS"], [782, 1, 1, "", "Optimizer"], [782, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[782, 0, 1, "", "__init__"], [782, 0, 1, "", "set_state"], [782, 5, 1, "", "state"]], "ivy.stateful.sequential": [[783, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[783, 0, 1, "", "__init__"]], "ivy.utils": [[784, 3, 0, "-", "assertions"], [785, 3, 0, "-", "backend"], [789, 3, 0, "-", "binaries"], [790, 3, 0, "-", "dynamic_import"], [791, 3, 0, "-", "einsum_parser"], [792, 3, 0, "-", "einsum_path_helpers"], [793, 3, 0, "-", "exceptions"], [794, 3, 0, "-", "inspection"], [795, 3, 0, "-", "logging"], [796, 3, 0, "-", "profiler"], [797, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[784, 2, 1, "", "check_all"], [784, 2, 1, "", "check_all_or_any_fn"], [784, 2, 1, "", "check_any"], [784, 2, 1, "", "check_dev_correct_formatting"], [784, 2, 1, "", "check_dimensions"], [784, 2, 1, "", "check_elem_in_list"], [784, 2, 1, "", "check_equal"], [784, 2, 1, "", "check_exists"], [784, 2, 1, "", "check_false"], [784, 2, 1, "", "check_gather_input_valid"], [784, 2, 1, "", "check_gather_nd_input_valid"], [784, 2, 1, "", "check_greater"], [784, 2, 1, "", "check_inplace_sizes_valid"], [784, 2, 1, "", "check_isinstance"], [784, 2, 1, "", "check_kernel_padding_size"], [784, 2, 1, "", "check_less"], [784, 2, 1, "", "check_one_way_broadcastable"], [784, 2, 1, "", "check_same_dtype"], [784, 2, 1, "", "check_shape"], [784, 2, 1, "", "check_shapes_broadcastable"], [784, 2, 1, "", "check_true"], [784, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[786, 3, 0, "-", "ast_helpers"], [787, 3, 0, "-", "handler"], [788, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[786, 1, 1, "", "ImportTransformer"], [786, 1, 1, "", "IvyLoader"], [786, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[786, 0, 1, "", "__init__"], [786, 0, 1, "", "impersonate_import"], [786, 0, 1, "", "visit_Import"], [786, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[786, 0, 1, "", "__init__"], [786, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[786, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[787, 1, 1, "", "ContextManager"], [787, 2, 1, "", "choose_random_backend"], [787, 2, 1, "", "current_backend"], [787, 2, 1, "", "dynamic_backend_converter"], [787, 2, 1, "", "prevent_access_locally"], [787, 2, 1, "", "previous_backend"], [787, 2, 1, "", "set_backend"], [787, 2, 1, "", "set_backend_to_specific_version"], [787, 2, 1, "", "set_jax_backend"], [787, 2, 1, "", "set_mxnet_backend"], [787, 2, 1, "", "set_numpy_backend"], [787, 2, 1, "", "set_paddle_backend"], [787, 2, 1, "", "set_tensorflow_backend"], [787, 2, 1, "", "set_torch_backend"], [787, 2, 1, "", "unset_backend"], [787, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[787, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[788, 2, 1, "", "clear_sub_backends"], [788, 2, 1, "", "find_available_sub_backends"], [788, 2, 1, "", "fn_name_from_version_specific_fn_name"], [788, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [788, 2, 1, "", "set_sub_backend"], [788, 2, 1, "", "set_sub_backend_to_specific_version"], [788, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[789, 2, 1, "", "check_for_binaries"], [789, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[790, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[791, 2, 1, "", "convert_interleaved_input"], [791, 2, 1, "", "convert_subscripts"], [791, 2, 1, "", "find_output_shape"], [791, 2, 1, "", "find_output_str"], [791, 2, 1, "", "gen_unused_symbols"], [791, 2, 1, "", "get_symbol"], [791, 2, 1, "", "has_valid_einsum_chars_only"], [791, 2, 1, "", "is_valid_einsum_char"], [791, 2, 1, "", "legalise_einsum_expr"], [791, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[792, 2, 1, "", "can_dot"], [792, 2, 1, "", "compute_size_by_dict"], [792, 2, 1, "", "find_contraction"], [792, 2, 1, "", "flop_count"], [792, 2, 1, "", "greedy_path"], [792, 2, 1, "", "optimal_path"], [792, 2, 1, "", "parse_einsum_input"], [792, 2, 1, "", "parse_possible_contraction"], [792, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[793, 7, 1, "", "InplaceUpdateException"], [793, 7, 1, "", "IvyAttributeError"], [793, 7, 1, "", "IvyBackendException"], [793, 7, 1, "", "IvyBroadcastShapeError"], [793, 7, 1, "", "IvyDeviceError"], [793, 7, 1, "", "IvyDtypePromotionError"], [793, 7, 1, "", "IvyError"], [793, 7, 1, "", "IvyException"], [793, 7, 1, "", "IvyIndexError"], [793, 7, 1, "", "IvyInvalidBackendException"], [793, 7, 1, "", "IvyNotImplementedException"], [793, 7, 1, "", "IvyValueError"], [793, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[793, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[793, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[794, 2, 1, "", "add_array_specs"], [794, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[795, 2, 1, "", "set_logging_mode"], [795, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[796, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[796, 0, 1, "", "__init__"], [796, 4, 1, "", "print_stats"], [796, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[797, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[757, 3, 0, "-", "assertions"], [758, 3, 0, "-", "available_frameworks"], [759, 3, 0, "-", "function_testing"], [760, 3, 0, "-", "globals"], [761, 3, 0, "-", "hypothesis_helpers"], [766, 3, 0, "-", "multiprocessing"], [767, 3, 0, "-", "pipeline_helper"], [768, 3, 0, "-", "structs"], [769, 3, 0, "-", "test_parameter_flags"], [770, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[757, 2, 1, "", "assert_all_close"], [757, 2, 1, "", "assert_same_type"], [757, 2, 1, "", "assert_same_type_and_shape"], [757, 2, 1, "", "check_unsupported_device"], [757, 2, 1, "", "check_unsupported_device_and_dtype"], [757, 2, 1, "", "check_unsupported_dtype"], [757, 2, 1, "", "test_unsupported_function"], [757, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[759, 2, 1, "", "args_to_container"], [759, 2, 1, "", "args_to_frontend"], [759, 2, 1, "", "arrays_to_frontend"], [759, 2, 1, "", "as_lists"], [759, 2, 1, "", "convtrue"], [759, 2, 1, "", "create_args_kwargs"], [759, 2, 1, "", "flatten"], [759, 2, 1, "", "flatten_and_to_np"], [759, 2, 1, "", "flatten_frontend"], [759, 2, 1, "", "flatten_frontend_fw_to_np"], [759, 2, 1, "", "flatten_frontend_to_np"], [759, 2, 1, "", "get_frontend_ret"], [759, 2, 1, "", "get_ret_and_flattened_np_array"], [759, 2, 1, "", "gradient_incompatible_function"], [759, 2, 1, "", "gradient_test"], [759, 2, 1, "", "gradient_unsupported_dtypes"], [759, 2, 1, "", "kwargs_to_args_n_kwargs"], [759, 2, 1, "", "test_frontend_function"], [759, 2, 1, "", "test_frontend_method"], [759, 2, 1, "", "test_function"], [759, 2, 1, "", "test_function_backend_computation"], [759, 2, 1, "", "test_function_ground_truth_computation"], [759, 2, 1, "", "test_gradient_backend_computation"], [759, 2, 1, "", "test_gradient_ground_truth_computation"], [759, 2, 1, "", "test_method"], [759, 2, 1, "", "test_method_backend_computation"], [759, 2, 1, "", "test_method_ground_truth_computation"], [759, 2, 1, "", "traced_if_required"], [759, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[760, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [760, 7, 1, "", "InterruptedTest"], [760, 1, 1, "", "TestData"], [760, 2, 1, "", "setup_api_test"], [760, 2, 1, "", "setup_frontend_test"], [760, 2, 1, "", "teardown_api_test"], [760, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[760, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[760, 0, 1, "", "__init__"], [760, 4, 1, "", "fn_name"], [760, 4, 1, "", "fn_tree"], [760, 4, 1, "", "is_method"], [760, 4, 1, "", "supported_device_dtypes"], [760, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, 3, 0, "-", "array_helpers"], [763, 3, 0, "-", "dtype_helpers"], [764, 3, 0, "-", "general_helpers"], [765, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[762, 2, 1, "", "array_and_broadcastable_shape"], [762, 2, 1, "", "array_bools"], [762, 2, 1, "", "array_helpers_dtype_info_helper"], [762, 2, 1, "", "array_indices_axis"], [762, 2, 1, "", "array_indices_put_along_axis"], [762, 2, 1, "", "array_values"], [762, 2, 1, "", "arrays_and_axes"], [762, 2, 1, "", "arrays_for_pooling"], [762, 2, 1, "", "broadcast_shapes"], [762, 2, 1, "", "cond_data_gen_helper"], [762, 2, 1, "", "create_concatenable_arrays_dtypes"], [762, 2, 1, "", "create_nested_input"], [762, 2, 1, "", "dtype_and_values"], [762, 2, 1, "", "dtype_array_query"], [762, 2, 1, "", "dtype_array_query_val"], [762, 2, 1, "", "dtype_values_axis"], [762, 2, 1, "", "einsum_helper"], [762, 2, 1, "", "get_first_solve_batch_matrix"], [762, 2, 1, "", "get_first_solve_matrix"], [762, 2, 1, "", "get_second_solve_batch_matrix"], [762, 2, 1, "", "get_second_solve_matrix"], [762, 2, 1, "", "list_of_size"], [762, 2, 1, "", "lists"], [762, 2, 1, "", "mutually_broadcastable_shapes"], [762, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[763, 2, 1, "", "array_dtypes"], [763, 2, 1, "", "cast_filter"], [763, 2, 1, "", "cast_filter_helper"], [763, 2, 1, "", "get_castable_dtype"], [763, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[764, 7, 1, "", "BroadcastError"], [764, 2, 1, "", "apply_safety_factor"], [764, 2, 1, "", "broadcast_shapes"], [764, 2, 1, "", "embedding_helper"], [764, 2, 1, "", "general_helpers_dtype_info_helper"], [764, 2, 1, "", "get_axis"], [764, 2, 1, "", "get_bounds"], [764, 2, 1, "", "get_mean_std"], [764, 2, 1, "", "get_shape"], [764, 2, 1, "", "matrix_is_stable"], [764, 2, 1, "", "reshape_shapes"], [764, 2, 1, "", "subsets"], [764, 2, 1, "", "two_broadcastable_shapes"], [764, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[765, 2, 1, "", "floats"], [765, 2, 1, "", "ints"], [765, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[766, 2, 1, "", "backend_proc"], [766, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[767, 1, 1, "", "BackendHandler"], [767, 1, 1, "", "BackendHandlerMode"], [767, 1, 1, "", "WithBackendContext"], [767, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[767, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[767, 4, 1, "", "SetBackend"], [767, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[767, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[768, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[768, 0, 1, "", "__init__"], [768, 4, 1, "", "framework_init_module"], [768, 4, 1, "", "init_name"], [768, 4, 1, "", "ivy_init_module"], [768, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[769, 1, 1, "", "DynamicFlag"], [769, 1, 1, "", "FrontendFunctionTestFlags"], [769, 1, 1, "", "FrontendInitTestFlags"], [769, 1, 1, "", "FrontendMethodTestFlags"], [769, 1, 1, "", "FunctionTestFlags"], [769, 1, 1, "", "InitMethodTestFlags"], [769, 1, 1, "", "MethodTestFlags"], [769, 1, 1, "", "TestFlags"], [769, 2, 1, "", "build_flag"], [769, 2, 1, "", "frontend_function_flags"], [769, 2, 1, "", "frontend_init_flags"], [769, 2, 1, "", "frontend_method_flags"], [769, 2, 1, "", "function_flags"], [769, 2, 1, "", "init_method_flags"], [769, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[769, 0, 1, "", "__init__"], [769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[769, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[770, 2, 1, "", "handle_frontend_method"], [770, 2, 1, "", "handle_frontend_test"], [770, 2, 1, "", "handle_method"], [770, 2, 1, "", "handle_test"], [770, 2, 1, "", "num_positional_args"], [770, 2, 1, "", "num_positional_args_helper"], [770, 2, 1, "", "num_positional_args_method"], [770, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 803], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 798, 815, 820, 823, 826, 831, 847, 848, 849], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 798, 803, 805, 808, 810, 812, 815, 817, 823, 825, 826, 827, 828, 829, 830, 833, 834, 835, 836, 837, 838, 840, 847, 848, 849, 860], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 798, 840], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 616, 631, 735, 736, 737, 738, 813, 825, 828, 836, 839], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 822], "torch": [3, 4, 5, 7, 34, 41, 854, 855], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 854], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 854], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 819, 827, 829], "implement": [3, 5, 812, 823, 825, 845], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 790], "modul": [4, 780, 813, 814, 837, 848], "sequenc": [4, 820], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 838, 839], "imag": [5, 7, 55, 78, 248, 800, 810], "segment": 5, "unet": 5, "custom": [5, 808, 810, 823, 827, 836, 839], "preprocess": 5, "load": [5, 7, 9, 755, 836], "visualis": [5, 7], "initi": [5, 7, 777, 837], "nativ": [5, 7, 808, 831], "pretrain": [5, 7], "weight": [5, 7, 836], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 759, 803, 811, 813, 814, 817, 820, 821, 822, 823, 825, 826, 828, 829, 830, 831, 833, 838, 839, 848], "us": [5, 7, 14, 22, 25, 42, 44, 798, 800, 803, 804, 807, 823, 826, 836, 840, 847, 848], "your": [5, 7, 805, 828], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 785, 788, 803, 809, 813, 823, 829, 833, 839], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 631, 804, 809, 818, 830, 840], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 854], "xgboost": 9, "test": [9, 40, 759, 769, 770, 773, 803, 804, 805, 807, 812, 818, 826, 828], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 804, 831, 845], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 819, 839, 844, 847], "number": [9, 765, 820], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 827], "fraction": 9, "comparison": [9, 836], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 798, 838, 840, 848], "build": [11, 12, 13, 42, 800, 810, 833], "top": [11, 12, 13, 812], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 804, 818, 827, 840], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 836, 838], "tutori": [15, 42], "And": 15, "learn": [15, 16, 854], "basic": [15, 16, 38, 39, 805, 825], "write": [17, 25, 825, 828], "content": [17, 40], "handler": [17, 26, 787, 788, 833], "structur": [17, 26, 810, 823, 839], "api": [17, 26, 27, 803, 807, 811, 812, 823, 829, 833, 835, 837, 838, 840, 844, 847, 848, 849, 851, 858, 860], "state": [17, 26, 27, 837, 839, 847], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 798, 835, 845, 849, 856, 860], "trace": [19, 21, 22, 27, 677, 817], "lazi": [21, 31, 847], "eager": [21, 31, 847], "how": [22, 803, 810, 818, 827, 828], "decor": [22, 33, 817, 822, 828], "ani": [23, 24, 26, 27, 754], "librari": [23, 26, 27, 42, 44, 848], "odsc": 26, "framework": [26, 32, 38, 758, 771, 823, 826, 834, 854, 857, 860, 861], "graph": [26, 43, 855, 860], "tracer": [26, 833, 838, 840, 847, 855, 860], "quickstart": 27, "get": [27, 798, 805, 840], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 854], "compil": [29, 31, 32, 33, 39, 847, 852, 857, 859, 860], "2": [30, 33, 35, 44, 854], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 790, 809, 839], "static": 34, "todo": [34, 805], "explain": 34, "via": 34, "why": [34, 828, 845], "mode": [34, 813, 817, 830], "i": [34, 798, 810, 831], "true": 34, "default": [34, 531], "when": [34, 798], "from": [34, 41, 840], "numpi": [34, 41, 825, 854], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 820, 830, 835, 839], "ml": [38, 843, 856, 860], "chang": 38, "one": 38, "line": [38, 805], "No": [38, 804, 845], "need": [38, 828], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 616, 813, 821, 825, 839], "differ": 38, "them": 38, "all": [38, 753], "standalon": [38, 821], "defin": [38, 39, 40, 42], "optim": [38, 782, 837], "input": [38, 39, 820], "target": 38, "loss": [38, 58, 81, 370, 624, 779], "loop": [38, 42], "sampl": 39, "check": [39, 819, 839], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 803, 810, 827, 840], "perceiverio": [40, 41], "tabl": [40, 810, 813], "construct": [40, 836], "some": 40, "helper": [40, 761, 762, 763, 764, 765, 767, 770, 776, 786, 792, 826, 828, 829], "pipelin": [40, 42, 767, 810, 812, 828, 839], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 839], "introduct": [41, 44, 825, 826], "python3": 41, "8": 41, "setup": [41, 819], "kernel": 41, "clone": [41, 804, 812], "repo": [41, 804], "ivy_model": 41, "run": [41, 805, 807, 810, 818, 828], "end": 42, "let": 42, "we": [42, 828], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 634, 772], "plot": 42, "save": [42, 756, 836], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 805], "To": [44, 805], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 612, 774], "convers": [47, 70, 822], "creation": [48, 71, 362, 615], "devic": [50, 73, 364, 617, 814, 820, 825], "elementwis": [51, 74, 102, 365, 618], "experiment": [52, 75, 619, 803], "gener": [53, 76, 366, 620, 764, 823, 828, 831, 847], "gradient": [54, 77, 342, 367, 621, 823], "layer": [56, 79, 368, 622, 778], "linear": [57, 80, 369, 623, 646], "algebra": [57, 80, 369, 623], "manipul": [59, 82, 371, 625], "norm": [60, 83, 374, 628, 781], "random": [61, 84, 375, 629], "search": [62, 85, 376, 630], "sort": [64, 87, 378, 632, 742], "statist": [65, 88, 380, 633], "wrap": [67, 90, 822], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 440], "arrai": [97, 100, 122, 379, 762, 807, 808, 812, 820, 835, 844, 847, 851], "contain": [98, 805, 811, 836], "factor": 99, "nest": [100, 373, 627], "class": [103, 771, 808, 817, 825, 835], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 615], "frombuff": 129, "full": [130, 826], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 763, 820], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 565, 566, 571, 572, 574, 575, 617, 620, 769, 774, 830], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 815, 826, 860], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 795, 804], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 820], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 815, 826], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 803, 818], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 613], "meta": [372, 626], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "sliding_window": 413, "stft": 414, "adjoint": 415, "batched_out": 416, "cond": 417, "diagflat": 418, "dot": 419, "eig": [420, 657], "eigh_tridiagon": 421, "eigval": 422, "general_inner_product": 423, "higher_order_mo": 424, "initialize_tuck": 425, "khatri_rao": 426, "kron": 427, "kroneck": 428, "make_svd_non_neg": 429, "matrix_exp": 430, "mode_dot": 431, "multi_dot": 432, "multi_mode_dot": 433, "partial_tuck": 434, "solve_triangular": 435, "svd_flip": 436, "tensor_train": 437, "truncated_svd": 438, "tt_matrix_to_tensor": 439, "huber_loss": 441, "kl_div": 442, "l1_loss": 443, "log_poisson_loss": 444, "poisson_nll_loss": 445, "smooth_l1_loss": 446, "soft_margin_loss": 447, "as_strid": 448, "associative_scan": 449, "atleast_1d": 450, "atleast_2d": 451, "atleast_3d": 452, "broadcast_shap": 453, "check_scalar": 454, "choos": 455, "column_stack": 456, "concat_from_sequ": 457, "dsplit": 458, "dstack": 459, "expand": 460, "fill_diagon": 461, "flatten": 462, "fliplr": 463, "flipud": 464, "fold": 465, "heavisid": 466, "hsplit": 467, "hstack": 468, "i0": 469, "matric": 470, "moveaxi": 471, "pad": 472, "partial_fold": 473, "partial_tensor_to_vec": 474, "partial_unfold": 475, "partial_vec_to_tensor": 476, "put_along_axi": 477, "rot90": 478, "soft_threshold": 479, "take": 480, "take_along_axi": 481, "top_k": 482, "trim_zero": 483, "unfold": 484, "unique_consecut": 485, "vsplit": 486, "vstack": 487, "batch_norm": 488, "group_norm": 489, "instance_norm": 490, "l1_normal": 491, "l2_normal": 492, "local_response_norm": 493, "lp_normal": 494, "bernoulli": 495, "beta": 496, "dirichlet": 497, "gamma": 498, "poisson": 499, "unravel_index": 500, "invert_permut": 501, "lexsort": 502, "is_ivy_sparse_arrai": 503, "is_native_sparse_arrai": 504, "native_sparse_arrai": 505, "native_sparse_array_to_indices_values_and_shap": 506, "bincount": 507, "corrcoef": 508, "cov": 509, "cummax": 510, "cummin": 511, "histogram": 512, "igamma": 513, "median": 514, "nanmean": 515, "nanmedian": 516, "nanmin": 517, "nanprod": 518, "quantil": 519, "optional_get_el": 520, "all_equ": 521, "arg_info": 522, "arg_nam": 523, "array_equ": 524, "assert_supports_inplac": 525, "cache_fn": 526, "clip_matrix_norm": 527, "clip_vector_norm": 528, "container_typ": 529, "current_backend_str": 530, "einops_rearrang": 532, "einops_reduc": 533, "einops_repeat": 534, "exist": [535, 800, 827], "fourier_encod": 536, "function_supported_devices_and_dtyp": 537, "function_unsupported_devices_and_dtyp": 538, "gather": 539, "gather_nd": 540, "get_all_arrays_in_memori": 541, "get_item": 542, "get_num_dim": 543, "get_referrers_recurs": 544, "has_nan": 545, "inplace_arrays_support": 546, "inplace_decr": 547, "inplace_incr": 548, "inplace_upd": 549, "inplace_variables_support": 550, "is_arrai": 551, "is_ivy_arrai": 552, "is_ivy_contain": 553, "is_ivy_nested_arrai": 554, "is_native_arrai": 555, "isin": 556, "isscalar": 557, "items": 558, "match_kwarg": 559, "multiprocess": [560, 766], "num_arrays_in_memori": 561, "print_all_arrays_in_memori": 562, "scatter_flat": 563, "scatter_nd": 564, "set_array_mod": 565, "set_exception_trace_mod": 566, "set_inplace_mod": 567, "set_item": 568, "set_min_bas": 569, "set_min_denomin": 570, "set_nestable_mod": 571, "set_precise_mod": 572, "set_queue_timeout": 573, "set_shape_array_mod": 574, "set_show_func_wrapper_trace_mod": 575, "set_tmp_dir": 576, "shape": [577, 631, 735, 736, 737, 738, 822, 839], "stable_divid": 578, "stable_pow": 579, "stride": 580, "supports_inplace_upd": 581, "to_ivy_shap": 582, "to_list": 583, "to_native_shap": 584, "to_numpi": 585, "to_scalar": 586, "try_else_non": 587, "unset_array_mod": 588, "unset_exception_trace_mod": 589, "unset_inplace_mod": 590, "unset_min_bas": 591, "unset_min_denomin": 592, "unset_nestable_mod": 593, "unset_precise_mod": 594, "unset_queue_timeout": 595, "unset_shape_array_mod": 596, "unset_show_func_wrapper_trace_mod": 597, "unset_tmp_dir": 598, "value_is_nan": 599, "vmap": 600, "adam_step": 601, "adam_upd": 602, "execute_with_gradi": [603, 823], "grad": 604, "gradient_descent_upd": 605, "jac": 606, "lamb_upd": 607, "lars_upd": 608, "optimizer_upd": 609, "stop_gradi": 610, "value_and_grad": 611, "control": [614, 839], "flow": [614, 839], "op": 614, "depend": [631, 735, 736, 737, 738], "output": [631, 735, 736, 737, 738], "conv": 635, "conv1d": 636, "conv1d_transpos": 637, "conv2d": 638, "conv2d_transpos": 639, "conv3d": 640, "conv3d_transpos": 641, "conv_general_dil": 642, "conv_general_transpos": 643, "depthwise_conv2d": 644, "dropout": 645, "lstm_updat": 647, "multi_head_attent": 648, "nm": 649, "roi_align": 650, "scaled_dot_product_attent": 651, "choleski": 652, "cross": 653, "det": 654, "diag": 655, "diagon": 656, "eigh": 658, "eigvalsh": 659, "inner": 660, "inv": 661, "lu_factor": 662, "matmul": 663, "matrix_norm": 664, "matrix_pow": 665, "matrix_rank": 666, "matrix_transpos": 667, "outer": 668, "pinv": 669, "qr": 670, "slogdet": 671, "solv": 672, "svd": 673, "svdval": 674, "tensordot": 675, "tensorsolv": 676, "vander": 678, "vecdot": 679, "vector_norm": 680, "vector_to_skew_symmetric_matrix": 681, "binary_cross_entropi": 682, "cross_entropi": 683, "sparse_cross_entropi": 684, "clip": 685, "concat": 686, "constant_pad": 687, "expand_dim": 688, "flip": 689, "permute_dim": 690, "repeat": 691, "reshap": 692, "roll": [693, 815], "split": 694, "squeez": 695, "stack": [696, 817], "swapax": 697, "tile": 698, "unstack": 699, "zero_pad": 700, "fomaml_step": 701, "maml_step": 702, "reptile_step": 703, "all_nested_indic": 704, "copy_nest": 705, "duplicate_array_index_chain": 706, "index_nest": 707, "insert_into_nest_at_index": 708, "insert_into_nest_at_indic": 709, "map": [710, 812], "map_nest_at_index": 711, "map_nest_at_indic": 712, "multi_index_nest": 713, "nested_ani": 714, "nested_argwher": 715, "nested_map": 716, "nested_multi_map": 717, "prune_empti": 718, "prune_nest_at_index": 719, "prune_nest_at_indic": 720, "set_nest_at_index": 721, "set_nest_at_indic": 722, "layer_norm": 723, "multinomi": 724, "randint": 725, "random_norm": 726, "random_uniform": 727, "seed": 728, "shuffl": 729, "argmax": 730, "argmin": 731, "argwher": 732, "nonzero": 733, "where": [734, 803, 818], "unique_al": 735, "unique_count": 736, "unique_invers": 737, "unique_valu": 738, "argsort": 739, "msort": 740, "searchsort": 741, "cumprod": 743, "cumsum": 744, "einsum": [745, 791, 792], "max": 746, "mean": 747, "min": 748, "prod": 749, "std": 750, "sum": 751, "var": 752, "assert": [757, 784, 817], "avail": 758, "global": [760, 830], "hypothesi": [761, 804, 826, 828], "struct": 768, "flag": 769, "convert": [775, 838], "sequenti": 783, "ast": 786, "sub": 788, "binari": [789, 804], "parser": 791, "path": 792, "except": [793, 817, 822], "inspect": 794, "profil": 796, "verbos": 797, "statu": 798, "ai": 798, "start": [798, 840], "pip": [798, 840], "document": 798, "dive": [798, 806], "deeper": 798, "should": 798, "contribut": [798, 799, 803, 827], "commun": 798, "citat": 798, "doc": [800, 810], "docker": [800, 804, 805, 810, 840], "conveni": [800, 810, 821], "script": [800, 810], "hub": 800, "local": [800, 805, 819], "without": [800, 826], "error": [801, 817, 818], "handl": [801, 808, 814, 817, 822, 839], "help": [802, 805, 818], "resourc": 802, "open": 803, "task": 803, "fail": [803, 818, 828], "frontend": [803, 809, 825, 826, 838], "place": 803, "checklist": 803, "format": [803, 819, 853, 860], "extend": [803, 828, 831], "an": [803, 823], "issu": [803, 805, 819, 840], "github": [803, 804], "templat": 803, "fork": [804, 805], "pre": [804, 819], "commit": [804, 805, 812, 819], "pycharm": [804, 805, 819], "virtual": 804, "environ": 804, "miniconda": 804, "venv": 804, "interpret": 804, "window": 804, "maco": 804, "ubuntu": 804, "detail": 804, "free": 804, "wsl": 804, "codespac": 804, "The": [804, 805, 810, 823, 825, 835, 839, 844], "list": 805, "manag": 805, "who": 805, "ask": [805, 818], "With": 805, "command": 805, "pull": [805, 812], "request": [805, 812], "small": 805, "often": 805, "interact": 805, "most": 805, "out": [805, 820, 822, 824], "id": [805, 807], "deep": 806, "termin": 807, "regener": 807, "failur": 807, "skip": 807, "integr": [808, 812, 819, 827, 828], "version": [809, 829, 839], "support": [809, 813, 822, 825, 839], "builder": 810, "being": 810, "option": 810, "index": 810, "rst": 810, "partial_conf": 810, "py": 810, "prebuild": 810, "sh": 810, "extens": 810, "custom_autosummari": 810, "hide": 810, "discussion_link": 810, "skippable_funct": 810, "ivy_data": 810, "instanc": [811, 825, 826, 835], "method": [811, 825, 826, 835, 836], "special": [811, 813, 825], "nestabl": [811, 820, 821, 822], "continu": [812, 819], "push": 812, "pr": 812, "trigger": 812, "A": [812, 831], "down": 812, "view": [812, 822, 824], "store": 812, "retriev": 812, "repositori": 812, "nitti": 812, "gritti": 812, "storag": 812, "space": 812, "unifyai": 812, "determin": 812, "coverag": 812, "workflow": 812, "multipl": 812, "runner": 812, "race": 812, "condit": 812, "period": 812, "manual": 812, "dispatch": 812, "ci": 812, "dashboard": 812, "promot": [813, 825], "precis": 813, "non": [813, 831], "argument": [813, 814, 820, 822, 824, 825], "other": [813, 814], "unsupport": 813, "attribut": [813, 830], "case": [813, 836], "bug": 813, "cast": [813, 825], "superset": [813, 831], "docstr": [815, 816], "configur": [817, 826, 836], "func_wrapp": 817, "prune": 817, "handle_except": 817, "consist": [817, 828], "prerequir": 818, "common": [818, 819], "lint": [819, 827], "keyword": 820, "integ": 820, "primari": 821, "composit": 821, "mix": [821, 822, 828], "partial": [821, 822, 828], "order": 822, "wrapper": [822, 860, 861], "miscellan": 822, "overview": [823, 827], "usag": [823, 827, 831, 849], "signatur": 823, "design": [823, 829, 832], "our": 823, "polici": [823, 825], "specif": [823, 858, 859, 860], "consider": 823, "inplac": 824, "updat": 824, "copi": 824, "short": 825, "unus": 825, "rule": 825, "duplic": [825, 831], "valu": 826, "alia": 826, "formatt": 827, "functionorderingformatt": 827, "work": [827, 844, 850], "own": 828, "strategi": 828, "do": [828, 844], "effect": 828, "bonu": 828, "featur": 828, "self": 828, "explicit": 828, "test_array_funct": 828, "re": [828, 845], "navig": 829, "categor": 829, "submodul": 829, "unpin": 829, "properti": 830, "getter": 830, "setter": 830, "set_": 830, "unset_": 830, "behaviour": 831, "standard": [831, 844, 851, 860], "what": [831, 860], "balanc": 831, "effici": 831, "maxim": 831, "block": 833, "monkei": 835, "patch": 835, "represent": 836, "recurs": 836, "built": 836, "ins": 836, "access": 836, "compartment": 836, "role": 838, "faq": 839, "maintain": 839, "size": 839, "deploy": 839, "auto": 839, "differenti": 839, "replica": 839, "parallel": 839, "altern": 839, "sourc": 840, "folder": 840, "kei": 840, "question": 840, "glossari": 841, "motiv": 842, "explos": 843, "skeptic": 844, "complimentari": 844, "competit": 844, "infinit": 845, "shelf": 845, "life": 845, "One": 846, "liner": 846, "trace_graph": 847, "cach": 847, "sharp": [847, 848, 849], "bit": [847, 848, 849], "relat": 850, "infrastructur": [852, 860], "llvm": 852, "mlir": 852, "oneapi": 852, "exchang": [853, 860], "onnx": 853, "nnef": 853, "coreml": 853, "matlab": 854, "scipi": 854, "scikit": 854, "theano": 854, "panda": 854, "julia": 854, "apach": [854, 857], "spark": 854, "mllib": 854, "caff": 854, "chainer": 854, "mxnet": 854, "cntk": 854, "flux": 854, "dex": 854, "languag": 854, "tf": 855, "jaxpr": 855, "jit": 855, "fx": 855, "compani": [856, 860], "quansight": 856, "modular": 856, "octoml": 856, "multi": [857, 860], "vendor": [857, 858, 859, 860], "tvm": 857, "xla": 857, "gcc": 857, "tensorrt": 858, "cuda": 858, "icc": 859, "icx": 859, "nvcc": 859, "doe": 860, "eagerpi": 861, "kera": 861, "thinc": 861, "tensorli": 861, "neuropod": 861}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"is_complex_dtype": [[167, "is-complex-dtype"]], "dtype_bits": [[159, "dtype-bits"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "triu": [[141, "triu"]], "is_native_dtype": [[171, "is-native-dtype"]], "is_int_dtype": [[170, "is-int-dtype"]], "triu_indices": [[142, "triu-indices"]], "tril": [[140, "tril"]], "invalid_dtype": [[165, "invalid-dtype"]], "default_float_dtype": [[155, "default-float-dtype"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "promote_types": [[173, "promote-types"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "check_float": [[151, "check-float"]], "dtype": [[158, "dtype"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [615, null], [615, null]], "zeros_like": [[144, "zeros-like"]], "ones_like": [[138, "ones-like"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "astype": [[147, "astype"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "default_int_dtype": [[156, "default-int-dtype"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "is_float_dtype": [[168, "is-float-dtype"]], "result_type": [[175, "result-type"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "as_native_dtype": [[146, "as-native-dtype"]], "can_cast": [[150, "can-cast"]], "finfo": [[160, "finfo"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "iinfo": [[163, "iinfo"]], "broadcast_to": [[149, "broadcast-to"]], "zeros": [[143, "zeros"]], "set_default_dtype": [[177, "set-default-dtype"]], "default_dtype": [[154, "default-dtype"]], "Ivy Tests": [[828, "ivy-tests"], [812, "ivy-tests"]], "Testing Pipeline": [[828, "testing-pipeline"]], "Hypothesis": [[828, "id1"]], "Data Generation": [[828, "id2"]], "Writing your own strategy": [[828, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[828, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[828, "ivy-test-decorators"]], "Writing Ivy Tests": [[828, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[828, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[828, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[828, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[828, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[828, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[828, "self-consistent-and-explicit-testing"]], "test_array_function": [[828, "id4"]], "Running Ivy Tests": [[828, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[828, "re-running-failed-ivy-tests"]], "ML-Unifying Companies": [[856, "ml-unifying-companies"], [860, "ml-unifying-companies"]], "Quansight": [[856, "id1"]], "Modular": [[856, "id2"]], "OctoML": [[856, "id3"]], "Design": [[832, "design"]], "Related Work": [[850, "related-work"]], "FAQ": [[839, "faq"]], "Maintaining Backend Versions": [[839, "maintaining-backend-versions"]], "Dynamic Sizes": [[839, "dynamic-sizes"]], "Type and Shape Checking": [[839, "type-and-shape-checking"]], "GPU handling": [[839, "gpu-handling"]], "Model Deployment": [[839, "model-deployment"]], "Dynamic Control Flow": [[839, "dynamic-control-flow"]], "Auto-Differentiation": [[839, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[839, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[839, "support-for-functions"]], "Alternative Data Structures": [[839, "alternative-data-structures"]], "Custom Operations": [[839, "custom-operations"]], "The Pipeline": [[839, "the-pipeline"]], "State": [[839, "state"]], "Ivy Array": [[835, "ivy-array"], [808, "ivy-array"]], "The Array Class": [[835, "the-array-class"]], "Unifying Operators": [[835, "unifying-operators"]], "API Monkey Patching": [[835, "api-monkey-patching"]], "Instance Methods": [[835, "instance-methods"]], "Navigating the Code": [[829, "navigating-the-code"]], "Categorization": [[829, "categorization"]], "Submodule Design": [[829, "submodule-design"]], "Ivy API": [[829, "ivy-api"]], "Backend API": [[829, "backend-api"]], "Submodule Helper Functions": [[829, "submodule-helper-functions"]], "Version Unpinning": [[829, "version-unpinning"]], "Superset Behaviour": [[831, "superset-behaviour"]], "Extending the Standard": [[831, "extending-the-standard"]], "What is the Superset?": [[831, "what-is-the-superset"]], "A Non-Duplicate Superset": [[831, "a-non-duplicate-superset"]], "What is not the Superset?": [[831, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[831, "balancing-generalization-with-efficiency"]], "More Examples": [[831, "more-examples"]], "Maximizing Usage of Native Functionality": [[831, "maximizing-usage-of-native-functionality"]], "What does Ivy Add?": [[860, "what-does-ivy-add"]], "API Standards": [[860, "api-standards"], [851, "api-standards"]], "Wrapper Frameworks": [[860, "wrapper-frameworks"], [861, "wrapper-frameworks"]], "Frameworks": [[860, "frameworks"], [854, "frameworks"]], "Graph Tracers": [[860, "graph-tracers"], [855, "graph-tracers"]], "Exchange Formats": [[860, "exchange-formats"], [853, "exchange-formats"]], "Compiler Infrastructure": [[860, "compiler-infrastructure"], [852, "compiler-infrastructure"]], "Multi-Vendor Compiler Frameworks": [[860, "multi-vendor-compiler-frameworks"], [857, "multi-vendor-compiler-frameworks"]], "Vendor-Specific APIs": [[860, "vendor-specific-apis"], [858, "vendor-specific-apis"]], "Vendor-Specific Compilers": [[860, "vendor-specific-compilers"], [859, "vendor-specific-compilers"]], "One liners": [[846, "one-liners"]], "Ivy as a Transpiler": [[838, "ivy-as-a-transpiler"], [26, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[838, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[838, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[838, "converting-network-models"]], "Ivy Stateful API": [[837, "ivy-stateful-api"], [17, "Ivy-Stateful-API"], [26, "Ivy-Stateful-API"]], "Modules": [[837, "modules"]], "Initializers": [[837, "initializers"], [777, "module-ivy.stateful.initializers"]], "Optimizers": [[837, "optimizers"], [782, "module-ivy.stateful.optimizers"]], "Array API Standard": [[851, "id1"]], "Operating Modes": [[830, "operating-modes"]], "Global Parameter Properties": [[830, "global-parameter-properties"]], "Getter: ivy. attribute": [[830, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[830, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "Get Started": [[840, "get-started"]], "Installing using pip": [[840, "installing-using-pip"], [798, "installing-using-pip"]], "Docker": [[840, "docker"]], "Installing from source": [[840, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[840, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[840, "ivy-folder"]], "Setting Up the API key": [[840, "setting-up-the-api-key"]], "Issues and Questions": [[840, "issues-and-questions"]], "Apache TVM": [[857, "apache-tvm"]], "XLA": [[857, "xla"]], "GCC": [[857, "gcc"]], "ivy.trace_graph()": [[847, "ivy-trace-graph"]], "Tracer API": [[847, "tracer-api"]], "Using the tracer": [[847, "using-the-tracer"]], "Eager vs lazy Compilation": [[847, "eager-vs-lazy-compilation"]], "Array caching": [[847, "array-caching"]], "Generators": [[847, "generators"]], "Stateful": [[847, "stateful"]], "Sharp bits": [[847, "sharp-bits"], [848, "sharp-bits"], [849, "sharp-bits"]], "Examples": [[847, "examples"], [848, "examples"], [849, "examples"], [820, "examples"], [798, "examples"]], "LLVM": [[852, "id1"]], "MLIR": [[852, "id2"]], "OneAPI": [[852, "id3"]], "TensorRT tensorrt": [[858, "tensorrt-tensorrt"]], "CUDA cuda": [[858, "cuda-cuda"]], "Why Unify?": [[845, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[845, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[845, "infinite-shelf-life"]], "Standardization": [[844, "standardization"]], "Skepticism": [[844, "skepticism"]], "Complimentary vs Competitive": [[844, "complimentary-vs-competitive"]], "Do Standards Work?": [[844, "do-standards-work"]], "The Array API Standard": [[844, "the-array-api-standard"]], "ICC": [[859, "id1"]], "ICX": [[859, "icx"]], "NVCC": [[859, "nvcc"]], "ivy.transpile()": [[848, "ivy-transpile"]], "Transpiler API": [[848, "transpiler-api"]], "Using the transpiler": [[848, "using-the-transpiler"]], "Transpiling functions": [[848, "transpiling-functions"]], "Transpiling Libraries": [[848, "transpiling-libraries"]], "Transpiling Modules": [[848, "transpiling-modules"]], "ivy.unify()": [[849, "ivy-unify"]], "Unify API": [[849, "unify-api"]], "Usage": [[849, "usage"]], "EagerPy eagerpy": [[861, "eagerpy-eagerpy"]], "Keras keras": [[861, "keras-keras"]], "Thinc thinc": [[861, "thinc-thinc"]], "TensorLy tensorly": [[861, "tensorly-tensorly"]], "NeuroPod": [[861, "id1"]], "ONNX onnx": [[853, "onnx-onnx"]], "NNEF nnef": [[853, "nnef-nnef"]], "CoreML coreml": [[853, "coreml-coreml"]], "MATLAB matlab": [[854, "matlab-matlab"]], "SciPy scipy": [[854, "scipy-scipy"]], "Torch torch": [[854, "torch-torch"]], "NumPy numpy": [[854, "numpy-numpy"]], "SciKit Learn scikit-learn": [[854, "scikit-learn-scikit-learn"]], "Theano theano": [[854, "theano-theano"]], "Pandas pandas": [[854, "pandas-pandas"]], "Julia julia": [[854, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[854, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[854, "caffe-caffe"]], "Chainer chainer": [[854, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[854, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[854, "mxnet-mxnet"]], "CNTK cntk": [[854, "cntk-cntk"]], "PyTorch pytorch": [[854, "pytorch-pytorch"]], "Flux flux": [[854, "flux-flux"]], "JAX jax": [[854, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[854, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[854, "dex-language-dex-language"]], "Building Blocks": [[833, "building-blocks"]], "Backend Functional APIs \u2705": [[833, "backend-functional-apis"]], "Ivy Functional API \u2705": [[833, "ivy-functional-api"]], "Backend Handler \u2705": [[833, "backend-handler"]], "Tracer \ud83d\udea7": [[833, "tracer"]], "ML Explosion": [[843, "ml-explosion"]], "Ivy Container": [[836, "ivy-container"]], "Construction": [[836, "construction"]], "Representation": [[836, "representation"]], "Recursive Methods": [[836, "recursive-methods"]], "Built-ins": [[836, "built-ins"]], "Access": [[836, "access"]], "Saving and Loading": [[836, "saving-and-loading"]], "Comparisons": [[836, "comparisons"]], "Customized Representations": [[836, "customized-representations"]], "Use Cases": [[836, "use-cases"]], "Compartmentalization": [[836, "compartmentalization"]], "Configuration": [[836, "configuration"]], "Data loading": [[836, "data-loading"]], "Network weights": [[836, "network-weights"]], "tf.Graph": [[855, "tf-graph"]], "Jaxpr": [[855, "jaxpr"]], "torch.jit": [[855, "torch-jit"]], "torch.fx": [[855, "torch-fx"]], "Ivy as a Framework": [[834, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Motivation": [[842, "motivation"]], "Glossary": [[841, "glossary"]], "softmax": [[112, "softmax"]], "full_like": [[131, "full-like"]], "for_loop": [[117, "for-loop"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "sigmoid": [[111, "sigmoid"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "gelu": [[105, "gelu"]], "Factorized tensor": [[99, "factorized-tensor"]], "from_dlpack": [[128, "from-dlpack"]], "if_else": [[118, "if-else"]], "empty_like": [[126, "empty-like"]], "hardswish": [[106, "hardswish"]], "Array": [[97, "array"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [618, "elementwise"], [365, "elementwise"], [74, "module-ivy.data_classes.container.elementwise"], [51, "module-ivy.data_classes.array.elementwise"]], "Data classes": [[103, "data-classes"]], "log_softmax": [[108, "log-softmax"]], "try_except": [[119, "try-except"]], "one_hot": [[136, "one-hot"]], "linspace": [[132, "linspace"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [91, "module-ivy.data_classes.factorized_tensor.base"], [69, "module-ivy.data_classes.container.base"]], "eye": [[127, "eye"]], "full": [[130, "full"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "softsign": [[114, "softsign"]], "empty": [[125, "empty"]], "cmp_isnot": [[116, "cmp-isnot"]], "frombuffer": [[129, "frombuffer"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "Functions": [[104, "functions"]], "relu": [[110, "relu"]], "ones": [[137, "ones"]], "arange": [[121, "arange"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "cmp_is": [[115, "cmp-is"]], "array": [[122, "array"]], "logspace": [[133, "logspace"]], "meshgrid": [[134, "meshgrid"]], "leaky_relu": [[107, "leaky-relu"]], "Container": [[98, "container"]], "softplus": [[113, "softplus"]], "copy_array": [[124, "copy-array"]], "while_loop": [[120, "while-loop"]], "native_array": [[135, "native-array"]], "asarray": [[123, "asarray"]], "mish": [[109, "mish"]], "Nested array": [[100, "nested-array"]], "Ast helpers": [[786, "module-ivy.utils.backend.ast_helpers"]], "Gradients": [[823, "gradients"], [621, "gradients"], [367, "gradients"], [54, "module-ivy.data_classes.array.gradients"], [77, "module-ivy.data_classes.container.gradients"]], "Overview": [[823, "overview"], [827, "overview"]], "Example Usage of the Gradient API": [[823, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[823, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[823, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[823, "custom-gradient-functions"]], "Design of the Gradient API": [[823, "design-of-the-gradient-api"]], "Our policy on gradients": [[823, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[823, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[823, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[823, "framework-specific-considerations"]], "Error Handling": [[801, "error-handling"]], "Docstring Examples": [[815, "docstring-examples"]], "ivy.tan": [[815, "ivy-tan"]], "ivy.roll": [[815, "ivy-roll"]], "ivy.add": [[815, "ivy-add"]], "Backend Setting": [[809, "backend-setting"]], "Dynamic Backend Setting": [[809, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[809, "backend-and-frontend-version-support"]], "Docstrings": [[816, "docstrings"]], "Building the Docs": [[800, "building-the-docs"]], "Building the Docs using Docker": [[800, "building-the-docs-using-docker"]], "Using convenience script": [[800, "using-convenience-script"]], "Using existing image on Docker Hub": [[800, "using-existing-image-on-docker-hub"]], "Building the image locally": [[800, "building-the-image-locally"]], "Building the Docs without Docker": [[800, "building-the-docs-without-docker"]], "Formatting": [[819, "formatting"]], "Lint Checks": [[819, "lint-checks"], [819, "id2"]], "Setup Formatting Locally": [[819, "setup-formatting-locally"]], "Pre-commit": [[819, "pre-commit"]], "VS Code": [[819, "vs-code"]], "PyCharm": [[819, "pycharm"], [804, "pycharm"]], "Common Issues with Pre-Commit": [[819, "common-issues-with-pre-commit"]], "Continuous Integration": [[819, "continuous-integration"], [812, "continuous-integration"]], "Lint Formatting": [[819, "lint-formatting"]], "Function Arguments": [[820, "function-arguments"]], "Positional and Keyword Arguments": [[820, "positional-and-keyword-arguments"]], "Input Arrays": [[820, "input-arrays"]], "out Argument": [[820, "out-argument"]], "dtype and device arguments": [[820, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[820, "numbers-in-operator-functions"]], "Integer Sequences": [[820, "integer-sequences"]], "Nestable Functions": [[820, "nestable-functions"], [821, "nestable-functions"], [811, "nestable-functions"]], "Einsum parser": [[791, "module-ivy.utils.einsum_parser"]], "Binaries": [[789, "module-ivy.utils.binaries"]], "Einsum path helpers": [[792, "module-ivy.utils.einsum_path_helpers"]], "Function Wrapping": [[822, "function-wrapping"]], "Decorator order": [[822, "decorator-order"]], "Conversion Wrappers": [[822, "conversion-wrappers"]], "Inference Wrappers": [[822, "inference-wrappers"]], "Out Argument Support": [[822, "out-argument-support"]], "Nestable Support": [[822, "nestable-support"]], "Partial Mixed Function Support": [[822, "partial-mixed-function-support"]], "Shape Conversion": [[822, "shape-conversion"]], "View Handling": [[822, "view-handling"]], "Exception Handling": [[822, "exception-handling"], [817, "exception-handling"]], "Miscellaneous Wrappers": [[822, "miscellaneous-wrappers"]], "Inplace Updates": [[824, "inplace-updates"]], "out argument": [[824, "out-argument"]], "copy argument": [[824, "copy-argument"]], "Views": [[824, "views"]], "Profiler": [[796, "module-ivy.utils.profiler"]], "The Basics": [[805, "the-basics"]], "Getting Help": [[805, "getting-help"]], "ToDo List Issues": [[805, "todo-list-issues"]], "Managing Your Fork": [[805, "managing-your-fork"]], "Who To Ask": [[805, "who-to-ask"]], "With Command Line:": [[805, "with-command-line"]], "With Browser:": [[805, "with-browser"]], "Pull Requests": [[805, "pull-requests"]], "Small Commits Often": [[805, "small-commits-often"]], "Interactive Ivy Docker Container": [[805, "interactive-ivy-docker-container"]], "Running Tests Locally": [[805, "running-tests-locally"]], "With Docker": [[805, "with-docker"]], "Getting the most out of IDE": [[805, "getting-the-most-out-of-ide"]], "with PyCharm": [[805, "with-pycharm"]], "Open Tasks": [[803, "open-tasks"]], "Fixing Failing Tests": [[803, "fixing-failing-tests"]], "How to Contribute": [[803, "how-to-contribute"]], "Frontend APIs": [[803, "frontend-apis"]], "Where to place a frontend function": [[803, "where-to-place-a-frontend-function"]], "Frontend checklist": [[803, "frontend-checklist"]], "Function Formatting": [[803, "function-formatting"]], "Formatting checklist": [[803, "formatting-checklist"]], "Ivy Experimental API": [[803, "ivy-experimental-api"]], "Extending the Ivy API": [[803, "extending-the-ivy-api"]], "Where to place a backend function": [[803, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[803, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Assertions": [[784, "module-ivy.utils.assertions"], [757, "module-ivy_tests.test_ivy.helpers.assertions"]], "Status": [[798, "status"]], "Unified AI": [[798, "unified-ai"]], "Getting started": [[798, "getting-started"]], "Installing ivy": [[798, "installing-ivy"]], "Using Ivy": [[798, "using-ivy"]], "Documentation": [[798, "documentation"]], "Diving deeper": [[798, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[798, "when-should-i-use-ivy-as-a-transpiler"]], "Contributing": [[798, "contributing"], [799, "contributing"]], "Community": [[798, "community"]], "Citation": [[798, "citation"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[827, "ivy-lint-ivy-s-custom-code-formatters"]], "Existing Formatters": [[827, "existing-formatters"]], "FunctionOrderingFormatter": [[827, "functionorderingformatter"]], "How the Formatter Works:": [[827, "how-the-formatter-works"]], "Integration and Usage": [[827, "integration-and-usage"]], "Contribution": [[827, "contribution"]], "Round Up": [[827, "round-up"], [17, "Round-Up"], [22, "Round-Up"], [11, "Round-Up"], [32, "Round-Up"], [31, "Round-Up"], [18, "Round-Up"], [23, "Round-Up"], [28, "Round-Up"], [19, "Round-Up"], [21, "Round-Up"], [30, "Round-Up"], [40, "Round-Up"], [29, "Round-Up"], [13, "Round-Up"], [33, "Round-Up"], [27, "Round-Up"], [20, "Round-Up"]], "Ivy Frontends": [[825, "ivy-frontends"]], "Introduction": [[825, "introduction"], [826, "introduction"], [41, "Introduction"]], "The Frontend Basics": [[825, "the-frontend-basics"]], "Writing Frontend Functions": [[825, "writing-frontend-functions"]], "Short Frontend Implementations": [[825, "short-frontend-implementations"]], "Unused Arguments": [[825, "unused-arguments"]], "Supported Data Types and Devices": [[825, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[825, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[825, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[825, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[825, "frontends-duplicate-policy"]], "Sequential": [[783, "module-ivy.stateful.sequential"]], "Data Types": [[813, "data-types"]], "Data Type Module": [[813, "data-type-module"]], "Data Type Promotion": [[813, "data-type-promotion"]], "Precise Mode": [[813, "precise-mode"]], "Precise Promotion Table": [[813, "precise-promotion-table"]], "Non-Precise Promotion Table": [[813, "non-precise-promotion-table"]], "Arguments in other Functions": [[813, "arguments-in-other-functions"], [814, "arguments-in-other-functions"]], "Supported and Unsupported Data Types": [[813, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[813, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[813, "special-case"]], "Backend Data Type Bugs": [[813, "backend-data-type-bugs"]], "Data Type Casting Modes": [[813, "data-type-casting-modes"]], "Superset Data Type Support": [[813, "superset-data-type-support"]], "Exceptions": [[793, "module-ivy.utils.exceptions"]], "Array API Tests": [[807, "array-api-tests"], [812, "array-api-tests"]], "Running the Tests": [[807, "running-the-tests"]], "Using Terminal": [[807, "using-terminal"]], "Using the IDE": [[807, "using-the-ide"]], "Regenerating Test Failures": [[807, "regenerating-test-failures"]], "Test Skipping": [[807, "test-skipping"]], "Ivy Frontend Tests": [[826, "ivy-frontend-tests"]], "Frontend Test Examples": [[826, "frontend-test-examples"]], "ivy.tan()": [[826, "ivy-tan"]], "ivy.full()": [[826, "ivy-full"]], "Testing Without Using Tests Values": [[826, "testing-without-using-tests-values"]], "Alias functions": [[826, "alias-functions"]], "Frontend Instance Method Tests": [[826, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[826, "frontend-instance-method-test-examples"]], "ivy.add()": [[826, "ivy-add"]], "Hypothesis Helpers": [[826, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[826, "frontend-framework-testing-configuration"]], "Inspection": [[794, "module-ivy.utils.inspection"]], "Function Types": [[821, "function-types"]], "Primary Functions": [[821, "primary-functions"]], "Compositional Functions": [[821, "compositional-functions"]], "Mixed Functions": [[821, "mixed-functions"]], "Partial Mixed Functions": [[821, "partial-mixed-functions"]], "Standalone Functions": [[821, "standalone-functions"]], "Convenience Functions": [[821, "convenience-functions"]], "Ivy Exception Class": [[817, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[817, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[817, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[817, "handle-exceptions-decorator"]], "Consistency in Errors": [[817, "consistency-in-errors"]], "Assertion Function": [[817, "assertion-function"]], "Handler": [[787, "module-ivy.utils.backend.handler"]], "Containers": [[811, "containers"]], "Container Instance Methods": [[811, "container-instance-methods"]], "API Instance Methods": [[811, "api-instance-methods"]], "API Special Methods": [[811, "api-special-methods"]], "Setting Up": [[804, "setting-up"], [818, "setting-up"]], "Forking and cloning the repo": [[804, "forking-and-cloning-the-repo"]], "Pre-Commit": [[804, "pre-commit"]], "Virtual environments - No Docker": [[804, "virtual-environments-no-docker"]], "Using miniconda": [[804, "using-miniconda"]], "Using venv": [[804, "using-venv"]], "Docker Interpreter with PyCharm": [[804, "docker-interpreter-with-pycharm"]], "Windows": [[804, "windows"], [804, "id6"]], "MacOS": [[804, "macos"]], "Ubuntu": [[804, "ubuntu"], [804, "id8"]], "Setting Up Testing in PyCharm": [[804, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[804, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[804, "setting-up-for-free"]], "WSL": [[804, "wsl"]], "GitHub Codespaces": [[804, "github-codespaces"]], "The Binaries": [[804, "the-binaries"]], "Helpful Resources": [[802, "helpful-resources"]], "Dynamic import": [[790, "module-ivy.utils.dynamic_import"]], "Arrays": [[808, "arrays"]], "Native Array": [[808, "native-array"]], "Array Handling": [[808, "array-handling"]], "Integrating custom classes with Ivy": [[808, "integrating-custom-classes-with-ivy"]], "Deep Dive": [[806, "deep-dive"]], "Commit (Push/PR) Triggered Testing": [[812, "commit-push-pr-triggered-testing"]], "Implementation": [[812, "implementation"]], "A Top-Down View": [[812, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[812, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[812, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[812, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[812, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[812, "determine-test-coverage-workflow"]], "Multiple Runners": [[812, "multiple-runners"]], "Race Condition": [[812, "race-condition"]], "Periodic Testing": [[812, "periodic-testing"]], "Manually Dispatched Workflows": [[812, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[812, "ci-pipeline"]], "Push": [[812, "push"]], "Pull Request": [[812, "pull-request"]], "Dashboard": [[812, "dashboard"]], "Logging": [[795, "module-ivy.utils.logging"]], "Fix Failing Tests:": [[818, "fix-failing-tests"]], "Prerequirement:": [[818, "prerequirement"]], "How to run tests": [[818, "how-to-run-tests"]], "Common Errors": [[818, "common-errors"]], "Where to ask for Help": [[818, "where-to-ask-for-help"]], "Verbosity": [[797, "module-ivy.utils.verbosity"]], "Backend": [[785, "backend"]], "Devices": [[814, "devices"]], "Device Module": [[814, "device-module"]], "Device handling": [[814, "device-handling"]], "Building the Docs Pipeline": [[810, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[810, "how-the-doc-builder-is-being-run"]], "The convenience script": [[810, "the-convenience-script"]], "Options": [[810, "options"]], "The Docker image": [[810, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[810, "how-ivy-s-docs-is-structured"]], "index.rst": [[810, "index-rst"]], "partial_conf.py": [[810, "partial-conf-py"]], "prebuild.sh": [[810, "prebuild-sh"]], "Custom Extensions": [[810, "custom-extensions"]], "custom_autosummary": [[810, "custom-autosummary"]], ":hide-table:": [[810, "hide-table"]], "discussion_linker": [[810, "discussion-linker"]], "skippable_function": [[810, "skippable-function"]], "ivy_data": [[810, "ivy-data"]], "Sub backend handler": [[788, "module-ivy.utils.backend.sub_backend_handler"]], "repeat": [[691, "repeat"]], "stack": [[696, "stack"]], "reptile_step": [[703, "reptile-step"]], "permute_dims": [[690, "permute-dims"]], "map": [[710, "map"]], "argwhere": [[732, "argwhere"]], "seed": [[728, "seed"]], "tile": [[698, "tile"]], "zero_pad": [[700, "zero-pad"]], "map_nest_at_indices": [[712, "map-nest-at-indices"]], "random_uniform": [[727, "random-uniform"]], "swapaxes": [[697, "swapaxes"]], "maml_step": [[702, "maml-step"]], "random_normal": [[726, "random-normal"]], "map_nest_at_index": [[711, "map-nest-at-index"]], "multinomial": [[724, "multinomial"]], "duplicate_array_index_chains": [[706, "duplicate-array-index-chains"]], "randint": [[725, "randint"]], "nested_map": [[716, "nested-map"]], "nested_argwhere": [[715, "nested-argwhere"]], "prune_empty": [[718, "prune-empty"]], "squeeze": [[695, "squeeze"]], "split": [[694, "split"]], "unstack": [[699, "unstack"]], "shuffle": [[729, "shuffle"]], "where": [[734, "where"]], "insert_into_nest_at_index": [[708, "insert-into-nest-at-index"]], "index_nest": [[707, "index-nest"]], "set_nest_at_index": [[721, "set-nest-at-index"]], "nonzero": [[733, "nonzero"]], "prune_nest_at_index": [[719, "prune-nest-at-index"]], "argmin": [[731, "argmin"]], "nested_any": [[714, "nested-any"]], "roll": [[693, "roll"]], "argmax": [[730, "argmax"]], "multi_index_nest": [[713, "multi-index-nest"]], "layer_norm": [[723, "layer-norm"]], "prune_nest_at_indices": [[720, "prune-nest-at-indices"]], "insert_into_nest_at_indices": [[709, "insert-into-nest-at-indices"]], "set_nest_at_indices": [[722, "set-nest-at-indices"]], "unique_all": [[735, "unique-all"]], "Data-dependent output shape": [[735, null], [737, null], [738, null], [736, null], [631, null], [631, null], [631, null], [631, null]], "copy_nest": [[705, "copy-nest"]], "fomaml_step": [[701, "fomaml-step"]], "reshape": [[692, "reshape"]], "all_nested_indices": [[704, "all-nested-indices"]], "nested_multi_map": [[717, "nested-multi-map"]], "Layers": [[778, "module-ivy.stateful.layers"], [622, "layers"], [368, "layers"], [56, "module-ivy.data_classes.array.layers"], [79, "module-ivy.data_classes.container.layers"]], "Number helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "Testing helpers": [[770, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "Converters": [[775, "module-ivy.stateful.converters"]], "prod": [[749, "prod"]], "Dtype helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "Available frameworks": [[758, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "Function testing": [[759, "module-ivy_tests.test_ivy.helpers.function_testing"]], "msort": [[740, "msort"]], "sum": [[751, "sum"]], "min": [[748, "min"]], "Module": [[780, "module-ivy.stateful.module"]], "unique_inverse": [[737, "unique-inverse"]], "sort": [[742, "sort"]], "all": [[753, "all"]], "Helpers": [[776, "module-ivy.stateful.helpers"]], "searchsorted": [[741, "searchsorted"]], "Losses": [[779, "module-ivy.stateful.losses"], [624, "losses"], [370, "losses"], [81, "module-ivy.data_classes.container.losses"], [58, "module-ivy.data_classes.array.losses"]], "std": [[750, "std"]], "Structs": [[768, "module-ivy_tests.test_ivy.helpers.structs"]], "Norms": [[781, "module-ivy.stateful.norms"], [628, "norms"], [374, "norms"], [60, "module-ivy.data_classes.array.norms"], [83, "module-ivy.data_classes.container.norms"]], "cumsum": [[744, "cumsum"]], "max": [[746, "max"]], "unique_values": [[738, "unique-values"]], "Utils": [[772, "utils"]], "Framework classes": [[771, "framework-classes"]], "cumprod": [[743, "cumprod"]], "Hypothesis helpers": [[761, "hypothesis-helpers"]], "unique_counts": [[736, "unique-counts"]], "any": [[754, "any"]], "Array helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "Testing": [[773, "testing"], [40, "Testing"]], "argsort": [[739, "argsort"]], "var": [[752, "var"]], "General helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "Pipeline helper": [[767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "Multiprocessing": [[766, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "Activations": [[774, "module-ivy.stateful.activations"], [612, "activations"], [360, "activations"], [68, "module-ivy.data_classes.container.activations"], [46, "module-ivy.data_classes.array.activations"]], "Parameter": [[774, "parameter"], [774, "id1"], [575, "parameter"], [572, "parameter"], [574, "parameter"], [566, "parameter"], [565, "parameter"], [571, "parameter"], [617, "parameter"], [620, "parameter"], [620, "id1"], [620, "id2"], [620, "id3"], [620, "id4"], [620, "id5"], [205, "parameter"]], "einsum": [[745, "einsum"]], "load": [[755, "load"]], "Test parameter flags": [[769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "mean": [[747, "mean"]], "Globals": [[760, "module-ivy_tests.test_ivy.helpers.globals"]], "save": [[756, "save"]], "diagonal": [[656, "diagonal"]], "sparse_cross_entropy": [[684, "sparse-cross-entropy"]], "cross": [[653, "cross"]], "tensordot": [[675, "tensordot"]], "clip": [[685, "clip"]], "concat": [[686, "concat"]], "inv": [[661, "inv"]], "matrix_norm": [[664, "matrix-norm"]], "cross_entropy": [[683, "cross-entropy"]], "cholesky": [[652, "cholesky"]], "qr": [[670, "qr"]], "eigvalsh": [[659, "eigvalsh"]], "diag": [[655, "diag"]], "linear": [[646, "linear"]], "slogdet": [[671, "slogdet"]], "tensorsolve": [[676, "tensorsolve"]], "svdvals": [[674, "svdvals"]], "constant_pad": [[687, "constant-pad"]], "flip": [[689, "flip"]], "matrix_transpose": [[667, "matrix-transpose"]], "vander": [[678, "vander"]], "vector_norm": [[680, "vector-norm"]], "scaled_dot_product_attention": [[651, "scaled-dot-product-attention"]], "det": [[654, "det"]], "svd": [[673, "svd"]], "lu_factor": [[662, "lu-factor"]], "trace": [[677, "trace"]], "solve": [[672, "solve"]], "multi_head_attention": [[648, "multi-head-attention"]], "matmul": [[663, "matmul"]], "nms": [[649, "nms"]], "matrix_rank": [[666, "matrix-rank"]], "outer": [[668, "outer"]], "eigh": [[658, "eigh"]], "dropout": [[645, "dropout"]], "binary_cross_entropy": [[682, "binary-cross-entropy"]], "pinv": [[669, "pinv"]], "matrix_power": [[665, "matrix-power"]], "depthwise_conv2d": [[644, "depthwise-conv2d"]], "inner": [[660, "inner"]], "expand_dims": [[688, "expand-dims"]], "vector_to_skew_symmetric_matrix": [[681, "vector-to-skew-symmetric-matrix"]], "roi_align": [[650, "roi-align"]], "lstm_update": [[647, "lstm-update"]], "eig": [[657, "eig"], [420, "eig"]], "vecdot": [[679, "vecdot"]], "unset_precise_mode": [[594, "unset-precise-mode"]], "unset_array_mode": [[588, "unset-array-mode"]], "match_kwargs": [[559, "match-kwargs"]], "is_ivy_container": [[553, "is-ivy-container"]], "strides": [[580, "strides"]], "set_show_func_wrapper_trace_mode": [[575, "set-show-func-wrapper-trace-mode"]], "unset_queue_timeout": [[595, "unset-queue-timeout"]], "set_min_base": [[569, "set-min-base"]], "unset_exception_trace_mode": [[589, "unset-exception-trace-mode"]], "set_precise_mode": [[572, "set-precise-mode"]], "isscalar": [[557, "isscalar"]], "to_native_shape": [[584, "to-native-shape"]], "set_tmp_dir": [[576, "set-tmp-dir"]], "try_else_none": [[587, "try-else-none"]], "to_ivy_shape": [[582, "to-ivy-shape"]], "unset_min_denominator": [[592, "unset-min-denominator"]], "num_arrays_in_memory": [[561, "num-arrays-in-memory"]], "supports_inplace_updates": [[581, "supports-inplace-updates"]], "scatter_nd": [[564, "scatter-nd"]], "set_item": [[568, "set-item"]], "print_all_arrays_in_memory": [[562, "print-all-arrays-in-memory"]], "to_list": [[583, "to-list"]], "multiprocessing": [[560, "multiprocessing"]], "to_scalar": [[586, "to-scalar"]], "unset_nestable_mode": [[593, "unset-nestable-mode"]], "unset_show_func_wrapper_trace_mode": [[597, "unset-show-func-wrapper-trace-mode"]], "unset_shape_array_mode": [[596, "unset-shape-array-mode"]], "set_min_denominator": [[570, "set-min-denominator"]], "unset_min_base": [[591, "unset-min-base"]], "to_numpy": [[585, "to-numpy"]], "itemsize": [[558, "itemsize"]], "scatter_flat": [[563, "scatter-flat"]], "set_shape_array_mode": [[574, "set-shape-array-mode"]], "set_exception_trace_mode": [[566, "set-exception-trace-mode"]], "set_queue_timeout": [[573, "set-queue-timeout"]], "set_inplace_mode": [[567, "set-inplace-mode"]], "shape": [[577, "shape"]], "is_native_array": [[555, "is-native-array"]], "set_array_mode": [[565, "set-array-mode"]], "unset_inplace_mode": [[590, "unset-inplace-mode"]], "is_ivy_array": [[552, "is-ivy-array"]], "isin": [[556, "isin"]], "stable_divide": [[578, "stable-divide"]], "stable_pow": [[579, "stable-pow"]], "is_ivy_nested_array": [[554, "is-ivy-nested-array"]], "set_nestable_mode": [[571, "set-nestable-mode"]], "default": [[531, "default"]], "cummax": [[510, "cummax"]], "cummin": [[511, "cummin"]], "median": [[514, "median"]], "get_item": [[542, "get-item"]], "cov": [[509, "cov"]], "container_types": [[529, "container-types"]], "get_referrers_recursive": [[544, "get-referrers-recursive"]], "einops_reduce": [[533, "einops-reduce"]], "fourier_encode": [[536, "fourier-encode"]], "inplace_decrement": [[547, "inplace-decrement"]], "corrcoef": [[508, "corrcoef"]], "arg_names": [[523, "arg-names"]], "einops_rearrange": [[532, "einops-rearrange"]], "quantile": [[519, "quantile"]], "inplace_increment": [[548, "inplace-increment"]], "native_sparse_array_to_indices_values_and_shape": [[506, "native-sparse-array-to-indices-values-and-shape"]], "nanmin": [[517, "nanmin"]], "assert_supports_inplace": [[525, "assert-supports-inplace"]], "array_equal": [[524, "array-equal"]], "arg_info": [[522, "arg-info"]], "optional_get_element": [[520, "optional-get-element"]], "bincount": [[507, "bincount"]], "exists": [[535, "exists"]], "gather_nd": [[540, "gather-nd"]], "nanmean": [[515, "nanmean"]], "clip_matrix_norm": [[527, "clip-matrix-norm"]], "histogram": [[512, "histogram"]], "current_backend_str": [[530, "current-backend-str"]], "gather": [[539, "gather"]], "clip_vector_norm": [[528, "clip-vector-norm"]], "is_array": [[551, "is-array"]], "nanprod": [[518, "nanprod"]], "igamma": [[513, "igamma"]], "get_all_arrays_in_memory": [[541, "get-all-arrays-in-memory"]], "has_nans": [[545, "has-nans"]], "einops_repeat": [[534, "einops-repeat"]], "nanmedian": [[516, "nanmedian"]], "get_num_dims": [[543, "get-num-dims"]], "function_supported_devices_and_dtypes": [[537, "function-supported-devices-and-dtypes"]], "cache_fn": [[526, "cache-fn"]], "inplace_variables_supported": [[550, "inplace-variables-supported"]], "inplace_arrays_supported": [[546, "inplace-arrays-supported"]], "function_unsupported_devices_and_dtypes": [[538, "function-unsupported-devices-and-dtypes"]], "all_equal": [[521, "all-equal"]], "inplace_update": [[549, "inplace-update"]], "partial_vec_to_tensor": [[476, "partial-vec-to-tensor"]], "unique_consecutive": [[485, "unique-consecutive"]], "expand": [[460, "expand"]], "hsplit": [[467, "hsplit"]], "bernoulli": [[495, "bernoulli"]], "beta": [[496, "beta"]], "gamma": [[498, "gamma"]], "unravel_index": [[500, "unravel-index"]], "instance_norm": [[490, "instance-norm"]], "partial_fold": [[473, "partial-fold"]], "lexsort": [[502, "lexsort"]], "poisson": [[499, "poisson"]], "soft_thresholding": [[479, "soft-thresholding"]], "vstack": [[487, "vstack"]], "is_native_sparse_array": [[504, "is-native-sparse-array"]], "fill_diagonal": [[461, "fill-diagonal"]], "partial_unfold": [[475, "partial-unfold"]], "flipud": [[464, "flipud"]], "batch_norm": [[488, "batch-norm"]], "is_ivy_sparse_array": [[503, "is-ivy-sparse-array"]], "native_sparse_array": [[505, "native-sparse-array"]], "rot90": [[478, "rot90"]], "matricize": [[470, "matricize"]], "take_along_axis": [[481, "take-along-axis"]], "vsplit": [[486, "vsplit"]], "invert_permutation": [[501, "invert-permutation"]], "flatten": [[462, "flatten"]], "hstack": [[468, "hstack"]], "partial_tensor_to_vec": [[474, "partial-tensor-to-vec"]], "pad": [[472, "pad"]], "moveaxis": [[471, "moveaxis"]], "fliplr": [[463, "fliplr"]], "heaviside": [[466, "heaviside"]], "local_response_norm": [[493, "local-response-norm"]], "lp_normalize": [[494, "lp-normalize"]], "l2_normalize": [[492, "l2-normalize"]], "group_norm": [[489, "group-norm"]], "top_k": [[482, "top-k"]], "take": [[480, "take"]], "unfold": [[484, "unfold"]], "dirichlet": [[497, "dirichlet"]], "fold": [[465, "fold"]], "l1_normalize": [[491, "l1-normalize"]], "put_along_axis": [[477, "put-along-axis"]], "trim_zeros": [[483, "trim-zeros"]], "i0": [[469, "i0"]], "lars_update": [[608, "lars-update"]], "Manipulation": [[625, "manipulation"], [371, "manipulation"], [82, "module-ivy.data_classes.container.manipulation"], [59, "module-ivy.data_classes.array.manipulation"]], "Creation": [[615, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "Searching": [[630, "searching"], [376, "searching"], [62, "module-ivy.data_classes.array.searching"], [85, "module-ivy.data_classes.container.searching"]], "Linear algebra": [[623, "linear-algebra"], [369, "linear-algebra"], [80, "module-ivy.data_classes.container.linear_algebra"], [57, "module-ivy.data_classes.array.linear_algebra"]], "conv2d": [[638, "conv2d"]], "unset_tmp_dir": [[598, "unset-tmp-dir"]], "execute_with_gradients": [[603, "execute-with-gradients"]], "value_is_nan": [[599, "value-is-nan"]], "Statistical": [[633, "statistical"], [380, "statistical"], [88, "module-ivy.data_classes.container.statistical"], [65, "module-ivy.data_classes.array.statistical"]], "conv1d": [[636, "conv1d"]], "Random": [[629, "random"], [375, "random"], [84, "module-ivy.data_classes.container.random"], [61, "module-ivy.data_classes.array.random"]], "Sorting": [[632, "sorting"], [378, "sorting"], [87, "module-ivy.data_classes.container.sorting"], [64, "module-ivy.data_classes.array.sorting"]], "conv2d_transpose": [[639, "conv2d-transpose"]], "value_and_grad": [[611, "value-and-grad"]], "Data type": [[616, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [49, "module-ivy.data_classes.array.data_type"], [72, "module-ivy.data_classes.container.data_type"]], "Device": [[617, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [73, "module-ivy.data_classes.container.device"], [50, "module-ivy.data_classes.array.device"]], "conv1d_transpose": [[637, "conv1d-transpose"]], "Control flow ops": [[614, "control-flow-ops"]], "grad": [[604, "grad"]], "Experimental": [[619, "experimental"], [52, "module-ivy.data_classes.array.experimental"], [75, "module-ivy.data_classes.container.experimental"]], "Set": [[631, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [63, "module-ivy.data_classes.array.set"], [86, "module-ivy.data_classes.container.set"]], "conv3d_transpose": [[641, "conv3d-transpose"]], "adam_step": [[601, "adam-step"]], "optimizer_update": [[609, "optimizer-update"]], "lamb_update": [[607, "lamb-update"]], "conv_general_dilated": [[642, "conv-general-dilated"]], "conv_general_transpose": [[643, "conv-general-transpose"]], "General": [[620, "general"], [366, "general"], [76, "module-ivy.data_classes.container.general"], [53, "module-ivy.data_classes.array.general"]], "conv": [[635, "conv"]], "Nest": [[627, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "Meta": [[626, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "vmap": [[600, "vmap"]], "conv3d": [[640, "conv3d"]], "adam_update": [[602, "adam-update"]], "Constants": [[613, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "jac": [[606, "jac"]], "stop_gradient": [[610, "stop-gradient"]], "Utility": [[634, "utility"], [381, "utility"], [89, "module-ivy.data_classes.container.utility"], [66, "module-ivy.data_classes.array.utility"]], "gradient_descent_update": [[605, "gradient-descent-update"]], "soft_margin_loss": [[447, "soft-margin-loss"]], "make_svd_non_negative": [[429, "make-svd-non-negative"]], "mode_dot": [[431, "mode-dot"]], "concat_from_sequence": [[457, "concat-from-sequence"]], "cond": [[417, "cond"]], "higher_order_moment": [[424, "higher-order-moment"]], "kl_div": [[442, "kl-div"]], "dsplit": [[458, "dsplit"]], "atleast_2d": [[451, "atleast-2d"]], "atleast_3d": [[452, "atleast-3d"]], "dot": [[419, "dot"]], "adjoint": [[415, "adjoint"]], "batched_outer": [[416, "batched-outer"]], "huber_loss": [[441, "huber-loss"]], "tensor_train": [[437, "tensor-train"]], "tucker": [[440, "tucker"]], "log_poisson_loss": [[444, "log-poisson-loss"]], "atleast_1d": [[450, "atleast-1d"]], "initialize_tucker": [[425, "initialize-tucker"]], "kronecker": [[428, "kronecker"]], "column_stack": [[456, "column-stack"]], "associative_scan": [[449, "associative-scan"]], "poisson_nll_loss": [[445, "poisson-nll-loss"]], "solve_triangular": [[435, "solve-triangular"]], "eigvals": [[422, "eigvals"]], "choose": [[455, "choose"]], "khatri_rao": [[426, "khatri-rao"]], "l1_loss": [[443, "l1-loss"]], "broadcast_shapes": [[453, "broadcast-shapes"]], "diagflat": [[418, "diagflat"]], "eigh_tridiagonal": [[421, "eigh-tridiagonal"]], "truncated_svd": [[438, "truncated-svd"]], "tt_matrix_to_tensor": [[439, "tt-matrix-to-tensor"]], "check_scalar": [[454, "check-scalar"]], "general_inner_product": [[423, "general-inner-product"]], "dstack": [[459, "dstack"]], "partial_tucker": [[434, "partial-tucker"]], "kron": [[427, "kron"]], "stft": [[414, "stft"]], "matrix_exp": [[430, "matrix-exp"]], "multi_dot": [[432, "multi-dot"]], "svd_flip": [[436, "svd-flip"]], "smooth_l1_loss": [[446, "smooth-l1-loss"]], "multi_mode_dot": [[433, "multi-mode-dot"]], "as_strided": [[448, "as-strided"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "erfc": [[337, "erfc"]], "ldexp": [[345, "ldexp"]], "modf": [[348, "modf"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "gradient": [[342, "gradient"]], "xlogy": [[354, "xlogy"]], "binarizer": [[331, "binarizer"]], "count_nonzero": [[334, "count-nonzero"]], "zeta": [[355, "zeta"]], "digamma": [[336, "digamma"]], "hypot": [[343, "hypot"]], "allclose": [[328, "allclose"]], "conj": [[332, "conj"]], "trilu": [[323, "trilu"]], "reduce": [[356, "reduce"]], "frexp": [[341, "frexp"]], "diff": [[335, "diff"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "vjp": [[359, "vjp"]], "jvp": [[358, "jvp"]], "lerp": [[346, "lerp"]], "isclose": [[344, "isclose"]], "lgamma": [[347, "lgamma"]], "amax": [[329, "amax"]], "fix": [[338, "fix"]], "amin": [[330, "amin"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "tril_indices": [[322, "tril-indices"]], "sinc": [[352, "sinc"]], "nansum": [[349, "nansum"]], "fmax": [[340, "fmax"]], "signbit": [[351, "signbit"]], "float_power": [[339, "float-power"]], "vorbis_window": [[327, "vorbis-window"]], "nextafter": [[350, "nextafter"]], "copysign": [[333, "copysign"]], "dct": [[389, "dct"]], "pool": [[409, "pool"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "max_unpool1d": [[407, "max-unpool1d"]], "dft": [[390, "dft"]], "avg_pool2d": [[387, "avg-pool2d"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "dropout2d": [[392, "dropout2d"]], "idct": [[399, "idct"]], "ifft": [[400, "ifft"]], "sliding_window": [[413, "sliding-window"]], "max_pool1d": [[404, "max-pool1d"]], "ifftn": [[401, "ifftn"]], "max_pool3d": [[406, "max-pool3d"]], "interp": [[402, "interp"]], "fft": [[395, "fft"]], "dropout3d": [[393, "dropout3d"]], "reduce_window": [[410, "reduce-window"]], "rfft": [[411, "rfft"]], "avg_pool3d": [[388, "avg-pool3d"]], "area_interpolate": [[385, "area-interpolate"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "embedding": [[394, "embedding"]], "avg_pool1d": [[386, "avg-pool1d"]], "Sparse array": [[379, "sparse-array"]], "interpolate": [[403, "interpolate"]], "fft2": [[396, "fft2"]], "max_pool2d": [[405, "max-pool2d"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "dropout1d": [[391, "dropout1d"]], "rfftn": [[412, "rfftn"]], "relu6": [[297, "relu6"]], "blackman_window": [[306, "blackman-window"]], "trunc_divide": [[289, "trunc-divide"]], "round": [[278, "round"]], "kaiser_window": [[312, "kaiser-window"]], "random_parafac2": [[318, "random-parafac2"]], "remainder": [[277, "remainder"]], "silu": [[300, "silu"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "random_tucker": [[321, "random-tucker"]], "ndenumerate": [[314, "ndenumerate"]], "hann_window": [[309, "hann-window"]], "random_tr": [[319, "random-tr"]], "square": [[283, "square"]], "selu": [[299, "selu"]], "sqrt": [[282, "sqrt"]], "scaled_tanh": [[298, "scaled-tanh"]], "threshold": [[304, "threshold"]], "hamming_window": [[308, "hamming-window"]], "softshrink": [[301, "softshrink"]], "hardtanh": [[293, "hardtanh"]], "celu": [[290, "celu"]], "stanh": [[302, "stanh"]], "ndindex": [[315, "ndindex"]], "tan": [[285, "tan"]], "random_cp": [[317, "random-cp"]], "sin": [[280, "sin"]], "subtract": [[284, "subtract"]], "trapz": [[287, "trapz"]], "trunc": [[288, "trunc"]], "thresholded_relu": [[305, "thresholded-relu"]], "random_tt": [[320, "random-tt"]], "sinh": [[281, "sinh"]], "logit": [[294, "logit"]], "indices": [[310, "indices"]], "tanhshrink": [[303, "tanhshrink"]], "polyval": [[316, "polyval"]], "eye_like": [[307, "eye-like"]], "hardshrink": [[292, "hardshrink"]], "elu": [[291, "elu"]], "reciprocal": [[276, "reciprocal"]], "logsigmoid": [[295, "logsigmoid"]], "sign": [[279, "sign"]], "prelu": [[296, "prelu"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "tanh": [[286, "tanh"]], "logical_xor": [[265, "logical-xor"]], "greater_equal": [[247, "greater-equal"]], "exp2": [[239, "exp2"]], "isreal": [[252, "isreal"]], "logical_and": [[262, "logical-and"]], "gcd": [[245, "gcd"]], "divide": [[235, "divide"]], "expm1": [[240, "expm1"]], "less_equal": [[255, "less-equal"]], "bitwise_xor": [[230, "bitwise-xor"]], "lcm": [[253, "lcm"]], "less": [[254, "less"]], "logaddexp2": [[261, "logaddexp2"]], "greater": [[246, "greater"]], "erf": [[237, "erf"]], "floor": [[241, "floor"]], "exp": [[238, "exp"]], "pow": [[273, "pow"]], "log2": [[259, "log2"]], "cos": [[232, "cos"]], "real": [[275, "real"]], "fmin": [[243, "fmin"]], "fmod": [[244, "fmod"]], "log10": [[257, "log10"]], "isfinite": [[249, "isfinite"]], "log": [[256, "log"]], "logical_or": [[264, "logical-or"]], "maximum": [[266, "maximum"]], "nan_to_num": [[269, "nan-to-num"]], "logical_not": [[263, "logical-not"]], "isnan": [[251, "isnan"]], "logaddexp": [[260, "logaddexp"]], "negative": [[270, "negative"]], "rad2deg": [[274, "rad2deg"]], "equal": [[236, "equal"]], "ceil": [[231, "ceil"]], "multiply": [[268, "multiply"]], "isinf": [[250, "isinf"]], "positive": [[272, "positive"]], "minimum": [[267, "minimum"]], "not_equal": [[271, "not-equal"]], "floor_divide": [[242, "floor-divide"]], "deg2rad": [[234, "deg2rad"]], "log1p": [[258, "log1p"]], "cosh": [[233, "cosh"]], "imag": [[248, "imag"]], "split_factor": [[207, "split-factor"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "asin": [[220, "asin"]], "atanh": [[224, "atanh"]], "abs": [[215, "abs"]], "set_split_factor": [[206, "set-split-factor"]], "valid_dtype": [[187, "valid-dtype"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "as_native_dev": [[189, "as-native-dev"]], "atan2": [[223, "atan2"]], "gpu_is_available": [[197, "gpu-is-available"]], "acosh": [[217, "acosh"]], "bitwise_and": [[225, "bitwise-and"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "set_default_device": [[204, "set-default-device"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "default_device": [[191, "default-device"]], "dev_util": [[193, "dev-util"]], "acos": [[216, "acos"]], "add": [[218, "add"]], "angle": [[219, "angle"]], "split_func_call": [[208, "split-func-call"]], "tpu_is_available": [[211, "tpu-is-available"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "function_supported_devices": [[194, "function-supported-devices"]], "bitwise_or": [[228, "bitwise-or"]], "dev": [[192, "dev"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "to_device": [[209, "to-device"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "atan": [[222, "atan"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "bitwise_invert": [[226, "bitwise-invert"]], "asinh": [[221, "asinh"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "num_gpus": [[200, "num-gpus"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "unset_default_device": [[212, "unset-default-device"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "Wrapping": [[67, "module-ivy.data_classes.array.wrapping"], [90, "module-ivy.data_classes.container.wrapping"]], "Conversions": [[70, "module-ivy.data_classes.container.conversions"], [47, "module-ivy.data_classes.array.conversions"]], "Image": [[55, "module-ivy.data_classes.array.image"], [78, "module-ivy.data_classes.container.image"]], "Examples and Demos": [[2, "examples-and-demos"], [15, "examples-and-demos"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Ivy Backend Handler": [[17, "Ivy-Backend-Handler"], [26, "Ivy-Backend-Handler"]], "Data Structures": [[17, "Data-Structures"], [26, "Data-Structures"]], "Ivy Functional API": [[17, "Ivy-Functional-API"], [26, "Ivy-Functional-API"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Unify": [[22, "Unify"], [32, "Unify"], [31, "Unify"], [21, "Unify"], [33, "Unify"]], "Trace": [[22, "Trace"], [21, "Trace"]], "Transpile": [[22, "Transpile"], [32, "Transpile"], [31, "Transpile"], [21, "Transpile"], [33, "Transpile"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "Resnet 18": [[45, "Resnet-18"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Any function": [[26, "Any-function"], [27, "Any-function"]], "Any library": [[26, "Any-library"], [27, "Any-library"]], "Any model": [[26, "Any-model"], [27, "Any-model"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Imports": [[5, "Imports"], [9, "Imports"], [7, "Imports"]], "Data Preparation": [[5, "Data-Preparation"], [3, "Data-Preparation"], [7, "Data-Preparation"], [4, "Data-Preparation"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Load the image example \ud83d\uddbc\ufe0f": [[5, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [7, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[5, "Visualise-image"], [7, "Visualise-image"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Installs \ud83d\udcbe": [[38, "Installs-\ud83d\udcbe"], [39, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[38, "Imports-\ud83d\udec3"], [39, "Imports-\ud83d\udec3"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Define Model": [[38, "Define-Model"], [39, "Define-Model"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "Compile": [[32, "Compile"], [31, "Compile"], [33, "Compile"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Learn the basics": [[15, "learn-the-basics"], [16, "learn-the-basics"]], "Guides": [[15, "guides"], [10, "guides"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "Unify code": [[18, "Unify-code"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Transpile any library": [[23, "Transpile-any-library"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "0.0: Unify": [[28, "0.0:-Unify"]], "Trace code": [[19, "Trace-code"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Installation": [[3, "Installation"], [7, "Installation"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "0.1: Compile": [[29, "0.1:-Compile"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Transpile code": [[20, "Transpile-code"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [612, "module-ivy.functional.ivy.activations"], [613, "module-ivy.functional.ivy.constants"], [614, "module-ivy.functional.ivy.control_flow_ops"], [615, "module-ivy.functional.ivy.creation"], [616, "module-ivy.functional.ivy.data_type"], [617, "module-ivy.functional.ivy.device"], [618, "module-ivy.functional.ivy.elementwise"], [619, "module-ivy.functional.ivy.experimental"], [620, "module-ivy.functional.ivy.general"], [621, "module-ivy.functional.ivy.gradients"], [622, "module-ivy.functional.ivy.layers"], [623, "module-ivy.functional.ivy.linear_algebra"], [624, "module-ivy.functional.ivy.losses"], [625, "module-ivy.functional.ivy.manipulation"], [626, "module-ivy.functional.ivy.meta"], [627, "module-ivy.functional.ivy.nest"], [628, "module-ivy.functional.ivy.norms"], [629, "module-ivy.functional.ivy.random"], [630, "module-ivy.functional.ivy.searching"], [631, "module-ivy.functional.ivy.set"], [632, "module-ivy.functional.ivy.sorting"], [633, "module-ivy.functional.ivy.statistical"], [634, "module-ivy.functional.ivy.utility"], [757, "module-ivy_tests.test_ivy.helpers.assertions"], [758, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [759, "module-ivy_tests.test_ivy.helpers.function_testing"], [760, "module-ivy_tests.test_ivy.helpers.globals"], [761, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [766, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [768, "module-ivy_tests.test_ivy.helpers.structs"], [769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [770, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [774, "module-ivy.stateful.activations"], [775, "module-ivy.stateful.converters"], [776, "module-ivy.stateful.helpers"], [777, "module-ivy.stateful.initializers"], [778, "module-ivy.stateful.layers"], [779, "module-ivy.stateful.losses"], [780, "module-ivy.stateful.module"], [781, "module-ivy.stateful.norms"], [782, "module-ivy.stateful.optimizers"], [783, "module-ivy.stateful.sequential"], [784, "module-ivy.utils.assertions"], [785, "module-ivy.utils.backend"], [786, "module-ivy.utils.backend.ast_helpers"], [787, "module-ivy.utils.backend.handler"], [788, "module-ivy.utils.backend.sub_backend_handler"], [789, "module-ivy.utils.binaries"], [790, "module-ivy.utils.dynamic_import"], [791, "module-ivy.utils.einsum_parser"], [792, "module-ivy.utils.einsum_path_helpers"], [793, "module-ivy.utils.exceptions"], [794, "module-ivy.utils.inspection"], [795, "module-ivy.utils.logging"], [796, "module-ivy.utils.profiler"], [797, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [612, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [612, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [612, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [612, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [612, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [612, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [612, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [612, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [612, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [612, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [614, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [614, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [614, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [614, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [614, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [614, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [615, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [615, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [615, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [615, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [615, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [615, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [615, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [615, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [615, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [615, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [615, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [615, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [615, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [615, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [615, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [615, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [615, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [615, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [615, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [615, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [615, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [615, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [615, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [615, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [616, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [616, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [616, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [616, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [616, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [616, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [616, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [616, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [616, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [616, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [616, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [616, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [616, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [616, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [616, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [616, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [616, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [616, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [616, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [616, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [616, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [616, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [616, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [616, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [616, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [616, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [616, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [616, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [616, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [616, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [616, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [616, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [616, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [616, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [616, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [616, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [616, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [616, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [616, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [616, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [616, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [616, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [616, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [617, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [617, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [617, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [617, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [617, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [617, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [617, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [617, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [617, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [617, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [617, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [617, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [617, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [617, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [617, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [617, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [617, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [617, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [617, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [617, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [617, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [617, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [617, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [617, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [617, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [617, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [617, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [618, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [618, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [618, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [618, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [618, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [618, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [618, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [618, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [618, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [618, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [618, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [618, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [618, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [618, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [618, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [618, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [618, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [618, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [618, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [618, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [618, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [618, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [618, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [618, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [618, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [618, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [618, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [618, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [618, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [618, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [618, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [618, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [618, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [618, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [618, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [618, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [618, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [618, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [618, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [618, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [618, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [618, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [618, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [618, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [618, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [618, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [618, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [618, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [618, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [618, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [618, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [618, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [618, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [618, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [618, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [618, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [618, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [618, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [618, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [618, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [618, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [618, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [618, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [618, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [618, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [618, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [618, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [618, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [618, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [618, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [618, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [618, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [618, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [618, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [618, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [413, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [414, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [415, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [416, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [417, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [418, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [419, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [420, "ivy.eig"], [623, "ivy.eig"], [657, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [421, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [422, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [423, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [424, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [425, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [426, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [427, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [428, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [429, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [430, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [431, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [432, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [433, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [434, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [435, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [436, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [437, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [438, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [439, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [440, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [441, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [442, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [443, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [444, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [445, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [446, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [447, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [448, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [449, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [450, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [451, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [452, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [453, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [454, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [455, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [456, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [457, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [458, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [459, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [460, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [461, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [462, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [463, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [464, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [465, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [466, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [467, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [468, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [469, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [470, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [471, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [472, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [473, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [474, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [475, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [476, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [477, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [478, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [479, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [480, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [481, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [482, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [483, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [484, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [485, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [486, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [487, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [488, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [489, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [490, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [491, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [492, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [493, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [494, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [495, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [496, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [497, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [498, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [499, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [500, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [501, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [502, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [503, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [504, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [505, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [506, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [507, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [508, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [509, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [510, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [511, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [512, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [513, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [514, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [515, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [516, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [517, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [518, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [519, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [520, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[413, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[413, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[414, "ivy.Array.stft"]], "stft() (ivy.container method)": [[414, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[415, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[415, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[416, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[416, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[417, "ivy.Array.cond"]], "cond() (ivy.container method)": [[417, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[418, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[418, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[419, "ivy.Array.dot"]], "dot() (ivy.container method)": [[419, "ivy.Container.dot"]], "eig() (ivy.array method)": [[420, "ivy.Array.eig"], [657, "ivy.Array.eig"]], "eig() (ivy.container method)": [[420, "ivy.Container.eig"], [657, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[421, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[421, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[422, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[422, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[423, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[423, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[424, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[424, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[425, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[425, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[427, "ivy.Array.kron"]], "kron() (ivy.container method)": [[427, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[429, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[429, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[430, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[430, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[431, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[431, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[432, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[432, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[433, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[433, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[434, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[434, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[436, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[436, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[437, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[437, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[438, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[438, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[439, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[439, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[440, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[440, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[441, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[441, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[442, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[442, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[443, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[443, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[444, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[444, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[445, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[445, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[446, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[446, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[447, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[447, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[448, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[448, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[449, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[449, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[450, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[450, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[451, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[451, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[452, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[452, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[453, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[456, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[456, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[457, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[457, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[458, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[458, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[459, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[459, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[460, "ivy.Array.expand"]], "expand() (ivy.container method)": [[460, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[461, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[461, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[462, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[462, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[463, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[463, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[464, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[464, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[465, "ivy.Array.fold"]], "fold() (ivy.container method)": [[465, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[466, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[466, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[467, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[467, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[468, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[468, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[469, "ivy.Array.i0"]], "i0() (ivy.container method)": [[469, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[470, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[470, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[471, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[471, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[472, "ivy.Array.pad"]], "pad() (ivy.container method)": [[472, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[473, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[473, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[474, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[474, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[475, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[475, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[476, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[476, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[477, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[477, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[478, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[478, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[479, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[479, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[480, "ivy.Array.take"]], "take() (ivy.container method)": [[480, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[481, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[481, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[482, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[482, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[483, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[483, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[484, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[484, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[485, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[485, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[486, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[486, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[487, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[487, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[488, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[488, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[489, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[489, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[490, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[490, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[491, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[491, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[492, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[492, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[494, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[494, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[495, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[495, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[496, "ivy.Array.beta"]], "beta() (ivy.container method)": [[496, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[497, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[497, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[498, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[498, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[499, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[499, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[500, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[500, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[501, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[502, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[502, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[507, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[507, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[508, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[508, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[509, "ivy.Array.cov"]], "cov() (ivy.container method)": [[509, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[510, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[510, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[511, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[511, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[512, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[512, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[513, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[513, "ivy.Container.igamma"]], "median() (ivy.array method)": [[514, "ivy.Array.median"]], "median() (ivy.container method)": [[514, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[515, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[515, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[516, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[516, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[517, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[517, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[518, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[518, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[519, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[519, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[520, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[520, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[521, "ivy.all_equal"], [620, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[521, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[521, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[522, "ivy.arg_info"], [620, "ivy.arg_info"]], "arg_names() (in module ivy)": [[523, "ivy.arg_names"], [620, "ivy.arg_names"]], "array_equal() (in module ivy)": [[524, "ivy.array_equal"], [620, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[524, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[524, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[525, "ivy.assert_supports_inplace"], [620, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[525, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[525, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[526, "ivy.cache_fn"], [620, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[527, "ivy.clip_matrix_norm"], [620, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[527, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[527, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[528, "ivy.clip_vector_norm"], [620, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[528, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[528, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[529, "ivy.container_types"], [620, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[530, "ivy.current_backend_str"], [620, "ivy.current_backend_str"]], "default() (in module ivy)": [[531, "ivy.default"], [620, "ivy.default"]], "default() (ivy.array method)": [[531, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[532, "ivy.einops_rearrange"], [620, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[532, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[532, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[533, "ivy.einops_reduce"], [620, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[533, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[533, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[534, "ivy.einops_repeat"], [620, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[534, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[534, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[535, "ivy.exists"], [620, "ivy.exists"]], "exists() (ivy.array method)": [[535, "ivy.Array.exists"]], "exists() (ivy.container method)": [[535, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[536, "ivy.fourier_encode"], [620, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[536, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[536, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[537, "ivy.function_supported_devices_and_dtypes"], [620, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_unsupported_devices_and_dtypes"], [620, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[539, "ivy.gather"], [620, "ivy.gather"]], "gather() (ivy.array method)": [[539, "ivy.Array.gather"]], "gather() (ivy.container method)": [[539, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[540, "ivy.gather_nd"], [620, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[540, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[540, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[541, "ivy.get_all_arrays_in_memory"], [620, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[542, "ivy.get_item"], [620, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[543, "ivy.get_num_dims"], [620, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[543, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[543, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[544, "ivy.get_referrers_recursive"], [620, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[545, "ivy.has_nans"], [620, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[545, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[545, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[546, "ivy.inplace_arrays_supported"], [620, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[547, "ivy.inplace_decrement"], [620, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[547, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[547, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[548, "ivy.inplace_increment"], [620, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[548, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[548, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[549, "ivy.inplace_update"], [620, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[549, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[549, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[550, "ivy.inplace_variables_supported"], [620, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[551, "ivy.is_array"], [620, "ivy.is_array"]], "is_array() (ivy.array method)": [[551, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[551, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[552, "ivy.is_ivy_array"], [620, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[552, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[552, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[553, "ivy.is_ivy_container"], [620, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[553, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[554, "ivy.is_ivy_nested_array"], [620, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[555, "ivy.is_native_array"], [620, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[555, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[555, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[556, "ivy.isin"], [620, "ivy.isin"]], "isin() (ivy.array method)": [[556, "ivy.Array.isin"]], "isin() (ivy.container method)": [[556, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[557, "ivy.isscalar"], [620, "ivy.isscalar"]], "itemsize() (in module ivy)": [[558, "ivy.itemsize"], [620, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[558, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[558, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[559, "ivy.match_kwargs"], [620, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[560, "ivy.multiprocessing"], [620, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[561, "ivy.num_arrays_in_memory"], [620, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[562, "ivy.print_all_arrays_in_memory"], [620, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[563, "ivy.scatter_flat"], [620, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[563, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[563, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[564, "ivy.scatter_nd"], [620, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[564, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[564, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[565, "ivy.set_array_mode"], [620, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[566, "ivy.set_exception_trace_mode"], [620, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[567, "ivy.set_inplace_mode"], [620, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[568, "ivy.set_item"], [620, "ivy.set_item"]], "set_min_base() (in module ivy)": [[569, "ivy.set_min_base"], [620, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[570, "ivy.set_min_denominator"], [620, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[571, "ivy.set_nestable_mode"], [620, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[572, "ivy.set_precise_mode"], [620, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[573, "ivy.set_queue_timeout"], [620, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[574, "ivy.set_shape_array_mode"], [620, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[575, "ivy.set_show_func_wrapper_trace_mode"], [620, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[576, "ivy.set_tmp_dir"], [620, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[577, "ivy.shape"], [620, "ivy.shape"]], "shape() (ivy.array method)": [[577, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[578, "ivy.stable_divide"], [620, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[578, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[578, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[579, "ivy.stable_pow"], [620, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[579, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[579, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[580, "ivy.strides"], [620, "ivy.strides"]], "strides() (ivy.array method)": [[580, "ivy.Array.strides"]], "strides() (ivy.container method)": [[580, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[581, "ivy.supports_inplace_updates"], [620, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[581, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[581, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[582, "ivy.to_ivy_shape"], [620, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[583, "ivy.to_list"], [620, "ivy.to_list"]], "to_list() (ivy.array method)": [[583, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[583, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[584, "ivy.to_native_shape"], [620, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[585, "ivy.to_numpy"], [620, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[585, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[585, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[586, "ivy.to_scalar"], [620, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[586, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[586, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[587, "ivy.try_else_none"], [620, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[588, "ivy.unset_array_mode"], [620, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[589, "ivy.unset_exception_trace_mode"], [620, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[590, "ivy.unset_inplace_mode"], [620, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[591, "ivy.unset_min_base"], [620, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[592, "ivy.unset_min_denominator"], [620, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[593, "ivy.unset_nestable_mode"], [620, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[594, "ivy.unset_precise_mode"], [620, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[595, "ivy.unset_queue_timeout"], [620, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[596, "ivy.unset_shape_array_mode"], [620, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[597, "ivy.unset_show_func_wrapper_trace_mode"], [620, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[598, "ivy.unset_tmp_dir"], [620, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[599, "ivy.value_is_nan"], [620, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[599, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[599, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[600, "ivy.vmap"], [620, "ivy.vmap"]], "adam_step() (in module ivy)": [[601, "ivy.adam_step"], [621, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[601, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[601, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[602, "ivy.adam_update"], [621, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[602, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[602, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[603, "ivy.execute_with_gradients"], [621, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[604, "ivy.grad"], [621, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[605, "ivy.gradient_descent_update"], [621, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[605, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[605, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[606, "ivy.jac"], [621, "ivy.jac"]], "lamb_update() (in module ivy)": [[607, "ivy.lamb_update"], [621, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[607, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[607, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[608, "ivy.lars_update"], [621, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[608, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[608, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[609, "ivy.optimizer_update"], [621, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[609, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[609, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[610, "ivy.stop_gradient"], [621, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[610, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[610, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[611, "ivy.value_and_grad"], [621, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[612, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[613, "ivy.e"]], "inf (in module ivy)": [[613, "ivy.inf"]], "ivy.functional.ivy.constants": [[613, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[613, "ivy.nan"]], "newaxis (in module ivy)": [[613, "ivy.newaxis"]], "pi (in module ivy)": [[613, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[614, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[615, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[615, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[616, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[616, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[616, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[616, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[616, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[616, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[617, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[617, "ivy.Profiler"]], "ivy.functional.ivy.device": [[617, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[618, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[619, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[620, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[620, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[620, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[621, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[622, "ivy.conv"], [635, "ivy.conv"]], "conv1d() (in module ivy)": [[622, "ivy.conv1d"], [636, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[622, "ivy.conv1d_transpose"], [637, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[622, "ivy.conv2d"], [638, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[622, "ivy.conv2d_transpose"], [639, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[622, "ivy.conv3d"], [640, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[622, "ivy.conv3d_transpose"], [641, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[622, "ivy.conv_general_dilated"], [642, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[622, "ivy.conv_general_transpose"], [643, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[622, "ivy.depthwise_conv2d"], [644, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[622, "ivy.dropout"], [645, "ivy.dropout"]], "ivy.functional.ivy.layers": [[622, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[622, "ivy.linear"], [646, "ivy.linear"]], "lstm_update() (in module ivy)": [[622, "ivy.lstm_update"], [647, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[622, "ivy.multi_head_attention"], [648, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[622, "ivy.nms"], [649, "ivy.nms"]], "roi_align() (in module ivy)": [[622, "ivy.roi_align"], [650, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[622, "ivy.scaled_dot_product_attention"], [651, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[623, "ivy.cholesky"], [652, "ivy.cholesky"]], "cross() (in module ivy)": [[623, "ivy.cross"], [653, "ivy.cross"]], "det() (in module ivy)": [[623, "ivy.det"], [654, "ivy.det"]], "diag() (in module ivy)": [[623, "ivy.diag"], [655, "ivy.diag"]], "diagonal() (in module ivy)": [[623, "ivy.diagonal"], [656, "ivy.diagonal"]], "eigh() (in module ivy)": [[623, "ivy.eigh"], [658, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[623, "ivy.eigvalsh"], [659, "ivy.eigvalsh"]], "inner() (in module ivy)": [[623, "ivy.inner"], [660, "ivy.inner"]], "inv() (in module ivy)": [[623, "ivy.inv"], [661, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[623, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[623, "ivy.lu_factor"], [662, "ivy.lu_factor"]], "matmul() (in module ivy)": [[623, "ivy.matmul"], [663, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[623, "ivy.matrix_norm"], [664, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[623, "ivy.matrix_power"], [665, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[623, "ivy.matrix_rank"], [666, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[623, "ivy.matrix_transpose"], [667, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[623, "ivy.outer"], [668, "ivy.outer"]], "pinv() (in module ivy)": [[623, "ivy.pinv"], [669, "ivy.pinv"]], "qr() (in module ivy)": [[623, "ivy.qr"], [670, "ivy.qr"]], "slogdet() (in module ivy)": [[623, "ivy.slogdet"], [671, "ivy.slogdet"]], "solve() (in module ivy)": [[623, "ivy.solve"], [672, "ivy.solve"]], "svd() (in module ivy)": [[623, "ivy.svd"], [673, "ivy.svd"]], "svdvals() (in module ivy)": [[623, "ivy.svdvals"], [674, "ivy.svdvals"]], "tensordot() (in module ivy)": [[623, "ivy.tensordot"], [675, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[623, "ivy.tensorsolve"], [676, "ivy.tensorsolve"]], "trace() (in module ivy)": [[623, "ivy.trace"], [677, "ivy.trace"]], "vander() (in module ivy)": [[623, "ivy.vander"], [678, "ivy.vander"]], "vecdot() (in module ivy)": [[623, "ivy.vecdot"], [679, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[623, "ivy.vector_norm"], [680, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[623, "ivy.vector_to_skew_symmetric_matrix"], [681, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[624, "ivy.binary_cross_entropy"], [682, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[624, "ivy.cross_entropy"], [683, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[624, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[624, "ivy.sparse_cross_entropy"], [684, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[625, "ivy.clip"], [685, "ivy.clip"]], "concat() (in module ivy)": [[625, "ivy.concat"], [686, "ivy.concat"]], "constant_pad() (in module ivy)": [[625, "ivy.constant_pad"], [687, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[625, "ivy.expand_dims"], [688, "ivy.expand_dims"]], "flip() (in module ivy)": [[625, "ivy.flip"], [689, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[625, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[625, "ivy.permute_dims"], [690, "ivy.permute_dims"]], "repeat() (in module ivy)": [[625, "ivy.repeat"], [691, "ivy.repeat"]], "reshape() (in module ivy)": [[625, "ivy.reshape"], [692, "ivy.reshape"]], "roll() (in module ivy)": [[625, "ivy.roll"], [693, "ivy.roll"]], "split() (in module ivy)": [[625, "ivy.split"], [694, "ivy.split"]], "squeeze() (in module ivy)": [[625, "ivy.squeeze"], [695, "ivy.squeeze"]], "stack() (in module ivy)": [[625, "ivy.stack"], [696, "ivy.stack"]], "swapaxes() (in module ivy)": [[625, "ivy.swapaxes"], [697, "ivy.swapaxes"]], "tile() (in module ivy)": [[625, "ivy.tile"], [698, "ivy.tile"]], "unstack() (in module ivy)": [[625, "ivy.unstack"], [699, "ivy.unstack"]], "zero_pad() (in module ivy)": [[625, "ivy.zero_pad"], [700, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[626, "ivy.fomaml_step"], [701, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[626, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[626, "ivy.maml_step"], [702, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[626, "ivy.reptile_step"], [703, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[627, "ivy.all_nested_indices"], [704, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[627, "ivy.copy_nest"], [705, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[627, "ivy.duplicate_array_index_chains"], [706, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[627, "ivy.index_nest"], [707, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[627, "ivy.insert_into_nest_at_index"], [708, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[627, "ivy.insert_into_nest_at_indices"], [709, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[627, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[627, "ivy.map"], [710, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[627, "ivy.map_nest_at_index"], [711, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[627, "ivy.map_nest_at_indices"], [712, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[627, "ivy.multi_index_nest"], [713, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[627, "ivy.nested_any"], [714, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[627, "ivy.nested_argwhere"], [715, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[627, "ivy.nested_map"], [716, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[627, "ivy.nested_multi_map"], [717, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[627, "ivy.prune_empty"], [718, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[627, "ivy.prune_nest_at_index"], [719, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[627, "ivy.prune_nest_at_indices"], [720, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[627, "ivy.set_nest_at_index"], [721, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[627, "ivy.set_nest_at_indices"], [722, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[628, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[628, "ivy.layer_norm"], [723, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[629, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[629, "ivy.multinomial"], [724, "ivy.multinomial"]], "randint() (in module ivy)": [[629, "ivy.randint"], [725, "ivy.randint"]], "random_normal() (in module ivy)": [[629, "ivy.random_normal"], [726, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[629, "ivy.random_uniform"], [727, "ivy.random_uniform"]], "seed() (in module ivy)": [[629, "ivy.seed"], [728, "ivy.seed"]], "shuffle() (in module ivy)": [[629, "ivy.shuffle"], [729, "ivy.shuffle"]], "argmax() (in module ivy)": [[630, "ivy.argmax"], [730, "ivy.argmax"]], "argmin() (in module ivy)": [[630, "ivy.argmin"], [731, "ivy.argmin"]], "argwhere() (in module ivy)": [[630, "ivy.argwhere"], [732, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[630, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[630, "ivy.nonzero"], [733, "ivy.nonzero"]], "where() (in module ivy)": [[630, "ivy.where"], [734, "ivy.where"]], "ivy.functional.ivy.set": [[631, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[631, "ivy.unique_all"], [735, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[631, "ivy.unique_counts"], [736, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[631, "ivy.unique_inverse"], [737, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[631, "ivy.unique_values"], [738, "ivy.unique_values"]], "argsort() (in module ivy)": [[632, "ivy.argsort"], [739, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[632, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[632, "ivy.msort"], [740, "ivy.msort"]], "searchsorted() (in module ivy)": [[632, "ivy.searchsorted"], [741, "ivy.searchsorted"]], "sort() (in module ivy)": [[632, "ivy.sort"], [742, "ivy.sort"]], "cumprod() (in module ivy)": [[633, "ivy.cumprod"], [743, "ivy.cumprod"]], "cumsum() (in module ivy)": [[633, "ivy.cumsum"], [744, "ivy.cumsum"]], "einsum() (in module ivy)": [[633, "ivy.einsum"], [745, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[633, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[633, "ivy.max"], [746, "ivy.max"]], "mean() (in module ivy)": [[633, "ivy.mean"], [747, "ivy.mean"]], "min() (in module ivy)": [[633, "ivy.min"], [748, "ivy.min"]], "prod() (in module ivy)": [[633, "ivy.prod"], [749, "ivy.prod"]], "std() (in module ivy)": [[633, "ivy.std"], [750, "ivy.std"]], "sum() (in module ivy)": [[633, "ivy.sum"], [751, "ivy.sum"]], "var() (in module ivy)": [[633, "ivy.var"], [752, "ivy.var"]], "all() (in module ivy)": [[634, "ivy.all"], [753, "ivy.all"]], "any() (in module ivy)": [[634, "ivy.any"], [754, "ivy.any"]], "ivy.functional.ivy.utility": [[634, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[634, "ivy.load"], [755, "ivy.load"]], "save() (in module ivy)": [[634, "ivy.save"], [756, "ivy.save"]], "conv1d() (ivy.array method)": [[636, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[636, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[637, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[637, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[638, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[638, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[639, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[639, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[640, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[640, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[641, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[641, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[644, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[644, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[645, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[645, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[646, "ivy.Array.linear"]], "linear() (ivy.container method)": [[646, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[647, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[647, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[648, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[648, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[651, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[651, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[652, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[652, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[653, "ivy.Array.cross"]], "cross() (ivy.container method)": [[653, "ivy.Container.cross"]], "det() (ivy.array method)": [[654, "ivy.Array.det"]], "det() (ivy.container method)": [[654, "ivy.Container.det"]], "diag() (ivy.array method)": [[655, "ivy.Array.diag"]], "diag() (ivy.container method)": [[655, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[656, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[656, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[658, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[658, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[659, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[659, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[660, "ivy.Array.inner"]], "inner() (ivy.container method)": [[660, "ivy.Container.inner"]], "inv() (ivy.array method)": [[661, "ivy.Array.inv"]], "inv() (ivy.container method)": [[661, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[663, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[663, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[664, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[664, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[665, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[665, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[666, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[666, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[667, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[667, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[668, "ivy.Array.outer"]], "outer() (ivy.container method)": [[668, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[669, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[669, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[670, "ivy.Array.qr"]], "qr() (ivy.container method)": [[670, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[671, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[671, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[672, "ivy.Array.solve"]], "solve() (ivy.container method)": [[672, "ivy.Container.solve"]], "svd() (ivy.array method)": [[673, "ivy.Array.svd"]], "svd() (ivy.container method)": [[673, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[674, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[674, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[675, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[675, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[676, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[676, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[677, "ivy.Array.trace"]], "trace() (ivy.container method)": [[677, "ivy.Container.trace"]], "vander() (ivy.array method)": [[678, "ivy.Array.vander"]], "vander() (ivy.container method)": [[678, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[679, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[679, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[680, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[680, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[681, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[681, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[682, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[682, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[683, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[683, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[684, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[684, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[685, "ivy.Array.clip"]], "clip() (ivy.container method)": [[685, "ivy.Container.clip"]], "concat() (ivy.array method)": [[686, "ivy.Array.concat"]], "concat() (ivy.container method)": [[686, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[687, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[687, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[688, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[688, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[689, "ivy.Array.flip"]], "flip() (ivy.container method)": [[689, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[690, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[690, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[691, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[691, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[692, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[692, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[693, "ivy.Array.roll"]], "roll() (ivy.container method)": [[693, "ivy.Container.roll"]], "split() (ivy.array method)": [[694, "ivy.Array.split"]], "split() (ivy.container method)": [[694, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[695, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[695, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[696, "ivy.Array.stack"]], "stack() (ivy.container method)": [[696, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[697, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[697, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[698, "ivy.Array.tile"]], "tile() (ivy.container method)": [[698, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[699, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[699, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[700, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[700, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[723, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[723, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[724, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[724, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[725, "ivy.Array.randint"]], "randint() (ivy.container method)": [[725, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[726, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[726, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[727, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[727, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[729, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[729, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[730, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[730, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[731, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[731, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[732, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[732, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[733, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[733, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[734, "ivy.Array.where"]], "where() (ivy.container method)": [[734, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[735, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[735, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[736, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[736, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[737, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[737, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[738, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[738, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[739, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[739, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[740, "ivy.Array.msort"]], "msort() (ivy.container method)": [[740, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[741, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[741, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[742, "ivy.Array.sort"]], "sort() (ivy.container method)": [[742, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[743, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[743, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[744, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[744, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[745, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[745, "ivy.Container.einsum"]], "max() (ivy.array method)": [[746, "ivy.Array.max"]], "max() (ivy.container method)": [[746, "ivy.Container.max"]], "mean() (ivy.array method)": [[747, "ivy.Array.mean"]], "mean() (ivy.container method)": [[747, "ivy.Container.mean"]], "min() (ivy.array method)": [[748, "ivy.Array.min"]], "min() (ivy.container method)": [[748, "ivy.Container.min"]], "prod() (ivy.array method)": [[749, "ivy.Array.prod"]], "prod() (ivy.container method)": [[749, "ivy.Container.prod"]], "std() (ivy.array method)": [[750, "ivy.Array.std"]], "std() (ivy.container method)": [[750, "ivy.Container.std"]], "sum() (ivy.array method)": [[751, "ivy.Array.sum"]], "sum() (ivy.container method)": [[751, "ivy.Container.sum"]], "var() (ivy.array method)": [[752, "ivy.Array.var"]], "var() (ivy.container method)": [[752, "ivy.Container.var"]], "all() (ivy.array method)": [[753, "ivy.Array.all"]], "all() (ivy.container method)": [[753, "ivy.Container.all"]], "any() (ivy.array method)": [[754, "ivy.Array.any"]], "any() (ivy.container method)": [[754, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[757, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[757, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[758, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[759, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[759, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[760, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[760, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[760, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[760, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[760, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[761, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[762, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[766, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[766, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[766, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[767, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[767, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[768, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[768, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[769, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[769, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[770, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[770, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[774, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[774, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[774, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[774, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[774, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[774, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[774, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[774, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[774, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[774, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[774, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[774, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[774, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[774, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[774, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[774, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[774, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[774, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[774, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[774, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[775, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[775, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[775, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[775, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[775, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[776, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[776, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[777, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[777, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[777, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[777, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[777, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[777, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[777, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[777, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[777, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[777, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[777, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[777, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[777, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[777, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[777, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[777, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[778, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[778, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[778, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[778, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[778, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[778, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[778, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[778, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[778, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[778, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[778, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[778, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[778, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[778, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[778, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[778, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[778, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[778, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[778, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[778, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[778, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[778, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[778, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[778, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[778, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[778, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[778, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[779, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[779, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[779, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[779, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[779, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[780, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[780, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[780, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[780, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[780, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[780, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[781, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[781, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[781, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[781, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[781, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[782, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[782, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[782, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[782, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[782, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[782, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[782, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[782, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[782, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[782, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[782, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[782, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[782, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[782, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[782, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[782, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[783, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[783, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[783, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[784, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[784, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[785, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[786, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[786, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[786, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[786, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[786, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[787, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[787, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[787, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[788, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[788, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[789, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[789, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[789, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[790, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[790, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[791, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[791, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[792, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[792, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[793, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[793, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[793, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[793, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[793, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[793, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[793, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[793, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[793, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[793, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[793, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[793, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[793, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[793, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[793, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[793, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[793, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[793, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[793, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[793, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[793, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[793, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[793, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[793, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[793, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[793, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[794, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[794, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[794, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[795, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[795, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[795, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[796, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[796, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[796, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[796, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[796, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[797, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[797, "module-ivy.utils.verbosity"]], "automatic code conversions": [[841, "term-Automatic-Code-Conversions"]], "backend handler": [[841, "term-Backend-Handler"]], "compositional functions": [[841, "term-Compositional-Functions"]], "convenience functions": [[841, "term-Convenience-Functions"]], "framework": [[841, "term-Framework"]], "framework handler": [[841, "term-Framework-Handler"]], "graph compiler": [[841, "term-Graph-Compiler"]], "ivy array": [[841, "term-Ivy-Array"]], "ivy backends": [[841, "term-Ivy-Backends"]], "ivy compiler": [[841, "term-Ivy-Compiler"]], "ivy container": [[841, "term-Ivy-Container"]], "ivy frontends": [[841, "term-Ivy-Frontends"]], "ivy functional api": [[841, "term-Ivy-Functional-API"]], "ivy tracer": [[841, "term-Ivy-Tracer"]], "ivy transpiler": [[841, "term-Ivy-Transpiler"]], "mixed functions": [[841, "term-Mixed-Functions"]], "native array": [[841, "term-Native-Array"]], "nestable functions": [[841, "term-Nestable-Functions"]], "pipeline": [[841, "term-Pipeline"]], "primary functions": [[841, "term-Primary-Functions"]], "standalone functions": [[841, "term-Standalone-Functions"]], "submodule helper functions": [[841, "term-Submodule-Helper-Functions"]], "built-in function": [[847, "ivy.trace_graph"], [848, "ivy.transpile"], [849, "ivy.unify"]], "ivy.trace_graph()": [[847, "ivy.trace_graph"]], "ivy.transpile()": [[848, "ivy.transpile"]], "ivy.unify()": [[849, "ivy.unify"]]}}) \ No newline at end of file

    AJskZRS|>B-U}FBV=kEe;B8(W5;nftGq@3VMap=A-q$QUd8}^f{61 zT>%@!VAiuD8NKRG_JH>pUkkBJY=bwV4Y9#r(tm7&zdRR`F@Lpk;G$!Ebw;^c^_V(= zfZlOy;B`HqHhAHa9tZQ^tr8e)ssEglSpG6813CO2R*X7-PTo3?`avT2h#zDF^1Lor zE%2zi^#`evtP5*E3w7lwytHgr58S4jp-6d@WK=>PCG7k;OZRP3rmXBCb~1H4O5L8O zZbzy6lBwHK>JlS-P{6Xw~`#OOqJwH;TV)yr9%#qzcUMHZ{FUTg-;ge6(0^8MpP@qLd)Q=M8l>U*2 zE4btx$$oVM?R1%X&V;V~qfF?^I`ek84xWaMf0Xfj_m2`8HvCa6ddnYWKwtbJ)S^d~ zpeAH9va;@4KM+uW<@H5nJ+(f%5=FKy$)JdKE&QBjn?P0Fra@r2p4P(QWx$Vmadm$j zae_|`0fCbEV{nl^J@hZb#N;2v0K1uB18kU}MGk=2whYkg?*P;ys)`>kUt*vZ{3tJ# z7lV|!DXx+y6p2hZzDSVPFwj)(F-+| zh;((Jrrl$w|0s@vF}M#d9p?JJz@1iQ!jKn$&{mRW&UB((VxaIYH)wE|dt?#2 z2w?knfc3y_=C+M~qIKXQTwUBcP#-@;jAo3xW@Z=asJ0HD3k{#3{G)UiB;~qA*rZ?F zz*j$rO||>N-^U#XCuXdWTLucpf}kAY{s_KlV;o8->K*tplKPjwOYI(c291}?gi6b0 z&qWSS@MB;sEiSXP3-u=*0_|~?rNxgOx};s4=>#X`VI?RyDXnoWRh5Jhq2T2Hi(>8X zz35nbENc6xr||k1C5yUV6r=Ej&Ugqq=zXzx6XWz1ou}?}Q9_ePsETaDW7U`Our$i? z$#~P~Sa+l54Akb1=o&r)HS40Bfdb`0m*)Z;%YazPvVa_;z<+U!vMI7!b*kRlTae;l7tdDmn2C!Mh|-`FdG}7Am#+X6=;#-h956F>%(Sa z12xO^>+|dY+W%R4N#ccDy9Szj!Y;92rk_l{h=G83fqyc2aJPW@$z=RDR;>oxl&HKw zd`NV$0+%R;C=Eth53smn6# z{$v4i7j-DFqAttOTM9_`vM|atPwoiuc@LNYpwYw#`~DIiVXa0NcmyGZ(#2Q;bppzz z{pp0Bh&uK8=N*+tK5b1hZuu`vMTbDi&&*m4^|0pxE!A<;izf{f_8tl9LNQQm z@HPxuAOOnTleZJ3Iox4-Qg^5o_k&)v-oH?1bqbW!-Chjz z*OOmDzxI12An&49yduL5l#`;jgVF}uox1BQ=xet2^>zQjK<;pY~1__?5@5~2!Bc~$742;FsW8F8%M&}Vvsm{!$E5M}0C_b!=s$LPi>`(wM=zj1=tpi^jtn}#hdkfw+NHbhiVu@|DE0xCox3*u9F78I0X3l^H9A~vw_>=Mfp z8%01sKz^T@*^`_rJpKOeKYP!X*_qkhnc3NvWTmM?HEFB_6Ap-O#ChTSj5eckJfF@w z!0J>rKOma0ljNmuXu>wQ5||YsuD`q&+7_kYCT$=4Mh)9P`ArnyMF&Iyo==sSRl2$N zg%i+Zh{yvmq6Iho7SMtPYSsbKeh{&5fU4o37aFoAp6Lz;US z4naMs+8q?5D)%6FtWAs1;hYD;x2XXKr5E%)D7~uqpjcHC4vO1nTunUpsOwGq^qP3K ztI7?Wdk;!)dRX#V_v)&L!fn*k_#}rAl6hkds^L!fhAH-{DfW>m_No;7#uP)cUyOTU zE@(GQFFGi_FzS%>!dklcalaRSu@uhw6W|VQBhNi3-7xE5pc`guVg-9|S{#!8`13OK z$0Djg`eSS0K;D}P{|>Ljx^@1O5UlLAFM1@rQRN&GhkPGSV26D1A?}Msx@x@`V4D3n z#~+7UEPB%S%#S@JHqTgH{uuQ4Rfj~(PA53>io-Obq)^>@NIGl_fQ{&|-Kn0&CAHCE z0gSa2LRQ^lb>?!|{`h2}J4Tn$=g33iobUOdlc9fG9==C^{&WORPZ^w^BAkpJwgn*J z+o5|Co(vDPa6K_0wf&H&=^#>Uh8d*l0x3XaGmN3-@`)m~`;gu^GAS8n%&N)!uRuI_ z8ZzlrQ78yem#>5;MbN7los<_9`rXp!-fX9-5auDV zet<1oKM0wHPwB}|ho>ogG7F!qW??xj*nr)`L&;hLyC>&4-<}=tyVyJk+2)ymkQRc^ z|6Od^^B76%GQDchQifJ8SfX;j-Y%2g_OJ^nk(cb#I47IllwdF!>1SGa` z44n)KIMD+E0L2sA<-d#99pBt_5Hj5ZDodXWud>wo-&yGT$j}1t0A2J#xNp?E;CaGU zFIT-EnT4j$Zxcf4dfpA;2C=4ciUx4Dboxnh-oI6Y>fX5Kz1p+%@t1wx?Kiwb$h@m} zSa{dqu=p0E4~y{;K748qBty|hm>xiafkE5@C^lu<92Tw6_AvJq)!KmSa`^8@7=tqG z11x6W(8Iz$f=wIG5HkBvJ?j)g)Fi#Te7B2gX17 z24)|YS=?QRYlO&UYMH_O5rg@|2J@%?0du;yaLHlW?Y{_R$Sk@GFlc2OHL_#iBd)O^ zI#6LYAB|E!qElF$T~$|o$zKjNsr$f+uFL2(hJpuU{X&U6X4kE zgRzPFy*I<%u-a4uu>6QDB|jqB@kuA8EZosab@EdNh-3BC_lOut?LeVXPkoMvdinsx zXu;uqgtXwW?`13|uiOUx^bVLn`UwQGv!D%f$Z>&l-i9@C=!mGL&2NW?#r7eUdO!W1pikh7M8V@_W7Jw5zFs=H=~6Ny zGSm|rAC;b%a#S{sa1R0+>{4nQ!9&j3dXV*D_@gLnB-RhE z$7M(8Dp%>RKML2;`lIlA%+(0(h2tBfSC)SqF12v~Fw?P*Ea%67KRqbDOb`A~cnJ2W zP}2NOu(#JAmG*x>kQ;HlpWsW$MlW4a6m1z^28@2kZFMI;3HP&puL1L$0aII7eGx8< z`t7L2=jG_);IG0%6q2bp>YwvjcqE?ZsQL^&w&fpEcNZ>1pZttQe<_1cQzrY1@GzL$ zT;?28=5j8BNpb3z;ntYaay3ZwvE=O%3#ClCDf5WbgHI-JtrVh9LmFFO_ffYHlXvM+ z)4l&N-5a65o~BprqVD|%cW>)Hy?<9YS>1iq@7?EBg*&K2e@O4%P!;YIyOiKc@1BFM zMn)IC&Q&@7oA3Y&eH`R*A9rGB*W^3~)XDwT=$Om|8Xn_5I~(k#n{RNa?<`&NgRfn( zj)`VQ$SR@un5cx_$HaW-smp$l$ufk>wEx1Df9Q|DbZApI%@YU;34eqM*WuQ6`v;JO z54IRu5GX9Cp$77KeeeUAp`ZBK$K(cs2}0I$_ah`5VZkx65$086q8`H2F0^4Rhzk2e z3@S9X0ET@c2-#A20pQ3|SZ4^s%hf(%cn09Fgt4&@35|^ff=XWSPe35uG>mU17$Ir9 zs2h%1mDn`4#!`EZ$sEl9i4l}|zt}r_!#V2DWBQN1;Wm8Nby&71hfH2_=^Q8Yu%ti1 ziS`?pqEQdq4cAulGU3dmmO5j9c$Plr09ZNoP`EiBMJPK4HQ(g8EPE6lm*tsmy7V_} zEa{9-I&{DL4%w(0Ksb>2y50n;8r>WlxLim5TmD^2!~N$)dB2)X`<^K z#K=WnR*UHfX?GwRoVUPyb})RWe(I2qSk2GuR)dgx$tHCb{&ec_G2w542A zVbD(pGY*{)e+WETb!@p-uj)i~)oexP!UUm>nyvo~)SHDDtn5qmqWWkxT3!nEq*T!y zv-QCG_7K(cPigILe~L}e`p;^(yixubMyp@qsBDzKjH_b*N?b%THUjsm9oD}#upd`9 z{wZFShz$C?DGhD?bI4w&W=VP|n6AHzwLe$-G$|Dg?H|>Xe@2M7d@$xQU|)S=!Z3{D zkLmI8_Fin!9+qGi_;Rir5;p013HBZ8V*%x-bVSMrdSoMek@_~Wk}j0OENP;a&$h_Oj2uby1iUCN~qjnMj z%Uta=!HXj|=h%bzbE(}PZbSY+^y2g)yvCx-&T%}IZY^Bv z3{)wWUc21xqO!2b=&$6FMHUKzf)mlsz&b#AJG+O~Q*Uo)7Z6+~n(85??Y56K<;fUBmOYodwkBgN>OxEDV`P3?7x*1`K~3qwOkP)Xg5Qnkb$Bk=?#ty7K!wE8Q+iFz%|j zxjW$#&5ey2ySm#QB05e0VLG1B9y#kcZB!oM7C2cdUHR2*?_m#AQ%rT21gp!^eb2Yg z)F1T(>Sf5E;kA#unKFpFMOV;q7uaVv%+Fmgb3xgHn-{b~MK>cO(Rzca=n|<&U4yiEKOVFPa2HN~?kops7 zTnh2~2bkEy8Ehp}QlYY=^!{%>x*E7TC!&`1baEgwDT-Y=maVM|At-nYEFk0`vrCP_wiw@vLix1G-zr_@I>YoQ!|b#5Ps1^|GY0zh_P0?Y zu@SPwK8A0S*e9e0ezoT);z+1P!_h%PZ8gC9GMmj}g8~U{z~Lc?kmc96x*={ZQ1nT? zau=$h5%^`42yD65;FU2Xu*dp171S1-5VF)BR9mF>5WQ?H+HRnpHrg(<#^~Zve?f+w z#ReG?)&+X)DBD(m!?Jp6ZI;!zG7xZNLFRIXrEWS6Wjuin0;{b_e07a%f z6vtE}WU32v)foFQMHAIlKGkAW6(}zwAzLukr#Y`1?r1e6zideU(2$IK7KvnB?n@+p z{r4o3V8pxgL^9xTa~=j1V%@zldbCd5;ltdv4oAP8zEsa z*e7H(F4pxX+3)(E_YGfr&2)=P>_Jwlo^TmDExX^{y12$R&A8tuPquG>iHTJ6R&ZOL zajBgPujSB7VY!tAQu=d>YF$?^%kp|y=TlOlbzXHW3)mZL3aD%AikybBMo#)<39BUw zx!dt1chy}+Mw6oy|9Nko3n~pmv+IhGT~}9x?DK#^Lbm9BXM$dQ1%&J~h=Gt*plkmi z+f#{keJML|s@+a~j^s^FEB*LXyGJOS0E=V|SMHk%8yGWfW(}_cKYOLUo;GM)WlzG; zp?H?3zf-BS$v}nW>BU#u7weJJ(Ot+`ii(d`dfD9}2hXvVUuP%k{ONWx6(6nhw>hc$ zs_AxDl^x9^2pOu%>;ib~OK&n_0kehT+w2y4@-_BZddhVMr0O3n_E&$Me*>D0w!MMT zrPqSG3DGnvtZ@VbJ4&NvJbzBz!uaah6ZV@BN{hDuM&lM<^l4>wQv|@W69UGi&#AZ! zz207^7nA{)^jNQjWl&i}s9;k+NSO)K?HNSF6tq?e9L2idKQqQw$i z1b3$0Uwss<_dnz$tDQm+Zk8s3cAbVGzL7E#Q29eHona#G(Bd&BTIbwsXR1F078dXT z3$k_DOuIuUfKzbcI1*r0Yd0xs5n6I>F_wbpI!cV0?YG#Ct;Tx)ZD<45h{-Wx_q93= zWIosy2{iwGFG+#ygdt7`RfNs1?>R1>k*?LqOnOypt-aR z_U|HT%SC!&8Ajdlm)&VI)~s@nfmIGwPb%jIJ^n8E)9Rx$l3gDy4B*Xnzmqh{RtM^esd zs!6Qp4`os{stxvY(@dmoJswr9^|V>&gk9>LI;w&=la_3Wl2A2PGb&;(OG~UL>IRjv zx*2aO9ami`tDC`d?2&3Z^1`sUrs+@Spvr0W@D2>F{K~rr-T1D0BrkIK-6~|*QDJ-Y z$KQ}*!D^|lYn;@DyUR;<4zvv?fJW(Mp00%MBE9oDrkji?jLi|PB ze)rj*z&OXf%I8{Y2X0LwH0vjKA@?L>LdVN?)zhWVVKRp8 zIuBr=thp_tabzm13s+Kkg$@@Lvt5sptTggCjhEg%;Hre+5+BZk$+AjyOUIx9yf zEQF52ojVJmLV=-A?bmw7LVGB7V{BiDwx5iWq$=_%>??3N*3t?)4^I_=o0xgl^L0c| zZFf@hkdt)8Qf;3R`!&H69kC7MPPMU0@mAy3mHijl!z^ntp<#R`Z`I_isBe5GPg8n9 zy%qJjpS^{i1QQ(lwiEQ!?Ts4DpPCu1$G1;!ttTykfF1S#W;*nm=N6Dn!xJHmCkuDx zEwNKDOJ|m{?D-5?$Qs{`eKBN>&qEEq$mh;!upw(4VAxbcNaH4IOMNxpYSxOtvmLV; z)xaFbnf)0{p?y~T%N}caI&T>q5#a`c2|^y(ZSc(_qybxFt?@}%bZKyUEJ6kgGQ-1q z*P|G`fW*deSby`d-5vKIWGqEJjR3zIh1L4TWxnpa$RL1_CDkn`4&RNMfp~I0++;AA z-9W@tkPj@T3OsOy&92RHDbqMG5NV`fQw9E2tNnOA?mD4j_y8B#0*W!|?`w_hB(*hXijo z#9}H*XFg|q{!K!sZwDWBa{9!hG>NKME++Rn9tXZ~dni=QqG~`$D()BZD`ru3&y)7! z`uGa84O_-%Q>qA-xAavj>{;sUkVxXu0oeTzM=q7+hCsT@0OO;&WIZvF??#p6eh4O2 z7Cr^-rYZmd{)f0=666qB&y{PRwqq>y=;?D@J}faSv@IwQ@>knk?3aPJ2)|e89}B-% zLM;4Z%w=V7Rc=~sV>^X8#M1UzXbip9UZ!@2L=b)uVlTxyjieXUuOShHKN8)!*jF>` zIlHH-6RXRva=KX95U`Gv0*S}(Lu@arG?V5+YDrEijbsx($t z4YUViLYYu$=MqTvMF1tAso#afOujN!oX1yCE&dMPb#?-ss$OU3sSkiR8OiU2d;wVW zB1Ypv6eIV;!!N@9@Ew5_0r)<$ll!5^OK?A^hp^WK&d9j;YBDT|6}hLLiIontIu?b~ zCclS%DS~f^90y{e*HBg%|6**QPsSR4)p;oLdcn_Nyq^R z+qF1sw!v8h0(1wk}uZ)C`zK~gSRuYFY@C0vUxFe;ACJT)ec<>iPtJ>ebL zRB@+}!)AIAPMjvI)}Yi@FC851!N8fi1ykXh3|iM2wC+3=Ej~gU369NAP{`)zLk6#< zg4crv(u)5RVz7?GDo*Jg_ciDq^(y`(%x&PPEe5Mi2G)CEVzQH|mzFhX6uYpd<*=YU zZBr;Ul4n&|uwF*NrjVimdJDUHjXB*R4#omgq2 z#sxU`Bz0{lo}}&st^@~m2o|rs_HTGf1G6J32rEt;Nd%0nTukBKgT2I8A|s9!HbPb- z2#ea=spcZMt4z*M~knsN>Zf zF8<6oY^+T(a@dSsjR!vwU!-ftK!1>qvR>kvcw$`H&>!rqE$9-?s2vT-^PJ@3Asc2A zUUnmf56i1h4FBt(<})jXCOTyDc0)a3nCB@9X(j1ULzWOY@5#V$R>0>tX48KK#%53? zFw0JH2^font;`HwZ?8lY>A$BS_{cMq6EET`D?Wmv7eBG5=;uH6^~zUWh! zn%(uXAH+IWg#bZLr>uBUe@_wXvST43tILE$^IeLZr1^qLl?Oh258 zNM`vz$bTm{{-;_^+CaE zcl)_Nz!OxA7;?8Sr$$Lu%ixeP?)Dckn_9ZtuFb~-CIbK|yUTY&*}X^=h_ZVW1e3Ch z{gHg_R}ntO*ZxRNrl|>f-*Rsf){rQfN5LHl0FgHN5wMcxln*6Hmt86V*m!>saimXH zB#5~-8AT%WnyG>G+9Kp7C+5Ng>QC9=5BJov1d@eK`0!I`Dpe^R@ew`sSGy~oND_4M z)NpJt754`J;@Oo^d+cOOeFIpqt0Ie^yBA)^M}vGeo$Dwe$qxknLI1dO{gDvSxrpY~ zc9FhtpS=xJ$GrW(1b2k*KMKx~v$1x3BUNjD=Hvb3a;S+1?DOI0<78eSZ>g<=FrS+0 zyn~RZy*Y*Ffjt{ZM=7nztPsaD!Sf^=ZPi3n)%WO|O&dvfq3R4@nlzH`GNX}LL^o4a zFt=ycw)t5a?H-0%bc4ihx-up~#iLHLjp{eze&gQ_(wy!FX&Q4$9v$?31US%4vFQ=J zFt!QRCVeLsWieB%EI(qOXW>`_NGu42YSN$7`G3HvxQP;EMSVRbrcDlk0^d-&=>)tr zf0!xZe;SFcgpeiSUVOt=!hUpSA9X7nj3=5{0UZMznif6+un|4WAVEC~pjgWwWG#b` zO(yy#cgjb?4Bpef1MFLB%U-QP$`N0uYLzHRA*9I}o;k=kX*X8A5KVKl9*OMFvT*Gy zc>{yE@YKxULS_>n@YD<;lXn3?5P26ZT;r6eiTI-NGBxq3yxTG;Q03}l&E29QUQeRAxUmvU2#gm<| zULWnW*SXP7p8g{mt-{l?RLUpPAfz9TcE+kyOcBX|@&Jiyh{3n1fmef{q|RqbG!msW z5Lrnn1(S5=dd`<>3<}e1ESSBe*7v*KcF0AVzUtLX}$BXVOZ{bRW?H7P=Fpx3k9 z7}vmo%Sm4M%9`yo(`g~6p1v>SoUdjjiDsIa#15!+l+-{!HYp`h*Nt;-Q%fOc;EGZY z0z0TD@{A@pNNebvsn(ga=Md6->Ww5(S@`Dp)JI7?pHlcH@!^-{=T?3-d4CMTEm3vC zQXTvk3^Fk+Ao0y0Gs6NB-z>?6&3~76GhEZ#&}(rx;(5mFGMf7-f=cZ zT^cqMwA;hnsbXe?Q6O!y*1KG%Qayy&W#}jmgn3|F59rOQjyW&(4Dcjh|8q#A(Y*#C z1|_^k+moGw1{VU5FKPI|*i8hvaS2HpfTPjvgX8;+cA_{<_C5*o%;+P5roI8gNN@$g zu^|@;jy?X2-C*@cSSP&YW~k!=>4udNgekem9sr;E z{}P`Al#4q#IeNzE+A&IpdH$gmps^tgb?0=aT+eEXaaWXvxyiiWq8!!97LkZ>+2_ew z@|4w3Tkp698;(kKej3EtVB{fjHuiKF^1^|^kmMNvv1CM;Kr_m#Y}me7IG8T5rWshb z3akje@tiUe6cYDyp9+b|Eema8DtMu4B@HivSX{>i;*NMUNjO+xy%n=sP zbcDrs2@SkPbGxCT-1&PR)8rL!n8yfN#XgC$q+(YFc(UBUd;T;$p-~tzZN~8Q+O|%H z0yt*L+rkojGE1m7>RXrT8F|i7%Ecs4M&&exU!e2yopJh$d_yt0y`v5~vUI8rn%w&( zclCffznwEjKiVE;c&XKM%~GqUd$e~hQl3kd6kvlT)j_3LmzV227|v=2hBhg^n=#Z$ zjgN3et(LkX0ij^XUcb~8xpbM!a_JI$(pbILJ++qvIYQIu3!(6!$0q_XZ#Musrb5!P z*vJ4;k{@?lPz4wrxdJ$dj$BFqSVyjOSx5TIF#|h0J7H62c5$w;^wqt=gZF1UIZ>Oz zgDH&wiN*$XM8hsz(*xV-x_MGfXN06x2bx@+@p38VD`Py-fJkNy2w*h-Q`1bb z%S^FbO)g2rM&hWY|>3NFZblwEq_y_*ghf3W6uPmw5-hG^Yu^&>+qEa`Y zB$@T=`#94r^_eIB&-FDK{^J?-y2q2w^|QyFYdv}o?Y+9BzjL-e`wTSR)FDP=MAb<) zy||7}Jj3a)>LklhQOVMcPl7?DZK}?27VG6hgJp45<(dJGji9{L8DRCpZY?JT#|kD4 zF*3Lh+>z9KhbN1C*a38cN;+h4r;P!*I-`VPS!X&$3XV)xGgAmyiJD{pU6U-sAOa9Q znHU6=%&tqpDoqa?8=I%@0|KN0=Lxub47djbTqpqUW4RMH5+2ENz>6Q^bX3n6%$^fa zYYeCj{{yqQ2uQMSu5#h67f_)_-CB>|xGJSXu=q(pbw|dxh_~ zwFP`v(J5>h;Wn`RvDp1vCq6i;AjDnVGLvVO! zn#wY;I;H$Q-x-$SJ7Z<|J`^|@%fkmb*nk`>ApbY-4NT_!UgkZ#AdDbv4U(2ksjK=$cILgTq7 zpz_=^E>-59_!c_>wLvKo;_T18`dsH>OEpVnIpPl?(yhqAzT8X4J1s*6sgNPj;}%S^ z@4?J)tJhd{j4VNW-P)zf?rwt(MXgCOUfritf|6vFzI!6r$veBpqzWeyGAE~|GAGrQ zh$kEWa)cy5ZUP~H?aDz`lJ)}(>&#T!!saq^)h<9$vhOQWS&!atAT3QjwIj2AZxA<- zn2mtQY<$765#P*4gv>^Sy#Ir~so#u5)ui|#F>()zp2Yv`i89{piT2+QifIzR zhnSl-83LNMe@vPfMfLTxNlppej|o>f;!(l7W;`(oj^-fZNnn9OY4X*b1aPtd_5d-m z08lB-P_nkZ0~HX*{fMd0~9q_~J=c$5z-++cf|^PRdIa4@@1jLbj^FilVUII&sW zhM*!g=F7uCRLqy9^pDM#rMMk3u;rT=Os>J)E1Y-yDSnHo&U@C2gjHibuMEE5=PUE4 zIgeU+#)dK7wKt(Lk(jHtrpcxf94sUf*je~pbrKsXwHk}_6HX$)Prww@>NW_kcULSLbky&(}gQ(2+4G7n=al9e6#nWyD5k7 zK)FP{;uh>&8zq@>-$lx;m;+s4U=6Ry%Ld!?HJ$g(G%?ujNEc5>8LFvv)z>R?64Wh- zAy3EiY2xWvljeImUMd3}%aKg>Sok)lTkM+zSnRQ9kexQ<%)HIHLaj*`KgTQAH|{C^ zyeq_oMvnnl7- z=_1H}NoPT}8=oW+e+Rwfs928NzDdRMz(A(C`*+Ao@}LTkNgixZmqGe&IteOq-m9m< zPuiySOpswRu)||VvAq9d^bw;13utAN*h(`=_}RL=~MUHuHh zrmvhBy)$%#h*mcm{VfBxjamumU8H$c-l3%QYam_x;B}`%s{LZ?b)eVzj&AfPwZQLqj(M zQ1g-yi1LM6DN2#|EGbj^R6=I8_v}g)hY#vbJy8=m&I&UkT=;EuS%s4iJHHe1QNMa& zzB43LO2DOGb*qeD;H7qergXbbK*8^J?5!9=I5jRIOCBItPa=jm z#U@0S1&OfKDO7E6@}34$5E$?C4Fba}jI<*Hh`~oBFVCyKP4u{%?F`jlz~Q-N0#_>F zLIH5Wy}pq^d9UyHXtV0QzUmUt2CG?JDo`&LsMAjemECob0NL>bEP12Fy-lPU=L)Df z0&4MT=%rSSWM1*3!aSa;03aJZ-)B~|bte!PxG}%^OJmM_%z01`Sb@fz``^Yba4MfI zpQZH$$m;KVXF%}cK+g@z&n~u83k_~hX@kSa_$@&HeCKVx@viG7a znX+?*)Hw#!;?t1I8XyuBlL}C5%C0t~;+sf?M>u1()0B{AOBNxw>JZdSmMq95OIDo^ z!9xmUI9i>oyrG$5#r_0h$%_4)1+)CLM-O&3ud zLtfHbM*yCx{Q+p1YT1r0V7R>6o!`u_neEsYo`oNxuT(qlvP?(yY9=7^n^l7#`&4y@ z5G1YFEhy5B*1H@q#hko?{;}4(LKi<@qxCjE@9guf$j@JJ*5DaNrj!<$tvf2WRyva` z>tTv3R7;w%k%L#L@F^z=5k+-kQ32%_8jxB%|S5boNm?)W-x6_&nifwC3 zD8!LE#Fi4yM$6lXVslJ4lf|Svi1#u-sAwkY@Z9F&6T>S*R39&I<7~`$y<(%&2#4i3 zmc3wifGX0Bw>I-lt#dXxy{$66bdxhHwt_&5GAu(z7+Dnu6SDQ1_6hYW=WTYbv#i;K zR~x;iUtF~A{+jb{)LqR*OM>r|Lg&O|9&FCNqe8FQ;w;slzmCB={&lB$)C4|5ruf%&l0;f)5uwz$gv>KMWxN#<763`2VH4o6_Z&~9wqSwgwjhC4sQ16; zbcle$(kuw2Id9~`?(Dp6PG{Avg$Of1WnqSpC8c)oX@aL^8Ql8_Dhqb^3N^7~#(XZDI=%XwtT;^xHdpN`EnwB4kQy zx0GhBt0#PJnpLTmqFmxzitzqxqx$5MM+b12T!bvVTcIp1b7TuVmW3@0yn>b@3xn`j z78>>$cuY0m@jAyqf+JT*BZ_IJD#@*bkfk_%lRx6e8lu@B@iaAgQ$6*Am>3JafF$bT z<}Ao@?F>W3n5lPLOBplGWcu--!T+HE{tp=ZpZEv->4wG%t$gX9OaEBbK0kI>g7SSt306~-YHs8gwVu{gHes%8EyB@0@ ztp^n(w4+b0p3Rb3{jtIB+KNgiTJPKA#6_*iGBdKRSz-Xap2dR(nDdP6&|c>*y>*{2 zW4_LU^hvfYaD=vZ9|m1Cr8$}h$EM=!Q{lVyr=v6eU10%?O$1Hw?{NTkB>2NiV4e z_`yGrY+y0TgkH6&vD?s%NTz$X(2dWG?danOneMwH=+3F@KCX3)Pj^C&G&4e`J1a+; zxi#XcnOo}OdTycBK_|qxk*&hUqal~J+b8I<7}r(+#Ag8p=g18}Lvy%=OBjwiE9cba z2 z@f`SfLm|F1mq0!UfeN2&Jt53*=oM7c$EMRx5nQ~K^E!kXSun3c*3k)se7!lzm0h&C zZG1Jr^WZbui0wC!a+rB=Kg5y$c0`*~nyUpmMv};NMt??4X>uMmfVYDVomp`4H9~)H0 zW|8GJ)F89sE%cA=qAhJA_K09wTu&df-5>n9anD;CHqdh_a0=(W3^!Kycik&-83!|i zFMs&7jee`r*-WVo_12@&i8|*2JlAybY{%1o&T*1-!(_L!g{%C*KAx%W1HQDq@)umA z=_cwM?}ZN!XUCeGxU*t^CeUKh>_o=EOgX0V z{Y>|I%X*dYGBf3yo4W5tZOk<@<^M>^((~Pz=v?l(KkI$X+@(6D1%~s|=5F(-J;=*5 zghE7kU#0@tOi_ zwIE2o@;?YtPsoP+1jHI|?lo=Mn`>QH1MzBu4qWz@51@CD7gOv9^D5( zB<+KEumLKgD2KAG!Iq-YZIDiQ1^H=y6jY_oJJh-l?wsFyqi2w9^g=E?jSyWH~8$_aVW z%ISHhwlZ5S1}!o)0D@Z?A#3nXc|v6u0+m(KBBrTjp!Lo>wSn1eiG;>FoDhTAfhYlWC*XSiZ++1}{zL0a30X4B26sb6Cqn^>z&5zp|6v;-#Jq_@p;#Sc= zR&lFv${G6z{PoURMJ~_%7lm7EJb%1Wy$R?zvW7#wxAt;z|KV5pGX4DwSdgaLsfYG~ z-SoSO{!OA|cA|pm6DL1~$AnXC-DyI-IKAsnHw`CqOZ&Qos(w3J9^IKQ8xP?8>FbK~ zxJgYCO~vs_LUmH1B%#iR{oOOIQ49+!n8gF!Z0myRe2A%ihT91@kWoo_X<&FeUA!|b z7sd=t;_=uZp@Cy%Ty!yKtT>4qklTr_TOKHSS9MWdcz=!BNOaxD`J(H#wv$ED*HM}l z-uc1%M@!rU^(ta$rSvthhvxGe@=u-5-#W-`q<%(5n##XC$Q>U0F;yWtZxagAEdI8^ zZlS($uv-Fa0jTpyIa~iR*nKl<}R|LG7g7}J$y!=OU;^|7L3ReJ_RtML2V$w@kg zk_+l3QA*lmP{5X4ZhIM&d6a4_xg5l?0&6eb`{#Bw3XHqAfle!tt=j9&-(}?DZY%EH zN$vIiHI1|Bs;laCcp$(&sZBxtnT~lGu#t{=IsM~~d3pPYj@f90yS+Bu9x%W3R&&0s z$7nZ3KQ_|+HTWM?Zz47|X z^W1n`{>rhko&oBp2j9}(x6(GX^Ro4OBi!hy1Cw9So5#DC#8yxZW?2LIspBrqs++C5 zO>}Q(&(r)j*7DcAYGVO!6p5QrQ{#&wY1`vPG3<`?%~Q!$;N0f=cQ(y)L1BDZPO zPr%}`Z<11V>IH79zV#xvK2^b!!XJnq^xmNQ4khR+-1v)K9KgQx5+A9qsFjdH$kxJ{ z9c2DH67jUIP-?I`uY;HiL9EzZFj$d)2Qb)NK*&?zYdgpk_RzjJuJU>Jt>GQQ1aj*90lH}g{J7A2 z#L!!}G^eoEY05mi`y9?(_Pk4%);9R+?qG)we`W>`wz4maP0N;!9B*{uw|2Qx0403D# zZ_wDv1T=6mRS&z~ZH}D+)$Bw(u@h_3o3D49BKZD#cM7qIx!J2@WQ%`tgZqO1>_(rP z`wTY`@@R?aB%`H%C-D|xd+6=Pk(bozG>pW0qt8fkCjbmH5+O^39DpI0N^U3i8NvGt zXnN_wP%4gO@dPS3{DMNkKx4`Qjom6kfB_8}LiS@E4P|=w>FaNGZ=yJ+_tzSF*}|+M zfsw7YLw=A)<=p}?FK2ZU`F3X~U%s&tUTX0Dx8VDb!S_I&f5g`Y^$(ylEKDqagUoDf z7Mm~=RijEaFh4X^Zm+JAEll?gOow)Z?YJB*^c|&%ewd+OzQgT{i^r^)ZUOFSWRTmd zL6V^v3vpeY9oMGQJ)Dg?^QqRqBn_LG8m=61r+ZSVjLvc-K3G;SnC1RUb?Hp(&C%!0 zcBB19Z3VJApu{h3bG>Lb+#Cb3`OYoyB~liW`|AmF+@^fRKfH=%_oKUPYF}I5_pea2 zpN*ijqikf}-!sR}^@S59kj}x?9L?xP{J659f;6Vd^__jwy3<7Ho7dwR9A z*Z>6ipxU*#eYUe2l3smnevJ`c#cHhF*z~V*jBsB(?zK|s_vI}6R zO$O$?{?utPZpyt1X*f(9bp@^qCl`*oqKjU9bK_PN@@SmWMWoLqU0B~#Ui|<(PkP%j zU*YI3BFqu817|h(LF-m)5l_ncX@q1#yo`AA;1mK0--O^rt5U*B_5=b3%N~Ri4ks5! zeF&tgp0qsmaThj6b{JS+cVWpB8-Vq(rAv1!FBF8P=RE}H4FRLQ{)bVR1ldu6b;!Vq zDikRefF&=G1RC~ErXW^Xt7rX zA*)cW-(Kc!p=f6Nf(W*+(my}qGkgpxBkKqu%loN?BJZz6JTd%ogUn5Zr!t(aBSRQ% zasv!L4pAs9T7aU&q6#7FegkRgKd{I^VnGjxEa+cA?Ih^&&6WZ}wvG_8JAuB*oiGwr zllKVSi-f(p2>rJsdV0mg3gB8(u~PjF9Ah!_ERJD|(l?GF0K0`iWo5p%Z>R=MxtY~`}mE;cqj zBn0zZ?E#$Fpv#eYt``4{`;_&(PI%6rl&u98>3HcqnA8&&!f|X> zFg8)AXQXtcE7q$49_=b(vq3kOunONSHob0U7XbK97Zh-Xi3{KNx~q2GWP+B9kR)!A zDT?pamY1i7NKt5(9WO!RN=f}rr8`(%Y>J+5icU90@y)f~Zi=2CQIuafdC(MHWQwjZ zMe)r=*O{V=xTt!%tGMAGpoSI&{uJ7uWc;VyM8@w#Npel#`NS*Lhxi~F5B9T+U(hu| z#qF(m@7C?$SPxbcTpKnBAz7JV+d&kKZ|%$89_8yWf(MQG6fi{G7u)veCKVf z%+P%2T_NZ#1L{Agp@`=@k)Zg-hPlF;y(mho*)NcOHIR;-22zkW1}WATbI~@WFL1d` z{9A6O3in_xC-e~d(t9wQLjn3kUBpIWMVlt9xw>eZn@&7qbum}pvCSQXSmyRUKDR5u z?Gj5b+3vUZFw{lb0wHUQNj*ecOh!EM`XYnN)o8cB@|v}UL4{;IU@)%{GOzD}SCM#q zpO7`Xhu;5SdLeoMPYVK6$!>v2NUSXYiM7Ql)K1z0-`uIFCUUtC(_^-~y(yaSDtK`_ zIIxxT%1y(eVLhq`YlZf9xGzy&RxE>i1Ug{z%CkOj@dinQojzZFG<-n_T3YEf!;_sT ztEbZOct=h}_2h;+X_yn+lSzsVkOX^!Uz{^U(VP*Wc)m;_W_cC2B-Yk#cB0vv_7v)n zz|VDK4c0vr}lc~F8ALhp0Ij^Da#{hMeH~q(b%%aRp-hYGSwWxgJQ@6dPpZdy> z2Ln3cbJs?&>YAR?@YnT}hQAsi4YJ!%;omj93(C$#Sz3W$aD$>A0Gnp) zPD)k}3Y!)gP>&0nBF5_{4<sAEzKYj$j->bUM$*ba0>x0sCQ$LuLsyvT4)g0 zg82L*xj6lQ;2kpkIumS|3(FcSCifIcbvG7OSI0KeR;ljw>gvcos=Vt*cZ|Z+muTea zs1Gq45O-B({NhfqtV7r+=XQj3!MQdiCPX7@&#&%zeo8~VV=oM>L;9sXZU;XSXMH5{ zoV{3|U>IqdL<4-sCZ+B^%)3nr4J)`*D8)SlB&Scr8D%T@4$&d>g=XpP{chSE82$$K z%yF@Ol!oxr189x-Z zZ(l%1^P$(f2)i~F$F1m4FjepV4H9}`v51GE2iz>{UqazRz3PCQLPu(>fo1{A&bbo>|m~jZx{UG4V@rT?w7Op5gH6`b;`?iHgTqq?mSVnA;UUI%x2W=!{ z!tO5iP1qmlADgg07DvqSK`+nod;Z~mr_TLY@3=9(#%!&vbL)Dsdhap!H5Jv1=ltqq zapk__?%B9qwU^BFaT!e=Pxf8JH0pKQ)iKr1TFIqw_YVpiXTwRb(e$eXR7Hm9FTG@?;YUKzT$Mbuj+bElmm>1OFR?|B zVy_BcBUw=w=6A#1Vtig)*BcR=0InJ1^Eh(D_^jMp*PCxCx3^fI$EaGdPQ$&8ZJE;?h)3>j{9sLJ=Wrgx>nc25^_tCrQI1R6rBQ?!Cni{&2{fs>jCq zXeJM>;3@^T0j5$EyskF*u1AGr!vye^^Ku4T+B*PvY{M9Me7)PpC{HH-e}w!G4Y;b)v_`OZ z8gOjK04&=vhYij6W}2xwvSSwO0V&=9MW579Dr#tE9bSlmMLIkS?MFJiMQ`zUw8QZ< z@^`fD>kl|m;neI9FL^qO0GKLl+qb$xc5UBe zD!jhBLUwcfYq1xj*Qa|Et#X}_;T44LrF5AcT3Tv^=G8)&IU{Y2&93hXS%^ZNZngJky; z4bp<6;dxq`<@Hp(Ol%L1jjG>I=|OcG3{+5NJJbk!}`d5`qWdtzIvYw%6C zsk$&Ls-vddAyY28zxa3X&6+BV=a&f8Lq4j&*l4Q5HJzd!Y9me6vA<|4 ztkbviHC4lQ;6JtzwS%TQ+*dT!{=R{g@b>Dg{-UbV+IvN@_4=Xbh$cFS?9~h5R}^@% z5Uzi(gN@`<3%q;O#Qvha4iG9*=Dhw!dtHM!sc0}=)gNhTlMi6HkY}WQM{j~2)Y%s} z_x2arc(1PNi1)7_!zamx<^5@_S&!)QPF|r}3ntK3__F{isJKF=UQ%55>f)|mSOFeO z06hNM8A_NwF-&kI5%imF{&#`Jw1(TEi+7#Ap{tL{R|b=>2orNA;ZT239ESy+1A-2& z(K-bk(i=WHq`>eX3!wv`jLuj3#;)GE{7LA1ej0Sfck>qN7km2X_f-AP z5LC`MgQZX(B$Lt@{y%VuHLM{W1`w<=5SE^o)0|d*s0o=iG z<@jJv&Re(xPHoj7qU5;-6h@SwRU?`^K-h^$Mik-ZnT?z3?EYwRd@!2(|AJ=2GrSM< z*ug%UqoHH^lfT-MQ16bwaszgGwA~ro0IauiihXQ+y3_Hms0$}VhLWl*O zRybE%$BUXjKO;J$e1~*=-mHHW#s+EMsr^O!?gQ}<7%{&N5P_j* zjKD6P--mc-ThY37C^T@rfntHwK}elHao}l~fh`LDK%{p9EIoc01Paz)c|EE%ijsh7 zGmwW-mVwl1;HiyI$~+R%j#7cdN3w?w z)6~~O?&pTwAO8pAd}_)21VF0~xXF0uVeJ?gGp0{b%6XOh$9Q-zrcQ}mEfqvUREoJ; z>R?dU8S5jp#J4`u=pS1jX(bU;Unm`(`rb0u`wY&l(vOo~(ml`dLOOk%SAm@r%f>^} z({fH!`x2%1?MzxH$?MMb##?wzcDyGWI|l+kx-YX|3GKg2)cQP}-@J&^bzYM?scK>g zTN>8Y9Jg>Pz+N@pYlE%6fH8!U%geCG5NChrX<$_5H$&eN(cF)e$YRIRlIqK9#_KC4 zdX3b-5JM{-?NJ4-YPSI_o@MIH^S#dM4J6YV$L;5P17rIVV9~>Q$WFT3y1={HdY{nX zjh9ZSZB3qcDmPx>kn zqiWTf{00CU-Hx4-(>3rqo~8X$yw=%M|F1ZX)K!;)k#|PIj2bxz zR}EYd-%RIy(Wp6wW@L>EPOY)^;{S7vhASWqVz;TDahdmmq7TxE!)tiL^PQ6=GX28`xW4?@d!{2lM18>gmDe&6T0odv*2V8@%ai>tI>j z-GY#&I6DXPp>nKCa3=xwXA+3<&bk_En zusXINn*1J{5R%pL9_S;#$8-SmXCu5odJjRDgWv?>L)dde^t7QV{SmOyv3m#`9p4Ec z>o>f}>2-*J!w!T5S=%a%~flHpvCu(j{`ba;k?(-Q<=r~szHk8O8rrs7P=T@k-B{-&vbC{MGcW< zhRC@>WCYLHWfuvK4OM`JhfFRbu^uB}yp0ys>|cPX8P!U@B24k-!dE1@Q}w#JUTXne_Bm4 zhP`>BeHjK4*_HE16lAM=hsfgBbb=>4cCH-e4>4W1o$D6if--*(+ zG4ysSA=&^(V>U06s(B%7V@=hsR9EeL(I)HbA3#Ixd%(kCiH24*ZfENL02URt50fpy z`T=hMy!gZniYsq{(+V{;y}~u&D8aHNsPINeMcPQTA}H~UDH<;Ig*FE zb?S{zcw-gLOVR#y6*Zh>^gvvi#v(d)xQwz5DB_D~e)rHor|lxgO637L3TdZebAX_k zVawqxq?-=c%f4=m7q_3n*b2g75giFVNS7H%R|up_ z4W#S;PmuUMJK)3y;SsQq{Leq&n~bsVKy&r!rY&G7b?jEeUztpzHRXk#HN*Xmy_Wv* z9Bb`x)3G%=b{{=zjrTzmPB-akyS$h5_iMc;)Z4?kQ>!#4iEm-U^`de5nEhD(?I zYPinqgZ*a1#k2dza9wsq<3fCzSY8!ubf$FvxHJ7|I`^cq&lDIf5K_1AY_j2-yM4bi zrQ741yZvW4U`G?KH-Wq%?Nii8-TvY;rQ2VCqSWnYe4cck{%#$*{RG5Nw+Hsz?Kcni zyFFVe8(;M5tJx?`FT)*t(JKypO3cPP$zJfe}42# z?$58`=o1{Hc=>sVesaBUi)=VkY!QUqJ9pxndgmu+a_{^IpJa=C1479npAA@kN9PV| zDkje;K=1?#A&Ys0JcFWdnk~GHD#*{b?o2)y6ns4M8JL^1H^WG3{W=iav<(Bbq0WC5 z>K_j@zUHg{mLo*{9?1!0 z!iDR7togd(Rxi(5Sd%Mca*?Jg*E6`-Wgm=5bIMx)oIyPbEb699qy6pXWVH}6#&Paxmb)H_c6Gr<40XGg{ z$O=6TGD2po2wuEHoES-cq;f>%y<6@279q^T7XuN>(Qb5>jY^y%v(u@Z%+Pt}`(=4*!P9jC#QA3imBlJ9WiNYPsq(j8Mj z3c)`Mq#q2VL#Kfh6buFuYY9MN%3cA+M9E5g8%o#*nK4RF>yla!Gb)0Rq))w3`nylj zm-%VAd`cDV@tR)wDW((oqXca3C;^*>Z-BLy>8YQ2*|Cs^)dir%=?unIc7^x#2f8(2XK=0$(i(zwb#s15p!=yU!Hr{|H|9pYq8Dx z;jg{<>fuqW#jGWjSM2h-TIz*SqI{kKD&!1Yg+tu*G|qdYL|1LAiDw=5UladLO*~Jx z{}ed57jNIUuq#8OrT8DCM297h79ECf)?uiIb=Z;`20snR&|wz#J?-%lE0$S~>O8te zjV0!H$ZInwzf+g$H*Pv0l~mdiR85xL!ch?_E$0WQv~x#`N}KS5R~-8^RVFHJ5z1id z{lac?)LuNA^;)d1NxxvU+>w6cXzB0QjplBm!9993>Hg88xE73NQ85pnq_`dem87`N zMeYd2WgwH{x(9j5l{5>Gsb5|;+Vv^gC3^-DoTFQ#T4GRet@8S7zb( zJvdenk)oIF@mj|%3Ub$UpI-?#e%5pk{p0SlXEb-826UVo#wcN{Hy>`$vgv`35FvQj zlm_NapLpS<^qUv7nv^+i!Q@Xqvf$Z@X=xv;hI+gj>haNf|6XrM3^LW4yc;>o?@j4m zdB;8vFCN5IX8i`eqw>b+Rr6BvROc~zN7uCWSkm2mz-w*gRQ`GZGkG<54E0vLLeM8I zHIy@^nkj?yh(q3aYAh!g#s*Wyh$VCd04{{!nleVZ(8}Mvi`6CgpdOPmMtV%@80s;p z`liEPyWDXE{=nq>5lp84cP^N8i2uNCJLz(;We{bM?vn)oQ*BR=za_4V&OPF-R|^2@ zjI?a+9L4(BQ-W926JwNKx;m!6-Zv%r9KCTv%vini7-Y-WUDKMYm&fQU>Zjol;uxLZ z4GWm~o^WGY3-!6MBI;!nF72tZC;^fTD_$=&3dI7X-y$yoiM+H#^+*jBZR#<`lYYAg z&$imhsq=4*kF9$YMea$V?-YIR#zu|2KM>&)^->K{k1xVwG&qa94$;5=zbUf>G+A! ztziHmshuAGT~v&^HJF~L-ZIMxa8{KaxxGe-x4UCEhr>XRAH2L zw%m(}RflP@$wL&9NqqYC$JR^k0=Ea3<`tWcrZ|?@sdz^eU;9MeHrNxw#gQB={$%~+ ze%2L%;+LA@H*;}twY))cYuwGjg^?I6oN+wVP>%~G_ku^wN1z)0X9U1fT^yU-7B|Z< zfTe!{aC_~})~D5FQ`N_&_8+(~eKOw;NojnV>d^vbvk1DAKN#AbCF9;6%i|u$B&y<* zGxWasDd*GZi_!1JCpW^gh=|Qo8E7Wb7%8}D%Z&e;k<)@kN{jmBvh6aqX5_q`klZ)6 z9aShIAPq3cAu#pJr0mMe8zqmlRIjl*^XBCDH23R&B_+p1^&D%aN2AAz9vK0M5GBAC z)1#r4OTx+JQTjSB+1#OU`B<4CA>`vMcY+!^0eLs#;jOjq5UTRdN=m_YNOsr~j-qSE z>1FpPH;ElaRfxkDU}z4a5c2Bo3S5&-FNZ!gmeiK@1Vfv@W>~U%VXSDbAhe9sA7rU+^FqW8TAo@5Nj zoT{h3pX|}UMtWD{m1sq;OegF$$7PrR7>xhk=*$&nUYMV z!^mVE(XBF)2O!vdNpgz)rcSE>AoZ%QnUk+Sxm^lX{3H{FO)R{C^*7VlzOMX@NZ)%zz z^O^jn;O>ZXWJ|}C|Hs*T2UbyZ|HIEtD1j7e0^ED|CZQ9GAVr7>L`0D$pz;VJRRlsW z(pxCfO9(L16M82BHA)eJ6e$YW6(4De=z~hJWBGl~IkWffg*^Cu-@j&Ocjhyv%$zw> zx3g^N7}%Lrl|lt1sZpKpR@3#H9*@HUO^X77w{sxm3l`@w_q7R`$B778(g?r4<-va; zJJY7{x@r@rlj94H%9Vh=WViAADI`A} zlUOVwzKYcmLCMOVUFrtt#ZfN&&6@@A9mt_eYx6%RRlneKT=i8LLh`YS;XN%>xNEAr z-qR=*7+miW@&ZE@eKygPpsGH{-dd&SbaFfn7d>~kEUC&nvNS-vQUM^Y^Q}Py)%hm` zsimQ*V;)fM3U8pe!UKvcJkf}u7}(xb-7`*6l*IIH9%6d6hUbu)_ne$~n}ssz6c$33 z(;6eEb$Cw;IvIwh9seLFTGj*x%LyUN>8Qx*ZA5W{DFjsPEGDt?V9qTk1H^Iy5XDNQ4-DXI8`a7uIF3*-z3M7 zR_el1!u_V1_2{PIF0%C~8Lvr54%MtQ)wm0{pm8APC?j1GVyWjxcBE$>r;)}!mabz#t07lt_2#h9+5 zi*bTBO3+@)1I?`pgT|@=ZLEqF;D=O!IIDt0K?dY!{d+Ud%k-L6aqA9MlzGfER)6}q zqlzQoj#Pn*wI1_49QL2C=30dFLf<)|?;D{n%4K9}G=f_Z9P3CMoq)wX4TZ}+jn&_V zLd2OughZjD_;SzV6taywM1|bZ8=h|A*{vUJ?T}fyn^-x7e0@WcZidc>yRlXp>D;y+ z+2Yu$8*Answ0b}*fS6Vaal#;d;=ug6OKXou_2?#I#Rn!DA&a$g&ehf)j8G@?cXJPl z>Dzq(9E)^x56Z+R!1;o1Aua(O(VI&Y%0(!O(r&<6F1`iDg)vIfth!OUAa0DE-PThV z|4Bf$M8~Y<6mRFLZ0XrgJ90T-G#5DuR;{ZxeWVNf`i^ArvrH#KzlK`YQ$ zI2102W}=_MzrTMog277`3_=#n0ln%e&v%NV)L~&g(M7N>-odk4Z|maFTeiFC5h0%$ zPU*4DqAg@7?yxf=Xa;Z-o#&pWO8XOPu?R$E&&-yv_zMMey#Z6uHw1 z#XA+)Aae63Doyjp=C-tF0XVfgo8n0ZZ(jF%H-Cf1ogmP74s(MbZ4#t)25Hy-4T%nY zD>q#y1nrcdy$u=E@+4t%0#7)(+Nq` zZ-|f--l7L9{2mIb0F~G8A=APX(sE`G$lHSzmeLN%8O#}9W0sA5dMqABrY8YdmTG6(9^lWAatMqiHcoOM}r+5;3 zhEDOENbv-xcv3zp8leyL^K4a3d(vE8Qdr}jGRKpHVRv;)b?PY-%pDNY>Smvwd~8J@ z7>E(W2t;rYL|+=^DX%Y_!?w8gJ!SrReovV|p50UCrSYEUpEsKKYlH9kyvjR+Jx$aB zQ`TNn);lIK;xv_@&Pj0!ahgk@!th6vw(3Wd@4Do}zm&Rpc3=H_$k)A|s!zGBY3ePK9b-4rcuU7f=N}&)WYSe4iz-}j%B=HUfknA1Y~kvHUD|xVW*_vn=|pw z$<34S(3mrg(hd@%h2%5O%k=3x$W9B%H3ng>q}muyQFQ`uXb!b8WJPl*Nj?A99Ewj5 z>gS0Jzm;<9`QS84rLmYsX-5UhG)hCjU>YSSW2|SQW&J@^n!8kgDdAb6e;Ds69`+lA z$Xj-c>5Ef5@;~9|UTkYXFK>GLb%N(pT{#sE;rbMhY}^g2+zZDmaSs)`)`Ur(#t6Dk zLJylvAZ2vcB+vbLb$ODfnezp!OXf>{Jw6qcx3b=v>KUsl_mak0p%>dk{A945_Egl{ zCwu1TYg652s!_e9ze9-r8ID0OS*Bb_&@I(Gd?xF+0_K#~6iG5>@&^AZ^Z80g6(+v? zEot@u7~CsUNS7w=V(#^sf2&ed4q0#996n^4ryPRC(=g1zTec!Eh7!8tJZ2hN&J7{- zoFNn;cg(kt73U$bo(e*%qz`^8LEQikv_H0&bj>bWHII=DsdSwOP`GPG$b-^SFR)8) zmC@PrY3_HOs&2*T%$aCZz4-@yXK)_?3x3NSL0I&L{{VRiWPH? z6{8SM{@Rm5A#3K7P|aMM=Q*tZm=DbyobRciwtz<(+aqM99C|^Na@ZxtgF@!Jd5F=i z6=j8d+;(7qJ3n|YwQm15Ake~2S7pwZDu;ohQ?NS&|@wL2V9s@<`@ z^VUbC5h0`LT8l8<1rk{uHF}FWaHNlrsu`rDJdj8kp-5Sa;oks>b#`j7_08@YUK#Y|98lTJu)DcR92Wzr^EDzmQN+jRpav354Cx`C8%s3*0)= ziM%R0>np1)UNN&Pd*5B3-HM<;(*uQ@2cgkrbg%Z7(F|4!Wqe<(?+i$HFkMnPDo6hJ~Z`h2@?W!~j>k5hxn|oUvUw*(+fE^omUI%$N86 zs}J*Q{Y%$e1w(?1efe~>2d~LZkL{yVKR{2^=ia>13<8jtSA?*D<~E#$ear}@Q6F~P zl7LG!rFkE&DR(f;!xO`>fnl%)_t5b?ghIB3w9$J%vu@)j8G zrhW5n)lQdH2C}GyoV2wS*YNWQ<3<3+2dq_ilP(k9K$8 zP>*)$4$tAhqUFq;p7ZKdUvXyN?h7AceWY2ioPW#{rJp$B$*((Sd)`r(`?70mofqng zzTqosfx91LOXy9zP*HE2@4tk6r|lJ3p0aWv(;_M2-Ja{q-YtH$#jh&`Uk999+=hW~ zW_h$R)&ppzvYn(ylpWQslBCJ@$XZs4_;^4j7ngo9639K=kJd3*-v}a-Bh}FLdf2xVV40 zAdtd=;C~iwDGX1ol+NDc2%!X4eMtxv_+9#$CO(KYaUWJJu{^s6tEEUl2w~@-#Gs#z zqdWnK<_4lu07Bu_$`M%NMYAOgL>(&F(?(Yx$UWZVo*&GOS1ikwk{eOVO-G{-dg?@? zHaU*=XS(}A&lA?0I{P3R$6jPJZuT>}Z?319dL3`b&3+qoh}`VA`sU$g-_Sc6zxT@z{BF*^N8xDK2!@llk-0Q#j3;*W$55Qra z@-wt~TBmG%)UzxMKa9;i0yl^H$JqYTKO$t`qDFsl_^^NDh;jH-HKZXUpM-DZ@ezq3 zE0w=eA+k~l95$i|*&k@%U;Kfm1aH#WeD_)X~|x*SAl5s^`OJ zvp5-=5c6k&gm0YjR96}Ob(MJR3dqp4&Z5p3GH7u!Ru4JrX&?CsknUcVv_2ysv(wXL zqEW<05F1?p?|KyrN@-bAm4JL`lBX!r(B%QYzK1@t$|p`A`G-+5LRNCg0W#4Zi`}R2 z3asM#;%BfQ@pyeN{nDZ&AXvW$S-= zy9g3?2@q1BJdoU4HAt*gAhA}7M$#(6L7#Y@#9$N(xIdpa<+nS;^!TTqWqQ^Zj+mB$ z0`e6RvY4`sn06a6?G%#s|AUz5&HzA=m~hog#yL-G^`Vi{$HLqD0(3DC-rOy~0I`$+ z$Wr>vNa?m9{US*D2i`4jx0DPLO9@CUB_ff$t)=?(7oKN`X>vNOC4^|^^iiFxdfrMp z>%8Zn-gg0Vnsfo9n|cF9P6&B)(`KMJ)oroK-Wep~Eaul{Ucb}8yQ>vD)}|)YC<0Ji ztq`*4hawMcG#>7P92|t4kOw3Wb3!3`>`ByOoTDdw3p_lN{diemdF;6;2)pKgh|y`g zOsT%{CB{2I<@pxC#4F2vUvQP&(C?L&b)ulv7@oZ+1Zp@8Ip&*%E=6%2e3Wk(Sq z>#3e@^0lWQy=Fbtra}?}EuIIUd%tz6a{fW0B803WdytF+;_#kYyjP#ShSpVO(7jbd zqZB}}Y7nw&l97j2>6#j-#sbwk4=A@v3>2$`sB?y%z3@!UzV{$DAh@%a2pcl!Zn?QD zv_a#h0W?;{OzeQ7)zaC5gbVZtX>lG%?nY*iSOY-fsr9Ykg$5>wvkDNhK|z?h#50KA zvknv$5o{}LdU-d<$s3L$J^*`UQxNhEAJ+iUxl|eTy%71W5cz8!MDlhJQ=e%+G!S?e zi4f_3o6&=XNW_^)gj`QP&{uAG+EanN8>BKPGrK`P(CdH1ZV>rqc7r6j63~~k6+LAG zDR?_bt2t{eo>~({$QxEX+(F%p=Gt_(;x0 z8k#p|(xO}~#ThaiA<)1IP%H!rX{BfDL zF%+H=3a<)<-wK6S423`bBZah<3Mi(KLihS44###^Ubt&C>xYj_E-olv2eHOl{F@0;14aqohf063)RT5v46)U`ABoJIe;)>Zd%{I8Lg39z3{xon`sGtMulm z5TZ{Qq7kzBy96wn6#Y`)DBx|OE*NsZA98Q=7Y}j)!R8Mk%%Ax&O@X1Z7#2QMrd9GG zB>syJWxzWsF|Sq{Eg48QgG8lc1`~lmX0X~&ZWWacV7;Mt3)F1~4IJA+z_E+aW~k1r zALq3Msg*(M^nXL*xpFCfbf2mbY>ocY%@g{E}Xea)9vHQv#|fK-COT(*Gx* zvxU95BaC345}3BbWI*+QL0J-u!=Rvs1^pigkQOOVAx?{w5G+sa%p4|yeQ8*TU~5+L z71Ym_@~%;9hVczQ-c?AzcjxAdzceX*(X>UWi|9mwH)Yi@zJ=D2M0vbgrstLReyVcu zCGa~M(_tV4JwBfGQT#q-=`9eAO3}d4fzKp2# zx2&|dm>2(^1q(D!_7Wv8r;GmE!t7E%zGp~%-A`tjj<`ngm{~}xXFU*GVz@KQRFa-} zmZ{|M&{?KSKJOu#Wx7z+*Ie_7fEIr57R;69#>0lug*{ecPOUg^6^s7f6z?^2J;}pm zngfR~>5w#{Jj2jklF)38Zc@%`mQNoV&bMD+tuP2M!T`(=07MyJNe}>kvP>=qc4-9` z3oLl96PXA;%+U}0?4X?Y3EBc*&YP%SL4KO6z=?`y^vv?!A}SkiXs#j=1<_nZ`QgF2 z3YCI=ixs@J3w#E=Ip!3?vt|}1z6g_^L#ldX5m?oM$u|#Fd{I35$~w0O zI->H3k|DnTMQNHutTR+p`xzHPUA*~ zd|WL@78(Yv45BSHXdClDV}CmojXN5k@@d8cFUlfjt_W+tfjTL|igXcX7BNGysFxAS zYU+&ExUB8+i}HWAub4c2!B@B}#KsEvLCA}8V=CM{hkZMtpdkbn93cc2LgR%*d44DV z2th0{f>rvDRPtXIy1oeCd|t#uVO2+96T|$7QvBa?K=Se5DgueM{e=47vN|I*qWB$z z4mlXdlEFL5$M^E9yRV zy$?_VHo%>wl3C$P>Ul5eQ%R^@P3m}M%$c_F*zcNX=R!vSCJ6jnLL7rSOBA z`rbNs)hnm2)8x?%omSr)OIYk890oRxgO9r8e8|Z8jL10zj$IC;H-;ObX?=t6SQ=ND zQHpZMj*!F=HUq-Xe!0NIdQv?ve%`v!Dojb3^J$=j);7X*)`PG``CkMA%=M3Cv+%pj zbl9&OI8Nnlj}tSwjlFz(N4S5aSO|Tvp?83)KT?=Tq6DV0)WbWpe+xJ7KIE5x-(ubV}QL<8UhMu?&J2R5|utJOII2apQzIv|IBX@RX6Puwc`&LBCzY@AK z($&%7YZ2{v%=@Ck9PEw4o(AgAk=(1PBBNxV58~7-DSMP06h)lp-G75Tu){^wGx_dE zNZW`Wk$m_+aINNE?Bp@o@Y%`6TU)LK1^w$t+1fH}l$;R4K&z#91xA+$;&shFR#63- zxdXc}@~#f7yq?s|8->j*OGX9zu|2KOkNrwTNI!NN`At98Tdl@yGw%L~z7+hvVw7}W zYWFDdl(GN@v0ehR&TR?j+M+ejzv8b5NpV9yF-jWWCB(_q|8f-1cwAt*`S8y7V49Ad z5^3&UE6Nm2y%tc!c^)Mu=fskBXg_#MwGKa!gb>V(#9>I5CWHSP}Chq<(;3oQa5<#XBO%UdHmb4AWQ4Vt;a|`ZZXEG$Gm|2{1~aKFO1=VPY*{ z?|Mq+wF}acd3_ehG{$H#CQu@eF|;XhQJ}=&^6_ikp%Yp@F0zTfihZSeqPK4I)KHrM zMGUSt(2Ii5d;=d^XE2i-y8Z}Bap*egj!((n7CDW3dP`dBOJKml-jSeKQ*UDQWw+@u zCiXVy5)=CeJ+X=XV@!yNg)LwcyS&$(Cbms)Z=^2L+q(gGWZmdbP6>t#s`yx!o#iB@ z9`nZN*ZX)o!+AkEoSsgKx2>^qpcWg}`+6V700Unzm>BDfEhr%^p@t=oRk~$l;R@Ip z#hH0I80pxoRu~(+t_fod#u#BRW^j7KP!$<21X_}GB1%8wPher>F5S^Ngs&01<-bp;U`nm|fy*(1m1VcDPP?Tz3?)FR`8 zwtebg*!J>NjM(-fKp@+04e>swN{#KLhiOB&r6Nr#a&LZ7ll(!L5F@0&F^l`^?Vw^+Y z&xSsPY+s|tbH}5Kj^`;FTpO4<236TJUOF8Yd9+QjVx*{uuH*p%n^uI}=iEP@`y5qg zJol(LH$*^<#!Hvu0y15WVbeg7ZN=dm@F_cWo&o_hO$Bu3l}aOJAgtcO+t{6Spd^j@ znW~7Gspzr#yAIxZNW~(#XBaAns=X#Qn^7Mi7XzAgCbfXXfiwQ@oQA zBuvE+Xbu%%w%|RaQ>VfkNrHySo3BDqGx<_+9QQQXifhd>?tFy_!G<+JHJ%{-V=^T$ z?)*b|M{TF&gnPFg`uj!$q@@n0-UR7zDol_L2L)4ygPZvR1rKr+oT%BKpUz+T8onY^ z=(D3ur_-4NIO=pJ8Tdg0Z&ef?Y5P(XOh+)I`1RR@TPM=}B`0~7x38rR002EswEGiG z_M7MORf#U*wu+|9`3O`=m-8__ahLP)1nzRejaQFNVRJAyR^^!h8Lgh-t0lss(ZczD zk1qo#Uju|4|?g`kpUu{UZ6Pg2QL1Yw=cY=KDaTVfIhg`JKI8wT;Z*%Cmjuo z&|6;txvP$bC9B0ku1cFo{q#n?s=A8Mr;mlT)k#aysQD_8bra<(kk=;4RUnA-RUn5& zWMS(d1-=RdA5fd*Dv-!DB1`JqTAjJfTSBGGA+}mskLn9`edW2Ruv;mYbkSwr+GQ@g zI9eOzXdZJUw|+#@B>J>hmK#arOCeB3BjAiZHVPGkmN%GCm#wep$DC_AHv2i&it{-{7o?P$CCLM$&3Vn%yewzotnNRRWw!h z526R#2=nJpm7#ECstkpzrOHqkaVIYig`1gd$&&3!lP%d~>u$0k?qp+^snDcAb@5J; z_A)tDhQbqd>SdZfnU*hBXIuzxLyfnP{(ZBzgf&h+9UK~7OhKXSMCF?#PE=N1-+fM9 zJGsRhrPinFV#{E;|J>qDj`C7@;yV>U#=*FyVbiR_C3IH7uvY4oR2evAry`M^0)qG$ zN84@QpY_r#r?WeW-FDR3A!HZnGUDVSeU-``_C=;Gy=_IW`T@++5O_WC#7lZqC%+Eg z_wyazEXvP45kl^XPU>Sjz3u%5n3ECZst+`nRT8SZ!l>k8Y#;1WH8kQiQJJ%BfX|fW|>pxF4zQ}2! zTF6fajXqpj8b({w^BUp#)?z(_R>QX@eMHCNW-{(vG36cmvFhPW|c zC-cW>44{!41Brk}hX`-P`07*0+gb*!MsWiJX)|Me3G|I2uy_CnNUi9{-XVdv3j>K+ zlUt{Tm^;0{t#6U;{3$dU|0%59POw1M4k3>pkAXv4c*N%Y4@@_9#Bllkw0pNI+Fb@1 zZdC|TeH*L)PLpZe??hnV7^q+J5PeafFVN{2C>}-vin)!_$>&kmc;ge^vDBzIk{ZGq zPy3#skeS{#ExuuBA_IghgElXT4BAqOEmSLfCR5Pq zrF-*FmvjJv`A5h-)Ju*F#xtoi zzQpX%@UM)(cuN^yGJipr|H|7|T`=YR2ePC2*;9xcV46f#TT#IMu~pME#^;YN;PyDp zaJ1BPXFO4wo_IV_8t0wwmydPiBcbi41($Re!zbhS7&;xTel zv6A|YccX=0mwoSSn0REm3@w^W=cD9SH~N;OItO3VNpdW&@ay5h*TJ#G0vFtz=`tEw zCFv36*~x8^gr`UGj$Lh($U}-FuI#xc`}>j|QOi)(kA3{K;EfEyrsbkyi(Av}vUB z^pHWt-#>Y)slzj9JW*CZ@w2ynRAVYa#uJIiGZ?=j(7$+7^@a8MYSGhd^$vEp(6#*k z{?)rB?8FQ+AA4zr3^mTr;Cc@7%vxJ1UF3Hx^ZbeLxPMIjHbbleLT<{%W=d1WQ7sF9 zg7bB#3OqRtV%oMr(8H&ujet`K5AwzOW=zGN{fhg<5;D2H0=Er^)b z+dlXM|8;9ag`tDJ8CEK+#Y}U4y@j6lC;G7#GbQ6=Gea|W`^!61U(4r%UuF5s_RC?Q zmdrdt_CjaR6fblx;miJ#nT8>aPqe?p%@Fsnh9O!?0t}lugly(_&J;6`X)2Pi~Q+Ma8Q<0{EH%JS>1wZqX~vj%z5Z?6?Aw`abm;SS805acWHP!P-Un%29Ob5??Zf ztczN+LR&+lXx}B>zX)_uvxu*P3d4VGsUaX_U3h0pUvKM#B4}tlyu)9%#rL0mcS~?9 zgw`j4!wNyj3TccyG`vf8;XP#VTIPZ0){4Pn-<9Yj-?is#@m+ff9*^w08@xfY?>0T; zz(yJ=GM>&X;fp19a~Jqqsp%k>99UFbVwd5j8Mt(T3vChX#k%p3crk8+0w8-Nn{{f8 zuMS1o!Xe}a5~i=m_!_X3X>&Gvv2SrwD@Q(YHEZ=>vqQDY zUhLC8Xf?|Zt>&8}T15!0w!&fpJF$L!v5c>U!nGW%&&qS|txvjc5D2VKglyTG%n{4> zFhPj}*9fmNJW0A;g0F5!qi~xxgLNar6Ax-wR6TU2-zR@(%BS0v^~Dg`+#euh_m$%0 zv>}Jn6*%r|y1wRjxSegdMaXq{tzmb)u$yVv-T4pf(!aX_!R#Vr>w64&$@(4-vU^0} z@MFun7-o0XR1Sm2?kdoj<8PQ_ol(4KxG+q`k*_*?4t_*At;8fnFNotAL5_K^_H}f^ z-!Z~wYp70~Oa-z@7tXI`Dj~0&5aaDa&)EQhYM}HST zm2c*U-$mtV;` zJKkA)ar&8r|(Gnv^fJw-~CC6X^7CA!(@+&pnhKS6GC zOR+}OM}3G0Iisf_C2~fO%?)uzv6@m#{WVV}x9ipOB}aWhz~YP^M;_W3aD94wqMrYN zZ>G*#S*#X4rQ;XB35|T!b=&&B*TVA67l+jH@yqlx@dd;2w?CTx#(%Xt`*@Fl{`gZ+7fYUudNBg*8Ce8yrRng@A*>s|C)D)V;Vz+h+_&EHroi< zY}eLF4Sfx%6t2cKQ3|=F)#uAp>7NbpYf|06kweW?Lk&VUL@SVwCJ$B#HQbplGvsWV zFUHqR4tJ)899l&O4qGFH+?gIk9_maFx$xdJc&GBf3VNp}irvf!NR~o)R=1OtI;}O%bS_PmhG?bDH?p6d(mAWB8 z0ClUtWXqXIFm))(`a#J0nTj9x_}-(}te@0S{m3lc=WU>#1&^Rn)4}{F7f6Lc$SUf$ zKvXn9=p+@PJu;mm7u;Jzbov)CtRaM~q4^7R>fc_k3k;Tmm|mU-m|HytjMYOllCQIS zf%rPF3S5)V3*9GR2l9|0&(s+S8Zh=i0Y;t7u5TJ4|4T2%w_o<0_&fMUjW8O9K2p;1vZ zdU{G%f7;g(!P!m_X}dJHk=da;cXGHqXShVjT;4KV{$#kk0g~xLvVY)`CSL);Tq0z< zS!$s;3}qHFmobPEm*p1T%_TbwhD!s*Tmp)@Y_L$YjW}~jMG=?hbZRHx69|~gPlQW4 zKk%$CQ6<7+($_h2oipV*L*k(@g3#q$L+; zGJwg&8M07Z92Ced&YN6dor13N67{VvzOL$hq>L|9JM8pArB79l^5}J4ebv=zyd^K^ zl)>98c-V%>%+MYdE1#ax&G)eS6G`YVHR$Y|jyEPJqB~aHR0J;1qRr?bpPuO9J8r2m zd41~mybl{JYowF3&GoxRD|A3E5n1Tm*9X0PJ5}R!-i{aL`ra^Ij!wh_e!`j zv8|^{w3`}q&&FhzUON%kDK>Lg6{*fmFl7a z`wv3e8~=kzj5s++>d$nUCq$el?NAs`Q^sO8(PwU)EUwdr`Vz521Fw=)@kQcV-OnkO z^e$8jd-a^WLC+Asc@F?QCII*i2LU{00D4ObcI@yj01@yFu@fNxF-{=n3B))9vBCv` zcMb$Qhv+#1xw9oVMx8`Jw#j|gl^gGz-0U4fFHR+00FjY*cyp0>hd&@Yd56K>5K~6@ zN~mjiO@878NSge_(di+6V$G3gEisE_(lT|VFDYsP6(N4&SmYr;F{4U>ME%Yv-xQj; zESP>Yn`3j8f3eJ7&L8dD8s=SWW-n_m7UNKJF&hW;Fx!o%*ky54G2P@+fdYC^^XUA# z^;qBY`rGlwmRc=zt%>kiS}Yd(*JH8RzvmaT{p*G(*}s8{#s0+rJ!CSo8Wkr#BOut$ zA!Iv;*~sy}&Vojd}{TlApIst@ZGH`81TDE;;tbSi02-cLtEL&G07@!iQFZTu!O~IFJUp$wO)XV zbV13~V<>wUrecZ!?D5PaLYDS&oixqYnqH@^DP4z14hq|BW!N_t(%!kYbVV%OvzO3$ ziS(btmxz}z0`E!MLxmhQY02HvW;emGMwjCNgF8@!`99#nD_3udr1l6Nw&IYaqTG@ae>^G_kX=6j1|9MXOV}Y-mjv(&19YQD=qyy#W&*QA_PI*duM%duI~VX%z1EPIxcZ3B3E}_-0enSE-v)NgjLmM+IKb{c-nWa=1MwKC<5De+X9~UHIf%BYB@1P z6B?nJ_T33Up7zZa!0iTbuK?bmOrG`)g=EJYkSzYQM*N7g*+FPMq2O)0A(k)s6~&$JfT#H)1qU995TQ-%GwM8Yqg8Y@h$-yjy{z0`hQw7Zm^z zDtH`?fHhFxAk{HQ59fj8)`B3B78H4;N)Dw!u!Uq-$KLec5oI7DR!)6gwUetYx@~8)4aMZIW zn3hL94#p{Yk3T_n%JB7|ybS$C;5Do8mw*b>GJSjWsP#^daa*UZ@x@xVb+L6ASMyGj z5=%vcF-t{*#SoGPXZHAqdD-Ys``uVIjQ z8~{XSs3S@zSs~69l}aLEA*9J&l$g2!b@kVmow|B)1FGrFtxh$ajIwD=hmbABGQ;Hx z!{y6{whjNlC3*b7U~7$#x-?uXcy=?a^+DlspFuj22bbU07%mZKE~zAN z88&&T%;;L!4Y>_$PDIJlGo@|AcqbWd3ypVbYDCR=r#iYeIyB~8CN53sWkHu_fVzK~ z^ul$Pv1V!_N;+<|>~77tX)Xost066ocd7uG3N5W~yp91iod#AYl*c^1kS4}or=Y9M zMEzuzFI_LqhDLZ&cZBw3`^Kvg%fz!8X5e}R;V_(Ie)!f=?_!zU9qV=@&2V8m%8|+4 z9rVP*g&oU6h6^2c`}T#6$8;0@5HSZ^8LC<8?PW4zIJ`_=(+-EeddzFS73%yl85x`d zbr>;Vz9Tiq*G~PiOa>CS5Yqf^ex3U!++Rd_ZnOkN*9Z_Y*$+eXwvuPuWX7`H-&!{S$!R@=@c%&=-v$-dq+kg1GN3-+ijv3K>C6e#_S= z>LV&eMi9BkGdR|xzkbWtMGaaZDAp<-%TCfnCE#B1-9j$1r`4 zk35rwO@t@ROcqYM*ShJexbeBSeU`3v#-Zn9Lk~hWdOsj1b2bG8mOdCJ2 zQXJF9Z@vKYdQ{ItpHI!E;NVr;0<-xQ_-J zTjcTJi25DGStB2_M$jm$pYiRZx2%c}?ox#weAahXpZmyB#Rdq9`X7X>iZ@q^Dh?U} z?h^`6dVz#g_)@f*^gL2a;PA28mP=wqd35Rtu~$-fH+N)&o{j zzx2tEpNg-#tJbo=YGh~NSQ8*D=&vRMlKs_c0trj!K-Lq;Q1!CM8Vbq^0Vpe^)hba4 z;y&p2$(J>-403>-HQz_IuG;VSW7KNbOE zrPv|v;@vu7|J8`kfU!;h#{TPXpq2dB+XD6rgW=3_8K1S96&&GeY%*^jipI(S8Y=^L z7I5o8oc$GqtPOa;nrRf&~=#(4|F?JJJPN30f&BV>)wTP+%2fcK)B$7DxA$)!b~d7)_tqRLGI4+vKpTYlLdR*a-v}OW_0IQ6bJkrNYS7MacUYC{8OG z!>E)1!#BV2oz$IgI1K-37)Hnp$7Be@r80zJxGMjJ!A{7yH?y?S0uanBLayEokcX=G zg9hpWfohfql)GvhC^k5Mu7<&(gEP-%nB&h~GgxxZ3Rd5YJPbddn=x`TU|h997b_t( zLzFN@pl}k9IGig`|4RV|h-)>;>O`qHeY$K^X|)#Ykm1Km)&fG-0>Umgd_(CyYvFg7 z7B1;ee|8jb3eq8ikB}AcrBT2YBehFH-t|1B<~I2BM+QK!0ub_eBOFuvXf=g1No1-( zrugn9Gw(9c?7AC?86d7{0OFdKm?=CW&OA~b-SHrxbZOvm*K`I^u)uB zPcnJ95rH8F?J*#s>)c-=Dn%9#9`dZq=SK6T(5YQM=lfLv=t=+_N+~!| zFPQ6Xq*v?k>iWE87tT5Rw{Myi_G_lnU6$h9@8B@|F@4ptw<^yXy<>s5rYgHe4*ntz zA6gFnhQ+Q?y2kSG$0+?R^}re$_n70q_~Zz*9#R#3CCt_lMeG=TKA&A%HRGg7Q6Z_s z`|gN>==g7kHLl5f;797`3)n@~lXy*&_pxi(^~Q32ZUOtr>W@)zw^GI-NTFvw{!0(e z@m~<(c;F>+k_+1LmYT3er!}_|^$$7NqYm0)<*e@#p-nAZquae>Kd!%su_N?$%YJZ4 z5j(+k^0#w@Ehm4i^?G1oJ5lA}cCLnY1GRpQ9Q-{ZBE#oe5q4F2jaq1q{VpVOq>`@F z*K67(u~`RC?}T_WwGrN4BswJyjO79tDUW%TMu zJ0W_$3m($1b-zlA{Soh^di_LCT)lo;!_|vKapQ`&sa_sse_&0>860i*vaBLHp`>jt zD2Z6BheX>4^;0WwVfNny~e2GX>@DuOX?-2ad zKKO~3fpE7q0rD^~Wvz@t#|4w)6%U57W3;5*Mj=XLIfXKL87N|HK%n+osYzSmtWizc zgq*YtG(X1fr`97v^#=^`&@KO38M>W`u?>h2dkO#awV$Fqr6rwPushfB8Ef(6~yU?UaHb+guW*3apbo>uMdFbo{XH zq75{@+R%e{G{p0*V`E$z(T%t%Y#rI+I+5=JOvZSRtyP)Xfr5nR%DOlZKiniJHe%zjbok?Et)nN2B^OB@NWb zb=<>8xk-U>q&xl$E#$fbjJg=wJP~I%QS;YHSDGeV%{5rd^J0sCq!tRrySf3%Ybyjz zoywEzl%wHH zyt~);mUnohl?MPaj|Py{7rvg=hr46XR)9)*yHWwXqsg$6*zuXC5+e<_4627zu;Uf5 zsYk^*R^Zg3sC1~pJH`3(Tq1$EJ|5(nH)Q^{Ryw?^Xlm5qeWiy~vfI*Y$v2|_jR1RGx!Shb$-EreOj zTMUkD4Ickl6L`$vFxXPs4ABGe07I3QYzZrewn$9rjGm>#!wplY;7^sQqT5unN9*US zqXJy0KnA9WRWR}@B@z2u5S^giSzR?nd}WIGK#EXb!SdluR1_L@AO~LI-aZw(K`xfM z<5RLXR=-ih{#}*dAh&#kd{=sZ4sQ7f55mE`$lZMpZg4DgLwaHh-Ef0A029cfll^cU zfD%CyUypkb?!CGHe>{NGB7oCkgY^IC;{TNrzJ~k%oR4eSFI!gUoWZs2MD&Lnq^o~v zgLL(X2fBJ|Oiqouc8sN#ZwPkskz)XFq_|Aau4g~1HuLACDEF5QVvhF%mdx><4PuVJ zc);$dau6YNJO<>^Oj-*5x7)OoPj9Vn*Q~LX;BTc|ASURUJ9T<+I`w6gKn(Lp00i#z zc(#H4s&z>hOR}e{--V*cpD8VCe9p@B%zTZs|3N#OcG5mV7X0@zrBtDfe1Qk9m*aP< zKMu3$9bMvq+iU{q!U}D~v{_?Sg+8KInjSrfpMrhUjqDO(DK~=5R4v3Dpkptm6Y8Lw zURhm57Pyu2*hc8{U_IN1--p`8$}~sRVJ;lchPhkJoVniPR)7&HsA23gNGUygM|$FV z({Ur$n|zm$TA!^El^8WLm~R>IYJ$Sf8;r;JLI9z60HOCrsWC|Ouay29#A7Vl2_9qP zHg>_BnoaC+mNhzOd$L^*)nX&p9e4r(Inld7{ZV?OKA#)kTpw&|U$9=MR1ZdJlx3<< z&PLt#t$4q#-pnqkFXXce>X~oFM^My{i%O9?PRD<2`R>TV)3u*%lzR0s{s&0iJpOXp zhKebymp^J3Qy<_p)i4miHEjAusbS-e#8+TW>MiPXgRhWzo5;D9@+V1vp1HcwgQJlg zN+8v35zqqFt>)4Angmrr$2GSHtG`h~b9)wkbCvsq{h%tbNgp^SoOfrn^TjbR>G*1D zUd2sP^Xluf?O>rYJ`VFKyyKepXfRz^#Z9K>;bWlYMU~hT5MzZ+tXLJj=?*3%!6Y+< z8dwQC8Bq$|VS^g@JaX%VX7Dw+2KGYK;kN<-3%^AHOqYMKcUjb3pz$tW#5<{jBj}0i z;D}A)T|yx2UG8md9}N2&t%rZc1{HPJ1D~+Nb&V(Ng%);zLRw*Sz~UXBceb@t@Uuq} z4f~X9!8{gE!d4?`tNalytON8d$=a(kpM)KICy+91FH$7TiK;~V`AD$5gK6(3@f=rg zl3TWal-$=jw^BG8Lq{yHZ<1|SMK{aZ0pjd$A{YCcpwp?lt2T*&tF>7wVvWsrR>a#+ zqas$tYpRHIAWAZIFWpN=6-Y-F!WW@FKDF6V(CrR(lc-fxuqb6FE2WZdGA%AKXX(G~ z$1U~TW|(JOEHxvTs?%n(3u(w^S!@^xKy)QDz>&D3#q{7a#Us)OClu7(YR6SobC8e@ zQ_k2da}5ZkH%FYD(lwjeDP6T$I&w&e{28KCoYJ>9ic@NcAg2@%?71LhuWiO=m2Q=< zOhs_VJ`F|CruE4XKRKm8b+$L^-?}Y82cIP5WQ+ZC0jgud|td?C7K6yQuFLZT5Ve(!3JqSs8~M5c0IlQ(M@hv^o&HIic1bX+WjbP3QKo?~oTcl@5_KzuHjO>S@OkEK7bA zvO@B7TO+}-KRH6+)YL8iAb-Z&B9}G;kR3`aLOE>X6|;?y#|sGAsiZhLl?_0HQ4Kql z6Hz-v`M$V1reHr*AX*iUtVv(R-t^p zAL0g={XI0BK#on~?{z^^+868ol+&!goo1>2$W0fzxj(`9-1kg)mFSsnQ(;`aDWFHp zy%6Ga*tN))G8$HteZ8~*(82)F!mZMCBhkN7W^R<8 z`DgFh!lhI~2uqWuKcw-ZKS!bIU55cSxf z7f@~Vg6e)ur;M9-i=R@(Ob=McdBXrRks-Ajy8?lvSHPWZE z<8tH!-}QENEUFXV_112i-1XLT8&CP*7oOe5+LhFhZ7jI3cH2xpjdW;3;vq&g0;xug zZMR83-2i03-E~+ig5~|Radtg5f17SQJs!uA#@R*7EI>YoskVe6Og#vUK$rZW8{2fr z8F(jkER&wNj%99>E*boDmt1{<{T^JAw2gL-?vjd$uBUSf#-(2?5uvY5v?r*&Mie=L z6jRlE+oXql7rfD~=M&pB|Jrj@uD_}J7PxdX_!We-i}_cR7;)akTwuF&r-*ZRip+d- zT!E?fqbhE@WcDJY%+mFEOycO2x>7J#(v(v{EKE;V#Pmfb~;FhL~XAiqjSUObjUu_rjeF*}go^`-H zY-l~c(CJx=?U0TOA$MF=cF0snRlKM9o=Q7(a(rA8?yKR|t5-mVbn>@!>H@n$l%bhA zRzUE20zzI-XswH-*&Ic1V-bcu!Y3%`SK3&AhLk{ZmH60 zmr%E3hfZCFHZR0Qx`=~Oh6CYHM{_fP;GbAg7+BYN&(MgM3CsCbBqs4?y=95r3VRNj z#Km`zI9}Vide+O1E^Zqd5wb2y>=a$Z>=a!TLr5Zw+j(zg(8(%burd&`2k`*%lJC}F zCu^gwfoi(*-r6uwyu1S_R!2t^&wJ*KI;bd8$8B9@g*_bs^ZKjsO2hD#u=VFrkI~Iq z?^4w4B|EuY_L42yDRn$;XRwYBP+JYf+lAuIhT@!mpqN(P)*~(X3~K;PeR~=NNqsvC zWS`*+Q{XvQfr+|q^{80=O$Mg?U(JL{*l+lOQb^akTMx^$A67pAi`=4X2K$^~V;58M z8apux4L6Wso45^jmbeY>PdT^N*i)3Mnk8<7`xE+(fo)4viGIaxmW&9k#gc_bD zHg+&5p&e=c^?O_FW@=8BnBo}-$rLX$$q;8dzA20CxHUr$*=g5M{gIn403E#zv%I+` z?|zf_wB!xjpQZF)kE*KbKPL13KxQ`KKbw3vO}>2DLK@;+X7Ow(6PM_tOi+rz?BePO zX&5#2Luq8fYiElIubCY%;e%9lL}0zGj=EO1?NLu=-PQfVc-K`OvZ?#6tpCimABpNm z*kZdofUX@8M@UThmv!K5`<)a@Uw!1H*CN95wEEyxSp-s;Xm{iI7!-J2%^#l{CvJaDN`5avQLykmZ;I2a&>aK?ji^(n;f zFa7%DKD(6Fo-^lp!tpX$yiFuqWmOO zlsSFgw5wUVMJ{A{aF1>7@0kWZu~v_tUS2$4C##ja`1haK5W`YfZlthTq!8&6DBRVX zo-$EJqBMR36!$p@A%-~pL+^Zk%zFf7fe$PTglvqb>ECkg9~DJO^^aH_y)3bt>tzu{Nr(3Cd+U(QaRkzmIS$_~ zh5iDfOrdO!AHn+%Vrv&l-tCmgL%5>H?9RAJ(lNzP(^p4v+mG3e)zk2Xh`II#HyLq* z%R@Lc#6XTLvBgu6los_vKB@G-{~ME&eBA!aQfa`T1CH(ldeTX|YIFy;jWPCk6KE0_ zdow+;J>I-K#2%y7^RFPLpR(VEJ#PCB77o>0yTu+K*iCE9`}BvW?Hu*lZn3!^Atal7 zb+_0*#M%D+3{kg;ZLJVz-}yac#&JWe)86>dOpQgnB0f1j@p5aW;HPrIPi(3me&23l zHRkWU=4w5tGe5!fS?fTSum@iegN^%aQ9>I^@c|6)d-}`=7{uXsZzxvs4wk&Q2G>wx z4c56I+V^2rk8|QXaw?F;ms(8u2s1C6UHNh0J(Zmk$gkGF!c1F71ON%7=!j43PSzK$ zte;8NYw~K+W!z+7vi>evkwCKU{?zWIO1vsUE`pGRoPg7ZG~b6f3;DiRMaYOdLJl02 zRLxE1M@;4pCNtuk`FWEWaVIm6Fb)K(?pY|6x~FNcO7}DwS!oQ+BaG%>V1zLdZ)k*p zy1^riH+F}1QsF%Ey*a0X&K~J6r_Y?W^I?a;rdN5y7!lTU(1=CT7xnoG)4cqB;(0qN z>MRi;eb_$0(hBy$^L9^5Wxp!j*WO@)9j}`1>&UCpEDycP&2lfQ9c@nTbjcp3%UpJP zjn7||{tF@7`X3Re{_E#gby_EHOAAr56aRWm?8GL3h4f#hWa_^F!8Qyb+py2|mM`rm z6h*0-e~J>Q`}zn{r|xUgSM~{A?R$ri>aPhQ2-$mX_L_LlkKsM-#cQf_ui8nf-D}c+ zxe4L^%Me1H4j{PyLdaXw`XUc)P3vc%dJEKxc|aw+9alCg6pD9U5_Q;?oSrqejGBvQ z64CtE$dqDRC=<5yA0%W5!=~g`D*H7#s<<0GKj?2MK>GzK(#0WWr|6QjP`Y?? z8j#qje;>S%Q;#_703qw3y7qi$kD=Gx?~EIWztwyvX``#Z7O<~CmJX8gL0PoCaTR0q znrl=G&{0N_{at`+|j-qA2a zy(5sgcSIQI9aZxj;Rr98BZSORv@UehenTP3zk19GsZ=?S-?GbCddn{kkwXlT_yaHz ziJSO{$k{^VbVKCgeRN2>MP+k6Y)?xhX+6u>Su3pbWg*>P>Dl~BH=K+@M<0Bw} z>LcPT9V(6nnOF3dKe5k4lEvwQe?dB3ByHpsmvr7FDhe}> zyys;i_$Nng;^J&vx29hgsVp^8S&WdX;@W?Z3jL!TNGugXGFy4}B0IJA{UVe%4B9b~ zN`$MGYIf+2Pz)Lg1=qi4hWQ&=|Iru1{0}LV!6KouNF)>WGx_{;={55@?)5-L7;*qt zrT5S8UtsCx1s!G!ydicHA-nm0oe=H!t9ZO7H{XYlxJ`WH-gTf1xCI2;NrY_sA4Xnc z^^rGN|4jr6_hHs5>aY7hIWpGWDWe#Dtqgvma;T+Y{p{ZCl*mRSu$x$Yie zf299}ZdJtLbS}!Ly|M_IQ|#yQ`!H(sUMsIf;mOlu6JBzJ)(%eH1@B~ zFXH#8lfvyW!|jK6b33G{-{TlxgO;3xJK7Di|2514oSCJwE@N*}X_d$SRQC1*RP?zwlL zPk)9Uirg3*;Jg{Kl}n%0v7qV#s!XvwJlKjP_s6-4#ps}N&dSpM?v^@;w7Baeav#wo zgM+;}jXnORmfB~SgIXNqO+jQHAi&iL!B0;-bnx%xp+mTt%GsOKE#6GX%KSZg@V=5{csWn&~AWngZ<5{GX|h+exEvJ5WWzEQx3v4Nt1QGSS=J1q+sAV zyAhU*(rWtc^n<1S);=Mi1i#VOOIo(VJ95DBzgSLny=g6a6@<9n+}pqbuvI;S(A>h=5mw09x3Ihsd4E(rm9d@gw)K6AxMD*7nCQNh#Qqma!7>7aNMp8Nu4%mKF+X zfTcT^dVY_q!nzCZK8jZQm+g~PpKUe#$x+RyIC0r)0%D~9>6|C-^Cw%_Vgnw3urhRN zEq@>Mt%z0E*SC7Z!}lSFodV+6Paine-&&8WgVvu>(=V&kr*RyN`nl7(SZ)7f>T5({ zuB~s39I8a#M}*_x={{+=%YYc-tY=dZa-#^a*jOQCV|7|**6~+S6ea)f6d@V^@Ay7( z*qcxAKd#5uN2S_c*I!##s|VVy*Y#IW@%zP4BP>SeUh3~>Kf+4V7we+N^Ky4Rq@jN4 zk^SOLxM(v|^oBU{lL5rO7KP3fz14}(s_O+Q(c$=$JQI)aOnkg2T-B=MVWGq%X|D!XO9iB&=%W zPtT`6f86vHs_>hl5rjOLD*LARMCI|G`p)<_#kG4=oCKFLWLd}%PkT54!CfapK39l; z`ZV)aVCk!~bi>v4YqNsK+0Ebu{|3*xL8gj~f6=U6TL zN%;clPDnaz5zcDkkE7SDn1XM*tJV%(wXLI)|AHj)W)QMU!VZW^@?#p1R6^5%B*-Gz z4n-5R|4S!6=mZ$76NK!zRYG2J+^QU4K~^wOwGZ4aNcK?;`v!_VH$XA}kE3|vA93cN zilWI`guJbU;?#z&1{o!%1H1g#VDKMmUxg7N4`A0maXh9TkeP_o1CE7b&ttivdZkdk z)KIrTo(z=8PRE1Kz)ezD59l;IE=FhNMA_;) z$FhOo! zzfgo@t~m=8?G~GH-Qf zE}Z?8dwQ<;;xQP7jAgX4;=N9#e zol`}B(bHc=7uxQRP&W;<-{gF7~=ZHB|r* zksDGw;$QH;qH0S9>poq$H@f8eazm&N6ee(h*_V!w8DZs@L)m;3tP6|c6vej~;IqFR{C z^WkCha_?|!!*ybRf4bV7E3>rg!5R6rI2AV(O=&`-!Ugo1Dlzw~++3N~-H(u_bx)fN zi1XHw|K!TFF5)yZ>j02*t9~|lZ<@UM@VgaE35VSTG345+;)f(N61X#yW2>qjl7cHC zq=Flm%#{wA%#TTCs}ex{HKgEns+-By*<>3i*%adBhN^KUS7%qQ5;}fLzWQph$(m-e zt~FT^=d9T#D{d1-fhsds+*gR!abGha9GZiE?~u$vpGMBW9JC(cFQ!i64b4H%gGk7E zotgVTo!7$Zr$gelt{v%5j?AE9#BH6ObA2R+Bwwx7eh^n_UI>9zR&t?6(#iN6yq3@mo<HX1BUoFMvrL-^!hP4+j| zKdg?5P);W3)}84;4`Ckhy72Oyo0keXD;xP2< zb7g>Sp~f11W*!z_$;FTOuZA7+Ujf0s5<*@K$V47224Eb)EM?^meSwCHlh%?&_@5!0%jF6gh3ed@!b&G*lYYgS&fdYdSgpi%t$;eC2 z?9?Od%uX^;^N!rxG8ia!W&y=QSZA0+oP|I|(aanUWvswNche{#7Xc(NL_8-kV}_WUnJFIkMjY zm>k*9K_NM^D3Bf5Do3TjibsP5R>`?P(_dVvrbk_VZ1bb+WvFIH^_fooo)nTJ8)*bh zUO}>Mw;ud8I;u0C_1Coe=&W`A7}e*fz6zIC4G;j`cD->^oUG);z7WW|sx#XA7oX=Z zq^ETEm&67l2AOem$#akuzmM1e$7!xXOWkk>8u_&Nv6>;|^mG2QxCjyM>?Q%)gnV86 zrFH3z{vv9-0a>{54iIu`@ylQXa-oaA4lb=^Lf$?qPS-n<)jC0`%CSG|@I(IWQO=Al z!f$QDT;o;Fi@@IOuc^K>S--tID><@PoUC7N_II$t^~LQN2;j)r7WlDI$7C>3SSN40 zqf~NZ3()IClv;JGza1|3qO7X&F@2+lKUr0myt>J@JD4T+wW5==|2BVnt2yV4Y<>)N z!tq&Cw>ds*YePhfyNMu|72|ghLA8M8)<>x5b4=tmz)&%D#~oCVv-*NVMb-}g$NJly zum*f*+bq3*r@y+Ibu6UHk)!%jps=8y>Z*}RM`iZ-0TwmS9#@3)(Eu>C;?~EPyxoS2 zMDFTrw+|#+IAY$15M&F-2lT}L>IeF4wjWC%*s4pX;-A>%{{Y?r?*_mAsy{O4>)lY9 z`u><~;`sKMK9e2yn#QLeRQ|Wwc~q!RygT~OW3uI;OAhAM?6<{PEQ64o#i}MT;_SLL zcv~Dz#CiXKlQ}*fzrJg4GPg0AyP3?0bLN32GvZF>DSP~>YP!ic#pGKo`NF2WZ9LSq zCL~6Pw95$b$CPrXSNQD#Pn6H1^|5(%? zRGK*EUn4th0f|5EA8T1Pbiyf`LB_O0^p#+uswa%2{xE;%Kb2@Q!MQP0R;E72&tzH z>v%%(K{1MxThReUP+$9`?p`FWLeBPg{ar2n%o&H0Ert?=>{lE@Hmq>N4+16f%e;ez zns*^vxsW^uf=ImBlCK?PeZm?EZzKb^p*8 zqm$qF*HeX0%368kN%m60PYO=#N%620<4GgwK26~ZA; z--SZa?bp^8ZGD6esQpRVQ1X-@wLPg*BfLr2+{{P(LWtrWC3zx&zc`)M-cu@U#7SKJ z(!X#iHA?V?8_FgNV3ZqB=^IEH6^h6%DcEFh?B$cRt@>{4{azkp<$KU3~ z9+-m(>-$3dqG^j#7mZ&;eU>1^=}n)(QQ0LhrGwd0q)^G)ddX>8IQa}tNJzHBk}cAm zO&2`p&!l8rH#fTLW<`D9=l3Gm46b@2HA%L&Lw6||hLbqU@1g?@2mu@b`-w0a(p?h0xkd3-{oI-8Z6 zAwRX{#|W~eYHHxx;kpajkL=Q*Y+o??GjKdUVUAm?zNh4$j{O9ww?TSQkRn}3X1h`- z6judMMpXfOra+AuQ{o+02NDQ5=U?gHF8kLhCn@f8aFRxUb<(LRq;lD@MA^u)TsrBp zEEV;>|5w;`z*kW;ac%=Ckc1ve%H7cuS|Ys@ML|jg6~sabO?V(hMHEzw`hg${2(lka zuOdhh^r?t|ihLj?3B7~TdjP2l-+yNJ-n*AP5PsQxd$;?anccme+1b6l6A8b_-%q0T zn*ZUc@{-~3l(N+AwkoN6Z&gyisMzFVLV9X8hrp})ppHvtFaw9h zM$BT5(PDq-5_`19`}E($)_^=~10Xvb7Av`tWVwkR$=yz#x|HyOpd__->#YHDZ@!%H zu8h5@=mlF>8||+tkBaOlIAIPa=Ao zYUwy!&RvD>2USDSgKF%Q8P^h;7`5fvYYDMNT>?s!6TT4T@tzGo_06~CeN5SnpnHu5 zV{HPycqy#&Hswcnj^X(8*PS$6ue@;VM+ijYClzS?qz)$({iNa=w+Lcxk)1N`CR~)1 zq!!5vY>}*+2|MNayLbYR-f^D5xnP8zK*an6t_H89-`A)*{9g09F-RS{pFaAAARxFo z5TiM2%31Bg%7`P|)Dbwx6y70?cPMhY*Hr7xLI5qYS<7 z8e%H<4wi1YT?)ffhv74q0_39z10lIC!6MgXMFP@wiECV!BnI{Fx$?qY>;j`C)#a>h z?%w^WVP2Cz2ov^Nh^bv5t~{U;qAO3`OR1ZFB>`a zxkN+%pz8C!>PRDUKL;Xjp3TNK2>QnGPCs0xhC8g_?yr+H9=8tgxOJ`(j&2=X!j zyejKOqE*?aRx?vIC}M8VmYLk3;&EJuabY|vk4555&Zp#xLS~@iruK}~{Vo>mSyS4P zW{dz3577NHSucr~GRah>V-tZRhGqVXMq;E)b?yN1Mw?zgQZf@X*AHT@pPKTiX!9$q zSQ&-Q+D0{^pbv&*L;nvMQNj`PTP-GH7IT{xGgFHRZAW76f3TRe4ewheCVhqb2Zfvkl%0$yR$E1DKdr$*dZE%I&q#KD7U3J3h2c z^oxCH@PSk|8#r&Jp4=$Yt%OuLud=x{1lt>3n-`ZSnGy0-LYOH#B%1xjpV?|D_z2|l z?{GvWkGP$U?|^Zuv1{#0HogB;TrRC@hRT^$&5Agh@>n%f?{kdap&W3?#m7rx70P$7 z(hhbj8TIK}LxChYhTzWUEZx@`DfnD`3+P` zlU1@BbZEo&cRSRMz%q5scjc+NdT7U+Y*}@|P2ru&jHm=ZEX)W|Wv5bLSdndr=6VR1 z$v}29LI!fAW`rC!g=K1eg~Se$)<7T!N!y*Q!CEPxPCFkg5d-a1AL;>5Y%~nqsT?GO zcgppT;f)*SXt)B3baAAoux^%+>HWA8Bpn}MiI`PiVL7^y*#NSyZ)DaL(;ysuDv{q+ zExgm$>ki2Jjm_#Rmnr+4jV>jYy0S*Qv*O9&msN=ZYTbw=F7;kaRr5>b@2O6u!ziOl z-@a3+(^Du!?}VJum3~5rcr{3+v)P~}EQm_qt|}c!TH7Gg8rExidxVl36ME z;MMvTW}ScrB;DjRpu)0KO^di<+p0QY)TSi&FT~ux5c8%oN|U5p0wv|$?BDEA+HD^C zAT12wROUy_C$V}3L_P#FqW3Q6G2v}xBQ@U{F23KwH9Q3Lu2wM4qjW9Mfkkg1D{0l& z@FDX4wJ99HRl*9a$*{~ z18-xmzFQCSxP2MRQn=GlwAigi?&iDI(h048;Lt4G(?k0UyVdYLP~}IGhi`m&lCtm) zbX=qHJES=X%or5@EcU)Z(+yBCw&0O!wLXQu=?2SD*u}5tl-%+$zcL`dn6ByUD16Z>y!?NRS|Ci-tB@6qpgw%ns^$`*T2EZ&nS zQ(l4Yz&4yo$p_NpnP>GNA-e8Sa|^`$Y`=yy4XCg0VSDOTBuPiSyGMNjF_Kc#H=GIO+EX0kRTn=86QWY*F3AfV4jl)x;mUJ)0`k?^M50X(Rj59*U5#t zL9?<0)k|8!%?i(3H7hi@1B2(Sh;#6LL~#yfNa0-2SZ6fWjUZU;k_p7(`6{rArj@EA z3h!0^{i1uhhNAYW8j6K#g%*u;v8Da{fml3KReWjJM6JE*B<4CmB0*C$Vza$@1!dnv zAYcG<&uHeJRm^qNP(AO*Tyy{y`cB6}mH>A=-FX8H(2ifExnU8rVp}HTdYjYfGPmoJ zT|SJI!8l|$sOFG#2cUQZ5<$|W z^PpxBX=V^HGdM?j`kC(wN>az0x!2wCmde)s9o`D;Q@tNC_qq6es?V9YPE8Sun7V)B zzPwH0?sKFbfWdtZF+WMEC`(V$Bm20YG}BP+_C5GX(opR81Qa(!PmrgEK$_(wQp;e4 zA!aQ}X%bX`w0^=^Lw3ZYM4GAvT8j3Lr0!7@&KVGwHmiKT&p$XM$>ukVN5nUpYp>#Z zrRIA5zi>^T;$DWlq#u_6ov3~et~6Dib)ME#Pq?VQFaAL;deQ3^T~!(}QC@$=Y$9%H zsjh3h6Mj5?$qQqhuf%Sp5i84-p_uo$?|6p{H47M`&VE*h(e7JN4?}j8NQ_Q$kKtM$ zw%zaO!*=wG^a4oeLjF9=+(KIlaE|`tGV`_gC^_Mqgzj?WPi6tx<_+^( z<3-|1DMrzAf6#olhnr)Kw^crV@o6~tr9;?WgS&%1$IQACUycP3-j#|MpX^tv5=YGw zHkZLQ)>k-EgtF1gQn%jpt1rvt zlXeDF`rjHOnv&`iS6pH);`ox%+PLOGu+pugN~au9LOkLxjZ0j*gR3;IIi*?W_C$;5 zt}=AL(z!3=AXqwsdJu~H=4?N{hdJ8-T%kD|DxP(2m;HHk?tu5No#E&cy1)F{kka7?fD!NM2BDqV+4~=0$Vtv{ zT(p}GsBs4|j}^y|rnR^~8DvUo;hF}n(8zP)0DSjWoq~W2(7T!i(z^hmQ31OWa>l?D zf+VY5#5^ec1{$=m{)?P7*8E3So9qmJWe+MQ5cA;o&_Ol$)y8#lD<;d? zfJPnUN-5;86s>9lkyzC#o>tMjcWOikRHHaE+x%v#h9mh!s%zL&`OFC~w`dp4B{(o&^BwSppK`nBoMUztl%(2!DWLY3%Ciem@iqJ5%j1W+U%>Y~WS-epJabr8`?I)A)!q>? zReR6F53F`tQEY~yv^9Z|^f3q{P@L?Xw+?eRdqbm*&LgJUMxf=?Xk_L9Eq$TcR7}@m zf(VOA#K_7)%vKJiNzTTHeZ7pWoOK73y|D}f9@!g94k#;UFWy6@)2DVFc7|j20$kGk z<|uwIXnyZJm|r@z;S92pfpZeTWZ>)qLz*BPIOUEgg60v2AW#1@mYC1W=f9%Hpc9L0 z(OqTebd&L4LGW5f)H9CH@qUG+0uxCM%XSV_jIRK!2l_xoIw;|^tEj+R?R&(t|wrbBVQM90U67)Q13V$-!Wfh<%UtBO;; zGY8|HV=l~}A*!oOxAK>+>y+-KN+Sy!9pIczmO-xK{dMuTe8mMWvEA~aDvhL5noXAJ z{zhL0Y01sJWAC}@<<+&1&0YIl7$%&O7E9%KdKxB zZGSRbMlB;!%7Xa}0CcP&_5&u#uhyC$%A@o1hsoqwVO8bQwdQ23)1XeYQ8U$FZWro; z-{m>a_u1uq<|ts}JyX#p+Nd$YWXcBk?m~_!wS$QEwr?~?WZwXWwGCp{HWN^Wmcc)9 z!F{YHoE8L+RZbutTNA)zD`(X)^`a3Dd-B!T*BWn~s#JsHC?GNQ*NdJR1QWx;{3OtR$ zSY*pbvq+W?AlULDNV0q~G>1qthlrWOmfkP3%^wUwY3h?L{_yolX7SukvyhNW_Bt$n zsaZtKEdH!n{8h2I4!7y?*!FKclAQqz=8-Uo$K#quq?t#=%;T5dF8fTcAt+5eF7)%5 zF)If4!4ZeMs6Ul~fUWfhVIWk*G=%K3%D7AhLis|XO1e(dh)2U5ElHY6!zRdow1EAgf*JswTj`@n&D0V!Z7U^@FFjn2&;fh6z75? z(&eDYCc4&3){b=Fky$6rS45NJzV+rPIp~yG2Ae>~oH9-0aVnvQ>_?BQc6#b~-gX*% z8jCvmv7v1MP2}gNvBm{loX;93FP%1R>?SFC#;jes2_)g2yGBFTzFp+xtpqNNT}Nfn zie`*=taYd#n=p5=I_?)k1I3i>Ir2AT}DyI z3@V;dKe>9_hiW}EnLdxO9v$og?vhEg4An~}(W2vdO`_XoEfI54Swa_XW66CzQB#)C z5|krfPLDfgKLa~HI^4yR#&1R}_GgMasm-2Re4pQpNIuC!!(zGOA9JRhb{9it_q(t# zTAx%p2QeExJ&-1&rsK6xUxR}!RjT;I}a5GBB(3yn39i8SWW!~6wMX1$U#Gg_%UiDO7A<442KW8{VG$+g| zgKcyGQoA`*HP{pPV=g*?Ic?TJQZj4s+U~Jvt2PPF?TVP&74e$3R!w;`!scK@#`Q0yIYma8US#sBIe$@ z8D*)rVo$px^8ZfBoRqQ+4JC0QS99>Z-KjoClNr&LMO?AC=aslfvbaQxlrmyg%9N&V z{2^$QAF{=_MXXdqh8BmUyuGpHX(c7%4&(7nh11-DMNM2LH)K^gv5eJFG{Cz#WT(3s zbBjsuB>;iNBqVy_y~Al`2tIY1EDz%eh1BJAkRC^dpd%wg$qpqf%P1*_Bv|p%DpAsl7r9=o~}(S@BVUIOJ6`rcskN6@AXA<^+#Jrr-mZ zsx@)fG_4i_SGh5#25HQ*rj;SRmTpXAyqs-WF^E#ip{MZMKMT*OF1+ZB>caCCmn%W? zL0y=ROC67*%vwZ{PB?G!Hu!&~Hvp$+^K)e84Sy3>jaFhk3hVsaZ;9 zZYhkTY=&7SErRc#|JS*)hDMC6=RFD_p=n|qOwGpW$m{ z=h%=n@=2qPRa}}@Y$IWvQ&wo4OsQuji5fa<+&N`PHa@3}P^8JKbBfY2j-sP3+CdfV zsf%{dMTh93Nc)Sn5o2|!QL5B`b*WLh)B;@!X@9BWa@nBpR${F#x>^<8s)~lJKBq0_ z1G?<$z_OdJnk~dNUG}mnE6%Gbxva?+fkvbA_>p##9rzcfpout-p1y-s5i$8L>*=yc zv+wdzT^4C7EApLF`%EwR`{TW{%JS`VURl09QPi<~<(|e?QPCY&$l66avbB5aY#wVD zYnIhyLJcbv`%K52S4QvgCe|ZS_lS@(de5Rb8NJUpwO%sBC+F2}p)>vrGXY((rrn#QI*=lLn$fh0ZU#~?XvCmjQ<0Fze} zCX*KsJP09X9g3JuUP{w5`U6Oi$?HY!DwDUfJm1!OYRU#PS&n$j;VAlo;s`P8(MlK8 zxLXC+$#GEuF|qUz&hnyx*Ub{!4w@x0e1UPSMM4aY{bIYfHHwfTZL6VLX{b&?pjeXz zLUniy2MJtIige%wrAP-~;GLzo%uEdjLE13nVoDpnfl#bT!JXgo{p5mL#+K_!i{-SZ9c^mJ6=~3>hD>emXwxzmRjbBcRIOSHFo)|f&Gjc zHB$3PmZ~AsJ3DBPizXLUn>N!xjWp2Xd4b$b%0L$-FA^GZc?YYBNWZ8S3431Tdh4cv zUXl}^wCV(OGhQTgb99ln9XkRhKV>E3GcxHlsecvvoJ10hY>X&pCCE_iU){GhKCmTG#zqU1cXVbJy}# znY-@Eg2u}?RQDR~^1%E_BJz@&c0|h+U9C2v;3a8)S-PQd>A?dAgI!dw8)ZV&>v2t~ zym}!E_$(}L@JNCae{9`d^z0Wr**`o2M;0iApoH9^aC+ZKPFw`=?Au!u(%U7)J!FB;DgVO zXx+9Ni_JG+k&~Ccw&92@a4oA{TuHFT?fZ-z)ZNOat2}l-eaVqoEyDjV-I^|!cmm`; z3{;v}BIbefx)%H<3qEP^FSfX*xfPcmEI8SkfMLNA^Wa$)Wyom|Cnxs8)V%a%szW;F zE6*tGe$F%!KWB$!hrX~%=;H%86(_4VrsvHGEK#m85(vk$5oWNVF-nf>YsKTRBOluP z8VzehKnoZPct#S4#m_HTc=bW!1aS5t-KFlwwr;6{K0*%CQ6*7!cgRh)MP144(BbS+SyU z4iA5Ya?~?YCg;HqvPR;54J1|?HFK2GK$_(xN;ECW!tQRXIq}Z&ZUbR$5b%^_6$}>k zuft%VDaow!YD(hCQHIQmIgTMi9(^N2@%x_QcckX`qkrMI6eJ&kyfhzq9l%8J#T*|& zo{y~31XuV7vO|AOX#Q{+@v1dSY(fE=kZhm~YC>{GX1;0-5gTxa2IQYL^a?*TPe@>$ z`AWc`r*;3U$Vwk7cHi=je9bcOPi73WY6skr>xWrYqtCi6Pwgl#eZ`q{l%Zcd=_qq0 zz)=nxkUuxL>2(XA8&sc(ojKeJm(LBiHW{^KY6iM0yUA;MyN|G*H4Gdpm0{_f{EuCM zY-MWDtC#d8s~&udKl0wycZWY@HQayaHQyb-XZ;fw=Eql*Ykii#2rjW}9p5s|u+jvQ zWORo-d_`{<*yt+$i!Q#)DIPD2W>_`p^j<29+idJVEZ1hhT>jft@}@3XP!=5vp=lie zuPbhQ*Q#Tb=1aWQ61mvofB1^pFp#2d(Pqu+R~6@Y`O^WQYs@-6riyEffJ+Vnd&_I0 zZFHAOy`ts}1Fxz%Lw}U^%^CWQ!knS+RXHRZ#sqjJ2YKR^JW~e#d@VI$0opS#Q9d!+ zdMPTEXsGEzH58@k!sXG{FvIwa_|iV|s{Ty!s`ioNbE{*m+7XMdqI|rkDuj1t4D~<6 zFl3F@KFkeQ)hL9RhmJ!s<3o(U*jGYT!S4{fIZOm*z|29@r3dYwY+W>o3`O zT0o6`4Z@^K5VI=TjIv}XZSmLG|4^CmALp$v)+L%PGNpmR^@W&g|Dvw_%YLl$*W~(9 zrGj9&>t18A&k|Vdvn=+Pn$MK@ixpFmzf{Lc_>1d4(p_Kb>%W0~apeOGF9asa%MlUf zMcuz-*4tPLude`WYruyUV6FyO|8!LOs6fO3?w-@!y`aE4Yp_1|<1RV?OV75z9xKi_ z!5JC*_}Jt$82h-)jr+AcH_e*INow3>s&S3A-pkXiCWag^2kpvU_xYesO^TR})ir-9 zU-??a+-l9-reMsmv8tJ)_Z5J_I}!+!b|f58yb(4(tcaPp`Ev4XYcE~qo;T+&U(e%B z6IbV0b%i{*04yGz?>wyG*A<_Liw?sV*ZKG<>$*CA$|xtZ=38xy1X*;MrM^v5?K-!0 zuBPD=s5Hm4hXQEKF~yrp#mS>D7RfK~F0d*Z4-=xATL|1`{wa=&EAO4O(88A_ks|i7 zUJs&4dZbw@KU^BXcYn<{Vt!=aLn(S>{zLdY$iOP`aXtRJvW;CmRGn9=d5#CqK;j1n zF%L8gL4gLEMXCo29q)N#Z_gD<-ehfG2@1#BY1m7><#8y#NXhDv<#9o`d7a3-~o~jDlLh; zWQ`RAGFfBB4If3e#?my!Ha?1Mjotm)IxTu4FBxLp=$;f%tlvd9+@Xi%1&!Lq zkIIG^be^vSzEMnu*hk1phM4=7O#aroBR)rA`j}9_odI6!gjf{p&L`hllY}?eoj%`N zqs4|`cWV4#EfPC|-0_xPZB;hJu^_kPJ3qn}tmd{Tv@LiO^`RWlx9At!g12t4Em%l@ zuZX&hTz{ib<*2obeO2+tVwsa1U)-1{C$6y)V?u8_Fk$qIVZv_W8**jR!selrXVqdk z;iK55vdDAc)x8sbvfeX9nVWKHDqfoDy3RT;8X++uHd#D!Q)V@auSIECLlxzvA3_Qk z^}L7ITZx9~e3Lxfc!#z{d|YHb5YjFAjC|r3`1t$q?S@hAJ2#c(G#s$>hRCp+%5pkf zJ1&g~7c5r3ZG-APBfGyH-9RS)W^E8N0o5wLj;yxP>L|R5S!1R5r;S#qAy03@ z0CJ>Jd`0owO*yDwe4^NUQ>HYIZ$Rnv5%HD8NmVr=zum;dw3$ex8|b-JWcP22MMkY8 z%Bo{;0A;j|SgKinVKXelzVf5Z)j>Ua;m$;&@XQ1m|NUkNIX7Q)!t(5*Ro>Y>6j9QWb6)nb^E!k*7Ks~Ewx5b z^%i}xycIRUBl7KS)@1S6Eq24x2%Lo_s9AlC!lLOdHl{__TgvVJ9Aa|24^Vjp((HC0 zeoMLRk!BMb<=BL-3LbTxG(i#Ccl-G*?g++ziOdW*XAr4RI$^1KcD7YkRJx@aT-RE` z9nhTkAkAj0f*i2JdN#5NfvP61;?3HDrW6|?)u*Lu$>(=lYeIg#rQPZW!9BUv_fdg( z4>*94{EUp*Yju;24mz6n>Mf<=5VNKzbX#ePD4BDB=2-JYbrEq}((CmGA~>=mf1;|7 z#qmn$dNRF!Y=x*@il)rq66X7rX(u~B1dNBRoVR@9#Kq8vaK?cx(|;fe-AYze=76>YJXNtn(W@T zWOsSukX2;LK|Mhj4pztzLCoTR0vS)lCAfs2pqZWVZ_fnBep|?|+LvrcaW69&!eb&Q)-~$I%m)cIWGtXxJY+1m!$U^?nHXYZR*k5nsM`L)<{6A5 z7`{TvV4O2ng;$PQ=|foMLs)f(l}jix_3qc} zmC228h^c2SN%SKH6~Tt59DB^7Zk8WZ=7EWS2 zcH2tA=W8SHSn0-S@4!1&AH!H6cm0jU@a2E=E=xJSgdHX){A1-0pN9$<+QTzOHot4x zbgZ^aYiHYXLM3FlY}+=DgalrB-ukv#<()@)Kc;;_`Udth-o6Veu-@;%{yqM;Tv6Cg zE>5%aV<V|3L14NrK;+n?z zlQ8Pwl?ASr=ojruqV!!?#g_E8h_vytY8Clils#Tl!d87e``E>_yfA8%cKPU{cN&9g z2Y1mlnNZm7Bf9A#X;j2V>3_}aa$>kU`!H{}BKB5cjP+J8ZigGjWLdX_T|rDn9^D3o z#0MH{7?Tep_b)n#T)wG9MM-C5$z~No3VLgov}cCEgPt|rt}O4AwjUSkHKF#!v9akV zIk=47#F#CYma!Ai!MB#NAI^_M;EE*J^Fxl`74mjdyGbN{YIg5k?%Vi)ooNq(KXiy` zCxzct7x&Ud^z#DfNNXD-$Tsb6Ml9zsO3N;m{TjxMotFK9NW7;it+eb=!A=RKZe0?W z!t5m1W70vDO!GD=XFqL3rQbup$ASBv@48`EM9vK$AFXAVlLyM%twlEtm_~qggah_< z1-p_lR^g0R9DF86R0IeA)dfZ~2eNx5JHM|Kp42MFIwjj0P{otBUA|e_9xs=dv!lHq zRJO|)1v4FXI?9RF?dI}a6|k{Qqpp$Zi7qyNPPFS9w-g)KWrZZWwGkl)CE4jln9NGD zlh6gZ9!RG+tgoww8thfoPQk~Iiqt`#3f}cq?cWT1$@GKj_9UYYmlPH9$&Ai+B3F1Q zZ>r;ZtST4PuoI2$s%RI9qQzy=n&@qVWy_i%JWv(y;x0~WVh;H_$#ym4V^tjI_Mo_T zR1n+2nUkl`?sq!DX%hM^kPWgScA@W95{#Qjlt&aTRRDYI+mpPT>)S1jsG>%Q>I^e_1ayYy8=@5o8`7R&NmnO+EA0JC*N&k_k)l9d?Snptz0Om^sI(DN;315@2m&5lkNDtJ`{R*cdM%?kz_^%G&cL1%oIUNx^jr?ocrBYXq-SP|AxSo`N>35p-BR65;-} z2#!+l{RRYUDcJlwf=mkjlZoI%3djiXT&3V71=lHfX%~W*DL6sFSqh5oLl8qj_k#%f zP_Xp~f*ll`{{z7l3PzkX@{RPogV3|{41#?WoV$o1hk|ui5d20#;xz;{D5!oD!9x^$ za0|i59NfdN$rKzDuoO;FP&^btX$m$*AlOR5mPiEI6wEGyU?BwsM;1d^go1ZUAovdj zt4kwTPr-70Cf@T61r03(%_taI0m1teG_8W*5ejx*h;(;96BfYOl zXU5wYrE!SdqjpIV@q)~J$u0@qGVoD5CZhfGJR|mumLEN8uM4}0q^HIUGWD(%Coi|Q z<7!X_%=>7LHIVZ5P=>BLo8A*aKijnvLMjHAU`5W}`DM1=f z*re8!;t9V51r2*5XhuQ%-Uzf3ZP3bYBuWUGKEqBdR#fB?zP()03c|PU?FfIk6@)K{ z@^A-uMtlEhWqS>)I*O4-tKw-!$f*=OML|ajUhM6!mU2`S)k2E03V!CQ7AgttQnqfH zdIaf~gP?Gve;1izm8~NuJPuV6_iovOA;>uCSdHYe@g5g+RhGj;;snU~q?YpuzVB+} zUP{ic0df}g$*JnLsvs3r&as3a5ibiK)(Z_% zyPBvHq8P5|?f_1P`l@BTme^e_Z{QlLWu+Yaf*l{OQ+onrrOC`; zH~Fmr9Bj-SF5pR5W3w{o2j$Te-ESRmBt2SGBZT?tHigxf}My7lSc+ z=w#Qvc^?Sc+SJO$g{YUGjcuoI(tXWFy>z>-7@*nc=bf64nPJqMj?AxtWZnmYj^`li zxn!ry!`)Q-1yZH^{zeZ~liT@r_T{vqPIs(>z^a1-4bNR;j~(Z@v* ztPo;~P%o+gsbCLIgU^?!K3r44Q?DOdpJt5ngI=wJ+p_4a$cj#T(gYXZTpfVNHmX2C zOVb@KC0phV6jh_HJmIk)E%rEwE0r{oNXCpSBkd(+%gXIb%0|d;{p~_U19N!B_w(y^ zhk9Ai7$Mj8x9hsEv{d}mRs2Njp_=lJ5+VLMK-#TdAk2#2r_hy=Fti8#_q4{yt1OIO z^oumPrz`zpTjLk7?fD-C-T?^Q2Hr3n2m%AI%Bx(#F5OQ#)BBdkSDP#1uQL7;QPnHt z_Ltyo(&paH{%BjWc*xwdrfe@eSjInQCx^`3 zo?;^r6ri9a1>-1~NJ0L05JXT=Wi*276m0wm!N@HXzA*{G+Z6ot8G>IaAP1m>EIU6BD}TZp?8-(r?8pML+^5U60abj z9a`+%^^o`4Q<(x&=Hjc=yBVs|Pv z8tsgS;bF>EpMr>9x$95*T#l7XS z{!n`W_NmPuYMX_|0NnEvTmoQV`%t@|2o2>&#|ZHbe9bOyh!{>+p;fo=A|*o6*KiOE zMe&|9b7gv?LJ6|j1Un*8jLT1M>B*kiKpdBUK)->#C$}l=XX6ZJ?`j@V{B?VX2%9z^ zbJj2COQW8xW>F^Pz|%zb!GCcx*VDx8SyGI!TZ+bt$M6Q=12t1pjv8VABU%UHlyc0`8}YAKR}*A4O913?&6$`LUqlCi}&m02hS|_L)VHO^tMP z2V&L);~&V>|JXf5hQ@xIv6HR9_S+7>fx~IE8kYu-w6BK!bPN@^1xMgG6bi^IRZZ}6P=ZbV@)OimI%I;qT{e3MeKC1v ziLkIW*FpOC>weNEmC>?3j++i?J@ZyAX_S$JKeTIOBb_zDPRZ4dW8toGq>NNjf@qf9 zIL@}iF5UsXzwh|zm8a~W#|w?P>Cp42>q=C3G%UGijQxqxOc8EOgsT+vcTSl#){dz} zWn7){&TT-e&Zwz8>gyZEa|-F1U?NO_pXt6LbTlxC^u+r)j$5QWW!EAc%jZ{*9(CQ{ zTE;ty=3BvNZj1B}C+^PiN@0-8fWyW|j&kbGaWC3MPF;7ATcF6z4MuKFX+OClzE-*t zRv`}L9*T33qnsc|^V8+AE^_L+i`*7PZc{LF@6_^>^LGk&Ph3_9gxAz@5vDS_S{vb} zuV<+1F2Yw7;Y+~?|MKL&5q|G!5T5w7i!hbZgbU-QkFdJ#CoD>bvknm@!)dTgZW}nD zkr&J9Md7Y)na7<)?l}*+#*}l1%|AV4*3uM`6@?~&6v#pfMj?->ME0TQGx^+q?f639 z(C_UOuqy67sd-o-8S)v{mfFjrQ(<1W3ztQ|uxrWzQ*AR`D`k~cT9t*)+h67F%XyP= z;=@QF1mvzPw|r*zf=``6-}Pnu_;Yv0oSAlS*=9vZge*4=EX-87r}=Wvz|~x^=cd^` zu-M43-}*8xo}Me?$N16-=gIWtSu-P7p31V|OuHw&r$~aI^=15hraL2e94Epel&z9q z7Wo3}KE36ES?)Z>Y^+<^IuB0hQ+ZC!cIV**K5*Z3%8%ip^7T1b-Dsps)aMeFdxyI% znyMS~`I^^oIuMUwjFdXp_K1!e;7NyM#Ju1n*A@$vpW&Vuq)QA4MsfsJ5}Y0tgk;b8 zc3&|@1B?m=a0TlH!2wW1z2)F*WeUje7l4hq8f8{6lq#M59XkjcREKiiLO4~{Xp|p< zp%jG)9h?{Lbw`Z&2)X+U@Un+dl7e9rgGnD8gWF){BD!Vkofi@vfO{vQVIA$9-& delta 172238 zcma%E33wDm({?&Q0@+P6JGyYNK!SpVaH=RI+#t7{BB$5q{l8V!o1H~Izdz5Dr)Q_T->$0euBxu?nOXJC8`ih@ zA2z}op+-cEC^4esh*BdWM?{S%J)+Er=n z&?E0+z}{??>k~gFcxTevi2Zk>L3RoT)yzq}opcVi{H zv}JvzixTa|>hsasy4RBeiclpnr?5pOy47Q|_a^Hs-Rj6cn?%>PHtAOq?JQ-D(Gyok zH&TD1Vof_0KdogR{z;Wo!Wccfc}xe&?txlr(`Y^X)!1h0W>c=-7~P|<+`m#8_dA;V zZRI{%c_!KJu6mhPdLkR-sew|=>ZzZtV%JiynpThNu(jlU0Y}eDtJK&kse9ZAIa*^y zjt>14IpP+}F_~}a&b_QODi#K@Yg!m8+sGKrS1VZqK)FrzAFLS6(e1tqa!1-mm-Dvu{y-$LZX&F)4ayJ-dr%BjF{svoOz=OF^uo$Gr{JQDC(6R8Ysq>4L22w$@?c^O2zu6)gzq<>-tc)~vMH_-n9| zcX$k4OMi}OrXt4c^c{ARDmh-TEPcEghH&h77mi3b`}$r0A?!L||o|_P&a?X6S?1{(e2c|NcTr4 zsQbr@uH!j!OvQ)Fbq*Dw~?ok9@fh4qz)AqEqR+ggz}*B>sw8!-Ea{`-EPlN z)&vpZpCUp%_jZi9r7uJ`Re=d2#Ih4ah>kAkh@MTJa6KVLLx_OjfhG_?$5do7szwv0 zRESAXO(w_yxkX@ZpWqrG;bJscEJk3m7$2G-V(e~E9uSl#+$iBdA!9y8M!O!w%7dBa%wjXW`WW+%I{ zRZ91`&(2V2smK@Omt1C<%Qfw6r^-EMc`h{+K1?olwl7-s38Z$;vE)cqccO58C@VNp zT2JJWVzto&y4h`^HnZ-nLPJ`&Qg(tK);_YfYKSsd1C6b>uh(xr^cyO(mP9&nzPGJ< z_-&E+BQB5!0g?^to9#w%v|H{5isv_=hVF`v*W)AO>RZDIr*_WzDv?AlD?p^I+9vFZ zE+K_LxT_Eeg$lDetfDg?u^*?Or1Df{q&d+kL5oqlhdtHGr`j26jfg{U?hzcryNp2g zxOgctyc~7&QfxN@kO**iBs0#A8lH6Z3+_PQqu)rdIfYqu)K3N`A}6fx-8$c34LBWL zS!g0%`v4;j`D^@CX22a*M#N>irycO5jI=kd&NZPgha14APQt!MU9hgT(WcDPpH&OAb3F z*5{0+XQfxDY8kAZZme*}#9;9RWGwE4vxGsNP!15>2b{-!z*qD8+6^^dUFvJsS89@2 zn3nq9e)d|);Ld3dqFlpqT7P@HsyT_RuT>Qz){fUt41i1v2iq}v!hI#`swR`f0ymw+ z7FabxX_{NDCta^|63{tSCrRfN15FteU(LczazT1bVhgMu5*YaO_CUKq(A9GfM+3#f zk)dJ};!@Ob;Y^_smILRo9Qdl^bM~Xc0kfMlDU98Q&)XZ-62tC7VfXjv!`R(m*xh8< zU2oXkeqDBx!0tlBZV;$`#OX;d+ zgF-ATLTTh_Zoxkd@`_u;D`k;hrL@@`Umr?YvDQKA8p-{J+izHFU0kl7tY?k%l+!;A zNB?$x)ovwMkWdXvs;U{|Ca3#Ttart+pHk(T%=p#`Gq=cS0(ypLN zOwmQhy?3ZOs7*_uv?($-ZZas1r-TWQR8BaG{idMI4lWneT~pZ4?P`!Z8>ENbNaE;* zBZblPyrE~XK^bUJUUj2Tv>-M<#&~|r)f7vo4=7cR_~I_IrsylTBi30=~iOCZ_wgP zZXS=3a_HI8F}m&qyRH?_1@*FyWy&fPnLNR6r@07wVSi1q$6GfBvA6^VP8EImHY+kX z!c)=wAJV+q0NFK(PSkfUOAG|_iM(}FbY`Qt+G>rF)xs&ova*}_5GTU&_;G)lXNfCN zptEx9M)6PRVAL#|t~hFzt#xLtxR>)1CfOq`>owtkqh_yYJ!@0oPCa2*%=0>Nx?M&u znu1`Q1$vvA%TG+M*>+w7zjtWIM=mB63db|R9P0(YamY_%ER1SKm5>s{2YF~yv`mX(qvZm_X+hVX@ z(h~M~QA^n4*JQ;|twk8acL*4~MPC}EEwS||JcHS-Fm+k-4D8FFXYwe=&GH&PFI z&)%%krg8uT(G|`(7HvgEP32(-QaA?EaF#vTdX%y=RQIVoG_3AAdA{974Vo%W#tXXW zeR$NDYgMcQ8d+1mHkD^Qk#+oHOf7FFflBNHAfze*GVw#ZwVF0ne2f_c(oVf20M>k6 zG{;cvddcYF6=j^-vAp+66=V7j-&BqGMc}HXt zpi*ruTW2o7-OBG=R~!`P00jGP3^D6NyP>+}9X;D0s7L@QQ))z26^K^vu=cxFA_jt; ztsoUKB9sT-5urT9NP5_FegoAz1m%{CKyeU=kvIs%S8QAPYR4kGo^Z>y_1AC#<&9iy zr&-o?mxQLiBidy3N01PEx68mD*;mXblF$-iZ*53InJYtmRT>fk1WSk^@|(ogvv%wC zOYI8QUSX`oYeB}2g&2!n7FRXc;Rb}g2?l`^Y3ob9OC(x9GpX#(qZ#%lxCC>|SMzf1 z0?k*%F>EC|RF-oX7GyBh-RMEm>$gu8UDXmJ8pcwkzbksZ&bz@0#fGwQU|d&q=ezn! zS#Jf^_FW0&+@aG~VVrb**F8=u=)%`a+d(d3Ac~eS&fR0nTP^kQk1=Hm(rv=SL6}n<`QDvH#i-w=s zi!G~(PA)K;EY>Y~$@z9S%ess18T-(28ruh}tv=Ds@biqS6#J+ zP80huL5kz&$JOnY)_YQf_YiQ8W9ba+=zBNXw_ABGh!qB6vq0b{hvRp-AaIXOOk1QB zSHA^38WYn7#VM}-<1{fbSEd!4m>#;>7TZ=Ar?H*UC)Z)hPS|2ct9sMK()_XoD!J@* zu{8H=wL5v+5U^O9jA?9Xbo8XMsd~%j_C$SbF1FCVHb1ASr0EiQZ>!5S7sGoj-?k|n zo-kd)@C~NRjHx%BXADSX6EyQwY){o0T7|;!?U7P|Z}m1%$7|ikrnAaby{5}t>Z!91 z*p+iS*QjXq*H^x>Gpw@u_`YBiz7AoFB?6Qv7J}j^{7691gc>znCd3=XP-@b2@jeX} zd!KGBow*0AMW%|@yVhczw!=EJFNM_V9DS!k=!G{eB4&uR{tgl5ogr@e zb;L!s0SF{6LMo`?X|AfzkTq;gg#T&FqN<*~8#5q%hD%UYJ%%#|U>Q;UkcZx827Bo3 z3`T3g=;p@2f}w?7EFwb*$0>lsk?5xlCH)M_lY;Vs8|4~G;`ZC|LF91a{F zgN!qCzV}vjdIm@E)LDabQgE(@<8biK$kyPnNPrg#-bLx6W5KoZ3=ZB2z3j4w!gm#l zi&+cx>?5|}iiaH2bs;J)U25`ho3FEux`x~PNA2gW){G%uQLFbvHsy{5W%Iy$V)GxO zQf;mKbk-R%8u5Wj(0sg6X2zUbJQO|$6pM$U$o8vO-jkK}aDw8Pl=U*h(S%o{-*XK< zNAm*PNXfvl7a(wrJn7c#V%`riR8wD}6rD!+-qfPs*fZDal3h(ND`(l>VZ^xXB)^S9WbwSSWGA_dF8GbMkSq9} z*BMuB+ln+dXis_AOj%sLG*e98g{$_>Ds7gSypBKES>Cq^Sxnx`U=oWfomNmbHSfPaLUH?%wWg4)kp^dCFP!d43rK)XWNZn1uYP1^P=rXkOr zxwB;M%%?IO2)8~UpvEe97LPXKls)IxL{(xtQnq7f>4}Xzi2@VyoVOB2hC(h+8g7Iq z4PQ0?!}eWU<2cs_*wIV>L@-W zv1&V8yl)7B*C0j+9tZ&lq=yWG>7K`C z>*ITT?F7H?>|!Bjb&9Rx4aX!b%oBJ7p7!%jV^hC9)Zv@FR7Np#j>Em5D4je*As>CckBC)D2A;vDQZg4r#Ep9l$t zSM!E&(nE!_Wkph`Cr0{OtKU$O9H>8Li%;+$2B7`UXkP;wUB|JSj|r=9mL!FfvwR79 zS$e6PRO0)xI7)h-yGK=eUxEs$?-%zE$S|v;Fsv|ITB179a@+e%i)tY-R>%JbF~UtR zgV4tyJZ2D{`F|sfG6-V~!bpRF@YlZxgu{lAEKl{XrF*$A*FxH+FImkOyf1yZ?)|X7 zOgvaJN_*pcQ2ds)+rw_;b2C9cYkb^__e;~oQyYaiEr>%Pa136&y41Ux3u@R;m zezReC`vWm2^qY>Up&l=UTA^`c7P_GbnS~V}$Ub|4 z2BHXDI1tC1fwFKWKx0T+b^ zC=yo^JkSznM@(djPAY|{^o~DcGW6JAW9neV6%yQsMsQtgLU7A!Lg%laBQEHMkj&N@ zGQSGRjP<@DvkYVg9F`g5a0jr=P8ykEg+MYpVSp}&_$56Tl$ily&y#^>rTXeZC(f?z zlbvL=!bX%cSq6O7v6k;%%~vdgxy3Tzu#*C56n46T;YK>)BBlg6otccQ+39RHH#oka zY}e5bk6ShKmsjgbPv;X`6V8XM_u?8dy$ z>-uhr!Z9%}P}s6Wvi|WFbVl1IzGVGaL*ERXVl@JY)1B@3$QUE`%4jxsuBGdAs!&b$ zY2@og0>kDKrYi%MJIKx5b4feGMC0o6@8&X#mK1XL|kIK%KDEA z73-*X3_Bx*9qXcwYvN0_4&^mz;`3TK^O@Y-S38WVYG}}!$5h4Z*|++}S{0~JhR0A{ z1^My1M{{3QofH=z8SA?3%tOpLv!So1-qFLzAPLNaD!I|cq;-= zRq6An1BBUN+eBL(X`6Vp9DSj=ua2@@MT2soqJO#Mf+fn!EqwL7EyDC7YwY15TYUUi z>54V>tMf!-znSU#S|QF0BIOveH8pSIZNB}MwL;In(`O=NOXo?ftAOq`R`|(>U3W+k zj&;#JI_$bg_qfyN*NRj4856@If-$e1ryfqoaa>gd;#?e?kzb{sZi!D6aDV5+v6uLoAa%Hs)B6~En8 z)2iaQ_^YPbp{DKxQ}rP!d#Gj&&(x|>a1{HDO5+GXnEx4Z7lv`S6X z_onVyQ};Jh7r$B1Q93sZebIkN*>tewuD<=7*d|soWj9s{A4)IPmD00bE}LL|C;(06 z7WWj2xe>At$3AG?EeLlRgvYoz?~viv`c%7y^$g#d@^HCy!gR@ea4oEJMoaxSP5pPI z@ZZ=R_)vGd30n#C`Hq}zMkzM{heg*5z*+;aor^O8xW!S?LoNi|b0g%}!7=Bb1mTK7 zh|t!}*;!f0CAgj!}dcgg@`8fWC zM9wSguD3z|HGefOTD?6_R+sA^fFbCnFF)XW+Pjdj#DkcOnF|kM%D|}9yfqK{Znvz5 ziG~c%q)?d$bmqgpJ`gZ6YV%66-vUF%hlrKP( zv0yRBNU((lvmNPzvGCvh~1e81N) zY}oh1d0#6*+x>kRs{A6B7o~i7CmktmF4oss&->b{y2vK4xap$n3X4|us7b;i1deKV z!*4n)c#lqh20l_3gU|yOirit0KR15{fm}O6;B%3D!gmnSC+8+{pSYxaKDvXnZfETC zBBceMibv|^j}Q0G5&mWge|qY3!SS%#aQLZkxXRGC>G~Yft{*UXI4}n9m>dEncyPfw zA{Yk^#@P@CuN}twO3qqj-SDioOT{%+H!PNurb-vQWELTR86eN%VsQ`c9alRz zPhCI}016%MtwIpu3WHc)TQIRauR;fWGm48*bv=AX>3|3ZOvxc%oMU+JC0`Zn$pNsP zx?{0)f7iv_dC;^&hxpR2A&18%H^+y2vx^&1poNDgXY%mmD?Z@MS3EptT+@AL?zcZd zn3Fh?MO+T3pgH~EE5SZov{**zM^sAIZwm~mc_Gp9TEz5$jeZ0U_ao!*R>2O_1x1Xb z(|VSwf>jWY_-{fu)CIu_%{VyEf(Z?{&`!aX5ZAcRBH?DjcM4R*N1_o?h9$#gSTcO& z8R5HI*ks8}SR6jE>9ns(`$*^3j?J(>Vxho37LE3`SGRqnlkbR4#9exlMzusP&D+i& z6%Qo0H2jdpO&_r|1Rz0<==Z@rI#rns!D2^B^)fI6Kf3PZH84DR367rX7-cxbZ=SSB zd28q<{m@&!9tuBs&ZZzWb9N#EB6)B1!WOW~LwlsfR|s=@#Ax*RvC&w4Zu>~I_}7NP zFAQb-uFqguFbELt?jVR+`(FY<^w7~2gLDCu_~5sOfZTJ}0I_KVAfM`WmPlMIutcO} z!yrM}R%KnJ5u}5LlFr zDU*Y9aq$xAnI(`44ZVfJgj&7ixe@CJvOW`dwh z(-8`=KSFHbvi3(oXv{NbiWa5j+RyRbulXMHJo6f!YtQxlX4Mvy^^e6xS<9rSYtAz~ zBLY+~&zESmqB5qVo1+kQbcbcv?Pv-xq%0Gb8HZVZe3`J^n}L|+M+L_kpo=~fUE$`~ zz%a)GLma=!wDKb)XoETCOy-!c$}aTfXue{OYb@hl#(~WqizuGbxI`qLL*dm4MZxKj z*hL71Jhg!LI;{58K@x99Rh<9OB}H`g~X{;uL8U5blz$QVTz1pCfkY`i)6_e&UPg z`qb*v7oz=u3dovzST3!p%j-vm#x&C7)<&i4VOdU9-MqH)=!$C<>I|zkt_`byFstSCu|LWud;Yiv>(=-l zC@DjwCtdMS>A9T7K||ty;?6)T-G9Ar1O3SQJ(>r?!}^;7-$pe=WS|Bw56|)H2^)Qr zRSt992*aeuCSM(Ev`+uR=jg( zQb~`XdseurV*A6?%9L7Nq?XD=DLQb_!_=bR6bKrPhA9v;!cKuSK4 zE~G&>C$15Kw!BgL!wPW-FQNLJxW>3mOWx?YK*_Ecfx{jvbwQL&=rpW%y?R;i@_zl{L0?66jEmf)`!|k=#ESz+V0v9z zM59_KR-)%dx4Gelk=Yff|6Dx@tpLrD{Syop#I|*%es4frE%mDlN#SOTesR_H_hq80 zt1=%`cS##655v!k?Qd=j~9=dYn}OS zY_;Hkp?CzaXut?oLe8*B)gxZ`So~Y{(#J9%1{uKDKjsnRbpu*D>#Qn&4I()}K(x*x zsNt#+~)mRaI6A|7eUmo^!b4`Kr@{(QR`&_s3ojy-SC0u^(6<@=&{0@P=n06e?|a z=C6=F$hA;gbfD#-Rif?gUlr1J32(pGSq(HyJa3qIW|cU>!~O>o^yF{fRkHE<Zc@k6!hCYMswZ{K41Lva0Lh zKf+T=&eN5D@GaAQfAUSoBkQ=Akh8vAf@+v2Cp9widtkGFXCgaB}hEj#F^lP1_2E=KsyApGG%z&&;h%B&W5f_{@@fa>fRBtx{OL+hh4 zatvy%7RTVm)#MnA)!x5w)};DsaSR|0_HBs_R+Zoib7E>|Py%BccbK z1byf)Um4YLwYKwpRdkuZeYbk+Q%mCOCgO1cvwt-Ce&=;^8q#qwUfr`=e1?Qj*{--n zKEso%0d!F?=bWMEm(}7rxancn!O%m-c^6uMCD4qVOV@rhM^{u0jqq) z65}gKEKZ*+|6eH`bU5{_5`Pk&N8aEAZpOwtp4P6ze7 z5x_4Z0ELvdjbc9)_U%u_>-6g5j?-9G{PcftPwxi-260bV>~huz2DzLKKIKtkr3+T` zPyc;N7${<#pg0)a?Ni~HpviAQ$_^va%m<@eP5Ipk5MN?ADVN=dABA(gE6FN{6)uHO z)C(Bg6#eK!_fpm4m>*<1CwwZCe(a~gNzdnm<{K6k7#8LV3oHHy3l5|)`%^iWj&~|K zL>R?u#_EX`q)|4V2Th~<+>NH_rz=9!TtdraIL}j_*ueyyQptH(pRI_oNzmb!0^1Q5EdvGk0OE13X7iz-f} zp3@aQIj^cSSoL2cM_8U(BWASE8aAV9)~z+@Bu0Uu-_rY6G?sg=qP_ zMG8|Cp@x&LcCQheg>1H2Xp0Y5UNF_pnQFgFHHF`7>q@Vcdi0xY9qO^I17ktS_XafC zy41B|>uRp0!0LsZIseY0ZBzb=Abwk%UT3LY$|=S}}J|)pDA7 zdsAa#?(TwM>A>ZYTF$eUx_hnIxU5itF1STDE_$!)L%C)sVkd z49XgV^~GAz4Q?#9DB)PV6a^M9MUNw*O)q)-78q6i?JNUz;W|)kP{N?dpb&?=3`NST zk>UD6eJ7J{vlk$ z&~(7fPDZqwF}IM&?gD~^gp`GJKOjg*4}K;>x>ul7uh0HnNCu0A1S}TP(9c9j!wl9C zgEi_pSZ*l^7E1|GBqb{mW8SGs4AWYj(ut+L85SBaLSpyia%1Nwm5)})%&tL7X7*H* zpqbqTx@f7o$B3y&=&_Enm^>~qAqYCBTy>9(VKRyUV)%lq#z*8>qo`_a9TyXbveucdX%+06_ttUOU@d_{X4hmoO3_?j zxK8{4w?N(fLnme5SZDf&5ZQg)u#N{ZA{m6p+b8P{;CAVuuz5if-edZQ0kzfINz$hX zkG4wbKqU1H8j_x&40eCG$kEo$vr?GdpV!s}2PUtb2SXFl+PU{yS;jsFO+*er<$TeI zmGXlcksJW)W}V*Fsi+#}%M{GOrU}WRB|@|m5p>BxB7%l&TK%Wx%fh*KzO+~=zqm!V z{!f?|d%0Uo(NATUjnXf-clxWL`RoFCU!($J$1$>!Mq>!J>fqd=Ud$K$G{`j2E7Sll zp}UZBFRsT+=nwP7{)cDPUF?s~JJQifvec@4vH$J@x_M{V|GQ`g3L0!0+yAdYn8eSw z(-qtQ?P$Se|3NU@|2wjr?R1K*wEsiBqr2nNJMMChsk5M%o{c-1_k9fkl4<~FaI>&op~ay#Oed^|$;X=%T{@gC<9Jcl{^0j!?+ z4JNJD%aXa9RKQPO>^@3GIx75R>y6fWw87rY!zH5|!euafp%wV&;zCP`$c*0ctQCh@LKF6xG z-4hdtmiKgvTn-|d;_fFygXCwtM~+;Mss-Y5Bo)Z>96Nrj*im1e;oy0j^xEyy)9X#5 zEt3Ka)r10BbDzYBqW8!i!Eg^-bHh$?$0kkmR!?aDl2VmH&B4x9>sz9_6E%TjrYGr}$G27Qz zAMcHotQ&{@j&K|{slZ{Ada!^^Dh`e_&VC^Y@3#2|5*ySoBsQo3Vz&b+FJ_QltnaiS z{@L#sgp^F`KnOkPcVNjq@o8vfeki8w27TpSU%dX$6VUc)PdnydOkF(LL5JGXsi+*P zs=Yzv)nvoJ%ZtoCq0;jImnWcB8I=Q}T{e)|xcPP}%iwk2AbRk>$<5$#1R#jlObyx~ zl6!#&Y^R8zJ9P4KG8n3WrfwJzGwkJQHNJh=+nw%lv@ z+dR-YiQRJ4&QK{Eg|!9Gfi*sxletk2bmBSf=OOmyC_rjg8@b{rHQ{d8jRx#WInFLVD$(r+LKZ8^vM73#(WZTZ|}nizvMA4mSRx z>0x@(6DTALLOb3U&mObahR4qhophfhK`GB`cR6(fwsY|8u4kE>@kT?P+l%2i#N(4< zUU#v4_A04d@_l#`pL|MH?Rs#ZzTz}3h9m0K%~C8T3{Hj<6=ZeuQAmL7DJ~mp<){ZX zi3fiVQkp1xhhsExpse2}@!$t+l7-IGC_%&NrA^`@x@9PVG9yAdYzR2kF$~8(Vh&(v zu`_v-cv=$;+)Ox)z77|WuXyNm-4q-; z>>>_;!5|m$kpgkp9)iIj7xD5YaS<Uf5LJDnD4(m|^9?vRgL0S~jj?-%(C~SX^qG-%00bM}@>uJEkj-b{?pP;TWo5;Rl#11^@1>yHZYD({dmJm#J=W@&)YG^8DXh6H;cdM zE|52AoKxFUlO-$0orP)pN~tm_-s5533OkdFLAE%PAJG*%lOJskb0*;|urpbDV#t{s z_O|mKp0;52`Gs~HH|q;socS6Vj-KBYuI9i=&f7TQjUvV!Jcw?AA4#vxn(Q>ktFMsN zSY37Bb#$F6PFpKR_m~F9t&Gl^>ZDqg=of$TAfn6`^C~;++T)%)m{Vqpc!G@U=mXlh z6=%;Fp}8Pr6(gwTc$kkq9?)F?T6}~9V&V0VMO7%RhrfeuoxuV!P(a?08vUC^B`A=Q z`(Y^@EjbZU0S;1#mVw1s)--sfIQL78;LJWTf-sd~L@n4NJ4au*>f#>zmU|%)@+~)p zM%13o;#+>VMSROMTV(6z_Zg0@PHqu55?#P<qb_izVYF?VeeM)Ce=)MlY6KU z@g~<}e8QX5Z_IQCsraoN#q#8b@}0b9vz(iisUkM;2l~;U+wCL;LdU9Xql_ zwXIkQUoLdwO__>$l|OLyE7iw;`9WmQ?Cn)9o=v&c65Qoj_x1efdXuQ8LZz7R@CSJ#3Fw!*i}rI&RXIyhwSPC zk|S)>^`a$C4`Q56&pX#hDQBs3RWm& z5ae+&XZ$n69i4Lk9D6bh2V)`czf;eCE;|g!W{bhum-+<)`i*52OQF|z@V&aLoZ4zE z()9CYJ^_j2VTH&Ni!G7^}jNZS(>7r&zX=mJPC`c5z%0IQzsU+n)O~kVsb=P7j z=l&~tczd^h>^!G7{!0VDf9zCqQNHKDVozM_l#_y$2Lx*1_0(Yl_tre;g8Gds*H=Fy zr7lTX9qf{rFT`Vx)5)J2Bk1`;dZhwX3x?c(?-hFGIuN;61d$HQrV&yGHO2kG8EnD% zYUZcd3E?XibHz2zL_F()8nuH`{@E?%3u_<*E?z8U>p`8h7OT{-ax4Qb$Fui`YlM*Y znKQ>4&duYa1oXXUv*fIV4{#xfVJSv^-fi*h?z`$`HRqy zV?EmOxt@4gOR1zmeID=yrIfezi7AVNV5@F%LDqlJ$KmAMD zHhhPw$;-4xep%cw2M+g`hIhIfPSNYOIXUV(v`*WGrzuZdx_tfiS8#7m1Gv~&{=r>f z^jBEf_Fp3+hO(rWF&c`A*cl=M+}F?@wqpoX)df3EJSS6zPx z+ejHy*7<1>Df;3L$Enp672HSi!e)j0NM6P^dGS+*zP-??uJE&%59=Xrfo*KUFAiN+;?XMIaaNAP2cz+T$**M;19vtPGub!YQBg$cq(K`ZnqEq;18LXGhr~ zFCf^2ILhx3W`@U|lV|O6ez(;8ZQ>fcvvkuv2&Jy4DJU@Tr{MjTEs@=Mn;b@p$A$5O z*U=UG!Rxk#`N8l)*blyKuk$4~Rb%%#FIv`qBE)R~+?f*(PW%0_V z6WEm9zU>+(HhBK17H!Jbh8v53?(q{&U+-yx77w-v1Bc?FuYC)3Mn77X@ZnCK${}QNau_iA)h+0^>zuLxFlxI z85zPT#t0Dh_K^;s?#qnmzTF(u?Xg`v;)e{{liS5;y3vfw5e~X?FPsM7e7fqa;rpb)yLw%|*;z1r8$ga5F<{79h}t2nqdj&OIGcN& zuNM943>22Q*XN4_@S&$+zd0vVgB{Y}=}4)+k;=z3kWzoQ+adkk8u{pN9Q~O62keKt zgE(5|F?3SEF;w|1S0A z4t9>Bw(bZiv{c>V7ps*zZpi-@bkKPXL;VG!zS)1JoQ@)Y1B&RI2>U@fHMw<1sL7gB z7DiOH{JKX8zo=5XFx2vRD}^#LJk{x@Sl&WCyM+HvRlQJLohmxZ>z89%$}SYMUk=)j z<&WRyMU@)G0oOO?os$v9Xx2TttiMIC8U6{z{hW0XJ>#*kI5m z0k9Y7iVgn@g>3kv%rWG`ydF{hSPM2E8>xdWeDeoX7@I%7P~u+Oqy00Wb}55wKHhx< z#_Fi|3&rGP3xliRy)M}L4`#91Kj_NZTbvcL+gFQ0)x|_=J>-d zFi-P!58h5d;ff*@BvpSD%u_7pO@M{jY11&-=`}^7gBXo<5MS|QMSR6NXmycj;g5?# z=32$=6iwtoN}32MN13Yalqge;ovewhDtdNBe`A%lQ?>@()Uc^G)R1)r1lt{?tcmUf z1aa1Or!3d*5U8#@|D7=d#X%-Oaggb$of2f~i{JDHf2L{hb%5ANhtb5Fsled~6VlAv z@%rHLmHoF9%e;;$O>pMLppX$;st1z%KdO(6j20LfA!Th{fRwcLMk6EasFRGo78!Y5 zGBU>55Jbiq7%U`8X|w6nPGh9b7%6=#U{{1WuN%y4Hie^+wnpT3Kut{bwB}d>MdG+O z_K*}>V2zEGZF8th3EjE6KUpP6LGOZ{#R?2Vw((HswlKW9Qq1EnreCVzzgbGPP?^`o zS@R0w+uUXg)kR9gxFHJ71{28RUch^y+`SOmWE#9nM(RMMG*XdrFN{G-y)bTcb@?tCs!IfG?XG_xss@S;CPC7hF?I^C zL?(+LDH}}s-P*ag_yHa&FrZZ+gIY4LlfuJ8b?}W2K8d^>0})mXFW$zzRP`RT1cep6 zyG6y6*&S3d99F2dTj;N`Tj;N%tu&goyZ@bjI*62rl?==#jt-!TIf-0GTj|m$hZOEH zjdpc6nxYS<`=3`&p=Amw^r1Ylf}{1Mdj9)VpWV{2ICNYL+?9dx&TeLu&moT`WoatH zBGRKgQ+CTar0^^{hoq16tmxOjX81?yBN_h1YR+!9q2BP4Ejl}?-Z5d8fo|rp z;mPnDvY*TAcZ=Vv@UFy{8~JayBL3Pf&xWf~duTYzL(tY=B#+AcG_&M9w`E3ojt-S0$X571>< zIC&Oj{C@Mu_p{d^-x|LkcVvJZper6A2OvcZ5U@NvzT9n7?(iQp+~>628Lgu`VZvs# z_IFTMjTkQGt!wSS#ZsmBvQvYXWTv-)hlTA#93ShflFjXe;@kXP_(pr>xo^C6Bv_i< zn~Nb5Z`doHeBWN_WM2wG&9LkaS{YU~qV$4%MsCjwQ1l#%BJG+u3v=_0IF z)=fuMDsMH@6TA5QEmQH^; zzOs63AHO2qGLU@*(&Hi$y13dnBT(xVk_#H`LpT8)w5MrPg`YbjKe`vr~U5DZH!t&*>!Ls+`BO1&w2T=H` zvcf&?r1lSBtnxkX;lIOsm=C@E^?-kbI*&%_9QhffWjnVtLQ^F(ZuHc0YXgALS$L=W5*d0a6 zuGty=eRt>v{NyF{Nu(4uS+tk781Rx$9@_MbkkXjKw9POH6AS(Ty%?c~KcjTN{lVGE z?!a67dD`L462)Ao=P}HU7rO>o0owPX|rXlJhoe<%+t+v;G(z+sEGnY@S`y=U-h)qLPA+#42Dx?{!vx*oz6RA|KWLj|FTH>-XV{ zKDe8vDjX045;zbvu$TM$nUx663@G{~-8}vj?H)`J0L3 zp7DRK${mydb{c2!t5<6u9u(Wre2~8f-rUTzO%>X3q&xj3j3a#D*wHhGMOBJecF@x6aDo0J^7Mo; z(RHkYdbW)i&_OXGZt4OsWT41Vv>ji%c`pH^g@--B7e$hY4x*!yt zGtxTwqDZTr!u|w*NjE}gy-H(!ce%PCfd%FL=AVL^@O+?x*9eLf699Qi(DgZ8Tr8{7zp(ZR${ePrQGJFnBY({WsFTV}^oaK5+WjH=;^= zF~zK!d!i6^ZU5^~%&OE-ObclMGQ|woX&Ch68`2tmgB_V1oaIcWnXi5s=C7{#ifL~1 zO|Z{-E4LZCp444!40qD8sgMcjSRBB973yx?H^ITnI(9$Whid~Nlfaq$y@vdg*CC&E ztRbJG%R9dj9lHZC^ofXXireHRS2Ud)$Ja-q4!Igl(am3nnMgXsOD-HZ+x$8fd6f>y zcqxBK$d5Wy3`MGy<{^J=qHM9|Bc(vPHP8j<;_r5)E7q-Db>^G?M#kOM`ERnn3zv4y zl;!?N{oq^v_f%iBfCn>F_930$+W#qM{5lG2lh+SPz;8HSC%xQXSLJ|GdSU~=SwFpu ziu(c`)FN|#KFU+T?-NrGzd7Ky^^gP#={If9p&skCY?6ko1%{vq>9w=qdS)O+ojRoL zX8s&~<9I~-PN02y85RiSmCs|y#DXE@5U0Pz4srBhQf%q^wh8`B&kzC^#nwA-;spPE z3jyQd?_x6X8})mIvhBm7*>03<{)9mF!`xB5zzM$(;Qk0(56ki2gCl;7!AJ6&AC^h5 zF9(x=H?!_JETiZ?D%DPPLjjrqj~WsEmEY<%Kx{V(AtV2Gv(hNj=9fF|0ogTFCR`zs*?$CGCf_A0)$zHfdp`aQf0{_XNEClWRxCbU@S$JMm?RzfXQwQh?ynZ? z6d{;51&Q7%GayhVoI6M4k&jQD@D+E?*ih$8#3CkdW|#PzE!FLa__J9^;m_)fnE;wF z)8AA*aYRC1PactwSMLyU&mH+^*Vr8c)q}*5$^_tXJ1$-~n29A20An;i&oCCO;v?*8 zykU8C2=$%ou z<^T$~Z;G3<vuhTCe^2}zEnRd^Rp&nvX-xkr%-8* zrVC=U3y~MFF>b^omgeuk{*DvIZDTTso>X<_h-hdq#s2hzLNM!*`;LY&_W1(;t9Xkf zGeqAM_dHGcq5^yA(F^^L>$VFq))x7ztL&p9GJH00kv|oYdzK~#*=*8IrWRhdN_$k( zgd=l?+v6^gS7$L4ms)UCHmKZLhb*1;sg>gG9j1xdQC|5zB?-RrJUp`|1q&IHIObtm*F?tmyBape%% zVq|uMSeydMnbs>+FJ0}&L;n-~jr6a1{?~H~E0M8BP9)T>eHaT*#yZ@KxWG^iBN1n2^!3WkPJD~g8><4a7^=LaDc|s znbCMU^A#H$zG9uW0B?S!#p^ssjDj#@KlAre)^Q=|Pa#Ml<+yv`xR6s8AHAdZ&N+xH z!lg+*{_oU~rX>g;Hl&fV_xz_W%=fpXpX@#V79xXH>pScHex>d*baX^Yp#r45m(U9- z?IrX9JqQKi{dY{qGsi`#x~0NO)kuZZA0RkFfHb#BYzs9CtdKSxV^|s~P*bkM5^K_M zDBemSNZLwRd|dP>elx2`nbnSYW48F0SZc#@9wIRYf|l+bk7H$66hBt&mOPKiqqEJ} zE#8O`zP^45{`QVLtD_$Ng})BgVpKw>y|1FNGmN=mHX}YjUy?F@o9?Bm@fbv;j7y)8 zaaig^a2$q|ancD^#;VE*>Dfe`z8%m>Y1sNcA*$FVRZ+!;R#L?k@WMxb1yun>EBRZa z29Mf13|LDB<1d+Z7O;N|+@Mex?1X4xe2b_@p`X5U3|dn0WvPNf;f7uAmkc+9!?|g= z!~d$900L;2V+`eq9^IvX-vRCW=?+Y-{)PVP2x>FxU`EBeJz0FLeTULKHMO8qX^Z32 z6THRYacAYdSLA=xQlFm?wd>A0YSixTFwMkj_b5mbwR?=NSnVDIIz47>)Gic6NbTOW z+pTsZ_31tE=zlvQk6QnnSFqP#*TQE(uI$4+^nS~JJYJZMpXOK}?y*l^`dikuIPzDV zN1u~80Kwiawdh!jdd=8C1hVcag74TsTD57PXD%V zMb{u@o%ijx;!>RAGVD?uM-kG(mmnR|!Wy_?TG-G*T9{x+?;&MnuuV5RffsGyC+oe> zk&^n|3>k6^9R9vaIw|V65>m1UBff>)j(v+B&NwMC@S9JH;;W~xoWkuECq?nO31LUy z5JCzVVC?8KSm#szhU#8`ka4;Hq|Eud1?(}rk>TICGGOfJ2PreI=@1~1G979VUlhcV z*Fj`u8crU0`&K0#a~9ibv+x2+eEBCN#86nNuKEd|u_iwdM0^d8j8C#d0Oaln0kU&n{**|tB2qeDQudS#wd$w-*(q)j8c6o+8InEwCa2gU z;q9rJml0Rv43-34yrwwK5=fcM(bQ97jwYW9&dOqQgjdLC{RDfGYozdz zk-{30g2y$^*%So{By(W0JqD}DU>&`VL@DYMWQwtL(J%h;1jUne z9&`Y4G8s)6PIy63Mi=}C5vR!0E=F$5tMRM85umTnzR{J4LfwN8O z3%bN6^`k4cN&QZT*(B&pvPqLG1&#zm_cg4*8`el7Mh>k-j5v*9Gpg+B$wvctkFN^6 zX5nko$mP@O(@x8=bbVTmuH~7E^hvT6p*)V#<0vG9Qr@;u9-kOL6N3Eqw1nw@auvrt zUNS_Sk&qPqrjQhx<&YF;49ar~-qAtktJ)a}wI}2AyaBj8ZOX*!qwm@sb<&x5pZ+E? z;KPmtXC3Qa&WBe*aE$7e)4`bg*eJx-TAz`a`<19bNADDBM9k1|^d~+2_-yIGaMk&Y zd^9zsOkk7MA@5?DK$@kxpOJ;b!)Le>g~2=E7A+i}JtH%uKV>CkgJ2F;b@K+ss&Qw; zMvOvAt}#*`?(d(G;XVg~A{QOz5nQqFwd9QGkk)_;Ggqc*QtSjn<_amBt5G^XHt+=f zq#1yZ9sn&>jey9=S}lzWyrhmAO1=?FbgCV|0pa5BbNz6Jw=aJ(^jtAgrf@bVAj$qIO+?n$2K19&d>Pmp>cR zvAH{tvksEH+b&MP|zSjS1&> zYM>z+f0{Fyd%l`oDNsr7G57CKYX~CbC3vheyy-feV6{m;S#54)Bc8d>MI0spFlh*5cdTkUT{I&7Y>p1T8V~O=Y}B0 z2?XAq3@X$(l%_S!5*Gs9Ba?6$Jxzyp4pT3QiM@1AOu~-u#3X!0Y|pj6pu`;7Iebp^ z|Ne7f!J}K~&`wp7ZaH=JJFx{->INS6ULtg{1qacyWD8c-4QPs5*2H9;bw^BDJuEHo zmHN+jqV(g=%W(Cc=iv&H%n2S_e?7ZoQ&sD{DE^vAN%13P#ozqAjOWbrGM<|vpB5?Y z&dY$l`rS2Jzce)<`>upRS|2HE{hGRO2Gl%$vfon;DJ@cx&x_ix+#s-84KZ{K7CQ94 z1{le#peF!@zUB2cD58Tp;|wL!&x?9?Q^M-mP(sTkps}I}q9yBD9U{xCmAGBjTS2Wd zkjo9^dV%!1AaR1N;Pui;-f&RX`2f$#_u#8)y;ZW>Z>T(IAom)`lm9;|2@tPxNNN#i zs{Syd|I3K}H-W-Vtd$vP5bYvPj!cD<#zutsMdvmRv{Q-Sb2sAQS;F$T zu=xB?wen$LI1fmV0+)E`p_`KQR}BIcsYe{$f0w7Gy6t<3x8EVaEe&wze*#mW{eQ}@ z4~{0#b7I*9m!b<}VyajIsRn-k|LSPB2*-RcW_X+sH_8w<_5US7J}))+yrpMiS<||g%&&jN?lIIt; z3Ru<^U36O@LtOynG%bsdZo$mEsBe9a8s%?Q&;exYd=a%I=2o~44DJ}2br`z4nW@BXF%TFA0>n$gY7wIuqgSedAq=E(mIQ>!-a5qmu)X$ zJ`&NtcA0i~Qofk-6+$^a;*#73>XR4Y+i=PPi*P*tNFvt5+DFz_Ul`)|UHIovWaq}n zn9MmaN#_JHJ8vylOV92YsE95lKo0p_0EP5D!t2O_{laiK4hs`3g@x^l5*Eg9?lYv^ zXDjs3&Vfz}Ke^AA70ZBE&56)>wAS>V7vG``bPRbj?JtUXXmc@W9@v|C6z?UYSkB`Y zMf>--C}XVO#ea@5H^FqI{Gp5D&fI@dnrw5ixJhGPMZpk~=eBKiMr% zS2ySubZ6!mu$&MWpB(#-&bm90?mZZ0blICZ0(kLej?xu-Ge<9mc{BIl6WFPG;N<+m~cR z>TLIbt;S!Ha}OY%*OZqo2G^A79pY1U-Dd-(_zlskFNs6(%Oio7-pEUAwk>qrRWJ{S zfkPYND=pA9d6O8a?d3hK|2X3A^Xb3po7s-UA`o~#rH@_ zi6Ld*qQqs<&ZYG5Y^YRqSq4|!Wf@$nffTl&G_8_BCkS#akn*ViUN`Fn*8)Fz)Sp92 zn(8z}O;hr}I_c&*T4)mRP4ZzRW#qozCk&Ab|Hf)wm*Ks|r%;&w0L87OOs$4M<)DI;uI1fqP&bdN@ zkqD~$J_+Ure{EHn^Jz-3A@~-WgABn=C;?j5?!ZhTLvZ+tOyh%Bg44J-e5!uDBD;A% z8zEdZLbw4>eIl$8HUQb#Go;g}4lZ7i_$gAJ`{k~RWvOtL1!~3X*`rKAshYq=yT-E| zsR)BJM=F5FGyXifjQBZ-b__pkWjf)^038)+e>IGs^kIRA)nlN6_VXU0JW;Gy^#4)z z-GNaR-P_#R5CZI`@7=rUk(xjn3B4tB2ql1Yl;W!*7Qo&>P_ZFR%Fq;0v7rdI*ifP< ziUm+q#0HA5s3=8gO8K61&fM%S@YDCpAGvq$%sg|>lylCUX&RXkv zkR)2`1$twx^#aht=JOz7i?qK?r{3k?X0+E^dhOl*dFo?ON=GJduAF)ghT`f+@QDR@ z7@C8deDw`hP2CRtbn=kwHaTAXncbuqMLqy2d4Sxc34e&HLlSnA=5ZMB8P3tx{TP?G z4U3(F*fcEeDY57XV){fn3;?XdHiwG(>qDZ$#$$Ga*6v-38$_{oFR4W~QtKHH2+p&d*c4@Ky+_OtzU)XYCbmra@tUG_C)BHC#aio(@po94K>3~#fog+!$} zapT=kig|zNqJ+3{SontElG=~|!R_W<mZ}6hdwEeqR$D zMUOabtTAT>cf=Zb4!P;fkR)Ake{x%EK?q#U{ZnUu>(Au`^n;t*I*CB8AZxBJTJF!s z+%qyx((K0B9G3pwKgG9?gK$8M!cRu{Zy3V6E&_n+>5BLLiFHv}oi$ z9M(qEVX?ZNT>+~LXI;(R4A1+Y(n$0EjA*1>R&!SRqg3u;X{m3lL`&^L(9%*1z#6%6 zN*?yF#uWOlhy90C;bF0@dK?xZ*7Yzq#xCGOwqF_N%|(Yr368>(lwe>LlprhS8$cBq z@Hb&LgY?#Qh(UVmj>FPebAcGqSj#AjjPfWnR-mzVVl-CB{5H7+<9~i*g*@`Gm|DXQ zix+3r*eX;kTdm@cn5|ZcN2JJNkLaRh z$!%~1C@Z-z62rGzMZog*9-#8}9z5AZU8~za;v-_yTzW*x?;^yY>YQ}s?DAuy#*jr*9zbKGhSAulxfdLgQ8UAE zdbdGaAgtC6V^ync#vswOa32&n7AyI6 z?o0mssBK5+Sgud(JoTwW^_i$Nq~3z6sJ3y!zEeSwjnj+6aSWSjix}|VtBxa(HijL> zlS;Gp%Wi43U#&Oqtb2)3|jl6|J>CK z8kZ)cacK@bDy4~hxHLJ0OOxNejdMzc6YhkEsu^eFZZP;K_0koxhSW?mhRo6V{q8j&NLUpq{WpM~dW2Km1s zTN>nJT4MtS`KvdeUb3qE4b*=P)@RjNJY`XcE`D)xp|2oJ9z*kC3xl0?%vEaH^u|gp z`xq-VcgkYxTmD_5(blOp$HYKtQMr60O_ugQCL{Yk$Hd&}c}y&%%Z|y&{^HPg9@$Sb z-zUp=7(BB!!RNBrz$`#84eTE`(eRsgd8rriq+68nn~fr5!$wgH&}r}#V8S2L$=kzpzeEJxhMykPa zX-4N!Q2Kb#%+09Xap?dZj*Cg(Mj!m#nDjl4OCLB+wZpd~n{B=Zod(b?Ko%WAP|V51 z=05K@H(*+N1}HuCZ(NXens^TCtw-xRzT$|I3kcUM)nHFrGaR96u|(!RP)t>KT;FS}*gKk2|QdzCdlg z1I}rOOBKSX;y>j${F^;GyJ2Ee#Uq?6eii6Bg46Q0?(lb0f0@KbOyZcoxY2ozfB>56 zQubex8WAWpGQDu8e~>EpOEPVO_>^gTNvH6et{ze4CK-O4WS}(}4aMJ1{l}yoZPH#X zX|2(E|JVK|YN|O0%;$?H9sMS&AAE8HM_IZJ{81DIH}Jnq z1OH2`{^C}x@_IKf4Ba=f^)IpdA2==s)&0l0jk|06aQ$<--9Tr3?yrSC?Z^L;7C(2l zzl--#%1v7Q?8@D{{Yx#Su&AH>R<)q(r@0stt=?E7g*|$R9LKmi(%r7ov?hrzo}9u^hf*sc`E8eM9q@- zrpAeomEbi1^nHq+bO6KOTS5iOt4$6b@Xt`WC!~HG;z{*;>p_$!dGWBBzv{3*s7g;r z{kB5{s^4BG&aPkf;+YJ|T>~(lzF;t#zEGo2NC6;(3xGpdtMl86qy8xU>mUBMl0U2V zddy9ZLj5zj&;04XOU*Ro-YeuPJZV}8=fp6vj~HT?8)BdN7h=f-0R&G8;kgb6{As$o zL%nV2#Ydu-@?l%{UOo3H)VJ?8%wj$A|DK0_X!e9TeQNps9m^hqgA zby7+*{v?;CFRXDwJo8z6raZ~T1sEm~PbP8y34f+)cv6ZKADKiv#Uorf<)r^!rSO|+ z{5i557tFHnPy>-YnTGxFM6J`4Hv(LWC#}D{?4G& zY5~UM6+GGFH3MK|AI>zq-)lg%@E*}I*-2_RH(1n_h(MnFdB!kJ*r*rW?XWw_uIK58 z^36yMcBgpEbZRib-w3-pD-1Jm%DlFq1TmfcZ4$Vx# ze29RzGlh#wWR^~^WB1ix*S5_Kr=@yj9Xl6iD_Ti*Jsm&9s-?geyXa0s*15@!izj6g zqw=AA5uuho-6;yU$JezVQ@5QGe@a9IJ?e@$TfgD8Usf|EJT@ZS(q)xde*Lk}-l&#J z1aEi*{b{WIGwxUbQzfocDncneN#tXP1s1+0nHs0hZc<&=D$%d|#oM3av~@0!iUhls zD;L`#=EhT&&hM9E>j`&9#p(MJ>YdB3cS)e$k1bVt9v4C{Fa zD@KPHS~SQmfb+I$@s8zuCr1tD)y^NW*qbB(hf1qn>QxSOiv0XM5_j7B;<M!*U;O3v5RZpTtkte zHy`|wq36l9C#pp?^q9qg61X0AUzcj@4Y_uA^)%A8w^P)b8hYhYyO(+jaWlf^){zl-p8Ew#6 z4&H1RM^M9NouP)zI^eAP$o3Onc3ehd9e;m}2gugs?1uAJEUTry4=dj>fi>_76M=Fe-b_ro z_%d)IUJE-;&n^J@tMuHKb_UiOAX1KwPmVqhg}_z4?q3R*j6C2`;p(F;ppdrY+O5?4 zC_*$G3+H=N!EQ2OFlf#ySyq{b2?ItYD`0VV*#)={v$|}N6P2w57PJcbg@=9@r3plbj&E8U1~T(1nz zHAg!a*#q_C9nm$WD{VcIQ5-vsB8bLE`RLsj*~9e>rM6G+?1*w^PN$fBt_|Ea^)W_Y_GB@`u=iF3J-B2gS8xhP$3VvB;f9qMV)V#70&CW>92MI2SkZvsHw}V9S zG<-&HEag8_dhT(jde0q%jFIy06x}O&LmvqE2fEq|)qX_I$!w#3Rk~ugZ9*D!hlG#T z>w4I2sE3Y13DWvlbxJK9>hz(5;Ct9+6JCl(Z`)(%U=bh1R`_}FPrIpw+rTIaFO8*d z9Rqntt+(A8=!IQ)q2&Ec@-dPeKRNk?u;la&$#Fs?;9OlDJ zA(S^cRIKoi(o=ie3AjR-$=`5wOak#}O$`Rsk4jg)Y}2WIkoG0&d7M;ZPaeH881U|ttf8x7VLZ!Ja2EP8zn9Od4NWUdqV_?djN9JWWeP^ z?PP&IIKXZsZ`59KB{4whhy%6T!*bu8^w17DK-^oc^ugh_tv@>-RLvP_o4sHaQ6l#T zM6uk*K?y|{pt46siQEq-i{-u{i{yT*C=pE|MA{7Ixi(59zq;OVd$mALJqM>O`XeD( zKrtij`>>S@K)c;HZr4K#>5x1N3Y0BfSh+w4)pT-`-2QRjd zc=p$1@f&+agtCgH9N*qB(F2`SC(z1{j&|j5EqY`5TPr$3{z3#)T@@(RUtMZ{>`rHI zxf|`I-Bdpl zRxV+xAX;yG!0w%Pg9Ed(R$^DPG9vpqL4lP3JCu(SQ56M?D7eAqIwBAk!1~jSk?xxw_Rjy`b4`K z4o0b%XkY5fCtQ)T!DyDUI{qFjS8tkRPt&_rMHSK847C@l@~(24>ASAB*Q*~vGuhB5 z!2{XQe-TFdc+kZXw#~KnrIw@nPc}xDC%G2vhkLvMoUL*2TDzsfnNikVcAD;Xo!!>T z=ZI`B;yX8_1ikG>w9eRCdfiEQb=zNW4}(vm8c&ti5{bR=dI*REw?Z~<*k{#K7uC}J zw*(!mEkM+AtStbFNbL!=q+5RnLS3oN?ztnvJxwSBlshkja_6PDh1X$3cEgQ!ea+vw z1NVp|@4TDfqQq8WmtD2YkXLz=OWxYCb(*Rdkik+X1)HM~RkoBp$0X`_Co4@KxEZ5} zZ~}S8+Ym^0F<{xW48h_wnglsxbccTZ7CRLiW0~{ML!9q92j@KT9SJD)=^XJ&MGTLA8Z&%#{o3iQ(*;X z;ODBWHgt^KS#Z2LFB0isVJabQz0Gc+y5O#3s^xBi)G0w+SLS*o`QEKM8KGE0h@Gp$avT%Nk(3zr+Q-kdi+n+n7oy7`?O5-;iu}dye~sQ)@4Qx< z^^QB)9GqqEz&nn@epNp`+kVvgjB;=5*;X5-S6TAQ^wFyi-;$N6=e$^RFm|{Q`Mj=f zFVU0_V{z*Pup@ctRFsaN2UDd64rGTilAw-OntXNStJ(veNZpjwVbz7Z5v}>K%sWY} z!a90)L0TTJnPOdopR8+;h;~$Ypz1drWv>MF`_MEQJ-0*8rTxnJA2Sn9z# z;<))J6k$mnQ9A4Du+oWHQ->SgN4jE(yxi`2htJdy=L5u52;2}&hGfPAf;$YJ++pzC_EAO-Wx*Zh9b`ov<}F;-MQUpDgZ2n3 zT~B%pZtAu7d1EkH$m5C~52EF{=nIIZyFSncjpY)LZ9;_=0it$z~ zM|0q}jmzzPc_W#nY~*UFVxe^v6U4`Dju(Oyo-DI&uPZX^PKsi-v`jVh%+h5KpHV&} zv%IE!Xay1WWIb%#gvKTPm|^Y-M&tb~j~cM&{+T%jtE)+D5gJT`_V8{~Inssp^oi;L zd%)%{x9ibQmRopoHC!5Em^~bCqUn%_V@(~A8LLq})N4ncn_Px61Q)n(+l_LynuWDElMcyUU@ZBVHSHmZKKWD_|bVO*S?`b>J@+|R+ zAswC&l7}qq$~&L2V=T`T=Z?Xq_Qw&zfJNS$AX-G;26|(Wx4|1>YJXH)_kS$COn>&Q z9rAUwf5nc`m#woORyz@!Z0*mz;_n(CyRMU36*tf8-KtfKYSA|lS&`@iLu72j0kPp_dw}>gay1yQqZa!_ z@=bch?&RA`d5Glu)LZS`(3@U${nvP#tseG?82ls@dpVdO+xsP-H0S4i+?+o_vE7&T zklKb|@*aGo6V_u0{nhKP?D-J^G;sXMC+++PpS1IX_)hJ7F>oRzp~;gZ;YZ+}T#byz z))Kufh|5ZqPuyBJ1DFKQCIG{WU3uA?_H`EQy}4Dc&6E)wCbloaY_X%CTFuLHwo(zz*ZC2g(o_Fz*FuQI5@{!6+Z3N9*QrlQe8@4e|tDATR zfs;0P(|nNxk_}7*Rz;;{(39sRGAc*CXVJ{&!&$zXTIf=!VzV8G31}t}; zw1sA3PXuDDIK8bZ)5fDLF0D5nYy+q3ZQG3v9E_7z)+p}mN@W|^P)5?!6DKw>o}qb( zj&b6h!fq{qmaFy#usrVUie>LqBp~Y)0J2UQLxh(o{A9h3C+l@jTqPzYp0VI9X2$r^ zO#?#)DdO>b#EhH#H{w9Iv*OTNgz0hA_{}tgNlV|6wt5<(2FKwJ!is7mIyWh*=Y6cG z;67RVDMZE_oCA(VkBNzMyEZhHoM-C!4CRs8C(gkQ4O||dn)28!<>3u)oxJJB5JQ`8 zwxD1?htm~L*4W39hHN7&zoDW%YM^SypIx+U8%09(UlVi)ik0w(al*@MaiVnBLQax{ zzc5~;R9<`pEBEiPuTWj%MFo~onCP=lbn7qee)`xBR|R&67u>w~YFzdyEhnjG(s;$E zG=Z}cpHf6H{JyvQ{gvPB#8kXza=hrmGh*BpT_?x)X@uNoO*bF3iKbgXZ>;GS#7Ag4 zNM6=-zkC~}>AZWP>89+m=c{KC8=B5qUDhBs&9dN(r<5o>}vh?EsCCI zS9eAPc2Gym_d{Xd$-0kC5CvC9Z{35=nwB8R>m-PR%S{jkN54tIAum>Nt3xHeKAshv zRjv>I4lO(TYb&67B#@GupGZ4zniaOH)^S~t8|k>!pn{zDtKwbro_CUh=Q`@D1W|IO zd!gjkQ$C{Poo0am?Ryfq8t9*bTJ$^c1~u zLpp_W4x1f9rtF<;b->;nMSE}NWk1$UypZb;+S8Pi$So-uO z1kK(5dIWR#Qvgp50(WI_gNRLZ8^p4scA4wEOf4uG+Z)8lW*p7@g(UC|rcIQ)rioE^Z0jf3&~+LQK^ z7*x-V3K)k_(jB#AogMzO>t)G0}tYekZ%!*GIF9U6kj#sMI^`xub9 z8?1KGUewRegR#3f5h!Ab6>rLfApVm!QkA4dl+QuUKX*E!YH>RN#j zR+jFc9FR-g({Z*x@#MuB(1s`0HqTJ|Gl{@H&0zH93}wg_9<1xu4t(PonJii+JS0)+ zj2ZDc-h>cXLp{1qptXGsXcF0QExoa9xHdULHlXRVY$&W7AWzb^djtLSfx2*ujq!rH znTSj}=H5!n7Z`4-N0X)7uK?5JB3h>3jSXC)UN@g#2JIvbHe>nsdaN0NSDt1bb|i~5 zKrl;#Wr#*I83z%Kl+tg4rsz8Sl8={bK>FhsqBEy#)NVH0IR&tQnyHJhLIT|jd+{$GMZqp>9xiN?-*7cExrs)#OBrvUL;N|vgD zozx@=PZ-ELHbZ*DAV1?XYJ8EHR@=;EVVC{njLxEg-%cHc1OLj5K){p;Ii8k+cpCpL z0(;~RtD6~^t2!b(64h-%2FIR#Kf$Am$cb$Q|L*OEckq3d1Xw0$@NK*s+#w_!jzh0obd}B?} z3VDQc`$N6JarLs{_65W3*Y&|I>w*tK8ZFoQ*p~LP*^suwKD)iJA~2+pYYb@2D5HhS z?tqltA;awN2Jytdm7Rg)Q7WLf(I_=JAOmPyXXimxVF0ZX15y`RfwS9Sc;Oj1>%-J6 z%@neBX`#my1=xLOy`T@|pynlPB&M0ZsUL{bt#bqak#Fpie=RqVgPVaUk=~G$Pz$M2 znglvX3@-3>p#o>W=5-XgL`@1v!y4DrE$Vy03(dsLAYOW@yA2-;0{>jnGy(+}mo$TM z&wK{l(-7&|P{FJ=fUlgRV8T160c5qyfLt(JstbllXSK_L+|c-qR}1hP^L-T<3~y*T zMS+%>pCjfy#{x31s*VL@7+=bKC$TjNFeGEHbfn4Lg75z%wrF5{nIj7Q z5=XKeDBFJm0U5*T*zFycqkgs-t_=nL-_g4gB^^A6b z*6NrE|I-bx9BRNNUwAMO=?~vg@%| z3cDUv?-W@^)q?=qsKNM5>iaVg5~02g;j~Tw5F{iBlAVuNVKx-=(P|>HKrgVa5U87x zGj)P+D3Y7ra46lscfckj_+!#oC8`HN0w&7Ud;>Q};2shFG!W5FTy>8B!Kb^THDlr zE_+7fvKP{-m8u#DI;ivq8N~huag-qb-^FhTLi}@@_I<*BP)o{wMON{Dr*u zAt*lPx^M`*@cefEkidoV#vR~5WL2;OzV*;RqEas-GqPY`(9?zkuzWbMvPMF-@u_wn zf<(4UOnq!NB%aZcTFfj^x#j+jZcER4^n9n;xTe{8*SCBasv~Ej@WU_1ZKk%j?sm zZC{-xZF_3k*=;+#EJ+;#gM|v7?3!JaCaQG_@}QQz&|p1^?`KLCHaZOH28-R^z#_M| zdesyoep4|Ly>n-#)x(Mbo=3$`cHs`=l3*^$7{FvE_inync7IT`^S+=M1c#A^41z;x zuE1u40H>a^K@giRRM$zD5^(VSpQuho2}GxhLEuRjgWynFb(TEB?}%9i%CcR0Se7{& zBm5iH`ROvaub?m)r&s9)mj_1ZJ>${b=Ug6Wp!x_dbnEWR12`HE>IZg)?<-O{CW#|M z`zf50IFciRu?YF7^6Ss82<-9PpUxxvq{s-Q0n>3k3Xc4ID@^z5qN`xIJOb*(aCwy8 z*l>9?oedZFsGX|H4Oazx)kp0dpAh(1tw$8HT3$(qBfE<-JJjEp6!=ALPnQw+R`5^b z{15e{n*!KJ{(4kXwGU-ZqxQX#VRLpyH&sy?5>_K4BHhi`2Fg@ghFC+6UUxmpDOaLm zIo}1>!4_(j!Gn7ITzP9C-_5Y`^?^RBze(6f5{@!?^vTduhdT|`l_q7Mh?HAz2nU#W7>j&%Py-3w;H0bUOfle!`I8)vg>P((;b1`nLea?i z;TF`bQvxll;h`khh4%XtY&04d0v=qQ0_{|;9z)H$ZS({5EHdNnK`b)kre}&f_UoyE z1a*5R8*kPtdfMdyTs`(ey6YyHIW176R%eR2ws%^fo%aL66m#t*U3hyylY*Fz(HGy< zJNu@Lj^cSnJBuN!XI-XR__6X=Zn+~+%d&7xAjRdGvbQoBiLYkQ4D;XP!u08ZlG@uT zIDI?_XA$u`qR@cqfN)HAZ|}<#De)JANJ^|m3fK5z*=BN}LI2)NkrF>%%DNW|?Pk=6-fOoA5`%Smq53`jnowGVu zZn-Z|Zdn)7w>D~c7I&NI!N4)gfUWB#=xPa4gR}Iu^=V1E-^@TyYZixL|3ku@KrWnd z0FnEi@5|!8fy2e<6K~N#taYkRUZ=o^$J&C1E_dP|&hr z^|s|0v*_o-UkhXQ^_4r3cGFH}9GoB$(bXBH81Zq?=B$ z6C#l-R>GbF^5`jcCv_#bBU^leA@Xtqc+Ggz|?)`RC@ zIJ`bh3G#{w;+R%U;K}O-@ccC28AHFhV(Hkpu$DG-RbZL=1o-6t{22L?|MSmPutzE$ z3$$1N1w~|e@0Ds*dkjT~&QYgqEt)Ez*$|-dNXSJq>)-3(dTtttdh2nmT39vw1jH3~ z= zAxmO=5GWzGo2~}i>Pc(9Txh(h-q|fVoNKb^0mfW27<=dDA{%l*%`*(o z7O)4;!7wWlQ-lVLM;i>rqmAbc$H;~`<`CwX-`FiDS#L^jNEw-tFL-8q`BJL>dV1o% z#271Ew9-KIJ@TLZUXN|pm|yFKq*wX_4^^m|^+g-j(qqeT=hoq7$uu};0Fewa?}qnExI_z607-P`^qdd*9LwbuQV zWrm(JO{H7+R4%OyjI*pqm<-;gzP!E|R_lZ^-qnt8WJ6*(Jn=)@)D=GQtkTl@`i&m~ zgE3RjL1db3Hwd_liMVG3e4BK0pdpT9tVX~m7lEg_d=11XuH8VKc|hiAt_BUn$j)vc z(_F<84|P0kJ*K(J8pt#kf?YWFz1>6QEdz@s^+mgmMHDjHMm0Ednrrf#7^;s%Mwm^f z+pgXWq^LXUyGpfSL!h&o-axFkWg7yceM<;jH0pHJ7CGArs{*SnH47#x&2PoMjgi9) zP)hS#kAQL-I<08HO#tMudu{v1KtJ^c;-IH`UTvUci_WY1ns)+i)vHJYZKWz3NY8$u zf#}cI3Y-<{zmiCOk3j0)pS|mL@4rALb?*}>6`B`2hTrKhQW{G4o(>9JwaMLk8IhDx zPNp5exO+1gyLU1giag6|C|W8F-Hx{0=Qfn?5st<}I}(liH>0scD{aUU4J*MXZFXtq z?#)qN-HhoSeq(|5U5M>5Z#xb3y&nYTsVk8$Nwv#B53!y0q09C(P)cmy(NNgF%}_e? z|KQteD5c4h%e3_=95W2YY_BqGKW^B5#DJ~)7q%I!Auppgq(z~zZ4$PLXclXn5A)4$ zEo(Yu5}WzH1bLDmM|HCx|I@I1Kv-6Ivachi5i^Vp1XZ7-kMV5?(T()nae+2^?k9ng zy5V(0HSKatj-vz2F=4T;hE;>XTJ<+&z?p~XOH!y z>i_HvG{J5WVpyil_ULzZVkT{m-oG=@1^c(cLoWL&&`RxTB&_c?xo!>R%EF#x1_}G= z5#o!5eNkgq*f*m$7WT~=hY9;GddxS0?_FU(;oHE=SXQ=e7s+6ZqCDLjE8TNytZ`sq zkPxHuzomb>0uLh*BDTQ@Yu)!4BTb}VGDfZRxUaWn)U27t7zb5O#r&KZX7Q{*U^fn?A*P%6mftP$OlzhFc+U4nQ-*S)cf z=sGoamCuM@1MSqB98o@1zXk^QhEXn}e7ZDd<)icV#OLb#w@{fKe+$f{ZKJhxW=TRb z`l(fAjwq#%`Z&+&ig|%rT<hDIk*CeSt(j!p!VJW#8J69H*xv<7gl#^IsSJA^L_F#y9uBRp9UW#)=G znVl>4GdyU28@MJ2B0&@m$ATylj@OY39FL3&Rp(q;htbtwmW43;38ps;QUE>w3S4=TB-$evWz<426j z!W41YQ7pY!k}E~GFhtj*=O{W>)`l!n*1%(B&3LS}Ue6U}{f1%mRR+{^UiGG7H}P48 z$ND-FkoC0?NQ&!QWI-nhAS+f}9Kwo=-`Xw35-5J-36RN@U2Zk=Y^Kz0BFxunBFzR* zR$iG+L|bR$)KM~0(wnfh!DfxJlTck@^}+iz-RdCyN;{G<_yrO>3pxXdMqFKy1G(wT z1WENn&Sy54aE=+O39D)>r!PDW!F+KOVHeP>v+!h{h3C_o;kU$-bygIzA`Ojd4p}A- z7*1yir@E)*nDN$QhSw(yua6pDpF1b7srq~6B)JTecEwd$U|0aTo;MqoKQt`AXITFH zUsz@^VcC#JmAubz4Z^vSnQ*RTeq-x|-`F~t5#pVj`01L?V=CBGYT4gZn)s?{@LuY5 z+N->#QqKiVrJkEK6|16k)3aqmcmtcOdMpn!=hcMgx#-nY1W40Fy+qhyHN)M;wwTY^Qz3!~hR*bT-myEvh zS%2?B`q7ZPd7h|~W_hkUVVkXYp0Ln2PpYq1o-~P}_f^8+E6b6Er!x)Yt<{j= zC|8kgBx9^ggkEQ3Y!h;kk@tJ_#>UutdBzy4oMt;E)w4()r^MCO`vMrZ?M4JlC8=-n z^s>r8mG(J~PcI5Ox2t1$GRXZCgwn2r17OCrtW^e^v(lY5YM6n$T%zGLu&Q(?Pu*nD5bUC{ZSxHktBj}j zqw>hMS%N4up4Rzij;GgWI*Dq2zKo~8p>j@9JMvtUWnvxqZ$E*H zJ+c#3K;!9&*$&3j@8*l?(yyNLv3eVnlBx0)C?`{8M?SYLki(`*as#KII)XSfo<5Xs z#?y!N^9`J~>JZYWxA_0g*MN#g;P=> zBCN1LXKzPU;4@h_>p?+;b+esFlJRs3mSR*qBcu?EC`h17kr2 z^?`6uJ}M#-lx!RqH01ofxj>x1w;IqJ4d`70>J0-8^ZxoGp=qz10^RKXeF!{~`*(#w zTxJlTIu{}@4vhrkr5FGs|F88HE?0GMSB$~hz*tm_XK~DGIueP!zd&LO3{SSeQuHVJ z&RC+>nx9z$q=;%I`@{0+s+Oonnr6T;#bWsZ@!wOPF*&*OB zl**`Acy3_ukI=o)vTL?dp>0EAz^$)i1B5H z@u&WUak3+T$NGu!*c1E~n51dNjRaV(HZa&ZS!bzk3ejLO>x{)qH1~v9M@Gy#2QusY z#@dPBnDslrp6S!Zvctgq_eoSrL+@Dz+J zb*eoDxH5V*jz?q~*i*2nDBM#prLU8u=bQvR1)ZIH$bZ)b>f_rY)+#Uq&g6V@RVhTOjI<_uKB z4enq)sXO%aI1_WQ{-V3nQeEFn6yo4!qQWRg8rsh`scmeCyK9q*5`MxX?&G#Xq(5U`>BJFWlAb6Ooqc@=hXioO6B3IpE1m8s8*4K%{lFj|i zMC;A!?F{gJNx-7@HllKAt3+}iXSzDpta`k@$#b}wO#DCH*GacjEv$E-168AoIVny0 z9|jxlrahHf%&IZQq44zaU+T3L&XuZJv0m5KNyS|bq;MdR)(voYm`=y3_jj7t-QO&v z$GB}9e42i1iW?x-q@fE9ARDi}69X7(-I%1tr(8w(Q#;%kQB2$pCxHrShgZ`Zx5KN8 zT_b7bKquLfjduNS>!w!>c5c!)4ssq=_ah3-q^Nt4Xr2lBQ$12FO=US#FSnF0)u)HR z5P7XwtfxwFPaA9Am#7NAxn{p8mIgt;QL~<<#W>>e4wbB*yE4VEZ@NPT)Byvr&p@0q zx$V=p4R;zTZ;2ovnA^ru1V5abq+5@0+NlO5(#kR0Gy(-uTq1;K>%d6pgfdA=b5a*N z`3fnyF%CD0up)pGjgv%baEXw7y-78gQ{h;n(HA-;UMdlHQbVt}(CKGsec(bT7bn_Q zjiMIVA^H0FLhKrC(Ykuq=v)daRQD81yS%;FZI`1*qm{f`A`No=Xs6V-gy5w?PDdqE zgItjlovY)R4`iQxQ6i0SdkHtfJ9X6^P-Rn}FVR`U zJqfz>`{=rQ|3yx3bqEPytXa6m_CHY0ZT|xq!|EiuxeOCxnoEm~(qk@%%t^#&62-3q z*fqPjxf&v9chB!AKsqad!B}PRTc7Wf<8+HlFqObRNwQkF$a@r|5_@g-mdL3IKV0I( zDb*Pnk=v#t@`u~T>ZlJ+gn;HHn?st*sCHO$z3$P>UQC&FkuDnVL=whccS9JtY&zIr!w|n&EIbRD%v|0g1fI@IjD6<5>JA{^`kfQpd_| zS2$}doKijYDzqSjKpnfI-f)%EHR|o=O0Iaa-ie4pv$R!2k2(4q$8GyeY6=3ryFe3b z`Y2j;L9%ZkZ=!R9`qh-(`+tb9nsZJi9!HZKINmi^7$?98mE&)=6c_A4sv%~10C3hP~`IL zo-L&2d+M#%Iz2sOT9`8_E@Fat!o?b;r(Fk%uWZ4lqA#pfx(8DjnrQ$IKpqbC)TP%u zrEvOAyWR;}cZc}DL(t~_3;za-M*#-wNx@nj!g^e=Ui{y%xE+B$w4*d#?x_q7zW6WLB`lHSWQxo!{3 z^?tRlrL5K6OJ8L?f2W>xr_)vKMSL0}|7hU03!JshaD>~Qd>crln^aJRv_~IX*rr3U zgojin+~xQ^p8BnLjc!DczVu$_L7cXQG=B1=ETEeStY&)D3@1N4C#Wh&uLkp0 zOs?sh9;Q@_}C-f+tWxC>iXRkZu_QFhO0W>n`HVYT$ zRo*oVN*XKJ=o=p>_Y~2VuO4e9>kHpCv2ndC2FcYyHfPE4CFqNcKWX;zc^^Cp%GpI?qX@WrzHA zoP|?5T8X_ds} zaPEFWbgN3oCtA7DMBuz(aG%NU<4EFoE3ObnTXFe~)hWL{v(kA{zHvn?3asAq41Qg8f{n$VAU>>D9abF78-Ht)4E4tN`;Xqvp|MIS}iwHXRmT> zLSsF!2wai#VM&PLg@)lr|E2sGt&Lbxfa3)WuL|9C^c_C2Ho%j&Y_u_3Hrj}!90s=F zc)%LhNzb@$@$pg`tP8MmmcFxNd@!03IU#U&>=RB&?L#;~Qkp&cAG~d)`eWOQDy!4h zs6~7yRTf?vZ1I}XAZsYPt*8M{TTugt+K3uJjaI)wcCORS);h1MhY^LG;t#czW1l(Xr*+N~>Xo)Kta}kel2d#g zsH^rIY(vS={)&$x0z0Um&G#SWyJsElOqjO8m#nwEoY4w5NvwRyF?&Ey0*>~8#?iMn z3O`w(Vue3NspyefWZ@GDRAkJfy;Cnb?QqFsH3Sq()hk>sgn(aPzvL8I0}KEzKvvD# zF#_bx{guvW>+-O)Sg%NFZ=z3a)TM|>;{5Kg#PrQ%PeVqWaU9BdnWSDLsh645uZN|k zZzeTsgNLa4MRl)5DqXuwXVb6WZ)Owja_mb0ZjeAogV$R^Rm*0l6i&_ zXQRUY+bl89$q*}yzGyhmZhAuu=dY)eX9;R_{MgX645$qsp5J!Q$ zkLFyj1IsOM7>7pDL{i0yMyMi1!*5*d{C3G^r@egRVxJ?$uG*n!u)?A;_XC&#YACWI zC&Kx9%yuY+^E;qyGke3c#VZ1@>L3b#ywG)H2T}N8bjdKokVX0c2t3TdlNTAx0Th+{ z1BS&}0<}z7jHtx$ayL*s$^aCPGM)o82I-*n;1B{8@fIqr(johI@v{{UQ0WgUgT-@^E-?DvJU%92PtM*k&}MXv8#zI2K$ zbqR>2em@pWz&ArrwkdAzC^dd-N9k)f8s_eT$AxUXFyG#c2YtEU>FNfxJK!`>JtfFF4l1u3JI=n}%AY@d{tancXH5jinR5p#sP#Z(vLbXydXAG8#ptj^AlY?)^~7(L9w8 zdfv4=NOjZUT{Ft4{^ank@L>JgA^6%BmzmYI=lucOWToMDv7Yt^25^hZB6!FLd9V{E z{+wy+KmTw}d0r_KpF=ooW$|HWhUM9GuAtLLoDVF|XXgmgb&oqud`ly&CbDz=`^sE9 z_cwZDJNGv|=eX0_-A25ma@%oIO=CaP+ir>PQ3;b4S0>?djZ?-k;PG@)dgA1GwuA4` zvram*ag`K;acxv5nOC!QkqRd1-@Bkqz~4qe%_4(nn=yGwPC2qtw^w8^?KFnTQyn}u zGWg_+PJ2u|GVslv#1g*0I<|GQo@ND$Fr=dN3zMUYaCAMHlW_Ndu5!4OIpwn^WtILx z1v@MJWGi+HCzHj(^o{ILyOVe&z`ENW{GG%OJ%A`=hyK=yche@dY+a1gor{aB=P-Wh zB$lWLJkaFY$uhP?qnqHA#&L)Au7g-_33D_`Pd(}QJb&PF%Y^9QWS^h15^J?{H%uQP(u$Db|}=S1nO=mh;>?O-QWj)NI8iM#R4g)7;K@|1HB>x@@8p|U6Qbkwf1!hBDgeWD;K}C6 zBK>A8Di=SQk_C~J+#46XSp8-w`Poo{C)-XKGP3RD=^~Wisz|p)d|l2i5w@R9iO{+T zz%V6vG9^C~B?0|uLa?dAHzw!5Ob%r0=)~X`ssm7|V%i`>T5#JkDHv`64d@~k(D_1- zs=%6gQgIgwF}|?saV;Q24y{!nP_lp+G|~dPwu@*xL}6{mQP>3Hx2OHVTO=7Px|RSU zO)s_igj#8+eo&}Zc(P6NB8rdpwN!Qy_5M7bOH$gPRN15nqgG5BLn|#w00f&fcygQg z5?N5o{K|0th2i{1;r#z>m%P?JO7y|yOE72Jo-Mg|n zM?oQ3E@rHEXCY_g$jW@G$#HUcjyZbb;$V!PlNlVV79dZ!MZ9w*B0nA8W3j zmK7|)mU70OT#d`B4xOYrdYP!YH#sX&b>YF4Z)68&Tb_@)vbv(~6-tSX3v|a;jR--> zE|xu@M_epF(i^LuAG=2QrAb!ZkXfb|)(>t8O|C-&U9Gn?3f9t%8wQ_Mr;&zc*#8C! z&#=4UvmxInH4PdMNn$r~yu@}3IbN^|5fR#`+=#FaxDJRvcaqOmtWM7j_QrmaYBV}` zp#XJp1xNG@?*=V@zpoKA4M*Yo5r=mZT|pVr^2be0f}O2-VHmRoV**K z3n9!7A+XElio9ScU1mW%Rir1ROZv|x{YFW@CoKKOPOU@Ci<>TchPq(yNkYS))FT@7Z)|J)^{b{W$EPK z)Y@>8#Nn>4=LM7Y*x=tVSPPz)3%ZN<{Xnx|sn6F9*@&(?)>U*J&D~edDh`%eumeD| znM^rK1WC+`bbRyRI8ycq#gXT=YTwWuf$8Iqb`^~m-6A*!JLVBwqULrNk$Pzhh*Tag zJlUPQDDE9b1i4S;@$Mo}Uqldf(hGnWq3=xYr0)R8vXTK=R`T1xR>6GDZ!9ZkAzPA_ zGrEiBi)kIa5l25WN#6@e3Qtxy$5A3Qt&DPW2|8*Bs@dagf>_-cf_Mw05JYe+&%W1v z+XgSBpDfS5JA;zqcEJUz1#n5>H0vRy^IkhqI7O;g57B+S5kguRXPk95B5d%#5JS3; z07=;}AS;{FQR(UG3c%1jKZ3dNIG78M-paY$Q|Dm6(#vh2JRCU4bnG=T6V?wE3)CFZ*5Qk|XzB4(#r&&Ic*i#0qvDi*c z+B~i2*>xRGDtXNblZuxyQM?I4ZL^+Iya?vv)T2oW9jh@?fej5|_vAjLYNpS4;^YM=k*l;S%7tRlS4v z3QycShaykYJ9)@{Pj?wV-_Tu@{I%${q~!nXDN6oePglM`$>-?z`v!-5>h>~=D{vvh zU`STp%~~5PYp5;*y|{3EVTA+BjIaGLY|zyTHG9d`3V5=$Q_xE!6V^@=;+)z^1=z92 zfNc@D(nxnU;C$w?fe@#v z7nhWEP_G<_E{cNUwW9YCy2#?YdqtGh;+rfS>>*slud7JCuNtjo#c+uk50z$AJCjr-*OqF_tJw$ z1^X(jN#KLHFTrkGT7Gz=M1#`pHaeK6?kbnHg9v8BpjWvV2EcZ!qi4Ao29F~O4TK*> z_SH9v7LEW998Z%y zE;zJFqu!{X89i&%xMzHd2iG%f2Bt9>Fu1>NT$AyKRgD_R9B3?$7>(r-z3~MB{D}o} zZ2~o(@#x-SFwD9v_&L_oSCci&koBMOLRLHLYN2QXC2kTmzD;kX6Y9j|G`;qJrEM5e zET0sgi_@csHxKX4d&_?3KaCHNP?MgClw8 zA(uzK@#!RoQ2lf|$^LSgiQXkeLRQ~5phPN?hh9f}i}XBBF=Tb#VFJq18?KB_#WFb- zpkXy7YZ6RLA$4`Iw~W7j56l0X-qrc@C@i;+w4z3R!ZOd%O|QlPrEMQ-okbqpnynMA zfp~1xr#dmqGPG5<^Pu^$S8)X6$+>|M!Ac*@i1zEkYlB~VF6$!$t}`OwhMHu3(RINE zo*N{BH#~xFeSPpY&vXe%3J;OaW8_dth^C&p@CF#})RK0Wd(v&Zn1S0ea4Q078I~J{ zEhwU1L^rlsHwL#sD)E6Wr)~^RQZFJNO^~naqbulM`t>(rn0nRC!E4lqeMIoQ2hK_G z>_p9we8O)!ZAIE*$QLegwt-$-eeq}SgTOi&fbiOySDw{R*f z&ZqmhLma-$hM0sXyQ!~;vJa;QJNe$GEJT#8L36<5^1^Flax1Tx7Q}TnxA&zM(@cMG zPgJS7w1vv)p*wJ8=xyMET|pnzuN@MQ1RMYuDXyjK_ZlY$## zD4Wpl?2=noXgBmq!O=(z5bV9elLvNp1B&Kg?=?(LH&FA0$%t~}QJvw@V6pd#$cn=D zkSBpnBPjgl0STTwASu`NXQO)Y6N8sDJ!3YUGH-|C@({2G@;ChR`7C=3>$?o=crxq9 z4C{Xx){hu^qbmN9bsF~pf?3CtOj#Tgn>`OLCZj^CHwCBkQ}s5k_~#a5pqO(&vEQyk zg>a7F%sHOKxx$mrWxMw@%?LeRvPTNcl8$vmdUSUx|yIIymh%fnz$ubmU{f1{St*aWJ1t|D_}* z8}q&XB&*FGWY`$O5Ul&5JaU{pI%R~X<^VHttfj|12Yxqnt=Uw021pM{ z7{Gna_ZAXXTa+?#H2Kkbmec)Zx2F$q>42d&VnrVwVW_5 z3+vU@uc*~a1G(~LD%N-_ssZW(O{u^|qodHd3%oGE?E){-8+U;h2Sjv%oVDw3pEQ69>BK_<9Fy`h1C+zJ-S7%@YV{@XCSl1d;K*Nuej`5I(v22 zK(SojeFc`wH-s*o6ii;) zm?s8uU)ZGQz8+kT?S}{`QEv?t^@}I_Kz1S>W_+x#_3rh-aY8-E z(1IuH!zSmmDPZMM9NuY-W1FUZfLd&cwNPY6g_Fb1FGCJ#aGFIaAc>gTO zuD3BGjS&OkjX3{o_Sp9qiN|^oc%&DtNlZC!w#Fys98cyv>3nlJ>D|H|iz@>~;sf!j zu5!9W>GR!PREt9qy(S{5HaO8gfcJMpag@%YtyEz_z^L9zh5I%UP4k{Kw|Mto;=kF# z;ftZ-eNBqjdQETL4CVGIh=zrVHR#o)yG=^tyK|H-8>uFH@`M76OBYYFwXCCh+K2Ek z94D}HtXHOD#a{Y@TY}9aYKiTvNF1_H6>!l0%yk;6gX9!}^g(*kA)Mhnh#R5Rh~d0p zm2Pg+h{WSF1c1k92z1mH*jum428kim-aujWcP`3eBaqNkw$ye>>!vOm#9c#OY_P@{ ztO;jhg?9~8T4XUZmvkZ&sN;t6+WD2E-?Qsj^nr!!%aJw7hSVzq#jbf`px8C528to| z+#oijVxAoo>eo1+)Td)__4mduW{X-;uOyKK@^z6`cj%?FEgX*O8Ev$6Npfb)=l zJ_$XO0;-Sp9$mzM3r|?JVk1KN%Gu<~x?ctFwLFssi~le(2Fc@0_8HlKP`N9%hYPjWYe|?Rg(fYOTg1vCUDp)s` z-}1q%39EF?-I&UHl|%UK)t3f~Mtcq=;VyKyJ~1h=Lr8rb5upP{lY&ZN{|yVHfxH?b z1Nl<`qk(+<5OEIRHxJ}9hR8skev>9drmP7;omTs$~j2NKhD)Yu`S{)&GJcJi(xNKt>wDyRK~YnjyLLuB#I(ooPi5a?Qd>b4;= zw77K$lBSPeifz&uTBwDHL#r4T4G|$Qe~2ixhw+`1+E_%7P-+IBl-isjGPszDtf}$d zI)vMob<@Iq!Cc=s%1BxlGGm9*hfD)Il+Fm=@SAN{zP~Rx-tz1mA`Yd9^h(eCG(N|- zETSm6VI3p_`5xLs^u`VA(2$6Rh3xyEO3U#c-HydgLQ#q?>YAJsHU8`E7A^{iX=IF>8$9w_VS9F0n)9kORR-Ei19|#KB;prAmhCX>(EwRlA|O ze^pj7{Vux(hgK9;ZuldZX{r9e$;r&XwT+%MZz13f5f!@8;ovAWii6wu!b65iJGo}4 zSWFWUh1}Ouj=<@14ww;|}u++`i+k zLbX>=1Zg;Vz`P-SfKFKxQ>eF&PdQI_%u`-H>R50T&eAJ-Hl>OFl^~vBHZaKVrD)_l-jBxTA)*q&qy_nXcx)?6h6O&VFE|{6}k?J^1Bt+X`GM$0# zq@I){ee-iEWon2C8yFeJSDQ>2MnzVnkEoOcb$Mh2zTf0-j?h}&5gvBFS}vIIhfj)1 z$yLvoSWAbAKzePM2qgLqfrRa=OisZ|DIL^ylXR;j{oW+qYLXr>N$Gc3(vK@sdZ^mN zh0B`5MGgjrvmEr)9BvK>Z7^K&MTGFgyJAvWs}3e{8NOO=Y?Bth!_#J+@ZvZjZ%QZigaLTe0K8-X@O$F*Dfw!n z0l@DFfIFgEsc%f$FHPECOZbods-q+6$qkZz6pe7IXr z-k8;w+EbmxmM!vn7nPJ$uUknTA$=Wg-`W z8k)ECl3aZ{F=eKnI5)Y7-n8mALL9oAlTy~G&LhNwJ7R>Wg`pz=kv<+2ZhI%CqH=;i zWsXN(k4WT)yn2KTKJesYO78>xblqdmYxX^hbcxhd!Q&L?#7 z-~xk zCXet|1NNiw zO1e(WOlgWw9Wztfx*@n|C^Mxee*KMyIx#}lSDRdDPZYslh2uGvWg$_C-jS8k9xIZO zC^)a;?^KsJ8VofXN#jCunU_JJ??7+|IBEj;#Mlwbz^WRhG}Lnrq`YN~WHg=CI3`sM z1qL~h@eGaiCXO^?y{jeW)F)Ikb=63z##={nvHQY{9TRxdYdJ1$I2YTy(IL@=`Vl352XpmBmBE0%XN`DK2xgkny*Y7x{;c1Dyp>b`FeAAyO2@Y>( zy%7q+CmJPWgY7eRp70Me{aiFC{<%gp$C$_goT+kN|;TXaOlI3W5}0 zK}D%jLvMoA1d!eXECSMd4+v2}dbbelimw88R0Q$0q4GU5vnTi55aaLr>$II`XLojY z%9c~b$_h!-tctfhK6kI;O;R1W#!PK|2xp6#;)=K_6`^0O>NR_q3+pR2y*^d6vozyE zou&L`I_KSt$@>HtHDdw8M1+|;r~wFS$Td4l#g(84cS2QbOiIq%fZ@% zk$Evb%(Ze$Zfn3gGuT}X*%6Mx;%NxRYF7gV=DQfGO}<-H!#hy!hE(xZR@dFtc8{K( z;61Juc9z~h7unOgn@4Io^|n#!ZL_Jj^`_qT{7b#jJSM=n-WV)cZ|6uXU`hbc?;eH0Kmq8nz3z~ZrHfS6Q0BWIxYKaz_^(Yx(I!^t{J(!yf;CnIU-*)kPGa=9s`Rg_AUY zVX5$4!TY>ZndRYjgIsYEvRey{#EQu#xqqHyI%TFI_DW2rx2b!C}gxrNo#o2&v| z^A<@Nhy)0%%5Y`1SQj)TkopD+M>`PI{kcH7pt;&a30XTs$V!etJ9L`Oh4 zx|`NGozqrJZ+U^N)e^>$M_aAEa^fTM<5t7@ajW6G%PqYPg@D(4oYw6h@zQ!~R-|hm z@$SXRZiFEr*y`Pc=?<;jOh4F7n8tc-ByELVJ=T99^mg5H)1hvjz2F(A0RIO(Gh)_% zyv5Qd4l1B`|LOH&sguLJRb8h&ic{4%5%W%Wndcw%##+{7CmDXi6d6^>sSiJ}C+g~L zy}fXd8JB>MET1?brHHDjtIRLk zd8=C18Odt?55>yjtO_?jHuqI_w6( z$_cJ0{5MuKZSE+bdrPK=V=`I4D z(h&l^+|hfVYTR8W*qe5j0lHCl8K58Op7&@_0W1QI2WSVanBJXOu)3#5cbQRBJq>2J z?mG4kLTv(>qfzrROd|pV%HsmSd0dzZ)@huc4%TU$o?;kWi1&F738y&w*|fIB+S;!7ULe- zRnC#@F9}?#{Ay^Guj}KT1Lc9wN!BmAcVF))^$Y%a2fR4$Eu@OP%KYNXlSF#D`S&0aA zMDpw?bUG*CH3svZl_<4*Z;W|Kg5yt{f}eQz&FUc-{!Y+$oV8?fznGnz!fnHG#`b6Y zM&@Oa>Lx{SI_iXBaKe5Q+Mk7173|5e8~jF$2vzBx61l-=B2wV!tuSvZRimebeByda z$fu!@dE$DSs7*^lhy)H{@o?|6s)r%$VhD$r{JQAD&v|RA35E=x9Wq`srwv)UA=@Bi z3eOyC*=y+N+3?As_6Hzy6Km=4ti)R0MG{(xaS^`~_O7(vqKlj?Yhg>}7_V0~MjdCz zR4S5y!?95A*Paw>tf2oIcx7r<)Tx~>FInFOuUoCI^yyaOZwn>Ena)1m5l2K1g@vdk=Xl6SUBmHgGX zUZMxXCnI}48D&u~Ssk_nU!Z2-+XEt5tp)+bV}9+K9p6E4c(GkJyciWP(28Oc+3}CH3^8W(C`)5fQ zKz5`6$f9_>kB9=#EDBsX+=%P4AH9RAYFQTBsQfuP@FUv$f=WZKB#ZH2hGc{G!t1;<)I3uGv!ntPuEzrY)>8NlrtoV_;dkX-cslfS78jmjusT+q z0X%sa=S-SJUdd%eB_&k4hfw6 z*sA@?5MDKeKO4fUAmq77)n6Dz0*8=y(T^|UZLWO%rIgYArIc~~rJ|zsUkAO_R6U`k zKcW=(nJpnGC|kwt3~6ga+C@keo_QK_fT6|y9ycwU#xEG!G(($iXz|RIw8qe;h0?Nl z{06mNSpe}VL{4imkAsZXWFF}+Q;`>b_Q_PFZgdQj(T9*5txQ4F;`zrjxWZNrIf0~(f%6rYD0s~~6hbhaU!UN|p&aZyoi-{KeMo70mkBOV40W#Fr8X!s- zei%(Ze%U|UJeBFkKk>p$KLU=UG%mPy1#78}14OMqiQH(ce;m))6aZ)T%A1(CaUq%s z$WTa*t2mJL)fn(jW9T@8Hrk*~Wwa3f*!&9x4`AXAkG5JrKpzcY8f-f_Ag|%v1#fM7*|a>&Md#yD^Kn|1eEhRKX7%xr z&$2SS&^#sTDtn$%eKJ6Q6yt5AJ{=(Ij7&PR_&-K5vu7z???InEOBu~+;#6tWKkajQ z{cZ0|m4BefINv~#aff$MES}paJ5X$KOj7ZWFr##{4^V>$=x-9SbH?qSdnwI}ul2--gi*nqKs1&jpD zcN5nj#M|*5Z*kr3LvM3=$2P!UIV#Tok$0I|V=C??Q*rx0aw=}0skls2aeIZcWB*cd zbk+dCxZ)TrSaBao#a%K*#r9$<>X-jkaR!kq&OxlN{xTJJ$DrL7w8Dc#MZ3fx(@dr{ z88EIm0i%lJJ29T9{28BmTgp3jB$pAiv6`J$$BtxUWJXqV@*uIAab*wYu|Z-sKR!rC zm3D)~SLib6?ncKhjA4#Udtk8Hj4Qh^&w+-ff<_yx5e92gE?DftgkrG|11$DomVsYt zY%9PojZI4p*2aISG{YDBFu)4>Foyv^KFm?P+~RL#8NBm?_s@O70J0AQK=xrSqu}J+ zeTU(6@bRO zz}n}6>K2eeWdQ-51=Mda3kZi11Fn_oGgv2Xk0$=u#r&r>ZIHNwIQ%tMbHE2=gOhj| zYnEZ_MFIO~*%&mApfegp&~cCtP-F@W%(BP9AGy=;-R2*?-8J9wXj2eUaEpmolYGJ` zG70vfh{^g;cPG)&UstRf`pQjAS^Xp|UpFlODJ)00$`9v|SCN>;P7A6Dk5-Z3%Bx69 z>MOrNf8mjv6Ry;pklm}dypPfA)I)YaH@#jq8uMaEYJL;`p&tFSw~^<=!8ik{hsW0K zu+ju4)@COlN&uDOr6lxl$dk^&x|2vK5!PLl1TrwA=0=O58)<}qe|FcHdR7i6k*aqDvSx&F%bb_ zKqV=BU=i{M79rnt{T;KIe8(aj1ah|sc^>maDP-zRZy3(`XM^h9KOC07cUZn2Wciw5 z`L};%ndV;KH7qkG?GX%4WERtrcM$id!{3pL`R7#3Ki!#`%xavDXE7s8WzY<1m7#R* zXHTeaz$As6FFt(1pAzn1Y6l5|lb0^SO7yv+=HFGktN(k)TSr|Ctr;_GiH1iE;(P^k z;ARDV@ZT&S<^v1)U}}C{q@tQURHiLopoF&0Dp0H@VaqXu^N>9Sl3cA^-&Vc~P8nz( zwf|5NDC1_w0;~;^F=_@G-;D5;k&L-wI4MU1_>L7?UoO$YGljAT(SZegE3uqCoBy|j z|DpvQ{&@)fYN!mM-w6M77>xBrumnG0vrb;)Xbej5)=(Ko9pq%Ih#p$P=TqUsL|29l zlNKH|jKOlWaGupPvN3QpfFc;*w6O0!m4HQP?*@D{5mw6A3KurLlXYwnU!9PObsNhD zhlfvxE%RI7$A*c*e0-QF%ytG53sC+Khpv;GKGmNY=?(bvEicTa3D!(Un>=kos+yR94N;UU!<7wy|(VI3TOr{7F^*Wx=L$&)|kYHIqT;32_lb!=H* z_Q+KU6}wV*FYEgVe+MIKY?70;8xDi_AjPra^532{<$Tku_f0NX!QrH-f;8_87q5#? z8U{i3DCi_2pu;8+4}&Z9|Gd6BYWZ*}?abj^TCAo>^ZDZ0AE$uSxsV_M2c)7$I031$ zbjJayvLj4DDif2c1ua@C-`lrQ2Liq=sy4n+Kq_H`-ua+!1HCM!e|X3@Qnef*L6hbq zBxv%)2o9PkJahD-*9eZdSU66xDWWFrR+TAXAt`OYnP5oA7}D8>6wge$%#e-=lJZ^p zkO#{|B!F)d`Di*qA|D4qN0ErsVA2dA*4EC3BWq)ZEXvkk$W3XN_Sle>JB6B?4jiqnY!Y)aI z!k>}V39v;cTbwf0bId?pkm?C{v1KMNL$Fe7`l1+XMA;VB*I4KZE%&YA>PrK4OSp<~ zLn+<}p9fz>pJTq@^du&u+v5*?s_=6nx#;Iua(A;9;bslx!tbO#&yH03;@qP5d1^if zb9!FUXdGQdh;qtX4FlQmIT8Xw>}f?y=HPSa(QtpU5MZT;b|@M{r6!*a`+tF#M33B7 zaAh0(Sv@?-*CIPre@+z+cATCSuN&6!)#J*e$alBU#)Q-N<8(|x{1fX&RH=5l#7!#! z2U{Q~IooRXb7Ge6s|(|WkK$jC3d77UM%iHT)|%q&=HmTx8>6rk5ZU=-M8q@dtFx$Q z^c?FvBeDoiBr!O|}#b}0O@9G-YfI>cO*765d=zO;;**9Dg zvspd^<=5hb3m3aS5%5S3nelne+JMmYllO>e*kw(dh~Y&=T( zeex)2JuOD%-S25Vc->Jlzj5y<$+dz`Yk~2Vf2xOEd5&YS$#sA`S2M>kWfaeG6i=mZ z5<#Y#(G#{~P9PP8B=GSD9EOSmjs^HAUVOwCG_*N%vKeqEXD6pig?vWveSiKk`qLi1 zq|CX^U?zGFjgl>ap~=$Io{o#C76it?&f4l7@F>$K@6sJ>t9M7Swko`oHiYpI%m13Y z_JHrWqq&Z@_7&A#n)_C&>qt!M>)I$%UwcJ!6&Nj=%Ni}3tJG-GTzI|`7pQ?tvo+-& zRk-q0!CxpHX{}^KR@acVFl2aUt<}-c(KF^WbZQG8QKx}WQio4?p`mrX$bB{D{Myu`>ejcz%{4(I?~z~UXV^zSTR;NR zS92fy3SUTjeSkC+dlBTs4_Q4tjY{W zq{@K7sti{?S?OtDk^bq7JV-r1Ww81nZIa(nrZWNpqHwwPPA5k8pV%8KY9)|Y?Yl3H)Pf_#3^cQ$DZN@n5n`fH)f@RVqDU_s@>ODr<%ZPs|2@Si0I6^BHVKi6hV zcCPGnEO+I))Sasg#nx{5PEJSh?etxSRcb^$9P8-r5FZzIi^*bXFbkS{j#y2d)ghCO z{~t3dIU~IJKO}_=$e9?BTUefN#>iM4nu5pTuS13`9*ggQK^cqljdjN2d}Bk#VhkBP z77yx0V{se^WGQcyiS%$LA5=P;krm%Wry<7AM3 zY6u4Ts+5Hc@})kV0l`iw2?pS& zSgq(wl6rWY4E6hmIYWI{kWweaC&BnSek&qL& zZ2rjYgYQx&!(-q(ZXfeeK-09@V`z-FKnkPAI8hk!5GyT)s*axykqH(z!ReN)q8^wa z+P3)wu|t|okQUPx?{n*V;YP~zf0Fz3<*B{|l{`UmjGK_1BYO(ZnH-0^b2Og9tO?>N zOrvj(j2+d~bGoCNrWokqL1+QyQf8BxzQ&g4 z!~|AO;qGMm@GM`oh*GYBb*%UaAA>{DO_%77{e(+U0Ca?`@e|NG>Ew`#HOOs{!Z;^r zgq%`Q62k-^Bl1l)=C|3H-!i5-Mg%GIrBpz#X<|3lZ|x~rLpS}_S1|M4IlfVrbvv{5 zJm0;R1z&zXewK=Jofo2S)jX!6l|7Nq6!DassPv=9JP+%d+Set0V4*ObHKte*{l)@c zf2?Uhdi*4Sju}BZhvNo%;zD0{{6YX<8%DT4OoY;hU-8UD@hfoV!y@<y(FY(R9Nr}X?XE91WuP@FXL8%X5 z^LTc>SeteErM`Ha`NOYPec-V@o00h9S{xI7HkeLrMmBWv$hR6TkWL<{08FQbHW_w8 zWI8`*@d}`LDUaxk7k!E9tBFf~@l}w6NWOLz%t1mQS~!uEt2u~dp*u6zK_tK8y|lsK z=#JaqZ(tQ|P^C@O8L!7YpdVQ7JL*Y8q1xY8ak}OT1Xv?e*+cb2q?&s9ai?#fe*Goi zi>hj>_@$Ln#X^d~iI2Wg`szwwGu1RzeAq^*;={HvY4Oa?=rgGjeQl(#tnnpSOxj+J zG*m+k)nr43XQog8c9cX`(F4?GRI_zWN$p$Qk<u+#Szfw0Uz>}!%N>MgJ-Iyi2^nU zMIj~X=IqLKzb^+E&rULDWKUqmH!%|dyiEpconU3;g0^V zVE&VAi9-P^;&(hh&KVffe!qRpDd`r{6&Y>>#n?-* zZ-F z_rK34qyKGGjXV!bQ95g*^1@{&KnmI8$Apa6cFNsd@P~ANj3XU`$6b&aY_iDTMD>}X zQy2MTvD7^qub1Er7rY$uuC+x~a%94YBonDVw(4gPPLe`RaL?h4xaUZnyx|)uiP@sR zoI^DJhx|9K{e&QMAbY0B!1%^nj&#mX5trr-W>@MHKVPHzd_R}^T;LiUX+;-YS1~ti`-Y=-R^qd>5{gIB`4YGwJD>NhX5clK@ z(tA)NEGYiMg5taHAN9ve>YA(kiE3Cd_1rf8SQpL|`BHSx6i4N^(ZxUa_i-gz5+tS$ zNq^Hjn`6Ax^V|6ssZ5lIl=EJclcLeM@^Jb33o=~3`GO3W=S=xOcp>jDN$cr=!NVo4 z?CbvsEQ&_oGzYYIX2G zN$m3gv>REu1|Ycb=C9k0r*e7Wr!4ps%dDRM6s^40Wh@QgWlE1tl~O-GRcrv9D}Ncy zyvx+Q3r#1KB!e?LjLAW)ubx9zWZjIODry@u>;yImuXCzxx2iQ@?71@-x1FV?;K+vC z4u9dc!*{_SZ}TJTNEk4eT{7oT^Jy`RIMlok+cRhp&z>}ydwXZ9m~mNCgJ#@(_03c{ zf&UBr>leOu>I)>I26aWi87OONHW2yGY8Tss)zVjwFAz~A#4P1_tZ$m*Z}{ns{SE)L zP=BM)*S`Hhf1~jyo}zlzR;*4d{EhE9RR@VNH|9y4rWU6aeOUjv)7M@1{?@lawVuYN zH~h?-*AP2+a9VJ)yXrYj%;$6P zp@=ay*C8`O=xGoz#qBVFSBx-45U}grjlg?)APC3zcwn0N9veVKD_ho1&yE@QQ>&&+ zxHxf|xFFT1<#0j5*}Ww{^{3gfI&G`3e4!EDX^QZyzVkod(-99)M&gAeOp~~AiRo6n zPWjcBrY~#MVYMRur&GY6q*{TM?9}(@d;j*$P-9I2M&TRAcYWw@6o9qxycuG| zE|?)B{2VEOT8{U$bjDo*R>7tOG!q6i9_$#6ckAz+A!GbLQym#I^a2%=e0OE=03Qm) z3Yej|Wf+y*^uHTcWm{cZ|cXeJND z;jV%jM6|M?Q2b;IFJkASV$-MgjjZ)d(4pj;%ja zbS$o{W82LXZS&YnkwBZ7(u8oVUm<@|hyci_3O8(#SzceqhWVoiksXo|Gewrq8Khwb zDfMn75@jgTg2MhXp87M5wYwBIWbLYD;Ff%mC4!~aOLc{?#kQ`SEh-s25%86`$p5H1 zG?Oh|b=Y7XFj!{=E5cp%N|T-I2$BmqQEPp`2qpFR&*;%~;4 z0oA1HATw7tNYehRs^}~cL7`b90$f=H{((wR-1KqCt$?aLGBUxdlq+E{4sPQO!Y2R1X4-EZ2u- zix}>oEzP4HSRfnDB?j#t*bExmaE!(_TyNl0bs--f|M?4#B$B3s{}CxoQyYUw0puyA zUSOjIr<+pG<5FX9&M~hab6yjDwNSL!R9^rW4s2{NJnsFM64M{m=ShjP(FWy@#~*&u zV*Eb!CO)M>w-~e!aw#!et)_VxG%B$IDvS3AQ(ioC^T3swhiBewr4yTmKat*U2uzWM zRuSZ%XhYDmvx^KHBVPSHT^5RcP9}$0o_2YesJXxQr;(ty}MoO}iQw3~r5X`zP#aaD}Dui|Tv48riv!$F6Vnnf}d;r- zR`<4w<43UVYxvvX(86Ykeq#{cK{;RmTaolG*}9{fCHQM#(GREKg$#G7XpqilrNW84 z)RLMQs_VNTlI9A;Lkywt$oAyplH};cVu==BQ7D}AFQbp#@HMcocQl)cegloXCSbBx-n+Dh`b#a{pRNobaz z%oUTCPt3*~l~;Wv;hjOzdk32UF#05qxR{4u4*0!*Td@i?~k}jS&3Qu<{TZn z$8Mjwxvu|F%PNZ1o&FlSn-x(=$Jh7oQepGNhK=D5yb{8m$35Wc968k~tAW3p)sQ|X zse1E7+u_Qqw%dZ5=91g%E6M&=>d|>Jnmvuz)HM{4LTuJ@1T8izAh-|XN_`m7@rXwL zMwA2l+eyd?gOy60#{s|0tVaHd7RC-{WBNQjw38i$Ud}pq^*kP-As%ocQ{*cRC)<$= zjnW~UP&~p$ELOA&L4#^xwH zD_}tL2%9ipGzy+sI=HfQrt1?A`rlS~Wa+#RDjiKRKlLl*cb|hWmy20W$~Ah z1)f1w~$bczfmc{^FWVB+j)snMi!c5v~rDQLq}icaPo)9YQt08)H9P zz^An7l#T%58u-=J!0)aa!0K?S0nfs`Yk)$!0A#nfUq`7@v)9kJP^=Dnq5KYOp$w~4 z@H%Jt$>MOz&xlff24oxYJ{)0BHX^d3R;2k0R{-Df4n4l(3iu?n0(gl|0)|;yqGQ9T zqVS#<<0UQ88NE=J=!{(G=nGz=GtV%;V4;|}a}4*(|ABjFIHKU}jD@m{bm~IMa^%A7 zEZJN-Zn8Y$&N5D)?&9yNKEQc?^k>g^^wVAaEp_Fts8XJw$TDC@f?yO?w8He$-Te1k z7XE7LufYpM!$>{JiWoF0&A)s8xtsq7Pw{kFg5yq*S)qsjoaM1|`&7NBzqDo5CgdbX zIu%hq{C%*O|2;aR5n1XR58@A3rtQ+#raE>28Hi0v7F7x98cgCR3GKWgX{vFW?Bk1z zxj6#M^ILi1BHnZv8gpb>(13Ku@Eb^XZ1@dK4>kM}`}$wu5NWe!Ws`JFKmS|{QR`mh z6wseYC#5Uht)AlLDqWY1@fXoArTAA`FL4t3F%{Oefd2%wI6W97we}eV{CmpEaDQ)X zz3KXNF8kB#-}&0nygl;ezg=Ac8rh4tf~ghWv9V?81ta`z_z`v%WlS+sT4y`LF*lEfO1Z z_2sZOv<@m{r_fh@|FgFT(G@p|=W|6~fE7Sd&t@MmZ|&atpNXCm4X|LAq(xripT?1|b@get#SY|wfp z1>&fMlNR%!f@1K|qFok8MCztj3l@}6YRp)FPyEr80eRhIo5iA=ri?|ezdY7oALm{s zPV)N@i$n!*79rMYEy`1@Q{eGv$#^_k^4*Z}{zo<6@yOB& zxss9EVzF7LJHbDb{^3UDWVTibTh=OlaV*~Lt`}Lu0y0^buTru{)IP)13A`pl)y)*! zFor2IRDnj?!a-wYd1g6EO zUk0h@lDuooFvmesFv&sEic2I&TG?R5;+b}z)D*06S3ymXG?Xn0k}81lKWlJh(`S{A zcmYvBJhBMy3EO*EYbdu8+zu|&r#k;uk#hNme@?yh`} z#YuS=({tN^NG6T6e7f81}4J6y7fDU>JN0-RTjpL@?4jaHX zq~0Rj^=4d!P%cTH*=6QGxR|vYUn~)4;VXlD)ga&a2Z@}>V=$hi=npFDegg%pp8*?{3z%D628_hzsi{q5dme6h9S3a7 z1!j<$V*r=yySoerw@q~#Ko%BrM+-Ty*J9!#e+4MbY`hGt4#%_y7KziCl|%X*-wp+2 z`7j{M=RHDV`Cz6laf!c-=5H(>z8kZ|f3Lh_@l;3cyTwDXZcFLztBeKww~w}i-E2Ovv`0a-%Hpdtx1ask#Cz=v`HbW6zqa;E|?2fn*3 z<-oVqjp2B$%`<|QvNX3kWoOUSslj6*F@wSN9FvxcyJuk*lgeGIleeb8&K20Z1~?P_ z4uxiMF*J*7J%J@*zXXel-?OOrj+b-r9WCd;FQq80LOFRgM-U{-0jaUt-$MuAU(F`q z!Si+wQS<5z&x#w3_x~}JHIHd4W8LS#+9@LG0kf?aAoKAPZEsr z>Wr$!`i(t6qkG$pmB?4G@gGvj(lil_oONE zQASHf4ct{^4j`K*V!$}&&tUA&ePIfXYOnf>2GRN#!r;efafKVLD;Af0mlCO#Hbq`p4b=@%q)>5Du4V)G{eU?;s+t z5-AURhtB$#7-9u;+&crANZfl5-Ld<#2fNG%(3hF<=%|Acx2DG=h>~OB=W1il8JC`;pLL-*JW(1tLWvjw1b|> zS_c^~?Wna}mUUNO&Mt~-Z0PVzM!sq-bT|@h&1-P0K*mcudKt3rhHSVY!!whm88ZAd z1Z18|%fvBJ%M9HTL$}$`;hE|78#*Xx&{>ys)@%OG>Vlzq-BA74P~my#nCN@dcZTZq zY$n-{$*+$cfdfvYGO|x+r&HZfx1&qfQ5J@CxZ;kL;P5fC8H(qjhq`d9_#H;Jl5O5 z3mU@>Uy`u-eGE#r0}FO23UpGvsafEXQ9GF`Z;iQ!cP>X&G3yg}1(BY~dm+jV&CmV?V(0n_>Fqdl&$sR^HvR*$fV4ku5A2i%&#G z>Jk?s3+lMdSU8ffQkFN@66opzoh;BfS^%5Gq2O#|F*w^;?FdC&7E})RDgMZPitj$7 z1MgGH1`oFg@Vl^*&jJi1kR zw**?34?u1S49KhE_5+aSMqXh+9=Bdz#e=MMoGUwIjAaAbRI|ZjYm)J}nm^<+D`dpg z%pbD8@t4+;gl0$hP7E)U&)pGDed~YSDxeo!gP^R{Tz0y$!%%Lul-x(3ainV7q6zrK z+OG2Iyh~1NU67Ww3$CnP?gI_=fF=UR%BrEkYncn4yAK#V943c2W_%J!>n0OG`Cy~8a02e zy!>VBS)25+8&apNNRSEpHMl0;^bezCtW5q6l?Qy9!FuZb0k!_mrHR2%@TO%Gqku@UZvUs1DNn_BsIWm9j z+$5|Kj}G}*f8p%#uYYo8>p0EjU*O#E-Gxpu_n;b_=E%NH8Vnnnry2qS@GKk-Sc;{} zwp9Jrh-=e(jbo|7wTaVT{pKI8Cahr}BYX^f6NB@lUiQ1cqkigle~Bf3VAa&9HH?aQ za{E7E+z*7QMyHLWklkk}VAt=!$x53!Bi_=T&Q&OYUkjls7kn9bhbWXu^DbJ%mVMsgODKC0=Vm>$s9jnu$XSpgwDg_J@ssWv zX4fcqE9GlY=>_@i3c6Of9a-)hS9vxE%agvATpiit9iE;eBdmn_t6W^vZ+I;Y?{~W6 zhW9(TB!_y^TG`?~D8hc19xl|3X{l?Lut(|q#qIT~)H?R6Rq=J%U%pfE>%y5amdHUs*`!&(e<8=CmUwK1_6ZjTBMqEcxF#`?mBVE>6zS4WX5i1 z@paji8oN$f(=H?-w{ts~rq2O$Qo%NMXu<%!2t5W2AYQcznVD9Zsx?&)EuH zqJ}r%WKR2#ftXeVTcV%#+Qs$m7`wD4Y(A}qGhws9gKWtx$hTh1qHp~6MC)l6Ur!jm z`q<#>vk_&JJ%iVqf01H)eFggwHPA3Mc0HR05pJdwpF!zxMa~ECXjPEzYlAB`i_+JN z`d!TB)I)wNQPEnjFLr^Mm0L0C?|wM|c}+euI6nql@*NkL@7|5EACz}o;>Uv}<|QKU zx(b_R3R|@TV0ixG8!$&FxM1xUmGvuA)}N)Up#q59;H~6vMpHyUV};9TqHs4Dg}cEh z+zm$I;(ea-G;pkO8BR3r2BUG;i^h$s;7FR&OzafXO!GU|xWRI>#{CP;l{D`6XvDNK z)=TnB$PbC6kzs-f0I4UnT**W=QrcZD-hS4 z>ey(iW355k{cqJ_!1%~yfU!X}YJ-U^Vo$p%51SB|OnE*GEl+H9`+0R^gP0KC(>EEB zi|R|&?Pv6|>eSrHgZ$Ruei+1MBjQ8q%Z3I64H*&MjZ}4VfMm#LB?m~(PO$&L-{0ET zvrFl$`}4;Z%aQ1{%=~c?;XzysWE=r)ve6l^o6;Q**iAR`fL$1x$_y!VE=+iIaL7+) z-NIU(Pl9LM)N*hKo#sTzyzLan%0vHFGTNCZ2Rzx?XB(3>$UwiiR>1*;g)_3aJ z1$DbRb{&28UVDR@v{4L%nH$AGz%v;L)`U!}j$Ou5tB^sqEieISrpi|8E_Lmv)eiog z93Jw;s%N*gj!`wmtHVe@V|PY9`&o5xqYT>tKbo+MU~i>-L8YR5*7tPd z==+tFK!)tGz$1O1(7@j3`D&xl^2L+wXVl-q3x52&IobY0MQ)N3MQqYBOMP*w{3e%{ zkJx0ie2ri#((*Vok{VKr5=gGu?5^>AZh05@pqRnTQ_PA<#zo+yOui7Ns}W&Qi(P2=_a-Y5F5YJ++K`vySto(=2f%c zy3z4LZBI$|g|d$idV?~(m11p10qLGw7~ME>0V_@mTe?YSoQj#Gcek`F>!XG22z}>a z`&o}?vuSH{TiD%{Z!_CbR&-{ymUcl)C2W?)7Qa~Ql6BOn{$+ht(rIVAFb@#SX)!0wVhP1AIO|SAYSJbqV(oq;|edG z0~-I8o>D9j^*mln+Zsc6+_uJ`Tx3RiHj5cK_fh*Ob`WH>wfE@`nT5*hgX8df>x8y; zFSW>2!Td~o^;>Ei7rBAjv{|gkb(?h{zFaGHVzXG6M>dN=cu~@Mj-XazXGc^~pKTV4 z5DC~K1R+ghsNW3X&xWwz7O_O}%$8(nnD2BzEoi5?clT>tPt*qwlnh|>UvB^w8|&9=!DjGMSY>8-6Ucy!OLJYhikct{J*eSEo7?wq?RP*tfR?N)aA_in~CulCVHrC?{ zOtNeO2iwfgPTe9#%YR6!j+>f|J%amp8C~rg|&fHnY-V|GJ`x)Jod;Kh?ftrGSKG!a>We+?Bzngo7hHM4(SP-uUG35InhXT%<4{i7 z_>;{imCSgRwrAlAB^jY+oXZVY;)xqr}y-;C#m||#8OM5Z=zFY>yasT zFP)U)SZaye1U6=ySb&4k0x8_ng*uF(L0>0Jtp{f%;hxaX#kNO9W!4;EkFh*Mwn@Av zB!SX3pA3r&pW_-NXt-?$p8&c*=nS*XZCfl2X?X#9=^ERbp-tx52mxtQFsq?543gEnrUp6Cv zgM;Rq4!5g$P9ss;4-pUR`4s{KgNODV%0eI|t3n`L_Zng24-v@9QM}Bdo9Ur_=XQcq;gA7xjyJPF&4x*hbM zr>OpMwEdKNXglj%&;9rm`M!tCJ_yTO?V|d^8BaU))OOLq9kz=O?z7#cgFAqTb?`_@ zWp&W=$J*7j9)s4mdb(YNO}=noJC*dfP8?5K_`dDI;_QB{d~s~wKl)nvIL;V5ztVws zHc(Zs{1a*IIj6zXw;l0r4v?$X9ha%9mcYCYaa%iBPA-10V{u%w6+wzDE$GQob^ zO3;IzkIB??XV_tS;Y53zIwCb<9dvzYkY`_>+d}aYNNxs1%+#%Mpg`@oX|y;Rl0t^yYSHk&8h=!JvgZ^p)y?g}Tjj zJ5tR9JmNs8fCbZ`#P{7Ts-YQn9M@PuT3_(W4iZ)s{mcxzdBmHPi3sQw)C}#@yEDUn z)KbTGhz`#TCO8bfNr%6Oa!?@X?H!=CQ!*j^Wl`<)uX?Ljp!#)mm?Uj5b9fOSUp6uoePp(|4~Din>Q z7mUWyi{Zeh%`M1>wHJS3?ZtOl3+-l_@3`P4ktqeLoPsY+w`Zu;rr;~2;0jl^FfXZPbn$;{b9P}0sZ0KJfMd`vGK@}*>0m<%5ui^LtCK5?%8aw#iAJE zMb4@3yju@`K4!nh*9rIy2tFjM5xeCS)**VsR=YViXX35w?xxNCJ7E}N`2!`Ky_<(v zoNdb~cwaTWqmg~cZW-BIZ?~J`uVF!mV*>GxKpfkx+a{E&j^m+%5P0W6@M5z+T-3iX zwF=7+N9`BkKt*MUUZH1`JCE|6Q8`8ugLlg)UoS)KjwIb|za6urMqqf!d+XJ&(K;!y zezwh#$lr9WzE%l^8e*H{iQRW8X^i}JRHqCX@GoT8&BF&%elp;9%8c1#ud>v$88XyA z75vl<+|y7$DubJS*oX`k*i$<3B-#khLB*j$ZPY@fBCl<3h78#c?jt*5pIu*V#24xp zn*sf_w-qs)toGm~_2*6iGvl=xVolEEumOt)QpT!v2r&`4%d~xRM+2#avqUlxSeu?9 z3gqofd%F7EaPwJ)?2&x>6$FyOjX6c*7t{iR;OaLB0;gqKKMPZ8kBn9>rbLMto=AxR zk(EfNSDf;B_lOJR*O5opV+n&{&Bu8hb#E2t^hIAuBFEf8^rxUB8Cq z<2B#SJ!Dt0Ix>OYT`Dp<{4)}bbmgb?FNf@e>~z?3LO*ov8%!MGPK<{5MIc&IbESR~ zQmL5@58Kr(I%5L7$ugrEdqmECj-VcD77uuJiP>RgJ!|&B4$q&zEH)l-ZLBi2u|sO3 zsJm*9O$m4-Ox2QiNsx5vKSQE2BK41b@&~LFoGb6@KnkuAPQjX$?=Bs)zZ9yh<91~= z6*%M<;yA7o=>9nJFVn7=p88ZF{MH9=%uyRdAxMnoSl-TsT21F=-QE*y+5=S?oXSTH zH+rwAqEdTBvaxudr(|hFFTPhs^zgkhqTk*lBRaC>5xvD;=}pb|2D6OUpPxqDw)0*Y z(4V4Djx(Uhy}FO1bFFjqq;nHjsAKZm6blR_q&we9ipptX)QV z7VqVuyp)?zdcRL+>?vL;qEpDQ!~y*6U`;Ia9dyS7`VRb?0~UH=GoU|(5ol0!Q{Cwe z`z);XC57#lI(2gS2)(jGpu4{Gru~jO0}A>J)QP=0zOK7qA5x$06$ATYuul`G-=o^; zNRN-TbGCKj@COg4RI)cb*q$K@V+f8e2c%VX?e8sdH%-*t6SBA zpR2e(KaRbyAWWu(J@269v=63h^0JKlUHO%6x+6T%dO0NH{qNe1pp%#$zxyKksgig| z<1kyj4CQzd8}6|45v<8d;}M|<9p1Ma(w`NG14MiX0d~AokS$0|C*_@U0nj^F*>8Se zKWtqUfKLVBMiAgr1Ms&CfZn+PUi=6E(fZ0q7@PHV2(<{vFbf+_dxV=T@$o)UfB*T?KCkKkn3Qqie&GXGHq%?~7robNzv#V(b?ny=b%*_; z_gs94-ZN~FrUC@%J%Z#la05YuHE?RMf$A?%&*uWweQx;*5us4L1QbwMT-``50Jk*G zrh{7w>&_FXm;SAG3|qYP4Oq^i>RM{we%bArX#g>hP%)1QU{QB5tq%f~bMVHC-+;$1 z#0Mxg`E+<@Dd5UdNYp=kZ;zqZNLF5t8>9m2rlgHX+@C#eqj8X851XbXSYioM}z)smT_RY(08qE+KFjaIErXSg=mSV5u z-Kl8JAwalO;mU6QJ+H{hk*WmON>wsYwO_eg%xxb5P~ zZTFfU|Cil}O2BRRej}UFx6wQsCpQS?ChdfUQzk5!`{l5FQ1P5&2ulN4{mw_k{PunPMMrPFoAEl zaipSjrU!IiRK9X%lLCSHmMZqDjI~8xm9Z9A9&0PSDr0S>S0yA8^QyFqgje%!7v)fL zU~s#@mG#F%$b&}67RZCnOMK8^J%;yWiT-2J4H&l!fbo#l7vMCc;hCESW!5rKG4nu? zKwFF6vaAasD_3{d^TPw@)nZfD1yWYsDZ&U^Z84?YW=gxsaJcVZN*h3FfkvejG`JGA z^S}8j77WZUS|nOsFeQH7;C&<|uI(-{l&9a5FW>C^Bc319i@f5L|EYWwQ!w&3d5EJ$ z98&{OKbmSl?mUWcS$GuTyB3jw6yXS|i|MS$KowQ^0M}gj0q2o${4V-E{T=N}MRyn{m4*M1cQAHh-oWGFzV4sAcaQYX$ z<6qdGfTpJ~RIdX%?Kgi?*a623;V9HNWJOJ70???bj5#39ZaUuQ*;MGa>CfROKU47& zm*Ie>rBpo*h|_{B*=gBzKq6n;-Fa5c98xyW-BKqHh}&|MK8o9NB(tP9@PMU`f{y%_ z*9`77Ct0?SAj#~cSRqP;^3L5C@LQkKIxgFSKyPUHX0kcWJA~5(BYZsIvF~8Hgs(4 zqxKx>w>&7u{#Ycz+y>mK%hdzx)kq-I>ehOwP?-5R%IIQ^KzqzPZR>z}r(Fqwf;^eA z@{m~h6B7c>B3crvSoui@*~(usA}l^LP&3fnQkxD@l&iL$`+Q)JZkG_qA0{c+gJlYJ z9YPUkR^!z}0I^fR*3B`2m(&ONOlI{vhr~+Lwb6@NGku3I)a!o07wUE2f|W~9O?XY6 zZY6L+4g7tCET_8wjRzn`;{k~8#*9Zyh3|ND$O1Br$8R1IJKr}U&{DUnA1I|$>)@Oz zEW&FPka_<~uZbeUm5d6jk#1HuP|j*hDP)E|`8636TD->W6?L&Evj>JdGO!7aW)E%VW7B&c0AhjWF2$HhfyVlJqd=1- z$$_V^gD|@gFG?ZwQ^}~}V0bBm04cl#r^_kLE>oJ2=O&MsNXffTreIQCZU}g{HBcLRI zthGUGaadaqW5sbUfb5UC0g(nri72qiTk-}SmeZMsfNg5b0}OLxP#m=8kmk~UexQ6r zC>Hr+Ztm!ZBMT2J`QgYSgE{}O=6z?mK*A*}EoU=_;_{w6E;Z}#mk;aM)-g#`K-!7S zA6Rg7m-+F+K(+kxl2gAWsda$|0>$;*NKXm*#=-{((Si zRpqU+EJlpWf~sA0kdS+XX_a#w|BLBK`Vy>p9>k?}Mt@Z6rfuia<;0wpz>vW|UFn~qyeF7C1o+*TLg4cA$So*@# zfq;rUiYc5xX&efC;AvPC@Xxyjk|5#sT>|kAbu6fh>!HsE;vLe-&jjkLL?I1NJc_z1 z)OiuusGx^F2@CPgGl8O3U4gnc1gZj{YPz5rs`iF~_WD-mKvhKenSuX=P|*>6ZCzBQ z^!1*B3Tmh!9jgEC5~zTEqD(qGgp@43!6BsQy9U~*1%`BiuGuZn20~%dbS4cmU9qy> z)h$rPRbl711RhWsh7uDz-C^$S7s|aMncjm;cZFm+s7Ii&x+tV{?XxY=3_(QB^_>vf zDxkd(Lc8nPKofOSXv1#?D?3hSJPSYklkKSNUj*t_2vk)-{TKp8)do>V_6n3yk;n9% zE`eBxe8B*8aryzcDs@aZ>l}!42Dvx@6h9`Gx@k1GdIes_iNV<-rbH@Mi;8^e8* z!m*Vd+IY~`6k7E)I!LpqfNrrnP{#RAP4aWoCoW5$xDf0UwDe1ng+j-QB!w7FY|D;2 z=Ge01>5gsL@y9||&FKF9au~6QeWnCPLfFjxJn~n(-S~38BF5=Py z0?BI2F|lbkAQjoPm@LJ6bDH+CV-hlcN7CYvPUXOCDJS6xSG?nZ^9DV4P@oF}qCx6k zgj$6iXM5B03$kDXH|n^VF3qNGG$in(s(D1ulDFboOz8M11}4OuHgR_(ahn;VYF zktID1T{oc{CUmMBlF>mYsfLW6$xH4Fc(QR9qJk-uJ?Ge6p=`Ex8;uEsVU^YI$HmrtZWL_Y z^^}KLu=9>(+q(Mo(Sa9q)6OLm>296{u}%)ukkhv3Js&uz?w|;;b`kLB50~c@3@dbk z$N2U7#+blL*xC4yq!LbuL5ZtGBQPUJVVD;58M_3(ELszu9NRCC;S;H>-;d`oc*9E& zvKYJxSV)G>1~@hy6LkOafjD|(tyB%Ukv6V+BHPfNhu{ozGEq3uTPL7r@m?!^LLz23 zA_=^Z233mI7q{BSuC$3QKS{P# zPD7gy5@EP9M4pK!#N?H)Y+sDaQ6d<03DIH%<*Sq_-J~(Mgc7BbK0ri_PhPuAxhuE{xw*%!XBZdln>rwWl97B=}#Fo*QHD zlR-I>vD@a9_$ZH@5+7yDQV5WD3iiM{7+NIJ^OX1~-A?J)J6IfaDsQooQ3^1Q=rI^O z$WxIGImpwI4fzyPPRW3=5btvxFd|HK7&s2zF&tONW+|XTMr{4_7p@P!!Ii6g;Nc(*48m{-@#nH&l!ros1*-^Jbk) z+@DWLMD6A&$@224>@3;Fh2_5m!ws!Wk3a3owQ6R8HGz`K^YCf6or_7EE$GQDb=tZ> zPu21?8?;VMk@e90G?&!6U$=(Y{9{Ts*DYR`Z#)>VdjRykR3ZS6z1j5XiV!i2Fj}K24TB?dm~KR z3_;i#ia<8))@+0Yn*w#z8>R%fvSoHr2;UOIFjIm`I&rg@rCjh*dducOE%m+0^Lu>* zkK`m!;jf40Ss8g=%gz(ER!Wmii+|L$+ZHGj9)1Qw5ktO)zWF4^x@We+mxw&Wu})R& zOh`?Vkz3@9O9Z7fS-Chgjlgi}y)AIRN;Jd?p~Ph6#)lHa%njFFwj;jNS`b?6&D&x5 zwl@fELJ`QgeIy%!>dzX$bZWpEu0A!?5DpSTr~cw}U}s4EeYi7_q|fgR%vTGA0>_BW z--Xh5+69TSO>3&2Y}%QUr@9|KBHN}l->FqLM);b-$_-CTCx}PGr5&y4cWl&>Awov& zybxQ7joJ@T|FY2JL%L(5_QNxwMs0;Xfpz&?{C8($ZOV^2s#<2?T%et$YM+AK@HMXWoY7ZV;=HsMF&J*neScn@`qGX$v!6v%~#kGomor7doj zP|<6!-d_qA&}|zRj<&|=i5~>Ysc{Bvw4hDB8?D=i|F5v?0I#Z8!kkSY2`N%TOLER3 zD1??osvu27c{BmR0zM^3y`VI)(d|-11YCSd6BI#35cOgQ8!9z`^xiv!-g*Db?7jEg zB*K^P+njrL_n(<FH`I2v!10UEC=e*g(-RT;mzWz3hBF<*DwoZ`}3-fJ*q z3;b)}NYc3Z)K+EL?}$FX85T`gvOn`nwq;AoOqPJ!*{8vF#wVbuZ7G-4@#WIu4?`k4 zM)&HrfIVxikcJkqLK@l)ku_dVICzsrMzauLu{q0FdVMf_*TXPzG#ia|B!3{Iqp%%48{HPCS!V2{SCzri+bp2L40AoiGg+h@vpmxzO1 zIr&yxpcm36T(r7F=!HNEPOhy&diU{^vMPF|bVZyEdkEG*v6WojVP(VfYSZKyZH2hn z0Y~#{RcWO(dHkL*w^T_~9s4u>)-{f#JV->@pRo+$(BvZ^Yy8oa6{;i1k*w{&1+~)6 zM+2?2_eyD{eQ+TOZB6ef{0&|yvo7zL!;@vhADu`IFm9#{7F;vKu5A{0yb&0eW|F|~ z-9lgk$n!1+YQ(B8aT;FYoUatC{dMf25wat{l zCMg4j|6JdvObMJeC2&F*zIuxipaZG_!P)@-SsRpCCC-9Goq0K>g(|j6da0wc&*bXz z-d<{uSQ7w=*Tm|s5=TKjLXxwKY73gWcU9h|!=3_DH3p7)D#-|aki>q1h{smRq8Qdx zgP@%ZXs>)gL#~2wWa_Xu{-MbQ%rtNSh6 zFQ%-=s7esBp=-`6X`jzu3bfCkS8@Bq9xSA4p?+M&d$95rsJC&_<&!|-#>q&0?9yI{ zzw4ElGPqxdp>~_vImux0o|cYpdzZc%;{?=?fus6~m_ubqM<_YI1>(kM~DQHe4f zE2X!PiCkm2>5kxVO)13Jja!#W!uMW$Hm|2l^|ujrl|YFaIBxNPZf!Bv5-y^_b12HM7z_8A^I=hhV zGA!2;e5q7R;GAlS-%};=!-6O~nI9V6C{mi{R*e!LF)lx zNG#YB$#>`nW9-wa&KeoBYpjtz(X4Qw9$T)FF}w8|@s#}smmbh+{=;kX7Q44!ltV27 zjr#?o1qbbjerv=9tOkG@In16im_xt?41=)p@hU2V$>TO-(k=%zK}1%d#toTcxFPdX ztpt0T<|p=-Wq_uqAqS80R6m&__|6nTVv#@*tTjcj-W0(a!|sk-6anqc0~!|rqp`Q} zJm}E$}6HD(8Nl)HF3l{d) z6#jllHT_#07mZ=Jki+o7Y?*bn%?`}E*kR}co5X(KY_TzV=?O_@AbR#z5|9_ITehr= zXHh<(+%`K%nRnt%HI)D7rCiDXQE7XI72(hJI1SYg+3c&r%ElLE?M~`jAki|o(IMn> z!|p!N(M4X1jn;$9*#p$JY*_){rmvN=A6L5#0=_9pvMWcMoE7xAB)g*II-O+qkGL8j z`$DqaM`8BHH{e~@WmD`-bv>Lcx!th%7bNRXv5#W3on_mps>)g^wu*XpDz*aFTASb4 zy<)F*d;%1LR8-f6znaDS`Q>#Bl&bpv3r2Z^G54ksq+yfD)%UW<8W_ZRb@^}I|FE6tzg)qtX+?a!R<=Th z@z(DSjQdB!ycz6iTLDVqX}gwx8MtRFB)kf|74q4Nw%H1aO^>ur{IpK5WJl`* zDN(rWGR^LTJrQrG+4Up#uEnBbc$zVl?XK!NM5j-=E=$$W?ab;t3X=}m>|4dIq7v7M zC#l#vcG7Vq9f4Hcysx}YJWO}56VDWWvuCQsI`K@=Z}Ln5l)X1#Brw%HhgzUj*gi-? ztFXP+$tvvO>UL4p9r&~gyBCd@yf)j{=JDF_DlCbMRoJ(%@JGidoJ+Tx#GfM?;+5Hj zn!$HPwBt~>$h6HWES_*F;yUr+>sas5fA%SC!Fw8Iw&6W#h)wH6>m0y)nmWD(m@o%UoS{h$oL{t6%PvV+ycqb)y2+N4 zMn8GZ@-rYw0sOE|=4Z!h*)L(4*sWt5yRi6r;RXNM(5}2*Ob>jYQpawgDy^r*Y+L<5(k zceO2)p#}l~Gh+Jw6PSGeUVno*Trk5}WP8KQ;=A=xR>WXrQVRWNd%C#pRNuafevbSB zAIS0dwKJrQ_+#AS>w|4>r;febt`&sBmcyCf1Q9@q~0hX(x2uj*i1#M2l z0r{a?SSPihH#G>T;iK!tqC8HiuniSIX&Y)j)xdU$k+CqU0a&br8H<##b(_vbu|BqBcxqtqp65_+rSO+s2>)_0PLtK#y9n4R>V#iOcgV%(l<`uhd(Q9aH z+9&Ho4Ss}%NeZ~{KhkA-{}bpkq=4yL4r2XP!}=)0`uJP1PG>p|`$rZlUc>@0k?j3X zkR)r~Zw$#rUXp3L)_wLMwfrC10>6yn#IvEuGaK{hzO2&D`J}*mt+a@X(5)Q#5_#NuPq^o7;$ckt(z- z(v1?-v$|-jon6@)$jSK%)GixjQDmeb@UjNIqXGQh4f=^;b|>6U#hE8d<~hO45tBiK z7e(+*CDG^HlS8@rOa{y>i8S0nM0#5=xBAmBstAgm7q&qSpJ?V}r8}ic~HB|MDqBNo&g3@S8;G#6DZwM)k#~uzS4Lps< z=CT2g+UBFwYM~r8H_8T{mK;rs$kEL=0x#KDO=mx1Psf)9$X8Q!-6*3q{__y~BJ$DH zZm4!U*)7%c8>MHzhSxN_RtH9y;)pjiNpS#!`Y&O!=IFYSH3xq3aP8#KIR6bVG}Hr-$1Dcq zDey_;qA4)edI88^oEwt0Bwr|aG9wVGDBA^46E4p3rZ1ajNL4 zJ)jcjfd{f!J_c{(-Q3Uv6&{+~{)B>{P5f%fCcShnE`2eq|D6x(Jhe5flbRw(+OWlt zJhk0rI7iIFO}J8WV-MThsm^Iy^|l8~YUX?v@|*Ta>Qu#V7FJ_6OBca^c0#(FWlEpA zS=_L;Zqg5vh$ZWbCgC)}o3>0+B7k9|2LHLoH3J#4)$RuwT1dj3+XUD6APx#e)J=Px z!6SXDfXAyXJ%LZFE%?p75&yY2;y-Wk#(#G56(Ty7sW-A3eRQMfwB{Q{r!_+dA~pIU zlEd_ z+K0Wg^{Ilz67-U@g=2NSL3SHli(YgnbPsLFjk`t(MNwAMe+{x5=r;x#<%$Uf(b2nh z+0iIh-edq7dHzm_<8r&$cg;TNP?U))YfdDxgf_iZa@2bTY&`U>v zLI&+yD6mx+!9{x`0E?f@1TNX5B&?z79VuC4XAOOqCwncE{eH=gpPap;Cp*1EcJL2b zYR2_ML7TdLL63ULegGTavtNR$AEal#Z1b^6di={M@&5EXL$7}U4d%9yWnxv03o<0bIb>_i>=1~_Kl*nZ?E z<$aJ7@i!xTSxP5&38ie45flG;#H_tdba`EhHiygBgsDZ2(0jJYkm=z{l(}JwlsRyC z$i#o1Qg%WfQss|%@E$REJ@Ub0T^^3d{%pddwfy1Wk1j7>9ot4*wLywdF#wSM zF1lUx_uzNK^mp2Jqra;lo;(i~w@WqGLOwLUSdZ8^3=@Yu88%6Q6DBEe#ymCCHfxG4 zw~InUG&fC-=B7zc{-aaunU>^XHJ$(zQsaS!S^RzbGxfY-`x#+d;Xk*`vD-zLzqMWL zuF=9St^gh|%?{_5XT^qFS^)(FH%k2HM!5j&(e{!r4b*%C^+R4LZ+kRQT-$)+6~*=7 zu0>K=wZRnPT2qL-@+m}KP7G&@8zZn_UYO;?i>Ma5_D)?ki02Jr`%;>O64+!*iz7S4yxY7ZNR>=1+JE8)@wr{! z>dtrpyDH9`z~6ViUB-$Sw398W;@&7xk+z&U*3F~Qx5%X-qrsUtsK?L~+f`$BhPg1H zK-q<{a)BM%5h@PqQ+voaSkq{otX%P>?0 z@5zW-2cU2x%1|XE3UE9)FdPpK^u$IKzv8hW638?*;2SvJ=rq5nQ(wQG=tSzCzu6zC z$C$O6h~*tmkL(tO)gR}J(w7$lcZSgf+bu~=mh7MW0s!55uE{GBPUZw%INQeI(vvHcW|#VU)i$bQ(bnf<%z-`G)VmHiYs0M}Y4?nQzS&>K?IBZ^1TMK!i$cGb*!vNZ3XM zv&|9AHa+&gF&6I?vUBzZ$+C%Y)WWQ_g8PE{WU7wa zZ+Ftm_XWgM`vgBHgwNia%`~Qqk%4iYy*D)&GH7LZQ|Q?Tuo}~3pIFCBp2sa#_Z)=X z(NaHl(6+7Cl9L9B|Ll`C@$f#b#@e1i0(UUTxl%E`pM9Zv*1&;TFL)1^GX0VEPc+d_ zAF^vlG}))L+clz`{^gME;?qcx80YeqMvScDTi*41@W(qbJV=}U{SMpBtcX|liGAc1 zN)#TxaHlg_r-kWcUgG%xM8rOtN>6MbP2Cq}AED^jKDv4|&k_&JoO_9)z1@qd$;7WFH-%1ohOOePSP-<@Ea0o-)Ze zD3k3Y?AbdLa0ww9n;n1blO>;W6jx7`+Aq0rFb0y+f>A`N{l+O($CDlD0@<^FOe(IY zp0S%+Z3Uy1!FW7~f#oXqyj>07M==9kwiU|6K12e*XMNSr+3j#_Fq0o;vQ7+T#XN(u z&Xla|&O)jnaqLsDaE=!7{*B4}XDBlcN1)6bJeiRykeTf*6ndbo|BeGiX|uuwB!Rt! zZ+P8H_H0_-xMa&+UuqGGo~*6U(b{p@7vC~suI1pZ3RG!)JW|;M;?i1j8S75J6AdxD z7N8l@rJuE~*u5>4dO+-}FG2~N17cs*!2$VXU)4N-yve>V_KAJf9?|42XmdcU82o3S zcMrTL>#7&tlXcbYfONHicuyl{S-^x@S8;|WSyydzR*X}UFj?`ondDTaAFOs;0+5En z=GaPpE%9~@qv{d8JjQuYHy&eWs9A=e>B5g5YdL1Wr5`0gcGb5B#IE|;XJ4|8?b}i&abTm2`*UNZyu;J>h!5C$iiKQP838m5d-Of&9 zOC=wYZdc}zh+d*7MDJhJX`nI>Ni(l;NY<{>bxtX#o@#LD=B=DQ{{R?^9soEp)Fg?u{Qh(Bs=AI@8r`Qvfrh0B`|&R#B&wT5P2M&Pe}_u=?9Aq^H#?Ad&Qf z1Y@OZ;i_sI^3nWhhk?U_3Kiy|eBivj+`w@^0xVCT3LKW{lR7MgcwM044(BaIZx=UE z)Wr>F6Gu+EJ)**4+3>FJFmUCyn*`1>1TI$}=dJFhRtzA03l&Se)-KCe4q*@rP z`vj{)KCE3zc9H{a+aQtCP(eywn)Dr(+Qo0GT~Np_;iTf<=@jQ)N=0Khj(W>mt3TS# zD5XJ?w8=zpLSF&lKRaO)N_SH|KXcAYC0Mh5LB%M#foV)NRVR6Ho{`} z0hPg45%%AEvcaO(Ojs;!j*%9>Nm_c(3TvWHtKc-DpDga%L_!)dj!kiIcg*>o&7f^z z#alJ$U1gO?A4g$5w(1elv}s2InwAatrbmSFW=Es}HPH+20OJqfb-oHUP)+o0Lj#<3 zg>SH}dXz`Jlh|*&u%b}qmDpzu)j?jWX?k2GXQUc)M0Pg4PH|#~f1%r?IZvwBk&9~d z6%Q~zCk3#TDU#B)1n~|T4JIQDJv!s_Yo;gro4nEbWM$`C#IHx#1WxeAz$%`wIxT)d zn1RH`?-uYS#_v{oV&iw~kuc*I_DZ|w?0a?HYR(F?^14L-QQcXt&LJT_7PoTztJ0k= zmWsn-C$^`m=%ZrQMjrK8wW`8V@!L5^#cy|~q{g-8OKUmRRO6%KwL>&pb&*Hq*r7)` zTRqF<>S=OeRg-cJHn}>6a8WQ+J2 zlJJ>IJ55F;2xJUe&FZ4beO7YglR3AEgPmU`tYlcA#IIF?UrjvKG*cl}03!Vy_C4cB z3#6X7q;#@MJ0`Y!{SW}XW7GdXAq09w4o4If8^AfCMiy~Y3}7FUki)U(F>yG~yW1(M zx*ZdTV-6Z8nZQSn|y;53boIEwZt2Jnd^VgOff=sac7 zxo1rrv)Af4F(Qd39+PET%&!s6d#&aiLu|6|xE|HmnT}&o5K&VtJtpH8{_|k78TrU` zz?yawr={9>Of0eecujqF95BL+;CMrmj9_5!po0H2r~sSyTHz<#!9Rf%nFQY-3);b3 zRpN0OKZ_j~v*68p0~S$boL)&IXw~Cl{Z=|Itkga(L#T%pv3?CFWc>n-?E*$)>$eSZ zkzQf|W;W zR7)paZ9_4V<%8m6%ZFpw@seGEL62k4OAoiKU%gPqIs6&DL>iFZDck` zZ1Mn+7CFhm+0H4adV*Q1*(VKC10Y21n&mala42>d11hw}`Q{0;#yQ3yzHSgF=Ytqp z;|zyoa|N)hz&|}9Rf6B#*YKYectM@g(RoVm`&k%gu&4vXz0x-Hg$A=27IN3?IdGPFFKEOu#{+w5cKqQTYxbab83{ z^HIkU_IToPr?xs_m;xnkflP^8AV2Y>gP(ZPku6eN-}{};P7}*|f-;M1yYoqIe^|_2 z+5@`b?MEZi)gYXdN^`Ek#B2*Sz%V-EWZs73m7Fem034g%299SP`lNA_zZVjIvca4s z!iS9w%Sl#a4cHq7?A?5L#`Ba9teoLT!fyVXAXxyob=7=3%JV&bIwj8P2WW3L}M+b}o1IP1e zhGUs)XX%gj$B`#G5+3d_6}!kPBX3ki#l8IS%k@#xQnH9>Qbr*mXaXrG*r zmBV{NUp3snZn%Hha6jQz+?PUOjL4C7grPY?wNFlvD$hX{8>(M>spv{ee<3I4A?go<{B;PKR}dzWwPtc0kqO8JCdLzxgs^C(i@Y3P zQult=ITBIuw9G?tB^dv8LR$QZFhi9mB1xwM6Om+k;)zJ|>9C2&@gut3$H`6f2hTg% zR&_t_Fn+_r7XRJD$i~LTPgUbIU30lqpBv(6s|`h%jg>7<^Mu5@PtP0%cS)C%@l~+L zAMv;V+#A&h=K%2A7rk$b>yy56^GX_;jVL{6Gz^gAQ7jJsdMETiuknPs3>c$QJ^be>rTU#dLxbtjq~?UQljFntx+ z;&rE4d^4gVQ;3Yya;ft1*PYfDZY2f(a5B;M(DYEE_s_^Y<4cLAb-d^=&Hy7BheSK0 zG10(r8I+NBhpNBMh!u$cJloiPMi2Ngu^gv(x5;hk))^UDj-Sy@{z$A93!w1XhM`Qe z4PdZh#D7+df1Tmk27XGv0;#{SF=N6+=MLR^96n4;Im^Q(?Gt;;Nz_NjVYKAALFQRe zT{Up8CVl9Tepa|>fZr<rU`8etktZH* zna=WeobK|j@kHl#RSHBa_zqGdA$K18V zIi3AoGEP95;na$q94aL_RW}@l%bj_ma@TD;$7iT|=XA~;rIK+W1;f=n$E^Y*3jxM^ z0BKs*AwD(GE%M>)al;utCL_)sGf=+#c}oc6&CJS}IW~z$YHK>IS~@cS8x#QTjOIwL zQ+`_cfiqd&ah)!bI_0k5KRngJC2pS+Mol&Mob*Th51u#_vGkm=V}BKHe>U9WXqnt4 z$vZs^xAffy;bF@J;j#_8H^eGlad*Xkp0Lc-J!d+bC?$8-kCD@K*W3NSf9TXvs>pdU zZ{p62d2@9(THl&^uwZu`ES#z;oYx~a;;7C$5KWV{^0>X2<{261xuH(DVY`8P{k&LZZ-PS_XI?cNPsHzB;|v>RhT~*#3@|pz0$|vNOcyeI3R*PU zd~V8Mu0ixm8T{+`X&~7!V@MQ2x>{*O2Qe0%V_0;4;>i|2vE+S?&R#f=xm)uUl0#*!3&}qPRmiX_66bJy&!d%d_n54%7vScmUK#InG0f?C0-EI ztl$N`aARU+P-M%jy`lJkmtvaE{?a+5dR`E#>`96f8!KI3UgRv--!3AhK;Dcl2KE7g zC6Ow}zmHKQkO4ZLyuuThju>TO(Moseds|6e_8Vs(Rt=Ya>(q?%#_L9YXFvL3-iYpt zory5*<;Z>B6c&V?^6B~!uE`%9}>8Ej+O;TFwuh@QKO6CAP!h{&ywR4`C8FA`=QJ-mi06@`=qe2a0iMWf_Cy8q8kl;8K0GZYJm7xkzn zxRf_xmD5x|v&5OJ8sW{`!&V^sU#^FpX=a{uGgoQ)Al z5q~3l_J`58TStP4CJafgto5I0*o|V7?PsU*`rl3l_M3G1+qtt) z^d(hbY_eXs0fyYvt7VFniNTA25CIhQ$*(SwYr3@Fb+wEe|CN^z?TLmF_)0=bVj1L> zR#ldsxCNBG#I4Gjgt|La^peQOR~`MIDXRw%>5;q!f&##)$mKa(t+d4+=H~Fgi}0l@H9P7?0;{`c%os- zrO73!@#)A(+gLszLgvKO)o07KAvOvZOKp{zQLR;t8o`V0-;-o~j%xZPX%CezNqaD* zxqYqEpwKU%6e!IG>zvNv!TCx333+JW@Gi)Q zeJ#=3DOWOfb4}Rj_|+A}k~81}cqeB-^G&F5J{bKrT;oe_uA4*;@nKjyYi8B{E9&j3~fmg&t>}Oyf z7g$_83CSvRx1iIwt5U0#aSi>K_19bwk&$K|J@H60?}`~|bkRdjwbZ(yK`Jm9hmD5G z7*APm`GZ)CgIJ3hOY~MDq%7d8=0APN`9fJI{2v~5mPV@dtJGI3>2ar=AyzeiOpf!L zQY}I+`xo>zyov*tPMvgW>)r$1JN@g=I&0O4?hCB~(3*qsFUz-WJ^wg{e_6g_k0^>M zkAGRdE5rFm>cK{a{L>Ed%5&xiNDK5 zY%jy9e!H(ZsS{^>5QP&xcV2d~tTFy3SDYS}HBWzX)fu6_x=Pzg>&4M9^9jmea97_r z-S3(+z{25H*PP1HtK{V;^wQO*3b_gTp6kvNSdpe^>yTb~-RYq&U6sam=&Ei~(9O_q z-*6)1_9H8`1z@hyGj2G|XaTseTiGf)xu|=eRblcYZk8&4P0ZDzx^Y1_vmo_H?0<}L ztLXbIw>+r^%FzfpitBO8-Q*vk+qz3v$4j=*=G88L2sU8JBJsoEN(Mub!gmKLMT zEa+Ckr7Vmxlu-&-cI#Nl*yKF;JBD%5E?#pJ6V1+t$@zImMQa+KRqAB%E-wSLqK zqCtEa5pSfvHyHB-gJxii@c^_xlRe1UpD65h#;4}r7j}oKizdrK$wKGE8nVf@8>Lso zy0%KfPM^n17uO5MMZ3>>}N?_XWQ-55bPKJ;}{v@_d{(W^?k|53ji?EW2M60Ki!(=u)Yd`vZ}jGKb? zIHQbvPo%X&?@e|;ia2y#>6H!L2Jv(W@wV&SAb+{8`(JaKYn06$s^E=KvBanwoM0O# zaHw@g>1j5EwLPie6wGkkXRUNS$8q0K)o$pbePE#8prT8o%&VAvMz8z_zL2###(nMenfP zLV8RE*HLeI!N&+&({!8L!PW-`V2qb9>J1EXr}o|9y6QJi{^+G5{A&F`MR&Zvbw#(L z6~8{fXvZ#j8U3je7+q`VEH!ih6`@hE}Y0YPyxxWe?NuR&gT(l4n$L>#8aR^zM0XdD{Je8%MLNqa)X^>b~Z$ zR@JR$;WNU{)!d2JT>@08fF9K&P%FF=+W8po2d#~!P1CURs;>WtM&A{?sWguy6*i}d`Z0H zrZ%l>-Wsf44>efa(r!&RO({#tYE`{ZQ!7{>-Lzqd1d6v~eYZE(1AeZLai^8ZTHj=) z#$S{UM=e9`Muuv2L(jb7RM0$-^!GqLrAs$(XW>)$9~xjt9jW&>aOYTW>T&3;__w^F z+f)rV_)mH83$mL)s*wkp1s=@L_2EYDIrX_Gy)M!OgL#=7dQAzpn%>aowxYU26L;8% z&&ELgEu`Q@jbH=?cfOCH4h2J|BN$0R!&wNLQt-~l2&Pa#TGJOn0jYG~ND2l~@G=FL zDY!wwz%LOzPeD090+)gZzDLmU`w<9t{ET291wa0d;8zM(El04Pf;ZP77*7G23cd>z z9HHPc1q1#;@GJ#~DL6qv$;}ALQqXN10v`q0I}vQ8;M5)j=P4L*z$!4p_X|UYK^+P{ zYmHzb1(n+&NT=ZU_6U|!@ZLiRrc*!$o39!L4h0z$%%R{j3hYM_RG^^vV+dG(O;Q^z zz3_FnM)CFBO|wF7l;V%+-TmAW_&{j*{ca*OS(9dNVoZn5JRA3o(OsIkOQNpgr|-_k z-W~7Otxi#xT9T19kWzIO6S+;Vls4%9@kBF{f{GsM*9`T`xv5t))Lk$2dO_+}K?>JZ z(lEkyxFO;abZH72K8c_y1s%F0@G9%L=5Bpe8Y><1+_d5)6^%|Fu{(5Uu~nPydc^&1 zNyxphIpj_N3cL`I8#gia3)b}SUQ9B z&erb3>g`Z+*yLT?xc4Q@KrSh)cStZ&ucZ5i;>Vz_zHhpd`2*|bUMnizNJ)mlG<-Nl zdSD!LloscS8m)JBf!5RyxHT0nQ8wx~MqhjY*32s1x~*UrAK+|P_ zL%U;Vw_D5mYK5VOi{ME^2dGhMLv3+8=;-r7YEke3C$x9xv@8@6knS7=!sWKAKxcCx zEi&&EA0>OruGOc4VqE!3@;6ORnHJfiwG+XiZVprcnC_eI}=e|BlK1+uE<_Xukp^lGjlG$ou6 zMHxa*c6KY^NKr2IY`v(n>r2}gERKmrQg3k#!#fm*AOG~Ig{lQ{;`Vxf+8SoXZp_`>Jm%fuFnQ<<62FlA zIE*Akc&m$M!!Wa1vQ4^1Pj`Fl(STsM+LFeufEct{XiS)3^afvSP&I7|qe2me3R${v zP2>!6Q)!Y?t7t(n%T<8_X>x3KL0|pe=!-N1{3zeIcQGGHdQGF)*g#jI8EpB2G8h#t z7}fzPYP4?Tb6Z;tf^_kf#bTe^tXON17j5t|5ltLhMrZrnvU)^Txfor)lN(z!JcVy! zZ_=i$sGv>D0(%594(_V0=*aZjf|`*cS{i=p2|o!&XHe8==&bA#Zq+u|x`8Td+n`Pr z%{;g({rTEp#1@6#i=If2`nu8+tM+9e?OQ>?_k9rO^&qeD|y4Xb5&n>CG z?i(;E*p#~3Cty;*lydZAtIHPCg`alcikeNBTl%t5MTv}2RTi&vSr1=R%FifRO@ZNK zrr~2+Za!8EAAg1MF(Sx^=>CaRGhRF7FM?h|L8WI9RHtCya|n)5P-F;#L<-15=t~@d zAclf66ueErWD253B8aD;>gxzHDOf%Z!H6{!4x5PJB?^A|AA&zAATOh@6nu=n!W5LH zU;+j2QV=r>!EF?f1JXByf~P4MPQf_}E>l1rN#7I-#!&D+1;su=P>O=lpD>&B$g6?0 zxaj+af`X>tNkL_n}f_ zP}yka_fXQh6vTAPFVhCev`!~I<2ERjjixcS(4c;U2R_+-k}o=|fH8^tKjXfqA{Oe{ z!ERq{QhR=|YbT5Y0pBn1ZTZIHNoTztnXG>q3^!TfLflKND1Vb@-Qt!i%fBnpB3X2i z(uL6YaDoi|!}lYzbXNUX+{ZQwKDHm9b7P#3fHgL({i?CB7~KGDppeSwM~ArA zRGWMlr4+dt{duTct}@XJGRmxha}d9iGI)Cz_gPz~4s$0epDCK2I%AYui6zGTBW1Xo zc*i8n@I5e{=RzDAz9Js8Q~js9$!Y z+}7+4m0K#M1Uea(Z4enKH=n$xiJh0|r-tY!`4K&hS$=**+wBL@C-!@YQc6Q~`#uj* zd7qnTwjsJIKcYGC9R!FL^+@_|4v5aq@erkyAWCLqc|-;!mG`-cUNA(@=0~*2xe(Dn z@xJ4pj#_#iL|2~=5w$6$k+d};14PYq)>E_=_CvmoiB8!lojJ>J%#5a>vBdyesY!=>Nut3h(o%5Ay61+J7CRL$FEetI^_0qBKU8$7N$g{sdNJ;wS zy+0OM&dg`T?&L zT8qh18dIW;@H!}>yw6SUypTJSFS%vy^C$Ou2aucGfyq%CL#{Yp2g%9%T;xer$SG+)6V~}#@OgR*N!&II#-^a z7LH1yqjX^Ng$a>#R$&cdv_ucN; zEW?Shi~x#AJm7=;65p?9EQ=_l)l`V{qvZH5kYhMr<_AxOpx-VN8LLZ7LpIzPK%%V= zWP2Mg^UJnYeckmI!e~HP!5< ze4!FCd$<+Uz`5=d7Isn-%ISPjUc}tuRw!tk4Rx1$lcV&~c@Xe6y=xxu;tF$n%T;9> z^O9TPaUXF8CdcY^p8_vU@b1VL?-xv8ZiUDE(Y{CFuc_cQ7Ca|>JgI{@MmU}x`ng;0 E|JOIhMF0Q* diff --git a/ivy/.doctrees/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.doctree b/ivy/.doctrees/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.doctree index 431750752d97e8574b16b00b9b08eaaf224f45f5..2acc22aba7c3b1c3e8db882d5c0e5442e453a671 100644 GIT binary patch delta 66 zcmZ25k-cRiJ4*xWRJM&QTRa&>zO&T^q`8GZ~Je*?a#Qf0sv;EBQ5{{ diff --git a/ivy/.doctrees/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.doctree b/ivy/.doctrees/docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.doctree index 12598a9b31cbd79eb7e57e6fd6a53a603d490825..bc0fb0de1c3ee29a9aa79bb15b5d2bd1352e35f2 100644 GIT binary patch delta 74 zcmcb%khxP delta 179 zcmeBJ$b4-fGfM;O)YBVTHWV^8P2O4F7M3ln*i9UPGBGeRfWX$>Y@hy5zhBJ8HvPXD2N&m52B^eze=cT)tF7M3ln*2fP*%vxFHD?%tee$|BZED5 zN`_bu7WwT!`3ohSQyCZ-89-q2Mq`n!o7vv{XNL++c06IU^#=Qe|D00=7l4&8Oc!M0 L(B687< diff --git a/ivy/.doctrees/docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.doctree b/ivy/.doctrees/docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.doctree index 8b6e62241c1805ee6c2670f769bcfb9c4888d489..96117036a5834daaa918385a85187a8719b464e0 100644 GIT binary patch delta 24748 zcma)k2Ygk<@;|%xoC6^V1nDIW2#|!5NRuKEK%@!*q?aTlB)KGzgce8w3B8l#2Ih$s zcs4`@eo7Ps;b9knSg<@1uq&wW5Fd)df6BQ{^W?9e51Vt&&g^_=XJ>Y2cklJeW+y6} z6|Yb$bcJJqGM-=PP-oP8F!eLX6!_qbV`1f(&m6BR*planf^$zhYJ&5eV{xPLlWWv) zUU1+)6X>st@|UY$QSZub=NKUI;yC%DGmq)9Yn4>G? zj!=zn63=#0Z%G?Df2c0_3UWVEF?!Qv*s{|xRDI#Y;H)sX>}7y&h`~)C24}qtF7I&k z(oLqg5?1!m4W_VM#CJ{;)l0|8>-OH)o5z?F^x!G3lD(bPKq&j(5u?X(C4Bnt_l}M_ zbqbV(s!@926px7U_nL!skn)SkX(G)oUwoxCR{Y8c8`)o>l=>~W1ni{G13FR|F zc|<6mnF1Z(GVanRY$AMi6OH(PmIili@Jaonv|c}bTEX@!?`*;ME>&Frjp2q`|=r1xHRj8+G|q?JPYrkAvG zDrq)eeJG^(=vGfjk~u?N^3q-u+8bWli#BZ#?7dEgP8NsnYzD59iE)22@`oqs@w&q_ z*Qn<^>6mG*lIP3e=C6*1y6rSq^7*bhd$KEee^Z??*_AN4d&n{xRZlDYXVf(OXBj;E znJ3K zwg|_hPaHJ^%87^v@AhSmQLz7}V>(V&9~}@z#rXj()ozG0jZXY>duRP5=`313R(ZrU znk#sqmJ#BblZud`UQMHs9z5MuHfNYlnhr-ts!*LW9TFecL)0{GS!YdW+$i_<1S8hn zaxKJ-bcB2GblCp79Se%Pqu>;n_yIfjuoUZ)Ndh@ww(#k-nWS>>tZm31{vMC4FfIj z<^pr1{*o)A0{$Ch6jH^b+dHefsJU=RI^+mK@byA;6#N!!JP0xM(P-jsGwQgC%NlDl ziH*igg51xI;SgWf2vgw@c^h{2o|%!lc@kSobW(L%3qq|SJ!uW;S!)SNq%}2wI1JN$ zg?dDiZ7Qg8f2|1z(pp0}RnO?A(~?+aDqR@N5C*x-fXu~LWi~OZ4BID_sntXm3a3of zL?yA>P(U&v6F#nQ+)Hp#H(Do=3F*gdy*#wkTnX13`RZkl=miTjCiR9W27{ejF|Uba z?^mmsI;faENpMsdjZ_kpf!SAIw1NF7z`hsqYt;f1a#wuYaJ2`Lni#!xon*EIl!hz; z3xc!<~B@go$pkfEWwCvz`jK|^C?vJ8#HWF8uNL^5~sRC!75b$@Z@Uz?J7apN3N@I%YK_@XLoysGGh68UZ2B!i zzthwHvu%x-ztXGja8Eee$cv&3l!p8azO4#32I;r?Ek2EiFd7r!vNw>zijThm8c4$?lQTAwyN#TCLg8HF<3ikufQIP#m-7kf^;hvQ0x}iRH z1CmiU#2{IW9;#=iuo_i{kf#cHo`;;Y=td^w?4Hb+lo~bW!uj_4ZZ9n2Nv;RWDsn5A z+UxFWo9}nFJd}W7$3Swlk%pBScH0yW>@DUYsNK;Q@i9S+1tI>ojrfd+{4ut6T=!HS zk$rt~BSeg3g!ovB45FJU;vE#6kHh}h6W&q(A*cgqPL)a{EAQ2085RpXM!Ijgd zCca`!SRf{Lp3l%NfrA!BOQ3<=U}yew7-i*jLM4=ZxU- z!J&G$S36G#i~X#fKgDXB1IKC~MK~%DZMeH=AbnR63Yxu5kr+JX7lJ4(D96sLp@ITEHFuafL%3@Pl z^H`AP2c(KCyDL?qd;-KL7(MmK)auk8hH6JTQhRKwSX4UFQHah=<>^V9kk3u6&YEm; zvL+;F5GS87o9nd;D#xbZp&<3?nKw&|k z-m*a*w?Sd_AyB8Q1r>>)kd8nxc?$^Yj|Tc-~c1iZAmr* zg0;_vHSHNQN`*klAaQzXpFl(Y1Z^J#4m4I%YuH)p*}q`hy2pGL3Wtyv7-ajs9%Z8j8Ad%)$vMn44}c*K|t6$^sb1GWz_GU6zIe6Sfu z(rVOjCCqK4jzIb_W3)aZgooUOuE-tHdM8f(%T%;3pXRz88?84_gQQnfqPosPz^G3g zjRUSBAD-a5;&(D@4aAvy1IQgM6Ef_T_(ZgYu$inZaSDy#ox5~BH`Hj< zSkO!;4s|ruSn?#k+f4QhcMzXpWRAq6|4h=S2laT4EwnusgcUo zaYldjwfE~Y`*lrx9WdTVz)HM!bI(d*P|5FzK&R@cK=oGT{_)021*<2bY5Y{Gqf{-( zortTETIo>t7o!C{IuREzVd*#zSDo=&?McRP`o>;l-XvqQj!S1(i0{hs9MSI1jKy}0 zbT+}aW+LV=m@-Q>bblo&UYiLCrA7yJ%tt-@s47_*7A?2lrfTXjxSrbH9+noVn!!%r zRFLaZVb4an>A2+ONQcCOx~H)Qzr)$7#!d)KG6w4V z)8X#H6f3umAe)`NQKMi(8N!6}h&$W2F!#;3%y^p{3W%V-HKzkp}Y&dUB@3;_*;6&j@!#3}~*?GR0kmWKy;v$ZpU;^GyJ?5Qho!U`JJyNsdY{ z&E#-g;N`G3lifNpDEsG~!M+SKCEb9+&=h8SCZ`*A3WJBe44!r~kd%WT2TnO414=ny zK~W$9ew=G$(-Q@`KEx+R_sW!Y^yl-8B51$ZR>NnahR!&nyrSPS%xi_94(Zy zIxSGnEorm-`y_3a4~T~a1o9^kSVU&Ef+nkR7KMMKggRxGi)QpV zeyX~euYq%&J#^j>!LXot;kj8dng4v2vfg|?+omIMiDX7~mY zP_EL*V((#PamVN^?3kV^tC}HW)6#VC4G7s_^wDjyxF3)qLBN9g;SD&v!APek0`aOF z1kLC$=e~C%x`ejqLow90&g2Q5PRd+Usq;my#Uj@NlBSVje!uhvUYd1DpjbDSITZ|S+Etzn;E9p!9OjpRRhLwl57lr0&{SqmHcw@Cdn!90GP3j=Qu&o^nzQKBQU{;ha~Az&Ht$lYS0M5cqm}EC zZne-&;h*ur{!;O@z?@Cf0;QpByAk1f$Ij+i0j72N z120$lAtRg_ppJNEFzYcR2QEH^78voQEc(Ni-ZO)-6T! z;-qG}Xts>;cC&dqqBk)Q8%A+y(rg~$$c2aamf0K{ftU_M?C(0y;lbBQ zsPCLpjUt3t6oE`g5%I@qlJ}@RGsv$IpXzq+e&ysB-!s#f_QzqKPaFg6ZHDR zBtf5;BjNaz068w?pLl?98o-~LavkM!ypsxjX%2gTWK7;43j$XT)(gfddLr+?8Fh^z zZ0v0I{)qyW7o+`VvxB~KwuFG#90>vKa_j-Z>-q2&j$W(&2(?1p%^zahxi8P#+PhRRG^km+Kn9cG~!;t#*&TME7-BVKAQc1^IW(8Z$W>t|8J4YD_Bsk z7+>hFx$O8=JVd@~e5MEHinou)+P1eJkSpGP@@vLF^rT!qOE3;{-!NipjmBEIoBKWF zzHT&toY#%EI!`Lh<_dZ=vLnC0E|>g1Zl4nwz2z0`4te_!zg43l;Z0+dKEMq0{#*_Q zZ%CE>(BUoI%Q&4YabQ1`9hW#jyvAL{;{iVj*##l{L&z?`xwnnmRUjmu#8E{%VzFaF1%wjRBhV4lRBL#!DWCg#v=NpM&@zQvD>DggIvhNFqcqQzheXR**uOr z=Y&qdJV-E^MZWjykOgmxgM@Bq7k=uQQ1hH2#59Ueix#wf!TNr$XV$WGS2itEh zF9Q0_m2f;^uBZm1^jUkecN`0&Q|DHv7K#DLf~MQZg7-8F=gM}>62Y=qu&nW5;mukb zi;znILVC_CJ~Ef{iaUh-AtB%GAx}uvF>Zsf$$5Jn$*X94{S~|U*M$CGLVwCbUrqC+ zYw`RCq99#jLAvY*W6v3T_$B(EJLj^OM>Qt2(}&>quTg`0zOrpg&0`H>L93Of^CXMi z9JYUjt907*X*`b|del6(0wr|WDxhT)(vk)h(&84Lx)b8RG(uHhFNq182kh^#4iV?hwN!MhiX zIC>(8FwgE*4&K{jz;N(ho5#^?Rh|Uz&hsUB$IZ7L4F~TBe=zdYPzd?a2-CyobKo63 zpAnCnPm-#UaPdbY(QT}>h#NSc)3Q2YzC_Kq`F1-THH++K7W+0+x%86J0O#}bp{lNG z2)i!hHqHa{IZCSg!2A#P*nP;2P7v9Oy$u`MGM}K~WM%Jvj2XsD$WT(uWaq ztHS;&v7ex8FObNNZ;A6&f6fh%^JV6&%Sk78M%xF`CR=suk&yOG7JF3Zo(qg7$7jz4 zI{HR%o(qgz;GPSNqQ7`9FlvF!1)BVdAt`f#B(u}-vup3|rLM(6b>Q{iP`~*LWLiL9 z>}kQm1u`v|aotGKn-=gQaNPnqkhlt~Q`moO0WbG<$ZHJ$Z~tyg(ubw;fdw4lk8>S$ z0FM5FcKOKyIgfZ?fgGM&1vxj2srrhL{KO;xa_80r)abrS*h3F+xk~6}KD%#nH!4Pxgq$tdfmnqX;H!8Cs?&;$*9>7_^ zK|cwl#h|~K6v#n;3^H;qhFER34qiywk)WTlfP?-jZKmsqxEV)>;p*ILHH3&m+EB?P zsU+gmM403-+fya9;M?JV!+cneTPPtOw}q%4hxj6F2tz!ookD!&DASBUcV(F&P;B9j zF)U;s3=1WSJ+n}v*d9?81^C?pi~{_Dh2n_EEaU*ch*-{9cib5w zg;R7t<>m6(LiR?;gjSY*OeCHmGg?snf;@3$dCkiNQ@^BR5=G~;qZk91Yn!qDOgO+J z4+=_HkoN*u7HD=Q@jQu7-8vuFC|#g^keNmw*u_5^g!|9k_`}v1hS_JWyqWkg>A26z6r7QOg==XGxJ%$SdgnP$(Oa+@_bpKF3o4Jw=v(X zR|#;oP6BXfBOxg^Ghe0%k0K%MuRop-+w*YdC-i$+8F~zApN_!!lhfi1$>}tKew`q6 zCZWiaU_r{sgg*7nMf60jeP%wp_OgZS+VSWz0c6)+w2)oy;)UYc^&)ZYH}h=+W7j^q zp_!?h;wRd=P!CyD zjoH}5w7rVNB~8pBI(d;S3TN1jPZ#oR-^T47URzPsNU%~QSS=DP7Zzo=mVm{7Qiz`t z;>U&f`TtMicZB$)5Wg+NANvy5_Y)hH@7dX{zlggqWRW=foB4K!QH)duY>%*=LM^pe z`V7v6n@8ZgNc0AKBJhktLpU8_#_5KOWjM5sG&|tQ3!Gi5lj0j8IPB!0jIxQEOMh|L z$z3d)s6ASnc}lIPrsasfUcDHay@yfz#yG1!Y-(eUz!?jF<2y@j$&cOoHhxQj*eyVfcFQ2-+bE%hPqP$ry^G`=8#gd zm_y0~q#O<@6AJLJ2jH9bW=!yX1Xx1Kip3mKc2BYrD%W-}2P!?SK=vt@dn-*YkbTO$ z0vXhEkQYXc<%?xuXvCSPV8iXUPg`5Sv!AsP8IR*_JCe{~--)|LcraK$j8fv<_2~i` z>=O!ju-k2!IM|UKU7BKYSq#2fz&V)L3wXRAV+M47pfmbxq^CuoFFn-jVm7krWfAxt zvcyBt7lgq#!r-c#fh+=jITUb=KtU)*U_owhEqvY8TuV>n23Mg-I1OA5r@EQ1!&AL% z=xqwwonwLS9JdAI?=W%YQz*!L7c%mpg>K~H&FzNCnROuih6*_W?C8PJy_OY-GdAPD;S@&;ojJrasm*Z?NkmKTsS*Tn_m7v^C9 z;~q;^fjIJ)3#HFrDzy8Y_gGGgY#)hi?~81oS0@`SqD~dc^!yz>ib8YDmkRAB*!2W} zN^s9dtRinK(U98Dd;lgTp#KR;Fr$K+(MK7l%ON4bY^s|TNscQ&!HiUK!iUb0_*eZT z!JL9s8FS+z7C~7MpJMx*ECS3vCwMX$w%x*F-j~75GfBt$GQM9c=M6BQbm)vC+BymH z{Q}eOHXp&MB7=HlwyNp2&Ir`RWQZ7IHimJ7&9!R9U#qloSJ{Ei%EQ3j&28vw0py%> zbO>JI>$BJ+K8e~9kGPBeVvo41h&N?$pwgyHWzaBlkixSo$l1QT^fGK7ZXQ?f$}9GU zFMG9Ih03D4OO+$ci|SjdW8Yo+vPkx2&Ve}+@AcGJ!V~r1i`c8xS;AfopUA7VSR!8S zcTza-vgmU~GLi2p72}u4{2pI(0&j%89wM*Np`J@LXXrF(BY6q8F<0u~6SYwyZRq4B zGQU3uo5q+E^|mDt|COVQ5|Sr`Wa|>R_PwKn-fz?3Ghe7V2XXhJzd9++ye%|mgy!uf zK39}3*o63!Z^NM2d_~Dv%1WrQlm)zPDJ!AIQn{iOu~f8B19B&07(p7oq0~cYx(dzR zLW55P>Ry|qtA~VcDCyZk;uMlXA;BjiS!a_tnFKZW;AEU{?G%cKg<`KzJiL@|Bb%8c=+&zj<;nTw2VD)k4@l!(L;p zpMh(vMfBWFzg)xt@jwv=#P?}za6sHqjDNiky;9B4;3~3t35YKhaX{RhYHra_6jLaK z32Ej()T5P`)68&1TUqINs{U9p9}~dG)#>K#`e3oli9Sp>7wQj+$@jK9hz;8-e!dosfAnV*6?p-*L)ZS*(PRujt78t_ww*(kgy59M1z|FqG_C?nQs zCvS;^b1C#WYDPiaSgTebag>EtB|#2%g@hV>$tifh_tT@rvihq9k$E`!c~{XaLCR1k z4s%ZMHm$8E!L}@Pw{dxF3SUh(pMr}119+g-5``y2^KWiR-v?B0Cy5`0u-&x7)pvDIKf z%i7XqvaBsfiD?SBNkn~M8Cy*?>Iy`4AuXvZf0?N3xn-m-yF`Y}h~J1qzo-f3DoaonoF5`%goIzJmSaK#`3E<}Gf?=JFhwl) z!^D@IUfO75+9jBI8U6aNbo-TgsQ0<{b0a(JCkf4y8*3g6l+z7!V! zVHRl7fG?_tC4-k8!xPjC-p!7X>5xP^YWe_%7`p4i1bfvun4h{lC2QAa%P-w}M(X-EZ4 zi`ScS6!5_nY++bXZ#=(3{8Oa}McVj3)CR7*j*2>}F*C|RBRTcRgGf&MB_E4U|Lx`S zp>X-iU#V_z!h(mM`QQrAhRJmSNL*>d1WWIRNibY~5c`YndST-+ud)^68@z35zVC!WQ1DJz z#mn#kLflt~N4Sao0=G@g_JVD*6P~e(JeE2nDn*`TCWqkQ4)bop$2P^+oQm8P3wD|> z;U`x10gtjd4a>Kjjz4MpvWHf&4Pilg-oHxx^9!rQKR+ju{!6q}&CsE%N)N4qvgW!G z?nbbO{sd{sLw_n@KN1#Sd%%(jxt$r4L)jB%ghnomgKs+h&N%QLj|(ga@Ix@^Ni&aL zk_p|9{oyll8MDj$7c6?#MisT1P^l=$-G^SEPygJxTA=k^Ezo+c<{lif`hSfNx~_zL zXnfdw_`Xx}YQFC@V>R2sbm5Y{+C4ym1{e`;r(koS_!9*Q&zSx7^3@!AkS&dOEC^Q= zTzLjF=TWQSd|TZ`t@g#mSDdczv0?2NSi5~-y<)?9&4%?a5$M$aghdyWkPpFPJ_-6; zY#6UN>F)*7*Q-I*$GegY3A_BB7flZ$o0t&oCPblpwiqK&*$cKSL)HWh3xc*A);x#H zFnpped(saYp$QtT3JO#J6vf3F# zTSSM{H1L^;y#qW4Z#&X0u3X|YOlLC}U9g6F?N1PG4&>E3;|T-z`Ds<=!KgYzy#wgl zumQr@8HOD&chD1Ij9X)OA19U?l}OgdEa9w=F5#@tab_j!kT=)Z>k!@~D1OO&56^p$ zHX-RJyk7jt8e#C}8aD$wU!xv{+J`Zv@rQ_Yu4Ch%M?K3cC!XgyY`%tx|HQ*)hg$X4 zVjIn!!Ic|dHbaz(0Q!=BK3b23|(w)Cy-2{B*=@-X%W|mt2>zUYh@k zERdLnI_+3M9Ng{80&4Yv^bo z!@OS~TMOH-nr$02cOJni^X(l<26zaLy=lH%>oC4Y=_{d1>8#3tx6QT+7xwYTF~$1r zS}1$RjMnGY!WoBd4fwH6puM0)60TJr?l5$7O5gq_wUM~PJ7yE%Q6DD0V|K&2+4<9E zeK>bOHOBV`-!Xf-KW{R1EL~3t^Q+;@VDkwx4ikL73@)57+qoIEJ!wv&TSPwmpFU~E z%f}ZbF3D$-d1Vw<0;G!WI^s{W_V?XDsz;=x#yC1&3iE>pkRH~ zGKl=p?5RuFf%?_#1DoD6Kh{guZEbIbt0hqSkr@-T1Ld^S5Cv43SMqhKX;e-=e&lq) z<@e3Vzy(ybc}Bnn6HjlnXy|C?#OqLft@>^OGCnZdtDv{27D|dgjnWP3oi@Aqblh=~ z>J5?Vv@O-AH_SNbciOB8?|x|hL%*^PHn*`_;TdTb@LR8dNB<(=VG%G3_J&vy(Bxw? zTm5c#2^~o*y>4z)xZbs41=z3-ucPd1UBTl#C_MbJyz`0KTj^HoA!xMK1D^c1864!b zzo_+aw5inx2lVA{QDJodsndGVaN{vn99M@iXE1{k3K!4d?;wP(=k5(kSnpAGGoo$f zR&-xgU7YZR*;+5KW!vVJZLXheIX<$5!w+BJ4>3Js3;2|ufH{9BpxEffuW(GM z58&|E=5YO?E#-S&DbL$dc8o1%G^lYCI{Tp0q{1;uZC{pQvy8iQ4}=Op4cp zN3NRtwXp%iLrb?R-~3xi6Q^1e;Fk+#4|w2$`B+fL4IYEW`-5MjtuDD}2I;sBYy`Uf z2AWgAI+}++1Ke)R+9A5m<+=0I)GUX@C z)@C3ndcbB$Tm#3F8Ie3Y)t%JCp_v57sor9#SKCvsJzV=3w;lYdl?WoXAkK~Lq@ z-CAh5;cpB|`fJx^v#|<#%2xxIf5B^%H~(YS)=%3Scv3V_>D53S{Cvf{A46s7&$#{i zD2oss{H9k8J6I668XopjL-(s@2F7CUwom*7e)yIG!?rF~kIIPunspU!FUMUo$7*Y% z^poC*{nT^+uLwxr*Z@DA!To$J$?XQW-010`>wc15^ONkQ-!N2m+sK1cci!l0QP*xM zTIDmpQ-qrer~km2&~#g>$s|<|mAUm-voD|{JgLWTgtDJ;506Tct-veWSZ>m-wM6{j zF`g}Btc03H71-gMS-y4wTRPoega3ovSZkx+;3sb4##?s%_sW{4^!|P$BHc<@3Li}=vO`iV8 zO}aqKJ_{*3EtT!&>s__UlyU?v4zIibG+3-76v_9 zaE*u>?UHM>kLcL3V~uEUbUkRpIqQYykKYH!z$L3b58cvP)8r2XFmD^$0*?h}UyDij8Qfe+-53?q!`672N z%dM7Ho(ji))7hKZ_Oop{%e- z5dpp0S_{>UKcl$rp>m@*a%&X7wX@nQ9aRc1e~q(+xY>?cK0dN-sRW)@rR?J4p)Aho z3plemg}=XcGuDdG;rMHFjEKx4VCTim9l zw=xdENo|j<@o2F5ovhyQ`3Ja}cdm)$c{LK(1aEY*M(AQ&@O64JYTUZ@44MFl-^?t{j{IZdAAh05+nLRg}*0xwyQN-e{4(kfk^g+==9m% zR-9{8?Ya=#-2yzO!^*9)rM&8u@`Rt1Z~ICKv+l6==zucOtX1Y4+uy#WkgQqPk=k`& zL@z4=F7&ka>$oyF*VXEQZ|lN^URHp~?s6D9z>36zg?-#BY_XrPMSj9w8DQH$1B9NSl53rA|2@ROatSj;+%=rKlHD*=CNdOp)QZ1{K68sHGjny zTqT}iEL1w)CFau6iKYRgzL-8!L1yJTL0 zB}=xzE7?eH&n?+-{NS|-JWNtX@Yk_y?E*8F+bhu3enJj+k$nVs=Bo6BH|Xw8vC?mQ zmRiE3wea181@2Sf+V-IoE3m;NN@DrfI0%>~3hlJPm@y}7ZpAQ7HFhx%&KV`AWTjR7 zC7-n$#>}vK;?L!5nqjrqCs10-ZuRS4vyt;7Zg_r*_kYYKLee6ubs)WRp2j4Vb1bw@ z#gO&#T1bq=bW3R}Mv04zxvitQ^E;@MhI;-OhNoF!>Tu<(H0v${e=2luru76a6DB#W z0RfH**4uY3Vjba%i>?XpIIX*JbM}0$6%!CGpB)wa8Ag4qO*pj)gXn@;Rxj2mT;g@nGwoUoR611Tg zeJS@>-n-Q5=m>lhC83^ip2ORGIaYr-wG1J>E}Zt;oakDY&FS&wsD=Oda{8$7iTyw1zU%v^pMW%+wMsXaFg}RR3-4ZUW$0axTvZ;Ws z8>}DI{&;08>3Wh)|Jv(-|6=;c|f za{OlNw8DdVB#ITmqR{!!HuN)O&^`;7-8;*yK{O)E8t5v!ucIK9q09}_>UVv(H84t)fGm8)djCLp@R;G-CM2OL+t&F>D}4J-L-?j z8h}5{&b9CH)UE|j19rgS%8$WXsyw>Mzt38ahkCg3d~fC2dV@h*EEUd=Vb(S)%)M3O zgtBc`J6~TH0Oz+^GxZjr0MypNUrz9F2?=u!gBmq9Saavh&zq4}k+E-sk(D_+tzwuW M$9x!$-f#8%f97C_zW@LL delta 25504 zcmb7t30##$_rEjuc^*UoHTQ*0TmTh8Q4@2)J+~xtPXt+ns~`xtASj3+Dk^x<(JT`! zdo45VH7PBXHm%I1vezsZ%9b}Rwapf_-&vl!_2d8hmwi4w_dYY{JLjA^Gv~~incJ!A zHh)yNDOe#^$V$rsQSYUN7I9HrP>U~GKJ*9(3P_)q8DBl-lI1PYDy2o4{Y_3DZCy z1pjP#SRQ4P!%Xr%vvzofDwwTB$WKig_>Q~*&GBC>iSnlzO8f%7htdeCD(+f*$%<|= znP^O}6q=EQcP1&AQ_zOKK7X;^C#T8DG9uPC{-y3REY?=|(gyXxZ=LP(EBo_XZsO7&~I(ir3aPS)~V6dfw)sM7vQI~(WJSC1J z?Nz}&i-+s$$+4>TtTtP0VfeTU77x!&NJXQuYPn^+TJ@)8rZ_<5w(<%Oxi8jMRnuI3 z^QWb;?a6uGo*QL75CZM5tpa@HM!5Ft=ZDM<*ctnW_+5mS56%i~< zwg%o9AREoJ6~+gMCaSQZ=4;#MA11t&(6lJob|yjq7picwCG;;C`}b?jShUka8uN!6 zL->ulPuBv>vZ{{qc~oeKd^T1!X)HUcS9I-XF&-Q1Mp_y(6SXAaQ890{Oq{7|9umGH znYjU_h*``{#!ONQNL1KD>tg4oJ}3o9K`DTss*cMsvUH{`V1Tb!?Ubj45h_U@256~X zXd#<E>a3?mDB&YSFS%!?iWwqW!GwrvQQH$_cSd>Hjx}p}P0IwI`%^oGm`Fr}T^?qq<2F0nEXXJyzUo~j~eb_CoF0FZi z)&Kxa2?5j#$K?PyEDrT1N5t78hK~|Mh#sb%{Vla#t~v`cb;cO=>gCJ=4=C$RH=Q3L zD^g)9umUQSa~N?pBj(rLcq(A29MwQ-Ou8Ff%bS6DhE}k@4!NFet$i;C z#*-EFi>JW@50q;{Jlnv;c(#EURnZn~U}k(>HqaR40y>ndU%ZO$C`QVK@iZgJ#U?$> zl}KO2^yYNb$?SioudDz2#n-EsrA~#){&H))^6nzr$tO%im^~5k83&>|x=Ige|Nn}owko~AOMEujcB(oPLnqsPiG;?=e_dZ7F=o-DhT zdAJd8pWT+0=~L_jnWf@^Y={4|lME8N%IpHuWB8XXp^1w2FjGJi*kS$Dd+oJy{DvKN zzp4n*LLDRay>TCzCh1%M|9JRw|@pLy5tBevuRbV$z&%?9o>aeEJ zVPUgq&?3D$9V#D?)>))rF_!@#QbK?Q41iO&t9}`wt}Y8xr#eIXWey=_7;px&8L_IC z1w&-C&9x9smc_skN&IxJ)F<&P9Fbj+lfR6}fKY9-c#mOF8^>82FNd1ixNK^pmW8>< z!d$CU8!bQ^$5|UDy$=seO9D^ax~lD^jg}&TTxz2P(;d3bIwl4TOobQ8PV6 z;G>v?k781#tzp{3{0hZ{=+RZovwcLz>KTve1BG~)aX?NvE&)fW7^gA;S(QH|y36DQ z?)Vg}6{2o-(%LhpV!n#+siEU`b#tvjT0nupYNFU0{oGZqPT&Zlj6iJrk^^Nai7Pe{ zh&f{I!;3-c>i%)+N>6Q)+?znb#6E-@E%&hI4%s#58b~k{jY4Kj1Pz34YKC-BsWNFn~=A)8ytPvdN_(&}f;;APW=gFge0Vw4uo%hPteQEU)y}+KRPK zk$_ROJ8A^&j%q%zTTkFuV0W@>qMMlg2WoGKLoDV&5>vtheZnbI$TLnMPcnZO>J%~% zggi(>GD16bIa=!|e@L_iq_z=1v4l4n;htT>OM|sQ`wU6|Bq0EBmpwQHx~!S18Dn-C zumt`F5-5YbEuF}3Kg&JM!~beP$P6O*_PCu0>3q9-I# zAI2xS_Mx4-4j^9tB%VYW!$*aGEIY`>Nvd|HrL|bXKoADYg#;vuRrE-$7uxX6VrRr> z0%1oYGu)AbPFsS+R;QrQ5_TkUOYwo>@hj}es3f$q4M0OE>B3h*9og{Oy zVvE=rq6&t}SlJ?3T^TCd$X3Y|FUV%eq`CIVq&bv0^RU+0ZvG*lI#}b4)7r?!Ku{`X z%BWh*@bOGbVR~#bg`06q`zSYUwG+eS=N_Wh(fV?3 zeFY;FFv2=J!vAi5^aO5xe|77Jfig%;zM<1 zB1G=zlT~fG>?zMBQ{;6nS%ueV?Ns3;7$o09+h==ZeElvq}Oc1^P0_gi>7MbMSCi@#T{;>&fL;GgqONFRT~3Ud035@ zrmctdIAIj@hU^a%RLr-8*loQFv{-*Onb)agb?X0<>28Uqm@QgVi=5f85T|6;0{leDtOc`G=C4|Ab;=CQCPX>%#mOwK z4C<&EO+~paykQgd*-UM?c#?}Lv4zEEVr$!MPHZiW(^iO=uui1hKbzA>&#T0E?E&#V zzkP?_%I9ZuuIWnxq=ZDRvnca~)=%7Z7X9YH8kL}phE=dghFN1@pO&&o3MHO`@Qt4> zu6H|F5Jx0x;UWUx#6US`G@e&i619iLC@1A`rkvuW9FCMt)%HJxKiCGCWq$ZEp3LS(tsG2%4?GuKmpkjIWv{lHjn|$gh)3vmFKEvshBG9GMm!CzK5xp46TI( zdYY;VQ)#LyN~JZxGNxXeN^1Zhu6U}yw<~cfuP}g#h#OgIZUmD=4nwm&m=+z+wI-RkbYvi$(}%G$eNt_aas8FVReVjD)Dx?k=IrJi`(RKpGa+GVjz~t%UNIas1RB3ye zHibS>$o7t1LJZl&13U!EhscJq3rv;Ze1lU}+?ygsBoVBlB=fAf<`fBWTd~YzzLz@r z&UNx#S{L6P)B$=8c4tQ#t4%{5!I#XbF?c)_KyJuZ!fs0S+`;r%8SM|vH@65f3( zRktd%QS#Va8p*FQ<{k&889sQm#JSy0ad!ha;_s;?+s!Z!_rk?CaIkmg+T#B;7`mZR zCFI8Hr_nsEsV3XZPPs45>=ae|uIOMlJY2%xQNA0sb^yTfmf7uC(lXW7_}S*w?{P@|J6wl}0BFDPMbP(?FJ-H7Ra$e{+oSKx zYFmPI6bMX$Mqp1S12sZ{K-YBml%eib!P+Pd<>WwMN*V+LA=MLhXq_Zv!1h0_nR_zN zKczh;yQlMR$_Olo^c)Hp5C(v5C=3{|OUr%Zcz*YnZv5k*z4_=03MUbb{ zX@c&ms&>QXi5mvzJeU=gG074xUjtl7d>nNm9d;tULrAh~I(bPiS17e_KV%VsD|C|Z zKqncijyt_&u5u_nZp(ofM*e-2>CvvAvoP>7>a#)=5(pc+gB| zG@6J0M)<0Ty%0#ds{~yo;NY}q$BB`>=8;zVAjD|dlgMTCygIbOs7>O4}& zbOxEsAV~!BS49vCDS|+3xR-?7P@bRIYW>?zD{K^F|9pb`YK`*8WeJWdUK!~&gRfi5`& zx`}B4cL?wj0O5>3FmZxBLi!k?!I9$wdwi4nq*^C~WD5`R zkVDgH%8pJa2O+y>aQxgg!yGuYsP}JYc|;D+;6?q&3=Wiss)(cJ6#8%mjSbONWgOOm z?JPF}sRw1K0$)pO2~P?atr-+9&ds1%IK>IEAfpajFcBigYfgl9j8M)9Wln_0{ttvB z0hU(41NoKyND?Z$W|)Gbuaa+>a=-2-_x;DT?eanfEzHHo%BKdlAI~3yu`!@VTPCkV zgJ*lnj{$awAH7Fs4C{Hqf8Bv^`Yi$be0yNBT9z+7yr;NL+_d!d&$N4m0Q^K=As~~M zzUrelv@c}eOmYWay`Y#U{jy41Oyg3UmzTGyd`lZ3M^X*bH#n89eZn?B~q``}|j`8)cUUYX=$!ht97F{4nwy zf{{JcQAEk3K!eNEn)y8HUSpxqnY=e&MYq-?L2I~~Z#IVx2|#f6B@o=qhvPGu=U@r) z<$M}-wN8i|^Of+_djSNlQ{5nV21X1UZsvPr(NfJbi`E-@7Ogj$W|`!?RCA}NjeMfV z$(KH0_)1(YIacQ-qAi`GV?B@z0GJJ{lA$hUu7``LgkWVs9a*N z_Z6**U*YN}I*Vq0P;7Ltd`)_0lTP()RpkTu?%TCmBiiQo&E}Ple>Us1E!2Y(BO%$Q zPRXCyZ5mf)x~lpD0Dh^3UZEYs=xpAS9bzI3WQ4H}1l%#StAr4;>rx4DcDl3npiIc7 z)hT?X?Luk?w+m&Cy?|2S^uGKWoEf1{+rH8w=o77rWH!n!s#N&b+T(IZwu*lm#!EJt z)5)*RHQzyK0ZxXhA)9=;{4ARW$ax0&D%(Cl z$d{Y;Kp;>LR(uHJvZ%eovTe&I*{G0YqfZB}X@N}e!fw42h=CrxYCd`NZ8(HNxrVe&9HKRsMxkEPt=%4M-H-CX;uG#e{$_CchdLY4_m8GOHxf;8U z^5X*B#ceIpyNAQiqpQFeq4|Ub_88$2{6sOrBh?wdYGVYPJOj?m#CR%{+V=M-SNSo9 zx7zZ%77dF)DyGCZ7Msh)B?~w-=>3N_3l8K#ok+QE0U!2Uy?|5T&k`x6z;|&GSlG5Z z+BDEL5gb`SIqoygdho`+Ruq@$HJ{%*vVeR!&=0w%&48$z=znB-U5P&-^$Oqc_-9l6 zM#n$l4Mza07hnY7?an^rntOVfN8nV|V@6ZeI6yR&kqap(h)~fUdVp>FOId21(3`_S z3Hn}8+d`%;pr9ae0R;t1QK1wROkN0|ma2O~@8G=zHN`Obn4xN<-W$>> zz@o3Za!9mFX zTp$>&HnuKAOO{&~a*FyzSdHR=KFH2v4LrNH55#{&dP)&356uo%7L1o)KzU}az1MDHah zFXR}&9RXti*tcxbQ1^#NL_-~SF()>J`oNeoi5k2J=Xxmmv!R}ZMU;zUW;xMa7MK=chRxEPpx3S*Eu3t|W#A%C2zwp529G%?S4YU|hJhw>I zw$(=y0_-)})f4j$oV7O9Vc|6hY_6wD-^FZM{#cDq zDzsfpOZyNN(E@y>yJ2~Q;4K&PiVmJ+S<#EhvW6hSXgQFm<=Dk_Sd~dlt2v;K?g%TQ zWrtvCm$X>ncCnc4_zD#rr1xu{4Gi%fZ4Q1SCzMlN5u|@73(_?x2q!|HfL8IIL4(fvTzMdumY(}^+3W1d<)!DzTv`pDaK6S(S9z6R zUva#~jZ1llF@DV@N7O)7h3RyNT>Pp;s2(m_(Hr(bzd~jk7omG{$(y*dMLU;$m(b2- z?A2m^OP3HdC*0I#qzmzRbA>8_s<6;w{i%C$=QXSp|^#zbEGgloN}BY z&Ml!4{OA($3vLj+5<(1G8GZ+t;2CZ>A+9mRZ*~aw4DJ}TIwTBSz|aR=zz}CAdg;0R z3KuY|mr$U)atY7jw0#qnM{{^+9;w9I2Ux+g%7gQG79X0&iQ$$BcZhPf0qVP>5n7z9gsD3&^9&gq!X5!%;AQPcd6SvM!CD^K|wqv z?!`|uCGO3qJ6ICNGj8crUmm3o7kD&vAUI^ai{p4&#&YP>p>et0}tYhBK`X-;Vc~{l>ar#K1slbQ8vD8~i)8T!p@F56h;2Xx( z0r-vM>Uv9gCcK)@fqq}E*lQ`z#PFKVxy116vHV(GRsW9B6JY0++DPIyApFBN;2XA4 z>}(^6+W@Ng3Hnqx>`PRSG1VTXdTgnB?^{bZIB4i#4PMbC4LmHm2DhX>WV+K#SIcy# zm#P`pEfFyHIOyP&osN={^_P)z(UwtCvc)p=DWIO3X?jz2={M0+c38$&tTeTMs@_FH zdq=;wjFA1At}oM#X1cye7cQroBz+wu1Mi3taz2x!Gf4rHq%+AnlO&x;Kp7d+A^duV zDRwf&OH8qonY;6YrKNnsB-?2x^P8cMke@Nxc_#ao$sn|kg)aZqq&V;3jS{U*3P=s! z1*8W50&=b11)ON@R=|l?_-@zTiC-)UaySzWW}-)!Xs}5%%OryDCJ|+4U5!;m&(f#J zq5^WJ1qI|xV-vuc<`;l7?Je@jmmbL{UwR$~4*Aku1@P&-@=4Tvz0ctgVPASIpVnXJ zWYeY4nI{bmv@G33z#6?4}zP#!O!6AQ3+Hf^@v17Gub{@MCM`AGrJ z(ZNTd6}n;~0$g$)_?Bm(aVdV|a%NdG)zTEble~tFwNgh?^fvy5m^5CFe>zFPNaUv<9A!Q9%QT(-f8eqv=I=f+)o_j(`NE+G z_WC9#n9M!Oia-Ruq4Y-~<#O+`B)<`W@KCq1!0YcSP?XDcqpvG*d9;vox&F)f&~~6Y zyBO9~xC88~n&jwFaCO0sNNYhiM9y*&OLPDv8mW0-57@efR>#z#=xs=pr7K{h=}ptI$5e1-$z(D8E7r=}_c0 z;^;Eii!A6~7IZc}cR^zVY+>?C`L za0H8#dy9AyBpFD}ct;ElUD`_n17K6cF5z5A$Y=N$cEwZ;j9f^h1kyPtKd##Y#q=m(E?j1=t#hylLKJ!wwf~ml*<$_gIrhnYuIS2gqa7OM-VKsxtkb^_+j0R;!V9mPjogp26%qN(}IPN+{A>c4K9 zw_86Usj3YS5>&0AZ6CN)K$?WFwCzI;(6&#LVzOjt7%ds!lLDv$-4LT!Xvy1FxLGn@ z4wD0lX~;$uqwo?QnDl$Nn1|{k#XMBU7u#w+jDp~mE=m7IYCQG@bRad8n@PU~K#Rk4 zQ85kEY-k5Y`|{$thN%ew!&F46D^>acxtWCmTo4Lg#%zHbpi#wYZI~8^&EV0EKE-x% z&N?oE$+uXZ8j?pnzLn$cA%*~f|ON6(j008?D0eHXpZZQwXKTVzd z!4RG$cBSBO3^FZ&5$YO_HN~p7r#4XrmQaWhR6^SEFG1~yZYrjVJgaMn!B{-HNFLmE z9#%pj#t0@K!sIb_a<>q}q$jH(ad5_$vrEWoKuok6dLOq163O)Gi5>d={E0>~UI3GY zL?CL^xSjf|R7ivBh@%tet~uWRlDmK%*q+`|f;J^~sK94nVMmwn4wbNBy;{PC^)g%( z|F?(|4kfycC%n1^AkYsCGDuzmIy9;)Eca(D_qPtYUFUw28dJ$T03R=Z)3vX9s_Hp2 zfB}@gp>;h89RypXzMG!azk!Y+8jJ`+R?;-_&9kOuMX%&pVhC0l zB?qpgo*b)c_QS0Bm!X0;wSXQC%cS?=%U($<>9Q9b%6}1Z#R)4Z$17Ia$I9iwaNycB zEfWJ>8e;GsDc$#4=@3kWsK5id*$6sus(Eg&zL49+$)M9p`{<#LqibIWoMP@HF(o{3 zLO5Xx`7R6jHVgStokHS0Eg-}BfT;OMxxBuT&vbpyGJZ=C@>h}(X8XWbbccv00`}a# zmE3c5F59P6Wwz2HNjAjBPTQxZAAkiTe8WzA-d(8CFX_L_ex+oMeM+g{h8;Bf?V(aO z#h6ky#j#KgCaCF<2Eku~_)E`q2B81}d(K2Kx3{xOd3!sjlm>EUsS>`Bp(!<;n5$SO z2KF3cxa@9kETzE+4d7s;2C&ztR<}dCjX#|^q<55&rEHce@G$IVv?-*lk?_Q?L2CRb z(nA`BlqEk?$_uCWOU;E7ZEj3>RsT@dma2#oAmb%?Vs7pIQc7_f1VSn9-Rk0Nn3PeO z$ILv_ZpZr1dPpT6(cgv~Jr>q)z6$W$TANhI9n~8PxXcT0Bj=jN8i6HHA!k-nia-8N zPvDG7D=rh`Q-WZ7z2l6^G7(W3pVAq=gv_W6w&vmL@n>i&$$cT&2wU;By1?2Q;&o+L z?_-Xf5iSxb`7{KGIQcXbKT+~&=qfxo7G3>mjsC0@i>gcB)X!Or`Pl3=6@NnS)MqT# z9fg1T;2-2Rr_3`wJ}oJGaYj-W{@joi>#U;k(wvk)d^1WNIiYWr$5*MU0Y>NMZLM!Y zm7H1ePO)oNsk0kk6ZYA6^dt3Ohf>f@wK^;0-0IKX)jJEweP}0P_Pr`w;CqxL#Om1GSaO?9XX{31H{*-^fWo#y{O={9sxx!p4LN~PFW3{xr%+k z6#L{OqJ9%=4Qd4v1J`{?{;R6(8Cb-Cl(iF#kPcT+E0oko@wBGG7h7cr|Gtx+V&H)c zE7Xi%ZnU#C_SGQIR&xe&8yVHLXY_dj@|Q6m=o97Y)hgm)V}LAKP2;(8waUDw4^Z(R z>YvEvt5r>a;g3&j&wCdzYbH^at%h;czA-imTFHX~%yFz%O_mw~4Rf(x+Z4|-J=-SQ zHE$VgT>@|1Sqp|E*}#Z@b-#14+bvJ6R?ptm``TWR^&1w`k5mEd8I!k@%-aRxEgkEq zUH{P)TtgjjUhg1JnCxA5viBCT*T`h=b!LwnRNtQ0(`CIi*wZh`yHwHBQ4vOV`yl4u zdX&lPyLR^5LIG&kWIy4OzDQ0r*`Gue?d-Q*^LN=N)vGqGfb~bO z=wEvkVB36xr>8BjL3g#ZR`-$1O)-|T7-gmyi<^NM3qRK%m$_@y!1EAk!jlYSn^S~^ zZX#scMX34$GG{NE+`r()efHnxzB>9#{UISfQ59e5W8|kMm;Yfdzcjhr{Iz~YerPfX zPh#-4lfg4?48Ct?5N%R5|F6DXHY{Tksb7YjVb}5df167-@4Mf^^aA$_T3m;OYa|>q z#=#a|Ms_g(e$E01TdVK%_hi>HHKI8THh2=N`dJ-!yb*T&hzueFV%0y~ASQR{Etd;R@a(62G zN48a+e@kyEyk0;d*sgkzU7h|x_m=xjH9XI1IP6qIxH|qLxP{$is%C=WhfmVQ`%Yc# za?{05H(fON8GfLw*6g-RZtU;;XY8xANEjO5HH90{dv5DP)bQK-s}1U}wF{$~{H709 z<9^jWWrMZUrEq-Z)*m|E&Vn0%w=Bj$HFPix6M$%g?svGIejhn2RxB?uVqf&rw~ha+nfjm4%^(=$%t;eF?MS``j=k`wr4X1 zDJQD>=CnIe2@fOa?@YTqrd|_9tdNJ+s?&ZTQJiM9P;)JYr+n3v;$^24Z&!m9?F1Zo z^3lPd4wwR*cM7oIO@O_w0;nlF#ccHY*G;zn>&Eupf5>*ShcQLKakQiLjmfh4I<}i8 zD&EWBTYdiPRLvA4T|MamVNbIL#%AdaZ_ok5lk^_3&S5hRkS@rscMm9V=v{eyDq@iB zVe8mz22)+T*?6qOksR#qjFiVsZr^Znd)DL@Jljb~c@J-H1jwT%w_iB9ebtTISKPS$zPWK#-Zr`Y$&K4r z{vo&Emf`mc{no3;yMuY}YielfW-CK?i7x`yvma@HpW>vq2k}xXakSh z03+1QuSF)W;Tl-a*sHRI3Jx$7TnsrDUqHw`nu@+15=Ju>s4*BB}$lbtm_B{{;rDeWORTBasR!O`{Qoh zzv;%kcV}afl<+eY7>EAp#{HZBko)(84TzybU{)Ot789OssjnUgH5$k+Ap&Y z{mnTYLg^{C@eK?$vO74Ot6|1L*f-kR-54uZnEV$o|LaWt!Op{p;FEA;tIR9sAQYa& z{&pw(i{02?;Ku$-1(spz>mEig)xFR%20smu2TW1+yNR;k?~6h!8i*Z+iUyw|8)QqW z@Bt$N_-&*vZMPVxvWuo%pOmY!CuLN1L2skEkmt;PfF}v^n^TYv+ypu8Cdh#MjeYQo znA-;!2W5i_>@RyCoc{ZaQy&~_;G+Wi8PV!UlyR^@WQD5$gVd3J;9`4MutoK#Ad4DQ zp$dB&>9%7a+|Can$_cAb0d0-e_#_z~Mi7p2x)5)6j};6BPFuS4yQK<$6C;_$NT90r z=_k12pG`ks4>ZP#25X({L$nq_zwA;F4I->JMOeckY^mTu0pZ$tu~PXCF#_dEll$kK z+^=xszR->Pw}%)ng4>`Tc-4*d!oSUWb=5FqoDg5Bo5PJU@*9)KtIXpMCXY05JC8KB zi!18HNFzvIF&Wi1IMjU6jnNBkjAlJ(tdOnXbUscw%{RENYcBk4P8F=arodf6FV%4j zjMq0t8wcPQG8T<7#>4Mmg+FWzl>Il5ag5%;nk^b@d?fpBpzv4pRWTEd5FhIdC&#^s z5xZgZgaW5wz}2~FGSlQZ-Hqd(8~&MDY#VRDuikA|mtu?`Z?I8 zJ~qMdhX*ry(8=g}H%80c7=`2f2{^Rhg4~Ta&Jq3kf7QHiC`nw2! zP#$*^sq7z#G({CmHm0i3$;Ru_VpGTJ!`u&VnyRQNF!w_ml-8QUhMgfARUexIVS&7B z_QPFMyg-}7a(;Ic@3yOW)yt+Cc|!KGvFY@%xth-Hf5f%Ff+cZZJfb#G9iCzA@_H0G zV5i$l#Y~2iGy$_*D1{e;?ZtZt+k(7ZeyVKRObucxc|#_lhV zQZB5Wx;@MAhTrJb6Ck?Tr#dAVQR0k>PcXX54{V&98`Q_6h4nLn%9-W-4>F>dP3zDQ zUs*3eqRl!*-A;h1?F|*N(eP8xJ!W{SxrxSu@+L{r+0xefovKYV`iqOoKgsYDuU8L9 zGKOi8?p~2<{0mkd-K@qCPmfAc#dkJJ*5T!CwcTorkl~fsx$XH3aW}5yQAw3BQ?9E) za}28-7pM3{gG5jq~#Fj0o&0|V=sk219- z-x%rhq=S#A9DL|YfsZFllrln5+m{-eotZOBA&7j9VGdOXFEhd{@LOh+mqXj{nN)|k zZM?2$ww+r9I{1Z&eyski2p}L8;#q8b4TmFd6$4{GGEH+Q4M=^z4BzCmHqouRw#2w8 z8V=fIc0z(Lj*Y>}Zx!^y00!!&Lc|?%4s3OW+RRXG%ZyLObLw`P(FGnsYmH|i zmvCyW(O(|eq{6Jm0No!TcXK0~nMHg4qb12ECd{}tT1}jxAUQ@UWZGT zUFSlkXhDTBoX5An`mDluUP?uKPjH;!=mr|tcQ@d`R_$!Yf@O23!=!-!*9B_{{5Fgg ze>%-NDGmPM&!k&LKiN`HzBguLVc9Uoq zhj*gNyp!k6%TAw{oiuZPQZjDmSgT?zq-817$PT{wI6oWt`8TdpnqPk-lL3V!mhy4TZ}a_&#b)IS-F8M({OL9(t1%1 zc+Bv#?=GdQ#K(+arl#q2p4_6)N;_-tvl|Zj#(vg^RK0p-M%KKX`3XstDKD03b5qlk QDn|?4s(D>iZZ)F*2X`in@c;k- diff --git a/ivy/.doctrees/docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.doctree b/ivy/.doctrees/docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.doctree index a27e58d024414e388c659ea629208f81a2690590..76cc07b95848e36dc7164f0afe71e97358e1bca6 100644 GIT binary patch delta 82 zcmeCW&+_LU3rhp*RL+eo{L&t^Kt*~WBvgT20oeA8Sqvi`v|O$e$>@I<0ylG!f3GmJrGuejDf>5*T#M~ z#?P-wS6}5?eecR@x9dOjQGaK3!&2pQSNRQ3aTWp7%N($^DVl|KB^Fs3OA%k(TpVo* z)A{+;jH~glak!G<{^IA^_4vriC+nbcd^B7L4uCSV&fk@*gZkzwRv{jiYaVh}F3c{S z%9l3jTvl*`25724E#K&e0)GI`UP(o zX0q3X)d6Ysp2zBdu=>}#)CuW2Gn z6b~qdSiLU+fk*)Qv%p-)^2C&al5jQ&T5nEa#i~ibBt1@P4N7D4Rd_y04`tdlo!gk;=Bg z-ilwFl1Z}Y5>^xCvUOdmc%89bxL^kDi(rS#>V3Ksew1Xj*>>JOrGsIe6`G&jt}VJ_9#0WfE^2p_&Gh;jzuCbmGd1?kYa+Yg>n3!9o4}t;M?j(~8SaGCdPZ&ZBFOI=$%#s8Ou4ilp z4WCcQ;eC2Ilbgzq>Y*Sj34UC10F1w}wk-~ZteR_hJ$fBwr{PRYDzrx>@J9`>H_5>^ z3okZGFJKfehV~{Ir58G+qaN<443{wDpl3lkdkK0gqu5?VNfmVNmPiK;M5i{MxWn-p zr2Z;Z2jYa$4_8!FjVWbkhe-gp)CTfQ`2}YQtGAsoA^#RR%dOi ziw4?$`9Wg)5DZj>k#8*-xqN#NEWRs(b$C#= z36wn}QNH=(ScNv}QA=$cfe=OYQ{vcLL{UV3ke}b0s+#a7mg?T5wGa~ z9d)&2gZq_Dh0fJ!>UKSv+6wDddw4r1c{?X~!<2@+aepI}JBrvaxyQ{$+FzOz=fju@ zmpmsJBLpvFNk(Ffryx>nF;Bo$i6=kXNQd`ogb64~7&?W7u_9P>*H~U6F=k1Oicv7U zbV+xJE`(6%;>(S&BOx6MuG2-F8Wl!KQOV0KQ&iEeb<)KkYQ`1y1l7kZXy9Bq5xJPH+u-u^ZkD4(^W6W)V$`o4v5>eETE z^21CxyH183WfEcIpoX1e5?dwLL|cVtn}opAOrz};HEbJ(jR+LB0z_GU9zu6U@&yQl zJEcMbEj5jn=G9{=fZ))ESi(_NzSrbYIm$Fz=s1@`$AL|qfe{wcErlO}QHk)|3ge;u zgpR*Q`8^)a=j-@EJ$-pco{sO=L)^4vXwDnY_oJ^TbM&3KjPf$9<40u}$7LAr%P>xi z8ivY;9r<|I1l#g6_}k=ySdn!?+@>_SS`oi2SGwq3DGjn7*#yNKNtb8{KCQD@%-U2L zd%BESpk!knPcjoF;chJFaH%WjQA#zLJ?man)@>_HHSMI=ye#Le@X)4QUSft-g*l17 z-^(}E*fmwIpP8Rus?0xuO`^(#_8F_#g04l6MKE4zhU}R+e1VyW#Nxu@DJ~+>shxUw zb7s2PWg|GXfGpVJoc|*_?b?8$x&BLc576CDp1X^9x7qcxxLy+1%i=mLu6_u%*~RF( zre=K2Gyxn{VY`_7b`aqMjJye=RuJr%02D!eq8EnW&oFDorN(m|zjh>!rzZ zVX~e~*mCG`PvF0k^OyU~r|R`Nn!-DRuMCzwwUECdu?`8WBVzeO>hdQg+#vzSy21VQ zTs|b{pBM9o#oFg#-PR0lwutb~tCQoNaq(n}pd%i7pGo0Piy$uELZvn@l+*DO6~f){ zmuK(fx5?@A#Pnry`aC)P9yuL9dC0?}o3}`dCSkE%SOhd#6vAJYHci5YqkLuM@uJw) zY=_wG75umbuAQ6Ck64f)S#6)%zK;LZ0<0pJyUmzWBDkv=UTCjk7a*vk)Vzx}lq|Jd z&2YIQt?TiQry2hVJ;3)8HDdGraEko^**j~v#Y(xwV6vi#!?nu{4>XR$O4|u3&#mHV zR9QoYR!&=|9Eo|UpO_7nrpJJE$PyK+o=!iz4U@-`Xb_JtD$ z8B+#cig1{LtI-%UaHTNj^;VIAFCaa#(7p|(zZRp#8Gcp4Ddmr%aYQWNEHN-U(fb|* zhRFxR3XRo?T9EABc9smYc2DOoS)udeXuels?3Ne@NBXgHPl6VreUBaEp{f$2q8yI{ zmFqZAeow$qF~7%JMY+E3rC$Co$>UkcBMxe*?q?H)9*2SbR5)hx%aTfbXS|kc^a%tm zV4c6L_KGTTP9keZ55 zHwYB0XRq|hhZyM-38eUhLbF;}(iz28cz|3IXzd6fAEhM_iWGPjw@?FEBc|~dn`o=r zJU~xKplt+nRklr^dPR2z98|w)QH#Ay_0>0k26HgKWG!@ z00*@y`OYQ^|L+ygB;{zY3LLEa0|#xAv2mh_m>MEV;_DF#kJ)4a#bG$Z`RqjV!+*B1sdOQWE(uPLK6z7nD#J?#|>7hlu01Q9?IL=;o3B;V!$vzt-AV z@=vYAo)7U3kAJ^d8dmH{anO5)3xmAwpyvRFS_55vAu@ zsmT{olW$2AEd@T}8c|$CAaNBS5;rJRoKZa7M?7sJ*M|y?!(qqUSJha7BaQn)d^OGt z75O7eLCoao0*y}z{Uw>baO54yd~>L174e7*&oX(L#91P6v|;)vErCW?T8W#KzB^Q8 z6g>9|`f7>(&`2+R#8$i{u@OrVn{7o9JdM~}5fdY|#;J75aj2|YP6LU36vgz4ZFzr) zy^AnT-Ww{k#zEEkRH!)6gNm#2K%bBjeMu5&x$u#kdLslP$rU`3{F0P>Sc7*_hHnTP zEiJ2iUBM&GdqYWcTTTxCSW$O8k|jWSzj$4+7$`px16eUqJR@v`;&b{UwP5svisBo} z!e+v&AIGp+9xH-affgq@dXR6g z9Df`5Gjk(?%&{$DLJ}NQNnQ*SlI&6Z6q4X?hic&a1&ddeg?cvxBUuzo3jLS}z0VW+ z5f9wSUkqJAJG>!=(9}Ko4aI*=OW0`fx4^1T6KJy91mZ1nz#hjH)38QRdq4-hcVrJ} z5?@jeXt1h1AWMZagBeiYs52zny`@?z95`9R3+&>272*_GMdaJXd%x5^Vo&(UNbTSh zyJ!c0W%n$eY*!mlv3L<{@GQJiv+zxWZR|08=46jR`00gsU3EH-Jxj9nPK{toEf4edmk5-E!h#e6D^sz`@dSUuCjl;!}(=< zm;KBa{skWqLO)&_nhYx{>#FJBh6el{%S8`1H`K)8Pg>$Rwr+VfH{fsBIG_G%a5bZI ME_c`DFK=c40}Z>QrvLx| delta 6599 zcma)BdsI}_8fS07nPCQ)ff+;|Gd#rPtqz!^i9i_wzFJa>QfiUhF;pbOUW#jJUJ~;0 zVVD<1Q!9&nG+M5FB&)97N-HS1k;^44yQ{VCy{4{PmbZuZ`}RKPFffzee`cR^_WpkR z`+mQ@_xZjvN6-3iJm()!7r1rp;egZm>>D_}ejenmuhqpR#w}S|y}-S#;8SL-jA&3F z!0!doaIh*7mV^y~hI?1W{WQeSuR*tTq3emKmQ^&lex_UfqZKueDEIE+lV9R22C8So z!o&tUi*)}~Xl5)`JZNsTn<907ew8tm{*|$=6qsJLkL6*P9pa`&@Vj-eAk_|6Ljs_8 zramACN5W@A9_Fq&+K|!#Ls$+(m*lW&?9Sp%}+G&W!zL2nL9 zVf#dX@6>dT{e4X-hEN4}H^| z9Pgq`89Y=EYc?0roo3Z;8p}t@LBsW)1n?Xkm|E`Pll0KO$;l_^DF8lA3}q9b{r+@5 zPr%_#UY$ebjm-L*5}<8INU$f_I{0YEEdHDxVt1zTr)ee!Tnx2A`K%SZR^CRpM({`- z?5>LRcZKO-TI(oypfs87g1XXsOerLsy_i)-yKL?+O5bDr4L$5mOoJ=kfg!OjYk&7^ z@acn<{FEN@_Bi#&^=O9OFmp{TG|t}6d&tVkyY%pIv<>ch^5cuV-GEuxrIaT=6_D4r1m+qcaovSOkfT{y|>)A?Ln9%gYCX?sVIUM{`vItAUFZg>>^`R}9>DB$Fov ziIqEPj4qU-QqCjt6*iAg;meSIRh;h=4)e)0+{yEU#FG8TBDrMEpJei~Ajtb9md^_k zq|Oc!tM0KNU!=B=i4ReCi2>tAG*k#ATC~u5RgloS4$*K8KP%B*@a6!uR`-HH0`p=U zdABJ&o4*nSqn1bVy%J-W#5mxMVXhgbYOHu;7#SzLY3a)3A8G^*jwTb*gkVII1d}u+8wE|N zh=w%XA<$ShR99yY*y$cD2_V4|!XZm+Dr7Dn#-~e!Vu^rnnL!9194W34N8}1|wA83B zB95rU5%my9)b7o^OSHt%KQ)dbrC2yRb38&)6x|JYqJvh_5L7n z77CJPse4McBeK_udkS)^QC$cl;Na6`uwm?DJkcZqb(qAdhE1O%258^hX%hP;$0Qa+ zwn;3A0@Ljlgav~|6gt@yFg*GBToa6%8^y~J4A;XP3APA_c_001v>-0DKXH9|6a;L+6=R;ur+GIAAhD6k1-iEm0!2=J!)=4vxO%F$@F2^ ziiNIUnV(;>d^-d-c%`VYt)QBfyGQ;xlCcUz%CeVZ5aJcCCaoUtf%0I?W=8j?CsE`O zwAE(>+h{^157j~41?SvfF;v&{2${l#y9_zk4r z6_u%#xdJ)5(nOgLK7=U)$Y*@Z0Vlelrx#KDY?a47CG~7K7D{*0HVw!B9PW2Atbd z&Bkc`jyrWc!z@mFZ0NM7)N`_#QcqTh!;08F(09ZEqa4xvelwl-=u_K1XRw)2?ZuSa zqa~g23ILt(i_LVxvnm8g2J_Ga_9qRb76&iSGX0Fi$rS$)Gb~u;Nc4pBnRg2K628$) zc_-VfK{sm9fAIm`P@WWjOK9>RF2A0~+>p87!H#OUhc(>y1+LMb7V53wOSd<=W zv-2Pey)oGkSaV7$Vzqda+3QL&$%v`0Kn&7GKuK}aETXQ+K&;p)EJec_XAy66k0=pE zlom>$3LKUe>?$$FXINm=emlQkdNoZ$nkT#(%-8S%Fg_(#yrdQM1Y%>3@TA0Eu3^{t zh!~eol4rzT*n$U93`OShZ3u~l%XW$Ul7_t32Qsdn1YgJlYL}}*X7rt8z6yQrLZVwO zUCvn4JcXW;_?JD!A9HjM|Bi+@`6Y|khuElD*Dn^4b^V5}qEt6DS9M{&q!I;-LNb*I z2t?8=c(kt_VPap$13Om4W5Yxem+BLXD$0RSR8d~C5Q)p$a(O`*rS$AxL=qdE=Sj5b zVYgb4idP6lUQzY4D2%EfJRVe>3W-zW1IJP`OgSYajv}*vd0L!D25||#I9|**AntxU zYt(S-C2q689lSILg^EQ3`G;91dkX<@U!ELF4=|gihO$g-Udk+_h7|2ZWwhDqsN3gIcL5k*B15>>$>QNzN8s8(oi$L}cN zLR5RWuLa^Esscr#c895=jtv*0jzc6VYL-OH55JYD{ZQl;iCPveM4hMM%$7Kh`M^O@ zhszx%aeRwPQ6Dejs}LAftv4 zs{BjTD?3>|rH}sY8apTL6j?tG7qVib$jbU)(kFIy2}c$2i_*2rK9%rPl?pk;AXOD8 zQZ>*jPH7!}hr_Qw{#GHY#d;fA6)ckV<8YGI;&k$4E1awy##0fB%5MpkZS~f)b!C*Y z!6c5?IZB^@$W@eLs#To*(xGZT9sQd3-G8MEoQA?9c`n6)sSK9&+lU3^qydt_jNHZw85r>4$PHF z^vO1{erDN7^uhY5?o;8K52t!Ec&<&W6f^L0@a$9gGjisYUNisj%@)4NMvCf{lC=R& zoG;@IHgK#P&tDN;2Bk>FhZKB$|7Y3ND8(rzxVx*;!mne=iQc~KS%s~>kX0Z` z!VdIGmV}*jB}zhZ^?#Lw?&}vm;Cx7g`*`oS{*%rV!q@my(_mP#psIrYHL1Z5p)TsE juc?g3Z=#|fOUDV7lkqD&j;F8qu4eSj)#ASR?E~z8Q?mRL diff --git a/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.losses.doctree b/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.losses.doctree index a1b9392f1426914ae5b8645d1ec777003f985e3f..efe3d3bb8f77dcf8e9a16b2d7a977e157b11f1e3 100644 GIT binary patch delta 95 zcmdnHlx6Nx7M2Fqsf-(0-bFL@e4V^-o$%!S;kJ|AV|ph)jFHC_lHAM@$G(UoL(bbX hLpn=jdLuKVDCg7;AqFs*yzigbWd3)WTT2){g#c8=Bh>%^ delta 103 zcmbQclx6Qy7M2FqsVo~=-bFJ-FilR3JT`fIj1;eevO->dVWO3StEqwEg9I8aN f2A9KBP1g9I8aN f2A9KBP1V j>XFBnaZW7@VgQ3lizS)vi%%|8GoD=iUwmr}qhJsKXz?P3 diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.doctree index cf04a5026cd44adf5468b453b34fcebb534e2892..fbba3ad2067518190aa3690524510a1df4cf48b6 100644 GIT binary patch delta 47 qcmeC1z|=Q^X+xPId#X{2p@pH*=32vZOfb&mAQKB1d-Ft-+F$@|&JN4~ delta 47 qcmeC1z|=Q^X+xPIdvaP@ieXCP=32vZOfb&mAQKB1d-Ft-+F$^iwh5MElez6?9JsStg!%)xDNRM delta 47 qcmeyfi0RKFrVa6i?8#|qDTXPDo6`(WGr>5MElez6?9JsStg!&UpbhxBD zkW?+hB_UfoZx$GJn-P7r;55xt;YRVa|KN2Ym2TJIf{?As`(kFq87hYQQChiBcIjRe zJo`Pm#6dbcn*o-;2EsHv0Q>Yl1_TAm6wDrH!EeUU z2XamXgx7*rj5Mp~z?6Ux2XYgD5E(*P;WhxlNf%NV5MB#HaFW#so{UNq8-2 zgrr$J0mEC~Niee0S}zF*Mp9ZBvBNTlc-CJm7-jr<%?Tg!+cMSTW)0G2O?mPt#JS1D zr6R1zHz9 zk~D^ZlUA@06ohn9VqvW$XlLcPvzbSE&T#qWo^yMxaIY1EJ=Lb{cS5$xiJ(la>+}@B1foKLQj1n*_|x z=7B;W$4Ah+1t1yR(;3KNkBi_}LQu+wtRn?MDFcF1tblb05s(tmAjE_a*35x93Bhpz zxmFMyHy}993O5`Q#7kewFhbLHxJ64%g~6_Y!7gjIz*J@&m?r|uekzP-2IgUw|I&6L z4&$AqWk@ybrhZUbtlT vrL~szCy0}D#l-9|nD8w%;Y*erSwR9^TCsY>%)c>{}oqkOzcp|9^c|b?QiU?m3dK zCIhy+Rdv3q`s%B1udhDqg0H&qoO93N{{~lg+qHV@OfhWj)H_kD8Mb=E!QuDz>y64O z=clh6-u=np+2PT_c|p59e0FfC5|w+MFs#%&!@;#0M!#2Y6ie-(S8LQahJ%YsFZ4Rk z;cvsQ#E0iD3e>duE4+rPfclL(0D+cESXm>ccV1uI%2bUD} zAl+ea_&h%AcFG*DcFED&q1vUj%W9X`uE76YDXrzGRjqFh2bb&Fn7?26s5ICmToUbs zoldqw5w`&vY+zQSl zyEf{r?Q&E>*P9&xgxU?uJq+0hHo`{on^w?{8e!BL4z72;*{t_!{f#z;1%hsrhLWCM zskhe-v57r2U8S4KQG0Kr-|G>MMo0+@u5aS+mp1phJ#15_%RRWbwISaO2e%Oa#S#!w zEcd&;sHsNi_M6S1vxhar&6Ro=J&3dt*GM?d$KCCEyB%ya!cw*0QtJe+;*YW0rAp8X zh9RcgZ?`*Pw_Dl`I<0zZlY20@sNIRSfFMxDlc0>jC0tFXzF8w_E-x-G9>c#@?k#+% zRj;D?Lg1kmVG0-MA1>;IjWFl}?dMg(o#Eh$Uf66mf?n8F#HqIVP|5x{99&td^_mU$ zm;M4tbwLPqfn>UXX{&#VJ2)!~pzwwE9>#606qgnky7gXotR0lMxkG5+`bv5)dbJRs zeB56y?Qxb&_yNrWjOfoOmiP2pal!~zI4Fc z-34`S(Oq#AO>XAnaBzj1b{TtJtv5i%JZx9suM0wJMf{QH@#1!;9(C%yz2P&3^SYlu z9DJzO>$SW0Ei6H4@!n&Tiu22pdA#0dU1>MGM$6L z)$tCMqBc)4+m8+|Zv{IWL8ny4PU1j-j<3Kk$MDm!X1!8rgu`HPNcRa_6}A4uU?n_7 z$GW@qUb)6|bcG@m=ZCB0n`3n_v|~JNB$HceVNeM>>hyI>8(}r-gr!O+YFDD&*6^vy z;0AD*s8zwiEp@@_I5CiDQ=PAi$w!X$z}SMp`Hg5ZQuDvG-o(#c+}abvdlAEtjh+%d6F3W4#ulQneDS zF0E}GKe=2kaimh8XSUeg0i!-717ePl0WC9L(Cvo3?y=2Av=OKg)zMNUlR56%iPhuf z#f{bVVD&_$y1ICBy%M_P9^0(}2{QWmM5Q`RLR~Vkpg!ymF1EX&_Eqmu2`s)`Gd$(u ztuB~fzXR@lmzlZ&v7krYlS}1g>IR*6v{okT)sz(bO!0h^H1>p}S2%6iGKi_YV!O5ZP$$@Zpx5bRGS?c>(+ry%Aj7BwV#Iuc zM!N=)2F4TsF*g}mR+2+oB3^nOu=(LzgBxvQtKV!xBG|S!2k)?L^;WsjuY{#~tKKW& zjMUf9_J#nf<&X))dQ}5vOs}ny$LI=&^n1SY_C zl_tP>TxS8XcPVJpAr8CH+v2Z+UawOMT9~;arY;7Gw?vD7t)*zi=zUt42aUoh!3(&x z{!@1dPJPXIkM6Mc#b~+FX?dj63HB@m)qGQ0v;O=Rrybf{4@4Vwk|1u~uZsqA!;>w@ zNNhminGlk@l7w($N~`|(R+)E7Ct2n@_U)qq-5#%CUtmWv`)PoOKhTCk+KWaoa@FY1 z(mfp9Wc5YpXFTwy`yh~NJ*~m04eF^EKz26+s3v2uK6{lxO>@l{CJca41p zW-TNP4z2$rpRX^U;P=bx>uama%g0Zy za&cw(`G!+?Cgr%poxmK|*H>58R+f(AyPG`2 zLE*2LlOLTpzPP-!zPz@)d=ek|@CkE)Qgycuo55M#`ttF`b$qN?jQg&UYu5m)2HRPJpf!i3cC@8o?g)QFpMDYbQ>wpIlmlMoo<0?wKMF7PQNt zu^Dc30_S7kVEN?gG7iPk(sJ5}5f4)0qg9@w)%D|Rt0YAq(wjl6-iBg7LdC0#>&vU_ zpsKZ#$CvQw4W7w1L)e`$QdXB1(fQ=!>gw8YBE|PfE9~|XpRB-?SX{v@mx=!yJ)^Y1 zt`ds^<`++3loM;}8z1gFL8}rq69WP7$Jf`Fjvrs++Io3>5}0Jlc=RRF2z0*!+rW`p0v&Tag?J7SLW-raMC{e_$rGz9CxH`uqxRQ+1C|CQ z9a6>JE7*-EPaIzd0#}xZKDAf&6Y8N*AnUJ)?2cCr++#Hn9dZVpmpAjD6CDm;^JyvfVi?o>*U5Us^q}a^fWB)EARL`-)1!wt8w2m(*L8 z@Jz9TQv?YS`-X57p@WsEht}b$Qe5CHY>1N5M_NHMER}|Xca?TKLEAc#itlMeur0a| z7F*%2{dL$41_hcVu3HVtL0GMyv6>7N+)MYOey_g~T9JOZ5;mjm0@Q%=Hnyt+E#lIX z&AsaJUby|jdS{d{jN%s-3DIJN?M&?mkmo6Sux1Yp-)dM4Oeed49+&T}6CP8QO> zTPxL~-BJ%mKGZ*0-jUKup>kbX?T3~Alc%29-gs%B?@u@r4q7xsAyDXfymaftOWV&i zn(NP1;Ws#zHvam^_c%!Ou3p+-dA`26{8T^S#@sDmZ}#Z`<~|xEfxDFg%pMH2WWL;e z5uVZd&hw z*uW&;KEPr8*XpM~wDjcq)=ParN*`YkgiTi7?n|Hf!24h9*Pm#gI1OjYJ*ne2n>dZY zbRDP2e7gC;rBi#y!o|I46Hb@IRxJAYS7A4Yh246kS9{>d@wLSxg<448>H|k0&X0@?vJoLx)4Z>+ zq(-rHksyiP-CeU9MX_|fRTea1W~~SW?2ados)!A$J!pgBG z;(EdTg?7E%>vzIqK!X0G?n}2p7lvKf5)yvTf~;2mZKLzxA?yR3+}H}B`OxSweM1xH zA)IX;I9q{iQ}H{xT+f3+uT1Vk^%l*GXK0=yUV#4}ocpff){6*UhWyLhUO76%zwRD} zh%aa-*r{$gXhWNLvp=}V_0M04;1|5)Pk=c*O8XrQ9m6bxjg_S34Lud}SL5J-lURdx zzFjom>L&ZK`}a4XZnXQoQUDv6-rp<2c7LOk2!Yg|JPX%Z?HT?Xfe83QLA3NeVloN^ z7ipaa{_+YZ@FY>?Yr$batj^QAe!JQ91O;xLwo+RioQFd@eD({5wG*}Vtvzf!{yew}SZ0I}L}Ma@ zwND|ujJ;KTkJr|=&g#AwX-E99_9^py?PTpf^XI_@i17x9Kik&9CF++_wb>g!Yr9dT6&_g=($n^L(Y*4-R7(#0C_@sBppv zloXqY;$I9lx~-y8gA0rG_FfB_0f)Exh@E0^`pq|@XnWYVLtLqc05^&%v^WQs^n2A~ z>&Fnhjwg6nd-mwL10WT9M6H$*igez0W77%@f`r+*JWeSjl$U!W2wpXwgcjlsYc&Vv z>Keq93Ike-1)I@`iDz(C+%4uC27K-Q+IuX(D@~}qw1Kn>oS=BD%eTX@9S8sI^lD4B zWdmz)J&>vh6vw@Z_>8vfAQ9{khhScoLYO+x4&yVce#IF`{(7}S9k@Ge&R(h72#|FU z?;^wqlx2iXHO2>TYwyL2zO03u7obdqxQEX^%M*84egn;$Jd(3$LBnNmRH>8=6(@|R zbupX>5UAUG!?#qwEA-#B;K91o&(|h@#vX4%Eb7J!MN&8$dX1JHkQew9tco^-=2Pby zEN+E7$W`|=-`Wh$)SKwbypVvRp0PjtD{O7z+jzoCNS6SWu|6;&XVj}GG)v)W5TKD- z@pqT1Mm^IQ#fN&0ZV6nO*&Fe%m-5##h_?eDa}47Uj7ba%kAlmMFYRKFdZ+s;?iRzi z+WEOeFFC`a=be5mjCb%_w~OW?62QO2@L=T*dfQe2f5pWrr$L-O&`YqPh%+em7RD^= zR-ykAvP^1l55V|UHb5?ZPosKsrpKo!Vq%RK$8g?JPfzqB)OPI z(Oxj6M!m~a1?M}h*u=tk&3<*I8VXu7JV=N!!JNCO-`Z|5O~Lk&>2$%hArrR>?)olP zpTk(!zZ(re7N&BshIbnpM=}=`EM?m}zv_vDyiMkb{Xk~dj>rgfR*GrcDsl0ja4{gr zHlkZ;$d&KhZE0sd12wZ}3F>kMZsPbDWY3ZXS9HBt-L+UZ)y0+P(K0B;2eiD5-FnB0!*fT zR_W2hkG^r}oO4W!xd3hhqy71C^VFI4QOOayyYRa5Sio=C@3i1AVd4;6cj8}Lc)57b zyC3@ayIwzg^zJuae&y9yUU_w4^WMT;ue|cEJMX&t{=&jS;aztYnjswE1+bOEE~If- zfIb2tQ_;WifDj%ZoI)6K> z9eS!mp%)cEqCgzG+I}+avj%YC(HCAQ7=#s~YM})Li~uIfODx=lbH&YRQUD6A&XU+4?jFApWJJPF~|jRbbEzz1HQ|`19~|{^;a(N zD6_qQOkz{|1Zu7@ISSOtt9uH!jrvYlz)aP4!R2#QW6=yk4<{hV9L)?WvUKZ|Qt*q2 zGA2BWxNWBP_J(Zv{PohSbo#TF@)(0uQ?9 zA*>86rr%I~S_Q=3H&ky$L2&kC-HK%4P7A@lx#_A&0g^9Ucl9_FIADd&Z1Ea7+o-%j zk7A;-l~~QA*^MW)gw=wdj8ZgFu|iBn80ud zVS@1}mUq|3kKR>yw|6)3^IdlzE#7nYU3V+6;3e2m%^Wk}CD#j+m%jvdU z=SeCD3T#&kdWayQ9I#4opQ<{25KOJY7Ov|M#|81WBSV+d=_-f@#r9YgySUnNbcaF| z|H4$2ly_%K`J|5)PLGR~E%;RBoXLrX2E~m41AktLVhB`5c`^DX*&Am;h8gTc^@_^S zIL0eAY*peH!WE>lY3Jz-j2mg1rjESQI+8fnPA^Q)`CG9I=^Y+jyti;{NvJ=e5jZ`e z3=C`ERr~I~H8Lb5A!{wg&gTo1^EtLv$8EwM?X%@!4*c6~a=9Fi#*lLc88N}Cr~k~X=JA_L1)G$ti%*)L_{ly@ykXU3O}SRY{ORTD$!U{!n#E zPORp^{Wd6HY2ktd4Ue6U3i`I%P25aSeIH&~2)oA@uyx0p&Bn1ZC&?Q*7N`jz`Y?5c z8Blvak|D!!5J>)os>Y-c)-}Yh zG$9>LMWCOrKs&v8hfNcMNXmN|w_Rr1`t*jqWxu)F{LTcZlH8q)J)&>7t+AUyYyo;X zt%K?Y(+!bPcvF}+g!obfo9?Ffedy_@3(r3C%&EeAPCfI;lTSbV$YYN^f9i!79vs>! zTo-?>BV4@@R~H7?KK;nEkALWq$MNaYPe0tK7o*Om^Vww>B0Ph`h5#Wf#f#e&IOFjP zsFKLIQkt!b$8AyJsKG@{fMZ8}LC{?MyAb|ae-P>A`p4K(;p=zUp2%dKM0_D3aq)q29(~T{^UoXEqt|jBFl=iEn zT?LHw0VmC0%vctUKy-qFvlJlW#87--wg;7r_qXcRfGx-Nlh0Y1G)3MwMl6 zu&t+#-BqzkJN3ilSIQ2E!yy9e=D5YUU|rf6>!c#4V1pgrQpSG7=(!?>L?5`NfScmq z85C!DNbcFipI+s5fw%|#Jaw)N?KC0BGK45Gd+)UHDk*~kPhBwf5pJfymkDtqEjPv^ z>6REFgSUPBc0=P7^%`Nxe(DAjnf%=X@RqnE67v}Afu9GSQ<>`H4|je@#T}&cB{)jj zA8C)Bx~Dz3=t*2ewhutzz&b>)sy{_ltOk4wiJlixpdvjI+>5GDy`_>z zFJ{&cU5LC1&wTW9i7p-H`d-#Uc3@D!HAg5+5cFm#x0OM$`9h;Nl-q4_nvVyk4Y;dR zpEN97%hvtya63EXozG!*#u4goVpY*L!cF=dUK2McVpNw*b=%RcU?-5{l6#<==-F&L zp<_DLpfq%APIUNoxgxI;g8MCd&rDq>(>W40|aess9Vo&y$<$5t>oIc8BCCleHCQB zAZ#52JF(qvjJxUKOni56?o!oZ{MRwb#v` z2RE=kmR*u>Y!VB;YSzz$$QUpT*!DEpU9p;K``m1x0ipzLV&3M+v-svaaw=hAx50A~ zmXulrXJxOwLL9|&v*W$XjA#3SZCjP4BsLlh9H!gYkL>9D$X@G4z}T$x#&M_;bOTZp ze~i0cZ@TKzE67`czTa`y`gYT!-hx*Sx}rsms~p^9dO`LB1Y(u;ns3b8Z!lGJv<|ED zt-FrdXS9)*@%mYx{p{|V568vH)`x4FHhlO>rQwhVhv91uh!jF zzCBe0$#AhQpV}LCt7~WNr?t(K`fU8odLXwxC-Jw>P5kZi z@VD6ExApnSzkWgTuW#b7TW|4S+UZAksrmEZx;U7m-Hb{O#?Vm|45=?*v#2y78;5F>~_bk-n!w82HC0+)s$auTveaH!NJvJ>%DIE#>W z{>;N~bUP38ny_=i^}ESMV=7;Yzv zNl2Q!+FWNcg3^j|TPx=fh!XYJTwx{%al1%9wLSNmcHABnTyRiP0E07`i*y0&CY@>r zv^~!QS(oI9fuTzAxOf!VIpe-If^IPRtrLr&#IaHSwT*~E&Q59TNjj_uv$D0cYx(uH`$RO@lbQEi!*2Y9$#H-$9=b+A|jr4u@PTG z97{BhCs1$k!jDV?I@im0bYHzMrqb)}1R&9!j$5BR-$A>xZp8IahEG&D_gvJzCuX%< z5og)vzf624o)1z(;hfhMPGVjCMmrJH!BL3~lxu7!6d!DEw7}}r987zRPB>Js>qrBa zG&A=^T|@QI+zVHFy-Jp|w4pRs(@ukhG=>wwnk!~KTkqiFZgV%|9WGdN-MmDlN2y>& zTS`E0x+?qDkHMg~v$(|tCt5u`$5P!Y)*f$7^itQ!%!LoC>CW+m>@furnJ|W=pf(E3 z{N{@_q!>XDXSPr+K-N?Z8IP(6Phk_Z*ec+*BGO3;T*pow=^;!OLfH59*TDhhYRTEN z1^Z_t`c%~?3Kp(R7nIYQJoMfIyd5y$3e_-dAdxLpaaee}$~6Xbkq?CbbP6wXqVTP~ zdi3?z^&gc?JbU(TW+HLymy?6T#fX%u20ze$G#}g^)A?mCtl{8R6Y0}G7dJN-KK9`c zR(3XCd-j9xcRq6=4hIj8egXSvu!Osi20*=XHWnha z@2!2G+3Bs@NkvB-QrfzUe>v*>((i8!E|(aeDqje{&Qs?y<&jZ8{foFJVQ~*GM8Jn- zah|QM46cxiAw}zLzUVpacQ(~WYuDDU-}+h(_VxVNH}YS9AOE6f2`T8j#v+=$vCCDz z!Nt(>mCX$m;pjjaVhhGX3L2^|rCW+-p`q%ksM2$BH&r{x?N*d-NC>F*aO8O16<$ML zjeL@(-slLr7>y6AZYuVXzDxFpGHXzICHec5506Z1j%ltGw_!TZdJhODU@1| z>Q7_=lxApu);E})m~SZCSXAUsZGygARc;Ii;S)Z9?hYV%V*l-TJA;bi&c#mDL-DXd zK@CA~1;vw^qxnlw3eF6wnX^cqJl{eS^GJ3t;<7xh0;iq(9MmJc2v?WsDr2QK&5v$1 z(siN2%ZJEW4;L)PF&=KKj`KcurZb>-ql03qW#(9@d118FLNUpjFZIkxIYr?zQSJ0C zG6n{f1b5XKDsORh;(6W`v3SIM~F4SG{1I0&ok?M7;BK`WBtO#Q+|);ovDB{2X*ni91f^@AW~G zq%k-HeABayIN>c6xI(da8@R0=~fJOHcM^9 zQwu010*ewez<$jtHP>4mIy95 z^5DclJ@zMjAd^V)fll_Id>9UNnH^7^B&1)O(n?;n!C^hV!JKBL9;*|2pPKlnq-Wq8 zxnv58$bS7xk$j$^G$#BEAZ=LmX}pwJYT2xJ$``x!Heu6Ki278fq!;RW;|3Pn;M?pD4mc_u&;p2*nzSX*X1HRZ4v`Z~Y-}ll|l>ewocDS3wV@Q>0^k4{M zVr~oKf+>5GL%zYK#*$j#9iUv+FGI!K_+&tNVL7y=_2J-gA79C2RTQ5lE-amgIdofx z^n7?q@PDT-4xtkgJm49f~wa{p0owJ)gQH z=HOu;2^ogz+i25PghLwT4?&x=n0vUhh?+9JQi3yjk>wm@-?W_OBI3ux!6Ry6>13cp z^f(EqpNr}uL5ietM#`E9k~fv2;ytI1!1cj#nw30eG!-7gskcjAnx3alkK3`xO!PV$ zauPbzt&rOk;lGlKzwBEr7{;h_=-?`a!5gaeVcN76dHZ<-g`UW}z3bT5HwC4X8W@z6 zsKky)@}#c8?98Wq>rkXg(d(O&Z7dp2P4!Z14u12_v9){<6AT(`WjI*(%_`jj(MCrL z`4oe|_o+L=3?73T4j8MqiS8LYbGaxbalw~;3)C#Th^WBqY`flVvGNVC+m3mKJp?Fj zh|hMsq-wUC96i^T*N$#y>_tur4*y4$IqV~G9s@IhjpxC(Rz4(&xB zf<07*#bM?Qy&SmdTdnqBO!yf~{8oT>k#RGkE1OGLkC$Nd@$`W(C%20LVIH@9I*&?X zTp9mGJ`#lhAe|&$kDa5e`X=WzE45(gSDA8%I64OyFh(TidEbuPM+|(^u#H9YCx}Yi z>wr{{oQmNfo257u?i(Y4J*ThoRIa7Of838UfhJAqS+@hF$H1e#%9T5iZ&q$Q)qY$) zOcB%0{`&wq&Da^d{K4qWKAW6C*Mx-3bog11D4ywS;iP+2>`coM4jE`>%pp;3t;?*H zRt-+4z;y7FiM}$9sMmFs<8WDVpzlEp8oncz#Qsc9%?+unQvz#=^~D**t-H~>bty8t9d}H{hD3gBc_FHF;pO*6g)>P39ZKZedUuPi5$pYC(Owui{hybED~|RF?V4z=gmRBqB9DV- z#z7;T7vk6($;eg^l0Aw$DDy&Enx}S+=sPU#6bUrJVKo6^^-8IUJI%__tH_@)rk6|2 zQ#f$MVK+SRmow3tv3iblsRc*r;N9O8mDI$vR&9)h}A02X{uhaUz3uHPH# zA2EBAjKU{KlRe-u;`N59(Srhh$`Ljk;C`mc>vcO9tBrcQ0Xda} z|4qa;f(puvQM)uub{Qx9dQmS%qlkHuf*fX-xj?6H5w0JE#xS-w(wNSxq=n|h&I&X$ zkREcbDQx}fK`L$>IQn5J#Li=ALOSX4aZL47i+B5bw8L^+t8T-=8Fg567?P#3*w~vrS{)gqHx~W}8M+S1+W^ z(@zeg6-@3#te~rfT$Zm?byM?6oFese z;vv4ldwhb1_lSI};qNH(*$hxe0uEDn&b;bOrY#2C@{}r@JoWvyRcm;e$I-l5DLHf} z#w6+CRrk>(<9Rplxt*D1==))s1r2j#hC7_yw+RW7a{3k#yi++a*}3P=R}+oU#nB&w)axSi`^g~;M=zuc(b>c8G zWM=gaf*P7jDH=FEY~5wtt`?*aiK~VdGEk%m^uF>t@uDE7Ln{;G`W%U)Z2H! zs2EwzPNz2vCUX_0qe+l5%kT=a9H#`=_TiccaL&Ar;0YX5+8Lk6_H&J!%oV$xq3W|% z9ut&^S1-qO`}=^q?aH#6?Nv)wM;MD(yM(uZ`@Kj{6Z_sbA-6N?49A^|(DSKhxWCQ8 zXNypzVfQh2;Y1hqjXAfGvyKaytl#Y_#)>2Hxm^Z?`Pu>sjdZCPdp9dnyx|UOiOvxt zWKvYN9F$H$NgvX1aHCkbtkKnz2U@WTCSay8Fn5D8H&Dk`^Ed=D7^6F^tMnGhB@tBu zlk}?MIdB2bk2&_<9Qhm|%-t8rCQ^-hM49*RVK>7QDOzfFfHaH0I5{?n`wX~l%0RxC zXSoO5w_R?#)b$peiF{K`_9!;`R=Lae92*JYgPR~J z)6s~MG7#!jw%o5Wp<44akJy`5k%z;G4{xNzqH|C$o>pMRJCzc`oEO8MTyrxS1liXl zbrvnDXX$XrACa~ldP0b{smK?}+hCw3#+wdq-)V_?F&x}xs5`~6WRf>W*uTB5#a-)M9!t`9`O^V6Sit z2k-VRhI}r@jWQ%C>W2f=fyz*3lAI|M0m<&x|ES(fiAxTCKn3-#~G5Td07zDE?G26M62=CpO9#gc0Gz! zeRL}lA6SzUhECB(Ph7YvMOEa7qb3ff=5-tEJQVN5bisk9rdu9L_20W~q9d^R?ei1iFgb;4|u6#{GodoS&U> z26{XYyOMJssLwLbxrCFD$A#r?{B%^pEZc1Nk|QKChjIF%l*wiQr@UdjBV6C<>4oY< z`@#;cs!VIGf)}W|VA$!I0!Pplpow->0XRqjn?<)&LQs{&kD{3iOQogQkqvc?FAu8v z%idh8{luwhD=Ogy-E14&%v*gR#}SRMJ1dPJjv>^%#|k>2PH$W(i?rPKVizJhWNM8! zO?85O#&Jo}vnB(=e5q0dVLgxf0Jx7V*Mze3q%4#161eM~usw@gJ1{^#?327XrItBn zxc%Dgw^_gyTBEv(gcBgTvgx8LGvy#4@^}Qh@n$!uIpL*&T9TpkyR?#t2)A>Qk0+we zJ?1^{^k7v&1KbxT)(&`L_M)cszR~m6t)cn=9MJQi&UVz;!|hDN>qd5Zf@9PQH&yQV za8Q}!4x_Z^PQ8l~>9bE*y@u09jn+99LaC|{vo}LImwSL(SvGAYweid&lk8sH?(k80 zuW!?G86QmBSVUr1(_T|~m!rIxYD9eWyNb9i{Us{dXgGL>B9c+t3IcN@>Z+UBs2tDo z5~urkzZ8lN%Wmn?LZ0Fn`qDf<84g%Oeg7DVk(It>B~)e8vA7+uoOo#?gcl!H395(h z;OrYK^*Xy|Ita`KHQfBNzmMLAPb$>bt$-_u&L;+a>J2P~J17oZoGrnSBKSwr zL=e|0XuV$x+(I0L)+S`JSIf)r#XHSKb;o{s9!fNL{bxDU81co~3JrdBx`T4mteELL z9Wj$M1%>&>b;C5a15HQSvlqhaa{ZMdV?y2{ki|W~iu;HIR)c6@K ztFcK z?Fdh1sFLX*0UQ(fpN4}k^sUn+o*7aeJk#Pm1#BT}NU>}Q9?io=cc}R+yNK5#t+Yx8 zK+0(IdinM{0j8}O?xh*Sri+h0OdCtJbhW|n72yeFd0fwKyY{`NI6~c?3+Y;h+pQ?w ziYo8p5#L_sq*-_=Rc7)0{7<+v$$B+LVyStV0(*(S>>CC(#Ui|EpE+a>%qX~`)1r0x zgbn4(Y#buV^)-j^x_)vjiQa&b)JO^aC$O6M%l;@%L_=neC$n0mF#g0G5`VEex;lz( zlM@xR5e2BgmQy5x7An>b-fIm2$cWt6BE)3vMBq(){sxf|b)H78sLCEnYvWl!sr#Pd zsCP64A9HbSS)`Vh=Be@=`TT)X{x|I};Vlv8|8#*rc-~-XR_Tx7bnH>e;j#hI;5s+Me45F}Lz* zwgr=g7+Gp3FD!WqLGG2* zIWjv$QDjFJKAm>gQIHllb#Q%?NXE5Nqw>2OklY@6GT^vQ(XQQAT~OvOwck7g;}z9n z_X+DkUn<^H9qiN|VER%=0^W;wrR=r6(hi=f!}FNfyX*kRw0a8Pfic0e?C7hZtNaAW z`+3lVyhJd8P^qefR$*5m8$;LrnxATolST!@JIe`33Q$tK zzAkDebm4TA4@c6wM{O54JKH9A<&HRxvWPdw>kai>qdfPxu!v|1vNWr6jk_ZA5?K*m zum2=SL|*)Bw!{@#nQu99$*VMZFu{;8>#_S@Phz^eO?%jMCB&2}!a0NzGN0HhP2rB! zU>~z^7D*!`sGu}1_TWyT1yj^oJpuz#kytRw|5r_MFz=dkoJ;MP-SnwD30j|=y~774 z*)S%JUPYp^{g19X??siv)RV6j;jQ@+5Cl{?{`!ns|dxd$hII<&{i|ZD%_} z%0a8dmwi$SC+-^)Nhy{r4>Nc@J^SsBX+z}}RX;{AE_=(9R&?f8B)b=p*@N5Abr7-F z@97Y{7jk@DP|5Su2-CGLfis3-n|=d9o1UQoGZ) z*upc#K~^hCTymBN^F zY(7F#4U~0DAw;XD`N+^VqBb0ui}|Z5T9mHB<+9QB-0daT@zk6NyxYtS;)dIN43+CL zYWXL4x?`LB7Vq{=)W&1+50=r&W+8@1GQpdUd@?dAHPlE4TJ=ltIpva!GZ!yt zhy9ykn#!#w*L!9>cUqYn4qnbwd(zd$#OcsFBsqV-WnLYdF6l95^uGqGE%*IVLm|w2cJoX$o7Iy&7Y%AryPa2#o?Xl1bf7{rRMttCJH-5 z<+^C5D02X*l6|FjdJ6$>u<}-%dGps>QkkNA;!-}!v8gilQw-!!Lc6w5QiM$U~y`iE&4d8C#+ztCF5Kj@zCWMpQS(Wbc|Nmd6`B%05%-l zTbZ+ha%0L#pN{_k z4@1*F5&W+y%#8ZS(r*pho5HhP;z_3K;9dDP=42ie%6kRbYV)(-6L$l~J6=w65l=;c66Sdy0p5>hNtaZ(Ls1;L!+1E6Y!`A;JuZ9D!5@Y$AhqUQaiodt zF5U=abQt?%Zp3*{hqDP;dxR{dW>kl*9$z$alL`+$(nAAqILO|F$udy%?e4gUOnfG# z9x~lO`QOWOk}b2{0JgIa*RFO{v_0X;>EOvKJozm5cjE_im4a=m&e;GLuXU5WhXZ-o zFvkrh(F~zb;UlkG+?`qG%*itHy!DziqBFrJyW_UsRs_D8;*6X?df@R}+>uaEqWCY? zWCuJ%?eSkU7D=1#Z%E03P(K%~gC*O>&04W*+B4&fCX$ZV#P zZb>9|M4J^Yr0G!Iq0-U8y=&#x@rs5V`XDSRb9qH>rer%EX4_<56An@N2njoWP8H)X z3%#iS08FHWxzk08v?%wi;y?HL$l7DUD}x|~U0FlJH)q>OD+DGs94~SO#Y^J*Dr{^- z-c>U|H1YO*bRd)TxaC`$OH?zw%fb|NRLF`LTT{gnyy4AkYDxBBxO9RSRaHDPkE<-} z*g9-1QL|HBHA9+-%_qwH*sF0+toybg(-J|46h~FoLgMpdle7^xPGM#_I0Sr=xY~`I zChFlD@4ZG#;QLd*xhLq}{q!13)>r3)XB(wnfV_xshsQpP#kq2gD4kG0Gv`SsT$Tz| zm9QMakYf>->{{eW%JogwJ!+$`0U5N8D$KT&N;!?t6>8e8a;x zQe!TSe>w=wJhBc2`#nmy$f2GR^+B>k16z<@-D=Qp;J+gKy~5Idu|K#GP_xt;Ozt1_ zAv3?Y{z}414Lco#6k>*&oyBItkiI3k2O%yytBa(Vswg5rb6CN~@&Pkd86YWxsy~nM!@)S>i+v=*8DG8A|1eF|G*1kk!Kf-@SVaevYPBLN^|5B4oAE=yWBvh`SL`5QJZIIrfD;|xi8gc38?y!il0n)NL;*#nPk;R%U6 z-k#|RmL?bs1ydS-G&XDv9x!2v-lwyysczPoR5oj^NW}pocXe4ukLyIK5YD4eNLldd z#hx$0%2Omtmfq~x!MtsoNAhKXbTmhokrx{}BH_JzfED{<5R#%U*r z!g(fBcVx4yg6o^3Z7fD8z}aLCC|jTJ0pAAhr|X$ERc0ooq--V|Ftbk<8CBc}2%Mh) zG!=!toH)q{e27f;C?X#n-kt2E;psUA*kpOzzLw*4vSiVcbAI%lgKYF>!Av_qd=;W^ z^K8<&7Wqi#GbGwid$1L=Hj(8lNgnP?9?b}83o7itfX6u@aiIaLw5EA`(M4xfl^o`& zA@xzmgeA|LzQgV+7&AtGWI1tlifoN+qU@X{H#^6xFr+JZI_T2q_Tt*4-nh`detYUd z+78e~!BY5fP74QC(nxaFLu!lCk4}nlqQjJwvR>sr|9o7puJ5%7D@;=4xuf;^Sg6xn zlxMenHZ+l->P6x(225UqRFF{Ml$eq2Pf@`$#T5-vCQIvVMO|8GCPcSjCf9Xg?Ub^B zIkaCjvD*KcSI`=AqccZXG*O<*M-(m#8g;KL=IG6ZbiZ0icc!@A^kt5s_H^Va3_iW^ zRut2#A;?<;_f;NuuZz!};DlGOD||iCtHNcgt169`AELZd^+^ULTwt#ndW9BJw`W6vCM+##DTRC-oez`nqbJ4YVV7cxHHna3YN9R=c zE#`Oa3uxXN4i+S-a@+}ZLT><&gK`ynx{CAO@T=}R=iGDnKmXw|HjZx>OdH-X8p7zTVn6ndYN4&3+_cdyqMy;^A`L*`q8T_#$5?g@Q&=VWgq3a?M2*i!r}Ag z4kitEAEaat_-mnlo ztWxez*mfUQY-2G_Iq2ci*0gfmq>iXlou~;>_bFxx#_paa-(20!$ucE))h>}h7Dp^& zA!F!n8j_);)dj7yOTf>t47@6W^6w?QmB^~!CY2|eBj!M1NXtTyGHT+rFVsZFRe9s| zAHkH1{u$jg7!`W0SJdZFCM0Spa)ZXfL9lMVh-~UMr=LfvOKxj%Ec%f$mkIP$yfCSr z6Y_Z_%#MJ4ZQ>#}-gwwQdlT5{Q!Dqf_@uz`9k^tVVizHL6>>cwa61*aAh3dL<$UUN zb5&^0OJ|nx`4(;)i+E`mn{IMhy!PP)d)qzDYF6IFupD&H>vo#2I?vxd;^PiR*!dP` z+UVy%QYz1T_70?*n=V^0rR}=#EWzDi-_6K&_)jKgO`b@LY+2=s+~yUu?sb-X<9lx- z1t3>Sra(DrKq|8qg*^OeBU#~UxjUP1)tLfGDXzZ>sK=D;U`}avQl@p2`e-1rX|`u^ zXA4Zw>&?kQo*{C#$&kD^2qsu2G8O7g264Pm&~!JOPRH-o`qe6#-kpvjYP?E3%aC=r z@X)GsjSc9%;<2w6o?cIO&^JXx1V#Pyk}s>zIFLp>@m_;2$3~Rm2xU)#JoGJ;lRPabANh?f&*pna38)}?Mv)7JEb*?E2f3HnWzkDkaEwK zuFt?9X)=n5^DQWA;lk7XG$sR=*M7T*oo2a`T?v}cH zO(f`dP>DpmBt~%`p{5-4sW%N?mXsO>Mp^Pr(zF$o^;Bst1L6zq-qlIiQ-xH zM#KVeC*CVqEl=~!&^ChMb-I?}&HF-1t-gsDgYbYc?$RQBLqjEH_F1;F+fM&B5j?FA zn!Kpq3!zwe4T2oh0&f=;2+OXSeWr>jm>99DNG(4#n<#&;ZlIEEx0rqDEm4zWSSi;C z8JZ)~IZ;_nypxJ_tQ|xqc9?q|HTX242x|9WPa&*;qWGvJMFy!~p*m1bKi zS%A}cDr{wx_wvrwr9$5^bKBK(=MuN`o_fPHd~i%#F>JPbj1}=|o?E?^jl88u#VY$^ zkOAu((v@vCxwqIvk%8S1r`X&qo1gwjlAGVAzNYSR<-KVs76f05^}U9K#|@BMhOLEz z*M=)3qkly3B&C-R?a3a-*$;LBi#%tn)+IXM5Q&|2I~Q3)xDT{@O_t=$e1MZZjBI8e z)o^fuE={qZFqk8(CJEvoWA96^o+*sMgBE0V_U=| z(Xl_P!VBxNglq; zwI;h4$k*XYgY-FGv_>SWRTk!|WslxG>CUL#(S0WWNIP32y%TPhW*Y7lp% z-X@XkGj3D8i6>%GOa!ZAFp%_`#+W z!H|DXlEA#IJr6J`Uuw-;Z$u=MoOQKWc%A59_a<>n4OVRD@yprSojI`)|PPsKey{nsmpp@$~I|7mg(dAN3-=a#JoZY$u z*)PvuJ?=&gIK!YHU)In zF5sAWwfS@dNLodya1>T!0hLR(kJN-YjT~0-RbI? zUUy0kc>x?s@K|#HysEZ?XWx>YX1KVx174|~V={)9`0mC_giGgi%<8|u;abKa^QY>x zP`Zfqs=%)YYbPQeE> zeZDnawZ}_SNmIuMIN779DlvF%?i?qMo}NxvMNKpm?!upt!PQmxo0gy0hqxPEZT=MaSk?Uqaqa@UA%1=u>Jt3t>?&K9JlY zmptV|@;=TNYkky3d~33@VYL^SHG zJ)adG+1E+ou6K6z9neyM?59zgwjwlcljM`lm&{k0_%$7iwSaFx#!1uJfqi#tGRJW{ zOTf8|Iy`v_qh(2(G}|9ns>_gi7{lw4&A}H<$za|V@p@#_*@d(e0inSdEFQdNu?G|* zL(VRon!+WrOS|kdNtZTJr%XMD4Dlr#H~SDKIAr}<$V?-CwFHi zb4vQL-(4MB!`>;!&2Vc~5uf5yfiagzIzMbCc8ayI5AqGZ;|hinLG}Ar9SZf%+G)3U z@4>pf`mLj9`(QcEMZD@N6-JzD(Q@HbNvTp)h25?AWXb5~Uw0t?f z0Ji`jtqPK3>#u1cIkR@r4g*;7-n=%$)_l`7ZIUsXqAzE09f#7OFx7!*9Ch>5i9x4M zvVcEh#3kaET}w#@aKx)`5l%B+=cxAD4TeI!rPp%Mv6=9A-bljY^4`31IlFJBZacFw zKm|JP;e9tC$7~tDPT6;xa_XCjZ7gmDxMSlboJ^M9iR!rQi416$%o8;zF-)6z4!GOY zNsI2}av_#cZx?0UnP!(eqX}8R8|qq{*NC5hs!_NCNxxp}B+nMqWED4OGXqobdQGX$a3tDv|E!)v#Sb>jP5(3tAEN(QA1q_n5m&?2? zKd1OZZh(HZM4LHYp_d<+QzY06$z4+Bl7&Q5q60bS9|k#w0Yn zS__xtihWZ^_RukP6>Lfo_Y-i5paR|4E667R0?J_0L$<}?2tD6IUGh%8`y^_(++*{$AQ0pUQ zl2kA%#cte}Qbbg_38R9`^xfIl|B%>~mwhb5CHV!jU>`Evj&Y`axQ9zuD$n05o%aK1 z+W0yTe8=?jO%J09xA-O!LsN{NoYDrG5?`i}hbgALr=x0fm#R?jyplahnm$Y?d%!ab z(>%q0kaJzG6m`o}dijWR5Ph?AnvsbQzH6QHGf}Dob~t#u)zV^vTi6?zU-oSaS7dsZ z;M&V>=VEi~Kx(rAj`1Kl>b(KJuik{C<|dYmm-JxAW(>``M0s`1A$nalQ07-LIFo zappU{V!gfB+8A#AEL*j%#A*V)?!qF<2jGGZpUX47K7+m9oi_0W_dRa&NsALZn)=BG zA82Q*>Hk~jqyIyx{Z(Qz(#$rg>Wg<_w~mV{OoHg+EpP*7mor^V1v7SQ&3w1P9ZSFM zhJ$Y&95-M5-2OO0mL;+R6T670ukbP6vct4>!sqt#26X<2|v)p&Iju&MZ4Y(DaVn~Lmp=4^dGsON8&lvs=7)RBD#N>I!P+(7dNTup|x-mxqAJ%YX|2CZ4z(z+S@zp#U5@|?D>`of~PLChx$JXo6G z(>}2U8_Y)^AbOnb@{JSoDtqjg9cIC?MvB}l`cKypezh8}dgQC6`1v9Tmj;@qGx$SGYGb zfu!Jvi<%8AIS7B*&`i~k z>3#;6e<0Hx6QvgQly?Dh9w!v#avRy%7q5?c`RD*;DobSWj?@;h<*0JFgzw| z_Xt{&k7mTgxX68hun#1#k`TR59@yrMh~NqV%TX2z-d zMDs_9hy$TweQ#ayo@)s8KuB#|RR1iod>~uri0nT;Ff_QL`#x^nf$*LY5&pLXoFyo8 z@g6J6uO`R?Il&2${vr{3AQEFtv|mioejqbWi1@#zIeZ|3C@Jc{mt^N z<*_csSUwjyMv$RSi~-0qM!Bs$ccKV9$ALEIG0@0cvohSTk&5QBt{%!%hAoh+40QGU z211?6HmgBW_jR zccjM^&i|KOI&V@~LZ>`E39d%e#_ya2SFRHGkNBZ@dShB3QThner>A`#(Uo_XTvhB! z5@udJk84|hKs+zxqz<_e$c%yS;(GIbM&2SM^>;bh#hjx#>f1L=vM;WN)*@Q-9-I*+ z>W!W#02PrY)UAZ7J`#35Dn%a#O^GGD5o!2ldgh(~Ju@ zjlS&hCc$|V8UJ;yX;=Rru9+NKPe!EP4gM@r=;Nt@R z0{+9qjQ0+T@n?F`ZPY+X*%eTilGS@Jfae5dqp*L#NqMu?^Fcy6eGBVlZjYDo<$_g4 z{X?khbLMlc6B)(==g&AT?{%VFaGXaD1m4Fu zuj%nmcpG@C2bo^VyIj)y;hCG;jS0w0j6m0(qkhMjw@Zj}cUF zm76WV?wb*qPV^RFhj}WepP9+{7GPHqnD??kE~M#8RL<#qklbzhlg>g*H6ua(2L<%> zqybpksQw*JYI@QjAeF5zIQvhe*y*7$KU%#RBG7(`v@!i6S>Z_lRc1R#0HhV`A0pbP zrwIZ=id}_ww`69&Pk__2*w;eTt`$gspKF|+_b5otPX2R(^Qvpsx8XbGwlVQcpv>?D zx6`Za+pjV~x>pkg>Pwuc_sr*p8arzK3xSEhdxW*+1QtITs}8>2oA2Qvn+2IM*j^;d zzLUuGZg_dpJX{36U3EEi7-B)O|{s;J+nhi$ioeRH{N5NC3nQwK{HR z$D8y&3E8XQ=A5gyx`WL6aiZ00IZp`NnePt}x3gfv%vWL8#l#O2vcyrQ!?A&EFX;*v zF5xkdpxSJ3RfdagGTzPE1Qr0{Wtv)^tbMTj+FoDqJAG%yP`>M=IHm$RMa1OOD` zErwd1v-L-uK!ceCKxg*$fK{+6?zMV)b>kDQO6;LN>_#+(%5!X72*>$sh> zaCMS0Ymh0rcJ<|-AYsoU-IBHMJ*3hmVrH3pas-E1{))$D79vkV9wV1;Ai2y!j7j(- z1oMN$i`N62lVFn2M@i;)XXPnl!uk(MDqf#%X7LL1kbSr#?CIm2oY#4g2b2*b2HH_V z^E0EYC)3NkS_$K)-JRBW$uvQ@XLa0^(QA8_Ck`Aw{}S8qR~O7^nY_o zUO!D97$rtR1<)dK<_+j%0`lq0YMEML-sL*|oG=S*7Bpx(R+U}gznjiYvVgPBEviDQ zTj|0A6TAIOgzPtRG9jZ<7Zj0TC#W~5iV2GU4FUS4O%}i!s-&?DF#?5#t7I&GCt>C++l_j!Bnh1Y?8~_G-l$O~m(nw1{c)6k(p<01)p~uvnegZ^R|}At zZBLK4Uev=IN~6N&?Of_~?5F2tKW}g&rX!c6X5lXT`?zesahlzd_4#a1dZ zySJro#U!(9Z5k=~H=Nzf$V16bnch3Ovoj+P;571fxfwH052>>fj%YbFrp5o_BxmJEmRnwW z5X_g=Y=xr!g5bQawh8t}KOG|w{}my61@|Nn>wJ4h04@>WtSpX?QD~*-4|zIg-H)(S zmDzpILF_Iv;04+*9>nefnr4@OL`t3+b!XbmC7E7>i=7o7{7UAeok!v7Ri7rH6$MY% z?UQL zoO5>v;m(RiUdWYQc?ZFHEy@X|X`V$8kiU5loJKt-F7Q70VBq0_L4kJ#mpm(Lt#`56 znic*U0nW+_8|9`<@9!MMIcbDlZ5RAqg7X?|6KpWSxkOmymdw23NYmi=6MwVvLtG+Q zS`-X^{z1Xh;^bz+oAt=?xmTIqKO*wH;ps_sB-%uoY%B5B4rG@NOg+($5$LRXA=YhP zcb4UU4VQmVP~(jJ144kBs}Za}z>PnssanPOQciVNS%aG%^=4nQj7N#mnIWP|p@sN) zggC2MkQaj+x?0(f6PdFzqWG0qA*OFXh~az zw;oUP3_;Gyg7H$e;PD?E1O@5GWd-7Q6XL8)GnTP^f}53k;zxC4j(B0+)A ziqZSNjQcXHFzZBp;|2Ku;mwN2_{!A<2SGO0Z}zPRvB|O9Y~?`KdfNDT);YUb6}>J@ z-i~GsU&r~)dW_9O210_D(8!wg7+Xi-y$6B7*su2r5jZO?qd0B*HCgNur#Cx1L|+8n zFVQfc)$ny+lNGQ(!e#qSH>XOx*ER37k5?P}dcyUq6V7*;aB)-5t*Y=_gzD#v6G7Ei ze*^`;z@3_Xsy63DpuR=X>OVh|Ow|n?{kMbJD@XH|seVJc7BIUBB6PbkStI_ZjLC;PCZuN%$%&qdr2_`|ncwL7h1nid|69HCl zK(pe*8(jSC0OMK^U&6ijEB=$r(5Vvfv4c6HZvBX_I2f`YsVwmtq55UXBuhuSfgJcl z2Xo*P)hMpu_RLP1`W1EOCgQ)~;%ApoV+AleoUmUZo&>3h(iopf#0I_+APHuYQ9Hry zn~IhM-7=k+d`PnbFag>4i{^DpT*7EnA>1<2I=$m z43{-OEMlZYiH$co-24{Sj?05wNb;E9NE~QQDC2f+R&8#ZrQey3iQ|0QD)T$Zc#J{c z(p}?b&2gZ*8E81)qs+9Vu5*;%IbYJCRiFdX@1F0%IFP%rA0Z`H=SGRW8m^+$qJ|FE z{T#`oIseg++!-J1pQo*vy~O=W3nXNi={WlMs~qjW;u87RSa-o>FYBi{T_7_&&L_iM z$rGI|Tg+TDHGb2vSPPm6{BG(8ZDp`u&c}icj7bJ-nWuAQq~9YsetZttOI-c`RZ>KE z4x?-b^)7BpZXoCu;u2!mfp5B!K;_SKftC3Uy^Dn!*YFRKm1Ikq$+xYE#qEYF8L1hd zvVt!DwLLE~fsYpH;9-Z4+^H<(m$|ZekO>MzU@*O&ADkC4wxh-#uG7d`ew3qRE5DQP zl2~%c?U!-h7+>e|YhI^3!9 z9C!rFvLuV3d@q+JWt$IHT5%|?6TXXE)R@C^kU=h&=k-gI$e}lxB40%mZhulBCcepsv~j&{y&mswi)37 zm~1dxZSj|>3CwdKLmf}%6RI$i`vK7&3(bsU8(!ZbYnsC8YbJ|Uk#QfHTG&ifB{SnucZE;PDzE*gq7gTN9 z`lB3eej^>U`>q;noJb!nR$5mx$T&HjFkL+oS^fmFjfZs2#b2QfX1P;M)w za=+V)nk6GiO2%9jf@~3!*>Q18d9)?%j=v}$gPL))Wj$JDu4{wRq}FCedy2c2&F3dv8&a)U2n`Z4YFKaN zcX45_W|IDdLyhd!zoRKKuR#pb8uMJqil&1nIf(yCtedJZ8M-QEEt>A+z8^Srb4U1G z&OMvYOgQ&W)QP2gSb>vXUqJc}aeUwL58=rg`x@njSr zTOoSUHxd2WfwE}^a0KAL^cUlL)C2j{_1I+mdv z<1!AKp%A=gD4#?4*%swwXzHR0{AfzZ{qx}K-JW5*ze#O3+tr`UQ_r@C>Lg#3Y1<4p zIzch0Y(-#}LSSD?%(b&6V*&QETw8V~(QLcNOq&t{>O^bQGI=AP z$(@|{5y8+%RM7z~W<=e@6zqKDW1 zw2$#dB6{8;00EZ}Dy}{|hq%sp@2x6Y5Rdt%9P{*?&#R1?T*G+kLuEP78LehUU(EyDlX9G zw+n$4W9!F=t%DxQ4AVj(_IRlGa8)_X*ojuvZAMYAR!X4no%2ASs%hK|I-7MDecw;+ zoPC7c%gmYPrQ4a${&i_3gqmZ#kNcI)AYB-f4%m&#bya|;gezy7L4G11tC(Tf9v*3c z3(7bKzl(=#u87qG8Ykhef4T-V4#RKZfb-nR_>n`r9c5oS`&m+KwxT%wPQn+0mkW7Y z(dZF>K;p^HLz`vD$YyMvAX?|TzNpb}ws0zgvc3}B=aAVd+6?Q9T4iJ_s`rt*i2Z~u zlb~@gS=~HQTTvzUMY8?|*E!$89Hh>hXdtX@ZR^7vEZdZseg~^{h{B|+C*YXbKCKzX zgtHFnp6uPP&KsT7;Tzg;c>lZ!g@g6AL_D2O+RuPTd(-uw6N%Y5$8V?wxPy0@gH#1 zd2V7aYL~RCeILh~r&$PFyIJC0G0k8<$pPo7^SbB%&p24NcYFH%>$mE#9`N#Us~eV4 z7RnUa{ZZ2BJXg8nC>lREZQOE zTO2N%1STD>5uV{Eg1{f4zSqfAhTLk7+3SLlg2OMRA5lx8zO#qdF`eI3A)7NK@cw*9 z*3To45B`6V^5?ni)RF&~%l?u%F55FQtr(Co-p=jf@!Uoq|AA8v55U3UEoAT?Ijd~d z2Ewpc@AmlKL^c(~eR+*dl^Br09+>Z7<*3ssN1?v-`f(nj?CjZTS5}U6yz@GalWo9E zJx(7*40Lg(4dQRULz$5O(_B>!{u=M~M08ODF-5qUsCC4~d~xVjg804p4%H0d#@0^d zGPf(+@|%`2aP2xS{_}+#YkvEs#)?<=edMC^BSem72=QmQUvotw^DTuxJu_eagj-21 zJU*{E?!b5dDTqQ0;pEd47EGrQ=HcOrk++O*mDW~VNDXsSe=lR|#u~`YL zLBFB(>r1%B(;^Y~7^8L<<}_95)~4nd?;yx0rktDw8J92kNiKF~cx^l*DGcWK3Gb0< z=ZBz8Paos=63~-V0;)#+P93y@ECA%=%FKS0#*SAP%t0*XmZCY!$WW9wJw%zVI7Im; zoVYjMG|4!q@h4nkpOJoW7F^>2G35ITYW^$F(X>)Q0F}%|n_nS;zA)v!QC?BXDC?2@ z5~U5BQAd{z`5@OjEyq-sb$g*!Ha|g7kIyhm)MZ7oLQ@m#4i`PGl;F%dVKoFh>hQdm z`<4?o9YHvo4~!Z6sti={Dl5wt!+vYM9Q;d^o3 z-*}9hKP|y)H;x1DEv|c7$)>?skuHl32y$9su0ish88A#|qF+L&(<&W+svRm0#QV7^ z4^2z!_941I<;14nTQ_;I%e|c%6nJ9S=4L!H3z;C#qg*R(?;-vcCPZmp2Y!jbrnTYaHi;HtWkQ;opN)8aN}@Yz(1!?mTAhqh9fsE8 z4SAItGVPiHt^wm)j>_YNG_BGENG1vu&+Tgnaat9H5c|!xwgMmKIiA*71t?c@`XpgZ zOT)bmJcSLF=+M&Uz%5+nv=Ry?KhCPsPaIZQB#}(3nFz>qiTdT7?=w^K0s%fQQ@@T# zomQm~ph;2qABY0)+krV)Yz%Nr82&U@Kdp!rxE^sB&W_V@f%pSt+Otj7BNDf`Q{LAe zb0gL-6n}=(^(OpG060r5e)cSfSGF%97=MfKre((}vR+aKqjt*wIO$+oJ8`EO=XW&YR2LV?iz(l;OUtw871{~6icEIZT) znj49^Jv}=_cqZM|zDkIGWjfz#8KP|R;f@5@-zIVT_5OTdkx|gLBqZDZ1Y!DRTt1j` zw3#y#)6!i8`hZVxrk5C#mLl9m$FZYjk`y5}SDqW^|tpQgkOgHZHh)7{vzT?uEzK%6$cfnH8>y&Xdtr_F#lOgv^@5adivu~l2@e3 zJMrktp$P%B{uAc}QoJk_n{C!>HWc`(JEXZ~ zm@hZ7JH+=_+7znorp{q$Qv&?cKyjW+Xmwubl zra)t&!sQaO6b$O_jJoBd-4E^GOPg%RikB+}%l$TMU^5N8v|aQSfPCu?bMEDPcwltk z2+Qvzo~BLh*nZ6NOOj8IZh0x*%-C{1ENya*+bV1WNEnRjZdr*bCQx@o!WRWYqap$$ z!tGwA3`9k@)SK;+wc})^A65^#C+3s2B04XM-p-wE$d>N=E4-!D%NFAC1#&voBldFS z&qR6rz6HN@bC;|+e7c(Kv6Zo~qB{#DYb7K;I$ZqFRJ;`8_u=$A?111f@e>faTXPA8 zue)EEtYJ1p8K?J4qfltNE5a1a&@X$$xj%6>L6oA{`a*aDc%1-yyq&wDZxqAY8x+j2=w0;NR*TNZGr6|DW@JZ4u0uQqAvJlXV2EU5>RaJw|$(+ zv9o9C;T==g_MNQRyc-SgbZ3DiZ(t#YAMMlIZH2u9$8;O4*cb|liqM+}nBzxH0|!Pe zpIX_QWaCKD76h!{82U8HqIb!T`1~#MYVm3=ywaWLT(u_dcnY=NP4o}OMBP`pDVmEl zSl-rcMGkelQOZWb;zL6%KL~D*yy^CB>)j-J6=-GpiL>|Cs{$UNPd=|P%WtsFFs57T z*2Giv%x)}P1arE*(M5COqas+<@w|8pb*S6uU9@KB*|(?y-S!|luYMNe#CB+@vJtv0Lr(aolN=UOwnI0|Sl;PpO0p}bY>00S;f!U&9H#r~F`1iaBnyqx zcKJ+$B)g0YmLhC+7AM^>`HCIgI+M5WaPxpMOHVEhw{+JHF1Tg$sy@8ZoxjA>O>)<$ z*s=YB#i>{8#RO+jgSvY@b}G7gwIv9P;^U}Xl^NmU^BUx@t+K%rNv-0ArIcUW?LFl6d7X=mlSfCMrbRtio5?9OljrqK z{KS#l$az$Q?o(wlmt0uxwXhDaS)a>_Wo@4aIn(XxF8C52WjR;)eUc-F3ua=)HDg>d zrQl6NdbSHQgo{l-`n-#{fEGWA$6uWH_meE~(F;6)id#P9MDZb<;0ebS?O}o9tPy_3 z6DscCF$|B286xe3!3#c~;({IP&*I^q^*4H(;7dJMb22zQD#-e&y<4`5bs_n%glO?) z6GN;xc55jYdZ;e~E6rSWfR??YFFO3r@G;84WfRfHXan9TN;kMdd%=Xu#UOrkB0l&h zYatF9aJe?AafmC{L`}+H3R-@DIo_>;kd^3ImR(SpBV8@aXKMr_bW)A@S!uCEzy&N0 zwOIn0`2Tr8cR4tE@H=X9^#834Eaw3oN}(rw81;YiLHytb-;8o_ArLN9Cl@fG8$#px zA~*}-Ck~MqhtVB|vK<$LMzv%#aFS4rV`8x5KJyM*TjgXF931)_Eu%&<(zee^S`sLW z1S%z?!sp)Do2js$tT4a!qe18Mlq^SxPkLIO^XkEJ#bn&zhkG)-3)6XWg=jrXEer8c zN(%ge6nsaI^SKD#R3L9KW$|~#2t6~;w18+?T~T?F4x6k9xpMk);s>eXb{6TZ3c)J6 zf*}dwS|{{cLN0sZBo7kt078f9i37Y-(gQ$MFiGwBLi&^q)Ulz#emz$WP#5YnbS=)iEmDkOh z=utsYu|~_*++GwJFS(qHOja4KqPe~;m52{bITXt|q}Nn8y`-&#iCrM8$5F@{FC<;} zBQ`$BdP9?gwJ(sX65>k_F~f|8;r?PE5vK!!gkeib9)Lhmt3ZgsfFHqHR$H^dEo8@y zwVsJR23CG6D>QH@S79~87q`aa+7>bL*`6H#MF|zL@o`!p&~kUp0JN%NR%S$$Wu%n0 z9ogbzt>WjH;#9b7XxmV9w#>#D=%9E2)@`gm9s)J2=Iu+vKPcW9PTw&XOQir*Agh?5 zQdM6?+(jd!e5PIkEXzn%JcMM*=_sOh=`J+sPZ0>#NW86Opo`!3=P;^!;2 z0cjMfQ_s4%+$PZelC`~P)-UQSMeP|z1V%)QQ{1fZUy|ut z6r|uu`AJeu}3UU?^}DoL>Sid#QGQ{ zHn`$(gORjc7gb+Lr%PXp~7pL)43$a7dmteyjr;u}%oUNWj^F&@}1f!hendW9i|BlHf@GQ={?(nd2wTCc*z^;cqS785{_ zAxtDC#yoD+TTs>&?DB_M#Wny3g+~Qj#=El4o{%UqC@$>^v^|%z;h$l+inC#>H2=uQ zwm7(pK3h9UaqB}rJ)F@%$jK~4f!23X&pHgT?m_4_a#7dv$PggLUsnI#vEkV!NPltW zLY&nSv#E74^_OF5*vSgJks*OGA;yt*L)`@wwQZ=g6CWOy5P+9K@+D?L2--$}+bryF zciQuBIBK)zC?r;W*2`UIKv373U6L!1q^)A@XLf(gO_mJFF84KT+9neR@!+TkBpxHi zdQri=pAc_(_k0LNX6q^rieexYQ~hAE8AJn~OzKs~3USb|HXtecI%Jc`g&2;a!}v}U z%W~!hGVO0|Dh{SaZBy}}DflMJf2{Tada~ zwi`pmQ->&hnY%D()pJeDlC)HP0WRCtWezzV9wrWrghYvJ->4sl$lcp(=({!bQ?uL< z;gZ z)Kyqh%K_~JDi8D)Pz9h!$W;V7BRo|r0SyPYGEfjws{*tiaaDm{0;&dNgl=`9htRD7 zR2STuK#jny1=JqM59lbk{y_T>R~u+Qbn5^GfLj+RKTtiO^WfG8$^%~-0OiJ?hWPUx z;u-<@L!&X!HJ~Oy=fG_W^fBU^0X;%obD+Oqxdl)ia9aXhKwK-JTR^RW{NZUEpdQd| z3se_z?SRSywFg=SD;H_pW#A92x_FG61~+bRWJ9B!sv(f$jhW0KE>~K|qBO7YH;NChdk14~+BBd`(47wS1LS4^%>;KQ&}WF71r!P0Pk=PU%?3IFGzaJfpihA^;Lm6H zGapvw0u2V52NVVLIZ$7qFM!^F?tGweKns8l!mEWq?<4L@ptFek3g{|)`5Gt_tSkar ziMVfoz6M$h^fAy9pa{q<1qy<_Z-HI|cNtJF{8^4amk{?I&;V$B4^$p;KLBM$+>by; z#H|3jj<}UT{So&Qkb<~XKzR|j8mKzZ&p=Iq)&S+lpSAc?0DsouPfPf>9_TUhy8-AN z;x+>P1IwF$4#Uc3pb*6U0<;ktTYxSCZ3X%q+-*RsfwluRg6_CEbQ|a-P%O|XpfX79G|+vZGeG|V zodvoJxpP2Q;mdiTZ;-|Xpn~{w5r0lV;}XzXXj}$*h`1|2I}vvks0jXCqd3_63n&`g zzk%+-@^zrkp!*NddT?(5od@?O&}Hb}0(uj1w}Gkx-2plRjk`eEVC7$+uMl?+s5a#O z0~!wQeW3H;J^(rl^bqJ5phrNhAom#PCeRb04}hKmEdk1qL;M*Djf_C2;9n-7+d!Ft z9)Oz#C=?!K1u{c78&EK~3eXUs>_8>K%>gtT8aaVhftw3RLE^cAJ_R=q&~#|z1qy&% zKA^whL4Kf2&?o?OA8`eNDnPdo&~RuJ2095;1gHwQMS=1mt{6~npyGtUEdg{0_DTY^ zh6gVIH3qj7&~|W313g9Di$J*`R|e=dP+6c2K;?ky0F?*2jMORst$=PtphMtR0=fdr zm4U*+tpb!8xvUCQ6sQ_dC0MBr)C6)hfT{!41d0QyMRGuXKraIM1D!-_wSnFPssof4 z+`2%20M!GUfi&s^%>-%y6bg-oKx-k_2xvS|W1ts+ngA_;TvMQi&}|0PAE-IdC*ZaK z`WkU9f!0B{6;Lk3wFYVjxi&!W1GNR(0l9WS%MjNdXdB`>0JVm0N1zcvoq)c8+)F?| z0(Az82YMOkGEf&FGc>va^#JMylohBu&{D|t0IG+$SAZHLt|!nO#PtHofja69R1TfprL^eIq3pff=Ifeu1r0MJC_@(rK|;0^@(3~_G)y@I#^ zpf%7K1XKudfk0h=f`D#7BN(VWPzcaya1B6{p&JU+AKbw}Q@{-a8VO_s$_cItlouL9 zfPMxy94H2H5kO-h7YS4uaZx}SfTDqVL1QS;ILO5SbwgY%&;+13plr~H2Py}-VL(|> z&clHkLT&_5BIFW)DgccHssS_#XbW^l1MP>#7@*%!3vU74L)=)Pe6TzY=m_H82D$*< zcYuC}#=AhjA?`h(jY#8tpdrv04>SOA9{{a~+ytPlKofx`0BJzIAU6r9B#;T{dsz7p zCcc3vFC=2A~0R0H`DNs+yeFk&}XfDu7pm{($A@@1ZyFgz6O$B#8(0rt} z0O&Tj3xOVk`z26qps#>V0euZL7#fR!t|0CkpmsoufnEi72~Z!{TMD!g+;4%tL)bKz}0c4A3sboduc=%jbaJ13C{>9NY^)IT3de=x?A)K>q+; z2Kp1}UIAJN%U6L~fqM;T8qi-rzrfz#K;I(nI#4v?{sAhAxEnxUA?_wne%QMOv>n{r zK+O?%2dDzjU7)q_;9sDQkh=#o2KplVz0R0Ayf;y_J-N&vkLR1)Yq&@o~R37L>Sg8Q?Hc&;NIB+Wg6#%LXWPrUYKpNz#0!;w78qiaq>Ohl#Y5=J~HG%Ls zQneP)2w3q0ng=WXKvxl08|W{fIzTOe>H@t9EA@bi0M!Qy0=EHBSHv|03I}QgbOER_ zP%z}00BJx?fmR{iW zzzqfZ5@;|`6QD4lpCM-iS_FG4(C^?50m_KDaG*_)ivU`NxJaNeh>HUH7AP7hE6`A& zK|nD;#h?)j^dI8lfN(Xu8V~dc++jeteO(<6)EIFifY!p71fYIEBY}c}Mgipn8VxiM z8e@Pu0lfwE3D8)e)<}08(Az+71C;{z9Uwngc^Bwo#JvYJ2XgNNod$P2&~9))05Skg z0K(O>$F8X6F8_*EwXy@NOt&>5f)fp$Q5GSH7e9|0`}G6U^~+{Zv?fu;cc3p5p| zEKnlQb$B%ms4LKPpn*U$fX>3+OrV#5W&u?J`UEHuR%QcDN8B8sV$l5*=rp*W0cA(r zT%cbOHxH;g(C0uA(ES3a2jb=ft%k+|p!(o01bPkVOQ4%TUjZG4#@9f(fEEG$1Kn?c zjsqgz&p^?LTLV-aXf4o1XsiP=LT)`!eQ-AbwL{!S zp!ty71k?cB%|MAjzW`-~e_Mc#L2fHhL+EY;S^%^iCx+j48A?GK7wt;&J=oaEm1C0eb19S-*XMsjR z?i^5d#GMCf0l5o6_+7Vp5okB$E&)9Ox(t*DC4L2{5Ol8sWkuXIpn0(J7tmd3{0%e` za@T>zA?_cb1jyY0>WH|TK%)_N3+Nrh-3HnVbO-2DaPI=mMcltY__d{a4`?g6{{giJ z_dd`Ar27EK4D=9a5zr$b{K`*#4D>BDo&e1Q_bJe6*vpVh{K*7vMxboSWhS5o;ARF| z42>*6r4g4Es6OJd0iA`e0+bPP*@5u8CN&4p0chj|S_ipYK=>(;nj7dIxOsr^3mi2s z&?#8S2Xr19`GK+m6#&WuZb6{$p<4*36ygd4eTcXsKw*e03bYAv#ei$^iWijj}*Jfyw~|0+k0U22=s)9q3jB`W(8I zfXX7SGSF1SRUt0osshzRTs0sZWmc;L;f%6c185PrHGx_H)dH#rk4!TaovE50Cfi%g*18q;T)g(3Q%$Mik?9Kf!hn{ zBs6*hEkRr#pgo9t6=)*jUIVI&)LsXA8K^H%7NCAW|3a=mPy^@=06GQk8$ca^1_FHr z^d`_k$OQmxMBE^t%s_!aTVO8;s4U`wfqq6@2oO#=sRp2>uo4P%5NI&a_dsDle?h|t zbOBaWpn^a{fc}PDIM58B2%r_q^80sRV% zc%U$#VL&f{I~)k-Jk$|Dk6C|{=0!&*cFAEX>=aE`m_WXS6GIIg78n~GV~iFl zWi}OZ;)+v}VToNbnTj~YM<>LEA^j}Rq>tl!Lc!TB@e@W79ad9lWMf;2U7E+63X4K$VXAXXHxIJq1iij(I zS^ZfA6HR%-#Syc36f{m_CaM$QUvAP2U{ztM01my2BqIllUuA@g4+O*|zMSFA-K_DZ z?6{@~hu7&$({0h8G^I_`GrM2Qla1caYD&ZVe-L$-cqNLQCkk(yHKoOnT}1sSdY`65 zd~lAa`$UD;W(sekH6`HX-NXwKeNt2Y9{wv)56R}Rji-p(Ow`tXM~V7|By(Qm^ze38 zQ%;X%>LH~tdhbsva&hr}L|viu zZoI+1%q7Xp>S@-a6vpgfJ-qwYl!A$z-eIyb&9svwSCf@4-|Zy|Z|p@WJ>5an36e}K z!Cr49Ude6j*)5`i3;#xvok;Ss-w~p65UiS|nBqnzFa~9pYi`*OcFfJs}Ef2Td86?>Gm%Hw(Wh{6n}DXnL5>X=(KWz%F% z0jn2Hi5<+oV7}6n-NQK#m=`t0eBcpT!R)6gXO6QK%x9WXcNt4!E)~=$_62jSro3?M z0qJ4B)0FTVEQuLbQ##FjOgzl8nzA$}+r%uWDYLU>ru<=!)s*Q~pOPfzSxx!y`wYax zT0m0{*1k(T%`CpXve_WoJl|^|zW<9JNM43gfUNz#)d(3&q>P=HVILZ`G z@rc^&kcHB#PQ25%3K8`&Q5iC2Cn^uwTr-&4+51EpPIDa=HC!B(jc*P&&C0-QqZobR4Qi4+Wq!f<@yNKFemh*r!fTAA_ zWa6mXLvMa`;sz5HKp{v&ryV^G9-EPYi?QBDfJ;+@)0jDNq$_d zAW>CGGNPI6jU+jFQ8wabCaU<|JVbp>dZi;3q7>rIj4nXbA7rKC86KCGljO=QvTn)G zwsW{Gog>MM#ULl(aU-78FlB^^=U|%i~HNSB#lEmpIOyHI6E%)_cY1UC{E+l!p5YYme4;6jYI5mfWvwZdhIJx6JUNK*Y(sUTu!`4|mit>1 zh35e=7UXV36xQ{c(tJW2qVVjYDXT}b9#-|5lI?Um;$da4Db;7RCkoG4qW|43K@^_C zH094F#fZXFm!?E!;T&Q0FZ%7aj>N;dUsEQR>`WA%@-*dIHLevrg=tD+g9^kuKzc)- z)FTSdJ)(zitw|J~1U02eB9~GuQ8T`(Mm#(_Xv*=(UPR&PLX06>yAXwENlkfqC#Q!e z9+8J?Er^FFL``WmiQ5aFq%>~CI}s3MeyS#LKX3eRt1RkE};QFy}Bl+stY|Ih(Q3-VYwXz`l5Et9>km)1nsQ5HD&odE`rM)gA(r% zh5a>6sc|%*lK5!~g*w@pPEAwKA8b!RytA-MV9XCxGbL1_e zun(pwgZoY)Y8>(2+dG;l?3-yyd^s~wg@`)6aX3-f&lDvwVgOOtYtxjI^CuI9Jwi>X zmz^cCnf#4Gzcmo9dcgw60d#KVr1@Us)wJNB_eyFSJ# zU}s9?eLVY#-8fCjIhNZscDKYT=>8jI1^a2DBs%jbg*`R#G%>0t@vuLrDQ~przJmQb zP5C!h8{%QFPpmHHaZknmoTm5{V=LI@(v)!tpOYl^AT?#dfl5SSe^FCDp1`A9R^ko2 z%Ofpz(KIEG|5%d5o}{Mi2(CfY=R^fR`jjZ_Dr!o{S*?h|o|{;84dj-LT|Q0uql1xn z*k{v}$~V6t3OkviT{o&t6!tJR<@~m~L}7P_ zek56hsK2iDCh9cVoc3}>qVkZH-dlJ^zz(Arv)?kU0E?s^x~2IJW0;Y z&*K?(A;lW{L;%_BMO2^J+>fx&sVR#y@~Baas5JuM=;cCjDZ9LN6B5L@HoFnYQiZ!ND&bM6eFRvt>=WPKvo7c+CUWE3Teuc!M_uQw@RY*JUBqqVWK*>Swa-vWogQ; za+`?CMU=LKd3ckhDFZhDO1$FaOUn*>h{9Vlk@uLNiNaev;Y-v)qVR@EQ?eV*5OtAw z)2HkusxPpHCFtx@k)7e(Q+ByCyLbHM>ewU!n%)JVn$$M7`E|DN%S| zDEjTyuZhB&Juw#KUrp2k%0u1Be-MSYu$ofsRNlRK!t^66=g#LQY8p|~iajLBK%y27 zxIt7fQL|bpB>9NaYo3sqD3wyE(E|397xo_*Pbs}Il)CwH2D0)qQDu}z#KW6$O&LFtefg5~f=9B=w@I?z3+xNtZ)?ibNu2sS z#A|btO9F4V#R~8XrtrRBQ-&_*ayd;lH=O2jX-z!;BDu(yHbkAD{eXPIX#=q~o%EO} zoCeU8TqU?%Hj!k)Kb#|+84x4%8ZKR&J`iiL0M1`yqSm*_LMb#Os_@L4WD{o>G-d2q zwlasT{5_dHn@E0^-~SIu;{1fzOZbdy3?~jWWy;8`WV0Vp=Qd;`YBEthmvQSEL^gZp zVb5|r(~m#8~LH5<{5D4Z-3>z-eV5w(Z(%C@LZ6wd94mB+3|MBzM-SP5)s zNEA-|Xv+8fIlU1?O`KGZcrD0gXnyvrE%B;PZ9}}HWTi^iPDE)WnK7^mQIm-3`+gIm z!bx)O@d`w}L{@H&50I8gD~1Uas&lQ7;m2dDvv4t`X0;dIC{RiKQWVJlGXQoOIFSjwK9>{OI<1T^NV?v9znb;UAL2753*A0(;Y+&CEmFwJa;4# z@Ak@XiT54xw)F2q)J)<9&E(c|g;Hqwmml$dAjvDUOho-iRM0)HqhCqy!O&lbhZAp_ z(xn{NW(lHZ?b}LuxK1`}SK&4LOJpU}ZC;zsC&`XOmXejSL{(bPYiOLQ7Avxbe-iIK z(%X=K6Hz&dnp=ZYuSqGiUVEK*IJYjIrw6djH;F3I^Jn6HMJZhR@(@uch&q4tAEN#w zYVC!~L@gnzXUVHXJ)!hI9=nXFkBIuv%MHr_x~Jn@Pb|C^{m#H;kdMWUKhZZE(3 zJ5dXXYA|dkQ8=BiDP?-BBB~KtDSF}>>k+l(jpaoBNqU7BuOliyQ8_XnAquC}#aM8P z%cT?P)$PYEYb;6boAwh){zAN5S9TNiE%~|VpFKofBC7POocb)1tRKrgJf3)SKf6Ja ze^PqaUgdVZizKzTctpYP7c`~wgs(}mIPn(l;TG~YS-Jm^TSzOSGJW(bNmd{~D_=cM z)IY@g;F6d~ysI17W^J-^ ze`hJOa+`S5mz5;y6!9K}lqL$lmJ<6?<+BrYhIs9F79y%M=>?t1LDVahUeCa8L`@@J ziMCHEw@pYdYo3h6`-vp;WP41!J|wwwV|n6TA<4gIlp$&-@g{F8Le#6I*U40lsFfs{ z`(RPI zv>DgYERuXTb|CTg5O4WuF5S&UU5j{$c=gDaT~B%tl|WSChCPXDMv}El7>F86ysxiw z3%NnmuuEJ@zfpQCX1`97)rfkyz86~|$z_uV5cLh&e6MS7q6!i9!#EzLZj$8LMqCdg ziMORI_sv$s`{_<+(rZc7TbTwCm6NElMwYBasegVaka(lX%A;5=!Oonzxef7tAS&`{ zQ=+;Mb?kTUV_nGR{VL3hA)CGXa^9B{b>-B{q=#RviG8Ab&57zydW{-$fB2bf#)nlV z-WsAtM7~N?Ns`=JiEE`T*}VBI>!#BdRj-M*SE= zR1KoO^B+gldXn7rK6_o0cmpo0#G638*JEc8wUp9pyMs#}zgyOnRm+UTt3!HYK8PR+ zzf~4*sD6qh3cr~Z&j>%iOVsydWy(!1iF%}$FqV5V(9T%vHdfY^ub&UHJ3d`Xx- zhj=rInvv-=49b(ERP^FioDk~~D|RiFPpQC|?%_UjEq zEg)+7%mqZ{BI;~aF8O$(KDx1qc$Fyi==vt2noxS}%5v`*Pt^L;pA+vS=}jBRt!^#x zLf6kD-a4Z4w)u{zb|g8V?~g<+W4(E+iTaw->v4M#QF%GNNbac(iPxgqm&DsfyuX(J zOw^BLrTlLjiMmXZ{T6YLdrFc!Hga3qK~(h?t4Q)a()&6qx9bt4H#T7%@!lui!OJU% zYE8VRZPyZoI~p{lM&Kl(HjrfQvfLtHpcG2Aolm^m#JhQk`}B*%d;FODt(kZ+hGitV zo>CZEjPqB4B#$lrg?Rah7xVc}qNbDH;#%xkC`lH`$yRX3h^EZ_jjcQ&y`QFiOL|pF za^*s9OI3(EQhW#Tej&-iTNe|B+c(79z#`mUdJ}K{pAmqC`_h`IfRlSj?<$!;yT5w9d!SyGz4K2N+a z%d%&^$?J#{yGU|4@k%ROi5f}NEp;hTpOR#rIh@`HWHa{y_UujKRcgw0yNXl)mD9t$ zF5+GJNw#v6^jZ#Jy*nh?KM%j}?@Uz2Z#q+Yxruu55Wg$GPgKQy{7$$KQPFvMR5Xyy z5gBNIcchlG4jSdLz5_A*v}+ z+5X^>A%P?({_9UG_{Bthd79r{n@IA&iX)U>c4`IwgZ5JjMM<(lV=l8hBpLj0Fs1Mz zQ8kWp9^N9!4Z-}raWe4&Mhzv&`$Sdg97(5n0WDE>sP9>jYkxc^a{$vAg`Jo}FH7S8HQ<#~>%o_VK| z%}CPgF!e7giI>RF(jB3}a4_ zUT$h3Z{}`CR3ox7I*{K9FD0t*in`=WAJV%ug4cCpi1*1$oWHk-`g>wulH5<}sZG03 z{`L{|Q6t{#YEP1{9_L-g0OIZIbB82xAE&1DT9FY{yeW5x_`bLJCT(P}xIs11lq*<# zN1KoNg9?Ljwy)DxFNc?o7lAj+g z3-+hm!Gpu``Jq_8LfxM(B^AFp5I=TEG*#D=v)&ZU>bUfpgv(1|%XQd+^gR(rAu}EC zcgF=+teUDN@27p9%yju0JV^7*nJVkKK^HPRmjZss03XWfmsxO(fp0uUB_vZ>4st0J zg1xMn?xOQ-HQX0H$kWw;Ux~O=3a(U_Th$OEy1Yl*!9zDkgtYIDn?3HqH?k6v>1g&N zh$-#M0KYSGryZuf2M=X$^jsO>_f(!OgI(!1A{CUwe1Q1HoiQ#T0Q04p?i}@Oj(2*z z?=|vxySw7?-al8?f+rUwJ3Zd}@cTy3_J+f5w#7794cN~sX1XpJMc|6zWCm*cm0n6q zV|!UM-SzBI2Tr(I1!+GKZuIzYa7%jN$>E@r$Lk@7$Lryq$36JQsnb6$t+3j71CkhJwJi`CS#XxoE#5;xOV zUp%^o|5)}3OB-@}9{|^5qQV10!=r`=MA5BEVlO0*tiif^xeXPWjEXUi6t_5u4_3xT z#rVg?NknfRYPqI_Yn^!K<$al&=WDB=^u*09m|QKV7`t*Z(^rwaqm}lTjl`9~D4B7^ z{_)klN8JcHYP!`*jh^;8N_y@2hFd~5+@f})7=P1N+;WED&GKlj^Nx|fQ3|1C@*&0v zc_ADwUK2yaE}5dgUT=>SUjP=v1HWuDgd6bP-r+{>@A|1YXxN5^H@s$O2$G(-)k1Om zk4H!Urk?I1Ws_RRG4K(w2NdYwyW z{*A|NhIVs{$=wO8rGHd(oPSspx@}xkRCsV;aG1gW6}n^6zn)*6+J1HF`HyH=-#^?K zT)27F){y-)sAc+Du=vL~Cp8 zT5A(mfd+~;Sl6@d4IhZ~j>XeCImCHvw7~srC<>1`@QQ4~E-r(Eqo1ScnCU~G$gW$R z?2@O4bXM;k#CAVnihpPWmPx&yp zwye8+H`Uf#ML3As6WnERA16BG>#1CZ8Y7~kV&bqi4G4;gii;KZdq)QtM#LFnA_K#b zgsF8ZEelhYe z7wH6q8N#E*)$m+FxUv)#RN6t@AkH+$M+Arkp}4r51y$K#iaQ7f86yK@#7Sv#zK&q| z4KqXzbAFhJHO3igMGF_iP3E!waYI8Q{Kcj9Y&S~UO~C<^V}7g-iYw0@@`KA$?eh~W z?u0jl#)qR^#ntE|tr^F?st|O{PjpNaZfxhRmFI64D10iKwyCVwI737<9OANSAS1msJ`orE&|YULD%B@7BRDB1CNLEOIJoYth6ShQ^D19HZ<}C8TvLKO!n5 z-r~Y>If6O5U>Ff>5anxi!B1C8G^%JmOHXBz+MX*;!poj(rmv8o7Rxx4h^4iQ4?Tof zDzk>Jgt*jSd`f`&Mu45PnLeBX!(CHZakdU=e;Cp9qJtM936X&j#^3-J<~q(Ii>{c1 zWO&rz!PZRgmD8A|qPUBTUA&+u(bME(dqr8>Xe?X8Ixw3eT-FHznVs zj>t?~me5X5;1Pk5#_0HP+i`x~jS}mE&i@&C%R`65lAEVwXIV3S#tIqq3TL)C^=s#n zF~kLO)0!a#y~1nUc8nsljQdVrV=2L2FOn5++30o>j5P$t1dETp@GohS`DuuwUedB^gCq|Kc2X|X-cxTXuzqrSNut|DSO<%_(rXVC z*lt%Vb+6}qyd+1ZB+Aj&@II9V?tyZgmwa8@e8fHNE{(+_UCs3xZ$IRbP!PiB9dtInEbIeF6ALax?TDVZy;Smi$O zf|A2mDqI@f-;pI}c}R6yW=4vS;qgX~r5)%jjch`?OL5yu%PMH5kL0@KU<+3#w9&2# z&Xe_Hd8*aPk@#UhR^g^na^>h$Di*fowYP%>TXvV1nETG(E$!-|Y&NbOQ}?8)WL^Y9*C>ipeAkl-$1*%Pj~-59DV#!fvTCO9Ph&Jmp=R|OL!0Ca z($)+u?ZH0;caT^psN?><32#xv;F6TIr2!G&vh9^ZnI+XJOx;ttyKQ$X zjzg)K=|k~o5S9tm;;y`D=_}8oq8re!f1E)hWMDsbgA{FOjULbaaZuUMvMC z?L^J$=Q8ya_TQ~pq>;k%W=OB;nAOsFmHqOtLn`MQRDirY zjn^FbP9F*^MK`VQ_N^JQK6EBGteMq}vV-b2?EmXDazIvz=RLtU4^irtUZ&SC(sr0U z>)6KhZqY-<{vTG^MWiRGSY@ZllcW1fb!w#cOLY^TK9gBi>MZvM8zK!cf#D8Tn!9bq zVbPo>kHDs8!U=aDH0j5XG#Ix_a&U;$qTN>u2oWmxEa?d4p0UgVq-1O_$m0Sx8sLZ$vzU`Ys}v9NbtQJrz|hibY>`r!%UXdq0@L~Kdw6i^f z*_$(~iohaDr2mSnAKlo4O-?JXP0cd78a)+T(L85ldQl`1$s|twp|dj`lYN5i(%)aJy05nvNXKN zC4cFXrOi5((*O6cXGNzD)@NbZ@4ph-8RhP)7mYIwyswlL>5^AWox{9o>Wucj%4+C+ z!(fc}mC|u1m;R5#;9jQ@*lF$e?88O+KfKKMK9@dlyBS+XCx@!!w~F?gAMX5!%&Z>s zzLII@cF9Gm)F;+ zYMh+WnPJm?KK{q4d>mSf&XOqQw&KNsx6+p=UBA+7*2 z;`Ux~F#Fk>H>(T0Z*pEIi!6zEjPke=o$;~sH-`$3{6u@-OD$^kY3-{-1a_ z{|`Jo)R*#b{s($E{oNi;zlrN(eY#BbIbBcRjk(6PSyB9`)1#@6@$lI5vxn2~5}_*T+e;Fq`$|*^IldD=l`^aTYqcU^Pdi_zfHQN zuK$Fy$n~C<4mmyQ;dZ{s^^#7Pe*T|_(_iL#?Warr8@ryqe)DbSx`A|Pz8PIlJza`# zj)$AiMAwJubSVA5J(~JjkEY(wqp44JJ@s^H_k%p#?sK@_?_GP=bMK5tkj%dP>51ds zKJRWj?CU%KI$Hj+%HQe5PqI2q^p5u1wo;SRHLG1^dHIaP!M;|)gFM_Li}+d%*YNNV zveUyA_N(jZr^D2})%A6MI;4Knqp82?Yh7ifhr7y)uFtmV&{%TFj^Z8g?Wcrpbyd>Au?0=`h+J^=OOMe66x3xjr?gLuG~g+Gzcf>uoz- zMy$IYt*$Yy=RO@8OM8#zy_>J~>1pZ=S&mwk zpSCAg*A5zH^%d!=Zh}cPNZWPjmS6fMm!M7B;$BKSVpa{ax=gl4UmBOT$oECAY&6<^ z6TtEXmlQj0as@{?+Hw{#DKqzSM1w`d}0M!Uu<^{XXckDt&f$&6Dc&%kMr| zNV$D*bqVI>FLm#lcb8sM zADsU(`=HO)eb8r3_AKw+!d>lyrFuj9?4{#XRUdphd)o(_K?(Ub-j|--2gv7RM8L`Hv#(JL%f?Yo-;dxJgZPMN zR3x7S*Q9U~PCLEym?O)>a@nVoFM1c-otEoHi;BZL4BLi#xb04^fA?y53Dzz6-o06z6r?#_0)~*XBkPc@MGRPip`E90CYjOIyq*07-}AnZe3?4DEXwZGUmRLM`ZoU0q??v6<2e<+-K)YXQqptHG*o(!M5Crsi%W<$ z@Q}4YN+(fQwvj}90V{dY5W_HIu(X;@cGe^stJC)c&1x~vRqdZLSC;D>ovIe?DkdsC zAT&H`ctBJ%O-g3&ADU%rL?I(P*+QZFGna0Tv zmAOxOd0Bws>z+rJv%j5PmtPF%<6lx zR-f;3cvE9JiaAUvI%gW6ef+j&)@h08u-1B3&8+71SW!NuPNJ!?~T$$Wtn^LSU1gQTSc_bwu%iSki-gAuysjK`>K09%Y zmDT!u&C3(pT)+5inSblE3+7AG^VIc{S+d4-e-dqXqT<=ldwXCPHQonT7k~Qf+`G$X zJM&3d<}SZuu)S_}X%T1>x2(t1=@tG3-R61+C=JT9cUXYbAWl*Bs96YYtcRku};MvS3}g zFvb3cU){A*5^GO;J<9~1($dpT$E?2VYXibTS^MsRu}r(3aO23@s=%5H&%li zWaXqn^^6;-if&|ooO+@gsZzJH{kE&NuT{=%Uu*uSWC>fwwd7ip({rOqcMNsqdGm;` zEkV!tT089QYwhrr)Xn2&b(+knw{Ipjkxj_k{rpK*M5_ICf6dUx*Ba{;UmFf~`dSIU zDqEq?Y*MWBwI=bIY!a!M_|59v=N)w2A0*oOS^=+-4yR(Vo!!^+Iz@I@S6)BcU!GB3 zwj;|6o#a-Z&z_IVD~rjMXMcx#I4a9zz4rzC2Qq7}6sY|T7a_7Dyfi4)Y{Mh%F%~H>Dz}8_?&$bz8Q!%;MA59gK{;96b zs9CM&_2W^3*L&E^>s$9&S%$7mR}R0fzabS}YJ7G#%lzi`gJw0a_pq7QH~eo>IrtSy zrQS`iFOiWlXRfTgoo+O2B{S#g8KGr*`{DjVO56e=owD3KlibqHdI?u8ukYfcWpi<5 zMQXdzr?b>@zaZURM5OkR?hmQ#;9aDir4Kk&v(C?sEFL;ZIviGeR?Vz-@%o`8Mz&s8 zc1fPOz;e0QH~r&Yf6~0aY$9&n+5fX_!>(*BJo_=OHD2GhOUhz#X-Q~3xNmZQurjM{ zy}lJsO65SOczw=F%WAd^#h!XVeb?(ts+=q-R|aaQ1GXl2UNSiAy7~^>Nzbg_lZ`gj z@7XLvn?sw>dHZgErrqTJzWWyGr)yUtnso1tmR>pDo@iYLIb^`L>*93UK-`Wg8=>bt z*(g0pb=|pN4ZUQN?rWO8rq~jtCqC0hhxkYzjgf<&`;B8js+-jXndbko50p%`vva(r z4>Xib%4hmOW3L(iv&ioU_)O95_qDn{^1S1n`vXt~Uz-!g`PxFWvagkJjnq4AR@bL` zDy-=>bHs#H=V7VW4Awc4|JaMu;yyhe8|rvXy&jgkZJvLC`AvG_GgImJvSGVF!PN7b z>hI=j%YolzD{;TjxA@v5xm7y+e|(zBCr8LsC;5Nc0P5vy%{D{o*AJfA3cTz!v-SjE ztLv;@GrDKfcukpn;x#R{y4RFR9j_^q zaIYzoP_HSI?OxN1XL!vRJJV}C>F+h3#Cc8MS>ZLFWcHd(t3zHho_ygoo-FVhPjY#U zC-LriVmU76+K~%WLHY9)$ItIp@|rQMi5xlHIl$w*^X%#Y9%nt**6U_3EW7t=E*vIY3Ma&vdwGC*$+W?)=kfaStRljWDCNj#qpj|q&9 zHbxHii%v*1s}%i#)^xAw5}~qoJk&fd%WZJaHO~jKQFy2Ts(QBkt9VW4 z{Kd2N@VD2zkLm3-qts_|l=58Xye(_RL!I-y>>ZvffNY*!J=FH>=oH{JT_Ka#JYn4T znt>|Vvm^Fs&$i80p6!{9y=LM*?Ac~;#Iwl{_iQt0Et7ZcHCKB6e&Z{b>mh|(66~Ic zlew4ACS_Kac(x9PcrNFPoR&PaK04$zbJ0mz2cGW-B|Y01&%4|hU0u|=wb|3#Yo?{) zUeh8*dbUbF_3S$71JCw{H$9vCRi3T;Q=WZ(zUkSzzatC3Y|_{JTJJyXEM?pHM@7f^ zhegH48A9TsqQZj%gToB|uO!5UMMe78^Q%+auTDMx5e@76hZ}?ZqbVA({*mz!L57%E zYQNM;RXf46a=5m`>rfi_jP*O4=yCUd1mMW=s2NQFWD*Ybt>;!C}_d8q4Ltl8lDaM_&85 zS;Q$c4~MJrr%2nD^^e1w8NS!aLB6k)x7@wzAaARaXK#aawQ-x(TC#vrYALpB?_6vk zX7xWgthuP5|JY;8rNb@Ge$wsEsT>G`qr$@t!EtDw{((Wk)X`g{(w0Tvauu~hErp7^ z%A#V7BMl(|afV1yyZ)BWX;y!dnb2)Q+#H_iM*GsR8@XCBx*4-o%(LH;2$Aj9atW+M ziP#h!dY-gu~2wc7$)Aj`ump_5$)G4f=cXw!JIzHM>)h?&ybk(5C zmF#d)U_BSh-?2kj?vqFTsRHRBr2VW;G#g7ky60 z`pxR%G@PxHSv1*oY_n>T#g)vG&!LH#)$DSA&eZ}=Vd?AC@XcybSqjPIz^)IQ)jKi= z$vqUSVB2Y;kvU|QksTH zLrh>etzg~Jv!B75y5Z?FD>loA2ON5163*Isv;M4^gqpPvxus>D3-wo{Nu=el%x>;R z!8|+knA~Xr4xPf}PNCX%dfd7?$Ei=bm89KR=}w!oo331aZgVS3P74XQbVYNp-+6MY z?i>~dZWW~6g4&%QP&z+e=ss>G(ZKDe2mNQDBowWKRx8` z4Oytk%-qiuR0mnb>9z>6H7x6TM7JPpa`rvKtX6Wfb*He{aTpuS>IJ#G**+-V7#`y9 z7ZMd57h^EQ`bP%EMvD#T5&j{Dh^W|r;l}6yBl3D#r=Cy|lc{N0eozAEL3St6{ zkzy-8Alevhz^p1VO=VHfl5JB{o0IP6u$jxsy19BJ+ed2`aus4QL`N7!)}jqD!3Lw4 zV2n`#b?XMyq1rR0-b8KL0G`7{{pUB)P-eue-jY?_z=cAIF~mk1;sWY44yaSl;)5qE zw2tgTEnM(DEL85thlWQD4+t?B;{qCaLmr09JPb%74~7we5z*lWF{p?}N&O&zrr&^A z!{7)*WLzMg&c)yp7e+lUo+_%Y$e|iNIMI|I*6Uf@VR~4v+r&~k>0!NoZA(v159@U; z!<|`OC9C%(+t5`fATA8Uc&srv#bI7&9J3$i-7)p-j3L%Oa!N17-aXsK{9G7WWf zzlk_lYAg+z)w(`Xh9ArEzfB4`$5X?zYt8_%=&WDI+HiWvp~2f5&Qe)9-Z{Ybk)_z) z)?MlaL_~!c#Cwhuo=Nnk<9662 zJU+w_lBh1ql_7(=MErR_u~%YM^)?lOx}Kg$)VoY=Wa>YvH1$3Q7dbM7yi*^tyH2P-%z!jeBRRhbn&XN9#KxsHQ{9QiMc9Aj!c^Qtkm zl!J{dvW0oqIGfv;y35q}EcrDDnOWgq=Kac&e>3k8Q(+twWXTI0yuiT>mR!NqBc@*E z;B^klGVd?8a*!i$aOBS%S&gXy9Gqoesx$R52YFcXed!AagV|VZ7U|DH1VJJuK&XEV%<~fec#TEVv zORi**OC029UI7mJN@J{kl|{;P@EQj#+2#P29LLm$%sa<=|8nF84*ug{7K@x@JrhSx zbKaPBvsU=KBaZrTQo612^4xVuE8V9pE7{v-%IM~CHdpW4crVlVx zoGaiEQ(tg!go6N<+{VES4mPv%i&$hUr|=6$hOx*K4*ucDr%d%@$+=AJ=3p-em)O{+ zEHaOStnArH=B?r2Jr0JkUV9F{BkwXbm4iSQ>B78sIJn2b@5~F6RycAoQ>Qq%&dz_xyn1Xi z69@HKBr8*&b5NQkKj+{ntCwXejzxBHWJXp$z`Sgn_xCw6A4{I)pa=)2Suzicl;FsZ zm}su#SUU9F$_o4J`Q!M}EnXiA?!(P>~~dFx8!H z&SYv6s~cHl2nUau_ZmyqXDTD-y#Z4S2g6t)nyH3N#V~c8gS~8JJ_jGL$T6ncF?E=O zwjAW*pd$yx*-B1My*}%iIPxM>rI}jIL1C8si>baG{KLUbRyfU>Ucf1=W6F<3rg0F+ zK`;l8SWjhzZ#npwBa3km%aNZj^?+@bVrn1-#S!9fd_Y|GS97ST9z5(nWN`4WrV<;XEiwP&gu2NzhfC-bIr?n(T!Fu~SP&xRWgWRmpfrA1ZZ06u)4z_dfHXDm$y%(9f z##B=dGIMa91C2#iGj)T5svP+?Qzf{N2Xf>k_PVfC=U@)=PO}qdI5^9}4i?G4R;Du* z$qFwpm7S^2n5x1-CzNcY_k|E{K=93a^wN_>;y-4=g52 z#R?}l_>+Sr96VvYkEA+B7G-K02hkk4ov9y~y2!z7j*Mq&5L3-L*@YbJWJF7DvW2^(X7?;>eRs6=&*i7HP#n1-AJQQyn?z#=!&T z^ucEo7<< zi)`S?GfYinsy2(4zhDFg%!%PNM4St%+v==g|NtEre5VBBS(gFFpDGiFtwS3dTb?ugJv8#mZ=*Y z{Kk6KIB3R^->_sM4sLSfNTymb)slmp9Mod<(Ja!LgC98PA_JC;Vaeqj9OokM&%B>m zat#M1IkGKFPU1*~snX1Qm#K10-D8n09Q0t`Mh<#$VCEo^gCQ&#!|DS#@&Z#OnVQ2v zLzZmJ0e@&(-Otn!4l1zZI99LBR1FT+b7W1XCNQ;>_4q@mY8~eBCqPyH{-*jpi_~LY zH>UWji|Q7(vXuk=SfJXAMKZ9$Wu_)@kd-5|aqt`Ky}`U(99fAY`9n|YA54A1BGs9y z!&Ep^p-k~NWz-pLWhMvxIf!G)6&&yvG}J?^_XP(FILO68JO`Cny$S1$=inss)-tt@ zgLWLbjDxRPFE8^NGPRAVA6euwM?U4q9UQ#Jyb;WMpQ+YN@injN29A7z6>c;2B2#9j z*0Vwdj?Bl@bmoO}B;P!!K44x|j;zALFC58t!l}KP`i#~2N;364OJ?K9+DrwoBwrS# z@=Z-@Fh`DNkyfnGn5o0eJHo+m=C$VFD~?>k)DWil!Vi@%-cV0+WJwk|&s1+VJ)EhL z9DK@=AF$+`Os!%b|43ZD$-Fxp*_ngf9Ng!i5C;a9oXx>OKeEIkGTQQ#g3Y z0Us<^3o_N4CEw-XDtq<`^U87L>m2Y=IC;8F?ZA?inD;VMM_KPYkF9*DOATU?#Xk2B6T>Z%fUl7Hk_$z9IWEtEe^_&dR0?Vep}%D@;1>_oEgu)BuzBs zW){C;7kgvn*_C}9v}8B)aA1^faMaiTv)(=q+H+(8Q~zV`s^i-@nrIp`$6>C@Ng-*{v}sceCvB*Ka+}Js zZ0jORu4Fk-W^y@YW@ct)W@ct)`sUrpmiO+I(RuRoSN)-VyL-297H*bz-?wE+wN@m; ziEyxXVKBNlxHP%^I2!oJ(3pkV+(Jcdp|NeD-DjPLzl-pP_OyLHxpglEXYGwg(5SNx z0D{)HpzN&!VMSxux)Fa+jeCvzO&FHu+Z$XP@7rk2U(v2eSyEP@P~$_^&%d= z3kaEu zKxmd&s8TJ|mKNHv7MiaXDoCpr(566W)mvKv?T$x&hIK>yq5ii10cwN?+LG4Ja6>1? zLJe-A{fna%n>8K*909i}K-=LD4Ll12eAZrgWGVjk!QT$>I2RA^ zPuAmG`_h`f(4r{qdQPv4TxcKBuzX)C*|b+TLJJqk!|hqz7;X+?rDb|H=n9$*YR#{W zgqoM1v^+B{wC{3zT8NCFiH;0R3z6{~i9yEiY+zc5Y_%j78GrJV53q3sJ7QW0e*6Na zg~;|K+xqj9kFznB9Y5#y&Q1IA3z!z7_g>~lZs$k7W#esjypL@^urZY#OW5`+8&`0c zO>89Dz_btry(+)3Ge5Zn`*mmIW;QS_L{Hwzwzc_%^ZA9l*zs;QE@sDH_>tGxb{P8& zXWP|m+{ceR#D16-B8ErUhG`+P-M~*?#zr2$fN3G}dxD?*n*Cm4TLT+C`N@yj7{tb@ z{N&AS`-^Q0*w~Sc0Q-H#p}feB-?8Hz>^PilyRw04A(CZXw&A-cTLnLPXj&FF>Nzlc zL-fclY~T|jTZCNm zVd%Xgw!O)ZT*r=>79zh7*%8x1WShfJLdB5nQ#LRyL^ezdk+D-cFn;|Deq?nv@a57Y zTXC4X@{lWMMY~-`CF~5gt zA$kPULS($aetWaumTXJfMr+C9c%n8GPsN%^mketyfHk>%X7_^DB3hrDY7QrtZ&#Q~ z+7m_;)Vuuh&ED$aXeAg6frQs0_$JbwI|QY#hQy3%@ssjceFIEl5wI z5+(z+1sRwyA_Mg?8OQS@s1eCFm>vIM8|o8sJcu1pr;rWx8X2fu$T*LmMBPF*RCi?D z&o7`JB^#GY0k$>sBbYEE$5r_C7uXLIM&x)XJ67?NAF$DfjraJ;3Vvh&J08cj zjoI%bcHEvF=d$rP8~xb8gb@+lz%LxeFWk+>4{QwPCoy3}Pd>Jc)7XXyBYHi;k1S&2Z}!`PpB%$BOc>FV8?&v5jTU~PiEW#(Ey1=o*m#CRxsZ*+ z`H|PyHj!;FvoV2fXcNV4M@Y{P^Rg*ljQyR-2W8=G;M zrEI*;#=iXe9c)bHCof^Y1KBamjt8*~6Gp^Pz_$1J$!*v+o{h`-1xy&xllQaZZ){x4 zerTDJ-{x$r!p2$r$dMf8*KFLy#?EXU%f_DkWC_1l!?qc03$blaezFfcuE&m#v*QzN zV8V!mz=RPQd+?LD@RLK?R>DvI#0FaV^yJg*SI@?}Y*h0jOW4?wpPaz9SNV~n*zssK zqU<=0ANiRb_hs88w#{VYV}5db_B(|gKVjQ#Y_#wrU$PAoMkMEWc3g)Y?_pzAe*HMM zt;fd0Z1mt49%WlK+rs?95o|k}jX7*w%YK+JBEEmwu^Yd>7yF&ZwjldGpY~(pGkyep z3wj+LDKao&M8>Q9$OZh~b8Mi;L4L2ZQO+++W}}*o2iVw_jYruykOOPx_lC0VOSX+; zBae-5*f@$Gxt(p_u`!Gt4`drAj7XN<*%94CvY~rM#!+mX#eVOx5bv|`0UM9;Bj{_< z3#YIx#xD$FTQS?tVcR-vpyx#|pnFTkC2XLVNw$9c!dvY43p--Mi2UAW$64%H#m1HF z_yHR;`1MA%&E`kYgQM4%v+a7eoyNA$`33Zu>5-e*c!K?&Vq*Xs-|&;u_>l|QF~9~U zjOg`4*sqk0_4$Pj*w}-OOZkPj*?5bMtJwI5-#ae-Iy?4d+sSM+vE!p`yOC|5uyH0k zrr5S8+qPiZi`l@05y?50AK8M9x7e=-8yH)lN2aph{_OZ5+pgg-KV{=|c1*Di6Grsj zlkA8IBeL~p+t>Wa)@-c7VSdZDDQwJS;}7=Ro^5}#QO}NNvk~JkPh!98+4dnDm@p#R zMt<@pcD#^nudz|i#+v;4n`}FnpTxiiy`Imui`h1wAHnDg`MuA!BiXhgKk_5n-ensm zjPNAernBE1e(z+qZN`4Lvg3Sq{G1&hXWIhyyM-OkVMmNRP|y?E@lH01**KA3Se+lK zWXHAHb~xK=`H^GUwt$UQ*fGk+>FoG4+a6$JBMxOL8=JG^{%re>jpzBj;cRTqj#u!L z7|0>1zh}o~Y}=Y`Td`5f#s>WQKK#gZHg04C!!i`gcKl?5pS+F@Oc;^hF6?&)KY1q` z1KDu`KY27e7O`yz`yI@-)!6ncKk^V8v)S)HHs-Q%JR8f|Sj0~z`1M`c@ng0PWZPM6 zY{E}&$_6HkNb2X<_6i$o@RJAd>ua-ZJvQ!P$MxBE1lz9W_b_2ZfsJB6Oc;?36Gmj* zz>jRielyvIp+oX}h(mdp4NMr3<6M5E8^7=w+m2wPfE^3jc%I+ejs42laV>Vlgb@Yy zCfm;7N7iNAD7Hn}R>w9>7|{!-aww;^O*D_>pZx*>*hJ?%@~KV8<%9ox*-~?1%{?3hWQ|8^(_7u<;-}V#0_Xna8$s z_;pMek>f}FWFb3l$hL+2BqogL5lk475n{)E_>ryog-zM^GW)&4#$xu{hK)4v6LOJWTTZG zF=0f3^<~GO*zp)P_G8Cm+4egdv)HjW+fHQTPc|@NM1l2W+dO{qU^c#B$7?Ev9`}J(&S6i>r zVf?B)jbDxAphmGVnhi`WQBaH7_9Yv)v9TW;tFe@;v+*n&Td^b+Y(&^`Bpa9$qA;&# zzYp1nvEMWfvj-ca*>MKjPGDm;zkoR*3S}%may1+C*>7LA?Z?J*{NA%{Ok&4{Y{Q(; zzROdsh0T#>+S`l~K6@8PYb8w<*e8#Th|$KJ1E>6Z%v^Rfw z!!51FbOLa+HW7|3-+j4t_z+AX%nvWY6hdpyNV40)P#k-wmvmcLi*p8PUIBr$7B&Ux zm1b(>(;LZ}U~6fxxj7N3u?H0~*q9fgp~l^pw-$w>!DN!eAY2d&HZm%%O*LgKHNnuL zM7R#mq*{xbgZ1!gmpfHs&tF(a5);S3Y9-iki**bcB=qrQw3gZ8bz4{yX-=kvv`!`u z>mvFi0j*QWL>iq&CcSh98)va`4jbp$M#{Q?OzT4WBkrFm)dlV=o@Nl@k0eOHc_3vZVTJN_tF(2?LKMcsu+Ny_5%KzA~0$6}IF0IW?EDy(uk z_QUSoxW3WtmE^0+-)Jwyz9E=w2-ZYBJM?=fW!PE%HmcEh%RZ#ANGZV8?1*aS#OqEt7{VRU@hX?ZJ|di?L?&nSY|5}`T?dk%%+ac zRZ4QJoE8NUR}NgIWL;bS?kYOuK(m?uw=3Dtm%q3IyNPI&x<{0(cgZQ;%gl3k4fvu` zhP!1MD%)#7H~o7``itd+FPYx5G%%lfCuXRtqv-YscH6)|4PyTy7sNg@XKb(_ z7O7iG2k8YS(x87ZMrSD-MWb85Y@+>4($Y}+uWbCz#-D8bZ5!#K^nb}hQoJUoOW~w& zGEyHiXe*SohsmX(d~P@zr16u$j`4)qPaCKtA1=o^Z_4=XjR>!!>7nzE3V^y=DblBK0(HK*fv>bETqIYxYjZD`j{{&hDP`Qgk*oX`#S`a07`$lVL_O z%u_J3dYygZf%ILt5SqVm{DSlT{e=Jj1wP~ryGW)E2qxcoB zrfU@rlKBTX)4#1;n3>Q^DaolT{7@gIbWX27>A3KuD*d_fT_uiBbB(k__NUpa{nKoF zw(Y~To};k+e3RCz^ujFbHT&OQ<`N(#&DVJI3UeV#+{+O66gmx#c#rEC?<$UW`ni=D z=dsE-|Fy#WwwD$4+>sP6Rg~H4hFR%|wyiGms{|LwBJ`NNB-9X$)rSL9=w9QXqsO?b zQh*(00ZOyfiw#QZzzU0;o%~f3aA6R-3KQ(3-3`T)Qu2Q#EB^ACGXj&BG|@yN-4J4s zAEYFIQBL=Y>C`}-7^nM5&_*}dk5jULCntTyR5UfvJ`XuN2xlqT?~oI|C*p2*5ZVi$ zkpPz~MHnt8Kji*Zkx zw`6|8E5`kl%=NO4&94tf&84$zDoHn#i&pg%x*#x~h%BQ4M~{pirIcV7S%UI9TEpnM zE@dkvd83@>#SvOCNjFBA-MHM$seB-=P&Mr}Mf zPbF!AomtNAQxdN#r*{5?prddn6mskg}Kt&kWj#l6H<|KPsrY4YHqnJ|Ff0EI15lBrmd_E^$AC3 z`3fcRPIAdAqXTdkQ7g~&1>dUVep6N(CEml44=I_ykV}_cA2&r)rv7+dNxZsDTo#Hq zQEIyj_d81N9dh7aOnbAbQSBOq`clcgm8`5Q+7{xvWB!|xeOI}V7X@kf)44jSU`<`? z>i{{{`HjvVdQT*GS&!UBZG#2EJ@v2I4oJK0>v9j^W=0HO@iUm=I@?PKMUTMR= zzsR{zLURwb5gI)(CED7Q$Qna-8ui_TjZN7Y$Ho@6kskHkiYzqhd#}t~IXRJ_B_Y#j zQ4aMg>x~4NL7{XU`t?iyn@rzxQanVf95CTEIelrpA;Qi|5l)v2W7P!OszwWA0`tPn zSfpq0*D3kmk-z-X_9QSfKdGc{l~cdEeYOz`6CsBY`2&;^94Sjs%2T|qbU#K(JzCE9 zo^5@R!1zRc3PX2h?9Wh&fRl{{Ra7yV269r30XkbG>F5kzs${q11Sp;mi3JnRHP1IG ziQ_VHul8s+H+X8|`;{`}%Q95A=f1t*!TH@kqm*D{`Ma;09&3uyAYNcW6P;=A=qJ9Z z`r84a> zT1~OR4BGTM4vWn{IN26V(E?Oc<8PuA>|I$fdx^`G1g&wQ7Kh0` zQOSO}%w9S#yjO}Ux(F@2?Kn#`M@fyN^My~o)SjZ6Pv<0tVX6D!au#)9kt~ z^^74#FQpjyvKU1(;`Q~;E=)kl`?Q?!J*PyL1f~Qd7&+qFWtW?a#vaEt5o$Doq; zB{|XqT_aV2IgzF?6+H8sk10jDKo+Ifyi`p9C%9tFkoGCmI{UGED`j{^mZ2~aZVCrY z{eFZ=yV8cQ7s{VPL9*F-+}D|=G}iHCr=jZ;*;vlTDQui(8|k6zGsr?i*N@1obU7ro z>M>nJlL=;Je;EbRapc-B`>8pw)BHgro&HOUN+XSCm3Om}-M->-#i#$~H3rQXKcM8i zTrPCQ!9@My2D*^b(0I=(i61T$l}>&#?AS8E}w)2Dwm`;CK=` zNHA!wNdHC2{Ey7smkJb}MPwfzh?8c$PWjDSNB33X>Nz3Rt7z>?Emmq{^BnE|GBTit zlK)>h8H$sOgH6FDjzNkcO5&a6GG5vkY^04JE={(slKNaZ&XsLx9>aD!b7W|&lKv@~ zzPG#Nh0XmqlaxX{BMVX1hz;_wc%yS@Y(d@>+@5vZp-KUk z$%UZ2DUpg%0dOydJyA)1r%Yayq+#LkGPAlnSIK*b%v+G8f^U|ytCXxQMPeOOM8`0? z+N-xKc_-z-n{1#(zm7)5BTC+DWZnXIqwPf{Yq6ZSLr8Pcq!V-*P6Reu77qRXo>H2< zaGkEuuqukhV`y9&kuMsiYtS7aN4{@b zudOKhy_I4dFPBDI6kShOKpU}NO-b8Jrfsj%f-!S^YJ`$|u$=PwiMV4A%jQbbKjaA8 z>Fn4}JxxiAE1-qa-P3NqwYQsGU-<&12nWf@T^0>4#Yy;RL>tAdM#;TYZaMY$`p8_v zbaAC1Tgrm0x&o!|l4l>KJp0J<^mVIVml#JX#W+v?D$1xgOD!yF-aEd?Q!EGvz%~dp#w4gUsH0d<#vA;$Zmzo#N+p z#Nwt(A?}ycy+`}%7g}8ET3|g{DZrI-Dik!*i7sYuYp#;@U70nH7E~MUuZ2p^Z{*HZ zp0jHaRdOC9XK!hiMV(8P)EniX+Ufk%lw%y@FePnwnYOB}6-AfwksdQgt4>n#kC97O zzNu{kcZgi1%ah??BGiCncFgxZsw6*OCNG>p zCy+VjeO^-1{+om9NH&|59Gjb0K3=zf1@OC&Y^J4vk$d38-{->d7qRM zx?mP{%uUwfb#?8oRb-t}7)mudE2KV3+85*;rsV@+c+yadM1{ z(!E%teSNBucVjuDi)i%T)%dzd$@`I<+IcNObBo&bO3v-&G_IN&ro(T8QO}R+9wqOf@{_$A1k@vmfI+W zVH!VobYFi^(%v9{UioynxY-E(S4n!9{B8AyF2T-c8XuuysX$#cSZ^kH`FgtM+1;`b z`HkVAIVm_mN&16KT11B(*90AHm9>?;gXNN)pA0&7NNl7ey;m;M#kG-OeLUt^RlbM|WP%R7G1S~VQ#@-L*=ay{TQ+8}F^i2kwviqX zo=X-Q5WYmti~^h9VBM2m?zm{#FY9tS@+Ew>V6EfOyGAARNSQf56pffGmX|3>*OU{v zFcgo`x;i734_DGYCdW082B-|q9$HY{74VkH$@bOBlXnNb{wz# zvQmP-<;>29MmLK02TIZ%hF>+jsl62Z$ZP?Txe<^uak;hWXSWhS8 zQAdqkvc9g4*f^Isx74Cw8Cl#{$y+4zR*uJAd68*x{V|;()?Z}ZJA7)7jsPVJf-BEB6GI4y-ACkmnpxlB=0Y4vw}En zLN%MApD0;NOsj;=VOFD38v>T|qae zLMg^4a`f|?oc+pyO41>6+$-9eC{6Ljj$*cslKpm>y}FjRcsJlm6-ssNBT%fn0PI(jrwoO{b>Dam(|$=7IWoMGQia#46O{V#2#QQAZ# zgr%eyXD~j&U6nF@E6Y@xh|@AwTCz}Y4%ap)slS&$yYgtV85@%AQyPtUrX$<uyag}YPM~tr_3ym0`EQ z(fuXe7B1#Ha=R_GyA>YA;X|cVmi(3WNta04SAv}-bd+n@*);l2DaAFi6qR<`(DK)A z3u~NrL;bC!KS9o#A?ZZm3&7~)t?XG+Izso2^pmCODd?|$N)eKBeiTQN7~OD;l&+~H zK0}UswY|xgPCsj*!sy<3GfFAJA9DRsVW)mGu63%7m>r_6lHDQWL|YTohH;PvU8mu=&^4@-V>7vq=od>-Tg|Se zQD2chXbd;T9rp?+lya2HatutSns5T6Erfl{cUue6thx7Bit@TFN*O5x8rsBQtJ!;M zRdVkutD_S8n~XGv%`F+HE1B<*nTIyfr4ks`#cn*IJY1p_XR7>t6yx)ZMjVF^+^8hJ zM9%#xdo(c1a;p23{0GYUP-=G~-Br@lO6stj=4~w`?1jW$ERS~D8%ik-k`rK^v}W|x ze*9D^*VA%!IiOuG+9aF)L_AXHC#56>atigyv>~(A9IK4fHQwHnKa?IFYcN+^wo)m; zHgYnQ*exhp%xx}X7^Gw#FEbZIK__W9h|#GWrX;>x{z5C-t0r3gXAbLbtYm*x{sQ{h z<<4#{WiS5|lyclJC;uQ@jvTr$vz4;^Cd<;xmSqKf%H5PQTq~Cf?nXuUb`%el6j6$> zsVqW)yAj=@WZhh5t;QHj_FL!2Ksg$8a{{D+Htb#_ zrwO)CI=3>GZD_UyyOEuS+Pkxn&qg5|#kP?iYA+=V4YkjZlfkBSe1rYz?T%yYerZEF z#I`X^Yb(u9e=Q~Lo^tswsmHX7tCK!j$=pXy=e$tdTqwP@l5;&dk$beyU(i^w>pG$t zN&z01lY4-j+=(z<|DK>t_PEzLlu9I>w^!_}l;jCnl1kcc6mPO6pe1mo&aYF_KPkQ&! zl*G5lUqLC&A)>8GcX}JtXDF$M%5kpFlseS2&a3J#RZ37Im;2(qQnbw2dA$2gO5&en z;!KH)#Joz}{YnwOk~4mjw*E!iHmG!CAA=9+!^*lXqg1A<9DwAM9zZ%Fc)Qj&FLNy^jtLKpTq_RjsRB(IjsX^E{JBC$I2 zxY+KabWNZoGIQU!eNkVK2JP)?G8}d5vf*k+C@DiFN zFm>{9CGD$nX)CP{(oqiXDWXl3)JMrlU4$>)xeIrqlJ{ttw zFKM8>j?-hk7ek~M#L($F5lqa}N70@-hJxs&lx7_{hX%GwW2@t= zq6Czp+#`#!UZ$|nT(pnkvVl^zRb|yxYO7FpXJnj``ZzgRs@ikNV+sCLCI5Ode}6hJ z1g9lZw>V5|f6-Cq-PuM_oo@=V(gw*NmIdt9cJLlHP}5i<)?ga4)tj2$vY9au!)oqczYkF4A?Pe*alX#^pAJ+I?Rj|Y_W*UA}P(XMss;!*RvdREE)kUTVA6b&zN9k}6whzQD?Zh0hdNldOOdZ`$Z|jUUG&Pwoq{kncIi+HqvR( z^W>Nh=(y&@7!x)=xE@MLf^yzh)ZQFCG!{J z0FspXrH@t8ekK>YvKro1<{AZ=q~u;Ab7vM_WG{HzE5-Oi7Nd{nl!#IM_fSglgsgH4 z67lBEHZ)ilDOq2YOI?XQ{uy$v{am7CzCixmtDA$1uK zyOMUYOq=P#anFr=anzkN;{S+JkZM_wJm<+)FDf}7kU5JR<1Jy=_w}BVcw3p+uF<0A ztisny+DB#D5<2*%g_ck{7BT*zWIj+J#>~Ab;Yq0(9v@!8l!8`HOt?2 zMHCmg6R~~4gHghJE7^z2X;2XzosE4pCHt3h+{@|{@l-ncM$AVjxyQ-eh0SqdHXHDp zD{1p&+I-ZbMqH;UNxzXv3q9J%3zW1+$%U(gHugqB4N=E|j5SK;+vN!7ySfB%CFyrE zX+?BYwr^=4CHpWrv3oS7sF9MbeRiZ$fCJ^|m(g(#w3!#T7MpFuQXH#S;@@H}P}ye#c>Dzr;t$#3l3Wi>REVKyNFV&yov4EDyvPB<{zdC1nUO4|2jTDsZI-gxABctifiy8Qk?=I(-AwgB&Rk)%VSKnQ>_%_F}dJX+AA+<#GBU%7}fevC4Dzp>y^!Grtgg|i=<|( z!M&c6`xH6qcF`MUj(=^cq>afRT;W`rwu+kzuqG>M2g$K5nn#C2IQ7e1C2z4D-D>{8 zsRQhJ;_yPH1n0;x_qc~Gs$^Y9X6=#wu&|&c-@v-yos)%cBP!yrNP=DbqVQid-E=tK1%8j zWa?_{OlZWFsh)kb)s+&=kkt!y5F2Ye$ww;58|CQtMZ*D`GVIIgFilH+LdPw=TPVet zEtk9g4l%qn?R2Fed&%ihl)k3VP_R2Fd6&xxkdFi~NJC1}>*dInO!e##H7S`-%OSe6 z=k`Iu{OQ?N@Rb`Hmg(sEF-^gV;&kCBeov$f5r^&^N z&J@9v2%3Z#O));DkCpTn%86Zs8=)i3=5bm-D0u@i?|`-lQ!N=zhU{%t9>winr6hOB z4de8(wno~{iK8&1bm5_q3FTvr7TZc2SUyB98~q#Y9qxLBBWgE?0&uWAZt z^(H$FGWTVpKN|zt7;GEqLFS=kp+V+SS&$MOGfp|>xDs)F3ZUaCvtQ=*OFt)XwvSMsher*oyfo)f#w-1h=qqonUEN4u;cMSCMW zs+v2M+$YQ2743_=5<$n&5sxX^o8*KqY);WmYIC*I%SzfuLELxj&J)=|q(XHfPbe3=O-wbKozf2xrPUP_igN=e@h~zGPEf10p3y zo^H&HrW&!g)U~LxuabRFIo{QDR!Te+u^Vk9LdbD&*&0d-wvZbUJ==?Y3_Ay0&D#x? zB3vwsP;FoFhY^1|xUHVnNtg;?OQi%)$!+|i^gX~vMYFAvcdT6a3hB~i=Y^#^DrvWn zXGcBL(#sjlp`gl0(BN$)%zz(+PCEIKeHdsqgnN%lK)9L`Sa1NGSa%+X1W&D zJ94D+lg)Kzm#soc+Fy=oS=*OJd+3b_4^(o0Ef=oR^ku=$9`ZU$>aAt!5_{~=b?y2X zCG#4xe(#ZNjK{Ig&$DhFuN2^0IqE&qsqQ`WI7=zO6j^{W97M#|>6t@+yDGV7%G`Zv zu_rBlv#YjnJ%;_Lu5t9&8%!})+Q9T5a^WcSShuvdDUQ`db{d9Gu+hv$3mZ#pBRveg zj4U(^y}g_&`Qb#JIYDy-z1wjF+ArzfGHF4y)~Rz&RyUt!_p?lBwjxy>uWM=F&&H*qW-x#ZMUY9xLhX2w4G%Xs8LGN zHD$$7Kz-t9%3$3}$@-=o)xt#Bbw2%eO4@_vf?QCSaMq4HDOq2Xlh}LHQ&>ryFGn}O zHd1F+%Lygv#d2(W*e8EP>gZl+k3-e=R|+s*E?apmmf7iQRdU`dr*xjxVsf6Y_#x5#N+PP??Q{*Ugw zb97Bxl;r2gDV=qZ`@u@?b7k(zmUyBDdz=^3z=-3*zvGqk6XkR-iG`Om2kYogbmLP# zTgiN94$M87csr6}h{ly6lMpD2G^g&rHMA2MlI+VJk`a?#6vpv9}E zP}Wmqr$OFl*m#bO7ua~oHqwKuMBpDKX{}t?`q1VM+NRe+i@|~|_PV%u)UnpJYztj-ADcteU7MErD@hl~ zq!mDj3~fzAqmb&6 zrZ{#(8me`MQi!MJ1Q^IG6mV_{-Kj^dH8SbCFxOE%J1a$bKo+H>HW6>46~~T`txn0j zk*wSDBTnU(RFW>ug|yC5-VaccZZ4;BRWeEol5kq8N3-b|CI9|%q&@djouTCYPUiL6 zYksMc_Idder)3$WP(9S?O-kUJ zp>HZ_d*whoBe;|<;WcPKQ__Afr*xiEef+HCTqZ{~%b{l7x74+Vww7btRyjCIRh5!? zE19{HXO28I=3pg#sZ5{eJR4-Vl5+!Db>t_UWor{9={|DVa_?H7s3e^(lV;j~j)FBu z$$g{DT}`dOVD`q}?n()^lOzktUE->eVxo* z5^k&s*Sf9>IYG(%hCJtzDfo_#-Z@I{UF3ZCIKJ&lCF>n>VK1LYw{s-J0r!=ew<*c* zl*!Aob@3inau1Y~JD-&KXrp!Vf|7KCT(UFmK*tyTu9Ev`IkEfO7dCcCaXM0)F53#5 zLrGsL1u2pfp@V{JA7^lUZoey~7$WC?ThqzGT)364(RQ#L{{pll%q~bTCF^Q(diGu~!Mb3`)V}pf0gjgiC`p7HY5zJMi(z~Q%}VCwGBZsyI~MmH zs3ct^7x7+=xZ-ayw%oOEIx`}EtWt)AtaU2e^4w#q)0s;8UFCEyqs*o&io*%#81iLG z?vLfDmp24s-ssblh2k5#wK!vC`%Z%ursAPRv9>gM6>e?8r z=PFsBmszXZD+W|e=xiDiT&0xY2Dxapm+EG-O1@o5y^);JSV(GWtVfijGv)Xe(2hUH z(#jW=tgp-YTtr$j5(=9Wd+#ZEAId>zp;GXue!o^yKP*$z-PzHlbj^iPp#M^v+ zB)pUsphP2%Tj+|m(Y3Ya%0;Ub4GxdQ?yaQmCVxtKPR+5JlJm11qMHbZB25Y0F=^!S z2qpCqIZ)F_Op8Yw;}P??fX$WE1#(K0(sC?Xou(u$lt~MkTvfvYCF}F@7rbiQ$X87` zN&Q3|ADp1Ij8sv1429Jw<=IWnb-G&8QD4NBq-Ao_m!rP0uTfnRH%A5bG09ijK=4{} z&Q#XpCOQmCVu79c`5kA9WgS9x8U{X$jU(7Nij7v=NDl)aOBNai{#>rj@@XHcISzRi zz1wm0*DvXta-0hzNs6=?*UOc(XUK&vlm9dhYv{RKl;rEman7p`nVb(QIY-G6F7z1O ze@;mom7`ifWvX$Mk-%>&S?lD;mPJXmd3{A+D7hb%zoK&5;)5$4x-E2SmS2_Rr^;$A zFB&qpt>ur`eZi;6oV5Sdao~Hkl5`iDw3PIBuomaam>O%SlDb(g(nV=4Z4~PDl)N{~ zym@qXkHNXAk~2?kbr;ayF-QG4S;_j6{Q2fN4@8)&_%1oRc@$kEvX3e`@0K~sh?DyZ4t4mFl6#_@ z&_%TLG1BPRkN&=r_ga~^oHl3E#9EvVmU57Pqa?pf{(3VF^qAwgr9YMAm2z$uM3NMD zql^_#&^4qsk)vEfWsKW226G=J^CNP6i#@N!SzSqdlU&4#XruDz+OYXKk5ux0CMR`) zyMw)jlJ#FXnP~Mfa7_B(*A<_hEgeGL%#cO>f`5$sl_v84}0xy*I7MkD2 z#d)=6g}Rwij$v{>RN?gSSo-2062#E+Q|@Q;K%{QPhJi zLAw3ACTb@9o=OqEmP=nj&{fwoDp}{r5zma9J7;8;Dap@~^~_+Wc2A#~<^BKIqx3IV3h|L#`Ug2vBt^TWyfo7JN?8i!+^K4>bUo7I8YTaRa$1xSEggD8 z_xu{UaHo=aq5M(g<5M(9A5)Tcmz(u@GzejEzO3Z@T`uzlbg!91(|w?14avz{-B!!n z+n;DTfSJMHDka!QE?PaCSFG;;Qi`y({B;eby&1Jps^qbzJ5%Mi1nIIlXYErmN!R4t zR8EmT?enJz-mH^sh&WEc>8q6DWw~SwwKs@TfuOp$g^rE3w**tAj60;AZILyU;=Ce@ zGblt?>e9N9P>?RGqK08(n6{32$+DqRmc?>;8QgZC1eKUnQ&ai?SJup?uG&&5%r>$x zW$mTK(N)}5$$hDuDS6IEQcMhRt{aubUP|gBxq=#y zZkw12%hgBOPbtYu`Q5r%M-J)MZTNx9_gy~BY9-iki**bc)T2M1jMm=m#V;C$@^tH} zqm@FuBj-duy5>e6oTellC>O+D&GF_SX~(RZ=whV|AIT9Pn$bj5B37)6ZcvIdPp-MD z+6zM@))IE?g}YbDzgSL=0*nipV}wsBS(nMIgPOvLkbS*YD!Ia{>2;+nXUjRzQxM@3 zr3i=1-$jY7ps5pYR)s$*nfH(*Uykt-yRqV|m%2^Xwc2izO975hH-<+&YK97>81Lqb z`Z&-;TM|hR=hko=s1)dXxj0nW#UX@7eke{yc^YbZ9VP!ya=zrv3!58&#+aNdZ3un3 zEQ{wg15-_TtS!h+wd+=FY{SL`HYV9ddc1rJS!lexT;?s_k#?Rn(Qa8I@#oX~9mmZ5 z68|m}7kV7~7gW;r%7r#g3;WHY7E{uO<)U6TF^+048HvYC?!A@VXUg1JP8~c#$$VXb zsBucX&sslO$vj`qX3t~3FHrKH*h$`NmApI2yem42?k*+$1_fe9dwtB0D`|g|Yc$W} za9>gKj*z39KOvYjXC6LOlHMwlW>q2IDY>7ORY>+D`~Oyw*UDu(ixw%JqN}4`%puy7 zmrw&ff(vpTyKwp`$-BwD1Ny*()j zNxP#=o4rdhTS?w8hYxvjG>ld~_97btU%M%}cT?nbM9Do_F5TWbyG2R7R+0EwWohdk ztYqF+j&je*OM;C}v<*8zD>(v_!i|nKL&uvUth6!TSLKpWxnqKM2nMFNEDeO5Ye+9N z#j;K#I}QDw!Nyr^oWsU>wvitCy?`t<^!t%KdeUcFd~u*T9-w)lKy8>t;DfZJ+*Ci; zQD7a%f&EJHu`Goh{UGH|U_Kp1nrw>DjnRSWvF1daE}VDWqjk4Zpqe7FsID_UM28vT zBv=|156ql7ClMyeBC!DG(4)z~;z)BtVB7IK8G7RhrCe{wrKN22hz-XDwu>iXk)Xl- zs*?LFIg{3y9IM@+IlciI$R^s%LrF6y(iDzHV&MR#4V7U-rjL{|{Uztqph@9y6YVRi z4a~tLEA47ZOrITy#{yI5EHGsGUMb5Da{83a4JTva=D?^;4d#E8%sa~Jt-!6(%BJZ) z+L3Zute8D%-bDM$1-%jH{z~>yGW(!usrq^6tc zT9##ao7Tb?5ezg0Ba2e3DWF2wuYRMBL^tOSX~yQ=O|RXGlI*O23nGV$uuaRFhn>; zDZ;a|2&D^Rkvfl7;u%Wnt>kL9@2C+QjSEa#8Vfek2SN!jubI9O^VHZ&m10!LV)SX# zW^@BlY-u1GsYwJAW}D+Cr4$i4ABGrh!=0v1h{u!7-YvrWmC}rqr77JI1=B7XMuB`r zN&TE$xs+0NQ043Dw!EpNzFsZ~{kYc@OxI*7TGvzQqR~LbJ z9aa8ZhfJaU60UyB&q{e>a%t#+x^sLqyo9Px>d!fvW!3q}I$u9RV{TsB9v$-q6A4*e)woE3IoETwo?%i{GKg->TZ28JfJ4Ne(J zv{)&_e7TJD*$8EX8a%YsD=>*Jgr>?SZtf;HL@C9-a!M3VP0`I`=C^x-l6F6twsIr1 zF51UdjI=*TN&lRzI(jT;*Ua1t|Sy_P6?NgD^BD!M4v033ZCG{jZ>DQkW zZV5-@Se8r0KSWDM<5AjS8;=E}0UBnq`-R@^o`;pfEtJ!xvQ2MzH2+>u(!VdaJge5Q z$DJn79uj*r-zb;w>iAQwbaZO0z8Rg}q`j@_M`YGfw42Gg2clgB^fTP92f7b#_W=C{ zW%4A@??A5seFEQ)fohSeKLGuScmD-?0H}N@{apdy0YG2ijkSUPL?{~pJp#9FfS!cg zOrZXFcNd_?f$D+A!nYadbA)#w(7EtE)_xA5oC)*~&}Bd`Z9%xmBvIo%4 zcy|%d7IdeG%wxp!a|-hVR!v zzu=8-0s4ClZWTa>;kki8!{N3L(A7X=fbPQ^13iIvZvpxm&pinA65QSeY5@8Qs3+e29q41A!qw<+5Ku3m zQ}J#9=w`T$1^Nqavw#)=?FzIbPy?o>FT(dYpzq*&7SJ8=y&Pyb+-?Ed z73e{r4-k*%fYycEhd?I)eFs#5cmD=D6sUA{`s)eQ52zk&YXWVEH%0;N0<;xSBYd|5 ziok6rpg7#ZKm!m;0_aJg{egakEUiGh!R>UQ8lX#n{)X?3K;sbJeL$p19}s0Yz%ZAd?x_C2;SL1AHsJxpfZ%= z2+$n7+X8e8-Z&WOQ=sF4df>UUfvSP70NM#}+zRw2LVgJ73%v0>(CR?%0PO(uCD2yj z{S9bWyj!p){T%?eouf$jyG0rVTt&OoQ*jXI!r5MC0f6}|@m z9SL*{&}ck&2GDo;^mi$c1-F}k;z0KUse`uhy%F`%D;UchtR*P_3@ z@mv+qmT(&klmuGwhSdCN@kX<$|Ba)*7(+ZX%eo00o3b&EjV){=JlqaiH6P`V`RL z!$2niy#Uk~=v|I@)OY~sa=h^@(8GoF_ZHBD z@ckU90dM>Q^bb(pI`sD~e0u=>3%4OaJLBDTfzE~7SfHnXCILMIv^~(LVA})eY`n1u z=sch$Km~}~p+L*<+=)PU0-XzV2+&nPEk*QqJJ2McM}V#YdJ(7?&%Fn|n(@Y;Ku^NAcwPEi1tIqVdI8U^4pdl7 zeId{O(A$vt2cR1e%D+H|A(Zm<=h(I|97{ zR15SBIQ9a%5NJQ3!|}$^K(E2=G@yxayBO$Ypc{ZD0No2z2J{rr6rk6E`h(*Wpi;>E zBhVOx*KGs(YlUwG&?j&k2s8w4>j2#jGzO?Q-W?D072IY4?F6(d(6>MhK;I*j6wrG} z-GhKGf-J`Y-3_<1fJWerYk^J%x(g@>^f*um=oO&95Z;GC7DD+B=o+BEflh#L=?MDk z2h#cEI$Diz-^V0^!Fa#tpwTzZi9fv0}TVZ z9HDFs^eWz+0CYcmX9N8Pv>VX1crF68DNqa0=0FDntpapB&{=rnY@j2-dj-(fK(_+j z1@sWm&Opxt9Sigh(4KhrOP~^j_Zv_R+{!kjzZr1r4-|siT0nc^-O)gO;JY=@dhneA z^f-KX26_Uh4(MUTG70oO&;dYu;N4?@Zo#`}01buPr9dTk_a>m9fbIwS3ePWeg>+>8{J3I-x8oIpe^z4V4w+b8xHg;-q-}_DELkUIvQvWP!ztq15Lvl z7SPY|T@17@+ztVn1h*4_W&)i9^fBJO5@>rocN@?t@O>EQ6S%zqbQ{pSKrMLVE1)mo z_B&87e4&M->2ExIdjYKj-vH1(KpOz9ijcFQBnNpW%&3KudtO2l@hN51=Q&wg~7|ys-r60)%%c&~rd10$D)k z0=*7&6;L@sxgBUS&?7+AKraG40Q4Tvwm@G4Jqq*((1Bnp8bg202(LHLP`IrI^d;Oz z0F49M94HTH8qhaD3xJNo8#O?;!z~W<9nd~N!{B=)(1CC}1!w?r|3aYM;d>p>r$~bb zfqLV)=YWm^dK>60Jog3AdyxKDp!b3DH>ST2fU1EW!y7|^x`AUopi|(sDNqcdOa>YR zx4A&Ya9ap;4&0(Z>i{hUsslO<=pvw#fGz<#52z5lR|EA!D0cw81>Z-3eu3{xKrbL} z?*qLJ-*13s!S_#~Dxl&`=BiyzCnvFN61MLO39e|d@Ed+Eu z+?s$+gWJA9pCgo`fNq5EsX#XYT?F(5p1U6CDWH3R1^_(?^bOv94QLwP_!#Iy`2GMC z0Qwi`F2u5YEd3pV=T-$O1zI0yeT1?Z&;~$Lfc5~I2XrYy*%Rn(phlp#fR+JW1#~#j zKL~F*&~ZTL1Fa9=Yk>N~?M|SRfgS^Dg73>fkHYN(pc~=#Ezl=Ge*v8d-;zz~F9o;0 zKzqV%4WKO`>4rcT18oWP6ym!r&{({&qx~FEEznzdZZDu7K>Gnbi#Lu2nu_O61KJtpVQgK;Ob`7SI%+U4do-H30pA=k^BL9&Sef{S9<7P(6Gv06H7!TA&zs?*cjr z&pi%wJ=|Ua`Vi*@7-&9xCjfm8-`PNq!)-U9 z1$Zt3bPIf2fX;#M!9eE%9S<}SzGnm733LTeG0?3*CnA)GfL6yFuL4!V_amUS;r2by z;c)v0s1|ROZ9#v>!mU5h0-&{kR)OzmpeWGRK&QiZ2GG-R+ZpHqpgN$9z>x%63UmO_ z=I}iRXn(k!0rVZvr9jUkyqkcA1Kkg_Ieec1x&rUM3DgVdGobI``!mooxOLx>{ftCXu2($?A9t)H}$Y%oW3g63sK8D-PKm+0S z0MJ=L&jM|Nci#fq6zFrHeAK$X06hn{yshc)6`&qKYvA1>KnEb?b%EA~+gPCWfF=Rm z1K;g|)`#03Ku5rB5zy5L4;Ry0_U-bxDc%}|=Wu(w^)hk+H>z9qwdlCn+`0j8;G%JB zBRq%Ozpa^Y!;RdQeXTa`$hIB=2d=EP9tOfC(w2P_bkR11=HiXsK;00^YCxaCZ3NH} zK$`;uURHgLlwC6;~D2rdk< z?u9R|@UR9U6kMxe{RlVQbzu#K8!n)*j)xmAgRt&FD7bThFHXQk2v!x`a5;f>3ZBE2 z0ahK}#mW7aef&O-(YOAV2jPp;)~&Bm#&H6=H4kn$j@&v2 zA>%A?%RbN>2Xb2<;awbuZ56^72UA-c!VL#STMO|nPH(pCBbaffvSlBPjB}2y5PWgo zu(c1~z_Gv9)(8bB?pm9|4X55(FXK5JIBUHEgyUYV#dvN@plyI~@~L$xe0K!83U0MP zi{OUiIW7B)O&pJD*=Jnhj7sYr_~PJ5Yargh@r~9;aKp)o);vgXFVJGR;aov$8PMxM zXTukV>sg26T^x32?E$xLlj-j^JXZnqZa)1D1o|G&tpoHEe8&Jy2bv004m2O=cc36p zFQ6Du81L>4bSBUdK-U$}-^oDp@!SPKCjwmyv=h)>KpPa$-{U~`**mWQjey&SK(_*Y z2lOmL{u`(k@0L!XzZc=w52zcSTN7v;&?um#@ZAdNN}%n4TH(7BkbPoB7^p9N6F@(~ zcYmN`fLej}gYW4;$HMIrpx=RR1eyik`+$1G?P;JBf!+Z66X;VQd!P4DKt18M%2fKB zhj%N14h9+o^hF{44Ffs@&ut8}8hj@J?Fcj*$lh+c8_;feE&?oe!uo3~0^j?AMgn0evSqI)#>!ypdOU}k3SQTr<@En$> zTGPObHKA4yAgs@{M#C3NC9N57!Wb28!8)Tv2hL?=h;SUF)PS8@N#WO?g$wUk~X+m56S zMn^_kmX55Yvw0Wdk|5YdWIRW}+U_|bl5CSOedkMSX)qRQppB5UM`n4$Ej%UL+9Af) z$s~$ZO0uVFg4QWyK~9~%Z=J9AC zOHgh3W+uw8;l@I!F%+z^aW~hv7tz@~voMSwS!ts}ep80PLrErXFYwfcJa@m!) z>G|~lJZ?>b8*1 z2{)HIUr6HkE5e@TuXVDb3bJKm(F`rtR{2;NeRW=E3sOcgoy{5GJMBA>^ee7q$}{nH z=#@u&XG;2W$>@~_eJ7M>zFId>I7X(lR@r(bBfDFV+~=P=M?G@4?~q-3VQr>ikyF-%<^PM*?O|q8n#PZf8y(t`1lk{wBq;|-dql!r ziOlvdM2`7B!*|I4_k15SjnL(Y=_ zooE4M8WCK9bRvjMALK7(Bf{Qb)pd=C{N_X?WsIZT@4LKu7Pi(cy;=^TMA$w(z-#!c z&2NM)l2I#pbUNs62Zt)8K76I4wd5 zXDWWK3OW%)rsBV?v&tzw`1l(p?7FVvug2&>j4I<6y6V>+I5JuR`}!`ko&~OTTd!6? z`$U&lGoalQ1N|&ujw1-mI$M-7O@hUC5dO1arFSYRdyL3C8VBe3&YtvFlNpRW+jnYt z=CIXD;h2qs-nL3{M8I8xoZ(-99Cga6zC(8Dl;xcbBBN8dEU9!#vqlOUk^H@DbxI|4 zihbdtTcNy5QSmnf;#u5Ur|J|+?&FbfbvErY+T?XRh^*SA3&$fVXOJB4mnHiccSLcG#=tK~i4#_K>RbJ^1iG7$;*L6rL(DOv| zp*9k79Q}5t?{e!|=)BiMv<*9Y^+nqJ>>(0ol?P zbw^EdkMDeOwH)sBomQS%Yh6L%82Qr5Er*WMyS2z|{@HWXA~*XE*`-Bpu!HEjmP3a+ zq+_Z%^88DZ%3nL)mFJ)NPMciw+*yZojE6h-KlU$2j=BGV?~t?PekUq`OdY~Xq!U48 z>W~vV8aXekZ#xulHs1qn&!LMdX~A?S&F%=w3IAlj(TNsXNy!uuS~Fm z_z&onwruK{0FFM#BH!8M(k>0YQ_M4`tsN;GQ@il0Yp+~%>6oy8A#&6)HNHc3>6nF` z4I-msxJ;>Z%+?wyNXJ~!wc`{6n-cNHcr&fM!Cr8hG>_L|5*a&z9MQdd=UFIqj zOCx+2v9=PxwwXZ-sL^g=6GU zD=+oW5)t>f$D{rQ$x-P%dxMha3Te|GIczk$gxI!0ngDMr!y zf45&q)HX>w_7y}0v#7IKl2I@Xb`bvo1v4N^A~;md3BI$-rD~4#ooe2yW?u@&R5jdw z$r2H_(mC3{AUP_XBYcPKQaXorHi(SU;j*PtI$@0zq;%|i+Pbd&QXXmuhZd!WWsKI# za}<%4p=PEix=FThtYAdd@^ohtKBHQmu!HyysFsQj5qGGQAAM(wOPze@JEgqU$-5Me zsZM&>%MCjS?^YpS`zOy)g?!;VWS0v0w6j5ER0x+Ll?r)OBL%6DC%d-YQs5rT9lia^ z(H+|;bO%diluwTVm60T=vd6Q&9Yj{G(S>V7itIQ$6vhJIdErtRbA2b0x55}t;TRdx zT52l{&Z;zRW*TU=f7%>X#SGseyHv$=JBY5E@~hzG`(8PG5Q*Zirgr7<{=O3=*Bs_5 zp@Z=5Dq$c0W^Qr{u}-}AXTv+2MqudmhT^;NzTCD**>J&KM9xbypR{{rNg-csTwJ$p)VGKQ#htV;T@G7rFZL*XZ^G1s7Idi9kNT0 zJl@$LGJ1qdkxGwTu91TD$mdc-vM5bdj%D)gf>X;F}Lw4zy^*S3wM#pfOQt6m7jTEF~&h6Tck$seXO*|g; zYOJ(STvkS7MYA@I4kLkhIkr}kolX6WUTLy}$f{SmaHa-F*=OSJP${ST&Ks9XImLHk zd8?E|DI8O!v>#=k5#QZlImthLj>_bC-yyq{$uV{iT{qH}Im$khWR4tvghcZ9HM(;A zLEj0JYmPgPvd=`qo$vSg7b3@ezuR}n|Mz@1kFw7sn>3*RAU$^TBY05XjTu0T2wL}q5Ev9l3@6x4`#9G7o)-TJUT*h|xGVf!lg zAg<*w=X6HT_p7`-OP^}v9;9p&a$#CVqu%o9sEj1Jl^vD!?I8ST$4Woh*3KqJ0yy-{ z0^ix>s$=H*PBG7%w#HL9M((6LDqgvm79!J8neAVQ9CgeL-yyqn%=FF%kV2jtNEM$#9b9ZL%IWu$*G#uYu%Q@>Dt|EhP(?W2fbW&gMj>({ijG#D77@ zcqD*B$K2{Wn_N2PCf_OMnbX#V6pojU@rZ=G9do^ZA#&6)*Z2 zIVz4GzC(5?j*89(kx?96epHI%>&}+qbO-46uAQkVTNX~lY0@_uSrj%j$4-=*D?@Wk z?6l^vC1b&iV(Otf7IZf2Gpb{*9Yj{u(S?Jj<(Y^(l*it_^Tee*miSI7Z{<->;TXA+ zzD_tJyIXst{B!51Jrce{c4?2e9Yog+oA%^2@eBM*kYkRY>pSHCdyeo4nb{RQ7ClWVRIuyfrj7VeyX*1r@v=KNE> zL(Y=(ov7wBEd{PFIuS%>sC0H`Ba&_@eA~4xh0=Horw+Lq3cYvmtEfE7TWjaL7!WMC zc0x7D>aXdXE<2faLZuzVf1#aF)*f$1)iKt0j<~9hF}@SZGgGZKC>*nyz} zi6Am9gtE>?B;7)IyK4s_2b)_}Lh;6?Xn2X&@~r15V*d1&X8~00lk2$2AuVc-vmQ@( zHd`{Sh$rkIvbG|+u7VkqH5nXL&5ypb%+;v)&UdsJNBS*ZxJx zQTcq~J7kyg`Lwe^WRwq=FO~9nR3in=fZW%$-IF10yCl0UOvP5bOLz2+D@Xh6;5D?_ zeigCTtVp}(h&E|E3d`z8-lsc~yUJ2xzxq={&{m$7uWa>*`+S7w1eonW@{x6D|qJdMfX9_>)x3RM6so-DCWA4Et4{Tsfj+0}1s-Gmi$IKl7~{GK9>Rf}<()xdAig|= zc99fc9zgRI>Sg=8fFs72d1PQBdr*ok_u)-Yj4eMwBTKR6UR?+tTd1ClV#}vYtbo|^ z&(_A4xiFb3yxS0RlgBynL>H5rJcyOzMHZvpJT?pL#-;sCQarv)ClF&GzEC%b1Oy_? zF=#hQ5#~rVW8o1d4LD+iq3gzBUX)_YVR$1HV@x+1S&A`-=tA%qLp5a-W2Tr`0Ws$G z*52eX$ID+D5edvrs8AdU%;p#p7{^A%h2om7A9#eR5Qs4lVO%F=dHn+c=0>!WqyTdR zny~Nyb1C460cO6C!tgrCb1~Q9ZBUFa*PxN5_;Qsl1dlINQAY7)(8LOeFO}BDmwkdc z%m`C5k3iMph%_c^!(ulm%u0-!)I6l?8Xj^UAP{391z&L}a9C;c78>$6xtCbU6?09VxoJ3C&h`blCtn zVsx2JG8@r;IiQ?{FJCdBY)2zY0p*PZqIEO=^XU4k$XUSW?*W@|iGbwuccYn6^*KF> z6;=z`^Z$XjLecY=ppo0|`MvpC?1Sgl0$8`%6fRkE)5RfY0MCQB=TZRgtgX zW85C&od3=nwm-7O`G}B$MoPf53fiA&K=5Ve!&GY&tcYU;WEEWRM{rA%zGmh#-fgCQ`FJ+IaK&IU6OAmzkZA;>b&14m+6DUv3wV1i7=&wu zlDAi(X;JkyUDlJTAp86jya|dvKM{@GcAwAZ9dESXYvz8hps7*yJKZi4S`FFvgLpF( zeQ%?YBYdyX;q#n%d7#1(LlQ29VqIR@<>DXJWaW-HXgb{cTR zs6wxk2vk6hDTm<=P>dbjp?6SsWL@ER#GKjQrv1GDa?Lhdr5$zEv zeB6NMDb%UGa5O<>lz(9&kbl7p#j0?G6r=k!saseY;A5Zp$}gFD+_tS;pbtaQ>f6Irx=Ve zs8vD-6p|Dy2TKh{7Kajuv5*u@B6SY*6lb7)A@vleqe%*Nr@aDj1cx*ylZ=46iWSS3 zIZneDs~9Rap^>Ffv4KFeE*+RgyVEcazY|O`%mvoclDI|DEY)p*FYx6{@)AMuT*~v(PnA=!ilxgQs;}z^4nI zBoJdEGw2FdKaeEMdJEP=tl_MHEjRQr@#z48%cMe`Z2ucb6MWO8H+TeVAjg#{cncKc zN(UNQiYpTcMCczvKH|BNnjPOWlDa31DYFEzb_)mVR$`c?;ne|L(%(3p^@9} z{l&Z!9z_8=%oQ+z=0{Zl`v!Jd2J0fLz{1<2sDd6ea)b&r5(A!F&@M#-g69@b=yq%@ zx0u`7?Uf6~v+q&IQ*TG>I8=nqHyY#^{>yKD#~X#-EF{yoO;=ew)A%@nh|Dxv*zJUK z5a@P(iguRN?feK$TByJ6uLF+YpeF5h!s{UioFCxrPz*TVMFfktPtW>nPZKW|)WH z45knqHCeHoe*RbL0^Gb8-{F1!JX z{=OKE9N}+`{+p)&v_sH<;A4)xbSuKf90#>_d-gPMpb4kC#HGz2LQQbNDO7FEbq3=M z&pO9Ap#uuZ2>x4_dY%z{k3futj9|LI>Vd@IX|!ipW8rg{PolXBb*}v|;0S(c(mSX9 z*2_bQC-9{!#*xR+$Wk2nJ%MOlelRCE?^iDe{Jr3OY)h24q4&4zky~ z@HQxVeFhr2?OtCHHg73;evP^3SE9L5^*o(E2(O3i{gd%_D0=?{G;)OZH9CHtJJ7B} z1A^xc-_Z?TEO+>5YmZ+{AP)-*+oApgt=CYoHBSo58S+&N&U%zfVY{T=?{!m~gf1y0 zRk%b~GCWmyJAsHy6P!1Nz!Chx<_@T*Sh0NW;G_6r z730K*(a2Jq_@FKXj}ufkMseb;CRV^S?0+SoGPyUkY)E9=pk4eh|1>%)=}#WP#(HTG&D zWsRIB6~3e^W{)t;fq%cB|T_l zDU@V&A$TaEIx-3+C!1ISq2$)q4re+y>>NsMw`%p8Fr>L1YT-{#Uf7r1EA~(N@iP5* zg?{{-e1z((xwyR3s_raUyO#G_RwdgDht{2eOtwx+6cp$t8_mwD)n`?$Qr;S-TMusw zP&&FXR2$7%&c(jDd_7yqRdfB-TxEbEew-ji#*0|jK(AQ>O>L$_aiP?o+FGbs#X?DZ z!15>Yux)=Ga0E_aUeaM23eHsAf?2!yCj2a=_g+Fq&b|Q*y=Zu;txB)`JrCj@O^9Y^ zu~4gL3w3LddFF0{6z4dS@IQI|P^DZSuxbTS=g&cLG3Y#m`SIyO?_q8Px0dQB9S1l~T1jaB1}q30xkL7?*pe zcTo#6js+R8Amdpeg^t&oGn~sfyE#f~wUsYJYbaO6C_a>!56Bh)LVBi`mo3r1QBMt07x05lz*cxZ=CuYbRiO_e(8o1gnrtWrpkS(ZL}{aShW;9 zkyB2Ed*nNbd1P4{iggXjl>6MS0SwAG24zNY)SbF4b4Pt$7b0;-rOp}{O7)ggyR1~n zvU*bkR*=1!MLo(EmjAw|PCH-EPRPLAG z=t3m!mu2hAyHe0loSeo=1v~PT)z@c%gLYa)F}<3QPbyVCI6Y9_m4TK*EXo9X_Ke>m zshimo%rZ=9UmLTo+SeN*=c@HWu9(_f*bOadt=oiz7PK@m2c`Iknc9&VbnFSX)`vr&Rt-kO+N4oue^WAdIc889YeF=I$Z=@=vF zWw)-gxn3H&5Q#fzwljpJr{uG4S|Ir2!-@IBnG-uwru&1sTyeVpQx_s}x@VoP~YzR=`5qi>*CVFn9B&%o(LZ z-;mSRS2^oWB^VV8fpu|jETf9%A>N`|)hfc=aBp^3xw>QdU@_ZZ24u;?7coFs4|3Po zY`!3|5R5V$Q_Ld}Eu19pd}AXA`9=SLcwOxY@$hRO0yqL~&4|UE`P{oHkW%F#ava8a2CpnW4$b#;*d3*H|z4lBjP!_5Q$Sf@w9xsym^zr@H-P__y{@s zdWSAOoZ+|WLIfGs=rDMnL&J~;1h-NJsKjUGBJ!zC<7*I}&>mtnf7_)yw&M)v|`K8)hriY-yS;RNvz4xA1-lv8$mu z5w?lIh;`V$7wl+GfMuOHXdw00w2x8 zmk*Q&t>sR}YgLz%v;;VCw)`w7`w0W}?yh<>8uvR`JsP`EcmSaCF$w^mH?abe&dXZ6 z5p?S5GyzPVv_zdYet+(0I+`v z-$k^2`%&lT_k$wsKfs?zljp73U-jj=N+DaT!$eZ9+Dn`L(ol|;?}80yun3g(nl%0C zRQOK^ek!7HvWd-!CV30iz@3`s^iE?3E5gZzG=4hM(-F8i%o#mX1@3i&J$O3hoY z_Vcc}^p{YBA%}$5g_p8xAP0v5%2q8)f_87O6M*ffs2J>{9c3Krd^z6va)R^aByOM_5V^u?~U%kG7yUal}3%In28U@@=6DuI#E}H=4yt=^) z1>$bCs4YR-8{GC~RMisSA<316DL(v)AeZY&3J`mJ0H*i1QM3 zK+Y+=H&D3bfH&!~#~pB%E=1xEc-`sH_6zWK!J(wzB?nY?)>1SeZH04Tu(bv@)(i@b z;^M@7@;X=$ruL9-*f~&}*;&ibFy$OmbIp;wbdfH_+)EegLL}~`x!W3*O1WB3!E{B$ zmcNfB=978p8ZA8orH{1H?<2bWaTk0@7b0;NELu^lTUGjQZ;CV%*lkW{g2dt3J&8GD zaXQCs$dI<-%|_Maj^l1!F1b7I(uGLe9kW(7YW4D9>NJ=_B%Oxngr^d7LRUIZO3svd z$x<--qb_fp`p0!45~qIZ_5myWpzhTEq%zfMX*iua!Xe#GDA_Peou~_uIN=kv)nOZp z&;u_|jOmGKn7xP6BuyWx%MaJ|GF^xu#Ts*}d>xEV?P)-8D|&Q?l58RTGZR`mElX}O zAh$6JBI=JvM9o9J$yvG$={G2mPmNH8(WsVe8W24A zdOH*w$2_gf{Oq*5myqQFPSFzix9Kv+rTlSSh{VaCy<+PI7$=r?SVO6;xq5yeI9d49 z#MqychDA{r6gp*RDsI^l{Xf#>j?@1GU5Lc#pShvrEVJjW)Ml$bP=>X3|D54-iE$5C zIkSQ@gREeQ_-Axk@xrK!T~ExDbAei%`~ zDkP-buvNQP%siJ4#1d0|8#DOTM#|WDg>Kk3l`pB`X)OCVxTj^~~Q`@2(x z8X5Dsnip?nszS+eWXQ4)=EAK^xq7BhqaI+gmpxF{rH{waqAo<@9$2sjj}9T%VW|7N&EV5*X0y8jx}0kL-x|>9WWj@m^hs#2vBFZ3?AweT3%lwFEuk zHV3d^lqT_IT^hM3zMu<{xF?pb%oSmV)9D%Low-FeVUpTas1Kyp^uh6%0$hYGUQYJw z#2m8>hC9rlOh38A*EJ~P801_|<{BjBfRE_1%pLWRE=1yvnzp%Iwcr+`++f8yi0Pk* zel;;~Ooz>@aC?a5mMT&HiY{NA@|ScW5~qCW=G^YWVBtciahy@h^;^#Ums?;uai`^N z5X%({b+K*iXD8K%FN32au0ffGV~}(ICEYIN?HQv6NsihFtTN167wJL-9i=h2;o~Ek zJ8M92D-P0C92*}!J-)T$Bhpzq=K{&yK`VND#ia3^cm$_@DpAPpLqI#Jig>3|) zg(IYC&PuC0E)v7*P(1wF1Arq?*PKq)Sl!`J$l~@+b0%xL5WKxq2t@4Tp{}#&>EzT} z_rd{@_nV;DI0i#9@3Y}nXL2w)<87V^A^%2Q=D3V+(1l2x{K*ldeJl0u#M1RqC!kugf2I!Dn?Lf-caQ_ux|}bWp7U!L8V;n|H9OlY3gb zv^@E=l9h7aIt;wl^p|*4)tv1uDVIwYT#io)62|x;(<4vmih=9tj|3uedc;oPVzO7D zNPaQd!jOtDCnF7VW!I93Z_^71$&Z90kme}ddNs2M#dbMg=D?TWZB|>2#EtLKN!I8jf z40And*I$m-Ko8S(F>j#V1R}D5#(%ZdlC@R1;ljDk%H1Ld&(}DqW$L+`KX99{T(mtN zuI*KTBT(5~2va=N3g2=>M2`7JbCS2{Lh$}A!oY{odA-@zja;uxXdrmg-F~3`@n58ux*f>vDjkOoois}g&QFa z;sc2}VsDs@aLs_n(1;oIqK%ML|NXjTa(@i#LInMx(K+${jRrpr2yVq8x)ovl+ZS4U z_;;qW{T^12>Q-Nagk2%vJ`j(-nn!q9)yQXnVL^!);#_Mw>e-(AbeZO=`w4+)VP{9* z1qkedcs?GM?LPpH*sXOqS9rmhmXJ34S9A9Mq6@)W%Toj*_Fio2h7vpk4I2tB433}X z4#v}U$y`r^qmRBqrNMX?l&qD0bGgpYg-D$6$)~}^>9FA>NcXXc(LE(y=0!?mAEnC_ zC;M<+h#=V--3jlJXoS*$;8xtL+e}%H^vTxtNF(fLsKlct-&o6ky>sAlav_q2Ooj~V z>Vr$nCJ>R`PwZi_i(W$E-!LL{_t(V3ul)|d5$KD01L!Jq4&S2-!5hfCbs=~&rJgiu zru`;Xz-8Whwe~3Z40g8`>@ak$0~D7aeh77mVSw25KlR}rd|@|h!Q&y$y??b))5QPQ z<(0S7?-2-mJJr4^ebG92bp)nCoGTXL9tBvE-dc6)T@SvB_GCOn+YbYd*kTu_otIB? zMYutO*^sGl8>9~R33HYo8=2)eXP%bY*EkQ|bgZ-LK<@D=AqsYs9P!#efG1hRCo;(I zOoQ{o-6z1AFK2*$lJJW&$S>w>=NkRytn<$oe)9bDhi&I|9sB2ii+Egv&H!&A6Tn;O z`+$yt(BO$VlT*1mytLEP2wVY1D}f0}%?{^zdbq=|2#?%MtipJ(S{M!y#*%bDVU0Y+ z$au(bBP3-^Al7QUO~c#Yp1Ke`#=l0z74@b8{=r^XLfgV5bRtngl!RtE!T{#7;WAoH zewoQ=E|rn+(=kfPG1QgP1ail#py-k7G25v}qa@fS{Q8;xn#`v)3H*FQb(x%UU*{D& zCR(8+n#D2jT(T2P+-8w+{_30?gcF10-$=#1f92*$4d!^_6Qc%mj4nj5!C;tT72!z{ z4d@yW+=}1pb}QTp+IbsU@f{N@pn1L6+BK^w(5*RhdR2JcRA`U4vi5ib^g|a7FSSR1 zL_M@qXwLDb^Pnqm-g6=)3Hd|Ffaw-pQSy%9W&#nJh{c&A(C&2(xksz$Jav$2)SR!C zLPg;8zvJQ5{u1B_3^wP|yR=B*aA?MfB~IZ|y!f6uuiw#y;4Sq|0ulR=b>eDxAP^q@ z^DntR2}Q*)x(K0sQW_rGbBdElenOWaF5bsVEGG9O z!C8A^14&+dHb@>hM3+w9ES3_87RL0+z%%TvFZKq)%9g}PokB?MqeV&_ZZzj`y)Fb- z^&0Ai_y$O{1D&^xropK*Dr8H6GxrGhatiVMg2afQPm*${=WJBSS$SAj%s9nMPAKUz z$c4N^7b0;d%-K+@HQ*2?3`J6Jgg-cM+=}C(;lx}3Sqv$hgpv!q!X*b>tIHmDz}31C zK?i6I7WjCB#xo5FZUxPyG$6PYG*i}q;8xtEo3A)lz^La(t=%z;J2&!3Jc4iPKJhA~ z`XPg*hjg{fo5KSHqLm%%ib@V1#Y=5JbF&cNUy6ro`%i!)@Yb9H$B>;OGxeQ=a!h~0 zoWtjJA$T+TD}ji8V6@lSn^p)cFRH|opvx?ePwy_~WO^4sfri=mTwRFd>0P&Kl|b)F z3DVo2&&%|_L6;jI0gly$2-2(3kMORD#vu&|ZpD4N&5(6P&$Mg{L&T~Pner!Nsw_F% zymXl$t|2BaXXVJg&siXfX{l%@S^?oRexYX`NPR|Kf32ZSV7VdJafLu=^kmv&@yXli z7#xNxf}?I`jxwAm_&OSy zLGVEO6f`H3ctz7IPO4v9tK{qXY{sNQ&6K)0Sg_^T?-T z0Xu|GEnwRIW)2!WY4vl#48wf1OBaH-uo(m*Qrq~A26P^68r`~=htUp9X9>D~Lt^y9 zEl>3IC|0UO`LViuaZw+o3z0bGlj*gR_29cvZ%K^rDX_H$4&vrWkrLVG>N3U2K3f+e zak4wyGbnoeIc*2(LhyF7KY@rnw;sQF(}vT9ykiR#6vt38oZrLclw+eV zIXo<`*M&%&--&RSO>iRZfu&~H z+uw|S@!Y54QB(8a@Xm(bJ(qRwo^wv8kACjx6S^dG!F`NCw6Le?+-{X>(q^Lp!L9g+Zbevx>}u^{%*kgB48iMm za3i32!TtfYSd`S{x1tS};SmWk0lR$Hz)+T6dnUB$kfeJ*FvBqE-iJW6Fcj{)r3?pK z;o*|gtxUmrxn$5P!R;i@&N=x)q}B28Y##wQ0-4Q4=~5Z)-GQe};C}%-#>VJl-dT*TJ~i&75c2yV>ewYQV9hMksu_j-lR(`7uk&jqJ?2~^0plo+}n~b)CPqX`<-}*wLc3u z0&lQKu*Qp&<|FSk=kV*g5WICLB=c*1l>$uK8SarCjXs39(=P@uK zj({oCzl2+pWfy^nJ%s>z&lVE3k3l(c zWD245=6B2VengiWF3Jz-LL^S__$_A!kC3S4jB-?f;NKD%4->^1|pvjcwCn|PXD925JCDiItbp!&`QjY6)1gUGP|pPYD};ta~kR++$nyvDRe2IMPZ9FSMgz7HLcG(*q*t8MxjM4Q0+ zcdlTYKtzroqYu1lr}Uj<6O}X$zmfULbR2#;;E3b!$!Wr7_^JOJ%qhHXWC|k(MH(HJ zPyE8Uu8=r)ozEm$7{Os%=B0A#VQWHzlcU=obaG|hb{yU-Bde9 zq5B$QMVu-l0d>L|H8>Y8OqD$kCB-q+mNhUDhT2YP((vQ2x)k#W_ZM9V?&yRlj?6rF zCB^e7nJ1KMntAF%Bu;ij=9w7PBW9kuEOAvIt_u+)S|j%G@I|u+4G3;Uzi#tnndiS+ zwj4ylV%J&KTm_zqNv(CBY;pGZh^MP7@d&E9G<@U1E?RoFkC!eaJ0UAJgStxLVzUW^ zMv|zJ;t-ZQ$gL<_hr~l0*TloE{SLqpSZmItm!MRJGUPIpO33ZCSDDlJ9$g6DTHZ|{ zV(;uHZiFi_Y9iZTgref;?Pa#7rs4kgTn%mshOcs;e}^tjT(FjBllT;S@O?eQq7c~E$AWwEleeXMLDNeD@;-l(e*-k7%#h!&<+ z6HeQ*MC95yve35A$*5!zc^jckr#A%+i3eIhA-Xs$Jjl_ta4kvA@)?g9N*Ek-Z3ovCuzRFA=u1gbF>vCO)%1oc3OA}}MbX|z#ncmVE3~KtV2{H{=gM+5YSDESEx-@a78@dpQGd&HW z$HqcEwaLm=OQN(toEYJIJ3(Yep`Ix^r8=?1`-@Ef2X(pQ^#7+WMB?;Mg2S`9QduPa zyNMA$-8n4_XX1xD5L9#2PybS%2$^L^bQ=IJI z=|Ut<_QX>g#X?RL_M{7wOG|90xD5F!Gd&&(HcSBb(1l2x>Dlagux*uGbw_IRCfL|5 z(tdDav>)WY6IOG|&J4nv$~~~9A+(QHo4 z2UF8|r??FHDl>hmE=`>2b-ECVGu^RjAXk8!{Y9=TiE%wM4HMN)ff@EG^F63b7U$d6 zg-D$5Y4je;wZ-zT)L|m&*Cj^!-s~>RJ}5PF7+Yqef060GMwdHI|5dsWiPJxE^VwUh zy2$%i661YpdT@8is%OYondvX;(!`m*Ll+`(rYEf0vVEgS^e+=58g36Q)pul^FEY*l zqstMe`9WQX#A)u>IutUe@~_00o|&!;(ODJtDf9iZE?J!K7j+>L=X=81Vq>=`>wVvv zR8BrQ-3O&*oG&uXi=kM1T#ROE1fDiZScK#wkWoc^pXMDp~nUUPP86KvXOz!rXy{>u}jzt`Fg zFV@jgGycEG>c3Q%J5K*Qbs>WEYb>eqRav@xrvbsOcuIE>k*&(6T6WTp>;#^%vQa4Z zI=2+8ESB?u&DM9tBd_MZ-qLKZRV(zDmiMqivpuv>VUaOpBha^W)xib!4Fb`^mDxor zbNL-ssW-K@Q6jIR=8Ddtyqa{=^P};wY~Kes0+G!H=^ko>cL_wU=p54v*%bU+bB2GV z3&9)D!vrGsb=!Fxb`AyHAbDZ0x5bm3$zGW4+wb2oqBHes4{Lt>Oqa_-)M zGG(UM>e9sH_$pn9Ak!MXJWmv8Z=wOgt@x^LYh{VTUnauUT~Rk0#U4VZ!Y05qyDPbaY8PI`Zw`^4%vtSj<{psY2%#k|n%dR~lShZ`Fn1e%-AL!TkDQYq#Z1bNa?r zWq26GnQRw4`edbL4vL4oI=#>2CHC*TOoHK)OTT3?~k@$Vm*^Y{Z@2;O48Pat9sS<_FqDpjlI zzIh{1{u~q;$F4n@@)_x>Sgb_)GrEj%@%~vCB5~4Zoo?kD)fzm`klJk32g<$T@!i=M zCB=Ie@Xkuk46>3X>SsdnhDr7`U5Lb~?{tRp^-Q58Qhsz|luu4O<9J%4MD-E6JaLu3 zUKb*9swb|<=dGH^^Erv}JSm-{#YrTesml;2d7Cao;v{!%%k6X~reN5X+EmUtlT<ZDbanC zE?1oH8+9QPr+e>Jjat1tSh&#Yh1dH0X^Y7I_Yz}&5xlGEng9>=i6%(S_>L}<+!=T3 zLL}~t&NFIOYE`agiQGSt82504TFu#2=9DN={g^IKoa*1}LL^T092#co>yWo3#`v^!FBBS`%WTwTixa+H7b0=OXTVNA=O(GtF00T# z5V-T;g2XtVnT9QWPPrMkTuJ98UCub|J9Hs}v};Ue^Z9T(o2CK5t@ya^oCcdWeXg|& z=hN1~Rbc}uy1F7J3ZIHcQoa{ft5z{rw|cXVnwIxF1!w6J%jgfHeL`0sTw)(15G|Z4 z?Wp&46MBXI=-zl}wZ8^9;xuVzy55%|w94t%J?8w~tqZ{$$6W*>_9@Z{r{;E7#7Y0Z zKuK}TjLIxebhghyX;Kt?N|zrl(Ld@!Bu;TB*#z5d7wUqTXS^dRnkT2}wp*t}iR!6P ztYI$OsSA-f)g6@TzTE=ThbP7~gbi|R914_(Uard$*Yu&f5J93fx@F$8)8MZG!L9g+ zZsTM<`!}>!y0tG*?{Zc|;p}RT-$5z}%8o}+&HYDT79AG)sgNb_eqD`lne`Hg$ll$4 zsCV4BWtR+JG`!Si4+5~O(QjD-8xVd8-?i26l(!#setrmwwEqBqI&XOCmL`6A__E&7!@eFs8}`HSBHPA& z?ML9Fxn}u5dC*#3ZNSY_)#W7lgLQJJTFZOO`5J#bmu;(b7SY9Z_3mn|K1?5YyTpO- z$swG@f*OwnR4PWXAZKDlqsLy>+AM$a<}y4qFVBs95vmbGmeic>iIH!58MV>hq01p} z^q(OREp7DQgCcpO=eITSiZ2&-`#5cNNeDg5cMS|>>H8hdkEFwX#C@9Folx|*;)fkO ze(8MqHGGj;@nmPKVt=*VDD@6wTJP@wjJ4irwDlgX+Il$yzUKNP2hXgzQYRZV*V|33 zfaZFxR&&+eV$-n>_NUcy)ght3{uk6CjQ(C`U%xK;7%ewUOminSD1kb$S0tTj4)$cxAYXI--p#+=?fljE?QYk$P|r6zt5%;?wMu!5b-D+F+5T2My4keT zZO$TVq4|0i7GZOAYJzs-`xC@Scf`7HZRF>0IvE#%2cb5jJ;ka#saUAPjpao~-Kl8m zLOpID12}@Wnp4Sxw5}&vmUA5Z7<&m9U+{=;;+*0kuSO#?YC4OBT0IN&3^H<75TrQg zgGToCj1|>tZpc-Cz~gTNWBdVDRpj=Y;1?<9Luh7Ho!v#8Etv0)*15}f;)_>wc@2%s z^jP({X|=Cs!;&D~4IJU`Pl0KM{{94-7FB=GBmS1EAp87dcoP(T{t+~CgwJ{ErrM;M zQ+gW3qE*j20fWT~+GF6cY%allb!+q>`9=F+tu#B{&PPn0} zYpx7SBJx#>j1$8$2={xCSrm)ZE}={EW_EZ;`lBx8yt{dvk{^}1wJ=qf;?+CQbxgek z>k-yec-PSh5V#a8)T#DMz?R^YCVjZxGhGfL6Y)hWhLF9`$WjOyM<804BFv(FtVdVC z)5n21xV9&G`e-yMs-B+XOA@>a$o@V8Z-An|Uynv^yT9l1KGvfw;PXCnpXbrUsQP?C zAW`rtA^ZJ&yb+3iKM#!@;dhPh-RYZY_Dwqq4G5kgJgVDWu?*qb)@BHu@B|4Y2<37` zm}R&XE!a@CHQyMTAV6AOEf=%SeQMcqC3LC*_QeT5(+ze~Gli}xBwx5iS4liyxS2pi zPA#;qE1B%pIuK8Oh<16@$ok(8y8{ zxle#-W-lr*q`-9P*lH$qh&@6>I+nxtFVmvvT#1mC_c6$|+0?z?>6BPr`egrwv zzbzbK&UUNcoy`_Xg?cs{=sLE8sfNRkH{yBhD3oAIy99IEmp3QE+CZaP7!Gmu$$GB# z>MCcfTky6j`g|iAS?X-o6NuKO6J1;!xt@HsFjy%HVc-(5$50z@N3)_D22Rn{hF4W7 zAiNcCtfDw}qmkP#j(J=h&^MOIdfQ+iczo7eAfHAvqbiV_Qad2D2&(s{}Tr9U@AEnsnxU9TxmxjcpPOe zkHhhtD`uy<9gMHKa_m@+H&;<2hoX_&9y{iEv7=sQ!}EYZddvlqMf0K>KXg-6ud=c{ z-i$X^Q6A@@k=rg0o__#ijZ$BkT-X~>$a~Ed(nM3Esu11$!(U%nBv;_=RTRl(Xymqw zWR^dM?6mR$dE99(kFTRiQI*Gunh6NV18OP@<12Ve6@~FdG;-U8;fo$H_Z!i_JY_DA zKccBom4|lp@YPoq$>Vr?6-DwW8oBKvS;(UYA&vGjR&OAR%=-`HVa#lRNM;zbMmLHG zHI{`k6K}DiP^O`g+b$Ges!C{+dzw||8aV~ci)tv*PF3B?%JMi7Z>*v`jz=T6T^@_P zII=TWEI89-5hLD;xk?7n^r)(2on|Bn)>#&djkj4*Ed6NYwu@y+s95M)cA(?=khxqw zfF?*)E*oNy3)@G)e8N}Z-;cLiQ82@33 z=8-_;n{ugf%H07FairY;1g->^xF_kDyQJVX0bj6U@Y)lNECsLEsOR@O)w|w;-D|;a zx#*1g#`LIfjJyTOJwivx3V8Wgb1xr-rX;lS+On60BXm)|J{(`XqOX^uk=yQT{}H-S ze_Q7M?m^R{>Tl@?U6jwWcoP(T{$@0CgwHklbepNuK1?7Y^M%MwZAoltJw0Sg>krVL zVhx8MsQW&erBG+vUj!U6T~OQ7>bkRgyIVnKA|Dlf7jL3s;Q2N|j`VL!x3seAd)qt% zIm6$;RKsnH&*FIu-83M(T5U_KTI4M5Rt84<3gK}lgTc( zZFFb7eV+d7QuevbSR0D~B92jmtPQnE*br@aRh0t50=%(`;+Ts@Zo4>Udg5?*X!)hF z(Oeqq(VVFE5Ncb|WNEk+m4vYdZ>pj&R-%#HE{r*zFrwChcbki&f#yY39J+DCtE}9q zRPn|t%A<@%Zo53@`Q;I@0(`5vKyE=Zqbd-!or-ew0D-vGl_hdB-dshA+=NDMyF_OB zB_gl=K47kn`_QDQszYs;QK&jXcNzTzZ>gd%?nNWFT^Mt@Fsc!!XkIfH$G_0TsET8S z(i&cfIK0}*k>h2&wTc3H5sln-fz0;{#Osj*L)t^%Z9HsQ1`x>%Thz9pg-XP$uPl;- z@b)T-B#lOHyGRxWMB?_!0hyd*E|W9SMX}tDMsB-UmV}BWbQ{{E=5qNhnjlrVsBJ?VSuRoA(0+xt zT2U|$qmd&7qp?iOS9HVheDgw8HE-o5b@j(+SV7(!deY=|&CM;iuY(QHI#^MGWOuT$S`9K0O78V>QI#mv2 zQCra7U=`%c$s5reg*wze9&iMIG&{+doj8h>%2$Zj<4aWxSZmP8QoveCAX>LtIF(+_ z8sgu#f+dD)$h*;esQPyX@h`Vs&SM(*vK75tMI*P}%QN|ftRbHMq`9YWMRTI+>Dk27 zqW!YBZ^4(Z=8(+9$W_Jb}S<38AClIY0t<7c+X>gqfynQ7Y zglmJ6w=YN2qUvpWctom#?DI?UCMf#+ooM8?`+Pnh`}i74!0%r(_xqR8)TsJ>@4yhw zR}I_Rz_&n5crwyLLaqK=%PY0hkxkO&&P9rBM_09L+d(}PFCqaINAF> zSm#LH$b5jn3O;1PDR*!31Gm{0G{!56F;KxUzlr2sNr7lH>6svV;M@~p0c zSpX@tcE~Zs8m!cZLLTiq2iS}whJ-E%xuc5E*uft3>n4_|z1nxCuIqW&*hU~C!$u1S z98-D41EJ$>XrD--V+hSuc<2}a95HmzWdm-zoPO-Ym#r8*YG`CBdQ=ER>w1SSnyYiZ z0>1tf*n?|-lCM93W<}N4bA3xhyauwzKZdtJ(c>RMBe&h-^Y~zca~AOW|CoFIK{PX} zUSAj(Yw%jgp8q-C3PsQV6pb9=d5vzKX9~2t(174Wjjg&BVVOd?wL^{0fn2q>wyRJZ z5XKsFuf)cwP`NeNhmAFSJ43=!1>d*3xphLf6f(x>0*i6kGZPR`7G@BLv5+iG@#-Cj zB*&utBK03fp@|B0t$hIC2u@*7{CcL#;p1?8(Td??IT~3CABPf%)};#UiC>SdfTt}m z$1qdqL6f5DY5x(Zs0wJov<~R|(ng zO}r6`e!l{Z9N~A3KAxuuw4=~~;Az5C-HNa@Vd2D#x+8Ua6i-l7ob9w);wyI zrE_UNNv>MW4UM{o>n9<+lV~{ ze%{$EvThVYNc~CTBy6)G|J?0Mo`%hk^5xP_t6GDd0kz>KU19c@CqAD#qD}6+&~S5& zN!3W{^`Q!EdRb|NW9=;D0mO)Bt7r|vRtZR)0f}b0n(SD+D^|7OfWga_Y^Sv*RKHcS zst$?~&;8Y0Zvo5!w~w~hYecsf26O$UzAEO1K!d~0Q%xLRER?KVHJdB;TRqjBp?ZpC z=kZ`epAY6rg-WBCBl~X5ST2>TgJ6zPi-1S8ddq``vZ(>b`GG>If4F(FiMMK2-LM(J z8`5=Rhfxc!)xkZrdLeJzEF1Mgu~3ID%P5NOs^%&cr&^XhoAwl2>=&Sia`u3|$Ugtc zK3`&=FSF18W1p|E&wsJcf3we5+2?EQb6k_+?!i9yWS@Jn&++VY0{fiEJ}0ry4))o} zJ|~k;%U%SAlig?bV))Y*dkOiv52;SbcC#nJ9N4cFb*pUr*8qm3IfsJjxHLx^aW4Z1 z+|)#9rer?~bciGFG?}~e_ZHnO4RCU#?iD0cV)pR$zJu`gD5mFWf;>XT6y?g;?{u3) z>fXIwNLkM`_vJP`ccGX3$-X>L!Iw}U$(vj87AbmjGa6YMY@JFVB3p3mZfEyGXW=5h zn)Gb>yTBO3rhGA)64j=Bh>H7Jy<`zwgttpk1Q()_$B+nmdnFOvVJ?Etpec!41WvtV z5!{ZqOHl;3p^@7zg6Xsa$Y!kzBn|x5Tm!#CGoq@2gVh3oQ!QBn597^Jl)x|0$YVzW z{gxzw$yXWo1(N_GnY2z(0#3DL35>^^r6_?t(8yy*0(D6O$CyjtNHilcM}dB*mMnq8 z@MbAWpc{?cb_vXMJAy)~Ad8^aTm(5ZC#oViRIMwZ6_aJ~7QA7KGB_8F+;$mw`9M+b z46Zd7!PRI+R7IfJ893FFC2%F)EJX=ijz%6s5|HD-x6LK+O*A8MOCYo}_!{0UMG1Tv zjXZWFP?Dp-)8-O*63s}=5^$;|M}a5sW+_VGF*I`9CE!gFRm!`hoN&R_#>0ZS0FlhF zKyiwQ)JqmY7v3&K5zIg%w_OBYQV46E@*L3`a}}&abD|mv6q7<)F4$fw))!IOzPfiP}=1M4|X;D?ea<$=sS2tM~L#@#xB?&(<7s9=0PE>`U+C7kp$uhVH zZ+9Br|4E%n`i0$q^xiw@pzDOVG$|7lRiOc9*M?5Vn~MVJn)Fm?HwImn?$K zc)Juua4H(P?IM^)R}^~SIxnl#E9@}3*jxe^p$Umq0&cAs%Y4_^g?PIZC9n&P+;#~} zb|nDYzx{W#e8$}Wx1-rm_5V_pF#@?&QgZ%nc%u}Z|8X?(SaH6y?NV_5ugsnQFq(~6 zolmMHIsX@UqZFNgKN`91&S%$u_tHZo{Z8bKXtJ2d*~P!Ifw>RCS<~ z43a8I&c7UQl%n%5MI*P}`D|ZNp>7S<3Kxo_fp3}%;A?0`R0W_kQS4Pq62X`8hAE2R z3uxrFi=cyc3WMTtqbJSX{{)%~RrepH(hop|B*#C7H%Za)zegjt-SI5+mwF3>Lg=4+ zt?^i(3m}pi3n+ztQYFdxGw? zTPsNdcjN6+l)znRnS7t3=5RDp-@}rQPz||M zE1!i!7lEr!uLc7Rg>xmECe_%n$y_+R;_{5z<#@vtm2)W?IYK!a`3O&GXfV@&;QBp8 zw<6pM+LszxF~!6RxXA3E<6C-Z>(te-LnW0j=E#kO{>0o+t>@ql%j)PCat7J&mR=Sf zZk~WG-=8P>Zy)?O(C*wm_$vE+jeU;0&iQxrZGX=ZFKP~3==-!(2u5xE=O$J_8-H_a z2TxOr<^FNmTDh+d&-)595&MG|;%MXa>eayGvc7AEM|;8n4D{?1Qu2@?)4pJ{;gD%D zfryL+EzF#!`Dz}>cGjSM!}?`DQd)_oDl~-KhXIb@7WTxf&v-dwIT>HLV#aa;8d=I% zjw2AQ%XQfS5g%azZ&$$}TuYR^T}IQQ>TUlMv%V_GJ}=@;Q1p2Ljofyh`<|Hfkrwd# z&E|f;2~CZv--A!g`l=!O{zkkRioU-AjU3^7jZUAB4QQvK0l`No3w0~vSOIxMPiymr zDfKG64{7brTa~(yHvA6ifeTilife8oS!N(@a5C9yxtQ%M!rdF?N-ZpR2>whrSn3)o zbW|bv!>@Inz{e7g5Qxb9p>^HLR9^2uT-jq7>msQ?c@<4msF&?$07r02lRg;9ZI^?| zEBLY%gUL&1WGR@upbNo+3006$FnP$t3J50uZtX-vN4aE;%MO&qNOB5VrlA^Zo)Q{K z*n6^}5yX9K7R(}62?`Af8z+LLhQp5I2}ESrXyLGa z!6od0YS&$?V7|_B9=>43i18*gvJ^4SA`q?X7uXTxa4%m2#^8Ey$;(%vDN*%u7nw$< zTV*4C{T_VrioSj~8oBMhp1sPQ`s)t&_qWXb{S7oNs{W=!OQ{NSM(|a<35q`d5*j(e z=NjEP&j@JepaH>$7su#Ugbgo_Z|wv09q{H-t&)Rhw*1Qu|AI>3qEo2U*n>&Iv4u)T z;F%@#KOrf>%es8?k;IDxVl1Qtlig|ua)N!Y$NEF+Efxa=E_DiZsXYa71fMjgk>0|! zTn-uw@g*w;jd^HfDQL_l5UooJ*o9RtTLC|B0&8&XPV(~xG$*Qlp6$yDT>E8juf>@*DGk`2(N4O>O3)^U4#Y% zPYnL9+flK^VBglxJC0wOtBFa$*U(Z8)md}PD9hUZRcv{U-T&QgatDgg8--*DU)EI+ z&k(*qAR;q_$nGQl?VU4x`?Vww{Tl5dsrz^YO;)Ir?H>S+;FxB}d3MQ{-ND*1`}hpQ zLwNfX1I+^jInu{1oEX|Wz(RL68~P;1gd2>rg*^cxj;v62_X(u$@b8!D9@X7mMdc3W zwZ#1XFEp~$!MseR)3P@c7fJ#N-Q#<>xjvRBrjHY~^x@T03JizhEmaH*%h1Se7s&oW zf%H_%x!!!PR?m_%gS9{wnl)F-o6#((b{wm9loG7498u1}8>}dpGttOx7tEZXV8{hy z{wblRxkRo&^P(z|V|64#swl;g%kV}j%HmyUf2j*>7Q#apQ;jNhV> z+b)bnL17e1up^%49l|2R?DrcFUuFVCGQ*dXb>!i%sU(tVcv}@kG8v8Bc9BT=hIBE{ zDdy@p5zUKg@X*RP!Y}GM9&ed1QRUoJ6gb#mZ zi^8s^}ydO=Es!Fsv8GlWsPG%TytD;D*MI*Oe zB#XE3s}RWOrJC#Shx;Q2bCp0W`GL7gzK`ZdRV63s#1dXrIg)%AZ>pk5zKuq1yGW#| zGMBkVv0ey~%0JAd@;5X~s#4LKDhpOv7Rf(fosbqD!_#hR?U-<_Jz13^?8M8$*>HNtQE-}m zi@AI@qIpt{J!`e(BUM=z&3e4ailSMAMsB-kq-i(#Udy+dt7JEt7*&;MO}jgl*&epf(d6m8Ljzz*=tB_4_&*_SmZ-RS5>({;VgBgAP0VhluxiB63JA!0Y$4Xi=% zt9%-0ib6eU_X3XKj%Ftb5yVeYjHu#ERg4j3G_n*Uin_B{Y1j+9e&`#O0t4&!#O&T_{3YGVF>1&u8A zMlVqbwQM8)JW(j#?sWgg*~83r(w&%2)|=|YtFja*4#69(7$}yak=rg5F`^8Xd#!A5 zxgLlpZ!uTOxoB!sI}+1~;?`M?C}-nsRusw^XympFWsVS0O4&-TniF5FyV6`Gm!o-6 zRY}Mq5USsCD=bBmOYtTvisYSWCp?n$5jjB*gJ07pnaya@j|WDU>&NI1rFb(OfbGG()PA*BF0@D4RSQx$Ux95+)lqJ_xAhMswBNfF?*)HJjs6P2|YvI=tnIqPYf*+;-9I8!DP| zbud>fTo~LmaF4lc?nYCjDx1?{l8sw;IojNXw_Q;<-$EmgP2qTh%s{;PySZ?lLsQgZ z;dphIh4T#Fc17X*8I9a_;p`U{aeM>LfOJwf8IPWp07NpQr#HqEb9}Xz#j`iwdPVWf zMordEtl)rJ~;7WRRijM)Lgy4MSDn9y&CIa;gy!7-mmaRD+=~uG_oXEDisa2 zalz8fff^88u%Ff4a>VwQ@7db3Cmqi7v9&^fN!T*F?}xBMicoPj*M;pbN4y{F87J&O z4A~gE7!1Y@V3>UP#?XZXB66=_>&~J~c5597IxEpmVRhuY%}++t6zW&I8*l`duooL# z%jL*%0={I$$Z;GRS&AG->q79zLDgdvIp&#I0Xxq3YHj40U=3F4LqgcN1Zoh+PV&5&sEc3q}U} zP>nc(#p$8JLg%qrFqGLT2sR{uJgVyg9zcFeAjUudnc`JD5JV<^80#P@i0lOrxU?)h zh&&Hu2|j5~CqcwBT~0X0;fq!bB>&cRJ|86fpDqLsBvd~}f#g>vRzM(`)Y^n&a$mJP z*wg6iv&8dlYtT9k69Po&skp_vMGtGyj?1h24Xs=4iQ@aTyy`}#e{?J>^z@4R9AH~W!~-_egp$wyN$ zie#gUh(MOokv9{F)(uSO@n^d@c>%{?4>sX?b;`Qb!(4E&)5nFUtkgO@UTPDzks^nbQ>zVW}b8+ z{x^!23xAOoF;xypJ12G=!&Q$-->>T!-pTxoKty&jkwGW^Q_|C2w}qUO{wLaNQndL8 znyXO9+m8c|*v+g|Sw#xCwmVQ+X6|v&VCWr9f5V%r7?z$T$dMjzVOp_JB*8m59O!EH zyBXVLCFk!05OIu8Wan=*cfMC|xpP{Cw_8yK3(&|?=QNi*}4 zHeLS>UX}V*a|P{2)1|7Q^J0iM(M-q@sDZDEqNJ*51g7F)bk)<^%ci z73LDU3{6wJBt#jICG;+Q4HPAGF&eq;5;|~%Zp^)tB_N`&n2YF(Xrfd_bXLqgnahDJ zqdV|*P?XVU(8z6SaR=Jrn39v_tB} zTdgRS92&XpQdt&|ig$`R&=>>3=Kbd48Ag+(DxPy=5Kj~ja^$%dUk^n&U5!SLkdwx4 zExzH4?(fim;2XZ4MsGf072#IUeMLrA{Mf__*mibDYtKJ)u5FaadE%OIR_ZZy%L{Eb z&HY1mEqC)Lzq;YcuTfv}`n|3|`F^qA5Qxa#L-s?xb2qKG3vikua=A1zG8V-wp@YVT(0_?Y@fNhd1PB*eW(HtwPh3w>9uykEdQ`F zZC245v`Y0|a3X%Vd4ysi*6xZ`EjYiID-Jii6@RPWDp^(M7gW8|U(NLvpb+3#wfe=} zkX41BKT6T2VxeT^s@Ytz-|DI65apC>H4Dm7Wo$54DpVT9oO9{GaPtsF>jtel*rfW? zC3v@fxOu1|wzHy!AQrBO=`9bc`>qDG<_8L;{^91qiWb!@Fke+n@B&hupsU6QXy^4p ztzO7uB-^MLiUl|UYuU4DIND-Qyk*?D%Z9hulh|hm`|M<&liBAK_BoY(PGg_b+2;)Q zIg@?PVxL{?b2j^&!#?M-&w1=~KKoq2J{Pjjz1im?_PLmRTJ|ESz^SjnfA(Vd(-wOP z`MM9OR>OWc<^0fLxPDo;zu{0BOzfRjb$#Qh+xC`?xKM;VD4q!6jdpH%gD#O$-zEE{7ak+5*PnrlDBw$8&^@ z1R|317Va>f=u|l{6sn`W!7BKsi$O=EU0i_XDAb|$`G6z%gFWU)9K}jK&MUQqFI92i zvIC9GjN?Ow0Rqvw&A?MvRI9lmBI$sCKMI!MTASqG52N`|_3sQa)aACz!_yDq%U1OA zf1;7w?&X>M3|B}?{+YR_e~jit)zhO0cmK32(175P zWxZ}i94nyvf4sG)&&HP_1sA&iX&=J|q)?4D^&jyiCJ7x)NXI`J%rxxyClQFqj=y!i z!$haXfqvojXg5gxLIzDys3+~kfFrnr_4~w6tW@6bAB-YtbiCXrK6=ogo&_lR_eEeC{czg;L?^*Z8c908)z%tsl<#Dgc%Yiin?6$0YZU5 zjDa}OLF*id6z@a3LW&gcMUxcjP5bSDBRHfvh2#~?S5mBK;>%Tx6<45ZlW6xJqPq6pgko;lfR)^3Xdj_0*)9>j#gQE_1xL* zRZt2%&*Du~3_MR0(Q*JYU31LZFp6c0>T=+v5MkY ziAEkn;(%Bh^4#HWb8$4#tf-3PBu#O!s>*SriZ@kJ8f7$c+odtziyOdKU$IchI=6HO zI+k0_^>GWD8dZI)($|MqUs)tK>y?*%uK|$phvpxev{a zs!CSttAtlrmdQ`>1}ndvb=L!5}ykdyGnD#~L#8oBNA;43oj@GlTSjyG4wF=$#;BZ%&bj9XVZb{vVfRZ$#= zp^@7zj+tKUa7TXr^_YHhW%QysQB{WSIL56gEe zi)+!8sOsVknmI@K;Pz^~or zsVo49WJW5wD=)t4$`YB2H&;<2U1;RCOJtUpbpU7bICj0cI@X{`Q4Jp_YUUlZrm`?r z;w@Da#>r^pwhJTe34>mj1t;3Gz2$m#$3U)LEo7^?av+d2%%xIA)1)eu(=??LRd-oD zWxVZ*;whq$+b*6(o_M?)kYMr%j+g8Rh~^e^(cFxtM^!ZIG({7vvn-aI@HQ)o_{}S6v7VEh2X)1D#s{z%rdb8g2$g)8$2fDoZC)> z(D62?0q#6WsJNOZg@z85*U+g=f-pml3lHfs%_GH50x^fFt;$IhiEZ)Kjcjz9@7fzF5ULaRVAziWArALhv|2bz>AKY9>}doS50s(j=p! zSnjV?a&Y&ff2s3#P>DD~#R~0E;h80vWa#!F~qDQLVvAX=9?&RjumA#>RZ__^EM z&xZg6F3(o=GrgZmv|sl2QhfP}-aZhG+;(rz;kS83c>G**kDra^Mb+c;Nz0b&Abb4` zybX$8KOK!6;dPB(ohJsgi_n1Jb081t1}n!3NDO9mv^Fsqv}yzW)k3e37<>RN*HEoB z^%DcnETIz$NetevD;%B}3=@bkkr=qu4s;mbLiu)m`1#LZ4K5*<{QM_0C#rt-CkC$lvbX;iU%sNZ|A0nr zySIIbfy-FH*MidJsN(6}tQa@s#>a3)%@p#i43A#BnBacMcRkD4d+MGxU18}Di5|Iad{RyzgFjM##niW-F&m{xOU=3uCe*|xVqQ^gkMsB;u=lKTUQC@%0 z-0MF_Go$MDg~4eAuNJcBe~Pz4(epn-BS&~%qqFDv0_`p|Ab7s8S+^oAU-B*dOv4W0{&#W*N$Cp_5&?_$Ag zRGZ>3&b{$^xVbqFIKnr5gzeN=@YoA&v9KpR-?lXl^TfB^HpT(zJ^U7nKYXvk(E*0g zAcVgtX}K_%gZtQvyDi!DDKi`{tM?>fAyvcVA`#hF? z9>+e9XP<9ipC_=-6WQlU?DJ&yc?$bn!9G{A&sFSmHTzt{KG(9(b?kFJ``o}jPi3DQ z+2-48~*)jT5OD}x<|Bhw%Vqy9ThCaRl&tpfSRJW=nc%t+2COqKR*QgeTLwtM;(#LKcA|vl5nah zOJZ-liHee#k47G2lBi3P*laF|Q_-v>DG8{eEQxh^6BQ+~8jaj`N%(d~WV3}*K^Db@ z=Azhz=0#N$$KrELT1i`=#mCXCsER@(pKz)uOX8z= z6BQ-#VKnj>lY|^6eqk<&`_Zf#Oj%XRyQCbm+guZe07Npw4vpCfQb$=7OYt@;isC>ta@$2A zB$@Cml00X1uDL4CM)RT?DKwHyT1i0`R05N7#&j?X;;%!tE#Y8l6+eIPd81-ty>MiV)!o>;Z!Z;31jcT~i$T7Tn z$`Rveyq${TI0B8_c5w(1V|TeK38P>xj6O6is>0A1tdcs)qR8WIR20SeXygb{Xl&u< zrvT`V9t{Y73V`nF(tzMr(9P)@5ZsDR-DPNY7U9pWy%nvaR_?1;ijA6Z6yZzgMits3 znskF_U!#<-!@l%f(b)>W9C2{bGfvo=7IJLy^SUDD2NOO^AjZO;vdM0>16#=+Mtg;| zRDPY}FVH-NI@Z1$a0H*Qs|{SsLUjNN(UvK8?2_|F+9 z!FvEi97(Y3XaCg(uKlvNUq$<*sp#!j(8z7~wr?=(G8XXoVdft1PR!%;$t($<2z2Wp zd;Ji+4T@f0ibjs`x<=p5(*xQ?Xh87v;M2PDW$D5GtxXT6;8t_`kp8pfx z3PsQVFB&<*^BUbe&lG5Pp#i}&g?`JrZb$mIkgGJv%3GWO~Ist01o=h1$V zV#sIFT!p&U{t)1ZF=Q5*!th%!N0CqCOIM5{pF|@|QRG$v(Yn534!x1g&sf0UzXOYK z?NIXfuhG1y`kPK!$#syu{s`U%MXx`EMsB;;7w}2G5j;QT^TwX<00>-KrRw=bfyqjL zJ!J1sz}und{XNmh5#HD6_Ic(&yABNqJ`A~3SH^4@a&BwyVx5$$$vMNRXvK!gt$B)e z&fr=lbW0)Qjdi-R;pxI^0x=fSg-%xMK+iFV_J-7R*l3zU9crHgID$)>Q%U@A-Ng## zSDN(W3swvmy=Y`9VB`oy>ym^Sw1W-z@&~{e!~Ed=Xi8MQ+(o=Bm@jt@!}#JAeSIw& zx$VC8?ZXQ9_Ychd{e3hos{WoA$OSAql}=U@R_EX0qW4!8igj77~Jq zPL%`Mz%sNqSOxjq<3VVSLLF+)1suU2%}x?Gh@)7kJQYaeOH~XNDKxSaDwYt4)};bd zX%_-o6N5zM{7;L?cIdTchvh-9POLG$45Q|8K+Y|Ekt5OHSQl)#_GnDktq=`W{-Y zp;~L6KqdwJ_hgDUi%Zw7mxx7*>j&S_)eZ0e?<5c-^#94+xV~i+Ui>u3SET#D+f8pt zKO;Us|83vC>u>)EOgY!z{)v2|ua*5JB|7Tv(WSB9GdYEdoAh5oiu(dsV%X_EPby=6 zvF!bTBPLZLhhhY83xDy~P)fo6inmcQT>ph2kI-hKoE*E4=lK|bTNOj^|JwJ9#_nDW z5V&zhXf(8Ccb`IXXn%a{7CbEcC9JY?H@y&VtfJrNp^>F-dNzS*UFyA$pR>Mdc`#dr zJ6(!aslPr@3k!?Fqzt^}u#yS6; z=hDs1p$V!wmIuMj`8qliV7#(P$;ZdHbbr&76}5V5z$#YY!5$%T`+lIo9eIGmn0++; zIF^1KPd`o|AEB+Kc|6ILod+XoB)2Aif;>9E!z%U4|I(eS)w8ZWLbm2kNj5v-7I~{` zmGaiGef<((>$?Fdk8UcZyg4gh9<0DTX||H9=HL;U$^b+BHbK-#y5i5QXKfg)l&kga z@bXEm4_;D%x3T;Wdp?DB6RZ0q2(nfcuH~m3{t?Y#sJrb40Y`9K^YtV+3U2p1xm&Iu zYY-0s6gBQ~ym2E&!QXhuj}l}JN5`IBFP3z_UPb8~hel>(9t*!n!&$2}lae*F zvrvQEyXn6N)KUgJ4b@UabEK-46VYn%*HqR?0dJ|IPWsTuZP&>GBkN=>jOYVexyf8B zH==n`)yfJZtvI!n^>PE=T1CBFhenRj3m?6x#`)%yo<^}~)w53L#`-my7~!#O9_D^a zbE~NN$@o*{&J8<`=4nb&aJunz}iA7*a!8QOEQo4i)tTq=;)I4RZHrJ&c_?3D8=&#a%4Z$x>5H+ z!L!|c;NWbnV&wyY=NfY_Uxg=Au`i+z-Hb2~=NB)pq8xhOgEvvp-|t2vOQGjKbRl@? zp{k1^^k_hEE9exo1_Td)-y{h*-#DQ<9_$x=6F*G*)9_#o(2A__Y5FIO0ryXWFG$4jM0+^Y?--1aA?~6Nt!uLuW`z znBH&A?%ZIdXr<1m<@&8uxi3{8uu`s`Q!BP^5L~d&S7MQLhzs^lThx+F!?7e&?#qBB z8CU0-T%{oUW)YZ!OLke<<=S3AAX=jBr8c2_{B~eiVD%)zs_lCv`zmM!ux3eqesKY= zY;#iT227LhD%1zEE-AsS25Xpinob+q|9I!tx8u)`{_XRJ?OU8xNHSS|1N`Zt;ia|^ zYL_<0?}jzY;pU!|q2cDF%239^gxBuFR#6-F!|;In7W)zMm8@?%6@ze0sxdp|-a?nE z75ZV$zfrY9Sitlfq2V$_TZg9|DFG1~Mq|dI(bHCq)XKSCH^VKHlEpWWx@h!CTx-Yb zLhv|n6lFBNVJj2mtQDmcYk;Xntx)P06}l6Ot@W5I^df?jv*S~!y%ivJ_32cr(UXMa z4o&Aupf(a)A)*1HBj`^KY&Bw-k=QD_5DAKnMuLT_8nt?PkoPic+2z(^`t&KNKn&?q zNIcj(ohKG}5x@%oHQ5!P(B+Z0`;X~D1YLnqDhpsdFQ+}71_ZYvsVrpg)s_=^M@>H- zNlX%p(!In4wY=jYU59c_JU}2?l6TNnH~+LoHB~7W3;Cf`xs>v92%!&tDKUZq77r@+5(XoNCq$R2>e@)pD^Y z@I2>h@npF&&*a{b3@K0|dKQ#wn9@$yg-D!eqGx!0T;Tbb#CWE9cFL1zK2nz>9t{rD zg$UBDkrME%g2p5b2yVp>bsHw@cW!L$oewkE5Gb|Hsym&%Af|FWVruRm(&@0lO}56$ z6@q6-R#DUy2-jGFK(w&OnZJ4nR%>BcITFe5jfZ6W?SLbY*j$kA{eRSb37lL-wSJK7 z$z+nrWFaKbNfSuGp0J6^lfOU~2#^p+ASw@=PS2f8cY3-zy-YG92!aUOipzkaD2opS zL2<=>Ls1ZfCyL^RvbZ2TQ3Mr5_@An}-F53$-JUw<_U)eV`_YrkOujmGzEfYF+C}+t zBYOqhe_A$QuCqdjm%!n=>OE37^^KYh-)LGA3Kx(1J#)_upXyENJ<}}Lb#OH+B;gC zb9^t};Cwu^!htjNdwFSkTKY6mr_RmS7n+`^Mkc#=^)=5TE;7!)!Op3NZ$ohNxn zyr1S|cf}g~y~B5c;;7bmJi8ol)J}B&c-`H6p9*ugyUq)LWM*hmeMER?A4+vLRiqZ4 z!S@0{m<>C5*x{CTV&!xxQ&hXfGb8izK5?;j?lBm#4mvS?$qe!BT6rci5N)v&tJ@T*8HtRNxJyah6j*)W`?c~35%`HgFhwJ0nCe;C zos_8%k(0AXQ6xc4u8>aUaw7^US4T$5zN#7tO6n$PWL!n{q$J}?Duka5LdGYPMxloU z2x&!vSES`*i)Hi(90UA{i!Y zCV&|s^UeQoLJ0XLH3gb+N+w^4tsZpJz6~1j*7!8r12~G~-~kO-%Bv*OqD)P`W8uBH zgbE>B#v%?8D4gWt=<7uQdiu=2uDwga2(jUBu_E4F~Q{%pncO(h3*B@7K^)Fgf&GLO!P7iE!JG^fM+ z@Ej_HjOMci4XsYwr<}PN_M-Hw8{IF9%+pij!)4$W%G2C@3Drk3R4<}JMDONJBdZ5f zr6DD$x-~*K7e~^(Jk8BFQ+*`ed?OXY?`A^cBXcLAO9TjM#TY#VwL@OA8pI1G=+~Fa zRY#=NF{Wwk+dfVEWn>|+Uz|xO%*E2dNO&l#n}Z{_uJxUoBM2 zvGuTy0vk-(MoFbTz8D!93xJF~OpCDM6OcJIir1Rwzo{;iEc}y0jE4ktzpqA>15J!) z`VZIpkbR-Rkm>tEDuj&Tc^o1z@ubR1H_!8B+Ns3uagn)tw#fBmwyC@Q|51G=gZ96u z5Pr84It1CLh^9k;kXDF3g#aO~5F?U6*=W zYofbm+C*4C^a*cu)QeUIyM|eUw^D;u#`{}1L>onVs&RMb4Xtr(b`)?FufeNYjXjxK zCwF~#|6N0ckZt5@4$*R%j%_Ny1(1+iz?luUZ{uWV1kTR%2SoN=U_>jX33LLM#)}O@ z_@0d&!jOcFbB&lgsa}%z%NIuixgie`t&Pow%%QnHZ>5jiDu_{bkNBW!kdR@q(= zm4;oB(Ev|Tvq8U8N|YNVYn^X}>Nn~7om7a(UEjmrqe*Rpdwk4I;6su5er`PP7TqlF zKS1@Ibp9w6!tZ>-$WIO)#lV69A+2~bHKSlwz->BznFx3G1g#eZ=G)|{y{@&He7QOl zgO^6izTI^Xv?i)*%hKKZZf${nYS~5q2+!2y|^rm*Tz; zmn50i``k+c_~Jz&1yiifkSiy>-WxtJ}mjNdFaJ%f60H z{k4GDA0Ti!ylp@nGG;)?dg+m{7;l$lBrw!7jB73R`b;|Bnjn_p>2hnzgM_9d>Gt__KR&81osMhz4S=<7~U?+ zNVpb_-0?`5xgFj@5h36cf}e(ufFGm%VH*MQ!0tfSM`!+j@%C6U|3fr#$C+O;m?|fS zQ@Kok(v?!SL8+W9O01-`!=zU~D?Gu_*P>+rOpc$-L#>T(U$Q_T3 z`58lK_=4il@IjG?EGQCz`e3S=9t{WMEwhYgjQDG2T4OxVR9F91s_Td1pCwEv7dK5OTijZt9eoJ9V9H@4lz0$7k}X zQpUFqbvHVajbT_@Vw|DvM9AZ37SoiX?N=ewon5;X%mtZ`F z_PW~!4%qJ6W|i_@@D zk*^k$urDh);8fCsLBX)kH$x9W<^x14h9G({^cjO8uxffx%*C5#85Fb8$N@n?=mlg) zB4mdEAv=<9QKQ@KNDA%kNan7suYpzuV}nkPJzK8qxOyErppDX0TVd=|8UtZ?`=wsG zB4CE@_)rENL+S1;3$+ReTsp=KDSD` zd{pr!S;|KVjjYK>fkU*fPni$LtYC@DNtQEja+2Fd;Ptb#KMZaHn{bGY4{oBFtS>^L|x$*|$Qg!b@m>*haz1v7(?+E1mxr@K#y! z|2!JG#vKqcz3cN-OOJq+c(W`c;6OBT z$0J}?p;&?Yu5zXj_;09A$jspNXph)xfN|a169V3P=`nC7-Y&}+*o;Q*cntLNO``P$ z4bw)+%fd&(C1}6cM#5oZ^agtE^mw=kZ=Gd4T!2RIcswi?9&;!E9k#X+kSpE}l?$m5 zpF{h{HZERm6&I#j>hbYuyp@*m@kumt$Kzvuwb-A6L1h7M$}J^JPPv+^`1edb7Cth5 zi}s9dWQ;YcG}TX!iC^RGvy6#fppgS&f-uV{Co07R76C#|RGvyriQS3HiS3=JoKrvk z6Wdx!6^s6d8x-$t#NPmFu+lqSDOvble*<5M7gdj9{d~}2I6mRzc#!#UqgkE z?d8=RqLuT5;_>j+>;`J_FawWl{{*}P<>LBrV`Lj#-^(r+s=vd)W1E$&xqlngcQTlh zREWsk-?KhH;FS3F-$w6W8kzU!!qHB*=tQvd-$wPEbpBhZ5Rp5-_f*e0f8(G->-5Rp56zfGx9 zB?A||Y{=|(;E5jhnRsIx_-kY|>>r2GBr_v1#LQ?Ma}I6|f2Mj=lJX=KB63n@Z)T^> z*bBREr>HE1_udgzKRhSSkGZi2b?XIdo$wqeJ!D2XiwY6Buvvzmdf$3$qZPfU{?i(WW`&_u+%PqQz^S4qxC!N2A z3K6;U=WocA(@rjz$~){@QDfqHUStF;h!1&-Z<2hziRwW~!Y(R=p9I2Ohny}EgJ}YU zv|=A>x8+Wkyn^%u8~JXFZn(27mx7C&&fxQb>YlDIv?jKUuUx_s1uHix=IO?MsOz)T z0Fg0v8;5A)RLM*@o!+=1OGy$QY>j8L-vu0Xo@A{1$sP#r$NQ-evX$J+AzD63(v>b0 zN6a4oCzRNV=@H%IvtW9pIMTR=OrIEej_NNNy3bG{B6s;DmXoQnvF~@Ha`j}Miy7vg z7DACB)82Vh2)~O7-G}Ufghmk{q!qVPW5w-(UTE*_O4CneyBA<@qi;j;=GH_}Z8_gi z40nT7oPlbN->y{uOCR50Ac|I0)G$@Qi5ecV5pUoSg#L%pyEnf^XX0`FDfO+0VYIv5 zfsj0%QbxPTJOjNAa1=UfOZYOdfwn$g4{bth{M|?N5>KqCXxJ=$Q^7d=0I$QOiOW;kh47!6ka$pt_ zNMg&A2;PZoZFIT5PUP(HbiM)aL(43pc_$+4r1QEJZ<8gjThPdwn4Ct1kYXaDYtIss ziKiU5;dn($t^`Mf%wXP+_NA?s1P@4fJzQ4h)};5~EwK!_cX8xEDQV-Cz1^(pK~nOq z@N9k^??X!|2_BFrRnnE@D|nMEY5gJ^SyPhFbBH$fCEQt!pZJy6~1ZAX#*0XzmvPL^Nq(@PNcq8%@xA@%C8qJ_n5) zz&jxUkU50tRtOLs9FRZ`ar$N@hu9oG@HV08uoazVIRw;03%Lz=ODsd~B#t~za){G6 z2jvjwg=h0kcptVPhwxNMr*#+JBuiQ=Xk<-Ec5;Ze<`Celpd8{8U`@yz;^Sza*f!^8 zIfS=PdIbCr-X_ZkxDJin@d$t%f_Y2JA$}H~`=6k_Vat899HLPhP0)XYx5twA`_RY% zyb}@tnL~(fg#gjP9Aa8yHCjm|W`8fV@^k@2G#Tu&z==&+87=sxTBa1@dIZx_iC!EjUX%PZzdj|C+c+rgxe z$wfcfF}5Ad%g1iwGHcRfA%!>0G8W#5M(%hl%=W}W#VPvcsYb(x!F$m@u?>UZ98;~6 z9s%#h+hiF5??fX9L;xXCkhzBFbO;a~%r*Aje8L(f%lKjV*!uyR4cpjT94JAo8d`qw zeY_!-0ry>wJRb6kSy1z!%;F#6xqKGyLd(ozc{45>HPT7_E8ZeYQvZxb)>Pz44$;1x zqMNZFluaD){m|LOQhieJ$@#93xfu;2eGYG}&+{#SB{z(ggmr)vFHJ+r63 ziT1SH`s9}Xuc5tUBrAIh;3$mLM7qge#O|w;*4GFaO{2byH^fq-Zs*8>EVgljO>e#W z;1Jkp&-Z<+C$F9WTSLxa{2uQ}W74TJ>V51~V^pb<#_nTyqb%9|EgD(tfqu;)0$X#- z_iWB=gu!s;P0ILj{#~Kzp9>JJNIG@;V|>gJ(4hNRRW#aXp1gFC489NbP2vWMHPqoIc*^dB@;<;K^ z9G*yKg(ld;K)Qn565fwDQ6Xd_y@5ltGD+YLpS`89rVu+NQ?A6;m&;Y(JAXfdLUHM! zF_;ZbpA)YX`U?qoM75I0h=R4=`#!4IWB}hog^1koJsVQ_)OHr?uP;sJ=%T&s- zQwJ(eUeUQ*BXfLjyv)kxLI-6h3cPI1{Wnv6C*6M|6(Vx?$JXa74u7O>*omzl9*M0f zq<1(ac6n+g1;SraxVS$uE|$VA+6_Yznc&qPMY{CG)}o~W?W6FIkZjf1DD4wM``#UTPStCo++ zX7J8k#JS?mo*zV&oz4_py9jB$XYYoBL#C%QsSq-dr%@qf&n~EpvS%kZr+w>FA27ue z8!EtnoL&A{7>KQ3vsQ_M<06ZK#f_N|upz;0NPrE{?Ibe&h79}vQTdQf>%TZe`H6m(!5Yjq23tYjb~9IWaD}r6+$*HL1qgY7XdnF-OO15O+o&@b%p91LK6g@k=cG?9I{DZZm|;+d1~;@Owu9!R z3s7pZ!b??VRtv{QW=s~>Md$ke84R=kt${kR{_s~qC+OTvp57nqp0(N%eKNRj1Fr};xhJBtX|1j z{ZTnZu#Sw(y>Xc522)t`;-(~0iMlC`XJ2&rIxM`;`=}7IwH+d8YxQJpPb19JgHCz} zTk}%L*curbb7ic{qO}Bc3)OS7Q$CFf;deekr=--0W=DXKRzxLra~m%&!Ajpyimx{- zL2yZALC_noO8{HytCy`s!9`RGWfWY%Ap&JDumhp0Ua$0JOvd-yM%hA(c+v63$h-=P zS;LtLS-9rbkA-*ZwNwZh)*qol$i^ke9hZ%(m(2^W-CcA_nIQ*eV{~oPhc0N4c^#b?HZRz<;6CyL;?N)ExDZ74l}XUZ3%7~3=%4J z)3hFR4K)I!avn#8@Y6?#02xGL=86Czt++bOd;m;H9@FMcvd5KSe+qm2PaWOAr8OZ} z+aDIJ%B%RMaQ-ff*dCseg({P2hWW@hQv*ZB)(D4aPp|y_Sim+SzA0!1PeYTi3hTR) z;(D~Z-9{+SXli{+O7tI)`145yTg|L=B+7fzFn`apsF*I_=L!-wH4K^iGW*L|-9L@|M4x7;f=BkgEyg(J01pIZW!#Wru-v=PlxCKlW2$7@(){Xhe!GXL;yCU z!!v=dZ{v-Q~y=r<$9ELZ|G9>!Y$Q=)fB}z!-`z%0a>vQvSC9`qL@t$fl4W?szHIC%z7akUzKV8_Z6K^_rU{0+ z=|S-&yls|2@dY$;$AiM1G|IqwF+3ZPPy2JnC&S0WAJJa1jfJL@MzTtJ2>cFjl4S@y zibn2u2)MccM_cnwE?G?Vv;99@9(*0d!uvyyBjy1_G~agY zn?F+h=@j$~+j9P%p%gw23TOw}#zE7OgRypcVC3-DSq4T1jok6TaPx$6YRF0US4N8d zXt*YPG+d4LifuGB%@bsm^boiTZ<1vQT!}{RcnG*NjOD?U#{RwG*}og@5L@<}&M@-Y z=)`{yZ;d7K-$5gHocP5e7vQccH|-Oi4<84ANBhS%4i0TLax_&=4~xIyjk64kzo3yj z9u{tjSSeNgoxy?s8+xD+2Z(3}3Qbc)RvDf47~U95+Lxe_J5Kv@p$64_xlpP&{mHVk zot?oEGf6OfETxA0Lx#=a<6#rpQMR)1>SnUgw3d3HY`|M-87L>AkplvSup3=&Xct?b z2@rC->@aoD9kT*9w3nN0Xm9N9M(2SAxSZ65kTKdrg^=3NO@)x%xF9!FH~zGUk5-?4opuI4 zxVYZem`;d{`{{8(xUn6rp}JZUejF7-5-wa#U`rA%q>%t2t%#`q?}A$|tNaW$ z=x}7D&x*q_LQkn$OD|Jdlf)OP5Rtol>e}5YI2G)B`QfU_ygd!h^}7XXj=qxWCF$t* zQz5J!P0kOx)?|j+IqZJNfvYN%;Qm@M-f^+c`vFs@3xB;6S(( zAs;Ib7OJ`a*m^kKF7BpCmEnkcrIgB-i|kRz*D4kCZqgm z(rJ--dRjbPFHm#zMyi*jqfe$nXpVlczi~@~`^t*@=F0W(=1Of!rI4B3=`Qft34`)i&Nl_r3_?DXOGq&-i;7i%b4UAqg znySsr9pk)g}*S`upKo ziA!r;?!R`waanC@zB;rGE>!FvJsD=MDwztP7V>b<{$;i4rPMBIN%mZDV5*w^8Qc+Z z@|5gD@TIn5)gV~6id~iOlveG6ho0Cq8T@~Ka|WMr>?^^2gyOn1R}`8$FuN1VLHI7a zoBckUc*~B!pUxg#v9Z?Mc-#)2USrSD^4X_LMmN@G_d9U!_^O@NOnL|ZKKRtho-h7k zc9a(lA5QiH_~ib~UI>4xd7tCUz7@W6S@t6Myfk|;|MT16^W+KHOZZ>j4xhjrb6=f` z>{akR*LSnH@3NP{ciQWf`J(PQCsl&`l;uNz%r7&=&$d_LCiXJ;WMgfi_)a~UhN~a? zll)tX$8Kb`xQTsy0zNdiOWIGv(dL6?tP;$gCi4 zBd^592=!E{K!2)|N~Uvc%V(Ka!TSwQ1zsF?6A-He8-(l}ksMuZ$7F5wV?Gcv7T7@vBo`&_Z&&eg4PXZCQwQI~C}#p@o{ z2iV7k_uny82ss!znnSccu;;F2=ik{pVn7TJK*24DVT03qVd_?tUB5}1wI6LTn5H^U z4hGK=&UfoDVb<*1PE!x7If&R9>W-KFeiBu`J}u5CJrY&JE|-0w)R4*OLMnvc(FA>xi&P>dCO}9l z7EvR{9RmHPy+fcb7y`xWZ_lXXoHJV!OP&|u)NxMz$)EC=gPqOP;E)Y@6NhNyU}q-u zNu@%6l_!i!emLA3zh)i4Q3pI-tSgd*YJyk}@5dq)Lbi}04iPx$p(X)yx3F}u{#e-Y zsd6T*#`9HBZY#z-y5D=_?D2_uJSVn^vNiW#N%fr!oQkCs#x zz7`n^`^I+(6C@M$SxG}${$;8sB^kFpHm?sCuQ~-dD!*?#}-Q4`9?yOhL=4Ul{(FV(+jNNM57Fz?8{;@4^79F;MLH4}H8P24AyBe2AM#R#1xo${; zEjA?Bp?KH;217=;y_y@M5wi@e37J~&Plbq_n8mBb@(bsJ@8*X!u-FEtGFa$WTgQo! zk+LN2t^si#_%R7EA~EC|p%Jo{>P^{Fj;BIIPRO!G{?uqFu}!4{TR?{ggHEsdcL48* zjFz~3m9o)P62-bHi4r$OBWIB6SxJsVg@~M-*v9J6rjgj@qLa?B=j&WGk0oNO;kp&J zjnKPF_3p^1**^~3jf(I*lQ5*wtt8m3FUH-B@1*)v(sC&kB63<5)!R%twx(LlWzw)9 z8{1TXKd9RqKNA@t`!?E2IniG?AyE`2Xl>+ER8LAWZlOZ>$so+M$jKTpq$fZ~D>hJb z7I(7d=Jrn3Oy3MQn!|2BX#PrDf1)*^Ra?%t5Y)F6@J$i*zx0)5(aNNQ;q>wEso^0b z>@f}zI9(Gsc|h3;(ERPBAfM0tDK=ksTcUg~YZ^e{ay#Qjg6u!RSqdjLarLQzyFO0@ zY05AeZ;$0w1bcI2Je`EOpyq7OllAXQ!X3w%N;2uYvhb+z#2$fn-*q8I0Cz=!6sF=PYawy&~ONJ9@WHbXMc1-t8ge{gqJ0n`Ep5jV|#&AI$wp|F$Y{8UkZApD2&nmfuz=j1$K7t-|{os5m zr?NvjmqP@)wDp@!W;a|K+W^Z5IdwVvy4E;0`yRkiyN)?=Io=u)1#2C}N5lK`!&C^V z7a!yhtqv4W#u&c}Xx2evP@%#z=6-CwE-a|~u@RfGE$pgQB|<0uEUE}y*l=kh zJ`?<^S3OGi0wZwgtt&J#N?)WBBvs=m$4E*}=Y+OTRgDOii>kAjKTA^kucSh#vu6TWs0@fxB3E&;!-S|x^gp{4H zQ6Xe+B*+Za8(kgV3emtrSuutLQ-g0lJGSev761AMfY|ZX?doL3gomO^nis^kiQ=Wg zCbqHSwRZg%~KTXB1%$*J=1(Y1P-EUGH{Ma^3QyXs4Oi zE#Cz=3PCloyya)HFQ8gl@A+Z8VV28VALPh^BnJ*%2>D8LikF&w(OC2IEoR;WcH^e1 zHMZ}e2{1`3Z>Crx@%c&jX<@r@jL9OORx8OUw4PoMa_H$2bp z#(UH<@j2X@=SKB(`FSVaJWIkaMI&qS^EN7klphgxdzSpnXAxR|0Ch8a^-xcJegLis zsX*UHd)HQhf(BsbYH1?$UA$qIG5KwdJPt%?shQ$NL-pyp~i z9E3N>G6oOe$m2kI_E9NqG)SN1Yz@!u7Q8bpB`0CSZlh+p)SQO5%#!AfXk<-lPNqUg zsS&}pXGsmqde*R=*o`fTy5zhEToW?uc^BHd;j-KZ8crr07#r2q{G(`1UL*nhJ5Mi_hP{ z86m~zFKB<-iqC$5J))?HCO7|wH^nmU{=|{Tf!wfZJYM@Cfm!m)(2Onuh-fm{;PnHw zPP(Klz}sX=Z7&*Glax7B2q`Hd!1gRjnaN_YzN0`{#5xlk5>i$+qkU>CE6ajqrBNA8 zS~lU$v5dbB9C;i_%K|T*LGp4zcxKPTyV5d$Ib>{R8}-s9=1q9JEGgcFM%E;zLWPhL zBLZ#Dk{EUg=X&TIwNWu$W`2z~%#!3^ppiA1`56^L%8UrLJxgX5@u(b5 zy29K(sV4|N=y2WK_hF@bTk!0N|Ok}Jx`i87AlQzbmvy9DQjyz7JDZn3%M(dNNo5QnyBi^y0rD?2M>eBQv zyp@*pUyDZ8r0FA62q{e>2=^>$VuQ0YQ@N^PE6=0gk&tTi8?;kx)hKvy=BbS)K)=G< zV;O-z=g8wgfY{(nx*$k%X8t-fx6=S3nj|=QaAv5OE;EzyhFOxlHyT-!nF&+~DKjF} zqLi7IZ>yg>2$wPBoTS`~?&|~Bf?Gmr&GBf@+Gs=cX2g59W8MmQAvHkc+0XMiL|~uR+OwbhDw#Q_SMz!HuqRyWWAN|)w8p>L z_XCc4G_xmO5+x_tTQ~egVZAk97v7~GrMi?L$=su}&L}f~ZgEOO8Fv4wcP8w+k-4)w zUS-9CBi&-POzhj?efbS4gcP5z3OZVSeOi}rIt$|UYt|}0|3hRxpH=rc1aQW5AK>Fu ze@R7ngbLwzIibsty^d%^1PE!xhod2W(do{1C-1PgI(efj!z)FpOs-n;-M%#cVQji% z>?jOEwr{-TF@Y;tVxVq<)(Yo>9k?9cg^(dJn+g#*8C|S{j&0tNDHeeZr4_z9GXKwt zv(6(?u9vF0{3xowq|1+>Lik-yXhO0TitK;@A+0!>WFGVDot>8#g>R_gA{_7c^dX5q*_YFJ2SQ z&rn?`qxn<9g+bR01P^Ga(L4>BZC@po_sw?vBrF0lA-!nDn#V2UdB2;mfmj7z)N=33Oq+& zPj<^OK0&K$$D-dvr5$meYeC_OUBVQ2o1XoRWnksRFk96y+XbeyxtVy9hJd@1-C`!U6Fo4iF%OV8s2?3Qz2xK-$;d! z`X@*nkNVeh;z*I*#b3^pV<$Q}b_c66>+^7Ayw8mfHi}LRx$r&An)PdNB?DD z3~ts?qyG}LOKj=)ZXoo~uhd5;|029SmgHZ6Mh+mKp!TxE5Yj?`kRf;|wIXhZaZ-C1 zb!OEckBV)9J6_a;@h+$eE`W{ES6gaW(5X++SU&Q3C)KMmCAot`w5Qt;yLmR1GDE2n zteI8wyhm2O`^VOJH~TZdQKh{Hp7G-)H=B_9U3iZ^N`;WE*$E%WL=-x8IS%vO>kOhlt$&3pS-nl?*h1 zW;~o084vKBs3<=%CLbHAK9n?^OofP?hThGvBH5qH74l9%Tc||F!Mr%UC+`;CtU>Ig zdQTFNr$R(dK+i^45@YY^2DtwNk-2|vJnt6W%=x2K&q?RMmkJTN^XI|z*RYe%IQevt z|GyHM|K~$b+$g;n1z)84Pg3xCDukZ`!uUfDVMLlsfRI*vlP6`V?3GI@0?dp<1}&XM0U;wW;m5e)@NE1UA5(gVNByhPm&*pVMQysxM2qDX=<3rNPCJy zv~eiIu55#)I`_G+*y>!WtPW;+9&Jr7y%*pp4y^U^jV290C(^uZHwk<2bC9xK0b!c$ zhJP3`kDf_|kS%8#hiLh5W@%#uf%Rb<;JN$QK%o?av?2|w45d_BeRA~`U_}eY?OC0S zWlT=RS_W9cA6QI)B?;(V(>oFsZiz)5USw7U9$eM#cfBT%#?DZ_x`Sh?+oNE)= zzZy+tO#_$O)LbgRy_(wYj51mJS!}|DjoF9zCvQT`Za7iKt(+R$1Sf+0N-AoG>068w zLWaQF$K6hrPbXa0B#N#9T0EUW4F(xcr&A#!ji-Q!={Z(EYU$nA^geIgEOO&U|2Jbt zPc{okwAi_vJ52|&JL?)kb*yC`9U5MYH z`cG2uRVqZ}6!aWdE;}&sQph*Pn~Kms9-05=#vw5iMK=aJ`YO&NRL@E0KTL)2J0Bwl zZbO!19gznUAfy#fP_uD&tW#+3SZ4|!;rJ4V#gDZl->V(fUr3i%`5)YMUpMzW!Rvmf zPl#@5%n{E%U|-1Gd_IRDjCd&f7Crqi%f$w7&w3NMSs<_#XLn^oDi5iYn!>#n&4e4% za>f5OXlI$l`4GTSM^fGg=zJ9R`Rb%~nXkrMWx4Qs6h{tZwv}V4=DhBs`XK1)m<-s9 z8(e7=58$0?ysk>8*!%WebBY_))4PW>-aJdL&p{)*zLR==HWfnl8Y1FC^%_TTE7}*E z3(|vyLfJ`{V1BDGlys@}?Kim|j0zc<*Py*?D?Z-q^Zb!%tehT~SL2PdjLWOg$XZ;s zJ0j+!tEG~YuLQ)x{o!NbUbIteW8q-W)-x>@)N1Kba5vs8%P9CB8oA?9uy6lJJ~fm{ z*P|erW~&_~xOc>-4KIX`hv(7mv5ki#o5Vw41@*}IJKjLc$oLx?x#N+suvl_n)vc0D zrPEHioXi!{sa$Tv7ZxiY58Y)P2oSjB-Zm@_YZ4ab+UYS7$6IF^6EQS$$77<0c`Z|@ zmg{oii-t49N5f{cS8Suf`!I&T)9}|zkAqEkyDZ~i0~)#GanMzEg7Suo!iT^GXouK_ zz=2H!!BZuj{qyi9S+f5oG;+t;U+QsHvQkL0lM9&v$RQwcD8rnkPZT~KJ|aGec9LyG z9Bmg7rfTX@@(H||mQnI?G;+tIWDbjxY-)EvSMlrcQSl43Q*5K6+4#a&Ej0@ z#gPC-cxCuVI1=p^TSXWv5|oPRk#HE^Fw02jLnC)Q5_(zFDZ)8HxX{{dRlby=KYS>p z(0;KE1@9Z>CQ(pprpLk?@s?S}!dYnKj>p1677MV|pj;>o2u!#Bc*!&lL6u?>f@dJ3gtdL(=aZd=2;6ecM?yAkAgpUFpJ$x7Z3mo ze;<12Fb^Q289I31yzplU-a6_0_uy@^07Rzi=8+G2)Twom%5zd?zx&b z2{u6o-C`QJC{Ni5#P>o^XB$IO8MxP6-A1_;9l%EUsVy;_D}i;qdXdT|9>aN(E!41( zyZKJz5P>dj>5VGfrHdLajlqRAa6l1`hHY@*KFxmB#k*SL;_Lw6D1NN%%T6)~7sEbP zVM1caHNkB+@^nchypMNMA!NJBbBMqIr(P4+%U*M7O2dbsVBF3UW275sm=}j9T`UOr z0M&ak$VaIVkrObN5wMv}!?UB>hGy{f$o${S{m+*GQn}#x{|eQ2(*0kgLPYNVu}%m7 zHZt$qoeusr)pOGMzo0_+olofZW$GZh83Kf~Vk5O8ZtC#@pJYdz)|yuC2=_S$c#vU5pXD#8^K@C;znp0#4E!4 z`EV+PY(A?vM9VXX>6=PU04UvJUumD97*%?G&i41^^tV*ZYqSeo5{nz*qND9r3x9DlON8M z3i%<}O;?U3VjBywHHGvJ-^q{bA|qh`I26weNq7xONnuEWgGc=;&RsgjoubBH!- zdbfB+VJMT&Kv&kEQlk6YkvVs^`)ZslSM%mK!h7?pR0tX6UlN40{NWJccGxL8ta$wK z$UHv7^*Aq5bM_-tPsz}Im83jU3e@m^b1D+4LkTtCW*ifXEqoUGFk275N#B;DO)peW@nc=uXRLZUY#1> z<(8+ltwY0mFF}QnQGKu=pw&V)X+tV~>Sjg5&Wy~-ljB3Fbir_}eKXZRQoc4(AtHD2 zp2*l)86N_J;F=X-P{Q*9NDd5wUOkwoyQp54MBPb+uqKL}U(KyI zo@$X_)3vVTsP}XIIWkguy-kK)%r(Hu))e$fs`I4(|HvUaokz`jBC70kVm#A-lM(!jI(ei0LQwM)oq#k~i?%_VFdt_`LLWPLj!+USte2S7kZHdsmyUK>Q zIZvbdM!I(+6(Vx?&N(4dIkCD89$e~o%0;*qQ5|*dip<$P@$E2xu5N=F=|;(#>Q<V;~we~ikR zr2Sedgx}!=&Lr((osR$^t>~uC%`q$BZp!(jiXsMKeZ&itg)F+{bIHH)fR5SW3f90j0u@~PUH}QNqZ|3%J0LyvMVnfW!Hxr?ojI% zbxsZy`l~s|cYG*;_PVRN@)EU!(Y`WoSlb716kclHjln8`eM+75#P%S(O_m#j4?rWk z4wH>`DHTF?4!h>Guta2laDKvQX^`PnS&~{V9P^opGK$9?>NO|e`eTO z#a|jMkGZ8ML-nHU1_n4ppis1aL-5Rv@HpzQ6XPCLMo6{RI5c}M;HXWxE1u_tCb(bq z276g}KVCwGkS+5f4$(?!<~y*bv1`k9Z{G%`wIF;A-k#2m)C9TuR;r(5$lgqah}_k) zxSP#yQ#=rvzq{i+tP}i_R@kSe$M^kIk4dNBONEHs>2bEYy`4R|40{99)pDgU1X~5! z?Z{=Z*bVWo=*)AGF>yegt#G@xB!n&E84IT@7QCTl==3~8^{u4mX)1)D9zw4!69dti z5Fn%#X=+8>F~x`5n;1-61ATUE4RmNqh$WtEiMZB!^xR;~q~KsEJLKr$APy0j6l5Rl zZ>0S0eaUX-&mXPW`2ZZ+GCo>ie5@k7oBjT4pvde9{ORn`6&q^@>h)fgPYq|b^H!dO zX&AWw5T3udWOSp=o1^U4OmF&>tMD=hEIlT-IfH->BY%##%uu>}G%)EdRPx_zlDV-G z$2jd3^eg?TO3HmJmHo;hgE9SZxf`3KU_Un*o5>e*FeeJT!U4?vy#ow5ji*`pOB}50 z2r>#*n1)h(t2zIbeGOnBZAo~MsltE3{h=tY7ngR$vyTk>*ug%A*hhhV>|`Hh_EBXYyV%DF`#6_q_*2az;n}ysH!jOw1fQ2?FXn%K8+@KTA$tk`%iG}-UibMhe92x6 zSmJ4&lV8u@)~UT>)nH-BSp|>TzyZ=#yWr3OyGft_&u4{n&-Rtdl~M7k)fxu34f9fm zJF=I(uTbq!z3%~Gtbk$pxs$;&?K`hKe|4it@I8(^^MWSfeKY5Js8S2YIhYoy3_cCB zx7Sd;Ec3mqIYgkVTR&`HCJueXR&1)42Ul%6eI>j`me~%kBESxnEzrPO=iznx9j$SD z_A`K^__MYY&hxUvAc-Pa0&hpbV`Q!&^{qpChW*X(9{(B@Lguz#<`B^g@EHf{{M7HD zv=#)ufdMhV7d@r62=*w|PcpcFLxqUk)w9;KOoQbv&~N&LX6jQ>`MWy~6VBdZHK$L4 zvPr#%bo$Gv5Rp5*`?%PaLNT$XuqzKIb(~#_&Kwe%*JsC5i3*epTe|a!VOFl@_7zm0 zNw+VjLPYNN12)4ANFeL673}aO93Fs`_F?$@N`3%y1H5YJ*Zhr8_OUx9ICSaoVFGN}gUiPm zNn2rj%x;oYSov9GtSpVg{&ispA11*5Jz+?K4b-_IS|j)g)vK}*{D=w>IWe<0RCARK zq?NJL`Gkc!c=%UjM9hf~xdkW0Oo`!e)jz0Sla7Cu3K6;EXPwT}31%+(Gujwp$^S(+ zhG0*2L)6!c)uMe7lpS&mv49HUcRFDbOU{Fdj)wptt%zu(-YwRL*(Ff=c>R>fxQCGp z+rE-u7jOlP+SgN=lPzu?6(VxC&)(#eGKKz3+Bj2Hh|KSE;xNI^3l5%{%2B;09iO2> zMDF+{@Nz0#XOSC$6;eosD(OL(Ev$F^YKQZ_$XM79j_?XA68#M;8oj=u_qm+vPf1CQ z3SmtNc}&u?dVOq@yL=OS^rP23{iVy56zmI;5iv8K&LkQuM_T{$S*p*Z+i&9#Z5(n; zWCL%-eGf+FzDaR5uGS}^9tiKZ`>7BzT<;aGZ}sqD=B8?n?aJR-h52p8(f^Fh(Oux^ zTrN>^3)KSkIjXm0pgu!|@H?E4<;X-yG#3Jdv?8KJY1*1pd2m}HRq9tbKj_ae>vm0#=A8ws(bi3LKf=?w_YlwkC{f zi}|uXT*R0wvsL~+{--`T6VFRjRxJ&y!2eAR2`MA5=Me4b@0uU;=wZ94+?unq9{!Ua zZ$-P@ZH4lr$6L_;GN1Iw1CGK?E$(>(z^y}{zdm}u`)0g7mZv;M(8#W{WHTM+5UpHl zZq9$Ncq^ev1l$G|;g+Md2)GsP7uyI}ZioQAMtTg~jJL=#25v+n2gCqD?PZ4{1cm@1 zBk@dXMcfYKhwa_a+p{jSJGM^jToaQtM=L4FpP@RqFgC_u&2H12qEm)Gt^@Jddk%s^9(3EWSTdX3L)Fe zBo5I^NA;A9+(W1kkvn_#iG^KkEglv)Vq(J8yESf0 zWGGGXah{#<&Z|fk)DvS11c?Z7*i`}K5^qC)u%=Po*yIAQgc>L``Vk4O*_*mZDZS+)Xhu}v?i!( z`xyuEus6UhQ^_I>DcJqgu#k~;FNX+B!CILMG#|xHO&4LuU&VJz!*gg)Ya_R3&`vUD z&Dlo)M6)?efz?8Ng z0hw}q3a-Y_tMkN1{-q_Oh=2(`_bA|)2Qd!=D?*MZ`Zz?eGPL#}rh7cAcC=9v-D-Pg zI^FN|rOK5g>vq|*d9|aE|Cpazhqn!C$0Pq?xw@_X-lRA?2Ov)42x<0p;5s--mwmna z^$q;1_w*M#?6r}f0o#}rC%eRXu8sUS*G6$J>txPAsB>9@#88d$kT6z2qkN#fUG_|N zF01}Vk&+6Y3l(X_^vS%&VLI5+B#Tn|2194Po9ai|SywqkyP70F8~qL_vJu!8FF~;b zr1JEt*Fme;$?0vWawaWKuLfL5rXBc%L#EzylC{GIE0tpT=vAxu=GH#gWXl^bJMP#Z zrg3VvZ?H0yG0|7q9uxIe$a7NkeGD<&Nl_8Q zp%keU#tKlRg;T-f?K>$tWsQ4e-a8TVL#RV5#HiU3{jn732UI^wMfyI62y|xa&w_Rd zXT~=0JKYq0|G(C_H2W*SQCwG>1sk~8tp^EllboL0|0%pD|3HP1gX_mRL@S4EeEN3r zarHYB*!}MXknvJ%T{WL(JBZbdbhH23lAty)umrY|x)(RFJKwnxiTb4uhJAEhU zwL!a6T|a4W-n{5|_ofYgif;|vw9(kAsi^FZ*2Gs0dD({|$cF5CkQz2J@*EC9=*!6a zVPkx)1}>9^3^u_NUy#;JIkwGV2P$D9Me+PQTjTlcn*c{~CtPd5*KXi~X^$a^OgX^~ zVJkX%mv?D+hrg}u4xhgToDI1xJPQZc)4)-fa=Mf$s+&7+iOkIl_#NJ!;uCK1nvUKS z-nln4cW%qGgej*M^@QM_$b309UU19PoOf4v=iNz#kn(>A6+(7Gg2GUp(DmGkmXkf3 zwIk>w;9*d>(Hf3aDnj)yD6|D*8-q~I;VlS63JOk$f;Ia8L3OxV}kz2K@c>%8D)sB#Q$O{=CWRk)Q$iH4QWL=_E7c((-; zKZ!EyxZpLYa>8ST78wVEB_Rg|aSlPq5eTmXc-G6@n-0aDy72O%vzt%Kc=P^KTsO1Z z5NloMoYVNNbIuvf^1BiFc2@hl5e*a4>(LH0FQw@j2wdyKYL#G@l4-oHLl^5p$QHet z3L)Flu^gh6QW`*TcQI9}WKub}W->p}S5%jtN5BfEt(@k$=bYpF-4>EPjCPqV*|X!W z)$B;{06gHPQ(i_Fu2Ej3LUe%g8L&T)=l^}aBV9Lo>Fx%)W`saWlQx;w)2tK zEMYo7b}hPKjpmO~A^bEGI$GIRi++IsA+3n2ub#77+)KT7H{2Xr*5>Sf9(Ci*j)nuw#DU_>2Ln+_&M=!Zv=CVEioOASF zZ((zO0qs*;O6S%o_1074^m%moTC4thb57gP3(q`yFw+ma`%>F-j=E2L<=;GA@a%KW z@%~~9Sv(Mm!DXwqEY66_s_9*C99^!)UW^JM)o=+FLTa*zp-`IqHxY&{JXsu|A9LV( z0MG;`&+H;=7~U#lsBPelM%Fj)oO86_ZeiRd(Vn-ByPmkTJK@$+6OaE!7q5li>!}bj z{Mtr*PkBeCSY#rTtS@IN%wO(h9y$*F*IP(^4edBv>gUEAhBub&bm_SaUB1TsB~*wG za6c8ME|ToZeTDI_c^RJx19|tCTFCR4(N41Ec^ZFzhu2AK*|(!h)!6+U6~fOhp;wR{ zi%2*L5Yh^f>=PiQ6%L=8L6sFY!-C~RuoaiyX{})|4nY|Bgqw_X-&^s{N%p35PO6mjY>O@XHu4{grpB$V zJcNG`+GA$bnh!V%JGEDPHuBdu7JKSa-{RY+*HZ7p4!~P!xy^qm8rgNBZ1DSWh=@i{ zhPYTV0Mok3)G(ZB<|&THsr~@j3Z~%}jkEySf_9K?fE;fbAWf>PN6Kk{J-%-B?1kDl}K zhFeC@xoG5$N6!&f(c|r(e3A5-@R9T>wA*YW>2UvE1jbWTlX7^igi7<%^OT z&xOuwrUC?Rs9+lP2sui7kvhx8tbl2mpSE{eW^&0XIw^G% z?Ji$5zvn>ydg1%Tmr?QMO7Z1`{EIOZYbUUMU90LdlU zZaC&Hv}0_kp2Ml;FBQ}qu15Hs_|h#2zXOfz8u#snYue3p&uTb=o`M%{N@lkI36_Oq z`#H2%Y}ua2+4k3?cqy``t9zaN`0VdaIR=Z&u5dx!^b&w3YfrtmuZx{R~XjJT~tb{VfjJIP3D z_5{FD2&wT0VfzGCT3>MnzF14;I310wDaWZCqJ3FGm*`hb3||VS;M$zV@Y~Q1v1NF+ zCn*Tv`K|cEEqQ(m8oA><&yhWq`j&_`VHqfF<9zqLBmmCiLR0 z3l@VK(IF5ZWFoMNS`jx9_+EPxfi4)|!D9x_gk-tms8@JC3pK%slQG(A#~2d=r;;+x zA;9-pO3iE%CMn&HArJT~)!{M^_%nwHoGWNwS24?5b6+;F;2&5zw7#MjAiNXWW2a0; zMzebZjzUXK3?RMM>%)mT_|h%KV-^}&6OS2G2q_*Sib9FUlhjyt#p45Q77w`oZ>U-U z@#xPCsaMjR3I1$_cx*6=2WBGDwNaR;M6E$gHdDhuipeGp5hx~Y98}EmR^6v2BWQj! zH5o?x%B&_1;3&MfYT~tCSCcZnbW1fUqLDQ<8R8J_>o!7oKE#3x8)<1$q?l|iU<$%NMH6Qao4$u7mqJ3k_ytvBQTo0Z7AL8vW zvVX>q#`{CH^G?{qVdDNhG9x{8paem zsUDZTQl3KuYDF8z6w~X~_9?~((2Qt`F^cw+k<{!(fTM6y>*9)0w_KNv_u@;ol#O?z zku}+PCx>WXcQ9LwCF!VF{W{y6>4a4?4m zOa|K5Q%q(x_Nm2YGzD7!unFxVBa7MB0**pQjh~ViJh`RHp~D7zsh0Y15*k_4hZCp} zQXfRrgwltD!dL-Ahwrp^N?{^fLsW(h?}G~9k{4rS)z+Hy!Mpp}q!Qkr_i@vd;52B( zi|dL!xalolqMFp;Y+m?i(Api znpoV-A==js%oGC#1HX@gCAjvc@%tOJKWzE!_6!!xEdL5$wk69yMz3>4u>)VSrFsmaku~*jI7It00(T0r?kykB9|dbdW(6Nc z`^1)K?-XL)ex2)*W`wBF2$JzEwA=W+SWBi`*jNgU!i!I~+Da3jmbk^_0+hEE1 z9cbhL)(PFa%n(EuL4c4M!dhxY+zjEx_GSq4VHJ5olCAnrNT%R_xHSu&8&r2PPX9Mn zu8fgaTVqNW#@dL$Z3EL9mMOiGAyb$F*5a~gHb#t!ctleKqG6?vXlxTrA5S4C~4U%j1@5Z z_;h<`AG^h>z=R}wF1b(|QYIpEP#0VZWQ;lU{)I6YD#R}|3{!&EASoHD)!J5yc?_unKD$-KC$K5JA+xb zUuV07FW-{w0vfsFYmKtlenWW1uSfgEmT~_KX1xwN>(}6Iuw?yeG;#pzgx*~y z2%?K1K*$7Pe`-bC1mX4V-2^#(C^eKbT;A|FR0Ahb#%QY@ZJMz_^vy$#)vCD~1K{9Ao zGzA$zJIhFH_6)#Lh^h5(1yQNfR3wcr-cm)*K_k1yNfkMpL$t4_n5WE1ifH#SekGWM z>%29_-;Z{TE#qQU%TNhD-Fy$;2ut4Ig+}f;@B3);ct-BO6Q28Tp`ByP{bKWkq$}B4 zyZ<`g5KI2Qf<_MDpV0No>_K!O1PG}<$51Qc4ma*?Z}!luZ=l=Uc_pbG5E|m z1ZKMg*rjw;h8*H0s`F(I@dAek%puy>t<3dpmT-3aI+f*UVzf?W89=mRATkGV6mDws z-GPX*-vb!bBxQfR36_$w7>%q+%05&GDJdeJLP^T=)TnkP<-Ybx%8a3Eu9C?YhBCg< zNI!TJmj#)X|9n5E?mv zdqPhylLgUf5Fq6E<1A`L++^Vo?Y$0a|Nd$*mr1ACowKP@DK*0PY&*LrB-4ZN9E-Yh zJN6P*z>HB?Gu}blbSToWQW(j0Z#%o|CMw;QA)8nNX5+GKH@0Lpv4}$iW)tn}WcF+3 z315G+8cmnh-yDl}osseED!@@_sx9TZ)2ueS{2YU~#!`NcMk8zT^GYg&lphggq2y;l z7%O1$i$}m&9p`$k9Fv$^^-JOTegW+k zTfW6ORI7r{`SW-aEII!>8aaS-LQgJ}0ns@SAmmtNgjx}IEOKpolYtp*2;lTjNW#p! zvIO$~;C6AGKpCU0_Ftxipy{|nSi}udIv+zm@LynL$Wg|tI7DDR(7x_srmVNGuSlV( z(E5ruq8(*qGrIwB6jEy91|n&@E*fXy%eEAa*P)R$(Kv$&Aw@$(P$KtAU9 zD(};f@1RN1G~`=oZ<#gZHo#GssfmaCd==1z?bR9)G0sP@NDCAZZjx(}5~c%y@=zHm$7Sd2#2gkv8ngcJ@D zL!pG@d1@rP!oNLc~rkU?Y!t?zw z+AX$x`{y$QIsYZz1WV2zLL&!oPUzKTVjwyP0)(8;Jd0WpH!--ly@|o3GHk6-mo{TB z!%CAe&T8wzrv=z^XhyWo;#jnkjHG5) z0gggQZ8~4#6k+5RD-(ia@WomR#?feGO)y@`A=;M^bcq#06T?L?C1g4sd|BUc7ZTz@1y*B?SV#g=O^wdkvW&i4oK23Ybvibf9Lo6w8P zL_l;11PGZ3ETC4zO$3J9dm>{>HD9iz(mRw{#a}@kaI$2Kvs(BWg1U7|-(yGyeopne zOa^|+A;v>8FwL#CFCBOZ&5GMZzqH`cX$i(2sRH1ScgEehV49bJmfdSv6 zdLKjwt1;4u+n?(eDLs!N8MuNPGBO!>ABPwh$$(pHUo!AjG!t4k@g=mIjAUj%4mb)W z_2mLLfZT#*GVld_!Ion2Sv0aH7PoPTwkHE-mj4LG;1Y3-<=>%QV#~5O8K^f+jq6A8 z#anXy8#Hpqx%MOjX1?c549#~BK(r$H(_6Ja83^RO8*hRo=QGjB0h|+ha+wT>&Vc|S zlYz^r!RsaipK5P1FlpDIQ&M*kY(a;rQCDil?Tck6RZ0(L^4m>Y2pT`^6ILmGk0Bj6 zjT$sE9oWbr#zQ(Vh1c1a4D3R4p>-1#w3CcBRa0{FfMZ-6D=ccGC3_$Kt4kOPk%Wl1ajJ4iT6n zw67o8H_#2fyx|BmQEsK>io&62zZtpC?hiO>-mo9vU=UapeQ`2@H^owO4n`wunsX2p zLTZkPuTYvZC5#nt?%~|_4m)P>yHteOC<~M&s0S_`GDaQY)TOxHg^AFZH%=C)&X$sr z;}GLOQfA6}`!wVVG!>eLybtXtBb(U^0Y}vkaq3dqu8YRy__8fUqlQM-MB_3lgcJ=C zL7_w=6UGVuS$bB4Q9EiwVt@=JK z`3IU9O-r6d`^&5)j{%OVC1UzhtAZ{mf5n?%DJg$OBWsfKBo#tRiioFBl5$TND?m~n zYVZ5LQ}Ts8dn#VZL5`Xnp^7x-IGay^*6mUv)i4Em1lSsKbaN<&2vm`F9-wk-?GumJ zqxsOp<4m-h%;K>Ya1=`17126fZozUzbThtSOUc-TM%E-_1BYne@YUTOWoG#jFb3Cm zYb;-cc8M*^-WAb6t}nnBZ^`v}XylG_?O72u^ZmK-e19747F)jkE24p%e-dwkCFh?& zBL{F!=+9+JAUX#Egq#jdP%FZ$fRx~Z_Kq^;D`?`>M1_$`kg?Ur3)vk=hKt zZsL;VmMcdZJMraO%0(WHtjWa=4$;1DVwO1EXyo{Rz!qGK(>T5k?Gam!=Wvd_*6SU^ zNAaawGW}sRa>tqOkw+ViZ2u@c+xMZpV$1eC&bGe>I^*}?EwE(#E;Mogv!*xT(P0_ND@jYiCn=_1?GHQ?cq~3^u|7C>vBb{Yhq!((f2Dfi5r-mmj-P zBQt^N93n6iXkS-RzjhYt?MnuZKvSW06o;Z6Wn?qEKj0{&sMpRi&fKzPLXg0hZ7CWD zqmebyIEV@%MMFeTDAAY_#tN94Slr&JiHW5`PJQdU1Qo#LGRF9-tu>7vyf?a;Rx7+e z@8hN^A!^W#0@dGAH*y>zP&e8*f|$&z?30Wu(0pi;@jkSVjFe_C1RRBr+BBYRaH2G^ zxEx=qrC8L^$eLJO#v$6+C5Zgn!0#Pk39h|q{C*Sd4_ki4o)~Gn-X(kuU$!O7Uq&N$ zoaNav?=~>~baAAjfgSkyVfiK^Z?cbx31K1|?-ZB9YT>$|?jv6x5inybO zf3>Qmi))3B0cjIvtT2}CeU>23_&{~=&%$YH|@4ly3Oe?Ebj^1si08k!BQ zgV>1nl9ABtF@U2m;+a4MvfOgzc;RGxxt4NqA{tqfi?tl0eJOxv0#W1me6S^C5^yfs zBeop-ClF0c@5YyI$#fNs+;OIT6Nnnyw}fZ=CbU;<*)~leni#(UZ-FJ_*Q1dG7$@}O zG8GWr0s%s%0?VltaZ`b=_C7(=!{1D9Je5BBd35jTOlLIm?jumX=S61upjhsn}kV9oEju#J(YARA?r9qpoFw>VsWOdxKBL_ zXf`zU$e}%DR*$m)M`6WXk&w3QBa95bY)jo3KqG6qk>(I>>?y=Vo%ENF>#M;YT+7qA zz6$LXTdqY<;je+t_?37IEE#`48oA?)&zBR9fvn#hp7rmcJ!8xIKE7#3Sqq){@8GSl zWd2)d3+=wkds-A#<1n_TsW>H=1PT@G=e&m^rksOIcuafv;aV1Wl0EudG1(%*b(e0pKY7 z)E04tF;+vDnB{mgEG1?c8d;N={izUAVnkepl9-o5O3X3sm6-jTTt%ZPO%^hmELTp#)Z_Iehx7X^v1n82xdFfTX~oxe5&&k@o^ShR-^|wN z$*WB%3p6>%&bbE`B=XtJnJ{1J!8wde`ZzILTCO4ycL$rUynu(V4l#q z%ltre7X%17v$~vG5oQJC2XATb&|`YKP#iH_hWRI`22QAq@m4$9lpZvlOJxS}`|QTt z)A@}Y4k%_06oyhmxd}-)u~}4>Urqscwn8#q zW0H&^r;;)aDcJY>gh|38B|r^>iuF{|rD&|<5aU2Jx;z#4$wmQ9h9(<1w5QCnaTeex ztklHY4j$um;mF_%w-k;6G_ocfX)1&i4iQ74gkyCWDlea zyd~Gqp^-bzwddALGv9~I3eEQlfM~@?LT}anTQ37SUye7ylJjL~cMCU+& zkW&yhP=nVUQ9RS$DTrQJnh-M(PCq|XqOE;q(UEJEnc8a8$fD_F1enI>BH(fwc<{k$ z>2o_ZjAVk)&mjU6g!c6xj2d74eW}8`(9~$1$UD#uGqRf<0UR||Siq+z^g8Injkn`% zuvC?c(a4&rTu6nGsv;sPl&Yk{SOLS0=h{2m=wa=e35t7IZ78MAR@@8K!DTrzcONY0>oLDYUzc%w~THI0`lHAvKM^ z>J^hG>@|V?m%V-oe8|Db6L?cBW##v1WKC8cqe4ho5n&ZdR=yL)3Xqlew^vpspTbV7 zsr%0Rx>YH8YQ=;JXOCw8EWZ3je0fHEd6s`M23&0^PfyB~RK*#n=J;%9{V(D`TG=cW zH5kSZz*EZkv@@E$f<@pVV39XZAKM}k9kn^>!cZ}lt|W`8QfhlCRUC8?S8&8Y0STV7 zSdpD}(u4^sFC0B@bVarX#tq({eHVNI2h9rl!S`bU|KdIH4{LLd>rWLcnPKO+;q99W zh1_BN$~5$5G#hT+r{ppfrF@U4W$bmd9@lo5S*UD|NuLS@>>ju0@ zP32@=1NkJ597u2bGS0=C8~T!vdS@!hq_3wqA58Xk;I=WIJ*QFYb9t>(*()KeSa^;N zVN3BUJBk~1t7oK=>)m+UEV-_tk=+I|Eti42|Dll#xlN=*MVhg#n#;knWem{85)ml7 zlCimPo5%HFglHZoaB~7+?kA_g71qQA0mtB|@IM z>0JLBZ<{68zd$2v&HZOoh@0Ub3dIl+w`YmYw0hdJMoD`X&kij%`v3$kYqS*`@$9me z@woZh8a?pl<4v&)yty2C9ArAZ4IYEUWnFkmSL6L?DJ}<@Gn_i5jXLSv9*eihlG|g@ z$eO4eO@)x6A|hZEh~F}zKd++K@D)QGGUQ&vk;j3Y%n@}D zN>B>n$;{!MXqliK(1grJg>)gw;0>~5bpVa52}zm?A%#T5)}AFK-69OPlv4R}u~1g` zCEo--38^SIpxtV#D9wUUR!5VT>+uFz2H`avc^pW~A|I!XCg~dlJrJJW`|;ki)R;sQ zjcL%^sF^M{_u?(HOfxH! z@OD^++{-xfIFJ^ewRol=e2Vgl@MIp2ccP`D1a}yo3h6?!3U81lt1m|*YeKS;3L%9= z#MYiABs^<5d`+VtP}YF*;FFM9%MP?#!)Gnt>S$TZAl@L$AapqLIFJ^ewRoJ+=-Yi7 z^TF`+UV-h>PI9hMh4-eV#sp_Arkd$u^E$j`mOP(?cE%C9Ei#+sCbZ&d^CvCm8(fRx;-Wp3jzl28C#N!K82q_*Ss`f1L=w9O#D}%c-Wrr;#_-1VX1wIKW zB>zCW)mBK%nTo$Uny5UBH^?#w|H_fafv7CCJ{AfDnT{V#b!Ue zWtKeei$>POW+4?qij9c2Jxgq+tSJ?Wg{qpZoDIGRDKc+ByVF)=7Mr^{w;GzbY{eU5 z8FX7X@;DHe9+$%)QF(iKIxoh1(K2gU-i*#hjdU@&5O0wsujiwYH8DAt3L(WrMAx1r zCezjqZFBnjGx_bxn$Wkv8zJT7>u87C%8B`0kgSL%C||*wVi|Z}R@ybOHGU-W*FtKaNJ$1mu6H5K=%yT(yqLK1xSU(0X)>tPtL?guW)^i7R@46F*-oUcXu#hV$2Q9_0pr^ zBY3+kqv1nnr_lTXRyom5HbQGOLZ1b>bu#5M%Y8>HP@Xno30 z@pf2-+>beOV4u=HS(zj19@ME!UJzPO_6CS(Qd9Ge4_}3JA(?zZ%+OvdY+J@9_ewVR&vBhh{hu>@PY+L3u=EXZ%5lv2BjW@+I@Q&ih<3LV&8`Td| zluUR^2k?Hhq}054r`Jgrl{DTaOK#6WBWt2^HWfmOiiog1Q&fDr7_SF!gv^nzK|9no zL1`)~rlaRq<4v&)ysJ3!I1&}lVQt^A=icy?-i`NTD@4UpCtXy&hquX++wY)}HBtE% z6+()Nh_F3VRD8!mCoK#uDlY?wXcFb7qGCE3`VyMknq}a&w1sCdp&`b1?_cuHR$ z8Kq4#6;GXXQCW$%$&%Xx(a4&p#HkQcR78aBS)$Ujp_;2?PIOZJ$5kq9$*+)C=2Qm3 zEg@4D2klwglqDb(^%`jdqHTDaEJHELk;j3|EYX<_8X3JWJjs{i9cr1x9BQ1qZBjX1 zcxrg#EZM#cjjRdJB~%D0JR;^=AUp&JX@z*GiU1*}k(Y;gSOT6TOHG0&xX`bdP@bpZ z?_tf_ScRS6rP!d8EBc=%`!&#t6HcS*)pqfx$=njy%Vfz4Jg->pW1mU*YoGh0zQK`V zp)%-{Gvy@dxBK$EGWCCKe()?SpGo=!HE!kGS3lzrfrPbjeRJwSu8^vfeRx>o)RZ?L6S{sWDyY2~vVqJ3)=li|4^ ze^4aC2gShv(Teew9u&ui3kp_UJtPjon`;>o2cVHV9uiZ9O!}1K4dH`gE7})rQVLOF zJuJ514Ymx6)6mEPVL?bnWIiK$Cjx}bXMRGJJZ1&tGbgwAJ^1b|kW|1iHe*6_6*|O? z@mYJNZ9>B`95BW@A-R$oH8LT2KZh6(3CY62RQ~@{ccp=DRn__eo#%Og7Rp?vi_C+} zrBG-oGl&c^y*F)><|daUx3nTCDkvHRrO1;94+KG+5tJv24;2+r6hRRj0Z|l15JYi= zx6j@?*=G+YcYS-OC#gROSoqFb>-)~P);_~N{l#2nWu?r%I9KY=4CHF7%l(G!+zWGJ z4Jh}(Rddo>xSiqX14_$YWRTnIPS-Y_yYX;|rgImJY?;m-93s8(WR_XAsH%oUo?|g# z>kvyK&%%|VO5})EOc$TN7bM1ed7BX?XNlchkM<}qu_U}a2a5bYRbZSy$D zLm47VTM|?7D2bAo2qSk~5)-8)99FR?To6aV1)*BS0Um;IJH(-Qj6^vc3?p}34l~(w zpJ5;2U=Q||*=KDt*~%(&!8;f(ivhSWR9PI3$ik7U?G^<*R-!ys!N?t#$2>>LEc#F8|Jd=n3uD3-6o z$Q>8UsA?`}E@xj2m&Ge^C8)CC_aT$6x0`E~C^_3LUc!ST3g878IY9s(m%G#zGjaLE z143OfyUKTwC9jyhGuo!#j?iE2+{4o-o`)l_NhZ_ z7hYE1ExA?q>h@vbVCysqp)QTRfkSv)8uPik`oMyoo?R~4aM6Z^h5G!Sp4E33u3$gs zZYc2Eu2W7Z_YW2MHldEvp9Pm*=BjSmodK82$zEYG!_laz?-C6nE(&|CoGcPg#iJs+ z$4MO7gWI;hYq-5xhF*37bRe^`m|d3{;H(>C=ett&`Q+{F))RQ0`z61`6dfaGj{O@J3K5@jPv%d=ih7 zsFaVx$la=xHMvT*>Q>4x!uoj(0^*>O5bX?R1OH2%D!-&s8T`u zPdrasDSP2@5|z>mBX?XW+gYwsD`(=aYz(yh;X28}Rif&I-<2aRUwVx!ZIzsdM@dx4 z*)Vc~N<6M)sEZ+DQRM-lrs@-T6HRZbp3F##9x8SAx*NiUc^ym)RhY(JVd~OIq(haG zt-@>ZkccYW03%x}6#RQgNU2aaD%`_&l#`d_UQPFs+=#(SxnFyS=@+naowBPh z;uqsq4wd@E&C=*{+@8_pxIBAMtuI^Tm*>MI*{sqQBn zq8l#fjEYh=8rIl zzi^23TE&DTE0yeeE@^|`-RB3diFRQS?N}4p{7&Zls@Uy@uoHf4BFo#u$Q@^S3cI~g z%d(xeDlVqa3TOHZxF*yyc{*oWkKbndRQ&ivwoihQ6WI3X-KzbIR^S1l+W(Jy%}KWZ zpQigx-o&G8>j!hrC)ocB)~i!&^|jO|*n?lm>yL6FKLCG?ujJI|@F5P-4Wq-PY}8;f zyaMJEX!;Kw?ST`uH^-G*KTPp`hDi>0#y%tg)k7)6S>}DLfHk&U-X1HKwB|DJ2 zpj=r~)h?@k7FN1bru9Rp%c*Q5BKB5nGa_yHc3e;Wl&^f$qUd&C2*v%az7Uf8ucvzr zeabQNBKHFMV6#U2&)P)%fmGrf*VOr{D*DXoaHK!(TW&@Ak2yp)tc0gW?__1zeJplY zOI(aI29y85d`O2>%i({*1#_Ouh36QKMo#^(RxQUQmMwpcRP9dlDjq7a)4T#BTb<@5 z4w2p(cv_=ijePoiI_yxfO<`@RCaR$tNp@tz7v~@5N50I#X&0*w@>tMPpQ-8$F(u7QLuy+M=o3%E8wb7rGc$R%}i}&WbjCd z$~Xr`?zl3xGV7IDd4bbCJ`^sIE8+4`CDL*m8Ea9Rn6j;vIvz4nE0@E_9oNbnt8lJ1 zb6>bn?uBbZ70M!?!9(r!$@8^Uat|IaQ6+c7$Q@V7wCHYRqt9e2Idk93=fm~!99$Ku zKCoV6W@;V|5L30KV`xJFcW z0aep7Z(B7-;BgaGb1015an(#-)u^6hKhT4fkFxO@6kz0zYhr%0SVN`i(BNR1Z4cJ(epu|LaE06e7l^8mmd`0CE5uIP*2{Hx&_uml z3nO=2FLTAU_GmfG@8*}>7vH}hu9fe?#i44Y<;RFDtt2FD>*N7EV4_aG2_tu0Cv&0} zqn134sv48YKf`76DqI_?Ot5vaJ6~HRui)_#Rq_&y+;Nr6(yQj&es|~Xg4aAdFo=z_ z<~b5t^SH9L6|yZJEm0v`!^j<1$YfD7`GluoAE$*&<7BubRQteYRxM3i6U*^1iJDjn zBX?XA+iS(jtjPAQi9R|MErf@n4KB*&ecwyMb#gIWCaO-Bdsv7(9bBo~+PM%9ov594 zFmlJWvryO0s!Dk%x;0!Gs;zDzpwEU2=u>d5r~*1QKtM_P+bX&pkDsWbTVdpmt4KId zbLl+11N}T)Ku^GBq6)~vfm)?*Yv(aMbfR`1g^@e19pOOD0w$e-#;7x9``{^fB!k#E zQ?Q2v4V%BMqRsL6i7I-1(^Jtz-p8B^rv1XDvNv98=Pu*+YZM3K%_`{&C41sQ67{e< zjNEZo**2yJ*H~!S$%=4|WZ)uE`_VFAjkprGedHWGaH4L`f{{C}o1NmiA@-sx!^KmF zD@7I0$=>2g%HCGc<#_Z&1ziRscU(a;YL#psyJwVN$)004e<)wEzLa!txL)po>q6BF z_9VWYtF4Z^@mPuKxC=(^xH{%vP{|J3_W@j=ZhS6WCeOkJqRIrjzt|#aTQASxK@;`z z6pWmp7muwZ)NT~w<#Z1SwIjhJzArn=9SJ_=wHt-c$DsIj6e9^{1-4Z*@4(Dj>B znR5S$#_cq*jqje((b!G{&Mke#AN7iew71qWQJ<{fhBN}oKzMLU^p5f^>NYcBB_#xRXh4F#t%!hiKAd-%O(!z5b13tF!4yf zqpyqMbu5&??evD=f>0Tr!WoVQZ?}UAesChsWf-~RJWo}7;<~uLHJt04;i6Evp24{` z60rHc5f6aK_w_Jx0^c6JTeW}D5Ii7M``^Yl5!wEqOt<}SQ5_o4n*VQD{Fo&IrFcJXy6+o9Ape&*#Ao>v330!+LZ`J=rH}HT^uJUtVW0L*BH~5N1_5bTQL}I}grngKS$uc(j|NSr*R{#GRTp}l(h0ie@ zjSkuNBbuzX|5f~;M4R|BjBMG&|8j`*c$ID6X7|r55Ny)6*!>e+4l29xw(sQl5BQ;p z9RChR?l{M>wr}%1f2Uxcw`34)nBpC0vDx;WT+hZ2Pvm+AjGVx=N6%JmUo-&^2-Wtl z^%bpb`&Xp95AnDotJNI45MM6oTTh<@Yt?Be^}VS(5NA~!T6=MH`?GwtqPqPV9HJY# z{WOtyCR;3K`ikYMxl7>NVIr*N@HV(!PA&^;7>>qG{eWn#ko1bHVzk%H(Vi66<1rGQ zWi5%}+UsIJah>iB86I(`DzhpLX2@1EI?;mFq3$&c`8i8}cqjNEaZY}vOu*S994 zy(6Amo9{C{WYo^V9%i{)InIMfEza(~j+ zVu@0<74l|0RH8!8gpoV0kgfQW+41JncfrM*a)J&#E`O;j zXyU?(2ZXwUcB=0{C9k0EGdk59XQNIi_YW0w+P$-Xz%q7fu)Zz7dd9w(S<9^)D)L8V z8~@NdAP%ctka1ir`gP|C8kTzhY?R%3MXi>vU5%`8U87p_0FStCPQxjb-WA;qef;zZORB zBJT6We#7{`AI|-E;fheX-?laPEF1f*e*lk$$ow~94naQziStX3H|yXph;Kf}p? z6)p;u{GEm+UnFFm`>)_35f$(fjNEYrOlbOkzNo)uxbrT-Eq@0Fv2h0YVbA=UedceA zM?>U&YZ$rXyib(8_w&0@+A{gHaNto(obmjI zl1BU`;ly7I*MmxY%QIf&V)1?<9u1NAbue4QH(CUnj zlChosc03p&@3+FpUBi2^oHd90pNI4Q1YD4|@E#>&^Zpnf43YOoVdReUK23IbHr2BW z;hFw?pFZD>*)@2+8_6Ix&V09XtCK#Sk>&ZD<1rC6@cO2wfjLqGmE0=!(eqp-BQA&- z_P<}a686TcPQ19gTPr0PdD)JzCmt734ZFk09e0GSOf?K2V=Am>*P72FUKy@}I$RK{3R+HuQ8G5~m*c?@dA|%s z?l|u=r58k{%3P4kuUcKJ8ZK~eIRE#+g`x7lu$2qMld^SiHy#vG2Y1299oND1h7MMj zFUYW+lm}NEDtInj1<%4|p{k(eHQ;J9C0hf};2{w;@Dz;PaSb%?0`TV{?1jRt-GUbi z(;39ZStzttK=g=?NJti0J=8G;4~eLNi7;}<70_5KvQM#zYp8|^EDD#v5pY$gCa`0x zR?y7I_JBk2h=>X}7)I{60%piQz;~r}HiE%$4Gh3_p=zMz^@3PVwh9V(Ohgr|f{{C} zg2q!ItYX$~7dM3Se;r&AD*r9-4)APj=C8%0Au_)KM(#NClhygpo|h`E(ryfWH=Ozh z;F3_OZ~62er#?zY7FhNFZ{h(F+5b9>+;R5DNcPuiw7(io`zvrQsI<>-)%Dlfe7}T8 zLgf1e7&(D&kLUB%BmUx1Vh;%Qi2oG+_)2=uoQ@N!J0VxgYPx&F?!gO=Js8BsS#WIA zLU%k9%V~DSV<9SUXBgR1p5WX=HcENoMFbBBrMy4;z78Q@F4;WYmrEuOmGb8g<$5yt z(pvVgtp3nk8CI{;^6G~=cWBMkoLjT!YP}++W=Pr#4~{obioV)WZ=mEkL^r&>Fhx(^ zSiOD-W<;JQYM<6C;c7WaEnLiSG-m44xu59q+uf^FddHsS%H=7*KOiOBh3-*k6%A7OpdWw$+0yK<_n{zm7} zF#I=NctBcXa*PZMS&-OJE#;y{h8;OXH;fFUqLhuMu^eVWCa4C5rEra$L>3NaI2s@I zv0~xDqP8t!34TtzOpqJ7+x%Y0A_*J{*1`3l@;f;;6!6ng7E)cZ z8p4lFWVr$(cbw%Zs)0Jr+##?^v(G3iEQ5pBPX!!(X&`oXTQKUB*X^R@M^%LVd}dZT!>CgW)O zzwxcHYWh!eh;C^5BU#2q&mY%|av)Cz)$>O)2y8BL(pdN#tCL2D+{8Vi$!Z28@PiWV zVKW%nvWM3M<4K=GX#4IJauau(-2=ke-4`wgmEHIz?oN*P!VgX4xEDt5ILEO~+-;uw z!+FlaC86?cZsP9b`aJybM6S<4R ziA%JU6hHYiDW1BqY*+}hVwuX0aIKug7G^LUjhFgVaj7t_D9b{&!;en1kZoXO%R=UH zi1fP040*{gRxyL`(^*8=Qr+VF6u2%_zGufT9maC7SB)p)F%Vf_1|xTz^*OOiaIvZx z%)c|7`M1Nhp)xNvvUKNRv;Q_c4kG*OVdMn%J$k+x8$|2yfKY3Ue+P~YA5C{`7`3d- zzR;v^*Y|Z;uuiqL+~$^j5-B>Y)^;4@!2kKmLX87o;Se6N43opn^cl&!2^RAI?4 zF4ZdK!Szx3wQ21)aPh4^@ibgCCx3+>G8~Pdy74Z(Ah9gBi|8Id=g5g1 zr#A;|>#hacMAo@0>ZCUW4+Y~H1U4{J$=+8CfpVAX-j-xH6SRBA7(75C>my-gt7mNP z3!!?3&|Xl_ctXfG>1ucTjc7_s3p$n+C2&+d8m=oZEeMS}m8BnG??^SxExz=HqZxsdi&rUX^Mzva!tOV|YA734W9#cY)c=)oai^ z9}TPdaX7h;;Kd|b&F;<#Cm}K0XnuePMr8SWFtTMd-|>Y|MkBP=2BYzSP*I5Wn+Jqi zlYa?bc*t@_QLsz-ua8Le(=%ICYx))ZZT3PP(rIt?qnuap*?`aXcFVKRcDNq(iT3o6 zf7~0zr7Z{@EB1LTR%|^YYpqu7b2&t!$EA1ye8qDdZ9Exr%I4@xwvgJ5JCoH{}G=Md>F)8*qnHoIjONZ>3|gv&u?H~zSfljA&o zXd=feVdRc;9DCfy=K1))apC8c;+X%KG{6D)>Rx${t4g8swV#! zhwy0f?Y|l}hTZ;RV@^rm-uN}R=<+mBjs9P7nVh^8{=jfFO3bHz;^g%2_)<8@U&O2FygF*n82ivk zZsunj&z*RDM7BQ%BU{GvXd91n>o z!KECz3(RKgSOI#?<%eN87l)I4Azo49lyg7}%W0LPZ9MDn7>TS8!N`{JRD2$iDiUZtUx15BwVqa!j-HZbKA*>f zBFgZy968Z^QoJuaN2@{7sPl9bG_AJn2Jwa(Jk$QV3IqDDr-$O#(pXep{I2~+Zb=-`FF5hs?6 zS8k3Cm*dee9n@xI>{zYM!8{YI2OWvWLKNL$967NErDr#jqs)^!&-vkWmhci1J5Q_G zLQBdvlQnoyL|#|J$d;Mpd?A#X2z6~*W-{TFY^lFI;Fxef$qEuU;eH&hDb-Yr5AJBD zqGe>6%g6ATh$8$bM@}@C6bIbd@e(At%#XwQeFU#1(PiGyVuo=hXS>Z0@Zg9Qn5PFzIZT1+3m%V6FX3Pb~A;ip455z!wJpe zH6(VPU0V2yo|SDV=iyNinLQguwhZM>z7Wb#guXT{LmBP5PkjTcMc{0E9b8Uohuf}& z0vpL#rgAMF4pDj=IC7$?q&U`2li4Tv$^+r7eiJVv(N~PkFSJHs=4Cs}*YUWB^!^`= zY&pwUI7E8gWy?mr%n{GHbNC92EAT9T39b(HEN}IER8oGnE?&UnBkJOhFmi$}Jlcio zIKq59AUZk1zB$LX=+W*L?y-Nc5_e?~>5s4?6|39qj0Z!M-3}Z%vD>6)GE;c!Nv-D0 za6(VRYe;N0twvZqE89>`#-k!KyBtQg3}vY=gfbMNuQnKp2ZV}3yuRcCp=|9@_-!0n z&L|4@R(dVv-KbBkRfhU%x-H(!_{18tv%A*!Sy1FU0v=!I%|CI_FFIuQc3Dn zwQs=nauQkiJj2nrsqY^xhK8ZD*O8#rvhKq}BpTbj966Ec6cX0CQydk&A4$o{i1vMi*s@@F_idZW!khfG#hvIDsb%9S-@tHFVC z|4>o?u<*PCf)z8DL9}CrwH33>Q!(zeE%TU#2TqjFbQrng@|ow5PjopWQ(_X*mOaOX zOXe83KGe=~gr{Uws+LR^;lUDRas-UrahYuAk_qeOynYUUSsN~vDqJP1SdQ@(i;=J; znL#{cqGSeO>bYlmb8_|R&5%Prw@xe2ZiRW3()$|atxC6ycSaEVg64n|IpipPpp zEsDh)?E#@Cse62fF%^Yaw*^JTCuD zTY~eWF^TO9%C^^8IaKTw5>$Cuwo<|)A?j|8pzF2cdU|$=Uh-R5sI#~HR^MH?g8iJk zA(6+nZ$LGpnSS&9Gfd@w!WsQv=`4JK;b?Tok0V4h$%CpbDZhaqlxP$8!N`_P+{+=-8v*3U z5o~t<$^r@O|1ZPkpt2kPID(Vo7x6k0aPTZ+CDo&)YDFcFgkjS!{kB z!O8VJ{P0As=fcPdTzm9v)%Hab@PJTl|9W51%CSac`1U+-F@AWWe_RM7TmG?*L!>tk%oK}itz-t{pJyQjP6nTa z3qxgm4qq!elCXLI6dnYT_uFCQj`KcOEw5W~|EqBBe-0Oi%Kbd!I)Rpm&Hod4AVmHj zgOL;X_h|ZRZV(N`147LWZ}Lq<&JCBQd-q`E>9u@Oe>7(P8&R`zs;xeWj|!WMszFH-h+fev0`^V@O z>GKQuz0nuM&!5H5%i`x1{!^cjFZC6N`g1Gu?87M=&fT!Ez75Zt=gcP~{&&6EYBg7> z<=K~%Hq_@i|BV&dzBTL}mJRj!?my0#*!Nl3G3whp|Ga-adpbGam&p$dmMgUl_3fPh zRxV#+H;XcZ*$NA1Lw#ZEf2p=QBVR1qkdRhxU0-fcrsYnY9dIz$7yTo?@;qjRMiFA^hSd0`Qg!(|(m7mk*{i{M@O%I2QC3qcci( zt_xW<*qG&ZuBlvS@h3Niy>hwEw~)%bhB$<$c@++3|25!Sg(KO&AGy^|JlDn(D%`Ld z|InLdr|nwyd0TE;JGS^2`^qJD7S^Kg@=4!mVCaBNGogQJZ`&4!Ek>UPVux(`@37CQ zN2b~8-;vMiQy%7QRfRG;`3J<;39s3_XS1H@fAv=XK{dyg?4{_lf*W#$<${pqg&W!5 zM6Pv{{Qao>y;=U=B7Z+7e{Yq)x5?j+%ir7iZ?14Q`{h1WIEVe+^1`|NujjG9p35dY z%a}gI{vgnpgpz}dsS*+eGp1jsYfPirEkf3(^v_cNkmb-0J35A+0xO3~yo-v@Q12O? zV8qW-H)0!Z0QX6Tqb9iDLlz=G)n3d z8qZ;HDaiw?yD)#k4@_Kr{Q*X{R$ss45b0fYncRGoAu5)^@`6LqGtXjqK7+t)kjk>S z!ls39ue7(s4^QNJHjLbHuA^_3sz)&#e4h}`_wjI9sC>^duCX-i*gC(D#X}%+el(1n zz_~|HSL+qg96TV@)s+W)jY?i!nVIfbFm1{D!E$YNu9~kdXw1IxZ>-c|-8w~AKbTJl z@(9t$owT3C>SjD@VLvWg>RVl|@OPUXmt`*Z)sC79F5?i1Q$g#?GTtkjwf;rHO4ysN zRI=+;LDM^Me{KC>P91n%Y8kJ}vFGBlMRn*4Qaf~MXkbOI(mZl(;dBR+S+sEay!^dW z{@%rZ;f2sG>_5XM0BM@a@r3Y$9PeErQLu&3Q|Uf_*1QkhR~{-En;|{MQfbF}$n!q5 zj7S@~9e($yZ^4z{JP*4w2r9NWTy5WPHa%(KFCud^-k#xgwQu$9?D|-nYSnAo4yB zM(#N8_I+q4_osw&el-XdFCuRXT@L0GO%t;wa4aq%>|CChFY@|zRtk9r&Ts@Wg)M)7DJ$uTN?z*j74 zRCqs!=!Q{YB+J+s5WWC&V6}_S!zFUkSh$JdXmrTO)gzkZLDhxQ&*BFq+QX+{WXm3I z=Md?Q1@duqo86~bAlNu=vHL5y98`AWkE=U5{yBbVBF9g_$Q|c6_PDyu^Q6Oqc^=Oo z+A;LmXR-OXx|8cM_~D6MkA#sExc2DPs@;nw-~pl9{d;{yE8G3tbT5of_n!_cse$en#*F|(pl&i40Z*?s91#ayPkIy;y% z#)(0gS*zg;z{PWlqi_zx(Z`85M|WxHm(BHSzVe?E%3u#D1w0L+p{;_EEko<)5a|sl z6NQFWl*`4cp_m(3D1jr&b#OtbidoVI#qgwUeO!wNP1MH*7`fy6*jDq`jJW5KFRd)g zdjN)Jz8kKY2jC)6HFHiIG$U{G*@dum^i4bwqK>`}BX?X!GlY)vrT%f$Kt*&WUZ1PCR#8Eid7*6V>tpjNEaxY^|$haHy8a7R#koF5T>KcyOEAmO->* zg=G&mXSGo`dKGL1ZH;F^RM1v1a>o@kNhnCXkZUxllfxCW9Ign}X^v}yV&rSck_2^W zZYdr$Q6WoU8hX+p7 z$qF6_1^$mYZSZj;m!_ z^Gb}k3S-*J6X9BU46X`QD<=f?9y4=WDUafj6P5BXjNEah%wq3t^=JCo=h8Clfj;+g zdgKwov+d>#V&lxVCkLs;mA$Q)*I{1kM8*6YM((&`wwE6yW~J+6ds>(HwO%>J@C!4h z+3X!IpFKC4e9jA#PbJ4nkV!6ut)<=ZRES#I1xD_;mS##VmDo2dbN%eANo;j#j5V2X z^_&A2hT5u5YKMB_$=iB43lE;Cmos4Gj_YNbxbhngQh8!ih~D$9d>#Y)}Q%3XNqM6KKbBX?XY zv#o+f?qc+zXT$aK3|tzjUQTJRUZV7E%{+yNPt?pWVdRc$M*55BLarME(~k^ZG)-X; z8)wnf4u6TIZfj*C9y(Dg<6z{DYh|+BaY@{@HGJiWaGe|qmxSso#|Qa}mbR^tgYmG5 z8aV()?zl#_UX`n5R^}_!TBcequFYjuL?6-13}o3}R^}Gs1L2Y>z!joOChT5gt18$E zT7_ppR8T*R+;IiXF>B}4&UNA1xfZSsRXe8!*^N7YTQwW-_=&3dAdK8`)oc@0t(xQ4 zL5DS-2g1ekO}Io<@q|6S*|H3_hQ5xcLDbOy!N?ug&|Ir{PV0FkTs<$r#i6R_v|#Je zP9jkNTQ@J@2@rMjM;N)|x|vjDyO(9kD>GHLW1cYRPUVdRc$Vw-`X+EBJw zTv3nZ^#Y1Rl;w4RiWN`e40ZfzV*0~c9Gkgy0KY&gMYC@6=6TV?AmO;$RDCv z+1S~f?Nxms^_Y#lEBJehd<*?OssCxTWqp=?`5|oYzyqj<8yG6q^300Zn>SS+DEYq} z%n#<+6R(YJ?l#oPDOPKhp+2?;nf!1SfsPtGg`#gGWCwC=GxN;KVs;h#&&i=i|2a#} zwKv`PMPhHd3G#QM{GB9!C(GX{@^`BIohE;$%ikIN7v9V6HQ&=uIjT7Qf*kc%AyKfs z?Dk7{FT2s%%BpJgEseON9>NH~UP*O3>S6rMX`H}~O}*LCn1EdS(nNux zmmPc49K_vzG(9p^f>nYa6_z9*dTyWz4>`8GH6PUQS9JOm==cfiOAoO|?gH4cd8-~pi) zSo`=UA{SV{Nq5hhE!Ji$+9>dM7C&Z8PL&0JSv`tN>phNf;IF>5R^!0S9HJY>fsrg@ zqe*OaG|Gk5B<3&(Y+`cKSs2Z5G&TI5e!g;R1C86?cZdK>xx{M#5 z$aN7$PT<<3XREd^nt%s{YWpwxwj$Z~Pfqu`>f~d^w+@_})qMdLtW$0E4t}{|nC8Qpgb&D&NvOdi{4pV9Mm>0m{H6=L;jt6lWg(2* zd9CEw_lx@b)qNskC3{}DR?dd2LhVDLS}}9CedSGf>_n}c4kLG5E883An!V?vA)fb# zi|4&?nW*A<3-}z1k$kW5&vr3vHC>7)LsZi{VdRdhXf!tTG|HxXyk2cWC9*HQ6pnvE98?QIw{dq_2v6Ep$3b||M0M;BBX?XK)5L30nS7O5Nc6~~F}fDR zMUscBLKR8qy2s4j*2+pecA{4LVC0T#WlAN-Pbv2XmLCaM%7@{aP?ZvTrB=_}*2&d) z&d7*v5A6F88_lx<~v4G)>9jIYAT9aqMdwF}CW zcf|e@E|ovS)uBq|%s{Cm)xg%ypYR-r+W7;F+;QzpUdMN2UzsnmmjKM=@PcE57d!JA z#Ku|dpqsLrv#gf5t&%PAz=Bl@QSAYt9&Y%Q@69XuaKkAnKiqJV ze7imabR&C1QwAV;dhN+%JcpDxj(PP$gBy#~EQgKP`-XwxrF zzp*U-G>ba$(Z^5VB^{G5vEEl=J3+p;KB|&iIaJASa4_HU@@s46jjZiva~mEtQ3$ud z$X2tt$rnO38zIM_X0w(@ktp2uThugNxhItSb6UsvEej}6tiOgUOSP%P{B4RSYFX8j zc&J2${z4G@+HvlFk>ZesBU?_j1&2uVh_+8LTRQ}EX1=!CrI={L6+V~fgc{#mEL`8^b_)(T7xRjp8Sb0lghw2X&J zRA`YScflM!->yS%hJA-5U&~~SDg4H8?ytuSN}R%5J|bf}Rg0YM8T=!7%tR4<7)G{i z>S|vIWm7_m8`GxR-d|@%H`!NKB7b5ZLSb9CuFRVs1AKxNCa|qO2G^EqREHx|xFc6v zq>tjU5=HtjjBJTibTJQwDUpgxR2~qjm!1KyRAeGi6l~*_|D=3X@&seIp!fzXvyVg7 z?UW|{s-(4b(J)sfXRrXVMT{)Ax+*!9LnOAy6xV-~R*0)onP~4OqbVK?Ga(aI7bOpX zYvm-fuoJ`4FG?QR%4ZBpd*eyk2D2|7B++2@f{`tQ>E#gVt?wo`dyhjAt5`6Bou?lz z2~`mXA&Stlv?YixZGA#`8Hf3Cu4;#G8~PK`uxa3dR?^jMtR6c)Xl8>@kod^@imT| zNMU;YU=m9_Y1RA}79@7+SX}-Yub^|)Y;(C&OD>x!*`)pn4~a8U?Mh0xOxq zQ*WMm#%kk?a6V7PYe+Pcg~RaKOv<*ClklL3#GU{nTXu51FNCraA+Jr#PDUJSjwM&J zLIk$5I$TStn{3@meXhCWay%5G<}TyNU0^1YBMO_Ro#7?-gtK`!UP7Xm?A)5oW=^)1 z+=a(Pr1cIM*|L()_(CWv5#rjktYqwxY^A??LB6_LTjspXsuAcXFTw?-`pNdm3RKxx z6Uy^=JVf<9$C10hRAw~OZ=QvQv&>r>%Xi z%iF_weH&g!;^5N4UhKqdds&YMMkIJGjBMFU)fYn9i;&r-WiR8Fl~LvovorDGY)op?Y*{e6xjcY(poRQV@4%&)_leG)Gu(P8$WFx$+` zwwPbwkr65WDU57c%ujqFl*I_4ZGsk4URfK+uG1`Lt7X9!GlxNJoJo2Zi;?MA7BdqM zh^W759JyO8M&#c-5se{caX7O_;e~9E#Tc2{7IQcr8Ij^cU}Vc;4)TRi79)hVX<5uj z*7oxH!`v6MN(2rt7sAD)4lph54v9=GV_ApCLR8%lNA3b+nZi>~@|4@d`MedcA< z+#S-BvhCz%JSZZuH^Ru4om}q=q3lG+Ytyom5hs{ebDw5~2y~NQ!L_8iNsGHfJQ2%G zevXGi)Z7ysxeLr>a+GU>*g@BWhJk}nv)R9 zN`$yJEh`y$l6C3!=y3HN3G+eqk`|MR$iy;}!|+&$s(T|x?gBHJ!c$LjlTtXJYw#L| zPbPX&wwX$z>_o_G)3TEhmYaN>6(Vpl`50VFs++W!On4%enS2xv zg{Zmz;mBQJCX=Jglf2}Sa5jH{myqZsEhZB!C)-NChsQ*u^*b=KWhLM8g-})^#I#B5*P(z_o0{WWp1%%w!cF z3Q=?Y9Jve3WO9^wl9yZ?&gKTZghVfCF_~yN*;evFJSHNoAApf9D|x>!gt8JLu1(EK z^2XC{KV*dnw36?`wQPr#M2T2d@?AU>qUIjp$X#J2Eb}BQ`DZwrui_wCmZneNGH^lQ%GkjkCxKwtSATu-X6Y}cZ-HIlLBmA~NO z5ViMbj@$*tGQB}%v$Gq{vi(WHtS(>>8)pdJZFp9jdD+%7ACHSj@0KvKWi7LPA(XWU zk!@PmGUBvsNq<5499D=xTR97^CDm41+&JcmSe9}I9tu%&r*h;ju$0MB=FQX2u#?Ne z*?bpXLgJv(;_|GPlWisMz+)oPdJ&9lS;<>{A(WK}akarpJRnpQV!JpG2(=mD4I$f7 zu?=W{IijZrKgWFbnc|;f8kNhJszU?X-S0;jotPmy-K@Tt?*q7UsKoaCE3+@`L^}cQ z8Eq+-uh#N?;-7ofANMwPoRfdtD?`&ZrgLl)_yb?{scizk#~~8Sp5iXFV?@%1sl5U- zBF|B^|LjX}m7Js&o?q!g&&>B^c)zu<4jMBzN?YVmvR+1+snh* zUJ6%*dPdLWY?~R_j4#n6xMoDpW=3M z8xw*2qh216)_EMW!25jVqGo~jaEQcNAiZWWD$3Ys5_iBPSWV(HaEY8e7OrPF8Xfhq z+%`B*@~CQm;7{U5B|5~%VPwl8KIRLd973oj$RXYx5(RUJ%SNZ_5Hn88Rci|dvz6>X zj(tIM!OCKGm43bUMV3%I))9wr$5@>!4ziC_M;4K(u|rpTqrYaNMT7h!@qaWU%7}*80=BuD%!sR`TC1>6GOSv!`9hvWgqgJE3oGHexF?EsYowX4 zWe|OM#6*p}1x8NLh{q_QrV(LN9uR81GKwdXsMPj%uDQp^PrV%@FBnGiMbyUhq2gv1 zSD;>RggK(>wdI#o`M6?CC%wr@TcW)l51T03j|i^2;3LdCB-W$p_{NIpp>RDsh!>XF z<4%Qp-0=C^9q-$C{6t~g40+-IGCV zoR!@%-s060wz}c&c*sPt?!u9~VU4%INq$l%JSSWSXW>O9cES_eql0GdwtJm{$4(T) zsW7tTUMF#g^t#~oZso-6-{^psvj77-;AL=`s2%W>Hi;*ezOA2k;o%eY^9~p}K|da? zOLaeCYaS3C?0&NwGCm)^6o*K!3+|Yto>(I=1T^=w z;66BuL2R61`n0wQC{_SlL(}mDh#Hy#BPVFcqm8LfDD2GxqJy1qYU`__r-aM)M3@_D z4?GH&t#t|5>VC`caET&4jw5$N_nT*t-gJJ$w%!)b|9ZTj#J;yQod0Itwp*>m<0cBB z3L{%?HOL{->v-GPiiughA(~IH-~!itx4|W%n#S@rh$fc0t(#l$(22Ua2}VxPjYo@8 zT~64T2Sf+E-1O+8pSke4bi*YZF4|DIWDS?seG+DeD%qo9$-2_DI^8eufQdr= zDM#*xPPetA5>3xHY-_^l!L~J)L2R56{e*UCpqaVtTBGpDiDK9SMz&n5heM>-?Y4EP zCT9AEa1LVO1@^oB;UZDZH^IkAMYhrfPM%A|5PJpm~nm4V`XFqY6#0H_Yn#aPB{Xmy@`nJ1&&_X4bY# zeHf3LD1xhDWXq+l;t=U|xcR19Vg_#r=0O%(V0ZgATp+4hEDIJ)EOA>i_v3*RHS;wX zIYBcXZAo=DVP75)9qepl-FNFYKOBWqL3yQ}8lbk8rmb4QdGLil5VPwma7WhIaOA;E~n3mM`M?)v9 z7|Iv>`2(PaM02bjfxUADTvDnjy%9Dgm8Y%C3?3&@m*>F9mM({R>7eb3n7dNGbC6jn z?>IRh5B^ZNJg$U`LzM^qgh@iuwpQwR&_u0V4kLG5D>IvA%d?BrPMzEru9JJ=!ccXB zU!8U&Y-{8mJYb?m?uL;&u94Zzk`3?&)|@JNK3pZw!KI<91fPeTDcd@E77v-IlV@P$ zj_YJf%XTyO%;0Hc7K7M01M}hVG@|EfD`PqyD^VF!VC0S~V>)jxE!^XnaB(bx%R+Sz z{7D}xU0WYV;NcSWaVU)3aeYi`A&qLdGzQ^{P^EDw>>Ke+ZB-25krGu=fRPha;juVY z>ua&6hzEqa`CoE{E8taQ(TTTHRQS!jF9ZMYh z$b8OMHfkT4PjiUG>w3xi$h3W7JSs}rxJdFC%!WKK)FzaV!ZmUdTKGD{(fE*iPjRB; zQPtj4593EATE#;!vSk$ya)|UU*-j9fI6C;<{7u1Q=j(7isQgZj+DEU7-EIi~#*a;8 z`5!QH$621DHg9w=y=OSnyEBM(EHLadc{*oWkKbl{7yS4{ws(S&6WI3X-KzbIR^S1l z+W#kfWh>kN%jvfN(Z?3cE3!p>x0e#ERHvcT_oQwiw@L<~br(msU*oG1)$Lbvh;Hci zvlpFy$|;MNpO!i1loOYqws`r`nMEfqKjye&wPEaoFctE=Q0@N%aM7G>7A|5q8bS4z z_ednCy-8WhIMu-LemqX1xx5!fw#?;H4v{!8w0~o!$;Xx0{*INQ!CH>Lfvc(F|5!AE zch0^7*MzEyeOj$K8>%p~v()epM`vqU&4ac* zE7*g!W)STdXKhvPPVt~-T9)~2g$G7d;T(?K4dci3M*7XO(XgGR;RG+i>qxYn{Sbni z8QOlc7>|(1^ieRf>Za=ILD4VS~sa7{Lv9C&(`9B#w|B+B7>7`fwenAUWMd^IC(6KVeN zXt*FAhO0sq#Qu;!s01xZJcNfxl*EHDa>pgHpec#!(BNRX!q%#p{@mJpUoO*MTR)i7 zFDtzsE|7o2HKGcn<%3#{bVtOr?t@M{KC?(m%ec__G7cL7`6r^hFA{l1!e7G*2gKI<8Ma%at8zZkfOyUM@1PMma-fsLFT8P2v`c2$jM{jV1}d7As-0jJjtV~`}<4qqY@or zF^p_E#8JKw${~bmf*fMIkSLf#+?VcW?8o%yv#X+S%xl*HuV6{U?-MN9jenN-c=5AL z{45tgC-EPry6Pvmo*yoQ`f{!QZ}c`p)P&mbjr!P1Ze^~LEA{2% zUU%;^C>TC^p{4rNzVg6ewy&0nJ~p+gk{w(v5#PfR6Wt`m=ZnWRieXsFoiJlE=h5u* z!MO_KU+fe3IkR-o<`N9IK#2_-pp zp#J65FcxHFhlaO+=0z zx21cbb0i-(v}+jS&P5%}DZ2Xc&M5=Eh9Tn9+L&X^7|mkFhI1(&HD-+95Z!R8Vl>a$ z=qr1`tXO?zSGY({VheK_jz&m*9Cs5zl{~B(BzDFROEirgU}VcQw&f7%4H6SY^K~)& zW)@1|arG#r1o_xqdfX6e`y$i97`(TPE^L4w2q)FjWi(&2kw`&pHo14=tvrGYD)>rZO#>hLM2H_Y^z; zBHt5XwdxdFeX(m!7|53LgG0q^EnhCV9({=ac`px5>qL(6 z;O)M`QRBheI7By$2cx2tjec<}%!k!4ZiZ{*q_prshNJNzpO)f8$)l<(1~=kIC7Q+c zFtTM9AK?(`4Fz)hGzY(rvPiJG+~W6PxE@q~u3nD2VH3S^UA-Z7*7$X=l#(*r$iPa{~gRA7E zwQvH%(HN_Xm)h-D9lf{p@l2c^$C9Y{ef7iivNkIQM zdZXyH=HnO#UiGcG8V6qC5Zy2ijAR)bePaGwP)6jbp>7sz$sn+a$w_KqEW^?0sE^^! z5z!Jr*tpm0fWws2RG=@zMC9 zi5wpZBX^wR$!Y|!dA=Z==NeoRD$mo5{_i}W&&Ll>tn8cqk zb-(pkfpzO_E%l?E^TTj&J@UZFuRE4~^`j<+B8TXPiD9yqyWu9+z^qs^!-wEvIf*S? z!f^DNL99Wv@NE~l5K;409usRQDm4!*z1fTR4>AXq?Cmml~1V2C@`CGSNVm zz{r+?EanjD4GwarrAD<3o-bz61kMZ>!Zo4t9N%fF5x>p$I{f%VwufNkj7+F%>AgM{^$YW;RF_()`T2`!S8(QtpwD1pBCXJ2yXuiZ?B*|l{Clf~F$0QoX2pHKiip@Agdc(jtu>iNYJ($IT zoog1i2f)>!ax3=NY(#D|yf1!aBEx&Z$Q@^RlDb}CvAimr<$ky#RF=ga8Ad>gKllitD?8IHz@yfV;;+%}N=@goxr z1L4c7*Q6|hvD&XTavGP(sK4^L}Ej^QBVD;_l*oWmiyVK^8SrEJ*8r7$Pf zVDL`3MowA_=QA9Q54oEGCrTbwT_JcoepI4iybVUS3}ZcqNN*^RyBRq6y^}=}I1qde zt_PLh_-+PnmOqUjo5=DfVC0Uo9NW#n!Ss{iO#cF|36*JcHv>1@KgEwvWcw#Dast~P z9b63oq7`^Rs3G7i-$djPa7McCFN_kG?6omq>l|uHPL;X8`Bu!X&sE&tTi}1vD+AIR zjid2z#e&3UVksEa_~&qlZfN{tMAAm`jNHE>0!9LIMsNMd?5esm(!IT*R)OviRG zaI*d1;cWjGToo$Y<_-o)j9-ICKxF(wFmeLp9vxf_0irED*>ac z#qz5DoW7^g&sYwaGdYD;U*>%O0KFK{h)`=njhk$n~}`a>u!zuI|CR`93q8@6+J2Q27?`r&=l4 zoS%$`K;(QmjGVx^M`u^VfoKjM5NbGh#Mh|gaIo2!RChR#JMdS_MdQ=(ABF|%R9l-i zI1rm~izu~@N3irSaSuNylxKvJ(3%4>HjTX7VK`eON zOzy%DPBfD{U}VcoKEol>8y4gS2eE<~Y(L8a!UlGW?PuV!P}z=ea1cwu=KLu<1S03Z zgpoVWd2EA&SkVmLr>_d;eF}qU$DnAR<>m$lu{3P%C*olcxgQ53Cvfl4`PJ|snuZ62 z8Xm6j6|o#1_DlQ9!rK1mK}7BT!YQy|oi5X^D+@A0tvfk}h7)}yq=trN9HJYBhOt$V zwP7VgFf&#Qsla7&l3U0!9F3C3l?6$cJg~a5P{t2TG>;;TY?()%L!>t>G_EW-S-zPC z6F4Z`2$zJ)vUX)5iRVz3-cL{#!Fq?zm7+5uQ_(Zk4|)xg)p+^COdM7^u~r6;);H}Vg}#mv4{d^ zhqK|jQ27>5v)eh?tiK75fynylFmlIPpR=f3s%6<7*@|Xz2J`O^Xa2o#ZK%v|W$uL} z8wxjTSzxtPxD=0r$o@NFtpA+_L2DUiEJMRBPX!!(Y@6GAX_vCgXL;YyNqxdtXZev>ZiBmVMe*jw+dD3Mvm#=UB0SP)4@A9 zL^n(a)6DdZN#PSPS5_yv4X&4y?!q+;N8_e09+EaQuosxO;1LiV<|Y`~a+n)9M0!)h z9I+%ft7h>26BZRVv0J?V2(As4cd@{9=V7z|Lp%;5``?F=JI?+*b$MYJ1#D3WRzMGf zXvYj`pZVJuml(`kY!&}N!Xdh0pco^PHrh!J=EZ6!E8r?Q zsV$t$a5P5b+mn(kd0cgUGJ_wNXdLIj$d+-O#Uaug9^~7TPL4msVhJ1>u7oQ>0!d!TwkqRaeM;uHI@iwPfoS9=?w`HChZfD|MI0k%?E$y5Zy2z zOpIl23<=w=K^caKmi|wUwS)8YI!Dc)DhD0m{oAV`j2t>{o!^j=yJobh}tY`-B7l!k` z4lWIqck>O2SQ<9>LwFcO?kg~I0{0%RUri69X?Q@W>EW-wtxHZ1KTCId*rwW-E#~@r zGX3S~@yANJf2fcBO}56~l&R&*CG9rGmti40RaigSd97i%otZ?WQJ{@DV_|Bo%W=iw ze|`0(CW8O!pkVACCNHUUTY)l>>ffz_=PeDA6pgf{`t=xPn8ZH(-nx&Ddu5+bod4 ziy8OB<)E@VDKx-qzK^x6kK4;fE)3 z{RbF1foqS>t(w1R0v-^m`49LeBAfp$DK~$%eSmghV($UejGPKXa3 zG%!zc3a!4pEf)ZaLyZ`<*5jB2{^(nNH3|HlLnKZDDK?B|+Qv9AwS$V7hYt72&)Po%qo7|C9K z>eJuRI*HY>9sY5ATl_=Br|Hz;9Vhs5ue{@U4w2{`3)3@?(L86vII1u!mT?TiMRFTQ zhT&+0)W`A5OoA$TShbQEzz<6_jRK5pnZ_y(ksh}b#brbn!#A-|u=CDh_y)KjREEVf zaIxU+=5QT;a3asw!pI%xd8)b==i>VN;aq);f>0Tb4+9B2pMf8o$n&W%a>sd&4FfK&FAwMXGPo#IuFYW}f$w+W0TB6q2aKG+ zw?`*e!+>ZA9uR66*upmvISf3O?l3TGV5nHj_heS*vh1m7_jAzSVJTrQ<&<5*hw6uW z4w?tZZdOm5;54!|`~CYB&T&PEdo# z%%H{&(P}&()Yx&Kuer&wsrZ(nf3fILwRHT0RC>$w_VDYKEgRBDZ#tWXa>IVdA6saf!z9KQOXo9RJNB z(i?8S3`kl3my<^D7er!5jhl$Pj@KTqBNj?y6y;Ar%sX8 z4|G1GFx-WQC>pKVINJZAEJAF}B&DL-|G^w0vHhplA4al-jn>}>6JWK4x4;#0a#%Q# z;b?5g$C@LS$O^GNY=riro44Hx+q%#h_G z-+)WyB)RZ;hNICUKa3p<-gcAw@PiZG6oWQ+D>sQl*Xc`_6YGv^eUlGfd#hi4veHvLFsu>$ep9jm;skJse@+9KZI+J5y zINMh~YG8O1hv29!>T36h4^8Krm+r2 zwoGG)L!>t($mgG341bn|5;z`w3N8qh;rJs@2|VA9ADqbZtuS)Od5%5uMB%V_qr_=)r5>7&XuE{T0I`}QHNCM}8Rd7A1{Kmgv z>1MefKQ@u&ER5W7mSbPAbTEBwIMW;8noyZGzhLQR`-AxLiEMuWMowVcql2pM(#M*)75jzZoW?q z=ldkMEL6V5tsyG~oAVR!5Qv-~4KcCtCXwNo(%gI1e*@lYqPA{bi<$^InqmDObuUzIkNi6op8;ZG#5U~a5R48OHfWC zWfW?J_#7Su(PBOgBU={p2@a9o2q9mBa#haY|JN)sY<{=+e-f?_mH+rlP_A6;M)M0i z7NQD%3L|%11+kZ)T-7s_FnK6g2@@DZJ0?rp3Cx$ET>02)7>mb4RKqA3IYA8`GlLpC zM62e2Q4H5E2 zgoEGzVUYw54gU?-gUWCGMueN?|H6+=WceBxx#KLyZbUek{$4oK-+^mFW!k(E;b!|= z`0s+mlZqXM<+VU4luIiDBE&~^rnOva*q=Ju8}w+4Zh#ZA_|-q&V=hi<$E^2 zF=gjqvwj*L1CjNUVdRdpK1W^jkDn_B^X~~~{@rkGsLXF=?yC}0u+9D@cpOCbFNTp5 z*!LI#)D$6FhX;h3A~y3)L{1U+q&r1S?avL?R$q{>=GaY)a%t_}`Uj)F&9cE<%PGA2 zV!sC)8nHD()4G&ndbr=W_-cCi8i(kH>0w%v8kxS~E6>5)SQEsvaJ`)L79L|b8aH*Z z8H1UD?I_RS5fB~aDHz#ulwWd)^rnb8@}U7k_6F~>EcEQcxuit8P-u2$k!%a z3_r?3!6tZ%;fLXZP#KQDHkrWlL-@goJU<8{cbw0V-(kXtvHEwN4F`}4*&ZHKKxy~!!I z`ZCwmg@J4-KR8s(M$bgL9*~Uxd9MgjM5r|($5ik}7B#kbk~&gT!GRp28>WJZvCNIx zAPci&b&m7kQaK4OoWO82TIB9avEc1x#o745iB9q+7};`?(>X+X6N21*DONCp?GLbk z0_TMH!)2ke9p8N^mV(Xsd+`v6oL>qfcbxOs?n|+v8N7cbocAxmrJ?d}?!FXD!{+{r zco;OvsxMn=(0GMI zbi<&r?J(6aY-#>_lu2v&*pfkDbDC2Og|Q4rqpH3GziB#5LbgH8#seZ6)C?HeGN`E> zBE5lRXK{~Um?9dgIGzQGo!^!!j)hA_RmHBchbV?g%htxxcvwVj90?Nw&jg$H$ZYs^tZPWM>erTd;{18UAOym2$5Xv-!eu7Nn zGa*s19qnIA_wBC<#cFM!Co?qIpRMII+nDoKbUbp(tbT--ZA4);qS8d_FpillQfxMt z+EKdu`d+nH!8&z{tW96bmH}!#$1wt2;VU3D z0=$nybi)WRMkH-a0e8W?SbgFSxJpiH3pX+xjS=~^Y)O_pt{MbBgCCb@9G`@dE#vq& zhe&S_kYCGoa{LsF1)IGsj(-VPgvxRJYuQOm{|rAmk?F@_2P`&zb>?TK#-W_uii zXvgGdpV8*mvXdAejYmLad<2Y~z_>?8S3`kl3my<^D0q*rbmdU+)pV~2%or+Fb2YYa zOeNRH-}@dY_v`l&mKnnR*dF}rIJb$P+r`f(#m}etkJDq^yUDG}u~);gMb{(Q@{f9X zfQ|SvJUp!(H3o$G*h+3?u97SDQnp51B2PVT4pd?$*!to z2UknPV>n{s*pOad5wvMlF(!!fVcKN!qlUzsr0m|`6WS4MrChU%}-!*226I=rOj zTYu#x=W~ceFG=xHE5?qVzF{cW!R%OuaxGjhx1n6da5Qe@o>*oEwyA8uBOsc}2VrE( zR6f8V(p&b*J+aKH8N5HhqQcHfi}!EBwW0DJ-xJHs!)E{McpOCb{|`n^VBe!3sFotk z!~;Uj#wFiGq9|BP=}WhzjIOd57W;GhJUZ%PRIyIExgYT-EN>ezX%^*ZA6u|E14q#w z4$%$mW30^DaF1PJE-d%h2`-b9&caNFqfsJ18rh&r9{AkmB5!;Az(l)P03%y=F`q-E z*DT~mBi$^Y!Ga0w5vRf>p|TwRXk;SSC*g-Da(x1f+;OgBAB}YL{jPAn-vO6}%D4H^ z$VARB!b2c({#F<{fpd>uuEqh;96TV@IPjmqap2#nzQ1$LW<8trME|Sr$Zx|{SC`qo z2GQ3WdomZW8&89|Xv2d_wvX+|Y+V%p2CQkPAnRv(Ud3V&XQF_4yp3>0w6u%l_xXxW ztw!(V5Q*bNdfjHb;i_Sb8NY?elP8?IX#Q)sd`|ugk1!m4%-E5?NH|&LxVHrjk)uOazo66YWabj`Mvuc-j0q^P8qs4 zb0sWZ#JwFJU^6~V&W?r5wk+nrh0N9*q6?fyP?XUMV3^IZFh!Qx91T~@$#P*IhNH1l zpTo_@#i9&Ct#6LRgCP3LVKB1gFK_gPQ2rt`7342lg+#&p<+JJf%OpPb4CG5anHAZp z{^ZeREEQ~x=9FCB_by%3|5#)qFio=#M|qcT-PJ7f4i3=;juMg5%-pb&Pr#&DR&pC$ zDkranYZ#73i@Zx0kKUe9Zo!XE^pKliWXnTt@P$wwB2*OQAs2;2!93)Hsji{w^W}_^ zTi3@vmce#-O43!ywks42)(jtq%{c}g|iMbVgiwc3|0X7z`S zKFyM7$Lw;r=j_r9N|UK$Df9{7YAXl1jYD*SgN$orZ8*onFd3F}JOr1??HpfWI2tAO ziTsL6BXZj@9>kAKbc}Dq$d+T=?+c+EL#QXnF>VQof;q-@=}sY2qfN0(?DH0D*+tsw z>g=F?C1uhj?XiwyJgtN6dM$#Jv1xL3ILLSwFE+AE87T)D!y&rBK^Qe!@`jP@1yf@g zNiSS2w~@?eI2to`@tGbY0ozY@!vi4t$wC;}@{=8XA(Wp8Ed}|>$dD+QpZqi3*Fq=q zRZVSRF#1rBK86gkOxiJq9OdaH(Ll@s<8f(fb@<4DZ`GBL6gWf|_(()aBXPq+u7)YG zJmf04Qf?1eLN;-zv)pGF>KxwOMUj`nmA78?&uM5d|L;UN$ER$h6?LmZ+DJS3t;rEa*$ zUtwA-7kL@3mD@$0W;hxzb@51~7QXExFXD$M`pEMzvgISs`9dfk5jqO;kq1MfU_Nqg zx;`=~TG#Lwu(*8_F};Xu4sBWL>IUSBSmFyn8=wh zDVB+x2A9fhB8wP~MvJ^X9FN}ikdyJF6Fp=(jBI(xQeOz=Awoq#9Mz(zB zGrkbYXN0bTeCCRfD45S2l!5W$wi-T$$3s-ZM`7fSt6>MV={`{rkB2Mb$8epf zirASeV)&eFRXl>nL{!BOVB`c}ikJ$gd)Umec+Rd8jftcwd6t}JZkufU@q zGXFjpIe~ePCa>lM(Jnk7)SNKUHxW4}T$Jv!?PK|qWqjlGOE+Ay;Uc-^`J*fg%%_}k ztNT9O9zCDLgVMT@V@7z`x7=z*c!)zJ&Isu>k8zExji&Kem<)MtsJ%&EhRfvSv+y*- z(I}A*w>KiUE#pP}$VAI{9!9n-<2hdlWf?*}L6-4gNEGav=aDqhNF9p zc)>S07u$VK#$zG6&vF>qa-XHX5Xyao!h+mqw~#29`y89@<0E6DN6`4kS>p4`hglNs zm{$(-ysE(-V&XArdUcE|SNj%QjVo7ih(uFK@pj5snYCdd_rP3O7IHUSCbxy$%5XGF zCK~Z$5uDX&$3{!GtOf98Mq`=mg76NCUX50 zet06+zl4!H&UI|ZRyW_%FAL^-3WLBVDk|URj;)EDPsBqYay|}5PT<_5nX7p~GzSj| zbphiFU-3p!uzBFNbZ>M_9vCXt@`IIfU#?osmsV*vJ5GT`>r`Cb_eEPXHmw&q#)A`m zMWn`qWgH@LJV>v5Of`}>ri3Aw8moU);A%P9Eo2#v#*BQ?)=0o!U6k%&S^vtuE-i$%CWA3z>78^1c3D|tU2D4Hp^8GIux#N7#RJR(F zINvLr^WKfdx!51sk%Z0rZg>zx-WS5i3A}qWcQqe~M&SXWRvVx46|h`w%8hv)(W+F|&57=H9um_W;qUWNAF{bkdtzG}%7;H3 zU&7k=z3nli69Ns11u35UpiM!0v9PgqqEwYKpihvX8 zw8L5!ds>U=dy%>D&@|mTT;;F6wO6k4GKc5_R}sV{eer6m%TZ!1Lz%-MutCplD5DvU zMofJ=zx88qCy#$_^C`2L`0F3_m`R?T^C99cO!ncC*#R_~YS>{}`?dmGRlewj9al_#=1>MAm-* zBPX!#(bUykAXVuP}jjT#H4aEPuL3mRz~?cyMq4Xa)357)^_XkkZ&qjA#sc2q+}^2p~lmlFHn zMy$V6aTFLKNW5Bru~%?A&0h;En$kKXo>7xAMLJ>+>9+47L*I7E7L!VIzej#td!d%O3e zXQ9RSHVgurovD0_&SB?Zvpx@xfynw?7`fxD&rz2VS}=cNIP=Tk+EAGnk3_ihu-QKj zkAukmF)(rh`yNeS%?+Y;ctEJR;Xz;Xl5@l3={|oon?Dl4KXH`&^wkGo1v}+e_x+|p zbUXe3sXG%mIf}CXFOY0@bKfE1Mvwp!0w^zv9D#5{I0Zq%GTEJEXPBK?W@baeDJY0I z2;y=Gf{KDDiU-IgatVTY@ z>Q(+-gT6|SzKr=#*015XRPp|(0V_1EFh!KKjh=t=1)_@0%Uog<6q|X`Y3j;?QE+B7 zP*_&MnaU)F!_mIWa;Fy@`Avg_p4dfa5*`V$=!}Pzt)er|S3(sXF}i|^&P%>yTsoUK z(k(hOc+oj=AV0wNmDdY>`O1L4E^-*l>TndBeLeSMMW-1LuN9p(gdK|`2m6i#Rb>w3 z5~HBXM0oV>8|7sH#$%P2Dx5F3pUE*DjZH(m9?0r~T~{i22*kQlf|aehQt*{fbw!M) zpt`bONEFP>d?($N*6F;i$gdtb9#y%Cb!Rxr%02;QrTI-JZm_hG>!>Q<^Uc4iDmQS6 zQBYMPIIRyDMZGtQ%2O~LtEl`6PM5o={Fv!zXd2>e`DPF7n(|9L0%A>h1Xi|c%EP`A zs-}q16jW2L4~c@+l%3M8DP!%AU(Y^&c*@9!ealEMd(La<52~;zF#|6LjH(?|xkO^^ zNO70vI8MQ+7$1Z=SQTSOI7#k`u{qPxE5>;7EftPRHoH`95om?LVhku-z)Yb+@2jI^k~3a5rjU3|6P*$tchKkzV!>|cSEGiSe^x-Y(F{+oU_ znEysh0&~(-{u>%k3m9Fo$H4k{D8w-^7gkOf10HTb8459(ct|Ki@kQUkEDgn4=^Bcu ze9bBseW}>7VwHnOuXE@%d>>4XRy=rYw0mvG`3@pwCqBj{6758Kvr7af)^}rC`6LX+ znpVz)ljUSv>}NWm9K=VC1NB6)sl~fM8PgjzL@TP zwVCoI2gxhoKV}`m+>mq3HTLsdx)Kk|Lu=r7`!Y~9ta6h1}dTf5d@KhDw#~7GxW|0w>JT_&)Vs2gzAXQH`;u4AVB*k@cMn!eq zuqgY&RIF067o011DS1EB(M!oRe&rL7-Zm(E;H?vj$ZoK*RYX3_CDOB_@-c>Z#thyA zEFx@fw|H0Kyij?^A7hC3!KPlpV<1v5!OEFak3Gf^&zeF0>TvR3f^$P9Z$8El?}ttQ zi+CJF`d@&R6X<))`pP(nsl!7;EpV*w+mR>=W*q*Ou5lPsU|;Ie?80-b16ZMQjatNZ#$1R}u%?T(m;`2}oFI$;WQo#vG&-d{ zU?WGis;({Gfyt0RumUSvCE^Xie4YK<+O|A%@U+4C#l{A0ZM`=a&u53FgT>CIA52dA z!2=s7NL|Pj8xxy14=ldhh4Wo7Vtl8>?w#|~(W1OH-ZpU}m=7ywPI+qlZihwsxNy=R zgL6VXlf_!39>0A~e-v+@Nc$tOasq9SIa^KpVk+>EP}Ba?zQsvS`*)-}?N4rgGpDDp zvS2(*bR|4soujR>*wX-r(7I$~+RWo{0+;)aAms!u+9r=Y1}i{TwDS92Wrg*}lH9GeYZ#&3`5y z2$BCZSUG{e$KDsm_$y6iCB}!YB*C)sKs8Uqfu#yD@_%5n8mIW6%35z4Dfq2#~lU0}L@qH3Y72i^iPn9i zvRn@1u`0`@aK4;`i{~&My|Sp6m1teC>&hS=09PZ}v7I$SY!8q>Nfef_!adRKq0np;uL_4i7}$GKu+T}g3k zWv9%AQBK~03CS*xE3ucpS92xV(YN5#IY}4)%ycwbjfs5ev`JE)tS_@)6U^Sg8(w22 z`BzK%HCS1urn6M2v3J9;?_S8{yvmi*GpJL<>lGw_^VmH}gZE zCsf$tu9y~nbMjEgx4@exBHs*FmbrOPD>s6*s{BLeMvj^Z%LYm%_Ka3Ec(m$)YZX;E zk9rQ`;!!*m#bxQb)AsIxzP{WlZH2s#MKTQ-}>DXMW>^c`KQCan-u-r3K+i7LhU zq(gMtm`*N)Sy{#9d^k();&Lj}(TFrA@R>xylI4wGXN1aFJctpG-kv{h!CNPiz6n;&ob+_H((I)Dayadm;H*$-i#sG{ z4{YKu;1LjsKL;x(5cinnqbXV#GBGW9NGPMwW=6L)bZrlS#w83nar zUm1nH@pg&DWKUSxDki&giA;=w#dtM~CD16Wgfl{AY#Id@=^EZTk#s+-oH=R3C|I6-;PM5(4F#%LSMe8kkg;o z`xEN|R+yaQYy^#h3|gC(97f@fzAThc_yd<16-GgH+E`KOxEN(+8HKS-0<%+2+{J&h zRB1${QIN1?yUHl6jkilIChz)kSEuoR1^3jR?2{`BPR1VyXS_Y0>yAR1-N9gsdxPgT z+S#q3fofsU!8mRdl1Oihw@xJeK3LhBHqs^?GYU@H%fe}Q!C9f6(WX&IB7Q6$0g?F8 zu(C<~;s{uN;GzA3P*fsrjvMwUUnE_;k16b*{+Q*}H+F+jnOVMh`uU zHI}cy!`31aqAllXmxX5{v25z>KpTPO6f; z%|Rwsk`!-Pj%AFDD)L^Kl2t|C1E|M? zX>dxYoW+JFEqt5x$$0Zb)+fQr39LP4b7cs`B;X;Tt|8tGGz43xyXrW#yTW!96_}}K zUj$vI$)QR-{Juf%gHmavQ6zuxq zr|B+9%;ifGe7kxzUuADDuI9T3sx|i2Catb)aw+O~oFlKX#C6p{T%u?N8H-UH#g6*2 zA&WckI%7R9F$(HSgo<^YJy;NtQb{oC%wiaoRc98#S##1ZE@V0yp@w){NkT{Ldb2AY z2(jMm3@cmpW+z_>Rd2-D3aU5jhD5>Y%|q$do5}e?xzf+;OwRy&JSM&l`U%z*?6S%^ z?7ZK0CPHH;7LQCDxQ^2Dao@x%>v9^GNGvTWE@4d3`fgN|Yhf-{Mfob6EGOFHMNCHn zBj0wWg>To9FXPP<>&TU`vQHZ=S|@Do zKgWY0a(@U`&YXMfZD(5A4EAl81+#w}P7am5`L;8yBR2mx@j!_DUx$?w_wktho0AMPK+?gl44HI!J?=6k%~nZL$)%JK@^O%W}Au%~M)#_LjdgNLqj z+%xOc;_VY_$8O$$WF$J242AmlxbMY=L zS1)YxpT?sgl0OGl&Yb+bJ)5hX3)V>gj&S<7!P%kG-+VdaDo z;9&xkj}X&{hlKJGJNkA+`iOs}>m#POKKhPkjhV~>L>9t?3DRAA+Vao}MNl)n%Yi-&~r7q9wG zZ_-~Jm+rpJj_yje+Fi*n*IdOd@VIpjx<<}*8+DjAZ_2Q>8O>ogZt@*i%5Hp*ON<7) zF}_L5m}`Cw^Rnier{Fv}kr#i$bTlS%Gk7y{yQusMZ<$zBehDjEMdcALk)FAjD(2*7 zwhYeWE)Vt;W0=HnxJjF{Sf0}3w`s41w@;+~&i_5yGnJJ{ApZVv;@jaFcRmzqd#ySuCdVFwlqOGc&5LJnup?>lmoGw935>&X2A_xXM5vg7pSlG;xl##y+0aqjjIY8Jsp?9Yy3Z-}I{@@(V7JSVU61H#*(yzEMox zfazGp8}qfXHI{8W!=rp86)7Z@DXq@oFD3$zmc(! zY4*h)1qb4>5J$m&uyVpE@Gu3+SBNRaLqc7S{LHtQ$;*+>boXm_oH&px*9#@xPJ9j? zw$3p(g6o*Au(ip|VKhGLJFt||_zagA4Mt;pv)e|Qxe4ZFO*G$w^W;Qc{4&$gn8bI>Q}4iIAW|O-D<@F*nDv!$5L1MQ zgfb52`VL=d9R8iIaZnqq3T4*@tApTy>#Q@u8?01x+N|Vo3j6zxB;^$L;S!_4DYQ0N zwfb)qmVTIzHI?+i33DPY9?NtzIK~F6Ru}BLQp7_b)|C~ovQ<}lxI}v1!PsEcN}ECc zN)}e2iMSk24wbxXgH@{|HvdcUK#2SYVdc#EJ2qIgQfG{Thr-9e18{<hAE1h$QHqLY1716h2@gPNv zu2*r!e|drEk@)2WqMNdp;(ud(Y<5xhFzTS}pEglCTueLbGv@Z?cvUWD9WIgRV$z$? zwgZ!66uI}o_+={8_X@X!v*{c`#dVpEMy~OGzW54u&@O!M#RDW3zW2b&R^i*&S3(s& zF&2XgUt35N>`w2`)4kK%Ue1;K*cT?^Z_YS@bpf+%&S5x$pB<1vYh&C|oqBy)sOpsG z5{cC*#oN9eqSHpz`7F%Jsyd&6v*g5GJelceMC4}&BrMskdOPU3c)P@6ayG1N6_c~L zM0%5t{Oo{}@ef%n*!gHNz7@_0m2v#D14*QRfVWO0{e4(DbJDTT4mfH5Ih^*N;H*$- zo1Yy>BK}7_0wVE0z{&~4J!W}j6vVXPA)&62micx>ULmbW*C@=*)oS@F``|!rpufLT zt+VSO`6!a+9k#d%tyRvU=lyCw5oIgLR*c%j-WH#XvqroajR#p}a@3242 z%9>a9fz#&1UEGoBXo%#y{gQCXK$MwSj0Zw2IE!FqtKjU)CDJn!8;Sj53CS}?!AUH* zKzC7xQ$!sFo5r?{C3MHWN<9$|hd36>uyW>O;XP{iSV97g@$j|q@$eNmP1N!5USktk zLYM3@aTOjCaZFqRD<_Nz4>zFnzDZY06u;vVqrrDf;z&f#jjGcAC6tLgOVsM< zI!pqyXilufS6RL^ERCtWs>Fh~>qi^jII(`b?K=Y0nfs;~0jYf>afb94(LE9;?H$5t zFT@k>d>+!KE#9YMb-`x74IToK`Bt#9HD{#Fd``?qByvAKocmHZHPo|wp6MM_H*EID z;9(Hi9|bEXu=kkkm0u8(hKGczI=}WUT+%O0OLq%dCw~;SP+nfq%)*!8A?qA(-k(d1 zo~z_RX;YHJDSXj)+$g8;1ul{36wRCENw4$;q>L1Jluv$ercQ z$nBDG2i`KVWZVWTTP5RWUkOz*#OMhs8JC1a!ETPOO1EUpuJqRn753%jwl4l*lYGg3 zwclD_Mvbj=yfyN!i;eh3j%^3ngENKt>LE9L$lqJg3_gmzs~NgBq#ae}9bZDK%DlxT z601y#w@h37;wdmn&So$_tK@9LB!=U{WGd6q_%y_OWt|{p6lw)@Lp%y%`B@KEw#v`C zTq3;*W_@ArU70iZAIc)b77Hx?OW^!COF+@)FP@o9?u$JM9e~F|90mKr%9)RXjny>^ zVI-U$J`zrWb3`2p?=dc3T>Y^}!zw%;;%FFvl@msTho4ZEL`*dv66z}E4c`e*Ud8N^ z?nc#)Wo%z^Wx#m9@Q>i3>l}9@_ylb$Y;A&b7?9h22bMA*w{VHkU_izwKVv!?6M3D}jNC3Nzs6f87L})9Wvi(Cic6$tG~^Ss&1@N*Cw(Q@T#RQD z!(lFM&haN`oAKMU$KmZ0X^(-GGp8MUg0`74gZPKSiT@9r7wVa9K0({;gH8SYcnn19 z+ri2S)IDZ>WgNs5;US@n!%e=$N*aef(p}4F&#x-f>iYMcSHpwVIno-txYjNRH%etl z+VtbF1S@@qjIsnZE-@M`L5JwHQ8vB^ldufI7vL;8VHVG2IvNqVja$N!?W%Q$OYnAy zrQ-9jvQ;WBL#I)ccp=?0EZ%3pJcq-jpQ{z|U>b=ni z56eB;ZO{)~jTR^8So3}%um~%PN}GEeZeV*B>AxAa+Dj`mP?EVH!z{qZ^ICL6y_m&srE~K1WuF_X>l>r(V)mT0=Gi9FCPxW znZXC!Z((?q<#QJ?JT?Xm1SvY~V;4C;PRMIo~va`_voA()b07TxW!pfQR zo~7qoiJ>wVU&MBF!sh-hJP0E9Z@|h4+&w0DE2%$7d_FJ&*=|@|BLkjD^bp|);Qj^PN3~^sMXnfIBNAmcdj(#K8M)vviDkusI_^@ zVIKbOOGBB5zjBGuU>-VUuZ;<1=2uZ#mUWoMBruQV1YT@oIvSG3L_VQ3amj|&V!~v+ zVPZj<04rMsrGrbPXB?)8dDl&O5eo)8CoRgm!YQFro*uIeiL7_Vn{SPhT${m8iwiJ zr9yvOS6{APEv#b83YBV~wy^MRc-%S%o%gpwqVQyNA~`D#^kd%&F*9e3fUUk3JOZ|062ozo zV4wNsw?fRm*rQ-GJQm_8*aTKi7zG}#Kp6`$rFcjvWAQcL;Vg|sDcw62oxN-!pt7Qx z)BQvN9=Fc2(^xiQYY{4LZ8~#Ujpe>WOIeL>E-@Oc#)MYCjY`viiOCa4-OBhhoG2&s z;wq-2L6NsITA|y80c{2H`iIY(Y&f0vmc zY=D#zHUsRcvG}z4$zd8cWiex}TMj2>8aCn*iKZdF`J{;`o&cl1>kFF0dP z%Ek9H9gR*y)E5^;8H8G-*aHuOSYLL7m96^nVP6SVU&NRSsxRw@M8Td8e=XgW&vtQl zUn?k|VqL%-kaMVc@2Hj`X`|FpLq6%7X;nkc; zvv>*9(TK<$)e@FfD!zudODq*%ft9UNaTS+HZ;FsRs-29VVzFRno5lE7a7L(%<2$O8 zNdFRVok;o-SUGdju^rV;+GDN_ro9%Ez`PTcwz;D^iTFD(mj;peTd;BhagRA%*#I#u zcu1(rjMIHPA}=#eOZPHE-T+;h@2*#(ebwd-&^_T{>l|}oH$X*nv>Twi!zYOxNXi`S z!X-w7IS@BMW8F7w!g837HHCD;`Emj-9>#QZn;?n`zxfgCfxUKdJRSkDs4Rt*t)g-a zmq^br#BYGcvSx7qJc}yOI$Q|nhRWT#0UGOvP5*p64kG>YVCBr|n>RpXnKMSf-QgqP zM{s_qBfxnBG}ae;6x@!-LL3FRz{&}uz{3?NV+!AFd5cH5{Tn|>XoVflxR zn8a{gluTwi8WZ^@muBR4%~&6AnOHOC!pc_7n9U{9^9}M%F3oHioDXKvU}v4h`9L@) z&J(w2bB@2sr5V3Xdq2E=BJI6l<;-cv-sIBEm_hv1aN?`syikdoZ*pn&!KS_vkAXRIi0M9a;5dprap^KD_}1m+&Iy)q19a`2E)hT;3Zg-RNRKc%~qy1lR>*VmWR zRuN8u$EtInjo>%FWzgE((P_giTn@96=Z)F|bt#-BC+^}o zOh+Rkw=zgrvR!2s2Jv=@#pH9avQ#rJvBNjea^)O-je|WmPDh`#VR6bZ z*{7tML28qe!!9gjfnyg`a%d^Lunm_;vKp_sTUBR&UkO!p#OMmDI$MQA!S+#KlJ0tDXK#)b8n#fT zznuDF)(gxLIftD0eNGmY2ud5Tj*@bbZ@N`UxqwR~mXs7XQ;%5ckoP&8*)ll)iA95*br$D8!a1RG zj^F2O#&6U91KvK7_HSY3%xTB&b2c+(5TE|dVB%Al1ZJwJ#LfGh%|6)FC*m;>sdvK4 z3Di9%b>$1h6yYJEu0|TZ!&hF7yqNCQ$mD#XT<)QGPb&j~kV$bUj z5n3}cZ8mZ^geATsNI8T9xWs612vfAa8^xp!bFrq66X9ez(H4(qIvSXUxaFmVZ`YAB z-aN66oB%6Zb)=U|q~{f8i8oMcDKm(Fg@qJo7_Nd7LnSVr&vkUd=6(ep1d;n?uyW?y z=c-pZu8I94;p`uVlS5^{K3`Z!=!nh#K|By5|NCL(1pXeAzw!@a0`ZVg{$XF=j!6G- zYr6hHydJryV7$zF()DP;a*ntWe1Q~y0W6POo4*{!Vm#{$X1wLlQpRE&mlzGkVnVCm z#uT#E^ zdMOJh&`cZyCxuEn{sO612W;L);Q_kv4}hmD_ce6SuT;DS(qs<+~XNDc+dS7dKOx|XEO=RLQ{E* zwQIW%HuV{J3`FWvVdX5SUp%I5t+wc&;`!{Oe(Ym@7qUZRU3Klgh9R(b_z>6=P7-wp zhzI%I{ji6@?sy!;VXzCVoG=VLrhnxi#2n%wp&Z2BzEw;*h`*-01hM7vfpT}fP${={ z)du?eE7f|whnb1|%0hQOdbm4!CuL84b$?zr7iYs`+BqN_$9kHJX4ER^X3SB@&4{(x z&EY!E@*Q-_b)3N^5?x1nQ_&Wrlo+$qbudP2cDe@6p>re@2bqq>tFaYd9wl|lu2fg! zVG%3UmtbY9Qhm`^LRBg;?t&`SsUcCYO;|HJ*mU^Ler;`Ao;etO=C;A6#NL~m6XZJk zyMHjh*qQK?;^d?s@X5BbJJ;QtZ|hpFfBEkv){Eh|%-PMe67i^_ptQm3C^j$nrdt)8 z=ePu(bB~liu(2DTFh1j(y*BE}_-~^yta>tzNeqYE{SV8PhD7ecYDR9Cj4^o2#FDWV ztZbExcYH^WDj8z*1eJ{6heW|j#-enWM>Z&w`%AfQRy0=Ts)gLLQej8u^&8g zozqz3FwZg~BUORM;?#z*qq6MnJG@k7*^^6*g38iF=1PQ7Y)UXPtJoCa%sHtSKgx78 zN{x-Vd07)x8H{=oZ8;tcvHod)>WQLy^6MY*sI z+nJ7DcEqzPi9D^E^B^7xvF6+lD_b?^USA1SbHwNhsySDOM8Rs#o$1z`t(zCjZCwN9 z))*!%=}fv|c#6<*o(`xPcRXyLMV;}iAJ_$i9C)fGjpGudpeD6e=Y~j%QKA;YD6JB; z4V*=HiCUlO=q2iX`m#=Jkh*AF6>BRzFk;2p0#>#v)@HsEs$z+;7gVvvghatA)<)?* zT{oUT&YM4RAXm~Z$ttWH!{Lf{_bf=!)4L)nZ2&tiz)HReS0$&wB@#uc}t(7i=^j$0* z?98)B-vK9uN;U%9-w#H@USsVRL^G z4}!@3d007tyT|0N{DGJ#JS5aD>gB#2iK1Zs;DU6oXr{DQQ3m>Za`n7s61M&hTB@95 zuCbS=NoZbb%h0q*$>9{{vv311PB!NfqroXm)jMw#lqE13YZ5sC&XyBy@k2~UBhwJi zY3uRZwPatsePS)y3s$yj$sSxHJ=V;-W-vd6#S~~9R>7H}GM~#YJYBu8$q(RB z5Xo0z<;=;?Q`^JVNdLNU`q#kOq0$#Cqe(rnN5Iv1B*YQ$C0IFO1bCPL#A4S|K-cIivGdnmsqFbCG6Pk`F_vi#Nl{x zSSAiV{NNmcjeeJ*$gk?pR||dYlh3)*wtcyBp?{#1i+0~_TUfbzL30H(S6UGLXZ)8J z#D95#>`2rP){SN_v>C4HJsO?W{PH~e$aHspuy`@sp;LUppf+>|#qeuP>#p?m=ep}% ztohuEYOcRmDn7>*M}s4o)B6X_f&#s9GM zY3v&F_)O*OOS4eD!Tv~u(T<0)#zOUOOL-kwSthEpRH)UvShD(Ls@k|xdR}D%G0QtM zXpDxPS!me#F01ie_J@MNPH>*613~N}SVL#*;qU=G7~*i)9#)o_+OCzUw8z0FYQCq8 zg95}CS>RmDl5!{Wdo%Wd&(**G}Yy7JQ?k1rG`_yh^L}>f4YWd#z47n;sD#-)?F#r^4$aV!b*K{ zHlCe>vC%hzUPkmm>w-2JHjPYC&3M=N4m>rrT`hnm?OsmtcFRmV0mcmVFig>!p&o=Y z<{SvcTbPbUry(98v-@BdqWkd}h=u50SlKE>cX5gI49Yw)r`vfm*uTNz!p>le{cCV` zsO-fhby8345%4M=32_Ac16Iy_1Z=2g@*zjT=HCk*1)DO7;ka0_E5Ig(FR^=LkA#iz zXow?WeONhRBzPE!$OVWi0x`XKNGLDzCEp<}y~xybx7xR})e83Hopx`g2OhT0%G1b= zp#6|xYm=J8a^!r6m9iYiaf#8eO41=ZZA>+vf@xV(%_re3Ie`~zOh+Rkzu_Wb$##_? zJQHu1SWZrdm927e3YSRFTF7s>I2qr>VhOYp--9zkWgP#8OA_fD@Yac>uZNX0Cms8S zi<9t`$JnpN2N`)FZujh>1afxRgkb`yUHr;g11X7Cm({9t#a}|Tq1R=;AGs-VhOYgeQ-vojN?`z ziF6Tfok)5GteiRNm{oAnzA~Kl<#1N0v`wp!MEp`b0wVE2SUG{X$2_mBf|wROB$QQ{ zAGP-}d2$c2R}ThplY4Y@l*{MrH)tu`e& zOu{q19F$3Tl1q#RlQ5yxZ^I|N3v-gEjq(Zqg%jmOUHmK4(V)mDMp~iUiteiRT z*b^hIlo`yA4rhKOoER!|^NEpGCv5JA<3SL)9|9{UaQB$=m2D6cg@=T)4UhX4ENL6^ z={`|9W?8&R4+7nRA||CRG>f zUxu@O1WpQ-wOAc8I$+y^hw%W2ydQ*>6L@>f>B<&}3Bf}`*@6RnJ0fktXVSF=lLyMx z+{!$A9<)&I$*@+L#A`I`%5;4*G)a&owZNvtoJ zp_b!IxrOmuVl=pgDO%qR*RTUjP4-mXZ&(N?%L%@?5!2DY$ZtDq;oDVa8@zd9mDvhb zwyMk)Tp~U9AiwRbrOY6HJPRq%MJ$CALnR*nwzJj=oBJ_%5Jc`r!OEF)kA2%&OPj&| z{BZW?!O5YrH^1$yb;RcXDLfD&|4+io3H&{*fpQmO0`ZVg?qZy8N2I$rBxQF|DA(#a z_S%KEu5zW?r@4!tv94fM%Q@^C#|*jp5H(#J(pm7|TF?ww#H&qS4p;G0UmVI+{De!4 z3Rj`^-KaDFfN5E-;uSbqPT)#Z6Ek-DqUQf3fe z|7P_3w204T5}4_x5|6tItrIr)*?15{?lWNJ%(=&0g_bsh{eI!>_lA>0WpBC)ts^%7 zJ@G(@{C9_y6Zm^r0_7^i1mYo~T*Z%l3z&2j-${38!zB3{6ZRRjN=bj(@?3b}I!9e& z#gL{V{w}H^y+!<&TQ9ES!D|zl!(p85JI0j5IEzb+28S`Z`Tm)x>qg1B9wui^H`l?r za>6fO%5*d?@|)1{=c4=MGp8Q=6m&dm2KlkK1e0HzNeqXvw9j<&Q_%5#*!16p88wLX z{|hT8(DyI~%3Fx3!$U%Oi!*#XBE7|ZV^aOV>bO#V6?+?|{$S=}c*Hsj4dGFXsA4DSa1YJCw>1aqA6Zy^b zCN9~q+AxvB8zvT#<6vd0kbI0wq-P$chz%2N%7ZMJK;Q5=I3-ld(_>pE5?Oy1Z=T5d zGq7^ztY@e_2X5Z?g!8@=P79UyY|h*2f^8Ijh=)LAek-h;z}#b&S4Kfh4jvN9DD3Rp z5or|OP50Kuxc*9^R;%dWVQ;$?El$pn);My=<#Y?YBYTq1Rw;HG>C z3ntJe90aGtc`_Gm%5j^J$a;Ugc_Qn5VCBqN$83U|_i5q0PlnS%qArP6@ zVdVto9&^0131V{akWe<^b>AsU+Jv@r-}5xRR#{$W-`MD_=4-ud)tg=1Yr7!sfXA(K z&^1a!I)?Z?2<(PM)CIi<+N9<15x4n{HsvF3<`Sd9N6fJLZ#arSzzpTNr5wd?;eF$?kU&%IMcAud6j#coebq=`^eb=N6Tbs`uW@Es2 zSShnnp~;$pmAVmY}8R<_E? z1zaLMTOnUd?PUBQizRTy;(jGbJDSQO*(167Eb$BI4e}z z=DQ}7i2nnRfJpomSUG{X$2_mBf|wROB$QRC_;y5Eg)gVOTrsy$V~=XEuW_zqk8IS~ z=9d~f=Bm})YRx^o|8}%iIfq{3#35HLL<}N?Ay+Npzr3JOlO2)$kloPcE{B`gj&%*Y z9+M+axrqf_BGFBxH{Go3&VgYrj)Gyz9;@YxBjBVt$3t;XrlSFBi2YdZe%RM8hvIP% z3(^u;*(yi}_)4gPBt}+HLE1Vbih*UtT)MYeCoeCQ*u&{Ph1`ltnSFKk?7=e!Pm>=z zyo7ZHb4<=r*XSLx3i+>{M&YaIwXy9eKA-o6ql(XkTq3dfr1(+4DO%r+qH`O}&MG=L z!^v{uFJ8lRG%)gcGA(?&*4&6UPpmcHg_W&Z^KCAX-b^E(QrA*u5Py+{gq^Jx@#o>h zP>IK%C(}A%bAJ{Og2?@MuyW?yW6zUmX*1Z*_+c>nsZ0X%WmNX&^JH2_Z2pt*K#2Uu z!^#Q#Jq&{K7-9nPkWd#r=lc$1dC~LBbT4|Q$W8ujT?1w7iL%4sq3axXjlu|;jOIfM zGJI_^bGVFyeaD${83%HS(cm(s>YXx3iIdk&! z)J;r1ZwCEegwy{SoE<8C@v-Qnp4cPcr+6g95%3dOIbj5N7zO1u#5Cd|p}fX^z8#TX zXu)!hw-LP;E5p_%Fo(66z`BCDbUCb)wdmjyqrqBqh)x>? zW;>Xc?4nvOT>xjv3B0%g)6s~?d$AIhY**cj-5PI~SWf1{%2qkqoJ*uAVi;Nj~Wdkyw^;O^SC%LmHc^+L2uBig97ZGKgMzFO$Zm+S0*i0{mT zw{bBwY!BBbe8-&f7a!*miT)zJiDwqu`(!4-n0vkfW3=X;YvGJJM?&#prlb1|acAAp z3A+e=6%T?~guVyLZ^j9!FF%GoNf`CHS|`}KeHYU$HmM@)*#Uf ztOotbmz1hOf8-LQp$0h;VAP-qccK`r8q~oghQt59&eG<`RijCdCb-<9MHq!qNw`vITb&lyjfx? z>4BB4Qj+5m>DgHM5kwc^%ULLx1F#5R3MYh0IQ|jD1kQta<3!G%gOxMq9Qz2Oi}eHH ztnY)9LS=1!1Tlg4J$L{_-gm;v3A{b#cV!X8gy12e)=C!nc0{g~JeBUIjLyDXy;|rl zoSfHeLi=54VRDYNM$ZV^1Qoe9GdZlnI;=OCy_SPZS%o$(F&eDGgjT-|yRaq9%$iKz z3n$8ny*P{MXiyrH`R2b?==Rmed+?@-rDbDS*(xm?aEbIR!!&WjqLnU#^pPx_K-+LQ zoD?c)F_jn{uz4SX2SDU~5UiXz?^)_rMH2H*gfss*oER!|vC`@2gw6dlJP0E9lVRlq z?jG~MvJhgT@Q_dz;_W~Sado=SsZOisPKX|rFICDb*kM(nrdf%5;eqQMb&cW(T8XF! zq5~p+ZSHayio1M=nlco3aEZ}iC^)}Z?~TdkPcT2rR{Rl8mvaadf5~(-Gz~G?nD}G> zYCYl)cmTwr^IKTiDmu?_iS*3H95FW=Ni(QVzdP7sOkon3>!wnl7kiS#=!QMvOvJ+= zvhReIGiSe^nxl=x8T@w(=l@|iJyiZ18s8o;x?+!k58|N^$H0!Ta>5w!a16?Hh{?o5 zLYa=+d<&Uew|F#N)4^Ws*Iz2=-zqvC9<$B?H=+-d$gs6p%waH2@f}vmV65U2qrqUX z7yCu5j0*D=n3gP>PoLmMgTjk_pE|H#{ zXua6a!T1ptOW;Dq!*E8ZjN=cJ$kWmy{UF{tk@Wqra^|FC50g00=(oaYzX4~3O51#x zB#HQIcmzb^ufoa+#69MDWfjD<;31)`!hml_q*W-UYZYb`$}96#_9X(gDYI{&&ff56 ze7fjE_n=kEIp`YQL#|Mu-#8SJYk_O?l*2jv59%|D{Jcu1)EXFK1H$oc1)bmyOO z%S*X>J+FT*@29K}*tm5Ly2i30=N$iic+I%AqUM-#e&WkRO*ud25~E?t>6E=T>dY%J zFKeFp3!Ek=^5WA>M?)e%o!7)A8&;RAFX9aoOUm=GvQ<)^;OULy0|@eqj2cY&1? zn0w6k$})(_!9zk>hP!3W8B<-0-I z7kBezw$RLumA0;x`EG4D-XeJLI!9ike+1VZnlCvO{b1eTz0jsGhpE_=^$ff4lH*R9 zik-Q{XfPFXoH;N&Mi0!=ns#z<(wxJgcnH(c05!xOEoV3EMbG2#Fo@OYW3aMSjXugH z(z6^Ji2Zra)EOh-b1bw#ad0lIocTD|MBN6VjD$ofQBIf1pu ze6B2km;^i|lqLAL?^Gl$!M*8Pf{wn*%Dna1;BD|obq+Jarab=*60N|s*~noIZuT8o z${gItB}Rie7~kx+;Shcc6SL-!XW%?Jp%))yIvSJ4B<>KJk=teENxWrZS$P~*w#v$* zTp~T2FjdU8&1@N*JMRzn3hhi{IGmu(S$tSbkKd-f4&FYIb{njmIqjKh#!Vo;V>t00 z;Ji@JY_ZAK?t@KzAsz#f`Zlm~0(FmhUs(q+MR-Uk>+oIQVkND^{^?o={z<7)RlCD6 z01sB@NE^|86494TSlHSW<**G^-(jU}LxoF>2HU_tDOIW(lgVW;Ez2}q3}?v+y!c6` zqY;UHQi{Qn?W&c9i|}@d<>Ufb*(xUuE|H#Ph<#GZVthY~C2(=!UN|FE#_{bD^0c%_ z--WkMBz*_0oH^;(_6U(LQzk)|VB>opzIf1yxJg=;Rm=-)F zlvODCc0^i*2hz0)oxSbFs0j)0lTUaDvQ4uuot#9rK;>1a^oiw;|%+qPi|-ZZha8~`g@rDb0( zk)CasCa%<5=`u*4$-)VA4yVIOp^}cj=&;oRoA)Vr07TxaVCBqt$6j>UN}0j@hH&QB z!-=6XH(zwv>V(bxIy?v>_iJF~1nwU5zp@ZwqVSMV7Gl0{N2G-~Gu?M3&ni{AbEUSf zYQENADc9IL52KGnYKsqlV?DwOmUHA0KCgg$pOVMj3Y+$!%9nlFC@b+2mq@e{>CG|% zoSp!q>P&qA1!sARNlXGWUrzSL|FX2{oWuM~P*q2a zsi3O!g73(dRi~crXG(bM#L7~Dm95IM zoJ*uPqs$c7E%A&QyuZXE!p=>L_ZQ*3PR-TPAX2{sR?eLIy6P_D8p!`F zocvGW+)&A{XKcid_rs?D6Fd$g{U5{13G_XzfN~RJ>hO?I*D!ngc0{^~4b#1bnN-?7 z$xTdn5Up6wLDv{&H?ck7COTLbFbgh6m2wkfxy0yj6S1xvv&#aQl{LF;4d=>O zINd}ndb_gB$6F^>md#;htFmm$CDL~jv5XnKKgJ>obQ2$i^FrmVxrtaGZ0aAuV<1vL z3|7vZdfZLKvSyG!H=O+0aBisNEjJPChfV)1JPsoLGhpQe`W{w5xd}0Kct|KWv9@nV zq?`C_x@!{?R#Ynka(O~q2YrC`1FKigA=fx+SXU-^w6x{V`+PwtCvgv#7!6KhqUyL& zU0#McSw7+=I8#p4#V47L?jxq~YZVo{T~S`Z+a^|&=U`>4qWqpqq~{{0i|cunFN5`* zpQ7ia#d;=_!2C6pwb+K9sI|Xs=h8cQ`>a4xfOBt8=UoZlL-< z_Qk?xQEPLRC_|j1J;59BW8tg%b=(J%FHhdVRCC?o7AlG_K0y9xg;KlJwMTGC$nH>tDH>d66sk4`S7=s@c}Fr?2NP+?+a&y$~gY;cM|En@Yac>_kfi%CmnnE z+ev#>IPC#AD^%L%!{157t9S%N;uTmqfw;#!udITY7Ca=BRe05Ra*|fzymWUxcJ>si zh3?)`UjJbHE%0b{4zVVCAEj$1s z?|1(1@s2(4-Ab9k{Qcp~x5HE3Q7G5*RaS)u&uz3<^UDXSg+a&JZ9eeb>V(aG0UiXA z`_`~>!g=m7=PTPFCJGM;WgBkr9l+8y+?MVN!x(FQp$3mt=QJ{+Hy?P=+8pID4*kAE zN*RYfE-@O6LwnR^qpDm2ld?R+=iwYVVHeM0IvNjo^MQkst*VuU3-MNoW#oKV*(xLF zaf$Tog1q_Q;QM11N#MG|-EcmreB(DC+?0QWw@svcJFJ{J<=D*!2kC!?ll~i=6Dn!* z=7XE|%Xs@l+AqP%3A8=tb!832RNx_@tU=MYBhniDGhJ&iskB|vbClcu9IZ^w!8Y8_ zQEmr3NBKV11?(D1jwWvjC6%_Y)v3(dDO#4={^K7&OR=o(Ii^FrmVJx3YqgH3%k9s`m3 zN?18_>hb3&V_7rEe=D5)H{je*$y?7+#`!NdK#_asqu1E1=wjm^wTpl$&_3 zZ%3q?n4j+biK+bq^|r2DsZw6S4yy_^ZO7wZS!b}KYFf$;kbgZ&v5e< z4yqS6`3>n6+SUygJ zm96q|GM7j^!#qx~2R2SPCHa{*UR=OiY;R<71X_ge!r7p*6<=X)Ms5@SHr_Ik@Hb)Q z%n46c%MBLgXTvG~4$cUbvbb*8D`j1kxV!xUvGG{Ch|!D{zc&N2C>4 zn(jS}iKSe%*48!9-;=BBZ*17;QN1MH`hM;#ZWo6;#NkeHxSJoGBdxKw%M`4r=6VY3 z>4}=_;fmG|7ev7|W7FoF=Ir0-WSfBV)qJ@-KUln&d7I+;EbO>v9y)9>kQ&pvD}DXB z?s`{$u9{;Z^!G}|xmd>H0nF-%K#dt9l&c2u(s)gpb1;Pg4E7Z)%cjaWmx z_$StbW_el2epNKSE8h4T%gg_?ly`=eWqLYGg<8FfrKnFPXeX|eo@1CH=G|D{4DvM= zP~19D2Ym6+R(AT~>`XF zL*+itxL*hBbRWlj+SWHs~fxP)jV@Gm$3hg7I=mpc#VmLa(8K8rQDsX4>k@O4y9T>SB{KY&tT)gU_JIM zFMH0ntEbRc8ytp&MIR?0j&8CCjQa-ac^OwYfNH)!9|71mIAQEdn!UMx_Nuh-(N(RK zN`vl8g!m{Na+KEknT;KezST|~$mdUHeRE#6U@_Hm-Ry<4`vvE_c2cfCw~C$7!;tVg zD-FYur-3p%2ZyJ7(JgI$F6SHL*d<}LAZpi=V*4-GYCC6eNpYM!cF1F=JdT&g3Gz5m z9w*7;WO1h zuAk3mOB&;=xsz1P1I4G<>fe&$)BOMQ%hA`xG_X$6dOW^@zvczT_NZPPR|q?@{$NwB zbV2G0VFxCGT~#}0>*7CHI`qpz@kT#B%g9#MG`tXRm1qpNft4*|m^RstZa#w=Y`eqR z9uMb&%60<33J`JIwtp$!E|KmruyW>fC$lWIT#do_!f?jt!x^D67R$!*=xx&H;jI%% ze+pL4ob;ra-!wq~C>-?da6+h{#rj<=c$@Prc;iIQH^Iu8b8e3=1Ps70hXZ~I&IA>( zn2Gu2i%g!HiC@55C6av(R?eL47M@F9>|5vYu6Vmdx;w+lnbT$W4*5ccf%n94yk$5URJ;?p zrEadkSbR^w8z%DYg_Ses+a9eh8E~%(hkFH_2`XGM1M@X8i|l21t3>=B)E_!WSYun)W(>z}vF>IN+Rf_buJfW=7@x%g!(6A#uG%R!olC4? zfB71BiWT3E1`B})Vxz&S>-Teh> zxhj{~(_5mu(!aV(s`&RL-`8JfJ@F5N3$RV1(WfUr?A@9CYWC-gz5jf9wbIwsQ(})l zunkN8eTih24J>C5WDGWT@ehXWn;mTI5%l*mp^LmlN`-QbrGsTPK%=rESfh_EQLm^L z*hWX^X1nG&xyJLg%Y(pLCUSzN@#ww%Pf!WfE)~n?Kv=?A8Slk}u8{lgpCghuNeS?cLi&9(R?; z-Q;n1d0Zrqd&uLS^0-(Y_maoG<#8W*+*cm=lgIt#@c?-|P#zDG$0hQ3usj|jkB7?R zVe)u5Kjw?`Sx5M;zv7nc-{4$^P4$=fEA9W($F44%BVP(t6r%iVpw@i_)dH>*k*My ziIK5c@*#?73EQgE?Rcw1vg^RgnUkFmk>$&V2Hp>b-Ya~I*Q63OlgD`!r2LX;!d)lxki?}>0a zsCdQIQY&a7ct3Dr$H%nxDAgr7@+lgwQvH|$4aKLB4`Je(8_X}0*_8ELC-Zqi)YFIgQ z%9EGmYxR83;d%BN-{_klXAeeSM-$J|eJ7mrx8RIWIg3wv8_`>5^f&PKiL9@Ml@nNd zJgcZ4cNCApc}S?o9jEwiCX|mmo|o?9j-7|+bJgzNLV1NYR{suNh zj;?W1FZEU=l?{9I;1!ravPd`I#Y)Gv#rXJkI7v_|clN?9Ybv z(VC0bZdctLC)Jw|T!tO`>yeq12uZQWqcU^?(zp%UFWt5$04B@E6l zYr$eYdG>}4=SQP(sX}f=!l%f*v?^uxo!DXOX1>5e8=h`5sovr0CevD(E7h3Z@C=PY zxg5O>XLyE2p}caiv1C|=Y-yltIs4dgg~fKjun6|$>U{%jbR05VYSqH3u5zW?H`q9I zI3@clCq+PpHB9zCEcV`{j|^v+b*5SCuhiH|&+rVy3j3BI>-X@Sas7NGI=@K>7nT!Q zRL+k$!b-JLWd*OE!;`UErL>Zze|S#a+RCJFRpQ-T*%Oth;i?4ne7RPs_C)V>8lICv z2+HgY4+?fRM6co+o=UZneeE+k6^2PI-#v`ETbYk)vaEYO!%|SBB-^1?J0X8kS8a7) zU!Ls==rJRT;Ghs)y;^7s*XJW?KylE;tAq_(xOO)fAKGj&`IGe>0xCDI`?@IU*^p;FVyV_`oMXYAz_9E69c+12K;ZtE{ z>q0nf!sEK5D+dGb_gOyz@qPzRh4cEeXyX-&96W5B?YHn|iEO_CD`(DjEVCj8**}Dn z{VkjbDp~P@iO4_6)Txc0&)|&`xjqRiXU?^~hh0@0U?=`2_>}Er64;sy6|C688%1rC zZO2qgaJoN&vq7aRYH~Aj``o=9Z<$E=7FaoR!sGZ7xqZ zt8%}FH%{dIDy*D2=jrmCXzdU&V9)3R!G9vd-p%@n(r^4}_I7XWJfar83Z-6^`}{I1^N~V&#%= z0JF%RinmH6yBb!`oa~qrs|MHagme8CoChk`alA6K&3G2oZ{Tebsa^{!XHKK_g?OVxuG_%MnRD%ADT;PP8*ID7 z*&YukgUVLcWVw~w;=2@Yn8^1SSUGdP6Ixr;4Z;_O6FwhK2bHk6+t3Q#K8Mf4nONsHd)^E1uA@=97>>4{eAHvP8&R1*BH-qq>ERX?dk48FP z#PVz30i#~T@)VayO!oZ5Y1bRU)A{9vPEIzj9*w^lZ=P63ZiJPsI`Um#2~|hLI0~vG7luT^-na6{bnD2v`BnLD z_Oh(Du9FJ&-nOn4)m%>@U#{1*g7OyY6!wx1=dg3X+pN{3v!pcRSs(-DamK>bMzN#1 zyy443RhQSe#3-mPO;|<_j54#~b0{pU%&f;GhQptZXF3|7#(KQWB(SvV&ANCT#CkIe zR<`QRbYBToZ^Xz7syDCtj&JE(9!&QOAd}hFg#lJ=3bnSba;~gZnWZeD!%=1S^t3HJ zG!_{TOdGb2x^j#!eN|VE;u48saWOYG&onz>7!U;IvSUTxZKsi zSw-Yzymev`ISE#_ib$PHq-RiPilu>g#th!yW)Wd$p~d@~a9*gq=kV#n?t^{F`*l19 zBK5Dq%9&GNS1l2&f&8z-$v*|>hDu%-2X{Yg`oF^CAkzOOteimKW7b#3K};PU5^BNY z2;YuKRpcshu3rULakotW^d(=f9P)RAJKZ{9CD5AU9Q3P@vvAN+GOM~3A0&j zn2(l&MVW*dTw)C-;fbEs{Uv$FN#1|Dn%yiaz8x(cT*Ce>x-oU@`}rNI+r{Ayakx_) z?iPnJzg&ymw3^@8+m(%)>bmP%E%xID-2;97)e3tH@Lu6UwE^~8>`bJbJh4ues^J~PxO-CUFC5% zdE8wd7s=xu^0=owE|$l=Z zwvE~+@OFuGKMpHrPghJ*2Hl&(>D~zE0;4M@SL@vUF5WJY?zds(%;}D`KdCou`^+JOpIJk-uTs6}=>-YSvo zI9NGzvSa(KPp0k?4)#NEBB)^H8SDC9>i^)461lz~R?eJjdvwuboUz4luq)t9P{GRA zP(&Bh)*0J_w@M_NgOxKUJCRD~yip?8Kf}ri zTs`g=s9O$VA=*Pi-Ex@fYwqPOhfC7ktH2+$*iL`YV&My@v3CxwfCnvDK-&75;# zEJ*CqK@J#o+hHp%v4-0YNsqOR%!3x&nX~%gFbCO1wU_b`I7?2H#od^WMkMy21%qW3 zii7ZWiG^Z+SlKER`*4Z$_9Mg|w6GX|oW&Bjta%!o5h`QzK?@h@lkwJxq)&pCGbe34 zXkpR*b~x>C!daoxc0Fj}BK~ze0wVFR!O985J!Wua0>rf7A)!pb7QP*kCZL?|hws}D zV;@kh^l4iTUSVCp3X^l3HMVixi*{@|VDAZzLeM4|$F%sGq>$pZET?s}nI=_^FvY5%a7M5I(GvyTBgZ#xeef%pafTKOmj=e7W<$UwQU zoPPlPgI+zU<@3xK`emWkJFt9tDIdRYKJ`!HzWFqHoGy` zv^jUm6WU;WL^$I^;bb^#e$i$u_CLtL?aPHFc*8`#2f)gi^PQqqT!ZqN;gnB@Q$nRI zp0Crww^^TpH&0}}3RcdX^;DTGIWZcrZwQBdJ)9FN>=}HUx*oqx`#QXRBJFEn<;-cf zM+U}V{F`vbPs5p@G8Xsbxb2e3Q*-hYc&kLRkHN~BlkJrD(tz9XVzBQT%OtRMPAXja z!dmHzExv2x4HNmkJ6wD{uF=(HzPJqZkWiQT&--4C%FF!q(p~ExcX*}BE+$uK*ZKRv zL)1CG8Vg)kbdKx%nv6la25?;HFNTMo9Kq^Be-W2R{X&0NS0-e)U03?@M+(neE?RrChoNP zj^ihdLHByrk3hQD!KrYT)uK&TyuDbQ>lWK<@Mei@uZEQ~XFEAw(G0{-ha-Lh&IlE; zxbGH^-oCJU3~!xC`WLWr=A_%BiOC>5_NCyHcx@&z9NybLiRFb=G*?>Z@VjvS8$`1I zg_RS?dbnm~yoD|EkWj{ZSKp3E>oOx9@0s{2M2Spl<=omF>Edfl&jd;w8H;UnQ@W8Tc&;s6> z@b#`KOh+4WjVZhss@Uz~w>922vG~o0m963@D0@^cRs6*1;US@l-|N07sVsh5q+9%^ z@^^f-b+Nr|;)Sl-6;(f@g1I+$9o)}V0Eq8$6)z!U@$nbA4!N@|95a zM2w`Mda@!U3O4C2Pq&_QF3#0+8`oF&>q|3_v0e;EAzA1uBo0H>!=mWoQE0=`VXA)N zn_pEge#Rvd>&5)yNSLbmjeT6XXm#A>tXe-@kgIjEtabH>6zw0TRAw*RTbXZ)EeaA7 z0UZ#av8-Cj^>pWI^{!m>U6$HlP@_H7kZlP4hazK$uG~by~kbMmA?K`epOR)-(irH!!)G3&FFaM znz0=?46(5%0-ACM4TIc3OwakG196prZ#LRIMeFQ)p~QwO0B6aWX5H3u~R!_#$`(Sj2nnD zUUEXD*o$)dD)l_KUF^g>Ea1e{q`E50S?c-+qB`V!)huyvRP(iHei9BNq#Ci0DYZ^a zWAKK|C~;YNzK7&6E~lLoA(MPuG&Y)?$4T-y zSstgz<5YQ^CXdtQafUq3l*d`}I9nd)$m6>5I9DF$$>VzRxV}7YAdef$<3{qhF+ai^ zPyfQwm*!ghjJhaVXdGY!6b%bYtwTqE!t9r{9H*qdV4+oP`q{G`q>g# z*;+qKoAfl6tGF>TV1F_k_L*=}+{>jl?3w)5i_rm__vv^5MBb;s%9-=-V2deio;NUm zFC6m?a4x8r#rv&A+&10o@pg%HuY;8{r#oG(ya@wmaQ=Nb=ik6tp>h@*%FG_v#Gl3^ zAQFE9R?eLGWRYnX(o-YRvOG-31|KnI3-l(;=MXr_%`bo@#cxFpNEw* zXFaQ#tk^=bL459CgRS{&CNVPBT-0|*Cv5IB@F0lXr^3pabDz;nS!<==puTrF^*!OV zP|x$(T5WH2!DhZY9s-g1F0gXu%x5;4s~a%}^jbLdemE~w=;CwFb{}l&eRvE+>P1*N zbL!(YmQfR(fW}lxqx6xkBFCVBD28;G)M6r9x?14>uTRZ|H@%O>X znV;QLS-z5Qk}M17-38}_TFS+<`g;5}?PKxwiL{S~l{2S3gJny9I?Oo1F9-+TfYU++ zF7A(5U9g#d8V`ZU{2W+0bLNv-!dmx|4BU5wqOEw!pfPG zp2l*uh9?RB5)S)CI4M-v;z*iyj(X%5pqm1tv&U$w^CDb!pT!m@j+pKrNn$zI8 z)N|wp_5N_`eQ$<_R6K`4{m(ocu3dt8J~e=$~^XMfJL)6>t-o4}?jvXa5cO zSBAsC98L%ozSxc)3*H8PDc-mfxXpPGR?eLBdhwSDtZDt_p>XOC!0Dk<7q?3jyJC-l z`|wbRW8fZGIrA|vBc3?d=BC%f+5a0(3zfaNG`G57GyfMJ0+IROVdc!3&y6Q6c@=K6 ze*|0kO_;>USa~tgCv?Q-zabt7k^g$Ia_0Q!#M73vMssL5{UvZ}sOP{wh2UBK-kaIdl569ItvZ&|e>p z{yI1@RPHb$XY6tC7#<99 z9Q*=S&U_rq(o^U1`(ytZ?E2Pb5+mdK#QE>&gw6e3m=5`ScCd2h+}G1nmhAbr52wHF zh|w2U`iWh!$H4pWP>ARLmauZ>V_>eHxFp}-6+Qxvg_A?A|Kh4Ip(8f`qwzq9{Evi{ zGv_}~Pg|n*Z-ftkPs7=v4uB2#`hHSR>=AGd9tm*-d;(U^d<0C2z3bC({kMffzZp&l z6}nj0j|FdYz7cPn$oadla^{?8EEXRZ*i(F4U~zQ4qG}w}LbFfr%foSB3g?81TRaM3#c%N*#3LZ`{v52Fz}w?1bm~KP z;uB{c66(X4KjkleN4{GsJ0d@f`L%REWY>ORZgsw@e-`)|c&IwZSz{a5HxnFRvE!d& zWnVoRpDTCwR@j3(efdGhC+wc|9U^K^*W+9w^-tJ+(3J?$YuCrr#7`DP9~>WS?Ckxw z+w}}KoFB#_wY*)A`q+I)6x#|kxq6<( zl{;VBJ^B86?@5JPo;}J}UK#QFu-BODsaEpRx^?W({65C*7C$C(T*_YNEyL$a; zwNmI}A1hqJ+ID_#XvkF5x^tyG`_^Hl9(^0AXP}#XBC^$=*q377X2mf2Qp`K@_^v#* zy(+)>B9Cj!<2v#&O|~P-(RMus+oQtS9s%dVX`qTWTk&NL z5x2dVdMMs5k?s;$Idi(xMV6F{F*tuRob#D*R;ZlC1)13coA~K?1VrMez{;5u=jZeG z=K1`+aLzZtxu9}Z=QHzNR<*t!Zn`foH=oRKJQ?j&lCP%u=na<5+mci)cMS=IIZ(}EZ#1W?%J?&=5+b_9KW(Q z&gY%NIe!4o3VuGvdteja9*=-Xd|OyKbK3qbA{31epfj6 zJK(HPxeMoJ_P{278y*3X_|33#=EOVYTCf57m2l91fs;W6J&_mp<|4LCq1v+aBHl2O z@AI&7=6pNEV!eTP?!SYb`D`XJlFnS-WU%PYz}qF#oeC>wPIpr5W{QD$?{LI>!U>_C z!D724oH^&&t~*`^@LD+VemFB!;KGl)dSR3A!=oUQFT%>1lON0O zPa2@V91i+QI1yCP9ei$%ZmL?9`*OTdBG*e{<;=NGXx%(E=>9yM?n7`osB|ZDx~CALaWa{5K$8oAL(4#rc(mZv8Qr559(8NI1tFc>`jP2tnIM;n;w?1=gND!`tp5Um9mIwPcOM1@r+d@5sf?d2CpG=!;`X$X8|9>WTAEgWsZj4)p6jkx*ml-Me!bH)7KdmIl)G8+EU|Lq+>bhB zm+F;Psq{N>>yM9mV;1=L3cxMo&?zFkZeVLBt zT^r)lvMP4_Lh3TSZQ_O0#jvt#2KLSW6MV97 z$|SH=0xEX#0V_RzoAyR{`$XF7!^)Y{9?Kk@f%vd+#0SHPpduDGI#|#)*8}lJiCp)C zl{4o$o~4K{q8M<`2#0$roDC}6Nn(eIjNB%?8gH3McqOcyIpOtNi&EB-l)?O4;mp4Q z=ZDICBhEazFZL+77LSEE3cd;}XFduxY-P@|G--^3XTrz9lW>Np<3QZ(T2pWAk?=Sk z4RItq3M*$m64pyxP&S4^`|H6LZXG5uG8Rs}2{o}R_84fxLm`fVxBu^rf$8Qw00aFF z;pi9Q`F4J8*j|$n8;Q*x*u=NNBOnsr3RceitlwY_cWVsz$A`mT3MYtK{>A&x*U%Yz z92|oOLmUT3!OEGBgDKiAHiP{6;pESQQ$i&#R_L_wZPuT{n+#Jyp$6vL z!!h3iXM>7aT-!Axw+Y{bw@f7bJyJNrfzaP#DmAY8FF?(PWzZZ{yNc=8XIdkHZYss`<3#a`moDnK*@nwT}^fu{#;H?u$ zzXB^~PI{WmRdcJUacXb+zrkL9BPKC2US7QE-sphMdwo0rBJa7da^}1zwDtrWqz?`! zeIT3;>S-+=Gi-%!Gu{txn#g!>SUGdX)6H$$2I^D8QLl!x^8cwj6ZlAq^6v+BH@n$; z7xrX<<&xzJm)!Ry_ac|vgxN_anc2xqn3;rKxdgeyK~MvNcyK6+7k?B15d=X*Q4~cG z1w24SQ3MrGQShy08?y1KfWidxLq`Up(oL%0P* z;x$-#91zzw*lWaZ^(TG{>=lr>HUg9Q&A0_b;y1v`nG>IHdlf>X{**uUCt%M|sf)WY z+bB%(kK)1|1Fpi^{c{f!pfP` zpQF8Kq+#FAANw|AhF#R_+5k-6TjB-~ulCJh<;;1{I8eOve4u#c`QqX5y9vds+1Cw< zr}?u!8FmOYy^Ck(apR>k)zg&|@a~DEkAsynCq3oe)k;sH6jWoM4ZYkS@};mZsF1~z z^OoHP-;3~`iF_}Bl@s_noY$d_{18V%I7p}?Kelsy4M%=+tbG#81aBXj@D-G#mo1k$ zd}@V%QDxeG`Fdd}7k*zS{^7Cj!*Oa2vc?X!_oXc#9%HX)x9o_$KxsMrn{}z7p=I(d$kKNoOntMg_Ezvw6nu$MI zi+vAgS;KlvMr7!=6F?$A?(7XpgTswOY(9L=j(4Vuy=X-yH@D!uN2tFyu5|jK^fdT)^i#FSBEzn z1EuhQi_uVG<0}tGUXXv8U0mS{@_&`>E3$o6wttiD-(~v`*}f***Jb+#Z{Ziyf5ZMP z%@@<#!>dxO+o%7>`*y8^NsPwr+SAM(v5YFeO2u=DF~zszy%MMR39zy;#ivbnS}Rj( zcz5&1yEE(#>jYag@ruRumg(jV*^YSEM8?~}%9%5suBI>za*sdcJnRoDWO1y7vfZS7 z2HrQ3@@cSg=9FiYRB@qU{-{6Zt6+yvG0St5mGLI$EAY;VoG*u!Gw0kM)_oe_2mArw z2YZ4FSbQOpSF6%_YB}W|yjLRGyI|$)$%eJKM)qZYvM<4&z{v7D2!rg4c&|jVzk`)C zC)*+Kk2JW8|La{sFJKa5Q$mX`R5Wkw48H5)9TWM^ftAMrUvb;2@jcj|?}4y0s28u~ zEAO`rzWd=F6Z!59D`(DkYI8L~16=n9d?xG-DqykH-L%}Ss>*oJM8Yd!HQ?NI1!hC(oxQ4ICdnOXT7FJFm?C>N)Jft;t!Qay;i6Md~TX zFS*1To^m8TPjYyi^vKfI0~7hAL_Rm+&zVO00{DctyoFaXX0f$>y+f z=Jb~wP$}1Qg>q0GDFROOkARb5|5y`y(Y*4-kzvVWF{9uF+!kUK90w~WM1ey|psETn zr8r2as^aIa$xK!i&!+oTl-VKvYNfQar&Kv>X=Nb3PvR4B_*!GHv5V~)vt^$In}tGS zxzZU-|5Wv53ui53^$IkIa&X0 zK(Sn@Cw%9_NwlX@?J89&0|}qgaMCRFbOogv`-sA^qc-+>b#+&;Djy86!H=HmS$%A; zoEUy&E5QRS^unzK-nr>pu!L;OL1#FxSTpduC6Di*YD<@EPSRGIc4B}?fK|(Ds zeAKn9kP8fNr27uW#NKMIJNBgFpKyp;{h_CxbT{5 z$f(7Izj2Ag#f9{~FV-H8Sj!cQ|L0w}FJKa*QMk7=ofwYhHtsNZj2VAjyjNnDm;);t zSz@NEgvt^kYP_<gS$*GH6N%YU_c zj^*uyx3(~`YQSIm8x6y{bM;(Tef0oaWVF6b1R2IYCd5Al?eG4e6oeNGd(Vv-W_@K2 zGORaX53|^nXa6KHCe@sQN5f%adqKhntRb^X>~S6Yx_7SB8?312M#Z*DtrmWT`AA!4 zfo$u~l?wxdB^k5U9T=EiP-i3b*C_`zwhC^2uMe`PT&eamNBLhrRrX2kO8;m?X^jO# zzOPX39d1}Zp$mga2g=dyV)d=_$^Y|oeN`(%58Y%i4U`(=BPY%iAWC9=I#wwKBF1G2qbwjY#j zL$+7Q_CvD0Qnpvg_QSIM2yfwMF$3(+utHfDmZ~Zgm4a7Q_--F7*rTN9(tS8R;aGNI zMGq1AF0+3$ioq>yDce#E@(X)vuAJ|yRLi;kVAxUvKIH0CRRcc2B@%1Ev3g&BH=7sO zkZr{p`@cH}%Y`!sSyBl<@xG_q-{vcWyvEzh?avG4A+`^ZRXmQ}59LaOY|4&2f_;g( zK1@4*mhE3;`!a9g%ltX^XK6liovxT@H}`KbOR!5tCY+$73y1lA7qv?|F(;pQNr9_QTWIvvS{+U4m! z&f#yN?AV?37Rp0#$XesgzIH)+3uVV{;4PE~T%$v&D?;@aN^}I~?C~4i0%Asa4pufY$}hP@dJpv?Z=poJrg2|q zE$;$xHj@~Q0@38Izl9PVhe>}1ZU>S6R9HE4`r2D4QO{`+u&;jv>;?OWdga^RLWz#W zjDp>9TZmDx3#^nXD>irCU|BA0eKlMA!PxhlAD{agA+k zOHG!wzLI>LGs1G;Ij$k1N`}>3Vhtt3*gW$+)aD2=YTJsR_(|uALOI7?iO5%(d%D;Y z$7*F@^>AZ+`Bd!%$(Yu*>H(b&CjBG#4TX-e!8UZP_>TSNw(OMqAgW2S{ zrgu9Zmj9aGhnP;hf)k%eu#LjZ;9tS5AZG9{!pcSlPn-O#SSV}Af6K<>iTqcvORR~s zXd)MD05S7T*3aPG6InkED`(DnzAbxc$Y-wYjeHuD7>#<}L@qx|DIPD6Kz<5t1(EzD zSUG{bLy@KGG%=4mNT@n($Tfszo%Y3aAIMJ4b?5rqx@z@cAog7LNH}DzDaO7PqqS?- zR;9Fl*cqB8EQ`%cmM6A{xkisF;SS~!YbfDTs~e`Z#;v810ho!rM$~doKkO(g*5av5 zCkCYE4IuI!hLtntJ@0_l`65ZoAN6Pc2<#Xt^M(AaYRe!@?%%lz$j+oywAsn9V2O;*;ZYaDJ{foN3& zYc3U97B&rxO-`1Ip`96x)zdPTRK+lXON@t#VXi)WZ93T+CL{-|3WqIVe_0_H7c!j~ z8+lrpJ_0kZyaTs@m{&G|m5sczluM*nKgj1qy4N)BCo!u$%ZT^DzM*oDJ}1)0VbVVq zw}VLk-LP`z^drxSbkAuKaEX5eydU-tH3IbKMEY3FD0m-k3o#1Lg_RScz@acuwS|~c z93)h2(dIf3Sz8>D?ir}lOS%3P*0SPZHV`a%S>w+BvJ0`S2#p)LqPTiO+gfemKVp;Z zgRTTrX>mW77!RezjED=g-10{lkWp3q9(I+Laq(wNCtg*^50OOp$3 zPv*YAKlgoL*HF1H)|MqA!!X(JiJL)WzZD5tQE%GUGA}k$S=J`ba}6g|K%C7b z5(|j*<`s@e_kdPNdqVgA~AQ2)f@8r+B_kLZGFTfsC2SdG z^XI2cF=&T5`a3^Zt+I{UT`O|=l|i|i?TM-mH}-ZE>kfKygC%ynjrH&z!mxrunSIEi zi=D{DVyWEAuv^dDL6o`&!|3sr8DNKm4L7VOQBbT|#m>WFl&q&L5&piXGFUAHRko!* zU+HGUIn@zR&tN%UFI39S>nrH)5~qySy4Yb!UESf)Wz5XeedPzs@&Zoiz}1hvxq4r~ z0@O9jiNEhEcPAVYMnKUU)Wbtf#A!)ke(LHE`YToTnuBYG3Ka|WfaR3~9Q__Dln49S zDnNL0mTT$_RjNTxz!E|=yarins1=4hQg2_b#^#hVGs*h>5`wd3_HR176;uhwN&$-9 zLB7fl#q*aclv`4+*LQQAatn<8>nysT7`A#}bqroa7yO-3{(rOPO_(d*Tl_`)$43t?_rC}!;SqMEo-WT)0%4rVn=ofUv>5K3d1#HhdSbm zNMV`5mKpMaRCK-UL&au(6t=krI9KwTXhVg5Hs!C#v1K~vn!Bme9h56fEyr#L+-IRs zEKFo!x*r8k53qTk9TO{+tY^g%uDsAFcKRDT|BdbL3@U>xxLq&eP^#9K8<6Q$8g_!~ zrNY(N_u|4zxa+KHZh)O69Sc*}yWh~xI{UaG)-G!k-c$eUu zPed>cRL*k06=e63%m$CrPhSC$du5oSYqG6Zcoo8f$$el7pz@xhnPaMXmGtj=3il9U)5vl8D$o7u1TKVFtY21PuB7Zcb%q%l6?xYK4>Le zmO?W=3As+RLQ72|*5h``HibH|X~cCMNSLKfB!2#iPbGeaX_JZd%ww|C%<1GL$LU0P zt=6}u3B~ow656dP#Wm~k)7IE0Kf^om;fCwI$xwf8AbJvNfi1Cz=Oz?oyHd6#+4jq} zEZd4~2V{GuY^$=Z$+j-rLD>$;_AJ@1lI?2QzE`$q%k~`Eo-5n)WP84B-zVD(WP71( z-!I#XWP7n}FOlt~vb{{UACT?kvi+cJ8?wDZwjYx1m9o7`wjY-5M`Zg^*$&J0YS~^R z+mFfiTG?JF+mFlkdf9$Lwx5*kr)2wS+1?=A8)bWwY;TtBXJq?X+1?`C&&l@lvb|Nd zUy$t=W&0)Bep$9(k?n1={Xf~>F59ol_G_}eL$+U+?VYl{OSX6O7CxWjRQ6|Sp0qoy z^-M>5PP}fr_jBSoOky;i6CcNX5`RuC-?ME!jxrt%&&0bXJ{q0|D@)_lqv5m}Pi3nd z{GpqMct3x{d&AzaKASC?h{fkGo0gl~jP}5LCKBEiR?eL8w9rrdp{Rzq?2mXQ><%ho zc@;NJHyQWgT@x7xuyW>%XNY?a{`_5|e7!&AYhi~_DT|j7BF3AXuf{tka{dUcoH^%3 zIs3)}jrsTdnLi9Whst~j-;$m%5R?CdxFJOT_ruDW^Pk$>2ciLg-5>bhVQ)}@i`lwq zxk>mHyk{cezrf0w6P~N@)6qz8JlVVS-jGR*P3bL9G}d<-NvEpKnM-gBh{PAc%HxE1 zWIvTg{3w6oN5Ed8UfU7kkr9~J_@TH3MB?v)l`|(E9w;v!{)>HY8t`-cfv<+0LIp0) zHqr)Q@*ctsAo8xk%9-pF~8NH`7N+xsLaLLMwUUC+;7H>AacI}R?eJzhulf3 zv3|;*^%Jl&sH~^+>b$uHR=QBl+>hfO6Zt*{D`(DkuD;P%13h7icdgdOB*wB<(??)l z(Qm^DMe-Qi@ zb`>=Uw&a&OX;@}#{0cXV7#q*P%9+Q;7A+^TeM#cwOzXQ{T6E0m@Gj(MGKsM%X_=Fk*a6ft53lk168SIt~Bc{`mKReL+nQq7IO+6iNrG`}JM%eu;Enbyk{cedtv3w3C|4u z)O=H1qx^S&%CEp4p;DgHx~`kno237O_f91JCs;Xi(u+dUmbdve=o?P;uFsb+iLt5A z#eS!RftdUk;f4_T&xe&W=RdW1_<{!f2!G&*!rq`>G9rEomfX1k`X#h!HRVD`y@7>oon=I?O~ve~Ul*n_;(5 z(Tjt%jUkxKZ@^6;GXEs3JbswBPMy)1KjF{(ao8_!o3CigbG|dg^Am5(tZ=~pGf;wG_0IC z;hD@&t#i>d%9r|6z6kaRm9kikiCS-xz5wr?NcucjIdjr;rLS7Mzct!-_|v`}_6n7@ zcvC?ifl2%;xCKPwUxbx2Cq7U5D|*JD2K~4G(0>Ixh6-KmT(=Cu_EF`l*|2ivq~|qBN4`Cx z0l(cJ_*Y=ZP=Sl5+m=C?+`ot$LFE2x3?geI!Ps{wsg#&%kb>QWrbUjUkxK zpTIbT z4gUT9@b85kLWM8Bi4rm1qCR?eLDbm=Vi z!DbEgyZk{P0Q-Y_G0P{U>SNQ!6}>OsH<9vQuyW>n7bku3TmycCKk!e&-k}1Q&qT!mq3rF(@<1t<4_e=DHzMHUxFy60 z_!z95c?8U4-(wHo2ep-DkNH!76!r*}x_EvPwcebuAHjPklKu{?oH^+Z=BrYnrf*z( z(;xCbVP{Ywi(D=ZH~GGXcTD8_H&{7yzH^wH-r$Dq?X0a?5m+@!5FSM8>ON<;)q+s#jNc1*KZhRj!ov4QXHT=ln(3 zB~;F0%_L^N$@=qn_e9p8g_SdBJ(r#K&sMp`2ed8w51;YJ{WR96NsLW-Cf*xL9*Y?TYvZ;Mqu_u4|3$&N!gI}q3Coqg zlRy0(aF0(Zl%e*j{R!KA(| zZUd3}*06Hs*Zyqbv4p*;EBuLf!9JnpdhvEi+=!Eb=)4{sgGv1b+y)}`-@wY5Q6?%GqkaVT2o<&1DG{~a zB>f${cOvO;!^)YHZXfE;4QSc?pZLkrW=$G$2%udJ_J@ypd1vhVOP_+!^?_yzq76FwBh1C zqPbTz-xAFOypa-*KE76)xCZxO&m9I=I7k#)5_@uqoSPMcD~iLDST1<`(6+WM!ql*= z*kGgSyR&!&YuI2W9A^K)vSLTVPl_{>esC3&Y)oWdW*Ca)p{w8+wFX#Yx9&>5wr$T~ zIbSbS*z=uj*$&TbOS#oSwHE$sr}{}}_&>!@I=MNqM?Zac8ew>aYq0Fn!gM*8z#Z-2 z=SP;>nH4#J_He}7JpVNqfppQ)t?~UI>>?}0;-{HT3`axE^PH0b=F51m#Qg9DSXmmU zuFTK5N~ruGqQ)yfTDUo(f?sv&V|HeAqUJy0?dDF_-sqdMVexqGgE>J+?=)))G40V@Q>OdZEAY-k{o2 zJH$h+R<8`SVqmy&sE3qTKggB4x!!P4oG-4O<;D5))^59GczJPwY!}LQk!%;sc0JiH zk?s1j-9WY*%62JlgW@vQ!D0Vn{}i`i|F*oiCI9cOc(;SapR=ibdGTrf-~1-7gZ&vx z(n)37s8=5frZlNshCnLt2oKMF)CvrXoR?eLBLi?ntUDzM?NB$w$ zH&o=}*`9qICjAfMb`a@b1}kSyzdbB(G}hnpXZ=ms6I9mXK9Cn>(s^n%@NT?UBH6FQ z%9)d0)U1ECvQvZoXMfm#gq=f$y@WriO&ExIW&a*GgvkGSSUGe4lh_@C#(Lp=?|FM3 zlNgP)ezQ88!dZv6HO6&47w?qFbr!6gIoBDH8#j&bLH>OAhaEz_mPK6_G2Z0758gSE z^PaHsc;MW+uhuwM{W(`)hoGEW#+#f=c;`gU1z0(A&U5u;4-NLG{b7Fs_6ilYcr#8P zfl2&2+yWx;YhdNfiLc4VG;99*5AduC$fGBR?eLD?D*QD z2K(Rsu-|}vLWM2fgo@j5(*6hDKauvUuyO)zhX-fs*_(JO;~=4)0RGAK*-&T&Th_fc z>pNED-!rS_!HvFB$P(78U*Z5?s7gT|0lBtGo9G%E{|C- z$6%J5m*O@M%gu{mWux3ooBFiYjIP1HhmFM(_Fb?$tTkWJge@M!w@fz~-+^~cWPCfU zoH^qS)>L?D*kAO={yW%1RO}n^_5C%C#*BpD;?@u&;a9M7=8-U6mCPFVbr*VH?sJ#~ zb~i=kE{+{nwwsh^;(Ze-PlJ^+r@S7!pR(WDXwdibhrT!L9xC(=_{E+$6f*|)z)c~> zz^<@z<}t8-g5$zsS&M?Qe-x~Q9Yl?SrE7`;UinK`t1TRTxG}^y2w>&R<6siI@6>o- z@6Y>M*b!9T;t_s$vutp^8t;_I^&_w{k?YlMZELlK|ETw%@VA}T{1(nS%vbSSY7O`I z{Bb`F`-h5KeBaX;f(idY+yo;0`(b4w{IO#`Pji?hslV<|{qL}2sMN(7I+j70++V?s zAaef;teiRbxne0%6~fx3zVRaOB7Q?AF*ZfKc+Rhnz$Cr|w}41|5v-g!@#%66nJs~9 ztdH_%eFW?e>IE)t*p%%ieyAyY&R+2jQ35Xd;_eUIpw+XqG&z;(^x;{ z&-w}2D^%8Ew$?{r5`P@GfJpo?SUGdzGa^rGHP{mtdzWTyOk!+GGqJBaV!X-uEtp1w z$oWlJIdjhQjOXFODvkGc{=BytGv4C<%Q6U)` z*ngUw>iI|04k`ux?5LQt*l~Wbt=MnCA#07d#tyd4jFzp~LBx*Oo-NCc?0>ihi`tR> zDwjxoN49k@WMt^Jy_Jz4cji{GJ%Ym|2zPDMS&+8wpW`$x4s(SAXX?3 zv3)EF=Xp8km4co+`&4(KhiO_5b8^tER1;42a?q+4diz=ijuw$sp@qI7n-2;l|BS%1 zlea0A8jDx!9(KUx-9hgT{8YAsY_k|5R2V9-^N_t0U2x_g`;wgfr4PWIpxQGEBCFWz zC%&A5RRg1to|sDi_Ws`ODOJMDzqeC(Pf^J?w*s{>XdtOvLx1 z>a7Os?JnkL>kCwXpQTWjyeNDfUFgsC4mS?=ywVG`opMAzD$U^WEzC<57CXMEn8^0qjgHJHq-JIfOU>4k zF@cMespPuZ`;yEcZ(dC)W|nW=!^~nYnU+K)I$C1o$|#hKP0PZWXtWID)tztN?$50% z^bfMD*IS4sNG{}?Yxy(Nff9S?(KobMitGyC@C}FOYgIYu&D9G-YzFYXc33<$^OLVp z1C?4q80DMk1}bOyhX5<8cVNY}|4bkzC13pE=PU-Q6_ybEp;d!^_Nsb!Sm5~12i3}8 zc%$rF*whNWtN`%k&eul#O&N`)k=mKz{l0HSQ)Bm1;S1lsmsV|XMZKEKGmCs(%vXGT zT`X2=d_#|oXyCp65nN|4rnBS2eebBaO!JN^@)Gyr^~6iu>&bSBY}c3V2D05ywo7HZ zk!&}X?IyC_RJNPR_8qd_T(-+(yM=7Gl9XyT?HRJo$##Wo^Rn&cE&LMx4EASfzJx!CJqFNrl6;ey;Q1o<-Fy`OZ{1H~ zI4e`28`0PSHv{SEPeI4(V_(bumu(I()F>S8xIkxtxf&C*Jh9}tH!=A7{$}5^+ z#Tm(=)h5~J@m`5!e+?^VPIhwWqdpDoyd~af=Q4@W*zIScoyuRS}XW`uv*-nR* zGiN)At#4>#_xC5e59|o)MJuy0d+usv<2~_CiClMsl{4o$ITt=v*2q@;$(CSOP|3<` zmOl(P*cR|^iEMjd<;>Z(=h*G6hV~QwXs?4kK}9QP+VCdaAbSnoE0OF+Vdc!pP7cZH zGwt{N(S8?p1r@ElYD2S4wh!Um64^cgD`(EOJ;xR|w5#?Ff3*LAJwZh)ui9{3$GB== z#d{@^eHm8Hob2R~><${*P1g6WkC!ruF|Ch7vrV?^7)qAc#;rGH0p%NDFvPFzHui>-s&WW7suyW>{ zXE$9XHd|__zu=GhbFfdSsKx2>ar;f$pTYYl(!LQ^&YbqTO>e2Kup057`xE~e>=!EW z1$^ns9D_;yC%6qn>OX>&Gp9bi>9I;xqdjp0??P-XCNVaJm^g1h*=|yP8)iX$EBQaL za^{rhH9ZyCMy}!B-XC}8nBf+0t62tNa^DI!f_QZ=gOxMq-m28tUNDXK>HfS=fgM6k z=J84`+{h+fsh%O8h<8rpd_1h2Ip_B9B@7Ml2mJwG277`ESgeuoS4Rx87vsGW$zBL6 zXHIsK`EdAdf3RPN9YF;vo-UZ&(>u z?62`&iDaLJl`|*XA>SX<((&94z02uYOk!-x>FNCDsrllY!FM{|F_CWvteiRDDdHV3 z4evhwc=v>TLA`dT3B2OnG=uJLc)vutJHyJE)1A!UE7RbX{NWa0S5V=Kb!+iDoWZsS z@0Q3m4=ZQRb`pC7RwH|zKiO+wM^MR%S}J^P*Wmh5yi+3At6=4Ez;%^=Smt;AxjqCt z0_4ixjx)GEfOksddLOKuIoI~^J#p=V{f9r;S7A?3!HOE0zuj(-eHrhSNcJUIIdig; z`MdiX+NDdqE9CW=#Mo5Ga+c*s4j60~v-=((r3cTnUii0Pax3< zf6kxqXJAiI35&UxpPOP_!#Co+63KoFRvr&zEBdPoKl3O16W9|dS$39pc2O62-4SUGd99rDa0jcunt+pUV;JSMh~-uSBxv!^)YHo!UGEPNVyEf4X0Vy+Nfr zgI~Z+%gt-|HoRvd;V;3;nG>GO59ibHKJSnB*RU(7c*V+wI8)HLdY{F+C9?emtUMmr zvg5!swzD?&uAZkeiLt4$nry>^9u2k~c(+8h?XYs@Y^R80EH$`$`orA~_67CA6;JHt z@tX$So$-E&ba#Z6Gp9R=9WJV&E%>ADfgM3bEAD#36HyJWdAw61*E3+{%(=FQC$(x| zuki=_QP>kyu%c4tr_>r`uflsJlDz^}&YbLYbq24-_aT4255WGQ@)hr#DBI2J_ddLD zBISEv<;*EhVrSZFcwhC$`!ehZDqfkF*^$o1)%z0ODUs`ouyW>HCo`_wZ>N!6e-rOY zc`=h1%SxG>ZL(c}cS~fuF04F0*y?+!4)bSwFzgEIRV(g-LbjIOR0rbS64~wtD`(EO zojFP0O?8$(+B)nBDq2}jg$L3b8Tm}SS0dRmteiR7X^gBmZePpFpYg|gBkT?;-kE&q zv1Pi+_)~b-M8?;{%9%5s-g1@+`xE^!9}oM3dO5eUwzS=(d<@<9VF$2%u-J_lCLoO6f#7?PH;zv|EUHrN?d#$q2<^D9o$h3XWI zFX0^%`Q8dEj|0Bq8&w+LU;FcY7Ip^6SAJZ};QI@_VAyff?%>P0N-EoHk&c}Ki&BIWI1 z<;*EhZGLP|W8CAW5(>OSd3yi+3A-@(e6bM25Ha@E)_eusA%y?{xKO&Klj zgPUKVHTbTJcTD6v2UgCUZ+rNCT@CKR{%{Y3Jwd&2#gk(GRbYecet54$vU|hInUkHa zzIm+it^4ym6ZQv{ued)_www96jQ35Xyb@N?HF8gv&Pfu9`Pv5@S;}i#sCg_Xjt|J0)`6 z5LV8dE4yNi&kr8&5B3=Cf?I3RmwRo|j>p+DL4VNZZ$nbl?m zbq?Muk?d+%Idig8YG)4Ss`{sXZ}VsSCD<2Kw&JZ&VYf;5R=i&#-CJPg%;`?84X&tH zb9w#Reb%4vFJNy_`HI!$rsXE#r|_PMgr9(wGbcQWeW_6^k~@}p*HZ0FVk~PZX0*w5 z0^TW+Ya6VbIoI~^3!EC*o&CY?2z!Eh)rz|x`*%aP!+Rx?-3C_9oa|(lkO$tYq0RfF zJp*~M6|gH%w#;mk?d5p4M7Ed0%9*pB zS+6oDby>fAa-Toqdti@H5sOoQqt=_G@4|a0lD-30P9Pl=uUWsX?cCvI#k=3x)^^%( z@gC9KE1GYK<^kSFiANt_tF3r7`>W!si^GD(L88!-c$rJ&+^iT}QT$pvv*YbU+uF9c zU^pB_gW1)0XYmTwu)$0?%>ILA#g2rZ6lW&=;3_8Bn0RDR&kbKZ9Cjvr@LxDctr6DP zs=Jb}ZQH{xhI*k=&Xu+;46P3T)2aTi&hUTshXypJ=F0iLO0}Hp4~F~hlwj1Bf`7Y) z$1W`}Z*Yl3*DfnQ+1>K3^tSZ##p#F`g8~4nh0~6SrO|Ji2E@e5p;h z+cQ&YD;%!VqgxTx$wz}oSg(}gG^P`~02<kPD<_b4sESl!B_>}72~}AA!?gqmtzeVR9Vr)9L;bmdSYh=j9HiC=YwTg0)q8_- zP!&a%USP=|b#jAZ^Ngj?dc-wcRH5}9E|FMhr8oPxha=W9#mg`Rc{!+Q|0UQ(R*uDA zFr65VhFBcqoMf-60)7$im6#!Z2P+#H;Y!S)-FJwebV`F_L21bmTQDQBWq%nkDo4D7OC;uqW$7h} zDPquCnm7vPV5Es7U@uuw7WZH}F(M7|WK+U262+l-zr;lGE?C(}6bEpL^ytpquUgHm zmVvD?K8M-jd2g^9_6U`+C>o>In?>Ug-aC7j4aUF=fP55EDMZol2cdoy!YjB`D zR}W&Pz#rK_u=He&w#K`xw+rm$oO(ZQ zTOeLX%&-xMX|#9sr@a&G7Ao!eeA+OEU^3qUH-X4}TUa@B<_pw3o6J4%=e`1V4VC+1 ztz3uY(aPZWWf6uymjNlXggf|ZS=@J%j}-Xg);1BKXy^cw3QtGo@Qe}lb1MLL-yWfsdm z)e7-n@ji)6{|qZ<&U8ZfrLX9=mW{UdhPnZh7>%;syiUcdW7dz8t%r9?q`DAR&Yo(a z+!Ld^+@I>6sz|vrT1N~0i#OqJGew*>78DkHi->bTb_9i#vrc;wHWtH*h5y5 z#qTqn7>$O={~;wKL;M`?l$arY1}hsG;wP>WDnp2v@yZal`&hxA<{y&oexI4OdS#%k zt9fo7XrV|6xn9FbWV&92FXY56gD|=G;6@O+=V9f{xi3R9pcG#dk!uB`Fa=(H6N zmSz1xX+vx#vXlrk$U4-*s+<_6dgO&?IS^S+FZC{`ub$Ml zR$KUwb}qu24>?%WT$O9<>JDmow(r%tI_x$p^5XB9PQ2<9H}gq2jqLMx+z?{+ zc?DKBvd>?*M0$&O8;bR>1m|f{u-UfWwg1LUVl--hGYU42EaxQ*$E+SV#LXeb!V*|H z^H|tKt%oHzP>Y9S{Nv#$*iF=|@D6Q>FJVY#OdNrmM2v|;VdaFFa40QQbs{Do2MJZ3 z{LnSg$?D|ZiK%WWm|Ls#usWnaSM4p7+qz1XT6_b{hqX9fcNcyF)O^t_6wPAMEa8nc z2pe6tY9v@S5L65OtP)~p283M)*19D6Yn|fPIzzLi)xzl5yw_YPY;;tEo}e0(^MO29 z>O)$bjXWL^XN@`eO8)>moVIHqSIw~tW}r_hevm7Uhk}K(j52sK z2RY)e!9KLcMDYfu6T{XJZy*|M<)wZT`+adb*#F@ctT7MW+EV^9tSo)hQ7Y8xUCdAY z(o0|9O6ip=3+3ZF?ZVJv;P=d`=sG?%{)-Q_T=YEbA}ap%B6Z5hLGWwb4q^~I3oFYA zeWvB4wCOKV1&Z!DEdu6l=N$pFm_)Qv9XW`o5wM|FndoC_mLw__Ovh~@MnMOxoDc=7 zo*3CtGMh|WF<2@E^{z0f#O4`XtEhtVGS|4?le?mLQM#L%7WU^>25nunq3*V>a)nhV ztxxerx6~iQY{N2|H5eQ9kt-DTUVpCIl`HiIE2`F$6XTUi?AJTP!GvQ8hoVLjoBx_+ zOHqaQQLaI#rnDmjyrk1SQ``cz!0H1nKMle>Mhk4#P}M z72FJBYAV6XMrtZ>iS){o^+kDNb)6OgH!;(&E82*FPs0wPM!?cYjba^)83&)hjUmRt zb+B^gaj=mpRIKjPV&TXBvG7CKNz_=_RI66312W^``?x{Gc=#@?oDdHVWky&dh`Tc} z;W$XBO65@3fyhc_YPyw5M}MW8RVv+;dTi6w%h9n~yniC?<6-5@X|Efp zEbPQT=uiAI*e_J#3-n?lk^05B4Mge}!paHM9VUNOKZq&9K|<9JlUxTP>xZq=eX(l}}=Az|st8hMS%h{Z&Iu3Q)xEak#4X4rNj$5uI_ zzZ{-<$cDj3p#~9~z$`_@Bd)AeQSluvF&>HvNiyyNt-yF0CMmBnwZicd>@#aH6o0{V zVtg8lcp9>TG^U>yaVv<4=y$NPk%)fFCDJQ4mWX1*<~fc3;vLW{+2Fr`NnnLImA_bl zPaca|a;}TpLX3hruyW>6u=IfF0kB3g)FR8gq^Oh^0s=_6%jjVkG|S zVL8HHSh9Z9OWi}g-!-gM`SCt3F&@f~@HBt@Er(lSTE=v93+y8+@Z!}>C&oj5Y=VQ5 zy(%&{jw3c* zSynIhfiEZ-cB*{XlS_<;@Cxmo`yKL#D-BCp^A$x z+z4VKIu%wn646OqBE8~bJyBd(9H-I$2s6yH*0>UO50(A~ky^tt6mv3a;HD5`-~+I7 z<}t9Lnz}8{)8gQM|2Vi8b`doW#OqFL9F7?a-@wfw#=@PjazZRPR28Z)5tEFAgepvS za~+5*Og`uR;w|*P?c|juwk4x56e~sEW@Eq-m^JDe$B$f!K<~4xEOAp~)0w5(_>U_B zRc-u>ON@tVV~QBGmRdG?CrU_OF6!yX225f!ZgOTYofr}M(K`uC_N!`&_3(a)Ib*OTsgXhw%58AtH1MJ1d zSb1;{9IDnhYve{O52E`fMtrUj{pC(+c5Gs@lnQsbhLtK6?%)#RqErxr)=GuvU|PmB z@=MrDR^Y|&Go2U_St>|avR_py{2cF>m`;8MD;w$LCtM=+Qo+i2>Q3IJ!ek~f8s(tL zI9e(sk)DY6P9(h+teiRNNU30@y^BBXcfwwwUeS7~kVJfY+yWx;PFOjCxWhcJN(C`3 zI7p~c;da*~B};{8(=8RII{R`wIA|HGg9 ztFULN)WsHS+bB%(FXL7a$-e|ECy;k21XL{{rV9rNRZH}{4n)=xU&^YM*fCy9?65PM zsjLB)N-e=mkIh<^T4Gx^9PF-3#+Rxkw&oJ!s+QPM-;;GbOid0`)e^_Rp0a{3?#Fau zRJ2-xL6d!}b%>+zzKQwe2w2(3FNbo8%xVdP^@YqH&sySq*eg`lwpzkQ{2bf@BJtI* za^}P>wS+WWN$lr=vK_q_*teimJp%75DgqSWIBvdW2h3i0ME%A1` z=T1z}Pn`HGvmeV))U$QjE4eZl6lU= zoLx{>@}g0d!%QZD)mT>C#kZKB;+2E=YG{Z_cB)E-X?Ul^G%^KNHqyu>E|FfzFiqUN zn{@YPhG18sL3a<>9aOqABReInjCaMmCNka$R?eL9EOo1Ha$f1rxes;;m9zMAXUu%_ zdJgdJiL6(^$_cC;=5$pSh)KXfLX`!-cb$r4S#V{#Wx?cJcd=5?Uc&eS9H`bPYxIn9 zY0$JiHXm8m7e412T&g_y43`)W`6RWW`?m2GfZlX-wynNE4Ur zSd|Hn;2jgw%6DL8BdvU!OQcsO%#v&T;=0r*zsZd8EEWCiPVtHilp_-v~E>$b17>If1#uoUh6TF*!I$ zsIuWk*Wi_9!`A6OnV7jESI_qa?6mF5Ap71!Y-3~(9JAI0(iQB*x0o><^wQ4c}=OshD%^)Swo;W$aG?08e)!#nQ!Ks_v76Y^UeEU zWh395%O%pQC+3L>Ip#8r_?^ro&#K~Uuw$si#f!R@L73eC4>y9y{mZa&=G+&liFr-z zU+`!D8`wEi_Trm_2?H_tKZhGakuJlpLliC-#RuWrbbbp6SHP39*Ax*>2{Peek}CIb}~+*~lroaf$S53Auw(`AcJ6 zW%hU$5*64hRMyd54{8J^@e*zUk$3@C&YXB;*MstzM*Y+N)IR}xhDu%E^`J&!lD`hO zf=K=vSUG{b!{o2(2QghZNT~W@k?TNY{cv@<^}~#MP_9*20a35!3gy@`#jn^%uv}#g zxyH(oD+sTXDa8on0AjP3WtHL?S3Ihwc$!O$hniw$bm&^nS!;Kco>5i24g1O(0L7P? zPK--Kyz3XW-pn=s!Fwm>nt#E{My`3COQcsI*S- zI7q1a;z`%!CF_fUbf1H?*9Y?}wdWrnhXd9cZG@LI;yWeLjg`{$*wkeyDL&>JTB@WN z<`Uzfq?jTGtxYcX!NiPW;vU#bR_MiBnNEy|JRCy8lKrZ!6L;bL5>v_@u(FX-Zs!u| zl@anBDJ$cbm@QbjZ!mrl_6U`6^l*qI(!axdCzAdxteiRN$l(xH+6(sZroAqc7>#n# zyrT8PA(DvC!7U&Xp9w1`5O}rb4!)pwyuFnp;ik& zQf@recn=)5)(q2NpQ_B)w(S`#=fe+ky3WQCK-43LL5hRd9$Y#X&+997nniL>3%hOLu)jokq2N z`~-=)d!o6^8g_(5is*rqBi0+yU+!!k*}_bZ&1sfJidk$pSg|hSOVu0Gxx{#=H(IAr zZLgmou@g*94pZ%=*a7yG6?}0crW2#0ogl%W$-dQM#kP3g#Qd@~tZd|$Ex1H_HHLN? zmBD%iv&XZ#=z_gMWgXp15xGna;-}&k5Q(1zD`!qTvX?^nOsgrc^rzl{Jwv6g@1;vx%;}YYcx>&~;zm|gj26L3xmnt&; z3Omdi3dQG`P7F>%ymMv@!OTB@#!VpRpFhINM*jIdmq@SHSR~c~47X|IH`oikf(`QP zF$t^?r;-=%0wfH?j*h?rO$Bvc*puxmn-b;$MUK1AtQS*?@E#&(SVg^gr1 zZg6@>%rMbqP;AXqSTBu_1+yi={K*xKN-%%m5{U_BS$Y{}W_0LUl9{zPO3p|!)0xC* z6t@3i4vTS-yTzl{n|Y=K@12-u+F@lQ&rIMF>5-PZ#iJh6c<;$9!md<<_inIX?30Sg zJGxsuItG*a&bSRk>N~>9nNyGK7LR&OBVX_*-vj%GN?zYB9vz2CKabl%q<;pioIu~9 zFi^FHm^vIJ)Sb%*}s zL`EP65Sz;^HO6OMV@=f3?*fhj5JADLZ z-gy|efS7k4gq4lFb3d0zuhx(|!E~=_-2cU_@~k&rhkZlk9^DD1kHe(@ciavl{a0Y+ z%;`sVg6W>qB4D$9ydz*^CNUa!80M9)?*!AwVn)G+xGlseSOP02M1e!$plS~>r8r2a z+T+u%;Vf&9Jtw!dCC+Jy32s@j7cX(N`v3^@y-<`!PSaaHNac0sFu3|rL z%x&#DFPBP|t>@iv09*6VsBb-&W_K~GX>DcgXu+Y6!<=fqg4;o)|3z3ibNZ2jL-(8(0l)Q+fM3D>p+E^QZ9Z< z@X~$J3}y|!MrFi@DSmIs^HD?x5u4*I3m)sUfnjC5j5k$(Eano4^+$S>(OiA>S`s<{ zhA79Xwu4m zpE6^xE7PF-W7s8B%F&OSB(nY?-aV1^_hIGCSw}u!LSD#isy~Vu3RFqU`TI1nIgull?yo-mNAi>4m-)pyLcqii2;%4cu7{W zUsWxfg7-_zCMUwmMm9O#RYGMG5jkGjWG5dh*iFcu>1LA&Z03lik{g))SeauDtug=L za%gufbS=5$ldde(&Bw>NL}D&U@#bR^8?ly29)ejJndAZ3MONI!+n7!aM?-vYImBe7 zk^AsYiD~2>SlLJ;cX5gICJFh$Ws~l!%n_d6V&M zx{pPst?bLOMkCX~|M0oa7o~s!Dhdmq@G< z(wj`Ct8r_!!uc>bV>USlc9fNUaV67MLO$=X zQ=WMMdLm^)1Js!kA-gM);+75TbrqLQ~FKTda>#GDn?O0GMftJT@dXnnbXAiiPZ zy>QrCV{S}eM{A9sIe^%dWw|9e%QeD3jH{lU8DH1>}&%dm3aVE+j0A1Zr&f3Q9l zGYY>jpwBD9@r;T&g*c_ zar;f$$Kw4HX}=p*&YbqT>RiYK;+Oane?ROODsgd=jyVRC`ulJjh}6%8l@q8t%>Al- z5L1MMgeo7}Tn8e{hx5~2!7`OK=*Il@qHq-9+eNKG z#O5wbJ@KF`CRI<|&n3n~Juz1wzBb?d5vFL=6~Bl5WetSl&zMe(jl6-?M_}fj=Wz>& zx#!ogvXOh9^T`^`M)rq7TKt zvULF*#nupPltzB$?)6EG))4pzV$+I^Y~I7p~EW0mVbWS#MqbPtc6UuTc$`@_A%tJtzfh5aWe*DCQtRrY!p zn!T*y*Qkzly-}AVVFPK7BR08Ns*c^+*svQq8F#Ac*o8}shpJ;<-SmK#jn05s8Z*&p zu*+sE8Tk~*q&M}f zFYbe^uG1pmi_A3aiZ&wP^RR=c5g4N8>D~{ucbnf1 zU2q7R#jIgBrsv2>vtx6dr3hJ<4F#*~Wmu^qWDb`Y4@JlnF=%bh*&U{3%sIQjUa|r& zzJuw+h{%KFBrMsly6<@>-Y+qoY!53N>7gq0JBJIwQ{R1njG zgM=y-X1WeUmI}|N`wI4~fn2p-2-h^~gZY&~{AunJY%ExYvIbnEe~i~MNmY+i&KaSMmOd zIp<|q*~mFBaf$TmiTR?Qi2F=qzR98JRckO`$|SG~o63Aqq^^jM!X&>wZUvG2VputI z@{85%9QT_>|K0xdkA%HLrN6$mLJ=Q{83BjkmJlQ0U|2aJ0vw73Rd0xC#6d#U8;`ms zF4$lf?qCw5Q6`#KvbZ&f+i#W! z?Rfu0+7n>q1lkUByDAUFRNx??%7aT>!&a6Dze;yGVq&e{6W>p9I2@+dY|=P(|rm|)eGS}{hi_e3|0*U)k1$zuCxE6#DA@m8ycH_EakuZBd~Jjlq2PUh4lCQNk0txgi2a32kf*T#QP`Gz8_Xj zpzSc1t8ze01r8Fb9N6D=AhH}-nC@!9wC3w(YzB^?G%s00ZOp$_A?)u8&5zAZ zmReyV8xmGb%NSF&!dhHnJk$!))xfoiVM~~t9Hx3Au{rE1EBxYorW2zgKUSe^H*YyM z#rr1an2lg%BgbsOCDN-K=89zmft!pD^%9vnYTUyllalN1w`V@Vdcz; z&sVqPiPSIhr+xwK87g)0{K+;7ll*zO6-4r9!^#Qd9f|=}Pl)NlK|<9NZ+q4gFQ>aP za%%rzsm?xq)m@1%GCTx_tTo;meIqY2cpa0&&F9v~<}FJ#@qlZDscParE-@aeiD|8I zYZJ^LU~Wb+@dE59EBfM3nNAE!LwrZEWxAPPeuH;S%rDQu%0_qeeStbz9o+yEl)sjzb9yyr#c-~{IT`ZM1Pb_|udIDo=3 z2=hAM9XEo=eHU0cfxANypy~)QQ8-AbI^rJJgeBJ{_DQ#n=wRpUwRQEB3h`Bm^WlKC zMjPQ}bH8r~Fzbc!u?fpkMV#XrU#f~&%_YV|6*09rY;9_}38rQg5ub+rWCdUR5Yve< zk>3tzT5jf+PvAWhbIWzGvXNV^;S%Z95c1mrO>b$Of6T1$T#fi4>=P>I=(hu!_M5c7 zkM~cc{asi&bJ~$_2Q)pV5&y40@qfd9p%T}>9nc(uN&OAn1|s!;z{&~K9VUNOKZq&9 zK|<9JL#_jn^}{CVemh`xt-n&Kv#$qOKa{)2k!Yf_#$4mHkyj(259JD@na#BCcV|r7mmajrn_>Vl6cs1L>K^Yp#q`!SOdPF)j*@_~5nl zvv@g5P+nK6;8?&Uu=30r1jTlyV=Fk~_M1s(UA%u{(wPG*8%bv-mq@+fi2F=qelW8M zyJ`*Q2g07AGLIG<@llxM_rt9qlHVIv&YXOt;E4N8qhI%@eygKfHH0g zF#=Y?$_WwRP%Wr}LrfzM5~|?%tLtPY3yycCTX0Ov)!6yF;dcas_!o%22FI;6=o-O@ ziy7_*@aAeQ(_=H4<%!7uxyF~OF}}<8!fI;$7pG380IR+Ke<$>hljJvQGXcrqcuK? z=P{iax`xP2R>t!3e;@lBLGwen6>H2*m$sBY2rElJb(9LVdKdFmzx32)Tq(VBWQo}5 zX>*_!3lA~Nq6;3>YoT~!%S{i!ZlZ>P_ylkASeg@+3Wob|TZqAM53DRB^&2fmr5y!J z)y_#mB)rP(^o)d;VINT=VH538E8BR?Xm|;?hZqen!paHJplS~4mDiZIVz5*S>Rn-y ziOoN_R#63KkL!pQzdO7yDZc5nyQA1~SXF_w{V>pRD1FvT2VD{&eb zf|ZSFq{b!ED=p=*W){9*VwPa}*Wi0A><=p6=s6~K%D3Qs6Di*eD`!qQa*m0G^e_BL zKLz`QN?Je1#7_GOyniC?$6@6J+79JhI3NK6F|5~?sb)^#AVFnBB7!eCOVTR*{M z;n8SDvIbe>^bsq<$ZQW)2EyjpRAea>=dp1_m;N0J#kpK!Jd_5L`IxoZU=Ns-F?Z|= zJIM;WxH;2_0clL-H=hEP>{b;AJK^0D6Uh#+vXMx(QN4a~G_fIp;ZQWy!|+YJb)rft^BSEnXzo24JooU5Oh&q! z?y5i#6M}<;DiCJ54n!6Ry-rI;%UsutCbCVgJ+YO8pRoa8ImsGigqMI^>jQ3bY&No# z2S0J;pjHlk#3jZ;t11ruhWAQL zB7cRIjU@7CE|FewAXg47d^bG?y$%h&8!-v2M5gkMt{m7YZ-Dnrq`V%ioH^yl%7KOS z(f*{D!#<&s)>jVfv=7JoC(=FyR!*SpFsrM=KuiS=5~?uxfopP-g~2D&EexjZ#||PN z;u}zEvHIXDI9jct);MCs^@EX~D6vf^Eem7QkEI;A!ZnOkIdD0bSVKARWOwVaoqS#= zpWfXRKAoFfujK31fbF-rhW*d*+1|)27LDnJa=tX!9rP4RL2dZ7;bnxfD&m$Amt7*i z+nEnagTsweN5m5O8%UqakNmM5SNXnNwY%0=EtFRd6TTJf(@Q;9?i(hof4TNis`M7> z!-Ve&d2~=K^!8T@-D5e7fhs3H@;agGFhc#Eha25v7O}N_t`u~43Em?=33VMujr(Z~ z^$X#JJ$6@KtZ17%Rpsrs{pwpw?F@u}iNo_MNck7#De`fSlKAp(vUBUYS-<){&@F-{XxBM#o~&x-K4xb-Zzo*F0gXul&6NC3MX%k zalb#~BJ2$+;~D%CZdz^ZTd;EGlqd7W01fbK{(%1m zyMhW>T)|=u!?=R~ig!z7`)61=d$xQXMq|6tao+Xw225gX>Sw`LEFT$c*TcIdvRw!( zXU=v;WC=_oyxgDg;jlxfSFhN+6fxe+&xhch6FDCQD`(ERJzRs-0H5s-copmkDq!)& zb-r?HT)~5QuSBv{Sa}?fWvjm$+0Xlv{VePWkZibSZIHbQ@0CdQ)39>pWT&fjca86p z{(OH5`-93?RL;tFlk$)8zKN872rFk!c`|?Qp#fg|c<<`!f3Pd4fJJpB9@iLG@PF}c ziERH3D`(Djx_acK0p8Xh@YYOXY|3YG1uNUlD|idMZzAP)z{;6Zp4NKgr$Ii|AM#1C zJE&K&_=sG~bd&LW@UDrBkA;;pXFRv%DEY)yL;V4N)R(|sp`sQ?o#`VmiN7DWfJpp( zuyO)%haGxqlb_h&{9vtK>2K>|r#E#M_^DSt zgJrh4jy;Euo+a@;IEbwg*r<-U@1bc(ZNv>`t>5enhayMP8c0`b9I+?kmi>VbyGEee zANU}bNZcQo-bRHD*XRl@GyNHcDla|t8o?i7-&y0L_;aQcLeMy5Fo_LCKPaW|$DVR8qA2Q~sMJ6Qvb@cM^q)gWw+O;47R;RRO`s$}>LmlzKv!(={Y zEvs~#fRZxmg?1)^)m2v5#n+jqVnF2aCjyo1R&B1HfOktwByF&=kx1SW)Kl9wFONU5 z5#HIK@Q$!UsDz`(pCoYJ4)2`Ec^gjAiR)nfzZL$mU7j?dxL7MNVo|OR%@g+Mt+UVwMbBQ z$L1wVq3~(f&{BoMC%D9TC={l(#;p|#55vUd1*DcSAA}ucgBOKk#Iv-P>E@ls z{dm{J#BwjJY$TR%aEbI*7v_lb(pv7)NdKLggB9=w=~rNqv~`!BcwMBaab zl{4o(PaQj!#C*dOy_qjz5~Fb|U|!t|`9liJAWZIya3hG^=flbg+#P0rRX~V|!a+h6 z5ZAc|uq+^6o5((9^Y)<$FY+ec^*EoOHZxxt3_lZ8u9R63QHfO%r^8WeO*4(25uca3 zRuSCzmhG`g%Th_4;u>SBk~on|B=Sk|DaEYV*tI$40+^gJ$D9W{%L>2P&vas78gqHR ziJ5O^nzQlliJ4{j~hYc z{#jT#bMA}Oq`W5f&-k-{8g>qq{SvLZhz-Q#|0He*k^fI&2y zT?Zm7jQ(^FVw?Ehpq`7>6^ltS({V#f;q_nsx^t-VINsh7q?(KF&^@87!FGIs-9o$g7->HBJYHijU=)?mq@R8 zkSDZS_!gNZo;5=+><=nmu}NRl40g)hc;7_IIaoP!%8?UVEu=r@PkI>k36->dLaUwj zhw=W2v_AwZC(w47)m332rUC~ERT#{19f&Lp?nw99#pLcnZ?3;TUK>2c#(?D{YnV08 z7_&8prq!|O$Wk6W;Yvf52aj`!@lYOg$Wdz*!oOi!^3qWi!W*!gtiX%EXF4$?jp_W( zqlrs)tcrwx;2jea%B!%lkx*Xd66qBQv&2Mer~HnS(QDG6ya|)QYGo>Av6>V!-@L0_ zig!9s*0WCWW<8xrj7CXlUd{S$$OPUU zxB*1o?XYqJZ-?1k6$oNNaF9?1!UtRfR~86Qr&}OQ$(2g^Ql%EeYJ}x*tXh-G7`|uO zGCMXaS;~aNT?0#%35Rfr@lYmAZ4O(j6wZWs8S_XP_LCKP@ie9rVp)}$F+JT1Vq(5hF2<^dsi&e@${J^5xLJXl9Gj&qmBVB<46NFg0i`O3iCkhl zR1WRokhPSu4a`XnP(6y+684c5b#W2XiScND$tH{~*{hm5HphD^w2=)n;w7yxv zPWuA9eL5@V6UGa8x5O0k8(7&$ANJ4YOXY5X&`^EQyLqa zi7chT`L4mFN`rH_#CRwTriejnwZUg$M#ju>6YM1`=HiE$PK-!n8sFw5Vaa~gn!%^> zeu+us6R@(8M6Tl!=@kbv#pXXNd+7I-if5Y4=ZO* zdhP+0ay?gI2~Vam?TY@NKkfg*UZK(!r_}2sFp2*gw}43e4OlsWxWnwO3Is7NI7p}h zVYTZ(WP$MhbYFCs)Kd*s4aC+C_C6iWOV%(O!+ndw=GdfUDHHZ!Nmkg!BbiPNh+IJssARXQNH_)WmY7IRgq4j%ay*wvuSk$9 z2sXkWVy1Z32p@zULM0qsK}g_y8QwXO^Tn`o=A0ud2sYN=^k;oH>=Y_%eFY(b_t$X) zh`hfFD<|-FnB7%@ASMI{2~{BMF#RhBo?kwKKn&Ow)2aJl>uzx#ucv*2^H~#agXzHRF63r^n+`)eTwBcohlP;T1 z7;&Yg`HP(^O1b>X{#?21EcR)i%2~sWQ${4w{9Ae_!Rnx^R9G1d6ZWU#>V515-9ovy zHGef6&X99zgS|@DG292xHwMNJmTQ%2o#nb(&>PkXUHw6>JlyC_rK>_(J=F&L z$0odnD%BN*T63ZZir*E5$nxR_U2C^pGQ7OFp=_7Rb|cwtEZa?FyQyq9lkGcXySZ$a z$#x6bZYkTXWV^L&w~=k9Y`2x|cCy`GwmZmnN8Sd-rtvNTGwBD9F!3!e7!C`*_+MPb z`fJS5sxWPN=XhogR%FXt9<@Q_7(SvLP<2}C^kN6oi51ulaYLvLz+5pt3O9gwLwE$N zY}^p0&3kIIAl5)%$cEwx`h3_MRM0c{lc1*MCgF4No{5B4!^)Wxo*lm_(Kz4c&-qKR zPpF*5?$NmYChc4C{)x12ft53-JtJ~^sG)w=AN4O_hfqYsEox4Q_TWix==lUnSggp7=rEAn-j#8_73%_lPk-#K{4M7}d&<;?j`YdvGq2p{NAct6-3)GJtgi?C(7nWOi{ zyCyQ;16IzQ@f__zpGNvjf6`^xDOA#8^;;W&$$KSk0FieeteiRT<~3cfYNS8qPx^Y; z9aPe>YnnYSHuCnhc-KV6SHsHVhjCqF`~!c+--F%Z#<*@Wei-kX$oN56IdjIdWZDzE z4>ZpI^5^_I>=G(xu|^Uz-(>xFyn7<+S77DLS@O|dQBUyE9A zlHL&Sok)5KteiP%>k$>l_#-|Fb_Mlnp2`=yL&Sq7+avI9iEIyrl{06%z`7qwyPVJW zXMGOr8Y=6>oV9frCi~U68ASF&uyW??=bKI|lr{8U@<)Fw>=`QhMG5HHHaqEDwMKRe zZUvG2&9L$~B+oVsYUF?6PyQ*`GoIwbZI1@|CvYo>508y zb`Tt;)~qsyN856fV|!vPFP-fVhpJ2->ZP-NxWpP>I!kT4a(g&rEt~Ygoa6x29_0Y` zkrj3EIHnWhA&<7@po|G)1>P$$iFCor#)NSymq>3Tx;)y}!uM)siRaejkHG$*@{JyC zYo~lA-ZznQ16IzQa^z@R3+V^_N#76qgi2aJ+SX3{Uc7%I?Qg)!3A7z%byXOMslY)( z6$X2{4n!6PpH27e^Vv1_8epx^v%0OT9)vG-#fpTry3yohjkm_gub>5`AbgMPEcQO_ zh_63Kez&t}e$)Ec{A8&Y-gd>K>V^MsiSbY`%+W@#l@6Q2^yD?AN{5Y@#Aw`z%w{?< zH1hQ(Z2;!2$OgCp#Ei2ZtZZbQg3frM*V1JlxIP)9CnTMvM-v{#WJIH z7$*C}aWjbQ4}q04XTP30JZ{bW&-3ShHtZfM{|)$BW8zTE7+8gyLX3eySUDjE9Lfb% zafr#pK|)m=|8kwuWW}*xx+msN7%Ik(!@Ca-SZlNqj?(X~=DG{4%BYQ4Vzhp*gcEeLYRp(qFn2m-(As+y^;qj&15n(3Zj{-A-~JoVQ5sea$L ztE;OFMa9joLrD}BH&Th%q9VB*Gl6ti$tZt;0cmx_pJ5Lf83zv#9f?L|5{)P!CElob zS@9>lQOnrzB&@8(j>lXjMC@Q=#w&JQ=VJx=lK-}3r!mI`BXaDRlSPXiRoHweiP*6Um1u?7K{~9&j;&!pTI|>o_K=ZrFrVm1G^$fAe6}Q)4o^1-{ldC;eq_F~?t@3< zcjr@+>y3sdTser*@FF@cI-VOGNEot=ysG0V6@b)cf?+h!)&~~Wl#bW_W1r8FTFnHKCIPt>Z9jCf* zo@-$^F<0)+7t3;4xC|bt#$jf$HEAT@L$yKGYAGEVo)u1V9af?|_$ifWh4P?-_gbkC zeht&oGRXC?n~cDN3yF?|q{6p};)9GgEaoV$!5g*=C|ASET0psyN+ee#OlL0!&6NL2 zjKQANHOeo-F0rM|meoq;>vKxaO%dlW}5?P zUC^0N!A-Da-T^DeFn7rIqF`Xj!9hY43>DYG%L|6*lbuOu&-amY5i-&&;&1+IfilndXc60J}!Ok$l@s)Zq#m6k^ifW2hI9qdnZBqIFePY#Q> zD~g2z-mYaZSqv*{!K9x`Bv&l(lRu4&e@<-itQF3IJz~o^dh%x+=`-=xElHmSE60#_ zi1{LIupr?eA=1XTTsy+k#uMYohV&or5VL)J+&3T2&za*h1DPdK()bJM05(XCBdm#E z;82sL0A)xSe|F^{QpTUCL@bOXC!oVFD+yysZ)+j zKpRLe^e4SH>=R?q4)i-&oq#se-V<-%lJ@Sfatv*UtS$-zmI@psL}BoxYjEO)!3)Vg zPmb#)C#)Sc8lGVj&_i<0f=8)wh*_LW=K3%hS}dg@Ls@XT>u?ff!6{Ut70QAMq{m8C za2rgC-!9_gnpX znXj{69&g@~^$b`!hP6XB7X<-J0uBtsNcYm=|$P8ph4JE-It^-Px1iMm+RwxPDLrO|ba4^hC%Nk2y9~n^xeMCp% zQJX0+ZR<6Rw`v(gO0cpPM2b`*xuT#pQ=sv^lvv_f6 z)G13d1sdtc{Yn23_K7WNeWt)f`ww{gmb4#$m1Af-WOY#(uvFk6Aqs zj56Typ4xjIeu6MR9r*n47~-qQ`NY79y}@<#JmboqbzQ_=PPXTj zY{Z&_XZ`(+x=Y#2P_9_08yc#=IA7mZIGd^ejCHsxB@tYIKqbZqu8D=28pA3=N>GV9 zm%t494JIaHFNB?D90tM3L`RM~(6-t?$IY+|Lg&EBS`a#uN+kCbwg#KuG~NZu2zZQ` zhTX;52zUf`knISVOZTT3qci%H-b1)CmgC@lSUL4^@EI}xX)_j5AVauG2_9ZvJk}yOE?Y^qBuF&wIjSZ*)-XAzO^$0BE?C#>w2^{ z*$N)X#$j0LtNYYaEjc`DlhAl6^BJD|zD_#i`P}z4D$xq1NsVBwG|~6|?}iC#d1-&x zXU0Jg>_T)TK9!hLAB=ndFT|~|3_yFs%31*0lS(94n5-U?%XR)I63aa6k`rM6*z%t< zR$XEo1;^vISdM~YVCB?D!Q3&*5`84x>OT^0hJ9o^5e>-rl-!u?^zzj3q_4KF962DnJ1g&!^gq%QERq=qpT+l0cr79w zK_}%nLk;p@S0rM3zc z2rFyxWqB%*T+Okv$Trd8uFQk%M6AN@QjPfzuy1Ucucl;~Xg~Bv-tBQaEa`6pE631x zNDU&pupr_fA+pOmuAz))m)(<{j~`#o6}qJd+#kck)i~CgxT=YoEQKyZN;%ebK#7!c z6qRU&l+qq{SqUq@fH`SlL`UMmS2a;kyjAg1?^3)~%OG+QtgHo*^QlB~ zDTJ?TGVpzdSmK#Bo`U^h%Qw2J$xQiiylqR$e}t7&ryN<;WFS3hz?<|0BGHJVP`{Ja zRZV8vpTgU>r2R>wXgg$eQ5djP;2ak%;hB zKO7csR}=_6c)OOtBm*mJsbfDXkz9em_tP*kK9$(wSt5+W9}F)^8qD_gpVl7RwxqM!!9c&!slU5 zyn~`d_$=%rBkEul(UExY83YQ7w<-#Rxp=FVL1YbBSqmboQi!1r8FTF!;c;FxVs67uOTZxxT`p+>kVda2q^Qjl-;oTXx3yp0;`p6DMz>Pj%D3}H*d+h9ac`Abz}=~Gw;p)d2b54#g@0a zg?B9Tjd2q!nQsIu$1r!u_M%{5$-zNF6bv`G1}Z+2a6_`M9H#W z91M?G<8Z6=)LnG%`r?6_&MlYHl%aB1;yS)W{0>+-b>=IHHxiK>MdALwKllH@uCe9LKJ+zqLudasZiXfM zH(})%_73HMs3?Z16%G=jqA0m`gjW>jB>QfnbGv+YAX^wZFjtmO68q{P8mx>XuCi0z zf}-B`ERlkv?x%WRCRSrlS$r6Y!eIj{F-GCgj4fK`RWfz`6!Amd4;~}GJ3o`pvxDNA z__~Ph`P@|faGSnGP4m&BTp?4+9Yl)iCU&B`SO`X&2)esCxHNni9If;=%~9RO;lfZ? zp;#ckDmK$uJ-OcA(I!q}_T<=UNKNFOE%kPfHhVYggdW(McUUxi*-_cAX(P6`lwC5| z%-gQ7lPoC*L-4=_Eh%sEH9{px8r# zURTp7^EF3JOr(YElA%oRP?$)YH(0APo=qe{7jakWZ;urzw4kD_JeVn!bG=KuhO&in zk$9_l_uZ0wv2STJQ}sdFq0DHOZv{ASL9h?0ppPD15bVpZ3;A_Fe(mDd{rNS+uZ#G# zn_qkQHOsHP{MyH_{rsBa*MMIa^J|`82l%zXuSI?xh@3@GH|0=MXzQr=QNGUGd-LaC@R7Pc}}alZ{o&^_hp$@RluS9+tt% z+RQ`Jgvl1(+ETUqNjE&{-V1xe_{bmVbUPT`a2X_bo_Gs=7v8ER**jq6Rv@cw>HNMw z+5facR^u-n6_9)6MV#~h9nnItFsxKxqzHNBJmV7_@|Br8b_;N*oyOBTK^>H6h$`#0TXMvnRePZJI1-w~Hw$H)Jsk5D2UB#f_U7_q< zFwZ0s%_*4Kyhhb>{aJS!-m)d(PFOj0!V~El5(V!!{PAu9y8^p=+0qy7?%fP;){^Ze zuyX2bJNWV)g>J#0?qb*(wshIkZgt&}#WWmTcWJoyodM$UJARz z7BE|XQ!`zE)*Zo{wq#s}l~ZRNvsuq&{)8`voncFuJr7lvwrdgk0=!{MzURTpsq;0R z_V9#1+(%(g*urJG*Ss_Q!+5KfWFLf;Qztu9`7lC>(c^}_3#>LG(VPNn1zJ2S9nd57 zM=%xJm69L8%Bl07NWV@|D6j8NdEKT_W-}Y?qZ%zruZ=frc`ttfR!*I5d-!3Hf_9-l z+Pz^S2J#W#@nxslB5s@2kGREDjzPInz$Vn>WqsKgjMVvO6d zt?i44j~+TYFQ}~1*4BSRa00n391S|+elRWW2lvd4kvfqmR;EjRS3=8eFf)E1iOsZb zft_W<9$Z0mBrp}WHdiuVuMBR&o41THH^9nTjJcLdB=;HPDq>F}$!!YtH;7rD-@UyK zJI9v#>a-$^>4?t%72FU@{x8AGG5j48gvc>0kT^()9CNa3M|h6eCfN-eJH(7l^q8o1 zM$kcP9C68f$3Hn!=QA2{6NBV+2Pw}B863kjuq7@QM?Bw7An3$Gaz70Fd z2tD{3(UFr&-O0gk;Z0ixmhE6=EwF4&C6Y@lGubAGwL4QuCln;|5srF2TyF^PVm8ZyfVW{h40`JI0pz%1RMY>x9nzeB202?&reFG29)pzbGJB zqHvH91;m=J9pMGUZxSvbzR7o&Dof9&uaaJ1LCQGVDm&KQYN+1sjMdeb<+^(_zU=CG zQ7F7XCB`TenzJ`!sjio5UZ}eXQ0+J8laJ|py1IwUL&brv>i_NP9WHba<%(nvzrC8$ zXfQ(dLTirnNH7@P1*r2twhPb{ew|9M@a{PuGvtX)G0Yhgi&87BPWpu1hFVp)3X#Cd zXXBk5yi5EfSA}cRyfJ2X^bE2hZjNOJSsqr_GDy;6VFI~Z6yiJh6W<ugBmP{=up=<8VSLrN4&sekavgw`W4Jn$Yog*~8Q(!d zRD935)*Za!o0M$DH>tKyM|8&MdU$*q2UjAy57(J6y2f>2i8}CVDltYKm{_?Gw;#+? zFfV@hh?fzM!+tU%4}M2<pz;8fNN&1l2AgfE-jzz;n6SjV z0{j$_Xha35b7tpC%J%CiJC|76b>v!I7o=X;Y!!x%L|8-l08kdeb)?G$1otx6CI!o)(1AD@8ut2 zmxtNqkL>aoy%=*y<(qXUBkIi)m6&l-BC5Vks&tTjQ?jLOp*uSoEF&-agMu=K>f6o6 zP-SL!abPghO%7nnlrm&iWw4(sE~biOlni4|9aSa{6}yK@Sz_NQ#J+H)Lw%DfQ*wpw z{BTdUHfZ$XzMPoPkzJC=CQ0o6{w3{@*hsp*jxjC;KO{O*NU89R zN^AE8&n-ugUt~>Rg*QEB;ybRUd^xPlozs!em4~{Bg9f;JlIGpMNMEV>BI%6_>frX8 zL!O5nVoRB=rw^^JRyG3gvv{kPfS-ny`RIG9=8~kzcGd!}awkt;>Wy~_k%&IHH2Nm4 znXWVLz?-&Y+zu`S(4-K6pD#v8WeyFaWP!&f{u){kjSqSCpDl;PQ-t}vBLj~uvGAksy@ zYsNX5x*}LJ*(LQ;cFq)XgTwg@Eo`In*Ow7{uxi3M+A2HOt?uhRhz>+elxoN7<7gmi ziHluFl&A_XU?e`?!Mw12UNGi^XK-RzI@mvR2B(tW51%x%bsZITMBV4j=r7ODl)K90 zNvJ2=Gg?{P)OO0n?i?9RBiXKUcZMvAXlk#9^4Scj!#5zkN}`<&6KZFpCR18eDrS1R zL(i4_GlS&uxYF0eG11+h?Oq&?hJ1#cnpOYQ)aby)MmbsZTqK9$Hn%s${O~}5+)bJ8 z#iNyCGyPU9bdz(*drM@sQ8|0SFr92`s{eY*gXE#Vxr}7?sC-PFgW+I zMrH`}T|K!>UoqTB+G1V5M^hv_lSAj4%cVD;8_YNP{tVj~CS2+tm+0ZFVxF{6|BO}l z7W%W9kzASN(&hr`PvB>4U|jbzE;%DDuZ94;i+J<_SL zZ`DIVo7%nMp{`86Sm^6w1F`;bt?mP{R26t<8UprPVm7b!rS`Pf6^>Ofa`YCH*g%`Dfdx9dO?*$fwQq=N41E*8q! z?&0wHw7Gp6Ng#WVuoffNEWiGlU!UXG=lS(7{Q3gFzR0gH@$1X{`d5B^ghTZ>3E;@!}%iBqIWy2^CA#7Wq$zZ_Z< zZ`*Q$c@C_sO)w`-c~*w3UWiVjDXjPKXT2-z7317)ptGLMS<5}piSL42U`c!@SUGj# zQ!=%QOojCk{;Us!{b9?R-`6$Ub;^g}ZCg@a3M;n`~ZAtlJSh;m5Z=_Ow)}Qjzus_@=lNS&gdFLd%Z;#OFazYbPT zo%|%WkU?SnH-FZz!oIL&%_2BofT2b3m+^Kj>AnCfw*uX8@r^=vr9-?c?iGkcb1LpC zUAkyUqdOCC*OKluSUG*VZ1IjlcUynD-++CA-Mf6zkw$k5yj@GWo59Md)159Yn^GVj z;19U~yTleU+YVYXU(dpe@#ZaA_ruDmv+n3+>(&&?=lD}T6Ly9zW%eNiH(cj?8s4xa z-(|3J>U<}$C4&my`~C6W3;V(rFU!MxsiPLD@50-)q;0h05#L~yLTtNX-mdCz{;sJp2XIMD}WF42Yd+Z3tPY}^YS(A z+8w+UZ`YFU2&~)+bPe+xSNhYv4E6;|*F3**G2X5v-3wsl)aj1Tt*_j-Py3U70``L~ z*@<)xnta2d-LsG4ZCX-&7*^$6a{Yk54?-2aYUjyMHS1sHPdy*ZFtj`j6eGS zkMZQ{CqN3~jrkNbI2u0XbD3co!(w$e^EV;e5zMh)vR*~Xz&%XPx*;w@VeUK>_U z{VtwBKEG1n?(YwGA?yg-;LLUp55F1HqVwK(qn2Fvgq2h0I<5LGn&GMU1b@KC!yd5( z%-;D&t=CB(gST!;`bbzgbIa zQ)fS;>NNH}nF9S)f9Nm6KCy+)wtbfE*J;0iw{J=NIaoP$+O<1f`T$pfzQSSN)%Q#y z(VXgAzSE^{=~WCgq2fgKVwk(5?X=&4S(ocz&-)*bjg05_GWndmb5p4l~boZ zk$#J=KrZ-0UJSd!7Bbr`k$pnX-6y`5>BpP3WSfPRQ)j!pwh4g3`AmP#r@?Nq<-8)T z)wC|?_wzE`1WV>8!OE#KZx8oLP%z)?kNGax6SkPyyGOczgmyRIfwyW&_BL2Kb+R*+ z9WWHg|M7?XHtZBz$n2b6r33n%{3dRICGR(2<`=H;` z7vMHnQa=w?PM!KBw)d1m`U!v1kHWsNCC%<>zGs$pPd|*eYf1M(Sh*GG8de95JKVeI zY9kWODY~k3&8vexf*Fi`n4#Fm{R3DzhOWbb0O4-_?DQhGo4kXBI8)#}y3ZJL_7d+1 zKT}{@vghGW+^tA9872EUMvoKN8Xlp>;8FQj-Aw}P9Vbxc)=8U`8BP+|622k0*To3j zoJzPJVds33K>dAixew}Yug-sOey%W*Es-PovZaCHA$C@T#X)muEBWk_@UM(Ub~NlI z9t?Lh?4wtBhraJK0Erzgyn^m1B@Yi1i?Cxg_^1*)^_6I+kZ@qUm4fdQ9qA^hu!>9X zgI;kJaT_diavoOJqIS~MJNUp=P@hkF;)(iP*crB{*_UqBJC3_hyrnn`Z`hLW>9BGP zUx$<`vNDUz4iX|OZ|d3+o|QkJ>`6c4db)?CjQj$z9~+*=u~pf%Zbr^$mS#)ky2*z9 z+WgQ?DJ&Us^K-7g7rFTvDltZGPAq9mAU#$>$M_>qHd>Zgjz~13o_~w@Ny1TK%ML?K zTG;p)=3-mSe+VmUVdH&9JTb1F>>PKU?gsvJ=QoWmTNGY1U1z)w-n3jF3ArK^%FWSQ%D}})A zFdTlHh{wfSVHX+s23Hat2}gx3jG&x&tKtFTX1rC)$Z;dAtVNFNTqQ*0V57z>a*X;| zLCziMnb_8b58HV`$ByQMErV%sKR9uXwzkUbOiyMoJUOGSD>Ks9))jIm+d)Ss`92{% zYQ!VOq6R-wR4oq;ui7mQWkY27pDP^^S^i5UViCbMb>foBz1SqnTXQi$J6EH>6YL&y zp3&)ln$nN$ie9$vfSY1D2DXQlQy&9!M2%m6930|54wk|$vKMff$h<<<2Uf2HIBH-c6G~+ zdhZqsp=na;GE^47b{#jOvbf$=LO{R9Rf0p`!wI@`^*MDQv!tzSxDZyI zf1kSeu?JXUu`syapm^C8hZqzuP>EJ3H>X9ru2dS6kMyoICK8E8)S2%Rhe=#2?1Ss5 z^?E`XkGF1_P?m$0wS@998v}{WS**aSvZ%)t-e2|S{bkrM#`qrSyx9wHy$?F|4R9MQ zsn3U%Q>VVNsKLe{-{Vg{1N+97{Ax-q8SRHoe?Qy~OZxl3$}#jEDnL<0vee-qA?k_e zToV|tCzeZgHfvl@uUtf40FPGVP;30_aAK#Fqzo11d9H&<6c1-piB>2cCJ-`84!Ij< z!*3EX3w|f;A|u}58lofNsJ;#-n0TXN68v_&QOmG#E3B-Ajhm@Na&uAD*Wnu7cZeaL zb5C!O{`bNo3~`W z6097<+98LFGJquk2MJLIoZ&iXc^QyTwhZWudzIA%4_0GDseHe|lM28atbJX_l&A{6 zPbFHRDwrZVt`rAHz@+%CBZ`B=U{4ug2L+-d7YF=|WbxXOw=HUfL-4jOW6DxkS&Jzn zR3f<=VHSVMQ}dU?`f6g2XQ^-{>=j$q>|9l~2YOX_8E%0k@rz;Q)QPVsrV?WB@Mrz0 zKMi}vmO4A7&(sT@{1dnpmgFCWm1D>|B!5vquyo-dA?kiDfK06;{?_(WtA0h(&C4dBvh3A1g>Kx+B?G)X`Ha4i<-pl(oRmlU_6; z^z7B(&?Bss2C^a6JnPCq#G0q6L~N{aSOL7Ot!=rs@K5||?R)0Ntna4FxI1eOP{Pco zjzNKGVdfLqW9BgPPog8ysjzAIn(2Ct^FO?4%eeAiSXqlJ?^226YTKD?5~AiVh4gy< zq`yQYuqOdq(rhC}r2{(eFX9GR^8P%moI3B>V)`MD`M&1{d>3( zmfUxPm1DR&B!5vqu#Dj#A*N8Ca1B^|3T2~YHzpXL3qK`~KDC?)k5%J9Yxoz5)KDoe z8LEcUT!)dU8kSLsMpg~3#X@`7WhHz37N(=s3BQ4TWCR>sPIM$5{F6iqinl5rJ${Y1 zY8g7Nhn2O^aSfG7u0)u^GOU5`--#ty;jZz04fcmEU-mvt*sdptzv69MQhpIuPMz`$ zky8z%S3cI8^lT#0h&oWeli8U#vi&;kS$O-Fw5P+$F|-|WxhMx%DsYex<-kd;s;;o8uUwtSd-{TWGXDi$oA`X!}@spmN8~s zSXqlPYg38j>V_5Bqqyudg?Trz$+LpkANGtbbGCfX)C-;bLfi^V@_WO|sgqw-JerS5 z|3rWKC&1pZrO#F`#PviU0mtK(SdM^WVC9$*;7}Zh`hukq2MJMMOm^)EuP+WucDiBW z9z(f&ZfL1gSNwtW0gG710oQ=T3Wm9LQlc`H5D&O|U6c^_QHe21h{tk3XF8^SFd z4Jzc)e?xFSxi}tHP|4OUy|@eNZXeBmZ+?+%QdcZw@?Cw|p{{H`JCH35jb?&#mVAns zydZdobn|HP-xrbp-tiOiC%BmW+k)T{`p--0Zw&`ek~I_yf~V*|mxbMXg?T5jjTKfj zbwf$4ZO5a-R4b-Fg2#<hEfrkLaP;1DR4^j{7KbrcXDyC&Dv* zdiXWVuf6=*$FKeTnxj|v?4R$EzeZNWCYG_Mh?_*o(}xgCuyRt%(@SY*{LlPZKy;+A zS7B4=!gf77kKk=vX6G`jtYzn4+!ci(y|FvtytWX6NtmFv}e%UV~kL zw`)oFJXkq(x*a?qDtMpp$NMPk3|qYXBqyHjG`0a9GI6yBI`Oq}3oMC$0ai|( z_zbzWRd_G-=e;-V6WcqSzkrf!b1kCpiMMY_dv{nlb=tGkCk=)7@&3GzfxTkOn?-cB z2m1YeByNEv@xx)|7~&3-TVj5U&5}4si21RNT~iaEAA2O(eIq)_exvLN6=gH)`{40v z9Bei-K+vg-;r^(6?``S%(J*axx9gY^?;`G`5@Sr8CHGV>I<7>PH(*ly))7k?UWYwp zgdIFZbR;VLsb1Kw$COv_wk>1IOR%yQQ~p9FlAF8X`%VdeDXdqict01cNF*BZT%fa# z?mH!Vpc7vnx4@G43|KjJ;*ou)gwGV}+xt`B2KJ2Y9j@*>C3>Ng-wL zvKBthq7uoK3RC&VhvEIF5PqDP;`tWfkFY~*3D2N}BgX4#;tzP^mYg4el~d+R! z-OZmm!JG9buv2VVvpqDF4(Po9hZ|tY`@gVq3~z^=F3JLy5F8{#S#XGJM|fGVS+dJ+ z#I(Xj@)=p*fQPGbtTk;~ftV{LBtwO;1?d9z0L90Ys1P=z60J}nOsSUZ8}%qjqz5L& zyD6p>GO(wNu!HXq9f^uEtw5mhwneS5AKtcQOxXuk)?&(DR3f=rL77(2SpSUJ<5@8L z1onz8YtyuXiTICk3oMBr3oEBi+%T=6QU9$!_20mrv85h2tzaVmYupM;^4G)4G2|VR zzo;Krx^R#X^}{Bv9pUxE<;i|++0J&cmgW^cB3;0OlyR)ttQ*DV6$(Sy(qP@P;R9C! zqHK7NO2n28$>ozt43APV%>4-ph~F%tVpxMnV6~NzaWIAG$Q1)ye8z_rZ&y?ctK#ii zMv#?YWi5iN;3^>^2pc(G5#-;l zSMnlee4k3h#*BGEGrp#p*YHyUv=igW>+0q=LbeiaUL(~fudoq|PXnNwM9zZ9$R{c^ z>-?vXL$kC)&ooOre9+&u!EYGC{UaMM8gA~?q|K*8cukTH*)>TzMAvBP?7*UIPq@EF z;{k>n#58=*FCx0(XoANf)c-sdJCi>ACN^?XP1oXVsgTV#-cNJ~&W3wGoQNN7)(c9D z@7kbTz-!*h-VKg+5qymg)79kIjPz2~Zbo{kYKJjup9VWT)E+KW7r!NP4%2Q8?m}q% zXl369tCq4o!`<21E=P?vy3~}rJyb1>Hhs&dMmwWCL_%NWBg!9<=Zo+o$|L#pD1JSf zUytF}WBK(sem$OFf6T8Hem#L-f5NXn<<}GW^=JHg62G3zucQ3Bj9*XT*HiiRG=4pu zU(evzGx_x_em$FC&*9f|`Sm=0{W-s$IEBsOD2>EMCeiS;}@BpPu-#koA!k&(` z>6-^>ul&CbEf5{)*_fX)X6S_e=I8gg5tef~_rS{9Tu%DjH&kEreMEZY$^8S^G3IGI zYwjddcQ4}b_ z%+uoe5Ae1vDIW|gw+>}3jQ`4?@-JY2xKTD`?JMxMEh%3LE4L11ZLP+0{*<4A{ozL0 zv_j)4ylqR$kHgBTQ=XuoWz>11cP%!FNHnJwn?zS^hc7p@7(D@R)ROC`VC5FzsvSzP zi9gq`z>cuJZ8=vmpQCZz5O36y>w2(q>RhWQm1+f6)}QVo*d4ZXrISic^;H+%v?b$x zVda)#td&<%Z!rs}GKH*LxII9R!57;DAVZT^gJf!*Q6*i>8Hgg0%;_y$-x zea5vH`O3t{8~%)6huwiOu9>dq<5%#eEg8QAE2qwQ0(o<$&|T$c-u3f}M53AXbNCXG zyH2b-T^?`LlIsjuId!h>#6=q_V7K=NyAA9K+uOE-J{W~o>twgWTeT$nbyzudva9xG z3)xa;DBG3I70SZ{UD*SMGvV&|3hlB#?LpW(wzSz99dSL;N5BAXiRB0gVCB?Dz{=(Y zUkd;8{P~{^`^J|4YV>Y5_d}S9F=)Ok9e$ZAtkeSh;m5 zYp*7r@u&P0><>4}rgsyM<850~{v)j1I+V4S6O&H%F1aQUiRP4C^1W<&JMk&JZA;3Z z{QpOJTJ#ehB{hG=pYw*euUREXPN^I{w$fh8_70bFqk+C0cP5?th+41b=JoK_ElGa~ zR!;qXo?Xb2b*yFSBS!`JB7fjruw!h)_sSHwp%XgyeQ_f!xqly4PMv#u_=TGS`ltS& zE3hYQL9>}I`duD(o_ITT9NwxW*`s0Q)X7elzA{u0-{Oz>CfFsmh-cAzSu$V0i*LZ2 zw`6@SteiUQ_VD9O1@Y_th+ly{VT+jE#q>i}?Jj-^Z`G3QUts0b$xfu7-708T9Q7`- zmnRa<(H){^a1SUGjJGs^i~xP=G*5L|)0jX&hAV4v9Dzx=>0$$mXX ze;se%lJ?hN<^n~eDu)KVA&dNZNb&>*fb8ThVL&G+9`c&Z`gEbL2 zo%5HLd2{|Ek!VC2uiwS&AzU(FXZ?A+c}v!xg_UDiJLGUt2CyXHAR)?ti(LmTF9Qxr zb{pD`-N-y}cYnCCV6+%m3=dUfJgMwhcPFjf$kO?}!-ei}wQVLpKm5<^lEG{#H;^q1 zk^fPy*(YTkLlMyLI)p?Kkfjo16amfHjMicY*P0X7vv$|~;X)}hlFgG{412OmMl-=V zOFq@MkZgqYQ_{zy$$wu&{(Hwy$e-Y1@^1@*OXxo@rN1>CJUO?G{J*E@KWTY*1anPd zRnT9sG^xNKh)$x6-Cn4DaJjTZWVWz{*-U zd7DZk_noyWXpzW z?7eqeb$8%s?QkkQYK=p#+4~t!&J?=)i={$lAUkTPA4XkAmZ%?oMkQLIei(C=#mz7; zEwkJRJIjbXxR~h3HH6hFi|g>_E#u3tU}Y`7{DMj(S4YfdX;@mAqSO+v5|gm%UL*c8 z>=;|(EUy?kq34wsa3d_aKL;zP&V3b;ipOHV!l~ZuXA+4<)RFq#zB*k~71I%&|1{hX zOa7g(atwcmqCnIYEP*&kh`Qn@t^=9Z6_cInilAf1wze;ZZ)xWR74n+4|AycMa#=VU zOpE)$iR9;%al2*Z*SovHqtzH@D%&<-Mz{V8-S4=L8c{Rs>?$FU@8~MQk+0iM-m8DS zLkz&UIgfd+%*WI9b89N8(nz|!CM{()HHSsXq9`@@zm z`!Y({uGa+j;cZ(|z8h9fo$`!GDW#MCpFipU!alJj&DL(p_Up9Y#oM=}{SK@gL))Qz z6BQs!1r8FT92jx!2rmZ?aeB4yTn+4;9m+_rqBc7XjYq~IR@u(G1RMxWlk$xr|8GLf z#U76MxDomPE3Og(`i8C&9QqDU(4A|*&df+(TUYqGl=2?3uR-vedERNAiNqdP6kkqwk;FM;jprnNPa*i zk}D2pu>yDAl<_~Wq_IQ?v*TG(~WzCMeQG1}54!^=Juq6HqSUGj#D~duZmio*7 z)L(!-V@rJ%W#&-yLMQ(mZiOZJXJF+R@(vZBC>mM1aF7u7!+x$E;q}9{$<_}u!_%$W zqDLP~CFEyMN8^=o*d=hDe4SciF6oG8ak&PSh^-|OOfu?;WJ;3R9)_kB6x+b=GI9?# zBsy|IVSA?9R=5S0q2}wbvKDH-<|-jV4I52fp=MPdE68E5-%d8vOxr0J?%y#tlkdwe zD#?$kN0F{zb&+wrRd(@yRLxT(yQ)S?gV*rTdW0(j@r-g9m57Zi^MYn9LZ4UZt?Me; z6?K=Q%fCK9(-RcQ-g%>ye3Khmlo{&o&-QeYwYb^RXr;T!&2<+Gz4V2C1HZYtY%CV*fnmj~UQ=)6lZf`JC3h(RM zP2KEtP%h?2NC+wAGKIe3e1?RPW+(0NCg{!Q$bekjWOhT@Lb+HXoy+7%Flly$HB=%W zY?9Mbdcxbh`B`UZsEgm+L&YxE)6q({*&b!7CdcdIP`S$gjWV*PHnDW`6w*zuv;HxAN<6`Smt_ zy`5kGk6-Vg*DU%0=vm~ik%z>%RZ9-9Deoa)ml~J0(G_eR{DDE4%y^BMfjt>&lNo=d zJ@NnabCl>v&x4gIbndkJq{AB)`xU;3H*7hF@jR@o&0!?Xce?bPrcj=JhBxI|L;{=P zGfp7{I%T$!UNT>w8lR3gZ^?QJteiUQ_V6KDLA55vXiS56AIm;Kixd+4O_ZXX_&5BuHU;kyk$$my|8lXgeQ>a90l%K{%}u+9bpTX zpBhePv9vq)6uePOt|!CF>2oEMRSMVp{JGu@I|AbxP8@1n@5CFma?c< z`CWg=@4#NMh0NXtsy)z&zlB?1N&FwMa_Yo8h`+*VX9e_U&-AXL=MstL)X?lni5sr- zT?22}lJBapa_W3nGS2oZw7=s|duP}+wzu`FwBRy!LubDuZiXfMZ^Fu{v!88v<)V;3 z)Svu8uw!h=vu}_MozS@-h#O(aeF#=go%{0ITQ7zB<^I$!f!$(DeMNe|YhBQpUx=Gv z$^7TAa_Y>dh}Vt^>?i$UKL-257B*WFE^OB+KZ3VyN%Q zL~}|tHWx-;Q*-Bu8SRf@|5q%@eh4eakX^P-+j4E;pX6R$bcW8NZ`&2l8~Agc-!#r_ zlewDd`fa=p-n1p`d9ZQ}?Bp1)WL)N;@ZQg#_dc*|Y~wa7%8lL7+3$s$Vaa|ESUGj} z!B;E}xr%rrwbxEy4`gDKNr@-E@ zCCzHGs^vQ2lkt`<37-fnr%rfUbSbk!`EGy8cfuaArOb|?k6N#jz8!DflJu>xa_Xd~ zOUuX=)bIGCehYSqEo!y^R5D*@{SUl(OV)pbl~ZRu+pvaTAwKsU?^1jXBGH^uoV~_0 zbVBF8DsF@&_myDf)VWV$U+gKUclJlUBkT*?o4b>~yX0RQatDeR9^b^>HsP zyNCyrSaUVZj^9>dH?=Eaml^Q~XA&I=Plcrw6GkoYT!tHA8F(&+m9@Zg0hLJZ<=bj} zQ!;)0EA*cwhIxK1_B8AsTl$}-nI^U?dTH?lZi?j?cobGneGJTrY_wK)9CV!PJr3H5 zL?enzJqoNz$HAE0(Z|9#+#JiX&;~2Vj0J}(LKGq_$v8-eLgYuTgPIp2rDV77@7!&O zY?V+R%5{^iN}{{?e+wSG#t2l|sqQD!bx)U#SSV#OL!q&q>o5|9#@19~j6$P1J0WH2 z`l&4ZP`6f#{O_)CHLp;^Y76!89GfCp8{hM}A6f%W@Y}iEeSkNX| zKgd=p-R1Sff#cz@UoU##_)U|(Q#`Q(O1_inshOS*T$ z%Bj=s;1e_o-v9dJeHV6yEnc>}NOfjOeSt8M# z@|oq|n(2D}or^bZ$#@M|Id#U9LPu#8^ltuuzXSWi_7-OOm)Wh;-5GD!lJ1VMa_V%$ z2pvugEBEgY{qY_OJHr-lEke^7Z7o6{gg0!-_dr-Vb-t6Uv+@eytNa094tv8EFq?U< zTCU&0m*6d1621^tjv?%@_&}^*VDGLSB*glKEnO$#`1*xkCcA#2BRjAt+tZUP^hv81 z-hfA`afns+s{7_H4=tV))=IBT3@aI4cO6h-CBrLJVvLmxi7lDzto2)oCezRNF88Jo ziAI!r9};g#P%5n4tC_BclMcLT%W%>TD{J9o9F<6JdE`vCrm*HNh4kjc9MAVzo5D^p z-qe9kdWFcM$XW+<-W%fvSn}QoR!*JwY_WE*<}!tO&YyWN>=;|-Y#Fqn6FT>9+z3nV z`@_mH+#PbhC>vO!aF7sX!%ME|ikA(48c+7h`gn(!vpM1tmGk!(;>7w5$h zyj7ZYVm&ceN>YZ(;Ud>DB`SyWsYEP~dC6s!+KKfWs85>r!=(7FBfhb?7xt79c5oxn zk*Fvq))Q#FZSgAoF1&5am~scKti_bus6=vB2!m z)DP#n4q;wD?49iQn-dlkO9N$T%Ap4yt;PUT*}m?SL%k0s3e+|!AsNbqjO)-5Wx{?` zVvI7OIiE`GS=U3<19d+xpuaVr9;ro+4K0yH^Nm&RD;0+ax$@o(wK-QH3&soGSuS3` z*hCzX-+;=}!*53|3Ry^d!>D%sRqK#;k$l6{RmzqJi-mHNT*GiO*F;vUA4_h8aJBkz z{CYgU{+M4Y{CWbv{)ArP)#nG3zn0|c^C{xqP@e36PAu^($j+gi@n3&lCOT5A|!QLkB)|EvcJ0yBr#3)8kItnwIpYnW*Y{SlI+$ZCV5UqtVw(2KjrihxuK=F!S~cN zbVAR0b8sUpbKdH(vX=9b=Dsp$xDl4zM_}dDxo==_*;t8A2?tmDkBQ4*r`e8) zFVk=Uc2FNL7vlz6j+YBy<NV#b3# z>pDn?8IQlZK5_FIkKZIaNLyN4%K**pf<&G5Zm>xI5_BF=jdVw74JKGdJdMoVZ3?TV-mb=SoS@53}O^6pM+o zu&a!?gWZXagr&m5O2l}*Tv&uRZW&g(U}Y_N>`Nt*TTQ$?`w}VQFopIqVvy%l!bz}O zY-zKCLFHhB6cm zAG>;A6b>I!iB>2a+QTj@IplLN9j#*c43TKWgUAe`Bk`zo&<7C;inl7BGe3>DY8g6K zgO#<=u`-oNu2h)9@~naHcZnsQHNpbeAI2Lv(D_cMe1+|Lg7`Mxwk73n!OAg|9iqEP z5G*)2NQeaSzH5l$31aJHce?0|J1Fc#c%&MKnZ-(fEKdOEgPq_yrbMWOZBD;%upq zm5=?}2_C@4m{Z9%_@R>+AGN(|x|G5UkD)ub4mMF(Y)>U(3yb73P6*K810@0#VSrkV zk%ygT90S2VL`MQtVQXc~{m^4j4!6TH2KBL%mhvpCobdzz`8mrD$%#~u^ArNM28K3BNX5z*&T zDiIrf65NTW#x6w1J)p#%M__hZ?0E=wnGt_*E76hgsK*|QPUwN>e%uJlz;iFGtOcIC zs6=vUM?LmfI8LGeF)<9gb2a)O!tSx9Z#?!`bVVNn@8hOej)DKc%Bhb5)3L|GdCE9g z=Q8hcFpo$y;u%Pf0*3@WylKmDawM#*g_FanL~`W?-!{1BE`{{X#2n9};zrmh zwxpxm2G=^E^S%x@z>@c`VCB?#N45>FxlCdHsz39WVaM1qSGNtWbwcO<0&avQ_vc{c z814=^Uz80jQ8-A5vLWNz5neX@DB1ao2_>>ppdigxeExDYKp96`W%mY8m@-SH%w#AR zK1-~}3T-}+M7c1RO0+_`Fp>6I2_`$he0UGV%HHi^Cm9h3Um-dYkjiAbj)S4%&5DIO z+u+SwhL5daWi5Psok}EECQN0ET}*^Wh$)^WLK$|5En&8HJ7T<^CI<1wEjbUs%Bgdn zDHgz*SYP1J`aIYvwyaq>sB}Q*eKu}@CGRs}gR?D8dcna?ik(~EJGRrae}7G%1~wix95NV4f^ z-90=azdN7VEajtWfl%ovWqY%wEZJdpG+0JHoe7>-fYk2}8(Ec^-Nk`H(rg#`b~Dpg z$_(~%#b>EvYm^NkJ*8}zcm>LjcX(nxN8Ye!^1PeliB7b@s_!`CI0*hl+$FK9)(&*! z@!R+v@=J`@a(J_2#+VOk${$m1Vh@e_9paAZ$mh!B{q<0GfV<{Hs+4>QVW7RSBkf=X z@)w!MH^MzWi7v({kg;-XrJdYy!=>D)0kl*?m~pR6^P;Y zv}3>uPN1#`-b;3w){I5@O!wk}OrfpoK(g^u@j$7pxPaJ%4PN8OvsfL`UCPp;qHax5 z{l)oJ!>e{n>8e^<1R_VB=Q`9xGCG?fiaR$d!POBnmEJ4m#N9AAE$G|{yUU0^xQ6IR zXeun|C>^Liw+LRh;|5p;om*jLE$G}#C6X&9R$`CziqjP8?+~M~yH%t97VH{Z>g;<{ zV>fj6|G>?#WdAowoNQI9FSuO=3G77|y&ezE1f zQsiUgXdiUym*F;8Qok5hPM!M7BK1bSrjUQupZwFXZ*0l4&pFKf(CI&c+hIxnQCK;K zzC-dC^#e;C4ich%_?~M=c>SCjn%F~Bb9NmRkro48_3an#4;%{848A# ziM3dD%?FMs7-mz6Rwx)I(mpHkV+)uE@1dCO+zfV-5oxeC(UE{uUtv&Gyjd~bunFF* zWw`hXtgMBL4XH$OB|>%iL+C1n@M2<$XKm0AJH(c-^zOpUIg2-L$$1g1oI2;|y9)#B z)BIU4gPmf_T6=e4=6w=wfFU#*|jKY$^Y$+GcIb`zltG_s(nQi;J;xSh!qE>i>O0+_) zFkR}ql2JZ@neqEb)C}*z&N5;TULiVi&A?8Bl+4#3HU5n^Zy96$1uJVY=ATp|x!PeB z@qi||O`-mUU!ZrYM*VX{0xPF&sjp7w7-Bl2^ZyKPh$a6|!^$!I9TJ4dF)WZcNQfNs zkn2F^IcC>nbIgnqIrgYHK(-7Z>&SXD-SSqMz3|vI4!owk7H5VFyQOeucqZ+39bqER z>`x_P^GtG~XQtA5CFC3jW79&;(Xh9S`et7e@vUJa4tE?2*c zNOA|2h>au(F0kpWQBi`(-(fCV5P1!DlsSkzNpvJA{9E9f>3aD1E8eta_;?Xk*22g0 zR3gE2!M~HKj&Oza%2%UzphkK&k!VDPs*`53A4&&w-m`E6EO}3dl~d;(`4+f#izv*u z^Jl&_>=@g-Tm2Te)(M^ambej?+&71nW4Jrycu^*>MByMIo=9$U4Osk%WHi|_VSG84 zAC@YFBjK@X9B7q=#tI=ag|%MfJD$4JU6J3NPfeCGl%Z@m+;u>Svf&3*q7}-9_OQ!J zOt}Q+q~(zdVILV$2PYF9i3i`hpMv78idSMk$6K`wBIm%$S`aytN+ee-@U8m|d>bAb;>iuoS%X8a=-K@{W0tlThhxbbCzb>AL8v> z(taOSj-l<4)kR^zQh|enC=3pE?FcUn7AL!^cKLy9p1cdo=KA`{hRXw)p;B&%R3~f& zk6Po9tMt^Z6RNMe>J|yrUz|^D=cZRJm(r7=T=+Wa4faUIhnXlBzD6Zlpr$^BPq zhi;gimRt6R9cIKI>_T)TI2CquoYn>XX=EX8f@RRz8&=kW&Yn~vxk6$U_Ry}mO(B0G zG0U^6I01H!EqV5SET$tm|Ko8(EcqV;E2qwX4N+p$8w0ockAa(E2icB+xk|mEbw(ct zH{!-vj)Uu9<(P5cP&tU=gC!OR2~m7})wLtM_$Vd270I;fd(xrdZgRYXRCoN3bOnoG z#-Z1gwK)7e8@F0YYlfQRzphY3&G9akh^;x2OFz@4t}97r&aY5pTDh@0k-+LRBlVz@ z=tx{DY$=Xpz8+#$!JD@XF)PB#T8LTRRYHUqHjcbP%sZ~5nTMEtlAZYMB(Fvb!vkcK z8|A?B{fIXk5nt->c~pH|v45_K+ANJ?Lv-24bySGxvKN(Tf#@4Glm3^Bq5np|* zDvd5{Yg?`@{3As%L*2TQ>+llEWd|w|n_QBMIi0osD{-a-Gt=Ts5%!Z2d$1qTk(gAM z`_ZN9T|*^3w&d}qEn`a#R@P!mud9TJEo}UF#g^@TtROY(S;@wh_VNM4nUcJD&aX%p z8d0roXN)UicO2v6ulVtNZkjYk4RPZat{xY0;|eMf8#fXxN++>SD^cSyn1~iN9)Z1N zjvBWU9f?S#lTO@oSiD`a=;tB4UCWShKdh{UjC-j>a%o{2d&OmByxg_uU8gbr81{%Q zW40+$)OtNRe2BMhN&0Q@9Iz*xo&l~z3JzIGd7k6*Z!!58Rz80(; zL);;ki*kUa1qTW7sBx+5(B+RB8z;N?XMCCL*etzu8-NF@F{U(gRd8ssl#&cZLf|@} zM3K-(C0e0KXb&kVCBlg?CoO%P0Q<;@Iyi*rNIa^mf-#wIFgN zl}N5YsICgu`QAz_!HRN?@6E73Z23y7f{m1K#M`!{d>yQuI_2o9V4d{e{7JtG`^1*C zwkp_2`(?a+OWH5M$}zMZvbrb?SSoOk5QRaHYe#rtuu0N|!2zWqsWABBb!b2`jMyy{=*T( zTNUYld%RW4P_YfHtc8lLs6_JVU+24&SmK%fM__;0@|DuRk#ZSt+miAiteiUKX!_Sl zU+ho%0@x?Eq_y;Kq)H{X{>M)u$J)gm91|O` z<^>%)wzYln@X$!!Q|On(KXn)0@_J+8_jpqaEwAoi*S{HQY>)|F?GXD~+tYwv?nMW2i zMQ#*@`yzktU9f9x?{alfQ=}U@`+adUEZKh_R*qrsP!5QSf+Y>T9I`2|LA>baVr=S_gFAf5#25^Ft`Rm3jO!s2q+JGR`{ zP!_||4zjbpCTT{p?NKC4Cymx7t$VfA%aCL+zeLM2)u%}fy;S3=G78&PIjikU(r z8d1-FNZch+sj&B`!gf8lbl`1U2A6hNSqm=Xs6=w&=Nh*!`)o-W2wV z@fHts)@+Tn+5?^V#<&HR#5aPKQzyQnC@92TqEOHIQ}2a6V@rJ%rI--C(8+h>R#=kX zA6AYb?@$GZLV~3W2MJL~yyTj+cp>q_WH*SI)SoH!Xm8Ljg$Jy0v{^i>x|R_&v!!%p zC?YO$9ay4>IG;+iLJ={!+HEDk+z<28(#pNCpNz>+;Q%e}T7cN%;y`Id#gBb@>L;FZh#w4)%#HX?0z`nf5by`yL zRnmM&iPB(IDiK>6B$q!X(k?5d!8R}`-a)Yje=FEWM%KZ4L`ULLnM|KH7%ASYs13f3 zH)|P3z6L96apbG65+aVUapM(7R`RieYySG0oBwtFlA{j>t5^1L5WnzCLqR7_9C?d8C zG%n&7Kb{}jC5=r(w0ObQ*CJXxMNu|Jh9LHI@zqhPWQ|HbT_~qZT!qnr#p?(t(mSf zo{u+e$#@-DSxW^;GoCKqRp^{E{+#!NU1EC|vr}~>^L5ty;LTgI-V0WaVeOE!McQXc zz(GPpm1kT76Q77UHrWS=+8*WIgHrZC4<4(=f!54D%8A8NA~MtkXS zZJV{)Y><2#M$~pN-;#0ptt5@Ubs`x%hgmy`z(-1K}arL!`82_UZu@NK5 zCkfJHC0MKlv(SRYnna=zPZBeUj)a3hNrafRFfj*j)G|!04l8S6VihWpU@BncxK4Lh zVhHxkuF>5Ec8Bq14RpHECkZ3to$#hD8Selqr_MO?B%yOY%%AfiuuE(?t4|U})=Tl` zEm@Di$}y}Ra<)kOED1PBh$o5vx~3xjB+-%VR%4UO!;6MW(?D$xoBz~pMTl`7x`n2MGso`d~l1RFd^bR;HxDRk9xy%cx` zZ`m?*JOwLjq2qBXkz6UjmqJ&)rEs2hi+4THNhBIk?dhDOOQEaw>$E4~?OW2G04t|X zJF*nI>M@1*X8y!Cf&F58XRAx0t9{U^e+9R}lKO_Qatw8c+%C!kmLeP^M0s$%Yp~+w z!3N2`Uz|W{gTaHO+Tb8~tQrSeWn0hMfLSIbAwywspzFX9g~1S&XobRHBJHyhJI;oA zXjQ=(u#=2PgX4&f1cWbaVyJktVqw#%c(az_ViZ=^!o|<1L~PgM=sp4sh)VF9RMQpXi35EXA$ zlmWZp&02DL zzSf`hFJY(HvewH0Bk!wl11x!84lBp-cF5tP3}6YtK|+)P>$-M?mjRC?TL#RmZTT7= zPEu08l75@?1`ANe5m(6>X9l9%fVzGQ6|tY0FQq9%-SDO>AW=8GK_yzDZkVNZUnwDG z{}$!PZ!1wk%pww4on;&X!E!`LVpCx|c&R3OD(1 z#TmDub&zp*`Jb^I8YYcTL(G^;jKwN#K5RtHm`o*NV@85Yp4&qfN=>p6Ohbzo>%%@W z0uAO69f?QvjO7rN7An@oTeS=oYs1P~sQ3bvNG=`ly_^hu_a~NkK6NaF{b9>Dx|b7; z6B^~c@wP1~?+GiXPC2rdlY#UJ{-lqGePT;m-OI^L`xv}^OWH@m$}zMZa<@qTEEPCN zh$o7Pt{ve|6gwyTL@^;>?90gy6AzFcU=hhU$eOs96SG-LMTXMgK35W=G`O2ev_fex zk@i`s4c>%F@ta1>RK5W_$p|}mhUiE@_{&a)N=qBB45Es(rKC6X%+_?jmZ z;nii#eRE^`TDVwxa z?Uk~Tp*%RsbwG*o;0P)aTOK5rK{|M+mHOZc7?YMgE`_~hBpsYebR;5tleQ`?-msWy zya;dDGLoDRD{GPDTvrJZN!Zx&iX?~mSV3kQf0yuXEo4)ne#41&etNG2~ml3WarSL0x7$|FhDUMWo(iiZna2b3rt&Z82oP&{<-UMq3s zKA4l1P40%>WJDcYPjnr%xp6miEYw=_!Dv?|c;Tr%|y`^wI zidf^BK#qWYV#_(Y0Z`R`o%UgP`M@1*HU7k}hW%noT-^Yu+6SHb zmADO-)GvdTW2ieMd{Hy76yYEtYKAYlc7)dqyC%C#h91jpn7jTL=>`^}jH9j6yt(V} z#9nT=l&B2F!#`b_h~nYzRH7A%hbf}tN|0IMPL!EeKFlN%Sea$S9<&i1i3*>)7Pjlb zWg6bLWpL?)m9^k9iAp3_K=8S1;V*^tH;6sh{i(6u0``h6>*(CI=z&grGu#48;+w$A zsS}UPT??Nn)C>O97sH;hrLN9hi(csD`*ABQ$!B5Z81fEPfG8wbx^R#Xg~V&FNsAW} zZOMLaGfv$t;3{~m8V8!ir+cou1%wt$Ny<<2{=fIg5W~eLCXt**AkvtC}q2IgQa4(@;*BUk5ywpsqA2U9U+b=t#^WH#5^hM z7>a;i*C8Z|fNm<$3Pr#a(Q)PJq5_lQcZzuZa2)I@BivvK(UGX|`2%6QUJ@LQw{00h zegrFPA>@ZtBDs=)&mRbXDXecI_IOqXH^5%8WgVSA5IxX|UyEB{N&J_va_Yn*^9RCb z3iVg~slNn!#+JG|e;|6Hlm82Dg(dkv!^$z_9df-W7g)M*kPzj<{;nP2<-)NEmkZ>> zt8%VypqT5CRxhk|7aFLHgW4YKNt3lEp@e!5WUdJpM_gtN&a+LIflGL z6(9-;mM$D5L?N-dYe#q?F(KI(5oF)5KKZ2M7f1)N5M>-`4cPaK7$zknLy7R5tG7jo z@C=n`g%W}6`_-qObv*uVl!jIuEJq};GRg=vc#Akn;!)f8i-6*-idPOF!(=L!q2fbW zSql~KGv?!VY-{`C;iHF+&I>AQw6*o$5S&0R3rB;FxF1Z5`@ubPW28=acUf7P2Bg3*({|ZLuqh^>yQ$q!KqZD z6-tANw9m?8#qBUDe$$AFgIi%I8DR%k5*-N$-}j55;?0WU;AXs8%Rq7?tgHo+>!?I> za|V3hFB9Q^5L2*PTqFE9*dexrqx*ivaDEkU+>-OluyX30Bl~`tSg(4IH|v#%L?bGF z{ccwG{fgne0&ajM@0qZ23~z_*E(!#e5F8{#fiUViaCw37NU|T<&sm(wm9wR`u0`2$ zIh$|m>dBUJBjJHZ2a-LTiU&$>AHEL{VPmYR6pf1&qDLO#-%hfA@NQIlQSF43x(v0% z_gqJxs3mrz60J~6e0nTbC?&=rFi|Z5Eroq&927x6(UCY+K0`m=9;-L{w8RK*jb(%? z!^&EO8l)1*RUY%ixBFvxQ5h4L5i325l8a$q*^Y^Iln?sH>X$w`F2L=w93AJu$}ywE zA^C{>#e$H7gvejtaqS4tU;8HeqI`U~Cy=Np~hHdEdZZ`+dcda!cplq2)o2GUu7(u-i9*pgP~x6QP> z@b)cf?+Yu((00h(BK@;e;2rwj!}Z9m z=$pTz+2vSvIi6iA^kN)ql^u=Gs`d-(xq;L^Df?8bfl5ay+nX(A3*Fh#U>SLv82nrr zO!ZA?gQ+sJyErgNzW?hQ%#<>HrOaSIS3HL*wnB|CHR2DYRJac&#=AW+pBu`S$cGio zeRsp|Gm;OkB{~wZ3Y!s)^q~5LaXtA}*7%)x<70-HTWZR;!^+$}9r;{&sEfF0fIH|` zs+8Pg=<@7b-iY56^6wLaq9wcSfDfLidFMZ{cWj}vE#$N==;+_ZO|V4&Calb}%Rg)W zNt*deV(KBD`&##Tb6=B4L>~_74;@?Xt12@Mk#6Yh=ip{ovR@rmj$tp#g8Dw+aU(3bUkNLx&V3b8RgA^{MSu3s!_Ki~ zzq(RaNFCAnKZ_e;$^U6sIflPOH4vt9_Q1pvh=YVEDE4*j2rnpJPxh#-@!2JV8%lE( zpZPr+tBixq`;`SXOv+7$qT$oTSghja!$uSht5Jzon2u-8blmJgsiB>29 zCb3Q{ML^sAC=q^lhzWy_U@sY=25%4@iAbfBK0!ZZz_>o z88D4KWE&Z;>(6*?B7qgdwv1;+rU>Fle*tgZlJw_b<f5_1Da+I#!c-V^qUEp4_n zgW3aqHeh$$0!!lGg_UE7JLGav4zRS~AR)?u$6SLHF9*&@b^)VU!H_A)d;Oda4_M=9 zYuE~g&^{>-87hNQTt|_p3{IvJtxy@%)+&&mE9Jp0FdKfii1Oej*i}Zn!KFk;!lEow z2(j_TMU8L+-neBPxfWK|;>a(lL~=EPvOYnl{W>uSE6+9BufT4xrEOZDU}XLhZh|HA zzrf0=GdHYH(7CVpfH(K$i9{m`MEx$0Tc2QLKLa_i32)RgOcY^dEllL8L~>;TKSw~Pdl50jvm7`d zc84w9=s5yL#^>TqTQWWiR!*I9 zj!6EURH7A<|0LFFCI5dJCc?WYrUy2Fy<~(M%q2P!5&rgo!{Y6V5@0^wu4Twr2UgZX z#yl#KTnWJ69vB&Ch%KH~z<#htY#B%29>kH}2XEby^j@%X>ZBuY4~(>b;!pd>uvctp zt8WkDh#!kvU`hNaSUHBcLoOHP080xF5~3WK^DtiK66#g?_Yi(d@yZE*uEd4B^|j^XW)!$ldu5`u$-CwQ@i=(68poRV@q(d!mLDY^?K*};Merjk(Fzs86wz^|EVvRT zqa}^YU{4w02B#4nxh!C-(1q>#n}Un+wk>1G1+cOfL(ZcT$<+q@ctPPWh4s_K9;_tS zSU&-K#g?^nDv-EMxdoycd=$69lK8{0a_YpRrvlY{rciJHgE#eYM4}O8p?-&JrvlY_ zq2KFmxD}SG{6 z_o72?VEnd8k!=jNhQ}w5AEIK|l1j8f#V|F}b0whk!)&xPl7(Gm#2f5RbmWqOJ!eLY z*W<_{ym8Ao(giDP8Dw87kzCEd7ac|%rqEtS4Du`*PJ-QHOFO#gFwzB``A=~ZESXne z<Mrf|Q*pZjgFYizlziw+~*(AnRDn_E^{+nHgjY#}AQi)bb{Ow_vmCXMammcV2RiXPaSJSo-wrFMPCUA}pyo4$`n&$r-+?`2OI=%B zQ0s+G{w>@JOY;AKm1D>|QpUkn z+1~T3gsN>)N-`7*8xni5=OsRPM4_-Am1u=Rp@a8Yi6MKzOn4tfm9PiwCL`8hTcRT& zsZ62!-&Jw(hQ-Xmu6Vw|WyyR! zMI44VZ^`-)SUGjp%Zp6{&3E-R{=Bb--D1m|tsBw0pfkS`H^GwmWw3G#bBCNR$^w=g z93(_p@Fmxd@Ur0gWXpna*;21m68wwUj|C>9z!|sPgh@ya^UY&q7}-4 z38cqLl33wUlm)*jL@6+nNMIF{5ogdwbR-;n?Ldf$H!8}2X?UZSVWJaO*22UjDv?|n zz}F7wbiY9i!R|DT?iR2+Z0SbV4j374hBs}=coSGTb;gmk13Kq|Kj+1;OKdr-YX^+1 z`|;*2S!ZG87}gFsTcmxK1RNwp+JDV874ft`Zc?I41}F69i^|c=SHZ*7IL5qpC}5UJ zxyF$CFLxa{BK2QFC0Zf%Po#ZTlK;an4=p`B2s_D$G`NN6NI>`w1q>B$R;2&mQ+c;IU+PC>Tdp z4@gh{Ie3^F7IEE6S*LBc{5}=z(v_c6GZW*N%02P=8zbVAi|8cO3j5vcO zL`T9=eflSuc%vfyAB{I^876)ND{Eomhg2fD^k04Y*XZ6v4Dn3EARs802YmmL(Kn!!O$=%(-;!}bFSVNiT@cY(F%#b zJ!GL|{_#(sH28fXGXHW!0xOP;K!dl4qa+^H4+cX}yj79ziE7>4+f2t*TLJiq&yE+PMvb}gF&72e*UEQ zfqi0oCu<)J8fou^w{J;%4_G;dwnOd~>7S(n2MLk>pK=XOJpFejoBqdj7v=2&&W1;+ zafo?8^@nyz$;OcU&u|?yBKe<6C0Zf*Par*3a{vFM?#u(^D9Zl75ONU+ggcNBZo;)8 zfpEx8fRGUGBY@yAyE~hm$?VK9GrJ)u$bAli5D-Q9fgp$=2rq&Mh#&|e$gL;}qR1u4 zEr$ZXn(m&d?s}?cpKn)B*Tz47`+MKKe)~B-^VCz-Rn@x_bNr#qGI1BIOv=O^jzr?Kewy94gdtd;O|tt291d=F{j+{;j$g$e z&CK!3u(I_W`)2(#&ujnDIL~Vei8wlV`YTpv{n}iwhCiN}>j|)ONUkG{*>c!-2Z0C@ za@b!I62mV7HiQzEtkE*+@ zjQn4Nvq8p&#c+(Y3C;Bhoj^XkS-+Dg@2PU=AH<)^EEN@4nUso>Baz(D@6Gx(`MptC zVmS6+566R>U;nIMpXF=uXEU>WHLPqs%f4B^Cewc~&-Bx9Ot_g=XZ`wYKY>4=neE45 z<&bPg7`x^0?+yhKB;@daP*g{};eX>~uL)YNw?A754F9V?hZZC)W5&b3V_0Cg(G35q z2xGB!*uzE+|0_8X!(#ZayQ~cVJHXlS9F!CPnQ)A>3C(RJbOQPChJPnf-c#l9KLdX% zvs6rjl}V}C(ve7f_}An&BP=l-{=49KaP#XQ{`FZ-;m>Af`50K)dX{~|zb4Zcn`in$ zI40aotHZxO+co_8%xs?vD~Dt|!q_c`e|IQ|AR&kU6{0%g4gWhPd%j-`|HYob@c*Q6 z04qpZ#$p)$g<*l=Ml<~XK5De(@c%nUVwep7#U5q&{{YU0_q&k8|GRLEv*A)_23(U=LaQN3{c^&-O z%q*`3D_hTUVE8AQKEOQF`@u2cW||KFx@_-@KcAWHy|1W?!)k0=`&fm2xFyLq!fb*h)BO8FT9f{%40E~8gRyu$m z!}%a1#E;-0X;Yf}uFwf2#5?EjrpkM)Yyp0VKbBc8Zh)0Zxwy`eNUjC&&iU&y{8wQL z)^U>z{}~PlH^csO{vmn(BmQt^o}Yo0t>@Wy&R>`7<^OD)>(N3Yj((5+n$>guA^Bbo zH-MS%Wnkryd`B3=WgFlQ2oWS?8*oNcaJ@F*g=F^tjLBAdvxRIm6X*oyz^rPEN^Q2` z?Y~Xq0%MP+8Q3Q(KC&5@hqFRPi!2-`ZDMmr3Y|bsYAZVT|28bA zs{+0FlbNNX8&)Qz<2Xkmxt3sM_XgcYw3Ix5TUcY*6ng_#ysP{hU3D`_?pfyoBBYr{wv%DX4db4l|!-~VQiP}fjdM*kdW=c z?ol1_+Jn23T_qSH8o@wkF!Fh{Hfb?4J{eHAD=+|Qnu2A8tysJ4K_i=jFPwA@ho+#u zUZac?Q{h~A{>e848^a;erZcyi&3l~@xeE9`7*;K5aeP9s zZeQKJz_6p~0)82lA=w4|!jTvbT|oU4f}Z0_Gw?E;8Skeen}L_$NNJOsdqU_0vLZhr z*hrf9Y}pgMfIpjAL!O6~Ney|vVTI0@!e3!CvL1RJ&mh9pg+aAH(=WTUXikr)n*!dTC1 zrAxRP&WZN}kzK--aG11d&DDfXASK=>1RLq{9xPjg@8Az+mW^-0%A{;8aU_y!5xh?b z>a+ZqFvf7{;1M_^+$_6OO7{gqXs#c^AJ5G71F*97T>CyDsL%JO=K1~z4huKm>L&z4 zbN&Ht0yF3D!pb2zk1(dow!j@6B1p)#pc>T?uPwMW*|uPXLb}kAsunv^1*JFG@vmrw z(&A>kjvx#a_BrMS#v)C7u$?d&n=yG1$@X9yM`Ad%2ldQ&jw>C)F>q!)H)V%#6dWmS za&!9%oj_K+bp&ZUeYbD~{%mFuITThVMdTnyBDp5PTSt)bQgVH+u*a}ZI17#nH`o4k z1nB|I`02O>%#5D`D_hUFZyiC#Ov(D4=2`zgI5OOK<5n;;|07sAB=ZqQ zd)Y9!!$kxM*)VJ!)e)~@_(8H)5;T^#MZ-|61{M=O6pmn}N=saAuHlZv#`=5RzQEX| z=@{ON8hqI?yzNK~hmK)IpXW+JS?dKfH>71)T}WWfl{US(<%CWkEj4!+yU%!9M^?cf z&a5LV!OEnLtl&r_*E6i@&dhxQQ?k9cFbMl4l5Fn@hlQJMcd|)bpgG?SH-VY+ond9` zIbTz5?hDU***xz>I5gb6udVD+^tnNEpU2H$<~|E6hvYuOpfCFdchHC+A^V0mqYhnO z-!MMe{R$(q711aL8iw0oT(ztjA7*qd3yevcR^gVY;K)|tCP!j8vp$@72lhcom1F|2Go&%VQqx?Fdf=Xwhv5l72Uf6eM)#*lnZ#SLKQdt+ER zB;OInaM=d9140A|*#`U|D!5)7uwAmt2V+Ism+t9NKV94p!>X++wSCRk4m|4uqmQN? z$VCN6wgU?siQ&)=)Hjp5ek(1(MQ~ocpNV|cZ~+`BZEAC06FPyU)Z88JP1ETt;ynD( z%<^$ItW3(s8IDA9ZNY@*lv|tWdxSZLYX(1ugTl?UJ6tFZ(0t#88^Fx>9k81L-HPBjF)YKJ5WTBkZnRwR7bov z;Wx>y7K|xm7No1$!Qh<-oBa)~QCirH?>uN47Z{H;O~NL^V61`m@R3czhK|H=XcCrh zxUKXE^Wdy_PRbr(4jdMQQw9 zOZa=#n9DBVMMq*dbO~cUua#0V<|Q;Iq=JkT5?C{(O>6E05vxE-yi*O0ba@Y!(~D*C z2Q$mY7f~}Wf3W{^GoRQOlD$(6`Yg{h&+-gB*kiJVYNlKeA4)r?CO*>DJ5bIp(PY_w zsv$Jj)9}YLbG;?3OooW0bL~6TpwD-gdA?I{Sh&Ax^;AP>&X2)OVCMWNSUDu;5yo`c z7Px~$1PNJX{t~rNd2PXK$-ZS6nK^zy`EKGhFsfS4j5iy&mIcNiO-pc9RB&WVaD^i= z99n|Wj?YR%@Bo|-(h%GS2T7aK+>eD$AR*pn12kASBQK!XM7e^J}oO^*sAF8|ZSq?%$1by^fHGqrIoU zW_7bcNWRy?4PfSbbyzth-x0=e*#@`+LIerf23#H$T(1rIBH6bH%XMe6!LKJD3v;S1 zD8}DUatsTMIhrQm=&0DpCSblJF&vtJQFWJ<9^e!>8)Sqy367CAp}D-!3FO23ev*?Y z@2PS{;6(hX%u=xkRwkvQ>PRHl0(f6f*5vm`!V<#{;D>NLxcT*eKS`hE8}Mf{vwR(_ zY(2}q?FcFW=49SR~y$l?F6sE&BU z|HH`+|6}?G^3`l9zc_H}VB$Z}qNL@_coRX>xWKTZX#>^}24jt}hmULnR&^wXLmRMs z!)>J%*cr}>=cL?3up=BNZDMm%g-#$R-X?;E<@CMccKDN-rDGddnUs#L9f{=H0dEsQ zBU(zHv%(s~mY^4o2{+IFO#}`5X|}uZ=QFc?9IR|T+rCW%jfg23zsx-2m%wr1W?bDn z(C~p~{UY23X4Wr&l|!-~VQiP}fjdM*kdW=c%26Hh+JiHa-8&#oBxVb}f!^R*;Q>~i zw4fQkBycSY3__a5;HjwbmW{#Vj>K?i48(~yNn^_P-=>f0886 zQ}Bl~^E?Swww`C-O9I`m`4ID59|#A9n``wYK}f#m;RZ1CJqK0}$#;Y?T($x3fDl1K zwgHbuEl^$?a6+bZDMm*3!Oktyj6mR<+LTZ1%EQLble0hlhW}6Mk-Cw*&etuU#~qlGuc&w(f#7v%j$O%_J?WJ z78m0a1`XQ+1CgdVm>U%y*&NJvB!)wCFxK;0sURgdCuGd%hr^^zYwj4K6G%zpy9pjj z-h<_8K@NW~vurGYl}Xv?aU_y!4I1A~aD$~}`AT7oVQ26iI3(OG`%f4&ewrlL-@+fy z%=Hpj*?O*hCk*tz>PO7;{SX`$ZobtM2BA5B05^e|^ZQ`skeo*t(`8%W4h|6{WLvOT zR7bqFVE1HK4VD+T3wNa4oup?jId#cNOLCWr!?C%sub}lw3!CvpM#4PLy1+oB=?z8+ zi?O!ZBS`iJBOHn0&>M_v`mKx`Tf%wqyp;P3HiHADO>J&1p%X}ocac%kbULlr1b;NM zeryOUllrlqBavKx;9X?Y440DWql7tz9l{ZCP`H`)Uu4vDfad#9+yG|24}z7g=i7IY zQ8Q#p&d)N>`RQZ!T0b3^_spA|Y8@u{U2VmOD~C z*}-g2@HV3dg(p~{(h^tO&+yJe$HInzfq_ZWE!-b9{IXlP*O3U#!PL+sM99HI>xE>^ zNzQn`>q<#^4bBc}82$;zN}J%^GeRejm)Zp9ZZyC3w3hrGe>$_4ya+3kTJjf1BDqYj z=H4CXkC>A0)n7$_jU?Zz2nno{=H}a7fTljstgnRIz|8szu(I{6uO+WQY?1jr%`?9n z92;)t*HLak^!q`xzcX$JGy6Nj$|2d0F!;;mTk-`1OOh+-Qcl zxgxMl@l=>tEpEoI9~!m=1}9C^aB@_5WYh3fM`AcM4P!m8mGR>`I45NMxCRcBHm$jf zgiatO-s^`(y1WO=*AG|W4`!B)D_~_(HZFH0l4}*b*AMzEKPimCdUlfK-@_r{X4(Jx zAvD*&!ynJg^~12T^<4X2Kj`!Qxp}_-3x|c9Z}s&(xm0g`0RpfSz!Fpv;C-1LDHr)H&5sU65^d*a8u2xGWx1Ka^2f`n`XwvFnD*9N?w?CQXB-Ni~@pbPj!IDpk8 zEo9~w9MugAj5(Sn;6G8LEt`P%9f{%41dOWZLg@h}y^dzX`(6Cu;blAA4J8wW1lA~N z6Pg<%bOQNkTyRuRl=oEG0<3{Qm02oQg_TLESlN+Ct_5gZa76PvM_7XW+DLx)f#bo= zZ{UI>ZI)-@&t_(McUakami-qT(M%7TXSxE%gqvw{!I3uGCH(o!Z1=;;A=!>FcFW=4 z9SR~y$l?E;r~{HW{I8qrD!_8t{&euu2S0%^)iP#0{5ysPh8xZBe|uDHPvK8xmWsz=Wl}00btDoW{x$g> z`G)cEzpRjmqrIc~^$-90EPny#qQ=bf|6pb7S@sS8noQ3y&-ApmWm+Bn_1WGMe?BwY zo59K<*^V%F%i-T03L;3z;s55S*m}eNMajGFo| zYsG)j{q27YM@^gY+^a$-kfGWnXYXT(BeV#8h#SHzLhr%KUXZS=R{GKN)!3J}Z-?QO(aP#Y5-_U3I4E)*5ET0N1ThFp@ zeM6J!yUa6v2OJY_rq%TgeYS7IpU=$pEwFM(wj+$)a`<?z>Nx4|jkw~ru@HRQ>GQ5v41^dO3 z49|iC!p*RMlVeDpcgG*j%=0d=vh_UsHaY5YT`|vf2@VQ3*Xkz6kbL*!1~BuTgOx+_ z9bpWYZGbxtp%X|)ZH%*kSjWeEs2u(u#~;cp6OY2m zq)hzQkw|X%ALrgIK(o8-TgHR`7jQVZ*&Xj>w`n@f@&E8gGjse2tZY5UE6KYMXr8B; z=XpyZ5l0(Of5q;x)`0mm*PG#wXXbhnSUDuu5yose?7M?N1PM9p-xw8IZ`kimcJY4| z=Y3=N7KZ}NthTV!_SSU)LvL{qFN6c{!~-LbrV&^e6(iXQ^f?ltjX-kaMLjhE@0F(D zn{aBppNxE~_zgH*+U({|5;}p@)K+(f4b=l$QO?ILU{;iKU}aKK&WtJ{D~d~#QANp^ zSRvLEUt2EGyVzD3Oy{#bx?KxT2uH9*4lQl^3sri=OqH=~!7+}xQ{l0wftSVP5l3Pe z6q6Nwjw^NKeK;+oj=Td$N}Ji-i$W(@N8Gh1pYgPWyoEoUSwh}`l}QPCHL8RxAudBk zCFCI!D?|zTG}%`YYr0KIvDeuORo@2Lk?Joh7dy`QcRbZ(PV~-17$`PC)$Mc53!tm% zPNoTyvF_dDNfwkX9f@I3P}Xq9b|nHzWjP#95veSPz#-FDmOX?{AU(B-vO`h4pe5!& z+zMuinFlMA5;G^Nge);GRYoOdGZQOBiJ6-0yl16!r6W~H*S|t~!R){LHX|h$s**h^KP&@u3Jcy%q z?4@fvzB+MIjg8kx1 zhG)S6;bvIfJ28U}3%lbFXXbeqSlN1>mAw;ct}EubF2O?6~(2=sG{6xVuh$EZzcN@Wn`M%Ik(z7Xq%(O z%zRU}V_5)HO%0hKti^g}4;)!T#yb+BH6+oAh33||?csco%CRjRByCD_8w#C3LK>U0 zom6>`l@p8U_+y#nq7zmo0pVsiFtO0*`78LtnR)&) ztZY5c{)vSq*WWbH^*7+4aC1#27W#ajj~l?u_c^d~NWLSC;j#^I2ZRU`a$+$qsw3XS z;?QI#7AtgRorBV1Vo?ZwoaPDP2v(c4u+`=oE;D)tI`##IAWcv3Sk&Olp5PHjVmR~! zEBZWF<`nP4x$%B2a%0vzaHzED&Alje0%@tak&_ya6kdI`XO`kz9YU zs=M{s7ceE;>%EKq5=piv3kj@Q=4RXdcnNWV=6r431ZK|Hgq5x5d`-CxIy~?Do9BHl z92#!k*LGekXx*T>pN*Tr%>7=la!BqY4EnNfa0iVD60&c2C~D#I`i85LJ;0m+@X1HRK8?Kah4+y+EFAo(5w?024%px6;2r$ zaBha`mz4X2POzl7m+b}Zr-kHk{Q1m6@+hoK3dwJyO2|Uul4Mj!ZZxq%6q2oz z?O?=b?FTzj1J!IkFdvjSYoPASJaGolc}-IV~8|@h3A2MklOH3dR;uC1k;H=`ku8 z<4mj&1tXR08{p;Y8^Hp#Vo*5HwsymJf@H`8CUwICcxoy}C2F)~#V9!vp%o*+ZD6D7 zxlqc*x8ZD%a&Z|PBYn9zQ|JWp(YTzuo+$6Br!`NPT!KH9St>4ql}V|%z>!F9?Y(h1 zH_h*FgeBOojpX;&a6GvA4P4Hx&GN7CXEU>W53FoG%l^x`X{O&d&-6QROt_gQmvd{g z{TBXwX13pel|!-}VeFQ}zdIB}kdQBO`=dHiw?Yj6%Z^F(GMy3Wp5VT(86TkaNQ;>H zt(?NHz+j^p{HF<94W|oRIugTS@E<8Mp^W{9!?_@1!y#~pwCT+4A#?)iXxz#v(&Rl< z4*dt>4`r5#d9X4m6LTDiaPv%V<<#Z+M*Q*2Twf0>hvYiKm@S8WcMymmA&33VqB`OY`=2Dc zg<@p7us}IO`fuR@R*tlcnIHdhEDMY^nxX$+QR6M={jWI^!(r$j?PNn4{3m>f=EM7G z$W7kkg#^|gX;Yf}OhhV>kjC*ZCsp2K4VsG3}3Vue^s{93Ym4_2wR zzNKb`|DgSj7P*MG)Cl7O_p}VTx;R#ti*?T)MzWraawLX9J*lTA;Js2%ropKp1!YS( zT-xmB))6|vg5qBFuX;c$%4WC)%!;xJtV}A(hEXMCMR92|swg8&tPmAtw`8|PuG=S$ zrRT*3x|P6H-Gk|JmfV3=5UydfDJ_4sgCcElat(Ft^v-;wnpOsA)-)~)qb5Zbnm$Kj z7!;bxEdrs`oNvMjBQ@t6aOAW(&z&T60$Hl9=WK*(;S4Q5=i|mO%g;HmGATc2MwO7| z$7Rf@{A5h55anlwWE+~*y~EiZsd9EfpE%xH>C5(31DmCu5FW)*bq>*09bmIm;~2SP zsAp$@XieRDENV7n-Fd{32(3E_?wxAn%1xCU0j1!)59f*$oOj@m=?l(_LMM=(+FDM* z(WTKd;n1$vISeX=>R~?DuX3FaX@1F4SuVjC{kI-K#$^K*^fz1fG*>_Jh zhq^)so3(LMm<+55D_dt^3cZISoP+(%IhYHFh|9qSP8DeB4rO6BZVr=$ySnFtbcUG|}F?lT@&7BA(~HIJzr_OmmPife zSqo$B09^+%+giR`!eEVi~X5?efjyf@GFi9(7Z_H$Fb5gvTh@{`1~tsHe~U6 z&5;-e#b;tj5R}q0;bSyWr1Xpz5^?mupNY@~E6yaR?+I~))|+v-A77)6)mhEf8=T5OsZ=ai>s7~XKZ3{84ie#wqu?AEso*rs zlvXy43=pkZZrML77qaHebtHyC&1t5K#z84N6*yg_?3CcZX*-@=O6UZVRGZ?IofbLu zY&osD_R^2r!mKjzXjT z{%eG#U145;UQLO)HEQT(iMiR42rV%QuIM)IrcM>hN=0^T`Un%!RtL$E%aWcL?vIJnvMpOe+*_^0@znK}LmtZY5UzH_oP&;K&d z^J{QOxOrC3$!c@`PyF%BT>l+b4#{>(waf{h%B(54`{v13hb2$U{ie>h2G z9GMHpOq=K2jzTBcCAi;H(YitVhS|6o%sR6dtW4_69#JJ^opHG`sx#}GSRoc67bZKY zSiV|pyzL0gEo#CItoP9ZSKBqx+@f0aUTzGz@OW<2aLZzHmLm~bOcGpp9M|+)sUWw) z*&r38F!cA`zwY1Oz9e>AgdTn{Ugs&TC&k=%$e!Cka#hD*uxUxYc> z?~Y{pPjFDUnRX9YDh|+m{{c6EneV4zW$XD~T`t#!<$UaajdMOqNMJn`H|Os5aE%i* z?;~&{n0fDjl|%9#VQ81#fjdw{kdU*G)1w0H%|b>edr99!=Tjf*DY*V(PbSbT>q=>Mdm(7BDo=E?cinu88;>O zp9;IMUn$A`M{snwxp%*J73K*g-~-$eCIRol%GL>3S55-xuScO^)BhP$u#u36V@g9S z!1_+B(aIZ2!uq&1OcK_Gl|x8~&@IS@!yR5CNXWU(HBpiF<~A=RyYji5_}F0~FpcSj zq1D!%n)Y*NK!f2J78tZN)0gh3*vOXRI7ebQv=pQ2E-NMETsRwKAUO+;kv5^Z0ihGf zN8|e=b%MO7p4Qx{eLDVBW~n#@Rwkw5Bu65-wxRL;5t`pSg(ZfK!vDeX;N~~*{Sj@J ze~dqyndKkB%GR^&|NaQg^gqlq{Wmx!+)R`2k7%>~SN!?RZ2uWn4#{?ev0D!R?obdx zLJt4OMs>s+{?|@+gT<=VVl^#}xrd%F-QY8{K53DQdTC(YI^8kbJK-Rur=^54OH{zSs>el-Ea$-C1qz= znUs_rqe{q<;?iVPQYM;MA(k*-PIgAIZsR}a`TMa|~ zcCwF?o*FePveKOFNDPBY(@dEz5=zy%0ZtjII@iIW(`G$)iO>mF9d}KmWnM`Ix(2s~ zS%I#Cl}QDHUdk zVt`}KLdQR%ra+dPzc~`2p`^ABvC#GE;LW zNQU5`OKQq0V|W5@|nxQh`Ajdo7Im|P0iKBIjX)pa~Fs|$1cf@4f}`jVgK;Z zdLdF53B}qP!8Z-soNs5I^KIbBaC7b+IMjJTGru)%1vB$o!OGS%zczilpv``_dG?Qk zqr=U<`?f616H36bxFt*ij)s*(2#C-O$bP~dMj}YaMUuZp9n9)hh<;*GvNM{I=}NZH z7kEkXJ(yT6Zu(ENATLQA%K}4`rg`{(QNfYT!*?Bt;m|yccCw-L3=hKjAU(tVaFDbq z&D|z+0tsn+t<6c5_t?{#?@8{(AImHkcf-o0T>Q+DNN&li@wK*ksFV!9CrrWmc9P+@ z;ec>69QazBKF@FB4`=52by(SYp8a2I)8u-}7sk1sBqZXP0nlGF`C6Mk-xF~InE74< zRu0K`gfU#U0q%ehK|;0x-;N5d*9M%JY#XpnDO2vw6vVE~flA9eIlltqtF1G&Xm@gY zRys!dULFj2hV08xv64-~k&Z-YlaSmvGBG3w%9wI0oG3D;oD4@zo9kS^&GKWr#BKE8z~-5oyuW&q0QK zc~UnHDKGa#4ZbWdKX)XCL3x>=IIonIf53?$W#w;hw6wX+JuY;DWyNh@6bEQI`73S! zvz+`HRwm`-k5MILIdNGsDkpcDSRu;E*~xD880*}nv7j^%yw7)ojuEj`kzI7}Lx!v( z^&1x)lLC-xmN2FWGqHZ&qehmGNsh!YC?Cr=yjJSQ-f${N-PjWjlfG_D7dnBI)K+x1 zi#IH%1!Fh-$;^VWGptMs#*R@XWWjLhF)A1nO{@?F<15MbA1kEACr_Nacf`*)u=;t1 za3qe-W4A~(BVBQ>+o>BBKvYvTPK_FISv5{}B!)rN5b0?6t<;Sh;B=6>aUC2eeciZ3 z=me7D-N!3!ru> zRYn!&uO?QA3iD#J=j7Kbm9zDgSl&0<_Ju*#QW){u)Q+hUztXmMRK8@%+0&621|?^5 zi$ExqXCa(0QhEB|$Z2z)n=f>NmB;-ybqi-`i<7~PVHTh+SeX={R8$FBfLz9m3eavQ zR)_-hZnCQ>D>)Z7p??y|yM z=SU2L3R6#tbX}<_kHJYHHRTaFR{EOqGocg6OU=FCIAA`lA`jt@XI7C1U}aK8?u#lR ztBA{yQ5Cty#0pVGK1g<=G~&=qaCiC&%LXgQ&U-ssa(8wA?C$>A)BUrT^G8cq&0SgP z5eLds-T8E-lBrA!{155+7j37B#hp(7|GLxpUw2l7Q2{&~WurE>oaxP!GllMq_wj|X z!d`!WKeW9rIJF7g#r{&dyP7Jc%jpH>bg9o%9OWqD#bj#i`<7QsIa_|`XRCc`nx?~P z^4uPs&sH<#bl!8e6Aqs?-MMvyP9S5o&D_r(_yCZ}?F>5R{gfvQ4fl&0Ti{l;tTP)m zm8Uw&p~+3~2*R3y7<8u6UEQf{e<>eWqc}#G>mSFtbmw+$dVG}QaXNRI*a=_XYCp6D zH^bYoGwkz@$GTcPoD(mVjKasu=6t*aM~KVE4lo~{ zlN68_a3h(3JP#{d2Si^#2GjY0j9Nb?j4-Yrxb(j#bX?9BNLA?uyP0< zay~kA@8(L>#&r$k^O2({BD#=K{~b!2GQ-jy>}PNjnpp2Y2D;`4i0**ZR341rI5={uzZXu0K# z0a`{##L;up5oiAx0Fs_lgg%E8U1K8jUs%~XLfa34ka(d|7GFIWD3yxks@RrUDCN`L z>J)#vIZmBz!|A9PaMDMCqO}F?1rx2Qu(EZuwr-79cRpK6^{1=l>j0n=cnyIL&kU^?F%rgPw!B@L6$eG1c=xcN+& zPJ@+)J4~5up;)S<%9;8mfx-fHwEL+!Oh18RmLN>3`xK_zar2ol-3lvPhiR+U!(20( zJp-g~`lmTbe}@CcCFwx(F)rXc#pp%cb|yxDft8mUj7phwRcV!08EHJ5TS-W?XEqln zMs?pQMl0a9Gcg(qD_h5ClOd|n3F1YK`UY+{bAEP)BgHL4`^Hd)9H%KbJK{z&!PyR0 zwhoSd4ZkzxEy?v3#VT>8oDw@C#n)h!0+crgC<{l73(!I400o_=Aob$LGePQxm92v` zL}ZVXd}9)+FXn6vY1 zI9ObEVt5(S^qb=IE8K1-KKH=N*74c0b?37{>{6+pI_b&wtNqXW<^;V1$BRqQ0p`P( z-*pPnTe#^=h~9vetwS`mHAH>lc85Z`paQhsDB}s(WFgU>3D{h7fEsR7c-F?vX2P>3 ztZW^g>8;`M-kpgX2)fIeesR5~GLY?WPSIRAXxuV%s5wQ%e~Qy=+qtM|0zyY+6ce*O}%BOnsh&@E&9c))VBbKfQv*g|DPs|y*9S#_mp%^xQ1bn9$-HO}J#OP*N**Zo;)gc$7 zQgM;e68+trp%>w3aT$uE4mBO80R06woC(mMU}ft7?J&eZrW^xFxr;^W>yVYk7|+yJ z5EAX_u#b*mSPKaQg=;MC1{1DPu(EZyHf;@8wdmX;pp>Sa%~{$J4i&dF%`s=m^O~Zw z9d0!foo!%c>*x%z4{-qQPXdV&qcW1OnfeYm9675#0rsf-%m;`-im!8%GmX5 zbAo;a$BRo)3@g@t*C|Bz;HEPn`Z=s@9isL1y^pwQQF}iB9dmNtf`h~*$KYO&roR-I zH*kBIxV#E0TgPR?5M1Q721==!Jl1&1wYHFG&y;KL=xws|0>}M{P-ND`EoLIK8mw#` znUHs4^&7E=zQAFwIX<)Dka6pc!8@@K?_Isb(N#U*EU^tL(R zGsWg(+-4>=AHvGR9vjVt3tKF2JlmQoB-%6EiUS+{MGG6_HZ!r=09Lk+&AK7gMt8x& zk>mbm;U+Vo838L>hh{xJG>w}96kv8V2WC4sM%)s!XLMj1?owE`!OdmDvNf!19hQ(C zH;q%aVHY6unp4va2a8LM!Hyf^H^t{T+-@d5$HL0P9iQfbf2HVLVvf&6aIg}@r|CDv z=K|brCO+rE%GU7-nQ%9Lh1v@aer3+iJ#eJB>=;bAgHBU$evTW>1m`YT**Z8OJx=3f zzfx}AGDqeOI7VD#40@b~yA+mJadVllybLQ_hb3ed91r@RB!dV#vGKZ;23d1 zG3j7DcPT7a;N~)6xg1uu4ogS})3~%jbLGkJ&4KwH949U?2J66nmnk$4<0dnqc@S2% z4$TJoVW<&7a>dDi&5`*SjuID{y`m3B(qRhBhq%E^VBUk3tpgLXD=%=Zhc{8Ww4-C0 zj{1L2YJ5t5MdKOM#zLY!GbV$5RsrWJKO5jSGx?bUD_iF$tl%`S^iXEmhnq8V2ppv( z3Qp5u3e17H!AxN0!OGTw2{}6_eslFtYHQ|8rI%QB4s>Ss^4nqzY_94an02Fo&v*A$%_ajTi=Tn{T-M!^f$NWBtr4VlsqZ)eWVHgL?i)yCjM>S69vn6}2vXTr1j)qhV$1sD!*t5W&;kwsw&@D;K~q;<94! zHlg7zh2=clTqZ1M!^+lS2|0uyq9>M0>FsLwnA7reI7nPt3=SbQ{iV3vh1<)-yVJ21# zbmdkUC8F{9oQ{soPF+%uWlcn<@6Ox>;*SXFh`IWIn3@|K@-MmZVgGQEkgScFUrv`w z*}{S)XD+Ef(9OoomC$*n_6JhitEbpqnI=9YmQHo&>z6Po|ATX_*EI2^pHBb(O{ep} z?p)NcthRi*(A`%o7t;NiC4F~#>`ZPZeul6Xo6>p`8#N`SITE39pBftY2yuUCJ$(*y zPC`~r)%{NO4ivhp*`m6q=SVm)o~yeyT|FF*mNvJ!y@XC6Gqq`S0U(&k&Y*9!${m8+ z#;kG&!pdIYWPO?ENF+zXdg-1X`4y~GwjkEk3f-Ahf2P`3>`@mJ&lJ{Gx*}9RNyce# zjJRa%HY6FXeWj#)9k-Q9%GY4!5KolX#eNn?LN1tW$R?<>&T2A`O{Lyng`7pxgQP_myt+y#P2Mn&SaiBEpy;7aVrW;i|Q<; zWgpyFCM~mIW$U!iHIklku~ZyTcSkKYhhz|r4i}Q`(P^;fBW0t4+sI_21S?x-V-lGM zdvPO+B-fkMaV;DlE*BzDvZX%P6jbLT#WUNa%k9?)tpVD4uc(gel^Wg|_YsXG#XX^8lGIAJhCzFwb zVP)%#Y)TmEAIMj;slH6QCzY;NGX>4wva`)$IRg$A7Z%MG9j)Kg=p3fhoQfOFq~>H; z**Z1T2sQOB`ZP}8jRw!L>j?%SoytpXsZ;DdDbIQ=w zxaCZSu7s7XGt{~&RZ8h{{mplas`RuuN>9LH6g~+8mwvaJbrDb##tXf)2wCXA*QUtQ{Dc3VdD@9^S<5X7cbltW1W-R~(7ZsuBD0<>sM9 zqq&49t~3)j^(g(-l+}&-nIt6QXw4}<2en#iV)ElH;JVJ!9%~|QJQJcdU}ftNZN-Af z{luNZ(L8gG=D-2tjz)*Z%8~0oMQI=0ekMw@U}ftlDWCiB4`kXpwAh@VK{!fWep=q8 z&Z|RV^{0Xx&4i`|D_e&~`Nog}jkfMwZ_drNaGkZU9Ev?+pwT%j2gm2_!^J54vT z;CE33Xx0RXwTVQ1} z+}-3zgjR&uS7@flen?`H?n(EHBW0PA(l);=j57q~B{)Rf;t&y(rmwVdegU_Y3Ci=Z zvUO0_4+TYgCCr4ij8PdcB;shFX-&~=`*Y{vt!s*dit8&y1z>g&O&o= z`rsgO!HHOLeBM%6GPt!&Sh`^4;R;K+qKD;jb675ggVc6dn%+`aF2=28!g3+3Y#o+O zbi-4zRL%Bh#bU9Zm

    +tb&W>WHWaz!_mip zLnHHu+kxHSw8uzNhIv$d;l2+Kljt#NjvPyMa?`*LdJTGphuE9$(X-W@eq%t`#G(!y z5N^av>b$76nQ!`}QFG>vtnFs=c06jL5Z(qOTcgFbz7VR}2ss8dn+tgqvBGV=MNQY0 zdup*SquJEMETBNKJ_J{mYEwD^rpG zuSWhq!pVObujuA?s)+o?oGl%^ghx%(!3!|5I7&%5V9-T=wH(_8N5b8=Q`R3NZSac0dNxPyfH{1gU5EM|7-I^*CY<{#@q!Y2+lk2a zSCgFW8T@iQW}*l#g^?|ry2uwo*_4pt=CrAn_t#ncg~C$gPi(&#_J&-4*4%UPK~|W+ zDf~-tZK+1p^dqunTXp1Wi}dq&tVEH17Dl#2D!Q15!jwqG5|syp>ZM2e&XG|RY*q5B z$$o^T{_!@kn}gPcUxmf(RHpC8+hj!A0+{2zOq- zuD`NwPyk=*5*{_!>^w0O z4F4WYU(F4ofp|cux#91=ZA{J$y~*Cq9D7!!G~8=^?ez<=WSx4e?oGXmS(ZU)t;jJW zJm9MmH6z@|A!28Q*tW45?hKqDFG)_#R0fKD$Fr@QwXyA&FbndOP|qsWjeuWaGqU=xK)#J=LJs+qZvdiW<#6w zrWc~|q}Ow`FGOF1$4X@XRajS6L-~&oP+~8LEOyAGzmy)#tSgpQvptowmDFIdZ#b{t zKs+E^G5g^xIM>;1#Wel0NE5}l)3(fGZ#;0KeD;Kq+b*B&9rEF#DKH6Xon>XXWKwW_ zsGa3#zs}O5Qnh6A20U1zOkM{gw_PSXx@5v0MvC*7>%+xTg{wpr%L%?>F%q^U^Hw}$ zqGYayk=rhr`3}hp@}V_ldCM2Wm@_k;e+I0D*OE!s38pfWF zULQEmjp_-3uNu{2)2<2~SL~x$yx7Hvl(4#D--<(Y!gbtunYFQ=zdOu{%u!va?+Ta6 zNo#I4!_g?IPKr8YPmM0iycXdHCYskm7}+wf`5Yp4Nv7pDio3;oJ8qWGW5EQj;hznc zgv#=C&axK1eX)H8et06+%VFfUb3H@7x#Q;h%5c6fhs#3cdp76WO2Ov*Qal7A=NG}q zF`Rq!bTt-;=HLOLhLcx(r>rOnHWu8G?27&9<;BvVzA4q$VW~QGR$ah{g4&is`i@`) zepIcuINJS#zM@d={!1LfqusZDg?{3((cb-0z4tp_TR?dlF1Xab>iEBfE9K-Y_b9{B zSgG#7y`jcp4=0YjL!>g1u^d%jgMSK-g=i8_a^zStlWXm>8wyZgk2dDGsjmy}@RJz? zHttecT|5G-^`z_`FaZyWNbgt}+3EqKd?8d15F!ie0Y4Wyja%w(y|s)#CA}e2imXL5 zmXlaD0*A~K;DS;mIL{?Pm4{_3$KjC>b$2vJ?f_evSx>)y{u!oH4rg=-ucPz!jNK}B zY079lCEHR4@sNnr=3r#YQdapwC`%CnYk{SBK&U9hDC7a5hTG4>tzDKgih>QdGsY#l z=Cw8Zyq0E&UuIllhUj#&>al_AT~S=xnB^FLzu>DoHT*unA!3a!!Dkjmvy2TZ`!&pk z)RLNde+ie!NoVe1hNIC@9Ve`e(PZ_ZC-8$3&FXO&*)prgI7D)T@Ik-Ya@#rXRtrNm&xeKcd@x)R>RBw-F}3h*t`EQu zPvm+(7&(S(kDjgCzGwm-5UTCp=W9%|?O&1Xt*+7MRI+(}P3ujtOr095PT`F|x(71M zkD+x9M-yM?D*@HSD;y%WiRb>9t8aq0k!`%bVpFclehl27yDi#=ea*gXLw5Sd)NT9tS47u)a0>1d(>_@k17W zE3Q2b<@!PT;;>U9F z<8=PRsWSJg^7-hNPubP+#cz6Q5oukfc8yXUU&{1nN|{1$Mm`I8ouQnOgB8lDPU|fW z4yAi5DK?L%SC!I30}}BXj@SvKz<5~;V;r~#=0~Q?zB^jUl+t;b=%?Y*IeE_A!f-UU z$ORm>xRef+ETx^(gZ3wSM0{FTs?88N z)rgk)>PU5*rK0{Fu;uDlp0hD4tbtjPXNu|^1-M8~Vsk4Pjz&mzg1BADr6dolxLJ)K zmgpV>FtX(y84i)$bTC=o^@~bnFnlWu1v~F7hTjJlgv#*L##@$dp5KihoXGRdFml^@ zp4M>J&%yQg!nytqTofwTGdb5r0<}d!bzXlH4}i$`*I?urzCAj5)P}{yjc5oS5Na4$ z;+u#Z2JTMwp24`jYaH=2UlY#wm2h3C zjL$J9gjxzCs(5Lv$zMvh_KqrZ<(r5c681>;>88np=}IZPzAH6U zTxWcw>RT)m%%z-ytDe!4NkPOZ!_+#HV_NvSF9~W|c#uPM!n81@F?FMpJPUJVO$<-N zwQ|y&dyL^|yi})gUulfqc9h@ZM<+VUQ!ujSC{J>T>20pB>T|Q=-yJXtiNdSJC;E!ED1vJzxJ)V@{V6}h*nKEaMo(AX+hm{*_fqBShZ36jaH>s+$~J z;fE!f#w)(8tDgUF!Ft?24=vwOOy0b7F}!~`!~5c;c5Vz{Gu(LdGKS|K{NO~M_kfYD z=8!bc4L2`cT&Kgiz7Q^odknC-Hg8_W@O=Ru0Fm$WVdNOTJvzA>21G;ffKcx8gs(x# zD~epQ!@#IacGZA(p%~$d+MzmO~_Wg*Ztp**W-qkwt>d z-xj}rg6l!$x0~~;Vz;jm|A-%($nqaxV5YZa5UrT$?K4^2lGfw5 z*`9+RpUC!17&(S*j}ESe0MQCOAk+}>E??QoAz)Op%ZiiMvbW@mrLI)8Poy>syaAT0 z(^aacw`3R)VTvfV9^{w_UgxVNH4~i6Av$3unB0)LF&bP3Gi0@ni{Vl^NzSciI2tWg zaS7QFyzM3%@PiZGWG#$rxk;HrBsU?<5M8#RUsKf=Qxa{mJuIfi?W)~}`q(KI|D z)bwzcZz6JfxH;KJo2Kx^qOMe?P+@OVZ_wt4xoOm|oT77Y-I!;$F*5FVsrheucwqIo zwASR97-q3pvAJ66M@y*Wg3Q-l2YxK=WQ@c|Z6;M|ab3qxhR@#EuK5;pHE@gRu2r(oo^ z^WO0Bajk3y_cw=g{|>k~RPN1>k86q8{9lg;Lgc>+BggRX(fZZ&AR34Vgqj|@eG`$> z!~MywJ&ev43dRG`KV}(VX5~~{i(aJ`@o7EEF+BXxx9Vzmc!WcA!tgMb=WN)>KVVj@ zq2Xn?NKRsNzhyWYA@XSiL6tnLdK%#+{IEpRcmYPXOyfBYk=(E#pGI&oyl5qQ-dPMU zWDwX4O=Y<8X@nS_=i>(_^1L04+;*NDoxi+6hh~aw~9srT=r7&^~ z-yWS@4FjSfctEIO;CsFXC5M6il3hv|BQ`qGmJn`$mFkpP^)Tlxh>^BqlL2Yn#?k&a z`U*z1|LZtJC$#@@B59-l-wX3#b%(p*DmkgleSqO;j8rG`B}hq@Jgyo5?!u2tG>SW6 zWXmY-;1J0T08_*Qy_4goSS;A&ZE^f0ToEeA;x)I%=U z0pofHiup`=wSFhz6j-cIUun^PD)kVxHslx#PVyCz8VpY05S=g>OsJ)8j0Q!R8>?;P z;W|0#&0WB7G*0AxDz(V%mXXDeOf-;w7}+wAUJjAma3J?nsa4D1`4$#U;CS#JxF%Gd z8~0PG#c#9yPW<>pwr_%w+s<~wek!$!8H|57obhkLb)hnD?x#}A!DjvIcnn0=AB2%( zSoi4gYDf?*!UIAL3CH;+B8P-xvhOX7VGo(~74?nV$MvE12 zuyWvJ`>JrZuYjvUW!qdih-3URJOU!)7sJRgjC*u+H57=p-~pkAf>#5Ff`^kG3P!U} zxfst9d;?ahQ)VrCmO#X(H6X`G@Ks;=sFC2y9HJ9Og0VbjV_&y8|fXMg3Fmepv9-Ukb1EL{# zK&WBh3%&*=R|pPD_BO(#%=)2pp|2~|mmSo1J9;y$SEtyjr?}P$2GfP?&~QE-eRbHi zO3?WG9ucC5P-{Ytso)Y{9jU3{O&p>Vrh>^0nH#gghhcW)`J!fn55lE#5}do9;b^qT z7aALax7Qlqj~|@qB=3chEhl*whe&QhkS{bg6wF}z2P~k#b%TfDvQXJ>e4()+1)KAS z@DPZce;Y<_JLe5AG&U5?;Qhbhy#EU>4V8EEg~o<7Z0`Sohe722Wf(bzdylrSCI`_p zJRsEMu+BFTIXO&8_LYRK3&y~3ct2`VPNh{3b`1<8ei1f`M(aY3;ouM!A$F}KrJ{y| z135(OaFATj7|jwk+#&@NAk$Mb!5iQTIXTQNV>lWc@(b`0OY)# z!&$x%${U1cg1q6iAyKf+Q^zKIRWVI$x!skjl+uOrP_e9k1@cyw4K~g=RaQO6=@jTK zNVz?@3RM%X!$#icONO$McXNnX8%c0a)#+yXhN*lN=E^daFT?e6(w)1D;b`1c#Z3$| z1KVM~fJZ=dm^#X3Rb{e27wJ+R0Zr{Jos$pVyj>l9t%+g(_!Qo6?lvYYRV8T z#REcJf!ypXXL$uOBiSpE$-Tuwxsona*!QB+ecJ0#uZOkk6rTGz=*Gp#5f?9OG4c?# z?&X*)&hu50nk>%d5S=htOleHr=q{JQ{8-)PO>nK86z8%GN8?3)DXKAg+fCNtM<=>T z1xB{qWDSQ%ZlaK1ifXKw!S|gkqQGh54!ABoUGqGs%xvR=zrHr z?$r7FA@~q&r@!HoQH|v@B=FO43H%tY4OIf>C!-qkux0Q=JPxM}Z1x|4kz?5Rm;=-( zA$o`hgc>Ez@J&RH5{D+cV6j8FH=WN!w?T{1G*K${4fnEtNmnXtzczM{QX4L251?k| zlwr)LC`WqNT0|NJT8pzGOs$bQ28GyEW*Hnq!+Fe zRS&yzJ&c@_t%^6|F%ea<0!D7TDi$ACEL75LIk?mVDC4GZW!wPQimHq~jAf5zdD-gN zh{r`#$8|7rj5<7q4mG!k*5m=9=9bC6iO9L-FUc-}%wCx-q)QvRQhY~1_wKTfvXn5Z zbE+}sQ#B*)E-L~Q@sT%~{k|^?>N@IwIYcLnDUu_-1V%gh8_bb4p8N%_nUm(+uNjU$ zo@~QS$4R7&Lfy;#Gad!eVxEVQEsJ@ULnJqrY%f~4t8xbaJ7&>y)Z%{!27!(CRQ|FcxHFkX0*WBdT@p7_b$3(U)QZAOt#r#_R$&RUB!5MPI^cj8bc9j+K$O z`ASKR9M^J)P8c~RH)L*fn$N%tS)JxnaH*Um=ibk7G+N|?;|;;vX7UOA;6yX|7>sP0 z$?Y5>xdB5yINne&gY93kfUw!$V*3fWEL64|9~^H;!RGvNJOm==kHN@o=e*&;@rI%q zyid#p^FEG2v|^sL&vNs@@rE>P?nmQc5V?O1j2y$gN9R|=gJ>Ea5Nde1%2&j4c(^9n z;bBy7K0Bn{P&pY^tJ7ktOI*)`Voz&Cp=mwIF)EzsD;zZ{9M2&-VN@6sv0=E!Ak2r= zHF9u`oRsEX$8a=0ccAhs6?~qgOM$>NOOqfh6DK_T?fDKWsw9<1@D6E zLFKpcL%MF3H{r)7vV0?q+;)~5KBVhl`rF}5e*>-wm1*-sx^A|=iXWfI_LpJg7`8pS zw;BLMEAW6&1Hdu9iO2z9S+WDbYu1#s_CIDdYDZ3mRZn!af3YKSDxF`ISy@WE9@o_W zL=Ov2YdDSpU~3jIHX2Ler~#mhLv+FbFltT7X#cyxe8}|Fvl6?&6>?IVo5gT6HmYO! z5+ox@9#b{{o$zB4jbZ_eY#GHo4v}2*pCFd&EpE?caRj#hv*2n_xt+|ptwnA#d^&z) zBEzS`$ZcnMin^^}vHX^Bmfs9lgvzqmXRtAPo9RpNqZ65a6O0_gv`5EQO<&l*2ZU<+ z{|#*VpGx)#%TYtw!dk8Ee+?F?Q(-aBC7^GC^6<1)<7oU}@fDA1{9oh{ozVElL@67s z|MxH_^6XHp|2J@roV4bC$Z#}1dP!mdC@$ZD+aR%HP5CQQ=G<4%dXrw0Y(4X8REQ_(Zl3 zgpp&|_UPbh2oSBn140b}pYt^*dF6jsvO~b6e7Q2%l^P!EOIP#<2QG!>>eO2GXy+Qh zNbgicVb!A2dX8fTxX4#KY6e)(Av$3OnB0)LF$#PLW<;JNY81E?E|rti+(w3@(IOud zXb9fEgm@o*aH4y>8%DO=<7N(#+(aNB6lf@z!S*98puly3@4;oEvfcQgKtl>P=ik9Y zAaedq7`g47H#{iNP&9-0e~0t_e{gB2yqgaSG^Am3|2I4gBKLoRkz=^`X!UAZ5KY4a zLQM<9zKO_bVR^C})sM?$SFKIw%LCf7!J&hwQ#s}4-r7OG7eKgMP!Cb-PmZzSAQm=u z*(61z#)kblL??_56KZK2Zn6UAMkc9dhS$S&a?+bSiQ#CR$WPqWBDW3XJp9N+134Q; zwhZJ94w2lzAU|&)4N$dfdzw| ze-_Kf!6l)xJiXy5gIKPQ#t%>A`Un`g?Oe}LH|yPem&5rUg3ChXTdW>gDcHloARYpd z^BjyE!?{OiSHpp54jvF{IQWxqi;}~^BgsB#ID2q7U&(f*1~O^3x08D}r+Z-SI)xYW z7{W+*9(aH}zJ~C$uH+aLKJ6-qM?tih|Amn)i}@~xNN$9X+atItXYl`;V(>iiDqJ5b|Bc%txN@-@ z&42J%h${FejNEn=G;ELHs-B^Qy~CBTCxd9k^@HsM=Jp7#d~7xBhQ~ux!!9s#j2b*< z1~qnwR^tJo#*UBs%36*cW5#uL#rC>b!&{sie{xsXZkKPmWYgkYbzWE3!2P+6?8k~t zxhZkKxPkq?I;}4=R2f*8Eoa!qOvS?5{q)VL3$TWrR^)!&al{Yh)MKlKrgbyNw6WS( zMQYj@;1ID4B>A}uGkwEfZiKm!r;NIT@piagPI_~fFdU5=`MC=-1KUyFhDShjlxtyR z%Tcc45V0qn$2m8DLCjgoPe%E<3$tnl?_Xw71+G|p0j>>|_r}j%n0eUjKY+(UWdA-G zx$W#XeD1=moS}f{!WHlgTpy|e%+Fnzx!5ZBJst~D1;2rjV^rWV5~!&{v=k2rHC1GM z6OmKJ-O1kR7%%q8U>iSc_d0eTLY>Pgy6ST0lauIc6e>oobvee0U0K}N7%pX`#)?H8 zq7%jnxgi$g#&DHWVRmGeYMwY5E|int+#w7{Bc(cpuY@bgoA(dlK@fSr6-JKX-J{d1VL>zs4+u3ZEc8u84hzpD`=-Shw(iiI z)+dFhSqhj#Ii=>_X93%0Nd%{LBgcsFTi=?i5#cEg(Fr5MIKha~HO8+&Ig#gwnh(Y> z2yBpY(wh4lE0xAbbs~2VsU&$^H5_b>AD3tvT`;m`8vhl%ZymQzhp+54UuBpgdaIM; z1H(CfEnE>Q$Kq}L#^~+#un&H8BGY@p$ZcnO`f>HIN;ui>4QKm}a8;;mix1|S8Q6@k zz#||s{(2ZWhH;N>t_A|p7Ca!-K=7n*bCLtW!emzu#;`A>vinim(!p)8RGm7jE^Eos zfecVHMC14(jBFXl=Qu=iD+Y2XaB}F4pI6PbP%Ms7RP z4MTyG?Hx+NY;VsXS~2F^XS6vK#4)}N9s!Z@*)Vbp;~pJd4F#etctEJ3;61+5l|#Y3 z$qogh`pvDFFNB5a^c45A3D6n=4^3-5j$z;eU*V`>;Cv3z3B$mcC}m?5xE$ugY7>{j zHF8p#8)P^dA96z`PLw>V8U!xFk4iL)^)Rw!7Q-AOxj{f~$mHPnQ!J9eG2jz$J*fOP zZph?j`D6I8i7ej^Be$L9h7Fk#^h94 zb!kiP7evu%9mp{h{K&WBYAE;thvBsKRThNICTn}0-;Jg92^pT-YLG>cEd$d*}roI@nu{B3rB!vevEZHwJs z!R4T`+t~b_9RC78G?C+*VA!w}RnloXA%T>!I62z-s)^ zMAI06kuB56_(CYt5c&x+jU^#b46n>xkgRD;V$Y40vg^B2rF3DnW*c|2M6glDDYNS7 zPTN3VQ5Io}C^gYKjN~p~3Y3xD$suBmB*DE;CO2emc*&1ohAc1n0bD94$+@pE9E}$F zv6qJ6Z8v!sKRD4%9)giAH~BV)NUmeZkG(V$%wW4~EqXp$Z2uQ73zhB0kG(XcU~~R2 zJOm==|A3L(&UwSfUK)yK@V-|#@4GXIR$OY>XSw;YmxeTK?svt*AacJ5Mvmd$qxGxl zK{O2y2zAMEhp&j`CCA&6ogPN@Wz+hCV;)wk(_&&aW<{q49-h{h9OFXPS3GK5=;sif zFfNRVQZ^jqdYBWdb5!9PIcd#Z#Bek|t_hWC^KoQ1 z+rPz+Ph|Tk7&(S*j}ESe0MQCOAk+}h>zjxi0=|;$5U{oRDDvWUs2@2c)}ot^QFL0% zaf|>vvxu<)SxQHZ06TJsP8b13vy6=iU>VGa)ghL`C32FQJBZscUy{eKuP2bJB%n~qM7OZcIQ92a5awsYKY)6wSn z_HdqWgG)l?*}UoKtj4(IK0EM3X$IYW`c{2PK-tE53}Y)AZkh@x-<&lg-~|cmHs9_r(i6E?cN%N`-WO z)3wzxrA+^DDZ9zRZe#Oza@>O-n#l1UFtXJUlIFOf`P)3F!+E|CE(!H4Hk-eb>kIJ1 z6S+PgMvmdyqjRg~FPeY{gmRT9e2qyq|Cf_({-Z0UbZeN{E22#To$~gp1@PHuq_UqY+Y_AT~7TQnH4CFX4wJ zn#Sj0WXm)@%OR3m0hlaa+;K7dA`1l@yDf(Q1Q&$L@KnxlL-6*n_ecETM4tZuBe$LB zY3jut7uWMP1arMDgJ{J-Z=cO#(|RKTo9{Vz07SlL!pJdvdvtO&42Xu{0ilM0clioe z4g(J+I}Gf!Hq%=vmby}vVppoXII5V3HCY8d0iWiXRg^SKxABK_Ju8loZuOFe1hCY54u8*I<<)Z4NhwFo!nyrx^;h_;V@&gz-Mk5~6i5hT3 zv+{sY1I}5#iO2zG?_{@KtG_ByD3%7bNoMYwP^WXsu(hvB@F=xb=$Kk&vB`x(9MFTq-BYxm_8KMvMNc1gA|NT-^&f06#dC3@{tmb_ zRNiA=m2h)^Jst*;`znka!@WoASJQ)N8Xgd8dg%5|L{1M2l3gAdvo>Am%apXa;m0fm z%%_}UYtg4%WPn<4a*PZ=^sT!Z86M#foiH+t6G!arbMiO z$WOUQvgC2qpzsoYT%vKj03%z*@f?RpZcvb)a&dCJ=pyvovp8PJAh6+?%5meTT;iCX zj~|`L^mZ_E+nH|ol#7$?Gs4+k4p)WBw)rWSIL4RZ5fB+)3M0ob?$OcJP$1fZ2ZS05 zzUOOFawu4o>`*YfJd`e#GhM0PQn6g_N@WU_QgLX5HYD5tOV_Epm^UifVKe2uvuii> z^bZ$$E7>A@rmH9V&piK4j|fo2R}W8XNRAO~l3KpoF0Iup8N|=0cuo5OPh*pf1wiE1R z+|+R8W2<2-9uH9sqhRD1HF(SnYU~iL#sfl)9oP8ET8&;GrRo{3hcs4Y3Yk(m?;1bkuX=c-Do_!p2vh5FwJD@Jo;{78DP;=mxzyavEZN*i zhR8B5RZ0&HNW>F3BF>iwUCqB=zI}Xk3|m?Q(nci%4nPl11 zy)3TA!E5B2IQ8hhI3nAVjIW6;<&0D<^ez?RNR5OExXeRhiQb+@IUX zelT}V?5!k0P^vM1!+3rI6C_*wrR*lcVIoMwF13U(z z*E|d(%L1vh`XOJ4=&Tks7K#e;mODeDU>jfVp6t@gEIt7ZX4&l1mnjt4zogmItJ=!T ztV>#BF3xvZ2);g9~D@K^pJg=~#ldOIrIO6qHgVj`g2~k$FhC_6K)odGA1;cON3zKE}&AZ^T zx&7v9hNJt~w`IM2UNpuq)3DIvkk#sPNH}E3q01grBDG7ccfN`T` zZ&=EOFgKQ^TmYBLZ7C-+9F3Z)cv;v;z&4cg@c@X1at@4a8OoU)BDpoUIpVIgQ8a_~ zx3QqGK5wypEnFHZ>*7ghXBsy5SK(n0xxWHNZs7jr*K}>w75z`FpCv7V?bJ=_=0bQN zTnP8Ub)pJkzHvX=NW~VzJ$NWYF?y(!`L?_G?jFpHKk-E`Zw!I8x z#cC~c7z8$dIf>1UVL19gAs(D=jNUepnfTF(CNd31woGIShe&Rkm|1VbaeSZ1BErr> zi|^y%x={HRckt{SY}Sv#V<57AB#hj4*5_*DLmcy!aOT&*wV^VLZkKjr#rJ7c?6!CO z06#X-J06CSE$?`ULnJpZOc%XY)yv>|>o*5a3tbGN71N>3wRq9W%)n;+zc4RVBIEyp zk=xGrY&9#yvc69^>w9fB*2ViTt}JZkcgLe3GQTT~9K*avlUH+sXcrz3YEHP*SHf~m zculgmM5psxqS?Yw-u-}k5tgpAvs6#?9T(UwK^YzGhG^bbNNQ-va){WWA;E4E-A!!F z-smRpfXT5YhwI^TIr+_9%5e0_L39%{1KU%ocmzaGc`J-;dCJwk5Xw`8nu0u~KO_pa zXjw_tQzq~&PJ7e&wEn>84_O-6Qi)S*)uTPVB-*@GM5QU!apm!dZ^4y`e2+uKnn;3o zKquDoHtgeNm=DW7UV;ndq%`*w!_i2oif?1oL$`h71^m!N-*^s2wtV9m4v}1^m?oz7 zdbtdy7haB@c^1?28AK~CJ8Y)KU2Y=*oA2%L0Em3gg^}CN_bfH9$8o+qobzRHVW?-f zc=p?ogw6X>JP0E1OJL*}-aVSTnh!*y@PJU)9N+OZEP2h5Pj+o`mV9q*&2VOzJup?t z4rYqO746-Ujj(u~%5#4wh43JzcL@P$sS6Iz-TM=s-7JrtfOu{1|ddheh+47Vzz7Wb&gqngpQ7?3iAb z`>H~D%rXuU>oEx~dDPi5%V3yI1!l`Kn>BFV+%wD@8IHzLRlctlN2p~w1w0a>>8ys4 zEz=p`5XlX&3&eUt?W`R^2Onb5VP~zSgInPmQFS1;rD~p!ecAjzJRYJN-VGzST@8!W zN&`_5kAy4YdvKkoirCe7xGOFvTNU5IVWDm2;FvKL$*0D(`4vy?so3pCa2|eaBFksP$ZcnNsu~X*OkWqy^fhozs7%i=MgjLZeISso~|FUdxmlXs=ou}wIKqDQ{t zb}RiZ%MtS|rwpsF^PCLC!dVnDkGK{vva8Owd}&g1!`C@P?A(xCb6GTUJ&d8^d6+TlVynFNCrup|~J>dN3pkb_-@& zvX6j?opzes;N9cO)>u)qa8u^L9UJY#@EB)5__Rov>RRmUK>G)*j+AhP~V z7&(S@kEX8X0?{HoAk=M}rM`*CxnL;S>xwDST);MB>PnRd(nI>U4DkrbG?HP_n zOI2*=*BHI+A-m&8Cwj=PFtX(#i+mxJhX@q~dB~`cDA={dnq)m>XTCN8-S{oC46zBw zDZ%P_p4T1G)o;*k-@GqH%5Jh8q66$^$C0XGSkOCQ@+=Fw9xk7g|JTbi5ft(mdqN-5iCybkk2mP0Fy=SW}U zkuhnab&NBQ_|{ta%l9}$tiL3<-Z5S>Vfe_)Fc+4OyaboY?ITYy9F3CdB;g~HE_vV; z^*byt;0Gq!#d9#SWf#wIh~(zgZn0Y6W_jT?=ox3RJfA^evptpN>6~RPe7iMlhaaBE z^;{Ua?Oe}L>jZATmxuGc3@!_mZ}Fstm4eOrQal7A=SyJZ7|uOl-MdqCLev5x=<|WOC1|w(K;1ZJ>GLHV6pMgL}XegatsI8`ASF) z2iI_j*x?|--l3&#ObBj_f+7lX z$t8y<3L*;pUsu&kbsfE_U-hIXe?A{=G0Cr9z3=N+udA!7Nun8*=?COD1y9INLALe6 zOfr*kD;$$dC#-BFnRZ_ZnPhlWrAjg{`Np;=R=$~Sl9?io?xvkI#hiK)*#YFwW~3J1 zuPoIM6=#MiF>6UF^L*jUl(G+#NK7diPGd}scU{XRHJFN#OOAwnWv^6@ARUE^cr6pR z-pnB-ymiMMvKUr2a!4PO$gU_AUs;NKOym7SvIx5i4c_O&esSd;|H@Ll4<_~Va2p({ zp9?FuoOE(285uYb||j3bQZgL zkzI`-UV7Lm&nIJ2mIsHzE^(zCf9a9P`e3|yN7kQ(m0Qj__R_=7`_%NjPlny%%3FWw zk;wc++yqDF$HU4A%smEkSr72R!9zmU1Izn%MAQTGvYkg*QEX3b91+@I?p5D>+)Ew8 zGL<##!o56aD*2Aa_&0?{-1vT%F9TU7{Dw&+mI>L7A{CYloL`8ys`XUtnb;w>;}BA#)3ls8qS-)-+boi;&@Lb4&fJ z38j3smRnGy*Q!Qx`S_{LNiKV*N-lK+-Oe_jOE#x`2>B?J7z5cwd^JIFfR=g8?0>Pmz{kjWPaf>l`6lilg0|lFH5tX z%jjgw$_ur8zjB)B>C}s66fC}5R->iG%qS&PEwdS?`np?|DJL_DF_1_m)_bjGkDtRZ zjO_6<*iH8A@jcQ}kcb_tb<53^@e{md$CPm?tZbx=i+v?z%HYwHDrKCQ#tKRq%XhT3 z;o&7j~$*HgsZo;^<5X7PM7(^!PKN5oJl_qr?Qm6&f-~+tEvw=Z&Fv9 zkvF{Gn^NA04sKzFDS>Lq9k2WPUFMFzG6~%I9==~=tpr*PD2<+L`D5m3C=?@qOd|=b zUbE+q56E8%milYcI5*L{e5{#_x9*rjI$>oahqU`j$Q;6>C{+%5$v2iGD=3GYo$X`I z$}ESlO{Zd+m*v6c0P<`zl8Nv7u4qtWCdR&7G~&F;Jl}ATNo5}0(~iUaI_pI@65ovRkTY6X#;(=f1v|dF5wJVhrRJ4koEwc^n2~WR%BXXW28#?WCh- z6n=0EpDbyx6Ya}_*jgEErL7O>OoNoGCLQIiZ` zU}o=!S-5P5+u@jOHi4CmWV4a4giJO(vQj0R$!V;hWb^0cGo4|X$)1h|D*2v5w2{tu z<8u^srx~S-@26~|f?8PT_PVF$>wlSFj${&JAiqR#l-_HZ<-0H(BeR?XyUU(gzD7D~ zX5pW*)q7y(lwsTg$DHy_SlP%aXZT9UoWi3iRZc0Tv4V2S%Gti?=_pibopLd!9&7wZ z>O?a#iSK)!hEYnGTIOmW_w}~SAdfMLF_1wf)_bjGj{m_hjLh*L*iH7#@e1iENW^=d zy5(lZcn5FUF=PA_RyH!m-+d)y#^BMDDq}p7#tO<9*JpdQ&kS~&ajsSvq8fyi)5e$`$QHK^-mY8vlXBTcs_NIKs*@8)ofeb=ul+J63d&{0k_9h)Q zk*wG_;y6xE7%;!F4E_ta0gn0PbFi|JPY(2zkokniQmTBiSsE)SpG?X2z44^_3bujr zQA#HHKJ}v+MaWK`nS|Tb9hs$ss-+D1uCL2w8FCJjNK7IbZnd2(JFX>=TVWzb0{J!U zDSHCBoOBc_A^*&&wB4*lZp7Pm%pKRm%0}+EhDl_%_<3gi;H_x+XcXic>o>?A?CvvI zzY2TBl{J4})q7wPe;K#Hk@yR+a?6R&iXXj|Kz-FSQd3`zNIEQP&gr5p5-jzT8n zPaRqZ%xp4*8{n8ts<5(=O$K}=WH#Zklq#F-pT-KxCO2n0i!rMZ9UvBcdm-A}kna`C z&6K2a6LkqIfvjN{`tG19&;erf4F+x?Uu-twlgJIe7-V9(mPw3(#Ilmb0a|i-8b)L! zmnUJ5St$qik&c>N_zoINC(H!%1a5?5g84nHY$TXReI;aq;W3pe!CaljiYUQkTdqv$ z&((VR+PW7Xm8&eODtTq~Z!{;b_^yU$membYLe^5LtV+gW<-CX=nNU_{5@R5tOpW(k z%OpF(P>f8n9qcN5CfSH|6f9yjeB637g=~$t?wCS84J#WdneW*$aPD{=>#@Ej>XDnqBi8&*~>Cg#`f|e~VggF@5 z;sV%7_H1zm=_o+LiTv{k43%hhe&Yqo_wZ&N)5LdRWg|_T%_OpWbe$rm5F=M8L{m-?yOJZ3z9!aTk$@nx@P%e2U z+tPB4fl8rNqe-t~am4fV2dHb%I`7cRQ-NmDzXp_n8X;!GINss zpk^m@S19Gx<;RawcbbuLd^a+PDO+ir62g`T-iLktFZ0X;Od>JQ zWca{Kbl7``M)$S!@-|GzNH1@}{<5c+=SW9k6Y`ZIdJoK`@+NM9V^Vn?RyLB#UztR9 z1?(#PFsiWASkOiEInnj_6phYT;=0+@TyCvetMDz4x)yjZ%`7WdJ$cH*Dkp@w76y=s zbrxCzIT5B|B#`4_KUskW1Eixcsc&Sd0~0OJZ_Jy18E@G!Wqb)%Hd4kCCXwBMFN1RP zp=rt*ao*pZ6k7glaL_t|p9T^9TAre}W+>>OA2bJ%2cLPt#g!?+=i{J#k+C-C-5)JJWmW6Vz?pwWR}jbs^^;sWb7s)wU@+C;21%vOK@E^GgT2 zSOd>{*Ga=TVVg2k)oX~bvyxw!ujETT`QhL!I;lB$Tw^e@**uuS89n9xfm{!rbCav& z7FBWseM0durkGe+WH;E5h2n(*cZoL8d;kLzJ)cmdC!b2LDEj+f*n?K^!7HSrKoc8M zv|iLR&8zh59O1jT0n5xZ|7a+`4J!*5bw-~V{U=*=(8(T+Fek!43Rr5Opw_hXWEo0OQXCz?Qp z=XT6xx!`O{H_^!Cv;`%`gc}LbK!^#P)J@R^#l=)4>6NQI_jJQwxc0>#fTV%Tsw6iZqn-@#Dl3I;EOufKD z)f#8sFT2PpZj_RWETh8%zV4Qz!@W!*vEa;bbeLH0wl+Mx1=BDR$D6R9tU!aONk?HK zUUtbv7MI8xsQR!*SqF{sPB zfDaKK60$D1%Qsnxx}YoDN5=M^!T$c-66J~UG&oqTkrsB_7H{X54CE_?{ya^&6gQzs z-WtsS6zDYBP3YKyu7!i8o?4+?$`!k!e~tfcSL}DYgwe_XWhoj?@eL|jG@QgF#zN81 z!8@%bmMdUZ#!&K8*h^O2!FNeVArekvQ{e)ZXjeW^{upo9F`4`bRyLB!g-jy5f?+Cu zS!8AWB-w%$=?3E`V2`*mo)Oztm_+*bcCEEM>#;2|Lkg%f-`A_|3jvVE)7PICwJl_I53 z*aHq#YgQS>LO~d<3`>?mVOKa@MH-QX!cI(LOcV;d(^^^yU{=N;vIzE)6?gD?(ou+r zLP5Y1?KTR9v)bC0Ym5E~dT|3Bvq}zDHpY>|nMCFlgBA8UWJ}75VHoy^E9`j1kbpe+ zCf>Ru=`&#EmXnTE3|88Aq^Erw>=jqqdc}}L{ASz&N8&fZ$_d0hhI?5t@bSSzLRJjh z`*uWB4CiJ0%HdP|n+o*72U_|OeS9j%kD-XZ1yLyV7U)dYw(g-^aWJ~(N_3o}d3Mpb zv(ZFmjmz-Vk*6Yaenr_*V6mkcp4SVyeXVUdqIGLAHr+0*!HW=5(*}tdu8DVkMb14#Oix&SajGs&%WC zD7QQ;E%1#AnV-6uL}Gr*@KtQ5=(U!3PJw9|iRUEPO;+GRjdTyUyTp}pe4$Pv>nri*9a&!vE4Q5W3UXf3 z&incFyq|&H;>vrLwr?Pj`BS(Fj?DiEDft2K(E(dkg*Q3az!zL35Nf;6mSnpUJeyGH#eM4p~ZrHOSbMk1ne*iLp=`L{u7G z*Xn~^VJgPRu@meoE7)LD(owjGlb_?(n@=6vSvc^a!$U$A4y*WfL=+AeWLr3_S||+^b3OIBRhmbw4h{^IEA(+1 zW%A+A)GaK1StBsq&o=q6C{Jhc*%xq$A9V>c>xXelBb9;6Qc(QKmxr8d_ydzjEGV)Y zW$LgDFKA;;+qoz#qqcY-cAJ%V@H*)zh{Dy`Q%WLFVTqiKcn`P4G3WdnRyK0ZzkDTR z&f(FOD(CzzjTN-Xus7SBGpjtnmuR+i)3DjroiFC2)tpMc*#Qn=Yy5?ITfT{}3f*L| zR-kRROGkWTBYv-|ZhT~W!*nIYEm>$=>Q2hXnyr{bViwA9#&S+Y#{?bbq#MQ#<=;6G@p47wK23kpEIIuqjn*qFfw=!UyA()*A(*u80x-V=6;D{20P zXRQM!@7-_%9C_~yE4Q5YO0uj-V!k9j^Fi1#uFUz7eU?s`+$*>dj@-+zasqdc(O(u2 ze4y}fHNWt(aVLKg^IanzSTkd>5PnFykGYYzJTO6a{ zU-ARUE>*flF)83o0ec)O0tyD&vgq2%PI<{HXO8f8WX}o*$Y-Svd-?l5;E)X=t`A!)=y&vt>tt{Im6fCGO3)#BodQKhD)<1HTtck zk!xTcMjE*ac9a!q@B`9OposUP4b#oMaRuJAW8U~FtZd|sA2W&UMh@{_wBas|^mAkm zcIO$SpN5^{N;>{tw9x^R_mj8*j=Z0Mm0Qj`_FlB%GL8Av@1O z=Ka+GW>sXAG7wp+gS~y@Mpg%VFp0$KAiIHMV!hW|_85R+7$ZhM>?SME;4sorkcf{4 z)GaqtMu4~Mm@*c@%0|lQ^_7q*gGW!Ql(B0XE9jBp)@)NodwvNm##HyPUrAlSiW+Nt zh1+>PP6(5f(6nTW%Y8j9v&CghA~9QJ_$<-EJFO*)M`031vUnKwk`-ofGwCQq#QO{Z zOSCJej~>9=bxala!pcUfxQj_-HyDWb8CJ$0k}cTXW-$IA>=9SS@%I@?r2m7r?nwF_ zSh?k-WA8Jpv^V;GYT6r+L^B>9%sX0tpOHj-ecS>^;_Jf73B*0da9IZMVZlQ}J~>?C z8@l4j;hk*DfT{UHsXRa%(kuCad`{gRx)=^wYjz2D^(_aOX?4q#G00LC^!Y}RtP1i> zVk}ez(>NBLqgUM3w%2w>W8PYJ!PWf$iZBR&UVNv zOD8{eKANwr0TYOqgSImbU}TDRY%eI(w#BkdBb+;ZBn51Q6JrV+n5J@FsHesLwPf6%nv2b22w zxDAff&x4f{sC$h1vT)!-golJI9M3Y|yQ*1aItvpCN_D^jZ{ zRm5MYM_9J9241+gt%`71-6Slm8`xbX`;?){QZ78}OF@-`KbYDm3M1r8i#FT{$NciXZ$QX9`#oO?nO}HJrOGdV zN@E4R-<*~0LhaQXM{W+~DuvvFV)XSQd7$MHnQwMr5@R6W)REDrm;^ED2rcjQ!N`oflZQQLr5=2ibQDVA zTFTj*md=><%>vvQ$NbX`D+^D_{BxMEgv>uY#!}^ew z9r|!Ueu#fjjeSY2x3+X3uP(y4l=|6>s^@UeY*e>9Zg$;j_H{I2vl8=`%yh9YFPWKs z$Rx%n>+OyPkq@xfEH)2`Jv14Y&x&t@NF=O2ZD;pW>W?u=J zv3TsI%2?;8v4S$z3)xQPPHR+5g9E*}nmVJ~`Ge+UrQJNUQoTkJrYWIpNj~jlF7{9% zVn`;RaZDmH`DD06Y`WTcEy-*IlQELa2C%p6NoEz&QOJaRPEWPp%q8pN?K|d@bzx;A zm#oDkvU}>D#owf=KGT>VLN;MFg2DXruxDJE^K+kVy)eligj?ZAet%fG<>XhDFNBv# z|7+>#e--wQD}BCMHK`|N1bhXz#4!Sng_RQ`z@rF|bp#(qJS61vSDSA~A}gqlxGdW` zqBB=n6n!~*VOg2Yy_0%@GSbN&u$S!V*2Y*(=|K8kF? z#&3gh4fcpD@nW{m7UBT#p?puR936+F9{~Or>JFBqtTC7F0B~-d z+X3Lu`ubl!Z2Xx?jD_NW9{?WfzE&o*Ux?B%hLCY2ffZ9$z`+#PfcjEx?SU*hq8{>93(%%qPHind}>FWo8$2_M+z!B*q zU_R_0*E`>O0C=n~W)vKX+u|4n2gAwmH^nI`v;%|~kSb1*{e;sy=D{<>S zSUdN>;zl@fe+gD@Id|JWSPT0(7o}!DndbhQL;ma@$WBB+I>?bSGARrxuiFoT- zx7>W@Sc13gm@@`pWg}-)m_&B9g4pI-_m;-_r({jaGU3OtPh2_2x4G8sH);O}Z{Lyj zg|KqVX~(v?);*>Xe_z>YCA?tzz zeLEuRf?3(lE6ir!3!#tC3`L2RE8)^*{~wnjaAeltYq0RgGnTo4cUz;5h|M#v{bV-j7oG_o|W-w*lSkW!TO}5 z5DNKoNJ2-rm=!nQXQ1-w))w*YBgV>UG-wi z8D$)?mRNZ%SxUXaDkN(JdgmK%Wy8pZjY>3I^39Mh4ViDMOd>JgWcZjOSQ%c>63+Kv zRz|}44(v87?%)*CQ4ooQlY~ubjX zCUnV+iNE6}ImW~ruyR67cvKUzAmM|LhlG3p8u0CicmUcX+XtX&3(NG~?daQO`BG20 zSAFc+;zwvwvqoU(yQ@^#RyR!<+AP(_W@K*4r=3lh#8{|4rmLOThMO0b$Z$CbXmt5ofY83C8$mN-VhWw3HW1b7qy zvX0=xh=+u%BR2Bwh^QkD%yx^|OfiiS&1dvf^8IvlpfaQJ59$t%ZfN?BOL`!I7>OPOCl5| z$oY$@xCxGVWfH7x>I$MfOv8FOjm$+^pq== zo^pPnGA&VnFCom!s2;u!`^kzt zSVB4qlloWM>v1Mpma`LI!&`PtDqn?_jimAwCXrq7AeM+HaQ-D(ld^WW4)%#F=lBxw zy8Y%5@(a9uN7_G!m0M0bwnV({G40NNDLwJOz*Fs`ROq|^)_{V|%GtYH=&HfnPYk;Tf;WGNTcp|if6B21!DStRU?H|m%` zc7TwwSOI}o0#Ew_khQ>*Okyn50*$2(js9zu!Sa`(e8hbtD}&`o z0xO=Zh=aeA*AzI~Qinzt%)Ige%q(=wEB}R+jlA+MkA|dU96U~OSoS%0+ERyx+cff@ zNKd|N)X3YGIy5?B^8Yw)h$H{GuyV`!Tb4RBT&Kmr;pt=Gi?D-S@BXBv4vo&3aqtD) z7{@sH9ITuW2Oh&ny4?jvfU#(F;^_ob`1L3c2Svk_&yxD*02kA zw9Pv>Y(giqgjLFrWvM5=>l-<;o;Zg|jD>n)QlsBmCb<>nVbl@7h8<-^8eC2~3KX%D zp<%k2H*Un6cFY^s!^%e9xQ0n&H_sqeGBn(!k$!{B!76%#^sBH_TuH}QGBi41@_rdN zz>)V0uyV_J$5t{lT&6K!^(U#BuS^oncuFwuZha*~qZ20g6>%dRxzB)=6S#W}?y^4M z1BHi#tPh5L16b4tr)K*?Vn)7DDi5%;YI1a`aIKlf`;2{V9i7xtH%=Lt zEY-s2ed9=03kNZYu~03{)Vr^xm1AH!#!#{p_LmiK&__B7n~z|fF;_MOBy!A+jUG8o50FOs@RB0WLGYTZ}?dm=gF3o zMZyBuBd(0&-|$N!-Ho^INcu2Xx#gr|-|(~2{#JV0-+;a1N?ZSiUlQ>Ux4@D3*J0%Z z;vQqTECcwk;2|N)fXTic5oJJkwyz&1ux&BgKFi-yAF#}14YcqGTOH86eU@akGB8<6 zg@=4;$Wq~cCNUOD1->gbSJG;Qf5EiGts`rNf52|C0uP=g9R*1^nXQhi2bpMC77KsF z8+J@6uffVjLV1NrWLGRqw$!)natPWWFbEf+O?YVC4kn9>cz@ z9QY{VAt5V=dwesNs2py|c46eiTxAh`^f%X^uPT!Wr^E4T4L1LU3zbE}DrF?H6bGmJ zMvg2FPG%B`#X)vs$0VY`yRD5IKZkLM+d~c)KZE^bB^rE>bQC7_bqjUV&9w0oylKa@ zaVe~9q>YPxC1l#*@slcToS4Q6Iurl+Y|}<3`vym$mhV@x#+%fOW;}B2V0+|nSnd>k zrGXix1gIrxyzc96nKb^&B*s9}m{{+%mNRDl425CjjA{Z=IST3ka%3~|MYk_^{w1A*Uqv^zDc!6xPl5*`i|s9eZ0I z)DEMbas`^2tdTZ~r#>~zR)!`^u`rRkf>qTbuw=0?fk}*oVqs#v+giD>Da^|lN;Zc5 zWJMm#AsvN@c>1VYZa#f%h_~#RR6YhP8%bq7CXrpiAWnU%drRXypR7q)G8_u~#FcaW z)Tg@rChddq_8n<|7FKRK?bxYLb&qMpPfbt!WY{mR#Pw63>U}V&pNQMwNd0(NIf1&z zs4oi#K16s($iiWH-;RjFVPUqbAU0SySn8=2%B9AqI`h44-M#stLQkHyUgS#Aztxrw zXsdLv!NU&E$dd-KU$gZt=k-#T(?*mz$`_@UB0YjQSlolkyun@H{yKE z$t7A^dL71S6dZqreQ1q@;0e-Ec!e9X1r$!*GBednxLJ;w>MyXek*S{bm5`Z=$6cyS zb!!?c==I6U*)H3j9PP7OYTGdW@hh8?jCQuoh&m)AW|-ra@wsGc%IBDmGKs{Lli{T2 zlvvNT%rXyVVq}(mU{~2Q%hsf$W|rwJv&4)y^T(ceafk)+U5@jhx5x3{IY;wdfCMqbm5`4ia~jY8Z}+rq%gF!t6s?Fie1sa z#(%4e{Z?1qU~aE6WYr&D!p=&5VZK7&FwPGLXRS_aTVK$qjNBC-Ug3ibu3DXY$WchN9yWinQFNLWd4<2X>N9ydoRff!0_E-XXUs z%tF2-Sm{GO@w`jF%$sk=n_p()`LLlp4ptTp>MRzjVoeaYv5hHZS8uGu2W!Q18vSj^ zBu3A@9|euzy^^^J7aaoiOolfg9n7e=}HFc<2)i4`t1Lwj8XN#lDXWOvyeE zJI9qhKi)8*BPRa^xFL@GyJ6)7{<3HoIW>w5GHJnJu}JF*qeP;ND!5i4!|`c0Fy(@? zY1}(@cy8coPVg<}is1Qdr&inhssl9CD2qLROqO7wYmGaHH?sY?Qej}Qn2Y9iN31{M zzuYCvR>rb={SnB4>qoxvB}b?WIhPOiYHQoz_~8g?NND@63r?rYeEQeS4p!~poz@1K z`(awfAaf7wB`fgYdeTvdh~--XmS|Vfxf5^KF|XVXD;s&`7ABD$U9o)2%J^Nf1-l~+ z#&5$Oab+A|zLiA!ExdI{(r?1bEhimYzGbET(W_F^UWX)_@w{N((fabOB;sr07B~{0 z11l#G_Za7+L7Erld|2?1kfp)}zM(5hh4-^v=RI|>RLKqH={Vd%sW-nwDH(dxC>xF9lH@k%4!fs`RveXPY-}sU>!{JO~Ow3Lweb-8dlVNJcuyP{o zEGzh+N;(P{F)^W-Z$6nEk2mj_Wxfn68(HQ{Od`7qLd-}gF4Kr#LnfsxB(8!T<4Qa} zBcXJ{~w-fZ85EMLnlR?p5|>uNMtS%WPcc@J59W?{s#BL2%=%xGoY zvJ@1nQ%A63T!fS?C{|?>W1*mEkGia7mR(>{qJwgtdq>zuR@lKNq@(Z%JJ}mn21>Ll zCm^=NTXjq$Tf@pm8u>Jn$gX^t%-;oA_zsXIDXWHl*dMNZr!l_Lc5|=@@U|T(FM^d@ zPIt* z5@VrGm>fal9oMRb4`FKJHj>rC|6os9!3VFAjzT5mqlvWL%rF1J+jh(^@4(7Ne)%Vp z$gXCXDaPF-)*Jl-y+aMw8;}H6J-f2zQ`veCOycX~7B~`L7glaL@maC)H;MWo>8XDn z_KYj_+1iTBW!>us;Z``3-yc>^An#EK$XbFA7akI_mUzrJX^C3m{pD$WVA9L=#6&jN zRiLQaKu`}E$kh|N!;w<0bl7+;#m_#C&3|Bo& zYV=#HBW{A38Dq;0u%oQlgG)(Afg+C1YnW~hD%avoJEoSaVPzw=T*)L7?>>*4Z`q#= z7N7iUxJx7b3Ymk|`3C71VW+r~j(_s6(E*e9^SA+yyq|%UTh2T7$-jonH0CQ^lbZQV zl4wTdXx`oWC;u9qFu6~|jd0{X8CFiY#^o z6dYj(dn}1CiALpHiX-tx9aBgNRyI<|VkVJYsW6E@ubXr)CPPvd2|tA0;YxRE>?MVj z@%ebuj*QQPm0Qkunw(=WIsZ02=Z9dIxN_#ZsTA|g`}uync}Ldwz{&}%J;rlc67WI5 zLqe7W`}lT5lmzEy`-Woqh2^4J6HLDr%|_M`8`Z@N%xGm4vJ?eVs3TYrEka5b1rwRX zSSSkGqb_Sz!R9b2(Lwn-VpG^hR@lLsq@(Z@#K~i)FliL zP;ap8WDU457{$4Rs0X|Q+`Vx{Q!(B{bER+n4U#$09_3$RlPuy0rdUzdn zmo)@}CrL*^6Y{BP9iK2j77~BO4RB04FTu)2()kOM$gYrBS*|2ZratF7^sY6i&n5}1 zu6Cu)j})?Y!+aK>gMCYv>CcwDfJ<|GVI( zIL5$^uyR5ScvK9s=-`8ihlDITe&d_SMA7kZwnaz#5S=R3vsigcaS9x>)_@z;Qyqla z$|z>!nBML=Ety?tiXeFNJk+ePIVBljCArNyj{n1 zav`j2q>~GnM0VwbIMu<*_zAKFtNjhezlS~I$~b{D_NP;fS>+mvGT2&P@pGx$(*g6|&@W3q18o=J>_ zx?yU(>ss}&2qtHYEWNO=tnh<_NJrrk@{uKOz4=(0!&`UEGl#>zD%D`nQDBkzwAq$H4n8a8pC^|*2wG6W^%*&`H)*^{!Jhx0E z9R*1^nPr$dF43@jv#~nfuwzPD6;?J<%F0Y4yE0-LAA;?a_a|dgRuG?oU1Ghl1Cuge zRi~J54j+5t%{#K*16FQ1>lI}2VCQ{odfrFFZgJ(!KZas-!DN0EZh|B88myea++)0# zB?BKEJS1ev@NeHCN|X%W$@a~~q(znT;DF_87{7u8)*5Z$!6QyaAYa2^)-K~y7_pToCaT>?tei;C|9k%LTsNPTFo}lt1EaJ7$!} zVPzwuJjNuls~E)T4$@y5>&d@NT{Lu(L^Dc5lXd)b2iXIYcsp)^Bk^&ta?6RwPIr(# z)2MHip8BU?&$!;<`sog`7bf}5aVs3jZwf0XkoOq+W%a;^3l9ldJ^aEqX^HCLOW961 zboS@yIFFvf(dy|AOW=sLhTEu~?jS8!hAhjZ!=P_)$wH#SB*sD^F{#mSEz6t-Gc)Rl zb74nWu?HuUjsiuT?$9vZOf6^OO*^KRZ^6n&YWW6}$gYf-!Jph4?$Su#L*}HMdbksI ziYw{(=?;w!n7nVt4RGXr3#{C7-m%ji8ZOhAznz}>Td-qXnd_%JG&*5&e-k&tk^Aeg zasqdc@n4n@e4y}LDNF6}3F-p&xFw=W)(%}vVl31SQ{!FN63oFcE74Io4e?pnS61A?E~KMy5i20# z)|;8-0K9d_%rXyFHZsdTOd`7qLacy@draefB3YEOh&Uehi!1N=3W#_gOzL08ZE&Ri zC0M!T)MG0k;$G9pUzMKx6|iqy$?Gd1;{7n`{}i{wk^YZi-hAgSEntIyLck>JOH;tf3e7k62UquZG}#P`aRu zXO=qS4PQ*M&UlqcjDOeYDfGP4Fk@FBTPp%e1a$Lxcdf2QCz zIOd;;u(FYVCNPQYYK~R;tcB?}js1>f7j_35?6-rx$#YkSh>O-)T|MpFRo#*h8*Su(q}i)9j5I35#%R93!C@R!)cnk3vG$B7Au9kdU>= z%f5r0s71b#?aPt&g+=<~AvgEjgNsNV(ql0%^ zOEM3`w2YzV0oY4c;K5C#qYx3BLIo_*u3U+EFW#Ol3l@o}2jPtTo;KPE4ge(;<@(o>4DooDyB}jX%OlvUJ^CSA;P_<^2@Q6{IsUWk- zYGquqR0?_DsFIb!0wysQDuoHG&sw2y8q7-EH}dVrDX^2QxPzleM*$K}WKSa;m1tJh z2`AyrI_8oSU}Ynh9LFTGs}rX1DF_?k8_1NDWx}!H@uyV^e z&yW)hHr6kuXZ<|v6j#=KfsEDxb2{M}+yF=3Pr=FwygdeZStIZP!9zmU2;IIN5j8?B z+gBSam2%PBjJED7ZR@Q@M_g7axuwch&-H$dCMj#wg{2Wo25tj4VZ`rq#(%ks_d;|+ z^g$V~ECs~c)Gw^$79l4Kh&7l*VgZre7$Yz$4$!KJJz$KYyRw?t7511l5`xW1N1+q) z#acFs!U$Pg?1UTPn1i;5m5m&+>>Okz6(GeeAzUs?IW}dGwiNws4;g|g)da=%HS?4mCo{@DffxTr7 zfZ#0BQL_#|&0DqKEP5`&+jmSjKY*2ug!6qSk=;Nui$Bb$KGT>#PBvk8tik*-*fXxo z`PL#^FHG`};8r-2e-Kt~Ir&xP)4?+7kGnZF{Wg-oDl=F5{7rgNPs|8-ALitGQr>&8 zazX@nR0^`#;KPWAgnZyR*0&?#foG45A9#x8p6HysO1?S}t>&_9Qr{VlU~Bj}%#k9S z)S2B4v)y*9?*QLOBFJQ+u`QEGEHttkc~-JGKpS}SFgRo2Spa*?%04)Nbkt&lKjK(A zVP>6f+z7{U=P+2=$U2AkO319kV=7hF*(!|{^oVnNwyQQe7vw9Y@?f!8P^MNcre0u` zk~P}GFO2wXQ_0cvOaF+ID*V^Fq_s*6TP9I{=*vN7nDd!LVus1^QD#!3-&$h18|Gvr zmOEfaSy2bSARPsY*v8s0-ApI9;Y~ZHlbc~>Bc0sDB(fVu#5UH3yEM}OB6F}i(jfg0 z*eR~0pn0L3njkVDUllyA8 z5sutfft3@udyM(AY~TZhhlG4sInOtM#ly-e*_I9M`6UB1a4R*#5pc9x)61wX_7r9- zS6pf9i#?Nw{{gqak@)XmR|`RM-KgCAugVXlx66$qGF9 zIO!-vM5!QPiFReFuod2}V>DimOkxH68H3Q43F;;lQ9 z?tztCPC8a9SZRMJJ?*n$uej3IONAuj-^ML)Bz`8WoIu=ToR_5n9~L|$WT~)%Z%0I_ zaBQ}v!i0fxp;|4gAM|*F`haC7YoLXnZ}O{%x~53JUryTz5a{t=Hv=KJ9$ zI5OWCR!(5fe#KI60%Hq*f&v$GNG33vh11F@Ib;Jrr|Fw$ZdYGXx)?5QS%o+y4 zMWmy^33=`@x?sNeyb3qLG51^nD;v4zr%WQd+F~|e+ibW^BmV-Kh1L58`R8EgxRRd} z+j?qr#N_`pZiplQCt>B5^Iu)AZZ=$}#lVc)Q^&wml4wSyY2N*7X~$g|oiXEJ5^juR z9CX0S331?2K*$<|4=f%MvIaTLH=sogvUau$AU;yqRH-@kha=XSa>DteSaXoc$~a~z zGCt!QPO`|@n@Nm?B4hc&rdnR9!jz1$WdQb&6?D)|Itq<&0?R7|Nwg`aDEjd>9n(hu zD;w!!5tGQSjF`yF2!rhp$c~hC!}notxU!uRs~c>Dzl*o*NcbFBx#fhX%0j`Q{9t;@ z_rV@+LmjJ{t1rQtgUVSaIk=1df6obxyOJmYXUwF zcu2^aV2@?>XjvT*HNkP&zP?~5U=}M%T`>7KXjZZY+o-N|hz?#Ovz5`vQX6zqSFnm& zgq5rf+L^>ys14W&n8k`#A8Z2C5?z$yD%kf|XlNI=0e*`%Al{ zzn-4<*I=)>($-fxBoY5AZh<55ufWO)#68A&St{^h!9zlp3gdh`B1(lN*}lSM|PG3B-cDS8MjD^}^ zx_~D-uVtLqV0z+~k~PFDu(zxM5d4936f&VWSVo0sj4&_a?K|e1=V4_d-#o)4va2QP z2g@iv)0nSv2YSaE%vT}_th#n(t{g0*^unwnXW~{klAi`Ex14U`48vWhU)885P zjw^lRU>T(+W(4ejTjCf2+rr8T5#UiM$XbIBBOVg6*0{wtiHTa{spV;q|6s4Swhf{& ze{K-cpx<|0a5`ORVrJal_8-g*Ium{pOilX1nIsvu_f>1T9`&^C6XB4x#@nb)O9-=- z0nAcb9Pb-evb6XzlSo98;Xw}_ywh5OxfG^l3@;bMUa|rYzD+s`5iu{Se-| zBkB8L<(895aGqNZsv=ZJ?viQnt0TdNF6mJ(q*>H+p_ zCBjLT2wO9Wu}~s(ie76qLJv&I7(b4H-DCwF>_<8Z60rrNj!QHwi-h@j!;XpMP*~YW zBnLBz?1}`j1;bAHOfn{Am2f)j5?9LcEf|TcPsN*eWPLKM+;Y~jEf{v*zfRBlM%XQ` zy!9;@iOjFZO>ks>4Xm8N++&oNg#sTOJS1eH@M+(Uh(ckFYzu`+3v#udKFblc|D%3j z3CbF6;lU%WgG7#~W!Ac#O#2^S5VBTyhe?cuT4A#6xK=K#c^Aq_+&JaBXS;b~`33n}PMKr40S;Dcq=g5KST>;NO_QO@;AELzxYjp} zWXW(flNbvnLwm$V8$h0f=@|3O)g-+|deWQW z-tH)rYV?_bTygl6u)UIBI9MqRTkd4OI7zkNq`e8=z9a38VC95++G8x2aR*-|9feEC-(bhBH#5sO@zxzP%Nek;ky%b- z64_M?EAkOH?lFz`9b{3;X@%Qhzqs;VIkw?4-UpNV&A1JY)Ng{7TTXoyIr_%Erjh?g zdh&mRed9`gHAddv50n0DxE+r4UxAeq=zEj`vYOyShlhl$CKmg4L{t+~J2GAF*x6gC z6ngrKd36=TruU%P${KJEs~E5u25GG_U|9-@jj0FNBbEp#Sx9WiB*sD^F{#mSEw>y5 za}vFjFDCYf9c4uw>_9pS6!Ar?hUsQH`3&B)V>;OzRyNYf9!w&;5<+~@s^Kn;^jFB7 zl=Z{0uv1(~$G>RR=zz)lXxsot-bca8E$1EkqE*9X8uOo}XZ{n|F|N$@FIqJ^VRF9| zH^Pzo#jtV$caJe&mJNKM@Q{#Y!^eC(BFcutvYmwJ=r0fDb4vI9afticxc zj5z<`f0SgyaAmBr6cB&)B_a!mmzcy@C?F=*yRBuIY4@VUjQU|RNnnMR6?*Vra+bm* zpN&U_|Ywcn)u zDZG70+MC15EvLPrd}2=^UPw=TA?z1d;(Wfz?1M?Y2e-kI`Vp{l0(FmZUzQGhi13h* zrNdu*2P#oI%+I!Tn7Xh~q>~(a3%Nz*=p|SDEQcS%L2He;ux}I#h{$|ty)t51s)!%? zMwzT4E@Tp8p^BKM^j#Zb?uXeKL(Dy}v#j`o>q$oe6Y|COiuq=)xf5^RG1uG8QWh0&!;Wz!&L2-LoiMq-g&X0>{Y_Z8<=kh>QF&SHKYCwk z_Un*DGaekwyPcmqp3o7K|C+cVj{N7q$_e~E3IthW@Bzd_Le>};_y)45G5(Qljj>AO zz^I{o4}JThO#jK3Xd|RjZS=x1Y)wAlz$jK5^}~~>AJmO{FO zP<5=rByNynJUjs_C&YtCi6N^LKHzvr$SUQFz8w)&%D=L$QdTIGhVm8q zHrGJD(mzm5r?PX(o|fHL`{r zg-qXR{0GRkl;uc2>>*eFYimQ0*&8zw0^AzMNLU0bCq#nB;33B!o?JX6f!%ngy4sIqL1xPrNWfhJ}G%Gh3K7cptm_F`>m5uaq7n8_tAeq9S1Z{*r zBvY_E&>;Lj*deZjr!&GaKX~JgoZo?!Th4igEEsI8H+mp7>kUW(tEydD^EI7X z2Tb1U;|4hLUKdtQ;O#M{%d&tE2p$r$EV#rsa79`0bhhUW%q~=EgCRYQ4&~drt28@N zrE9KI$t_i8&lkhNYmL0{$Pr5gZUZ-Au+yyZ5FAZ93ZRhhQL^{LOh~8Tb~q-alVD{dA)VkW zArlghtW*hUK^iLt7X-c8CZt(WLMjX`T~;=Fkh+AGP1fiOOQV~Os25l&y3ZGtOhtDy zi7}9hR-#*2cYv0M{tja_^3WTw$E=YMJViQc9^y+%ES)fu(5tu+j!EccSlLKIFZfEx zB*bGXRT8=*jTMxHHpq6eq%Y(!nbo+Ct9 z$vm?GlSs@nS$-FScUsFW2g0zGdVf|ZSQ zvOAN=uA&v+g|IR{j%>lo0E6){ut!`O$G;1aM0zRSx+Cc!Sh?k-W8a0a(!M-B?aN@V zxYE|Y3z0JYBAPztzMY=5X#CJOD2&7R#jPX2k()?)Otaj z&=j-Yd5Lf%|GeOfH6 z_i*Z1Seqo8@fc!egQUF-N{7sNSOYi6F&aNt@qPUZq@w^4>qKE?W zk|||ZHO$}}IvQTns8`9Hc;(<4>cIgG-weRMaRnYfdAiX76MH{yfFt$*Ru-d4q2ZmZ zdB;wkZn#Wi{sS^DCG+pYj&WtKpFG{@gvtH8xDk%r&w-T_xXTj2^~MS(Ef_4)7aO{x z#G#BHxK<#;aF%b6?qh!#d_CLuBI6FyzFF}snSsTuHQ>SxZFK~#TkcvoSn7$+Xvh`2 zqJOPY`^xB3uNDG1-2B3Xs0*g45|TpZ@jLpz#y_ zf7O5CLi&YpLap3WtK_L}Ih+19`ty;)ESy{@^%Mtt^K=4SzB){egj?C1LLRV{RrG&% z4VDT=4(7Xa#o}

    ?xgU-cml)0WfH~um>N3UVUfg6RHh06y*0J$@1VGM}D%D~s z)fnKF`On`v_kdSN1r$(Lp zNh{n1MI$THCRT{G$l59bdst4an$x3Vy~arJ3aIzWfjlBz>=kA zJ^4$*Xlz>RaV*!9w|68$R~bWBkK$iXUOjjeLzkrE;3Rqe$`$2f;gD(boSP?f0_mw~ zE~alLyVJ|4a`>;|qi3aDRX!TGl3DuZJIbN?PHp<6T9&;-4vozrc&)l775ft9VJqg+bn)!gP8QFog|ot}*PakiJu`FRPB z7nh#{%=z)VP9b^$H=PO5^RTjYh?E5_Ojz5v_>314SbN8XM>EMsi%M!^+kn39BsCbT!+Z z(v3s!nZxon949U;CY8nKGOa9c;wCepc^y^`fhNLQzI+|vt`A0#kZVJSMV;PBE8JCS zBP+Hwu|m9*xOh0clvoFyLu!8?wOK>FlyF|wgiO?qjy?`fjOVNGMFbo!ZEkb(giatewdr(a$bB1I9|lDx zeH+^wzIoR9UO?d1G0WV1M>#ad3BG{vpWkXkCf(JY%J!G?fe#p+Crmb6M?M>mr~c)G z&8m^8qdSZ*3npxv=5#B1q)@3X2K-n@-bdWV9gho5Y4oEC_? z7+BdlC~Ijz5tUZ~WLI-Qc7kKW1tj#F+4Uhr+ip6$VJH|o;3hJ`mI}%1#Y-?hLm|7p1?9_VvJm)*~>!tGxGF|0#ptV02{$*)@7PUi$ zm|-_pD(Nh{`A?nh$K+EDI|F^bX2N||RI25K`*cSlbTSs&YR5m}UMILn?WSxGO~!79 zGv@u4<<$E|IB?pe=PnmIfh5&hE;|O(t84`fI_#M&=i}GoCNpc}wT^Nq0twE?mAh~Q z5%JAg{p&D)5XKu$yq?A*tDTus7+T)t&WFM0I>F)z+;}DykHN}h$b7_+2(2NpPuE-h zqMF;iy8DXxOl6_^QGgMXjX~-V5^=QP6r}ldK`(63fMP&fu+QME*O)wg3M*UZN&SMC z(?xhglH{rWB}%1T-`X6et=a}t>n~6`J~lcK9!&KBP?9#s9bl5QDXeUrq|I71H%*dy zGU~MNSaXh!hJ(dzbqTN;x{u9HX=0 zXmK%W`Job|N%HwmIXVNkpUKgwu(EZISY^G=QL&KDD=gh*&e9!l#JDWQ-6u6-KzX_i z_kqdNEwHk6o>+A$lU>lKu=KJyOE1CE;<6NXU8?&}IeG!NpUKhlu(EZISanInaWI{) zs4Pub*LeOmUPvq*^S4F}C{N>XADBFift9WE#G1cl3x!NsDNMVX!?Y6|E^c9pd;aDG zfReNW?f{ddnXs~Tl34S%Y++F0XrVbreQ>b29K}6<6Yf)rGPwCnin?HB>l7&mQT6k; z{&cl}K<&COHwWobI9^uz>NT9>0;aiCQBE>%GOz$&RJ0skt}CVNEM3Zex))! zXb#lpBGNd$XO7j|aMZY1eYrhYIdPy| zy@~t5r9j`8DK5b6X6L74!6dfG%74=y?@&>lE=ux51wJ9s*^R z>1=b7&VU2PB`NmN%?$yi=~UbWCQT>9%GPO`#_5%+nSwa!*i%$@@7`g~(`|6bxI7&h zbGOtC0wwAe+zBR8H^Iu*iDIpUyTR0TO)r@<^#U9;E>m%@g!{rksd^rFgGtqMu(EZk zSY5bS_U%@?@bT*#&*;VpiKU|pcLG338iPB)Bxxk9Y@H<59+km#p@%Gb?_`eB4sg7< zr77+`DsBWQOEYl~m@LhJm6sBhGTpRw>N9641INo6OHKqROI^4JOqNoxvUQeNebZp3 zyIL&k_B&l_4%EeP(6~Uw-8cEdK&iSAcY{e)4OX^J)!v->ofpn(F;!WZS(K_Q?(fft zeRbkeTxWY-a24UwsQ)K-zd3UE!V%>nSBQD~H$;pmhIiwxF){oZtZW^_O-=okk{`_l1(P-~p7u=?678Ax&5H{j z{lx@p;D$5FSrt~cPR{zR$e}NQ=a_S|4;&_un~UKajJyd&E%#ZR<_Pf%RZ-Z*gn`#=dLwp=V~}oTz2B>a~i%= zey+rAXY%tMSlK#1E$fcvf`KQ@*?A0(5|^F0>W=8F7I?I-hdR(Wgq~V$VRgx)osa z4UOkpn+l2c%(sq-sR7akf|9in?g*2t^#nAlZ%)!-aG1DdDXy7&$dwca z+H1LpdEhI#0%yCJr4(q3s77ew0-W=j^{bt zd?rQD!phbuYIzjW3#0C8iE$elx6osRM0;B3xQ;^l{ihs_#O-Htv@EP_og+>)(p)96 zgE>Ys;b2*+M*1rxX5i*CDVhc=Tc@bym6P7Dv3XsBvO<(GN2v>r7#F3uuEJGgK&w&; z_kqdNF|e|Ao?6c5byr1PY!1Tv*vUIW6C9Xs(91*BqR? z;V5yziR;~l{z{0S;dV2*xf52l&dqwQ)~3l-5O11O^EwTyD@c-S2`oJr0uu(EY>zSL^0^1k1qeT%5fyej5EmEh=cf$EN{7**3%amYX$ z4>}9$$Ngb)mV=e8bJp_R7`;N|YIB^fgoDJzDXw>8+N(ppgPYBy=3B6`b!u97McOMv z9y2HB5jap>a$@U>!mbK=2sfQc&jYZsb$T{!HMTWx$4~~cPtE!H2o4pOpSV6>+jO3e zS|8xXGYNVZR<=%1%QqUnyD$`nHr>Q{X10-#XwS?nuJ@}x_bEl|lE$MYW_9E^%M$OV>UJJs7DHk_H@*}F)c3+5fVz< zvbal3+P;X3woLA_$sHXhEt#6zdGC&nW0&N1b^q+{{@K(0vzPP719qnoBRX=IivL#b z+DY}4MUXgU*@nc`jzrqTiqp-lIK{+@fv((EBSkbmpVQH?*{MtFv8;*c^xc`eK>QIQ z9Wht`4^wkvL;fWHoj$Z2nVc-nFl`e7Yd+BPkcs{h1|wcY6FxZYKXA z`1j#SY}Az4-;qcr_7AP6&tuL>%4$kAr70SOQ{=h3Yt!8d95HQ{b6r9wke%B0EsLb% zjJosB^^jz>gxkohdi{=aXtJk<{?a1+&{`*ZU0t#}Q|YemRJOmA5BxH(7FJifB9u6p z_ABv_j>#6pSC$It{E~BOqsp1yfpT_F20YncFi3s&}wlLO8YMN;vt zVY{q9HRtCeIAmOYTE8L*A7?sK0e+00m93McUWpc*ll7E~C2?p^X@$mYX531T6cX)erDvN?ElNI z0{&Q9xDdtSW%O_!Bc z=WcUweg+4M3y$%u-F2CEI(OnGGpYGMSlK!?>P1z-PA6Zf_NN9)V#|Q~NyXRA(Rl@q z78jk?7c($=9iQKnpMT(XGx_-&tZbbh_0r%VKm7ywYBtrEN%y4ERdKqZnk^QT8nnjd z#?!4;g+zO%TZfrWw{!uZM6HZFz$9u#SlK#J>bE(AM3pn*;^|CkQMS-iT%@2h%N(WM z;dpUtQtOTSjG7eioHDcvZaI^oFTu*z8QMv|*T;JuUFlBeGd(HsLC(fS=AqT8WR6rn z96l~mt*WYt#|Wb(K=`E!y)U+rQP488@kYU@sF7E@(>&nJ5~(k`HRb(qQ<;?P3oBcvB)q=(x3ehqzt@pLc4S8<}MYbw2a)+xanP1NVKQv zjeMf7=`F1(U%(lyFl~*9{S7yqNzh+mW$Of~mt4Bh4eTIM&{=gWoGxdCq-D=mgSJ+p*Qa>Sa{9LayPXXQjLu@CUe+%+mLLM>#a#3Em+$MVoKm z#cKZR9iJ0s8{P@_EFM$saZsB1meaVFnfG~17`VywX68>@)^uSs@We4^Dw;*@F)OjJNMvcuYH{FW|(o-&4TK!ycK!Vg;EQ z=EzJN*2okVQ)ITpEoN4k&0uBg$gHCul4x~FnWJ(H93E~XvP0WvB60+* zJZupm)ud*Q$hmNMl0ZaPMb5%4Wg>DqtQ>+!gc+`!B)eU61PM7+|6bG)R9fNA)r_n- z&BO{ZRqsspruXIcOjk02dHNsWpOyAEQ9E*od3tZUyIL$~PZVd{+%JjI``*d_NoQBx z+Q6((GiiS&D$#P%{-h%jI*AKy%j2K4ue?t)PKRX*m0~%NtWV)&c|Tq`U;hY>mNwtH zSAo#1?Z9W@M{sZ_R*t)@~+AHC5u!n%KdeUF)$<$AhEA`}Lb5OnthldM_K|N`>OY6xA zxVcPD24H3DoUBReNugNoR~Wg;oRJ^Eq2V&3*%8JqCUsXSAK%AKW%BVoSlK!slL#Nx zqSv!4kUVD&$+K{LxR4l(I8A>kDNo_{GD&$HR<=&cx;jz@3cbaAPe#3jedN~0-N~{- zqCHKl=KTS;pa@nP9#dMrfOE=ze*i06r)8p!7V!;4rKrp>2W48@K-oR|Y)611oTZFx zi5ttTD4W5`A&f*=A(M-2?u0vngk0+TH@q6)IU=oaS9px9_`Qi0VyW-0WS9EJ%@Q}z zi?2G0TkV2hc039GfoX@_+Uy}#{LD-MAKPBqZXPMbUv_8#W1Y;G;OKkK4z@VO?0+Iu0wQ%L^*{Vc{@y6b^<1!YvBZ zI4JmhqZk~3+s4FTKUmp11}is0<8VvKh3@Vq$*&%v?alCU|a zHiXR`p2f{#CjTi|*?RKFi708uhA}gY8^)1BqCE}cR?Pf|4GYWSmN60dV(CL*0T1j36P`(W_DC!*wgf z3ijip6FpbD!v5((wlt6z>juR_U>{@^rdc~A)eahB30tgESJUF-RAsu1-TbG{e!rE0 zrBcmW_VH0!l55!oM`du2ak7zrt4d9y1XBdT+Uts$4#5@-04CmkfWMr zpMXBM%30HZx1POn1M4?&dzsbf8;){l`V-v1s$AsZ4~Xv^rvKFGeZqFbrR-ngfz^&e z6oi%^!SVmdTY%v6n;`KE+;S!oKZTXa0QD0`BD8kIzNvMy@Y2ydgxa0YmXwL@zlE8G z0R0ON7PpeL{1iJIAn!bC-Fe#NyoMXkWayu;vUP@(tEhtYrxC_tp*yW^fL&)BV~W-i z5^+q5Xc;<$PKx01NdANz_bErK96DeN| zC{ab+2PRQ@SlK#JoQ|oNc1+(hN9q5;!Q!G6YsXY~o-*`Z+;}EK--eZ~GsGF`N||#1 zKvkR@qGjoEbCw>3gT`ek){)L11j^KJaVMBe{RURH&J?E$FK0>_(uM!eoTg9UaB*ph zwF`IMryTtUH=oJT`>?Wgj+9R;YiD!iOrDhtp_VxCyCQ3m5bztvm?wgIus5Tw;sjXDb<~)3>}0U&tzzSSlK#5n=|Hbm6Evi zRGGP*ZVu5YaJ0A(9UNyZa=fP$orGJ@r07Ig**Zm>F|Bg^KqhmdI;Q>DoTDGX@#1n6 z>zL;GPf7YAZad{}#Ir=jkEiOm#)}y-jl%hZ4)-x%323EFC z(N>&MZBe?EJ|UwnNiILrxXB(ZB-+ztx4b|fee+iF0zg?>4tIdb(lW5Jb(T0?wzzg( z9oV)v=V)6vSlogXYnNSjo-#BYH=fB*C#-CpAx?iZP=E18#l5&m`%~u(EZMI3wGMnQ~F{{`Q;ZD18GC7#F2jN47=)C`;$#4lr3d2UfPu()umB zB+Z_rUz+pt3phwzep-G~p4%De_agliH=4=JPhe&1%qZVe2&`U1OMAkx;#Q&qL+v`)HK1 z^Z(4*`7RtRE<3RdVSeXn-T5|dJd>fzU}ftJwQ8TWn};4Xr{}kDn7H)B(msc68u|@x zHj|rQ!^+mVX>|lmzgg%Lb8!9x$B7HhesOd=p__!>$L(g4^A4(sOwqx749PBG`^Bsfl7ZekguLO1=Kh}+F1XA!Jyot&2SM)OkiN9Nr85RMX; zn|SJtev{7)xYbN*u7j1WQ?qfaQA)qL=g;Qg{1FZm7o2&q3{;_;dY-`zXR`AotZbc~ zR$Z}XGtcN9jJx9Hgv2oJiuId#mcfl?GV}S;$4smKM!$JyTXSrt;~8LH0~1Ss6S`@q z6Std5&K9t;^=i{-8RmgQm@O z?iWHQkf7Qwt-AMSR+TH&q@SLp@?yQ;;+8Ut;BOq|(5xqTv7XX}H>2UZUCw{2-Y3Fv z!%NZrgGW`{PSO0&Hp;)xV?x6FxXnxw-hq|LaQK!Z5n3r?zfW&kNTF!n1XigQOR2{1 zO=+q&+0huF4TVG;(>MxH%gyu+hbmzOMDIWCt=7ZsXTmfYR<;h4@-|-9pL9>UKUJw_ z)N2_JH3#S*I859T$gl!6eWuXtkK4?IW-hF39U5gar$94M>Pc7CvtXx~V{;N5C@wZF z*QB22Dh3C&Xch6a0aJb z(StMkOUAA9azdg#t+O#WO|L09%ivZs!TEgY14p@?Lk?lZQZ?J36-&B$dbTyEXF8q- z=FI&7v$0Ecog&nUo6baN3s~8D?b$SJ0^e%lo;K&_D{!c|!&b`|X^qY%eBvJPo5J&D z+-@d3N5aY>@I-irAYVhctC0~TM_tB}R=6wSMpj&FVug4a@^r!<9oqW@ac(2q zFXkKReBh%)H^V-nEg%EgYB3v+iX@bXB-+Bq1ARfoi*2@$R zUl<4|@8gazL3syOremoik=&bm+SDG)WYsL(M@t2o4o@*gB#ObxF(7{MH_HsB;9L95e=xF<}i7QxEasoHYr>Qs-V_~=!iGS>aboT(qe z@!~S|tqqoHSpRF>allAW)W` z!JS~T^dziooh8PYC&F0CF6b|2)erKG-r2YpUrtE0rx$O>m?tAasagj2gh|!sOCME? z3RNo8o_t$#pr+$#V6GLkqe3}Bpe%LbPB2;80#>$Op%^UHQQA&vp3>$leFYAd&C$*Y z0%hsTxD!m4j)ax1vovk!&Z*L!&S!d3ns)pf=0u$jhm1?qSK82y`$9pvItO=!$<>*# zvURQ)Ync@~-2K8FsGq{I;sVu;;)&L^iMceR!I^u zpd|er_kl^$i?FhFk{C0)O0l=9UCms57vq`TDnerEnc2xmP^wnKJz-L{0<63=P*rc8 zv{dbBPStL3#JE+e9qR=$5|pZ)aZi|3?FcJdr)sOA`|@gE{l3LwUR{JLnnRU`1IC4_ z9s3KKfuKxfaYvX;^}@>5nc5a$N=*1P%TeDoN9)^g+_-3Uw_(E9M9Yf@CG0ZXA0}a! zz{(+nMc70s_hGslt|CbIc7wLwN7L5*db5g!!A!Z56(6(+-LLnoIn__Wx#CjI+pj0S zSphN}&xH6%xAUUHkOeB1Rx!s6Sf=HIUOg*hGn!^6v5g69pV z5FNfS5Kcb99bt0vA6S_byZ56?$YSTxx^xx0b>*l&tDJGRCWltK9d#HTYRgoIu?9CZGVO9GN&Si2bWplcpLwi zRQLiw_&5f4fyu{FurjG_M>rD6jh0)tE-IZ}dGTRX@e#k&qHLk3xJY@^c%iV?aEE&h zjv2S1Vh)+SGNT59&JWJT9bsa17OZR?E8m-IZGFlt&ZP3$h3ah`cboI{GdNgWo-`LN zL?5;~8xf!&-HCg^1nK`^W$Pf#7@|J)XY#2jY|~o z%{6z(BcY&Z{R4M}iPqm>W$S2dG6Y(JCi1p%jopj~yj6und-`hT3IcP$bKIv0t&E$` zL}*1=**Zeo4S|rjqq$hFiY3KLWm3&E+`dhmN`xj*S5zDHCmCOn2hXcnYEZt_pvIPoQ4)=x$*aBF2=>x1X(65xRE6oA> z4ji~)0+@&f1?*e6H%!2mz{(+jMOgck%ct%_SOf|7yQ0`n@sBMP^NR=5c?I1+n4|kN zoDwd&GqKv}c}Q`50=JNf<72Qg!SUBgzcid8N7TL2)pV-5xReQ9NFTAgal_vsB-+#P zYp&1ItVoDkQC%l}E9rX2z1+yxg`dIctuev*)KLyyN>6S9)VETl4T^6i*}s&&l{pui zw~Y(lc^x(vz7P;XHpQJ_60#AjOiIi8Q6=O^=W^Q4kuLsS5tDocE;E?z4zF&#B0z@g z_uX)exuc)vle4<&=6L8YZPaB#?Qyu#OlpsHl!rlG^Q~^}MIz$+Mf;1|MdmnMfJc`3 zevr4i)iX2>KIaJ-=i%lv!8jXMCgtpms1mZAxp*#J<;-^}+ur$1eHm?jwh~^`ek-D6 zSkrz32bx>cco1h?Hx~&veT6N|c>?jTar2oF|H@Ggt!@c!fbi||3Wqee zvQ&P9IZoHX0psG-j?SqW2wI)4!5v{Tbrq~^ohimRCk`g$6r7$h$LUEpR$QFgG0xRv zKuP*N?gNvg-@(e(Nn-Ti-Nn*kaVML)$6=X0jeGFV;dpUrYDW*=hyx|+zqlVvqCSR| ztrIm}u7!t0 z&K6_b>&f=^DoB0V9H}GWSaB;=JI1|w3@Ay5<32D+Is{g>P7-4^vnRVC-QS;9U^>Sf zrZeGiabY^T4fV+j1Lf&7+zlpAUx$^g^Teo3nR0Kp0@F{-VY(fT6&I#)SlK#9zUxOr zIm#E))l{jth^#!VG|PB$w}OypPZ!QR#0BysLqWM3i@U<)Y80$&oh!yj*Gu2A>}(Fy zj&Q8F1*#n*T|EYrr0sAYm?UijD=!@+71cY~vgRc9!m+YTQn81U)Q$VVBDT5s z{R)m37pHcth&SRuiMj{(gGtoSVP)$?F{)GF;!?4y;Pj3;PH(}%;^Nef>f{80vh)V- z1e2v#VP)$qG1e`!72TG($$J^k=++hz?U~WFW8KmV1LbK=+zlpAtHH|Fd1BP2d=KrM z=9<$q8xEGu+T;X*va}cO1e2vbU}ftpF;)ihnX=l1FEU4|3df3zQae@#>M@`s9gq9K zB&h%^TPJDrq4yBvbuZ_xGiT`QIP=yffho3r#^I9gnm+EJI>C{UU{ z#=T(D^dYQlohHW4@IvNd-p_5ZxAAOls*q^UY_1(U!<&JiOl^!i!enX#SlK#L zjP-%~UfwS9!R{l?i8>q(7q>*UV|~C21Lf%u+zlpA2g1tMd1CZVm25%X*L0>iOsB!I z;=l%+r6PB2;e z1FUSFCB~?CVy3EY4PRj&!R-_ADz=48}jbO-Egy+ z;O^`w4~JWPe7nmvG4Wkp`!*aYZe2MzMu=SR>9}|qZatHrOJL;?f+7rRa$Iza zTm%V=x%eL*T;}k|n?ka=@P&X7@(Jz)laT+w%A~-(A5}sYIG59< ztH7-z8~-`|=>_4Jcs3n@IX%z}1MJS_NJCsZ7R8_%TTC|H>kvLm8O$U^3_xpWmW-xcfg(u>7+ z=R+4Tt`Gq-oM>DQ$C%ru@vd0UJ0AKvdRpX#;D93f7c;jlr5E zB-+z~w-Kxvn$yh_aYvY7tpO`9EntZY2b_vUz?x?c)*Lu$7Auwv1g%*6;EpiCnguIc z2g|qKr5g&vM!?19JPpFZ;_`GTYkJ5U0h|6)j4HVOOpHpf@=}5kDNEOzV{|PXEPEK~ zhPkV8`6RYD?Pp^22&`-!qYdPGr)E&==~k~< z=$K>Nc7Fy(iObKt*hVwqI3315#SLeI^AW5(+`;Kp!P&|joXv$qd**8~g43%3XH(p8 zCO8|x%GSa0?H1KkoJ@aLrl%)cSfFe?KH40g`Eabbbtk@M$)@|X`W%Lv&xGh;SlK#6 zt%t2%Qhm-g$L9<@vti4AN5pT2Qh4q#C+9XeOk8sI zkFDXUdrr~01-G1u&P}lLFh?g#d*zqR(Rl$5Q}XE4J*VhAk6X?}=Q&t;xT8bItMPM< zr&;5KgxW1%x^2fY9rgblyCk>k-p-%h-9LM}fA(_zSYSvya*ffrFofkyhDO55)*0HU z<;W$zVNzAUIkl5HL_5H7;p8Qgg$eGGH|rG2=UIcun>{~pdfYO4lqGV!OGS_YW)(d@h*{U1G&_kql@8SaXE_b zC7AS|Vss&HKNF)Gth|(9L|%g3Z;sKuaIoxQqk?$HPO?Ol;>H`Js?#4;`8BfzD3JG0_gn+^{ z3wMDD)9$dcb(mT&R+s6r(V#g)6*x>>hT>bSu6s_=DdCng(dmbkt)tU=wWuCIb+zbP zb9SzV;hsSr-s%8+Y#6^A zZD<5MT;v^LTjM@3S>DP~9u9|W{exv#WPHa>{by~DGpFQOJi^T7gEVjX0H(wj3&P9M zxHn8*=EKUQ_8sO(BzN?d1y;HzR}`=Bl(mElgsFz7ZqI`Q#vMRY?E=e-1szh)#(iO8 zbq1_#9V_3>((^*=Rad&&-IwV}6$j|o6n<_F*IjVfxNv3K1y>*<6tO#SkC=$v1}j@f z%)i?p6tV7NK|P%GsySIN!_nfB#XQrEkB9X@P@rDI9bp3X0<3HuC{Fj;*^^B#=oNcd zl(BHN{f)=M2|}Vht@v^6Dp!qQP_V}1&M?6m2P<0#%fFo^v{Lnuj}7l(&eX1Ou(*Ya z_wDLDUZ_MIC{8=!elT&`0aji*aLQ!W!%YQqoEE~tvW}C81I4Ki_k)R323EF?({{cs zzoFGhgt0GGEsHhz^nzj`omYmxE6mxt9F829t-f{*e`-)DXqVznF+sZ+R<;frYpFrR zbTFN-D11F^&ewx*z_@(1ZK=VF1;y%q+!rQR_rl87vD%4Kzr4>+q_PF^rHxdnTokwA zt3CXO=8(MyhmQ+cf4hp9HZl~sw{g#y$h`?GTSsn34sv~B$P}y<%RS=%?JxF=d+e2} zw!s0$lg24RqCJzwh3x`P6BmlxB-}41ZWCc;>$q*t!7W?JRcVnS-PiRsbGjD8(c;q8wnf!?ASh6S zxFbxUDzLJ3pjh2me|ljiRT=C_6^eyaA+sP|zwTEVEN?U??0PtST*BJcooOROk-HZ6 zjEUUUu(EaJw&o0%{b{k9aY8C{LP_E559XXb4abbj8Sj&}5msGgI4E3C;O;QtdJI;! z4j1bsQGc-~lcEdyBMvm~_dA3{d;0yhy(DS`gM#%LoctIb|Rjq-1HLD?O zYjd);Y8zQ?+vC;Whz3P#bKDyyTARYk*3sIQk5=Qystk(9n)7uu95?Qu*xRnjqsvz# zBowmwxJyjP4uh4K4#-OBa($6Pzd~`IIb>(UakCCtFeDVRGjNxfkev!ETZfF*ebpzD zz4@%#*xzN2*Bx-gxOla#`)UM(f^{423=^zdU}fuI`M*FE`VzdFDO8GO@ftjxRoA~> zHizpaIBHzDdfGKW`U64%djWTd3E1if46}ixyus%3mT*AK6w!zW~1%)buyTXL33sw$+D#AHh zc@)<@L>WQC;!#}xmu-ucN+$fvw%3`nd<~o?F3Zd>+d3Zlr&iQu4-9$e_A1e>rAj?nJm7v4T z`8foR6t@H&6dOOD^Aw;1apRc)&4ZP#1LS`>P3up-SpP12w(|eEJM%a>s;d1Dge{8f z5?KOa2?PQIArc9MKp-Iy_CRDaG(9~vGd1aD(%myjkVQ}gaiUQs?5iROqA0S7q6o5y zq9`H=uLy!DiXe!hDE@9&_jFa?bF1e(b*lQ#{QPG=uX*3+J?E)!pS#~%QoFYdjoG5g>p~I+}b@S2kIHvFfLHctF#!srA7}ZPEX-EFmd`NtZW^p=8ayd z&{dgAFLt}eMsNH=arb*2C6P?`JHAFwcYz``4$p##R2!@uf>eaLNq>5?I$ae(!s7I1 z;9<)n(|NbAUtMV87V@DN4IU(i`2hH1ajPTmfu39-&%jh?X!tOBePl`4Ht5nFi z-g&ZADU;T>Z9OE%>jBs}E?&G%H8@_4j!?+%!!u$+b}y`K9Wqw+DrcQ^shlDY(!C|e z>kZg4E?x;$ueui$tk>{dm|(pMD~~C#$P;ywjuSVF6O}|VqswH$GCfzfC7ufttO>C4 zm;#GDT6d%ztOc-TqoZP(9YIl69t60dTO3u=LC!f)8iMUY? z+4Zn_T*!F0+~AN=S14@P;aM?ZyBb!u4qMkU63L7Vlc`WuA1F{$@I076O@@`N0~I*n8rtM_xoWpf$PLe@$hkTZc8y!8c-JDK zEnkBj6t6{iI!wG4!phe1;;bB2p3P7v4z*$71#+;?gZ<)y#k)BW2CHfWMe1BU5hhY+ z!^+l?;&jq0*F0p48c}!1iMkE8i%V28O<>gr3e>H59!#KaftAM$Q2qKM^ow$!o`>zS z4^+S5!Kml(JeWW|11nnxDsZ?fyiZlg>NstMdxh|gj+o20Voa!GL=j(s_Fv;Dud_21nM+cd5i#MnCiS(4%9`kUABQTPj#-s^I!tC5>~bj z)Xt1$Wp_`l#d|;w(|xd2T$p(0b20Ybk{RhO zW}SRStJJU)6sie$CQPU{gO#mAHHFdW^`-Thg9UP)=EGibtJH~!@T5$jD9y!_V4^e! zR<@23XItLzCDUDWHfouisWNODm#Jj7tOe|l=UW5xeT^Y+^)vcV&ZlMtZW^(z%9w4eXZeNZ-3rU&7P2R_Bd=C zm$OWwoK^jxfIWui!vyRRSlK#YNIg?kEERT1@_Ta5-i6)ca+Yj8Yp{jl_70vF6Sucv zW$U=H>REp|mChFO-6_Kea_R}<5#$slk<17(p?cQf2L)_0o(~hS?O|o>fCb)b4Q()s zh4M^&{`5pSSBqe`xb^GgMA}Ku28z={JPjsJN5jh2ahk#C?t54MlzWO!sYi__-F&y! z)jv;;*152AT(o#^g`tyP#1e|x*?3A!%+7$7tz*X7I8#<{0&8U5CMWAw*eott$!wgd zxIkgL1Afe@%kpfXIIV-H!Nh4CtZW@8&Yd#qHmqFgbf;L* z*A!>UnVJDx#w}LKT>asDLBX1i=fVVQPgvPHSe(s%#%a?oIaC?gE-qBbZ1xMAEG1~(&bD~s$#Y_`F^H~Qg{>h>9AMacJbJF z>PfqwJ?&mC!=q<1RECvDH$&aULVur$p_}Cl-3WWtYKHvmDMQ!e(K8vk4pz3#P+-hQ z>yVpQcZjO{9ZeYhT8`0^uw7h?c+ZiH+?q8QKuLN6Pk>3%tu18wuX{OrjN{fW_M(eg85U9-h;pPAd{naVdYWI(O#h(O_OufKKeNdjuyenAsj`RF!JY|s?!J& zBrMK3ZSBuFEmSv-7IL8v#a$u?cnJPXT!0T{4HAo9hJjfpL&`NU{As5z;6XE~{hX&f z8m65BkBC!C0+TPnd8Z%BdH6nVEpy&!VO%@}k|$(*7Z0CF#@({rO3iohP~nzmG~g4r%xNjKjPstA$l2Bwhqw_&03@O4yT;f_}S_d zF+U$t63LA6j*P7cRWhgOd=QVEiOwdlvUPL>1N=1nrMLj|>R)L%$-u;bIq@1H{@lQ?@X(p~{=!op z4RZs51ARtU0wd($^uXF56Zg#5R1(Sb%z5`&vB3yfKoI#~Vu<_)RwfnhUscM+Eof`o z<(#22hoaF3a`TCcO15tHGca*=oYP=Oplt{?kE`Vr zd=a;mIeUJDoPt2wgon@Lfirm+gq2D0`b<;_zj#%t99zX}VxV{x)a7Vd{@trd9k>#Y_BAe88Y$~19=qH z(x=_}ZSnA#3~dc7hcFbOS@T=QYMF~5VX<4kU7%$wr^{}s>}Jy0(C+=Ia)?iXzZJK2 zWJ2tx8Ehf_|F$7{QV37P!)HRg$WtB-tz=+-`*CJp0!>A*rMy6n$9cHF%$AZliQy+a zG9CdN`d5!@TcfS=pWZL2$)H|;8ueT}BPKCt!^))Wo#9EeuIUUsw;P65hnvq7`ty4G zd54Nr*fGBi_KRD3c<1HS!I0q!%V2BR2ilO{is!*3>K0geED)6`6pNXH)1~#uUX&B{ zJnWZEqK18-L_LS+!6fP#SlK#J!9k+`iw$-Q+B1a#4WH?){2A&0z zrs=TqSfR<)H{rN)nz~@OY}4fCDNPwX3nopc!OGTY3cL*$R-1a%WI&<2nAY!8xL6L< zMX+I9ppqEm)s3J`t-=#wGPM#`w$2ozy>m^wOdpT~bsy{&7pNrKyQ&M6rhD-$m^9r3 zD~|=5a!#k4*4w)`dD;wCw$2ly|Ku5IC{PRJM9qf{;})nS`cHKuC{uIsM3_v? zft9T@#ppj(tRy46Wpbd(uv=W9lITBGU7$2A#j{}2l!ukA)5L4>`icept>)|HI9&(Z z#l_iX4JJ=lz{=KnVyxUP?N8^+ZdSiW{RufxkHda(fl6ZKZrBG()MI!a zOrjovl|zV%uz$th0#n_?5JAG?7MQ^1&_#+~x4a^_)H4*^-|)WE#Djr#l|(Xw0p8|N z_0B;h#lQlODd`#;{w9XC@UWTSuHh+7rZc02(l98+OsQq`t-60O_e5_r|kL{Xuy>=yFrY^vKSr<|;lbI4AYw2D}`)8$my zH*R~$dnk#Al*tR)W}brQ!ldg&SUH5Q2o0X!W>yPe1PQ&(j3D7hal^iqb}52{AH|nF ziFEJ9YX4j1wB@XM-Z9JB)jtPT{~T2PGuQi5v$GOKe@AcI+G^k2dxwP_u?#!LIVHk5 zPVczp+K1)R-A+UMehd7|GyZG_=X4e_r9C>+<#Z~OO_xfJ_CKVH#q^3j+<_JC!T+6h z@4s$$y|4z~r!EohDHQYRoHNvOC#ktNMP+x#HOIB}uC8oRyup)bjpNNv&Ti=MLZ%<( zXYfa_qLz1M(=UrA-vYmnBiC)@V6Jx=K~e4Rl<)ziOcyD>vj_0o8Z%&K>)ryTmRTX?o~8-3pa zu0N|zs26f>I;-t5|GtV-NX>U)x46aP@W|BAyy+ys-FVzge(r#kt@E=}Q+_H9txG1A z{w!zbkFZl*cIHdjspU+$c^QwH$<2$fvUP5D8 zCSqoLRjWMJu4yfE%FrfwM3C@js!xeJ>EuUIT^$oev7aOgwKTe7-Ii|jdH=lX zHoIkRsd2l{)$s4j_~RHnI*#?x+Fn2}$cAM&!y@SwQF-Tg3$^&L*tWa31?IJaQ&J7sJZd@!>RK zC3089PvrbO3VX%nC(b5JrB3V5LwM*+fF6LAtpmhq!jy}86ZS7TLH~fw;t~{R6IRKc zBJ>s>I}@QdU}ftFacWSRT&cB_BOZqBpd^wRhQ(QfRO%FaT*6AvzNSPs=R{97^as0iifD;t2Q}9ff zc%29T`0eJ_}pM#VUc$x^jTxbOD|L6Q}cFW$QRGrZ6*(tDnUGuAHO0 zVXwFx#W;moNu2_82Oc^Tpxa<&>i{v9ap_KyKg#)e8McbcPmIgB#*HK|;*m4)c^+1_ zjt{5)6iWK+p{UECUUYr+&GAK~7N?c8g2V zF)>o)B~Kx8@!**db-~KkA!01&I_hx*y*GWOoT1BLv$zb!xTVC)og#EG9y=4Ei(qBz z2r;_TPEmi!{ZTnU55ZP(0gACZtum+hJb*{e#OFR(c}(E5yic3L{)Zf&w_vMm;Iq7s z;`0U`ITN4PU}fw0a2l}XeYt5GKs)q^hhvkJL^8v%I2*7^?i8Vkcsu`Iw4fB63hv`Y!G%idh#8;RaJfKKDf#<+P>Ty`vI#Sw|#HMLSx76k4-LgLM zxRxvKbFZN!lIe3VjE|<_^eIU1!Jm7O3DUc;vUQLcBR5x_=+bA7rpYO4PmH1%yWL*y z6rrhj>`a8Fz{+C-A@%mSHuyhPj?gKvS=?qVR)kdU6rmIG*qI0|f|ac!#8^dhORA@> zuYi13&d>$0TU>@>Tt%xUPa!%F51t9pxv;Wzh!{&C*-TEWLU+pvx&yX~OHhnUAS!c; z&uw_*Onh#Im968$*in>qO8VVKFU$FP5%!A9PmDW?DydU|p2tIH0`wfLY#kuRX^@JG z#xedTz2Z^XhDsutQCWywZ`lKIYqNztGLA|&c>|J zP4StDN6y4&2CQryAI7jgTj-v)rv^|~4v-6*#RVwFF`1V;MW_pporzEeRvs$|>6=0> zlOuF7Y?dX24BJ93!eeJ5v4hH)u6F1~e+dj1rp*YNn6D7^|RTStj;{#9A& zX3|;1Wi^wQh=*qrl|(Ybvl!361{|O`ZHZ^V#AyPoJeF|E7xW87j+EoH0Je-Cw{rt4wLxHKhDn~YaIT!&}C#OZ2S**Z>)U68r-ayQqnudO{PN9hUJE-p$j?t-jk zPpi`7c=Sw+9)p#~1V(DZ8pUXhthn?29&DEljH=mFjNZkgXJYgYtZW@4#?D9Yo#(#n z3T<+`UCz-|C6UY^F24bD_aMMF+x-4 zuC-3l8*+YLgRSE76XOU?Wlr&V6_1>W&nvL9b$nR$hde?%F)tpTZK))Z8J@*jfAWU= zuP5N4GXdHRRvr@oEhTTPEsz5=ANGn{fZ_y5rA{l*Ts(9pKyzSa>i{v%?3dJ~#YKJf zY?&OPGVB%?p%~BXSCgj@EyaUpLX?MI_)fI#An&UtOH;(C@;!P0r7)uti*c=E;v- ztBffwx8M;oak&XrwvNlBCb-boJfD~I@*M0DmzP6g;Klfi=QDW7OkkdZm8}D_U2|ac z0oVF{;_mWzC6P>bd44>^7)Dy_;4w3i83!v{N2Xbm)Tuw#Ia3bI4A>%WiHW00>g=RV z(sVpxCN6uz%GPmdR$=npS$%b)OAbs1Hi-*N92KULGezb!JZ2^`i(zH!$TaK4&^;L! z$%$D7d&DIsj$Vv$Gsa3hWF{~d!phcxX;x#DdwMVCJ~=V>!X|NviKE6;a;7!r9z13y zGIzns){$veW9UNFYjR>YszEf986BYB|qdb6i{RYW08Bdo^qu z7o`|B2R6DuX}SUro=MZCu(EZUnj9Y;_A%>pl~bi2w@cq1_;{5l2}qB@j&VVX;rJ*u zfWq_$o&Xc32VrIFFzpn+(lG2LxmojFIYjTkPH`bRLcZMKCr;sc8xNcb&zrEab$FWG zs5$Im(e3Urm!c^}@lb5Cl1OGK7Q>C21_vlk+v6E9aoQGEwvH2{mrXBbT_ne7A#4@5 z7{%DjHeSejG#)t-aR8JIpw)ev!txa&FFsJ>qf`!`xvdWm<2}z(ZyNvjSGO z4os6JbGj?%Ryi-Xz!q_NiDAjyxGCo*JYps;H^9o)acNdx3MGBo@Hsgz&%hpWd5NRG zsFZ1ac?u7i3Cu5HW$VD~5I(k2SA^}QF3ZyPtdB2=yTt1#iDbIOhsg(4wX7*NgF~S&YZbMCN2z**Y>!y1!1bOKX}|$$?o3Tf_w>hVHM*nBsCF z9x)S_^I_#tjSG2Z@LoAC_rMml5|`zMM^5j;BWB`qJFILSmnNen^(v*lFXvS`FR#EJ zae0Yhv{Xr%)|Z#?keR@|04rMurdbbWd0%dt)*wwNi^ocvDT!ppN^$gHDmhbRHpXLS zBC`RkJerZ|$`;7FcgH zuejvIaHB~ubqdfDJai^NJ+QKMfSUAcx^m=Z(yQg*TmgH;1t*4nO(kUt%%yn9Okh^S z%GQBtGR*GI=rh2N$$5DMwusA148v@dF~#LUJYps;_ruE8acQz>&|P%WWpa!EJ91>+ zhHc^^6T_lGEo+L+n|RbrY+i?ztz*;VqOF>N#+TM6_lrkS+bfA=Mo}@`lGKnpMQB?* zb|ykw!^+kXYSOcDb7}oaqlI#Ej)pzrmYo=SHkFhqFh}4aGl4k_R<;hzj^PWHZmCN> z+gsL`D$kZfa|Y}a7n%j~rOM&7DL5kNqd!sC=gGJW9~_R&<6rqHzEK{KKG@7RN;$!twFlhf9qrpt-h6E}Z7H?L*^ z^6Bi*1%vApov!|(JJkF2%(%9}_oefho`U+PoHH~S!)%SpnBuZK9x)S_U14SGHKxg! zDeIK2|7ICSGqj4%2=4WolBWB|AEm+w)E=`8n z*+TcUJ+ju%b8Y~7x0*w$ov*o9_`5VX~=B0Ogv=TSV<%^WQqwH z!$!{y@R*s%ydPG!j!d&IaG_h@=s8DD%xu^rZjp(j3#?M6HD*6NWF|2Cz{=KvnH;`s zph|SQvr}!B)#^-MPR$b7C@wXJ%hwI+c~f+H@VJ@iIIyyHbefHxhSAY0&J}WYE`^=q zvJ=PXsh&86XEh!;6P_=^%GTj&a=nQ9{kfTR)^Lg6BXW8kgstMz6T|f)fy^mB_v4W> z@%aI)JQncD7xeqq-j?I@CTx`jd{pKXpV#ronfUw#R<@2$^QOzIKIFi{_RGb?t8JA; zGQ+EQnyy;n6rQc|z?txD0V`XFhtYJ=o3W0T({luDm4(`4ycz2-JaQ&Jhrr6#@oBQB zIG0}T=KA%8%`@catblFeq7%cO;#$_U>I~pfGqEYb%A*<^wY!gEbCVpK8(^DSiA^qVex%nmR6PKG9wuKI-O~Ls&9ySx4pTf%4 z!D-S(R=eF&m?#9ibzB{6Ed$bRA!p8vw1c#sLtzhPzT@HDA9d8a#Fb_ev$ z=zGf1**!6IVyHU9X;W}^#lvQTvoox09h@f15o%V$xFKh;oSc(kqqyx=49gMqyeT>- z;Bhn2IUZKFj!u)B(^n|DhMIGsoSgGvpSa}2P;-XUrr>-E51R?jIk2*IaGGr7>MJbM zddGLknYkUdh|5e28@W`*6qj$|5i@c52CQrymnQQ!>Jr(#)U~P_GB3%Ic>%VGi%bmj zH?^!OHowKAW@7U!tZW^dCOdNs$6q!+T|AQ7KuIJsl8RwxP9nZT?ED_aMq z$pF0QWZb@DK`oMNrDnDqoBd#?xTPkBH7Y-G3eP@x;7oY-hLx?u(_|b~baH7o-$|}6 zSt4hr2R4e!P7LFydfpTr2alVHP6w=P9i1i{)r*Dxynad2rE+Xm!zOXDiDB2Vmor7? zi+IdTWIhioTSulz-=^et>&L+#loNA5>=Bok82UDqlqoPjz(ZyN^F3JEIxtO!-0I2+ ztyA-+oR`;Oi@3bRFyvMlQ(XRnN6f_KPq4CeT$q$!L#g?MJ zT)9Gy%mC~X7nvBYC#fb)p()`(Gok5&m90b5@9iS#ViEAzzUg!9woS&b=R&n`>;Sfw9bBfPT@yMC@{1{dq z1Nay&L2o-l+&lg+Y*p*=G2ey$Z#;4)KL3Q3t>e>VfuZ&rq*tQvE~jT#C6Ub7Dux9H zKXF=ncE$r|!m}f+Y#pAFn=ZpO#V5<@IRUn+^|i-*Tk-LD}_g#3ItM4y5U<3ejJ4`HY6l{c>b}0GrfOWK_-+ zneX8-Gm-fYtZW^bCd;AaqO#BYn(ym!a{dB)#U&?(<bwq4E{s(3l5-08WqccuEHEFHJN{0~!l$A|n& z?*?K2uu4e|t~=k!J4JQI=DeZG|G(zGV6 zV4}KV#d50D-`7_tmP;u&-^?^hC7zl@8F;VOa=IvVYj&Zi-3iqCp@ z)J%NVhLx@3vm?bPlXd%2xpcYcE>GnPMg0oW{p8&21N+3~<{-S(=;=~m_Qu0y0<#ya zJZga%a5CjW(F9D792f`oDQRE==~7@i@Nk*Hq+n(1z!=6tolaL;T{x=E8?Tmg@~X9Tr0+QMa7;kUQ4CEQjP;*c~n;5h_VFNeahRc#upuE{Bz^!(mwWsrr^8 zm#O_+&c{z-gSdP|Sof*tNfG%m9w!r#hhb&wh)kl5O}A67ys)7*P383d$baRO{2TU& zOUZ1!sR^b^LHQ>hDif5y!^+k{*_wjVlP;yy2`?RzUC$8@Y<5->$qa1v#UU9^lLE3M z9wrlz?O;+B(xaZ*UW6q#f3c$vr?1uKtc zWZb+NnNP`)IR`eX1<2I%rO2Fx$IC?KUpW5`P501Yj=j9u)OI%(e z42~OOe=Eo2S=b*gCK389!)a1Lp2ovu0`etGmq zD5XrgTvm&LU0JfH;0JO*z6X261tdZbC73F$Am715WrA`itZW^WZD<7K;X226+i&8_b z6qQZ!SedA71S?xd#Z*tKsL-cr50P_nFzis0^`xFCh2%gyP$ne%!^+kn+0D@CXy?FE z)oEFMk+393rVsXui;Us^xslF;>BrxO)20CB@UWQx^}@>50WuudC>K&)E_u7+S~)LQ z!S--@iEvz_mLc78YRceDLEGQ zh+9V@Ot1x0rJx*zhsp%ya9BA6ln58R`FF%suW*VW;a}x*Y}7kE{3xoIg^8k=CW%7b z5jVJYOYevqKUdx0HmSU#&uO?N?i%>VW&C9f&Xe2{=Up7(-xGJ4 zClPvwSm+H=QEumJeuvnm{z$&^agJBtrqu9p?uS24?HB9c9rgp*Fyr^_{f5$M_&9@m zhs_z+zh>aBI6uEyg#Oik-@_wh7QF9x%AsGng}228`b2dn0yn7zuWkH`3R-v>*q?Am zjrYaTZyq}T+w_|UG9_RC4|uH1um5{knKXC5^CUtmLhP3c2F6xCCh1b8GHQLIEzT2D zvbmCoqvuR130+NUPDwRU+9TQ&50r_>MzFGVM0PT?8SNd#Lb@}f{HyMA(dT^+k;8H@ z>=d^dF}w*-o%d}Hi=HyY=0H4TCN}%S%GR+7Y~l7Ri|=8%pw*X>9GO1YB`z|dJL$N{ zlnWG>93CzcmtI)eIxc~QNFSF>I-jZ(84ZtzmElw=CYR%(GBLRX zR<@2wU?s`Nq|?w{`Kg?dAH()=83~=}YtD$5Ck5nTJWeJcKZ2DyJzDsX!{w)XO zpRhd%1LEaL0r@)~Clipr!OEi(5Z3_6&Yu2G=P%UFvF> zA;X+V#8ToVOi9@e512{HHn6gFQUaU%{kBG}7jzT~*_5fxIbKf8v9L|tk`j8*xp|w@ zkS_)1C_G*!Fo(m+)`1BeA8G)mD_cmHjl`TIC*~~JCoVB_BTcuqD`El(Q)E7l2h2of zIjn3Q8RIBfIq2riz#TOyDSh-y{{ClDa87Wf(QDcfPpKyS9>u+~;lD)eSwK z*t`c5$d0{;q@Sf@A~fqr6{gpTK!amjj{IO~|`@11Zux-Zg-P@sb8a~mW zp&S~&YLQ&7?AFQ+lz`sjXN2R0S#o z=*O^K+%j@(3;;D|PkUJpshiK=KA~XhU{nd<3b?DL&ibku&kx23EF?&y)*O+r&l3 z@Gdbrgs){yvH2AqH4~d(z{=LK**?72qYR|&)q0;1_m|gJ63O(J50&?Ks!3C5*2IHm zLi4}>ub@%SCQ@kjmP4}_?mu(3Fa~Ii}JHhAWybQt~ad|Nuu0lIAIh8U6<}-N6 zOkh3@D_aMqS$!eXe&3Vx@*UVBE-!J^7t?g#op{7dT)qt}TgRnIeKAb){YlQtA7GET zyu?sn%+q_n$3tcU^E+7CIxtP@OR20cZ*G2}c$l=Ql1OHl6hnPc8Pn!yBRpazE+2rE zM>Q^F9rIv0E(gLEamz~_xR@3%_s1h<;<7KSJeqN#v%Y!fsA~Luhq3SOf`w_fK!sMSDMr>V8B~6bmF#sBNj6uiMgXsp~E(yIHrqqG3zw zci~@{@#isk@CaK{y-POecGT+K8~wGw8umCEwxQk~m0y1w>K&d$=vKtg4Q26fL*3ZF zTE+BXehYt?+Hck0e)=qIm+{;7{#fZWe44>&bYiICO9rmu8qTd2oxk1mX*@b+nfsNe z9Quu0xZN~xV?oV_z=q4!Qm{4L79t83`4tq4kKqwAu{a4< z4#6TqAJXrJR@QF7M?agpG zUXIJLut(fRWPh*`Y0Q*zaugmZlas??W$T>K>Qd@U7fVjl>T-@8m$P82xVXU8#gs6m z=Hqz4Olp?H$|2N57@_!soN9L{f`mWR`cc%z)sLdu>lQ_Ey(9`X)LPlvq1JjQ6w`fu zZoa!=;o&FnFU&ju^}=^dcXp=S0oCgsz8ytfM5hk-=QB5TNcipK15xp>M4?)!vs$|{zScqMQsX;S zr@&|%E7#zmakNeymFODkpP^+sF)BNL%e2Uoh|n^{zc~JZgNKU{`7~$2pN6zcABVj% ze%;<)rPJ_T2HTreoyvD?Z%nKfnm-%391o3IT>3rb2wyk$`JSyBJZMj)x}CCHc5;x-YCu5pMMy07vsf+oSIBLM#lU5^LRe}5Z)qht?b-Ee-)v1rknK=nIjayHe z-oIw*iHwvytui0QgJ-gI9IR}er9A;HD*sxU zgsLP;8F?QbD3g(OVP)%#Y#Yjm;YE@C<&^9TTf{9VhPPU|lvGlsoO}cimC4D6Vdc@w zNvS7Io|o^HbJ7i4lsqS1s+5yXJX9tpX;|4hCzHbJiD#bP&Amhp$`I@k7nB1cb#p7t zPBm9b$`|lhnWTIUR<=%xKDXyJ+G@W-!>*zq$pQHxYz-F>cy6zrV$FPineh8~kW4bZ z3oBbE!&pNq7l|3iIDeBP@>kd+E+Wxth@UI1A%DhWWs>qoSlK!$A2zi%eZ~H~!<`7; zW|es0vz3xaX5e#Nq!y@o{*;qfzx`XH=qov7&;QFJ=^a5+$i!nSeC(ZZO4GR_Fk z!^3CtbP%j;ohM^kR?50+6Q)|K()+{9W2%&spWvY~Ie8RTw$8~mjXfD}>{(ff>`G@#j)uwqnb7I~ z#!M+C|H30>Qt}U2**YaVgizw|qtQ^=?F-@o(=JLPnE}&5VE?v`ik~j!WhXpbCNDd{ z%GP<&))eaomW%y*Q8`IY%12>?xJ3nBQ*20-GIAUqD3g(6VCB)tNGa7(C}i~k&!^># zd=fS&Sw?D!Qbs<32g+pROjy}EBYT&9L&Ap{b;rsZ6=Qs5e!=lhgEnuxl-+sh&Nh={I=v zOqzZTD_f^&a(HcWJJsz)uG-3|m7@=QQQRwjpOQ$XS8TXnq*8H47(i9aQ9WVG%({5M zOlH=Cm8~4Z(N`qxc4$Bu{m$L1Bc>j8{}jl#uV@aWV`;ybLQ_CuAo>4N=bJ3i-f(E3MVp z>LT&b=tD{(nW0hBC&I!ywdSjHs$9^JZvUEm%+-``7yUn5h_G4bZx~|B-X@FW4w9Cy`bH z^n__W`3D{_lbN?*W$VoBXzI`OmkV7An97OtzH*O-%q~OX5zurpjb z(0f)oIfY*juYN8`h=H{8l$c=@rCM)Nh~PV+5M)9@&nY_!A5*4b!$4WYftMt`3=?p&EN zNf(Rh6_tg;>IJ=8G3k^OlZGAR5_4pfQE+Ei=Cs0`ibu|*=oDDlIz>AhdM90OzO(6p zfG^1L`5bH&7oS6-;6qcU+QlunJl zwemw3i$_c!R1(RIn4+~(BxTCYCV0q9ZZ?FKt#f0nHicrY;qeNs+RT$Z;gS8D6BaZb{$C@Gm(v|A1}cQWNPup~iG6 zFK^-DGI@CeRvwkS^rZ8h>RBZ9ep@!3(T^VObcuKbwS$sKW&{<9m&SA{FO%?anY>Jd zm96t)I>p$dy1!~wL2HhVlY?>$><_oFL|VJ9aylL@la^($vUOTa`{?SoR%oPrT~5l)utQu@BJHEAXG$r# z5s#Ef$@Q?ZbxKTU)au^V*0qff-26t4%&%d)xX460qh?N<^7AAfHj|$xU}fw4nC5(a zBh@wubxc%WDp>bYaYuJ8C6P==H_{3d$(T~J1|Bh!n)k*YHB$`pFusTN)m^QX`mmgv zY4}%I&&`*eVm_T6x?pgfqSMu1bccHBbLjJ8r<*d96yTxVYuqZthW7d?O7xAc>^gItMTc^j= zSE;NMrFsi)UL)p%mx;$jn<$B7#zc|&D)me$B^%M&P2 zvqZz>AUP%nz!q@}3;H^imMZ0B79J{-lbNuxbxuqt*RqAQzE`0jCnO7-!zCor$+b$7 zlnoaTlF3FFtZbbP)5*15x=$+}SIW`24EBbLMx-9B%8`tvYL43%s3 z14sIt$)j>c9)exsG7@RcupwJY%L90{Oj_=Pm95ia+JlfwFR$M1({O(NA97CKg8kug z5~;uH=UMv<{+Rd;JW?hjuffXJ88MA&a{bw|o1!hw4ws8ZHItOYC>qt&Go_VeA|5G| zk}Y9n>y(&gPU_yN4REQh{(PqFl0DkT$cZ@;c8gnABF&r_v!?Vcz@ui;GapvAPLF9! zoL3J%H*UBD_iHpw0os6;1rh?)r-*$FNSDC zp_}E*+z8vnWhT<@6?58@pX>3knfzP_D_iGhH^cnC*+{+U{8|psldxZ0fDVr`!yl42 zCFqIpxL2>ywnkg!KZ}QY51i-yIjH()uJ>nHIi=`4JaQ&Q=fcX?DKZVj>t5>E+%3oE4%i|t zHjxJ6eyWs{+wf4CoZJd4Tj#{|NU(2Ss(HD2SY!a84NYB>? zlclU&ga^xHWfiP!ofXquu(GdQ?9Y_@i#jR~$x(R#_K1s0q`BZgu9TGf@K~9o+zTsP zC&jdY8E`NB?diAV(7XZL#f2u)0;V}_%Fk7bG~hHf}q@T8oOCtz>5ghYB`tD0lYe*a*><9L)z zHXehOt+Qe5%l4%EoKgcEYg{ev%f1Jj!-XT#%zyQMHCj2|#lvLM@eZs!O6e#p)3!>r z%juY^Bu3Lnr>C%tvM~h@lF7zoSlK!oraAqRvaNo~(R=?;Bjpr1DJQ~KaqCE=IenTk znt$~v&Jby7@cNQT#!(^>U&8hO!vmYkNEuut5|66p+ymMy89YuVA*aF0)(J7y6wkTPXBaP* zlX4O46PJ`oHATyp60-`Amr2Y@Sb4M)V|aq`0XZ@E!9KN$81n;+_u}y~iMa<>woZ&` zrY`WCGe5uhh8&vLV5_*$M4G9iDbq^xDjqVEn^$0E>)e=j-zpQso?e`It$1j(rIJWy zXcTGpZ7^BN$^<-ECM%o4%GOyijiQx(>PDDix?Ct~qv!>4ROZ7Taf?f&QFI_zO3GY3 zRwgNPU}fv1n0Cko+^fvb>2tZu5TwPKF z>1@BFQ**tXn(JVzxYR`L!DuN{Zmz~dW^!`{tZbc|kXETOW=MBr^$puk$boqr_J|8i z)K+OYS4zrbc&toP9)XpulVWXe4LGk$>ieoOAJ6t>>?cDdWq;%YZN6Dn)CRo`z z9j0AQ{dw>GD({UveK`EQoRa5Ym$;Nf+U3-cEv4ldJX$6#Pr=HglNRq$)(R}@y>P9` zS^rDoZtHj@kxaKW8ZE(WDJ|>Z(K2Zn2P<2r#dJf$GFM&l)ai7k)w3hjD-sG>GO<5X zj?E0%E^d*DbVGtUZOYGdJZvUEd&0`r`7u32;u-1W)!4u(rP3vDPDO8{y5#s|V7IvV zM0$wCm^G#6G(2i1J&R#w>-3mbh&&(F+sUa8^**PQ*B@ZKNDj^_*eEVIkyeQGgefyC z@qn4kTnH;$XC}1bRPI}Dazo*La&Yd2-Qt21z2fLuQ+n>fqh```7p!cZ9@7mR-Vd;P zJE5EJR1KHbLw-$8&a1FfTyi4az(F#m)VzX6%%tWeSlK!?q3u-oot9gESv;(opd^wR zRz+{80tr)QHp2sEGP5zPY@Hd?UAlqaUDj1^*OdCw88@$w$mh$^nG5^Htv8YG(hbR* z5;O;on@P}YSlK#3+R9SrihMffW`_I44Yzib<;X0B4dNn$o`Ka9t$hgpUY9%`DwC2W zu(EYZw3A0Yd#AeGtST+)puN_QxlRtr)v!NYNYIlwcJO*3Dg#@i6TB?+jNAOUYoID6CTjxYur7rbl-Li3k>0LP^@4)tO z89`U618Gt|-p0dZ^6@6D9Kwgwd-24!wljyO^vMg)mZtT`-E^dx%6Eof`o<(#2P9D_=^=g!`h>W_L(a(vi7Y!LPj4^Ik_TBQ^R zH%Pgq)bL(Mt$2O-dhwuZnvzIn(6#%B8*GA^Q5M_r$e1ing_Q}5t)^hzRMF|v51XXr zpZ`?Y3T|E6Y2?peNr`^tJoX#a!v#`_*> zeWgA4ztish*X_k>T!ZgR=QBNpq8e{HLp^uaKDs~tx+*F+JJwr`%RPzKc;37{*(f!q zSWK@tK`nY4KFb5}XQ{b0yPoQOuv^A2+k30hY4|dOd(e^+{EqD;Gx85fdw&Gls)eu1y4h)W$2iirQIU&ZZQPd$p{s9#!k=z_s@icVL5 z(H$~;YQyHbrk^^HBl+mB;88L^`b)5KEjYhB`GP0WIy$x?bmY{w7dKzXx#_Idz1;FE zVnQY;i8#8Kv=|sBP?{4G$dh(DHpAm&GO{tOY@HEWK`ITU`r&GP%$M^q7j}o+SbPL* zEWFNu%8{}$2al1-#%x&GIvbNn{it@LQu#tLM=D5JPRLT&BQ7EPMWhS zIavZLTjylEFit8v;1w!bDY;G#%GIz*Tu=Udlf z#U+v`)FjNmT004|!4YZ)M!GmDo$Yoyis^=-;1)Na9ev~PVsL?EGN!UaBwb7m$Ja3Q zH%!WGu42YU7B!mvNtsPOiO?~7=%6ghL|F4lnF)StS^Z3N3}0y${FQ1M`vdlwuxZ8* z-8)6;G<=}J&^EI1vj*m98WXLB>QB1Oz(Zx$!RelI=x1-?R863h)Zj*7HsidZ$|6&B z^{Pt+E}XH+;I0~HY$yPShV`a-00dGdD4d1|%|u}_tXvDuZ;Vd%BtmONggNu(rDFS# zQqitvu(M8SiGGImA{CzynpLn%+^S)CU!vNxWCM|ct%GPO_7)DE{qt5`oCTHbU*dQ(|hP#3w zR#du_lvnU@nWVe~D_bWeu$a);f9Z77`Y!J+Zxpvf6O;tj<>#VexZN8=MdeFb*$j`D z$;!sCvUOHM`z;k#)U9>;;?sONFLPm+xV%XFEyFoeX6E2AGnttUD_dtKv?X%LwGL%D zE=ys9xVT7LB9$&BC69;8BxMP#Y@L+QmPlFGqfI1VCr9OK*dZ<|(w3-_FJ{5B$62xN&77-T}sOK zc(_bbwuP0glM>iY(>Q|8rORr=ng+`vIV=ldkGO@!a5DomhOTBzc{v)7n90i#u(EYt zCWp<v2F;zDD%xeSG7IBiPK8F<)Ca#p~~*2&pv1akTc%ScD& zRyjJiz)o?|G2F}$1syMM%Fa!A+)Q?EfR(MYGg8%2``wmkRp&W5I?upHanXsX>QvIE zb{(PWl$D32zCuaAyJ7rI;%@OeN+OwV@zKJq4z;$ro;zh|93DH9 zp*C3AIzypj??S&iN~G1D8FFx@!xnMtj&$tpB}{4A6Aze4%kHqUby`Aag8S&;J0pkX zG}s|7EYg|aO1_kp#dy3-R!)YMt+TRqSnIS@FDt9$q^yMf;gVvwH5}>*FEyOPzYvd> z$;tV!vUN^E_i2{0g>Jel=3Y50_rNA`VKKbV2f?9a$a76E#mSb?X!3ZQ(9ia17_0l0<3JEmeBQr(tv&+_=KCq1EbB9L^1;->3V@m zmy)tE9xjuV4Pa&Kq=dIb1D%z%Yi%?%S5C_u*d%Uc5w}FulqoT@@sOFs><24bCuWDR zK5p5`mkPzsg1)DBshpWSY!jCm=_!+X(v+Gdc+gC0dSGSi)P&CXRt+@uVy>2Ra|LV^ zmmBGfZy;?-&ZT(ROmbGk%GSvV?fI(d&WzskeN4{GBd|qWW~4n|FJVf{gLuG9TJDFH zt7wP_oYQ~h8H}Qy>yu1!8k78b&4DHHH{+f8Ow7rr@ zX0RmY#mkuTvMnAllb5YwW$V0z_G1Q|Ou0}r?Uz|7hvsP5C~lFF_G1ERQ*w^L!)B6m z7_4laoS9+crkaK7vG~#wXIZMWBA0X2-m6Tix~!{>z|WS`bOvl5m!?yN3)v%BK?z%d zr@|y`09FnmEW({I{kPOV zr{PkYAH%;qd(AaZW}gyqSxS0RQu8TH`=@kJ7)aKz0W9}hOaYdxYA4ip6$jAYccv) z*}Q_s$gFxVdCH+5yMAjctU6JuP-;D>xhg*41vYbFm$*g3ut|qWi=Qv; zCe6m+Ec4WQW$6tL3y@0lUMc#c4J%vcW0H}N`mal?DUZo1 zc?9-|OG)H@OFdi4%7b{cOjhoPl|xvGFv|4@%GK_31POn*{sP>$uO;F~Q5~^~qWGaC z3N>8cthIO1u6>lc0ld^OTHpNZXfMzB!x)?+xq`NGhka?NVHju_q;IN1#l{}BPwo%W zH}WJx$8DjV@%RVn8~W3n^rOs#KT0iAe|$azHp}>3dnYTMh7U7ncwer%k=6T(fs1CV zdDSBGN9EJ;$e6`#Pft1Y>$Y%IzJ>O61B2AyfIOoD77npa!`(DqEK9$$VIHQ*cMfDo zzW8E1M&=hk8CI?Z=QkuLcoLz%{Md)#fwK?Z52QVtUf~!Q#8#=ugmkQg{oz)DeZrP7 zj8!0zB<<~7hzH5U<9t{-1dj-v1iznAElUw3d`NeXnus4owdoT@@c~H`s<-pS*7kPR zJGkhmxvfIJp~Lg6N&@>;8GjOkb0r;~%y484O{<~L^K?|p{XWmHJc-a&F|_i<-{;xH zZxxN7<~{h+)PAmhx945hFXPwkeO2i+e4D}PVFhpaTLyYQ_3TJf_zoT)v(~-sDTjXM z7IuCDE!?mXf!;x||1;$q=x>pH@X1O78x(Lqc<3`#O+I)aPx9%v$0KEa`fXw5T5x^? zv$ZD?S__iw1=Sfzm%RR^Hu=74~ z10r-q+XJ~$Ql7$NWs>qsSlK!$ftyTxQu?!5Q$ZPjtGIWvj*=KfJ=m_{OerPf@JN}I zw86^ODG8h%uT!F4Pb#TmqPIFT>Jz2^*9sBg2VOMlQqyWioO; ztZbc;!0i+DwkEHpwg(*JX!u?^C-+oMTD?}=8f}&T^jYZKv zb71w)LDfHVy+2%F4vf<91hb~l+y#HyK_)b}!^+m7F-^l3@=mIU+&uBBoR?Q%f4G=L znqsTvNeOugkCREr3$U_vLQDf4rR<=$_ zU@uF(@loe4^*0jc$^n@Jo5L+4p}Q3_wS`#2;$3?sNy^4-JV+)R`@zbim5qLF4QHvG zjXZ2l(roloHkRN)GTG>Xm94X3TEIEoQSShonwP8Pgj@kz#3dxs0*;?5<>XR4R3;~@ zVdW4`B5V}$_Zn6AB1Dkz7o^{WH%inJ@uR42d=W+Q3rQ4e$J4uOxAZvn_~V>(G1KGb zyBoGV{R#eY8GjjrM~<-NseU@9*@^5@J;a9nHHN)Ue~8MmzxV0)oA0)L{owTb8(zEwzJDNNLc*SS%uEt?hm}clxT_}- zS}9`R8KoV&t^a`PXHe6{?p%7g*2B)ID22PEPJ_KNwi3ORoFnK=A4E>=$Z<7s+M8O8 z2hPOjWLSA@;N#{sd{)WvSqXb(0UtL{@wpHWoQco*u(EZ0b`5Q?{2$@69;c`;ao;Nk z=pNWDE9agrE&@Lk(lrQ8fgJZ1(y(%Z@71%5;K}W_zP%U!` z&`WsaOn_d1m8}D`^GE=h3ebex#2ui`lteN^C&QDOQ93{&)n{WoZYDe%z{=L)(QcOT zyU)gM^ISPKb6}6SMaOUtHbPBUcX>7*FcX*kVCB(`3+W~=mE)3!J!&B?rta|)JYXg+ zJ+QKMT(%Eun$(ZY)GA#q2j&XcB`z?AcVNK!64D@DiigZZW;LvA9huN6Kyx?vF*z}h zz$S5tFm$zYyxVSXEq;bR*gZ7Z>@+KZH z6PDLu2y1sk25lh$|OER{2ohyCF)61o9?XXFal9xfx2I$~OPx)hI;iO6bL**YR2b;K~pc}&j8 zBd|YQMg(=Fk}9nu58|ORA-Nw`whl>19VwOdf$%$WM&5?);W8qqBPvsh$eVbiOhjIX zl}9ZiWMDJ-4)MTddnJ*~z(#^de~u!uEgmTok*#6n(Td1Gx~NT(ER-X1G;B``s))*z zB60*CDHD;yVC4`*BCOT<%YD`P{|FNP-0#Uzr+WM-s;f?-DE5^^p%xuCY3+&4amP93 zhQ-FK;9r&TCo$q;V}0KSU2v@blRDK`9`RM4%cJt^FE(D{NrWywg)S$=zu363zW1W> z-oZ4^IUue7+w#)c^dv8%XjSG#_=t5(|mn0`M%e2hhgGa|Kb9Z^lq2IWL3yfQl zZyZ=|3ob6cszMg77rlb}XWrY zgk}R+**Y}j)RS_x5t>Y)KVL3so#?r8Zsx#daa)uTPJA=Cspd@4nT^NHL}x!(**ZGp z%q2m`%?~)ml78lLshpiW>=u`uL*d?t{(GqrORiiq55Y%uIAv!^+mt*@pIW{N`S3ryi5@@(An@mlwko<|Flm{X{7w z58{C`A-Nw`whjq7zEWayYJz zin;$X`7ZI8X?rD+%$Uir%Z|xPXuoA!JXj_yTf@rMVF|A*#{SAeIV(rQCM922!ulyk z;IT4MISf_~K_$X0y+6@koehj2;V(Db9(7{LkD@y7EQ(@C5`|iBIBwmRo^e`#-ts=D z=;oY!Sv%x(75oD;{yGMa8R3vqy@)njcW{DHHq3GxPCH#5mFU0%geMVUaytGMh#ea{ z<#RIXl?U$;p2 zpTxcg&w^Pr@A8x*@DcmmG|QU6On<|AhRQ;^o`G9zUe8cEji6)_10~=FLFOeqA0{#{ zz{<3p^(0!i?lGNHdg`-u87He>^FHBjF<_f1iC8-H1hB3I0jo{)S1h5^2^-@nF&Wzc zR<_RAUJzpxvAJ@@=D@CT8#^a?#EgW^#xr6PwjZo)ov@h@VLj<$XQ`*?=Jf|)m&!rQ z!{%{8%O($+Zw#$yOYp>)y!F7!)_MB~%v(8~@6o2$ua?tx1#BIcw%*pzRg;*=8i%gu(lmWNLXmppC(XDD$G;+ZjtyB}7zP8>ESD7j=z z@Qxg{w_)43sI_2BP_cwE_9mVZld;!fW$TP#J+@Mzt8DDCP5zE}^tru~NM`ief*zZ1 z4CQTGJTWG3Tf@p@jJHbjY2fn_#=RfSsBg zVCGrd8}L+^Onn(vw$7BcL)p9_*G^|^pOGW=6zmoksl~}5Wt^q`C7ubBsGq~i)`^~Xe-!;C&c9IzhjTDJ=lC1rpKns>Dm+j7|ez8 zj%4Yo*g@Ia9Z!eJ)~>L!_1d)?i>+*-+bwHl>ohr7i($XG?O`f8uskm)RVU-QFsV8L zR<=$RuSHZ&mfY@K!PSR{E9Gci2%E-5E5R1gH-z$aKAsShuTR0s*7@R9t-d1d#or@G z>n_+YE?NmzEzb)|)$MpLOsc*GD~}PXDp1YP+QL`lRJ{cIH43Qmyr5LQfak)b>bJ16 zb*gx~!~(0h8e5xvS3Er2SV<%^JWOzxSiliV*amn;Ov2s|D_bXwH%nTgjo}3fN=(MKfR)D zLttg=j4|iHDsR4JQih3&GvtV^fL-GvmgF3m?+9%v2k?xTgq2`r>x9i_tz*~vANB2* z>O@iH=c^4gZ<5n?1MDD|wx!9fY=^i*$@?;%9h1CkVP)&&@n$vr4dxnbPsw5XC2SfO zwghK2d_yQ-KgSbd^7T_#**af)vMO7>q-l7KyH`8_Xj2l&3;+_mC#CKOrR%>i1A|Pu z{tYWzr;B&uyY8mB!Q4|0+3tx!mf(qR-4@E)u6SBZ)^>)KLs*M&Wt@NOT=g=k2oiz2 z@0#BXl=!V=2N%2x$=yOe^j0!g&UY95xwvgK|5h?}U0vnsb(N`pD_MvKHDdf*$uf8r zOq@^iltXVNYu&|B+NES>X9Cx71urGLNY2SB++pTkYkp&kauRTZ5VI1`he^zZureut z=SP+B3t*Mou~h)IyNwSnI?XR-{E4zjc-P*eu+!Y~cRYJMoT=rh|H4h_6OJFk6JT=u zfTtW<`C9mxl(wtZ#6{qz9xQzSkQ4G2ZZNa(@i!6yganKrth|Az!er$&SeewkS3QZ= zwWr$DuNkW0nWrM%Pqf4L#l>fml1OF%%Rj#ap%t`)jwvSM=`iuy5>~d3*M}QtM~rxN zWYd`?xpY3Y%*}TemT5C2$H)OY684STy74FA5WqA;C}IongqVoUhn1}(wmSncXN8l> zx=Zv|tX5L)Ac0m8JDipk{I$Sy6R?7 zw4T6|VWRaotZW^vIgAEzN!l$r#Z-q=QrkIFo$8&A0kw8u?0~KH191<34JDCG51+r> zjx>_Z+@bKj2P48=uzD9(whkX>JXy2XNZT|yZS9HCmdtpv!48VoR6HGKZJPosTgPh# zqqgN#MO)^$-96=0E?q9V%e4{ZsdB_lft}+vp8O4wNI@f(P|QxmQ(|Ja2v)X^8E2}s zuaI4#-c-}z`m7wT3t+#vaD6P1o>|QZiqv^{B21*tg_W%%wI8E$)g~6T`5%q2yXA!4 z0o%tVjDI)z6;`$m9B1maX6*2!kVe|ea?)OeedCgr%+#x92u199 zJRv4x&%w&p5!2p?Fiv9B9BrH&(m>nfKJgH9LnV>S5R<<_Eka3aw1wifKAsj6xACyD zb=z+{1X5u+9L7M?9TLeqXKGRFOtr zR!*J^d&wnld6MKcGl`qxJ@D8yB@?mf9Qrpn$!G=fec-Ran_NVA`E9&6-fPT98etU1)B`DQN|5 z(htRB)QL(WnK5clk}YV^6pGrGcv4K%Ccw(pQR6JV*M7VG`BI@+R*UW>r#t85)moL4 z&TGsaDQ9j0Y$CU^CA0M2%pD5fd^|fQd~;!C>+l`O@4Zp@T%Ens;_2mt?&& znM2Vl5$U?y^?c*0^6hhIkJ)jSE>i zkv28x28HWgJR2rl@4(8|;nH3{424U-535~H)l?;s%*gcQ#Hcb{5kCb_gNf5*SlK#G zoW*(C)un^bQ{;G^2)oBETFETV8*QQ0YZ0Cn6Ssx1vUS`z{V?h)8FpSEr|mr0JT7g? z^utW9P}t7Jvtq(_Hmp20VWR`hJLIt42Aem^U^9*|Z^g4>!gdR+Y#lbvk(P!*l-BEi zQBK+Ouxnh(k~z}SUzj$(zRso#>wGAM&{GFxT65hJ@aoBKft9}f>{CQdGwU4GwP+pD)&qTT3 zQyv9{Pn(dNOI!*3)Pq&;t8z5Hg1gJCdi)8wP97Qo69^<fM!5CH#6< zMKy+c*TOP4xv|X6%Q}_qCnu=;AVO>13(6^Bt@|x(Hn-OCfp)5?E>o#$1ux750`#+Z z8cd*{_LM`bUJLJ;+=B&3;AbDKeeeH~7?t&uL^7iS{+U4-m4F=tnziwSn9!^VE0Zet zzbbd*7PPhPa?a41LsNPOC$_cq+}XQQ{aHNJJ3j0mHVFHNhbM(dtx}4E+Qmm9zr6Nz zHk-*7O8Sj$`^fRy8}^J_iTHbcalD58ppz+k;rTG>+5=X$PM3CZLnvLjw0iK)#2vTMfY^4s4Xk}K#tb;VAHs0CE3%e8$$W|4xSK`uRCF7>wGcWLiL*ZtrwX=sP&_=`TuCG|JWR6x zKI{jjYg0TQCS4oB%GT-Hn>Y86DfFuoQ~5$(HH!tUcpV}~>|oe9Zt>zD)WbXS4W>}e z4#bmUa<)ILY@IV^+t}%Lb!m8&uUj=cC|j4~=`h*41Xi}r7PDeG#jcD7)=%YN{TTL(3s#a9 ztKtQv>R~(=CRIOzm90}XmDk_uB9|!tTMpGfVY|3c@t+jKtCg~XGWB;n6(&=EgO#l_ zrCsO}Hm}u{Eu_n-zQQsxv$gX>;z8n$N+Ov-BL9N!2yFS5P{y{yQ(`i<4XkXPF=lJn zMb~+bm&0`|>=(CiCD|HQyr5Jah3CSg>Tp`+zc)cRQG$f-ID_G@%dRp_KteH_n) zN!4;#**aC){^`*6u;?uB)3Ex69ILOvhHpd*)zpt$% zlIg!ES+zVfC|7IZ$uPP4-`L}dIY;W2OxyqVmXoy?{xO(4>yw-#t=U1@+5=CA$<}VL z@>r=^*-qNi>X4I_f(_#~he_5f&kV}d$M9sBT%80fTjz>7+mLmNdI$dVa;yenzqnW> zIonY2f>QMvJQpTapN5sk3RSs6r@jXLJvmk1f&Cf{R8_p7RNaZ^!ldfku(EZkcqg0M z^XWXj59LpCuKoZ!#^s8CKOH{ZP<4Zn^?N)UCRx9Om93M-+^?K>mY36AWwNTX`6J>{ z;igI=nNeYq`<3g4P`)<86Jql90a)2OU(AtVWmjp3tIs(cET`*0*fMVEN^)davxBm= zKb{Vgt$kr->ufQ5@Fh2|@1E(CgO!8*;)0cA55D3BrK%Utg-KO6tZbbs?Loq@m7P*w zx>$0%R;0>K<Nd+QYDQqk^?YTPSNk!qZ~1_Cr|NI%~`wT(!4a(sYx}KjobL9kz|jS&}=r0+vw5 z{)VT-WbCi7@|a_c9If8*QSo?kJ0+3Kc(NsonNC=5gQvt~Y%5sVI%C?)Z=wCOYU5Bp zSFAOf$I3xF3igg$%$6j0GeoVJ)qSBA?QlFVCT)kp%GPPaT1~^T>$BvbeH^xp3t9^* zn)&qgay%s_WBstQb;h_O&T2&)K6I=Vw6DoI`zmZ5m$O7ioQ<~7diE7OEhcMUf|aea zHj8&QsMbm}oIciods+_MuVDYUz!j2jK^wfG)cpd_jY-|lU}fvnVXdg)fcDxy7LN!+jE-5|goy!phbe)83~UVU~j)L2=h-dYvX|L$Vs~sc8^P1t_7s|&d^c7xADxF z#C;Q1woV+@ZW@kx|3Qx0?_t}xsI{QoG@thV9i9@CvHydW#~fqi(D$Z~iAS0nDTy&V z((F>(v1uLq0G<+)vG>8s)*1USG}7!c905O24%z;&Z`?xG-GVmLd=h+LJSQe)AAyyv zQ--Yy3?G2jI%hdKXuYs?T+mvuDllvdt!UkNT1?hDVP)&AVHM4EJp6JwXqUjgaY1WA zMGHA4K7{AQr0ff@vUSR^8CvsU@rUJ{{RnoB%UKI%XhYA8{}9iLN!s^eW$UD2^~`j1 z{O@wk{s#NT<*WtuEaU|FU-6unl>Hf2woVx~pJ6yizTHp6W6f=p#F!mxn$MGOg{Q=1 z>_f2f7-P(Eto$fBV~4}GaSK@s=FH5e%MZmWeo*?5P^N-6ZTMiq? zr7X$!85&HXqs)FhDJEw{SlK#f*v{?x32SXiT zSlK#l*l5#y0R2~T)_wsy$7QVrqs`EB=s&}=Vv_a~SlK#h*f_v&9DU87ipK%}gKgtt z)`C8o`BeIU@RXR0{R>vM&e&{d%}G0jt+k+g$Z^|ENhCAuT$=pqljaU>M|Z)qW0JQM ztZbb;Y%Xniw$QyoMF)+WL$f zvQNXdaUp9#8(Oi1GWJP4B_?B^fR(K?#=QO7RKo6*)AeoGFfLt5-Xt4RyS|Ah!{qAg zu(EZonD(|hs6wze~eru5F5*VeXp zsCRbt&wSkl|I)ib*grfx$*k48N=XiG*EsN)@8q3gIy-N9pHp;m>II5) zcIdpJN+i`3w|-nal-)u}Br~>H$R1mCSJTw)T{R_N`^XdPUubhYd?v)3ddj`;9cKPs zQ$neT9SZG*L4z;tsdPss<>vYt@i;_|$HBP2%)9q5{jaTQ{^&f5@>>9Tv<==A5t~>3i1~+KWKZj?- zq^lQJwoccsBQ|2~MyjrrQ*{;W7MH4%5-3+y7bs1a<5@6ix&&4Zp(#SQ%I}#~o7M;t z7JFtpXi(Rl1S^I1&7P6d{1p7PxHNy1PxEl1dhcxbzi%*rG`qjVQ(&U}b5A+6f7ZIj zRGa9SZ!#v(GYR(J$Nfy)jJfu5Nd&_}V0o?A&$gPA5y@STB&&MbD*J>^kQ>~Gjm2{&y3OKl1K#Di7t zQ8^nA;r24C+{tmX5io&J@&KL&lal*jWm4zv^(0z1Kp62?R-az#>e3(O`G<;CSZ>~e z9pjc8{uC~=+ysrF(;{!+i7=sh4OX@e)y$Dvt-6<`tlR14yHm^Dd}m>qHj}%<&&7OA zQWD9GK>53cP`(;Hp{Py7b7G>lC9G^6HEnOVp*c)|i#%Q>Baq!JhwMh!xlsU_ZwReq*W(E>A-fJ%who!L9$;!N!&=E-%h`GoHjK;G zDX|YA{oVpa>Ipm#CQ^^X%3}yAQm)o|LfpY$LrEml!A}k;Q&adJ{NcG5xW5Z4k0GR{ z>)otra-`bFAX3u}y{oBs9?U8=1y;6>)J`K#NpxoP`K?psES&;7#clD9kG;iH2GFMN zL_7f|M2leMu>cX7B>k)$q6=WBEJD;}fap9t0VYJ}!phbm($0t&y5LT(!|AL{i)!;! zcgs<_1NMuHQv6FebsK0^x(!c*3Dm8yvUQ+FZrbS5&C7C>UWA?Eq7;AArVOAEJ&z~A zgy=a~**Zi!kJvwQX$NVOUx>$V8!Cxp#&3&a?;uqipct)>XTZd0JghtxFrvli069jp zV5_*rC;^O&)o3Q30TZJcu(EZGri@&Tl!cUfC zf|P-kt%Ef3_7*o^c8Yz4Y`XmaxO*EgIjSoEe_|jZ5J&A?;FPTi1EQlM8GPrRWvb>3+tSAeMvZDNDQ8a?ExU4J)3yUHV z7DQ1LWpQ!i@6@g8zE$^DO`mgbRoBd)=W#|&ICakVe(KzFU+P}*L$aInaoSB*42x6r z+gm(B$WUER4+II-F0$psp=!K{Qd^Ibwi-OD&(t2WU|6Q2pYi58$Vfd*j{}L+LuAV% z2q|e1in+7K08P~;^rGgewj-tnb zL~1J8a^gtMZdjJv3BOth+-0{yAFAbK$*_6q^2jF(yh_NO-%@%cNURov zEHDwzxUhN11x-E7pvQ$oZaUfW2t=+nQ79pInLcvs$pQ|aEXQ?`v)np*Tu9_rlPxEX zoNzXMz^*Fylsvw#U+7PF>XWvEtQ(fJjgik!NOH)4T|*BC3D{L+%OejkDV5!?57>QV z-G&WdL7nEk^l*@X-A%SU@&J>j?f2>f_7YjQVFOsu?EQ=MaFBpKPqv&mV2zip-9ACy z=r`df+GEY}U?QHvKl%kBu7lhuj-$tcL~0D#@(4mo`YvL=K2r0@f?<d7gHQsDfdqD$MwcpaG>P@m_SgNAmY~xiz&Q)*FBSB*I8rgEu|4p4A==9t9@i84YIRnkn_@AtN@G9uE?+$z;okBZi)fudQxK+vJz)6SkDB8#aB# zHW$z3kO5mv4+ja@LbBzN2beS$-=_~)g{<4K0W4@PeltBBBw&T1EZ;DuWmJp(Pi}~N z6ZzFT%|0HPoXVt0`8)JUyL~7D19clVqyV}!2}t%Ct9(y2vx#GXIlM=?+56yAi2JuSso5og^Ay>g{kAYEX#Xi*z5Yl zyh>LYd1IJ`pXOI0#-oYE&R%*{NOoQ#Tb6R-i_Ao5Hi|qMp&>Imaz$7}5!RBX{HJzW zIuuOAGY}x$@uUWstBG8_O`ykwL~K0Sa^i@cE-YDw=CO@NCEIOwWQtWd(@Owtkv?b( z$kJi^zn-|WnNJxRxB2wQkhskwTTUD|Y*EpcEf&P<2a5WX<;jX+DI-k9s--hq5E(9u z9uN|)PO|01;W`DI%Q`Hhs}oKo6w=tO`heX;Rt*bScid^LCW;K%ZhBBi$gU?_P8>4v zOOMbFv!f{T^|(G?kCFw$@(oOl;Q(Qg&x5CAc}*=qeVBywF9qKCeBbOo54bhLpW=cafqv zGIZ1E!6BhLiflP?=+M&_pz9VRUlv$frO(<5vS`?x7W?#ttBH)*a(YZi#FmmRCytnS z=2K`j)(v^hEM@lU;vhDh~Z6gba#jPB7Y75XuMz4<^9}>L^*>d9OorUdE zt%6mtjJ&nY%v7q`P15YyUHahNNtO=_-sZT$lhl#1yMrDb61&^UmJ`PgJ%hHXR20wS zd`_RVXUK|SNsE03%@#z4>nVCbNVuLPTTUFV1=yU{V{9@rt54ZZvTRt&V&5dxQ&UC8YzI9mBxcu;EhmoI8R(jg z30ix3g^u$9eb(+LYlmg65PQezlST&aK6+?K;O-?`9y!4E8YO$;BY4*1Rej+0lC>K) z!1<+-fqRJ_8WOk{$(BbBaPHTO!Mh<3{V(m|=mank&u}#M4Cj|d25vk(G$e52$d(fa z?i_5F>ZoaGOg~KvOxJ!bCPW>LG&7+HqS|>d&Bx+f*<-}2&N6d4zErLRdyGb9n-DL5wxD}g} z;%eH+$X!p54T;d&s(BX^VY|m&+o9_AosxBxnzjEsr?R zV84x!*51|!?Jcry!woc$MF#CndRR!%-XL2}9JGbRP81X!YKLX&MeSkgG%yj*Ftx8q zovEmijNno97?B80C0kA$LG%=`+k1e#0sAdi=##gctQ|JrHEV*zl|}|`DLphKaEr;7 z69;ZFG3N#BE)+W3ZTj%_k#)qvx2;KOFF+<4#0ou3B#4{ImJ(JM0ME zwb`am;4Cl^&zLv%FCZj!Wb9_pqeEghooqRA?5L|2Av>Nf(}!+7Sv+joYu2hoO&b}x zb@bSf$gL(@P8>P(=hL-!xwdyv=xTTBGq;1R9+tV-Kc5!Gk)gYW9vl+7tH_oUhYtNQ zj!)Ox8!eD`zdm{QktM{E7yHLJfeOj^-Aj)UiQnC1%Oegy|CUApzrFhSy+oF9xZ&ql zNXG9)dW1;)o+n#Q96xH6XMc>?nYY9b!Y2GodvH4*OvE#^XjYY1(?&*a96dH9a%0Gr z6Gskxn1tJ%RLnxTSc21X3`_jddcHn(^T+~X^IhzRNd)L4qjwrTJ|uc`$(9pGkGkWy zQmPiRMg`7eg?C%%Yb|~DI>`!R*=yF0W1m1Wd|7&cNcc98Ehi2ibv3tA$+%N_m14$8 zf&zlO^%1Ev#O>Q;%ZcNLJ_VpwKMPszEq&77B&&ucE%s9YYNE)Hy+IEO3E698%ZWoK zUP2lAInNNIiD@rs4`Po36Y&gU^Kq}xdWDf;n@SH13EO0{<-}n_cc8xVSV(Kj^=Vs5 zmJXZNV(&nG%E-7arbmXvZ6Vom;<%wFOae+_0lGeY=qh9ZvCzdnVG^K^jNWE?d`R>P zWXp-8HwU{BD)7k7JM?M0ovay_w$9i)R5omq0lSSJ5)!am$d*F@Q@Bi!-$&@&9;aX; z!TShP0_VkY*(`@%MEFyEu3sQG6_)E&c&=HL;z_4+=q@Du=E3La&LatahFKmCHxHiF zhzQU1dfqDs$NpS<5V0Sah-VOSY1C|ZM35*MMGpf>$v!fFQl5Ly0d4g1mX?_x8{9rP zBR4RurKS6ux$EH9<%5ymF(__cm)^3rj60{)UEK(0r|01>2({a(`ee1!n*@28CE;Eh zT-FKDL+(o3=G5aEbz%4a&PEdpMKK3-RlMZey?oysWc1C}QXh6U`h$j1X*2N@}g9tRSsPO|01k($|X(lv1E;#Pf} zZX%0?#p#mBaSEHV*iDZCiPH6C%Za1Zc>X@P(0W{-rANtXVOd%qIZL5a6np4FAYpo# zY&mh5#5-o>u1*|;3zMtw=u`DJSvD+HM)XuQoRWBp9t{$&H_4Vq0AAvtTfnPzulDFL z1t#Jd9Y&9rsD@lsO`}JH#Oo-s<;3x7yfEY+W(#nw(uZpWSu||!ihg0puZ4`(a(XOC zw3d=BCyrL*j!_&`3vg}Mhie;IHY{AxXD(3<8LvKiG)TNEWXmCVDQxZHyThCvJ_;rh z+#Pm;e^|Q0C|JGKJY2?GEQIb6`=&nF|4eQ$EZ84KSA0F5ScRQpp)$DG@cm+6qX&Xy z`W|L^IP4b_cFKl{7a6&?2ftHRffkP-5;rfk-w2qxkgFO=d;PW5eNK6&JBcq~0U zBzpUiEhmnia70!^^m?lmxK65A=*k#dEpZ#;nfmOVPL>ecG2%Z#QA&00tLfKAhVN8* zd`S4($(9p`PuMxz5Wb4B$rRFEmp*bGWZ|&L;Wq~9AZM#0gJ#g9LV|V$*>d8b3Crh= zK`U83nQdmNC}y}pecV1vmJf>?{xB>p-0IrM(0zs;8xp!}$(9p`?p)l^vR<}S3)beU znSt9V%VxG(v9^f0?tA+1eTOU~7C!vNMmq4x8p#koNRJT-;R9sLi9;yN;)P~DqYNLZ zl&lU@JPYeL`q2G~EE^U&{O&Xr=(r{_WUtd>LPGW`*>d8L2^%4YfUI21S}?h`#mtnm zhIr)P`(M!>x*h>0;u*T)k4;cR&996M+!T6bNZ<}7TTUD}bXKe6O`}}Nw2N8oe0|iG zkYyVtS*@;#4A~-jOi0KUkS&im$W9Rd8LVe7MvrJ~W1wL8pmx6x~glOO-CkJ^vO;$cyX zw>}ef;jpm9JF)9kMF#C1 zdQ?cz-X>d495mtlw9t_!Osc_Q-!Y@YEEzVp;g5S!LCw)ahHDi)9wb~V z$d*SCTmc>D$Mxa5nk?CHfy>rIhHE=L9wc1b$d*S8T;|qZqacnpzork@J!Hv-2V9OG zGF*4j<3Yl8C)sl1a0zF1ht^}hEm}hF_)~qxULY%nWh@u#4mO`GGHTD!!$P9=4B2wx zs9|^IcEWCMH~?LM?7;uluJ*@*iFm60j(8z+1d;LDj~);buTf;niQ|PW@a-G(@+E<; z)Ai{(l`I)Hg~eOoJ9@})wbSE4!qrB$Jfh&LiZxh=K3oP_vf%?)HDI>?3VJ+9xGp1G zP8=@b@Rslzte6+k`m8=$pCJo|MGODQp31~TC#WH3t!wGgAi>&6wwyRv!cn22V0D|u z7OM<<$%J0$|TXl5@O{@M&pRd=+l41FZ zx9W2Akl}ij9uE?(y=2QH2(Ex>)gxZh9xzS;6Y&ff}EkS!+;*DU0M zkTpl>6_@CPwTLViHf!O};83Z#tT}SVT0oBl3DtbE<;0=FR$S~d;jFbythh@0Y!%6> zVcCke;;Ks`BbKL!ghb3DTTUD?;RK=3qQ0lN#SHl5_w)LM-AWb>OPCq!JZeo58L*q^ z5g`HFO}3mkU?(Fx#$H35jrfs1TaT0V!m@?GT0*5~1Tkc+9;F9^#A*-Oa^hHFw;1*s zrHWd8rA&rj;csPmBy}qsw-m7E{vEWtW z9ZduaBzLlV=>a0~dx>m0as1}f@bey5BA_?r4ef#Kpf{w91^?n zWXp+Tx0s4u!y{c5>EpM6tRpt_ZEX&IvPd$9^XWk%F`P%XoH&NqPuSfH9|8|}De8ll zCo6{qFWyhseX_`?S@f`wsCAMpk37@@zDu}OAGMpv$_+ErfEL>urpxx(8EHa_AuFU;;3O)^WB~z_wMFLp!F?!$P8V6xs4fL`^!oW0gK? zE6B=W(^}I|3p&DMIXx^SYD>wM6G!b-+EhruuHWtYplu`Th6Sy=8B-s@2YU3;gF<3f zAzMxyGwiwWZbec*#6p3NGE`_>togy8)osI(omN~?l@=BLqcY=8Dz_eBSx&$>W5zlmD&~h zq+Lc958HP(rBbUaBLlad9vKq2b!5wl19t{(1X?=_L*VUNecpDGwZrn3Z^kIJCX9^R z4tiin+^!*8P8>Jvg`RGIA)giUfIeyWlV!t_7VkC1ToW0x`{*$tA-k7sIdRB{``T(> zj|a@Iy{b>!Ub22z+M2Sj%`1+K-AnY~kl4LQwwyS2OK4qbP1&K&5jpft?Sbh8FcHtd zw7(hsYM@Foh~w!|B0(HSwwySK*b^S=9g1^uQsAi~3-k$`PgW3{0pmU4Ay6I}y?ONT zkm#L8wwyS6iaF4Ch=wq>$mKv`rtiKC*Jd3N=R-8MO*MEF@~1$(BbR zY5|*d8jVQ-7H>tA6^`iwqdPmu+~5*F`mk+vFg z4ttUw4HB#;$d(fa3%i3v7+496jry(jC}1C1J1k@I?jR9_k#T#E9vBk0cgdC$#|?X| zZ_rS)O&_vZU?QHOX1vGxhKw<1(8EEZHJxlZakQ|TlPV>vC$r5g70W^ryG)<2^<>$w zNi5#YNn8^-f32g(goJE0*>d8LVQ;<-oWaf#!DJV>~%B3n)z zuCtJ90o8)FxoT#z#X{N4Rx8#PvE;vBAGG_(@?k+M#<~t5Ya?g0d+D(up}U)GIdSN) z87*+4Y_C3OFOem~f);N^3!5Q(ksc2cuII^?M-W^AQ)3g}(jHWf2NUts`*Fh+JSR4e z9uE?(F=WdjaG8Wt_gxcbjUL^Sy8+JX&)u`vZZ8EBSHG`j;v3(xP2@%|Z)utNu|fOv z{{gVv{mtBU@ayuy+_ynq02d9|wgkceRV?ZX!iQDUmh8LbDPLO~DRQnD&taciU!K{WUJqT}OhGXO?sOmIc4nGn$t=W;Vc~ zEn{rVW~`oGKNz3a2jf<{y2wjl)<+A5M*<0vo9ICx5!p?)EajH#nTh7HB;4OEy#e_0xIoTABh+zu7ccGJxY%P$Aj$SE*R- z4dUrf`aHcu)+;HVxC$~)Z_}ed^7Izja^gG*(+qNcvI?+m9ZKgQq)zyqc8Y2R6Y-1$ zKN@k0@(CeRm7)iNq-q-3a^h4qsw>;_?TjZQZ*3C?Woz`IT18e2o2M>|7%Hz0GE*z) zaUhvmPPRM(m^vktsjKyw+D=w1F{V5^$V_dc$AM(3k8F7aFy)j|L3!#PeWvarE0!2j z9vx(+?xe?oWad6;O!&AllritnNI=ZcN9+o+aM&Ia zzvGmIm{$&&u*>M-APHMfwmfnO^9+;(!ak!<*tKNgk|xX}hfLT`dN@eJc91QP9Kt-q zCV{XA^$B}`EL_rrdE}4@yPqBolCb;8mO}_r*a5>g(Krj-3MSB-XrkX4k@7EvuQm!D z#h%cu5r5EU`gi1}!ZN)IJ#sCvD1|xffY4n?_~wY;(49vT{3~X8IBbqMsSy#LtpVO` zGsnEGJ??xzn22ZGd1=&actnsWIf5Prl9DN8%Tk^@l$l6ue}w#&wQV#@g<>_Iw}cM# z0`OFGf5iD@y|Bq9dZ6ku$Q|brdKgHc7LhF{4%CSa^V3GNVhAj4)n}VCi5>wGqaxXI;us10wgU1}hgGt&-FdSju=Ef5EPauz7nY^y^HN;~8K}?G!$1Oc zE7@}5K+R~Fm%5Ce9x*ZfhdxaIPSy$w)5Vb|CMJOl(vRpNAVGSZY&mg|8W-TbMXOvc z7KFU?7k!leOjZkv5`KF!a&Xq>iXg-ECwdS_nBE~(xdJsKoltz^rICqtZ+D^8dI9|ez`0y?< zs9yhPeYCztmJEy5<&oFxZg&_`w%VWE$&6*}uZ3MLXzQ#04*>0=Q6}nt_Oqy{SESu*pk8=k8V$%p6)BexUc z_p6d1@kk-zayC5}Bra!?ElZj2bY`M?tA}SIQci7%SuK=|EoMGr6*|nV!ib<3{MKAc z>>;a%?OivadsiA{ZoT2tMIIaE=y4%=>mplDoHt?U8Jx#_f(oF0P9Lxc<7 zpCB?}e@_nxN!TFSatL7xg&42poNidbM1r;4G%>MOLaVrE^^ty>+)h}e@rNjt&5BgN z`Gc0a;vdu9MuPiq%yMYu*1Qf@*iEs<^hx5WQ@kZx%RAb=>HpECMV4%92}!O25uWfR zHvX3$0FsUWAzPM`+846XTg*}=11AjjR4Ycsk~VAX0-rSpq}P#^!xmL$^tmTM z5qY5SX?jFR%05Z9oH%8Oyp=b%+Hbco1bs*!t#6a%!lH%WpNP*}t_(6y-=c?s@~80Si0 z-Ahge6Y*5&_>CN7&_XlXBziPRx(*>*4xvk7$jC>X&agqjM1oUk(*?-wdaqouvPM31 zN^O-s*DJ{Fg-xJ@E}Dlbjz0OH_(X7-;ftfo>0uy&Udk*FhY_f-;b={;HlE>^cNDr! zAC*43#>i19VL^chjYGvFhXhT99uN|m&1B0`7A!Cm$&E(2(B3z%E#uZO*(!X5A}){K z2|jC%M(-dihs{U$%j8*zPU^)%=2Jzk=5D7)g(U4ZvgMITnk9au@{B%dPmz@yZlqZS znY1VAQ6Witf^2!DkybDYJrZf7-qp@&`^d@-C(;~MWYXTFM};KqU9#oGNt=Tz-rF`> zg>11}5U1MO^ckB4CgK^N;*Y|k_nS36WV&Y1<3Z9joosoe(3LHgO4*{>DNN*Ercc*; zvS!!}7AIXbJ!HDp(c?kVwVG@>ak|76f{@BTTihamwNoFg9b~z%U|oSthr>%BZaIU zv%@mPnN&-ktWL6G!+|VE4VkPgJsKog8_1RuCkwgeXwMOv5?Z_U(Yl^285S-4@%!{? zEmsbitzGnRkZfH?wwyRy$a;&38IZX4=+pHuSu`wNan@UPL1exjq6dWJ>)T|@iSvc5 zw`@73k>XqWaJ@-Z3=3DBa}bUiGFflXqd}7O8rgE47*4IRYbhb~Qv-il_VL2llAf?J#T^E_Qcj<8A{sBq*I^%Tn6QG84@^0z()&1QAv2wGUx5 z@|iBPk}>mUk12i3dn) z-@aunEi*qhX#e{IV5j?=x$EE;m>Io1_zz~}#)bSz?vSuQ*aapB_FvXxbeXIGt<{~A z|Bssa1K*;7WgW$Ad3J|UF*4b_Q7)Up|Hu{#6~ii+rPW!h-YHF5m=Mz=WC_94tfbCmyKD!3JMtVs^@XH~g@PA4~z z8|^vuXip^z7TCtQRf zz86l))AHgV9WS7_dt*#5^6wi_f=KVd2jb+ zW`dprRqBkPlc3Ps$qn@HAH- zo5x=tZ6?29fp5paMN!NK7#=5m9dSUFR8ZxaS4o?giO{|?G$%%1B^~KcieZg4NNy~t z-~23Dw!rqzT@7}8O*F7@sBGwIS)pR`#wzukpP_q;Oo!Jp%b{)G#JZ_9wCz1Lg|~Y8 z4!EvaJv~U*HL!Y;DY!tJ0#DQu4-e4&M)Gh!*|O9<-p5RYW{t=zsTo6n<1RjQnfaeEsq3%0=l&y=>zmQ zS*rv9vO|{vdX(-u5}-X~%ZURtt8t-Swz_(XmUs%+pY$1ehb$MCp$|vbnYq!+7`;vR z9*NOgWXmH0qrjTzgqHnu$Na5eBA(G&lo&bD%NV8T-Xk%ZMz)+dMkgb(5eV6vua<>T z{~CRcR+06>rlTQ0S)q;8?2&~Xz6{a|y8B3wmXj?f4wA5x>m8>BOgvt#56^b8Mp$^x z)9=gdkY!-D(OpIY(?_k?7n( zwwyRRCxmxep%aTQ=(F=2St%?#7wTsm9=Ht8Gjzw1@H|DfoH#ru4gn9JMiVm6*iqU= z^L}6=o}zh01oZI8Wqd}_JxAiRZ{*=KM4b~bad@geH|=!wk<0TD)H%TuhHZ40k-*F% zTTVRR3;|5QM4_P%%oSvfu-#MyzywbaUPgBr3Cw!3<-~y*Vh>R8#NcQ2nYorM6PB4} z`khnggy2rP*GO!3kSz~uYyu|&AJoU@0kTZZ#3pP4@P4}2NNnySTTUFC^8A%4h#~TZiM9Z*ODD{W}&(#yBsr^oiEQ*fvSrsf-l0^OiO}~y@{RO|OLRaI6e^&5z$Z;I?jkFL zO#*YNWI%lKoZp>v|By`FLAIPY6Gux-REim=ZxqOQL7$B0$ogQ(Am@yFlrkUB(7iq=j#;2Jznp8#aBRCd>nYJSr#A5OoUcVq1|HiWwEDU3~i$G$xYm2;>ZH$u zYnrg!N)`y4DFTl2aE8%{OwncsE0;?*(VazdvYTuF>9Bgl{p=^~r`;vBf(cr|kHu!G4mO^cWolA%pOMr| zBU?_Kny?C{Q?6jv=;N}AED#nKtqR5tR_0^{-B~0j%gL4#=OnCG>NQI})ruLEUar>X zWjk3YEH7HUk~e6Xn{9Nbk=*o=Eho-RSmj$XdrhhGy+@yzyT}q@iP5Tjop5DV?xeem zWaSRB<-}PDn|&#n|HStBeg=jv21ZoD!r&(Qrv(()A9a^kdvRW7As zJ};m$c7N?ccRw%@Pob+-x!A$VoQ$G7i{xbA$m8Ugka1DD7cQz3Ksi+(lyRw@hoV-M~oH!?8^-8q>YbH`3G-ZtTAm~sq5zinQDh8}Q7xh`mlSRU^qE)Tb z0+xBP=nf-!=_FeY;YDEwE#HLeY{*kE!M6g>S6x8oUN}2JwY)f5#|zjBJoSL)UQ@Hg zxvU&cocDhk_ige^7Wjq?EY;Zw?B1l#obzoo4cG|$Eme;B_i^7~CPH_GhHmnUek1S{ zK7I>ppr4W($bE15KHwL~k_EPL?s2f=Yo3A7uOK`v>e&YDjnVaz?*e{~?j?6}9b${LW9{CpF_Xj42He;hWt#hhADD8CN1J@R0P|gmU)@ck1L@HNEZFEnOh|D5eP8<=> z$8_F&Vq}XVBZfXBSCI9=b|dF#Fan{#R~DG6_%;a2dl+y01t~c91P6j!9T|(;@B&e^4Ki2gveZA<^k>Iy&S`azEWu zBqH~bEhmmhSSBfS$;$`&ki1G32n&f$Cb46cG1*J^6^Y49WXp+T5>}Ozt%5KeJmmoG zAtpgLS)e9i642%Bq5F!&xVR@S@6Bd@x(>fZ@ns_3XGs|0akCDi{Nw%CgGA9g;j8)iTmc%at zTE}UReNtc|p0Q8pM~rxCoSon*PNd8Dgyj*~ z-XRpaSLicx8Cf4}pQDpU0(Y{kr@M-TWF6UZ;*f;wvh6UtPAN$z9A2x>$xgCFSWZGe zpl&=Ma-)^IoE>y;k*HilwwyRBo=@$U@Gm6VI;<^LhxkS81Nx-gPgV#^O6V7{2vS(E zGAQ@aokfCjFWGY9poA>J4;@l5sR!3mJy9njvcC;M>^@QA|c6=Ehi31SVgk6 zx2Ij`Y;Mx0WH(tLEG0S>i5;tq$@O$!k(lfvTOO{MbmoiFH2tIcnCu}7)C5detTHAK z(|tu^@(|f_;+S~O`1cNknRIXjcffG?ZGBqaBI|^uACo?^L|9BTChXm4WmGD3Z;_~M zCR14~p7n6eY0rO@0n5-uYgiR<~m_V#DChO?FA~9J_wwyR7A^T9QG7N#l{RKPq zIoUy02+N7aJ`^Wd8I)`2<m%iflP?P(o%?^4T7tj=f)>lKaT=U@6g?;BqYz1Ehi31$ajOba)Fa5 z6AsZH?TiN#@zk&y-wpDBWnjk99Yz8(hHN=;V8S|{qBwyvU!RnDWO=YjMW^E_2F#zF zM)wqn$Xv4J#1RP@66cFu?Q?|c#L|bPlPnMx5{BP?InT*aW$Y?kf_L>&TW9$0V$bEp~~UAou7~@-SH+EG0T+EQBiOl85N7A|d%U z*>d8Lc&-%kPT4~mHaa?B6RFVcyroadn`Du&q-b2JP>)x}TUHbcd0^OeR}S9GH-!F5rE$vPM4OEV$+R#4IJtgv~G- zM_qU#mXTRZ_ZW%HLbB!Ij!dB_p5@i2k4%LuQxlPah-G9p(>+EaQy^PT9GUQLiDemS zqy8QG#N19+2}_L5WSpB;gO1a=jqWfKm|Mt}69=Y2wxiLkh6?6GyDmAj*N>E0qy`6Jo#utf!S z!O5u1ny5WQngJ%_86xSR;zTQ>GM(-%5|!h~mJ>%MWXohvHD9rM^Zml~%X)oQ){!;B zrWK7XleKVVSXR^BMZ$6s*>d8rgp|3kJ1kQvW(ra-v_l`4Yse~LanUGqdB8F-SJ53t z0&^wVa^k>*WS4^3WmK#!;)d+|^l`bDtPvI$jqFkjSBB+oy1PhNzDl;7I4mJc0WkXz zxS{1GeOg{5i-e^`V=15>uZ+v{bbpb!JWIA52QD{^Z5h>K|C1Y-*3#1b&D?eH>+-?e z4^u5IGe0)CeQ<{G2fN_U2SSoeZ?S9zB$@G(w9DObU?QG!S0l;P!j-8RLw6TR&1kaa zIH(br7#fz4T~NKnKB3f|r_af0WO=aZMPnBfL@FaPm+mPNkvU|`i6as+(E=xro&slb z3Yc{2W0ECHgvCT-^z23}qq2eSEfST>$(9pGC1i_Bz&9V)>vOV;tPhqGjV&&As4^ti z(OpGC@@cZ=#32b8HJ8k+)mtjUDzuPN9@aik9>XehNatz1sn5$BWRbAEXbgnv@yfWoM)wzq%PVBdiQ^KoYr9meN*5g-b*T2> zXDXP8XYix3Yn#O?V=|fUD-x4QWXp+T5>l&_tuFB*=B4_SEGFxNO(+_*iXEy9$wIoT zNJ!2hTTUF3kl`_$i69gy6@5lFljXrOqA@&%NM%F{bWf3pY$97u9FfpGQV?%&xm}-; z+sOK08PUokg@7xVZ=t)2gycrDpEUkH|9RNKd7;9S;)q|(aVGXU`B3S$e-j63Ht-KN${YBS=bB+yN-*6^5Bj^do!Wa zAZy95SztyTSlUs{mS=Yu6(f_)8|AVo{12m4GWus*Tl(9)f2WQ8-)%66tvfexpi#(n z7fS`B#~kebrc2PYdh>r+mE+^N%~5~o?RZl%3vFF4u`1nR4b(?&AXl<;>hV^{ zk_EPLE(>;i%`-4B?3yA^i?#*FC^hV6x|hh*S74Sy+j~YX>~&Lk+lFp$&)zyud$(nb zjoFOV)0_9bnzw`7<&6r7j<@`6bWIPi3UFsh0k$>m92iqFJF6vYFrei_H#RhEc~7(w z1GmuqMKW+B*|O^#?|5!tCYlF}XPEAVrOV7$h06L#@Jy4GC&>C>b42Jcy)h|vsB(?; z7~NGQB#)3SCk}~cvy>N-Zllyu?z76`gwA{Vq`XTO2}_DbPN~N$OSYUiFrJe- ze83dDGUZ}t1r8(-`l5CE#H=REgv~IaCv_l*;StNoTtxR6iOhv$%ZVcsQn&QTz0o!L ztXxIb2g`~^-C~C-LvkhERU{<+WXr=9l7KGgUVTXJChOA#NbFE$NWMyU6$#0g$(9p` zBxJY@8(DjbmU#W@i~5{APnHPFN$96&jXNGUS{apR>E0qyd75l_*rF0xql`OTyQ&=n zCgQ1Tbx?7ll~EZ@_ZEpt3)ynwsCc$hc}rTmobAn5#XDwB(`RKaStD#(3EfVGNGoo* zGAwiG?jm7HlP!n9qOgF(*Pxu~U^rLaOhQu!!zgB#IaYR0-Na$ax=NFE?8^OrCfoOp3N8~qtGRNv;aA)5&^mp9R+HtzW}lT&0K`L=8M=t>I+CFa$(9pm=!6Cg znLWJ~5ua=H@wtku6c(RlQQ*U(mdUx2?lqE}ezN7n$!U~*n1-3WwMndf?$yWVZn9ih zd?Lv{Jan0%uhLydGW2D#<-{2}zESq+7vXtPAD-vQI$_~i8cFWyH)U#`rTdJe=4rC! z#Hl&C0X3baVo#H|%K4%w=<&oZQ#6|HJCdRnvgO1nn%;<_ zYF<2l?=*dU=8}cNCZF>o!3TntxtT+E8p%zXY&mgmPC{@KRQ6=`;n_e|3k%PRsNi9d z%LH9c_Z&&krDV&A6Ew2{L3yiChR#bYeRk;sbRAhNEI=1V0Z=V)nV(P79Y^x>NwVeP z&rh){h@Xe_`S~_ktmg9L1}^jSExO}Ke!fArJnZ@DG0WXuC21Gg8~XgbMi#57{L})M z`FVxzIFg^2$(9r6C*7d`DzGbj0%xA59;rP5n+zu68Gx;dq7U;1FLN}B?mUvCL&%mB z=cv)@SFvDbx}`gn7waRmkgOFp4Mnp0<;E@3a}M2aBt2)5EhkP-qwzbaC~jEXtdCBC zEEE=xGC?=eJx3CB z1KD!o1U1S$m69dS96q5B&tqhvu<%5ZdF-HNZXTgKjpXM0WXmIg8}aypclEjXBUz|s za})5b*YD|0Bf0r4*>d9CG}@!F%`6qgQfK;6+5@fQz(hO)tw{E0u&CvXb1dC!BsoWu zEhkP+qdgi-!=PekwLU%$eXok;d*@X%$3E~LATWM~=La^ehy?T0r4_oiN@56+cj zjj-SZoT7r?5AVh+)6!4(7fH(&vgO2SX$_eh?OLC^jt0h%%I z*RF_1gNb-5Vy&Hno|t87TIfC_srkQ=M@?AoWGlF_+Sw`HpgC6`nmP0aKz`n*)jRQ! zWoFWJmyyhzM7ErGra3O8qUnUKazR6<4f@DjPF4xqIca?nT8~&J=2E)HNMbG_TTYyq z4}=g?+ukH}OxNiH^J%h3SYQGU62w=)wSZ+_K1p{N$;;o6Ee~H_g7m!FX>C(cXQdZl-( zlEBR5qqPT1lfXnggC(u?N^j6IH;2%jMsjly*>d9Cgw6cIK7oLJSqt@%IftwfHqB_w z{JQbVw46ov7fH(*WXp-u5;jh%?JiJtbkjXX5@V7rCr(V* zPAvBX89qZHkaLSZIX9Bk!jhx46HAI*Cg=vb=SYJ7j%+z`g2KK8c6Ee3N!5&1=&-WV zR?x@v8G3}Q7nUKdFM$JMmnr%_-FGBK-z8g4oT6zV^ECnc`2MJm&F{$qVX+CgY#cvV z6TE-#w{&Nbocx+>c{p<-?%O+Vn)dkVSTGUK_(_+Ofc<($)15_fawOSu;+%wyw}ezHthYP41-dB`#| zTj(w$nJJSkhcKgXb~Qi#+BphW!2~~q`$pBHFu51b8O&NInwh*7q)r%*>N1TQsD<35M16*hAWd9n_I9ADsa zHFXx9T0jQlJhpT)(BqfrRVVWXp-e^+7CLo%y0s2}J9-W3?;s zW5Gl`W4Mn*iWOI@Uo(uHKHuvu!zbHebw9*bLs zXBpjZBs}MlEf0TqI;}#dSb1Nm4^KZ?swTt3;+EmrLiZa9Pnm2vad^&Z)TMP+3t9W( z&P=)5+gmJE%nqkt6K4j#st?qc$?{==%0$z#g=!%~_9c2ONXWiGwwyR*XQLsj78+po ztUhK>lLf?LW<-pctcDEQkLl4MLHjqd<-|d2SVvg_UE%1Ic1hj>CgLf{BdViV+%i1> zM{eQ)Bs~91wwyRTvm0e8tDMRF|y^vaca132d}492%g3KmOf11AS;H2DWY{dZ}>7wU#Gi| zMCqT%mJ>$_Q#n<`Sb9aDrI*Q)VOffCW^bpDR+HWHn`C0kA$9pP{hj!tdgmoS`v zL?4^)lU2fEGvt?Xjk~K_$TBkDrMrwo=3mH`6G!IQu=${%%_6_o=jFF#iLks3d3aG{ zUP3mB{F?4B5|&?*Ee~HS!<#&p1jGmXJ*$N7DU8!g4s-^6-TvX!-O) zeOQ)}C2CS;30XEhkM1uLmUGFL6Ne>q%^fCCLzheY^`Y59mI@1v=9;@NZn=gj)BQ%m z(@VCTI6R?)ZV+*(<Q24HU*t zPwNBpW3pCQfHc2|^#?BF^KW#=k@);8*>d9egwEN3ieXDuEv?%1@&A#P!os6DXX6c9 zM(2O&ZX?n8AF}1d(HW}p;mdtO;z{eXa}t<{XKbZk`S7@9cuu7IjfCfTvgO3#5zbKK z6MmirJ^`Ie_0hS6EEG2F40+{g<2f8p)G|10>0Tqj`7qgX2sjGoNb#enoD*pjOz;D- zenvhn#|?yg;hct~<;8b&ynq9-mXB%bfmnww*=pEd0hd!op(C}}>?!&WT>1y$g}ZTS zOUvbhxtpC|w>rOWbAEk+{R(_r29D^kP0u#nr)A)28TNk-`p!_Q9db1=u4KYZU1lL` z4(4u{29kVHz_hU=PU{X#vIkK{wvy>JN=8@7=^g5|7N9F%64Ze#Z1oF%Kqv}p?|ffr?+HQN`_VN z{{4BOf8Xjcy39=3?CJrp4fZ)ypH=D3SX=rtRdBC?X9j#|jtpXJ7tEQ!=__u$=D>KX zkj+=&Yi$cSwZ+Ok3G(HBZ2$NV`^Pi(k7w;4{|P_LfdhJstsQ1>rF(GsU*MmCv00S^rHjPCI&UrJOmnm-=C3wlY z&CEulY-P){=d@?~?5DGLhdn(o2j;#B$~aB_KJZAT$#W0YP5i}?dEc^nQggGJo7+Y& z5B>v{gZ_5e3G#q*i-iij82koAMb*|rW`uZKqOoa9pksg`H z^gCo(0gm;`!~JSqHm1JwDwo8j;)GWI*tGpvNy|n0S}ssE@y9yO^PT1hqgLV2IVSqS z%X;iDe1kOaj!pAJTI){@mfTd;i@*LGRZYY$`C)brUSwo9nNWb94|QSQEcsx+Ha6iW zx5Bg2?z7XiXG_HIRMn2lzeCkT?D9{rhux_)l~OfZsY0dclm4G#lYU~W{oJ(YxsvSv zsHz#4{VS>_Vwe3;oBH$Ig9VIyYT>G7KINZ^P5HwZ^!(9j`_Yp4PpT@%#eYK8MC{^E zw8dWoqZkveyOpH>Lu}GdV$#$uQzpmHE`qb%>)Z2kI zA$wpN9w-q$8J?a!(K~)p6V;x*}yb_zz<66VZj+a$c z;zIvS)r2UtLT}AGd?)`anBZQlRt?0RGk&$X9X^{aHejVJRezC6sb#Q+Q|y4jv%S9H zO`J!c5J}=3Xm$GjKC9PWCCC`%jFG9-Qb)<&pi?RaFQR$+`y;^_&0_a(WYQS-?!71SX0CrS;zQ&no-HSSO~!5cg#so&q;#=DLB%wIY6*5?Pm=*wvT z6r1=*x3;&X>o0z~HU(HtGasbp_(xSOd2@V4)kOTwaf-J&F0?k540|gEG{^Nf`^1RZHF+PpF!Ry*ZAU>urt|up*zg+hSmsuPy!%TU#92I@jA4 zjswsT;DFQ+zf)C_H^gsLO^6Ml(5di#$*JfROmHs_Qw_we;5Uv{nX*$|-92$(HVfSk zOw`#6yen3$Dw&WDtwO5D0nXmglv=)Uy$`yRPmH899H4B)@>QY%(|0q$C(UyH1XUBf z@mp0*xQ+jU(v~09#y{wkwmD~}E-01?mf>sQ^$|5NOaj|m9PNSHDX_=N?NQ*r&&h0Z zp4zBc*QpB1Gs|jK6TDe3QZ?Z=>#v6zl}Eo%rgcf7BV8$`;g?-tSq1yuUS;)~uye*t z!OIPceZKbon~2&w&D$HcF4&Xs?3e38rq^`=M(FlNuZBbPkEzPe8~?9WP4LG5D`q0{ zfyQC=9WJT*o8fDeJELio-1T6`_nHmBCXd>lo-}{9)T`g2svVdAc2yIx%YW*HW@Ycy zH!#zIn7*SlPxvZ z(za`9Bh6h)*IbjD?}w_|^XB`3s)^W}@8nC&6l@%al}1*#tX#HcZOZ518te^KwRwZR zrfMSg20MPOY3CfH)St4qIoa*RKCkF67(G@t1y^Hr2%Fp{&WNPS49I`eVammIChajqiJV=El}2N4C}+ zU>Oe_NY@;Y8e)#Biu_GUtD17b|SM>@LGNuZ=xv4Bs;NUYGvZTIQJ6 znisXz80JN~=7rQGTU7PrO;T1h5qpyyzQ))BD`L*77z}bcQf$7;*A}f5y%jFJd|Ex4crM&3*{>7%*+hf6Cc9mJmn${MxwCti( zv5;E2YMrlzAB(1i2ae&x*bev6ncmu?t;S2skEk{gZ{_bZ6U|&&9v`}F|9UjC=AHvP z{(aTPc3v=7fV1+IeywzTop*ESNg6SWV z956GQQdd^^#M;M8>AE|t)Mf6ljODr`X}>@Cq*?5~Pt^oZRey1sFY1q)K5%Zn2vcEp zhXE5&tbyQn+MV<+nY~3{Vwn|N`yAKGJYg+idteVkxF>1miPSVRRCVR~WxA?~*qdf% z?fvmIOvY`P&Qh_5HJYu9ztUP6TN9mBe}y~^Wo>Uix2>&BUKib_ z+H}12`7t34j$cEj^7WpXdn4<@VM3NNTXEy z8NTvmc{F4X9LA?K+_RJ5LB7Fwz@D0=szCCzvRKswZ^wnICfs(sq`Ak3?Z4RG^Wtm7 zEfF>1c&8CpFIl*F#gc}tS60=Hw_YzZ5n6mk{t_I0Zpn0Zq8X``#fk~1UTtE_xwfW0 zNq0vhX>JGD@x2BE(^|8x6R^%+aGhYwx3>Cnjeotq%)3-g@R#H|RTDhrI*qNBa(i^V zfRp}aD{X&M9ylI+(c(4dvZYRmuO}gr2=@CAOmJS=9;=+4UF;}l8@{zqs7lD++Q*oQ z(6=^xznQX-?C1{m8Q6IxqsNq1jeir3nz^5X9sk?v9Nl4*;a%mAmS$mor7!C1s-min z!y6s~bjYko5DgF&c?i%!;DBbydw{A5p857?CL-^OhCBqQJvQkPhXA#yYQ{6fEL9V+ z%iib^ptZ3nk2?hD!>Y=0@mH#vh+X`l4*}|nO?u2BKowQhxbT}*O~fwz_@(wCy!Kx0 ztgs30=Ga6(xRpKB{`$>+sMKfvy{cMV@Ih4*qTmWeDX(jto?F2L_u^Hj^ADTnRj!*@ zA1{19?;GYk9$WJ}eLO3ifB@&zjQ|QBRc%5}!5(Hpp&V7MoW?IK@SSo#Ie!_OoCmkU zL+d-@zG(stL~V&z+_S<5*SjgKWW_4+;F=m5e_*t`c=T)4TReDS3^92Wyt5 zV^mGVF84TFZnh%sgL`&tVjsxFcAh9neX^=fJVVS>H6co^kmPwk;p8a=6Wj}@pHMKt zy>JHa3MRN0kEo7zZ7*OJroFkdFz-LV+SLUgOq>UGi1(YD#iq5^2Y5Lezz2?Y=49-z z61zJye2EoKi?b>XCun+AVdcE{FcYCYVuWMa898={*-WRtge#O&8_m=ft6Vkm);8EB zYkz{#VU>IHM!)^P$|;}V*E7L$KZH~I{kJ|aqx*GNdi>kiZgv~UK1O}ufDIe$zp!D$ zpnE$6Y+#4)jPsP+A)Jc>R192?}?L_mzdx+3}w8CIy~Z zpSuR0=$~{t$1R;f&-6w!&Gls4x9WPPp}MjqNZVefi|}_{FQpv1iv^`{%p+&&I#m-q zZ+u$S1kYX$*%ZxPEw~ps9WQ{4Q#ABECfuTMO8pota0d>>V(vIw)f(ot|5DYRGx(pXCV1=rMAd}b zcfF^yXsbMco8@o*RsC!2>t+xD9GH#;fOY`@wu=f0z*ulevu56pnP^7G=5zqTrx>0T zjkdWX!Hz%i4|R&+iTd&#uWEw7KOayv!E?CNh*~*(l#UmW!~2HH;W4aVrIy)OIi=Qk zu5xm|yITgE!`H!Qh`zFDBSaTP^47Rn%7%=wDXr0>(c6_1@9N->;P?jfauF_ZUN>vm5RqkgdLI(rNebz+#ljjs1^kd)tCY{mw z5Af6o;0_Rcl5@X>_rX#j{6$sSIJcj7WDC31DSB=vpIa?g;JXAnuu?H=mhG?qeF@`{ z*fgEe>O4H{f4HRU_w{xCuBr)6^uIVw6ZQ1tF&Dz&0nWEPERDN2D#BrDyZ`045B#mK zDPE7QDUNNm-EcnSvE4|!ZorXgjvG>=ysD}whkdWAiP#%u!o|)k1Kb3_?n(5u!a;3u zC7Fq>_2;IY=Ss3401wx!bN5#@A3@f42hL7Eyk)~9fUK*RY z$HI4T+>Ny3Mw+>iW^PDYU!t$|T2&LA@ee!A6?Lz3s#guRiO?3o88$#~T(Qs1fH~Dm zOslKAQcmr?`;%f{v^}<_`k=q5U=+hz$T_})JC}ByOS{fV4Y*BJeg3lashWtr0jIik zTaQuRWWQIn<4k-#)fZxGqa$jioBRAB7LPxtsv&QNn^jH3-V8I>L5X00h|Sg)?O9Xz zM&(q0v08G92m9dLo3HjY%%0d9=A>5eh}Ch-Bl{pl*Q2!UkyBRKCq#os(i`)zs?NNr z9#S5o~lT$Fky>N;P1ryv0XA(le1oz@2@eDc+b&lXWFYI){eX;R*7@S^a ze-&y!I{bUI_f#q3Aik?=B6jgdizgC)V0K&siv3#cXG!n*G4MdmLB#u2O~fwm?1jC( zaB!=&^-PwS?McvrQ*>HAz4q-0?sfO6Vy8Six;VC`nA2MKi=}6~ta1E;ob2^0UF;00 zNEfPV&fki2R85G@rjXU_#0b;lzZzw_)M|>;Ea7V0P5)A9@SRj4V_~qnmEim*gg5gu6F+JJ3ei9MWb!*DzM|928Wxr zolDj2iUyu4WxDJ1mHf1-3I57_l9>o)TXoH0yu0QAir?~apW^=v4~$|STvi+oy<(>? z+k(SGCBeU@suoB09#s=)!If7Zjbo#i|8xu5VbEXaKO0*+w6d#* z*$!yemGp`W`B!AnI^c@bI!~)g%UkEi%tR9t%gl4TjRLH1cGf=5gHx~jVcV1mn|9#` z^x|2Vu1oE`@pHac;GNi{KdII62#!y3KNp087tHWsTDcD8k@(%;MO4PoVZfe ziLEP(Y108+Myk^cdn!BK8EDp- zf8Ez!^J8nTQ^MM-?pfO7ncd-kU2eL0s=D(Gcbck+*qd%DyTjO??t>|(o|KW#e*pTN z>+bV4P$sqpI>Na_8J=&CV0zN_^Pw5w`O+KoQB@6jGkiqVgxCyjG>H`0J6+#Ky)6ydL4+*d8;**vAM}1|#qH2QE{|`>%L|tl( zXXovk0VicY6`S%0JBR$6VdrB%sj3!7`3Y4M@e9sQw+Ryb4>1bvJTy%3->Is_1^U4L z*r`kvOmHup(Sw2s?uD}!pkRV~(WN@)fHBv(j$yA4Eg= zKpX!g7d~O?HZyGHr#!no)1Ijhe=_B|556^wfbSo^r^+tJ|2xb?6Ng0mv#AMR0(m7G zd2>&L9iL0mwU#ZTkPqDk8yn>k3A)tI#3q*fY#dc zq$*@Tc&KLiH%iq+>@tt5eHG~!`lQ%|KG43V%sInGCi+BGop>%dUe!eGQU`wlxgs{D zhx!6?xvENB=%uPAM4=VBYTnyBsb9ea_u@g-9O(A;f34Kpt1g32T6WJzT??H!5bskJGPF<$|Mim8uEes8_0*a2xdl z%{__w@Y+?g<)yyCL*ud#w=xr zTlnPu13W5<%{j8%V_TiGG~_bkcd80;Xn&(>0xh!gO4y;b?7$}N7E4FiPn{c=;)k`m zA4>e$pWxb7Y@m)cs9%d{OQP_5~Tc;s4k^I3suC z(w3IX2Xi+&zixGY-RAuIg7fPM`|sO)<$eVJ?ef7HD+eYzIdXH=%5H)czEWlI6N4)U z4tM@v_Lh5wzUE6WnVb(i9s{>g7c`{SrBUOZ2QLo`^Q4~ zVdh?hKfGX6?x*l;W$q>T`KjE`;pfiW%k01Jg`XF+14W6ykaJ(FI8cwSm zb8?e{3GRi{<0zQmFYi}W-+#A$IIg+%!=deMbIwd%Xl(0GZ7HXgz&FkQ1(Y6W+6c1n zzzl~R`#d&b@@Gya4^Pi*DQ8UfbYIsPFzu65g^lOvE@mP$OGJNsK)|%mbwzUr`tita9{*1lLyWw=fEbvCDgyewDU?xI) z^~igi;P-Q7G_vN-20Q+KeW>^I0)6?;S2e-kj3ufj`1|QJqSpI4UB?Uf^6s3mEiH74 zlt<-L<*2?!~II%eSH&?>l}@U0YmSJTql(g#{L?0B3$1 z@ZX&UfK*?1f69HO*{K^Ts|<&3RP1k#)|RTK{c%`_*=bbsaGXuI36tLL;wt-WqR3_l z?R)S2hlT%|HDTCc;rp}ebA4~t+ish))56DX*uefq?YQvV7vUga!hBo6N#V9bkh0lH z;rlbEeUES8FFQHc_b=@KL5IO3YOFG4yWCBIBlO(leWrmOiji9P|tpc?awLQcNqSv3F}Av9k&0DJ=Jc%!)fPQ zYx{pPo=;8#cQr$dJG3PZ39}9j&?e90|57z$@}&FUswTvwOKCH=_u$2-Q=KT7;9hK3 z4a6NR9^BkwbV_}X4J6ax`+oB7ONd`5349j@+_eO8O=R|*)9dG(o3QlJpQ&8{`{Wk*=ymD!!v?f`PEQ2}f9ba<1nA($+O^oFcpdTZT0w%lp5=3TgO z5EL${jn3HtKJIt94Xio*2oQa|eF|jwVVl?KtN3YE6Fkp+(rJjO&k1l(I_(TQ>GYpt zQ@wW5sr~41@xP|398dE1sG5jf{0X%y#e#T$Ha6uawz|&^m;Gr~&A9A8Ry7g3>{C}1 zOD0U1cN=iGi+$R@JDBmMn?J=S{}HYB^I@{D_WatspIlqMqpBfqhPPEsh|NIh?xYDd zryEf)!M%uStajRxEk?fT44`2S%=y@Rt%Q=2s{3NMRPbQtd{u4vo4!QVMC{Eo#U09&;j&a{jTLZz zhL!cdLWS5GV z@-EQdLl{x42ZZhdoolb=Wlh{J(BG)i&oZ?qXFFoV{6!zj3|3lDkw*@Ym-$W+HTOpqksl@89_U;DHe& zv;f5$-M{foRkb*}|Ey{vcEJyG?jB+HRXXpuuY`RZ&?>$LF-v!q@u!Fct@`UE| zs@ie+pH(%1mR~uqA6ZM_P;T1_I0+sug8724JO4{;t#DLp%>%a$mrmp_1SWRMq0x&Q~=NyWmH;$F|o>G5f0xH=Fw8H)E6k{k22f zYcALu%4;r2jj>TxN!}P4RTHr{#^iIIevI9dSd+uo3_D|MhAFkvCE3|f^@mFhutQZn z-T>FAnuxst4nDWr%x+4R%rbnf1L9l_dX)s$N|3e^50cO0FexHZdm27WPTpuPfUBu<`FZDh{LGt5L2>#OiWStYCtB;Z#ftCb$>Q+_{1Y?nRI4+>g6pQW$EN zN%WKV6YZ<~7Us>ZD`EP_UdQkyk$;Vb=h|MAfKS^Dcr>ID+^20nR7I83{sUDLyoJBV zOhi8;dLNV=D!sj>jE|=qd2R_t3A7k@4}a7(rI@i#ZSqxa0b7S2QEf5a=-*d0!5jU%swUh z49$tk{rVwu+D?Hh`Rcb@?il>o;CAGG&V}*Iz8z_r4ABFNK|#YX3{lReQ5#8PD(p zVIQ*U>;duKFV}9j$6Wiz2kjrH+dt;nKhCm$oNfPD06&~N=a&Bk{!zGgZnksn+&t8^ zb7B;p8|aP)Pn3}7SEnq z_v)L??OMq zOoV2-aMe|7kx6Tfjd{~P0OMSCJfEzX*?wfa?J54|BHD+j~dh(d;nyyu4)ec~#{& z&bO+Xh+q5_ur!c|bqiR;FID9aTpx*1eD-KqoA5kZBLDlU%5m|(t7;;4@u#eTYh6>_ zW**XOs`eRye=Gg#vFU$!tNrw}^Yk=-y3_=(s_Ms^V6UnPu?Z9k0bWZuor;19?#0C{ zkjPVD{eb`QEI9R?xU%5k_MupXGJF!*AQ4Um7nI654#Ff=6R|hJ#M*jYuhnaU5~i;Y zIx{x)C)Lk;tUp+K15Z~~jSGLOstL64%JnYWL}g!s)KTm!lhzxsQ}I+@`N#pQ;H?Z^dbbs6P=o z0CFcg+|UQ@7h;ooT>S(?xlsL_s!ANzn^jH3F7#OYgn#Iud^+!mP3HsHjRN-bB%U8u z)riadkg5q$W`$yg*F#QbQZT{2h^Zb5UK#j(Y^^=i%D`_`+ln{$uT@QmLMybD-P|yV zby0HA^7z;CmLmQX|UrHZO99%&eE6f3{?~S_4uHw37!p|MpSsixEE7&ynvT<`~gk9 zz05?@-`HxeFBk5PM&H~H zu;UZ0{>H)srTXQ1eff5&n&9usb*d)#8|yTp)*IWS;|092r#E*`N?YxXwdaY9l=I00 zyB>tSy!L@K>=@=099>u``eAz#LXF~OKEYWY>Z)2DCY@=d* zTl|QQ7w{I})7-cCuy%WA*}^is!Ha9V34Hy+2_K5)RrPEyYtO(6mvfY8d3Jl|l#Ee^ zm$kl`q2ZctE4ZXtC8wB)(6=@EHQj)n_#$N#R5X?4!omtNF!^_BaOstNw0 zp3O`|J`x!lG{m#uSrPO!0U{qzJ2yhkhn=b#@$Mw6Y9e--Lw1i3#3uBRyT?DJsuP#` z6RIX+mpXWCeQ#_^4>k34x2j59=&!1p5QSFgpm`tfq<#ex+>2?df!JO^AHP;<0!(!~ z(UiIN{MVWa+f=mJ>gp1<~pT!dG_2)d#21Dp6RGR+}B?P6y&d{ zD$HqnS=9t@=bx#XaNBu%b8ERVOW8Qc*RqE#jHLe?81EfvHLTDk!c#RXw1b(6&fJzly8Xa;@I%}pJ5X!N+)I!# zK9&19{M?y)nf>>@@biL}+%MSwcm;mK&i(&}U%C0VV!7v1EiD&JayHG*Ms1pPBJ^yP zJ;^q-QQUaT3_OF#*KGh_9$Xxq+tNM0W-#d6IL=r&_I=~JzD$ll; z89do_4&M;l@V&f5Ra2f;*Q%P}Y4yXZCfv08oz?L6Qp4`T+OFhq63SepFQ>j_V#(6KI*$ z6UUGza{W3s!7(Rt{ZdsnuKa&96HQDMM>=PWnQU*qy-5$gkjNVw&AgxF@r&Xj`KVUc z1GYuq-mM2;O1K_Kb8X|m4W%lID?CQk1ZR6RGZA?TImX^#$J)W_F}ms(W5a3NyZ`04 z5B#mKhnyW-dmP(pyTKZRxly|x8_wBw+>jdOWK~6Zqs&w_5qqOdxY#OJjl5MhQ%nwD zE3A&K6(+XUpPP1`E6IM5s%BjF3sp^svMUTq__)T&c?u@D7Y#af<=*B9=j)kewUhtc zVs-ARJ`6q<8wN+hZT0Z^PP*;>dWWSn1niQ@Rz7IpwaT9ao%F9*5BUHhs-+Q8mHoztL&7sJA|!;Z=lPYgU8L zIqVGjZJ54+FDW`wmzY*pccq-#d-o^Bp6Um&HQ79WliBCs)f`OQr?J_`r@9WNT?f;y zgVM|MJ=Ip=FVA;WO~l@iC#{3ttN!gJyVWRfl*?9Uf2zM&Ejb-q8S0FiulD7&*J5kB zS*_p_|0a{&a^$*{wq0`iyfV}r;F8o>uc#``8|!6N6Jld2bX&aVbMmc%3GT)JWA3}- zugKzU0t#yTejpHJLeO*qz)o^^c|_<^d2XS!z4=b(&P00 z(tC00d+EKu^xk`q?caPcyE~X&>~Zgo%IC*F2K=H71_LY(JD3Ij!@qpzpQA>|yiLdJ zwIJ)4j|51KhdCrgi*E%dSr-34{qiL=eZg_l^yt5QKAo>`UFYXC%R)x~TJE<0)Gy!p z=QQ%mcgu0>vdmw;^UrDcm+!`AdqF1Cz0I;X?j70eFWUmMlVGdXHcEqK1ux@y1GtZJLxAepgssNWtxLiY%6*t0{a z^n}f0vy4oubY^@fGu;@7YE!zrzja;yvso50+x(5YW2_f4)5t??erN*CoF2X7eGB}*B{4j4=c5o z5u~59Yn$ye`8n9tEQ{O zjP>uuR4BZ+yuVti>P64HkDI=yS$#)!riSf1n$?vI+qX8$;<&4O3e=tcEce^TP1z?} zWpj-wRez&dJ&CHn+ANEts+;&#l^{= zH_IZa=qCC~x|`n;n_wYQysOz2eE71z`9JCxd)DUQP|#Z$;E#mqe8oeR-XUB+exf5HOtb`+#LJ<`47y z&>`OXL39PU(=q5Q2inW^7h}^K=BvatPZ6ce$*_B?pF;JwxG0|3EQ{RAZ`w*#|2pflkDKoE zIM1KetlDJQudyuta|?tsVDyVG#^v3jy}_MBL4Rk^v5Ebe%AM(Z!>>JViayiY0%MVQ z3n>z5Z9=5f;NR7H7wl-3g$(|!&9ab11`mXm78%FsX9)en7N6w68MN117uBPjC-OuRmJ#PK7G`n9Q zM5;qx+^jaGLtfA-!xC-{HvnxZEE(avMiZ;mE&n@H(z&fP)&>Fq_Woq>7evfm=A|Wt`T= z!8vvR=2Y_u&iNOhcJo%`Y&Wk#&}POn&%YvVviTHpwwvD|?L_kxMh6g#H?xs* zy!i=&31%^udoFTLG4BAHX#Nc}(cFNb-Q0xWWYfU~e$7IB8Id#0?>X|l9JvN)oOuWb zKV&)20BSeSK+tBUBj-ux2?*NFYy>k*4_9;!m%Eh<^dYj%lo?ex%R&@bX+F)x|ArdI zncEocN6=>O=V~wEa?24p+x(W9%|K+ES&hg!ri~-VbMP8Yn*=o8d>dJ2nKvVHocS{I z{1MkMl{nW}CUFVS;%Uf;na$f^p^n1a0O?=pzum&AgVg zd>l2jnU5l}-5lU74{(9sapZ#>c?;)!38T+&md`Qz8JM-17a>c#c`4_dz~kjEPJ18M z_jnEtakpPFLOki{`f;O|1S>KCbl6jDecK|IkgUB+;d>WAx%s4LoB`z?L zN5K;iInK;P&T;04%z7@P?{m)STy7yE7n!GXf%7@-$6Vk#M9wtVBbZ|DM=;*ZM{uh7 z4vX|w6lgO~M1kez16=Np2xgik$k}E-#5q68X|Fh_9K4pfe4TTCm~;M}ga2k`7a(vz*q$!5JLPV%A4E=jANKMn+%fEKlLcr*hEC zk=wc4UpVp+TwpV!-5mUcb6&?epTm(q<(%*4;1Fl|6=#`)q1a|NAhOMz&XFJFU^y3m zI+r_>gO77?5_9<t8Xt zgoE)M{FZ~KaF+Kl`aK7$Ir1@#7V`6cJ4gNuQqM9cBW;m+3WAB|g-Ba&zRyDZ070Ai zAqW4;_(ae=pUqlXq-8Rv;2t*d=F^6`5FuH z15Vq)X?vKh1yxGK&@8e)H2hT)- ziDo6TtT8hXIo_Pc%$@|)X1bW?JwW5k4P0&ZIbX+I<{(&U{=kuUapaYZuHfKA1mnzFF8*+28E1ANXg6=;0y_~b zHaodM6**^^H*apaR3y^)JgVP@xY+E-a2U*zDe$kJxkbJ}h$@J*z(nU8TrA4f3W z%w#UtbCwghz|R>ynS%)&Igx`ea=F_$Z7N5e$~=F;wSSw@^Et~IjLv1$%cz^t|8Rll zGME42;8qR>Ip;e#7|(Kkh0DE+gI91cm4hJ;PUYekbGavS@Lf)OKcf$Du!$r8n}gSI zxfz^x0i#badOK(NIY&Ook^jrV<2mgJr#*quRgC7b)F0x=#a!S|jFvGP0ctZJM1eN5 ziX&%o@#k>PZbY`3pL75HlXI@-$kVyNM>+C0tk1n%{Kd@rPh9TDTwo$cp2MifIonvy ze{k_mX7+H-awQkIh%5Rkr+tls!<=>%f_C$2X7&b-JjiGgShtz4FzfGfFza=R+C2o729>E&2ne{TY#y%nk&b%rpe!%|8&#Hggb6F#&Q;GA}?d z*}NIdPBiFb1xvjW!36VpW_AT?XgAXl zknItX)6ChN_66qo7MAQs2u?EnNSkD~GtZN_hIL$E7e_t=!8ChQ8}YA|X zf<45VTJ#8@arU%T3ci4HGwlbZ)acEeRzxJN4E# zdWyOb zN70F2q^L6{oCq=%WE#kHkQpE|K~4gh1u`3C4#>$MbBP4jb^ykgeTAYf2e|^| zN|38SHh^pd*#xo~WDCevkZmB_L3VYCtt7szgqYe23A*#mMN$n_w5i3HYa0Rd)z zlcMH;oD4D-WFC>g8Z?mOif>WWl^|DvYyjB^vI%4}$QF>TAlpE;gX{pg8e}KPE|A?I z*MM9LvIpckkn2JAg6spi0pv!In?P;`xdr4_kcSWn42&rd@A4l~)D<9Cf?Nf%0c0b{ zCXme_TR^rF2@EVRD0+u1Cxgr-5?IR&vK{;>MfHO8f%Fpz3=B1N)cPqu zA9q5@bcYl8UkRDNf&3lhA0Yn(`4`B)LGA~60OUcC6MjKt97r3;c#w9G2_O?eCV@-_ znF4Ym$W)MNAk#r+fXoCr31k+?Y>+u1CxgrdnFlf-WC6%RkVPPiL6(3l1z85N9HfIt zU=2{v#QlGus0TnE1Ucc4M8<)%fs6-f2blme5o8j`WRNK!CxT1`nFcbQNMP++;C}mG zDC(ggMUXo{N+A0|IzhTX0+4Qy9*_edWe@{$5TqBR52PQY0x|${CrA~f1~LdT1ab)E zFpC-$kRaX0eL#e2*@))o(b|SkYgav26+z1b3y(K^2YCU= z3qf84@?wyefV>psUXYi8yd2~eAg=^@709bWUIX%4kk^5{9^?%mZv=T0$bW;p8RRV> zZv}Z9$lF2Q0rF0ecY(Z{NMPO)cFerF6g3}Y0mwp-MIehomVhh;Sq8Ekq=QIc?Yijj z+vZc$?H~^YDT3SqQUciz(h1T95`c7r^ne@yDT5f0gCM;ieIWfr0&6%%J&P7o)MAh& zAWK1(fh-5<09gUD5@Z#~DIlkUoCb0_$ZC)^AZLJ_333+5T95+B*&yeDoC~rJWIf1v zAm@Wz0CFM7MIaZ0Tmo__$YmgxgIob}CCF7E8$dRKYy#N~vIS%-$TpDeAUi;=2H6R+ z3uHIQH6Yi5>;btB>?X9Uvu;{UDtn zT|@$Fv4{RU)=<<6kd;IN8m|1n|9dS(-4F5r$b&=z0~0a|z4LmCdKbvMLEZ!MUXb^J zydUHPARh$z5XgNX9|rjd$VWjw2J&$tfq~^1jF%NDYB@*;$O@2^Age%50XY@qG?3Fl zR)eeoIRoTOkh4J6f)qf`1~~`hT#$7j>xl$rk8O{+$h6VV^^3!nKV*Q?Zv(j<y1P0b>#6Rx{MLi$n1t2d3c@dGo8nTh&vqvfFb0D7w`2xrnLB0g?Wst9c zd==ztAYTXh2FN!-z6J7akpBbu4#;;wz6bJskRO2j5adT7KL+^;$WK9j2J&-|Ux54) zaWEkXWAoqYg9b^RL z86eLDc^1eqkY|HD2jsaR{{`|qkmrNE0OW-rF9LZn$V)(83UV*V%RpXEBrq`fQ!}6b zY&3IcDEe!kN9nHvc|FJ*K;8)QCXoLIc{9jcK;8=SHjuZ2yaVK&AnyWsH^_TH-V5?R zkoSXp0OW%p9|E}#4%kU@|kkV7DcL5>g! z%&lSHJ^AGnbvMXUK%NRR4DvLPdx(&^B~-xdS5nj*kdr~?5(%v74I+JR6f?#SB1e=>67~cfJ8V2-z3P-G2Oc3m2f?y~U1dEvCW3c;!-X)vz| zf}Kqe3~qv8c@qQ^oFLfZ1i>gL2-Z14Fw+Twy-pAecYmn#Izo20=6CkVDUK`_b*f^|+1%yfcauM-5rouI7>!IURy zu;~ecaZeDee1c%^69l`TAed@_{`zES5H?#uFy0D+6;}|$Gf?!J)1f#MbSeFIC z%q$4@W=W3n(112692Llna8%T+mC% zx(@Ud3P-F>UJ#7)f?%Z=1arM0*zE{AHBhJ_$(ECBs=BP7EPgCJ}*2*RF&AZ$Je!Y+g$ zY)1&fzJwrbPzb_Kg&-I$fxbcEh_zk{f*Df~?3sdK*c1c{ry!U*1;OSi2*yuAu!0JL z6%^?86pmPPs36!y1;Icn2$oVoFqsO%h6&K=6pq-P6G7NQ5rn-ILD*CggxwWE*k%!g z{T4ykcoBph7(v*I5rjP%LD-xTgk2gz*sc+TeH%g8z!8L<96{L95rn-RLD=LGgxwxN z*!B^G{U1TtvHV$j38{q2*RF>AZ*SE z!Y+*TnU1u z9cTiDBi7_D2)1`YFv1IhHC_qt3?p@Tm)hB zMG$sj1YtWy5cXvRVS`2xc4`D+%SI6PZUkWyM-X;%1Yui85cYQjVWUS7c6qijw zfCOQ~8R!6oBX;Lm5VoKNVJ}(`Hl+n&cUlm(sRd!bS`ap_1z`tU5Vo=fVNY8SHn#;~ zms=3Fy9Ht2TM#zD1z{VphxVQ*XzHpvBHw_Ff5zJc~pIAV9e1z{^(5cb3cVRKv% zcF6@{yIc_V%>`itT@ZHC1z}5F5cbvuVUt}DcH0GE+g%X$-vwbKUJ!QV1z~Gm5ccQ= zVY6NkcI^dW`(6ZyetI4-9ixjE(E~=Ll8VM1i>Xk5PUNP!AV09yfp;DZ9@?J zHw3|d185wDBi4~a5Ii~r!L>sWd^`lf*+US#J_N!2LlFEx1i>Lh5IjQ!!QBh!=M<7{ zS|K=qNg6!C1i>Xt5PZV~!AVRIyu}2;ZA=jS#{|KVOb|TE1i`gT5PZx8!P!g@yv_u{ z{Y()29D&wQIAR?h1;O)C5L_Sy!52~xoFWCmJ5mtbBn81=QV<*`1;K+-5L_t*!KYFX zoGS&v%Tf^BEd{~vQV<+41;G9+HU+_dQxF_E1;L|J5L`P2 z!N*e&oIM4>ISuF@3P-G$njpBV34+Hi(C@y0-h}I}Ao%bKf-|omc=ZZ`d#@n)`3i!= zuON8-3W5u;Aov0cf>W>{cn1rDo3J4G3k!ndupoHz08OQE#Jcqef`5-7_;&$qqj1DJ zdI^HZmms))34#xpAUJ~wf>)RzxQ7XXpO_#xj0uA0m>{^234$+~AUKr?f_Ir9xS0up zznLI7o(X~nnjkpq0?njw#Crb%{p-g-a03E|rVL@;e76flf8o^Y!c z1pjJ5aI_W#k845j&jk7^g(KEcQxH5h1;KSw5FC|(ZlrL;dMpcq>#`vDFbjeUHPC7b zN31WkAUIVEf_JqbxLFH=zqKGZUJHT;wjj7-3xZF!Ab6tz{fxp9>y{=6{%L~Xs3r)G zYCtccaKw7734-gIAo#Eef-{>Sc(n9n;>|;34#lpAo#)wf>WFzc*hBX zo17r{%L#(N9MBXBN37$VAb8LTf-9XM_|yr4bDbb~*$INXognz#34#NjAb8>lf=iwt z_~r?Mlb#@W>j{F}o*?+|34$Y^Ab9i%f@_~3`1lEev!5XN_W^CCaKt+L34+I;Ah`Ys zf)Ah|I0FiTSD+xc2MU6ppddI53WDdLAh-|;f-j*UI28(lccCD-847~Gp&&RO3W5is zAh;q5f={9#I425%m!crJD++?&q98ah3W6u2Ah%1ojUVMV!&L;?deS+ZNCkUQ?g5dHe2)=)U-~=cL-hhJO7AOe*fr8*D zCdg5WwR2tI^@;7lk8UWJ0-UML8DhJxU5CAd;FKr`-idmg5b(12tJL1;Km4ajKUG?&nO6vje_9eCCpH>i@je*`x;fVD*76kWWLGVKs z1czin@Jtr;Wrg6YENO6B76k8QL2zRh1b=2haBLO?4`)GebruAlXF+g&76dP7L2!o_ z1ixrOaF7-RPiaALnHB`!X+dzJ76flk_LZYpc;iE*6~*mJb(qk6<82_f(5}jSP;B~1;Ifc z=+P98SWkIDaG4hb-+4iBq89|$YoNO*9I+ngK-ZBI`iON!7X+_lp!;8eG`J@Vf}gS= zI4lc-4>izD6pmPDYC-U-76kWdLGZH{1cz%u@VpiT7i>ZB#TEpoY(enO76dnKLGafW z1kZb*?@~z5JNZ@vy`91l>wPTV`{ zY72tPwjlU!3xX53Ab4{Nf?KyB_;<%>Xn1;0Z)HFEblXD*YR8^_YWx9{O`oi>#K#hW(X8!7;%b>6)y=geR1{=mcZ>XDZ$L(OatWnf%ubPwJ|4_Lusoi1~U4 z7|kr#t`FQicMne~b{;7Ac2$G^W49k0o?a~VSNb-7J$k%XCpLUE5_F!Ud^Z7-`RNm>wbWitk3u(D3-qfdO0K z=+)#o`Djv#xr_eO3NeqQsB6rlK!>N;#$Q{#c7PNxV=(9&=%q`6_mCF)YS2{_v!U8U z*gVD-eXONcDdutX|J~;CMCq%FC)$8oJpqby+iadoZKv)Fbuc_Bd1y5G{I4FKh>OX3 zgJZ)h%Qd$A=;)eb!zWWvNM<~C;GNeDQa!IA zQHIwfQ!N`RwW-oSNP{Yyqx`!vLowLGrN-ot%=t`2J7H+6kOLUt+)VlfLVdKy;$*wq^ zrjjB~u}*~B;*_qE90Pmkx3qE|9T7g{)6rzGLZXsnVVpe@TPn9&<));{Ep^Lz1fQ)1 zm-2xkiC<@Vh>%*E6G=wu`l)fq_bOkXC7yx%YWriiTvCh}7~)w}R8%j)>4zH>XH^_l#?cXn zSZo=Pwu|HVLR=(j&3D``KGU5!Mt#Mw6Io^nuApS@b0>&I`$Kn1RJXh`*|DAY z9kC1gbk>OFfXi~Nu6tCy+96k`OjJot{Z@6*55y=7O1sk4*_c;2#jVn5(KDSGigtS9 zp{VmKUZ?A{h*vxWWoRzZ)15BIJOhKPoao0T6m)4ds9^z}^^Dn7my<_H*5M>XVkMer z2O&4n$*j1X;v_^|JdLx@NE}~q3Pmkj?mm3zfdi%5fztloIU2>T!84D+3f=^gE3@!>J^j6OK8V<&D0bCSFX`kYpzp-hn zhua5A~ZDZ)nvL$3#`V!?Ih=e3oVK8R{>09|aFPL0c4+ z|2He;1`clGpo3-nHOv2Hj{H4G@*&pYnbr2DLre&=yRm4)&>(GU4VF7QHdVUlI_OIO zAv&0wc6(~ahL;Zp)xNcHjfvjXoo~3YMT|O zbZjs6cl8D|q~_@&Yomlj(U}|R1wH8Rl7c7Of?;%4u^HPiCP~?S7%o)Z99zo9l7hq7 zL|s#M(4EY7>WW%K5o8K%||BemMj;oMJ zUy-d<+U_ESkyKJdA`?Ysqn4=uX*_M%v*XzC{J1JfS&NiJ;S*7KAEp3O@XWYS7?a36 zBh1W?YuqCgyOs(>v57)6cbAU@U9o`FChmP3ojo+CU1PU%qQ2zb;W&SH&c24MOIRkm zRk0ePlg;WbbfA zTxjc)v}^{8_73e2H&nL=y#urv8ucv+!P8KjV=d?KFbfRsaMcss!dj(!u&;E)_Y*s{ zOg|D~I?u4H&H7z5jV*BtrPn_8hmco`zS13u((w}^3t{`a9LH-J0&@ocN`%5J?jGvx zt#9*+bEsAR&Z;=9jH4qCvCPtzgv~21!khwolP=afR6+{EUGUnlx6~H~>9yJZ zcWih)7h8)i&s{3qz_*fLwQt`(%d2Cxt+0cZ8;vld-}Cbu$zO=-Q$4byNPAu7!D2D$ zki2b)*-6J;(UdraNCG9-&SGhQXR%Cf6674wfQm(|(je_!?jITqNKscd#i9_)phVkS zq+!rs9DpN9^ID?`7>lIXi(x~PB8n_Z$bGbBO%5hQ1Js{vu5U_-NhvorC#5Tl5_5Z~ z$7Va3c3x<5AB4-y<;{r}3ZSIgJ5ZuWey~VC)Vy0VCc0~~haFjzkXO@o4NpeR55jo# zHTi(VA}GmrQ}htohzi7oM$GcAQltEZ zePMm7D;i#d@HNQ7cD8i z(v!Jn<5YRLxwvyh_#(NBqNCrDygzFx-XdGB#a^mBWQ&AQ4?u%UmK0+VEZ34HRUU#R zf4{CDtTy@@l;Ycw{2{n1&ksS04O!+RQIy*DQGDFp&G%|j$Xp9juaL1YO3WKs%&6zb zPS9Mdsw_bxag?anv8WBKs#5GzectSIZ2LAjDxFnTwV@Zd(dEpws!Fjb$hwIIQu=gO zRZ+>Y>;7D;s;Judmsbhw&Xj@av3o(}Nn$Nn^Lm2b><=H1sG7Pk&YoUOIUhcx$}M%v zd6rQLA9N`n7`{T)+^X!KOS{S2yN)lU-PUvRs77=+2~kHS7KV0N$JSgYv*L1!lMr$7 zv@GEO;}l|U0o|cy?bG2Zx7=L}dTUFlhwudB(YR+XU5+CvKXe8m@DP z_Uv?Bu?6gm95sckQ}uOq9k=?xTGe-6u^8Ohcy()XH4mJVwe)t0ptQK#$j zwXKIZtJ*GzHXfn}RBe6Ksqf5Oy5wyYRU`EsxhDFzTI$r7uYKU0s_nRGlN?A>we=sj zwt=&18$IO%mBWpzGT&2fS*!YJtW-|))*8q*#t9mb@ zdYh~^y%(Aq)MQ49xT{*B-`ddr#yd2pel2fRBaNV@D$F;6()Ce)4pxVPuJWPA8=0>^ zWA@2*9-%Grh9{kT?X;|QefvWXru4RLYBadN^m*zFS*!Zi?Jw1WMwb<*=XgNCSJ#B! zhvQKb_^O)D>k1Ch_r{IZmFIVYIjh>%TL;ZXE6dTn?l+g=E92!|N9p*4a%Zv0QL-*a z$0e#zZCytmNj;4=HP2`PUscluWjbG?M$RLR)|O{Ri+HOV&*^J;d3|aQb@u7?^*Z_# zzOT_X<O&SJkwhJ{lQlxTA7NRdWX<&j=F@7g>fFrtRQlKwUsv-FLC_oY(NQV%c22H@=VZOKW)^YZ zV0Xf8G3eTW*WfL}w%#jk7GK)1O532bG8g>ys&2S3_9F6hM1zdgcG1s{}gQG>Ol%)L8XmRkgj2H@Y=o&UCI99sM2(%wo>(e<57?EG3opOZ&*TZfYn zslkpf*-CK?eNJY@(Svgx#r2#+Vyg0qS|N|%-KGt>iGsIniA9Nu2il?6 z@hiBn38_-=N}Ds^l^T-e;$~#AZ)r*|o3h@e8WQHBW`x1_+)9=m<$gK^u9&s9ZAhZD z)6A&F3r_V)u8kRQ5TkN**ZIwiozxq~9=FP9I>!i$KLKzv6uc7w&!h1+LV7QIR2Bs{ zhtkxJFa>_dqb(l2!Z{CHGd<{3ujJZZE%o%!I=-*OpItOQLB;w?du_Yg@T$BZwJWJ^ zh~nvVgK`V9CA~eGnLLxCC_(AN0ajlmD1Cxa><&L|Y;qVTg}%0lDWslQssT4u13F8S zK82-9+|TJ79|uXXw=^SmN*E>VrZJfSo0*c+FaMi|`uEef5KZ=R{LnP>W5qSIW&-nD z*Kc5MaMZhoo`lYzG%i#!GkEzOI)C81EZdO8Th(NgLSj^GwOZ|7l)2jVd~P*FAHzoe zDaVE{%v$@7R?;;UY~N>@Hs#dnij((?6Sqvkty>M!>*}tLM`@p8D@)~E?n;^B`B%+* z>#dp_64P~j-IjXl8)22PmcEWg3!MWKzTqaPrba3lGnGaXsjlDC&?iut{pBu>(z9qI z&GkC&ULSiddMB?&_=`GQ?DtqCrO$m79l0)!p{zSv8>5a;O4@5Fp#f*g?Cy_$9CG=5 zX7cel`tBR#?46YXI!3~?5N)paTh*utr8HU$rHvl8)+J6ZQg*jE6j<;`J|+A^L*c_Y zVeDn!H72tAT>I~cM6Xo)=&0Yja({K2ITll9jBCb5_((vd`AGbDQW<;QkB#`TfJ*%R zq4u45X6zfVXH4|(h^U%yyEI`;X2j%Uo8EV5WZo($>6GAI;^EC>xsmUN^N;@PThqQz zNY#w)WDfTI9{XXmZ)_Xlx~PY41~<^X1vR>wf{qF*+RHTPWVo)NYMbJ|u8ewegWEf_ z;%|Jx;unPVPABWRuVIU@RYhM7_NT<8n(cl@l!1$v%y_r>eCrJDD?0`Hwy9CU*SK$T zi#z)Uisf3re=o>7Nyj-N29uPV^%8id?;q;!_NbU-xBF3&g?WTMwMycnf#%syNw|GW z8Riw3Z>x9AOX#1dN+`(@ZcX z9p?F-EK#bUB~WU=p~3gf`mAL|pWc%mRci?`{qLPOHTK>)in#8(XP#e$`s^~^Kl@7q z1HDJ>F(Gz*ku4Ut<>2(PXrwDsbEAq%t&VQXF|Cf$l5COH=(z(AU~$tP9@=BmnuHxa zZNF?(KLsVEl7C+#uiW)j=Dv34d7-J#&HL)z9hd3nm23Eg&*&zNxFG*TCZ4p^0Lt^b zT%TnjPL4%YiVxy+S_Ia5$;WYQ22XOSx3~32AtkA5i1bO+kmK}Fk7b|4qGmUR2g>p3 zlre4!i>jJ(!0ogKZ9r0#kNVo9f4-9=?8dPjVUe(^Ih`U?BSs=Am8&J!jcrSk-{am$ zqi!rmRcz-PgCFi#G^O^NDLU$pv3U|=ne$kV>UUq}2?2Xa>in+s=D=jor~hB8yuxQ^O<1t(WBjnkebU zN85GoyEVPEoCw8pa#VCr^y0Xy(Nk?Y2jW+>2F_lTQtr#yRngkDo`-OH!5K57ww<42 zP{sKRQGKez8$Hz~%}yTFw0lP#@ndoPFIx?sz336keZfk5#N?AKI{#6rY&%ufz&3jG*m^Vi+T0^ra^A{w%t)F|!4*b{c>|^N)&^^L;s|rU z6G9#pq~06S4l;SzKu(cH3A&e(qV18KKM7PKe94I(wUn57OekqK5HpfR33)vwG`3BX zW}cEU{pmqoRrE=BCrEO-kmUJ(@WDuAXd7{?cYm7>yl%S5L6?mm0Z#UP-W|S>q125YPd~a4{<$JW!&K zE$NI1zEWsRmVbHN1=5WzWC^B*qMVXO92(fJPS=;3iu1S~rrF4$W1&DwTsb8zF4_FU zom^(;v2n!J%Bxds5{T1S3FZ@+nWor^L&T*ydMNUbS6`NU?Xl(wPXL1J~; z$Y8&qvHHmzW6v&2$&q>T(D9Qab@13#bq*fODMs36R<|IjBXuAdNs)OVSzTt*DUC~! zI;ad%WSz@&{G>=8xwWyb6Gu)t(jU^*E$Fuxl0GsIHml37m0n35cm^r{LJog_CanrJE(EJI0w81=9m0-61r|$f7OBBA@81H?5~Op zsvS$=#Tpljmaa00oR^F!rz*c9ij6vDQ?%R^9`ms7isS8dcp^t&R;qR^!G;ol#%fvm z7Uz;h$+BGHBWbc1=aN_PSS9fhk63bPQDSi}WtdlBZgk%qmmEGo_kd>Ji)Y_ABnz`B znJXeETKmqjEWG->l=Tv7FG_YZsb;NkQ=*0?lw-Sz-(1|>iqENTO2o&bpu|PVZmCE` z4^i)A3rn@krr85^cYF_)2#qN_(1-H~>d+3CyEa56$b#IM~{5*dtNN zzA(<77Tk^q?uk^nrEWQo$O-=fDIb`pMGu;NV_cW{#;CsecfqmY@G!CTd!w5z`v`>% z*T~6W^)~x6xzSr>de+R$?VdfOlz(;IwR$doG8v?8zquIr*X}o4KiMjsrrR6z_Y5BJ zJ2K{~pd;bLoBmuP7aR86btF=nyeXEqHqcuh97A!_mdggkWr0{)a;^!@CDBErr@F&` zXt3N{qvI{?ZO?^LZLoO2-cw80(}u^q+Yz6gjZGwS@%AM<=%VcEpuJp}t~~9dD{r;A zB$E}5@U!uInVF%GVjXqJ<=2uSXj5`%H^4~7v^`*CCThoMkA8BH7l8Rx+z=9v%e*|tOrB0 za-nu5+qxZxj_#_I=-aIZM)T>TjOK`?s_D`OMsdVI#>qK3tMrfBD}p0IC%jC^o|;4X z>FU?#t=_3fwf+Lq^PbY+fvxsCxdwE7=BPCbTUFy#_$04b8<2ZA>kJwtT)YKp4S6|B z72@hxiopEUuBFU}IQTmU&$9~_^If}AG{YQuHwWuD?e~!t{9;Ug%hQv3K*tge_2I*x z8g7bT#yOnnTxSSv-FEuAva`~Ei0-qc1A*wObF#o6qEnX2{R2bkV;aNhTJfTp{9Ne| zl?3CupR?+fi=u4wK3wapmIuP$SNEMLqh@<-Ecb@LW?`wSywLVcWoVFE$%mEMM<7Ry zYqHv!;;1S-UnLKEz6$lUf>i5FE4qOReyXyIdV+rPCLgL%N7jz^?XUEvUzZzIXqu&} z@|>Q46lv?qtI3sFniN*5iVX)!wW8esErzP-q`PZs#Y%r~dcQKGdCr`r)mewP65^7w zM~1vDJ}axmKBl_b-k^uhH>d?s(}N=exyMjuwLYe*+A9YtwOV;UeNh-aqU4p(Khzf< z$&ur6$($N8IkNzPG0|(Bo$?l?r#w2;s#GnLgZS{m)NB{0xf9*`&I3W`!6GeG=>usl zo7HnsIz55*xbkqq4@(u&jFj3g?W9?>e`ugsqF5=nqy)_9NP?;o@l%HQH_jC#H3$`XqBz^#$F%6?mNw z^*7k&)%DvfY*lp^_EdwQ3m*;-rf)4v&ZW`@YNYS?P%;!8zN*5DDg%RbeL-&%HTr(@ zof=)ns>&ow{m(o?**7qn;TZnOKY|mzG{>> zR}Br&MpRI&3?87puljBJ$fP>QAImy?ytWxr>W`9MpviV=o z&aGidh4$NNr;cz^&1v=8P>30-)~vO4@CjR461rcU+jU!3MpmHWzZ&|xDOVRPttb9X zitD*~`{1UW+PTT!3#aeeuzO=J;WNh%I4Ie3jUQWY{Mwm0evr*CdA{+ZtH~TcwwmU~ zkFCLR1J4{kTn7fc(iZi=^?O_Gf$R4wo;iDf>dn&w*Y9nu2i$7v^Z-@UY!6Tk`Fa3# zqYTU=u$Mkwy@qb7Z;TdvFiZeJQU~k_sRva5*w`0nw{!b z7_(L_JeTf?i4U!=%RpL}IS!T4tA z^7qF%vC``GhpHrVHbf;cJJpi2tW4Rza^UYgBAH{@)*w$vVE$JvUOexq#I>6?#>py| zeou|l+$GCtd%_ZlzT{Vls0giCY&YuILR3~Ye*Hj|jC*!55#G#{QA%Ag;n<#{N@Ml~ zhoh?M%tPh7Sj%~;SdM|1k+DFW6zkMr%qW-`j2XESgE25);x*~Rcujh_dY@jBHb0bV zWNEc0D^W+J3=mGL+qGx0<)Gv_#X3}j6r>JbChC#+(E30;ly)wNSr^H`QR+Wh>`ou* z=BvbcWAs%b+*EZ@OZqcyZ^CS}mh>N0tgqyj&>b7}l2onI`Bkvl^wIa-^yQ14BRqBo zRhwgVlK4<>ezr=0&`?Bo!_i?T@!46URq7au(v`-nR7K}=OK~X~j^if-U*_Asuq16d zPo~6&?Q@x_%A)i;hf3)))O`b^qt56Hz(uh?J8a7lYDDIXq)1DxuyZUwof02OY1ya> z!j$fk@3#3y<+ofE`%78=9b&ee^Rh@^Ysycj>X#>2U z76AR8d%Juir{1G1tW-r|8|mtR{s303t}cA0ho-jNMh{O_^;%YMZ&1tk+&MqGDSd*8 zVjhl8I*FxtxOB7_U(i(AA8s3uHZ9g0onEf0`mq0Mr9L`VAGZzV(q_H>6IQCCaCWiR zXXL7*-t4F@;jo*mmvbN4gjy3?bev^Uedc4T+7=EFxcKI3TD<`RCW`r1ZrMfnwqzR=l&b4(Rqu#MUq(17kaYBkfMc*+%Cr}le*!B z#HdU}N#`|CbwXRKjeV$R?KpIF!ytWwy`T1}wp6PXddIWx?P*z38Qr#AGJ0E*<)s<{R4it|RGS*EhOt+*^tE0P?f9nPA)ex?4F%tK46U0yvcY<#jM$5$?p|z^YR5=ijbGa7 zB<&759sfwEQ0I+8i|b@^wxAesFVFR~I__oL(-rd*km;`>XuZOL$D z&c#R?=B%D_mCSDCHI+ef73K@ggRU)6x7KN8R*8mNnZYPWD>F*^TZz$kW2tv2`iaOK zeNHB~ExAUYlojzaN1tT&OMKn|awVdVtE6kQ7V?sV7M%WxB*iOQK%dM@<}Dl)Mq3Hu zCTu=j-nSBTQeEAxqc>yz?#=q)X1*FoacYO%RNzNk;tL5*YUzAVcfV6hma>Fdv^q~! zqWDCLx|%ig2KLddC`GMEn~L{`UtF-_X_45GvKJ?_xGGz}iCjg3BZIq3{iUAN9vn-Y zC{N9C7IBG0`;nsXQ+mr-#MS2@1Ke4})i2^7=Jb|asgM&59S+n*hy8~vvU)F31GU*% z3nvok_1?o-HT}ZQAu=}8n`^_>IzCXTYBf();fAiG{iVKgXH;S2WSMP+OK_(aI}WXh z#6l)_CBzj2)!-0XUFz&4+Yf!d*-1MKnMVCYB_x4k-$^9W9+8i=s{SJ6DOZNbCc+O% z{?2yR9=?iQrmD*I*dT1UHpirttj*!4D%$2G;9x?`mgR2hZ}N%9wnF}<+VAbX54zp$ z3)!geQ2a3NJ=t-;w@i6z=?1`V_9XrYp5h%8j>klu8v>Rp}*Y zDXhNqBi-=Wa^AFjP1S5wwO628K7*D#I}bNrb)Bcz&stS)`**NXg@bdWkMAg|R$Nu3 z=aVt8nE~Z&nkBWYII7CdJ6tB8$A%l{EWDC+xeU3gz|7@6=Vx&+kAnwn5Lx2FB?DhC z#Zy5v!Sg4F$D+@IoUN!t4tG&;9+z@I0P|S#H3ORMordW&e1u2_;E-R`up7B4FW}%| zyk2To>!r{s!fhCx=+;BKC&z{tq}EAMlG_yPKoTaP{!Alxn1`C-toXx7JCV9f)G%1b zBg9S5n!TkGXVn^2l4cWW>a(n(ui{R&*&&~L~73VqIb^w@CdYvS~`B)a-p-D#aQ zvILF`kzVY920XgrXgXFG-XoEqr?5et?ZckV3&*>!^P(gxT*-Wio4mlDzGuF|=w(U) zYqJ;AI6Ng}Sd16e;rVcmN}|Wlm)%v;R(xVnwWq*@MKWJa>aZjgIxpgNGTJXXbaiUL zU2DG%C><)5d$H3t26EZ+QS}@lv(1FoF46IM>O63Ja>i0Qq60#G!}c zL{!GfQDe@%jy?un>=dCKiPLUQLMc9D#Zz{#l-G?N)(qCT>E>JXbY-8Jz&php*MhX)OK25%F;|DOId+Q>+Tp8gULTa&s#_ zr@AQ-pI8r~pTxmMZYky$n2)euEBEc(z7jhyC$uvOdZx5UDX)!wy{&Q=m8w05$(t&@ zAR~oLL(wRMYQ)kgHflg(Oxv@6cuYq*RrwWBY*gN(fW%>4QHiMWALk`1H-27?zKyfI z60M(%CLl3t{zoHUVB7q87+9I*kf_977-vuSy>nDjs@zhyoTsT)U2%Lt$_M6v8pDgo z!M}o+Sf9+cyP^zA?xj&|r0(qQigK#*E27w_d@QSs*F<+kC74fO9&jJ&Q)xWXX_$1n zO$lcj&}XCm8>Z%mV>g+XnU>7&RA+XCHp!v>GMrI;Dzb{!*;GSU>9nZ133V-iSUkFQ ze#Pr_ofh%(sLpVZ%@TpB1H@vF@ageZfOX=xN2Nt0-q^V~)`RrwWB zY*ap$I&&aIC8BoR;y$;F`$~PinG^eT?*1?bGbovtC`Bv}wZ&H}Sg{gQz$|c4xm1%@ zs-&o03BA~XsCu01Q=Croa`I@%eiRVL`(z8uXWZvyRpNOGj`$jC&xlLqjMVlyrM9Jg z^f76VgO1?Fe` zi^jhMg{~nw{;QK5Wy8%SnqGnvY% zaq&BOxc*w=7K-K&X{sHmGRl&r?fe#1=_*AyShb6?!s;SLz0`g5mV}3x(SY%_!Ty{{ zmPiQ`!Ylr)4pzkHpk=Qi>@qKrFJg9=+i^<=szc<#nt5Bj9g$9+h{^lZdS+pb`~(A! zM=vdBY`28zTsrC&w@}?~@s;jKl#bP(*)57oU>>hpFyEdQ=j#$)qvLQpCH*2Pke1zD zqo+zPQzboeC)eo0Auxy3e6o<hAWh26^Ogx^976sBR0wjH+};qV(u3P+S7@Ce?!ZnG1P4a%`%qe~}bO%kGSv zbjf9^q(|<=$ZdGv^jVqalv0C^CVF~{LfVJ z6;Ijax~xYd3EPUxBQSH^aUA`e(pP=HPIZ4yDNEG+CF%j5SFL!yI;6(iw^$^qrZ0@M zryK6Pji$;ib<24gop>9S@`3qhy1Po=wP@U3r6Wpa+g)LiwA6|2N|d$TC1pL5d%7#) z5t!-j(q*MxN8;U+7Kd4LgJqY@7*eW6K65E6O<=!#Pp?V#M6qUObg7S@9SWCPVG}CS(rz-$XqV*Q5V@Rl~tnC z&5~E~SS9fhkGMO9PokTp4D$-iqg+KTwr9p?Jp%R>JkAj*<#u=GTiRWz`xb8(5>B3o z$%oYgM7NyVkECq75^wPK7cop%`dH!?NN20Vxm5E`L?svEwNy<3-Jmnq4Jc=al zGkx3>M;GGas;^R?QKWPqjuhu866>pynXkU|>sph3U3`p+?Tft9Q>}3y)RTVQ=K9jF zZ%z93%}GzS=8}GWhV-Y>9C_&6(M7kLSIK_mvTDr4I*NYI{AEOF`*D>&Q_M@(z_r@* z@9D(7VANTvP7N^=RYU6YEx&kiVQGwYDjX%Zzg4y$ay$T;{g4>_aV_=w!5#XUTFM&t zFyS6rw^_81ao%4%^VF#!X3}^+xDv!qLS{cWxnm8fI&DAXc$72yA@Ll?wbbhe_aV;I zQq~h}`(gc9^n=4h=_J?l;1tgBJUF>y4XHX;Ztff$^~vU?zFzbcsG#C>=4dMp)D({# zyLpg&f+>ez%ED&yWH@k`&WPrRVN{8|y_;a7q#srHiNewn?=z6d?Qhj-o2!)pI;VZq z*61V6!nH(LShXT`id0I&VU2M==p)TEYroX1xAg4~>LWxW#$jnCarOb0iBh6o?;BDinqTr&yY}weJ*w1R z9iya@cvKzRy6Wo~S^Scok4pn^SO#r5XB?UvDn?ghKO#zw4_i%&p=!;kyXdazQs#M> zTo=8TdVia_tl}59D(km7tS{D&clPE?F)vla>fNOy_Fa1P1-5riii<0*qs~cjF&T*7 zIVsLpU-}%&(t6S-R;GEScNeGiq|aKPM!L_jn5!p!Vm+5vdUr`zPx`D?-MPEr&apix zbba>UQW**=3zx$xgAZ6}agtTGk>9#6kvU zC!2g%8#@-=n=7*<#Nfm^bMeS?Zm!H*#vNzZhGzrNM;-LZIh`8F&sT1ZCFB{U3lq5u z{>oJs?oQ?bj~2wcvd#z_O+2J4;kJgtwXC#@8kdUeRN`z7#c5GR7c?$RN;A7?pwr#( z^xYc$c+d)s_PX=W6p4PIL3Kp~B6(_7TH5Q$5I#>WjH@lJNf-(+x}Yr&wN?f7jJwOd z{_;7eBkEoJl;_Otc;5%+v1i$xU_iPWwq+cQ1XY&+7;~4&D8xI-ELCUAa?M+xF~$JTmYNxK6c7s9jbl za&$d7G!{}_LVYazXLZ`cQn~ed#G(^Y>2A0&P*#Itx%Dcsc3W+QAMTHVT$eVcE>*D- zjJuIPt{(%r8q}9tuM%q$9gpEEv!M~sQxH9F_}R=is1nsFS=Lh`W*|pB?qbnb0oARo zE6#vc+_<8^{4JWQ?CO3V9k1{G=*GHcAyEmqFwRcRO}KeDu34#a}^g$ql=>)8op+XWcDqaZi68Y z;@j`&?dZt8t~=hMr$tj*--qbg^doG#E!heHR4 zE7gPKA9TU!(}B03odQbc!_kat#aN$1jP9X+d#R&+*6eX3;Tw0o87WoBoq=}ZwFY0m z)AY|DQs*9NNxt+TUtXu1lG*Vgt*%)Oq^qOk=)Jxbxh`u)uBc)q)-F3aTDhb2Rs^f} zR_IX}&C9B4CE7+>PvSa`{68eg8mI@)Ye-XJg<1?OB)sRgXZ=F7Dn?YH5@T1Vz16|K zwigc`Zs_gZBTz#fm9AQewt-$)V3lrV;H+ z%}TJVqvWx8z8ZS)lNBqm_9jz{-G?!6wx+jwri|n$B>S};HaNb9EuE1BO3*#2Y%NQ< zv5CPZQrha3h*#qmIc`NY$Zriz>V#&jhPpUeu@dWMq>?mz2R194yp8+mQf#bK}vOwtBm2 zDM2&pS3>TAj^zQ5c(gJa8=8Xr)hiLN(RmuQNk=Vm2IEzY3`Sq&O1y2HBV6vcqPT`0 z5>=}b=pia8KE;mjqo-NNb2Mz;N0Xl9-Hj_RdJ_syTch`vzJVdwk?D#S_XXz;EqG6r z?x*i6()yIn$aKoIqT=hDmp)4z)dbdkJWF|6+=}##>%N{ON^sVFoIR_ttw`Uv?nf0z zHDQY#KCMp=7dAXbJiAo4IKqteBe=6k0ex~P4L;Nr`gjb1J2OiBH(N zX=!-pP`TmbzZ%h*AXtOQYG4rS-GqR8{4pvx@m;f+qaX9;l-coRncljs#oIf^oZO1 z(5q+bt1lz!RD$icYXi3((T`YjeO%8q&JiuMRwdjOhj8DL9r(>jb55Owi6f0v!_^07 zeRL9l-5BzJqt3fU8Q-XfiS875>Tc@|l;s1&C1?a{?|+UCeSeg8$SWDQt`v(_H}vxn z`|GGO@~fb||5c`#SF(nTt3*}dyfrW{Rm0l-bi$Q&jKZ&SMgz#FfX&cb<_*OS~bQoPRy=$Xws?w4olt^huY^SR_R zKiYu70Cc_O>Qw-Cx&l@lo%xIpM6*TfaE879FhXnIVW;XjzZ&$=UL<{Czz;@VZRwAj zbX^ISs=kZjM0|A4_gs)RkfZ`D;?ssWR803^%M9g&g&3UJRFpJ z4ul)JIchk)PD@;Vs-|;l2j~_avWg5G$lFQvCKBP6s0H5{H#F?())I45wVX|6ah?nE zHbs9ZtH)c+Ox1C&eJgKFVfCIMhn=eDOiBoke#_DI^(HXONbxS%C~_dlI|bDH@s4<@ z8csiym$m+YRQJFk#dFPWyM);t43tpAwC5#} zmH^h_P-jyzMki9aEU5c7U;{B;sXTkt3FA({-?04-)g~6|Fg;zTMPu9Z>TQ)7$9s7O z<~(KDn3rXanQT=^wi?yIg>m*&v-r3#ZVhs&a!cKEv4pWoSg~<@LCObag6gEXwCc1P za6Me9XRLjL(p0SrqReSw9s5SI)DovuERu+tuy4er19NXAsa?3Mo9N?ZWBlDyxUSbf zKT)c?bYIKketXbM3(-t3{;*_fnHt82Yxs}}D=9EbBZG_`|I2FheQ@Ui=-y-HB+m9c zLN}9A_6j#88l-yU58LCu!Xe^RrufiNbqO)3_dNYzUsd9G`mRDsMeVycYG0i)e~?}ej_#s=v!*0wPs-Cv8;&mcc`0>Vk^QB=6)uB^ zj92&y$=glciWA?OhUapf-Edp=&uUm@l8b8PMWeMcSz6kspP-D&{4HC%t3s!>m20(1 z|E@fJsNVp?sx%MPs?@d1@igEqD{VT{*Jrw-M2iCRptb|o2E7jYY_T5HuLTRD%ys8U z%A{Ji#3>a&hth_`JQ#bBP zgE#QiDOq#7D+{$%zkj)j1;tLa^wNASRScw^urbQqo?WHCmFMi><45q2Ht;^k1&58a6I(AC?R4_jAHnN(mddml)pHFUN?hvA+1@&Rs@SO(=j>C( zK-yZTPgMzjpKfYQ+lr&epubB~-Kyzszz{8`dydrnX$FU_SHH) ziHv@2o_oE$*S(=3qu=&bOI&WMMcD_5WR{oC(g%rT7Vx)lV`JmRZGlJt_m+&u(=AYc zw4Bk%?~1mjsWw|SO1taxjTf#z9x&QGny$jH&$Al)&Cq6TRY}N5wdDMKEs11^+oE4S zeAW0{b9rN>wKo@!g_u`1)wgsqQ7D5F?K&{CNjz4^LclFe3aBMfV(#YWcg%EH z?~tcDUF}H0;sxf@(L1{}P=yE1^X2LB>KK=3&~y-9T&}GhoaR3MYc`e!I}c#Nl6~-; zEk#3Cueoe&!6~kEn7!som6In|uenkg{g3GB_9gQgYC+c0(J~_W_1*!qj|(g5vk#w4 zloHwXn@%EILh`_jQ%3a#okM+*J72<1eIgC-0w*g87du5LN5XDuEw5}h^^{$%%X(}v z_Ev;AUezC%FGc2<(1Fl@h0P=g-WS~;6HccKC?a~DONcxj`B~&-sU=RSSSZna!f+Iq z4$MTpvnH%OxfWAx~eKq7MW@pBd`Mw(A(YWcPZ$UhtODDz+=Tf~L zjT?tSTC3@CA)~5jwHf!-YTJexshLmd5-oOpoPq)*gC(CB*r-x-*>*8CPl(1#hG5k3utu(tU zV{n#>VoeQrNb3y$i%fBjqvehz8H3QECXskt>=Ky<3Y;-`bHk zeTB~P9P38h+=7c9NWvm=pco?>~F1}}>a*NeIjToAYytkaUAaT9-)_k*% z$fb15qrFz7%jfAJ%}Ots-tEH3UA43zck82FiKaxqHJB{{yGmYh=aP1g0#g$D7f2&o!oqEQ8x@_rLND8LJen^;V7m0L7Wi|f+ z9ytcj?p8FOl1vF6t|9pM)(T!Ey^rN^u~s{L1e5Qmc$Oqw;S^HBLps%fQ1d)k#(aG+ z2AX#yQ-a?V(5N7WWEH%EPmEoeKQUZ6|^K9UkQLI&Z$zgmyY=6bR5?Q6w*ATbx zTiep2te%jnId>#;j(tPwofk0LV_)!#r<%}%Jhj07)E(b0Y3Zf0u9T`lrBv3j@07i* zJRKSGsYcw0bMcCm?qZERUB>dcZfUje3Z=xowy|UUMjN-Z)~UB)FF9Y zM1IdleU_0iT`RXV%Iiw08gz}E!UZ|Ln6GmXgB``mZOn$t{K#q*52ayJsGCw2?bGqG`H;U~9ls!rsP9_##~gM@}a6HNn_Eg)Pn~N#T^}w^jq&o-r`XCUiy0Zt?e1i>Ach zTN~P63p{(xEe+;+o>HDweWJm1gp`#@3EDMyxH9I8`b5Q~=^I;n46}q(O}XWWwOR6Y z6=OW_HMnPzP(VRR#zF_?dbRA#bCupec_5%&mFR+!W5YSF(o2?cS9zN^mO2m86?)rg zo2fVXMM&02O)#X+t#{;TA~$)Pxi#wk8ycXU4A``67CT2}?~~VO+|k)fC+^6rO1bBx^XstQAxrfIM6F7yeS3q!P_Vl0nWMAqaNS*-S0N-U zh)_z{8*VBO9ykut)-%A4-tdAWl@fQmlYn>3;7H<=!{gKA=~|Uk*X8uRPBuKvR-Tx8 z%hJ*LB-|xKr=wk1G{xsvlFhWcoPUQnQ7O$k_1wf0x$VLzQ8TMBF!wh+5BK4cU^3c} zPe;w(%93LqPL^@!;Vt2mR|L=8YqJDLQb@f+XA`*#Zk1{gs(JNCd!BGDbQqcS#m|W!JBsYhv^wYQOx*^No*eOG5)n3O=T7g(7 z-DP_nCrZh4roE06+5C^unr&OQ<&|A~e7o!|6D57N$9Jln$bWj4vJ18Xe+yP`%dPyS zb@(T=pMBZ5mY;MNf8V3O-Am^4OTTt|soGULT&^9+H-7XX0&X2KBh?StUz>Z&N@LE< z)Ky$jMvHa@rGrPW5Au$x>=wn0nrKm6HcyM<%>EV?=Aetj^znZ2g0Wl0TpRZPl^(+4@I5zw~R6bV0rcI$QsiiIP8` z{<-qF0onSu8T~C-y*KwyN4EaKL&={{|F-H_{A~RrUzYUcygz((q$eKDNRO)XNKg6v z(x2JT&zwFt(EXVU*{C+0m+Ln!5+H7dJ_E*6Nmff5`Dv@u63_2i&Xy#9)ataP-Y?o& zdnt9GcPR5ic1I`lqo&UUaMB79AJr?_X9D<&%IMN(0{HU!`(^dMQh&~+Zuav59;y}j zo^D%pJg~B#ZsbcyADHh%AKO|NgazzZmwLaZ4zS;7a;Ph{==0)Zf?Z#F5_~e2l5*&8$viRgy0E?sd9J#(hoi^G-4^LK!5(^* z&T-YPx1jrmy>;`^{?h+r?#-htO|ts1LBOycA!*2c&sw^wyDORQ9tH*wGd(@iv-R}! z^fvn>uQH=D-&dLMWxtnMRXs;OSh8f0s3Xa8fsur;k3g0e86<3 z0Bb>(5W?U^9Ao*$jqgU>U&Q^sw-!wOQB~)~{oU{08#iu5+}KXL2hS2q?A@Bu0v1cs z(myRf31m-w80zywSv;GTX=+pNnnAS8U+W~<3v{5I(%?t0wYH-z0T z+%!ili%j;pq{1tc`f;OK>a95;j_7dkf@<>!5f%3biI;5)iEY{;VoynrgJ&mSswseH=(JF zik^6M8+kO2!QUHRk@ACc7E-4ZCY-B%&7`BN^l32ME4S*YWPHUwJ=ORQrwz18QJfq8D$FL4OV^o zgfVGI*9o8b802~ zx9F9RX+@f-vg)s)2y|fP;*3t7cG+2qzGH+7QHyW))J z7wL7)PW40e8u0x$`mNe0j$S-I>~@a&J>!ZU!hb2b(4G*8Egt#E=e^H*Z^8r^$FS34Z`%TPmA$JZT13Xpy? z{w&7KDv4zX8bngyup56C4pHKy3EyfPf8UFcz{yo#0op7coOI8uD&SGSF9ZozBDokl zeOQh93*3grMd1=Q8}%o=t1g4jEFbXIbC$%sCnOYu%xel#O0D*U7}zbuK2zSQk?jf5 zJY4nTVCw~XbJP<23%u`98A!b>#HGmWW5G{y)Ve|$!e&=$M6|1(m+MPH=&XT)T)R*t zl4UJf-7F2{!09R!2`59x>}F|ziI#s=c205qtsWfr=?S{q<&ApMV+sLCv?0HWFqvAa z#}rDy@5rx$H~U+J&KD`-MzQj?a>#v_E_Y#C-PVGKz* zGQ{8G_gr-wWL%{u!0EoaVR)Q78{P1?g#c`|A-{^Pnr$tVfZvf{1s^3%Q8lx*AjH2W#thVnc;+`NBgUo9R zQcA6Q0t35+Si{;`PoR0wlg?o4mElSM=+K!Xh%fQZU6+IO>l##w&v7fbxrN@&(1rrp z^-#ct-p`Pi9YPNg#ua>np5-*$Lns>1WLp)8D`f7kdI&`fTrR5u;bLf&^$-daxVh>p zv%0x+=-acURj8X#4zjEd6{x*#4D@z}Hnhm=Msso17k~zv2lbPv`)8fsO5F-uA{)@Lq*R8I3URBX zIm-8YEym6yjc8YWQ-~B54<^=5E}E_^q~3}R6)A$yo$Bv_s!J4#4$51y2+gS^E(LX0 z6QERBrIJeICLoRK$x=y*gR7o_0J+pSd}67&6s1mpR;f$mCLl*ktvI;qZ-dlV`7Q{$ z>aaskU9<%bPGefcpwo4WLVPNVnktQHp@8oVi$eGs2FTKw7CP{E)jPo+^upRXQClsI zySY#dvaKmdS&^!nGq78TH8jb(InBdWU!oh{LhsZZ=W>LgvLJM)dKMJkAdbHKr{4dz zrM1ouc^Xh%vO^JE>aY4n^(EjU*&)rvute537TjF541MELpI!poI?nUG-0)Mi3uQP2_|qUtZdvtD14<2;g@;FBN`9U1l@R92xk!>dPS# zE_Hi!sW)@Y9FgNUmx4sA2~fJCir*!26Oe`iS^QQUT=g%Zwl>_oGyiVbVb|`BSq?=5 z8f>cqF=ytAsy|i4z~!oWoevcF{nvFMXo<+`5;@^5=17{J%QdIYh2&9L4LoO+I6Bo_UpV9|P}H0XEf zS-jsNOgko}ccAJ2F|;tf8>8DH>3ITNQ|+nOT*yDPrJqSrrHu z!(5rODUg`vXJOH6fkqsbMm(6MGLV7p76`=R1Sw0TCgwS6U7-w#v*~U`yXw1P0KH6A z->`omB*wTHE7`EIC);63za+lAXd@1DAbSqQJ+8??godo#DLji<*nTm@qettV%bx4m ziEqPUpkW56a7%00Xk7pT|7)RgZ?v*4Lm1CvIkwUj`e$eK4pTe-Cz_}vP8&gv*DT`i zBfjIRp9VXvQ@f$eDJ?IVGc%q8Clav5R{C9}%X$%Rz_s@AGr;3g$s=l##z9>7@pr#$ zREr#Vx$576VBi~9_uQHL#W)xUL4bFvzo_AlpAEV_|6=vYSboXTuNfkrcu#0ewHvKa zgY!?NSpx#@E$ecy)w%|iuBLiR3%#A8qdAkAv)&T8(2iN%YJ zcd&SEjy3ueRcb^0=238@0F(IWrhuhUScc$%krX)W#-GK94a4LcS>>aFldGH#l~+RW z^Kazxqr^>PNY%3gt(fTdXs3KjU^?meghRte!v6o!>@RutBPTH2sT7pL@OyRS z8h`VZ|=}^xt>aJ zRkD|4i7oDwGCGjsa#kp=mW2}@YKL%=0f5`JtWdZajgs%+jKBLMiCP!Y_;YlnZTq@y z_gW4YNETRis_)PaRcCW_#aiZ5*&IzOEPp?YZ#PK?KmTd042~R{2yEx86XB&}sK}wI zfsf=}k{HA%8afTZvdB^LbJZ_`ev4f?n`T*w*SmZn$gvX1OFh(jSApBmI74o(;`lo` zj(pcuKM3+})uW=r?j1@OS%UL87N|gjT__S?=2no*$O8xd&0hvjuh!9I+6{Tl`g8PP0@Dv#Lk}Qi*{CTGo@ERoOf)WuLcwEuU3oyj=AM zgHB=QD<15}sIdT@<*z~pEYTBS=r}_rn;<*cf(XVB$*o6S4F#MuA{-&((%Avc} zp?7vHUSU-~l#AVe>0^}lrJZgGR2p5)u4=-7cGbis8#^ z3Q~TU<5O^D1G|M-!+F_T;_rK!hpV2GzAMRYN0TVKwCh@3mc53Ils&_;>5MyeBm?O#VVQ`R^~c=Rgdm3W!0Qn#6JCa@JXwjq?;%cf{bkVgl8hA(-NC?} z(k64}pY>kc)fAK<<<+8C1kIG@`UpxF5a9S|Q7jyzim8^j{E}1roet}U>~_>jwEr~3 zh}DDsU~tfPw=AVO#s~pOwjsZYK$(gv5g?R+rxve1s|8OAWeE*Ih#o(nBgh)9qVnA| zW*VOZSfmIHI@Kl^BDKp7&9r+*X4~d|C$^uO5EQ$Tmo^wkt)u1$;CDSQ6@Ia%lfkn6 zNI6mr_eBuUR$sg5(76iZ{btDo2?5BpA-{?|%?==xfZvf{1#jq+Ie;KUk6#5nVl(dc z#%;!t5+sYwI2MbDnTkd;ju7A&n{g}_j)u|=%{W3u`+uq3|7lsI47Yc9$E16fXo0VH z*rf+0_vx_U1^wf9aHUK}7U7=q@nb?hL6}bUQ_z%_dz~I-TUp8MBRu2^#bBZ}1u45j zHPkh*TZlDmnhh5<4_6(5?APguUpJtnTec`?DZ>uXKo8nI-asU7kU17V-NL`^H2{J8 zn;VFPyI~N1ATs{m{uNg}3KrT3-sPw{ngtBMIqXSa3KC#UR6)g0zM+1G|M- zL;5V7X&$cnyU(8C8-f6$)!WzHvo)t7@5KCnhmsRRbr0__8< zMjKU92G+#IRsRG6%yRdrL-}<}0d75^80245kWzfrdJOCqVh!Q5)}wj2>ccvmJnDyw zI9V26l#>c2;CJL#!5c=(oKz5j z51rtHAd^zBXU^X2fvHzd1rntcPh?QmyOnw^IHlC9=42??lzL4ZUG?WdOP&cgE?IC- zNp-1L4eFfjX8c(Uo>iFYDI+P`C;luP42`m$GD4)z?m)BL^seeR=QbT2<7TFbK%yO8 zB0^fT+t=M$51X?W!EUt?_cPq`&IF_|2kjbFD-F*IOoF0x)Fsvr79&`?l9o?_^LY?gK z#UK|Ydm^ONPmLo39bhThqp?xmG~Ld|k(!6Aehlhw`FMDC(lwVaS@uv2-(ORZR@n{g z7Gg)su6a=I73{ut(+zt4i<6VCWqOXMkpeW>j6aJrWUWob(?|*&cH_^&!B8cOrx6l3 z(N2Hq9oUN&Z@P1HF2bAdd?84%63NRtP@C@x+=j*(LUYWHzwafytG*emztlK+;tjD} z3KFj-Kq<1?5L+TCu_*I2LPp_|!*hMb-zgwR zTF{Z+oI$CLnh*dvaJmXbEq;_u2mmHpzJOYGd$en>M+eoKF8X6FfeK{Xg(8tHYb8oc zAO}vgG@6TI*I}k5z(mXMg%-0Z-Q2DIi5Y!4j%p&1Y)6+gsHi3ini}|A(IvtsI%9Iu zY@(o1qTi3mE)$LjD<|$AUCD0-XU?$HJ898UK;jq(Fxq+furM6Cx`TO2iI^mdt#du zl%UnsqF7udYgOD1!r-QW0LMp*V&Q1$oNW;(pn48_Ae<^Y7o+O*#Sv<+nLDyw}&GCiViLj%GVvuJ|L0TQ%z-}SdsIJV> zH4j()0yNU~n|v!sQ%}!>!9)T&Y^C2D>W1YA(J0XZk4x!y;bG{*bsT@+OPIjRRri8U zq4CQ3fcnXvPF%Oh;x0E4YPtSYjiwDuJJtUVOveld%+#P2rau9l^wOYz{=9zFj z4CYd>*J=WkZli|5C2|vx(U@t3kqv_t2U_C?fA=?a(tTCk&zM^ldFm7?K>BdSTm+UH zsHv09AzT}-IT)I79mLgm}Dj-nmW3ick8zqx}wTys&D6<;v(lv&&hb zICB=P)H%5f0Nk!+g~BcBlxi(ICzk<5G$WKY02r0!^-eO=W z$)mA`@R_%09kZ<*wS4zNIbpdHtpa#ui+7(E|ZL-#Gq+J09oMYY;NQARt zhK95&z{3|P^#xX0Xm|pHFNLErkZW0p%ZlVkAG-G(wXRTx?CinucT&CnrmOxMNVe57@=8i5AO*31mT#}{+K38;!@G&fw<&rc?jJ62_zRi;-$I(v_ zfm}NUymV--UlX4z7N0TnEBLwUUqJn>9}W8SXm9HzD3O3}Tj_VPcvf?25|n6x$EEbU z@G!K>CP4`!b@nx&)6#kWY~M`2@YI4!K?=HQMgV2?sHsJXq`Qw4(hxnHS||>#`dpBD z(GOtR2-$py*D-t{$h;ECOOe$&MuFSVI78rU9V6jg^{+tQWtC6JB<8>#ib3Wz1u3Og zf!)B;0z}NF5Y~`93+$SQtNsAA>NUC+uzPTPVn4aYfjv@y2AlC`ao5b{RbY>#z+pH3 zEF26~vcMi8ffHTt4K=YC4U^RadyX#z305L`SqI8<3fzXq8A4~Clkl$k*C6la$rIzm zR7C{x?-cM-4;@pR_*}907<%P>M#0Zj*TB2B&o2BX!?sylN9)a5#*Lr(WU z&{E3Sm|yYv9005i?{>~Q_w0K&IA#a|z!sZMjfcS@9VrL$722j5Q%RX%tV>-Epj98m zo8Aaz(S#tt=(P>$3aT;*?h5&Z2Pz;JJb(+>axazqS z04tqgBZSRWmjj5dV>xTN(u{k)L;}zycY1biUTet$aw!1T`6s%q)}A5ow-O0J7u@S+ zI}6VsypDdeacj`0{o^NR4U5-27g99vrFCC$^WqlW24gjB7BZ0lbnzDLMzcU6Vo@QG zuX*xDYw++rQUGw3USX#7F8eYWc5xxdVEv;Ju$lm2rxfOn=th1^Gya+o0E`Y7ocmkQ z8(os)u_gle3f)z{f81~0{Zf|$Xpw$22XI^gz7WXQ{4ebl5GfEyY3OG6;+l&T09>R& zTeFAw!h-z5GJA-ZgYE^8(<6@E3%S9;g0aap5x|!k$G_a3xfB5F{8OU=xv3-)fNng` zcfY+v`{C)rAh&((;DqiZpiSj|q(s+<@XP{f0-ol;5Uww`gzF)_q<(Nrn|A2^o#uF* zsIq{4)OPtA9qgxK(1~LFQQIXJp%@_k0)e}9+S-h5+_r=OU@LT!zc;K^#~kVFasVwg zeu%4=O9Q}F-yt(W?h>!J*f=~0PxHhhcXQBraQ|Afp)*o#?bQR?Ugd_j&EACVAOxt= z0ZrJ<2G1&SDFDWO<~9sK{T3g~#N7IPA@E*p+Y!V%2m!#xec&gEM6d6R_b4KhuM)X` z_1%Q9NJ0Q2P4eIve`kRfQ!PVr?@VRDee!p4>*>y9Pm;1=@~CH1Vwgt)yiwsE=W;;M z>EF|XZ^zd>vk|QRwx@w_&;GhP%P`5)p9~oP%|j;t^4H8k66Y9Ri_2k5x-vZJAITHY znJL1=B$R_0CV5Mkzp@}tH)mg9PmC`$*ABHpKltWhxo!|Cl!HiXVSTpYrK`~QyB=-a zB?6W%J}A%Nhx?A6tA18iL4$S&jc-Qs z3@j9b(bp8D%q#I=>S;emqgyKdbCiJHLhLhgU1j46uIAyYp9`{wJP$1z_$#kl9s=U! zc%TZxbgG}%jIOzR{*;#6zuP@O-lw}Y4!d+Ih2{U>`nhlToHzJC_c?EDAb z)h;v`B@kbnqSSO0+Uh!(n92gNtG*4IhtI;^dBPMa#-S%rDvm=nq-+dX9Llg9hZ5Fk z0NH|L5Km<9!9;+z)ikEFX$W)JKYeh2yV>h&67BFC{HTwA1+3+2I7I^$u;Llg14~vV zaBHc{0kjpQsF&_6C)6&+nNp(4ZmQI@>JX_;Z z0MHwRegf}Nwz=5#H4(rUn?4t;Ok4xGtG-aYoI9{x-vpjK^iLI1nyqg?f5@#SCxp*m z$xEdZ;xR)S2XF_Z#}Vnn!0&n!zh}y^MSe9=rjY3Uo!}^S%QYRvPoRbm?r$|W?m(fP zWc{S`y1z)Sp^*$Y(or$JESuv|_bZZfi&uSaqsfpk7<1=&*C%;fusu zGewC?tGP*c<@gf_e0PK;A$zGNf@^=CIHw5U1f4`d;iu+ z-@ev|=TeFWz;tIAHEPnEyrxUHuQXYXx33tq!0eIw2?x3Y;q;77LpHPH)nk(y7;Xtk zqg>oS0TnQ~B1LSSW_egWgBF-w5(58@VWUL6#9mMWqsvl!(aMQO_9ZE>T56Po`w=b$ zz&ii5f3s^&b?$Q@N+bYXy47^OD}Rei0q~ft@~7)@g5Ava#fLu{5y1FHB%^s=y1b_G z!W!PY-hu(71=7hjzn@UHtI_|EJ3|L&EGP>04IJ`8}qz*T@f)W_hZBgqjI-I9O^|prUNEhRM_6$rCt&hGN9?)X`d1njc(2ifC?B~hob%dEmD^@ zl9`Q>&&W2=1Je!K*g4fG)0Bbq3>oMk=kCrxT#cukWe_pvzg2-_wHmRG!&(Np5V<#^%RbQBJ1 z1}!kV5z=u|AtP&=<8=!LnAZ=(3iHO=W=WB0S>JR^k~YqW8fTAeM1Yjnk*u}W*^wIP zf$5`2)L!$v6|@NeY&S;qK-{Jk4S;vw6(0P0CX4~!<$a@A(&oA_2!YdDO<=R&kgX{I zyIq$&>qo^l18)5V8F1OGi{IC4;K5NpBLWUvb>S;i;kFpuljc-`hpWCDW^HXLC!Rdg zth6QNRFmlW+M=IFTVaCJ0=^KmnId1u34|xcO(1B(^2<-QX9}}bhdHG#Sm&qOzx)*D zsQAlIjjOXJ1f8#X`_pR(JvX3JUWZ-U9&4w5cr&y`4D7A}MQcKbI|-W{SneLWv-9J- zT{?T_sqOk<2hRzC&C21Rf7ZV+=e?ZMtIGkj9JWwc&dbyMPz;cbli~U4$lcY62EbQ2 z^SVzb^5~Vub6T5hI<3vMVG#qng`T}LmlNhx2E=QFewVhDbdSt6BwlBY6ad_#Hy2(J<8%g!}3SdSJSJ82Uxeh;F#G{FdiKNCqru z$Broj`wW!<@hbhWPq$E-TkOIXoSFb&kH=}UnplTBc`cDSx!Mc?)~#2@TFl|3z&;IK z(o{c41neL4_YM1-T73dC3|L$0jfZZH2w=Q>bVfS~=~CP~9g4wp-LEApN4cC3*xWd# z)Ga-k%NI@sC!nlbxIozA$b;Y(3^3pFw?rS1ob=9{z3r2I9;kr9sxKn>%|Sl9ix2?p z5&!F02Ir}aNev9I)2W05|2o9QaJ;tHKo3lBoDKYddu-=m)3;!N`DHy}2=!`JCuj3Y zQeYJxtoPTf)&4FM3dIuCz?M>l4j?UC#%w_m4w9qg}##llDe&<)x+$U&iDhYC;K6%BwFPa9n9;b*b=sW~{YxjTF8A0Sx{h z3k%`qS~+QYP6zq?O2FNHdinXm{YRUZ%?o1P_?8b&&uA28*);4G;$qNzEkJtq$r)~d zkph6Lw3%i9q~AA>T(Tz!0l-$ex9H(QdyfP=Yh4Z?I&S^?zPoooGiggVZtRH!p?8ld zOg0M2&_oiTuKK_9F33f{@zMG&w_#rxV4doJ4##;bj6)7?mZ6V?qHfyUWIeNxz$YyVlV@33zefv~X>2|#JjX?-0( zJ;!KzAoplM1q`<9B3iYhN7c;{9nbxc3|NQ^ly;@JXssI4G6br?z*Wyn51F>~=%kay zEQTpf2m*1K(xuF1WSG(j;KyM~mkPh}!jwje-d`qqv(L6>PwD6k9f)hqo(2-_QdjBa z%MP_(K3hYNy;Gz+Gf(aCXwD)A3v7+#!&MAaz~E|q@h4DNwHu}nbQ`Qs-1%ceBD`4c zzm#Uk9<$at?3~gwea?)B97iJs2(%f0mdecbd+|sz?DvYKz+pH3EF27X;MIiq`(A{I zHa`#A?D{uYPw8%}K}#x-{XZuJ$*$z3B4DPX>ZWr9@Z$$-3$ds@Ma9xKxok_D&DT}W z!SICcmN>oHqH-7-CK`~A?v_As+0c1CCDf%N1}=2BM8U;Suee(xf&w>JorW3>8{_7c zC+}1r(p}>`^W~lDHSxib`%vqI|AYH2`%r~ON26)pRO046>C4UaX7V-K*Gk(R=)kiT zVnS393h;typTK5e=l#NXuz)=GWog3WJs|)^W`B;Bzdrl(pUh_GK*saUJ486%W^|y^ zd>&`5J!GZMWm{Ga>pCGN4icni20L_~sCQ(JmN-1q!3>&F&@{Ow1UBipLt6AOd2nYM zd3dS@22FRNAcOQKVXggS4_|W?Zr|!(47$`Y(K+yj%pZ>vkqpHCjeAqCR`WOZAvv+F zdVV)M8pM-9{n~B~ndU8Tu9SH{Fj~vA>K7ln=gvGd!7)b&pnj)+5|WjpIp2Qg@WNqj*!Yy*p`+_({5;f(KVjEk@9c!G z4x!9)O$lm6M%~`Hj3Om4n(ci+w$;OVa#CE;FK#tmu*0q>1fUl0s+6@h%f@k6r4Rw! z?=$r)N3lDySa6`v34x6~kU-a$(DsOCJ$RB(bJDcHOzre+Gzj;h#HjJQmPNW>*vuhv zPQ@3(H|Z5@zu<14pR27O2r?MOj$y+Uy#ZDe0L&lcKRDjMeb=8#vMkP(rilQ)!y6lD zE5U&qk|O4n5Nx1~4wzi^%Yb#G@AmxKOn=ZkZ?=em-Q#JcZXBjOd1{6L>rFB|ZI>8O z{?a~N5thCb5y004Za<00Ij2Md&~3jY$Lj1;j>{at@K6BBfW@P}EMykxT0MV~ib7oz zGu|E81OT?Yswknmi5<6F&rTBpn^i7t>;HrRU~~@de4lQX*}vJb6KSDF6cNC$2>j6b zgO=2W?Nw2Z76vUa<6Xu+mhcAkCR4;+#y|;-*raFF8T*}7O?;wBH6gHJdFT=$dW4iR z9IjzURg?!Pfl*k8_V@XXaKW?=oe=}OC%qx*(XhMwey7O(-9hJ!Qp6)1^0LqAjsn7G zHavC9#Q>b(P&5EuYP`OX54UhB0JiFCKkVLVxJ{nt2S5c3*6X6P{#`2$hu{!gi%0;v zGNg;E4(*9|SQQK90D83EKI2b0gkev3YuM}sLO2NfZ3+OerTenE8*j89H%Ltc@D(aK zp=$yx6R;|EIe>QP$GZD%{4DoE867a8E5iNT>UPGKJ5V72nBR#Ix?@XZPJ2WO0B-Rr z4lNJSDbSu7(Ai;t3K-CPo8EidI|YssIU%rlJd}>xF>rU;3<1{k1hSV<{HrOF@m83U z6j;%ciD%Uo>FXsEO$IFJ6=f+K5$!qQXi@{i`lJEGamxv~^9byK7MRtx(!t!~rEH~1 zfmJOR#B+<6k_%{ond~Xa0=mUd?QTxiA{TNdw} zcFa{09{c-35O?`$KkfP;4e*M+E*wc>F`!mo2tx%E$Gw~)2uN2w(7Ek#_x*ROKL>g1 zwsYh03Z2$-tYT{K@7vT z$1^%vZ}tu$9aG;^l+lA)3suK_6^geBQyCD?v??^yb>(wfhof;AJ=h_3w0xi*hbbzs zz%2JFxa!+sjk&%P!rThuyMhPz>n#m8j2#P1pj*XdzhTw?N_h=>q?>k)n`1TZB1%$F zlCI66tBpM`%R(G$A_V~V4lih5C{1u>D!{LW?;jj@=+-2Q7jN2b0|EQ>z^+L!9t0;6 zfYOV1L;rXl?d+w29BD=;8@!q9x6FCJcOwEAQ?AWq++=^=E!=_u=5%$G**|dO%)5t6 z^uuV?ctTfD!dI_k#Z9X42*IEQX1n2VOR5&j4R{=y69Sv{+Os=7Gxx()pGW|@Bfq!Y z7|Y}Tj1HK{_eot#0sVa<0qAbcH|W>EfGv;{0-KGq!3Evy+<0|3cV3DHz*jhC2l;(z z31|_B04UG~-J8P49qA~K^&M`piUz*6Ed{&{(CmnLN{eK`;)4?fAWL*jynR0)J2{sEV8IP; zS-#3jQ&~oQ&+H8Y@jdJY7ikBt+1%Jdz7TjX(J!Y@SfT{UeJKKH*SPHz4B%1#Z1PWZ zRJti8%ehER1n|XMly0)*V|{#KPTn`8KuzAq=(=!pU{bSbsSJ3p9Qo%}>}NOFo9c1^ z(esTA+HZ6bo(cgKFj(xKw%qdW3xS+gF6q)I+QVSktX{bc1OQv|OQ5Dpati943LGB19K+^*AA5d@gm*NZ}#zA^S%(s={%3$V%yYiIn*W+ zfG*Hk9m~2wtUlJq5)nV~W{aHd#HGNU0cLxTfULz6kLDKd3xWR{{Xzo}YWJ2)U87A?l-xPAJ0G@PqyXR&y*q3Vi#eKb zDF7Cm4%@L#>7ZSmEM1^(!?GD0naXnB_Ee+h-NVt_;_$VBIg}3MR0!Oc>E*bN{Zb8g zFrgSAtHX<%ehY^A74~Ey0N4V}K^m2&G9ac0hg*~`W;6aFg|p9C+_}QI6!;T>7VujD zR0;rkg~_k@j~I|?q5yZ*_rbbDTVD0lozq)8EqPTY&@*&;_V%=MdeV5Jg`>Qp0hQKT zq1-$o1pqhc*+l>5U*l(aaH@&K7T>Q=JB+)+)Tw?#Qq#PHaEg13_^$Q(>Z9_!2aC%K zRQ%>cb_dcHZR@*}u+PZe^mK@Y^JDRM;NhyD1lea=<=IxtKkT}tDx8N3swiTpz00aV zxJ2QTQrXcJ1(M2K5zROe)wZBU7NjjAbmFjeK`l{f7ys?Fphyph(F!~rkF4Jj`+UFV zfC-%6an>#A_{EyDE~x(|>YqzWj=cHc`%N^sZy==-;JVavcWLZ0EXlbatV_jm|0<;L z!l9q>7P&grdnJx=Bba%yXt!K#D&2|m9>JY}9CW`5MJ+DH>weMI_5dcP`7Us(wp;G~ zjX>S=*IQ2)35|BBg@$vp>;hB*y9G+!*Bm-4!OP%ZEky(-CsJv+)C})6x>*EH2 zaE&S^&fF8k-}el#)ZCwzUW`3?`L@3a)Vu|dC!V1gBwJIEvi{U4-oS1lHVT{+$wu*- zhpYY}%6`ZL7l}O)_xBXdZYBNBlbq=ZO2SY)y|~n%6P=yDDf~f%i3Aa%T@mr zbfOdFw3tK}cYlUX3%tFz+1PX7REqC^t(@1S;<6645TR zmkLvw8u-vnXPFpw-TW12**zHS&WluW$M@W#&Q;yKYX1^5vxsx~it0BY>a3 zVy6_#);VkHIa2igI+)JwN_gwh{`S@omlJ}VSMt))dgln>cReo^e$n$&K+p8fk)rpX z3VMeILAkY)I}`}$%J1IMMZvB+XU4zPw zPK_Wf^mc|eER&5Ofs3oYDm3t*!1BRyzu`$y?xsVrDF1a38y1K$*H0D_c%V;Zp!Bj3 zmkO(aeva~{YH@*VpdZmRb=0-Ke*3sXRlYyym`_4-zm`Zu+1~~YX659G#&*IrU6+H> z>l#!lu4>vsZ)fPyH4R)`^*@2Hsuwo-#IEVI?EC3?%s>b_UC&Ef>L+WWIWq8d)qB9L zRu8+Kqo&IqIO8bt;QF{hAY2U_Wcg47ESC6ZdW^Xl-nDH$j~_;e{6KCX3T!&n9|gC0 zL|$3y_UN@Gc`C;;DKGz+)Sy0H8Wx^yDjAlcSS|mUFyOprlC+pMTmCWOV%!UGv*p9a zk$0W2^#gN|ZcRZ-Mb$Jq&;gbbwsD|OSi?&=V8!3}G!N=^p~Kmx+im^St7YEBK^e(F zo=aFJCeGRfPYLZu$>VE+5UG(!P%UO9z+!ul@E0Mgc zAs&tdZ3^6m#zhH}B z*Ri%?A2Zu5k$?36B~%zxOYgT)gq@Sszm9O~uscH78O6A2S|x#}08ZLfv1i;~OE zI?1q&jox+b`qf{MW)p#BmGHsKS|O7|eSTCvZL7mwSFE(X_)*d3?V!!7U%9_^(lz&) zhs~8W0qC*;uu>H@Y!gbr@5rxGw^88KDzaglAViN#Fl^f%p7#6a$NPHlomCCXgk&Jo zB`g!kGOtrn3+aK^BUmQ93@x*$g*egmm!QtJL!HXXJu|m-MKX}@5|)X4&AK8z@OlKx zgx6?Y5huDn3%dH(?82Q*=9n}jHzNtiW){ii4|;BsK>tQ%#wt*4WCv5Wc(;$xD%yl?$BT zJQY4exF}faPckbfysQ3%$om(3V|t2;#&Sjd+|~Uj18Sr{YEZpTG+61N;nga(k}m`+ zEi_PvG+su$&d+5X(_4P#Y5-d`k-&H8isHdx)9DBvAP51#`~kVHxkN7q76SUF_GZ6=zcHz!7u(6mm}8-FJIH`OzDx4_|YK$R*hwT_P0m@(r?C}#emtMSk2NR zDR9`0KMMy#lWdk2AyNmwD)WA>13D8#4`}%v)})ZR8p6q0phB6TNaV^iQ^{E%2Trsj zI2Xn4ZnNYpz(mVa>33Pn#m~@zG^@He^7%rLWF?Z9Zl=Zw1#Uy*jH=1T2?_72?*|`S zIqV*FPESpdd2y*O2dURJs1#f+E?Ma93~h*?Eh7RKSA7>)eChc0GkcFZw{0#3=~ok= zlwGy$61fRTL+-3?D-N#udm!~HotinI)o*hnI!9I^0NFR>*9P}jkyR)Gzazg2-cTZo ztbz!9T=k`(hu=(IHTt_Rgzx*!{%$(IM7`p$U5n zmx9Er2~dixyro3a@mKj2Aq}B3Z&4gv^}m9Zmj|xtAsf!chhmVM4su6GDY(kT8`v$x z8lq>pc+JCA{~kn`rCS5ZU1kX$wm6r9J2)6H(&2i4^O+PmGMJK6^OH|cg2N5>*4 zxpId_*Ui@Bt0~(+z<#TyZ05(k98dv+OQ$5&UB7NEtF=~? zZLwg}DjEQz}+%dy5)Dbvc06=((;#nvWcqS$H0-MhXD#)IZZ2 zS%)5~H?MqQ&(G+9iG2OMd8k~&&*L3pJYI`HbDpooKF7KKmhfxb*~tz9R3I{U4{bNQ za*Xz!f)D|G;*QK;h@PcEoxSOhSGi4UkYLW~-;&+XzA?tmCKEA8w{@pKxJeK7jA+0> z6&Sec^PmG;JnY_TPW|~p_%MyAYx1)9QbU{qN4tm;&gi?cA$`KT>Q716#V)w2U=Xt3ON>(3bCt%^lJtHZr8Fx;by4GyG-Kmdl^t_=;<i*(QJCzx9 zIE_eU0o18}C{$|=s_ry{s7ydVSAU5|1y77UDoD3C)FX)-qjLNQ5mKl5e}66RWM8HW z#5?>1tuKVSUWw$TyD0xJa2pyI9iTDwo$#*u6=<(3 z-C^U*Dhww=IY_;(L8ahoN?Q{GdOJfK;%8G@;Nq%(1QuUDX`GYua6c4-1ZxUXim!(I z8tbaR11Xxt4qX;z_4-`Xz7W2-63NRis+ulv8yaVrDvNXp@2Z~zJ1yMmn&NW9r!tUs zS%^zvxtkABEJv*?lp!knMf`m)qFwbq@JX_)y);@|Hr-#vA)G8*lb6DRWiuREHsPXJ zjcv$N2OGKS1(|SixT)tdqgOKP4P|ldb7YtkfS&wJGQD-xw}NHoKCF4v9QjC(m8Bci z<~gi?hUb+O&zEX|jf-eLQT8ZSP-BnyDa2pzD z$el&pgr}?1!LOF-z9*@oEStkUQz!)m`I z$h{KDOR1Hu3*3gr84_orQm8DW1+V*v>|>r zjsY&N`T_8k4Z3WZE?%K4FzqEQPF*M(&}3T`NR!K=FUwN*+v!Wd<+8!W(2D0V@%KFi z3fx@vo#IQ}KaRbn0qlOub4u;nKmXf1<{_o7En8#Y70e z0cKuyoP7G9DSK2}i&q_S=>R;y4GtibQ2%r@1LBS9&-Ne)LTdky)C1*-H(rP3 znDIAW*Yu(0)6Vxbx)i9_zc@MRHnyHfA-aFT5pBy|yxF!r$QJ_n+F^IlJvcsb<|Key zX`}$)QsWqe7u~rO04wz+29`cNY^low$W^-%=|0!1^_Fq-;{Qwu-Mt#SyR=<>FpcYYMUQSY1(^q%(Y z?X`-fnB?+@8Z!NTF#N^&-2xgEQ1=U3i4c9Apy;elxY`hXpf-GkcFr`sWWwo|Pz)8b zb*oGFsd_ z&hcp?fTzRJ&Zo!yod$QDd7z1tG{Q&jfn#c57!QA6^qM5%A&PJcWWXZIM3S^$vH&sx zH89*hyP$_UPx`dUs;M@DOh5)K=z*2KEfq(!tG+2zP#764p7s0Y&O2^wzA%W| zsSahefEBz#uZ_?PGjzpR=Z?QZvVUSM%^+aAmj+R{!Wban`nW+LTn&R| zx560Uz};1Uur?q&_~YZwMf_XA5AHt}$VbjWn3`R?Q@tWBiY>oMDboFmo;SIDdnNaO znh312qf5jb>|rUt!|fw@ou&pp^vZW8hMif-)+jYf?D;w1Sqq2ueI23cq-!_W7|TLj zdWvp38ERdj3{S|Lj-Xw20+Oz`yFT{;i3F^-m40ui1D*?pI!Ls@<5K!vco@p$2km2P z73=>|9S*Ma96dEgSC7+W(X`X5Ph)d)49Lyepbbnr)lUUOg&0%cPjpVNkJHQb7pMGK zo}ZGl*xB%vFLwyLHcEi7|7%bWYlnmW8QlwQMzCs#cMUB_Zq0()i|j>x_cBv^^$WfM^A#szLe;|!s*b>oD0)$5tOx9kQR zlz$Q0&ry?(Bu&e2SI*Cu~w z_Dj11oBSSGtERXY$_c@LXS+oxNW$~M>ED5J)!&2>5?!HnkB6l8_=uxoA^~ma3N3(^ zF-rBzi57U!67U(xDGlk`S53Um^?w{QjlUb0ZJv*v9=Pq2}nb9?iJ(j zdx`_aT4}jlv#};x633#sys}X@jaU=u#f~h#8a0veh&7RTM6uIox1lD4m#h8@J(yVz zBO|M^a4QeRp(;Ano22XEa6En>>%8s;lLWFruLD^*L9<(fJwZzs)^k0U%2w}ZeLq|+`M5; zULWxvbv!a0?60YyvK9wz&gTn(e98aPJY3>Z0L)=lIPOieuKHydBux~ImcW$jjyM2Uk@2X>N3IJxTUL7SP|(=IeMj-91Pu}s0E zfE-%RRVWfphKAX$L4Zk}eR0sT;^A_gD<6F-Z0IPn{^*#Qbx+JL)~Rm56l=l|vl1gx zX*iDJwc%oGl0Hl03^QekEKe=g`CauyWU_^aQ@_n??1cxWuI=+aY5id`mxiKNU&}ft z67Z3j?oLf0YeZ@?*T5sDyAuz?df8+y=jE#Jt8ExE5Ba3PQmke6(5XHkCgM7I>$r**#NUVtH=z-f8CeKCx7yUVdK8E8Hni?6ssP2 za8G66nX|uL!rz?qc_aqS^C1XkIIpLRnb|zvlVe8HJW3>^%=ijGHc{g#N4oUCCZGHj zxEeUm7ukc(=}LUd73)zxZ4kM)ukIga=;ZI9Gi;hW_8B}_g(cQ9->f@d52%5HaByiyFs)39Kxho(0$R%xlI`0n8yL8?0gRzfXYLM>4 zSLs$$zV_2{f8IbT1Yi?7S}_XpOv=45ohW=>}E{QN(;`W1!`^`NkR18__J^@Vn8;xju6r2@5{9` ztWC_yx8wz7UXi81<2-@|)-Mc(6TQHA&5((7h`q7|&an=q^Bmmu_jYV{g`hjaibDjvO zfWaocg5zc8_mi#A!@KGfTuM>c4I+2%>G;Rsa} zQGmPZFT!MY>{C{JX&P+=9Sl0JkAKPvP}+m8&^3DGcl(;asu4DZK?}yXMg%?TplPG( zD1N+bVv_^QD`WCw`3zcM_OwCZj{wwnknYpHm=|uiPp5MB`H51?5KsA5Iw2nrV*7cv z&`UIoAG#2MuN|DwLA32|&);Ku{lR_Sw_lI}m(?~ruf!;VfOOSg5|`u9JJWg&35$Cc z%jm0a@KD5{1#KZOxES#_yTL<&M6*>1z^vJXi-;?f^$Tl`r4lN+=&9s;?}RQnE;CKO zLKSyj)X-7_)rsZ9=z16zcU~kOh7q$)Ea&B_Z_&xRd9HwVsxJU@rFl>4*{!C=ZMxVR zF1>E8e46)U%t}jI^PU6($4v8{M8F~vSHreV^PU72$Jqc!m30z(@WX@EdIM{wwXBn* zVN3H^&gLNNB#DEe7uP`ieJ|rgw}C^wPP`7d%1eV{*GvPoZHmdDel`IaB~1H_vTaj} zgR6GxI!I@}mnL{{=hwS*D0(#kNy62O_&toMpDlgrtq z;|;aJA((4uF9U#f*Rn$4X6Tt+2Act;z5EDhOjo_pBhYjL_D;jWPaZgGB9LxJmxySY z+o|Iini}}fm2sIEc38-cV`!A<_aSLPTp4r@@SD`6X zj=yu=JPgg@I#OiD24GoLYU*uspe1DeY1`kja2+9Hng^f_-On@TLtbo3x&x>tFU41* zBu@pp)BS`AXVhu71e@@#x($tg9=GnZCO3*p`NiczEZ}_MLF!A`>q6`+kf7?LMX@k8 z^yceDN|)5-8}m_Z}5LU_2AmIVC>}~W#R^Ao{lqup%^@1O+m_L z!o5>)Bm=vJ*ytL`5qT;Qf8WzQT=iCHEaN}wS2u2X1F)1@H*WP9U~qu=cAy=R^2QzU zuKMas-q-Bozr6T3q(ZRsivLBNChNhqyg6<|!i$o*oYPLhT#VzPQL%+g498 zHYlMc&x#mqa9I@y7el42{V0&MpT7Y$G0jVetkq_`jzFZzDn@m3krXsaZz&1~L!YdZ z%Q(@s=b+7O@87UqkKo%lEuv+I#t>ps>feQ4Ve%(gSs&_5)Jv{q9OAYaqNh-TE<5t8Si^809^J>^_XHtza~0}l zaqJgwS^kwsUdpawl71;S=&f;4w#Jy0@UD7H_k80&m)fcRiXK!<_K;AgdK|2@KuZB^ z@odqI*EOjO>S$SrOB3<%IaF_s^6$E~RBE=PHlkhi&00+v8I1pmQK$N^Aeb!B<=Ks@ zQW>f$#I364D7xc$0#zg0RbK?%)9Ucz=J|l0a<;_fMMfb2nK$HDv33?vR1*|R!0*Vf zf;ZebYl4CZd|dSeI2XNy)H(Z%r9`+Y#+QNw^rW8vO1rDX43hzpatjJ+2%b%d6$e-S zZCTXh7EMx9exOBaDur*8)B+eGb&d=fkrs0oQb!JSk`ts(z3+4{8P}ucE3rq`Y)Z8_ zIa0TGd3(7=fNicf@iVH3-zSK_@8!tA*H!;@Xw_kqFJa-_Y%5_>Ur!j~UgoF3N&Q8) z<}=k{>`H~85KW|O^3o`(pYT+G^B4Vx&k!yu+1O7cysJJ4VQiAO&)J_>(_`tS$f{8> z8OXc|NJHq%JrxI6{d928P)(CPB-p8b1coHjy$sIEZ&81u9~CbxpoUqA7R+!d{oc}4 zvtd@k1YWNCQP7F5^_=J_Kh|bjgKR(IsYk4;J$Mk%RbPhvj66DN1v~C%gaGWZA-{?> zn)?}{1pJQtD)=aFY7SXHBM7nOi_j$2{YX%agR`*=H_JozmNk}rh1Sc&9iRVeQ%a2pyI-e`lAO}uYp-4CxI%dm% z023|$xy)%;%SAfy5w`YZ0e~ZxF9b%sYY3kCkLE!)Jc5;%s9Bso!OcHwtlV33DM-GW0Hxrn zw=R*JfHcI;dTYhORky(6>nHR`eRB{E2xD zz}zX%Et$$dhGiixD@L{C9JQ`chQwJ*j%ZhXJ4j0JO%2W4uDR#(g&-^4pj?xe!m80y zfuon16V4Df>$wu14n2Up>onr%93E0jG5g!l4k8K2?&muiT56!%L8Jv9e!i3OFto|r zLBs@Jt~!T^v{H{SteC{-d+KtKgbr5lz)HL}^L?&=7!d(_J3|{vWceA8!BzhaXt3Z0 z<}tO90~o{?#kg@S3vpQi%HN3yBwkl2L)y&WBidD;E14wz_!7O#XpgZu`g19KcQpY@ zc~$f;k(+=tWX__$;^3;k1<`+j{N3`7VBdT3_4L}lHE}7gwr_@7mroGNkTtijpk4JR zQBr!Tvr$qi1KTbOajT>`YF(j5OB&Ix`fiYPk(#m@Lqg=ELXdSOl9$5j$d}{%a5a3! zHf$dGBA(`nATJ&4Gy^sJ0F{BX%R*cVt9&3wtt-@M%SN=TEdZD^b!Zf4npchwc>Q|N_Cd%>0E^@S*JByW|sz|pI|t&6Uiyb15Bw?VWedF{iX zwY=#hD8~bOg}5dkA#a8wc@u85eLZ!sldJxHkk>B+J<u3ea}WZMeM5e2=$N^dL&q$XfZvf{1#c*ktvLun ztp9^x{RPsoF(OkLe0^DnOS`MMk)!;etVP_c?}%tu{bi8Uv*9e5-9gLPt|kGw{n$=J zOYw1RXYuf3yNrin`*Lgtyy%fk@S+tu0M$LcFlPfiwyVoQ8-LI%f=X4?*v>+4XJ|u- zY-|TyT=l)6!8)Bj_oo+owh~+`i3IfUZ?9`;sfwzVL<>AFrQcgzEUT4-3A|kOpFzZr zIiz0ST#knv648J}F^44JQY|&}6sO9$#2k|1V$@VN^DMa0+dR;Qmbyby-fHhWzU5NT zhQgcxNjmG-S_Wt>Qr2h@n2#NUt!hvLxro6DdG?AMX{g)PQ9O;Wm;22Y>TA zaxgT>HiJe;;N+_R9_nDV=Z^UBt)&e296|t+Y{;+T=h>7_^&CP8_#OFG@P;B;&mjoW zSLijRm2(8IWk=6LQz-?%pA#gSx zO?X%RILNztdU0}2Z#TZ)={ z+4@2W_#OFG@P-nZ^#u|5xa#+T^;c+i6bC(7WYY=yNUTx+DIbP8y;|jz~l9EM6%N zuKE?QJKZiiY~IG|3&G+mk-QXH_ij0ko|vycLpVd=ymyOuS8alo7rUn&a|pz}u`fh< zBYCU51#Uy*M$4PgFux>rW$ud|>H@9C$9DCFVpk?#iR7(zEpQte zH`=ZVPkT@$y0ZXFow(yCix%A4xD+H_O@LBl)!ItrCLj%=v(~0Kxa!-awXxI-otw>B zV=4oQmxZ{LS7m>4)Ve|$vS!(zh^7_p;19vscD<`lp-p}a=i&)rR)2eQD;{8>`*V2=122{f6 z5okl~ljb5u^vSr2!DeBfjLQ*OcbxeoBH1S+(x_*{CuD;t$DCC;X3B?G%DBB3?h8aV>*)VmNQX3%xN=Mg5D3F^SjU2-WiG!z-HX6h&L)SuMiJKn;Ta&?!qn72I6)ogw4|*&f4QfCgfnmVSe; zXK6%8h5w3f+LwJplTIl#Osfs?;IbqYmj76{$VX9vi`K4=kKZ-{g#8<}Nod>`y3l56 zc{qY(!s^Xh(p6%y?;mQkROZ>95D0u9+-}i(u!Rl1E)@n`?Px2Jy!0?N`tnqO+t4_} zr?Syk!n^9X$Sj20>H_8FEOB|&lgi+$%R*cVtNX7EwXRTxsCoY-XjlE4EDZII>{u3J zu`dN_S340<%B#arf!qY7A#)y!69-ov=vcf{_qcRgZ=d!bn_k7tGP8kW<56|McRGV^Q5O96mAP}xb{b-5*|@ zo%ILj^obB{&1lCbIGZ8ziFbrg)WL9FOleQ5I36aFz@vt4rQfCIvcZ>H2}`uV<5K!v zco?;xt%M~^;N_}64gJAFL;Z4mr81CUS%^z_R`E4QQO+c|5TOi#v-ld(uKF{&f*+yv z$MIZ~$15gvP^MGe1{18&;wF8S#`l(^vtp3~%&{4Nmiox*lp`nqwiii(!*2XpI2Z=X z(smINIJxQzLWdbfU)RFGM90jgNegGpY;rNw-+~@4ju%fHO^F&KB@evB?-D5}{zzFa z7RYSKqpe`W5(7LRE6ataVO4(zZgR)H5-aBY8E}?GKi6iq*?2vSpQsRIT8ZRklhNa+ z9JiryhV=RPDdJtVs#^^?*f||5Y7e#?dUC>`MyLA6I)v}VkV$?sPMl>cw}Ip{FF~gq z=QrKn9cN$I#1@cR3uIvV7%dfxvJN;}qIVg*qPHS1qh7MBc`W%{br(Ep$)}vmglHHy z`clwrH33S6^tiD=ZUWK}KOZ+H4)koGc7*F^ZgAizA$TzyuP<+)m+Jo$dK|ek22++a zqZ4M|q+7tM?+GZ8U=9PqVth>?@K0-5)+q}^k)mlB#BDf{2#Y_jZFLprip^aOJEKJ` zZ2ys-2H!Xv_-X3cBQ_o$w_xNWzpSmd<*j!>!+Ls*#F-}K?i;9t(XZBSe*g2%I^Ds8 z`@7T;U7Wb^Ucn&+xP88l+zt0SezdtqbM*)JcLLE3ADtU$!oBh-+x^r&H{g$S&yQbn z=i6}0c>@o+{QO$;7xsW*Q0H28(W8|3*Y9_39_)8d&rY_-X0Y8kr$?b~UYtAn?33eu zb}xPj1-R&SU%Q}-`Rln_qnS{NbSUkqu?0w90tue3f9EG{f=f&+#9Jp7B76+wcxNpK z$K+ucyG<;}S4}EN{WXw8EE4YZmobO!y-n3Ju|>kif*h`TpL8j&c`vP>%`{rtLBDrS zSIfG=-jSof{qsiGn_65+TfgYQE#aB{*njwz_nyG6t@RcBs5yLfVgG_^&-@Tn!1J-K z7_D+lhR{miIjvX?t@e}q;j&kb*050sykuNa^P6MeKfSoQTwvEvN3nf?R$CkLb~dfx z&&@7)k_<$zqUggRjUXi}K%IH-?4(mq_2#91mwLG9{FFwi2$}>z@tjjUPXP=^fdf(6o(X_L|7W10}ve+$mBW zUd*{&JU_E9fovnhKcn-IX6HL?1_>&=AV@>lYj5CG+fq zhA0<^y)Ta9R|ovW@UVM2U;qB#%x?;(#7yp!CdK!{LiFOJB&>t_D4u`dO_;ln>O1fl{=+IHN)Se1`_J2TBwU6o_rW z@6qwY>$!T->}^2A0-|vqD-W4@w)8bl!7j&4SLswz)hY?T2IO%<0Z3 z>a$a~H4vsj&YAO?^OUnlWWL|cp1_O(zI}Q_mKn+JGIfk56DMV&b$0;6%Kk3%R8NcxHSpX0O?-P`Lp>* zIDK2!vVfE?QAv+)|CvJ$GFJEW)8|YakoCR(T9Nr!@^?-hle`Qd)pK;`-s!OWnb}h2 z(R4F-VJ!zp_kyJ2W=?QM38(i$EelBbyp+tC$&4~SGj;tYNkGC6Lt1b?PB{HI9E1Tm zpRbE%%}vh3l6ErkRg#cb|7LB>flt~hI(-U3Nd(6HxD?Ezh3Dcy*t`c52$0)am;4@sl9zGM1!9}EVveX>3@GT(f86n6R@Q%!P#^dF$a=*)@n zDD3o>t;GP@o}(XU&wxkartdUG4v_AH^egoPv!=SEc+*cKqaYyP3p#N;pT21NPF>3q zq;%Dn!v5|@Mx3O$OHa(6b$dq-?q6-%+|5bey-28cc7NTz|9M|dZLvA@VK?hcg)pMj z_+Ak)@LPMx9_ryaI*Ol`?`b~^#kropcZKurVO4DcQNDhZDD9sU+$3uxY;B%ioG^ z*ed@H+VyzniE!sb-p{u3OXHTWY^e4ITkM4|f=S*Ve%q(lmwQ9Hx6q!8j44l<)ocaU z@}zHrWNe=&f5YwbWV~sEPk*p|o;*x4nnANw%~W60*hhc6w9iw&;r4mTu+LM!iT2Uo z2K&7K(4Czh^Rr9d$7l1TNoy|uHc0mL;h=xkzp(cmjOj{E$Ecc`e*H<1B=co0SpIHLn z*G$-9sn3Eu&-4Ap`^Tvj|pZeOisXXMGA-6t%S(EDV-_v-~@i}JJ zHU`YO(KxUSfH_fio-%v|D(Shl@!(kOU|iTX(G6BGMQRuy(tS`N-F36u>kMAsKNygi z=rGDTbsnR(f3{VenVxYv?HK>>eHklNj~K zAx71MOJg7!hP*?X7#$pQ`nOIL-zdg1Ii-$EZ%=8+mxNVYM9O$kEPBhR@2Ny$`~njG>aZ5`Q1;^qyY7_Zc_n&t7$3H&xZup9h)VJts3Y zB@kMzyr*pBsy{0i@bNfkRE#;Ihf}&V>7o(Ph!~S78)D3Rgw^O66M417m`I}B%(!10>U0$LfT2GkV$TH$+905I4G_~({gj1x&# z4p_&42g!m6AlpYoAv*j%3^x-tAG;poL&<{WGsnV+>mb6<`Lx>x5Wvqj`!JZaW4gSZ4sZw^>wDS=0`EVTstVJ zviWWOA*h(=+s2k-GKAP)*36h(8sdLEh)d%bue|9yV}7ET#J25{t1WHYFiu`;slcZ3 zaA+8Dct*}%gPm6Hw!@+0$*n~L;Xfid+qoON3@c-*AC2ur0%1Qe52uK;kh0SlS3t`P z-gi2)1*2r;z-3&?SO~D$3%crOYE4nR>1$TY0#d$re#R@OP2(D`@VAfD%Pq54ZN9=X zg9*b5kg8}`{SoNX>V0p`Ig-!;J-A=*=4#B4)O5Np`&yMB3B_&wSm>m^S*ib|KJ3j+ zlgB`z#&|Co-+s2O?}AU2jG)hIoG~_u(a={t(-w|K2^3pX*|Cp+`YC?ls!uoj=m>Uc z6kV>Lj)3kdFRU+#ey?ugX1E!_Gl^3+Z8m9|woG`=Y>3=G2(m zLKqTfV=DMK^a7t~YvE0zv~h=K-?oG?zQ7H!;8?~{2gm&rH@rP+6=wVo7Ngi#izqsc zY2qkL1csW3tK7WOX||kcK3eF~y3>H2R9Zk=H78yCh6qq3UL1Vr>;NzqHQEkej9=4H z4U!d9 zRQ(LP_x9MIHk z>czlK#~>c256(Gov$UW{92d|r#D^HU=R7X(!h#y{V&2ytVlUcu^W79-?zI7^a3n2e zc+x+5s1tx!=G#zec|n=jK8F31JNEXHxwQE?w-1&U6o~_y;hj;-B;&h4(Sgo+U_-Kk z63Mmh9Qsl7!|PqA#SG+Rc#PGcBTx5bjCJEKgUOS6~VCP%)d#-e64yAnMZ1qD> z;uG_U<)*lx(W`S#UPsrNQv@ut)i2LA*AeBNQv}R&8y^Yz-G|^J<&NoTCgpoUKJbZ8 zsvPb^5PVMaWhEp?|EaoQ&I#t|D09k&X(>T|vHpBB$x;0ITE9pgcWS+2=Jg>s(3}?c za!H{UUY&DpINEa1?k>W33|V`_eqKy;0h>jn@;5472p^N9Uf_jRLpr zxSl{@E06o?oU>6;<~jLrnXo;tx51j@mia}Je2?tS`HZ&Ogoohr@?7)Lv0COdgvk@o zAEh7Wn|O{A&&&CZO!LQMzIJ|o6Xl-M2EQmGc*iGITJ|BxKBobI5)!0;bmIiH4&HI@VGE>sqj-J~+sM0k)%2EWX=nIb+bqOH`DWfyj&bi{Yi0*~ zzuV4w$^Dqm$f?VZbkC2&RlyCLz2l)dQoiZF-rO#x%EhX6>!$icso!i z8*y#zbYi#mykm=>?l+Fd z%j1>9b2M~omZQ0S$KV}h0t@FN&ou(hN#raD<|5BEjLb>oERw`dCS-T!=oPbeGC?44 ziTH}Px(s=a61V0S$M9n%6^I=-Fj-e6&r$x?4NPOmZ;1zr#OrGZ&OfBPf4AE^?BAWE z2CY-nF*E?VKy-h%62F+$b_w(xHECTk9Yd2gF+s8SQYSOpSUgU)%Y(;bbzs(88ZQQ^ z(#UoO(?xo`7rZ0Q_@@(ko0}C4|QWzx83y8)|9QW?FZucaUQ0dHe(Wn0Go+y^9e9B z%9h0#k!?PWcShN=_WRzMhojNerj5$R`16Bmgf|agYr90OtraLSz}sH^|GE3}KuM0e z{tX5QAP90OiV`_wxrSsRgd{-NY&Lt}XF@iUeltDq^}Lzs**V_sOSli+=)(gS?;90G z@mAEI_kkA*9)O}C2#TV3A0Q~dZ+)w)y1rfAJyqRRy>GLB)a$M3uJ7mbt#4I*>(2Aw zTmUVd?I`hP^6(JEhlt1K0&3~e_9ajW5Q6cpGGELEozZMTfkU3h)7Sv`(Pzs;f=e zc<9GIr(L2_maVM%b_F%n<^q$@Q`m2j`L*X19?aAWIQ4xbd^- zSf+vxNDXnDO!PRWSynmZr4n4aCG-=S-mL`&cx z=t}D^!;}})Uxuj^)L;9-3_^CZ*QHjUz(LfvdlXNGZjk9-q^aT<27-!RjLgfD8)$l) zWC~3JA@~kK^nBEd2i=0>Tn&>?ONHJT879$Epb(6E;Rjer;6{P^jg}Vh00l=D_TNtG z)M8(YALqwLrR0@Dg}#>lu3D4A(U6l#u-*o3j9_=)QqWlqM|^YnqAQaX@wt_$CKzgf z99bk+Uci9BA_&YDI{?qn)=uOA;HeXlHz9Wz*-efHu#;MJ1gN5%Rw{r9eo1|$Z!_eq zWG#X4LUtf#b(I%g+O3jTBoNUziyxG0i|kZ?tpRx|gaEiz{#MKG^(8yH+2u$gP_D0R z^iMa?L5|Je2yvD5{wy<@IoCYh%*58xwn?5-Azaa6|6SxZq+)j!Y&SVUei)3R@q7R^ zLp&;RR|`H+E7=3|4ABEh!ex$Ye#%e3_@-dX6S}9r&vuxpzG5TcwkijHcm&dvQ&Q6f;2-l}jwoclb z0s3B@o?IY^6pX|hfxjXX&hX(Aq*xVAkUnej$!OQ zw^v)g2`M{s&QL2d7Z4|*AWdm{b{>ZJTn?s`ASE=?oR~pp`f|t#hLcc`%gv_ef^l#@ z^wsW_OrJNKL!2WXx@ky&w)Pb&~cV%U6e7+Q$FF=LzZA&*lnImd{X$Au3I!0wji+a z)-3FI$t7&hDqQQ64l&5F;WzEoH?JAH6R(ZX+$*uR5aF?CAy%@K6BLk0cIHp`d z@6Iyn>05!6#VW6)-#l0)B!cyH_I7%AfXfcY5?Kzn+3ye&@a!;=U82r!WpNSIC)`$Y zvZg3&{1-zepg7*J|0iS}Lee%C-Z%`s_iz#oLs*kAxVVul2rF81L|#rB(zBy0w`^Qr z*kJRuD(Z(VSXmpb;i88r97t2tb}#r)ZN~3RZ$93hroB^PR<;PDToAPF`n-1eC(3=Z z1#pOIEtfU;btMrmK;Q6NH~9kB0PesT%yY|iU4d!KrB7+sO}oWVldQShKMnl~nc6h6 zES6V-Nq4$3i3%=St1B?glRFC*ZWR^(#U-VcVkbEhvUpeol7G3UJ4X7gcy-f8MhrRO zvjn$b70jyE6_{p^zUZKC+AV}lm@GroG+G|UQU2nbx*}6L9;_|JPB<-%C;n>!54nS| zDHBHI`JSt04@?j?VX~5JEo`6?IOD!rQ@|5euyN^fY&jX~43FrtG&kL79Hn_aGL zXNsM2Vnyb1<&u%e28LcGQcNwjc*Sm~p4$re0 zLFi0iIV*0Oc&^3pf&5A}gp=vm!Hy)=I#!S*0Vbf&lH_>40+O2lIVecx2bSXnhB8RD z8}&*J6V@{vZMe5IfaPW|cUX2rTXmJC-2|f=+muTNG|8BDxE{6#(Q5uWKo?Z>QSa)h zwgg(jAs&W<_BnR_*sSdO#p+_U`5hzY+BADK^n~1&B2$i58 zz$9-xnSnPj4VT$~ZF?97BU5+BP;Sa5F!2WrQ*Gr!C+t@BS0aDp?)FPA8ZF>9o#*fQ zuTie#l!9MwfSho7(ymVz$GT&s!2a1gR~@m$1C|FP*MsvoM^tV}HKgiR1mdiiIO)injL zH8ev_c--BKd^eazgP(S#1wa!PE4@J+zyT)lIqxlv(fFDrn-n}@74$AkZ-$}H@`#P+ z5v^3`wXF1@PfK_#^(HXl;<^4Z>f>7}sfDl!lTfUM^-RV?>o1TKK1(a>aO6TSyOi!f_KWy-|367W8J`{V)$behHm0>at$)lKEod zirM3#MoxeeHo-I+U55P@hMMpgOvk}w8uj2HWIRvavm;|Pdux^RtqcLeZs|O%oX)>; zVN?4v2%9ho?g?kUyZj#7O@>&hfa4g{eioK0w3&W#yKAQL0{aZy!)7fgt}l-~(tTAP?L zkV^^l?dR-8Hwv~4+RWLfpQ&c5%-Qb}`#ZO%CJtGx z-yWP(I`CyBn>FDii(hJ4BP~pwWUYP_RTaPmS!%TmgWnuyw+tisM$J@Z8ODCRH?2ml z^5h{~jh12Xx0QU=<&%uHU4~(hKFM06r340v>Y0mGPY+Id7{jjZupO)|!?1NcxYl@p z)Ie(5=`-pj8Kl_C0ZcMPXH;klzHO%w3r&BN)%dJi2TcrGQBuo$+jJ`q47g zGP{-H%*XF3Bb?*USd`R%!S$=vw3QYO=lC->w4UsC@(-%63*2aLhe0jT0)WI~PIh~n z9dVB$zB3#yg)mh*_Ua!!<@B^)3AhPX1qYksvH_EMK?&Xg%F9R?}|n+`VNcwgPHNNP6J74 z9bz;HV~}D?0ZJI05&nxOr`TCLnc~dHzuEm1fj{e~i1^L!r=&QE{$Z!xdAQEfW4Fp^ z~W2cazJ>y);lp>#|Hp5U7O3smZ3V^%+8f`812!`g0vqj?sC6k8N4;c;p@^W;K0^Ai|Cff+|%Z{#DXW}~lzXcPvMb}(2DmnOl*jT%jNlQZFp_7M|KuxmM6U>z&?SzH4J=1&sY*=5k#Rnw&7Jl# z3WoinpxckZ>oKm*t#z3e*1JrW;8b9iP#~EWF9oyC3hbng;hHz&tseHmQ+8cX>_^vePmKtsQw%1{c zGZ3tBIN5IHXUxu@uw41czfp&e)s>(4Yn^dpOu%^MC%&x?+-mZLc5p1jdgbTh^vQ^@ z*$SD(i53h2pIMnNLGKaHTrwXMSS&2{+sx*+7pK@taT4|4zB*__#b)frES8jF*KbeG zYf=}d*y0!o?mGt8`ct~mLU5Mla8isiPlFL^L2D%-33AvD&Xx#A(<$`hyxEP>?ocBN z8MKs(;4vBuE(0!Ew1i7A9mer&rR~$O%x2sS42xnVJUZ-J16VRKS&l9T`^usfT(IeU z0iR4Yn~7EL*}W*PTr=9LN4`{>(Yw;peIOV`<2lT(z`5#b8MoXVql$ti)oAUN`i)ZG z6d@8C#O5`!oPV{HMVeY8pUP4|L9-hL)Ap22IE2Qozop=`88aG(w@kg2;wRY^!|`Kr zC&ID4He7;ZJcem0KV@gstFcTS*ijaQBd{BU!F1L(Uk+#~KV|19?rVemrW=5lwmZ`%UfRq8T#VM=~fWeV=ZxRpT zJp8lsaMUrLEU-k8mNuig9?R6(ItPsj;Tm?Q6^fOt&ODyJ?9U{PWTLZ5%hL!mpW9YWi%^gnR<&*AnbZ<1rdz8dan?TW=^en zaqxsu$VT`F#>?0&MS8YBj$P+7_wV<5sUH}hIbFBb=~-M$S2=f#21G1VZ!zQ~Z&p^q zU@e+Lzr=g_@zUFp@CmDMmW$LY5DunG&yfPm(l9xs|!d9ip zIS_s_Hz5!0*8^ArX(%@d6~cBnp3h)cRSa9;8mT+|<0hMw$U-9mbTGC z=!DG}r*Y(k#umq2SjtZA(rCSyW$G=B24UHm!5Uoeu8EhP3PVn~j95&Q1FU8%=u>WUb zd^_?&QE4S&beQqN^jaxKs`lkcJRfgz>?uZq9Zq0^@&yy9zTg|J0$Qwk0+TQ}1B=?& z_qh4b)PY?nFtr_{RjLcqW6LEa$_)N(=`WiYzk)J@pPT+>*S~^N;J07GK7q;JcxbnT zJ^4m$PLw6=M=`}3?FmobbO}3uTWL{r`9eFDmarS7PZ|}YCF}-?7Bnk&!UFbDJRb}q z(~@N%E3F%xp_ed;@=q;UTu5OB+~|NIgA`i~A;ElSH=0D9l|g8HREL2W4;q&+3HsAk zH%?h0H#$bqAjK9!B&hF57JqxOaU-|S1a|^bAjiu0I-5n%Q#g#OvjXF9cK1M}pQ%-_ zau38Yk#3DzSPFrP*eIvv2TEO>3qxBYCWV} zn{iN)}>B68jc57Z#Amz(li%KB1UZ1}M3}GXM@n(a~!-eA}T)J?5@-XyH#%R5Pm7-b+aKfgCkqu;y zhjJsK6GrS>?&0NFt8v_f3$rzLNT=uK#*eKr;DinAPYg!0Xkfgy%F4Xc7RQ4}BajO| z_Pu0SA_BV?*X=GB79Xh{52crUf~To^`IhGtBmzu($;s=AyPN|-=mwxDAX#c<~%JMOr>9M0OwZQ-UR(nxS>x<*T~jM8l7q2^f=_P0E6%a$`2w{GpD z9Y1A3M;fnJy}0q@@?JB4OSRPN(=IaJ_qy0NF%2-rXBG5G@pr}gFj-=6w=C}1<|aZ+ z>iIU}vsM%KZzS4%dZBhUDD@Sn}wM^OB z)Ij4pjIh7{VAUy0=0kJNL`%6RzUaAV8eZIZ_F~^beP4AT_R*$&=OAR4 zB(P-7ya**-a3#vxZRO33KcNUE8FkXksW3{IxEEzDwoz&Yj)rUkgQff}9J%>dtPQO~ zE^7h}fhSG}ASAk$O<>R|*nUzMds!1`i5(yk@OO*$n}J_h;Bpwr(loE1bZV&&*_0zj z0zWmIZvJqOr6>)&L$m49ah=p`;O-GGig#!>0FmfDH5>S4)0+*$NZ_Zsho$SAUH1Ty zfKPP~zvN%%UDxUz7FmX|82+X=9e__wrza}Rr3l;lHu#oaEJ(k0*D_aSwW%N_IT2;4 zM5DE^U|ox)Y^@&ER|Hz7sIlQ-2_ZPmkB?Re#)A+}`<<>t1-GnPLeNO*von?{YNS%Y zgc#gyM2W@uCw5ti*9hsO!j>s&gyIPyGRhK}z%^q&vq(Snr7j}{F`=ea4Cg&%lKYAQ zkP<4gdF+JIqT#-3KA}6;gh3?WrAz3`8+YdtW}Wd=@4kF-hk6HyMDI(YXm`WqZIgl% zkSq(IRzd0eFfCJ*6;y(fPzWT2Xszg!I!k#P1ARAyWr`^S1W5=;*N{yb`zg8ZTtmc2 z;LD;LPV(39S*l7?zPq9e2n(PWT*tSGpr0QT=&8}19}lnf;>$WT8ip|+es2(aYH{7c zM~npivZ!!CetYj79KaW!fgM zV52EuB=DtI6iuO2`|&E=c|{x~At2p~K_`Emv!$_mbSnTMfi8OlgRtNZwYu2d^#~Y5 z0$z?!VlNxpQu>Zg4|V|h_M*{*o*Gn z!l$lvT72VWKO^-Hi!VSVx`(@C`Jf|YOVEWa)_(M_ACF^ckkT!cI0+3oE(brejf|JU zfW3mWoXV)+esoI>Y7LsZAx1$3kP<3s+mPgnr>>jBwm||VL^Si-{KLK?PqM?lviAmC z^`hb2kFVse_m-d}xsg(U&dy~(fukf8WRDG(*^LM5URphOJvIR|pTsC!#{2qwka*Lz zTdvr`{^jiZwyXhV8zS%$HnJszTFj##>#ik~I0+4DS>t#b6`s9nsX49faA#QpCLtkx z@o{|4hf!^~^Th!nfi5d2m>t;$^ABF&yQ^Oll!St8wkKgHf~{)cPkCYCuGvn35+brl zPr@PWCh2+_t8`bSB~C&^cJJT-QBUho-1UzTBY`jbN7HE8&%l_w{t<&nz{{El1|_`| z0(UhLASBQgy?a`{=Th$@I?Ct^BZ znoWXE{xL|K$B7Uy2?<$rVR_#sFS>w`K$q6fRwjDE?#}wP#gnqR0?QfS;|0CD<_a+q z-7E0tqx`F)>KeXF_<)hXms8EN3H)?v&8G_8NIy>TS>xYC{w*Ao@CT;f*!63AgDnp`lkmH$69Y=!E^1^+jMhZwbNjuOb z14T;D;lP#CDwXNLGP7>#5r)!DBPU@x&?W@sk*14L@Ie#cLNMs$0J_`%^;4+*<|zk{M9$nO%rrCTK2HU{;F zoOFbQ!AbGEqp2>bcl|(POD`0T(&T%Yvikr;yt3!Pt8N)x4ZkySq}F zorpW^Y~O_hTfaTgHd-8VwZTGytnZIyecQtj;kYSrpvmmkiDNFeOh|3+E;*#a$OUcX z?U6X@aD}pjx~o1^eKW)ncPn=#(E9$4zU$$TtKAL~W&LuL-QIA>)#@LY7&H4A4g*HV z?rr_D&M=Yo=m^9(+GQbi>A)(rZ52n{ZKrUEQ{O*vTHTD`);Xy^5UOG$R&cmibl9q; z>y{1^)VEcJiJ&~R+}U&^E&z#OJmzw%iL})EZD-!zlH18X4Y$Txf8dyaBRW3J4u5nD zx4yM9Oa$d|v3JBRQvD(n%OctmxCq)K?)I`stF7M-=$lsnr>jjXPH|>;sT_5*tb8;XQk-`~sbJ2~uZzlj7{zr<@BOirfzHQbi@`XeeSGE(Xf!P;B5P#xrb zX3NMC!02eJh|K)@H4}m&xW*MmG%{R`TA|r^U zmN(%TwSb%*qdw+xlZdqB`u(oFT_MMyW9w`;h)b+F+dqzr{S)z(p+gB)H-2 zS==5u+ASoNTfY`gkrBkl#SV|nreA@JpgjSVo5LL^QoZ$CWeJSnJudcaY&Pu*Tm!exV6&ybykXuAU+{C zf4Bu)zZQ_d2;L*^cB4o`sNaLsx1St#w(Ug1tZ%Q{K9fVvm+IB8rLrsaK$ET)>bcP5 zh_2W=Jax5W#ASYGw}>2dxHUxLtUr>Ovlm1h5aDjoD?f1}oz$v71(%#*fe=Y0byxC> zvsvRT_WC_s1z|39XOoEDplef#XA(}XW)`!^>$kxvz+9a>n+nS!cV;fy#8@|>1YLPP z!slkhEK8vNURMn#$pJwl?btc-hP=^8aS|G$-f`wDX9+knB+YX^E;iFSQM_!M>W@tb zTtv}_V8ymup!NMGfJ87JW~<8Gf~@a1X)E22xZAELGrhh)ukX(ToUZoeImMaXh<94u z)#f($>pM&;Hg2n7|A)yXTVGyyH)k-J1naHk5N_v$PWQ%Bi!Rrq@2Qt+-IU&bx{D`M zc9|AQ2QJaNMq5Wp-cas9O%f-C@wT!{vlb*oF3Gyl7DmCPSUZEkpk(xK5hQ8D_IRXV zqM%(U(FLLxT5CuVO)wn`rc=1Iq&=OF$MIw~ZAYW=An4@ptT)z}K0dbK(^dftf^~mq z5RKczU^a=)<0YTDWq*OBv~#rGT8UZtIq25H&Mcl>I&_MBf^J7Q>;>~d{w$=i%3fft zvP3MwvOkPQ@p#$>2MH>?(Q-{=v(Lw@e1dL|{Ixr;TMqO~8W*U#MT8gN8pGk>^-RA8 zE+(Adx+OdxO=tPH4lZDumc{F>4U0=9NcQ&P`6LP_?QqnIyEU!qW@|)LIze^|oZ_}p za7L0x9dW4y$xa^EE;#MT7>s?JC>jF#QR~DGY1c(2J~dOqESg-MSJ?+t2~6 ziRcDvL_#h>b0BGx+ug7OGX`)=YQ560UtGK(+glode0zAUP;399|cFLK#@xqcx#S?5VVaw6$Y3n-c8jQ&#D0WXf!3-`lY4-+o-4=VRQe_iVw~1fs zHiS1>YbcdW5bc41$fZG8cCOF@V@Ta8d;g9IC%A4)ekxk*VGOE*rnpA3YdT;Ym3CI! zykf7}TI=Je3#he{MleBIkP z|A1y=#n`ufLM}nG6JnuY4uVNN-PrrZQZT`@do38u!#1`qHS2KuT2qzHQHA}D2X5JN z=Hk|^{j;Mhw`^=(Fop?!R?wcUkHd=_Pb(kAOy5+;F>g-CF>i&Wjzdb*#Uq(AEf~vu zUO~Mq-%&<0r3jJ*dl!#qmL^8VG>dBF(i95DHE#>1OtmG3TAFHFsT9@7rJuu49cHYW zU5A$@anS9+FWd_%tBFe!PqFFqFuY1A{k)aMK{9lI`s*yNue~Bq(iGt=Cg^r|U@b6H zVSQvpCB7V)kWWzU?7A_vqI$6$5(=ky;2O4`gUqXj2Zd8S(WS(L!U>)O&|)mb@u2M} z--^Zx%JYqYAovc#Pq3{&n7IPDqe?vwdx}*Q1R?e}N6zq7t0e$mBrp(kEPv!b z8LcR`7-oUzBd>ty%!hD&!lKhPj6`WSaFksEVU(i04JAQIbS_UYhaaa4xBVE&(-@SU zBxsbP$^bwT0`lqqRcGl=H( zYX#kF+qwo-*-1MK?w|ugqV;1gYZ|$tL|-3asex8r)pFEfl_H^*t$a7LXpV|#^(ahp zyE0>kNI5Ek^bl-_&Glm}Gc2{$vQ>~~3I#|6__if3y#V`?+hg`K6 zGQ%BcGBa0k*jd9MLDtu#))E|=&fIuD5@dZ%0wkK-&WpDLj2TbnkgMj%p&n)X6ZRix zwQ6)eiw4nbec`H6@t)d8QC5wf;K`KrP53xml1|C0(c}$foHa?D7>dEF(ZYmCpQC6* zr||27KE}GUS`C zE*NPU#IS^PdU4|^MV(}>xa2j}?rum&`S)WYi_MOw0#?^5MWbX7PnoFq*0O%DidIX8 zSX|LO7{{o6TVQVom!eTHS#NhHpaNLBHk-tyb7BRlr&(V#B3AGroL;WWC+gbe3|i5; z^2PC_%Hm4OS4%YC(Da0;N+5 z0EJ5=I6y1YOQ97hl%UyB)&!O5nY2Lqvgxu<3mTw1+U%n?Ov$W<&ST$|~nM2$Z zmLn~^qmY?B&4JX2%7!BK?^+9?5GCGT`ua3HTf_Rx4g|IZ4oC>@F2@a13j=Wm0Iwh0 z=U|EeW~N|qJ6j4COqTO!(#vu=)&1?3r3THw2ozy+G+`5uV4+`oK8kwzzH2FH9G_4| z^vWhW3e^u1Bm@HSHV%=k_wI&kHLOBkF;T`UG3P`qL9|;zR5-(4mUf!W`fPvMcPb`r z9fyKyx)KyDF)2&k0V)(sbhRhd75-SKOz7)y%IGM{;*trjTR1K#Wmj*tDr#55kj@x( z-K|4AZ(D^kxXj5SNDgx(Y|PD70j#8`6aayDhQk}f_Ttb-BU5&CLSbc5j)vgBa}oY} zP0bN2<4J6?7=E_3Ns7;O5P=^KO?>0UCzVXJdWdTk1`1u-Y^9n|$|vA^1}mtfj2e@orR8rss=%a{R6 zg%fnQNp!F=zmCEzTYe%o4-sFcRi`XgLX?Olh+fLU@{Qn$wx_TodO$i>}%5>r(j8<2u#)sT@=E>| zkupIkz)Bj-h$jenpQIaxV{j8{nOv1ViIht)ZO2@Np}rawo#mW^kVtUwRuphB-=qeX zD$P|QmEhUKQAWL9{T8Z91((l&yp>#_4Tbqr#P1R7zRpMg@FqJ zSfkFTMC>&t>-nDN*IlAa&%#&)wLeW(daSLta8Fcczr3Xx5)aj#yEq}k)jHZfIPXDOaQlouG~ zsL&i{@m8rCH5dfyX)Md>JJJ`aZv0=-lBjieb4Ng0N!Y%(_&&W2UeNZP*&N_wIUnK#Xxk%>qFM) zw)=6xnPsI`mMyncj7^Fs(6|$ezk!g>s=e;A*evIRvA#&<6L7pg563Au@T;oy=b2;z zh#UVfSah$jZYt>rRTbk0i3A64{2^9$iz_q+vWBSA_!HR#8?RDf6CWRJtTFCU#mc2z zf{7PEyrU8h*shR!StG9m4GxZon0Ny14lDo?8u-6-k$bJKPnGH{7Yc#A8zHk(ZE*~# zj_FmYEKap6K71T(LJB7^}>mbJ+wGuO8tvaHyMbY;_QhmSOL}AR0z>rU$E3j|C_QUOr--yg8n* z6Rhe&tukV*10X2*S|K<;iY??Izk}88~ zntXzhmx}bAI_RpD3Pm!(#izBg7OBy_t1_*PG6@#G?u!rL)&Ntb-Qq$Cnxq7-#OG@G zO_fR@h$KjOi!_C3IYxkucnw@tS|l9+L3sq7`)PDf*p4UN5IlkUeab51#5o8EPVR7~ zJ3VS>v5Lc)3MQzy>&Aavi-MXnQ&on6h-`u_sk`9Pwf53_O=Okou2eF?#andYX9RGP ztdr$JRr-w?5CkTlZiK_rYi>}kGToR+C3tv08-J;@j6gbRRrHmSUXHKY+5uPiv?T+) zI#w7|UN9gbR;iA407Q$tg8(nNSS3)UgP@8g$ar-EKf}=8B!D{zYt+D1suM*r!Nnb2 zFHC|u4rdkTmkT9mk~U%z4Xd^H*|DT5I{@MGRFqDDC2E3G zs8%~QGOv=FP$)seD_KVeNmS`Xp=bh$JCbvDno(yJXVU9b4^027;9jb|D=;I1MZ6 z>+MvkGT5cbCm59+cQb%qImZ?81R%yS%zJP&RXcg3J~B(4W#kiZ zw@zW#&a8IBZ0W!#LJ681*}ZMTTSh&Z9C^rAAHab?&suaEjG8zR`&_tDea!oP7V@6D zP##N_3kv&RLyopwbTlm7?%s`u3y+3PUQb}wsTZu@5V;9eY_K0om$v-foG|?1|zD%w3Lqr2xg}7jXX?KE&^&J3K z9Tn;Iq7kS>GC{RHsWj`rvCXkWB*zi>vN>PT;7nM@IUlm9)dh0M>vF6GnW|}g6{~#z_|O=CB~Y$ED#Z#2cr>O<>ye5HESD$Ll8palYhjm zO)*T1b4@!0Fa#Z3s5Arr(xC$Nkro@GEslp^JPvV_=sdc44uR^UmbO3zD1!Dxf_5CA zb849Ss7n>Nh>GA9+69L>e>atlnAA?)XqSN^Xm3xnJA+@Q9hKAtVch;r)^m!Glygo~>B|JPG#LI5I zN`21S3Sa_=Xz<`P9uzFKwMjcI<27v%;ShxTr)&9JC#&JB*;WD=g6=RxFrUa_DXyE# z91uZy6pqW8!s5i(Wgn+zk5)n=NRRVq*H&4xSr3c{gn|%Od?NU z8jU+74r{A3+T4VV<+m09<*dT~L2@J1(+#fcg0uDDF#U@gTZ={~(<%4lRdr-?JH4I# zR!ppHSTdU$3`y#Pve}n1m#cFrBqR5ijYS$IM+PBv5638tg3-t0;$|FBV6H_OC9a(w zr8|j6>BuX^0S(dN9Renl2KWuE!XenQwGLcZZYE2x5)*;Evz|uff)RaI$xM}574DNT zYp715s%nK2gs2rBL*^}#%PkA%E!d0@+=2Pzq6&f6Tl_7xF1S9Or8vlvD60mPG;-&O zmEVtG?LmLi_u+SQxGB{_u~xECgzqN-x& zQaHhM8%$EMwQ%_!f(0af+4sVaTS9gQQM`QV5GArHq9N?PU!Fu|gEB_OR7FQZHbJy^ z1l2U0v4ASBTOa5h_0vj5A$5e*aI3s0JqmQ$2_ z9)U;nNNu>idIl{~2O6T~b1QHVfODOf9ig;P5vtA+9?|+;0{kc*vGVU6d)Y}^=GYT- z1p1uSLSwT>4DQxw8KC_s0`sKf=KOlu*~7m#O5bR zoDDr^3{xp^H1>7oL%1!wtUtJraoVxa2Zv43B`}Ec_Ch4w9-P~l8K#>;E9x39WY^*- zD6$ZS8ZJFDj)EZDRpc#ND@^yg4U>R%Q|Ae$-R#MX|c37zV1T>C936P+e01A%n?P@vDJpKBSn|g0i(53vEw>2Bgy`A8#xc0)9`;=2kCZJ)UF!mu_Y`u}B>Rpj z5MsBdGeA4>d^F2n6laUId~C!3E5}0M-kyOA>q^5(!Mb5vy!x`Z1u0~8n}8vJv-&kU z{s@k~%&}9fLprje*r=^vj)lOzEj5$eMtgxqQgHel!Gcd)sbqp^PZD3lFlE<9p9M1n zm1Bu}6I^vHPy*8(R6}5SCMPsj!_*|O${JH`E9@U5tH7RP&gy#|~{Bw@Vp26{2Phrpi>62d(Jo zl2)|nvrJ8skBk(_ky&e7OCV{LmweGGXuV-lvqA-X4&^k z;wdpg{AHqK&sN}K3OGq4e~8Lgeb)D0t|c!*d&RpuBK`g|-Y7B-gw?WdzeAF`(;KNQ zr%~DtFX%?sbCM;sjyGy46OwBK7Vo`9mHYy){1^|yE`lAv3$J=|ly!G`qlP31uMtE| zqvc^-un5#ujVbfZpIxR*2*YSRX{ERWjhnF+rE)bgyiP0hD@1|d^?v6_xNw(xS(`Sz~A7O zN{NttS^7&8?Ov9#zn+4|i_jK%?7uP0GWMRwdebP#`fni{C#$!YYe~j?Z&I>cJvN(s z_*rXUUXxIjonaWmV+!%=CS+-ky?N&a>_|C=*{?=Mb{c4nQYM7qQ0A`JY?TE4O(jVp zgx^d?H(|Y!roSQgEFZzP+FUDiIN1UY*sEP(u2ucGWUh6Gl(DnkT&p6_X0BEFEHf#X zk4$KE&K6BqnQOHbSZ%J=R*F8?iYD^{+v$0+Gw|ZZ^_Fw<@=MiN?xGX(JCdUV>Y7TD z4A{vr(-uU)%Nj`zB4Q#@h3R+;S;RVwdtw#>bi+W)pUOdg*zRf7=v&CvCg6<+8ZCs# zbz*GeD(ys%mIko9e;AC~=ipYHg%|gdAx8@YX&=nEyJ?YnD?@@<=W@7iblZDc^HsfH1pvHHfBgEY4Cmh5iPd zDm8)g2f9t=qj6`#CLhZf5$=QJ&4y|kFEuHlK-i6kke}z+(dVDp%~ z5!&*c6szoGWw|bUv}u(OAuJ{!;CkqI!tP(6hRbY6 zO1p4Rvjguk%iK$!A<4;HVnhY6E_}0K1GNVY#2)ir*Fa`hcA)}_jsUpa6#%@51&F3> zEuJjF&8zpHri>6GlvmXn!B_Jor)uu@VcseO!mZ1G@iv+&N!{*?6dgXD>E*ZRxCsa4 zQnK^XtH`B7@@}fX;;$B#WWBhPc}x~?^;qFH%r#rZ4oFqxy~6P_Fh?keoWu#f8*C@| zy1^`H&(_Cq2ShSCSau8raWT_R)hWKa=@j3sBK@89rh}z0nB+TQTHnc!GP8WSpoAWA zK5VtZG@q3;GSO!|DsLr1pXx&sdA_xYBzJ^dXE_7RFLoemy(42Bm~vgqz(l|-4jG#T zev!2a4GTdIr;03f+R<=4xO%H&Im8r<+wziYGgO5Z7=iUZ{csSn-q<;q(6QgAuYRo7 z6nMOmOeC&gBGwX#u^5jpTZ_@n2CGH5q<+vD z6x|(J;PqJxPsdk{M_sICv;-59g;7v+s+)Um#v4B>aLXPH2fXZ@S8JJRo_Xb!888?v zMWbL6!AZO}j$93L9!s30LM;*uuip?kk2%L!5MD!eI|%F&$Um;oeQEPplL#h+-vm!F zf{XA>j)@Kx-?&x7I*kWzt!1g^qX)|7)X`f?2g0LF*25~TJ7hjC-zQQzKZ&QI?N`|nE zdiM+Oi?PV^DmeGqeYSZlYdz@y6JGt^1jKe`Z>g78`$1%(ImyRSlwr)}*kf6jw&8;!#Av!FM-Ka46!Dum&H^}Ltt4&AX< zZ8{|6v6f7T5O&ct8r={2HjD+~HG?ZIVf$upy*&%rDyfE?6XOYZYYS;*2obhoEwdP? z^~*N963i!Qz6D?KBBaIf3jW8TvxGhN_mX98j8g$w--FYaf^24}T5i2)X2d$n*m&zj zg+k2jIe+|G7&Q0!leBVw`V!~H)(C~JtgaV4E|D(&5X#4t&j~2 z%xBpeZ-uOG&e|}&@VCSmce7rH|1P57MH~*1#|;eOH=oD)fWB}!8X4Em687(MB9Z zz1fu=%nUtZ;-XDH4<~uAH%r`qn~bCgU18q$gfq_zAe%RD#)**aH;}1v*Q3YPFnTt^ z%6Q-TCy9AnRiWk>?qN#~BfaTr(}CaRa1>71<)+E*H{(r?;zM=Y(w%hM(k`C%PGu2y zg)K{oAlR;S#FA8It5OaeV(rTnwkajx7E2=AlZ=lwGfuu>Thc_FUOEZ8^G;|}JsXSG z4lgxclVU7F9$m_5kX(avbo^11W!U&iTXRm7OSMhPVjKjHt+w5yoPMg7;LIlFUCCf)mq<(nMQozVCS@yWq%<2hTvj6V5{)L3>@_y8;GIPU0U@T)sZgmKNg*b1$|-?@the5u zJ_y#~RQrn?w)@kQ@6^oC>`&j1Dc8(>E(WsScz-(oB9s3*7GeNZ_NN=lAtqqFm)bCK z-3a(bW6`4bdRA-j4W(+0xv{HaC_pylfS=^kc|mMCfQ@sNPPI0Kpm8+rM;Z!{94Qq- zcNBDk@eGcAZU<}2uzx8YTx)fGtRa+isj2Y>UBi@HIRq9k+;+J$+(x(gqPvQXvo@tjfK_+%_l=FfBe7ApQ!v%)=O4}pn{*r`E^TU&$aoKXWG9J7<>#tVRq zsU~|B^-&x%+I}kcOGZ0W=WDqw>eBlO?UWA5?J3v4=OMjpCL3=ex3%s3F_bLHX0p^b z$&3MKN&4|!n$F40Xv-imS5N)REIa28bPAu8LP^U{m$NZi8UJRI(3RsHO|+ZFYdI|I z7D!3jTazp4{xlh-IDbkznl0_s%kN-X~HCkUSIjX({6lO_Vs} z6VEJ5oI-=p6fK=_Y5a_$WV6v%bDpv&C3$)KEP`Z#&mw-lynU9G1<6TqV=4RD=O9eh zV4Y8&C-siXgAf&Mp|6pdEJ0swp*Bt8zUhQngBgU{M!RBAI$_DVTLu;NsDEZh7)!HFc+KjZXrpCa6V-5zZqx!pd$*O(lJ& zRL%X1N`l~;f)QP6GwDXbau23~n>1hJy~h;-N z7AB!Yc)olEayXo{<4G67VazU6Yci83#tWb-6`fWNJ;MLqXcWz&U;w*P+p~FR)$V-d zx;bvVf4rKYmPU?nAFWPeyIK26d5{{o@0OPFAq-zR3|7PTbgj!SJ!+4_<$$gGZ_>U& z-g*nK$m|S)=`@@&cVHHPA}6g-*`3>}n8UdQi4JDN04nhFZIIR^apRMyDias12-^wt z6vKAIZijE*N^l}fr^ESR7Bx-PcYjZkB3#e&XrYHD?Ref8VjSg>Qt-|*Jp3MB*!4Baqir(WTFo%Y`MZu6*z^jFJ8XO488i4OfiY!H@h(WIpP^j`J>?2Dt=!XlNvf&?Jfwy^Gnbowy3KxWZ+X)kZtC z1FstDUF47@N)a~=H8$m$ts#7`FA~KAr*sMRiKsOiC=7CqrSBOc!HFyRg#G!D_7mBxY68&4g<{i}|WbGXe6D&XfkpwXvYNI%vZsj7?B9U#V|Nky9Y_ z&I)>iYa7c#=@b@UHD#>k3sh{GX2|4I z7Ia60!R1dmONLNRPYoW%@oc5tpf#H>l(o#`DWO8>N~4~}J=T+)EJybPqt22cl*6=s z_E85*cgp;93d8J7aT7j)zxG6OIcePWG31idfGl||YLbZYx%#FpMqW#?3O84IZy_Wl z^Aj};^CpX)Slep0_VikYoO8>fC)^@hQF>+O+%==v39r>`edv{$^E}I<7u>K1`9hc< zf@?_3H{lM0Q8b>zHnj*=)on{6chp*V?(P+)e4Bx?Q_Q6-U?D$DIdb~9Bf*PI}z@iYfn3Y)l_-~ z94TAl8I=lBfGuT3IG+t>gD{xR+I9zWRlt$5^_#bnPd-n(Gr2ZD&&=suGC%E(<=Xr_ zGlzGTyyaL76Q=iLf29(~DpgPGdZc zPmZX>lanC~hiv8SVA2>tujP?*(fQ4r>$`a8H>YQ8t@h$UbL@;qax0l9Fd=z2UV+O8 zqbc+~8#7O@!;O*-VL4p6AGP?LOP1gLr^R1E|C{iOqH7v6PvbeFD&;S_hVUBWD)J5- z7}XTLH$7m>6=K~#8fUd!hSAZnU5OHYvX;<)y$b6 zfW$cwzB0EVkK2`Y^i%+p_AeXBZ9_-JDEsYjo{mNvIRyy5STMsSj)7}tqAOb`c%4Y# z!rD30UMcA&#=Be{kZxv5>{5`N8y_!GqXA>1O2o9q86tA}rs-ze>#Cz9Hzhej zT^M*XQ&id9ZlYA@OjxC)@2_oj&Mels#18yVW@U5P>s*gyMa){1XgL#fe=O0G9HIX5 zL?dE;sA=ZLN9NS1!38%${Cq;Zfhn-8g?nA|oYEq6MZa6jmNYR}lI7h*zgy);6!2A2 zG0EK$;b=ocB4^TSkcZ=cQZ7THgsfeVxu>RU!zS&5 z5G5+PC(&9Xb5B`w@H&UC5+jtwiL%^IfH$j>+%gyOEz~g`W z(4`@*4L`3ov1ePZ=JUEVTHB<(mZ{2oH(QdX*Zy0E6fxmJBNemc>2+m{UKO8hZnM3l z=(Ss#@*%l6Y^JS|9KCMG$Z1{H_3iYH6-}?FCg{9qzBbdGHj}S84d}3$ma{2-T3dOl zaCyS$YJMQn)m4Tt;B=xrRlY0TCyS>%U1xjB(^%9 zsoZc};Xo%80=hb2sw?~;bJ&jtgcQ(Dg|nNCq>$5^j1SW@O1j{DrVd^j3O8L(hBkGp zk;rt-^j0C5)W_&QHQMxS^b%xKj%aV_RI>Uz-oy#qM6x4*zS>AJQrcM{Btz!=2&GSAwg(P6PjvGgnyCgG3Z!? z)+%2rVkn1n8jLR$F-*Lm+t7upL`Ly^FoDFxXu!UOjs->=b?KwE#qMV!@O=K zpb3+Sa7BFZdNqvNP^@TeHj53?lDjN%LWjS$4kiPLd#b z#|9l{QK#*#*2vPk({<&c5+KyZ$uAzOk}NsngK;b^GgGmkH+h5Y(DO75CY=@7?S66N z1(w6l>8Gksc{d$`J|@zy=~hZ%;8_|sHS(j3bD0Z@n8|8|A!#dV#LF}u=dcn{;A@Ia zVDr%=SPKX3Xw(hQ+tguJAhd(SjW>Z=iD@OpnvfznIwC*$<144hjE_sSBT8rphFJEW zYhU(f7dN(9m-?BIiaoL8+44TCUD9VZQ*+aBrj>32fuL?c)X(p|&&WI2f zJtwcZnf1PndrsDDGkJ@Zb8(daFm65TL@ZxV7$vk zu~jpr%8PtBEt0E*a%9(LT`rWPQ9k8SFdE(uDRWwc@^C2{b>jKRuIaYUU)kw0o@}%@~uCk}g7P4}kcCzud^E1lTt?ssdorry^XV~5;UeXwG4jj&p6qMDU9Y3_m8 z6T{|0=jOX|X^LB>0v)Y@w-YZ<0;|Q9HEhzOBOs~J+>5No+-uPDXqlV`7lZ}rj#1HwPqTwh{lF2zPpCH_X=hr;p96wN;)PY`xZ+9@u*yBK6lEn!vV$`B6 z<8S_b#4Kt5Wmys zQ|!T@y&TTk;UFA_c7xl-08%I1_%ICPv|D*BNY;rPGV)%uDfh;Zv}q~hTXBpzxKgfww$@Rb!#6B|5k&wHqkIx4liyzZSmYKe^V{qH`9sQJuE4+0*z@w34UJ5 zs5!oqDY7VnD9u-NI86Q6*$?V7WO~>AlqEPZFNSuz~3y%g@f$W1hZVgv=-z7 zzLUuX6j3D?3KKKVg~AlFxv;g5b@<*vupUlKw#^r&oYrJFmzYQ4=dBchD5c-}K-E54 z2BkFUz-flKItmWjc=qD5s=lw<%060Rx2MUPS&Wh{*v(5y^r5_&u^vSzv7wV@CD|xp zVo!VP!Yr_@c01`;EQf>nf>y;0b=FZXJGI0pMY)85K_uGl3h*nzq&qzqO;@}yI9gx# ziIOEwLL(G324S$e-k$i%iL!OEb~%v(B}96XNW9!;$BHgqNMj^db4XGVkcy);6%p~YJHbM z0wY>Inb!Vp0q?7=+Y}i=d`hY1-9p}9A96thbl6$LBMqXy?P@K}VP`FjLzG&Ra?E8@ zB7yF%o%eZd$1#_FlS`~Qjl^+L>$)veWoJT~wF&|kuLZ*Xmysc*rxtcrgUKXVZ*{}9 zr~~6kPbuo7lGoI(=?(4eEQM3iY~@x=q^w7(rUD(&mS#@s3$1L*q=LJ(tlL?d4C!RP zzz#w|m-0oRzg&YT2O@2Cnqsw|QfhZozWL6XEqZ>`u6ilc0 zS3Qgp4?%h)JU@nmwc6cinBR}70Q9yRKovLy=U#S+sH@zrV~Gq0L3WhyZ4I5Ouufj9 zcnH${lW-gc`I}uTWOJP|!;uhl2PWZkB^c+gl&k>nmKs)=Kq2_{PU68}Ggu(QL6Ge$ zzL2GY-tdp1R`CQt~zeNZhH-0NaYJFTK?=}tRZ{^0anFb>X# z&MM{|HHw75LbSKHaA|V|<<+T`84iN%z??O}?sB$HZIVDC`1YZsbh5l3r86Czu+o$YBlK#V>Hk^cQvoOJ$YS!erB$^o0dg)xsoN z0D&lNchHF)fqGGOP=JA;+QU%g&&g`Gn{OGZuJmOshDo##1i`f{=$3U@7OFo*RU-$x zbQ8^Idkr+`zu-BZnrzvu7;+-y(F62*A17qO-hHOEwZp^q+?+cFolRP2)4bj$usJf z4H7L(H?^*!afF3Qv^WZaY)=ULZXB6?b^icC5L~;$N&cxmhE-CkuIhFV5Hgs~mkrS` z)V~u<=jrJDZkSMT;iwpzN)EbMXD!F3p;V1~tA zEupXYF)TSP6$?SRyH|8bhhfrb0jO?k3|bBv1>CvXsS zdmK_~y1HS4OjdaVW! z2&UbGaC*r{ni&Ry>L818S(#Puv8PA~!dCJ~a1eC6#&Ov~tc5+zbkL@{ z_X!XPrhPC@zYPY;-4xgA^;`mjVB77kM_7H_fngx14o<>O1ZRSQtKvp!)$5QH2|)s8SwP#(@#d-YG#( zu>j^;e|6MlCxIEG=Ew+ac}QX>9I=sX;bXZdpm)iqvrHk2uD z#6=)WedAB-0|)I0WZm_QTS=*DF|RVVqs*uzQ_6Ptg#RhkD@WyD06_FzbvMNiYQC zLE#&_%5Hsjz&JBn0!s#=8~ zfom-@yH0D9Kq2@JNw?3H8tas435H<23(m!37dfZZQcbKpy|k{ZGn$}bBhc?oer8@@ z8&ygCCM*Y*!a8-6iihOx z;nYK}S)e4&I$lSLhNBGoPbH_WKdbQ6_0*2Ka5z?bwmyc_6O(DZXO|41q;IP;b-UGs8Hh3$uG>L<52j1Z0d5fy+g+et7Crm7|SnUNc2^o3e zQ%YtQJI{-<3!fIMMdpPHk&uw13?0~P!!pDY$0Y4Dt)D3$9Y-MV9;^BA@ zo^N-(6pK5Y*iikkLxJ|4%DSqL{eu%h9ji&9TI39Sav&ycQH81W2BcUPP6nMpNlj6or$-*RL`1k;2|gvxT)(T#IgbI#SnEr`G6b$*bzS6AwJ;7jdFxf z_nS^Yd*RSuk~r&iFbF7OkEh`$w~mp7T(4%z;v%R|!mo;R;jYBj8!w}%2;$@Ln>!~# z>bPEAs$wE&nH8u0f;;urw&D~N!Fx<`4cwtETMe|hZdD+0tYLpIZlvkI5BHh&KYAs* z>Zt!W{Lc~&-uK_nfBQ!s`57MhZ~T9!_~*~zuUyOjY~z1E&0jgk|Mw64&(HBcui$^a zjDP+l{^wo%&x^T)hx0#CB7y&TH&62?_-`NKe@6Vb-8{`l@;}>nLsdEC-A0zv_xDTlQ_4Z(KPHW-IDT4_^uR0f}q`g@69;ES{|0+Iz z5`f*;{}hIQi!ogQa9{t^_|C6m_*RVhIR5%+eDfXn{QLO)h4{|zVt75q{5`(^T|6G& z{67regTMYf{`$`tegI>B6`%hN!(ABj5Pbe`4Bv|Bj4_;I`1zpW`}$ABH*d#xUWoAz z!0=}P{(1}_j_19;9DEdpr+Eta)yMJICt-LJ!xv*ZFU5CWh0kxm z_>bWG|AjHXg5f7I{1*K6gZTai#@vVDHjMul{Hl-7F@{%Scpbj~8T|EkF#KbTzZc_Q zgwIn9--6*^VfaHB{vp2qew6YUjM<4{3uE@;^N-+jjNxN3&2PZ)aTxv|h9@!nHVp5D zH!t+B#P|OIWBw4sr(kM-jL%<)+WS*{{$324;`8nJ&UfMSJ2Cu23_pe`d%M0b~9LpC68bUV|~~DEdVhzKnyxcV3Cl zXYl#g@Xde2nE%A*Z@@6XU-x1BYcTw84F4SCSNOLW^TYW3R~Y^iD(4Lt|6EMx0T@0H ze|;c6e-DOVg716}hM&c+uEysX{`&hEa|M3&#~A-0!0EC4t#zOhPPn&Fbr?Q@C)(Vhk~pN{paEP8yNGq`1~dK{PP$-2J!qO zKA*<$pE3MbeDg!d==(6uU&7}W{`w{i0}MMDeg@y~n z&G+FuzlJfN#PG*3{skD`gy9t!emnkpAExsO41W>B+cEqa4DZHw9)j;L;q!ic?%?y? z_|9W7=9w7tyBPC(82%O_`Bx0@!gqca-}zE}eh9wv9~k~4#{U7vFJt%&3?GHRp2zS- z_|7f({675kt1#xPF&tpbZv6E>G3Mp?d@DX5!0>PIog*0kjTrN{`22GiuHmo$fX|Oc zYuS!5Ps5mB#_);w)z{+lGco)v3?GSa{x&{83ZFxK^8!A9HHL>V{4tFGP1MO}F=h*X zbr$2l8=nJ=|05oc;osq}=P~>^hQEg?ybpi&l=xu`{~E*J!C$xFx8I1*BTV6o@%buz{!V;;8iqX#zYoJ7!06&G`KH@aBd7PhreY zWB7X*|4s}akKsRIYP<2*H)G7z82%z6c^$?-6v7MrXW^UA#_%o---2&`0K>n;@JBHG zKm6)zF?<%rJPx0s*@PBzj4{8B&p(CFe~aO_Vayz#@5bjBf|LvW??+khL_F8yuP?;# zFERd+7`_XC-G%Y5#F*c}=O4v%K8E49V9Xq!{}SK-eT?}aK7S!Te*%BK8N(-II{ysM z7y7qh%mEDl2jh?6^Z#PFj4|JV;Rw_D28{m+eEtZA|AA75_|8vb%$xD~&oKO42ru-X zf?xdw#=I8a`4fz}5}&^xpSR<$zk)Fz#^?L+`5OH7-|_jc@cF$c@x%DM2jdUp`)|VM z8!-Ou7;_wB{vKm~7oSgH{Lf;{cS6jC{&!*g4vhJK7+!_p8}ZF2;jfRtm@miYuf*pr z{`xied;-HOFlK<^w_wa4;PbCz_+0#U9mAV2=9T#TFA!en{}I0bbPR98__yLakH+v{ zG3Fk8z8RlijNwBud^UddGW>N9hChYjJ_s-L_u)GeeCNk8d_QXM4vhZ=eDnWd_(d3V z3%>K!81rC!{t}FTEk1u4KL0oV`kNRY!uVgs@F<2~hv7vGSMi+*e)Up}`5S!xB7FXK z44;qhyZ}OQu(9TOH^#gd!zbfAufngs9G{KEDm$e+Z^gE-#!TA{|Mi|6XPF-F;B&q zzsEHH0-wJXe|-i%UklF{`U8CKVf=67o8N@relv!5U^v5feg?zOK|Fto?|(0b--qcu z44>y1J{7;Z0pI@$2ru+Mi1ELOF~5Z24vhIR41W;ce+0%qAD`cW&p(a7{vF1A7Gr(~ z!VCS^Vf=ZFe?30G1fL&=*nS0Lz8K&CcYOX*eEvFo{$+gg$r$r_`239+-@}-{Lk;{7 z#&5-#r(yUT81o7I^%y>XCw}$s81qql=Rp{A4L-N=od+PEPvJWqjCmRUdNaQH0(^cC z#=jTCa~S^;4Bvt=KZ4Jz`21k5c}(qt81qH=>qqhV7^Zd(pYOr&J22)e@twQy`R6eH zuP}vw#rXfgm^~PNE{31N@X;8C_|CUs_~V$uag2W>hNm%nHpYJv(`@1M+cA6>e$~Zy z{sf*c^tWLAjTo-uuRo082F6^4>>h_P|A8@Y!0;6q^ELSVDGU!{%wzERjTn9!!$)8W zpO4SS;GGNo*W#NWM-1PJ@n429r!Zs}uiuA9;N6D@{@jPliSNTP%lmN1@&b-nUcdp% z3;iWb^Zk&{g+3dtywLv)#;~!<3;k0ld|&_TG3F4y$p$1Z z;CSSP{@d`K;~4*Pc)qXy3XFL-zW*)^Z^f84KC@xS3v)5j*ncnd#M8mZts4(#ON-K7 z85@tCj#r}5`Bpb(Cj(DgWdqXW=U?JOae9G{vEHma?95KlTU8h(!XIJeDxqcBanRa1?-z0@-(It zkow&V_3scqoYT%v{J5CBjo7{^58G8t4(>HjU;Wm+S09nmP(QfgATam<4CQ7Rd_HBM zeexmw69HyUaDT^QF!FdW~&B$FW1k`uuf%+nivi9*?4*e3##9&4!dk55<`+>X<9>Wsn2B?3wd;$pZEe6tM~olgn#KgMI+>kFJ?8-TXc3Ajp*OJRsRM{11$dzCv9PycV`am8!EPK(YsH}ge z_#1T@64Cib^1eZY+^}KkN4kJXeEIrgppD1t%)XfARcheH-#$VA7TZYpf-FB00#PM@ zn+G-1W)&syrF#MK59vh`>v#C5s8ag-JelauNcH4=y5|m%7U>+Hpy{XR} z%frdbgSt407|eg>eM4L{t~pX`zW>Yn0?msXbAt50NlSK3M9sBiMmU z(m&49e@HNc(U_(AOsGXa&)!G`sGXgaMFgDE3FzzFO;hg;BG^62u60UkLd@4YbP@V) z4^t6?>1=wI*?E`9IHSwZ4`Vl#0qYx~;fKpcRTg*a67+NOO(l%lV>p(3NCb3r0oC() z6i;aCJw5g6`OH#>uJApw>cD)CT#A4pQC?XP9Sw95`e8n%nE)c@urYbi4XG`~x{!)x zn$>f0doAn`5)(cBid9msq0aT>E80<>m7Zs*Uj@zMIGoJZlPd4VO4W2rGtzr?=oK}e zZ=tVnmVUl@zFJSeVl7l;o3GO)=tsC16@VPW{7OA>{pcp6#Cf@jM$4=kZLh8b(0;Wi zfgG&F`r@l}ar${LM&huq9)Q~q1rEHLRZ`sEpo`IW8CZ+Sshqw}7qrcwV6c_|#Ba;g zcOUsqaEY#jB>Qi9?Uh@&J7i)^ndDlBljNyugsDH60Vb}IzF9<9Ot}EfO+rZz)m5W! z`>_|5b(v7s!$>vh~gYA_ek!x@eP;hS?;OJwNq& zXjbprPnuPeQ3jb%>-bUHlwyh-kRokLOYhlO-w+x<)}zOD{&~{n{^eLcuP6>b4nRX_%>aFiR+y&K`B|7_;>1w zn~W~xB|d5A<-qso0!;e<`2zB@;QMqDCY|#_5!t#974;TfNL4$6s)1B-nEqS!^i4V? zIV5DY2EVDD5)|_`U5rVUy+90YiBQmw>w=8xO*oZ?jHN#AHBfIJgv6BYh*7;M5^5bk zPU}rf@d$%Qx*$gNrk1EyZ({1lb@E2Wl9PP4-o*4zvGlci)2QCb5iy%(OD+nzLnmQW za&-xCx-%T_I3L64y!3Wa#2HCg4_jjDg0L|XmlnCp36j8XMpE+(hOzE>A?je*BLn|D@Wm z9p3^?z}pXyCcvngP!nq%$N$l$08{=2NSQVTMw%~7Tx$|g$}ce~)RopxF4uczL?MKO za>{fv3WRcgmC4bXhMJ7By((megOvbZH za!6LW=|m4odZ#YQsKzQbIa>3gkay`q>eAuz)u~*R^vAj+lR<|v#c@fwX7?Ul+J4)b zg%+d)NS^imnJ&y^W@0flZJr1<`4_&#lTw(ToOc!Y~cw0g*D>A2H{J1XEzIue^$5TG1(4NFFa|VllyWvE*iAe4f zOip$|&l5C_;=-jChT`)NeKoY-9|ng&>B2p!>_fh3fPDT@=1-9R+EW&%&^k`i_!vtg z+mt-RAelB?F)>vZ;4nTP*Bu|W6hRO~L6RUjC|OB@NE9SVlwbAt=DpY5U%fXod%N%l>@NLPeO+DM zUEQy{dN~%?9<$k%swZm2p^562XW{eZ_`H(oL#r53{&>1>8*SO0jlZ;Fa`^U8C7JV{ z&KSR@CaIkxCaE2tkZT?C^j3JV(}>zp6V*=j$lzl%N$m^}H8~#DBQJ8>w8m+|IM~WX zSI(oKLNTjfCAIs#d^fe?Js$lcSXcbh*ifh=>Q?g!)`|VLBxj0c#6LySWJksc;6U(p z{;)d)vG!~Uv3Idp{#+4rjDND(+JPOU-ZLCh?H~_Q?;94W)&vi!53 zSZ?Q*wF5y&{mZaO^={sx<#yh7EcOi++qsP?=mg`pS#;-&od6VK z-(|5pRh8w|yIk7|;vxH&aAJ7uH!{a;u%|P}FgqLB<@_=Q3dWdQR*uMxMWj2|@Mj)J zkn@WrmA(Ri@uo(6tFHi#Naq(@J`QG9W#w1Qm;37d(IgH%o3S4L1mK8veo^(*28z}l zb*R~r)$qoSBiRo9|9q~r;cN*vtT=&VVuE*B>~^tM5)k))CVFvVh3#luXep7}4x+zn zM7wRr-$~n$?SIjS@MDZ{`fS73m0HV>^JO69jQj#>j^jG;=+;_?z3hVA6OCMdDaa#o z8NGc__J+vI7qNpECWSbf-|d zyq8rV9T&0=K62lF4MH7q;WHB^)o|)`G3(<`u5IYc4;0O;z>@nBcnvX2YKCxr9z1jW?8C`w(Vw6Gc=}#rE z*Zta6@^6@;h{hbiwkJt@+{7E~OPk{HD#6wP$nP0~tLOdMYEMlXJi4k5Mh|I>kh3CS zM5wjQ_RX`bV>y?Wj(d)AsC_Y?ojE5{_09FDMh@vz0&)z?Un%Ua=P29D)0P0dk%749 zU#!Ucnw8#qDLXrCcNp)l8ozJF&8gr=GY|jnhks-)V3|Z8)gxriTRSHpmMZ5i7w9pz&V|k#vt`T1U<^15u+tn8psr)T3q#o zjJzLdg)uG$h0Af~0hIqlD-SNc@>!`^sYC%6ihr&ZM@tuaGx=gX%cAs`T4{7n$&;GN z&(7rsqC5xy%=aA=JVaqpa4{8tS^bhsg!wF>0bm=snOg3PCVk{Q&1&f|7dD2>+Is{j z+oP35MYA<7-KUkdI+}+$;5u=g6?jzfTv|h|%qZB$9M}rtyl~`3HD+kUteJ&jNBvs3 z&C6Q6nI!=@KLcUld}%-~^fy02fLTdnhN_@!rdXKiw%&jSu&Tna{!^qXkMbDcRV4xV zR|bCF_)30`%d4jG!gPw=8zuMdpoXxfQw6vC$x@X&nUOc0CL!-;Bus6}cQ<+^k)6{v zb2NgU)fhU>Tq>W3M>fory^Uh@kqzyCgr)-nl_|>2f0S0<3g8I!v6(k^;fi|!oQ@mM zI1GwK$@)AX%PPlQ$7W`;v^qkW*e%55;VfH*nsP(bic$1BWn!zY^W+@v* z9iVikMhP9wtR(Z&$GR#5^+HKb5mX~&_gzBl`k>-=UM`$BRB&Bmdg81`0N-f9&O#d} z5R$O89 zpxfnTuF!@pxg;3pRhE@#k_I2vL%=tXhgYRMzGju)C~6lHdLp3@%``ir{sS2h0V z1G;iZ5uc6YVL-oO^!ZEQ_0k1oWQm?F&&l*gIT0ahDNR%=mvXc=gMei;0i#m5$iYg< z{#dQb^@5D-8_0Xjb?XKyWG<)4gm)$wNY3}kC2=zGikcjps7sJzHrLI^mSUk6Z8m_> zDw?Ekr_@q>E_PRl__ihjoh6CPY+(^aK#;MfCL@hTZ`Rspfrxc95jb$2K%-9{)Ru3V z$VD7HJP?jWkhi`j4_7q-5Ff$JY08>X z(b1Z~G^Z@oWC2*umg5y5h;5p%p)I_FPtClT!NzPHZF`Aq-k9WQ@Lc};t#3m{B3C>BR zRBl&IVw%Oxfhxy5yK54*PT?d8nJZOu1ge(rGhZp2Pk@+AMJ2Z}Cu^dyHm~Jm`twCewi#*r>-B=%PNr{b61L3R)MF#NCYA=I7Sm+AwPuF? zxXVJ;P9_v^mS~nm+7d_8Gvw~VLCP+%soN7Q36Z7h6hDA9;) zimpK!FzT7WM2_&?SU5gH4^{XC*~xPh?7<4GSyDC7;G9X7taT+2R+wVsI1OkGBB^5Z zhTEHYZPudULS9|@+4)>XE)1I--p##aaGb_65%;ASb8yaHG6znO69%5cPN({A(UM*) zs>@ue%+v!Tka{wbT)ih`r<9p^R2#U1%#pPn<#uL&(E$;&X%)% zo{-zj@Zq$f70ji}p+*F&JB>g$I95i9kXf$3B2OHdyejf;o`1^)^6u8gHyrIyE!353 zNUSLXW|Mp943KrNCQEU#kezq?M&j7=pv3l`2_Mj;Dm@{TI#A6I8iv_iPG)BLaFvsQ zKZ>$J^kGdTR>OLwjmSc!AJtI3?<@u~8OX>7sdl*@z+2w>G+RrlWanO|vp%YxOi8#rnG=cRfw+#P(|B$xRyRE`{aEU3CNq`^0NorRyalzm*~6$ zm0GRPEy?RcFP1P6v5`aZI8COtClS?HCUkF4qVG28N@oe)>c`fgq#*G;to6nYB%G@; z7#)wYs+>wmTt1KexlFgbU|h&Wd&m%ao+i}V_|t@1f z#fo`+sZn;hU7(55x_E5zuD)tM-(%h(s7J@ALF*z-mew&XS@`0gHJhBCuuC*yRzR!O z5uU3yx+Vsj-uogI>v$Zpw7d**y3LffaD-{Tw6nR@8A4bsK^*N1 zKyKd1b@v6V88^}=LI>xJ3Ev$XU#(W60SIFHReIJALz*O=*-U0;_bRKpgL8HX*4Mh} z$|^T|bWD|{vpbC0CA6)utI8%_PWEo6nrstnyt+y-p>0)hI>%YeaZTM}2Iq{!4L{~~ zxXR6*_#ER|VsuVNGN(kljWcgA?u92jr8_XUqg8H+c2mUZ9KXjL?Rn3sFta*AWtG^e zAVBAFGV`#$RJuJ%cl}dUF7_HxFvi>MMVZB~ z6_^#v;+#*gl#BsgvL6_n=f}=V6g@z|^_pJGq?Q=jt-%Rb=bHqC+^7jzDjw10YF3|h zh@<>(VLp%SCs@oamCe#PQq=s}tfiyxG=P6i+m5iR9|{RJH4?=vsEM(5HRSQEUb!t2 z#S~ZlS*U*^5tl_B=duE$hsC>Oa$wx&CQ@_0omeYdf_4p5&3nS;)K=7FQ2(V7LpL?8 z@5?M|uyA()0D>>y88S0%! zpR0^9rX2S-#g~8tM^71y-udD#x+X6pfQ@B^$BpN8;H#vuxi=gc-{i z+!LwI$_`{_$6L`b)7}~-_(ikfJkVC33#(IEgLhBF*9F)Q7zW>#^PbTx22#^BQkHMq zfQvp6LNi#h=i3A+F$BIOGox)$@R_dhv3$wHylMRVMV9aRl7@PjQD{54)lo5L*&KH| zP@`qFoew(XQ!!PYHF#~O!e%iHj@w%)WlKewj^l&ci>^Q4JTrdTEu)_wxZ(1dUj7QL zJVt#P?@i;eimNpU>LLdLGR^c7a#%zXl13BYuFDCxLp!7ViCTG_rt4`) zHm969-IO)=Tji62d7?+Qq$NIdM4Y0DfJX-q(s`N&z^Yb6H@{@aF0fF|WX)#{(d#HY zL&GB&O2Ctq&ekM+-3;kgju_bIhgwNEyOd1f_+t%+&psZGxcyW^V#+Te`%8jRFVtXY zg{HU2QE$hJ7i$0vz#*X8H%rd>M#C5EajAx~)%XUyTmzswO*KKSeArbQ483xo+K{uR z&Xr&=yGBF6;sGMrpRUu8IAKLdYONbIEd0ZK$4%CGlZFFZ4@Vk*uOZO_#q1n8mTf;> zzQk)XTL1V^Wk^5^1k)hH4q8NDJ92=8kEU@DlK>pUKr|d0x?Cw)w>Ca|MHCe@elTIc zPr=pxC!_u4JZyUxnv;-MF)|2`_(RF&5s)DW=26z z^WgDlzXbTwp2iyF({%`h(1Sx()Ddn ziXpkL3#H{*xVAPi#oQ|EgC0lQRg6X^9!R7xW?Y1jxqmb4CXWG z(X#l>Sa;o?_)=6Xqh)Qe<}-%vu$aK6ajm`iECD#3foPUyaeO+DB4RLHPGe||%PR7f z?Sytj5XezYb!nwS>`Mrc$$d{g*LMFb4BZP0q3A`h#0aj;W5z;DNsG;$b^n&d3Nwi^qnZkCLG7e^>|y8x1B2>dE1 zr^2h1C^T8`A0mDSjgK`ic$gQq6U;X3A)a4psO=ernO(}t5yh|tL274>lof2akdL<( zPAjlDd`f)hCorLiq2xsVt45=!6OkDT43q<~IfP;=)X+NFSrCTM)HOBDE# z6~EoEjgVQBtBO{R-N;9*!w9%^DW8qvFi@GOQL$Xw2HY`SxV*!4^jw-C?=d7WOB}0# z%Os79ZI-zFuh$kTukzsHo5e%C&Ip)=de)vA70WC(;LVkV%YH1`GYdfuUMv~E> z%ltcIwqKivca;noGuM&Yyd8Lso$qPOwxl!#nzckGSCspNAw7tF*NF8u^g9!b%j)Kg zm?QXoO|ZGC+q&K%<47>BIXE9x!Tlpmg~`I+hKeAUho~E-`8_pXtWFCvDoE2CP5OYK{*r zpo!chO=NVxt5;G1qbu9m6O&` zz8uM!+E+7In{weXhOo|%JWFdRbA3L^sT1YPEi}0n6K8^l_`@~vX?;c!FQ3Fv0ad|~ znu5(c;xD&;?PM?Dee_(56>|^TsV5-zdz#pe%#lO775PvojXHCd`H$0_Cuj;b>%<(r zMM(;jkD^-8K3S96krOthVl*=MPNIBVkbkNszau9M<*PpO15Nz+AsEHnw1kgmdS{s~ zP0ucKrH7TAt10QoR^|p(RFP^v+FL0deaEc6q z*+@w#U+<51bkOF%(o}TR=0QC)f4WwaJ-L&XaAZf<+l?PLBF3znqxMonqwm5h2$c!xhp-_4r7&MO(|YpasCXiB&0*s_ZM-KI(2V~CPl zddQucw!Ma`tu52tt*PuNpfR^A%{A&?nKTY-6sqy(VtD<%nu3l-)>&0KJ`@cS(HKIZ z(*v3&b8oonMs@N^sXsOVeU2-qo9h<=S8>-;6P=d_h?`CA&fCXxnQq^>1mSCQYmLw3n zj4F0i8)lJHUnY~qKmq;QvGsCBsK2L>wmTJCB#;>mGKR1tctuTcJ8oQ;4|_e8S#mi@ zW_t`{xXpd(<`YHZL*2`R053&a&BQjf`nS4ND3he(~iV zyran7-<5knM+{xL&EHIt6DPT*n@R&(4>DV~zNe&3ORehE)ZJaNvSUEgp_-Dzm53`+V;av;Zvj@NV!LmdNi@&I>|rf=fh)UlbaMd={l*L2O*IF4=0LRCIr)+)t8 zlY-IYA(IsL)k1U}1WkFmraEm8p{48isuiVYYD(uS7%@s~d5lCYDtwNnd+OY@E9q8h z{3A{4TuqneGfbw^>ttC+i~dAYWfCzaEzMiDsPn}KI)0|^vDsC152HhNhgRsl$LNQIi)=KwOaWR1Yo(F5%Pzg#}IF zgwA@DTSKD|e{mbFs3}VObf~zt#9;ZVBq;Md?=Eu^=@#*8%kw%6NIc11QO+hOhYb|n zW;zhWJ>gaSDls&E~>u_Aw>gAlkf~Kc5O>@~Dg2+amXEw=T ztd~@v@L5gaT#hl#d>vZvdrniAc2J>>W;1zZ^Kp_JRO>}e&wg{)>FTp8seuj@zpN?l zaNomsmD#~b1I*%XFL+hcmUdJ^F{flm?Ut*)-qiEf@-p>&L#8%s>Pg!UHUN$@SUDM9{H}rep4E5~vKL4QN?T)3QN|zu`Ku#IWW~25WO^orz-h z1>H|6;?^XVG?$+%S?27i$N%Ufx=(M^I6bACLqbBdk;>n+o zXL(nt`y1lXmdmAW^?PEvn(69xlN~}Um(09JHZIsp(>6$JNBxuS$QI&OKHB0hX zb9ilb^koWd|2bJLE%fng!oul$E3|xRw74ywc1XZiW5TJZhslmeZ=ug=lKHegmiFns zCZ}F<@lbf(mf}C}%IROLZ>4=-#L#>pf5%QYmvZ_X1t{VJ`}$wJAdkp7X8 z?%FhMCQT6^9bT5tK=KNf`*0I~B*Ge?`Ds-Gq zwK8F+p3pq>H%&g~8>2;m6O{dgtd_RJ+?gWXhCgE)?%QcYCDyGg*ok1T`#Eb(>yxP! zohYM=Zp~kiHPcpg?JLnO`Ae=-+CEMP>XNK@1#3)OAg5{!CL7(3SCbvnK7)3mMz`dz zxn61C9Xe8&WXs>M&a}Z>*O}V4e@j+O+d64afo{Lwab42B|Fx+q$#Q>SZD~tARh#L< zX&(4TvR&GCNxLd^>)pZiN&5uewz4Gq{fYIZg+QvlG~4}|Y?rnUYe&3pxBIysX^~@F zijr*h5bH`?wW_+NsWb4SWUY=Trbuw&^!Hb$pLV8KrQh8s6y@10KkjwCb%b6nHz9(6jMK=uui?Q%z5+^|oCfJ5eE+Z>C9HURGRP=GB0F zZ=={{-US=PO|58g_*=6@y`*$MYb$BxBv9A*N&ANW1mHJKzjfB)Yo}ppdWVo@jSzRS zy=tPAUB~b0aae&ktecM3S**+~R!NcLkywpL;N1_+@?E=%6?G14FbA_Ms5W5NZgSGT zHmgvJ9#n%d*Crwxww9o?S+5f|lk(Y_bN0!5X4$X+(gBqnh)QxV0$OLW zGqXtUMU#E!9ZMvVdyxU_940V_WJ~NtK0A>}BwGS#oy8<(k!%Sfu_uv8wuAxe9QI)j z$(Ar;wsc1KeThV}C4kmh?9VKcEiu&}LJlGl$(Ar+ox`CWaVU7hShf=m0@gY7FbAa5 zS0@Q=`067X>n9FhO?=Gc+|MZ~2GF5uF;nJ&hE9KWQ0XJ?+ zy|f&~SAbtedfm8Ol|VxSL|th_xt+*dPmbGFm({$mC5a9T=G>rLyI-+PcW!ZHPB7P6 zCYd)Srb+^Y=%O>&T}u@;cmET}d4lx%UeDazIK<($Yq3(T)c19t8UV8!iJ3{imcYyr zqw~6%dAZ%d;WaUKtZ={vt6PYb*^fzJWeMp@ZO_}7TZ+y0$QDYnw=hK>XNa$Sf!&?N zF2!b!7~N)fGcR{ca%|=bOs(*}EZ7Zo9l?9bwLzy99-w-rn9HE`>OIUX+{xczv5%Z> ztCSS0KSpfK&QO9+*iv*>k25QC3b7q|sWyL#<*t@2mxqdHshV!M;us5Xy?)Oz4>xvn z1ZhLVi^Rl@9W?GcFvtP@@xwi#y`@V4cIsopBiLayYdk z4x`8E9DdLlhs|6LXLZD3vjh(3GKUp4cQXs8Q7(b=h=994*=&dasaxQD)}A6`nmnsi zlW!)`xkUKG1w_N$<8)|5B6L0%F`qE@m=bU#E2h|Rq2%XQ}%x5KS#28nt3{)DfE$$^A zcy&A4;|XmMKz02Ouzq#+7$4qhbUfl=VxZ0*5m@K&7;{j4VZwxIj`qh%yXp%9)Ac^Z zdfgA6O#@E!6+cUg-GI@;>6)Ko&F)vzP(qI+d$k@tM;CaJw5u`5#3oi}@G>({>pp4f zw8@UqUnT8o-3?CH{5orPqvdAZA;DaQXhzTG!eZT>tlnZ#>X14~?ia;RK){IaP&L$H zAVBIBd5^WLU1xH3HUd+3zWl{ArjDt6jeby0&q>1)_opJEywt3Ayo)e&_ z*&%6qo1ga-bus3p+uicno-rotx1DqrUh#Dz-b0*1;VK;@C6KU1vZt}@f6{0yo64eGG zPvHfeH{S#@Q+b_6yiAh4crT&J%a@@uI)fRx8@f$t^2K?tN}*P(l*vwK6CZbDRh6K# z`607$Tie}aUuZpP?S%znwYEEY1?8K&(P8TXwivN?M=u8{Y;)#$l8hr_31*uv!wkco zjHOwIYk!wVw>)@i?Te!(-!dW=l53;`@-=GCIYGKtcN+JF$njFACd)GmcS2MIm@f*^ zTmm914TVS)k3qz$nh1Axbg8(HqCm##nv67iILS^RVl7RCyXE83$Xl7ZAYol2!Tm&# zhPNN^0e%C*%|bQn-6B|MOUAo9#x5I!&&~EYQ1ElGoKyeXcEwc>29^_(uAgI6k-Dl z=Br()@CzBfsA=aOchdko_tSVTWlA@Bx|n~~gkGKHd#`?ant+|XfBbhd0nnj&qxf}BUug-%+s%lz`PQe zr`Cp``(}!n7UDW0B#F(`wx~r})MCa6x&DeAu$UQL_g?>5(R-KnVme0ipaMQ6IYzqYG@i3bRJ(r=j8Rc{OOvj9GYaH2(HtxE^ zgyMdzM>iuO4`3v`qgf?cqPk!F;j-^)G_8e868PMLaD9Ut&Re*o!rx{%1|Ip+={5NK z8cS>7aS)}dQ2P!W!y9%OlVc2~ivep?fYCnE=vdQ*4LGDBY))dy-gH5b?=xgU6F?m1 z4#}TrR4}guT_G<1i3thMV3VV(#T~!{oXr3%E^Ea~pA{a#ET3y!ti`2=dEG4Je#i2? z#ifS&1Eb(M$Q|!=!!I>XmghK#mCQr{}HmV@kqh zWtQtrSUzGkMg;9O*khs$$2JRSZ0z=OG1)$0^dMW_Z!ZP)2%|8K%2&8rMc#aJ1NntC zUTA~BrwR3hSz7GQI&h94c5NLunQ`!sptRH0Xv0M{cGkeI;4bYIes{7SZ(vVC-pxpO zJ2pR^7X60C&GL2!ktqwS4cK2iZ)eQLj6skyC`XdLfqN;9kQL;(kiBOJqYt>YUXY`J z{>z|%QaQp|8dnl zze+;R%M7u{-7GH~^tGA!S()0LlH?$$7INPEBj^n)YOL3fSGsM=T6m7sHV_x{%2kA#^B9_eL-Ulw}aKNKxET%gD_{huCHsF>76>0axi4dQY+@Z(WuM zeTJbJX7jTL%=>UXg?RTF#@kZkXbrOpZt`rQcrEuxZMi@JrpyoqyS@WKnqx4UjQUp+fEK9Z=`Et*w zKWiv>Q!rL1U~f20m|n-W!MVe+p;62WxSD35Z(uZhu^^e}or>MBQM7!~2E1#U`yrO> z`659cWe8TTa#l;e$HX5A(Yz07go5Jre5odPZXN!QYQ;gQX<`qw_9;?_6PS>FvN;W^_a`ntvc0MZ9<*yn!cnv!+dH%Rmi68s} z^cf9`*><2R&m_o4HoI6Rt-!%cKq%@U$kwgyXXcY&YFK7^J;Lw0CnN~Q1&FKvs ziO{nd3ZD%D4dL|0U4>TkuaKp`v)OZGr>hxa?7nx$9n$O97 z4>rZ88Z1&LZ)-O4nR=m=x2|V^<`)_+h>e9Np8H8^^Let$0wg#}1*n|jGAB(kv*ak3 z9GpyQ`>$zY5E~go)k^~s97UUn;Jl!Q2sYNtJAO`^FRYcdwi=uVjn+0Z*Ol!3Skp8c ztfw$o@Z4}QO^3CnQIS`lA-bMoUEZ1|8T%|_gFz&4EcqPa7-9*Hq&>WNA^R4d+u}?V^g1cLzn}Yg+QNbwH7#OHj>tW|eZK?2ex6YWy&0G|FalMli;c(FPg}aa;gv84ql%34r+n0bwtt*>h73h^7vJ z>LkCJ2EsZg1|?1NTWVOeMu1J8=(o|3RviLRn7T=WFJz?uPuw?3XxW!WWmw2Ea|)F&&HvvWuCM z=NO{_Zu*5%d_S$YH759=2Y)Ud?}`IyufQ7ACTFq7Rz2V3UVh6M!=7a9} zu@IZg8a!euY%hl4dtj~-9bf^cgEdYV)`DTmD!=p(h0ZE07XwW^K>3JoGa}elY?Q2o zq9Bve$YAbkl5rqMoGpAlpvXt@Jcd5x7dxe#jhB|_|PtizjJblmfdgSiTQS!qJY#rrj4Rtvh26D}84 zOC3Z#&oh?-T82TORLaYNz-S){wwl?3k_-93wBQn4VULmmTAD$K!OGdPdB@c;Q(5C= z#b6$0o?i&5KeK!<2GdaYGYWo%vSh2nG+vfp5o+bDgxO}?7@lA0xGfonMl_}4?twDuTbh6+&3t_!YxX|AwG?qNi$K>fTakIGZgf}@D~+tSn__hhLVfodp?MIu zoYysU+@Xv^i_1o?#7w=F(3qgsqfra0BE`+qf9_(pPb-g&lOQhR%FoacaNJ;GR&eiK zAk{yUP3(QLNB#FoBd) zSV|BcW^?`dOm8$Ppcw}=+8DCTr`qPx2j|oVU^NY9eRWC#-(n_}$Cw~`VO-5r_~Q(Z z2`h&_KzOhn!U}kwUkc&(S))cc3H}ko(T8*4x2sHj&Vbil=4gD;i*t>tgJxKU)?K?y&!Tji41nxsa1C5@y%4 z6}%Wq0o}+Tgde??MztUx3-YpN_qN$j*QgD&R~1Fg7*8hhJ!VO_De)BVz%(cvU4I?M?6HO z<0mlQ;Vhe=3g_Rn$(hgx|5P|vSZ4xf9baWU93rf#d)XaE{;fvXngn#{w!ap(`2?q6 z3%hy&?q@Kn8tRKu&L=q4?=;@%EOHJC?&$d7AGG3DXYoPbF#85yusOZXqQd6ksx_kn zb2Kre^}9K;BHy`BS&>__NN~0=gw(DRQpd4$Zx&HNCo%|uRc}F--TrM}FdM5evjRXB zdFk(k;5-M@)}j|!C1bzFSVZpfHi*f85E=puCuj_<$lb#{eTQ(%uzYVPNJDiq3Jq#b zSr((k2S`oSNLdZ)LXNvzIGxGTy#`f4=P)Ru)Np-lQX7KxCPvK9>*@JBZaxBIyZd5eZb=tB&}hHVH4E(m7i%f0NdIgL6)V~aQ{G+{CRl-LmULN3PPB3+{j2g=bOx-X`?uxu_O&!0c5w}gPLO*>-7=MiiKi|~J z-~}0sGo|v<(l*hcj6OH0F|^K-yn!M|msrOg&k|(j) zVcU&YZ01=e&Bb)^EGZRZ$X!if0OZusp{F8(cS@Q9-+~+Vk#Rj<$huI7+b@O zsR;5oLtu1MFv|zM-J7NGV*d<`~VLc^mvUFqNb+d2zKMc!fbKwbm;1F$6$Q`F3CVd zfXdi?l19x6N?phz4+yQlapk=TPys#9AWX!KazT#dnRJXb*+;8e+i0-d_ceMLwgSr~ z!*9A)s2zT z2Cc<3T2>Hd11`H>7+uVgy&#Mrmofx~k~>|6Tz@gnjR{6eXpAgF5$YZ@TmO?A!!wkQ zdyR1jxttTL;I*{I%L=(1MD7ORbT!x83%MBcYsO$Vc_4Te!f~l@X^gDhWDm21iSD0g z`QC1_hI)xn(9{gMhnX&su*5!@e$=I72i$OrL zqM5^Bas#o{keu*x3pFIW_c22DJk5|^1eGjeqS>Y2pZy5!R?N?qv{BIxDb$^>sk7S6 z!%V$NTFMjK8sE(%h)p%GdW;OjIn)V4z2 zpdp)%mUIzxH|-_~CJS5@$$)Uw-1vUDhX%1G3k_I&Ng81@lR?PciS;InMCg_b#eh6m z%0>xXKyHdg4#Q=(CtH$}WBI83yx$Vv&1mJV;gV1X&nKwu%(q3iCf;zV<91|Ra30if zb3d7aUAM*#jvK_l(Bk6$yMge#qnr5o=RsK`kbhz%+9*HUEWG4#ibB2Lyu#2^kOO(q zb~DK4HL_?WQ$F-@6z$iFVweg=%Q>K0&YbykYX|g94Q-t}Z6V{8F0s((Tu<-ZX**KB zWGUG7o{^0)o9MrXu_p~E|dgb-dJ-y+r&GBnF`;H;TVqP zs?k8yiJXpcxW?9+_f_PE8w=Hcuq%4=elqr-j73ly49Dgq9`)cOHKMRhcn&XH>@vsl zvblO;5HUkET0H%!xWS)IqW%SgXHA-~Xkf?2gPSd%y4=2qz}IgmmAzL8&p6?{`R6&g ze$FxHoVtKf6zz_p!~>>E^Y>)sp_HHuz9bGriwYEa*e`_6E61+FHbJS!)KYRgz$x{( zUkdR{IX}zZork=q{F3-2!1b1Vb@H{UC|5$|h;gXvsxQQL?~CoM>Z6@~yc|ik1GRM@ z7u=!Jfh-)_c#5Ra$oEW@y9jb#G_oOzUt#*2^Qz1S_Cd>L1LN&?2?@JeNSbk(wAV>! zFRh_XQ{hl}SksqY6UGj$JdMcRxx3RcI&mWLc!6&mIQcUbi7dA>H!jPA116EP3s zjH^r!^2k_>`NhAbJDi|(2lU=tQSMsELx*y)r^h6~%1BBi3;o4^1^uyx#%R|QbS8t4 zQ|2MfJ4~Pbod&{$V2MBS6DhffRv{e2kdhhsJQ3Y!Tl0M>ev2m9nJVK0k4<9HaG&{D z1bnUu!1_9Dr;KvuJ*?c>UxZheI1-+k! zhI!&-ZHfA)o2t&xBw#IW7W}%me_^J_Yc;##ON0U1&0;4A8Dsk9u^JS<0H`_9<~^Bl zq?zFk*I<}k@RiJi9BpRdX&MAWa}#26W65TC)ZcFYP*BfnC~N`9F%P%npKsc5dCi8X zPrXu?opv5%Mwu?PZ89vOORQuZ`X3rQ7~YL6T%sQuNA1-#Vkr|qlUi;1XQFov4Gdd0 zbPs*Rc<6x|3f-?cL5*_;QcMlE)9kdaIB|48CyWUI45N_*F*BzAIE)$5fA^|Z zFcZuv$rPk)L}3Bb482-e1m)d@x@lOG7AKVcg0b+$8Uk@dhzPc|L(qq2T-ZgUk0Ch( z74vfZsMcTTjrO%~Ha&D54T!)h1XiMx=XaR6U>*&CHA4ufnwMl}6p_a2R^tu$?Nn?y9c2B-< zw6(u@#=oTWhFWQye{gdTe)}OQe3w==_?vS<|Js+N?B6uTs9U}o?FY>BS1I|;gOUZS$lCXkY>xkTa)BC09`N>pg50plQe)xA&t%nlJ%91&5-CGRVRWu5in^9Ko zi`W?(AAeOKt7|3(>s~9V$XZWJ(E~K;&7yIxj~7kRoK_U}?aM`dv*$r6d9zkMI7FY> z`iSRW zz0Ue{N~R5#!0S7BLyAt;P9w1{P#70L&};g zuD@3hCu*e7H%qb`T53e@b?V=x^tqb+ptN)ytMtMDl+uf9&4sQOWYjK3Y1`K`-RB)m zIGR8@k2&`(YrJsS-0e95T&Mwp#baLXL|aD>w|-HI|5+;zmk_(V{=U2!HkV7JKTxR^ zZ1F#TMT&n-D~|4AC8yoo_~s~$2&^cR<7k;A!&-h|Xg{WvhSS^QME_G#bWg1)ENBub zOAaM*%TV_0KM7#6*7`7s+@6(JuC14Yp1MZLkDj5#3+UK#@-B|ZHu#m4T}3Mk-Zkqn z;dk$rqFIdwOlQThOZ`DgKAIvljv-gOO^Pn42@Uig79UgC`UWXFOOuMhxF$)Ds?m&a z`){OhPAd$rt2Me!#_uRpe8@0`yK(pWdu>8CJ<2wl6QQp2jd7A2`&7!E5oIaI&9DV{h{T%-MEdOIhVMbp($A zt1@Q%@F(FC7h~#PL3(m3JB{=qaj0IWt~4n#eimueKE#CIy`za8U$75$*SXp*aWOkb zG983Xj|aWCaCeE}ck)Fq+8@4f8ENeOP0jo-HRvd&=%^^{+vyc)*MqfJsIXZR6gDZ+ z-N!HA`CMSHn>~U=9it;1Z@nOeS54J1x`%a4{g=Q_)nHLQHj8v@w}Djp2J;cnClu9V zGeyT=<`LNH=8Liq!|su(zNCSJOG}rM+tc|-;~Db{bUzJ>e&ImLe(xFZff^V`E<6V; z7RqLSK3nX|cUPmFm3TnxcK7R}>O%5TSG<{vH@Y@-d!#l9l(OZ*KtpP59ZbUuKpVIk zu{8Gh%6n%K%SG3hn*Kr>#u_*@j7dlwy7{il3Fa8LbD%vuJ?3aV!YP)IjNxv?6lT5T3YFzIh0^QbyY8uVwl|nrV^8U54*#C96%`mqFr#qAp zBqKV!vs>tQW5d*BT?(k1K_F*q;b8$o&s%2banFjuB)+}`_&W^u>gSDKt20%lejaEo z26^>M9QJ;|P^Er}@Us~1)z2F_Z!#mNYfq(q9_aTB^6Hm3BK}j2 z54KDKJ|5=gtpwA^5hd@Kt%jP-DCogO9r=1zv0sS>w=Xnq7^(wqDzdS)Fg%KN;d5PV zv}EkDj1422XsQLhd9;JLR#VCV69LX0EvzuqtFlX*8 z^xkBHc->P&{hLt;R>EMjP?n%GW0EO1;$wYHb}3lk;a%BxE8~f z-9wlTvQ@E0ihU{pIER73RFWUL7S0Ff2ZL=0sb?85K6RP{OHjiow_#g(u@oSZ$oL`ioP0~Nh9)vp- zZ>f;PkC^qQyNm8p*n3(6mD(p0d1$(mjvMlP&Vl;jl0_3*W z$U#%!BVocJ8~FA%Lhx+vD~P9J4@rdnkf8{1uyJg5xXc*qM7ld^EUlG+iacYy(A<@^L70>J8**7YQju*IjGB09dQtp%+)iD9FRSDwsTyg4ZW zcq#*7v6&{VX0)>nYRhWWEQ`62#WxpPV_CXqF$FY%L0C6P{sS`C3K}PC-QZy!+C@lx zot?y6H)yCu7=^0HxAIK$mNe5_S)*qyzmmZD?S$uLYzJ@ol?uO-;UFB6Ez2=!vgc|o z2q%GSI|&xrRp9n(1}u?vsV=IozJ!^qB(w5rbh{ zoLMc&b1U+6Fxhr(jjZJiN#LJvVw{$Z#1^C$xQj`1GeqM;22z`*DXtP|UoRf=@z150jJ@9UKqJCRxWMTeb#7YzJj9EIb z&6>TZ!CHz~k42z4dN^^~wi;b4mU1EYnOJHvONUp+3l9af7lWFVsJVA&Ny&z+W0s&( z*ky?lf%aw)DlXFya>tnWQo@jU;f!dxJujbO{8Iv+Luueei-uw^eZy%U>?sr*j+(nP zH8{l5ToDSt2=T`^?_0+|!AtJDA}f zji0r}mMY=w8Nzp4wuQIF)>_66ECU^sk@12X^zYN?TOBk_z<2i)_SduDcpbE*h#Ogi zPQDf&qXhW}J0))k*mI_kAID~EMcx;&D~rHFXRuQ3mMe?1@KIo8x1azq3=k_0OuSbPt8HO$PtQ^M; z>km?=XrvHmG^1Dx@J^o)`W9Cib%;B(tpkwd8PX&Z`#;E>){;yN=qm`B^;t5J@gN&9 z1pB!12({csm6RfmdCt%nS^Kzzx^BAA+K8?1?c?gWO&Aw`Zl2-LI$NVt8C zOrl-KTtC*>SzClEvb4WY+>(vp4GziJZ5WHz>?!m{7d~LTpKA21*0cfBa>D9Kmh81A zL7rguHa6o2(u$u4+1TV8EXXcXhx#pdadaK4R@7B&1yIsuyk2C6cToWLIH#jlJxnK2kS!*kZo*mRvn$r?F*&^G%CtL0gP zH*%`5l^6y?_0JiI57NL;H)yOZLpg|x4irk$Shi;<#!P1n2Bkucqo7o{a)i_S;;}HySFfUkjEI$N{o4gG3aY@D?a*G4?4GM zbgaH+176Dun@`#PUSA`~7YxB-x#(nO1)bY9I@bE#g?z^Zm)~I1qpI>L*_|@)(qvmz zwE-_1!#~MJ^r}jbXBdL2nnxPrwGXO#k4DF;steh#B!n_tRc~KF0d+G76HhrmyPoZ} zuE2uTeHtq(cqP=fgF@_8*5L)OI_`DGp);FUQEsO@gWiK0GpjRun1{{8P-FRCXVy@I zjDknWjW9RDctoRQd6W(KiP<&TmnC~1MUed&g62S4*+TCe?@1ao;$Jjgn5BccJpsF9 zk5GJ(J1agl$Mbs{`ejCA9Goqm)S}b);P`~b(HaLG#D``ATZ3hL;~-e5DX60y#37fnr2IBGmVZlIJl5A4-v=_EZrL%6wpx& z!qEU(YxZPv4M_$msgRm^Tr=TCkg!{RWV-&l8dJo;GX|rn1|{E5EIByCE%}jFazo|f zoPDuR%OQE;KEm+1U`&>Sr;@}ZNb?9E$mQcb#MqCCi&`lH$MAm;?cZ-0+UZ#lM-$rb}v~!A1I<3~!}M zA^Hfpxw-N>T?0V)K-H?~)%Qr*nTcgh(Jezy_|KJ6_Dk*L2YR%8Vl2uQtX<6y%;nc( zv}y)JtwrRB>!oNZxu~@jeD<%U==NGs7{q+absOii8wK!F4FH3fq@q!Jm`!e$vcK2L zLbxgF3jgGG0j#Q75EF3pv{Y!tYkw={zpp7kM~=#iDeZ=u_m2YmSc9$Ks>{d*j+;02 z3=`tLBZI<>8!rg+rmojgibmH(KPhAnhtoVB%1SCJ#w8O_SX=>dZXN9e^L37 zY3mg=Qb@r!Gb@>cs+n#{Zy}ld1#Nm4TAn5H3M4zY&)Ji(c!ulzBw^gyLJ zNA4Ry_TmVGzMSsGg97Sng%ce|Z-``ei` z-2`$wnQgE?$b4ya|CaNvlJpEA)p0V5TXNQIHHiOAz^ zS4vBxxOdcX?`{us$jD7ZjTMgM)|b5Ea<(@+XwIuuit!1RTQ3)5zNk%#Ix;@Y@r~~Z z@>kk-V;3nKXV4iV&%Z#B6E&TfLL{L?R^AbjMW6IQt8ele z^f-W+SowGXJfc;}0mLUp2G0|~>l!6QWIgdEqIb>fA{T0+gOc$L%HJF(CGXZsVg%@^ zRtDr2Vcddqu8{I?XtlJ<$Cdo|2~z&0R`TOIzHzRUze}ql`5yb>$Ch*8R3rbAv{^O8)bCfk`k*`I3a{G3*2 z93?P`V=afv$Tg&LJ{tHBGF{~Fnr_f6Sgm~JiBj}UO;1qNs(kNBQuITuD1tiqlv0mQ zyq$BZl-*1-6qaTI^>9d9>~tx-t5z7Zrd7`nG3}RvxI?QT+&=8UvCBREeF3bmsc-e?=mxClbu-iGT{|3f8p3#tK zHKQghdiAkV^a`zLFnwZ??1fCf{GnhT(&_^7Rm&+(|B)2^n^qJ~VTwjhv4vUAe4yDB z5oS%2vvY*G#>oQuQsdv%YUb0^Vc_ile}(akJueJn@zzt9lN$qvd6#rWY}AU4mM8;f z!B&vUSzNSCHco6|XU*8%4CnuJnY0vOr_i|H_~1=01H8o&?n;CySgl+?T~0m?yd!v) zw5nBymiBa$Yv7Ht1zZv>V-m`=fw#MEac!Z!?%){HO1sf*T=^*%-!i)La&X{{taII( zwDgR`r>w4Wt%|kB6dW&}Dp7bXk8Q`WqvQRm-<#g$Bu3h?m0#N0yIM=1@qzT3;3Wx+ z&PhyeB_>;U#3W7bjL#wtEyHLf+sX6`rJ<*~wr$zaUh0$Q&9Jnv>nzsYp;qzh%f>qH z=P>W?P%8oA};?6n2YiBoinciRKv4gdIHT933EDj1I}Aje z99Ytd6|o|?n7JX4h)w7tE@gx*KaQ@kj<}ag`|>@+1B}3aMU%g}`goh$6ET-n3l;Y+ z<5*YRnpnBK!u)hy9`0X^V_k7uV%2jGx23Mj!`;U?OP9W4I)-iG>C$n>G0yS_E4IXH z>$l9z^9LXCJ4PVL5Bxz&yKA(EnT}PQ)=K~8R`EVi5#&D%u{BuyvBdhAi~AaU$Y%_} zfqfEEYkkO*7eRcB`xp%%t&hx3}*#ziMJ7x^ajBM z;3f=Iw8cFX>%%9QVuCgg_%s6*ZE+vP;&NxEn4rxAj%A>AFUA-|U77xooyxn$kO;kl zp%@whUkN^#YHQ9%nW=ZiGa36=##+6M)~wHSaj%yVR0dj;jh?4?3$vN;D)S~A9k(^( z>^7qu$KU4iewz_yO~zQBXO6;zYc%9W?&0cto=1>AhFDXkpHlg+%*UHDeZ-TDaB2{L ztwkc{g_#c3z=JHt5L<(vzxi+`51Z*`cI;?qvX+KAr>>P=P@p*6g2JzUb!| z;++sx(@ej}Fssewvv}xKNHu*om-gD+N8HN@t3~WD^hi*B6gQyPA_O^>Ay(hxyw?9> zMqb}z%o~hxbolwO|3l>)>zztkeAEYoI@Ov%6EkTq%P?;SO@yw%P^)$5jLr32+-n_z z+{h5izpR5IIGQto+tTwdA2E>;)|`@Xpl5pqd2>nva3=;@{Zc&*bOjs0>z69*YKB=J zCx?T)gGAqCW}d$>W?9Bqwo5pGbRdH~+a&-GVW3qbKD|`t@?MP?a~NYR9enC(KDM%_ zgE0#*##*5yot8R|QQitA33(zTtv)IzQlh)GIBPY)#l1cnL(ZLlo_Xgn|ExCy*cxMP zRsLD6ow&HK%7^U25XUW>_eWm1mIc>gfj(`c60zN zoKSIK>~v=61)MtWOvYi%_jGB8%|2tOmysb-slorpaO-e#+99#U80j5OPD3xjXlv+I zkC~0;2Jwbo6}AP#yfseBDYf&Mrq|DtPOBZn$PLW5j5tti`yASAu7S6}O+Jsd0n-3B z@T~MRX%iXiB^FJ`PhvcV*4PBv*|QC~w$^|gzLRG?V1(E1USX8iP)W#tG13|(>8-ri z%;P%ln$jC33GyaGtf0w%VsAGt?FCIfVh={xHSizi+r_+4lwJcLGM*ve6nK&Lo?jOu zytda+qZnl^$0S*sWN``yT)YH$4>umBgxJLt(0vTD!U}#u@Oiec7gjLlCB|57?ms=a zESL7$+()dy2wQ%f1r`q$Zos8|`5t0pMp!;2U&EvQa6EH(0h`q86$H76A$BX!>xhqX zdA}71^H;`LI`~z^Z*#3Z9gJC%G1f8<<-G@!@EYSkM zc@FdQ=JaIjj~HvU4n1`_iQUC(9fItc012$8zL0r18^VjuRM?RWvwA2$uK78a_j)K} zzGRG}LoRBDlL{W?yphY34j*$fW2~7=dCc>2ZbWb9Qb1QR$m%uzE1>`8(q6Ce5&vO? z@_m+<81vkdaqa0$TY7--wed$063ZbRQ*9^ynsSe_+2C*CWk z16+Ov3 zR?|A}F2>nD7V3&37(C=UAA@`!(}4>x&|0quL-iHd->_$T>y;$rZyBlRE5`{T@P_Qw z%rZfrkNhDFAGNo7FJ_SE7YV>i8EDnZf3E`%{ocfT7D<5ppu zRV(#<;RPAu)k=je%rI*v^q(f)oNeIEgg#=c1VrF>+JnZAGs5$44fPbGteJ|QLf(gq zdovY5_GO4=DY>H;#)?ONBByy5FVkjUlJ~9MYk=o}Dq2=zjOSlEZdJxv zb;))|SM%<8OSIJ3N4&cDh(ShJt&z1hs*ZnO6x_wdz1ASeJq)p;A5%QK6TarVqT+lm z??pe1xqvaYm3pEp`(r*34G(c?-%1|hQAXHxDECP&gc%1OJHLFl`NC*;ip%?TAk4Fj zv0K7AyD{-iQIX-|eoOd}Zid*kkm6BGT=zdwu_ybUUkk$Q!x+03@}(v;RO53|u^AWl zYvDt-WQbi0DISG|3%nyLPUBkpwIIwHjPZ0tmRi8{y8@S2bhwxzW2`tS-0POtXhVa& zV0y=;jPl~7B;@6c#Kawp?;)yC9?Zv&s(<)}s2tA*_ddU*fOks(yIPC+UX!l85Fhcr z`7_bHK7(=pKMvGF%?ScFVgXi!6M`$%(8PCqELy+DATPp604~Tt>uy8{sv?1aQ`r|j z618u0`*?RFT1j}9B_Mq-?zZQO@>D>+)|IVRvvaiUF1cmoF4v03U^29`yKHT~d8Lc! z%Ah%?7wY|Ea`nO>uCzuo69lhf1UomBb{VSNu1vN&mnoD6qRWoZ@NJ`E;cQ*9S$E6h zrOn(lI}BM%pY$8q=L)Rhi%9wBcvS14P5R`1hN`~GNCErY&45xHE`3ty@X6ZW**+5>(ASl>kSQRMN z-5T=aOwDF z@WQGzKP%HM>2LD!^a!D+i%`n&jj#5~2y|y->2-@Jks-} zf%+ULT^G2o&C+q-JH-iq#AmUysEPrB!I#$C< zug9P2a|WXBam{fu_D`SXjQyJ@m@)!eW5&2_Jv&Y0MIjsn9w-9c(LZSzN|njuKcpXG zq|^AHG+3l-kmt~RYkbFucPD`HL$OF#{9YPn8P`NP){+#8r`I6XQjeb2fSGz(Lz2^_ zYmk=II?`EHXX%_40Gw>}#} z`i?9;DN<-pdh{s;;>WP~xv)(9?GM7ovGBRzZh!WJ_+452To~T^sAKXtgpyH2?ui%;5TZ|(EpryuKcAnI@cE7>(+f@)uh z`wb9!4rV=j%(Wi=Xa`*x)|C|gv|p$A8y|FZvyMq~T_5Gk9+c%-+1z`Abqo$l`dP`) zyP|yo3esn?^r4Ti{_Id@;d4RVI!^-Xhq3geAhESOc~_pGpw0@Cc5m8H;M|ac{8=o2 z=)<6M&k5oWXYoUCTI-S%gdaJq!s8oG5PmcZAG+Vzx0@jSdn|n}%x+(7g7_1LQ@nGh z3F1#?@kzTIt({W4#{?~>vX-H@fPIGv(tp6xhwhoy^&$vAi-iw;Sn%!@LBYAKV8W26 z81*U<)SSm^hTa7BH6lnqpQR^l6SQ_C|N0O#T)-NJ-p!nwLlA$_@QSxC4MF@REPm)? zzk6K>@-JigL+=9CT_Fg+l7$c5b?kdWkp3%{KJ+k-ZwEogwX9<<%oAS?g7E8E_|QF5 z?t;WOi6H*Q;T9iV2!i;VS^Qiyu5}p*(r;nuL*MbBJ3vrz8>^TL|Dl^d&~Yd07u5hjk3yi71ySRJ_M3 zh8_o0?KGkg{~?PXdK=g&L?QiSmOga<^mms(W8rf{J-&Vd>i-*7=~muQNS~Kauns+P zcQb}U{`@R|=tGa6DHIyM&Kic^wEo`vA}oC9O)J9Pz466a`p~-WKX$ztQ2U*)My-`g7HV^>b_5)oQ_Dhm z?^mMS3?godS|~5D@)4M>qBOA19A9MJ-NWzUk!~*qEvjE(3T=fN)}1M*N>!0(T@7n1 z)Uae(p~l$w@>yc2(J<_ttEp|ZT}KKNLXFu*HH8{UcaG!}r95?R4xq{FjNzpe$8i7W z8ZPmOh9=0iTJyq7qRGBXCTlBB2|2e=m0+x6RAaT*R>?Pb>^gQO4~hgt?8>>rHSc(q5Txr-dp)lqM{x0`1&gC}*n$xjX1M^zE#B1S~DF@C--oU95Hl ze9K(Ew!e6wk?&#EnRaG}&U`B;-*M`ha;0o8YdTfGkM)m$#e3wXPDky7toDH6uXazN zFIy^Q9nFuh<`Jl{oGi^bYX8D&+ggNl*3P|!D6tK^>j~D{RzTjNR@~Z?&%s`Aewww9 zfT?@^ar19qk=i)JJZ$|ut8FXv>d@9z37#C!dWrRpz~I#tZ!(dO+zWHYk1tvC2(+@C z199i#`Dzr;x3z84*+?x(StO5GuOtA=n{6DY;tMc?5g0~h%U881M;Hdqg;?(h82s>j z-Ho{xWwjf&GmP}*%lT@2Obb=`hRCwEQYLmF$6D|18c0rD>n>#&JKHEzhfPt!8h06^ zlD1Ix8a}nbtK^O!F2@bi)-G2V4Mf>P&@?N$P1DvcS0u@9oMx<1OKhH1sCnAzK5Z*Y zXrgbcO_Y?tP3G|U1Bkh+65Yawwbpd4m3StHq*#`kXrv}uX&tiCp6z%OsHQ1Nu+I9b zb=ukkEN16O(nZHLH*(F>)*fIW#-ct6auW@-2^pxZEwnb&B$#NlYNEDg`gW9Nd$I$P z&^DjR4)$dRBwfp>D03HFZVRK{-N+g_-J@OITYnY0Whsbyd%Cw{-TSoD6WX%5Zt5Ms z0+n7Z$9x4UH**_x9II^WD{ec6?a8^p;;tj9D^BH&jWR`7jfzmZhtoACfv)>g>Vju~aYwC;Xr zJ(#t%6_U24tt@Lo`3{m2I8Q zXs0oaVH;&-_Mgd0+uDL|M`^IO$jmB~dn&UWA1brfVH<3!ewRFql?_{$G|JpAS!Zo+ zt)|;CXsuWy--TEVwx zGDn;p;p2ad3DhJ8`bV2uILrCAPRY2HXh&;8-2XkJpVsz=wiSbRT=TAM&y0$sAauIn z3EYl7Bc#4NThH~&p{0tvYvFEtoy;WKTYq$J1Np}5hN`Es?zTR(4#5X{3faD1nM|Dq z_yOy0>od(z^n0I6&id+9=L>FFdoHW)8zHw7)%_Vcqi3vNDSNwy=P{3w>V3jvFk5st zGtOuA#StnbnFLMqI|aN6I-$*_ruFZLr521(9bP`kYrk z5b|HiWZL>RGK68Ol$G8(J0oF(;}gGP1|v04%lE&0rpFsCuVwus6)YfK0ui{L3FJqp zQv?K5Gu-&qv5*gCrfX{b@@8f+QqEwyMQ^d-I^!*@KQ}^c5qu_;87%7^$h(a>j8y1` z>%FoIASccT-SFv7CNWZzMqSRi2SbCTRaQQp-py3nI@C0TAxfDk?q%)med4H?2ko4Z z?g0^HEric*k$h7g=$88wG7xxK^rE>irqb&@Z#vVKcP33MwO8 zwXdKU`c+oEX*&*F%9aZQ4Owi;i*?T6^12AL2A8(>ifv(*lTNmD*skj6d&^Y78ED!X zlsi%SbcYb`2+pn!jx^wllO0IyoJtOzH-8TP_NsNpQ z>hfA=t)B7r?mzyD)qDH+pMAyZy*>T^vHG^w4V`*Gu2O82%Ho99Luib4f`of^EiAXBxvzqTYZXlwtZV+JzQ$&$dCdA`ZIN5tLC;;`s$8!h`4s&2Rw z&I+u$tw^O~i&u)S;+0wPh|Ki;`Rt%%NbYezNw3D*N2Ia)d2CtZD^pEl%i65Et!TK@ z#x88?^sMz*?T9ormisx`nsu~q$lBXV(9&t8OO?TVc6PyCP&Aow6Dm?1L_hxGljP9iFDc?)k=LEcN`kan%mkD?^H8Z z=uz$<|A^iMW-%f&Ze2doI0NBCR@~Mmbf?ufijx|D5_1@l#;;cfGBcgp@5!1+WKk=N z`ceju**fa?Vf7;ta44hCzO1@;B!=Qfxge{!j2xM$<#P>lfZVab{!C*;EHKC+*Fj&I zY6`gyWz}t6^e9)VB{!7FiX>|%uC0q6kYY`vQ;gKay|*62)!BP%Yd5;3l7!v1KBJCy z+uFLR)LJD@56SoGs+;C#1~`d?Obmn4?O_m!3cl04yWrtqzM?}h8x+%O;$&h> z$aUjOZ2f~$xm(#m&I^GY%?^^=k(P3dLRwAQH6hbdR~_+uU?tUNt4TY~Myk$B8Q;+Q zd=ZMP)Mu+nI}4bQ8ht4Ok{X>FC`{Sa>YYlZthnCg)F@W#SZ#_qsBb~Nf`X-1yi&PY zE{;?jb#2qt6wzuevQ6>mhWTqKnpGQMgXT@tDaN~&;`Q0|O}= z6mXL2)iR%ZXw~`v%B@r_t6{x0SV#rC0bxl6vr3WLLw9P;!l+Y$rGIdKgkr6aP;1Sx zvzF@9H>q}-Z^=WkP&?E%Hxt`fZGmbz?Qnn)d)#WYht;NZJd#oO-_NLeS!AUb&PNuV zKMB>(?Ladq2aVRU8mvK=)YqK_Je=OfjucbW{1s}p44{kk zX0up#)N@-NrqEVfn|dpCv97KH`X)uSN(l9c+JPg?)NuaDqycM75x+-)GjQ$^sKj+R zt3mB}|Bzy5pl!p6agR<4aMgi{Rdr(XF$!#zbL-8&;4~s~tnlL$IRiU0WK!y1QtS-u zjM$oU|Aqo*qi)=kp+wH#Q{)UH=Q*81tzE9D$-Sp2v{f$%(uA<~LOosRY2YRG;;ni? z9v`XAIhAt`ZC{^7iIpC_RWHa2D5PEe3qq3KyHyt24z>=*cHo|+{IJu`d&f*E9`Zaj z)6OAXBJI$mMHj-&O3#fdmI+%~=zS^~!#gL*mxVF=8!%H1Fc2*Y}4&BB<0`OB2~alJE#)xphnzSU_opikU_fn1|f5R0o= zDgHx&!iHg?=Ik%RQWk%ay_{-g2>(kB0j4wC^`?^NWC(9igg5uBtdcWS=v0D{17p1I zYGUHvmE)9a^+qcXw*r8zYvR-0zxzJDB2Ne7B%{kLa22P`%SE!{UBePYC<6l#nx>^6y=4*zE?J5f#2$Q@*`N8_qW` z_8T*mY)e@m-m^-uIjD82u;xz8DKYLlQ0{N(nfnN=WyZ586_xBnIfq?Q8XjM~z?CmK zaJ7fL>yrteOA`V{q6UcB6ry*B^h?oc!1V~KL+(lW_pbkPE6#_z++n`B4SUtJDzz^~II?HY1cVx2<4zScj{+PN13+~CnNJ=>x%RGhSdb5^ zQ=71jP>Z{7rrZzhS!SQR7HAHoynAnvV8}RFfxWQhQE9;?Q_Nc_`xv5g_R@{fjQ4!X zJ8aMp9&7a8Ql3{=HL4v=k$UfOz{)IG0j&mtV^d;Wfi_i%1IJUwy+;_37@ChpFic}w zUrago-sk~myhgB~wx=gk*1gvvI6VPYqp%PV$SUj^af0p5 z4B^j+pbm*bgS8NLK8}G_l-nc62G1CKwVh-Df29CnbG(sS@As+DrDzrLDl7xo3luC~ zX)1;4pb6j~=>arbCV-bHK-h92Um@~tQeh8FC{*!!6%)!U6eYBa7g$*ASrsUdrfuYX zL6nN|DuviFq^hbXBjZ~_z9jU7^|Qiw zLl1FO>=9&)hpA(PbTj5@l$!MhoI|Emzw;^EUMr2q zR`czPQe&(s;?mR@YaVhrW!$UZ@l!Pv1z$nAhIKH*>{e;Dt6I~=T>5ItdO>gDv!9=N z1G~#gdA65O-Z{@OuAvxV>rleP$F4CPq5?+?`6qCNU|mbG_6RGFatNNU@VU1_gL2)N z(x8NOx$O=>Q8-@@oYnRvY{8=)bK2an0(=l*NOQB$N)vJe$yDSW2H9U6saKrVs$lTL zkUoq^YL7S6ffR*@!!)I{D;UN{DMnb5#Zqe}v9^#Qe4HYL_26s~;M6?D^0!ckg!a%k z4zrSciozt+m2?ClL-;I3NT@43X;9JC9TXy=uDnA8RhZ9Fn1sH|4hd9>au3BwXpeF& zST)1!@db)-bh3&L+eaa&E5-OC1qsV6SymA5NGf@@j1}i0igbM9;^4V>%6)na>Z=qg zokBrRI@oi?kiJfl!j4nwO?{-(&fva9;SxHwa`r64_zuNL7zP@;XMdkUgykPBwRTRB zUSnnWKMD|*9$dmYbF44-_L|6EF%JYQ#ho19>KW z5T~fy<Iy&yX(}frNT~2yb?)^;o`$LjqXG z(1z?oF#KRJzo1hXVQY{=&hG0EXZ~x-yw?J-OA8?x6Iy`ZQHP(7^Y;TvrL$>)~7gO!y+3ThaG&Stc77P8&Q}f29eJI zX8bp${FA5)E(NT@%?Pv{n^T-5hHpCZ@-J4BEh$1+AK1nqO{XObs&+;!N#Vu8i6JV^) z$BwmCe>Q|0)g9w|5%MLv3+rly@n&-+wR#m!=T{VPDIE@k89ajVnSa|*@pFw zquAD~-pLb+%vVt6VG|`2Fo*MUhNSaJnCMqi?!9WHHPRUx63fdN+iNJ>Tu662*eC9n zddf_2)kk20NpjV&B~QV}lD97NH`6N&zlSqcio=F2NQ&f1-Ij^_L*!1}Hf+IRGy>s7mZSi@F6{L*!W0ZH8e@!U&YFMZq^s5;6$0_%)su9f{ZhparM6u~FDf6&M z5zU;+{Ts@9hfoI&hAFew1=nrW6xW>_{+Z&mDwEZ~M0MA&>+8rd0@OvBSmz=~;-UxG zO4sk5wgr2Xd>b&f7a&`;MG6ZbRMOxCuTD+u%wTLUrfkC+&``FJ=Z4$41Aka(PZg#e(pwH2 z*-W^To5m<6_8Mc)Ic$(QF-j2@kxQGF8OC|E3mrCkvI1yzg8lxC|AlGthaGo1|4S(U z&=yq~(rn&-siVP!zl<^utu7NYcf`Q}jQhJN_XMJgehg!N6=fb@bmBGdrrhI;-f9Q? z=$Yv6O_jOkkMB#9`KZ`9!6bh_Wggb7)-m z`7;GQXB7puu|Ipn&uM zx7Z~Fz(%E`#;|WwM7naQS42|dze`b)M>BIx{{e-f3)*`vkY2;DpE6~gDfr)9mpRIh zC@9_e*E48H75@nZOKvh!wSSfc3aQe+peXbtnO+rVs>;941jtZ@e@B7nBB`EBWU9JP zQY6}E6G(#vk=1hF4c(W&LZ46Sv(Xc6)o=S3_}!MHbWSf|?@{SQ)7{%q%=+_q7F4A$MZRP(K@UBS zW{p(Xo0DJVz_P6oIL?Bdx`daYv|xosF-Rse$k%C6=(6becyO7XV(N9)Knc}U-rFL2 zOX$t2NA}~cx^^BmBUSuP67T)zS3@@&j;V0gl=0XH%p)qu>r>>Yu6#H$TYQwq3A12u z#WcAQ1)vi#7MjEZa!O9H!GQ7Jl=7wt3|rpqF|ojfao;>e?#l8R#(hi5osRP?WoO(~ zyKY6<_gWX3M}ZeA{xTE!ZVbsDSlk4M0)`DxEdZ zUFJZ_J8F1or~_PXey*XXLbyP=Gss#d<@6|4m_xDygj<_C#db%`t24j>3P{&zS=gSJ z5Drg*BUYvJ#~H@q6eB7DF@Y8X3~16#B|4I#(Rmq*5=ng`#g`XQ{yp{$xKBv@Ri|4> z0cZl+wg4*YMd`3E)~m46U#*5GQr2|&`NUEK>uS9wwNQ%gPof|__R^W|;b*8EWUHBv zE=A6I3m!E}3-eO1h*6dNR9cF}Nanh5Iz{TSzvJmkY~x_sdOPJCCu+dSg>bN7zC4sK z47MP0D7HR}V$f+~PuotjKhz$bc6|r{u%8TPZ72{03K6Rq0mKMyjaG|Mq8M>n?vmp) zpv}QqOy5mU_)>ZPDEE@EM*jP1UjFh z#Az1rL`m4ODcS`^VHZ)5SPIiY)W-8tiV~|Rcn@7@<9~TdAWc{VTq?I#VIF6sG<1-n zuPZVDaa;A^v_e)Jucjb$+t9?daY!ynqg-4C2g@jhxrXAz8NDzZbhEsC6eTOkwdo*? zz>053Hfe{NGlX%95GUN?fyNM06!m<7vX0YT^;q*9p#pFN1&GtY1>Jgu`9~=8I9;WH zxfgd0siB)FQk>c?kifN}lc|P~n<)t05jb(35FqBDdn<*BWs;#hBuJ&R&Y7=%hBA*+ z-^_v zOabDU5*B3`1|Z)==DJJ9Vh=Y#l;Pk4RXLAP+2i;-KQRtfRIZT)TFeUHqd;+75|8?4 z9b?r5Kcw8_Gy-*4#lN}i$IJIGzj;+9n&1&xCFBB@yxXy!W zG-1D`0p)p$5+`Boody5^tJKWs-zon%H68dH^WFcV?Bhg7iM<$Qs~-GsiWH}7(1J^P zm3sGI$~R6Rf#nzBk^MD_5vO~vW2g$6LU*giv9thD*{?_0$H{NeS@#W*vEB`d6D|zn zs!dG1W4X;pJvd%~1)|NUI^sl!7Vr)Feso4|8bygSWNX1;^!a)d4(Wn(aSeT(85AZ? z+Y>VNy$$6arCN~76fPPh$>W_VM4S{1 zoF+z=P3=lq$B~|~4$0{4o;n1{=gpxIajKhC3R5=kO%x?gV+<(fTwWjLAIDLFKMW+A z1-RZ%an$`N`#4RR#2%}f+6){(F=86RFG613iOizw!4xH?qR^A@b|pnoZ=vktWRXBo zHRu;XOeI;{!zeLvuyqN4F*DCao62fCK= zILbIqRrpp`_T1@79UQbNO3YU3<=Ly zEIV+AUW+-us>M5jU@~5V3+{#4ZdD$wSA1XHcLxop)9kJ_>}X zQGLC^nG__p#=?f0XH$$gV`r%#c+PPiPOU8JDd-}F>ajyv8mkqmu&>Ny`XS`5j~IIF zFO3|;u9M4S*I0>E<;0?UM+xOU2!(rva_=$1vP1I>ajH%^(<8;S*&V#+&DcOTnTEAJ zuX{|i{2jI&Hq;(T$HXUUYbywd$DPPqTkqW(_J(|3-On2p;w2W^zQqM0%&7KLVYJ^kYA>dQIqd> zkcOgtjp8IX9Cqs1?WanSzCod8M^p#4whWxu=keZ|u(j!kOO*XhQ31>UUUy(zvZk{= z3fQXN8`V5bz?u3j6a5&(AbuOwO_>nK^Vk9$_a<)nW?;u5nCh{SX7!X3qN`wsa-qdC zABss%pioh1aoa-SQaPSyQP7r9w5TqNEt)d_!Zdga1xlk>3`j{aGqmLtEhXR2n`HP{H_+;WQ~u8a|IW)aN@CER90J@HaR^kQHi8W;nrVB@E|0ijzhw zg6C4IR=SV^rO}EoAZn&dC|XpWdZKD&YV9wh5K+0yi6BB+`FEv@64K~iMNyJ8x?!#0 zyD3Z(l_AU^9JDKLi(xMPUW$^W4~uOqb+GqQkf;>PMAkR9dGAjd!_?M&C|wL=8+Rkc zND?zc+qREUoFtXr)TVucLL~7ma~tzX3X-Hj^TtLYwdK~niQL;-jH_l&eZvX9Wct`-W7%`6Y!qD;0J6^AE5)+|p&^lug<=8y-xMQR%O%=K zL(BYMiWW5!GI5Cnn${w}MvV8-lh%8>S6GqwgjZ zB3YmhkGh*tsAL`;8EvOgv}C<$KnshqGbmQF+7lXGx1mUh%@q<=x1&%|IoXM;P*^mb zMS*sW>g+h9FrN4O-M_pIR#N;EmSjj{zo>1HaDWDUtq)@;%a?JLhcfDmTAvZYm5%qA z$p1n9WV{y{qrxQ*MqkpoBMjw#h@wtAN7~Q=0@f1n(kd2sg91gZ1&Gp@UWRq)O$KpI zVU~RZ3J|rN$Ei3~Sn3AHp9fBOM-iNG_m1L(Q8G#_G*3Jxg!vp`uDWAXwYTC=9g`K~ zO^8GsGb;0EiRLFG27{pv!|Ovl)kULPg&x6*V*ZDr?MKm~@{GNs1?M3#xC1C$ikd71 z8^Rgb!4xb-O}50Qd4~2Dik6}#0ZrB9VH7UK!ofuremG-=JA$I6SU5nNr@$SRHJqx; zV<=qIr3t-Ng26Hijd?hmMJeNP6m&&ID<2P(T`U*mptx^O9k=2Pwezi!@{o$X zgkndH_~VsXEQn|2J%wVfOuf8KJeAE*;N=uNea~8>m3RdOO)oSQ9kC>W>GuqZmR?BL zo2xS^Sc*lfiwj&>(axr5QF)Z!+_mHk&ufY!Oc-F10!A%6>JhL!3di~=F=&Y5r5Dzn zb2{QuV^+K}g-g#>oMv!V9|Nmo3brOV2Ze#vDOie%T+^uTuh^}bB^(UuwSdy0a8c>u z-rSPG!IoCyoNFj*dbMwu9Sj<5WMD=-j{=^ST1(*p=4q|Ckitf#qWvmt_lA)B39KqHyU2(Q*qMCs-56+~z8ZmtIt>6oX^h8Q8liSb7a$ z#c8Qy(f3lc^!jUvW~dJDqnIhGvmPAE%+&dQ3YK0?fa}us-%qJ{A0lv_x!rUD)pqGd z0@zK_UFyT?uj9t>OIyg-ox54Ul-$JQ=!uaxy?`V%;`#)lXB< z6zif_Qmx^?jbf&+U48g+Ck0Kf-G@{1%2jdiEYs}gGX;d^R|mY80;bpEv$OOXmEeq4 zR>b?WM65Z(%4Rx-_$7*%UMzsRVQ4wNOd-=#Yop#Ox69&ODOSj@QN;Axs)jg?h=F~B zf~8k4U?e&ZMx;t>^=%56Uc_lS#WGxHB;Dk}3i(}%nV#FgF>P@C5}c5v6!QlZGQB3b zS?_3hzaLS!^qOS2g-}i0{)D2X=b?HE{AUy_&7x@;@Lyz#c1}}GUH+P)r8lZ*L8?St zo5L!??IM`hg~I3|Z)1v* zLSe|<>C~)XRA=6T!X$4k!sbe+Q?TTXuMcLJBi)+fCGYwAcp-D6+fvM^^?7zd$j8*i z^*d0kJXRqU){Go)jd7qUdv-dr_3Am2r0N zXPV>OhXO@y)w2Ym(?|PKoaEt_&fd(UFv(p&pUXTb6A&$x`eq7}+|M9itLBIgr6?(w zh0Kt?H47LzGdiEbBp=3v&WIjO(UMzesH!bwJC>p(_vqoGy87vO3X(kBm?m`>Q=sHS zzwpW2lPO$s6P2q4H8Z!2qC~B)w~L|1sp8WpQu69br-)uJhlJ^@-lfqYK0%VvB?oy!SZMkt0_&pRUxl=$Bo5$l+wK?_cC|2@P87G>rr%1_T zlX-&qgA^)xp^OvDAErpjTS9$8`J)shd0jG1B!8R&C2yq2I=ovbN^A+Kb54&^%(D>W^Wl*9KaSn`EA zUcrKqfZ9F(zYHNmx-CDZkg2JZG*~~SV9C1^#-$xUr%1`eu0Fr{D+-c4?2@G%zojV2 zn?t&UX8Gb%%#wU_&yb4RpvsB6q=>h2wdA6 z+zY@I@_$s8@}$TjhdU<8kEtY;%q3~Ts$976jtKKpDopm?+A3?_`g1Bp_Kwo3548=B z@~gEW3);mX%WtVHZsxAi9)VMgM(UMdc8_`O6I7HlGZTe`vp-Pu$Q}Pu3(<3v(yxcH zXDE0vv!aKDuRl{63Yp44BE?^+1X0I@CTi9DG2UY}HSy_H<&JkqDjt_p;- zj_Xqyvg&y7gSy zg=l2fQhL4-beW)wO~Up}Do}RSHl!oDJ(VH5p>d!MrTN&Aijds^ED*tDkX@)G*7*+U z(o3auy8%xre`1~QkoakNhXui{r=j_dJ+L70@*Tb6hU7cuq68%0v7c>y^DiAyRJpgR z%E(pvazEc^rt1-pg@MaAL$%mXv}oO<=m9cBf%_X3Xx+8%NdP}s!3}6?vgkk*LQNJ~ zN2p#T7_7i;ja67(uo|}PimlMBZ+!@r!Fq((iww?~quepYzy~O}b$ILre56o?rMbhV z@*hq`z&nBa*_p$|N}<(qTK!OK+pyi)Y4$6_tKLMY8TEf8#kX!Yd%<5-fJ0@Q`9U}- z#({eaAoDv4G1}k|3#dSuR0~fag9Hny1lC=Ok$KLiZM(qr7~D|VPdEwB3hhEB^k;h zT6o$RDVT%C=~Rr>8H!;YJKj#^8p&QRLkKyG3Syn>kKr-Vk)%L{$)uI@oW>MTN>qg5 z3=M;q*6Ekyu?Byb%8^NH=cxj2BI5TTwVYv`e9c!Kal#!F$fW|+GgJ%}NbDG5@>JKd zJT0;Kl*!Ye@?=?~N9)Z&xS+yNqgzyvsB5cY_tQdMca#e7wk$ja1yF|xV-z`)=8rn3 zUR%zml4RlyR1&S4T(q_X(d);hRFF)1%i$H{aw@_8wtg90tfKUMuKmfNKz*WK;UBwWwV2!oudYstO}dSWr|LeoIQI z^2Ukstm9I|T`4kLh}u42RGW25PufbUxZe$`?yL(V@zWge7=H7~3K#*)#Zpi|LbPZ- z%;_08M4vYq^=aKz>|KmPrBbZa#a%PZb#F!~)TEU4WNQo&V8f7Nhg&BZUTauBL*X;@ zgTZpG&@98%#fl1Ur!r({0myB+3jAFZK0_ZY)*EB;-UjA_cT*9phbz7NU=a=$Z0BqB z8r~tTsNy~xpzzk6i{8~xDi1@Nw4f;9K`KFp3V^dZg5%hj0=`1w zt>*}OSHO^#0eqOETjwETptDPmVPlyV4ZcaG$j}5sdOUt)lHu#>^0)6%c!2Z zagq!3z#mfl41?h?Z22ogo17@)p|*7g?>-rtursZS3%fKq>r(mq5@>tC#yMY+J&LE z7KNXtGGtf@utNlAz$sziSt>z>P6!)8)u#9_6y7=s)w>t88ii)7JT#VXJD9>%6!HAz zO2U^r8HY-Lr;=pYLGW_g1-*s-*V>Un8#w)&N?|=^8N)xgRm|h3|58!1Hwzg?y+)m{VI)u9i#rcoiRXKmvP5i;(YL50cQE@b$%&DxPd8-;C0rLbQ15Z^FlFgA;dk$p%t zj>&eWl4P$CIyBprijjQ~GmX%8r-Ed!4?0krL&eCx&XV!ko7RRDWZ2e6rN}Uc>UB;H zqqqI29NBja&4aiDs3_T27t>hoU@A!VeoBUPZ=q6HFUE--)uTpshf#sDk0NVe(_wJK z7t6OCLB+`4I_ElVHT8ZJl_JBW7uCWs6hFg!11bJ-6nEkeF-*Ws_Z%<9-wO4eGqDVc?^xISo?;yOo&c(X3 z(JOYVQZ9w;KUzb@u%6to6{AopH1NXBd|`Ar->BCs`>T_z=dBGH=BYAVIGHj)3Z3ae zli?C7!x^>##M%~S6I?cl&|0bAHHpv%s7AkvLR)V;wN-dY+|9`PChwjMOfA;Dmtv+K zWS#1uQ^F{tOqRWmBB!olJ+i)^Vn$wxB{%xERxRsh{m^89>LtCAf?9VFtxF1^!9}#p zgFi-5Q*SlPHJAa1okWGU+L`+V#ZEm$`q5cyr9L@{&{~N6^dv%SA@Vi~ZM{F+*2Pfa zotmLza3=*%y(TyHO7(dPntG)|P_qjjf!Hu0H{|3nY)PJn0yH|9ejK8CD5Ybcc}!aH$UEZQSV^zA9fNWZ4w)=Q6jw0c-? z?{`#$tb(2&cC}95lanuj7WDo&`4VVB?@v^M)Kf&B7l!r(pQAEl6#+GVBaC)#=Rt09$Du#lCN?u+&rA zj5wdeg=V<_hb2-bRIF$HE3wc+65em19Asw2KIt4!mO{y`Lwr}VLhD{Ya^Kbq?P98A zu+T1!z=>1!j=r>h11gMtc#EeKSgfliA~&WoSTB}|sgP2+FgyhL6~!=9sT}rgemq^2 zwCz4yOuh(k2A86R=~M*kLs?>41CIgA!_gaPm3mEEJFqpCC+k`Z^1z{B>a5_lR17%9 z&F-kWm}(gTwZN%y^(Gt`m#^0G3?0Q%J5Z6Vmk`Ai3GRJtmkSlxHJxvFimSAJIy+H; zvJNJznsqgml%q1h>|3UGsuor``POI&cQNPnyB%55cs3QvdhKjXOYuYX@{YEpa!)Er z*0B~AM>=^u(Cr0sT)+R6b*A8d+DvfP9Rzl%D3NF%s+nrmj?<~M%TTio`q_8#rGZ^v zShr0Td*0+rPwEUnf(!CMgJ!ZrCy^%6XGxyoq~br%~Cm?l*gG9?~g$8x?4hBDS&bv670D z^$5_{59<)=eZ@SLC+jY~B9Bo?gKJHwh<=(wg_cDp}U4O5cDq zyU?b>WIc2>di825hxNUUF9aWOVd(VDl_8dOH%91#VBtFYvEVSy66}oX8%^ z*6z=H8mR0~i+?@Ew@=RXieJa=5#?43lBmQEADl!%d?9L;3KitTR1o{wh#oc4s@Ci6 zk-W(;AEjbsW*EE_5xNP@;j+OnAE$!YuL-l%M@Zegg+iZZJ;bzxHq^;aQCRDZZnkyO zWb)5aT>Eusmc@nL*x_~Xj!6(8vhID33Xpm*j;M3@Q25jh5Lws0Km|C^*5Tm-vT~yX zGv071oYKU65tvGy3G3xGGDEGASuA16O^t&45Ee%1SXg(=VnBy`ar{Y-W@so(tsg=*^IC+@*X*tCXB*RoK{T~&}x|0$|tU?Pq zk+6KjQS%xPHk0Vg2)u?C(@cwzyMIdJR>m-W+OLq#|O34?f z2-b7yaSRdON%;qr#CoY$EJ>j23RzI4p1ee5$kZ)yexsruhy2P~5TT>CvaeDRtcNAB zEK#qh0=!NI$h0dz;uJ>9E$D41&alpf(3MwD6v@;XMre#$f6_%DF=`_!g7pwNjx&_^ zQ;e`Fh0oL#*yL3aR--CXY)+-HK2A4|5~}r4hYXpvq(WGyZsQ2iD5$k^D~g|KZ^oaM z9@4|ZOe#pG18iRqf6lC)A9d8z^tY!HSuc}`XBxh+vQs0<*^!DeDarwrgiQJFLM6&p zIpJA{-KZ$m8zAG@sabEoMU7{BPzkIT#Kn<-rT^L^O{X;i)kr^1X6|H5;~iOG9^LP~ zmZUL{tNYikG}`cb|FtWPHp)JbN@Km|C6*U^_d`Stwhy5)S+6lmAXDg=dw|Mgy`(dd zJQEDP52tcvI^y$k!G;m|k!wp5(#c)0b|f*3#}`sbGHon9>)_5seK5R;iZU6FVi*&j zxb`H`hQ=pRNvv0lC8*S-m$#J4k!hOKa})DG`BW;*WH^dpynOoFl7vK*w^KT>*i|Z6rlVR-FvB>zK_!|@RfP|?TU4-2(=?u{=umf*3Szy6%83t?D8+mn>@FFV6WVGXk%5~}5kz|x+;4fcWl8_$7 z6;zT;XJyDrnX9P)nYQ0ib>OQwlDT3N285@gzgfYmUj^+MxRj7%q~43+f*RD?`d zP))E@=>{rJrW!E>jgL&a2qaqEL`7H>t0y<%QjVJuY2%?zt;kk_UfCYMWW3vFi&d*P ztLh54TY;and~|V7oU}EQOOSi$g3-^Qt)wW?1{iamWbYtuw;p-^@Tci(Cl0Z zI6kIXRVFg;LTq(TJ7wVEX1&v(z;{z%>xIE~B`(*XuLbLjDE566+j>WV9X714#~0Z# zMvA^4$R2uL2=s&5LvuURQh$X)ThCP6DctK;hj{tJlZ7AR?BAsL)=f}PYYlZtivveV$@xRd}r_F@X%k0khq};aD6!%~ z)|Zz}2o&Nr(-4yMCib<~Qypfev^&^lsJc3(M_#(VI6|n-wjnyRZZcY&^~8W7y4%jE zJL`qd_VDG}sMBoc8&0#@!IfUxhT>T$hg#XJ`$zUdRGc;VvQo`=rpVSQZ+m1f+DxE@ zU8yYA4S3J8n3S1stk{9>xZ0TQM-4kkf@nvn9k5mesTFEfO^}1BAl3<- z-c2)Dt`+MY?I`xQOsWXQdb3%qJ3~tJJB*5OW{e7N>7d2BdQ#C56x}}F^;}C0)#9j0 z7eMpEW2gWb#;FmA&vm$QUQIb2M`g&+3S~NSJ7H1 z*1+`Lz*KdWqvGK(ZFCq|+I6gj#r}6@vZwH47X-aw@qN&-z6O%(Vn}sn0*!wA1 z)cPsUsAj7K2lo}=SY1eewmOXlBp_Qb-O#8M#DPgnryrugQ6a?+xCqD3_{X*5q7OfS zF~l1)LxjBx?RryLr^OIImIb0yuGJf@d=uukU?Oig=ub1mPf)}qiG3$PEOj&^elkEI;CcCccT;oL@XqL!xE`Q}i)(=5XQ+HiCj+-9bD=A9HTdAWuQ zZMYgy!TCJJNgl*FPF@_t#Z-7Ng^F7EYNtYMCu^N5oCzwH*fO;HDO%KwpB>r=oY@Gy zP1QBNM3I&zc0n&b=1Weosq_L^;l7+DBxGt0kYA&a$t!?g%1)yMcYG+0`3;Jf+;}RPXcDq)fNmYvYI|`J%f&&n=1`V}>KS`02w{d_3Zdoa)&FLR0RPxFO zw<^Q2#Sl@T=}}bpCyEw-oMRq&JVzmpj_nRCI2lG9f1@DrW1`JS<3$P>-}fR%82?Ni zDQsl%a+*j%|K2pB_zy)|7~3ZTBr=ltUnVeQ1n~xiIU;^(=*VH+IvKmi@5x7u7&f3d z@ylTtDQryn#}78<5yDgoaZGGegpLfhpeXZWqZmg7(8%v!$oNjiZU<2T=2L+9IdZE3;n5T^ zevwQA!DA^v`~YJd03J^f;&)xl1HZ)-B7O`D9q^q@QFf1VuV$fCc4{J({otEn#%7w|khT-t{mfuyQ<%trIAO^cjM~X!KzmZ4s7;{0PV}2Gj|~Ly-++vD zs|Y^lC6^Q>?nOb9m9A2#4w``WNgt@$G6C&NfgW1&CL>o`ZYJ_e z$e)xus_BZv@Zu;Os52_A@M1u(AdnhBqvnt7QSiF@TB}iS1@lJ??^TMIMybS+!prprn4zFQ)hVBg{bCQET4SL<1Bjs#hE3Tc#H1 zaLPVz_t9gowLC|r4xqX1g46*tk6K6p;`*zhg;_+oM`fO(>>JjyoJb*}mZd~NOxU8F zM6sfh!ckb^Ey+>}61SO0k)3mE5IRC+1v(tz$O!Q?YwbjpD_9<0gqypZ)~aCL4nsbY z4z3~{p@)+C<5aksJQ%_=%moxPD!dGiA?( z!&?-@(U&?Jk;;D;%E$`uKcHkz_sikWhlYUnkoN+F{bK*rGWIcl(I zP{63;^ftIC@{n^ikP-;M@!h|C~@(8 ziW+s`Xbg+;tAQaKqu^ddaZ?UW9G6=5Qi`0iH$hAiyW5y;FQ=F(H+iFQWU&^IuE-wL zDe88;nu4ZmSHnVPrsHcUay8x2hKGzRIaWEV^R2OJ)q%A(MQ@*|;@{U&X`(in^iZ#i zW1eve7de`@AM+H+Smy&2D{2*d4@J`h{|yu=GSO~dDjaAi_WB5gO37ZvG0jaBE~S!@ zvCPdBDy5Pc$1t~2xX6UQz0JJcO0WkU#xQBQ0cQ7S@85mX;qJw}nzGNWNg^*BXKDbsEqO8t`Jr4-G=hETtuh$%TL9XkD5X;lhHHE1eEwB7Ye9lj*R?#6uK@7i8i5$wG51&&FtQ984Ql zlLd2O4ECdR<$q-DvA_%m`#1$lTEG_E$Bm2ea1d%N;4Kt0G89D=a6)B%ieg1hV@F_x z7wEGTByNEwRNfsFYfeO6l5d{&$6fE32lep|m_3OI>`L8?@?lE^T2C3)J%~l>X;k}djpt7u!^vWb_P#(D5k$2EJ>%7DaO#SJ_(h5s zmGq5)2xW!69F0Pd;%3Tyh~h?#f_lYu)-)gss+{S>V82RX(=_OiZqTn&yfoFz?*hTI zX2jW5teoGXxM@04(~%EBV2IzLh*4wrUJcrGS|f!O?y&H#T*0n^lJ>zt0`oU7{erxY^PGRjvlvoiji0!H-|dRFS{LZh%obQ&4v zuPA1kjw2sP&hUOq@zS(o2k-PP2D9!A@(Bu=rdnZpS)Ii6KTyo5rM0%E#M5z&8^~JDPB~9-nL|6t>Ft4E)9c`R`4GbCk-`*wtg>Byfhrd z(CWQHk)kr4wgxk`cCS*XG>k=Bxz{O9R7TadNVIiZhi(u}LwBZDZG8%rN|{L5-G~B3 z4cV-fXKKYZrC4b=1ZllCr#NZY$<%6XNuknEpRu*tieg3WPiEJB`_0gUxIg)W_WP4V z?+RBKez>Ro$)P;yaF&VtQRDvPr~|&j5!kYPWql)q_&7qSJ9MMcc`!95-QB&c06P6& zTS*^8rStgLTH;_SW%&lMR8s~~>AVQ8RIg0rbvvdsK~xQi#PCuBY$HXjUM-6i&t*L~VGn05REo zCyEkRQzl#IDEp{Gb%Lvn{pkP7=OFYQf36bxq7Kyw7--RNnSVXC!gw(-Rs&#^zfZ`U zhCwF&$%sO-rBSW71(FvG3(aBaHcke&4B^x`m>!lmzm8#@MzNyeQ%~hu4aeyR85oB4 zHi{M%dhO9_^%{1B6yI1$!J=9&doWtAJcWuna&BTMgI5e@fuVVWLouQvmQ^{ZwnivQ zRPdb`#bo_e6eOyRnizzZqedZij+j@13(S50y!}21iZ{UL(sa^((VvoVs51Kq%A!mj z4fM*720td|O~{!9zi9V1TnQg+W`s5ja zfu-@%dA%s?+HP^c4#W8j#YtQocJQ5AoZBhPp*`C@#3FZ5-ccP3v#LDa220#c*+&i7 zBH5cPa3AF#TYQ7&AE4}ai_$#Y>r}1IDN_2NHbI+*FDj+km@cA;?4J07FR0hr z1y~Q+Tv2Y1Ec2gwT`nH$5z7fCZdu8uQnbkC&*vMB25%{4+Jd4)joPD?XHwd93J~e} zk;SMIn`}+l$JbJ*Ew-g7Q72DCYl)O$2g*G`8Swg6*d9YrcA_YIM#Ttm4Xp1lgYSYk zartT`PDDD3V4>G(K~b1r0nF8S5!p!=T*CR&jsz>l)rdsmM$`-}tFJB4ZJ`o{=2dIB zz+Jvwlwn?jnCeg}YIde)z*Z-?GLPY1OYtHHICkpv3Ro4rbp|$0!6JiWPhdoqAE0RI z6;0RU4OxPXifd_@9zR0CB3m;nJ(|4nCJGeU`LqSnwRdwCIB*q-j&m!;i5$pTl}E~k zFzbAVf<%UDI}k@)7Q|3)rzj~DMXRuPQIOhkyC!CQ!C0#kr}(Eu}*9pkgjZxUozf}%3t_G^%qK|Jb>q684w?U z!9G@Siy9n@3A@Ng>ZKrm!GNAM0nH)O4;ApfU^w_2&d7CY(9iB4EQo~5GyR}}I%rYS z03A%5dGs#~STARs{W{2)HqkUn9i(?JSn}=9gC@%Dd|m4}@COmRLNkC=W?K4d7}L7#ezEX zQlKtTs9zP-Z+{4=_b-;e-SqMR_lc{4`lRyhwSv0qZ9x5!BGqpM^~ZMu^-U+qoL>;s zN3I9z8U^>@cLun#uLJ6F3e|a6Kpp%BQ14MVKP;%P{0ykePnL0iAgI^;0H{+H>YOVA z&I?`y>Wow5Z{H-SkKF^*LlxXp1$FN~0QDh-^NoT!^It&SUg7+pp#I`3K)piY{B1$q z{yCt&tZ@FJpg#E!P=}OnUlG*duLAWtg}Td?L3!W(3!vr|&hHe|XR=3b*l31jBX&+sy)}4;{I)!Y=wgb^~*a0wV_boBB*~x zYFnXxPEap69jGs#CUgFapnmu;pdNXuOnqKZSH2afrz_M`-yO*Oshxm&rh;1$)NdRO z)Q6OBKP9Mt-43W*DBpfTQ1@H})D0Dx9~RWwu|R!J;rvHI{rtf|eQ~*5qBjKf^;3X) zjl%idYl0GedV8SGQl$Ebpx%d4ZK-^_-+O{@kC_G3LzHiq3F_VbKy4{fogt{t?GMyj z6zZ1+_3&vx9bGDy=(6_)xR34&)XS7_KPIRf&jsox3U%FUgKu9u1gIM-n!Nmj0reOE z1?nSt8TU#-y=U)rr?}r4l&Lof>TR#VxBpbWy;)G_{1m8Xohg5NhoCMI5L+xOfMP)FW?Z#O?%rd}tg%Qt{;&r+y23+g)C0ClCp z`Bp)F_V2*?AVsPl3hG|J0_xY4@;)l4*Q^7a_f~Kp6Vw+Tg>T=aeEYbdPTdQ>y;-rs zF9r43ZGn1;BJ*zqbsFmV{feG{FQ~8n5vW57^(jGp?H543Ly_ufLH!x(dAd@fX9e}N zXMlRX!ucI;rc{hy$2 zk_YO$73vWm3phW7-~Lmf9wn$poD9?l72IP4bzuXjmkr6d#|i3e7pVIw)Dr~t&bJz+%V{1ZVP{}53Btx$g^s7tN_>Xr)i7lQi07*Mw#mO1}gP>=s0P@h)5 z{hgqG?;SwBU-|Y)L2ca()a%MJ=RXSS#cP1Nf%5I21ohnOf%=ew`<$Q-egLRHSEzpz z)Ke}2>h%ie7X|gTTY!3-BGo!K1=e5jF`zC}sOt;r@2&*uCJOHFZw|gKZVmt3;S#yL z({2f<-Thz;dG$FmbwE&`y91~*&y}ec2yFdBANPqLH+KA zK%IB7Onv>6fm9C;0Oz;BVs62Com*AvVG8v)joMVG%QWhF3iU#bdZR+UQloxSp^j_R zI~D3ypHgMsq9vDTH;uZ3LhaM2vlZ%_HR?VJ^=6HFfkNH%)2dY8SE&1I)ITfKM>T4p zEtlw@8ufgII^#1c?zlqTRioadQ1{WOpHZlXYSjA_>bV;AX@z>Fpf0))yzaSCxkTH2 zHjsI2TcAEsm#Iex>Vszk^&bl7;|2AxX+S+o`Sw~toqH=#uN#v&Z+TmQ`_R=u{gG13 z<_PM6>%ogJDYa}=Q1`(4yNObNFBjCiZUO3;f_sagPMHbRM--XAA*i#~1!}7%%ltb* zJ#iLLcWubj{|M^Rdw|+hq}u29puFF^3aDRI%6o*M9*vq@u1IyfpkDksP(P_?<0FFV zz8k22RXE>%XMlU})(A zT=4B3MWF89k#$wPJD}cvKTsc1bTy<=zp7CGtWkG6Pv-nDjk>o&t>2^KUZGIW)u`7h z)XO#M4GOh!ugdv^^JS^tp;6CJsMl!JqC)+UMy)8+<@c$$|52#ZzMxXyd4Vj|QjPjW zh5GLM)o*XTQ2zEi8uc-S`l?3#uR`780hRM6ia&3!QD-RB12yU#h59LtdZ9x7lAy8+ zxUW)b_qV-?gi2KPJ)>Z^jvZiT`d5e4;~UkW(0lV0(z3_%@xFrWs9 z0}1Mlg37i?<54AoI_II_+hBK>pdKu!Y=Dr9z)!jw*Ty=JRD zj=9k*j>jCSc#e~u@Vq+}=2nOC&QaLY3=h2b=62VIL(w5az2}MRPkHCKJN05nD9z#j z{`Xfv>W!u6n@G>6OV4LW&;N6R;PYSpZ^mZ_>HS&K`&&rQr%BJJO3ycwp06uCUr&0z zt@M05>G{^u^KGQ(|C8i=O_K8s>G>4t{THO?FG}z4CGmfg^!`7k_x~lmzmxR-&eHq) zNYDGE=d-2fyGzesmiYf$;-8b=-&J~l1L^sO((`?#=lijLce)!^3WE+DI*x9$F&qjA zSHL-Iz(u}_KHc5C)fg$)*7R5Ecxl^scY1y~?DlE#Lx4_h*4JPney>Z$-FHo$GNrqb zcc|cacY{TY&AY}2-!>isE)od77;(9vz4mU6G zO%UdRXUBJ&&ba&N37*?@xZ8BlE0ehmW6wE*+l-{)He6zCAyItJ+kFrfjXxl9GPe=z z1Gn)(zJeh510c!VMt~@8;{!d6K=_0DPvSNmbQ_=RukH*~Q>Sn;~%UjQ{C>gKl+vdhi?(+-o&=uLQjX6xx@PmCScD{~^b6A43D-50u17 zuOu{(1k!lGk0UVt0PwOzp5d2>dB{rtFAruEU4@x2AOPT^_$9?H$lO=hzsBA7oefU1 z0sq7QKR_%<0fI9Jf4GeM!{QWpGRsJ!yANOo0e?W~qhlL_aU78Oz5_My=>=_^P#`2X4?Lxji z)^JQ?*nrqyXtBkwC47@b)vyge3F+xMsuE&(3~_5fr#3 z2!}racU&UhLv?}6Nm{!H{meH%@HaPcmcb@UMi9b-XRcV(@>c)h?e+c36 z2jJ_OzzY`+5#dG@0e?V*GZQ$o&VC?xu+sM)=4kHM(Zhwe`9y$E)ZGc-^6fh7?gS6| z+He-r&-2*bQJzVE!Z(S#I{|M`0FDWM{S)rjiMl&FbLLv|LyqR&iPpp)P-mjnSmqs! z%XxlACV8-*M_Bv;*x_{i*s~(mU6T*{Hg)esX#4@_Q&aKZc3t+}0O-f)x59%wmr2xo z77MjJhG(W=_@fX17tIp2wWjiuc|oW6j$YkD)oZre)xAE`+MB|{mI~gQ`sxtBkwQ%0s5hNCc?Im zDmVuOSA3DXVlod=d2??R&p4L*3a0h&2Z~}$>-Aoe0j95&o{E?b-51bkT#-U`i6UgN zQir>_+Ictzstgye_}%*1-t#{8+#eg>yd3Pfm5CHQl^LO3&G|1|ZJ33FF$V|&_I;Jx zH&IV3OaZK=p!giy-5skZ{y-5+37QE5`hfRrC0AuIZp1RX|3wGzEuiZD=gvnr6aXF}9bPLp=9uXk`3>0Xk}5e_U3f`FxW z*zU8~!s8EEJxRnjAPCztk%DTCWp-zw3-}h$b)9HT=1T$xh#TAhp88JkFh=_6-s>=S}#FvsYzzzCmc3}X}uQsO+i&*A1z#s34DgU&d?=D6-@SmE&p3U_u26+S=~hKEOi z*|Dtdo@jPo=c;}aWwiVlt{L&;tb+ceF8UiVx z;?LujFQ*To#CfSe4B0&kZI3@tzQGi1F93w`@mXMfEU&viTHjZ_rsYHpMp zfRQ)gZI1tcDC#kZ^z4r!#$99&);pYAFVTdN5S;~TA-?-R49)lhf+y=<`hqi`;OQx^ zImUvxZy*r<08parqFNS_1dzejMbE<@09%;E^RQ3@GUvn4yF8nxqO$y8xy@$-7)&4j zIqu$lJh;}T(i86w_BO@~^AaMOWM5vwK*;Xa9owiE}j@@IUaRlZ>MsMm2Z8VhfD$>F3M8t(40auY;SYc%ss4=TfXw+c zR{i-CVBSg+>isPb`BtaVV5d&=t|X5JKD95P^1cNGhu5&(**^RQK_jd&bR<*1cP<>^ zj5ULc22MM~opyD0>cMu**8q`)%i(T_Zh${f=thD#6N)q7Q&tKQyv~ScCf7lS32Y@^ z^GuEQNJmR>w_KzfN%X*x=Hmi~S$-k<46g_(99^aZpzw)OBR;Z$H+Lr#5Zvh;?oQ{W z;!d<2ET}6EMc;vV46?XKqf6lr6uq5>OHm}rsU)IsD<($+-72u0L4RnQM9p0}Xztj* z#@$&sZMy;g!~Z{kBx>#g5Y8S99AmEl)bGJ;CI}5?!PD+)-vE3PHT>OC|Cdr){ z&gqBH!mv>@o(ufth~u=DRbi;2ZRM%emo6Z>fE_4<)@Ho!zwcq zt1A9Lff6Me74-zY6R(vq0B?`L_yfR+vV3M>sns!n?}*^|1K_78=n^T|17%p(jeZok zFw^i&+=Ue>05;LeOu(h{w&1YZlfVYm3V)zvi6)12{();N9;V3ViSQW|0e?V*vywTP!k+n=_atyNR_MFX z)r`hXw0aO!K<3U`d|{6tG8dfzp0)*enlfbw59BY=%a$Y=52@_9k0CPn*q6DFC9PGY zoZQ2t$Kx&{xGpB-T;emy24(8*HQ#Uf7BfFeb$Eqn~`X|%3Mr%4B+Vu^rnUVP#kcWXT30|%qh zLpB%{pJ8N5Iv5q)xLFYv%=&k3)}%hHa`y+L;_0}Hc<$%Xr1%2`N;+B)%mY6P`c#7E z0pE+j_yfR62cv>{0Ib9(LHEG#M{xWB@Pva=!JD};{uzWQrr{USi7}NS-bC+7W zV71Ss#qg{ntzCHxqpGL=9>*3M3Rr~5g&{IO% zxcfz1G`ejVIiPUi1yd9@(H@itVYyIX{i)pgi6*@xaHtd5w-E#@srcW_N#JNU96wE!ANhZ=56}Y=P55cx91yHN zlUqGeSkrhjOH0o*8J|*@A1ga?ZaPS zG&5`T?nEQjNTFdP8i)qIz6ba9L@P2Pk(lR)zQN^ik3`SFA1L%W38Gvm&HzxLFXK=9 z>G@AohPylZ4I0aTk7l_O4NzpxVlo(>2HxXM1;2!cWlg69_AC&NzYGdXls7U81v7OZ z0(i%M+&dDDxs3?KE2N^k51}{U4-_s*-iRP;ULa%ci^fNtQ~f6D63HB;ge8lYKnqOI zXnxqZ0K2@~hLIU15L05BxJwiv?6`|UflD09T_Ux3D#;%-A|Y~c8Qgzimk58rJ(6^Z zLQpg(Ve$pTAXI`ofWCs}2{S^Xyt>Rc$VL%=k;eFWJWOjF_$+WHL1fPZF#~q!DT!7C zg$fB<8$lfKlZD(*QmZ_H>_#sMs2tzj6hjF9KtanXH7Egw<{|Jr@DD7!dkp#q8pN#l zYLZDTnX4Fu6Zb%pA5Fe^7Wl_Z**_#IBLs2^j_4t$Wg{qzu0SGikyE&foRbXxGP`d_UkKB6qRu(2sFgfSSqi|S2BQZphcQ%ApC)%cM`;u2&4f26feU~2vA>}G z#`7CC5f8eXEE*llEyq`p*{%~Z<1C=!Uck*TZ^AETBXqeo+}9{KoJzR{2cI%2wj|HH zTcRNFYVKtJRgh_qi4n@B{XM4Z;Xk{Z9yivgw?~{-nU%_l!#u%Z-gtM~(QsOB?pUYh zG}*l`sGLJ57G!m^%!)cz?=<`Bt80C&Hhk|4k9o|u4}YP%{R;kZ4nNMp$GPBR03Wai z9|;PtSbaMmo6x)4`Ordd!Y2-z7}@tHh!4d&6u92R*#UI5txTluR=(5ajusz4ArF`s z$}fb^*9V$T3Ek;_v3xk@4aZLm0v$eQm>VAFJ3Kp-;XWUr)Y);!=)6AmTyDmScZ2m>2bQ9V+Uu-oJ8*dxhy<5Ubs%5vNwk~Ao88@yLUsd^p629^@fhY7`V2u) z3n!MWGb*Rh6?2h*jEo`v!Y(<&RXj9`Pd5?1671QqdEiwfR#f9dCugXkDUv(7tj~Uz^e{9 zwK;b$MLxy`d`=`g;qTmt?mLl@)`IU7$pTLj$ngv3@Sa1D&sE6B)Q%q<$;@j<46QJ0 z(cEj0ZFF0GkQIO^xMGj%kbh)@yk8`H-@ZA$Eq33JoWq*l{z#_2QhesV^W1okxP<(!lATe6(mlDT&x;+~|Xdg|g2 zncJ#pV6Ew4ZHnJau{stsQ|{deY~2V&*Emyi!|nJ5L>^VQSxMh0*dbjFW1^c^GxU>>`<>do@Ge9*^b-9mfX z-C}|I8lW83i&|Qp!797j6vj)f@-Q@5Oeb5C=iM!r`LDuAiM<-uj|nRg_)lMOG_v;RoSjN$8bIOsC3^x>JwhFZj%j-ODg(g$C$IhUsXBh&Q@B z2yGq52105V+}Je>lLT@qE$Bl1n!oK6Yd>8J6RbEgI`qvIK>qXBI|JYzmD zDvA3N3m;3&b;8ui5UheK0p~$emv&!8&IUI=#8T$K3ed|C9_+q>Y>hr^3U(%GG28|2 z>aO>7;3s?PJWKgJkCa$#gsgPmG&LtCsYG%0aWVG_cPet9!2L|&*#zb}SWfdicN$`t zUCmg5>yQcHF&To5cmH4T46k0s@#N2|5R9kkkGs=O@;}D=k>N$~=Q*Y*5qy~sKsZwf zzVq%}Zxot^ssq=P<75|z(T3!RC+MuGSGu!~WenivXOBVdWWfLg zF%H2E1(-eTv=JU-CCtFEgkGTyHx3SV+R%P6mF*b$PIs4M8H)jIWBU*Dn7lP7xPUlk z+3E#97vcz!APA#~EH4~9^#{DZ$_|eCb@$L^QW1bjUMdER)v;haBQ2f_Y$%?os%pv} z2>#AV?&!`%M>l!kTMe~8V8I=5fO|+TaH5>E{V8iLBK}^i~qTR{A)8 zX--F==(@Ya4k@UHUNTs%TY9y1S0Zpv74iT(Ik4J6%1f?`?%4=NE1+e`L|w|Ux`!2n z*S(-om+GEdVkPUPR?U(_4UXtod+iVIzFUGedPDE8?uJJPsfevjpN+ftKD4@*fEZ9? zXG&T_)^H#;A2Z@>?!_pp#PUF$<-UWRa-{@eCqG!J7gzDcaQ?GC{%qX+(RnzK(I0oG z9p!zTJBodb9f;j+5I9FD#8tcyN`eQ)H;d&ZM?^rxJPE{OCf>GwqC_WmXZcB!h2ETD zp@R97R_>`AFDDtAP;?v(sH{EU83sys<{}ttt9U+~r478ojzHI_;xq#rXpg&F`Gq@< zzv!bVS-sFg!323RV7{UES9j`i_Bi+A$8Pu(Drh2;4)~stlO4vr5}nWFBXX2Bi8kP8 z7=*qt*}x6PtnI!Bc~4|mc`nL`1D2DjIASpMaftUJM1&pXcxB}7m%=ll#QFosI@EGn zjn?Y|Tvd-oRQp!YCZKyKmODfsWkFF0 zXSS5f+Yi`k;{r9l_IKPJ9ftC=rCf|W&L?r_<2AQf+WkqDfNwS3s?0e{DE9-r+{$Rl zPCV?eGimyYl|l>R9usn!{lsJR8~MG#m?&)C6rYUQCZ?2z)IIa_wb5N8-D z-5IBPujfu;*)4n>aF6L(QL~{ILISO}${B-fRl7I>B6vmJ%0%jJ1+g3wY4`zTr@RjU z`l#Na%Qft87M(swk&V<#zKXXb&%0YL@?Om?_Fe@<5^tiMf_pV{C}v3aespHGRv>UQ zxywAE(FVW~a?C$+l7F~gMz$uGkb9UDGxu$t)4aibnAJhE^^ep;S)@WR{BpxXhDkQO z`z^!>v$H%IJ#jgFQ|1&CyWd3wqfwRNbrgSTi?0_;f+yqdL+3+0*&G9mc-Y;15rk4$ zrqeFK!p$aD7iBr1H5g|PvE{c=ie5ZFkcG7a@E0r<=)f8>T;{h+U12ayeQpIMF)0>V?fazcVnOwD% z{F1d{W@E<)a!oaeBn)s9@u0g2_MSNrN=CcDA$3J9S)o{Tuqj~NH}wAMZaAMm2ENC| z(^v}UWs!9z=)r{&hn!tdanbvbsMLa3HM4An&lSwng=>ne$<`1 zKzadSPL5Z^VyD%vL(T=3h^e0EqwWy#Mt6q=!RI;EPg%Pc(_cC*n8+`{U826fhzH$G zPHn-YJtIP)m4&wU4#^eSu43KuNAMoj)<#-)Yp!kW6ObTgU<6wam4`cg0k8+Xx%#lX z`2yu70JCn)Rae5rYnlUZrabFz#@3?yJ`PCMJr)(I=CrXx4U2`#!y~x^wJO=Cr;9nxhvvRmkA#W1>ZF>-cwOY|U z!Jk3qhG2h`W$!^|?}c;Gx}zD~=Mcdh*yV);cDffKoa^R!WUdBtd8XfvsT{}Me;`LG zhA-$@5j;qdz(VvJYq@X^ml(TVq4y9~xkL4+~%!J+``=A_fhpy@v(15Lor5 zEs!^fptik!;YVJS3}PbJ&J5&kikFLQ8+;hewVk0(B@aW3Al2bN;e zX~J|dXP0ZR#R@wHFfqwxhNCy-XWh*f$$tWvbvJ;3)f;V`^Ab>-N>93*o+QWsbF^g) zkx^JP=|AAhl~8N$k?2@P1Cz{TNGIH9iuN7wZNO~oE=1b zP6g^YgWf*;h3?J^f{$~4{}tj5d>j-$yvrlx5Q$vzjHA0}p#!q*69&JKR}!jGSMV9| zEvF^)JqcME-4dc$7&0{0NO))|-ze}{WaLqs?g%198qNkom;^Qsvhf95%jK(`7pj6# z78cq@)UKhzIjlK^|Bt)pI#5y9!+& zDYuNh1mf>S8R0P$EZ+e~*u%eyBTjJ@OM5WMw+$nAw_Oe&vYz%b{4lq`{}5nyrZB^e z4jhONb9#dJX3DefX2+gx`u$l`C+#8kp7>?yV{ccH~ceiBq6c)G#uL8$C zDMw#r;BswnZMP!xJ!L7-;H62fJ>@i3JU@|8{Ut$*cx2E-nCMJo$;-zSDHO7-|o&?>apF2 zS(oJrMq6yjZiOv__4$HO((IQn6s*L+yFB}b>dKa3R_1NY#O^lB_(wVTC}?Jw=l4;I z6)LcB)mtOP3e5-Yd@C!1nHBX)ch-EtAje9#jAefr11QsM3dx6M-h>cjiTw&Uof5j! zd4kNF4q`6@Q$vlwMo?^bWP)#|JnL?@92!3P)PilPXsmzZnRo;KM|Xo|*ndZt+%kx^ zV4eYtbu1vc=VR>jquyT1OH!!H`7^m{ICC$>uO|#zJ1A_ux|EaRmHSTQLxa@r%7++$ zm?N_IlvCrAdlj;X3Psy1%pl^35W`h*4RRo{XD8(|7G7XiLJ&*%r`O@9#z3>H^0{Aj zFUI6VjB($OEJ7oS%ElNlxFk0)HesRTKt&oq4)E%YH7Ezwn->vRIQ!L`bN(oD?jgqW>*>`V_Y=rEyz0+Y7)ez+$7I%Py?ZONo2YW{tT5%(*PGfC_1gU`vNBg> z)t|6us@7rmPW+bC+!+e4RB7G2@qJNa_YhSab_3+$&1Tyvv0e-Oje~Xkd)&RZ2ECW5 z@}url*dKsHclH8Q{_R6q@z0@G^CW=7n^Lbv2W9hy6>PO(fhPV!aXs{{jkNC8iy(~( zUIZ`0x-$I5PXHwsD$i^<8EF-+$6=+~(EAG(aPi0R?SA3kN>V^yxZ2l(h2cfmQo(r5 z457jT7a=8nmh(OXENL>5Xan;l-q3}$x}sz30nTD6m5^7uvmm=N2bNRwels-N_)lph zD6JwhK@Zg{r9e%aB9ix{yD2cvE#%~Ab>T{XX3Yj$2@M1JK3GBEt1E=sow^_GKB>&yp_=zNe?1Nl}=aEH( zn~MFzN}(bgjPv~m^4$si1vW%SxZ*BmiNVceFLYlkBg0T{k_J?;x2M%AG{<;|_5K)lr(O*4bz`46-re|Ep9Ic0Q;J5? z=lm-OtFykz!m8*2`FwCE5kupzx;wy&Dr>3t3HM->N7;~p$tM0BcfXFy)Hao#bT?fb zyp5G|J0YQX3)%2*LB`#=jG{pl??GnIN9M1)vr$eBLOP^NyuWX?lE>Zgb=>F5#jdbZ zUD$(h_r16tWV5RLth?Fb6WJ*({1p&hY6BxUb7oMIK3)=Wz(~kP1Jw#Fp!Q_rU%UHY z!H59TSWDssfrf3@@%C-7(rM4e-8)-Qz-jv9?zCm<$7mxd?H7&0xk5<~<|UQRoQeK$ zc59Ub+2kS{1v1Gtm7a7rT_(sN&oL&S*;gwHD>Y8-RLX2Jy*btggHC+lv>}H+3Jos< z+A;E-?v4v&7T5vB2R;iBMq0%=K^ftsDqqG{AI?R45=^Ir?u?`B*h6AwY~@zK%WOB3 zv}$1jFdU%qwTReo`nVqA%n)jKCJyBI%0z59eF@MB#A@1b>h-^YjP~H zFFJ~+usySwdnmHgTtejVBRDCRMpNPg-;|v95y*Q&n~QaX5omCpn6Hjj4$Tc)KA1Wd zAV!FR#gu3S=l`efP2l7@s&jF`i*{@Cf`x6`7B)7}5}3_2n`JGwY)M`u+bo7rYo;Z2 zd8T`qp3wph+e-+`B@k!``9mNO5&~o)fj}T31o#s|fDl4>kPz|+B=ACBLRRv~#{0f= zs&3W2UAO!8bdN0Q_ft*Zx^>TY&Z$$U_9`~!bsZt=CI@1v-$?3x^6^p8!h<7WCS(Pn z6dN9xCQn`SSh|T7J|bCpH%^a{)r4Y^!Pr;8afX}{fme7oSc4@6dnSuM+1zSle29m3 zG^$N*>XIUCn`Oe%ramc>hwf`*7zo=??&$eE9S?s(2|eJ}b;nUUd)6o(r^E}CcEJVgBUMRF@mA; zSn|z6e@-XUg^!g%OtSKTcJbiuiM`dAiYPJdTC@64B386@J@Lu9JEcoaUuBbme9&Hr zl5b%9;~eYh>H71z5_bl3n072$SiiV9L2~gofeFijGG@Mf3r-wn07i=K zvZfpU#mHPSI(X2Mcs@&SyqNjX+q|~j1|HO|mduOA31o}PBhr3n&-Xf-6qvp!+WaV~ zM9YP5T=mcri%+e(r%0HWlW2e2e|Ryc+Kg}(t!yTw*lX*3^c5Jjl6bA?D{J0K`b~nJHRC?msm1EoZxQU!c7qYUEaN&H7CL;5>6!}{;O=EJ z0j$zSiu$AH0p!HNlTdBd_{|-1qK?rs>6@5aNuPD~-3qR-OVw3X@q{-a+so*G` zLgE=$Z(*#+=SSZq=Vz({_X%VvtPV7dsMc}Kp}=5ZUPQVe{xZ41Nyb54|Is24r<;f7 zu+*J1*S(1TWfpNy`VkO=c4nbULoqPFq3g#4Z)5CLvN4no^T+Z5u!2d*Lae~qt4J$@ zn7sQBHmMd8^aV&bE~)}b79(FmRO99^SP3wIe2*z`WNI$HBGBinuVFPnrp!lKs@eYX z=QYt80s zq>yRK1cPA#0pE9KBj5I&Uw({zXCINQq6Ny!el7i!R@aaMT>rm=3z+{PX!%eZ`U>qM zut=KSO6TW;>6@q!a?FClC+Fxxa*iBM!cIcG)tj=tIdCWGxT^n^pWeQxJlTn`@w#)|i^$D3?^)Ho}f_ zUd{zO1rs8QY{$ZSpPrJh`qR1(bu!!32_euEUhLQdPK+u{Qn0RLFG?R8S>{ z1h%5R&v|SebQL+mu~RewUc~bP*JLBnQVvE+Wi3!(i~Z>War%WNgl0&#;qcNx;!Yii8lhG?8nkS@rOEOzg(2{e4yHJj#;*%uYPPA=LmqZ1f$ zz=&T!lxh!VoXYZ{crb;hsVNlMsN*LliWr5ktwwS7o;`Q%B|nQJhC5*#G297r_TD|a z?^rys$9iIq?I!2m+G^Mlr^~E~I>B%RdPbefgH2_Jgm@lgHdWv3@LPh)oCotfz-)};uY8-VS+~=EkCh>s z6h<5LJqBVaX_TIWU>M&9D`N(JySd$Jov1Rf46g7I$%vn-x9elI~^?baN*ESj01RYmi>z~&ttrwEMFw@y^WxsRbE)D%LJKjQ655>i!H?$f`H*bIp+v$;WXK`%I?I=DPN@JA;+{A1TV z@FWV&${;3LxhqXgnpYN>kN<=fof1M3c`10pSHawTKTcpI)Ad7D{bQL~la0i|Zrcv* z*>*$4CIazbkg6Z?&SY~I>(m%p(yPL#WYzx3=4~e{nxH&c+`u(?6c;febY#OQ9K^&| zxRZhj%9Cv^%z#@79oaA{S+#Fr2Ha`_kPRm52PolQTqHEzsL$cXw8>`rU_mYp2cyvVUD(d^7yhI_ z^vHA7yt;)Vld`Y0}slpR)KxTt$RX zFU_8;+$Vn=nOBj_xv0KSW0s>LWubDP{BcxXBUIG*%TbZq87)56<&Mhhg^JeRq~g!n z=pzwo+KSZKB3N4QI+{O4nrk4RubxSIu-3JPg`85;I&yC&xn;HzE=Ndf)5?AN*AaS~ z5V93+Ih9HES-DUCI5IycD%0wfRBnnllf5NkfQXe{MJm;bRH~KxdMiLj|6QcNF;Zui zV_9lFG{#x^Ig;-cmbF$Sm4d!Tz_P8{Ku7C1N9k8dX}PNaNo%mh_^Jx^)_wk|`WQ#` z{iM1kQ@@oHR_ZAfQ`TyZ*oQ<|t;a~k&vO--H0vfviqO&cEz&qgDz0++vegevPAe`) z=wqTUS4ov)ht*EyK8B9UCxsoUlSslZzbKLjwGFJco)Y*p37pM(h~E#DW!Gl1>{`dt zXGt;4vTI9{Mty))N?Nm2?h9)NNBRpwI#Y>|>!Oi7Sw1#_X*Fzf*Dj>Q*i~9+c>m@L zIdq+kOxE1UcWV%hTrsKeq@+lr&f} zl*!;;g2>`o41Ec;bMzrO=VplnouaYWUOG~??G%imhyUdj;jf+G^1^2mS z*uicRnKr{DJT3sl@rW&~8Ikz~jMcd}GI}jYQTYQ%n?lzN^6^Ay@xafbWj zw@ctWFU=WIu(?5sK_ zQ!p?yvoJm1oH&N_fZB6Xt~f8_Pe->UjEQiP2^0AVBHxbdn(wqx*eXJ-U%I5SS4iC@ zr0fb}%meN6{VAALaEee?g(Y}ZR!|xzpa9S+bSEWfxnZh#&L4?{D{Xt4G095Xcs`(0 zfJJ@oQW`!nUAGWt@n>?@Gxls_2^)#%k;zF%ls}WRZrr||L?7;oZIG=}YGh8XCtGdu z>X>r(?s!LLkeX^Cd@;A?xitJzW>(~223UscXQftQrU;p{2EWZ{C=;%whG348s_TjrA2_D-25XOCSNh4^BEO$Gdg~aSo09VHscVp8bntz4i|8IABM#=A;TPnm#OI zdGqALRK3c;Lap!-7^u8+$F_>RgftJaWih8juFG%=wn>~{&E`R|p8e6Z1JzV3MmH~} z-4te~KYMR5h*P)g>CLe(O%pONBgTqU^|X?LB`h(G*QiT$tPwhbuOz{9MA0O+ub}eF zQ*-MQ;x?bY?V9#H4FBSs*3z00BZ?Q_rIlrB{cK~>y-FXjs1eqeA4Nquc#D>UU}<+> z-KT6zV_Djo!oIdO&)ThZ!Xl|nqTgky;b#JB&!ED~7MLt=tz)dPgxuNkJ2`vbUCLgi zpqQit>~}U@Pg(Kl24v0dc8Uny^&(^C-dV(U%~6Ab zw!Zg8vf*xCV8_Ij-8hJ1+tie7mMvP}7X?)EC{e!yreU?gM)ORGiheAYw4`epEvIYX zw)-#jD{9ciF^*&O2zSYZlNG9x4Usp{i6+lAr-LmgCBzDwf1>?<3nPZpm<(g2<0~r2 z-~qE>Gjj>{-TISseT~ADT@qE)Fp6i7E9?2Sa*DaQm5qCcDl%cCIIVwr&1GCYv!b?F zTs`VAFw3v4N!w@?qZ+o+Sk#Rx2ki0*Eh<4@e9avkHe13NgHZ{|96K%|JPbcFb+N4j zDYJS$IL`{)B(|~($p>qKDic&QezeG47IZ6mw2E!>aZK}3`uhTBTrjfIOC4S_J!HY= zk@+ME_bzQN&$0D|d4Fa;tsF;PWx;q$FULJpKTE2)3E3|BYZXGkxH% zr|oZlk(Gf$_DduiT^U%=U+9(Hm8PE6y8`eP0`yzGTQHH?ixc{`c!ysAzed1P9sYs| zsb1uq#d4G!tg zf@tZ!X@m}$%!+%8K)XznVy6eW>pxKth$8>a1a{8etoC{^7FVQa1u)l5jyf= z6qaQ26_yt=0k|)0h{hGAo%d;+x*;pVrm>t`+kfc|mHLOXkbf@ z+GRpbjf~WaoNceX&Z6A7&@`6~iNsfsrX3f8HIZz=6l_G~7VTvg_M)_|677XX^v10? zr?In@N61ddb&-wS!{IunPv&r7`qYH-$oovUgz2~RB-t`KYZL3-q--5$f41~@UGt5f zLvG))kFsya35inRDEpzMXIR1EPOpc$0Qsh+hvc2JrIiEqT7A6Xh6gYcl;!N4u#7*8j57e^zi>J;KHZt`JddXX!QqO^pF_?Wfb(~r z&YWWozJb9=EJ_l-50Y;N;QQxJXTDn#Jfj^`)57*7*=7K?PwP_I!oE1m^I`JL06d@8 zrII|$onV&nCK+dNx-&lCwyhD%_%s=30LI^SIvY0_Uuenk($1f>$vOkDe)?9HZ2q;e zo(7#TDVB5OngO^zecL5D7q~#C8Gz~2*Oz4d-wE=}06hQ9X=~Ym^LqgqW^h{DbKdj4 zkX$o3t+~#-y_b+{2H^ViZHx5!ydNds48Zr>PFthSIJ_Sx%M8Hsubs9mYu&=N#Ax_U z+>6kD$0G`HQ#zGhC$AT%CJ$@QVxcV zjxLD}bJiqSQ*`DZd8EuaNZ14SN4)?*hl8CXAVlaRh zA2^f5@FPtk#~RAP0CIfl43YzjcBW5C?_3J`>|EP4Chgh!BG@_##sGr-<{2ayuO>om zlPNPBDGLM0^6O`iENS;aa^ylv!2nWx^bC^1xv>e`Q19TZ3K8gH3d8^c{q~tC5L%TT z+-d6MxrFjCI8!so$%83=$)JZ)AO>f!Kp97H1qEUNfj)MITAUwql03SSA~AqSA2~xs zlCda}=4wjA0MeXE%>tC1jG;Y}axj1#A3TF{1#;x z|CxKXR3M2rtH)3X1`y(tXHa&e-Df9U*2*47u^2$C&QkP4bFek{?7D6Px^+vld|`fW zaedPCyRLcvkD)jEiaoM)W6lW!B`(eKg%ntOpae$`^sP&|d?5o_rtj%Ln8%I0JWZ04&0zaDG@Yr8h3_|$ZwBCdX$ITJ#J5zv!tz_mG6S%@ zG;0;c!t&fi)~?@9wi$r!rJ4616We*yekU1c0LGVQ`h0wh`=+Lt%Dc!q1F(MjdTokt z+m^!hd&o5daJ@7WG2>8p+L8n@orn?Uf0@iP0P{;T5i@S)GmVq?k$nbWe@P}{QtojJ zkZUIvwjP(LxjVne=C1n=_Y1ug&E0)a6ILqEJ29ZLLrc;Xns>n3+$A`gyT7}n&D{{P zR1-4&V1C|NlxXR8S`-7QXNj7-DRkN9Zu)`aHE8Y%(+9{j12DZrjx*(91g3p+SGc~L zTr&XIOVkJ(2iGv?v}quGKZ|@b0N+d0G#CTl%@$4+oLHFU?7Q^<&mrRs!1xmNFUG)l zR@n#1GlSFGNM`HUe=%<>Rxy%E^34EzpT0#hXgmtnhsiaA)7rGtei0VOSkrEjaRy*~ zi8@AOFm2av6kSh~Wd^6Wt|7J`+ZM*#WSjvQU!oqyICL$H`yPg{K1bFWfc4Y3R0`|T zg%++C$Tb6Sy+l2XF(};kFfxwt1es?5=9j34F=pm7?ZFq2eFk8EX?hrr``UckG%swh zzjbLE>oM8ZK`{h%ku2Q|FLcW8ZhzRge3cvsY{K}ajfbW%v1iwoO7@RR# zFq3W$69GO+0T@7lUpgbQAZ_sr|G!868JsaD6f}@Tg3nL_29V%=XG9L9E$RlgGKmbI zqYMln!xB~78K+WqSRwOK=s~x*#A&S~2+pE%U)=r)9jxi)sa9p)%DRw7A;{2e7=014VlvDz(DL~8ov`mcR^ zw$~3bkDl{m>b%)px{dM++u~k@W2DZ}hvXc&$eriu)D}-!X`&yz@%Ke#&sjXF-aex8 zAB2i#{))pT48Z%uk^*kwVHi-F`3@l&0J5>PkP{R2LmfF9hrr(@FoRP9JT;X9{~duD z0C;MtC2l+~#r+53GB_2uxJR645K+x)YX%mBaxmsX8t-G}PjMJcEiqB2-|RGuqoQ8yEn0Z^B?4Kmd@CVMPJ+N+4m z0JxJ&>%OMuPtH0eUqe_1fSp-l*psdL3@$dx+Sa4U0E4B^<>pKs%PK_MTZzg5s7qW; zHRl^M9UNq8k*_5(10Wwxjx==~3qzb)Jw()F%^_ z0Z^B?9CeP?({l7Q!ZKKTVFP2@MpOnsUE&J3gHw8@8rVQBTHZlm1^|BYfFX-`g;0~$ zj3u`LJ^5g8;HII=#bmoRUvIV=b29XhK6TCI@5S)L3Lk-EeO*!xLp*IXB&Cm`i0A51 z#PA+8op#f!*Tc(s2W-+59dUVQ{}NqFn)DxiO$OnV_gAW~N5I#ObJ{a6Dd`K@z`1l<8U;sXjo$7pXr#}lPUmzz8 z?hlRVxP-{lbUOnJ<$M2KNUaI&LBQ_$v8e06tE+FSFwq!pPUi2m>&3%1zac zYX~QQK~5Nelar^q&;;Wg!pvWi83thH#3^Sc9di+0{))UXxL>l!4o3(l-ytUqz{x4M z+K`d&k`V^?hphzTB%+nSBQp%{53Sg76Jg{Z$Or>4vVGXbYTDSTrN3;u>p5(+W}B1G z7`jOGUSh#vKp$)GeCe9+zZ?zO^}R2W^}EumGTfXVcmJ^J^9&;;zW4h5gGJh2PTw(69WR3xtd-?s(TxWK=Iq!IT0(oNq-gXaLF2k&< z>4UX=75w!qjXg!;M+T`NB-?vqPxy8VM|!2xi&b?C(~aJHdU{fK&8Oc0gE@g=hve)V zI8Y49_b&lU3WRd|PA#`DTLO#$rAM@*8jw<>O`!hvwS#smXe0enQ3;QPPFgA0?{{!0M|`6IOM~MA-Xr zvc~}Iz4~-v&(5s~gRdlm48UM=x-h7dFv8!f$sYso_qx-Bzh(=gscMGS3SUbu8JtE| zsM8Ii#MhHO24L^?r->57D$Hu}jbxL-X_VKNO22)}bbsc?g5=C4&sW z;Gm9v=-Em%^lL%;HQRn4XM3hG-I!^#=8t2ob@`q}@KM)nejPd(H$er-s-2z~`x(y~ zqxlDryawbYmZ(YOnY0 zn*WWmm8{OhC98KJNyR0BWDhS%Tgjo!d|k^-iO*_;PO*d?^XD?mk!RvDO3hV<^=a{N z{&5SXm2p~IU7`y5$G3B#flJfrCM$NOFTGsueIZFD1i8Mgay?3Ny6??ihnulRMSF*xKguekivQ4LywGt*AZ0^6+=0?t=40Wk@ z(-;-ae1&<$0K(KqHHnnCXpwfVCYZ)s&_5$61AsQh59*CE5BzlkGXU@%BU)riyO#d4 z;{BKSJ|7FPXO1f6bfbRn$%#4V0p+pE$F6C-2PV2Qh_Mfnn$1Q#b+ve(m<3lvSm~P2 zh$8LYw{ejdGxdmyX5Pp7QwEU7E~y+Vpc-lq?E4AJ0I)~KoQEtQ-c);_KS*c>fWC7? zTlK_i^79_G4KW?F8rhgPnUOuubo2ejE+ zM^<*00R@H8UZO^8_fL*sLs|N2wLVVq%w23SGk{1Vd%C<%y@L(jSm0+8m;r$8PNeb5 z8dz?R)b|ja0l@Db)pR}e8pOOOH4?ER^AH*@O(~5B=E$}3jB5$-N7r0{IpXAO`ECCI zWaO5n15x@g%}1(fj@;68gvBPk1g65tS_aIPQOj2bM7?JKwV6;105!5N$v}C#3*fFI z90TUdhz3WpwSe{`XknW9pgyu`rB%3A-Ur`7(~{rz4@DR?a~w$5kUmVSHYU?@gvGSH z1m;PstQdg%kxeTDqNWuLm(L8Gsb0vp0*mH(N4j=kB z$pDZecgcGov*sAU{ySkA0QR;~ouV}bF~|VpFfGy>3XsNPlJLE))Fk=PHCukhnWQ`` zsQd)zSWMD^Di%!g*ceUH5l_9Nur5-We`GI^!I(0Nq$Q&QjD<9#BoavRCLyh9u01_* zcpA%V+q2QBhJ2bWlQXjuP4yx8S#4r&l-0H9ufkWB>u56LXrQ z;ksP)fUjc4QpsMiW3=AGIFV$!-JX@K#Y2@3UGssL(3z&s@>9|=U+)@UzJ~CMifsKU z&DMBLxG438Fj7iggkqZAY?(2Dbk81JraF)se%zzl6UCZ0GE1r5RHgAo@1kUF9-e4S z+a)v2!&Uz7nsZ-?{9NW9`AZTpH{H~v1P7@!S#73k-?&M3;9dTV(QvO z1A2_PeEet=8^}`+ERWU)Kly#k`!Hau!H(*+(g^Sia192pZ({sc3?sRz_| zkD`^_p|!7KS0g>NR(jyf-|b_7=o%7--v3bb9-q`GsdvYAIvc6f&6}uo2DFwDv<~|2 zoE~y*K2M!ny@2#6ymxe5gRAK3`nzkM`D;-7GWY0z0cz(6s`pR|0p8d*+?e#?hdh_c6J)58m0D9}9 zotr0%gB@nkhEp#u8D_piLlg_~MlnMD(wLc@*9F7!t7~4%VUTn5!Tp6aBh)V`gc66z z{hONH2tGQcDGn}R-TW(C)eOM&;_DZoSPSWXpL(}?0qGHnzfhf+Zr-bHDtWB(v1^X9 zXS*_pu@91Z#NwZYRV?JigZ@BNHA3;v680IQOp8qB^X$knfa*pl{t+lG{{DpuX8wqP z3;;Mn@%MDoNe^HA{Ywk_C4w>l=;DjNC#wdCwtZ?G=7GqryittM0BM}GMtBm|_aIy( zn4E>Eu7;3e+v3|cmb8+Ep{-X#8^u>yW?8|IOJUgjDhoUVuzUTYeJ<$LJk52~vSC=Qw0O%2vm4j9|WWyzz4e^=B zQtgNwWhwAMoFbWzu`Dov7zIPTi_u`(o!HU~`3XWY0A#_a#$q9Tq3?zL6k!@&QI1dvWeKM?sUj+l`7e4329RNdIw1m;HIEGF1K99o0MO_;cP~B?H`c8VRZ6J8F_!5=KTl*R4K=F4#KH$ZQjrP zWdM-kLr)|Iy^EQR-8Ui5) zwrdWIQqN^XaoJ$oEkrR-r;}s=osBRQkkwgG88`-1D02hh7yxdR+Q*TNwEj|7EaXl? zG63Y>k*rPhCMM^aexkw~Xn0~4sVR&wGCJLCbAMJ(#I)!F7=Zf`nmmqbY6jZtaM2d*c?4qsun{^rj%o_# zYZv#*0?reV0RV4aw8=T5HTT0(zn%8xP2tD83s)EHzbRFPVKYWxaP|T7QXJ1-?p|W? zUHWrGgA3pk1qN3i-QWVUYH%4z%v)I9GZ@j}@-WumvS4o`7=sZFE)NzMTo&*h1Y|Ip z!C9i*xFaT^`C|^M!MR9ajNsp98l9s@a4&$ABKOcW?|wJUEqxAt0&WEV<|wLvBMQuI zc4Tu4$%?tT2$jVA0yBgGxF5m4IjX74QFC+A7VO;wV*s!b{F|eif_ZauuPop%5s(1@ z7w_L3(VF{Vskg=4(nw&8(En&*9`#rw7}eJZH?IFPoc>;&iF1#B829GISFd^at|1~! z@I`8ZBQ&}4q{R%wNX0U%Irhx}iX5SL6;e(uM9ndLWkJ^xlmS2+<5Qo==*=<$yn(7t%(p-FQP8Vc@)t6YY=M#gF)1#qX}UwF~Q9<{sr2 z6LG+Kgt5f{N+Dp5KcVJ0La!;HD!F8z6~RogMZ^HCk5HQPAZmYEs3U}80H_g)S02h+ zT^7y|jsf8GNZrL4oTXXA-+LsBCGX9vX=XG4m+d3;F+oKaNApM5T*9RyXUlK<2Lg;R ze&EO}Wth~@s7Z}5e&9$td$L@c?W}$nkmE%+uSuQyc2wU&U8_QvmFl#3q*4PtN?C~G z9=5b+=bJOQpKDGPI^$0xjwI=tL!X4lct3nnvhvpSOBUislm}5NQ0u!?t=146USIy$ z9d`*s-s@9!T)ZXReUNUG0l2!YJXex4MWllheg)&h#9#mn>uB7ki)MdIr-6fSnMqcV z-zEqHfLM1t29N;YV+3FT06XA1GQe@m{3l48!5B4kJf97pA_xP3jKhki>obQe|G!Vt z3_yAuRz%Wy_CHGu24m8ZVC1dn4++8mAmgwi1qrO^iv(aWwoI6VACqGCCnU{aY?%Nz z=MUf)jIR)b!PqhZ82L>2GlDP}TP6@B$b_#GfB^vP-mQ^}a#}6eocIRmGXQ-%h&vwo z`Rw=>ffxYD?wc4BP(Dw-O(X_D8ix;0RfdddU`vQt*WVC?0YGfmeD5sMo=*RmGl{a{-dRVHAqXfG$WlG zinVw8HmW*}=PlqQ)@EI2xnhkfp9Ew3Uq++qz-??)?N7fP*r@UpbU=ty(5U*FHmdr% z`s}CKmQV1`|Fk^b4IT{xD6?+9G1;D*YfR2hV8hrtb}(~1UvEvKD=ZoDcv5FD4k7Ms%(WWR6SFv68m?hNFO(LT>j=XD zFm{{K;&nCM=(u9=WYT2-x+B{W#(5@=*H2EQx8>9iO*=h3jX(^>kqe#rOk-k7FKQ9> zY$J6Bpgyt#vUdXr;TxwOTy? z3$0Fjj@S2f8b^4ZzZNr?>s)=t8Pr|^G63Ksq*Ysthg~MFabwwyHD0cXJJCZ}R@!Lk z45$6wHQWDzWBKkeS$2aaVjJl4fn@Y^G=MJotg!#EDEpQ;E=~}9{m487pJd>s`ohUj zoG1p@t*IQmT5fU^xLTMlVvyQhpc{{JOZfFMAdV>Ry{-4rJ(?RfFj4aoHO1yfz!BK z^&>PA5#(cRzc7FdGb6|lsqP$CoaFYnL0J_BK0yW;fPtY4iG$$o?LLAZZMQp(3DmVy z?U@Oy7Aya!2+siUjU|$Q0fQiDJ!XM_pTG--D80<8q+$4!L>B+ zKT8%EfQ9L$k$rZqag4IpCnwPf!}%YR7$w7SlVtrL5}yI^4=){lv%S!9I1^^w}9}f*WG2a#++&l~mK(=#y%u4?iGQt3iERoGqdQ(4< z)4-n*m;r!?ZkCkSz|4tOkMh4xXa-9Q-CCHzcK>X?e}m8r0DW|6%$(}xC<+eb$zp$t z*bIQZL`9s~^B8|^&&k1xS^RGkpTW|qeZD<6c{C^b-w>JspzQ|1ahGun5cC+@{~;^` zz#dwf+&@=xO214=YS(;gHLciLme%HnAcf zbj^kTg67u6x1+hWasR@hiZ!o_V;1rj4Aa__5rHE(I&nuVG{cNG!-nq670`{eOkyb~ zaVrZhI`&G#5R(Xh34}KcAnPl}l?lDAr2sk2E@{cvkJX#g9NLUA_fRs&0L;Dq6f@VF zK>MaK!G5o+;e3^MSl?P5UO_e)fX%m^hHQqawJcvrmKlKMA33!w)2jvMU>Ula3^4#h zKY7106mQ!|VR?ve8A2XC zimQT!Wy{p7IK03B?AXOIL(_)uZ7s}Vl6`98aATfri7duX5Q70Qu8QZO{h*fnvR7pV z^1I%e4tB;@KV;K%&BfnErhFgOesbOp?d(R>M%>BW*?nM{iQ9KE^lD|a$$yZHkf*eD>aj(YyR@Lq0__2 z>SWDM`M9DVbCl=dam{2Xs76Tz8hxW`)b7^Gn`O^;fkLzIY}XwV*66;&SdU>=N@mF| zzfIaF129=I3!f#J9Wlwib6{{Zoyoc8EEf@oR;G!<04R2$-r_})wnckko>TpH3Q|DY z1YrP>0!z%Y+fS4X$UFwU1Y(X54920YBaPO?LTjPJdBT%3huYIlTMI;C0F;7>`0|1r zVU;Z8tqdnfodKxZ9Vv^?i=%bBhG4>SG>MxlI}_~|$7)1nFCZKPz!gjkmlviPL9;k7 zBo2dd;7m7;U=0a|{w!;a6SK|)UP2rOz!|x8&bB+9=Ar46ZiJ2P6B!AxLj5Sg7ywL{ zKK9M3nzHNsPG65SsIa4_*mssS%`~5|YmR&jF7S2WH`%z;xxo3O;cRPlfFtzO)E$x{ z+~KdQJ1kiJ65&NWwr>o?QcTucI8Yf&vxMt6P}K~e>Vrcu8S}k?7?bT8cq;UPu;6Cm z(8-CZ=A^@X6EPV8vtaTe#(06>3NXccark_WS73AePGo#D@fZNFV42<`@uu6eu;GQ4 zlkBZTVgMw&!>-VB1HK1Kc4V&6m^z7Sc^+3QicoJS6azrn z8NG6+j|TG(D??kqhj;s&dbff;h@Q=!G88zq6mpAQ)u*aWKd=lQV*8l^7%Qr>JgHn6 z^e^HV!L*!cqd_nR0JFO-dy1o{SqygUB-Z`TH4njcHs@f?w>bUYTlg8*w^z(n*nGS^;F7bOF%m> zz>g4w!N@rxYddE#j@f24ALhu5iNRpx9Eo7$1^OQZV*oI_YkQG}J`~|)q{;wPM{^}Y zHP7@bNS*=67YzcG%j(qHY}rmonE@yl^+boHoM-+ugkS)Of_aRTtNvwxD}PReYJVL` zGXUw){Dmi-Xa5bvU;vEK+<3Dk%l-3C(B{OOh{FIl16q&EZ8xa3Ev!bbT~O@e{*~t zJ0FCdvpCDd0Gt$5gN{O0^)6PYuOgJsC1nPn9N!~gKjIN@)LxN-3TB|t?m3LBqzXpo z-P^8t@28>lAD~y6EWgcuLbVsnK)LVK^!Y9Hewph1X>q-Wp9F@VM!O%DmH%WfmjRe4 z7~geYh&}nNOrwJz7}=LIM^KtX&>xaI15ht$i=|&@Gc=7(e;jK*-%@=L3lalREhwYu zSA(efjl#n4IV8;hq~lX$j&jZYD9qD>48k(DLv1X;*E=j={0q~Ks#k0J8pE#NgRQKB z%_b}Eav#xHHpg>5{Zg%kU&C6q^tG1EH-WkM_{rHh)nJeDE`;Nt4&m`M6zE&Ww2 z$oj3)Dig!vhHhMCZQlMz*bQ{9eM-*VuhGC;=@V-z2=^ov?gIa6^Fj-Y1shY~NLeRN5paai6kM*G>gU?i9q4e0qF6gjaIdDw7oDrRc%%=x5fOZ);raDRkke6(qCK3 zSC&hhTy-~yR+MOEcLhYLuu8pCsaHJFr&I421+2)3CdZE;l0{sdiAz>*=b)!cg3rTj z!?67fta#p8(+VGvtk|Bu#8;uxC!3iZTb@2A%eT8%_++(|!5WMFLO!nO_!`jI~xOv3t_gkM{ASY-!l2DYG`OsqbLwUh7AJr#z{lYvQ|@IAijTa>kG~ z@w1e2<_)BNlv1X_Izw!VAwq&)LsU}FC8;57cY|VNOjIcyBBdT@CB5yt#)bcvW%IZES~yD;3T!8;~lwtVax(FRLC%L^8;OokOvu zOdx}>OQYGqHvg)w_^=E;xbS`Q;5!94__Sg_1rxU}f{6x?tDs7nGuWS0ZMT@G5UP4~ z0Y|}!ey&h<`ld{-P{v#$tR4cnO1ousRJjS{z~YTVv6#siWiZ{#BCKudlOoxa$u?!k zeGXRkE}j*deU~<%j&9m9zwyUm|8n z3%{W(dM4+x)~S-dkEjET_@+gn(N0pM%jD(hF_j#j=1bHZ{F%nh8K}m%i`k#(mB_#*J zi~LH?y4<%_S)i_`go*SUB5#rnyPOJqa$r5FoE{u|)$l+y0oxdRm2BL#(2~i8$}WEb z8{o>CYx+@-aOZmtf_E_2^pi?Pz>+aP z?Q(Ad`Y-iXWjEp2PKP=l-l^Q!oJULDw)5)ndln8k`^b2e>UE5RL*dc`k8l2*l}OIh zKYkz?b;%X$t}B7NHs2({Lg#$#K+v*>h zBqpZU-${y>H-Arrl0LPdH56oBDuZ_)3iD5dDR7^U8z_w{SQYQL)N;-DNw>&RmavhS z!&8p`os$%KIa`Ct#PxQ?f|8!qpRMZ5; zEG-8!CKhI;5pEx=3z&*{_;=U@4PtoMu%xcsDbo%`P0%b&C4?sEV<7;%;td5JKKs>X z*#Et(?a;ZYPENO5uI8I-%(g9Wm-J1OT!K2DB%tZ3iX|atBqYE|NuA(q5VT8YW}28H zQ=J4c$;#XCngjHB4Vu+*(#@Xa&J`SkB?Onb$7I=UC%4NBklIm>)UoE=JWgh|V$<=#7y0XKPuH2N8 zuIvHn9JfVXt6UZYT7mmR2eW~ut(eEg*ejeyVb!!S%Qi)27e7Ew6^#_-;F?oUu;kC; z&y3}jCUKo7aa}hwmy#5YcX05u$aofiCTHEfe-C9S8e7Q8V0#3UScD`uJGx@9zV}74 z-nQqr`@{gcwwxuwZmND;wJ^Lo6PK($fN7l@+@5VvF6bk832;ii*14`qHrKKtkgJNH z8gF+5WNcj-uM9=G<~kA{SZfaEIH(?#@Kc22Y(;tXK#nth*IZ8;VfDCeAOTzF<*T$- zyW&Q0nMGy?DVM7M9z76JYN3j+(NzAMh!Cso2J2D@`ijo%5nX00xPqC2Aoo>Zc${37 zl-2QVq+O=^8k~8qs!|0^lWz>Vhq}St=i#i4%fRmy+ z%}E`v7uPP2xcKw;*;xu=l9dPO>h(1oeNksAOH&D=tJ2KlN0<6hKCTng(BFwtkMBuxq z*_tEXnZbfd+l}s2+lMijZQ0)#dj+4v4@6DP`A+3l`2cXc%9*WHbli-7OvlP?r;Wpy zb!gnFPAkNI=@RY6X%bloXnS{@d{R>2s%Q*9r-ZqMmX2dk!{}bvLq5LjW4*C&5A5%^hVjZr*BT%ctsAQGci%La9+*XdPb1x9FI@5-K;L48n;cAmB{RQSB z{gNaPaSjOtDkM+=flB*uW%rJq!a4=yf|$FN&i(CG4cRU=F4=T#K*epVAX zhh9+M1Z1rIavp^x^kJ!QoaoLMKPFyv1*GV1D|Ev;W@z28`6$Un9dE$^c0kg3)(U+t zyN1>unvav{hPaO%tUEYU4#ubM)qF~HmvyUyxuc0<)aRXU2FC&gZ`IhYuIBbEV#4%2*5i1m2Mf;L#dnRr2wnEozskmk!IS>z83dO-o< zz!h?w+4g;8MkjEE=1+-I%Gni++6R!8CT4KHE-E(RSmHQE?G}%`{_Eg-Z9Y0#yKQc+F4NLl!O`^x3xoTDbPb6@rpr~P zpefS#yUl4;i@M8BmI{08dtW5$UHwZlNmsQ5t>^ww(tiiY9L5BAeVX8$my1o#)BgMc zmkde>#@b6Ea8UrOUIAER0c>QlM(I-oTfGLeF#XBTHE?iPV-6cb&^)KIWL3}tRzF#+ zO?^@%o9+lc7xl>sA^Ch5AqBW|Z*z7QY&apak;xk7PG!GK1oFP0Stw&oERwT|ZrYp* zG!>eD%r?CvFD99~Kd75LT1}a&NHlIwz6DTBR`L`CLsK%3AkB#R_@SzS1i@u$Ic5v# z^_q(xUo0jU+JVR|3lhAgm}^OUfJKzyn>wvzjln!Y`0lZQpx2#aJaALUpBLa@$>dzI zg$_oj#VJV#_OggSRfi`8^h>y)y}*aX1(PvRJX{mRE{OnH)YX}|Wc5BtQV|yD4X^Ic z0eAFe=&kS($%@^m@KZ{`q*IhR;VM{lDoQyo7n__X^fIeXi=ByTnN5%*)`d(ibmrSL zn9}7XW4b0>H_-{&<}yi>&AUCpiW0;GuMpIkHi%8tReCEqn|E65ZN{5DG@c;S{pe&~ zPc_Y~iYP@h(A>eVd$MhFF*Y(NL*OnF$YzxvVC~^Rpo1m2)SG!0Nknp{u-taA4=c@- zs1CuU74W$vURLMP7J^+^feY$nE<;)fZYi0K>zWt-CR+&k=w$5;dJ|h^zkXcULWqDU zQ54TPhya6ldaNu(zT0e%bgkyOQ6?`cdYxRf!ya!NVR}zla0kl4B)80{img(-8l&1- znB|RZR$UJ(l{R^pV~0ad>B`Q#lw@VUB?$$^YD^2^GSA(xSIK0Yc^-`gE-A}VOmVj`isR5_didAYQqg3+(;+0leuq(!wRku}Pg1sViRyq^ds@q^c zR&C$z@=CXaar3Xd?waTSBZ@(Gn+^&16uBJ^7`f?GZgZbA52JRL-%R+55IKgaH#K-yxOrjsc5qd|eXcAe;Dg)Cc6+vLInU?uo0*gqDm7A~FlJm*oafELtc?lD<*t9=3Cf@Kt?>5_dY zj62a}Z;aLVx}JCp7(pPI4U+1vGwL(g3RfDES&3=_i*5mor4k+Nte;z$oJX4vo9jis zOZuisE@4)qw#Mo=l3*?eB*4~F7Lm#blBhp}YEVyw+aCoYC(T^`~ptRtHP)xecFNqzzCL&mBz4* zGFfeDFDRGXTi^R4S-)Lca9GgE+jPW~fx2@M`DBUL7v|eI`+TN8=aji2@+Ps76Jc@y zKXnnnN73KGMjN>WS>#+9#3ZY0{z>Lf7NgOrW(Pt@jSa6aoBvd!y)TmWJ`T6HOX5Xp zR60eJD_Ec}up1(85+6C?mL1c8g2{~121GA_V^*=&PvDlP&k27{$SaWcoA1g{?%k@% z122MV(!88Cb#}ua{93j;+!t#c6xN0{_$#+F)Kz2Ix<@25KSAVD71fU6@Zqjwm5rjl zj;MX=BfnO=lzv^^qr~4x;$bc17fO_(M$X~HeXXKo|38wARyls#X({^585mQ%s!*)A z66-Qsr^u4%c&+l};qv6*L8(DlYaBeNCT`wAsBCTG$Kp%LbMT<8Gh7Xk(*6a~j@2Kr z?p$$oRRe;pJWw~J)Zatu`C8-Y!)ZhvG*_;tb* zR0u;_?ZJbgyH625NQ9o6!0$#WnZrGvJq7rPXsYME)ZoMA#leHAb5H$v3iCUnson&{ ziT2EjJtInib>%7bPmp@X!$-%M&;ruAavcuxk6m;4+vx4A3}TX%+tbu!@`_mf?$b+4 zPN<;w@-JWqpG2Dk*-tj7k67S~^JsXY#7qOn6HH-DNO;=RCq=SpyW_U=XDqLUF3IG*6hmTOkfjYP}8N;VQ~zkU#k7M+&J zVYM(mn`wkNoo1F@Ny zQH}WlX%5Ki*oaAh!HIiQ zeM6P2Zv(BZx7~3~<$xn5b7dq327^U(zS`--ARFIy-bpx-83B#ZVP;N~NFgiqlyS{% zPEQE7=fny5^K!8`#|wL4-)&`ma6+j~dQLf%$ zQ~nN56x;@TY0BAP#spC5;B343lhq@0_=8*gET0d}noe)BfR8!9(S6`EhP0qW6>ferihMEjOL;D)8 zKna(s2+~@e_hjS9y3W{gfMIpW6C>KVk||eLtm}zS*4<{4hBd*kmX0-k*cv*Gv6&`} z9rs0|mU7nQ^6%3AiIPjP5>SX>jgcdg+L6>E(NXX|hBVpqlNsu-R)tZ?hV8p6ZbGB- z&9}b&d%yV_7N=ktb14@@Cuxh!+44I%n=X!|qC;GLI1X1qTav3Yamng%$sZwxt+c1= zouh}^^*Icji~X(e5mp(q?N2yxvX?{Z6-l54`!RLPqS)ILF>7bw1c22k#C=vYsp0U#)scTHBiUdyhC$A+8vc_yTd$z_+^?FLm=A*Lq%E@zCmEM ze~mSxnjn{GJj4b^3vxeg59q2Z*KVjdPj8{0M(9#4gV?}O0k*6BIW6lO1?C1~MVkRb zltb3_919Oy0A?2{M{50H%AqVdWzSq|c6CiRlW?q#A3__h8W+Oe>+KV5#47aI%7r3L zyK30i7BpurWkUmHEJJWV#!ITu$ItGezYR6$Mcm(CBQFBP*=d=@FDRkUAa zUV?^Shi`5Dxun%oCl67h_}W*QJ4AxndN?}N$(gQ+`IEEuP(wae<*{pC`#(9<8N?(j zci?s908_Kc5FP5w5>zS}yZBk~gHNJuqUsOwh~0EXqcY;$I~jJl5d&Fr_hxyK*Uv6J>QK4*9N0D1 z)aQ=K>Hl)tg#T_`*i;7-j6`{-a3S{Jm;v@t&IzT~6fj>uPV&tQNGpwCO z`URO%PB!&Pk!(WF%IDtt!o`=dDG!fd)#*5$RS0RINWGkJeJnFOyu4V~?$Oh|o!S!&!^6=!aQlevKsi zx$jt$GN2x~HYb*#CY4-;mf2lnUT#T;-AcFT3ejVbYz zf%C19nT*|ilz63G>)!r(T?V(3_p0XOWMMIma)9NzDK+mS&8G;};~8W7fP!3etBq6L z;h1~p6wPNyv5x~BVAYlK zYIXM8{_dJT=hYs|++(tAhg^{>{`jHMI$7WAv_C&aTll}g5$cV2d)%krtSD(KSfJNr zBXP}(d=RvMqbpGLD?5|#nm(A$toF2?1ZC9LQ@ncb70sU*FR*K^aA|b1){2+LKyUsw zl)y14ZEOkUjm5An(lh_btPis&T4QBCP3svU@Sr~efnF6qG3FvHng0GysGduz1N~pL zQYBy+TbMIu6Z5?wC;V>j zps@7PhU!FNBDkrLAl2!V7;UA+sd)XFhmj1Gm}+haZc?S0t5a^QzT%G4v11)}`q(u; z;6|;Lsrs;Ca%F0^;<@7k87T#I-lPIEeG<4qo<%)L`i0LcxFUXNuA>k+*l4j#FTKs( zu;DH^4)!}f@S7}_=?DHzvSFu7p4s;pEtcu`8NjX~b;x^z${QUTh<_@@D1D_nCzV{X zkwrBBD%rRj(;+)kj<<7XB+Er~_AvcA!!Fmy9c~_3n3Hu}Y=`qyCSII4c`vWln?$=@ z)OGpbgvsUG17gzOl9MR+lNeUKkQlg&?s+NTj$*SFTs=OA1r^xwGK=A78E+M)9$ff7 zc`$XuPbciBmD}v6U?DhM$d~Q{7No9dc;#acOk)yD0x%O}Rr8R3Ns>#h*Vn=2&KR3_ z6u`{&F`r++3^D-+mSQdLEVK+qHBpbH58k;CrA^Y>Q=yI(1y*+yqjP)1{&xCm`n45|Tp>A7wuRzb{- zBwkdcV&nHInY2W49yTpa(pr}SAf<_SO1jcyZXs5=;^Ob5>SwAo$_4nTM(to|^#{>o z4N8o;mB4+=Mr=MRBB{mdHSU90w&JW?4Abl<=D=bQTdE(y4UC+|9F_ocH-U=HJ=R=^ zAf)!3E{?PY@@$eXul)HVb+iEH;cTL-6{25m#^4OkJZjF#3O^;3oR^DD)?!FHNG9w(F6PnVAa-xD zoI@{K=ywi%bigo97kfy!Xb!gTR!9oA)Fs~%xVjGC|1JLZ7!SEXz zSJIvJk6p9jBkTtRG0DnZX=>K%(SCqWul)d0fg^f5c*7^rwcOcHHe-+Eyk6#nHjXf{ zDvU~2?LmUd_M?qSy(%s4gi}sME;t+5KyK;KKLGgZJ~(;Nq(AjK(r5h2>+d zr`|82Dh*=vehK>;`iXWqJli76u@2~QcWD+PFPH*50X*m-*8EiIPjVtE-gTm-H$|wA{m+H==V@J)F2*3E8a&BH&`S9$Xdm zLs`>mPF-uW0!Qdy+wC#W=m<@Yaj|b7XX&lYM<;8=^mnBUuoT9+)}B<&|5U2xXXzz! zCHb1j2%Z11Mn3c&HCrOhCrBh;5MygP0xD9*SSwkF<4+D`{+RcWWZ%*@K+>RCNzpLB zB9hXKd;z<%zof@HSdrw)micuO2#eK#uU!#R_z%k0!L1;%wysx)tg_@~LA-#>7J(j- zK0=y<3rn<4P8HAo3Oqh{@1QXqY|)W?_#Hy@SvMLRlnSH}Tk+4<=zfnxW7ZoT)Ny^y ziF9;WD<^x4AkM?G3mUqn`&%5;aUTS4(1>=I4sJ`67kXHmGz+NIQF(nE+~d>e*rjo z5mGW8c#D$4QDRQ7kT%{JjB5eEdc~bl&mHG}inH#bQ#+yJu$(NL`lLworRY&V$KhXr8iT7v2j*~VVdfAP z5XeLmhP^o0l#aVNUM}sQD7kc>5@9#_R!bxujSVIHahiw!LFxkvW^A*61j`mT7AM>-C}lDo zA+n{x{E%>i3tqGn9@D-SqgkDG;!8pMkjNeV8QA!v@(5(4IQ`OT~zcsxd@#f|6vw8x;!_6J<~jag_Q0E z3{x=I=A)CfdzmncQC2>823DS^VqH}98jG;>Osz@;JKlNk%|%oUxN8u5Q2g0PPRR44 z?~?QPr=MiSjrSybAzf+d(dsbg9Q3bjQ{(1@9BzSXvX1S+;}lQirHpyI_^gPra{!!e zsKNUBFDS0&D*Ay)5sj^^&(X7`DReC~LGvi_TG4V9o4d(T&6JrQ+K(pfex)b2yfKF$ z#@s{saikn8DeoHWHQ%ak-&`}+u)=uO8j?RPqJEK|mh`MAuo z^t?#cJCMrVoMvWXR4egG7N?^StZPUb6;d7S-jZi0gXdlXd%SpC&}= z-zUt-7q3)vxR(t`m0TA0Hz7|$NZ&bHM}OH{kTu_RJ@Lu9{Y=XJ`}QbaT2ud?e@1%l zqxI`_w3MvLMkZ@`Fi2+I&JgCBP6X#shFK>RA0&?&&J50tY)ntrTMZ1p<%`IL1#goJ z_lBQkib~(w!s*gi_AW-V%p9cSjr+mARfQvi1*BR3Bw1t*lWfd)_3fvmM7?EIBrbJZ z#*lE4m+D&yrNmP=l&9Sy?E;6?x7JTdvp4IyxqekOeUX_X@j}lNoubU!Pt7@(9O+{u z9d$E(d$=jr)_3HZD>;zo6QqO}DJO|I3U2*%UO~;~g(6AJW%M0qNF||T2-XgX;$KRd zy)L4ht)$)|PxWP_TCgH1I?CUZnVF)VH^oT$NH_^nI=g)aMe!p2yT?XdD)i9#|-~r^4J655nx*^*aX2QQn0J9 zNn7d_4+k;!4i=-11uQx$3H74=+eaoVz$1tGB&lx0QY{6j==C=J8E3MG zN4v;W+2~-2rC(f}Ah~$E9&UZ3%W~HRC~oFD9JjHBI__hJn{WwvQHo^K4tZH*c+n0- z7N7U0&bFtUSO|*MN9j8&`b9;rlZ$S}C4l;21#^u4L+Cu(p-5AR&fOEs8?X1oy%qJD z1`nWcT7O8tB)DYFDI8^t*WclehLiwUxO=dz>NQo<{s?-q;kKX3zOKVKcPV>5h-2>Y zi~Bfv{Ec!q)^ugRJNKTf+pVp7s3t&h$bNVpo|sYz$Chd!CB!Cm2WOY_Djm5(KvMQr*z{VZL-WWWCnexLF7v7>wa z=iX5SzS+Iz4PKV+he@}bC%?;8J6rwKo1@r~Ye1!CT;s{N1@84=%)5%CF&`x(i}lX8 z^<}M|_nU+HwA%SNnHt{j#<~$+Q|eJuuaT<6mM`-ug7){Vu?Ck1P^anqqKgkQ{WC-u z;67tL7DuX6<1MH$2dH`ZdD8FaBx5}nPu%??$9ear0AD1)AUAkNU!$;2%-^6vedRr1 zk26yEFB5+8?yP^w?R8LW+lS6anfOyOQO;FG#|SVjIgQ2i6AQE0&}vU$v2j>QEOA}) z|9=9l-L?7XWbJPKxN@gW2!9ye#u@=pqG`nhKy({G4gAk)i3=O_+f z@Eqh@jjGXWzr>Xv>KCYJ9uWr0UoR+t3Y(uyKr?wIm34MQ*t4l zJHOo@oG%t}N#8WdC9?0*GO*hnFdy6!5FO<2)lX`XJfuNZNnp35J!A_TS*E$>j=3<4ZZO&bwm)pS+0-XRvdL+uQ`zA@$GRzYr^!QXbyp_CWV>Ao zpor!YsWW!x{c>!XY>rsyIVF$H6{OYUQezF7A zIlpNhLHYyyW9;&oEQ~lk4-$2aW(%Q8xWCw>e-=(XTw3|t5@xO?K-Aa8uKvlAOx>J6 zSVetPdc+0`v3UX^N;$IFT|ik#>z~8}Iv?gQix9XP;RbrD*gQcN%GtaZE;te?a8l-J z1T5)<1}jxO3r<{>dri{pg5$6! z3a{AU;T~7Z!T<68U)bc%kvzP>LsCQpIV44%la(aOpGq})1w&Cb&`#K%A!JpT-6fi+4qdl*tv;8pu`dR&tmh;S*y!mAjN23?(`^U&LX3x>@gpgYzQ(+I%#Q zAA`+>b{&faAROy4#Cs(IxPsiECELcb|%pQ=2@y6B)L|D$W zCEZEYWX#;l8m7R{#};BniD%lDLiTwi+taoj*v!z9R&&Y{PTi!Qbuwmwr2F{b=x|K0 zzobg6mlbDePLgic_YQ2_S$;{%`c|d&Bczpcxv}HlW7@Q4RI%RH&Sf&TQwhDTc?m&E zdehjDdkkDWX5b%HoF5}n%y;gLj3LL!rWxworfoWAOz{;&Dd8ITjsrArRj(%a5FT$B zD^s7Qs{BdfWIbKkGVEPhCFA7G8%VRjsogrPvQqyfc|)fY@n`0z2|1LfDjdP#9!{C} zh2d2BV6OqUGwa+T>-N%%U%&QCXs%vaE^%_zZV=rAqBVOnxSf;d)^)ed-n#!vQ9Hmf z*foSkQ}z=O9=WBJsLEg!vXewKuaibHGxVXBQ{Ll=8AUm)fFCSNp`CKAgbFdRxtjaHVp;Itaiz?VqA zuVojtPK0`3w_=}xQJb%jbg>0TC!nkW%WnRx@tUuZT#w22&26zxOx9Uh{}(A_>~vx) zkA&Rn@}NGw75TDtrrv7esw^q0j6kESCDTRq=`DN=-)}*)eg@0sCZ?J*I^|^}aDUkh zd`jcrP>rn4#HEk&4U5Yi<7Y#WQH%U1ga*Xq_#t@6V@7<%G`HM-_5&mUY;%cVWgl-0 zd>_FX0DNYN!0AQhBHtJTx03+|VBpzfwXT}AqI=YC#I($RNT~>okOsAXbjfi6R->*h zCjHqpFZ);6^11dY{Q(w?dn^a~z_{qIzky&o$(C*L-x%195(hd-T5` z*xs>1DirK+liJ}k$4cEAVjz^6yaRc}0HTbcVzMf7eV#4O6hp|vgk%87G1L%w$j}%= z*d}2a0QR;qSfkK}IffV)(;ibh0nn{u$UhtmuGT0ggui4tOz~_z9bEqa=H~IibPW+; zf!C-7j>D@v30QaQIo-rCo0%gFAi+2cJ%q7_m#WNMMKA^c8;8pc!2*->fY%U^0rO{c zdjsKGpu4MSX=(o7K6?IlunItHUisBETOR~NJ4YYfUx;$c7@-sdwsxJ`+8Ero7lXzY zh+@9P+K2&!c=i~D5T~l<7Q+2c!Z85c7#wR>E^lxl ze%n8Q8AAue!6*Vuab8Vv3>^?hTC&JXVU93U7(jwCRQ?$l^@RbLAs7RIjiCdQ0rO@T z0L~DQ0rO{MlOy3;K)pj#Q!@blF|-A7l_GtrlwbS1YyOsSA$c)N7ok|@dCV;akY)_kvZJ1>mR+<3ohK**fR3SBcGOc)Z<_9v1wKw-1_0ha zvX6AcYy5GK*o2si`AM3m*o-rj0`JwBuSX~U5WnScd!{}!J%Q`1W<@Z4#yP z5$aW8lzWm7Xq(&O?VTYY6$a+`b~VR>4%ZMA#R3Dt6v0ez?2G}}-W|=Bk{CF(pGvz& zl^|L&Kg-Ops!El!dwAt!bAwMdFaDVg_Z2=uf2UAS9}%i+2!LGpCC!CJm{OK?wwBWv zrEXr&g24beuyg1fNU7EM%W0o%oA*-tqMTGA1#Q%RS&UgAwnc=56b2h%bKoqQ0MEoF ztHWD?X%IQP5T$N)qNqh@%+hMrH^DaDL0s84?oY6dIN1vV|g; z4>DVNR1~jocz#yQOEG>+eR_I=KN?dL&DInz#g+U)bXB9VO;Dn{=Hz+sSsNm6Br->Z zId)St#}>hkVk6%^q4^eXfGvWs__JOWD4v<2TVnuOo)OE#ArWgpy2tA29;a@L^>Jn> zl^fAx+}ZU7=O%BVB)KWu`BcJOZaol1W`_^koNF4oNl1P$@p{ilg#MGiHXUhSPo(j zQ*t}3um>3lSi%}7aPt!rV2ghj`Jy^X)e>J`Hb4sA{)&P--xe|xbv^*hW(wb;)Z)fPlBw4D zfVW-qQ0CFaD8>Z|+`9;A8qA^;-iK9X2pRhKnxQj`v5-FW#XGCCF^NPS=0BL-3?Sgq zMPzpYK60OLSU%^`d1FSP$jWn?73S|~4>mty9D=3s=_GAD734qPqqbiK6M0C#B<^hw z!$JTo$NO=Mv1rG#vIRr=ff~y5#%3rEp`WRE#hBf!+8IF1>2Vng>Gw020RR8eU~KLb z>i?<3YiFjeg8=y3HJATi)bMBVr-qRANsA__Z+0aTsyLpr3cZ>;D_7UEljc;<6;@aBp0c+Ou@DZA4&X z!dlIQ_=LeCM6_9wMeLgY$K87eNOn}`;()>`XR7B#&y zJu_W9Gd=3=nbisjNft;5mLTcMV1faIO){8Zctn#d8xRQNhfFfT#>T*dpLt*t4A{T# zt5a3C>UMQccinqu*|&e3y`krP->LJRs=AqI>UB&I4Fb6!B|)KArYq8qYN*4QKQ?Rl zCv3v&;PobTbP^%Fdf{K(LCn-%hXQByv>||ERvvLJI!BUUpphklz&YQka z3r-sv#T}RAEvfFuEJ|~F?AUe*MfTHY4LDDKB$B(+uc&X&Vg6~GM;*^xm^QM_ z62Iz7HzQBaS&ZI-{s4B63bQR!e{l!o<8b*YUu&j+n%ONlI5k@k<*CybQG|j(B0Z0m z^dyYv5wAgxEN2~@`WU-I8ia7})D={~%Ci-MG?+5ej6tKNR}XqrKV?|W)LG1ytsZW% zD^0GHsvZL;7)Z})WvjamO^p9t_-EL~SzbB1^@hC<^P?4;2C0PmMQOs?SGChL0 z2-PL*_Gl2r^y5(xEl(d|wrLgXmQ?33d8RqTwo5oIyxLn^X*b);s{fTUb~$pdG!O$`p(oGCY3`y}Zpd zf^H>s5tAZKl{ZepBwk?1Bs@E&w-*n~?zjc{IXbq>Z1v}zIFZJ{ryr?CP|6hHk+%iO zTf!uMgl8{*K|=_lI+ArpgK(yw#78h~J_#0_>|%gwo|%)1PV?^4h?b$f*_vrY>hj*{s7&SUyxIW%&2=DT?|k>-Xr` zF1^(!r2hbokR4V7_Km&;e_)#JMhZ?e;L;w?Q4eng?=HuLCVS-k)=GD|gO{A}q>w%yl65?s$5ZbI z`Oa5R96-{q79 zmuqhr@~woV0c7+6tZ5MCzbA2O01;RS^IpQx04CmnP7RX_D};JK zp=bbgN^B}TDN-Z!`woi9Zti(lY%e`xwL*`mkI7G7F>{;wdaL&J@B-Tc|;S*`rp zn2vM^UH~DpkBZFV6Zh%;IA`K$<)yxj`;CFDqNt_5cCfS zN(0dN>4Q|zA)SW6&m%AmfTIt$Oo{818p7O0sT$?@LOD4)&)pES-)_qzS6s-{@9D=) z_44k0^?!)waphc#S19l6qP+O2gvpumriz@cnq|AwkZICbMQ1qbv+=91v58&uiF2L) z;@bSYd6d^IXX=gn;DBz6UCoz3J#nt%!H9db^LM446X!afM_t;MttPMjjjc^Xl_%=L zYZ>NJiaCV&9${zzlh_Lv}4LU}p3dlHTYaAoDyS<&)xzV}B~{H&KvPksXo1SYq*sB3s9?E!Ax zTVz1d(Pi>fIlxTgKxlUnp~a6m6CB%~%!@`ngQE#e1qyHx7$74zA8s4rXaE;K4orb%UlPdwy+zZ0sZ)yheQ~enT22n5sU_4@he)1V7cHzz(Wa0 z1HkBuRi?vhgx>E*wK*jKB7Ql0LX5m(jiP7wh0yks75hIx;%CyQ1;Gdk_mJ4bMPjAu zB&W^+)T6KdFAJUq#7p&^A%uv_2l@{J(EzBFjzgeaSU%WK2}T33(@IRuw9kg``9w;} zjzXy3+>`{FOPw$4h=Wj^``j|B8#7) z*f_KtSfC)Ur;5B%v!8p^qoK)%AC5ZZe58a1#7FfdQ?yuqo+1WzI>BfFHfl_q5^P9q zL3B?fAPoScucw$aD^7EP`*UxH?2I5h0gO5X*eJBl$~wOGB5$=bDl?lh^_+)5dxsUa z+6{ONLjUFHTOBrz(*qYY$ghR?&~l>&vuWb-dN@l~$E40b4=JJn(5OSfX@P>CE`+;~ za5R7$bs#V;+>i!C$cqR`1IV-DBj|*PPK6=BvnWHO4POeWJ)nH^&L33mSMXLFUJqzC zx&kokh%&VY%z-mSC`fQsB$(O*<{teX&@j~)>cQtDJv1Pm+5;9~0{sPGGX$dnSZWVg z02@+Y0C)lcX#kkm1BySVy}*6PaU< zbz97?EMEdp{Av#WY;qt0fYz==Fz`8|Y^L&Q&P3>7#J_qIGeHB05j|=OggM!fx0HG- zfoK3ULeSF#p4VFX}|Sikb|?0<;k)xF!e^KheRF zTBaH^kmA02+589R@#m8#iN!buH409mNWH@M{{mvSMwzRju^ahkI{)-zS{>BASmgBqNEWgn({xM!nf{H zYy>(W^@#J44H|?oVw#-}B@zn(A4NbK0Jh?j-*muSa3Sbp2ucIc=$Gug>`&O9jS%4j zw{s3=w*h9vjAN?U`fGBpAKYRwQ$PD%NN|6%<`w`Je|`USK^ZVXf&M;?h~Rp}q$Vj2 zJ-m3asJk#PG}mQo4;*z;BN@uc&o!R9I{|4B*@%%k87>fC4tXpgX#g3&x;ZT(rI-8v z)a_876$LO#3$KlLks0C1Vy3=%4uxmd+ycN#3oi!~6bSFj2neoA3om!A`#nDvb=A|6 z6dC}HIF~kgRti8Oy8!MQ!qEV(wCoCSx$FYSYY9mM$g;8%$Bn@Mm$dB6CSa5v1MSUd z`Yx`&d=vzSH=4B~-X&kNHslc00N;opHDxag}fi z-|d#%d$x>)OnvME$Z21_Z2kkth~v%aLBu~4^;5(E$EAB<5_R+RJOcH7)-(-3O3w=e z5b3i#sDCFE4WLSQkO7n@E0-JfBf`-zFVTa7>C)2hLiq`mCCP{P^8J*#i%#Ft_!r0N zev0=q?!yfLDBn*B0N$wt=TO!D|DctW=F69xZr?K^Ez`k@p6@ZASJgBD=iUv@n`>6mbmz4+i48qYcFD3ga zy2a}}Y~Ix|RF)(k-b?pW{egK5X8>VseJJ}WY(hUp3xLx7lmQUuP}Th^>ZdGmeFn^u zSFhk{BN|XI-B0-tA}KbCZYA|<0?`1dbU)<-<$}t=UP~|+)hU2ZZ{t^T)g>v=0}>0-(H@1OQ*JfpduI#Hz$(h-)$N918ubFSCqkK)t+}JP0Eu z2lS5wq5)8OF?m3qm>k$Q2u1_2(qdX$Zn$Kthl!Yg1lOg-wBG9J*)9Ih)Rt2yCN7Ev zKxr`<0C5g6J)t5oS>hCvBd^|t!y#=zy|kEo2oX~b^d17y0I0N>e4t!RIoSIMMgy?2 zVuII3?)fAwCa%ME{I-NOeBY=u*cCe!Yj*KFMOsAq*2bUkqRu{C6br|{7d^K;x#LXH zDa3QGh$k+}$^FT(JMY7!U)5p9PXns)S>&{?`Q;e4iUC+601W`*6TK+`a*^a9U4qa6 zB>JT6WElJolA(Q$76;eiGF=?zCB^#nyRUt$76;zM3vtN%h||R(jx$B45XZC1io+0P zkK)Lxr?B>DN{PdFE#lzIh)GIF|n>(Y>I>_}un z-wn^_3fotj0$!6FxZhfrTXVU9tG*Ypf%UTauS^45=i(O)d|Al`whnaz=Zw|;E|P(4h%YYD^v{*1UrF@C7M~zu37!utG-sE(eJDyt z^h3^eX%NZgFzC0I+s(nQRm!H9-V9*V}O1fcrmsO&}M$4l3JSPccbz<#U0cs`S)Ujy-(16V~o1P(8%gyF#xzTJgw_aM=L z?!ep?bL!>QHQq$V17O`!?9q30;phx(VM; zdNg~W2_3x+n(#y9NCS?OpZl?O9vrKVIbS*SdtDGgWqyQ2Xh7upP1c(b8B+`&Cpj9B zd-0wjw?Q6nAwwE4+{DAqL9aE72~KAovz|-VIz7JAS9c$uBp({^*~GznXAd9c9U6}G zfN6-`N@6r1CLa%(;G9rVzYV*=omi2mN1t`Mcw*HoEOocHmL@&JW`3QiD=x%YpPxJ( zXMMJuE*^NY=iw=^;tc0_zAfi?x+zY^9az{9XV-c?PDowCaJ)X>Sunx;9Kk3W#IaBp z1$-W(-RrHb;zT|BBm@0RLel_x@-uigtPKvU?9U3&Tbr1ecLvR-;qX7?Km!iXsw;fP zJl7hu4CbA9RgVUkow_lL0q;j}8h}rJ%H6i+gpF zpZqfQ)ao+;3ZvTsT!yOG8 z{S$k4pxe9MC7g`ZVO`9yXb{#H_wKMvmm+flOor#XCc!4u7DJ^$sGr`uL+#+he6#I- zvvq05CUTC^(IC1n{J#+$PATHXwC>7+ALjz&q(Pj2y?4iHUty>VQ86wW#Pzp(bzG1o zdeYXVZ7a=XhDNj37hb=KPsBA>(SP!880kS*866Fx`{dr5I5+Oem}fKBXKXZx?K698 zY&a`~yC`v%qPfss35SGr#z%wrzP#7QC-;XS%vszgvZ7}$dPdWChsU~y*~MUK5bUjc zd9W)u@x&9yD;Oh89bV4xX!hnh)aNsF{}~JpS28vl#P+GZHFYL7J@dwk^Luz+M(gqq z7#t0P`|STS!8MUU6X5e0AkE&NJyE4UAA3H7qd{=D?5)|8H!X!@!wVT04FcP1C)E1( zrVdU-H2dA9^){|i4rUjd%dJ7LgLebz@_RAkq(Pjw?X3wc#u-F-10$qCgnR8d3P#v( z>$%LxRAvm627!KVZ%$`KxYr*3@z&;McfQ&0T!yPSx(Z*xxM&d9hxgXh znOnAXK(A&%G<$Q=Ew2sM@Mzqw*m*&FjPzOtN`pW@w6|tX-jt&g_j<-dgLs}h=@pIP zQ>ku>h%L=KwU`K%7+4LY*VGcp=Pwuu*2i|t*$7iGryy6mQYd8m%< z3yh5hv2EfR^Lk=4w@B&0zR1965ZGQlF31_jChn$`8^Meyzry%v5Z_)sap|>n+QL!q zYmANt(QV=}arLt7uWiST(zYl0Cc~mZSetkmr~0r4JG&!JL+axD7UQHroSS%wxcWFR zm8akJc@3MyZ!1K6>Xy);fNOo7cv5({l z6B;z|CZ5_ZP?~<;Q*eNX(`-b?Fd`a6v=?Vd0yJ5=D`TQTOxJE&e-yTHLsnfyjxW~9 zpN?5xTN-q5JqY&~_a}dkSmCcSb^kNbb?lGl4|gAaR_KurmOf_UzOmp~YM;(g`!`7K z56U2yIUS<<9_9hN4?o9vH2R-TR0YQ(DmsU#UM-@U z{5_u$XX8Xw{J9a;B5s;q;*}g7;}1CDp+Pn$fBwDbdIMP%e;zW~y0(g&W_inye#eI) z_Cpe*0kO&7uT?}UMGU&ZT@$*QeoQtrd#;(tW-E?2!e;sjiP3=AwG($wl{eGYot?pA z$n582Mzfg-^l0D?ra}8sTwT@){3Y4YfX(DDNGsV+!)&}~$u+J2AuSrvn*0g7lC*fL z$o1@KCjBY{P3KPR+i5^&;=aAWreW7@hq*y#I{6zX`gp(2EMBb5qTaYqH^0u*J0F3* z{D*i=?d~m46A#n9al(TYXXv}%BYn4;xZ*q~YJ4D~k; z-P5h6@e|UZ0gbCRk%oKwuDpXnRA5s4b8?~qr^#n(w#7FXDeTXN6SGyn4MX11pxfq` zWRxsUUGAMKlc&E#*1 zjzP$zkud0ZJ|!K`gK#mqUBELan%T?9j0Vgmf16%3{**Se-IskY6dj99h2ASjj|TLziTm~X z=@k?FYVxE3&zJo=@syhx{3d-ZsnUSzb$gB~M}}gyUr%Z@pf>rt6D!YlK&_bRKO;vP zaJ=c)r1{J(D}I*WOqw*HdHtTFDWh&N&woyGG$425uMN3krvHL0X~6R4Umupk75y#} zr2)~&k0q-s8}m}sVwT@SS~Q@wdk?fk ze#;d|74!OOvZDdJ7wvg=!#Vvd3DSVzR(BV2DF~Dr@GaE z(Rav*28<^D2w5z54Q?Dd4K~SnvdJ&=5+c9de3}z@-d|$~{{9;s6k>u>OW5*maz-4IYABQiF8 zev^D?z-RKi8j2xLa3;*BZ(1m5nER0k4TwyBU8Nc#UVA)%G-yC$y2*?m;FRrw`+M-J zv3`eN)xd*d^5HLC8V@EN8qoQJsd}ku>A1&AG^-i1qS@1|0tKBwRy1I>v{`M{Z}UqA zx>ZgjJ`M0EzIIy>u1Jk^_?1uGqW6MF z<8{DC4)54~dloV5SMNIrhUK{$6BTOEhL7y)+o9E{)F zmf=J%W$Gd1y`QY?-tT866F1o?De~@BDzy(_IKc z1CS?H0+Ek z!E7ZI4WQ1hq}`Uf3;oW*a<_xAUl-v+2|)vh3oC{whVyV@(Nr2vcYd(k!kglBIFBR* zO{L)oL@}HOv1ou*P5*`LbZ~s5BY7;n)4+Q*{g?J$4C3*Gp#e-a{nv6{_b1ai4V+ig zf6;j{gwu#ZQ&}EXy>dU3-f1e!gZ5qw;>m=esVom(3}@3hO=WqY^I`~3B??Vtc_7Lo zOg)@W?=+R=L3=L-aUo%7D$7GZA383gbDGNXKLYE>+K$Hq#b=|pZ_FNr`{7s_K(Cls@(^j z?EaER(GMP{mE42e3QI3Iu79N**N>f6g@4L>Uh{Jf-affwI^STJHh4;n1`OvWXE-s; zR$NS5=0%uGo5H~0K9;yNz-`xtyV&aNSPOw4Phgr_fp_42Wca#YcW!M7&sS+poJ?RE z0GqGc#cLtYk-aW5Q9`AqS6g#<^esd_jmR{$hKzSw@pagK$Y&Cm2Eem*BpDxIkF@lY z2}=Xmb1HxZ3aTm$?QCMu0ApNFlqa*1FOKOYP9DcM{<_p$9cF)~-nA8-P#;f3?A~%l zdubJY7ki)wOz2zw9^KEorTZCs%;<9p`X0MO6cJKe=Mx(=VD;cJ{kZw7M)=o5fsGyK zd3n0iTEgq0$MoR-k23YWhobr3z~(#TOz*GRhUP4GymEan(vQ;<8uG)^kY|reK=F^m zE;iT;C4s;Sj=(k3H?lQpz;EoSk-&+$f|jc%*lQuY0bOIgg;+GedRE2ZY@L;_udKIv z9e#NQGcJw!He%8MbL@;Oh+uqt^L&y2Qfn7Pflp=Q%cC0U9Ymr5QnRAy3P{BUeK#R# z0C`?TkoXp6uRB;<>EH`X%ONCUvJ6U-^H=Ka)!^&z6r0A=hD z0316n z^BQTR_6z|>6!|9!OatJt*V?84?&8x%rXg>odzuOpM)$?`yNx(Bz!^JjpCXJNUT4r< z4s`K(!q5O_TSe9E!xY2%0`X{oH})_gF|1K__C?~-0C(*9l__xj4*x6kPXqsB&#z4D zzu16ZBM=RM#$LOc0x0a@zexldAdJ0sH9bNxm~Rn^22fQElO~u^LijczX#iQ35HKU` z+Wz6Y^iKo-RS7}+FSgzH2}A>+hmV>1`dMoDE2cw>PfyKbxbf+!On3A_rA*3af-z8b zXX>$sWA?lLRLp+&f3lt+ao&6Xah*)=SpFI_-v5*t@7Pr3e-_Sl&Gyz@YZbRuv|H;7 z{7U3QaV1bwyA0G6%|@x3*1wl34Ri&8XaH1UAP=*FTt)vh)dupgxndyK5Qqjqr%aZ} zct#4DxR!ot;CJjX*hZPKev8DfCjd<~#9hnpreB(Bh!3~;O9((y4e=ALWNxHinreuj zI3$&u2|xpYNjsBBFS3;tO(ou4%b0e53%%1+(C!bL zbKZ;X{x-tURM76OO5Z`JG!?YWaEZQ~-f1fF?pnsQ`+Mn~rh;}qadf-CpD;9ld0dGh zX>Jy0!E~X1h#qO+@$_;Yiz4|5UDK3o@wxWuU=g>Q@zaCru1Y^n?=&S_yx_eU#4UuO z0n8K1v`??Q+U1vmb*q1pUTNTU>|y%`-Q%2iEt0;K?rGq@%*@4oy}{7Fjecq1x6I7N z`7IE?dA~c{@ecf_K2IbXAe9mN{Jd@QFVG_mJeCnUJQi51FVZy)T>oAPjdXIhU!hAH zxEy=;?*;;)%Oc&c(KiizkG*iRk?*1K(rsvEHDSwQs(d&m7J2g8&0N&H6q;XaG`X-pLoE zw(#ap-75c1r!;U{X5J}Ii|z6wdZ&T+GJO+n3Js2L|C4@c;I~ZQkBh6wg6Kq5;wa$DF?spoaWsSQbwzjW6^rpQ;*two32L)ZZPC zvsKT<`81rZl1(5s{%nnlYTVd_WNVU)f5mfMY=U!Kr|Yljh~Z^M;j5$i|C#P?#EuSWCNHChNlQ*d(nL{ zjF%FJ1~_By(Aoe8x0A1SJN${k;NjrGj+fNQ7i|7&+h%tk{fkEY;3XQj^(dWEPW}KN%;h+H|_#Hhp>@oz-8dd%ZJj zY5yjD(^NxSe=XI}z8_uF!1Zb4hJeXvx7T@(fNqcn&@)Xnp78}0tC9!PGYveCorzAy zS$@@=>+qb7ranUe8UTzPd?y3wwHG>lzVcS;$bg(c5E_7t9j~SY@op^E!JJ4OnriaU zZ>?KdK7yWU;CbxD;4!2l6fEG+;AU?UVZTro|fI5CYHuVC<>ru>ktelD{yt z52sfecpcjZOy;#n`Y5`mf&2T9Iq=oq8`{Pbe32yBzRIh$#CJ&?F9*u{wG#QBt(-i| zo~`cmep9X<=*hm@IAbp<+`f+YW*jlJ-P>gTo?0{gK@ONsB~wI(AU`C6H1`En;aaQK zMP%t~JoQHxA}chA#@w%18Dy*1Ywa3pcL`Lzioi4g?o^mjW*oU3paXCBMuESE;4}cg zKx?sV&<)qV+rkF^AkrBZk2&6%8rfXw;r-d>s!yi=wa>S`*wuUq@tNby5-{Q((!5oq zY5KGh9z~J%LKw-bOPCTGP&W4olm#&Q3t$F>p<(6|W#=WJptb;NC!uHnbxNAZ#9zba zRi{~fnu>C{hI2FFnYOviS$XQnp7oz;Lq_|XHManW$EP(_4v{JPhK9Z(8ZrY+3C_A} zH&-j@TfOxHv^Nd-nuDQ|?nOX;y^}yR0D3}_dc<8L@cLzH z$0oQ$JK-`{Q@+Wjhf!XdnvwNPJ>W8k=wN@7teHRHxM`-OQ@30QD^SqXcSTdF`3Sx0 zzKQHDUmcLTh1E<0`iV0T)TD%ePD2=0@FqXAsvR3HZDiERk-RzlJM@~kw)d_^}^Vux)>QkssaI-5D50nNuG~zO?zOzK`+Zs*+-ajHq-VI0i1xKv5%6*PMo|1KJ_T(wg`gy7#p4j#LrA> zc;~T!B`BROW}F|%EU=;S#_6YNu#XE+?YZV$chJN~h3D`=$GoI;dgKQ)_`!_%f#27E zY6miQ?AYJf-Ej=&)!YOyZC*E`o++|Js_!MK-dR%%vEasW5guwk3W5d^oA1R{9kCXo zj13bII)H>|KC{N6U7^ z%v2vHp)MEN+k36(IkMmvTW1%$czk@vE?sSQ1vjB=M`a!0*1bivjJXS-sGq>`l+c2R zYI%rM%ZQ0^83-*;7mPq~ z8EC`DXi$$vC4d<*{hBtqx%NOy5&viEc}o!DK3o(Fm=P1zL>Pg91fM7ptf-=F5Y&VV zL>)094 zAQJNqma@|gde@DX_j(@S8wf}Pz*aS#dI0E2&*euTwUPZ$+ZsXF5 z#s8W57B5}w!$q-xsc4usFaiN}?i6)aG)&tdC`=cK`Wy!_8iY|%k^4X*#~kkO2}c9C zimJ|s%SD(&-cCpwKvpwM!*?V1zfRR@JpiDhVH(~St>SQd--CGNeqV0HFs=UsR7JzI zg%T8~?pje@MZ>gpuRAAAT}Pu9m=zjCQqeFSKsn)==2MD*GytqWag3>Tw zl?>Cwr1&ht^QbKBFuj8J1kZAqcI)0E!mDVQw%%o!CL$zxvq-YK z4kM4w^oCx9>SY|TXb@FJ!?YijH%!~j(zNOo1f~ISMZ>g3(3xbcflU3VUrlftfLAk2 zTWreJN6IMKTt>jFXoTym@OCb0Rxf4hhMf@XezIc!2V6y`b{w1lL8osJomO;e$NATa z@j_CsXSYIwU@9t#5KMYcAM(!#Ndw4=PVIz{xiEd$Hxrfyu+^N}(cba0FGxl5re04y z8kGR1qB&z{W!*>-_gf$MEY2CR33EnTz*ID6G%x}I3BFq-SXo7xAkcG=w+=+L*;UXW zjEY7a6Nc9}=5ULIqXArHYR}{Hg=Zt&K}Z@vRx@WrI1run|1L_-Dxsq3&(d0R9$u5-z&q64Dw|U!}N>(44d?nwOfkU+wNRM-#GPMsL7nTt57BNU+VW;`7(|n=!Wr zO?#1}NJY>g^Zz3Lu*BXprXRN|ly3HcKo}x=-Ln5}*NrOKK!A zq;;Rf%_Kns61dA|wtsvDW3Ov!r*a#ntxc0dSym5B}+drvZGmJ$e8?q;ikK zGf0636e{h}iQzQv0sh?Y(e?Jq+upr~)0es1n5mmP(E1UkXV16WP0f50sF_y`RaE-U zHK_>`NdLgE)*yiZ%GbZ!A^7UwIH=Pg+OB5-@-g5qf~nCm;;~E1En8fVl)c&=(SvhWV^Y)&yW4}O%e~9i8BD#vo$MEOjl#M~Xh+`KGVyLK(^h{2LsX4%#2uK6KCsrb~OL`6G{dXubilDl->*KA7_9j!aoT=~f@%k-xHD3a3 zMOUUgSb>A~P8ID{lqU~C_jxuN9h`a(^F)J?DjErkfFi{Z_I-q<0c=I*O^UF&C`0HE z5}F3k=T)LiFh-~>rMlw%bQf~ja;7=jsLdXNt%Bn=>|ss@*?@Qx43mrkB~Bw=X)Tg|*s zdvEv{Poo@-N&r(;_q9GJQe4Nov`*r+&3*b<6bqP&F08|+9E%eI5}XwYR#j0Z2quW^ zbs*~QObQLcsOYMj2}3L0h|j?tOE?<9Ri$<>F0VIqkoP7e4Irzzu#Ny5c?)i*8Gdm_TBhG{P_Bg8y7^(hWoGzh7x zj;R3X1nI$khOjh%t!kJqzy`wfpg%`w8bDVxObapv>fu~Mk@||MD4%#;eZSkoBf?s$ zZVfL}<0Fm-<{SKF#9Gl2hx0G}CP5+Dt3|RE9c~5~x>IvoBusTWlSosYejJ2uS5}G$ z*KIe@Pb4%Apewp+;2<1yE?&3Kz@J5U8o*yz$t=?$G~ANGx{4C^6a~miGn~(w1lde0 z{&XHfKG@$Bu7O5H1GI-Bawat7{8Eu~MfVpJP&`3<0jrNNu{2fdDsSbYsD1d46P^a} z639iKfnmwaR~Q|BtkaeuSs78qGIm)>$n!Ga>+ zE{d$^kS7PwlJw(J|Cb#J4dSV2z$(CrC%~mH=Gj`BvIa<50Ay9tbdZ7tX@0m`X*vLrrUanlQeS2# zLW6j!l4b~Jr0IkHBSC2ZT9q_IP*0jZ@HYrd1K^6Jsoghxt*8%)GzGZQcEx@6?&j0` z0u$@z9@sBQOnD3_Yv9>?V3}xjE5&Vu=A?Cf zMT4}4YvLOn{T=O{&Hk=seBYthnQhA5Q92(&X=c!!;csT#Z)W5-cvy(9MZEV$KeN9W z3C1gK6+I4VT6A1kLK{`|RjHyEZC-X!#RrH{{O&1xgt+H*V%uKew!a_H7G`31c9P;Q7-$h@m zr}u1?&nh#myS!-~4XWyg%(F=KXQ>U9H@^)b91w7(Tom6VV0#*7wsnQW= zic{U|*;%Yv1Xn$qYN0`7BW{E*1uaE3hQM=3fCdCc+z4NaKwds$NL)=4G$0XwPjU)} zh9Ke-8GH%bHY-Te^511G81W6OY{bNBBO1fXFG&9C79@XYxY4XTerSZ#<9*!J@R=eY z)ctc&_lQ$9Q~TAj4uTaVwTsgy8U!)oR81O~2ss9MIU#8Pnb>ayZrv0ymu|4%M0zD* zX#jg}w4a|UP#VxsEUPYi)akN^z`BzDg+ z?~XvO@z~D{iARwH4M?PQ&oSo>**M%iGvjIt@;zE*@l)E%t(DH|+ER<3+K$aq{QX;J zmpZGu8MuHKI9v>|@2i*1e+V}I#Vy~>#4v&YA>UPm9KTeW7qdd@eV&7 z#&p9u*m(q_0a*O%b2?Zq&OArz0s_)7Ke2vyYP^Q${VtT9$N>JUNK$uYwk6lm5e^nJ zbygEn+uy9Y1;EAc2A(b+2PZfX-2Fvx@sp{E&P8%wJnAB*g{C4MxHvSFk)02CF#%}+ z7(dHdGB)#3H$Q8tMNk@mMsGn+z-$Bv$5DV*96*UrqNauE4_YhuzClZFcmtr`FoO-5 zy4ND)cu24R!9`rk|=4I+!55GoJrBwGak z2ZGZ8JU*u=4~}f+@+}hhG6~Rtz(wVIP$MQPg;LgN__TnPmU=i9?et{@Rl!)%zH}8A z9r0md^KlwkpW!+>ze}O&gZ)i*P5%Kk9lyP9s>Ux+5Lih16p?fV{ZauzE85#8i0W-T zfTlrM@hNhdu)HpK82TNArU7*Pe0^!?T+PGq?^rTLvl#QsI zj4GIm&fB>t7c%u__Q?C{W%D0`t6(l_VFUp(eVWL$f@zL*t)-Gjp}xkxhKA{hp46Bs zKLL#NupZbq2}T333i_7-EZ3k1_$>m`Fh8YxQaWyU-k(afi45RBenx7cjn~h~M~S!Q zPm$>_5u06GJN+iE2Q;O%^g9jvGuSYrH)QJJFX8at@wag`{~LCdXGBw%04{it-gc2* zToVb7weSMkIx_XqXCOs1h$23hN(GY!jX-{akTigdPij&ja}h>h|Aw$MfQ?=VpAxmv z!8ub11z!i^r;ACGj;715a|&{r1^Gk(n8HQA^7-VR3aI{ zhF~ud!N!O5MCZO}^AL2j>W3WIXb@3+NG}5#h_?v+V?xsa`uAhqS^{#erXt!Z6%|cn z+2UDg_Xqg2o5bn~OSan%@P0Q!TSpsh1-rOa%gcAf?l3;&Pu?oNKc0ii6iGm2&k>Q8 z&3DniuQPw2;HvMi=b%Aot#bMHz2_;Ht*#?su<8n?eN+R-Z{VA(fmd+;Z@nF6UAEbb z|K*F2@xzhvU^BNg{Xb@=pHyPt^L0{l(_(*QVrl%1MT+&JWV5zcQS;D1SQ8h}TiVVE9U>sg?jlywU~pHhyg=hXD( z?#Q=6JN*tmdHF-m(e~BL=08Lg|4RBqVTp6`3q8JE^mt}@wn$9QSbdr~paI(wU8Zdc z_qdD)@mWI903v=EGev`FMf<|CZLj{0Ff?rUvFQaNCsqlJMdgJqxjxF=L z^1iHO>VsE7G6!_*y0-|hQ>p+H49Mq=BA@u_l!=<(k3dVvk3!v%(!g01WT*EQzT{qfslMC zkNY8K7n?hFwt5Tl6tUhgBO5T8<53b{?l`+>x0zM*H>D2ci{OF>*?ml8mwYH+bgZT4 zZxkf;eIAz3pb4XQTuh)o-z{H{HoLgZwvBE+^-*R^+R*MOBSHQBc6>H^w%te1FCTv@ zY{N6z*CKC+7dH=Y0g>eSXu-S8M+uAsent|QJRgntmK?4v4LW)75~#X>wMK(*qTdIZ zB#oixMuCArx|O*cYFEG}PlH$1mgT?#$Av4+<@R#7C!a0G4mrBOd9;-o*^#L&*C4US zMEB{oCeY1QJmrT+$ILs0H&FV z^HkLe?snA~F|hx@^t1J&%^bg*W&$Rwy$-IWww9KL-0Is&^zIq#j_Bd!=Rptm81oCW zGwPk%h<_-)H0ex{85Hu*qL8)J`QZj_!~4=l|3p}*GpQCD#JifPmeC*$y$h;YT8c}D zEusF2(vd`s%ti7jjtS@hug7f8<4z?l8M9%A8#47zoG=~|Y;&vnZ%U2gMR37G>VF`q zPaegKj&-NtZxkf;BBqxH=}jJSe80L0sVtdD`nwF|O9@HC{wG!1zF!BKPbmG}2KFYx z(f~GfzT&%Wm=%0H#0f=xpGviAaq>t$7PELO=G90d)tMFCCvx0#q058J54gpxG_ish zPb=HB0xC#QIp53>_ZU z54Y+K-d|FW@hj#N43_ZixnfQQ6`DNwYq}xNOP2bO>-*xS>=vGh<5$FVXb0vSb{}|- z+lhdZud)pXB)xM$M&Q-^s23UlrcTd8yaraySc@5&%b_|5Z5hkk*{LcG!fE8qsM}Q? zLAbC%hU=qLhtpYET^gzjv(ePUCw8MAj$l0m z+w~?K&*gv521vfF&sO!FiSCIF-5)QyPrj@lbM87AS6=& z*`^!Rpq#>Vu@POcY_;@*NaJX(z0w6#3vXg@b%ga9Z+oWx^!Z5O(KdnpF1=MV^0$Im z@>NzFq32J!Ns>TT&ylPq-qzA#%Q3i=o1Hq;IM(1 z%rf1W#nQR-=XM(OSp*G_eM-&kR(tK)4jv^A4${p=BjjiB1_V8~3%1K_#Q%FnUTSXV zJCja}*yyyDMa9V{&6%X4b6>JW##yJ0ujBO$BTP)#(*XqgT%@GWxEn{fCm4R7$C z!{q7?G58C%Y4UYiR&IZ>wQ6ny4f`p*BRHk_YMz%l27fd&v`=py@;cyg<-a93xLmu6CC0`>R6`Ye?k(flSUPjf?pk-695y!Aacp9{D4w5aP zuBZ5z`DlvIFLCr&jMMMbH1tad9gfLYlsWs>U+nH|@)@A!&R%PE6&DyI=Oy{08UAR- z{3tj-`T6Id4(@~2Kpl+vo&E_LY&0J0V_TiUWQtr-E3cATnXePfAMxl-LxT2JdM`zjAR(B^ZNkUWGtnvzHIN4_Em6SWRwV`lQA3@m2w_kyp z((8sRF!>&0f)AEg@l}I+%53H|aI|2dtLU%LvB<7BCdX+odo{ z9m08jUH@&i368oKWk!P#qA#qTaJVvFMNwGcW4ET^)Z3UQwq7;u#c6@e`M8AZz zfIK0!E1|!JG_r1S^*(0RG&>xp>r~FE%yrf~_JXnAg39BTO#S&wk>5k*)QjC{*P$}~ zBM?Y_`oWyk$q5J~^8PoH_w@S;hC6%ad6X9q8mwtA@1ur@|cI3zVSIg_T13FoO3k&$Z3x$7DHE zcjlCTOW&;KONi*?dIvu?$hstSzBH0_6EEkUM|JLB)xAGJT)YWkfhV?ac@BYq$Z)I-^+ z&>+&C$t5@f!}V&W6CLq0L*?P5LIWz#u8oQ(|M7GlNjfy3qf+Z(1VqDXkq;7RC2wm6 zYE?gC%{a;0U%4NFQ*zIPSBj&@GhD_6WIo@q1&PwDT+%;cdXfiI4@dxznL{Nr$%Coq(W(3F(4 zYoB~DwGE8UU41SpbyxCL!3<2u1_2(-S)n<53IDYp_EoEkD`Gvt0m~cNyfz z{E(Auv)#eHcsA+q;%06M{+OyOBkv*+ygL!VP~WklzT`P}fu|di3fl!w-JN-(K{%-| zawvG#`IGQmAHmqvJ(}F{&bvdDE09C5QTt?V41s#ST*_DK& z0bJ^RfHne=T%LS&e@ZP#dzs!G4`|p|KtNQoh8s@#T=9YV1}-Wt2L5up(V zLVJV=E%^+3;MFS44@F(XgwTL|neoDFtzc*hz%C{j4ZxD`l^KpHP+I`lA|MR_pOij8 ziBGM!!2Rz~aG?Ow%eA+w*J%o9 zZJ9^RwoBIJ+6phF=ngi&FG6n&?uq#LIT39xy(2HuEYCTxiYYQx5{}9yBT50HAlrA3ah( z<=x`<81oCWbL8_W$#>a}C!J|#5W__xhPBi|Ydnl6i&*ms3w0<^VGc&eY%YDa@lHd(1|6enkHq?G^uS*93i} zG+2?8Fn})RMHk5zpyKX5J^09isy;*=&>*ghOXYK;^K)R!$2Oh7w~v%CF15;3N|OdHnEY%-4(mP5ppUBc9{u=_w+CmDcs}vY@ttOS z?BR#xL&%W?g$j!Ja>?|La-BOf?FFivAWXQoSFqKCn0FfFeXdj~7tn+B592Jvth$ZYa0r0vTYtGbq{msTHc-;!gue@niXceB}~{UT27&Db66 zu_KJ{h12_zW4G^)q%uVY$oY+u^O9qC(Y-fz`?~~H{R=1gG>EI**zG&F2{+qpz8R;w zf%!ILxBoY6*^+f0+%fOvTW`-FWjK+OdsFA(E~~@95s8(o^T40voFtI*S65Q!L;k&_ z2m3NbT(uwToCcwltMkCSO}pOcJ=mZzU**+#@K_j*@wD1R~^ zB)yAt^Fw>h4!Kt5c_hjBSDz-Hv&Tr{nx8yT`X$+9B`qiwp!^EmI9Nh;gCR zpkD;Ag3#LwNBs<3y^*4jTtu7v>T*+{ad(CX8X0qYzxpRm3x3P$Wy~+lj}XY{o5ZQ3 zUlM{p|7ve%y62JqkV^3qd_}dT~ceK!E)VgbThst^)9MV zGQ45(J`!zBd>yIX!*g8t&e+oN=JTHVoMP;YnEsEq`aj-kFEZlEB%Dr`lae@T-dUOJ z;FYP(_14lF{^Mu9bVX?i+pD4aZ%jvriyY=}X5?>X@Hh5?>D^upJs&^qpV_}?`h@w_ z^ikxf^q2gaHCCn=JWAuQq%=P9YsOCx+f#}_Vp8kBkHVrsvwtjBSib5uPofQp1{apK zKHV6gZ%PqaZ!@~azLhz51)7OcA7)`1sZJ%l?gWV);L8~OK?m0gH!jlrw_EWU_1W&) zirnjBS2FdP*P^NpaO>V85)ywNE6hj^kxWNeK;EAcdG|M|6*vO8$aPDoKcgIJ5dE%A zq#;+z3uN9*GBh9)f2gqXROm|1uWl9y{W%HIfKc?-y-N8s3h19?Rpn9zhZ@Uew%hB? zcH8rMtge zaDYml2S>T+=#!6ANzrjnYS z?XH_jSE%I-6`(*x`WN1KUe&fTO#7VV?pHXJ&1^|vO=w^NG-@sh`)xGhqa^nGhHm+qOTzoanIFHp6T3kg#9ebq zcofW-;3Y!sMIL zHMkxq+*+nCeFF;Pz1H>Ox ztG)sB+)YZQNaw4hLjyWj);EGXSl2Fj!MJ^G8yD0(y-lvD}{PwB)0* zvY4s=&{Hh4wtIiG02(!xL{3BSQ4$ZUy(Dr_T@ofx9ltt+9U~3muCXKv6r>~qB8QU* z4T#iO5(Of8Nd#n$A{iQxsjnmivJoIZRF{O=1oZd~0+kHsE3K8~wy6oToT)p!9^=Fo zyP7Xum#sap&hua%86knnI7up_##yF^s!PMht(!spHB~@^Jj7o`P!iGMKoesD&!JP>*MYIE8{h-TH6?hvvbxOdb1H9);u^ z{AEz8@hHS$a(X93P%7t0snpnm2e^5$q66Ex~_QYaXY&WWT$13EPxg$%b# zp=dlxk02!)P^#}J#4(b>@$k=P>3FIIjT)z1Dup8Z}P2avFk< zYH3Qf)Oc1a2X&>wvwDnQUB=Fn265M1u-?fenR5AwP*;!$4T#h@8>Y+_9fl7@R9u2&VBBX%2 zSdqG@cR+Owz^*%J1hp^wM;e4)?}RHL;Yvd{yUvH&LMk+%QtyN-pb`{^N9Q2Yp#hy* zCtSp2d3e~%tPf7O^fnNvvERI8t+g`fEXh;#b|q7sw0z^irr-h zEs_uo2-SD@hy`uf1%rM$t0k8zI7~44T!ZF2gIycm2xxw{wX46p*;;BY;9Umor8aLw z)(vBK%wPxJNTGLR>ImMecuaI(zS;N13yo^yGxt@|7KSLT-BMcDY#y{OFWWLf6X;e` zucDY}&?47wGA$XG#*ljr$;RMh7w3e2dZS(_6x(2Z}qt`O^oVTO!4$L>`W%(&f?9@sC1qRjg zN~xaYR}h6^=p$a|IiC$IL4H()asLX6k7CFLa8_~~_7?CU#(Y-<*IU5jAM@Qzz5O+uC$;RlUev#% z+D@qgOfVp}w}{xzt-`4hfrKOo>gDV@Xuv%6^GfKs{@@k5_T2`g-u|>)?OQL*y}%$H?X$!yev;o7j*!fDS{z8AC>GR zzi~{n^#XEdJq>4#qh8Dm(V*?pJIq4cIVibTHUPYVfHVM%->5vv;28nTCl_Ai(wZtG zC=Ec*j?F2i!-Nu%GuKlyVd^8)qDUkcMf^HP{5er_{1iaR#?VrWa}a#>T;`qzxsRVZt%3ptu~nLW zxPf(M)O93610wMw@Ct}{RWPLJx` z5CnAw=bJQWrqn5pb=lAh_z;XB({akqi~JfUd-ojf!ZeMb(Gia#;%Um!dU;8R}~S#;gt2E02)D~&G!wW?Cz zp_sL_iaIJM>h<<4zCm9QwQMw^e(Ik&QTy8s8Sn4Qi`sK0Q+r}V)IY02)CK3csJ$JT zBBJ^sQ%h4?)ShprEKk(lZUg;eLerEMwddPG=i{kXp7#?2{}aN~lohq-+K5`VSW)YC z{%J01@AuSE^6PtDgw4UORdYz{w$12mnYxWn86IBT>}`=hCXpwl9tb(_IS~Pdp0|8c zH*m8;-y&!G1d-vd16B89PH7O%1&N0Xg=p~59NzoUS!wt1&Lg(7gr@dKV9{nwe$CbF zTCayw`*=a+?2b0y0y2=#YnttNOQqgEgYB7m_@5%LN5^)#t-d4XH~Fl`2x3A4IX+5q zoIWOw2%Luq5p2O#|IA#|AhhUXlaq|b!^n6DMyG-AvDEF2>9B2ZbtIE+TiyOZ?=Mq7 zbM5)o+LBz;G0U0y&W%X$7Q31+0qEq^V)B3l0LiEizt$()-mTgb;TWms4iqJ)1Y~iyOE-AHx&@Q6n7iw ziwI2v=;Wz&(YJ$kgU8n5PYnFUgr@=gGZJ-Mbls2*+dQRcQK<(}%0^kPbysQe5n*Bk9RIOuf{Nd7#+5CMUNh#w^)PM%*4c@7nvho>IGB+?*| z@-;)pPCy0idZ5P>lm?*jTgN6C0OK)6ROcpfa~eigZW*G)dmw**Sn8$AMgy%MEb0s;x8o>7%jt>;jwnz;^7-JfTnXev=^09R0| z2l^m_(o~|<05qah5BMPjrl~@y^y?|rgE>7^s@_vdD3{`SXt~7L){B{X{_CL4{mq(N z0LT+kCspE${fu~r3@;EFCZEL3U5frZ?&=-vG-#NL@|-n*QJfF+Zo<$2CcUS~+g~4o z*aN_=em2y52}J{_Q&LB6jnoMIKAmc^sfO?5TQBCjYrRgp*KFgJcII>OX48yp%G6U{ z4p|*m*y=WzzvMJC`I863Bm@<5n-{qyPp5}nYgL4s1x-DI$)Z6l$p`46=fV&j?liEE zA}kGHljpUeX9t^iec=xb^kWE31L*S;v_rp;F*6gmN zfSm>=$ZYa4^g?T}*p`#cvY4qq;csG2}J{_)Cs3JYy^H^K%LoC!*}wjVDZ{q zkw@NSZDs`zy`AzW5YvJA2D^-(vg=L0Gdchi7^vzMqNcKEO=SfPC`w z+&OhKI$vIF8r^Q{!vv!NSn^zX7_2C=9PpzAqyb>+ozV`@NDbFQZ9IQOxfwBVD^QkG zhX+0p!+WfC%k^<5QggYz-0jIHsQFY3cFJ4x`?%X~Ms{ZE32%lT?>2J3-WByrvgg%7 zRyaYtZx->!pURxzgx=T|(OMqSWWqq*jYA?0B8@(^UV=jd5-bCu%%naMfHBRycJvzbH$D4DVWjW1-4g6gE3^!!z zOMKtPA;C7i>i&kAIipM&`rv|x?0iJBlir~hqq5~@(F92~SYkAYBKf|Ep(Z4l89+Q9 z2J*3lqyc2|{67lm4I{&_k0&e*V4s>ezxGi@lW0!No1IeBUs0HpOQ4VBYk73kYtOfF z7eJ2}YjHn7zq2k^WUvpH3(P(&nSGf$fmgZiI%>Dx6LU%-r_WPH6BR$~&@O@YMs^AJHJp)O(djq(h|Opn0t`NQU|>Rl$smYWL)EWU#9Pz;f16lpDWHosl@tx{%#BLA-bu8TR(XwU`frjXM6d(0nApMTr^uV zbr8SGa^&z1w+$x@?T^t&$^B!LkibI+KNcM%&qAW!0|Dew=#bUpISSDrsN_#kj)s*< z*U)|mSe;C88i1GX4P0cAj&2lz(@1~@1TIRPgAMu41@9=Ccz;BpTakr=Dy?vQn=7Jl zw>4ASUgax1-;oo_w^gBV=Z*Ogcqsf%|D+qcw88`Lfx_J$!Bk7kF-;W;cg~&2LWR5i z2E0pfnkp3ToICJ*D7PwfzcB=QBtTPv!kzD2;ckF{9#$nEoNPc`$U*q`5#jHw zt$}dXW(*hMp`J{E&>-a1l4E$JC3Cg7o!&)u!{Of4j?LDne5B7A@!?zjBsK=p`*!+r z=#r_!__o9Y+&UNKccqT0trJRAFp%lrmP{ufQ~OS(bF)-+6zab?O3{>(ZO}~ajGx7p zVAQV&MFXhhV`}Tu^_^ZP7Djdls*?tAsmIh7tgf{_?U)SK&%tIiqQ9+N<WA}O>`L1#(@U0J7MhR}5(1zUxW`W00}g9drt=2McgiV?fRHV~r$u?b#-nBLn2 z;E{nQ*l${GACjX1xt+1OP(`&CU^lqNi%!1I)fp^3E%tm5Sj8{4R7DG;+Mq4(Ntu^r zT;ux~s&0#2&6hwXekfBt86klhyHIK@en?S0u2h%b5NaD0LWA&k)mm3xF7nH-HVrx} zs!1|5AaliLlF5gvkkED#q5+}kdGKm;)CkcpV97Y8f%~kx_ZH6P z%$i#Oky>YSf+xotWPmzZkUFV#HkZSiGGTK_8>kmk2Q-Mi*4bQvgc)|cbf_Chg$7jW zoxbFHV7>Y!;V)1i(b6&g^fy*xZBVR<+@cO@Mf z(5bsT*5-71IP5i79-_+l<-Dp!u>^sk8^B)>uf=}6$m>wGff{mhh zo)ksBoq~;8mxPO4eV=KkLDcn5?tB8K9C8}}P8u|zQEy%PG`v#Csr-mkXsClak3;~8 zXYZ^A)pJ<{BE-6LvDj{{clsUk^r&0Q)Z_mK#c*K0!CwZcTIdRDH@Pk zsj+e#Zo@4Z1~;*WJpF=5t-b1Ee-+>S&`l$YnL7SmoNAdhw*VrwPPK9(!T^=?da0aR zk3@1>QtMQ!&>mi?_$_k->Ck{qol`Ag z(+Ha4Pgo&Vp1`lUJO+5#nkf%1;_2d#OL^!u6447FQgeA&BEkUW@vcoN4-0F`LkFwd zK+UtWq(SU8mq$Rtj3?6WLZw40G@w#*c?4Aa^6*+_iF9Z{r{3})D9Xdbey1r9y$Sg3 zI>*+|2{Ndjkg4A1P!@OUoRDb);O+GT3o1(CV^RvW&hBiiyfMPWtB!dl5>116YdyQ} zfs6bdg}agh4Jg!l_~TK?W$$R*gEVMBBl^4=aiy*XE=Qv_9rH04@HS`Usq4=jgD(c64U@0NfG}0RCxzq*? zTA=Q`4%0i9a!Qn0wO@(Ek$1*Aj+N=r2!t6N45yI`8+>#Utzv|v%| zCGFLgob$#1nL308vkw==0z7_4az$!2-~x;a`TwLs;*YXci>Zsl1+6Y))@cxOtzDG~ zS;I?7j2^x^7wU_Wo%B)&LM2IqDCne62pf)_NnuYO6Qs-~+Qf z$*g+>vtdTgI=}3_D1$?SZEjWn4QGZ+b&elJf|(*GRLHNSLTa7-6v0iYI8eVVjrKr8-EzRG%%96K_u_|0fq?6ags18Qrv)>Y071*TW<^(1{s zg+fxlWT{z&J4wf130HAz;byKrzDhIbHt}7Mp!j6Z%%D4iJ()V^6R5&F8}>8dPPe@o zxMN+`+;K|72B-`|=%PRm`DdNomuyBo46z6*HP|cs)G9l68Z^|+dyb+V_#%yIi1ta8 z21Ng8&k^+p$I)chNtOm=uiu2S4lAVWgE! znQDCyReqSQag&`kqqIwI1Eup(2M5D%muGZY#BgVxvKu zY|8LfAQjebKqXD%|8A}S(hO0H8cPQ!6fZnc6C{qE?>oXv850<6Xy(jZcX*cu^ z9Dt?62*zOS;Q%aq@Fhn+gzLuOaHreO&L(%aX=8AJDq}F|qGTVuiDU2(i=c9Yz0#a& znUg>o$Z%7};DChAc78S3_B_FF4AE5*r2)}R8G{27j_7bz2fs69`y@*PvYRmm2ORPm z$7UIT{R&bK3dZ2zPgySYj=^huwP1H;q3O<$uCDP#k=QiDO_}#!Xe*4La{U0Q1y~6HD2s~=+45_hNFE=|>U0PoFYKC(&8U$YJ5qwBN3dtvO0*TOo zNUi4}Ln3+E_+(Bb85)q8ud!M*X2VB5ot0rU3GiA^@AbR$gXUnd*X}RkD6zA$pgR+8 zo$elz6P>vklA=?5Mtm0bF<3~vgMHJHoQcSgu4N(TVu!i;sFZHjSBhjF7UQ}ln zH$=b<4^nVL`whYGkRS~R-mqr~=7l(l=Ggg*PvSSL@B27F5?-9=W=Wy)_M@ zuJx9wfPhq#N8|IPK?54K-meqT$m_LjX%2F-GPouk1h zT6t*=lRJgvXh5#kv2+xybK20(-AhS?s!4R_nM%!FFT*KO+C`F9*=A_qI zZeG^zb>(i!0aj=9YNp81_oho%GDbavZz2mk+c9gstayv~+9YI<&pmj-|h2(%6Y?^IB z+uX>K(pt{tTkBDQcP-Lh=sW0E)YJZE%`Ko+YJH?DCxTa0g8^#jPo#!wJt30A>iY59 zKz)f_D-B|=^^l}MLPnf`%2!E+22^Uj0lGjXua|(%*GY#4bn1MhOF$a|_Ul+8R-V9r zUY))B+Dhk=wRRKD(8q^M2KECpvU$eaoT>ly4wTJNkv(>!?}fusZ}W)@OO)0-rL<~2 zJ{i$=oYoER5@u>A&r;E#eQLcKZJ2=@BW(EZN z=G8S0XTuGNawVs2f!=j_sCTe-O^pP*L9*6iZasgdToyC+qK|TzGiz=EL~0%8aw5V2 zwfNCZ80K}dzl!tzDn&n|1p{}_+ERjr+0m|cZn^GPY)|7`1 zRx?ol&W@C({_+S&*z)kG{D@R&>MxIgieDZco&O{qn%c{QpePRy`!-V^dK2&$HXeyr zy1nK8hOhV5zuLOJHJDv&a#EpH0JR`+DDNP}1>I5sN@FJ&-9;x|Zw1|%jp@l=vTUI0Txev?FKKxB5qc~%;a zhDOCl?3@7A*QkF{p%Y%kHL%d@uC3-ZpjS-|{KF?%1Kt+1;;2+y10j`65g#@1gIa1J z1k(dTzDcmv2bgu5>T4j!DjbpII}C{rlLSrmHIQRD5_t{eI}MSKk_b)ZHIPF!^rEc+ z3P62d*FgRgcD@r#lcuS`&I$&dmDzS)26l_7gs;8_m2hadF<*D}(5!Y$uy~GErbq-O z@k=R*iu>guJY5yRR$-t%%sBxKaxuZdM9EyZH(bQ1e3VpZKxKl1iSktP3W?GA1nJO# zPN&j=B0$4ef<&^mR45Gf3zmwLsgq^JvxlXJYR|1D`*N72hw3uX8#47c-mra0u#Kzv z->`r$uC`Kq_w34q1q$WhZ|O`-a4mBhVHDwXo%kCCU;TtVCJiF4c>3a_xz1Z=QT{GN zbC3FWe8ZtsifC5TL76-%J?(FW=&F(BSvwL?U zh$KWnX+AyzvQ~drAwHx)ep}-s_!*tC=^A4&i|sA2 zqI!kTTg2}*On809UAH~2UvY2a6Z#dm?A0O=Xn^azU6G$E`(yuF)W|5u@q4^mdxlm4;@3`BRFZfryBxtScgqg>r7Zh(c%}Wb>`H zrqt0Yvp$e95cpskzZ-X~?~gl~dBq#y_B-}=acuts=_SoOyOJs&{QP|N^G+%v>*6kj z=315~4N{k&PO({u!JDiueXa&_G1vb+;$;B64T<_pFd_QwR-&G+lRlu9iQttdEhp zJHHC@h)M9R#oIz>X-O+@Im*oJo8b6I=!yFu#DCOuwd#qL63)J&&OV!rNgO>$rg;@B zG8!Z>;&sVsb2hKTL-N;>oCf3(k6h}I=Z+l;_!|nKfq+XJuEvF@6|xQJ%+{|!*mx9y^&1xcEOI35N$bc{K?sNEXgEa7 zNi@PMp;1h=WQ}B<0~#CF^aJMFUxzztK}$ z71lkAYwuCtR>v_{F|H=vH{yXb_M06?#g_i=#NP5+cQ|gZbcai;a?|Z)k@s*qR(nr|I5>GlMCpYh<1V28p zH)>;O)(!!5E?_i+>oanlaS0%F&y)~>X^^Feq>0Mzd`1RLi2Oh zdo;+aXQy?~iV_kJ)$0>Z$_zB`p_3k>c$3zc6@sP4)axY={cou;t8T5IPyv*@#;o9^ z_{>l!9P?w_P-AYOLARa4PuFT-d46bD6m0w2Hhw&hO<}ccF_h%IFkj4aL z&p-FD8yv=e!VO>fSM`Q%D_pau_HS5%XEsHyd?>eX zXt`BC&4|d!iBz%J!i&me?#5E1K`N@B*-T5OBZdmf-K3-eW%ca(w3PV>p@Q}l($awT z{3-o2gl)+QdTHpXEqAP^n6J}2)m;MrIDKmWSn8}u&9a6AypwmQ-@rp=Ikx{HG54 z=z_a>VrQWpE+Bm;xHvooF%*$328uBz3ydd!aU~7sk|>qX+U~z zrPpmSKU-u#2gCb@`CmGrIEZ(O`bD?8GS?aFrnTaFdX65}o#BnghL`lLZGV7dKCE^a z6(vo); zh~G>hA6%XN2z{}ADPhZ0q&2~ZSU`m7u)`Cq~f=?W_WAH-@-0m z>_y#tgS-Al36XW|BkFkc#zIvQocnjxxvL-k`UD)h7TlOd{Ji?MDlm6tuY?9^H8q@| znxthf?~$C{lNXj{zZHGM6-!0#Z_pEni+SdrI0X+fbL6k#0z2f`{)Z$#s7~=Z0>wsQ z-cbwl>?S~^=yK&|CtDL5s;*H`gv9&JE=SBASOl6aK(3z2=g%YhG45yWx$bBd-5%R8 z_%a~GjJ-GG>WHtOh*ssd+@F?j=XXk=jLlk2ontKFQfy`@3gx+5%d>iV+5v3RxpP0O z;PFMwj49n$4d&;pqiK-b>eT=azorZwEjh4iF~6c18i;v9T_3MVvp5R7?s=Tgs{`i*vk1Lt^KUF98c2R%jfxA1tsM0M%zDWWz}Bh=`kke{ zVNJzzUpsy3aQ1n_OL`WRajh&Xk!Oa4D2}tWIBNBIOW0D|1lN?yoW*v92KiWPXcR#E zK-O9%xMNArB`FO^YxQ{pXiu8g9>HBpd_IY3KwPKK8z8rMoL3AiKywzoQ`{zSl$u^T z92LEEIPzY4;>Xdo0bPDc&jRwAURof}3<=?-dm8c50=D&1e@(f}t+`<`O?@x*(B5I3 zm-;)F^mZhrsqdv8+LMM}>hD_O+mo24wwHQjcceR`Wns zKr~3%zNS+q#Olo((4S6v8qnA3>zDB>{JQ)Tn*(Q30u3ZQsz!gH4Bzq>ayMr|8$&nG zy)AI9TFvW-A0u!bOi4bk_(_M%++_w{e#7ELJ@u*r9NG_XNkW`Vj2)vuYq$#w88lC z;C{EW?;ti4@sdAIWEvn>kM|?9p+8t?^ZSKModZ_%Ckagh=vq0vlxM_eh)GiyGsuF^ z6O#s*Q@bv6Y1CU-8uTz(OV>4DAS_L7*g~#;iLf+)t)BmlEHD<p5-LGE@7nPqSC=Ebc zk*?~Cw&jnk#0rP0?krb3-*`Cax99tV{q4bu`YH%`afTOXa4|ElxeiU_jVG?J-}p5B z>23Ja+wiAI(N-K|f?T=awC_=;jczKexME6};#n;G>)AAzpRtmlfzF3+p*SaWN?0iL z@&KX695O#AIt|dPpUK4*f&6YTZ1)EPEN~I(li3Uf3er^hB%1arbE748Ro=vGX~No%>A#B97g`?f?sL z4r(+VPP5TK*L`b1%8L<#I7dVpAVzoCTu%8xXJ;hiU8{0|m^8qQ?p#e^&JI=%x_3B4 zsv#^*t;BbiR>pWML=cyVNK;FwAh!EGel1&IR|rc3*!UVa@E&dG4?4UN@o0b--Tj-$ z&-vkCsXfk1l7En}G=QBhGPQ>5_buS#2}lFL2Ttwv z^Vr8NETzkdN(0pR?nJqi`q)q!S?Y@FDFmgd2Rc{?L9ZYvO)b!+?r3pg$f1gq(lZE3 z1JLMk>x5I;7X-rSe>Q<>06cw-GFa}m7ulMN*yj+F2AI>k6fn{G5WwdVkOqL$yA%OK zm&%ArQww!GD2C~u5S6A@;_)?27f&xFAWdCB%z;R5zJ!1@0G!^Jpm3F&1N3HnG5tA# zX#hNZduP9dD^mZGh%`W)zHJi3u;l-Wurz>;?%=rSc~;pcA*Nro9K=SR@iph}Jj={iIN`c8zp%dZLAZGvxe3Y9 z1LgvO!lM6l!Z#%0(Gy?=6zxFi+p2T9TJthanbJUC^x&Wp+17s{_$vrb1MukjuL?X6 z{Ayy-05f{5G>N%)IOxpHc1C0ESD`Xw;hDcCIt|ckWOR-`9$4hp6PX6c(bepv?%B?A zo3btH8;ME-)adG_0(G%FyN`p^jst!(foT97J#Mc6?hi(YSd2pFF9Y({%#V`fFOG8 zyRr5j*C+;2^ghDV0RF7{xxZS*{~+;cfInru%ARj1`JV|%1IXyEe?^Wk7utJ!V;Axt zB`!@psq>hfbFuy}grosv^~*&S6BmF&Q7_1%eiROFX=*}`+It6> z>^((8s-u)#>Xh2e<>w=Gcu>B9(w*MtC4S;LZzI;93RV-D( zbOX*#(}1Ri!-q7X!|xzGO}#P*;U|OkD3Z{Cq(&z!Bq_V;F{GdYMfGaHs75NJm_c?l!)ozJr;Btt;wG5#DNQ1s8tv%aHB2AMbE!Ew%*>fT#r)Kf_H6yg2kB)f z-L-X4MZ>hz<8@jp`st3+i!N+>)>-O~`M5-+?aVK%?|itw34zg1B?5G|D;+!I)m>8x zGhq4905pCSnP;U1bzMD=J0va*aI2S7RyA`)+*vG78)9~6b`c}JrS4LDu#6svQ@%X3ow(bZrvzW_#9MNci7C-VY%Uo-(jyXwBw=hp6Bn=?r z8Ap(4!!dZryb!GlNH*~_A* zTuBZZaKsNfN*pVA05NKJ);hgD2V*vuo<(RHK*u+^Md(E=q{Zlt3-GKXVtR1c3s|lq z3k_JN4btV+rS>cmF+0Er!K!~QacO`%t#1-{VTJ1k#ci%8Bn=?rC(?=;LdcEE@&&}F z0sgf03U+kXH@Zhv^~yD5paH|QMY=L%-|SF6`C_urfF-_3FXmG?1}M~E*Akot;PKs& zN$}7mu{6>-{Ywc?1Ndp ztHL)Cng-C*I$d$-QOK0H5S|9`@uP!cMl1XVUj23w(12iCA6c!eQQkph8X!+wecPT& zAxr*|xHQ0>w))2KejW?;T>QOnqK?%{IgrX~)O32xP!+b9>X@D6$ve*a{FR6&o4-k}QE8bZNI){Zx0{Ksb zq^YfQd4XLx0sRO;X=-QasE4;41oPv>q^T_wm@Y#FLh-_b75W)s($p3T%v~1r z^8}@70@S7c3k0PBXmqEe%AN42lXU@KQL}o#L}(g7N6&y93R*w&V9~!ybQ+*X_gD{w z-tS_dFk0-*+bYI^S_Bn1I(#gO3u*Cbr*KY z{#pY23&PR>HhR%cl|Rh&)_NRI2SGRE<8upQ(g3rTpDxTg$XgPU29ULae}QX7 zIW`bq{XN3c05*EcqN=nkYs+Y+3nZr1jeIty0t9}trUn9<{|D#5)GRx|a+uD-eh zacO{CtG?=?cjqdXI}?Ns;_$^xPq%%??zM_pw@EP{_K)1s@;U7 z0c5Ruu-_fIQOzmDqyc8FZV@pH&Uz}5X=-P{!1?OE2}uLUT0Vsr?@zv)&DHx6l%@$# z*JM4ApfmujS5$)q*JPbeOd4QDKg+3#RHVK$hwo!Lv1byP2Eg@vzyUkS4I?hp6^#`GrKLX-ah7kH47EG=Q$vo?$bJ-qNb8 zb1o$;O>I~-4ms?j2ulOlTCL6!)^YV#`gkKzitaJQr2%d&S4Q*D#*{OjvRLF7rDoM0ATkY*YdONOyVT*=j$N1Z zaRjCTaIIEzI9T=5K~E$oP2IfJZBHb4pG-^|VAk@ie2(#Hgruo2(@!y8NlcpBn2#O0 z*{Np{lLnZz`k*6>?uRZ^uOcc9P;1q)qt(6RAs#_mSA8yVX@Fa+pz=A^s|iU{H&X%W z=67B|Od4R;a(twH$}l-^T|{#p>A*1WVLh*2MB-W7GIVt9<>2Svy8n|V2Cu;(9 zxPbRO_$r)W&JmLan9~ad<}y}_Vx~ht7YIrN(CAL)q)=@AQb@lcEDd0zpZ-k1jz;+8 zxqD@guN$rOWm61MzC;R|I$10$MBDRtrYV>!#H0acbc<7#J=^cCw3j;Ac;G;Lc`(FK zNw7!6rm2m+*5$IN5POZ-G{BCYQJBz;4U*7B#!Gc+}=!OgY;|Wg#_~=ek8Q!jNv5=P&lBP~ZcYDj&?F{={^5qrTDoNx%h1fK} zj&9q_ay|CkDpw8*@D&86X#{u$lkXPz83d*QaP(#u6N(S?Mts{$q&}O7G(e0V?3EGc z2dl##Tn$@N$m&2reh!gofc&T_8gp6ivhng{*;-cKFmOqE9tmkc*se`ju~d1IG9x8T zo$|n3$s$Lxl52lLL>eGY-7Y9%nO9{tI z$Uy^+sT)ah;Q5NHW&fO*G{B4=+*Rr3O5(ZRlJk_mBrXkbr*6=wb=bvg*26BoHGsK} z)!|5{kR&_)iWD?;vIB4Y@++uL_N$0V1I($5(YCv8fxKUjZ;SD@EYKxZorymfL2AER^B{8w?31dC(J}i0tW8%^P zck1fd;m&oJ2f**hn?C~oUxcRt{L~!~!n5j^?NWk#{%?ZQ0K8TiuJG9w77qv5zaTbE zUE$c;Zx#EFVE%Zp>UvJs5u66#Q&(5a6>K4cZJs6q=rAt5qyhdV(~g}KA6t`i)YjgQ zCkmKEo(!bJ$wdRMsb{IkHO5}yb3NCv9Z6Ukz)m&s%Q5$93)RO$bQ?$my$9edE{9_}NcYIgXo= zg9aQ^S5sKVz#eK?dbc1hO`YrjZXc5+)*)_5NE$#+-5ueI3t1ddQ2Tp?rUCTS4S+7@ zSaE&-+Y*xom{U(B0JG42`~!m00Cei0kS*u2pFL(hmtC`R2LjUoc-bP#69LIalQ*GI~oCS|GUBHWGWG(exa^Q7pd27Nb?X@DI4MrE~bB2PBy zr;vaK1XK4IRC-mTek$Q<>gRh!vwm-))6^GV)v(`>@HBvrek-Ut^EYVPA4mooFkCuq z)2_KcTHLg8Kb>qeV4J#rP_|<8ekOrw06cX&p&u}l!Ml4(^f2Pm0C(y!``S_mD@~;t zK8JWTz?-_(l^QJQTb@Ty8h}pSWwOp4z+OmL8o-_s`DU*5y_Wsorh18s1H#AmvD;8P zxYAR1b0qr$YOqF*UpUwABCJPLDyRl7K;u} z`PLT8$8pP=2=+cZbDbqTPV2&#h-um^9~zWTd@xnRx*1IY-b-K_0LORiCV;yKFzbyy z68HDUi~b9a=-3HImmDJv|0b=xiH-)m2XG-o0TB?!m|FMGorO*!% z+51RB1Csb*#Dr}5sJj3z6OaagH3~8KIJZ^$SOU}31W~ci7RUOWbS5Udqg! z{uNEw@%lr5b^Z9W>+xl4f&DOH zX#iU{e+kR4f?Md15t^ofeCYO^;7<^hrh$9_D&EYHeE2kBX&T4}z@kseO+5tqbA+Y= zbX`B|En|(S#r-$p(ln62*!sqz{yR}=fEwK?-@woMtA3k6$%(HJn+Dj?W2+6YvHk#U zi52~I0@DCEdI+>JaK3t2WPgk3G(eAU_o@Thu1&^sAYYFEL3osCzYc#Z}`^ua9l(Zr?!cHR0zvBR7`mgqD%+C!IW~qM>L0KJA&uw~8J@dgObtmI&W7m)L&L0% zF3ci)74FHzr2+1=vhgY3As&ZU!QY+mG=PsDyNT+SEgDV!dv)w4cQ`W`9p6ix<=)CF z=2|eYmXTX{Au~VxIA3NhTw6cx?BH)m7X317h(j{PhhKb3{UW+~Ed%Lz4KH&kqM2c1 zMFVxwU4d%Q!7>(5TG+c0mIkoVqvMTWv33ZrS*`H-2Xoo%CO8eiqZ_PBaJ=5j>1}-_ zLai23*DJwcS6{J`jJO|RX#g8tO;lzw z_SffPJ6m`UBrZ+u3?2@+>$r$LouD)TjqY+)ij~dME$W#>rKz0-*s7u1hzVGEdJZyS?L_$>Nf#CkH9nlt``#cWQWUx3kgb7J8!W_BFKe{ ziAz&E7x>}opwhXNz%&4k-AW+zuvU0tbM}*LizXV0=+8i-j0#MnI9~5miqP?K82aT;@%WA5EVVSU%)IQzKV!6 zK#ccGmuGZzRCsjBQ08k1O2fR1?08aTi$?R#{EEfuOCY*9xu#1x7Cgwz8NbEil;ias z=kU^2iqnB94vO=*Z%dk@ry?DI6eo8A;04UD`>)PZpLrUe2GeY%R146v=$Q((Dm7OU zkp_s-iyI1vbF26=1-c?`c{evmI?$e7#Jg3f(nR*NNJ0aW=;bs85(VWY3waeGX#g3$ zfUN{6I|JZLDOef{U_8EHZg&q@hUb!j1`N@QRbm+MsVA2)SCfMV9MPTC0*9;slT3aA zv1ou5J#$mWs?3RNh)e_I=nmkakb@j}F|lcY9o>u;vAIv3mR#uA*Akcpz|;90SrCDp zWenvchhIua8bC(((F$4}-n~ZSEVwTxE=^sjxih?ykTg?gtCgzHIdkCG5SRwQ z(QQ>B4_2^|Qn%e*S{b{1eH}4rfH|FiDJE&kQTzsC(*QeqMyx__fE{@6n}|*W^yy;G zy)snR{T3qAOr0ksZ_!wvJr?a--cCmEAH=;(bUH_lGIOJEV;p~k zo~$2n4sWyJJvp`?raf3QEqXAQLr8~3 zY6-ql$A_jAXnM>x8VHN-f0j^rissoO_K8RX#OT_$0&%b;#p{(0h)V<9=oY9NcXhcp zFPrs977PhY1K{Y@Y$f1PmrIQVZk2E}HF9*cxH>=2L7^ZXAR-MAW9Rr(UrYb9IH%LO z14oQ*Zbw+@GrNelqs77fS!S;L9DICdeqnv*1@5Qx^yogmN6<+&hT<0pNze7}-no?!4w3GU~1f>D!iIHtIG8CR-OVupVM_i#sSJrs; zI`*}f9%tqe--MSOWp8EcM_piVT$!!jF@Af=09qm8GncE+#0Oa*kEP5lE^tZl%;l{8 zX^?5ri!}pT+VBT}Paz-;0HYh|GN1-8ud?A|UYaY2O9R~KSEVL!^MpTxcr?I^ef`M7 zwe0^^*%RqCK>^1<5WpPj7;pG;4|}a&^7G8x@vHElV}qY$>&IRY`~bS6JKO<^wt)nP zFFjX%Df$UU2}cTlc6EtMKUJ`~53`j9^5W}@JXw+tbW^~NxH&wPn)?%#rYE8Gq^T=& zG$dOA+eQ~&CE*(Ndw5(4WNTSY6Zs@@sC-fl!HCGJ>o~&dt*$r zWAA5soSARUU}F0yce;MmMfxN5UZT4}0k8t12Kj5PL8cNXtr5E~6lcE2hX6E?G(8-r z=>+bFgrfmmbbAq`Q0lh+fX}}L?95vth|=}-y*$M+MkQ^ z0YWq$T8KD}zC3m9P5CH9j_rR?THRBPhRzI8;WqD7x2b+G z5)G&AkG$$dTyqJhv}mZbss|W_+{)8$-od=pOaNvLxhK#0tmTVj_mk-x65(w9NP7T^ z>P90m(t6_bzavnPB1a4}XQe;*Hgdg6r;5 z{`ai!t0%xCb2Epc6g*M~Go0;n>TK->Qz@N536Pvq`OJ6tN)ZiG(`}eCbj1nc?~#}W z#Jz@z%kDWr{zH<}fc)Ybj+z5om)(8n6o0&{Yw1DB&GpzjViE`xa^)2&C~8!JN}<^B z$|JrbnN_0~Xf?Yk(CIdB;sAyQdTUgH0etRvp5!egp#e#aDli}^`j{trJBesOG<_Ag zTdP2ix&yf%mTQeFFx=I^SAn|=Rp2KMgF8v9UAXQp1<`~=*60P6rDTT8aJHMOv(@MY zmZ5zW7~W7mb6d{$(;zi9s=yGrq6!ReTjD<;F%5`oRDmI~Coa2ZP-v3N<_;vM0r~V* zV8|_1;O=4-$O1Jd(0i>v1v)@HJAL1`yoHAMzoQ}_AH;8Nmy+|@n#ZYE5t zxgCpLvfcf{{{SkQ$N)cboh*ERD>FY~@!z~q{P|tI;RWV5AhCL#=GI)m1F92H3!LCY zb%K2jI6;BHS928!l6)|i(h+EozPb92;MvQr;BRRDn;ANT6hehGXn9m+R)k;hJ89#L z4}a!nAxGnR`>-7cnYr|#aDpAYnA!h8TD?hhh&Cmu@}Zzl)q?IMOC950QY9%gy*U&w z4N_MfVGX2Cyi7Y;0d=3$G@!0_?53#mwk@C^ke-I+TIJX^+3|SA`H{INomrg;Y@>+6 zE$kdnHFqAWJF)mOEOt~h1FT$=O3of<=52onhd#=k=0}ma-;^K~0#83vJ$?UnW`+zh zHFH#l8P38BXpjw0*mf!WW{oQ?D`=I1Xdvjx+bt*$6z3=6Hs%0D(LfYdgwBpm%Ae%W zIZq0`@uZ?RPU*a@qJlFRLEd{IRTMSre; z#(v>rw_RvvC=DTYv4+@Fw_Sl$_=OBqP3G}*BpPJQGp`?6+74BTyPV=^AnvN`M_e9& zRRW(vfiw{KxWr*t;BVQpJ=U$o!OSBVlP&;qhhIvab;u+?orTG)=kH=qjTg~VlmC!C zi`yka`4MdM8f?kK-KXA;;A{?2?)_8_ML5TAiF- zltV+mNE|lI7!GY5cb75Zy>c~mW^nH~e$h(WD|eEaTRaFMa3)x2@G!T-$772s|0peW3EK>{( z#LTCTjlmdirC4V)Ph~`iM}j(eFknwk2?p6n^lu)(VBn!z2uL0bRzPM*j$pWYn}We5 zoWbA|Z+^yNr$N$_2SX@9gCQ64a|)q>kmSJ-3dw^Z7xOEMp@Epx!2s4)&isER77^P?$w%gu zIcGzwkfo~3+?rhv8syL)UmrOX%wU(bTZy-$L>frE`g)UC2*;|Nygg;oK<1MZH&o@E zVxTT^!AmJP%wI5UB|-`}Au;(>IV5p&R2RCsQR?&VkBB|W-oiU{?g)amqlI;XGD9H< z%Qt9PCLh&@nPHVt z?1Lzl24Y`w{ff<-&O-@4gMw)wcs+6ZS*gQ)f^d(9#~vRa5>)0N82m1>CL`$Csq=Ud zO+11YyMn_m4VJJQvABa?pONb`dOb7e?M5|lLe(vIwE)B_AbA_OK>}1PDu9n^1(3W> z-9U$gf5ko3XHH@3LxZe({`FPXdFWROeg2-qZg3d?N%5Ogsh9?elUG+2dVFP-$A87I zZ1&!pVrd}u8HuC6LPblj;VB%$YmbdDtL>wVd>c#?VRL0_U+69O#@K$TcUiYRUY*_7 z9csS%t225vGhe(nV*WStpSv63H4DLbPd=-XD+z?FOho&?YqTe?HY-&~tWVrgZRV|X zMH*z%^RB1T^-cUnBL9veX&^Frbu=NOBD5!dV{`MJ6iNf3PfZ-y6B=6i6^xE0daSH3 zGNyxIad)9Id0%+nVh1Dj_OLUMeALq!oMvX<0};c=1XtV%f6b^}PVJCIajFR6`h5-8 zTshqr}hkK+Xq@c|A=tQ=(TmdCtqp@#jznj2=%>3Cy z;4wSo*#3uHNxnwIiBNv{$N#8*BwwT9h}AQE4wyE5f(EHi-jgke(4m+VfE0$=ODQyv zl6;LuK}z1y3gmPthlYNUI$BU5t$_Q#86fJM+f^=I-$kMhIm^s7_d$^C%rAt;5VkEb z>xHQt#LQ9uv3)+`*?r&yS!3SKMw$khfv-*_U4`mPK^!GiaU}AiR5Hm2gG-%#*tdRd z4qJyVW0&a#?B2E3m1dcDW^iW)cV^t3%yjMsSGrmCO}#z=w=ENF8zw|0!`*J8?v{Ll zZ9^sEdX;xoqdA^#NCP)aK4PsD;ybolt5^QUiv3NBrGePw6Ks`2yx6?nul$`Ad{YXh zf#9nW2YICqe7a*_cMrp355o<{#+%Dg#=nHt^%X+smLF(i#l5WncshgA%-sB8?3e4e zG3AOo;jg!)Uv9t4X~n4`1odq-sFU~0i}W^DrAMxS(0{;(r6$p^++aHhB%~-J>t9K+U7P4J?r1jrISw(Ee+=I1unb(izhR( z`0960Myws}&-IYMW1J;lQX7iO47DK2?xs4QG>7*2)IySn|x@h zpY`xT#ZRbcRDFUi*iN}E7woYUmV5|Q5QbeBAP0eUKMkzp!{h?HMwWbCM#_p>%oA7@ z)4*YpFL{`hV`Hl%>PZwu15wEr-A#%LqN^nAsT4*7VWZUH<+xj-&<2eSAW zx2fz3m80mwvsc%G9eEC7?fBAFdjXG@wAEv4HcUO6t7Yma*{#hC)gkoG(a_r_w+bZ$ z@#ik9D)S<`6%Fzx`IDi^yb)nxB$nj;8RgMH-XCv&(TTirOqL}61troz;uE(eFr5Gw zojkWON>4LqGe$KS3cjB_Q1K09J~#~?KK{PF19ehtCh8EV zkJ_d{os=LBSG=sM%tdrFn(YYGq5?nbp@CYwY2{r)c{JM*s6_={ULL5$A6SWxq(mA> zd_v+tEedGa)BK4j!@%s3I4%B^ZB+6GVl?QlVQs^(*I8b`cfoaigIwgQetR)9CvoZU zjVG?#OTph$bn?aiRiafRBDSv)n|!f;67{kKd|?B{ENj#Y zMQZlZ@3dS?g_wK-g7g0Tytu?Hr~36<2bL_f5+JB-X-nQ-H8u@$CHdTS$nPCoV=la9rCm*FG?12jtQPWn zX?YJTylv&ZfbwV{?_lEoRY>2`6E<|-;ms9{L+kaqn=Oz!B3*V#PDpl{JF#M?LB=HS z;Z@7BFpU2@N^;%W((wsZ@S;;^OLFyxiEwiL{1tI>Xb< zoXmmaF~JpkBEM#n_vo}@Q~^Te-5M$}56tVNoo>I%@Xn2_;I z%AkRan4U&m8F}L~A!VIXXdtD#c}PsDq$Rw2)Yrrn&AS*2>W|(9J59UbzCQNp*DpBk z>*Fg5Yni#>-Pvr|Gam34^#4oKkt-{F|6kPiyXmN;S+I$cw3_>~glUk*eTj+H-wX7o zk)8(hgT(Z?pBE%Nm=b6p;ZY6yxDvJY_4&yN>t5#LQqNlrAf0VG-TjmEO1^)xt>Hhy zci)b3r#$k3^~i(*GDBiG_m|bVV>VjbQZ*7LmbJP|m++b$>@?FLpBrye%GB!LMFB@q z01X7h^n+`qJ@@dUh+`;%1|qPMXR{YjrqR&qpX@4d7P$Emoji21n9lFkhzASpl|gSb z!mA~|PtzYP%-D<8@4NSc-`{xRx?C#!J!|>7#v`FZWM-%dA@M^EiI~Su^>apIqohWa zn3u5zq(KhE^u?PIW22>7(km#529jcCC!3KJ#80)XS5p=ZWJSEmRZCS1K8sya)WcnD z(R0iX7+Z8{ch}eCjR%A{ExM+iHbUy~!#C3nE?fyPVkX4Dy3^gIh{x?yO zRgp^fs(eG0n17|~(4+{mGN+9181Wip<=a-$7b%G*MUa&_y`((I%0IEPzD!v(34*Ll z*|Hb#wp1UTG#w1nbIf%TWaZz}e;aScM@xgjc(EOJC-l;c>#muHo{a!IzI4@HaDPd0 zdz)^-CdFl<2BCGs?@AdpUg=CyN?;W)s|xcxc5P^o_Lym{Emg@yM(@EIRK=TCPDVL2 zkkfcmT4eNc@_;J-z)JcPN}_?Jh>iVfWKc`_5k|f*NWV45!B47uwRy)G%yZ&;xX=r_ zgd<$UV;^3$t<|5O#MWx!x?T$ZK1pju-jIalm>Ft9NZm?9s_`yi6{!YQNsTHoJ6H$P zB=O@Cr}tzVSf$%m(ovK|14)f{2{+82Ah@b!9Ya|(kkxdTu&fHJ{O08;44v7vR`eWm zONN-Zbm&_2--sYv>MZwGur_qu8!T@+mmL21#LlQa!Yb0auC9ORjAra!?b z@WlO^!Xh5Tgj{umsTzdWU82LQDQXF_AmNfP=H;xDX^;;Q%|x?e^y6)LS*WB}QW6a$ zMTA$QlJX#%$f?&*77b)=zR<4;RjtklYZ%n4)p5+78C@m!jabB1N6lz3+mqcg+N0Ty zF7@kRs>5EK;l<3n<-TmlCaxDQ$=@^HB9{F%D_Hd*>RK9g5lh{h6<}k}=bC1Pz~PL7@6TFsDiz z7~J))pSBGg_q(0ZxP7v11NC&~WGn!@E%%H(rjuXsC-`;xHn1Q})gT%lvK?(;fm-9x zUs5IJb@U$^_)pq4&@-1hnzmqA7E)B^4U|L!Nom`_Nl8Jx`I}bOn<$G0vXZuep15VR zW>20sXKEYhf0Dj$X{mM<<7yWQ>xz4XafK^+T;T+{l(uhK5To%{Il=uDLv}yoienai#9NE$!9r zVqEP;Ts?qaiSz9huK1HSPPQwqRG6wkTrF&4T-iJcb|4vNb3Eq?(+B5^+}Xq91*yPLZSc@cBW(+}G41^U^29Dlht&gBB9 zEpQ<-NAo*6#}%&GQ~Nh`{)o-UniHs+;P_8f$B%fEvpI5c`Y_8>jkyoKi3Yi``382) z=xK=#8Cd(GGEbowX?X<&6tSSHj;6t2qgi5f6f!ptatS=YjbN8(12oee+GH>uP{U1l(8A6Y%kyH6_N zS-F6x47iY)UvlH=;|kZ@ss2s+YNRAkHNi!$*^X+YM6Qk!TvRpY{d5-^6j#z|4K0bF zxbh_^;VmocLzG1WSrKnv*Kp$?ODdZ33TYpvG#W@tTJZ+TTB?K39=vm#Kh=si_!(U~ z;>FlHxy84d+w;T0QhU^W>}q#;)>gv<-k9Ny8FwQypXYv}H$}&2@}9d~#9{&>HjrsP z0jd?T`AUt=h&Onf7hz*`GK*E6xg9-^2Ducmmv|z9`XF8lwN!di;O6#}NduXGlC<>| z$0};5jNuJ)^p2ED1F28nbn$bu8H$*uF6L8l*kq{j2Fc zrX)gxt{~-XN}++2h}CV4Ny*2#1vw9=92&?;+3!@+R)PD?43@wv6NiWIan9N1`2TP- zL-0%E><`k1hZB++DnNL=e_O)C(c18kREq-hFb+y-(uYSugbR;A$~lxmlRi8OQo`^E zTj1;n(nNRP5 zn;xMj?thR!Dk-_r!Xv+`9vSf-WSyjP;2k8_47wT^$M-QUDDEB&(aW zn3?vX_uE1@s}w;45syyf_N(IWj`1t>bL(p$jhKDeda18+OF-F%th>PPR=1bBcEzB( zgWwWB4B>30TVGp)F8WfvCE-iPDu8dKV%I` zgHnx{NN8G`2H2qlwkVJW0-u*6;w#B3hUS&O)6zBfp-38td{TmdtmJOFs~nJvi(_LW z9~kCG3|Su??kD;S$c%V~+(cp9?LD2;Jc7B+=M&FG0N=FoUVb@Ojz59$h{tKo30IAX z-ow5pg&Xl4xjFI;g4gAoc|H5-G{}{RwZ9Du+bDFsyf;!F4dg{U=5APC-f}wsDmaq( zo_RAR(m>+o-$7_bVP)9*O#3yX)`vtvGBj>a(2iD@r2cam=YtkEGIQ>}%An=F3gNsA z;oB3mR=8?J(B5b}gVvH)2Q9Nfa?U(}O$7~dWqX1)6t+Ro=JFmyc{Gr>JwY4FJ4Ddt z63?JS8c5uhpapeR(B_Jcho5ci`w?4kZM|k$8w~gMM(zC=jt=%qwCa@^y^@*NtRhTr zSiI=Y?Vm9)BQ|MjK%B}!ME;&eWW;oI1FRB?g^W@i<_q*78e~9{Dz!jb(U&aTx1zp8 zQ8W-WNYIBYaJKYpkMjg^7xTOHW9u{S4%KYl?e6xw9J1~2jk=poJO#f!vD5F*VzUB$ zFzZe-^QcF{d5`wz!6D>CJjV$rrk0~B;Ins8pN$CPCTPWJeaa;#%p*D8r$Oo?)~Pfn zLznB?GSUn&kER$Jh>2KT)|i;QZ7AhVhk|Gz$ZQ%ob@jAL?006&hZ z_d@PUAv7%igl^wkhTD7AGp*aJ-z6-Cy}jkmuy#aMmY7Ui7kgUYtJfj5zi#E+m2zkxC*omg zb8_-PDN8zul4u}l^L@c%YAHn&LvbVDQ z2vWK!%fd@h35bHf)F?>mhMv_1LXZjO43<6(k{EYEZ6y?3nXj>tZ$HZK`wwdVP!nu(}#NaA8P>?;q-^|P%WrC>DmEHt+ep?cd5rme6nxa zTE-=o^_@?!xfRF2G)Qj3*^!W3-949ZYf7MjgoINQp@iJoa~Zdz3>wIIOfp{wUn}SQ zM|!&W97q#J`h0(YH}Y2o`|TqQImdU7aGsfG4dD34hL`M_{sBkXDc!OtP30gUKCS_g zaFVE;DH0gD8dYL0qg&7*8xlTGs1joXWkS*uD2WD=5)S#RBn5#pA?rz$MFUxz?=m`d zHJ0ZQ^C3haqDK)l5RtMz4MhYo;eEjLDTIdQpRP3lVJk@f zztj8G{lJ^D)*f~btf=4f2pd~H8jgR&yqviIAz?P5BRC044&VQQ`hLQR1WBJHTN;Zz z>E@{%DbgU(DLXMP(Gq>Ofe2(goib=3BjHfKm=8e!1X7+!DKwBWmo5Ux*iyd}Cp6z@ z3|LPDb;3^V!mu;f!{S?U2zQd1Qy+m)INF~Fhme!-k)LCv994msxK3jtp-YCe;+5`# zYA`pWAJ8E6343#n)kmiWhr4XW+=60gASU7C8^`L!a^z8V(8j?*Xd>giEz#g1G^^%`|C!u`EJ^q9|nt zrO-f1!bcHhDS2QNbNXE^H3A8e1i+;>_Yk-KX%dMz_I zo)F2JAqa&zox*hTier zJt#}~$n8LXuy9aHQjRk7Q?6h-LQmZPkdW|^o0p*Eh_AoV_(~Yvo>Q8mAnE4T^avUx zI^iR?q5zGcP{!>jg9b7Zb`gs*@@NUA+@4ZsASK-+H(_jrysu+8SWg6X!rs_r-LbwP z%7e_@iEoGQkYoEF=o9wF9KABb|KF+ppRhOPD8>ErRGa&-tZ9(qguSr>y*hs&;{Fst z0}%;(V+9ep>jy$kqYxUFf3ntrgsp(}9rSy3Kk!CWybE1yx6|owy6LL@-HF5Q+^YR7 zrygeJd5?n2A8F700qFN^-eylvue@;hkEp{(g!uGi;_6{~%|R9~4bmCW*3_g{H!lcy zJO$7|Kt#0F6p*`kLB!=0K?4z+f7fO@4Xpy>hw0$X*}(ez2p_Y{tw)1~shJ%!d=G&1s znmkPaqU#G9UDsS++022QmjMY*J@DxJ3H&BGX~6mDbe!YP@}gz@4jE~{_{cPjnDgo3H8Cl{?~#rs zU8aH#Pg<4+y*bPILvqrjOXA8f_nV)PjwT%)*-o*k`zh&YKo`+!Y%#_q0!Oo*es``N zc+LNilm?`U!hV$J=r74elaNh5w<<3Bzht8UTcWrh4d%y%xW54#CmL`jib8yW*$4d& z($S<#BH0Q_Jc^t&;B2RAf6slQ@Jqukm*seTS)08gJ8Yj*?70$2Opna!m7Kg!H=F{c~Jk3F| zBXVxT(v%6^klX)2^83Qt`Rx>MXm@PDujcCI}T8B&va`&t;c?T-ZI> zZTEZox|%|BHR)(T*FbYQLAQwQAA8FS#WcQvq%3a>?XcDol4EhJxI(?g)uOk}`*dm@kY`GMN9elrWsXdDs7b(3r zkdFp@DXLk^heZIL`OfSv%lam=(xgr07`wblD&Imrn#6nLcZTF*0ldfN*YjJlAxv~C1zVBdG8??4Y(E)aJg>}=U+gU zFPjVZ`^ilM?uh4fTMo)eZhreos6Rw%n(d;NkIV}7he=HX>J&~~_&%sj?#IYU1J3j7 zcb#pgujQQCvdo}cS?s_zFhZH@j63b|!4>_qXygdR|50ZCo+Fh1MAFxHJ_t~^Ayh*n z6wktbs4}5*y|<|miidCUNQG~hoXhIR?p${b-9713$7ZwqMP}}Y4W7;4VK!y`$Oq{q z_}N)aDpC&QuF>2*r?wMoYFql>21$r`@U>Z`6s*>ioDI%1^WYWE=!ciqk3BvA0&hbz z`T@Q=Dru3GBhAVNI+rB|>CWe$S0$aflBVvJKZYc@@f!o7^+-nUWL`2>k+ zK%A)Bw(mMfIzLT1nsm9UE6j!Mb7Z3dTm6TjLD08?V;h4*&NGw;N*C21ZrX*&GETF{ znfZN#G1^h?bp5C^bY(opW@k4_sZW zS}vm`-^?3XQel=g(EW3L1$|`g&oc8f*+nD2u)gyQw{W|m2_KKG<7g71y#7JUD`K_% zW_3vcUq;cJtZ}9S^CK1{4GOY>2i21zWcjL4{U@ntQc=m$N}>80sc1k||7pKZl;5%% zk2QtoopjNnr(94!uKS&X-JyD@9%g3wIjBgEv}fx_o+ZDaV>U2RmeVN@yz-;!l?^cr?#!?(6&YZJ|BBMc~wt;t-<2{eOG--J;y(H=Nycd#} z2D}XnHOu*oS#~@a!gfJ;lqpYXC6g~EDGf*)=tY!C%Vl~g>1dMD`7C`D>1dMD?RK8? z7}C*z?!rc+Uglh8@l-$xZI(PVX?W%x&pdf(z|+7;ujCwa!@d+2Y~D5c zWTQ#R<~?ITHku@C-KD+VIV^`*u>LV58x7c+_rrPbAFJe{0Z#)R=8}Ja2P+Z8;SZ3A z21F5C4Q$piDiLWXbKGrrd)#EO-F@t;yfk6SA4hT;kT>vLd4hZ#R?BTH6U!y#kL^NrLa+i4;iD*Fdh{mf(e8PE*$0(9_SCWYaObzs7OU0%wsik@r zsc1mez#LU2RoG}>MLrtvHQ#8vj)||BpG!KLq;$S!zM6D2N$Gsm`~uR^fUbf0sZ!xF zGgp@j{n~3tNCU#=`?bs64py`m>J;mxFD5Syc$=@SnM6x;Es1DA)W8gXDMxkI!LQ_$ zSbr%QX_6#um{(sfClL*ZnytHCPL%)V7;&J551DxvuWOOpl(Yv7fc4LJ99 z#~}lJa4Vx=r6s^3i~=iOzj>`nV>(jisv0+`%$ea!ZLGM{*jF zrwbU6WAQlV2!-=TIB=Va||x9_fC6dh?lY0-4_Knp#mBx=qFRKh%5*7 zV2HOb+Dikzly3QNMt&Obn`HdG<=(j0>Gv+{w%rgzRa`M$8w-hs34A+MrxX*)OZtyRY$Sj*iC90P^W9CMuR?{hM?-`EHA9~ zJFc&D3dw0ep3b`%QS<#C-a8VPK9!_2AZ=iA!v-~oZmWwVcen;ti0@5e8W5-JQ;vt& zHwn)|=2(+h=KGPE2F&T2#<6=nuRR|4WgU|82a=x#{7sDesza;L9-dB08c=S&zuKmg zs|CiEmboANXz|_xBb2IfQ4^0!2YBJrJ}Q;N%$)Nqc~q)r7!~RP65GV1QctHm7=ArM zhhI%h%z1Dbh%Bz|MMtWSi^^qA;P{6IX=!4Lvq-lOug&(>EY;0PMFXk^mXa_Lwv^~k z{gcCF{WiI1z|}-mSK=D*Idg9`LdPM<%Uh9@CJCt{T<-Tn(p!_12Bb{{doiV>rNLml z*e+)7?MO+JB%R!)1TP*B7kY)vy*){3K-$2Bk0i6DK4ks#BGxEDXg83X*mj_|f)?0s z#u#46%v%qlRynS4ZT+~jgTLWojPvUcZbAlKC`4w|GfP^}G!P+W3SF2nYL7Tx?xJNR zqq)@rBLoKNYM|4%0qJNk+mp_G8(RpWJ0R4zCN)hnPFqbq?sq$wIOk&zA-x?*X|{os z4?l$T_9Ug*22wr(5z;%7lqO-x?i~&~bF<9g(PC$X+dv5QT}Vv>>ITN*l_iUL!`Xdw zC+STK?TMtN0c`_g@eODPgAvB0LU=L>X;P+h&|h6zM$}@@6ia(|($au7Vzche`gYan z9IzAJo*!bzf)Spbcb8{fs{fGmGzqhLZnV<3{} zcz+VofUtq5hm|Ed-$OSgpD2}_J&n9H;BDZcUNtWoTMPzmN*_!{nuJ-)v2GtjY)Rrn zNJx{IaMhLNStO(ZVFSa3>O7Ub%_M#2l8y#+4a{{{(k*s7YrPSA4K`2DCnrt9JY5WH zfQv{-law&10WKjS4G0@pk6xLpy}Q}$d?d+e5*DFMY|diV+;TpeoHXD}(XD2qvou)i zb`JDhub@Lp8c;T{@USvZS2`{X=g39_wp4u(H=#J6hvNciX+Yb+Ow$I5wDXwqH7iaw zt#$D=H>nN``Dwu4z~tT``B#^NgfEepW*ZWYKID}23TSdxb=v{ zG$3x^Np5A14+rB@U2U;OJ{s^fup3V$pN#nZmX@*xRWkV?xoNUglyc3t|XkdFp@smA^o_b;_C>kbF5LcW5eG$2hiUMkcP z&mbWU2pf3TQdyp>%RP)%+T5_SJG-h65XE<&O>&xqsa*>@Ezcn#O;W<3)ABqL(tz;N z+HdQHx!Vd)Y;g8DIX5vkw${MhnENbN8Z%Zx4?(icbvlu&19p~qWH+h zk2IByM8;RAH;~@Iw+@yE!zF$4BuAMU{UxS|kI<9#BhKM%=F-FJJDaCc5@ge7G@Bae zEqiR429|YqSYQY!O&J}snS)zM%|gl%CsSX~L({*-JqU~8b^DW(mtdtkTf*=|Vq zA`;Souz@~Wkr0n!ctO@A+3fr?^3f#W+cm-W7v!S>Uju`kQu+p%WW}cDqZPKPVYa@E zv@}VQsV);{>nq4d1HQ9r*T9m>mRMVCpJtPmhjarEu64IisfP71Gfz6e2iNv&{mAoW zS6J2{4LrEc>68am$oCtoLUM4eL-0=1V71@xDV5pD-Ukhm(!iSt6KwoMCiBi5MS`M)gOKV&XMkiG$usRQH;lEF`ikwMS*1GWu@!}YD9dwe(arJ zk27=Lli~VD*<0EAQ5V=7$f*Xlo(U+G3b}QH=2iobsRDFy`QGwccQ|h2TW3qFWBal$ z(`WvawG|Cg)kHlKWTY%q>K>pJO`&-a$!I`Uf6p76#+Loxa@+)YSSYIorr>2mDNJPz zhaLU0x?Y%(3z@m@WpI?^3fI<;yMSMa@7_j#g7h}9vZX9Tnc+9LQNL;6&44n6I?t$$ zvTTR{WM8KfcNAM{4;WxK#dvQ&$~3U~tr&_F<{ z?gn0?sN|kxeFs@-z*>KXE+lQ~i4A3mc5`diG7~Z0z~U{2?qOW0U9tQ;GZ$Zr zissnhC)xV37X&{*(i@nT3GlT`Mq1P|_t09VfyE3Z1|9SCmSrbkO{IARi<1UvO2jxj z7!GF#U2HAM1e!l0BMlgvXbJOj@v%HR!17=r+e0!MkTo!CQk9{zs~G>_b1%ZzCLc{& zKE972e0#}91HL92;EK##M3@Y)u^8srgtALYnsiC**)gT?Es~EW9p6$Hi;7&9?js)! z_!3k!Y-+Lf>5_aOL=w16LYj1CD1<>8A4^J_ba_fj@1|q&(Im}NzDsJIbUz7cK$xgn z!)83o<6a*RdZiREBO?tM>+cL2R5Y#N*mB*Stzx-FYG8PVXN_30s9kS+oSA=rCWmM4 zbp5D{^hX@XHZVL3D3uBg;3e7sHt@JSK$pgEfGz#_l68BbJ8s(@SC!Tr$B79Vq^tgz z$r88h|CZxomRp#CkK4R6tJ_DMv{{$l?xWF}+_g|zMR$D$yBW^7U0>euN|fvgRk!l1 z;r55fnTYlEjR?*R#laV5)fX<`u8d+nyBrDAE_%$D8RRs`iYvBNk_?GA7WOp?qk*tz zZl^FTQW)d)$nNkEx%N$pqk*^so6b>s*?TRNTt1dcn8~!Rf=2s=bLdU0>0I2wpc9*(=_s>0E0d2Dq!;y%Qs3rDw=oXt5`Va(vV zw2svGqCYEyV{j`7#~dhaIOaS$RX}kF$0w%_$0D!vp$~G~(h+VL#|y*ivi##@IcucwH}rdz4aS#50{Ob}%YLW`>#&f6vwUJGd=5BW+zDu8diNPQ#XaZMdMt&)9qD7$$E>l7NKchtCZdbV-}>~B~Z z&!!9-$k@LPGJ@*1Eaf?rLIWw?rX$3YwF(0cI)Zs2qk{ezxL~q)aQzt@53JXhuL$D- zS8_2pNf{3+Min3)UY$4|f?lx8ZI^!YF?M-rQpQ6lK*tBR(7lXLPzFuPcnD-n#)Fsg zX-c6<7!U0Gy8*Z-epMkJa2W!U#lvnp+_v$+jRn@Q2tIEga3zlioIp&n_Cdv{0>s1H z632s0yYw2YBf9jP@36l>gY+hAA3_0zcdFyY?9^b>+Sl}h3`eAV3=p`XPq7WJg+1qs8?6_K9ku8I7(Def!1bM0eu%iyEfW7@6 zJUs{iT<}7)&z~v)REW|e0DhV_0D{3*De2}btl?-920%bx2mqJ==IazelP~}R5fcI6 zg?x)bXwn4$hMVOw_^&Vk)bCOSfE{L71?=AchrH60U+@8-o%~b*phA=$0kGr8lIN*f zfM9f$r&N+|-oqgkO~L>O=nDbh^549lB4`o@Kp&EJmOrwrH<19yuY$bs0V}?aCFz&X zalJF+fR%@8LD=|!)e>fgWN`7@sf#y0yW$eY0jp1(`CHaxG)P+G1J;mI9Xcoee> zapMElkT`eZocygMrvZ7>16HuKa;DqTWyOO))p#Wdo?Xsc@fp(_zXI;MgBLUVA4nr! z-QL=G&5F zN12R?$PBf@Kkuvl`OIz2K~}RHsZ(X$Ke8^8TaMlM{>FQ&9U;o>aN@f*R8k@9z%S@3$I&s z!HvXchAQEJ4^an95W*W#OYOz?B7((NE)ztR`2uS)8sy0n8+X1cVz}P8u+(TzQPG)n zJQit{XsB$w_2j3i#mV#=)vvyit*0E@|3KP!>*+`{Lq0gih3XuQx1NqjTp>@P`7Uc6 z8lJox;gzXNl(LaZQ6A~(-NoAT;8j$OLDL^J`N?*viDuQsGF_Bd5@6Gnfo8a z5wDYPt)ceBN(uiRs{cmpP&Xx$cVL@Lvzr4?8YHmsQLj&+(B>}e$WI|T4agf`$yy{Y zI!jLHQR)k4^RvZ#LOp&1}PUC5`j~iXEQF!zSwvJ z<6a>;Sy$rX)W3fIxo0CZjtQ>FNw7@5@s+qmF`1zP#Kns=E*fv&igZ#F=9iS++=;az z4a&dqmAE-uDJb$AR>oZ^g9b7hUx}Nuc^P>~D4jzpF<_ zFfU|4&>sUAOcoDz(FEB13#Zp|D&EHfRx9LUbm>B}cu+B!p#sFis}sjVuwcaHHrI)e z-F$-eAx+A72n1*&F(KpAltGg+9s(JY@!)ghbCg1pFdndU23e553@SzOszN-d3nq&P zyN1HW1D8!a{Hib>a3zlioFF%n#e<4b1&D{YC60$+{fKi!mws~})`m1G;~@}Gj0Z2{ z{**zJG9CgMlkwoCoJJ`$3F84PX?#3*;){+t7E@b9s+#>`Z z_YJPeY1{t^DfGvft+5$?f+u;LRqQk;e7eOAh6=uock%Ei?9lM>dx67W38%xj+l&)M<+sXOz4S+e>3 z4>NaG!vv8CLM*ZU?q$Z_l89w67=s~WxwO9T+wc2!-Co}5?)NTZ9ot|oG0}sB#1>)= zLWm`?MS?^SVqdc$A;dD45Pr|+ELEp^x$pb-slHY3{o{GNs{7XWbIy6rsdG+Moid-@ zA7x14S4wZW(k1M)4%mqwgveRkqdk6FhfDi%gFSvH(;??Zd zUT;I=)#O`L7-v}jjYtY_`ue)kW-AQW@{(uk-4#bpV5cq;n?DL#c+=;D+IXrAKU+}K z=L6X~kft#CJcWxWb%mewb3twQ(d4Ab+~iAyMlKm`+^qO(6S?4l!?U!16##^iE!x-$ zQwtLNQ`7959g0@?bq@|~FB6+jqvUq4k$rdB4gXhx3%^X92DTyP;M2ZmGPLl^#A&3| z!n$-xGLs)LO@t_ch0oID!)7M-!GA<>M8OLm66b^GP3!^w7XU;6MPDX1@r{jrv{O~O zfu9N={tnu$WxXaR?7+BPX%FUxtjc`VvAyYz;1sciH$!Z1GGG#Jlt3fb|C)7u;aB%2 zLmK<%cUy|&7j$D0Iic_oXFg)ub+8p8|E0sZGR-R@oWjR-`G_e_Rz>nZa7epALa3|- zxA^&hHMf~{W-v-}ZK{v=ZeZ0J?Q*->X?BMPTZ87*Rj{+K_w<`fEiD4?-|3NUj*>%v ztNL%@$n+PsH%y?CEo8!b6^ze*NSdS;w@q5`^x zKh0$q_5p-N6m~}UDJpE{=b-#di6-Y08d2!!ualc6vijg-IeRlK8`?+lW<1uloq!!J zoxQBJvo)uBqkhwEjgn9Qxy*V>wj=zkz~{zWH3)3O$*Fg=PMz_1+`P%+p@u9aCTYo8 ziAoJoVrGo7W5Rix=JGSS9YGNVopHlcOwiDz`M`H1FrvT@n%dsZ5my$?N4WzI4LqY@ zGhQ0GjcC1%uDx$VuRreUlH4s`Z#vXwLmeRVSAounHlz<^L&%KxvSvKLup`?RGfPHt zJ&FZU0^-j+J^?0-Ghh(x1_VPCEdErG3l$?5N?%l2;~ylq;c3pwfpwjgn{`uO5XDq zve$`jEB&Bg_lZ8Iq`_L8}>7kv?NS2L~EKwXtF{Pho7)_w1! znicb5zd~3aU1q`hpzeXw%n4JV93lUiWEH<7&dI5T7O5$_unof9?wUs3J^UQ zZ~^SW<-9jq=S2?&JUGo!3ZJ}>Qb2?rU0uTv)@oUx4-g1Zpy*l@2FlvHEZ7GLhA3F< zU_eK$Wk-Gkjxr^#Lr3@6bX+?a;KL~S(cjZ!GoRfb1&JOE_#pQ9a@4!6qoO+n{=lXk z%Tka$mM$|Q`sl$xE=X!Bms!aZ2!$wA^k5(tDrYMn?n#70D3{0+DA6#MKlb0?EL-?G zdVF>7H`XsQt+39Z>lclZXS_@1+GRKVUj>Sucr`~PkPRV!{gd@q^u%j=WNWZ28Ogs> zzY!%MzA;I2D(k5Qd6s;gV2FZ6PrT;S6qqbX-G31fQNY-VR}-%mCg&sg%=th83NYG6 zcgYz|pGL{qe{GG%27&miKm{1h1+pPzv@aHBGA6; zgMF7^h=LVhv@lp`v@CT$ARwZE@kY~eWwh+*UvNfaPhlylFSib~mhDK?1lw(Q=p9k7 zlkKjO+vhgj{{i9wv4aD1`~bqnl^4Hdy%>Ehay&q0NuLap(&QSH9imi4UooE=G%#pB z^tA|$DD;e_5VqcRpBj41uKDoSCOo3>4~sns<5zchYu>&2VBf^V)>ZzC*%^Llz1eSZ zr%9uID~(!P2O7L9elYd6kKng^g5U00YPL5_Ys!aFGWaXHgyysRqwrg}AuBlKT;XkG z`TD2U*E7mFNJV^#IsIm-PToj4BTDgw)9Y>F;jQNbh&Ka)2x8+HL1gX^K;8-nLita1 zeNmZF3!?rn_P6#^+~(pkz`Nd<{$1~v>5u25RfV3>t`?DI7kZQsR*paQ`zDjOa0l$X zmCPp=!>0*O?#|!>QF42W&*`kQn<3m21Vjj1c#foq^k-(zFwOx35yqnz=5@uZWid}t zsi$sRVA|Ij{pG=0zt!DuTKQ~qlpKfcPYw3uHk21@i*rR5)ehxgQC+yUtqTW_RbbQG z$yjWjBzM9Oi1OfZ#}vh$4<>+q3m`;57avogth!7<-32H_Ph9*b#CZ^s5_$C zeye5?tz{OrmVI>P^sCgN(7+;DU`s~)bk4?a=)J*jQ#Cp{-3~qqXJxUa<#8;9D$vbr z1zK=};=`uZ$IdH}6Ui&-I3P;>;bW6}gOOF80Or-eAc9$NP0r;>zS;ypuLB4XP_ocU zLr_y?g6KD;!emwz!vcF9?cQq3-XCB-jgrrE@5wH^;r|L@#xWnn%nt?y z8H>%6OWM4R-hXaHNXo20YEN%*vt2R03B##6N5!B+kUl|h> zC{J)UwJ0>ONEUcLS?_D~WOBxQ(y9}G$N9u=_`gC};Q1s)u)$Sh9d6R{S?eXu#7*gXopz)C)`bfjn*?!d_VZqAQ)8T@ zPn~jRPVGD6@@o+T=7H~G@nMua_RXqGCz#Lfk1}I{R|9=`8(G!nNw(T7@M@qBY3oax z>ZC*QBNYDvUFkDC8-8S2pR5Cc2x5`#X$TS2i7Yn;fFP9r;wpmz)`H|;jQg$q6nBxf zZ@H1hKp#fQbKhWW&u4|_56NDj30!y^S+>7y@wRs%t?fyoNpXZbN(voTbX5a>mx{k;S6g@e*4*7TC?s2ex%2%`3~1ya;a~%7X>Y zQcXc|^<^CB#Q-4!THq|z6riB)j6=N)C`3?;o2AN_YS~9uPA{f5g$5SMA_oB3sKky( zZpAYjy9Q>%{}sXl2k0i2tuX{wjd_EuF$=uvk;b%@B};np4jh0e(Tf|7n)o%F%L%DY z{+x1m`L56lY(`0J(2QoAqvR*=q4f;*mv^&slw9d=RF%${*q_^F{y%lSdklOP;95G> zug}=}wZQqnAOo`8Vison3(J)J7%w5pm1i8=TrstOtkStmb8tTe4iVh5N`RYE1@nME z2M`h9V-{Z%UGS_zHkbEWPaFFupQd7lbs#nT7Dkmz{ib=)V$%m5{15l+Yd4nmcN*Pr zd0f9QT_5)^UaNX}wej8Ao?zM0Eu8Lr>?p`l0+g!b*KKv&!da$}xW@24Cw#gMOL7WE zLS&>Z^wWyNvGs2{)K!2&1ohO-t6yf*4wT9_Mts(>}F$>+~a+!Uni&A=A-!?=eaGsfGQ5e##dGPp{+_= z7>maRGlg^ixvitz-39TwqJA1@u;*jnRvJB+iyK!mZ7_SVNsF|vB%zj7$I0|gPv z=CAIYzeH+^yVttS7%{nmDuEkQ3vOX7vHkdKjZSB5U3RxCJ@2%c;l1kE-gHM$S+{U6 zdl7)61R~XxT|Y3zvW08rMT9l=C7)fEB)ObM6p=@^&><}hCNu3+tQUZV2y62T)Ui~$ zmE1TfYuPEKB`mPl_cH3znA?B`MPeCC2ra$k+IPs)rL>#>D*bZkF20tg#iro6s2 zB;N;8SW6p8OgoT13g+{8H-N(e>7Nll3;m$*)u7X`U~H8z5B>VS z=0GwpHJ!Moh-4|dxh>~=p$Tdp;hVY=>7f8)QN9)k|-u#AL_64>RdTUcLR zUIv6Q+tG@^QYITX5K(TuxHQnLecS@_A&?Ov|Na7oZ%0F@*)R7x%W0ho>+7shrRRSpb$az7Uy>xGc|Y);r961c_#44LT0`?I$IoU zwpQ1M^-g2hZyhon2JPK#_wKfPN6C3_l#zdF@(Z&se+bS63z=1!3Tx41>U&sIZ{fPn z_N&s=$i~6W=?qa{xmGwuOrbMdnpj^Jc-_4>&|{ zhZa!#CgRq#N2e201NOQq;4F$LLE%i>L?nbBCZw&3UVX!?)I%a4Y?mBW> zxTXAB$j~x~fxj$>D%<(CvMuDKIu_GZvtXZPNFIz;5G8%{$Jn=T;~-)!`0S!T2y={= zz(NLc8cZm>ZI|8WQF0k~be-fkvro#4g$(2Z2pe1$c$BrkLI!d{JXicC6Kw3{Zzy_1 z$z8-i&P7+ThfyC%k*9gC&Nn#T`J{;41Fc z0*gC{XNudW&m=s#8AA|6$z8|{^?3N~Je3EzB_POxeCML+o$o=pCu_!cexE`wq{j6d zy1T1WUs^Za2)ng=X?>Ku;T`hcDcKJHSwE$t*I2|bHV0!7gfeShL<{}yorh9Ds z#ND|CY2H%c~m&EnPU zPj{!g{hoTdhiqD)H+&r1D*;Llx!5{nAtR+}nZvz0WBY9eC3|oSqHI{iRqwH=sb_q) zIE*La99LMmqFH1cGIX!zG%d>RVSki7iWjH&Hbgu8=ej;GxDBx|7C{aH)o=$v0^Fa?u_zFcv`` zc>Xc)fK7hr0ha~ImFYwv3--V;^MDWiyqpJ2wl8D==NhNs#?pTOnqJoym_4K9G)A+h zdvn;Ge!Fh}8=hFmtmp)s#gQ*wW__{9Q)`eVp*MnTNghBOfhYqOF#(xNf98=8;idS* z6;DtckC=Ws-}=JW`&#CO6dxmh^yR|(^9{f>x;fY>UT*boU8nx$Oe~JAn}eo-sii7dRU@O{V(m1VdC?68~acumiaCS_f5hfluM-HIII>4 z_vN0v6NlNt*U|4Aoo_vRqsCHipk=*2C1V}WN2>~OuYv;DgUeO_U|kj6po%gm1P7m- zP0k}ie@H>-#<$K=K9`bv69`eD=y#Rm)1o&Tw7TlOq(ze4mtcs3#lB%nN3CT?{xEJb zC9Xrqw^O}=eZ!Ul=uJx}|EFoE_$2&*hzjf`=o%;4Py|{29neM(>g8M1i`V5*?bC2f|6TODu|Nt$RhKN z^Odz+KHwe#A__QTQg!Pcr17+6#>)pilc0!#-apcN?#Q)#gm2)$)Ex>F-IEDkhvZ*` zbc2t`f+xDI^n-%kC%WX)cQ1_+qR4+gw*HGgu?6YC6Jc7C_tRNMl!oXgXe^L3pGlZa zRPuL(LliE05HuDpuwEGQLxe;WGWNy1HexN8gFnJ|-V%xt-PLL8wZFEsr6ScnfQcEc03=gDh1Jl0T;j? zT=u$_wO4!%ap1IODSUDbG9M9oberkWgTX)+=vo9q6e!-qL0SS+`65ZKO)x~kVh00C zLM=S2bY;{Qk0n-xG|H5Pi{)K zBSMciQxL+nQfZ)D5C~DAcryio0yCw-b`uOyuxK+KTCb&ro!r=($(D8W$Wq6(7lrvS zN^bpO+35uH+5HiJ^vKc&vB#IAZfhMC-EZ^a8piU+z75W@g|DN>pF0k%ch0n@JwA<+FVLmmrGVP- ze-$XccjW`w5c1dEt-s=XSN_P}U_KeiM<@qG2`Hj5aXFQZByBdCJWD=CFhs%Pdsn$M z>ncy7u+bgA6)oUkJ**F-A|o z9!7hDh(5aGmkZ*&n1$L)C`6&6JAS!Pf%md-b;2Q(OJv87Xf?!^OVYz)w(xcI0<6`u z*ArGcz2#Bz6=yAdCW!u!gy>qU1L0qLd|B%Wg;~qd(-+H9kStLEi0BKjRuIHn%V$=y zLMTL`3b0lXDzsJ_u0=S6a*4K9Z&}t#kNtROEnDi*b04cq)>-;HN|ygoZPxL8v?~1Q zxeph>9$c<^wsqBcv3B*~m@0)&-cCOo5qk98M;O9dDhu>30wD?%-HQwZWroUvy_;Z& zg2m2#=%}^q$j`z}ro?sV=+WIOEAF|w8Qo{C-}KKi)k%Ic`=o&J?#%+)Kr+}LTZ2Wn zC}CoZ$!sheCpm>Gjwl(?9sBW6&TP4WS0NyxfYCkD@qmHpazU>~P((pvFMYb0HTT!$ zJEj8zO?3!U(YUjxIMew1&QH@WXRL=JJW6Z-#DR0cc~^oMhT&1(brjv&UhGg z>sPQRBADJ=Zm*4*Tt*9mC}FMWrq_BT$l+|3Wm@nN!4U=TEGGDbfn7P898aDP03v`# zM4pdx3G`;(n+x|^JnapZ87jIP*y=P^%?N`JqvUVRO-ttUkrT`xB`>-g=!4kf%dGFT zW{s{6{=mkg2G^t@Iftol_#g$!AB+Oe$hD?1huhbw+~ypMfa&Zw5>4e zB>EjTQgV<}8={m%pL6`N(_qeeE`cuOMTA5YGP>=b2pL!~ANFyCMHKb{u{LyvuKDmT zX&=IlnNbuex`W>uw7T{pzxgyu{{7!%#$9&9|5c#qN$50?4IvMH)_O3yKb#)fws|DT z#z=lbnIK9)0aj0QN zP=L|84Lft!8tBs~dC!-u(bymme-)?zqq#sfgpBr$!i?sQ?2HDnNk;N!iULsr3NTt2 z#v3gQ_Ev%+3RZy8!eF7%vVdU+wCw0#cSd860>t-#2I@Gw2QtjZQSvQr z4>+-9x6%)!CjR8=gV`u@+mEc<3g|5OLp!^%X`>{spsS524UZ@;4JME`ToCS6ghLdr zfU|fmU7_WIkgp{qqL8sSW!i$5>4M|`5Z8H2C`R-oNqebd`X%~1O3wJ040k*qttvqD z6rT%V4=$gb_(PL9(G9Z)XLOmuC*LIh5urz0ISgU#l?D1Xfe;0XZaTw2nX$59-z6BL zV6jttI%+LD@-CG|TGr8H(6$y&wQkafQSy)2=>&F;+#m5rk3oG9dwed#d5sS@2OpL>ceK)_BpKnf&2X`?&;| zXvwE3DnywXJv^KeFtcJV?B@uJC~Wjy2UEi4ZJ7)GMM5JA{g498X%B8Jn$E~kkjag3 zs_~DDuYmFA)t;S=Yxgu6cg@e6^Qu0ot(7W3{CU*|um_hJZ)43Ee_nOq=Dh0RlZ)v~ zBNRq-bqYc_-=%?`LLfwe;v0=1P~fyQ*d+u*6fF9@+FPxqg`J#*r+ir#Q6^{J+MZZ@ zt7qPNl)UJ(GSn`G(}w@6G(-(87&Kwwqj|pI}!{j%4k`z zywO}CC3hwuQjpQsjnVwkACMZ&lz;q4p|@%ugpkj4L;U~zi)?m+`Rx8E74ahl7sMW4 z9(%O)So}!A(>sf~6eM@1vLm98A1Q=EQiJ(Wze6ZQq2fmhVW^zFe7L(34xwCPJ7bE5 zx%{!~c*_=kLHX8L)_T9T!YGd28YPeYvP^bLwj=zkz(sgE3v9#5b3N<1BFZQ`x<84A zNlX5kGD4J?=$k;&Y)a2>sReUE-$PJDL7N4149C)#Gh;6B`w5IF@PpzVX^)L9b5Xi@ zGw_Up711lTG13;$ZH|(se_R$lHHA29l-p47_@S&%pb2gx%B7FDE-j)<6sFC!kGb?E zzhGd8C_PJsS;l520mqE0W`=A{u8d(2g^eG|=CaXL$0=6zp?47)QRoL3Gw3Zs}x)vbxLlCxiYkQQu>K|m-(`49mSGvW2V5D0_r!)kxLFL(JS^u52fzGr(rj3`p0oNi*QV|WEKm26->c4S;|AN4X0=EjNF8=Uo;GA*&w=Vc!5*$(R z*fr;Ze5Rcx(q3Z{8P?rW`ai|8r@ zhtK)er!Tpb0z{OVMRXO$1Lj?uhJ7|+5rr+Ht1upR(z9vk%Lt7qbo8vZHHZ9=IW`US z8Vu|G<1ABHYwOpi_4YLD)4utGVQb5-thFs_eOedLFOWM*2rARQqu|!oCot?Qq=`%} z;jD?M5DV)ogdy|3%>qA@z=#4D)>jAvPdYaX{w#tc3SLxSK}XNLn}vFNuC-;qVn)wV zcN&LUoeg_Gg!?>7j(kC`J;`ropA<0qB2f^~29i@hWSts4eH0wqw5>h`CPB&NG&6{j z5#5rHhqCU>2Ydkm5e1B%oEQ(7xiTO0g#<+uH1-JJEj8H=%B|PEBY( zkCMIrVNB>Y70`WBz<3j80c{|e@H0i3Fgvz2q2o3QN=|3W8c{OhO*j_HnJ^dd3<4qw z7;nO{fPo2fL9anjL_woXXpda;JF}f!m9^6{dCDBGozC%-iC?(M|3KPMc8S^2(M@U2= zqdT_~Ap<++!(KsHL}6p^`1et3{)5ZSui?ndD2fzafV$7NKJ3-?f=6RYZSEfSc58E# z-202N<*C6Qv*CVC&mejzln-tr%A7y6=8SH;@`pF}%y!vm$%`pAqzJcUM^9>VOdg zT-cWp7E##fp-^`8G;C(m>`NE=6@*3<`u8GdO|yg7^l`7eu@@`3NLOH23>0`Kx()3% zR~tjUMBdufZH$sTeuXyFe>n<1Dw)x3s6Q@2Z7kVz*N;pd##g~GMT~rWG#e@TdkPFu zN}}6Pf9%vL&Y-!BOg>CVL?NTw(209pDawexPMCb)nSDQD4 zu#I3A=(Yqx6ezmu5vC4S{+!NRpq%YG-A z&+dt!U?0Ho8m0R7%&=1M~oPIaxc+0YjM&9rvr+uiQl-R9ff=G#&7!tcs}*Pi_Y_uaHZ z&%Vl@az#K}GrTr&h(5!IIAUR#LTrW75- zqcDsuEdRT(tSOLQaoN=B&i0VL^A7s@f5}0=l6O${wfiQ;O%Dp}^rm92oJ^04;YSHj z@=jvCQ()D~#WBrb-Z|;_mLYj4zCo1SPGP=DqfEF)-=v-)6OtC5vBfjJ5H2jvF&in@ zlxBx7y=Us*lV^T4@0s9x_f^W99T(R;bWy;g1TNWT!`fzJQGurTCP<>8NZx{R5Gr+H z#>v7=IESxN>yQ!25bM}dno$%{75G4--C7RLQfAvbdpssVJyl}wO@5W%aHr1~}N48-=2>kBH2HcE(; zJdLV^C=pYiN7-I1Q(QKPD=`!0a!PD6*QVd=wQ0nqcC*p1FEy6dn#=W0vs3SN)8aGV z?Y7_T)_1#mU0aa<_apjRv%YrUOdgcNoj&%9!5k&vsF+`Bi@7tOdyke8^vq{`Z=)wa zrsxqRac$~pale zn)58g8H7L-;KlO<#g!XY>bi{eP7l%Io&oN&F?VD z-R3UVG?a}Xr~I9D%KSN=9@5*zVww~r@1l|-qQ2L>Ic^R}w(kuO{Q)wc9I`tVV8-mm zW~TJhX7$0w`g*TF)EQStRSRHO%<^CFPQT`C%hwta{#d2-Ye)G-_T}W!Dai-VSCT&B zHF{{Pu97vPr~kLzsbI?2VaNizZYqrDTlQNf=&kdf;G^L z+0`u@Xhs;*VE7!En#2T-YoQbB81U3r34UA+MK97;o;+hI8x;ZV;JMi{Dmb*en8WMP%d-1W@dz%zR?4+Z9OHcR#2b%{l;Mp;?n^DS&)1U%TPG8 z3t-M}^6L6Vy)~#e4m4Wr#=f?_jH8{qTZ7%{PW4~EBX^uJvES^<{eQeLedStvrki@9 z#+2ZmX(%?bnvd^U3rxRxX0Aiqk{?UHjhBola73wj=zIk}cHo*)ry^F#j^%3dUCNfM zoyf;I{l2DW^4rb&ptr(>I=UD21C4$wEnWNlZoYTtklp@!bOr*{GWBgj5+ho8iP%u7*ibOHRNI7*C~{Z3sGm5@Jq>`lwi zA^Z&6xPmIWD0I_weMyE~>h)dEReN@8&u+74l)U{)nuI+)zte1I{|zV1InOr{-Ud|J zpZsH!<#W#SO&r&hc5bhYlyvDPAWFo1^L)9Z*0iMw9$J7P1Cx`Knkl(9=je}!YDMfw zLmRu<7$s*iUw(4BZ9bacQ9yH!{=!f;g39I^wru7c{e_22izQ1z@+e9K!B%tCI3K|l zMsVn>Qw-!#nl00BhK<4GguDB0H{azZ+&jOJ6@F#b*XcLo2gMF^PPiWhbCiH1L)_dNV$QM1Q6iWs zKI3~EJ^4LMfhdXdO}NiEe$DOI6p%_`e8QcSCpW_wzBH!g`J7#|^*%Q)%pRYa?`MtB zF5skloumE4eLFn>R++PFwh8tq0Zn$ft+mUXU9(N1Sj)`LKueJ%*alH@r{6!dSr_pr z95wUZQO9d!MRFVbV~c8bVaz#}3GctNrzA5`t=;O)o68QaSFa0K+;eyJDc_i#8XVZW z`0P>e$MmNxHa+o8N3!u{i@R7`On(Yt&Vw5_Ovbe_lQ+^oN0g?$bDdBo4_(tPdgEhP zcF5!8cPMW%+JEl`UgT*+vcn-+P0qByKDX-TGJBxqHCQ-FBzOyWFC6#>9TJt8RYk{yzzybMk2#ij6Ek@3nr8 zXs|=d^t$4BOdBt`2sa^0&3uzj;|F$5B2#s{ugPi`>k*VCSv!%Bb57_^Bs5=?Pvjon ztK{~%P0yu7-*e8|JLaTOLNpcMsx7`bZ<3fuk!cKqST;`bV2TY<3eKCa5eN=iGhwsR zA}PrVrDbz3$gVkOLtMIaqrdJcY1@m&u3)rJHwCqI?fC6isJyN=zT54obHT;@XDZ$~ zQKjaOWUm6Mu-$lR2?~I_dwg~# z7gCBgPxCo=?tD3@1v4z0X;`#ghTYP&3#J!N$#(EL=$PESfN(a5it2H;sOB7trd(;; znC`I=l3%4;kEnR&tjOsh(;)V~k#xTcbsa(>3N`16Ej?r!DtqQ9{mzB^b;2Rkp}E?P z^oTW9ya-D_c`RPb7yH~v8ftyuvHJ&yJ?+fRW1Pvg=rbnvyIsNmk2qJGqX&l~lQj)# zuQMO9Mx66pJ?+q@(HQ^2#!G4x9-_i~*qnuz&sUY9c8t$TkhtVh3e)Coka{w5-ZCA# z=w#eFoVfUR9j*zTF|pt5nz(2+Xa7q_&mGE^DUsEDU*egm}rnawb5O zvGeu6#uHQ1j){wZCf4(8k&c5X@|?p)-FGlC3N^)QzL=OHxPq$#*PQyD+pYFwe3oF& zVdE^cQ38dE`DM14=N!DvI=m_BX3{2A4LX*&sVN)a;#DWP;aQ6YMWK zKwyLM_%?QOLyUmP2+as1j33@xf&KpUtoGeZ+mPtwb-2Nn!qm*3vx7hF`oqL^hmUgI z;cDZ%?Vhod%$yzkDHx-Kuqy1ovV}co2Y5p~H5yT!}j{0ZosOclcISypp?jY7wS*Z6D3Q?%(UGRBB z1-8n<{T<;D%4OOKYMaq&rmRi5Cm+XIw(xcI`06g|HPiJV#+n`x_#c^Tm)-Dx6=?c7 zWt-_Rfour*>#NpZ)8{YeIdW<+myF~Elmns!#5X2sPBE`&XC#6=OI}DYM8T$?C+AL6 z-ef*?e?mY+0b^fgX%b>==8ygreCB+h0P!cpW&6S+y(38%V}4*xi2A5TQmO#)Cqx^- z9$fbNA8W7p8sflBseAb3!(=`p^!O8E7{az)X`qh~2vMMT4+nt)Q>DQ^MleLdqECp+ z%eAzylkZ?BU)J$u(p`0TKsWfLi^&*jm)-Dxm4^6M%LlR{WUF5k)oS@8+g2+}M)FAt z0V$-!^I@#Hf?%H}7@}bDtyV5rV6Y(I=Lm=>V05d+achAElAqgF%fwTF_@39G)wO3w zeHbO@eAD#2_^fjJN}(~(`zi%+BEO+PnnnAuPp zX8tM}@okt7WJAbb*R%eL?|Jznrv`J$NbbiN9#I0~&szB~sl|M-^9Y70SbQ6n3zj#T z5BMMgA_^GYh7r%$%pd)__$({`_%>|VaBY}AjFOF?nKq2iax;IFiug9n1+mAM$NpbY zZJ0Z-wHUZ21<9=`14Q)kZCEadHCPtvHiSYHD!vU1Lk0HA!rh*52;~ynhUu_1Q^+>g zZfV;vg6Zh-ZI}*ZU-e21yF^TD1)Fhs%P+pt`)yvcmP=MWH4!00xNc*bV_=r!AhvA-~*xs#=isg`mV zQ>w;jYa{=+D5JS)3PQ+e_bJe5HVI}VnI$7xp(v1|j247Rjpp(!X%P%5%4k`zywQBX zHUW`>jHZ)ikay>#Mq9&Z(arO|mYLp9Uq9@&?faF#%-q;%;jVPczalrfNgV?iU4H%J zu5=v#5~9nG53_!pe&574rkKV8ndUFpr#0ymFL@cIhbVKWKW!Bm(oUpJ27U#B5e06= zUepKSpQ!hcym*|>{q~{WNUAM{LhhkvwDet1_1+#sUTHOQ9 zzJ1rS+qK*7(lvE%0J`ef-gHOZ{Y)9~prUd=gR#+N<~3{P!km?b$oV-;b8M ze3+d7v#)IQ7#QPexj^TBOI8UJb4_|e0h{NZzk z_vuTHqgW9Y>-0PI=BUsvGqdY}8Hr6~ay(%Xg`IwvSX|giL#HV|kXOIK## zG|*G=t@n?!OkwBKert7YT8nP>`zHO%-0yk~2e~`^D&1QT4n(6KJyqnhBsi{Z)q#<@ zFSq6{?94tEC+G6uJM|{HCHBAQxFSmG^rw60@Ldol?LFrk_TU!|y^CQ_nsueG{wc@FTrg!s%?y*aJ9Bd8O^e|nTOq=}cDftPaRR4Y@z=XSR zsov_W>wzv)LN@>r5#lqefwIk%3y} zd;j5jKg-6O!-$CSvWhVFR?Q90oyH-Tk^c`!q&iOQWW{_d=#c8r1qFN-bcpDlRgD53 zv{pO4mgb;LEx8?lNQD4(4}RvpI|7IZ@Yxl~K>@C}S-8t&;hiBwL}(xBk3WOze!TH> z*3?sWTrWZ$D9sTLw%CgZemzQ#+**&wTzVnBh`VP;iSI=OL2TceK!oc`UuxR(caeDScX*JmF~Bl*Dx*LqztJQpp+v zGjZb_a(%cEaa~d>*HUlYt$OOvZU`DuI$E={K0I7+xAyC9ep8w^0Syt_(@V{@m42^N zUv96f-{;tF1{)%_a_hj#hTb6%yS3QUZgmIBGGCl~ z07J?L>#c@hX99+l4%TT7)>iwB%1s5hEntYio>6KAu)Pj@MsRR<01gpcxovH)+pMqk zbTQRrS`98lT; zzn3e-dxC}t?Ob!0K-em7XRz;D&YEv#UD_vmll>^K7`*hg??><0roSB}fBqEpY%e&d zp6x03(DkSrm{*P~&2G`4ITM`*u(LV@QQvmg|C;QKn>ZN%;sc2nt~Mea1GoefkOlr*SckK=Z0$x?2G6P*`pytL>70Ur2w*h z{a#~vNqja>ebFw#h=}n>fwgMJP%2Bvw4%)zhdpP#75EVG#r1fz&~umWQlqQ25V>8= zly3_*L~L>W$^zJy1LL&;L#hC_((11G((D0-Q~|6Nfb{`G1QvHWs(_-@E3NkRdTsY2 za_hAX01*MkUF|6baHZXAXu#2e#)j|UJD;H70Z z#d>$rMtfKf%J*XM5aFE{)6Gi_SmTrJM$PP8wc|3vEZ4q;`AfgR-QBLNME=JU)WmMdk9W)BbdlurFtrz6lc|rnswhbLWm;vaQz|8=7xJgOr#o zA;ygh!`MgZo`*l1j%b#fGjMkX4iQ}3eS%@sI5@K$nxXq0=n&Dxo$L#x(>;O)@2=n> z6)IU)WHNB~01l~8-r3cB4BoxKLn>rEEvVr#?>^8W70Nu8`*3*Yf`?Qn^Ym!7qk8~! zNQE*_bXsA+IPZM$kZR%ivi&{q5aGq$)LU4a=bv0L&mNmRd>D|3AV*Q%;=&>Q=8fb%Q~!xSmP!_3(r%Y+%oyO4@N|ce^{;j%ssqgV4J`qf~{ChI+W(< z8jy$}E7Ad5YI2p&WZ{135Ybhn@0#@vyTBn8$~vNaw$K;YPz(jf=oTgjbQO(d@6dyn7sQNQK}I ztvk3U0*45$B28ZN(7Nv)J{dZsLbf}!-Z|4{-qXNCs)MJi9O>!o8Q>wp`-5t95DZ>@ zIc!>vK#5exfh(PK@cH}DA)>2D%d)!U&l-OK93r@ioYq#kBZgPTn$yPR03rf>ZZ#a} z0PErD;{{+M)v;i!(^z$x_(JFq(ZyXzEv#?Q8t58%Yv_9ie*z&Q!iw|`TAHEpC*YTY zhg1o#n@-XEDR_wRD$@6B4OESN=jzYkL&R5+Ca}HKah2mWz#)RGNdKkX9Ozyp)Be34 zIz)68nMQyv*Z92=Mx;W;+w*PTn}I_FSCN*b-CI5L)~k)l6z7Ix3j1`$#Q#Q8r24=fHrfCR2 z03=d9$SzME7|0I-iBzhzO-`m`x_^KXsa{5A^Qiv>BqGR)j7zi%MXR&ndkr545UCKL zI@B59CjmqRSdl(|M|an?*4tX9z*Lq`Lx_m5B2A;Z)Mj;uw3t5!BT}7Q>^4{Rgz^DD za{3~KhzKik4pe)X>mPmvM5H>IxZWGIf=v832oVuhWPq~XJLu}k*MLI=SCO_*mmSX1 z6 zn9siR#I$**Lx+g2B2BVNcKsq(vS)yYR0(gRyX5e$0Ujc}id@?q_Jx#;>Cp?edhBJL7Mgit2^px176fLwob8T6Vse@S#uXGy>m z5&f%n0=+#!8}|Fdj)?sgRcB|)U7a!m{y@NyonRS(r^^@{`UgXg?1XGzw+loY@CyJ( zb^a%6T&@T8^pW5r!ms=ZX^^$-kA@rB5!@|a7+`$91UDk? z%Ab)2THt#So{?6dM|J`|F3-`ophrYs`JUr&O=~i&_1c={GsbBHj|l#aRc~ifcr`Xb zBi|zph|*BPXd_rfHyCXMd#8*xHb6$o@k{`>Ir7A4;}GzO;3FS$3dUhaeW*PAonO~2 zBzJ4RP08uU1B(c@gdxTjVJGtVVz7~t4B|3$lRVzDudSt9JG#buP**m%zGfPgrvQ%# z{$!+P&2T5qlrIAu5%}dL76t9ua&AQ?uKHZ?xM>?cP8a#!Y+oHrNrd zmoVkCO?LAJG{gN4xRIT~ou0S<8g67K7=2%>+vvBn=(jV=dw@rFLZ)l9oH*|H!;Of$ z@)eYKlGt0OjM4uNc0}y2KlUfe?N!hv-HA4=cY9qHig%g+ArgS>1k)_HR`jf+$@qVS z8xi-PRXyXETdR#ur{T~)3OceAvRunM=vEYy<^K#fBJL7qeYWTIm2?dMFJL3WE@28{ zo7iUYX5Cetw(6e&AK3|RS;@KppNAXS8QeWTdH*H25pkC=X4|G+`s%H_>iJc`5rJ3! zG`gyL^IMwsaqRyNJF*ipeeLi%kJ6bo@#}yi0*WZ68)OdH&yk zBLc7dps3yK`wIF$a3kV=W!1YZ?Xbu4eaMlWkmH@+vhO7R5N>2A#t6|)+Ssh~dt9ua)y8$||lT5Hs`=f40Q*$Gb9!!f>Ze&vC<5pkDr)n|LX z7QN3M3gohW7fC>rgvxik4(WD2Jt1uDelp<5PVme{&7mKMo(4A}?&lx- z^U-Rv+wAM6`)u;u?U^zG{Y#)CLVamPQ70yzuL(3F=s&3{bicX0!COy_lYa$bM8qXr zUh{*3LFfrLP#8>c#r42Ngj+(3v1Qx|XWRgAMBtIj#f3NV9PJGV;qO>;Exd$jwx{Ip zZ-R*k^N)|cfj7mR$k&?#j0m`d%a-lN;buQHuiY^vXKw{4BG3{pTW$e#B5%(E84+>` zJ<_cpHpg8}`bnMJ0gvn;__I9x9f3!70KDe^OwOn9cLp92{7a5~ z8?q(ajJxG`U`DFXoaXagVMeOYd>e1X)`B03|i!p(ZEjY#%GjflF0n<=(J zZKsCvPoZ?dMuc6_6JI}ToG*kH5p4{W;)yE3%7sDoY52EM#NphQ!y5AJKPgfNKYmO zh*I#n5_-+s&iOr!<)o*V!Mk3_)8I$M{}(%ge_vy`w5ErwdK=l**=LXnM5!oaB5(Vp zpnHY=l)(|;5y6*mzwI2AV7b*;T~SxodFb~^0HOqxaF^CR2}o~t`UBXJ9mB3iI$geB z4m%?DzuXaZm&Z}-da@G(^}6XJa4#Ssh!V0h8c`)gPw?qgA!ah-h43Tdf5(m}2zOb! z-sWZna&VNE`5T)j?c0_8{WGf}3*Vm%C^-hmxZ(Yf}l(Zm9%UgFuT6i~8 ztI^goF!kZa(*E?G=|3eUh*GjMPI3GDJwHM7XTT#nrh;@D`osb>qno9g}= zQiCWpCES=a$NA1K08m#C+|`TMlLSOb*cp8e-2&OHFQ@12H!?qK}@ zX+e~h5}q`h<6M{PHGL3#MEGUgJ=Gfwnz_5D%#JBDVgCduBG59fZf_1cG4=IvkP#u5 zaRF-!$ZH$>G$PRA1Ae6TNth8azo>*(atqA++pI(G8pKb-i-@;`+ZD;VP5is3eP)=! zp92^Xa0w3tZ3(!?opi0iKt21w8efDQsV=#v?zY<@`BxxEL|(=l>PYZS}gr)s}GglvB*NfJOve!l^u@ z+XD2&>E=7&Bf>9Xl5o5DjX{0DOlQ;g3cm+GBK{Kkw%g|)^p;xYeRp-O+w6PjSC9&1 zhm^vw-E0ho_4E#wAH$FAEdKOvmY>3p>@5ED&X%9UkBGm7d7JIlf~8)2qtjJQ*7BvU zOLnE9Qh+E0B}^%AKLy>T#<0H9?{%~;<%Ju~Zu)4{38Vy3N=mqHx80O157yi1L#-#l zj_efnz(J?Nj_eF}btM|<#p=^xN5o#j-1l}pv(i#mdF*QA86*Kw5=yv|vh5_OpQkAq z*ZN!ocw}dIhY8BIe;WE)up>K%eZ%+Ot_?dP_7cXm+cr(Ma{qN9M?}5@y8Ua-#(~yA z{bpzQ>w}N%4AZQIC#f64j_efn;3Rbu*b%XpFsZOz!?$kj{Bkq6k)2_8Gwr^ltNjlD zmf$18FX06(+s*b)??AJ0sO6_u_dt(`zJ#aOw@bg?@Xh;~fFlCm0mBl133DZD=5I?1 z5T)R4$9`se`&sWU!kXn$xa@SG=@)*v14%)YloH-GGjCEhxLN<#_DH*MEa{oe3S{)BdS&=H}RaG%I_(anr``U0lx zS=f7$3`EJ;0UhX}?*DS9`k z{A<#`Q)e}5-zjz%*O#H1-hK5wX9e`n`&cZc8(qbv;}$XfAEAZi=hJ4<#MQ z&M1Qe;VAMEup>K#Js3qk3U);7C9De7?e#n1?Kft7%B9g|FcD#vaGS-Zm=hO6R{=%@ zT*5kRn**Dtv~=@y-@kk*ff%VO@oK-fu^tk4AVx%7!bSeg^SIU3btzrW38B}4Mg(2L zO<9{m>lP4xWS($vjq?Czq_WIsO)wvT8L2F@^>Ucchhav);-utF7L}$c6~auNOd!K zxz%qit+ku};j>FYMuc3#QVm9fw}ej6R&d=7kj}uD0gRNBzXPp#u(YNb zj-W|P_f2Wlo)0b}+!7|oQ?$)+C)&0@0vr)|2^Y+_4!+UtHxB5vw|d8L)4%TakAX)7 z|NF;&1UqOBbNM}-VvLuAhzPNSH3N@|IAMlY0*eT?gcY`V!|qs>vwNoG>+3*8gjzxe zeoLqm`TGW-5kZ&G_t_eByLpHox_0<4Kt@VJ9_lXD!LYTITX`MB}^y=IlBdTz0uLUqtAKeZ(v7u0{c?0-(TuA{i|2r3p*nA z64p1{UcN8&{4+#<3pOI`60W>#6MI8174+xszlR*zDdg#ctRIFP5qag?mo>GXJ+1uj zr|LceJhBtAJ@*>Qk3o*?1oBQ(H>UdgIzIt9BJvV0P;al2>a|XtW{UnP(2jZombVTTt@4#HR(dZ6aZGR>4UtveYUc&fC7d7<| z#NnXh<@SU!V=n}5>ZwD6vWu5xzpHk^?{cBAGx{EMu3{f-uV*=RR+&!BU^93|&G{&>B6^MF`Rx|e+o z78v&~3d06iduwvZ&rFscF6zKHI(ou_nwC%Me=Dg8qEtS)G?=jdm=gFOu#j@G8hY+V zPn)sCpTYV*SctHmT3&9M8kGb4Az+BWE-MjCjY5A|A8f3zYhq=fDa`eDgD3S&?)?Nv zM3B!c4{}LQ^Z12g?4^A}_cQ2_3ef2W)?u&ju814DUqFY5?&9+DZn?SA*l26Y%s^fF zprDX)v#ia%T(v7TT_g`0u~~yrJ#!Dh+0GWd9E`L}VrQ937c%%pPjB$F#Y<6?BN`o>5{wrSY(D*<>K@ z3iT}D5WzjZOgN_eOuKPAh>&t^rsaUNB0*oPkEVT}J3@wt>?!5tl_yJ2oOgx`5m$*l zSxv9+Yis%9)&cWiyD7}y0SzfR%PiV@@1Qf;UExB+^#>&u<=9BLZchXL41W(O5mA;n zs?&3;T4KbXobCk_QaV&yV*pp4_W=qKREa$_<&?UP>%MV47b-+lC3dt$r8cA8@csV> zfQ1OF#1pyREuqJlbkbCx))nLVkRc+wZ_ISEo5ifhDALq6qR>0TxHKE=V`O^Hqrr8crB zaEVYCT~rNd<{6H3UGQOx>hn9Hns4% zf%{M35Wz)`_0kN$v~%U0f%5|vgZC})5aGpLFU-nkZajYojYtPeDr$F9bvgMRP?0L+ zWV_MXm&f}act|zy`hz^)72qMldrrxX${sFIcC@NYKhOAM7!ff(t87NybhKXgj&v6M zDS(Io&x<>b$UsnvZB>#tTwlBo-@DGHQPt)9QQq47e2D<9R4R)N$*(< zfIYa*ZQrryHeF?oxbB>#YerLOe~_I(!USHy)o(TcX1azQ}*&mLQPh3rYdX%cnkrVININaZHv0TbnpQi&3daU$6(B@FaZ?_#K)l+e zJ6P`xG(I+H31~>kdBtkV2B-rNQgU9MwLFnm>!2Ye=M^hAo4gtTgp{0Dx0%eV1E3)# zqAfSqhieC01GD)=yiLc|o;tD4_U_LWS|Oiu?05m4OZVg%4&*hz;urm4CVDnwLqQv&l- z*_Y*MHQVL7S-+VZMqQ>o8$3jKaf{;2kH@U1URtIXD*Cs-PGDXJCL+vpVtUM$vS$Cd zJQ(k=J~pmnnSTNI7CO(l|1e5!_DXf4|KPAX(O12n`RWGlrS){C&nuYChEu2dCjVzL zH*O?8_KLKl%ngnGG8?$rFMNt^W?Zh!NDyT}+`QFT*l5783vSBo1)w5AeO|$3HFKbn zGmwzDaLg=fE-&{it@YZ?!G2x!Fr+Vp6cK4;&Ckb=&(tL?Sf?oxgZU?5BEpQjC${ji zUuJa;1Nl-Q5kbaXrz{>)uQzv;e+ng1J#S{OMKJmKXOJS*D|GY9djt6zAd%`7I`6i3 zh5mXdk?Iw?dvU!deIulZNGsMLnOD=h41F`0NcFtg>gqXbBNM*BDGjdv2*TB9H zSVXXKYe+6CYlHbiL;L}V5fN9cwbJ}b>Vgk~i3qb|J(KmUx%vkv5mClnuPnUyFZA{4 zpI}797`I|!;f#ZJZ#CYK`wn-_?zn>gBB+Q^D|XJesG&>00xTlfiZ$~(Bk@qC@#(*Ti3qb| z{k;QPYBfC_eGN{ef}G8z%%lGaCsI9+=AJ4wh5s#J5y8H`TAh6d%dM^Zn+NNI!<|l3 zFC|!VPwqPReuo4gO2EUSW_NQlQ8jy_O{Y(7Rhc!j8hNXPeew7fW_!&KN6EV`)hzEv zbq}p>m9V>%_{du&QU-f?&Fb#Av$~PDN~Fh~IRj~b5zIW=B-vE{Gq(#PN@3(xzIjQ) zd0Lb6{{j;trpU`Ob2DizS-OP6CanzwMjcRh%;C%)>M0jz}u(apKo5uBdxR4UF zZJ;-facP@L;<0S|5_pL4;w}@JT&vm4n^9R0MK!g#SLtltY=l1_CAU3Z>Ad0zYCNuT zZll{;-_X-fT+>ss&n=Y7hEhZFINOlKJ%Sk~;%Ik-=YE$pD&cOI2R~LGB#2TTH@poG z9?2FqHm0P03MC@SxC?AWQnG@E%f_DrhzKxlVd6pod%P~(AztZ;LPUfZH~cObQP0!q z=5_P>MpM`)0E!4St}9+7sMcyyKioYnZ#Yka6RDIbc}cS?@lydrDplg^&3;GoYhg~F z4k#kf>eQZo)2;_%3i}KY5h2D+uoY>_esi$aSl1ZVFkS;jq*8|L_u9HxVF0fMAR@qL z7kZkV)vwNF_Vg3s9`|}KLwIcnkxCWwK<`0o@>XHPcwHEgYUQGRQJ5jTK7@z}<7Osv z<#&|(B67c*Rn7++>y1NAP52qe8v=<4vO0YVyEvr*ya|9vrM$Sod#aXn*~u{83`V3< znRuYp)C2Ga@Rk4~m9ipllni=2dw@g)8MV4(SPg37hRcoVBc8Y?rtDk7HXneQ-;I)+ zyk65br(C3w*RK2XLcjPYrcwZVaE-NIYsXrHs8dXO*jeWm`-7~pG21SIS5X2JL?s$` zZ|{5<;Rwp)_|*VH1Qd7c`kX-KhEcbapCP(BM2Lu@p5Zb;wJ`U`>=idL>0V{DxxwuZ zN68!hR1QC^$=D+&KFGW!E&ds^k3QN=&qGv;dh$w2d*5*{r z{&5E%Z^7c$5Xs*AwRuCD{&ticcP+K0f3L?Dj+}D7e?uG1Y1|qjX#nOaZ4kAnAGIxN z+!`XeL(ghdvma&cYP!!Q`olc1fhe_cYlx&rKH98o_M<6CVH;~oxK**ggdtBDT24 zj0<4v_PUIZ9NK3=LxdK0Iw$}w%(E{5h6wDum}~ASS1tYI(mti(TZtOe@OHqhw7+T; zuXAO!yo0V<-s8{LV;V~2J&Fiz53JVqKWuB;DdM2B+l{gJHM(RSRI(C8sXBN}0m7El zW*a(|7kkvZ(Y#_^i~GB5c^oW=SRQk1v&FHPm&<8_&ScFK!9j!* z_e9~mS)==FwFHM6NyGDGc#zVv$E+mhv*&5xAi}wOT>CRr%QLmg$GvyNzkYHHEslNd z=P0?~b=2zo#=2Ualg@Yhl)QV#nb97|_Voy$*5@a-^@)4$NSMA^wa`YpMn-dIUZ z5T!D1<-{16uvIc8a8s}lVZ|-T8HJ^u9sl3i;ub(5f{N^X=nV31e0fd~;%)S8zLsOJ98YBb_**$dyHw}tjA zd)ezKdC;5HhV?bEdE~V7gZ)bO{o>lO>|nMnBaqs%(|>OAG_rG?KlsdQ5&SG@)3UuT z`5R2`B1(1K75(vonAOl`2x`sz^V{Kn4%WdmC3FZxM2Kq$yVqa0p z{7>8{EWoe<)N|QwdoFRKu;9S6PHg@sS;xTbaY=n2cfBJ@W!xytM>@(`!vACfCLD#C z68HdEh_K>rBJeTi!ZH&?2IzwTAteKK^^}JJ`Uijz0Y!}|Tn5$L-&s{)J?cz-u-{nM zGux|Mn1b~`9VPc*Mc4;xn)%4d7r6gVWjv=a5*tFb@waVljGKk@;3kbTI>PC1>U^rN zY;>3Gf@&tM7cj4mD3x*7Nzyn+v3>fR#`1FZz9qe}Q*Cp1sae<4c5A(5&AA!2hr@=5 z?cA8NfDc>qA7&QxrnfMpuVI>e<#77do`!PxfO*7aa8&nA{U4*`i9eSKU!lhvj+}Pa z>`3_V!JGLoJ>oX-Y(QD^9BaugjG)1Pe0KWy`C0^aD|Dym%40 z5e*uiSWHR27Gy-oFRLiB=^HKSo!spWm(hO?H6rRit2XsoqrW`R`mtJ>$z=GOKu3iB zs%oRRn~nX4^%B`M+us5^BKB8ToV~YNAM{p+W|(a<{%yb`)pvR)v&%c6MygL880D{_ zMnwIJY8z$HTJ7{&8WkIpya#Y(2Y~0?{eHj^fxoiiIWF+^_J%rACd>a0azx~tt^}5z zfVa_wh(BotXPys1i-@+Or}*(R&Od^T2>B(|w8q4l=A$qpVt#2wnJ3OL{|q!zT_*=; zmVbd3sV;4BM)?f1h-m+~nuf@qNj?uSQeoiS8RSaqhs0~C+5r>>#sur+LU>UCEV z-vbR1+NKXsEEcWRZ4FbdE8s%P&obRsmdmmqgN6ug)B6<`nq}EbF-@)dDPV}eiaFEF z=lVTnwn=YqsPAuTVWTy@UtO<(@2+nQ>y3eyOjy#*PzLzt03!l^QK5~%(R$7%QE9oD zt)l`Dnio3WD;*LqBHm&qZ=y0-FU)A`y`!2D)ka1w-w2sgdcVey1&DD_TKt)y+>P6ZAT+@=eK z9V58mVHV9Wc&CGhR0q$k>0$8B01pw~rZ)i{o7^*azH(dxK16)ww&*0DD>$xPuLT%V zjf~^wnp~Z|HhhTqiW#6sHHho|jc#+Zlg@QvM#NmqJjjBWv-8gNK}M=!gF(Bci;6n8 z`}%W3_z>|`pmo&Ub2*pZ1U#g4JWeWlTtyG8(4%yf{AS=G!rSyNx<$5*rtzUqv7!~F z{i)@a&>^DR^d{J2LYH+aT?Xy}5fNgkJ%=;{hy4woe`f-RR0D2M-`DH0Ubs0i-xfGT zaK+4=%-I&&oEr?9ebYA_njynrV_$aN+7aIYVx+Rf0~P+#aD&HEO&-@EMnt^nI#P?T zKsJwC%UWr+r2&M4{B0l+LB6oekyvPi6jFnne4hR;xQK8!z3qMRc^V9KU4GsjKtzD0 z4!3N627tcm-xESagqz->bd0jlvz-GQQVF)DUPo&*`|5l@*buR8y4LK%^G$4>UN`9S zI{%#qB_hgFXB>_HBr7ewf6lar4+0Gl+NSTQI0hNmoqe)-2&hQ)P{&)uhk}X-wbUW3 zD{$5@H^u!3zz~6zfBIYMHyc{EwY8!LsRlX)I><)>i3oDjg;5vp$&F!eMTAU1=@s6N zu>m7ejf_kg*LcmK&&XvU5kZzemRW8#*VThey|@Y;BDzv9c9=?%%`PTzA>u0kTr4g+ zT+VhK*buRm->@vVR#qI?I$(&vHhpY);dOR7n2jAkhKQ_~`+{OdRm&Ueny;bNGf$M# zSFo34Ts|Iv77^{H?>1U^KCZO1KKZnP-(fJ3YGIC_haU?jBFyr;hbwv`gx+SA^$%T{ zKLJXl8kspx>Bj+20u!l5W@;6^+%-*?nNNihsRm_VYY{HD2K%|zy0*M>J4g9+D3R(> zCIh{+#P$|1g%S~EF%L|{G@UD9Uaq&6_P1G@!gOn&4Jabe@~1@&D3!h5Zm}4kLA(q^ zq!Ng0TDMb|q;(rW+q|&OAdWypgjjyZXH7LmXGfQP&xZ{WTlrHsj?Lap;Ryc-LPUh+ zcec~nI!E`%&>^BLf1IDvxn5B2`tM6XMTA=ZNjpPTZ%gwg{%rViC=pR^`bwFFchoY< z@h;FS;Y6xo%aywBh8YZfF1{K%M0Djh+^#vSZ>%q?hwf_5>p(<=SpG0IyBpyRa3SJ) zUg;MJvde(}B9Wd-b~*SLkRp|^Am`+I(qrupbJqJy=n&DBdbylN!t@xpi;UM{7`(p% z4-sDZBmQ=;;rm?g1Pl>a`SqgH&?~A;hW!m(h`7q{DTpf_K>J4Ty$~WIEWf9qCmVA! zn|})(QVqI|_OPWl)B4i=d*~3+mEY=_MfssqPdZq1!1(aPkRl>2zg_9-E*vxC87LlZ2bhRh*(R#xze0X>@9fB&ic@g zqdo;6BEIskt&H6w=*s)EFd||s|02~Gqc7+$0Eq~){AuM3(o8;Ny)l=iUxpSDZTXE+ zO6xQ8U%^9!SN;tz8D4#QZvF?jh;Yllp5JdSZ!G!I$~QnmgjRlA*>85#T$%~*cC)*x zry<&{PRmb;eG^thtmR+paIEWnz0W3x`E4)}VU~Y;lY2j>2>1Ik|1N-t0Lwq;2ypEF zuphvOh_C#vM!=U{iSZ55k3dC)TK;Hj&^X}B_!|%7kcc45pSc@{ z^ksY;uQ)c! z0vIB&@=tODfu-{ix~;qEZ!EbQn20dTpUxh%E^5|${bjvQXgNP@y*iwTILq(IPCR?_ z%itlxD}VCI;vHx;f(vQC3LzrG3bcND!9acA;ehWt@FC(We}L+{GL5#b;-@z|{W^?@ z7|XvyUVb7oVZVewIzVbWP0UvFm?-JeyNTe!e^qE-q?~gKlo!f(n zRHdw`&ke1;;QC^Bf)5d2`B$4&)?JO2)x!yH6Z$O>5h0e}#TH_};d`=o0Sysa`44su z`>jsUZMYk7NHy}UuP)7!bKTjXAwnyEJQptVac{^Fk(J+D-C%+2rTymq0pIZ57eb^O zgyy~w0J8_E?hhd%!ty7#%!)J1&6S2On^HT(+D=b(4+IqvYWder4XPgc>9?8#?vAAq z^u_*QND+~ie^NH2y78vIPxfqf{S6Qo0Etv5J1Oxg6YUR&6cK6p^KvFT?KHa{FUTJI zdL)!cbqam*V!)$;L^_3ti+nUU&57rw?*?m__up(kDb*^OjaJSLXvRL{0vjQF> zyi!NeYqzVfv~)K#vrg`u-GU7%JL?8(8!K8ttnL^cUK>0_c%}9d2YQ;xt`Xsz?jC4} z&@MW*H*3^egZfyHzYh%}n!z!q={MK?Aaer@L>QaBlV z$T0k=zXw(~HE9XJ;2W1MZ{ejci2P8@s#igb>F>$W4|ue`*=J4Ev|ML`hA;RqCHXdx z5h4F+AvG!FnEE=MZ6mwY7nww1(Kf^V4!99<|5@d^yIMYyYrY2kuR%wIUd)1=g=cv# ztKS1JQe9Uw=MrY|`$0y8T*%VTK@Qh~&qr$xH+>O(S`Uu40H|3@L2dOG-^JvAK1!Z* zEoH%7F6M1ucV|5Y9fL;tfyLAncSPGl6G|=g3vCNs%xthv$fm8HCmCz?46i1Y68vjfH2hU_<*p8e&Am#Vkl)G_mHen8ETMUIG}YE^u!( z1YQ9csVs1(Iapim^O`ba;ugS&fQxxOQqh*Mz4hFAt_?II=xTN)dYXz|>*+RklgT}J z5%E^DSrf0O?+k1oSVXYZY}SAco3#yyk;-PTE^+y@#vx#lD#PmSsKyJA0TvN#H9M3S zHTym9+{Z(Uh_;$Nc0(Il_hOI{As2JgZBfl{elYYDI1zCcbB((w&WSdeL!B5- zJQGwzsMQ)yOm@wm1uIgyY=w27u90ykyJ@wa11ciaYE9uVdI+okb0I}UTF~VRKaPo< zV;Jj*KMzo(dZ76Z_#Xm_R1S2kQpB5Qy+LdKgX`>^LK`iJ30#9d7PVFBDrdZ8j&?wCIUGa}~KSJfx}W`DhVW?gTZt-Gb~ zjafcM0uUwOwN+2Riq;m?J2rxP`U&t6;TLnkY5|@JfjQe|MR>A&J@aq*~PaMu3;*od%;nZ+yctgp_YdC$8!@%#u^wLh_#sOIR&zYP1^B* zB2@$p`==)Yic}Fa>Z5s?+Muw67+IG1lq=qE5DVk~B%hyobh zgt(66eDpIY5m6S@CyXuQ^eG}eU}%%X>>G!^p%eY4%{Xnm7|t-)5?%iw>ElGiV((Y)~nPtc#89jUk{=!0N1 z=Qg04&+}~aSANgE?aJ@Y)KHgqL{mVgBY7#&<%e&6EtjGO-bGY zWJJitJZuqiY;y4~{OM7U{pHeqnp`)~yMaao{jx&N*C9!<&`aD4Zm4e!H6rR_roI+R zt(VFh?Aw5i>;Q)>>lq>geS4sh9pI1wZ+$b=cY+$(0S*zhcgSynjqHHT9yWYt-vw%9 z2V}OW&vG8Q8`#Ls!1f+F8*D__uda5Jy{~0DM|Hi8*yZ`Xfky=Yx}5>vVmTexdrIyL zKO+7&?hO8Rb7fc`thH8r8tzXT5T&7*>!S-hdwK)0#-(Z39|$`l_G0d6SU7vXwYrus zfCrNZM2XlTHTY0k0v7;}2)^Py#-%0?W*Xl-9BM?=74Mv9-P}h4jqHG|?hX9;>CsRl zqAupXk%d*!<>u;HecpI$JhB8hBJg7FU|1Y@>wsPf?zmUrM#Nq5(NOckjfSt1EwB+` zSG-C#`ztQ5+dv~b0Q!(#s%wnh0~*-@2066eIn!bH!A7c&txJRH333B$MA)yXb{ElL z>+Lc@V{!<3MD!JJy;pe}mgj~1>OatYXouq)n4X$@3C{n`GRa3kWb_}RX_ z)N$5+7SM>GD?Zj~HwS)p{5k)hyDtxrqpG@>eP3ji)s`UpBqRZZQN)k{1`>!QkxlIM z^wi9BrI(?XNdhPcqM!|m42md<;syc=Dxx5Q!iW35Zy@gb@`;~2zjNMJud1uMt7j^| zt}=hzOy7ES-#Kr8_bo-#6hNKw`8`qln!)RcogxFpq&BXK$r}lp0-#gg0+wsz^N&=p z-%QvP*?_G_vu`DA3cyZ#rL2u>XY<>MngXbkxu<%g_3tPnh0#&ROdsA!=oEmSa(5M= zmx}n9qvvpbH^Eb62Yi)R%ZV}V`v{%_;M3lctCTm>p!X9yMRpS2b8_BE@Du=_@>x)& zu)b7j=@H9a1Wu6w;Fv^sz&}jj6ab#``A-EWT1t~;e1Skz(vK23Mf#CfopE(LzCiwQ zBBucIl=n$!6Mf^vPY^mq`V)P!)+ouZK8QqrkjN>3JmnLiNq*&Afc`W=Qvh_z+e7&C z7r?Ktfd3DHQvi6%d(gU5EKSyH7``a%pCxt*U{87VtUDEadW0LF=0YO_7D9Hv6-_L(~)*Kz)JPwDNtT zrU2@c`wSacAgpW8@{fp{0=QE?CTz4un)O0aPuzY?4Fe1GL_5 z@C%}*0P2)?H7FsI7pfle*Mv=x1=zTuMZx|ZVN(Eh$`?1Ab-?y7ZvK(zDS$qidkzzK z!WGQc{Qo6b3V==KdiLbOdV7`rO0*O}o6Jegje=IU8h-(V%@h|92y93gAwuCrRV(*zvz7u~PthGPi*w-Z^XR zX8mYyVx|D*l&(5z%$+;@_ak@;fKPeN^cKBx1Wf_ZDIIWHJNoAkEd|h~bS&?Ujt?SO ziWDcUw}bysqNM=ZWNtf3yt(l2+&_YVDF8T`dw7xuY;UriN4ylko6^aWy*G6M;Zgu@ zN~@Z;L;q-krARSYv$f_}f~5f1ls3882c-8fJ(p-HQe14U^8?Q(T#EFIBe*|MW0aE~QN?q|` zM=w?oHbr`iaH&$zI~rCJEd|gfb4z04W1YYOkrxv&1rVonv|}F(Ifrm5(hS!-5b_ej zr2yQNj(vRxLGr{)0lX<~g1rMEBLqtUuqhp%SqDEHqNM=Zl)8C34tz`yGewGvgE{E2 zmS8CWHl;0@eZZqixD@Gzs}FWuK)4iuo7T$a9q4EhEd|h~^oF|NL5_8VOaaJgZ6Ea6 z6Fuj=keDfeIi;S|&O;|JBWQ~BgZ2)aTuRUssV*Jjc#l~mxSW_N(x1?tpZ!$?O##p; zo!9vfm0U%@6e$MmJ516hUVBU%ceO{u5VcYNl4;-vuIlrAXh`{=FR z!=EH-3ZPEugkPbyR>nU?&=jc$Z7qgALeLZdozl)(rL?yu`Wa%TNPR+EOLm_pXbON% z=|NtV(8gn^-EUtabc)nN@0gx`mCz|tUsS9C^EU{Z0-#gsxdsLxB{ zb6M8zk74U?b>8zp9OLTvJk=|cxz%?4q*E{P16qZ0%+C#C#ARNYc5nYEzMpkJz8u!x z{v`VWQfBo=K`5id7ql+lM0|ko&W#dF*H36!Jm=!Ld1(sw`P8b7x&CiHc~3%8>{I;U z8U@nn-fS_jzquuH{}FPb0GIo+#zl>}icYzu3iD@3hXQmyo>4j;o6nOC1=u{4Q8p8W z`e`qN*L3U6w_JZF8Hx;M%4FTE^iPrpMFx40#xbgJ{f#^*z$0r@ zoX$b!KgosyY_irbHoU_1AJU-6A`NehyvaqNK>-?B>li!6#+#E21;}J={^G4BnNDRZ z(xCvItc{92I{v<8TXLevZWh^H%nqbOkzG1=PqQ=WP=HS6dYUHuy2ZTJMDI#A6kzi| z85>-x`eP=QaMV~Mn?1;k0?e}3YIjWj_aYezkja{J-Qv zB??d)@aj#m#_x(ZLRN3QCn2jh&n5$k!51(OXK?+=dtx)_SiL!fTqwXLp)0=Z^|5-R z8G9|Q$Zts^F9Hi`T5Z!%wPP;9Qvm#chyEI64DcO!FrPFiKx4rEm%eD|KBevr|BoUS z3Q!qvN74_Kk#eE9wt~Yo>+l5yesM!MVV*-W6d*HTS7kqBoDELCTw05(U>waT1~c zp$rXCRpzv+jat2l!D+)8=lPo_{V z7t6JVUc|YDTqwY0!26nKzy((ss)77_$b%xAJj`I^R`Q_8VnrD#RSWgfh5S;ym|fjY zG89?N6zp?w6^{>)2L*U!uEG~3B8xmKwNX8Ee2hFOz+=E`KK-}A zxZBV3Tt7i36kw7$KT*|L-zB1)M1v+mLTM+=QUA=J%vTkx5GOEL^}T`6p7M0Hw@LSkyj|f;Z6r z3+Yf~nvQW%{vYX3fX;w-%Fdt;$pRPjRQ`jUC^DQymc#Pjq(cEZ*=y!x76ts4PrDeD zC_w4q!7c>PxYUKYFE=AEiVT-L%Zs@s=}>^qfHzdlIGg;=%x%bsBEuPE`82mD9SYDH z@X7fZXOQRG+=*-`z-GYPmuJqV!^61?Sy5!T$XSlg-ARWc({zl#^BJT=0XhRdwK4ND zXSqH1As-6x$?9Ms;Qid6lqfQsMYa?4S>!_jK3VNm{l3rx$%rDuIb^#;4<;W9@X6|w z)$)uUMmiK3reirshe(G4bTYT;K{*tBe$pdJhysMNItLHBOBa$81vq83k@I^^k0B$9 z4A&ydd3qe_P=L;W4{ptP;1ljceIA)nfLT_Dbn9_F>IUT#K7o8FGF|%It8E) z__B)F&^vaZzlbC#Kw`iPzI~8T1DU!r+A8Y(=c~ws0!#*cX&h7G@?POKpj3J|$vunPqIJY?{IlF-=%R98Jl z*c5<$M+RVbq+44GGu3|z!yU9ThuitKSP`S5CT zpvWGFg}P$Ah8!rsVZfL5#w|;uMcsc~P4E;M0&hCM*AqMiz-MF-;#5YQQFeQ31bZDR zP-G|ly}`#D37!JrZ_7q2TJnnin~9zxL+HJOR?Tg_!NMj zk->MVirwkBUart|rmw&FX`4Ka|KwT6cajYS*koilp@&3fu=;LtpvWEvGn{xIIZ$Me zgBeb|pByN_VZisB$F0~bORcJJ>T@SqP=G~7x`w*fxZXwd6hNPm#+B%GxD|*nE@HH}_0F#W&sZ@!wX64@`35x8I@WzkdAqfhQ$jBI8=Y%zk{61MwfW?5X z^ysr@*i&^mL;n%EP=HIex^q1;F%$J4lL|#)Ee znZ5s-WGFx;TRn+2iT@o*P=G|X8ew}b|3|W*$Xr%5nr4jkza&8c5*hIZS?K>t^b|lp zXm?7f>J;kvLV4U7sTYEqb;LvUEM(8lzsQ3EJO+G5pgbcU9b0&wA|nbg8uad$nK3Gi zx;2be)N0_SF9RP6@EP!l+!^N3NTFGrzz1GxE$=FyEy#)jtOngR&McR3JA_{C-X`G08lK%qYMt(_@jq6y_!5MFC#f^o;5p3rsolBt`*Z*>vOh zhy}83gzPA?&MtHU>X02p)+-yGaAW0?_Eb%f7X^4_)4Q$8r2Os!)*}k$GXAyXMgeY_ zo?SQVt!feH(nje*RW8OV$x(n@rU#YHW?pq|&6@w~9T$)y1t?~7xm=e`du5_YRuo{B zP2X^!30X%%6d?3aCWnzBZO4TqMUmOE7uIOJjI1cYDx0l+bZc=bxlw@IfNvR|;S|)j zfO$FTP=L;$ua2rU8cxU6Q9>EA4ecrdrvUH|47fRn2fSn7S(_9nKw;2(X5vy%UCl&m z1dIImh`rvv@H%p#0GC1UZtRoG+H!uhG^NHnZy*l}@EGu2d`#UK^VxmBtQWIgFYJ?vk>7T^ROoP4l<$04wHzc_k(0Y0VWw4uY@+aA0iKm?Bqy9 zQ+p4YP=LvRPm5Iw)zV}Oo7+pZYT$H?{U~Hsaz9B>fW&}jhc?ofBsyj&pCla$(0O#Q zUB`^*sFCql3FEH7{_#(d8U?5g*heuNYLl%d&T-YMrgJ_BAWm>Hi&tymJf;`5DSL2vy323b*LG?$uX zr_gBT&D{pyCLfAy^D!43e2;u6vdzcba_~d)p~z+}8mZR`qeYgu#zbM#(QWzTWJLj1 z8SHh7wQ{Rcr8BX(R`t3+AtQ=cPqz*k^tPs%w0G!`u%MkEtJf;|hJ!AuYQB2&b8@3V zZVlM^J`-l6jmdIJpRfBBxlm-4i&f@+OD+`IF#l17Y?GIR4n;N#*@WF`ZcZ)~S>~{X zQ#w+WuWiYLBAeAkY%nb1k^n_#2hyPcosVbFeOjqaIhI#(XR@IHn*nc)m`NdSvM~MMkqLY&qosa-smI0pI#MlOkBJHILIB?6XOQ0#pWk^mQgw z#L{tdqV6;%(D-@ZzdD4pC^AY*eeNN++Hg2&QDmD|&^FISP;)@FCDykPC6$50e-Lhz}d)6-A~?p3hf)HYrhLoRZZu zokvO(pp?Ot8CCX-=lrFlLy_sK6m*~$$ch5227Kmw7A;=Dk3LFL6d;wsJ&~&9dG7Ra z@}U5q?9QRI58CRUToR)Iu`gwB`Nm|Fy6DuYHfnV`Y(3|Cg$yacFoWv`0fs&w`y{DR z{8waNn5(@(h7@3!!DTF!dA4_Yii{}0XuvmD&7!%Fa#C*~I|{JN;E5BJUp$o2dE(?^ za-+y}S!~uO^Lp>=C1gYaM%nc*`I^MbNQolTl&0)WJXeqsMaC&v6O$`Ri2{@|xcSXG zwDnptp#YN%j^4vtx@$;^0;Dpy7;HCj*OCeasAO;=f`eK9!*tW+LjgV++|uuBtKUQ} z6yTD<1CNmh0&gTQifrbQuk*QyTqv^2#p-o#CKn2Dd3%cHx?N82+(O6{fPBkfAy;el zO7P|~p$oYp;8wz>0PF!@XA%o`$E5(blK=$>+?j!NpDVr^f=@!#D{4>S2graTD-6c# zwbrD~;BGRY0D}QvmJzQIm8zIO;`E(O;v*zM0TKhgTqzz2TbxdOUj+n(KbCqA`}@T($PdcOd=E@GT_m8UpW%i zQaws86yP%8Nnc-FLK>{kkqSlDsC2elUnCWZtWoJ~zP>^#6reKTYk2E8zg(*XZj6%3 zkkRb72%G}I2Yd~0OyC{k+3%79MRq9Q^4)5!RW6s*DC7sEKmiK34R%N#Hy1{nW3cJvJlPmlryD7-%#88BX`RCEsfjPNM{f53CnxaCLP>!^y*FG+v` z1P1Ihk4r!g00UL|H)KKqCIg^CKO?{tH=9 zfW?5%hxb{i{MG#b$b$kr2HeaxoI<@gfg@;vk&@Ae43_>)_!NLY;7O{183%sHkm+fc zfCvSM40sQGe?(N>XjSWlDW{w-RY#rmstehSoG8F)z&G3U$0>}=mLx*~G6Qz!H=Jfi z8Eb}Aj_nDV0+4SVY)jh{az};OiQp*!{=EYRU&DUC&Spt!L(+YBLZ<-q0S`E^KQSKk zj`V*9Nl<{qfN$D}Poh+va_Y_eq*Jf7cuKLR@1@#@Y$(8Hz?16uY|74h23D=<{-i(w z3IpEz5ubwU9U}APStLaPQUji4^i9g2JqMBrMG8t7i+-b7Di+GYe!_ba(rz6_3KXC) z=>FOR8jnIp`!z%|6d*I;y}Y6l^phXv14P9ZJPLX^btD;4WSx=u&gVihqR29%YN1*& zjE*5A3NRY*5>5Z5ZlqK#)>>8F;T%UU6j|g_tkvtqnlq+4&*zZ~1-N`@z@y2&o3>(2 ze@pEI(x3p1L3fw^)36(}6Ul@kt4vIlKZ#5zz$A0M<^;wGwefmE@8fwP$xvi5TS~Tr z?ldx?$Rd-9gKw+oxy$KfLIEZNUMlauPhs!q7%DF!6^bm@6+y+ymsKP~k;M|`8?~H8 zCKMShVUzWmzKQZ&QlS8q%niUUXcel>QdwVidOo>OfXjdnO!Z&!#T&(ZU`)A&lqfPx zDKNAwk`e_d4cbxG_n1uOk~hK}BO3~^8T2~DOxXknH6?PQ0H*=p@-pLk(Y!1o)+=cAhBF0@`lS`?sl{%Eb(m^WHz7V^b%q0w*xKX78MStwPV z`n=NAhPigQx#rPayF3ruKa>aZ{tGvMT6_DG)?;n5#N;iMrxEpqiTEPN9e~4PPrcEc zQ>l%%%Fa+1q$>2ZTi$Flq(K$9wmL;xAfy#ZLy{3q+~dA!^DUU%S0x?6oZe&uZIC|+ zu0|5L6aaT!YQWhoi^!?h6D9>oM4Lb&yMVS^9w z8wr>KfRouSW7o@>mQk}7$c71f8yc<2No)#eV5ik&xxkO_iNf(_f~NrZccw43i}%P zP$#p2Ez#m_P>;4up?)_ZQ=}a7q*K76sVLF!BV-Cdz9D_}(7`9ooA|t{!1{h-r2y8O z(}#7e)~c7BdLEw`t?_$l0`r~3Op(s?9WOK|9DG1fV7-f2DS$PF9k#@p=eIQl+z%5j z1>n9deZ_%OlWMDyA1zgM0sbfvQvmUe=|en$kDbGZqS1bwXeod;ncFoIZGhEyB0uUB z>uLfhip3`gn`$58{0PGYtZaTGFlbBEH#_iL@Op(s=Tx#Swq}ZU^i~k{7 z3ZPA4djYfHFAy|EI+MA9&w)45OON662dZFv znTRQX_^s(nW{uc%d|xA83gAuQ$QbkMk+Oq+Z%TYNRy4}rBxH(|Cb5J(SzD)y#CM37 z0(g@-PMv7q7o1e*WwWe%?(Y*l1<=1aeFYj9P?s^RS4sUNf~5f16b_027NfXH-HH5| zXeod;g=1u(MRQRu=pp@236}zJQ`qNC70N9qFZvPe9uqCaFNl}|h*RX;40;QHO_&sb zd3}1SnCOUoUc%oIC zUckQ-Ed|iNDLwVfptZbz{~}b1ltQ(fF1mI7d}Nl#-{YVcf|nD`w;gcK<&o=vCHC|#&s-iHz;MY@Wo_7PfM%_E4E z0!XLRlj9nx@n+5=P72^m(Fi}xi@AVMDN>fCLGR_!#7P01DRNGzjaOEkKbAl#05nBS zs0Qk<`p+d;3V=;fU$4M6@G+E8M|*&uPplNcdToj-zYpXhf}{Y*6zu`);ap!r)D-DT zTEA2M6oRAx$P~>@0?zbPiIM^+Q#2(FI?RNRSB73^+4>kew=DfkWQgZ_LHmLl~7eWh!f-h;__t8ckAqAg7|x7oA|XnWk>Wx4Ug?6&E|VgMo+L&JU`)o_mHYCaB32%vu>PznG| zX5VPiK=VzU0BcOv8gRD@$p0i{ij=190-d)1AyA5xrtN~!jwU|(go9hL zMPc2GKq&w;nLVw^71na2Suyiffp%Y_r2yJw4*w;Gw$ds$OZf?>Fq-FC9$Z1l?C9zeVlz?;nHjFQ94g9OfKezb-URN%tOR~KP*NLgB%USTc)Qlu;`Lx#5V36&yc zX=!?`qX>{9Woa2Qlzk4NQltoK#}HPwro)6v0jSAra+`f^_m5bQCqfD!Op8B5Av7b^ z7Z4*w`Y@WdXfZKTqz|L1<0lg%1u&+ibM%c!ml7Za04B3ZWcJmib0oTqC@Fw4nN`c# zqwF#QJ%ey505_R!m$Qc(Hu5}^I4OWLEd%@*BhJ-?O##?1N@4*(rtYx(PmRihKKCn= z@rjGsV7^cucSh=kn9EYK!s?f%-5d7Bn!t15XKe4dOxVjQdt4hhYa`*5(eg$_xkix8 z0;Zo@uT3R^(1A4rkrX;5WFigIBTIpVNoM;%079=N1b=pS0c@`*i2OaC&?x}@&W)6( zUDsv$fUXxBCTeA;u@=YV1%nrm0Rtjl0`N03D4O(|)e6y50R8*2QH(Co{n;e3 zQvmxN*}&c?*T%i^bb|yavQzRKwel3UP>G5=MfenepONuIV+vb;1o#aEPm!U*Gd0T5 zs3LGN2~dE*2eMK6v7(M|%VXJBQMiN@C_o`2VN$oSl} zcM~@SaHo7u+v%SD2*FbTe9B!>3cT%>y_e`IGL!U{JN7<;rvUhrFRZJi54vF=AOi|8 zNO|jMyI&t7Yzn|m`Pj>HyFN_R6hNKKMFSgc#Aw{Dj}kKlFeh`B%0|QNce8$uz$wyS zvTeuG7YUmJus@#eE>!Il={ETK3fWMAP0B|xo|E|N1Wl2FBJXn!e~Z8=06gVe)Phdo z?-Du%pr?EU*69rX0l`xMe9Ajf+X?&_VN(Eh%17%y=kF85O_2fIw$t}##7&X@GT!Oz z{UyOu0Q@J?-7m#+^8SW|C_t!?$j)z{r*v2jbIf*Xx$Y9R(>kGBVX))WiG3@K2t4iX zxGQ#mUynN;aVv~eAwd$l6~^F^(O}2-o?D7b4imZ+#@O$=`&fnwY?zi*CHotA%_Rkx zCv=Kxw#e)~+#-kGLW~r^m{1=xdyHxXI8v$>>KpRHqmR!OH*u)~Hf{^pZzF69z)t7@ zbz-o?@Vlsjmbitw`_3XB#_MSB5Vr4PUuk6tdqG*sdz8pQUGp3hni*$H!N9i zBTkAGC2N;ba0lU10B$menMA4%m&Jb(UBxRC84Oek)zV}O-%!Qf3o(x}*{@8ymoGp! zb_Wh}wYOhx+2S##)f)w&j1pbiJlUlsb7724s@D-FUs!+lWYOceStuh4&r zz$r3OaweU61zWo9lz)T-C_o_nwYKiaZ!n5N^BF>?0Q6+`bZ^W;Uw0Z4g-L8j6xcsc z>=c=MoFWs&rEx*aarn_Jk?P+dc8YAI zdb3c(`5l4$+eA(QWQb$R(Afm39nthcHd z&zKVPII&Y?qQu~y`kFNm`w78Q0DLl+JZy~O&d+eGBK~s%rU2k%t~A~#fbG%xuLzj} zkkeZ$af@DXl>S=+rvUI|mY+68T6d1l|3KUnsV>yksQk|aOp)pm5;7WplE5hdJiWEi zHwyn7AyWWyGFyB$MxpkPzW+(g6sa!I)~NeG1WW9DCz6^z1rR5*+sK#KJ?;qdh3!@@{G;k^37P_+(>q48M$X_|C-?0n14c%IMVyP|BF^QB^d`o9w{AoR^0yO0r-;9WpC+O}?k98I z=j>qFOEV&8-bR2F0GQ0}xU&Q(?p(~%h)TkD5FrH+o{>Za5&(yV3@@I^?Bl@+gV96oItw;(NX|yGT&}V4lON}s_k<)C)0m+GeG;!qHPQUwbzZ5txh&1E^c&0P1y#OgMZ|bQ?o?0sX@$qgRQs9Essl zAQh7N+PjIN*G@4nU<5>aNF{P^1;J7PY%=aZ4?_>1j~6f!tQuPt>f@EddX>B@iI^ho zh)ehomPq3l6EOu4C*#-lk}kmNlAlqr2CtwNyPG*9TAYfme8zEAPv?4Wi%^^|>AWddhak6P@=l=w;QUGf*A4E$K ztG{loB~%JPO=g&wAXGa|s{~2`pl2oFwlX+}&0ng$2^sX%6B>~;V~@iyD7yV47=hgg z%I(co;==E6U_rU2Vl4-}9+q7pfAGoeuc zS~8Bbh9k>EX==mV(L%G3FP019up%~wGz&O6S)a=w9ceW;uf|W9NnsBlK3oIWl)!ik zF;W2IbpuX5KgMFMRc&I^oPhZr!lVGqWG2x`B_*zHa&VqZ;k=bNDN>i5xc#=pJ%}PX zZzoI&z)a>dN;6K*juQC+Vxs`I*ABKsDr~-zcsJou0A4#4@cbq4Bg99Mn&k79yn6|c z0`N{trdMvFKi0j0uk*Vwne3_6n|=60Waw#k*XslREHiDS&ikBHg=8qhXb#QT^&=$<$O5YJgLr9CzC7y@9Wkz8YQr73ee<`>>|_FOzVrS%4EHU&Q<`whQKKRJeeaQ8xwe=g^gwc z_qD`L0o=)KJl<%yD|9mp(9;A>0no`@2(i&XTSeqeL`{+Yr1r|kjRZ}Re$Z0|d}vFQ zkDCaZ0-zIGi?W)AUUMKTXml&$Z#`}%UuD+-$T3< zz?;xa)5_&U3WQi<7p3=Bf~5f1WcFDmUKlD)LAS-X6D>uGlh$+`A0SwY^d_ye*DF$msJ@*nUMS8({z1e*PO98OwB{IMB+OA=%X;7VK=wvDxw{8n( zu}aMiG3R+I^t5~95axL2;Lv1ytJTs1msyi>>spXxM3~zR$+=xJZe1&aZf;#2%s*mK zT9pJZ;o(sVuusOVt7GlagXv(Q;Ose^$f-PGQUGQ$^J5+V>|lzbUX<&w0_X^VQlu1U z6<3i8pbmjj0BAA?suD?2v7#*iP7okP$^e=aTuXoy0GNo6OeNs3`ai0Xx;POh)Vg|M z5+CD;yFXY5pLW0BM$7pGx{mhNXDJ(OI$xAHDj5~p&PB5AOy+7$O{ABv$%M=Eul!i6 zTI6kX*by z0j#T&=<79vVf{yBq3F4=K2|6;YxUBF&S+kKNMK%vFRdfU+>t`V>Du3izcTIqd@hP^ z4K=pC`H8T>VtanCV%uS>AA~YW6yfEv2=`nvn^kO`V}TBHGVMIIOmvkpbv9@eNSB_z zUC+i$axQKzd$CBQbMq+WrDi^_Ah!sa0+4%d#P*E+|Akx_DdtO+No>^;1#mqvQ=~YV zE45MF1j&z73&(yt_H3ZU-k6&)OEd;>!Pel-D80C2BcBxa0vm_3w=(BIwcF>lnV)Ee{Z zPGPj-%&m;h5x=M1D-J`iw1xc9-eL&@v3uG%7+!`%k1{5El%ZgNIYrp!s`XG|s9I|} zBemMvAsk#CqHPt=zFot#_g$<^i{`rbD_sljM^NyU4s)Y8n&~)aOCO1?^<}_XEENbkdQKyR0jC+%HMQdV*ZF0xRR zto^#iAq|4wC6eCZlAgBj0UFjSVO@lh@47E1zlg|>kBod?q3o=$I!!@Wn8N$;D8q zI)ov6aY9ACznu%dP^(0!HUpSEF#&R=YEA|KtVMmnlHKN5xwZ~i6e>=xE{#JIz$i_W%`ZT|Mhab90>U{dbj)cN|MLs;sIwNXbj-n#g6 z80l2-Q5li@hbr207n!%18|E!tIf8Gs%?r6hm^*wyw8XmV1YbZ>9TU|8_-gDhP~#&{ zq6*6jC<>_iYBmO}u%;yF+PNU6UAq=Zn^)83_P**BA15nPuA?Hk*9x3rRcA>|oECpm z)L7W9I^$l?SYp%**|pBoO{~}I`qSL25LU^PY4m2s6j}Ti#^Z!?-(mPB8tyFYtKwPI zr98({?iD{>aDv58a(M@%oI%O$(u9vVbze_2X9#$Ps8t=!H%~%Gv(ua*l-!{csb0cP z1)3boGBsvUbZB%v4@5KV(k%Lz`@pDs^A~ticQ8ZE2?q$-R5-;FkAn!Hd#cLN@wly@ z47z#A*|8;g0I z%X_2Ez+M%~(R@w^&IJM^g_ie+o0Ii&5R2C+s4SX8z`cUD87e121@T%20rBJnAfjDS z*!GRYb}GWO`8XUD9|O$`6F{RHXpy;MP!pb3)}SUlnM43!itgA<*&CjdD}fn*tIm?K zyB}vm7uLi?_XnOyH3aRb=%R&iAEfDSjlt2qYs|201$@<7T7Q_L2$Fs}hpzW-Bx@PCXYPS0YM%QPJJvkfnBb2;$bn6J`^&seRAIQwi?Y^MGP0} zwW5O#xH_&l@3vSz<8;`2)>djUOZL=Ajr^>^lxu}iF;0@jPYvOR{`mGc-v5VtU#DR0 zzpQ(xwg?~^T45%q%;dBgK*g4oS!Uc+snIHwOASozSp^ifon9PJw>?cx223ROKrgFf zUtZ&wW~rI1w|5enoTo`7o4A;S`yERc(qUS~_-@LP-VM8H*ng=V>U0@OI4@Mg;0utG z0i<`sGz+a+XOj=AZoFhuhIuT$WR7bCMu*lprSXYoW9W(7U+tB%qkIH(gC^famC)~= z<$t&BdreGu*vQEy&wDMWUdyQ{kuPV@nyjkJl|o}JbH-bJ7j4R(sycT(ZmTCb^(1Fr z1S)sds9LBaoO#JI3n#PcRfaayT6I}_8mQtoUaCs*p{rxR&}LXYq;kq|7vz-j9F5Bw z*FeRGad25VYcAe!erN>W*TGCuf!<}6=R?y^+Lkh>m4LBi)-c2XL}cn_@SIJzg@onF zSzFdV2CM)e%UEGl{l@Us@}UjY#_YO2PrK6OYpg4gugOt?_lC$mypfY{AkXZGa=XNO$5}y!uu z&YWfEOn_y?{STuEoe7*i^SESNBb zVCl?pn7&_i=`!MN8F5&5KZ}?|o9X!!WMkv*C}Ilf+Gmlrc1NkJqL_Nv^Ox2NDPiqRSlznV z;>=@4-x{;~lUVjAmi{`;Wivjy8ggD+o>0qH7^fqlWnkir)-=Y^CW#fGer42fZf-dPZ`Z;nH)sy9$3R2UcQGWL8z%C$ zFOYwrWC8)<=!_9!_F{nb^l6BEJJyHWYo8V#)zh!xd(~>k79JJDxAEeBICeM;)Plo? z5RZXiby$bTAo`6q1N+BJI&i4ZAb~P`^pV}mFrG)1VLVE@3>!4Q;u%(kiOUx#tPD$p zNtEHEkDOf@*6*XWj`Gb#mEoh0j8TT?^;3pRqw`g!Z^l3SEp^cgin1XRV~}An`Vf;O zsg*Ih1rB*a#~bq_hgr5+wHRs*7Tj@~^p6-&E{}+3&K?`MYiY?05MU%8)lSz2Yrb0( zR5>UJZrXc(ENrUl59z(dNXBi@e)m3pajb}Xxh@2ob&M^B>*Ah@6Z*o1yo*@rSZjd8bQFCpF zz_*`^nd*T)hro&ratv#S72W_}u$&6!n{g{wK$mUfoj|8uV!)L4b4VaGLD8;n`(3{S zK+*GI5wm}qc0bFMj}5-dbZz}Oj)XLPbAMkdtLK)#jiyTY&s3@pb+-9SS5b6 z)&J~q`m)6yl+G5hi4z^ZGQ0CKOV5D-j{hi?=+%V^k&X8iS+Q2ZjGxgVo$_OKTriKd zzPb3Jn%R<57Y9k8@oN>V;l<$=kj0DDHb={XPm8^t=H;9(dS5VcbcE6Sw45$<@eCn+ zuo$DVcx#y=r?x}UG^#d#8TT!$pU_uAdM;pNQ5FZ~{S^li^xCL)2~%lD*~N1dLP$4w z+Nz9iC*8Jbbz5ufn7YjNLSm}a;5BmAPZY3EhI=5C|5Fu#J(ov3Zi^?_mZD$OJ5-o? z#lDi);q~Iu_bYlJQ9()-XK1Q1cc|K`V3#1>St8TPjeIrSpwb=i0mlE9su#_Blxjw3t`(&D5* zahaoWcmz(igUXh{g!0guPz05H3IcgQK#|lsw%68%hkiSrDw!i zj}(fYPuL0M?*!Eo*>Q;8j~VQKjlEy*E=KIy58dzWi&1W1Rm9xy(6;F#fIITA+dQ8Y zt4nZyKpS3v5Pew2XF+uYqILI5fcrR&g*N>YkppUGV%cA>JBAI0y9z9d{VMbn?=1Wv+_m_-3*k&IaF9p2DI$-p-G-|cj<}va;dj9T1 zs>f-%`ITt@NW)37;D;g}f$^k@=cH_i5W8zUcPu8LF)v zZ(*IbA&%QZvVb8layzuf%p2$Y*c{pF_H3%;;O z2@zIKi#yUUq|EfhKJ5|_%FKzf%&hchZI|~0S=$Ymh{IjPl(wn&rW35h3jR@UlchNMNTdNF*s_pcJ}l|L}Eh;I!~4$wZ}H54IHi0N!0@*9O*JD_gv;c-{cNf z`CY=+!u4X1&}^Y&#wmn`@Wbe>N7L?uys~7Eh^Os6R_WJri*T{WN$Qplrr*xND5Nc< z&8SS9X9WYyDdS7u=;pCg8h6)-NuP*)=MFt4CJZX(EGj5s+_S@=Om{^hY~(Yi;}y-^ zzSl&c=;vOO17u?^Qg_&-otWup`x2B}WcGDQ#eHo{A{}hfB6r*pZG@)CF814YVz?E) zV~yJOw?k@-_H`;u1NQ>H6>*)4_N)q!d1PW<=8Py^9XaUkdpycj+??GN0>sDL7a%2?iY&3SZ(8g8Pcd#Cv{3q#SpxtCyONIONA`D^w#Ulw$W9mDBES2ZG{` zXECTayDzj#A$EKS1t8DsGbU*olwT_;YY%0Rb0kuJ;S=|F!1*9BZoOFlZhLSAZCWydLQR9dO^B1Um%i&p9Q`Y!a|97`7Zh&k4C!rPC|x`dlYQM1K<5wE_xuVH&4 zE4{CdD-Trf)EV|yPWSaR=&P3T5qkBJFlDB?(*j{<9aR3p7zj<}v#j1gtDQCOd9hOy z0JR?slP#;Nxo@TEsG6mGaWPP{O67u8%DtJ!!)lRo)x)3JY+&y)?#~e@*`<6yoBiY4`Y}(D!Y- znn9#S{Sf!;u({BCwc}Wp=Fs1L0RZu?9-7B_*P4|HOi{D4$ezI_IxHwk4uYclc_x|U zX{f0MfbQt5nG|ukU+p99#gq|OEL&+0PYExHL1s+5n;gru$Lv~b)DHtNI_*0xOLIv3 zAM{H5&UdY}7nu4^d)p-E!$n7>J3!$Q=^8X?L^d zA%}KYrj#c!;I#aWW!IeijkacPWWx{|i?oaE`IpR|=%y<4^*N$}QQ)=^&F6Gm{ol3W z3%4e!jJ75!3arWhVJ*7oL|T)jSy|l16z}P_^*1a(r@utA%B0AZs4}V6#(HM>FteJu zXl1qgPZl7N-@g2fY%l_8Ae(;4+}&hb*z&R^whb#k+%1F+lNpf}BZvbw>|AiSp&ftn z9~m{a2-@=M7}MR|fu>~Qs|AN;kr{bRexkOH`{b~55-z@C4QJ+R^@gfzc*dn0JVV;( zXVb3xY}C2kUl{sO=;>PLR!r+96sPD>NLLgxKGel$ffvj~HyB;b=sGFDch<(jhEc1tU;MqNk+YV-RIVELDjJqU!2NQDrc~`Y?)2NbZXw0 z^y;{vyMQKR*74_9W1T{EL%v)ZsTb-SR2?^9;VRuQq@GQ?7jdKJ?nnbQ^06OUdiWMM zqLA^Sj-L!(FcV#>yPC0jAc4Q{QXOI48XVbtMIyN;F)O^33Z_V8PDjP% zFYOt+9prqKlchQ^fla%gjmBrF?T~G_J)=JwsoJ#H~UD*D| zOW{vaPq0=cIQ!SnqDPlK&`i6G6;*mn=CsuW z-EH-*>QZnYhnmJW|0dB0`2yv2pw8Z z>e})r_y6)|k1P|p4r{WD)fPpTiAS)aA4$ilC=r$x_M@P(zt+jCp)Rs@?d|c?I6MjU zfQa0uDc!|O(%aFJR<-%d9s}gM*io&jNV;ukMJn3-TQ)yLvY#Avn&cm5l@%^}ugbbr z)_+lNef3l=+IsJz=H*1f1!|t#qygdA?W}2Yf(U3u?b7u8+N9yGrKP|=DrSPqw}>;mX2g$;!?xrWV6zv7g@xOz>RtSG|~0LvhhmV2z5rQ1#HiPs0!Tp zX{v&ICExC-0HG-<5mF9`H?FdgY7L zd@)##_X>N@D!}dye9K>Qbsf5(RVuDU3fJ}3v7Tbu{qkb;INQF+1ex~z0Ajrb!h1<} zUGi0QHV+_Xgwy+?g5lOv_SZDDWwmA+L(^RuTd7EZ1rOLw}og~rp< zwYOJ4jbBr{)H`q?`DFKP7g}MmzveoUILf5eUQ4hj$eymVz1B^C2UyxN@Z4xpb(pq z?|zyVqKmm|t1V+*`Ie0&DY%c)N=TVjotE{wF3i@;pXbXRMY!`-Rd!{;6b**^W$|jT z#2(m@0^lqAyI@guzfKEL?Q16nHj_F9R33a=U_iO_9v~M~(`+&4tG*KGexGj!TiCrj z!1G0`#JP|0HGdPUnq@0CZ^kS#=qG%~=Nr+E>~*Edc}M2Oj$+Q7M#?ob($E|!S3%YM z;K;d04&xqAta(nmw?2nWwa_RxzW9-oKfqn@mx^Ut+C%%j<#wX|K3Y}0ST9?%UV$pA zDk-;d51Yf}gj);^OLq%kl2ko*b7cngvgKs}k-6K^k}m`FJFZ$)7p>6B(gbcw$B&ts*P-kXg~Ihy)RO?V3Orl^N<%ik_g5 z9rK4#+bzcK?o38O+veFLdks#@(LjXmJ{_5&oorFyyv^%gwk*J1wt7}F?LN%Kw;hk1 z3oY6uwVojroB}BYGDn}qh#i%*jqEu{W{*CL5!--OTLj9e3{vj77O@5xyI$=fQupwVjM6*7Xbj&cGihFTY|Y0JS>?yWeb;429L!cDi}~!<%wt^nt{&rv?0nSDXNc#< z-1-rSb*X7x(8x$pU(W+QSh4%)Kw@{XqHC=n&{=D>f4|R!GQ~oeH6_AVHtg=J54=`E z5yq`D5-2Zv_fVhMy^(>iA61Xl^*(Wpqc&rJV9E||ZPx`rlpXh6mQhiFqDqN16p52u zx_*;{yN1@i`mL5cVq^DZr#nhxCQniFtUfpvvOpHP6EtY$BTTA&Pq7htHD2&7)1t4& z>pL()EH20w@L64N_k^kJ7#0aXuGt1L?H>IC)bm~EbHucWs{u>&whA21r8c*SPJd4e zD)!hZkUZfr%UDpcF9i!2&}*{sp{r?u0NYuo^^#D0dnW&dMU(ZuLZCn87vHK?41`^) z1O!S$mu@~h39Zgpn2xH%$9wam9$AC>i`*4{%|LN*FJWPe%Khk3L=d^IumtR0L7QHM zjqdt7toZWEy^3~BhM_R2Z?DD3C2u`d7D)GM+OjeU)}s6O4qRRh6$G!PF<%YU_f&;I zTbLi+P=!0R$jyZG%9Qk4;QYA@hlkWd?kbcIab+YoKJOu(E|IVDDLs*;BGv-=Ag3O1 z(5xOXeWEig5`~No753dA1sh#@;z%2F6bS`=D+LZ;=F)$`aF;q3ZP=G2Tk0gxf57Tr zW-EBx8$AL73Ofi$Xu1q z53Z^$nE{VgN%1&&);!vh0`3bDS&>6l=$n^tpZ&y!oGMttEte}bF!E?}{}w6aM(|i> z1%f&_$?0VU!yxT3WT{nhA}hpCnH9LKp{WfC3b8GDSs~1ctUwu5_XEYN`)G?%eKjvs zU%QCA?_$f+rG`h3qeAM?u!=<%7xy;WwrgZ`a~fvMhx1O_vZ~>~Bm1H-Q=Rm zm6HqU9+1z5%(H3tubeaNE*`EFFAgoyFJje}dX7I}Fz4x!2)08!M(i>kq{TO7T3AEd zu5Tkr06?P71yH-+V9G>8v=c}iGtbwMwisjKD!bs_65{!g_uN|6zGNN}Xs;7_*}%{l z#()gKC2aL9=RNZ+Z|hxEEZIF!OuLK=iS#3xNcL2y$E$PHDNcUX?+p(~LpW(!Maq?N zU4u}1zwvcG1VS#_ZqJ@E$UDVh>n)e72)37psc9cNTvjfFz&w7!{BoO8m6J~S5thn+lC(NP@z%0P(TY_c*)+D)Tx12h^buY^FT?+U72;5y>Y~!6!3g#Wr z+^EP{VeTRud$FWfi57kiF>RP|DnqD;&q7*XeYe8ACky6=kjHKFgcng%a(of-<3+@; zx9`SDO)S;RdV)rvI$9{RtOhDoTUV-Qn@VK`M!hnr0q6+aW;p3*@WQcbnQ%aga6qaL zr^G?Z`Ip-M=EbPeY4??QsP9lXSv$YcH9>D~QSkJLxt~T2^9$BqwJAWfFWWDXy5*>G zWi)E?XHNd?(|ob+;O+vy`NdMF&C8#jd3$=^tAr`@wMpEJSh|qAMg@bNRTO6!eOsx} zN$H?q(oa;S>Li*CG2JcHu?Q6=V2N`B`ErM#I~gBq{B%j7q)t zi)S$L+gvcg^43obm`LJl2bj>8YrHN{B-#$Ev~n4hZSy-Pej^5J%o3R~!{SNK8%W5p z0IH&l#{D73EOImvHDa*bY0>fM{+=z9>hIm3(6;IH|(x2%x|2S6!LkwP72s zhW9RFgRa#War1A@Evi4yS$nn*{TJ1T(YV(ONx@E*rXA4EAm^_J1<= zZattn>Cv4#>RU%I6)1wb>vNxCjPd(5bzZM~{Pbe!{oE$ORSU4$_J}XK_li|pWw)jG zva$Vgx1!mO&MKBQ*^T(DZ6~Y+`zFgd6`jAzTA)*MccR76ZYY*j(f>#vpVj}ky9%pe zJx;7vlwFOt*-)0iJ!!JDe~D#JcPu%tV{!Kp_H^%JdJ}sjCs#$p%rsvc!)l*QUA;Y0 zP2jCioNg541$b6Zc?Az*J#(?x<|T~DU?+;HtJinhAvm=tU>JqTt*g8TZi7-o?GaChdx_(Hs4l0W6SK2yk zhZaBa{Va@1N#itY&L5A4nk1N%#avpxhY-_7IA_+c1CIV|YW!4H zFN-@cb&LwgZj0p}PyaJ~7+$Ky&4%U`MBaZbElxPawfq7m7RYepoUEmbeaiL@;x|9y zB?2Ly)qSVAB*`&)qa?Dp>a^2PX&q9jilAnd_ES=VnvIha&yT`U!wu_?c z6g{=6+mecV2D|(?-K@2d$g&*P%MJ%7d?e(q7DEf|K>7e zzi{PRlizqY)t!fS-{+oB(@|ZWwaD5l2Hk{pc2lB3atn;7duOJu@Q6{2hONQ8%3p`} zgPm6&sV;jh)g?*DC6VgEzG{g#C)Eqcc)p@Qjlx5|88WQe;dQ zFs8^pr;jo(IvdlENaI)2cxN3xJ$_0_(Y`mm{RTK$20g^knn0@k#+S4q_+N8PBd>eN*<8`k2VVT~O|9cQwF z8?(K|+~TSwaW7|4G{@MT1~QAaNrTFJM%S z1xsFMj3ru?O}i|w!42vnMFsm^EtnTHAzE#$v9SJ!32@$nCx|^dTHJ z(C6e!rjcy~r$yajg>S%=v|y5&3w{ErYU}+8YcFzii&cLqXR-ImIU?fos}wQf+CvvaqBqD(L9$rM0RaUYy9>kug9=| z!05b~MzzyMncP~tYH;6=`4i^s9S_}7oL^f*HY#gd@e`c<**1Um0nOX(FW7EQQ$Xf&ct>S#R;RN8k%qrQ!_iGlPuo`8(vcM35Vld0b?ak=0B*}e9FALm7RodW67qLwHnh#? zX;C#6UJD>C{y{u{lR2bvzzJnO!=nol(r=I~|sy6GjQ9TL}Xt!T# z>o7aDe*%xbg0!b)u^)<`kDI7f7tTFaENG+OYE6n!&RVBl#hSlNp@Y=C8efj<8oI3m z;-hgYpjf96W<_07W`XmRSm`#WDE4Y_kbs3Ofsy} zP?bCeV0_y$qTRzEwzVF!bbRR0c7eyN;IOM=^}dLv9qBUaeYyo{o2NN%&$A7q`?%dC zuSS7g(gEhXhCOO)Z4NKk(e;_s^6Z75uTD~RFhf7|l3Jb;(0b&r7!@_sWvQ{tgfw$jQ0S>8?R03I;usKsxgYuUdX5qV$}V$GS+!@T^hVWEg+zI@wFN< zqQe-GuSI#{()X~HwN|=A&8a#QXceTv46(5Zgosg?b!!k--(>^~7{NY>Kr}32 z;Sf#Nu`?1xGqCHoG=B`u@2c_J&-+Lie;t;FhkXg-4*}C>TRoct&k=4T7yqfTUS1Dt z^QEeF*(ri>%dGfM?+eo*hj63}ebcmi9gjoIIY|cPe|ow&v_j3c8FVT4h+CmJqY}f+ zoDKy?Fc*GB37H96i3H=U^N|#wtgrB8O92KkDPx(fR_9bz-R_0sAc~^$*!v%8KR&eT zGA6!&*vDr=0iX42!tEwM$I4NJNo>)#7KXfT%Ij!E`Y%}4O10FG+pp;^8LQPXX2JC+kdbI@q8 zQcAy!$dv3JVVekvGt(Fl_OY@Z~EU!=8rK#WUKWzEu} zth&$eIWkcLhfbH@5uI+EN1}Phqnv&;^VHMr2=@lb<0JTdX}Q$&uHn-a?m*o{3~}#i zR9K{*Zb=wS7F}i1@1i_&M%g`Ct~Et_!1~zK=*@@5MLzGhqHCbGc`njX8!=xiM`GIB zG2-WJqc80CvxG!P%6u0?b)E^4dWLqt;NCJ0+v3l*c^&DK+^cRb0n!B`>Uej!b^b*7v zK^%qlS@;X(7u4f7w&(VTa-H1-idMF>3G}zJu1kDqrG|CP zvEbTO>-BgpkEeOhFBS{Wv@Dh~qDL7~*Rp${ReiAQ zyy`Ub^N&^CjQl+`|5$w3hu`Aa=1dWQ3jKEuf1?KM9c@Lviyq;}z=ELrdD&&+80Q zh$t@7zud1&11~d*Z%M@^MxhK`M#Xh&VDWPN1&goJ3Ssd|{mZ>qChTjBLWRGYigD)5 zHTVk#uGI=*;5z-wJwh6|-YDit#hZ*`fmFQND3rywQt{B4h~g&vg(z;;3K7LS^)Giv zY2aN(p~AnHia9TVf%oAr7J z@fV`_iB^axex`r9mq`P^Fp4Xr;#Wp-rBwXJD3rzDQ}NgeMDYjwg(&{46(Wki=wI&N zWRd@?QK;~Lr{b1XFz^rj1q1)q3Srq;L@af`LP|LKrw)|8id}5eylH3V$ROSDXU_^YIr99HkY)z%lxl z`%-D(SffzkpG(D}7s0^u@D~i6pcTTvBK^z#m!z=RD4vpvlZ;|h8O13^p)8(C#oebO ziqr5HqBvbEL=-FZFZT{<@l2yo;a5|!h;{PC_zMQk(F$SUJpIdUO9bZ|#p|RZZxnBk zih@xni=$Nho5|qdFGMk+6(R~(|8lpK2FgaE!q=!+#HMKyf5AXQD};fT{^c%_2G$vc z3V$IL`><8G2!FxA%e6unxK#gg-z5!PW)$z0idP!NZBp?nqfi#FqGHZUMDZH@g($Ap z3K7NY^e=Z8Y2aF;P~oSkc#^&M_4o@0ZqN#0;70w+{i)2!w;F{C|8^>_AcC9m7Yy8@ z6~e%~^)Gi1iQv6Pv6ocbY83lQ#rusyS-g{q{aM;RfWHvM-C7}{_^|%vzDHub$0%-< zihGSh8Mu#%rRT!p{rC$OKdBYM;zRnEJ0>B0+9*m=@rY5BrQ%VeP!>N&#Y5*IiqGRO zMDZo95K(+Z|8g&s2EJw#D*QL8`28{%_!jbnl(a$^SgU`zBho;{C{*}KD(29@1^5dFnpzm0* z8>QkVqj;NCyu&EoDHZQFiuXvxtwwR1RNP?{cS^-wMsc@Pe8ed3k&2HQ#mA-M6GriX zR6Jx9D!Cpu3Y9>Q8ih)r&l!bEpf4JQN}#V8g-W2W8-+@sZyAM3pzj)mN}wMYg-W2u zj6x;Q6GovD=x0Wu66lvkp%UmfMxheu_eP--=ubwW66h~fJZA#s=}G*B^7J>Y5asC~ z`j`7p`S?FZ@sw0-`YCN-GyDYuTN=eyQn9U3Y$p{v8pTdhv5QeC5W5?NiuM^sp`zW# zC{(oj8-BV?(MEBMR2*j% z%Hs2kLfJUMD3py8jY8QtiHhf!fa+xY1yoD5LZCWL|8kef$7dMD3aMCW6sx4-ETcGE zD$X;Cmq$3Xg~D+O z6`vhN>RgJykUE!Zg-D$%^e_GRN-Dm55yD?3!?(3Uguh1ra$hGOzriT3lZrPQ#haw! zMx%I(RJ_e7R21(p3T5?H+l)dPy@QGkmjL&j_zOJm(h7n5L;9C~d=C{< z;|Tvz8UEv1A;RCUf4QHKj~_IOhos_Rqj*FrK4TQ0m5MJIg^J?KMxl&;%_x-7ZyJR% z`W>TCM!!$R{TBoG5AYXwKBg4{_mA~2_X+v-{M{)2Ar=2NivLK(CZECKY!W#hp@dmr>j;6(2DQ#rKN-cJrQ%7W_^VX>-6;Mc75_Gh z|479q4+l_fZWIc~Rz{(4Y-#|}oJaO`Xp3dgQSp>XVB6bi>)RBU%CQfF`ch1A(k zD@5u%Q~%PB51`^x>^0}e@CRvy2!DwFr5_(o#p~Jo93jKc(+UxOzW${jA4SET4TL{h zhCfy-MEGI-%YCkV{CuN0K`Kr(ip5fKvQeBO6{i}7iekA@D5EQkLK$6Y6w2s}jY1hc zhl+*7eJ=h&I-ai;0(V~ja@WYmMWYy%igBY*23(_1uT+dey)sF~Ki4A83-A}>Y-)vw zb4vfxk2g?p%_PEKD8s)@D@6E9^e^{P`S^09c%@Xl+96t9x^Pr zD&AxiH%P@>jN+|Q@phy5rktX`!zdK)cNv93`d*_@NN+O=h4c=iP)I*$6bk8wj6xy3 z$0!uij~RtRdOsC=w2+{mz+cFK2em>Z=%@5A_tWz6{}{!iQt>&X_`Fnn$tb=o6<;%o zuS>sJvkzD`Lzuc$f<4qsY;Wxuy2*0IKY$X-j8pU=}v7=Eu zA-V5t6e`YLjY7q;hf%0l_A&|;%f3dTVtFPN&*I=Ahra-9j#daF&(^>6<3p&pgwxh76&7UFc0iv0LX3MsgXBD$HPxLkrz5>SRv z7Epmu5m1HTE2+1=(1y?!(1Fkq z(1qYDx)Xe8FM<#4OYorsEClW;#~dh=9CL_*JLWLm%y3*DMHmejNB9pgkuV7`l`su3 zlQ0V~moN{okgy1_l&}o2lCTP}maq=6k+2D{m9P!4lduc0m#`0TkZ=falyD4il5h%e zmT(Smk#GrcmEd3b4T68kw+a3w-y`^!{E*;Z@)Lr8$D0f`8S0m%r-0jUV70qF?7Gb6#bWFh#L>;&JEi{M-GT1adE znN&WR2!e1Rq-8!n5{r%my;a zF&itmV>Z>zG{fZ%jGRYz4D!4<;*Uc=z<;8?0faQc0 zfYpRGfb|4lv5DYAw-S8l4uTKeZK0)+WA2ejj=5jK9rK`W<`6C)B^(2sB%A`AC7c6X zBwPYqC0qmCB-{erCENo%Bs>B^Uo5L;GZP~!9PoAf`6891ph1%E%fg$A4(*dL}&!4LTC!8MraPGL1+c2MQ8)4Lue1EN9Y7- zKM(77kDQtpHaEZ2;E^ z?EyClodCB9T>*CqJplI!y#Wsi{_Q-maCC;eu5IPrm*csDdtEPeGdpqlHDM3nEnz?4 zJ>d}GBjG6EGvNf_E8#TYJK-GQC*dOCH{lB4FX1{M&~bgTTYw;hyMSPX2Y?WS$AD0T zXMiw-mw<4DH-HEP|3V{MxIbFna1@#3_uuFW?hVJ(%{<0O6r1o25SQ>05TEb{kdW{m zkeKiZkd*Khkeu)Xkdp8lkecuhkd_bxkD8tk9FUO^3Xqu)7Lb(?0g#;#8IY3@4Un4< z6Ofk>2aul-A5f5x2vC@i6i}3q0#KZg8c>pu4p5qq5m1(p1yG)l9Z->w3s9Mm7f_W@ z08pJ!7*LZ?3{ackzfbinBwi(7u=+B|7p#$j`+_ym&FsPNAI%8+0nG`A04)he0fuk_ z(1vgt(2j5p(1CCf(1~yb(1mav(2Z~l(1UOn(2MW@(1-9C(2wv8Fo5t9Fo^I5Fof_P zFpS_|=tv7+N5~r$%_L+3%qC<7 z%q8Ri%qRGYMHY@tkxoy&DIy>WRZp&wv1VIW{FVF+M7VK`tTVH999VJu)P zVLV_vVG>{`VJcuZVFq9?VK!htVIJThVIkl!VF}EqY^d&q7$|PViJ5}91EEz zNkv?lq#}WWt4O4qsew;2386M18KE8^1;Hn#wh-O^Oh_Y>RHRpM6&ZCiiSP?NGa)G; zD?qLqTHXsw(1jMvbX@D0$O@DtFH;1j!8$S_ALy2>OKJrrC;FWt-sd|&zy z{Qdncq+Tuo17wnb!3r*5sBUI5PB5I{?;mC1qdmcBnIvGGf(sb0oB4qgOeFaGr&!oL zPy(jPBmpxNT)-^dOliF4IRtId;P2mRA@6z#*d~(%>{M_8yLB_6@Jnhh!QX$tLO=UYln%-y0Y?;E zz%kuSNqh$-l7Dn5T@r+Coa9+U$T-41>N5Ex*zyF$r+8ZR`x=a#qOTh))(aprb zBitjz20S3d13V)5#HSYeuak;rGD*ct1y}J}H}e-~d`k$7#P@_?fR6;9_{G9_`(^wp zlT`dra23CFGhgsY{vr7L1D%wBmiD_8SSASwrr-iX=w{B~yA+CW9uS6b2@sCp6C+v( zV*ge+l1x$&Rl!w6*UhZM8DkRs{c$Xm87TpAWs-md3N9d#Ze|}&kc4m$kc@Bykb>Y7 zQ(LHJ|4~^QnWQ4Uf~&}=oB4w?W+nu}XP1@W19DhsW}iBzOp=&K!6oL?&1^zq0fN83 zu!ZmT=XDX8B%rv03n;0ZDTrq(O(+5=ODGN~Pw>!*1 z>>`{6>>*qL>?2$T93Wf+93tEV93k8R93$KZoFF^`oFY60oFTjboFlvjTp+vyTq1k~ zTp@e`TqF1o<)(%2SL9QwR>^(LcNE;GbWb-^6PF(l>Hr=Qe85u+<4#LrSlsbK!6m-Z z%|yWEH-yN5cZ6tw4}_S2PlPytFNFAjZ-hjEAB3cUUxXBZKZMkPe}r^^z^C-dG6I4U zvH*e;vI9aAasfgU@&dvV3IM_r3Iie%iUA@MN&=!1$^fDh$^&8&{D%_9Lecl~DaDmZ zet9QQaGz2l-Sl!&3zs&@{dw_CN}=HHPos>j)d0B&H34}DbpZJY{y_>_Nc%{hY&YIj5e4^T#dI_KaJdBGAfOcC2%rq%IG`Ni z6rcj(ET9tM0-y@vGN2ma8lVQ@CZHDK4xkR(ep%Y*sp(|i9p$A|op*LVTp&wu+VIW{NVF+L? z!9U0b3oZ7^lTE}On-$!XZPm?8!R76Q>42StS%BSyxq!Wd1%Um8#ejo^Wq`wkm4Ks! zHGty;f9_Kj#$J~PX^0Q;tb%)x^SYTPxO|Zi0JuzO3AjpV4Y*Ed2e?V-2)Iq?0=P@) z4!BR~1$ap43wTTz0C-9m40ui$26#yr33yEy19(gL5AdEa5%7^P1@M_L9q^Sf3-FyV z7x0s?0Pvfz81R>{3=rtFerziNK?weH3~r&+efeP5re0xH;CXLZYaS&+z5hyxX}dvaN`L6;U*CL!%em@%KnLQ zicIo3PFHZB<4oQ3@*E4vcgX#7asL7ZcmE>Y%wk+#MpzD5MOY13M_3QoMA!`2M(~|G z3BF|y!ME%u_?ANi-*S}TTTWQmyiK0$q)hTA&M3GiJExmozG&gi3%UOi?!T(w?!T^^ zUcO~v^GUh?HtxTt;O>8*n|X-KPY6!|F9>Nhk#v;N~i{?NvH*=OQ;8ENN5CTN@xaXL1+nRO=tsXPv`*XOy~mWPUr#XP3QyYPw+2v z5W&B~p#=X5M-cog98K`Aa2&zE!U+Wb3MUi%E1X8~4>yzGU*Q~rf75kl=2=^ydaQ7$I&7{EP)PyvE^n?t6%!Dj}?1UVE+yvj5kKkJh z5`0S$f^R8K@GYeXzNM^%-uCaQ%gH2fqN0L(vdX%dD!5#oPybfI+Lqu$J6PzqUC!N6COLN(1$XXlx|!~{+>6i~(2w8)1`_;VGKAp&lHnG5 zeUQ!(GD+uX1=l%NH!}{GClDqArVyqAW)Nlq<`Cur77!K!mJpT#RuEPK))3YLHV`%f zwh*=gb`W*~_7L_04iF9kju8CII8N}7e~REA|17~j{sn@6{L2LY_}2*j@oy6R3+{_#IrX#P~b3!h|?@4{CF_g(m|oB4suzX^W; zfzD|_V3{N!7$GU*U9ue}%IM{uR!(F#f81C+Eo| z-^qmv?mM|yH?stnmlIY1Ruk3$))O`WHWRi0wi9*$b`$mh_7e^O4ik<5juTD*P7}@m z&J!*GE))EtUL*L2yGig5cZc8~?modk+#`a2xTggFa4!h{;a(H`!@VQ;hxiIE6CBPzjX#31;L z*cR^Ff0__SCaI0D;7*lLHIJUM^%I@I$%3Fzzp=;O;M>n<$Nq!fE;7lx>aO6Py{B%b7cTcD^aBhe3<3-# z3`~v(X z`~w8Jpoa)5lN=%hAtWFS!5=d`!5=IV!5=It!5=IJ!5=I(!5=Ih!5=Ik!5=IM!5=KS zg=_ZT(xi|{j-FbdPlaLFLmyi!okWdIvlu!&%lHgBOhTzXp zp5V_>iQvysmEg}&gW%6mo8Zq;kKoVI&_d<|@^%`@ByXpwf_pmwx|!y<+=^fTZ3*oF z9SNNPT?yR)Jqf)4eF^;l0||owLkYtGBMGAbV+sC2#uNO}ClUP7rxN_pXAu0+XA}I< z=MntT7ZUu@mk|8XmlOQaR}uWt*IIbFMLvUdGRbGKQNeu%n{_i=aCtjn2Vgg04`4sx z0N^m;2;ey31mHB`4B$NB0^l;?3g9~72H-ZqKgd0TKl($0Kl&4bKl*cmKl&?zKl)pO zKl%rPKl*2aKl(RorQP=K(6aDa#e zpBRPUGollGMl6EQh-)F>vYaZOOj4Ur!JR6xZYBvXCnux;q$Z>Rq$gwmWF}+*WGCbR zrmmCvBHO!67DQ*fU_2i;6ZT<${X3g|)T3Ft%U3m8Bc2pB>b3K&5c z2^d2d3m8wB0GLde0+>#i0hmqjPd1O>pJgGzKg$w=f0pG0|17Hr{#n)%{IhHz_-ENn z@XxZ1;GbnD!9U9$f`69%7P4HDPw9Y6@+lowaG%mq-OMpuK1nzQI7>JOxJbAJxJtMN zxJkGLxJ$SPcu4T4dP4B$cuw%=ct!B%cuVl-_(1UI_)PHU_(t&O_-P^Fo4lQ0GRfQd ztKi;Fpi6qWY-M*j2%!QX7@;yC1i>eUwlM6ARD_X9D#9zciio>NfChx3 zfJOwL*wjMK-%`;`CaGwl;3`__W=0~QHDL^(E#W^vdxB5wWMRP%spu?|RCH5t6+Lt_ zEfCO)U;upxZ2|oVK5?LhSN7u`B$HGORd5xA7NW%l7JlwE?}2#rX&LP5d8i7E%b~ak8nUH z2{^3a0*>lt+Tsz86a4+BEc^&30jFh>fO85i;DThII>Fx`%R=m55)fM^35ciQ0utzEdLtka!QY?M!jI7M z4wA_v0Vx$+Kx*AgPP~J(1b=@93kmISG8tu(fGi3wAe(L`Ap&v`{QbEttP3Ood1R7+ z{0c6hpl;>>9-%P7-(So^c^gn%CJ88|-~!6%X7(VU9KqjT(ZVhJi>Z=K5>Qpa1yt9~ zbi^anB>4O5Scq(Yi>fP=1T;`^0gZGsM{t5B1b=^kg}@;tpt(#E&`QAtwARf;#tGUI z{QVs)#I#@KjxtF=7X=s4O*c~<0X+!*{@xZI*7xnm?)D3Oi^$F({wX=5io;L05FSC7%+$66X#p# zY=5~ekVz^QE4YfKx|t>ToR$-o16C4N0ag=y;yMcx?2pCuGD*cI1y`{}H?s)=+X!0$ zI|w@fy9hpUuZ8M=q+*{;QgKkhRUFpMOhdp?!c4$%!W_U!f=@hSp|}09a#kj(xS-%F zF6n0aBj5^Q5a1eNDBuRcC*HPD(Ee%Vj!aTPAH&Yw0 zAs(R~AOWEvAQ8bQCbdvJggiwunWQ46f~!can+b_CrX_>{q$h+2WF+{+EEbvulZvb| zNkt9?SCLCM^8shfL--8HNB9OPK=6r$E#$Xgld4Ygqncz z1fN*R!sC2WQCTLbsHWg5YUpN)Rd<(b5lRB;5Xu1R5qx4p3;ohbMI)J{qN#$b2+++` zujVedAk+f1BGd)6Ciuj57CPjSiuN)|MJEMU(M30trnBPlL;3A zQwdi9(+NItmW5~;rDC>BQZY}#RV>iW^un87MCc1xLKpy8M(~L%E#yfr6{}>DinR)^ zV!dvrAp$lMngBKv0svbHK5>VIdwHc|r%Y0@N5NI>)6L|l?k*o7i;DMv#>6?R0NkvDnco^iZHsFNBG`{BRmB} zAiMxXBKX9p7GA}ZifA%PMN9=(5nDG?6#;PxH30DmwE+nUJ~4@f44I`OsZ3IlLcvv} z(#_1o_dX3_4j>(2J|F|ZCuX+r$^Hn*B9l~PS8x?Mbu%|`#@vM4fV_lzfcylXSja-i zVp369CaEZ<;3`V!W;RxLmrD`00Ll=y1IiJ6VnqvI?T?U3GD$^M1y@mBH`5BQp(ddX zpf;gBpf15DHn1>1zf?4oNh+EsxQb@FnF=^#b3$c6OF}h(A^60$7G_tLigq$dMMni! z(OEY$s)oDVmEiC1VIfal3Fs-41oTmG0sV9{$!faG0|@^9!4_JlkbpP%Fo!9)fDyWx z_qaTY@Ch)6@D(tQ@B=WO@Eb6Z@DDJV5CosaR6=mTbb>$TEDL)Q$hkWpW3GZb_k7*- z@*)c_?EPJE|562a|8m_-cU)dc=ml6!=nGg&7ywvL7!24*7zWr(7zx-)7z5Z&_z$p? zFcGkuFa@xeFdeX;Fbi;yFc)x`umEtBuo!ThuncgLuo7^Zum*6JupV%punBOHuoZBb zumf8{;J*t`EcC4o3hvACQaAGh zmtPZp1Ktw;0p1gW;1}LULU6!mLMXsjLRi3eLIl81LS(>iLNvf%LQFuQYx-ny06_@x z0l^4~03iteWrVgc%l`R4j7;(~CcJ`sI}vr$%TX-UD6ISHcyxe4O{c?lB$`3aK&1qsstg$XkOMG12N#R>BPB?*fFr3wCXEN5X^eEDGO z;}=pz1^2;L*3C4+<*J0Hfa-+ifSQC>fZBvMfVu?V*}%df`)7;YIA&u7cZjCCnSHn% zKsX3!K{x_vMK}&Ot=Q`#t`YvQ5FAdxvi36E5!}d+n z5d0yITlj1LOgRqcKBeGJbw)Qc0hiAaCIc=IrU5PyW&*Ad<^Zk{<^ygJ76EP%mICe& zRsil1Rs$Xo)&U+7HUgdywg8?HwgX-eb^%@y_5$7z4glT}4g)?AjsZRqP6ECV&H%m< z&I5iBE&+ZKt^)oLZUFufZUX{e*AMm{ASmG>AUNR(ASB^AAT+^$Il@_39$UUGaq;Ut zqJsOjMApqDz~!if#DM68WPq52lz`ZTG=R8-^nmz;On`)htboJ>f6QbSM%jP9lUyeG zLrE$HckVR0>E-km(%Jhn;Qq`C?*6R0>E#?2z7~=DbK?Fy3hw@Vy6NSD7Pi=*ijnZ9 zizvAJi|J;H%OuAwMJNp@M~I4m3WOMdN`%;eDuj4|YJ`M<8iXW(T7=|)I)qe!dW5uq z280ZNMgmg;%fGv{|A%MJj4MreYc@bLLQX()LLNX%LVkcD6aus%6a};+lmK)flm>Jn zlmm1jR0MP*Q~~rLR0s4T)B^M&)CKe-Gyn`BGzJVJGy@DFv;Yhv7{CZZTfitn2f!FY zXTUf@H^6v8PryV%AHZaS|F%ve_^;zk3&rEw?>~M8&QWmR=XtuBJh;4okRPy!PzbPu zP!zC?Py(=mP#Um`P!6z$P!X_>;E%b{!p018?#}oPbBlsI_cq;3H(cI9@b~Yw@Y4Ph zxW%|*pMncGpqp9de?um$1RNo(0URT&2b>^m0-Pdj1)L%50GuQ223#QQ16(2;1Y98; z0bC;-2izc>0^A~;1>7NA0Nf*720S2K13V(!1UwR&#p)cSMVF2JCVK5-@4Xqdk2uc_U2u>IS z2ub)45SlO%5SB0n5S}m{5Roto5ScI+5S6e15S_3X5R}ElP?+!(P?YcjP@M1@P?GQtP@3=&P?qooP@eD|P?7KpP?_)-P?ZoE zKSrw)f&pq0LIP?N!T{YhzRIShyv(Khz{sahy@r(hzl4@ zNB|g0NDLTGNCp^5NC_BCNCOy4NDugrkO?q>kQFeAkOMG8=;1j=ExYk}OzR4sNKNVcXZ{18@1pFlw z00g?J0fhlU2tF~mg^C@eB7{s*5n91jgw@SdL_m0gzdw?NBRwS`vP=>XO~D1k(9Ik` zKrDj4KdyxnttB9yOcIb#!38AN%>+k4QbH&|aza=@N`g;JV3q1 zv`kV_PQg`F(9J}|Yp6ts0;ocW4yZ=(i8U>BY$g@8WRi-y3a+BQZe{__*pRRo(3r3c z(3Id4n_HM||K)89nWVxfxQaHqnbZhqM@R?gK*$K_MDU4SEj+TnGP}tn6+IPPMQ`2A zIlP9xgo}Xwge!o71fMv>LTdXXY^Y39F+#yrjMB}tK)@J+0gNNG1&k;7#7P#mG?j|U zGD*cW1y?acH!}^dVHRN~U=CppU>?CIF0?SAyHqTaNh+2qxQgYvnMF9`O2SgWYQhS@ zT7pm9U?FrPsn{r!RBTaj729+(0XX9hLQB9dLTkVtf=}FU;ZIwsI3SZ$99D1@M|Cqv zamM2WfBz{9lR8MiX_+M8oPrCupqnXN01S9ywkQS!2l8R6=Nkv!%R}o$}^9-*cBH<+< zGT{v%D#0hlu+X-XRK%1?D&i=(ig>!2`Z!|(LL)#TLQ_Bzf=^6tp?+7XNFkF{q*ibh zX>~J05s;oR0+5j~8jzXb6SG>r|v$s`pe6YeT=qQs^bWv~> z-E=c2@EUp$P6K)o&H?%md}4nKSL~lJ2FN58gB4uGP~A*P1PmvX0gNP+2aG28#Bmmu zG?$A1WRi-B3a(rVz-2;UR9q$a#2Xeu z+dsJ9lu0V?D7cDyx|wYVctF?*ctqF(ctY@r&n+zIA{8%Wl8V;~uHvn3rZ)oK6Z!!@ z5(WZ36MW(~3j-TV#dn#c;+KM}_@kTYiTCo4&<7Cswg&VE1SR;y5Ekm!lZucsNkte1 zR}oG(lNA9G2sr?e2)O}K2tF~og$WI$B8E&-5nI7k#MRAIMnHT*H9$f_O+aFTPfTW^ zd_$>7E|XNGQg9V%bTf4kkdDv*kb%$`kcr?Evs#GXQYx~^Bo#RoTt#l(%q0ZmC0qsM zC)@xOB>2Q47RvXKilQ<}MF|C0QA#(n2H%%5g!O=OgiU}71fN*h!VUWrRb-Ni>I$x+ zrf%jA&RCmpA5fR@2vDEk6B}8`_McQVmPsm_DY%N}x|#j8-Q|{qLjXfK3TQ*{iR~>6 z>njx}X=wl(-L`m!`lOzsMaEXI-GtY6PAq0Q_a0{Eq zO27!2Bw)0H3mB`LS&M-G2pa$s2%7iAyZ(8Xy%*Ws-^&3a(<6ZYDYc))4&t>n$W7B>@{`l7P($E?}!}W-tP_6NUkH z5=H`c6MW)63(4$g*;7Xd*C1pvVa zg#jT5J~6a~4&$UEj7(AyUcpsF)XhY~<*0=1NQ_SK0kH`FFNtg6-)O0bCzDhpRB#oE zbu&qDIXPh#DpC@BKpKMoOVV37G)5{i$Rrh+6KMrkm-A zfEomUe{BoH?2penGD$#v1sBjzH`550n-X3lF@WF$S`z$U(%M38`=hCiOj6Na!BuqB z&2+-$u7t>_=uYqfy$Jp<>1&~}{UrOzBozY{T*YAB%seCxCHVVCSeRqKZ6jrpfH4X# zV4QB|KU|(jn1;m31RpSs;Qx}D7B2LYidiyA#asnfF<&>c0GAgN0;6In!3V4$_`hVe zh5iGjVvS5vv0lMdY}C!fN8)CJzki#Bn$!0s9Cm0S5>^;IM_& z<0bKkOp0vpQw3M?TsQL#zjM7L`~OiOj40R!Br&E&BR7P5`w=!xrJ6EB_M@N z5|CQK1*Fx@^h7{I`Ox4Xi#-}iy;P0PhA*=lqX3Hc2^Audb0^Lk-oL~{b z-@nvCQTqpkWim;?N(C3NS~t@c0c#2V{tXr$*mtl|CJET0-~zVkW?CU&2f^RJ+d`~4 z60k=m3D~dT0uJhCy47))4-@?T$1I$lF9FA8l7LeRF5rxAW+?*B5mo>$5LN>&5q#oR z3rA;2#Wk6v;--SDxUHKhgMhn)@__q1N^};0+-@ z;2j|m-~+)YezwqOl2m+=Nh-c8xQd^;neX_heiMEH{u2HI0^R$+#Gn>(O_qvaGD$^9 z1y>PTHxmSB3`+Q7rUWEEQ2@l8P7#t|FFh<~jo65N-kD5$*yK5PV`{ z3&WO6MG~2$BDsRANU58NP}f~fO^6IgONa(YPwvDzi*dkxju>*4hpWKlWry$&e(+z63~qh2GE1x6MI{jKT9h5$Rrj06wLS4WjLIc1Of=^s-VeLGrSRs>CtX6OpYjrczamMuofBz;6gJw#= zW|<^ln}Q42p_{3OfL#QC|6U6p=SsjnnIzz#f(tmTn;D0Iql5{7x|ve=ARZI^{m(4y zwm(0f%OnA>6kNa?-OO2>;2q%t-~-_@;1j_oezj0#sZ@NENh*FSxQgGpnfD0zOZWr` zbYBC$0)h~HVsHy*?eD80WRi-|3a%ooZYCK5!V~=ckt}3eA_0+Ql7MImE+B?(<{<)N z5&ZpeEj+jX2qm6O5|B{A1tiwZe86w2NeQ0;$q7Cnm4(Ol8=hJwNld5U5;N##YT-zk z2z3Ej2n_()2tF~Vg^AOoB9}~3kypW0 z0aFM*ak_D@e zvG5w!5&ZodEv%RSKAqVllLTy4Z~@zOGcj<2odkdX9t+p)pO*H@BmoB$T)-jS(3B1UNzPiKi`OvcGW8$Rri#6 zL>K}nLKqGxM(~LxEiBn76{Td7in0o>qP%YA4+1I@0@ZW(S0)4nR3-St8Wye}kcyfz zNktt6S5Z$lQx5?R2n_*^2u%P@2tF~u!jL0U(Of2}XrD zCw8$Af45Y0l}RdkD7cDVx|zrb=tGDG=tqbN7(noegDng?Efqs#l8WI9u41Ha<~0IF z6W#&F5DCj2oq5p-fV- zM8Q=o)6I;=H);i89AFh;0$>fnC$6_J`Jhy6kVz^wE4YfSx|!xU<90$Tz)nINz;1$1 z+-ITFIjPt$lT;j1a1}>%Gtuh1%f|>Y0VfD?0H+8(@vMdD`=sKWOj2=C!Bt$=&E&)x zuM+YAt`qVDZW4Ur9Sg?~OT}H8q~d{st9YcF8G?W(gyDc^gi(MO1fTfYLO5ITMkc9v zuiz>^>SlT&;4`5w;45JO;5)%5{<1J_t5p1!Nh!f#4H6Tex6%-1;sgs@&q~EanWSQhf~%OOn+b#O%M3zzz$`)}z#M{4 zoNpn_DXCZ>lT<8La1~2+GuLs(<%C;+m4v&1)dZio&ce3!Qn6kpso138Dz@lmy5sw@ zjnE6QgU}bSi{KOYS{S=uD)z}F6$ceu#bMn{S)B1Gp#tDIp)%kk!6%-vFnotpoRvu` zE-1K)OS+kNIO7$*gdq6D&=v~VpR{3Ql8W#Ot|Fpt<}1z^neYP;mGB!7o!}E=S%_m_RBV}~ zBA$Y)NT8cpkAOskO@JhXt$<_%pP16ZZ~F(%R5D3LS_M~;UN^H40T~JY{wx+69Fu^o zGD$!V1s9M@H?tH0c?c^2`3S241qeQ|u!UFlPpm~`l8WLAuA-!FW(q#4(uC=NvV>WH z@&un)$-=TtQc+nZsi>ylDr)Fv<{_XKVIiOnVF{of!6!DfaMb>gYb29YG*xgF0lJxo zcnvKGPXMh5&jGCoKCzvJrkkary-ZTkNx@Zg(ao&D8M_fy19}kF0eTU9VqXgp?eEO} zWRi-33a(6Le*`OxI!jLT&>^|*Xm|2;7IEU zmjN3I*8rOdK5?6cDSM=1yG&BCOTks_(aj{s8TS$V{Rb@+wf`*PkW3PARKW!t*UkLE z2~HCH{bwwEvnMz!lLTB)Z~>QeGpTWcD+GW4bqmYyOTZ18B;dA!3%IMBN!7qzzEAM? zKeEu~fdo93NdlfJxPTYBnM??HMaT+xL&yPmNAQUsE!;>QME>W?Ws-`o3a;Y2Zf1QG zcljs5-~Y!#y&w|sS0)Jv{MdsF2&$XO)yQ2APRI)gNhkmaP4J1~EPP8N72#!)ibx8s zB8qNiFU}Z^Z~zd4a2ODa;1lCo2xH%LJei~-p@OSOteZ)P_n4I6?@wVN#6Jm0DU$@G zQE&n2bd&$Gvb&st;P20D;c*6e$Sg8RKz0QekW)ALFJ-#Rxe31kc?tgj`3XL;kcAWJ zq@u7)Qc+C7Rg}=p+(JMpg1^74h08%Dpqxw+P*K4JRMyRu!$VdjR0LEfQ~}f^_{2IE zGMtz9SXU;gXrSOK8tG;d;!oF22uT3V2+0A>2|lrvg;@3}j7(C|R>4)Y*Uc2c89Ne+ z13D8*0lE@=Vh;;x(@RB9nWUnRf~)AKo4JQKJ%I2KFo^I3FofU}hg<0XTwc@&nWSR0 zf~y#-o0)@e?0*D*|3nMde@eh4nIvGUf(w|gn>pFgU7kre1DH)X513211ei~_3RpbY+D3iS2BMR;i$80%`C=`gV=;+fVhN} zfcS(pfP{qgfW(ANfTV=2faHW7fRu#YfYgM2fV6~zfb@hTfQ*FWfXswbfUJbGfb4_| zfSiQOfZT*@fV_m8fc%6zfP#ekfWm}FfTDz_fZ~J~fRcpQfYO9_fU<;-fbxVdfQp3g zfXaklfU1PQfa-+6_)$`m5DZY85E4+A5C%}65FXHw5DCzj5Eamr5CafEhz)2#hzDpz zNC;?6NCId}NDgRENCoIfNDJsp$N=a{$PDOC@V}gTSt#{Ietq?pNq&9xQ*gh&2Iyu6 z;_?tedn67cbOMYZbOnqe^Z<+@^ahM0^aG413w2j0Majj0emn zOaja$Oa;s*%m6GT%myqb%mXYXECehkECH+}EC;M6tOBehtOcwmYyfN|YzAy5Yy)g1 z>;!Bl>;dc~><8>790Kem_%Fu+g8w=kwh%n7{E_5{O!DL9ALKq9EMi>vML6`)nMVJbxLzn@mN0<$0K$r(;MDRZun_6gT|4B+SndC=h z3kCP1vXyRnxs8Qt!R1G5TioA4!QJ0UH`5uHyAiqrdJ%d9`VsmA1`!4Wh7pDXMiCn0 z@4UtkngPZUS^&lq3}7OmEnqUC17IqlGhjNQ8(=1(Ctx^GGHxX8elzPCSW6B4q!83K42?h5nwxEDPSjI1zbk53E(l|Ip8Vb72rAHE#M{L1K>5`GvF=Z8{j?RC*ULD z58yK)5Prx1N(c)0P6z?`NeB)2O$Z10ONa;v^h|%=L;(aLLWCg?`AplT_&=OFD&>B#T&<;?7&=F9I&;?M2&>c{Y&^0_aW%0Q4lZ1oS5O_t(!t>YMUH`^zLRbdZ93p+j^thw#ti zh7pbeMi5Q_MiEW}#t_Z{#t|+8#uKgpCK9d#CKGM}rV{P~rV}0jW)dC)W)q$P<`P~4 z<`dok782eA785=JmJ+@KmJ@yeRuX;#RuldK))Io?pIWUa1P5#+gaT|PgavFRL;!3j zL$;irczHJonEr|K)c~IfH344Ly7XDn9Q`M14PE}vQovNX3W<9>`jR~6o zO$l280fZfZ7KGh^Rs`SK#=;f*_u*}2l0$S*aEIumn~8=WSzQP*0o@3306hrt0lf&m zqOXM-Po=Y;OzwXQVW5(09ju$_k9RkeFbFW5FcdJ7Faj`|fD$v#LaK+-`kzelq!Sff z=VaYXegsS<6aq{q6a~yAlmN^olm^TtlmpBsR0J#}Q~@j|R0k|2)B-Fg_y<{K;hFu< zA*_~3o@||hd$J9>nb-K4wu$f#u!Zmuu#NBqu!G<$c3YSiO*;3;B%S*eT<1aEOfCGP zK1}fUAG1)<{+c{4lLVYnZ~ zij=yU8VE>D@b{;)@X-dOmq`LLDY$?vx|uo%$VTw@=d@6#j0EJ8NdodJxPbh+nO4o* z<${DZfWn0KfT9GSSi-`NoKjIzCaEZ+;3~@LW;!)>mn#su0xA)D0ICptVs#5$b4f)F znWUn&f~%;jo9Tmq`h@;~hJ-T*Wlq%vS`=Ap8K#BK!u-A^61k7B1TtwLm7R zSghbGmg;5_;x#NMBmt}>BnPY}_{4Pq5%K|U5Pafo3wQEK#T}WX;=Y2bc&MA%j)2F6U4W;Ay@2NgpZLl`>mpL|S|+J@ zr{F3+=w<@pHGCrY`@dS4TUr9X$s_?k67xc>Shk&A;S~={gEs*&LjbmWs-ns3N9dqZYBZ(Vi6((;t-+%;t_meLJKj< zN<|`>q#~(;t4OY!>5PX=N$3VhP3Q?oOYn&qEX2<&6&YociYyAQBAad|7S5Q15Eqb( zkN}W};1ly(xM-iEfJ{kbu+_pg1&@Nfc}KBfPn;`IK;x6 z+)^=ACaD;q;3`JxX2#=;V+fM~;|Nm$;|V@-l7;cbrDC#7QZY@zRm{-Mq{bO%5z+zX z5HbSh5q#o83*|~k#Uh!cVyS|wSgxDNihz}b9Dvn?+<>(NpSZ!oiab)WQ6{O_qTnjF z>1Jl)HS8eF0qi2o2kasE#QhdB+t1>FOj2=J!Brg9%?v}pal%NzNx~SwX@XBYXCZtx zsW>l_R9sSU6<2gKg%EI!P!w>3Py%p^;1lm!IAedaxF?fTJXCNMk99M_@TQ* z!T??peBv7m0ePk3txQt!LBUmg(#2&<5-xV zQ7YofBozr1Tty9ID_FhwEnYBVZ)K-#^AedHeS}V`Y+n@d_?rqHg9Ro@p|{-#^X5 zFZ)Nw=`u;cECm-ZM>lg60rLna01F7G0gDJeajAtH_K#)DWRi-N3a(q% z;sco^@v(wSe5#viAK)%OCv*b5Byji0ILxj9wyw2%@*>CS!~-YZ_DZ8bli{MvI7u2%-}~5JUt)5WN#Y z1kqb2_^!3ib)CucJn!D$x8HBS$Fb*G*Ke)=d9Az5J+~6?6GCl3GQlT4voN%Uw0JHf zX_4xN2iGEvR%R7WY&ybPzzc-00T~EBF|&mh5z-=yjHE?&1=k{{R;DiYn49nxATOaI zARoaezHDJ>g0v_gBWY1c!L=x&l{tfeVubU6R|!6#l!dOHC9$-OB(bc5ODwOI>5OX^ zNazNrLnS5?5w74`L}+C~5fDY_1&AR;0QwMoV!Va#`$>xg8A*%&3a-UKt<0Y| z4TA|!0YeEX!d$>`f=?W2A*zG47$qZVF-F0)7^jt~ggs6mR0T{V)BsE-_{0w_v<;CK z(_|zqW+=E8v$QgY5%3Y=7~o^VNx&xrpE%#b<&M(gGZ{&Xg$l04BCSkA1S}!E16WFE z23St;iK{F`w3HUBWh5=WQgAK4*2-+f17`!_JHR)Doq){*pSab+(q7VHn~bEz4h7d@ zr&i`=T-{xSf`C1QB7nUFpZJr7@iEfkfQ+QY&kC-^5v|NX1RNs_0h}NV2b?1K#IqK1 zL`#cvGLjY-6NsF5@k`}iWT#LI}nUT1d_X!^W z9umd@9us_GvV|J&N{hc_BrTpRxE3jI>U3@dq$a!wNK42MNKf#I87$22BrP(^NLpl3 za4oWFWm+L12caz>7oj~M55Xtqv+#LOY4MVbq(uP**P@_SCMC{vVL}=}Q9^n^ae_}Q zX`w_bX;Df>(&9A**P@(OW)JTA3WR-tii87z$^@TS&BAY?(xSSIq(v5hw2tKj9g?FQ*MTm@~MNb9SqL)^t3-)LTL4Zg?cR)13C-$*W zv#+#>m65baP;f2!X=N@UU;yC?U=ZONU-z%K;9{<4K~_JMOnMiOvM!3A8`%3Mdl zO@d#4+rmD3H{6kt1l(6}0S~n@R}t`-;MXTxnAchY{*sXdJXdf5DgV&v3wSo9CR_rf zC0qfdCtL#r5N-f65^e!96Yc`C5*`4u6CML{5|RPA3C{p|2`O>x`3PwM`3dO(1qc}c z1qqn}g$e$26|*qKUcp;fQ9{9;zfxN1^lKIZf@FPJ8Oiyspy1Y5)JihlbY;RcKvlvF zKy|`wKuyBOfY%B00B;aJ1H4IC2&hL`40wyM6!11-1)vdOHQ*h>SAeF3^?>GtZvZU` zTL7&I+W>6|I{@zzegJeJ>;ZHl>;rTm8~}79_=^&3VY9ue_pqXeg1bsRwbJQu3w7)} z`zG9ckqT~ov{pLZ$HLpaWqquSX6 z5F!D;5n=$p6Jh~32nm2c2>k)K34;K42}1$*2_pax38Mgy31a|%62=4mB1{B4BTNCL zxTRNV8Xy&61|SV#HXt40W55f9d4LRr&j6VS3jtXOivigPO943uD*(9&{(j19A!)YU zU@yu@Zm|3c?glHMmH86^1qn|9g$XIbT|iMnYCv&9IzS0R0H72h6QB$sE1)bP2cSG5 zHz1JkBA^l>KcEWX6+ksYVL%N+F+eRs2|#T^X+Rx9SwLMv1weg5B|rm0RX{^R4M1bU z>wqSNI)G+`dVm&$27p!se_`8NXg*%9bUPWzmF}S6u5>4@Oio8QdJ+7tA}nkeAlrZnM1{h7K2^d4D4H!pw6EJ~LA25;dHefQLF<>g8DPS6* z1z)Ioz&MdjFFXPVN zrQq)CJzDAXJ_|pNl=bV8ctF9eKctmTAF&X(K-M3Xk$m5rP;l!{X=SG4`EZ6X3viAw z2XKM#3E&sPe88`S&jD8mivYh7{I0HB7~WsDc|%6B&07j?n|HJ_0XXV=giL@3gsgx^ zgdBh;gxr8+g75jv!ocaWiRUtsO{BW*!EGXqR%RIJ8A-$33T}N~t;{U!I3HmSAV0weykg<$=aN`ZMv_=W!6g>c%B;YJc$Kgk zP?GQ!pfq7U;5EWGfO3Q_fC>b^iAomQ&y!tMmXYkLnu6O^4Xw<(2&hHq2&hfy0;od> z0@NjR2h=Bo0vZr{0U8n_0F4RJfF^`KfM$evKnp@YKr6yPKpTQT_IE9u8z(2Dy^Q2! zbW(69ql;E16YimI1iwDm!j{Dn&|O9n5USt;!n86Mu!C^IB|rq>3LuK$6MI|8VxKa7 zWF#%(6))0;Yz9RU<^%nZtA2AzbBrP^6 zxE5QqGS_e#wi0dtwi9jvb`X5x4;F6Q2iYzeNsAv9T#J2LnR(dbPlV3^2MG%SKNEc7 zQ44EENsD7Lk`^ZwT#M6MnVkqYOV|xKPuL5%NbrfjS{SfIT3nWqwD?WIwfJ2t^E)o) z4Z=;pAB5Y0+XSC@&%z%cNQ?V2k`|8?T#F}KnTyzCGT~RiQ^HlibAnGybw^tKZhwlU zmXWkbr{G$=pq1Hyi9YZ)yfRTX~;(y0mx4n z1t>u9iG?hDn$$%(=PwZ_WDN$PVk&(2BS8y%*YGo?n()K4*1q>wA01PJh#9O;c!fF!~$zzl*< zoNeL61ZnY+jHJa}1=nJpR;Cp8IG^wuU;&{#U?IULF19eweh(~>k+fK*;99KE%KVHy zt|A--tRb8Ld`0ky>n*gLC@nU~NLp-Ca4oiIWol!OTM2IhwiD_Db`X5x4;CKU*Ogr| zk`_NIxEA}gGMjM2{Y3Z{aFDPa@H4?D9<@-~erq3-k+e9e;98v4%A7>NS%P1G!NRil zCE%irB;Z#C7jQ)@vjhRZ5&Zh=7QUDv0XJkM0k;%fz#Xm3ew?LygoA(wgu{SG1fTe) zg-Q0;FUc~J7S9x1ixhWt`ZNMk5zaYCC~4A=E@DkOg3k=FP~}T$l0in&B(s8Rl2t2n zA2(EX!XrRV!k>WL1fTe#g(CJ9JD-fC#mfq=#VcBw=Q!7e2&u5?B80SnVg#R9!b1P= zrA0{@NsBTHu0>g`OtT0#U7pYq5J+ePs6_CIRV^G}AuX!ONLtiXa4lZf%2YIN`VB%A zz?+2XfO-U<*uX;R<+4(v?BP#wia&hlost|BrQ59 zxE7tXGQl_vT?jn@-3VcT_Xs{Q#6tE>(xQiqq(zv5YZ0!MIfy+*5Do*P2*&_11fLjd zq2N|&5ho*Q(O1E>=&zMYhdmA?1ONsTG69AXeBuZT)xVM!@5@M9j8eLZEK{(R2fN&Bn8)EhE^s70ka4_0Ur^<0Ur~5;yerc?X~z+M$%$| zf@`r*D{~3~iwI`{O9&SLO9?)4g@tV zV&Ty)Y4NR$q{Vgx*J6iOW-u=1PQoz2F2ehOJp`Y)&%(IP(qg}iq{Tr6*Wzcb%&*wv z5yDl#F~aYF69k`l+CqaZ(&CJaq{Vp!*W#j9<_`p1BHRI7Cfo;HCHTbOEkrMq7T0AY zE&fn&EpBUNaw6a^ArIg_As^r&!6!bk5Vt{E{3#=8@l?UJc&?RMg@Bazbp2XDYQoom zv;?2{f`!dHq(y*?q(vqL*CLBnramraHp1J09E8SzTm+w(*Fp;0;zb!ri~I_%MFFi$ z4FnVr|@KJhIJmF>@q1~QTsjTBsqceFC?5zv&-3DBI- z70{C46Wdr=_Jg!&DxE8&% zGSBe}V+g5m>LUqh0nr4X*vG+q{S!&*Wv@MOcVmf5_$v16XF1g1fMwB!nBprVv3BU#WV%iV!Br5bp*^L)B(&U z)C0^R_{2{vB!4X}=E+D}e5T-9e6E%G7y(}p<^dKHJ_CG7@QKSUl(#>UR>(+NtX6O> z)@o(GLBKkKU%$b^lWh{PQAQH5S-}N-tCe{LH{3QtVZe8UVu0@nK5>_YRqLe1ZW&37 zy$Y_yeyz*|?C}6$65tSFD&R1|Cmyqq@>^+fTt?F3l!9wZ9iGLjbQ6(w4ao%GHWdMB$J|N!0%5NkwK}M3; zU%@2~)XMC`mIf32`e7Cl?5}Ny%SZx7D!72rTA6YP7(?*u$6M%TewFnWz~>4s;0vuxOYC4V z!LMIxq3r<)SSBM0SgGIwR%>N0Vh3vpzXH|~t^(E*eBw72B7czY_AUnY)=CY9Du(Zf6BWdxXf@|@TRwgF`UMA!Lyh6waC`9my zMJ@C{A}xx^NLrLoa4kw{WlA8R452ijETJr*Ji#Ycv{2zkX;Dc=(xR$@Yf)V*GY4n7 zCgBsn>xB7$HwZqlu7xx9a@UiQv}mB_VU zLQlXLLO5U?!6znK=&?^)Oq7wdn4;iXe5jS#h>Mv-*bJCK*b10M@QHIQy!ErR_*h2L zVxEF)F<&bafITiCWCAQCWCbiD_{1+Q#P5+7OJyW2Rw%d@tF$sxvBx!pB*0gMnSiee zK5?Uk@9o3<8yQK9Eefv1R;^59+%MY+O#wRyEdVzmYBvuwu90lt&F6_3kt492Cd9>1Y{!o0mwqQ1IR}3i8(Fovn_JTNLu7oa4qs_ zWgZ|PKjAT;03jJrkl+)GSeW&bv?wYgY4NIpYf(}wa~uJs38w(B5zYe25qx5xggi(N6gfW2H1fTe(g^y24i@GwB7H=uI7H?~1q7cxC&>Qd$ zAr8=#;1gR|X!@J9XelFU(MG|wXs4B_g74k-gzA8fgj#^k1fST=!tJBdB1lHkqPv1? z(L*a!3w!KIcmvRjP#0hbJ~7I|;PcWVT1L{MkAiCvro(gw;%T2xkWEvjl|0&yCu6Dk905~=}SC-}rV7Vg_? z@urNVMSTU=qJdWC5CR$!jsO}Hjsuzyd}4D8y^c$Z7BZ3+trc90wpy7M2zZy!8qk5z z4$z6<6T4cNb4OZqlaaItR&Xssv@*+Zrb7vSeJ=}Ff0ux88A(8-f(wY&%5*?LZ-QSR zXCdgW1jNfo0{SVqfB{;WuMjYZ;MWheaQ>zQ43m)ryszK_Mrmb+BH#mpUq8;mv=pi3 zUm22-1WZ(L0h6^d-J{*~RDxfhWMRP{vV-X|l7LwXF5n}r%m>)P#{|EAo`t86B;ZpS zNx%XH7qCz(^B4h(2!8#S7Pi}yxKu_GutLEFtkTMCK)@P;U%$@6kS7xGwTvWSqk;?A zq?O5lbFhVw8L*X*4X~Zy6Ti1m^q#cXDI;mITfw#XQ7f|kn86dMp74Wh4QI z6vTm%5^zny1zgw4 z+{X@X68!qx7PjA#fIBjhfcpwA;GtF~2?37@etoiqArB?sFBwU|a|IWW^07`|K|pGP zU!Tsx#*}iiretmWef%dy4hm0g3w}K1EtCi`7fP4hM{$&d_ z{**%~AR`GVq~HRIXk~ICpcuigFJU3-xdfDykpz@cZ~Lq-x%SHT6;*UGHIRcJu)>l<09Yo8d6Wh4Pj6D#@-3fkusDBw)6J3z(yo z`2`0#m*CfbYT<$Xewr^M3HV&W1$?2E>4_aICiwMBEwoRT9W0ZP1gunW0jsq#MG&x- z;Mad`;eh>qS}!9B_(s76Y}U$jLcq5Kzka)g?KdRgI~hs9P6ZdRODoeG=U@*Z4zQQd z7qFk;6AxM#ZGU(il99AHqTpH_)5>f^zzM<*z$wBHfHMT2c-}(M+tT8KjHJaS1=r%T zR%R9gt`g<|t`R-~TqpR%KP=R}FD-7#NLt)ga4qg@Wqw4!L&AQ*W5Pkep9G)y)WTES z;+c%3Mam~0T#M9NnIi~DOE?ZlPdEh#Ao#>g78+ld7MW!vEwU-N7CE#sT@a9q5Cq6W z=ni<1;1ly(Sp7^|yeuPWQBc9PD6Exfid(WMp#`8gp*5fc!6%lsknoqZC?g|jQBJ|N zsGyapfPjjGN`T6Qs(`8lpIE~}TKm(!ri`RTZ3Wk&j#g$oPD5S7L_mGQ6hH%lPi*AC ze(N=sk+f*4;94}-%Jf7)OF}rHH6aqvmf#cHTR3mOFFMFbT69)$ExKxDK0`ndVId%x zuow_R@QFPwJg`sUFd0b;qu^RZYGvx-Oh*$M0D2P|0b&V0F~Pz{`;_b}BWW=}!L=Bq zm3b8bLkOh+!w9bdMi6}BC=1)|`{`&INsF-xuElt*ObP@f5>f*u5z+ys5Pae^3+L@m znN(Q2sZ(93AX|B2tM&M3n97W%S$6%i-iiV#Uiat0ZcC;6ap+I z6a_3Nyb4%JC zfCq$XfJcOyfG337fMmj(fTx7|faip_0V)6dx6_rz!irIH{@V9*=P$j2JAVOMnNFC_ zNaza4On48Fl@J2RPUs29NeBnzCPV`A5@G=P2(f_tgakkVLVrL(!XQ9l!cag_!U#Zd zfsd>| z^{lOxseU2z3Ds32y-!6B+`V5Z(baBQyiFAhZOuBD4XtA-oG{ zN9YJ>Pv`>ZNC*OSCUggMC4>Tk2)zKoga|+gAsP@$=mQ8N!~?ZZC5HN%=9WabA3owE(2QZTG31Bo~K41*tbHF&l zBEST~mw<_c<$%eARe-64wSZ}auL08u8v!#3n*p;4TLE(j-vQma4tpL{vZ2>n4 z?E$w4od9JzR48W4U5G$h;vG$z~zG$GsrG$T9&v>-eIv?BZkXhV1o zXh%pD=N=91326Zx2`>OT6EXt260!q=2)O{kguH+dLIFT1p%5U9@G2mjPzn%1C=ZAt zR0PBjssQ>BssrK(wEzi(Hvs(zbpZniZvh4o8Ult8-T@3FGy{wvv;>SKv;mAJybBmZ z=;%QH!Gdw5E?6^x5CoV==nj}n2n9?f^a4yHL;$7}q5(4reE_ow@qjsmet@}zfq;30 z;eh#sk$?q+4*&}Z;{b~YiGU@9$$+JV4*|;w(*Y|9vjD3Ja{y}zp8(bo<^$FfJ_l?h zECOsIdSPs}qSOwTlSPR%e_!_X2uo19}uo!V$o6!g0V!!YROM!dbvs!Ue#2!X>~(!WF!Y#m6!d<{M!UMo{!ehWq zLNeeM;Thl#A!WRKUfv_50X!h22RtHV06ZaN1|$=*0iF_a0-h7{08;*?Zy@;qsR=Iw z(h>>+(i4gR0tm$c83`o;nF(b8SqbF;*$IJwoP^4N+=Oa?yo8#7e1zJ7{De0F1qk&4 z1qp8h3KJRwiV~UviW6D@N)TEDN)g%t$`CpL$`U#Q$`iT)0tr0;l?Y*gDg**BE$h|6Z!(`5C#D15{3cl6W#|jAdChyB#Z?#CQJY{Axr`^BTNOfAj|}`B76jB zLzoL_M_2%8Pxu1Rk+2NVnXnSjm9Pd7MA!fbCTs$P5WWS361D@v2;T$33A+FhgdYJ> zg#CaR!a+bE!eKxh;TRx+a1zjua0W1da2_y-@C#rF;WxlA!gat1!XJQ<1pjNq4=gku zD!*v_y{~)HjZ<*HXq=#xxrynCgxi40gnNLggol7>geQRMguehY3C{tu390a#lXD1Z z0dom20Ok=g0_GF402UCk0~Qi;0TvPR0+tY70xTsI04ygI0<0ty1*|5#3Rp`h1z1OT z4X~b296A}(eGfotLKq+|!2r?|q5uJe-hhmRI6!7XUqDvE06=!aU_eg7FhFj?`+&TJ z(SUq}v4H%934j8GNq~Zcser-+fBuSDDEWn)&<_W=d#!|mJE5htGSe|#hA<0ImM{lU zp704EkT4%miSRj~3SkkT8sSSo4Z?CjEy5~5ZNgeW9m3aux`d5@`h?AZ286AEhJ^0` zjR`veO$fUI%?Nt|EeJmWS`iKb+7ONa+7XTe+7nIzIugzTIukAcx)Lq{f(Tat!Gvpo z5W)>WDB%_$jNtDUV`1}z)G4MfPfX$dpE-c1T9nSX`zS^$^E0OV5RL-k2qypugwue2 zgmZua1mAP8h03Yr%LDvz+AsyTi4j_v$Cw^TNCu21JOhj&q{MG_k0Yc3OdzBOOeACg zOeSOoOeJIkOe5q3Oef?4%p~Lk%qF}Hm_sNCm`f-Em`5lMm`^APSU@NPSV$-bSVZt= z_)81L?Vq>@40O+r%630Pey~3a-T#t;}Fd zZzT)^Y$v=A*g+T#*hv@**hQEC*h82E*h}!c`pH6yJhIJQc-9_LaN9hrmH83VM+y4@ z#|Z}kCkclErwPXZX9*_(=Lu&37YTk>zgozjO12q?zie|=!EN)JR;C}OuM-9WZW4w7 zZV`q9?hr--?h!r!JRtZ@Jhsp@zwD}TZ+9CdE4W=f)yfpZ^m9T9K+0ztP#Tb$P!^Du zPyvvhPzew~@SDhFq4iqXRV?n!tO{;d*|jnWn9fP)56Ddz1jtJm3dlzo0mx4n1t>rm z11Lxs4=7BS2q;RJ0w_+H1}H(80VqZAhx(d@AIHnFZ^hHLyn;LSK&{Mon65;Z%l_5s2O z2LR!Op8*ksqkt&F2|x_tG@uXR93YNx5s*Oer@X%fGf}R=4P5s@3ho*V(aPMy^f1C* zzzD(vz(~Slz-U4;U<~0IU>qT3fA@fyKu80aNJtNuOvnJ3O2`bDM#u)3PRI$ENyr13 zO~?nBLwFf5mrxKek5B|KpHLjIfKU>!kWdD&h)@o&gb)Z=N~jE2PN)W0NvH`}O{fi6 zOL!Boj!+-4p71tcBcU;16QLT!l!@-gav>{gf9S32ulFTgk^xIgq48jgf)Pa z&-DSc4v?C#0g#rk36P%fEg*of9gvamJs>k-7a%L)M?iMMen3vbK|pT8VL)EOF+e`T zNkD$W89)KTc|bwJFMz^?%YdSU-vGr4*8wF6e*j7m?f}XV?gPpa9s$Y|{saUPo&qWn zQs5=K3L!P18X+B^1|a}Yi;xLWn~)VyhmZqMmyjD!pYS4}0UkE3V?tp-6GAaS zGeQYK3qol?D?(X78$ty@J3=KudqPz}M?wuiXTs}%u7o;(AVNJrFrfh;gwO~ON@xNI zBQytu6IuZx2yFpTg!X_KLMK2ULRUZ>;XObCAq3Em&=W9#5Dpkbhy)BF!~lj7VgVxv z34oCV|3>qHg|BkSE6!@Xh>lZmuQ(I5GGAeOB4IsXGT|G*RKga(G{QE(bixk6OoHFU zM;4~!kuP=dH{|9jxLwWD%GAU3d_n`j0zxCeLP8V3B0_V(5<)A$QbJq6azcB+N1QTEcsPb%YSWdO}aYMnX7X6Co0?g%AVSN{9t)CnNxN5c&gl5(WWw5rzWx5Jmv@ z5=H^`6UG1z5XJ)z5hel-6Q%%;5~cx;6J`KT5@rKV6FvrC zOjruIN>~B7MpzBFPWTFNldv9ei{NkLyB3ZWkT09C;(>y@uODe;zQyzt!gfG1;d{VS z!Y;sb!jFKIDbo6$`vIv52LWjbhXLsc#{dC@lYoqbGl0y5^MI^`UjW$&mjO8mzX5U+ zt^@KC{s817+yUe#+y@jOJOUIX{0S&bcnT;=Nb$b=1y*rFYCs7>IzTBx0H6#Z6QC?1 zE1*0f2OyA;8&HYxBA^N(KcE`H-##@hoLnkT?|XQ@*H&=%Qys0$Lrm8tJOR`v`~_%0 zcn)YtNQK{TX-r59XhQItXl`M7i0rCZf;*wD6x^=bXk|)Zx*ef3pgo~1pd+CIpfjNo zpevy&Ac#-{5KMR-5JIQ}2qn}5gb^A5!U>H45rigyC_-~U451aE51}m}j?f;EKX#v*=F95C+G6HTAvH)%ovIFiAasloU@&XaBoIyk`Vr0o z1`sX)1`#d+h7hg*h7tTr;rkYrt(UjN&3KO-t>E4g$7p4~!}K`9PQV1hZoovsUch9+ zPk^a}Lx5?7BY^3I%0cc;eJvpkU>zYnU_BuNU?U+jU=tx5U<)B9U@IXHU^^in zUAfSZJ1z%4=#z#T#u;2yyM9uT4c zj|ja1PY7{)5 z3D*G)2!8+?67B#R6Yc|=5FP=V5&i_UAUp-MBBU7Xo~LaHsR8W>=>Y8s0f3H#On}aW ztbneB9DpD~Za^^MML-B4KOmIw3LuP77!Xb<28bY(07MZ=17Zke0euJ+0C9v$fCNHS zKtDnazyQMQfI);hfFXo>fMJ9NfDwd7fRTjefYF3jfH8!&fN_NOfC+@IfQf|n0Fwzl z0aFR#fN6vnz;r?^U?w2}Fq_aHFo!S*FqbeCFpn?-FrP3Auz)ZIu#hkwu!t}bu!JxL zu#_+ju$(Xhu#zwvu$u5OU@c)DU>)HzzNkW9z|cuL3)cuvR#NSRvSKk@=n6J7$OB@_UpClmq%5Q+ja5?%#lCX@nX zCA5XJ$T5fT9{2$KP=2pzP zC43GDA}j&~6TSq55S9Z%39A5MgtdTh!qVl30Oxc16WTe2iQmm1Z*Ny25ccz18gPK1Z*eN z2J9fb3D`-f57Cq1mO&z z6yZFe4B;0*S;A#NdBSgiK*DuECBh$oDug?LYJ~fM8iYrHT7;*7+JqFt+!MDBAvK^b zAswJTArqhhAuFIEAvd5g;YC0bLViFq!YhClgu;MUgkpd;gwlX^gtCD4gbIL;gi3(U zgsOn9gc^V#!s~!wLLEQ|p&lTV&;SrdXaoo+Gyy~qnggN;tpG8Ewtzl__JBA-CqM$B zE1)0YJ-`4$2w)JQCtwI6959R!2^c|$0gNQX0!9-O0AmRK0pkdR022r!022wL0Fw!0 z08Yn1I7^=111of0wxk#045V!1Evz%0j3fB4K~BVte54EtA^WQwgTQ4v@$g@J(o}$ zFpuyiU_PNfU;*K6z(PV}z#>9Zz!E|Wz*0hMz;Z%6z)C^~z-mHgz*<5#z&b)OU_GG+ zU?U+6u!&#*TL@8rt%Tly?SweM4nkkRPQn1dF2Z2I9>OrdUc&o;{e;ng1B9`FLxc%{ z!-PqIqlBq|T^Mp?U7YPdhmk3_~E)$jjt`e33t`SxOt`pV( zZW7i3ZV@&B?hrNs?h(EPJRocbJR*D#ctY3(NGALUcuLq0cuqJ7NSRK*0}lgI6OIAW z5>5ir6V3nv2Qe|P=?^QSyf(Um3!Gs5Z5W-_XC?OdTMtBAY zC#1wXTLd8uAc~M45JSiS=tIa1h$CbJBoJ}}`VssMHqgQ*`(`)`Z+b%%+#NSeD>Dbv zBM6@WMiS-&MiYGESPN}}rNv+PH}fVaxE2$&GS4wRnUD&9-+n3~Enphq1;BJdM!-x$ z7Qk#mcEB7$F2GzuUcfxUOMv-=0)PdCLV$$?f2fNsJYFTo{*M34n+opOmuqF3`MrE#Y0jIzmUldO{b#MnVu^6QMg`3n3J+mCy^Yoe%-oL5K$IB=|$!ZDH9u zIrfjRVy}Wb_WfF!xtKmc_!Mx6umEtF@CD!~VF}84`^!PN;yf4LC+QnF0qwXCKl6e2nm38g#Li`gh7Cg zgrR`Wgb{$Qgi(MX!Wcj>!EdvNh0&$uKiv+Mk^Fz;*h|6f+h}DXFda?s>-!M=ig*i2 z6(unNAL*~)5(jFf(?cwLRaDjw#rhEnZv9BDbov7eCu_?3F<3ud!L3i!%1p%c6v9+M z5@9-E7GXBvW5Qg(r-b={&k24LiwM5$mjvH-Il;GGMeuFc5`5dQ3BK({3r8Esv40~Y zxmsHk+_7)f%51~*4#M|$tkG%rHA8jRqKiaAU zf3!6S{%Bt(_@k{u@JCyZ;E%Qe!5?iSfw~erhk{$*Q!5jOX+wwrL=$2Fv4l84UqU~?K*AuvP{J_4 z`-G8z4+vub;|UW0lL(Um9}=bkW)NlqJ|fHkd_wRiV?Mzj{^taL_=^bs@V_MZ!(UGD zhrf#84}UGeAO6<_fA|{-{_r;w{MNS;{NaB`@Q1&X;17Sdh2yp4((jRx+$#GN+@=3X zE1f=M;cyjM|1;JfRdDN%Yh_Mg`ZVDT;5^|1;1c0iz*WL;fa`=CfLnyyfO~}dfJcPK zfMmj7faio10q($4%m4h#k){#f!8{IR@3 z@W)b^;E$yk!5>Qr3q|ZVbV(V>RV}07u2Na8bh?6teD+5}Al6q_aO)Wu{bBjMTEtGrG#aGl?1=dH3Yx0bp*e$4FtcjO$5KOZwY>5+X;SS-xK`Cb`ku>ezZ`# zvYfxYGLrNClY%>c2emSXFnxsJ*B>YN6{jqutS*VC@sV>1F7bj^<|3wlCHVDM34X=z z7KYe6`#L`Ihk{GIt(Cch>H7q~{t>~i_|rn_*CjC-A9<$W5>sT*>69{(lahvz7VrWg z0Fa508IX@os$;OH*xP2Gb%Djr{QiRfgvV?Mg zKte@86@qV3o!~=j5q#(y1Rq+L;6vZCFv$KCZ6G7rcOwP2?{~B^O)%Y@;Mcbz_!Vs} zjJD6ucKApK1((=KE7KX%-3WetFu||rVWFeFZ$t5sUJ5SJXr3)R%fI)=8fMJB;fRThzfH8!zfC+>|z+}P{z%)Vx&3}>t7Q5)|V6f)>jey*4GmJ*1snBt#2gwt#7t)puSv#Ei#h(YMX+)2H$CA zc3}Dk!Y;s%guQ^D2nPT^6AlB85sm{+5l#cn5zYgCAzT7nA^3e?Blw-(Ao!i$BKV!& zCHS2_Ao!g=CitBu6Z}q}5&TY5X4Dhvcbdk+l4^2>)5=KB@Cyp=3}?{FWOUPsnL=VB zgS(gQo)8}&6P;u_%J;{=nPg<)r+jF30%A-q3uW!McW#$!UQ}>xU((9t$Mh=%zrHZR zuPA2Wd;7>Qj*pa7aEYb0GG#Dbj^Nh^68wtF76w<6#47kmbp@ALQ!7&o({B*!0O}Fy z1KuVy1iVA=Et(O0XiI_*ZA0*(?-G1yM+=7oW#64-B$uPBg4=hHR^~lShY)%I!U(+p z5rjxU48gaECHT+;f)DLa@S%eUK6I#sDsRfZhsj9x{l0?R_b9E*XiSeKi~}SRCIY4q zrUH@(zQs&}5B-SXL+28F=%)l9y1>G8`-=6sjAY-76x_a-Xl1^{^m4)qz-q!8z&e6Y z+(7Udn+QJRTY}HnZXwM6p2>GIl3ndoaJ$;2l}`U?A>95FYcJOSq~O*c)JmrhTX<-% z))A~fuHe?6)Jmt%SQu7b)}O`t3kq)iFIt&Pn7%@|3izFH9qJ;WoWJ7?v}P%nRb}&KyJ`CiwI5F~OgYc?5qx zJ|p<^v5?@;$6|s%A4>^-rz;5le5@w;^YInIpO5tfe?Gn;`17&FLbUxogl}aeH^+7b zcXRB}%6yOMU4-3$y@Y*$1B8Qs!-OM%T@|fU{C7IxlrOUlf8{`|3|A^2lSPw>Z*f#8oNGr=EAHiAEvoEDCk zl&h3WMsk(%D!8kZPb>2hrV9{W0Td<_0Td^^3MfS=4Jb<}2M8oo1XLkZ1=Jwa1k@(@ zeZNWYJFQRfJAIqrciNcXciNQTciMvBciNiZciN8NciMsAciP#)H2WjIi;Uz92PwES z9ITb;j_FWBPe3@q0HO%dfIfs+KmwsJU;tqtUdEYz)C~Y&^klY$CyL zYzo0|Y#PCDYzDz^Y&OAf>|+b>+uzfjDQmx@B?8N;75Yr#D0QrdywGU9wzv<#|Xad zNrG>ChTz+tw_txgXfDV|&gLZrckGw7^3w@sc*+zhnxsff8y^}Q6_+$5sbt~{y~BHl zMuta+CYg-GQ=~8@n%e(NG%-_n-vNcX2Zuz2M)!#GQvsODY^Qq0#ze>eV=f2g0(!;< zM}_u_iH-1|`Ll_O%VIwh9~&GU*E>8iG}ce%|3_emZ_7M^j_0NxG!c>;9 z*x=s13jNz;YD{ME4MQ0CA|`UU-6uqc#D~X32S*kP?j7!TlN$@N^AHO43Xbma_imr! zP_p{7@^7;#@adO=6XIi{g5$$OWMe%-7?_-aoX*e`LIZj9hW?asy!#=Sx# zdxysU#|A67g$W4>iRt7-g@wi?C1#B4-77r0f4PMC@W`aZY;Vi06fL(~yXf#fZ-s}% zCrwK#H6p2`nUg0)iplc7_HVFENi5qVG%6-8D71fYRPV^pxF9(rL7?Es(Eib(@vaK0 z9#o;6=^d6N-$Wn%%je7efBSr;Dt`wI_5t=UN=!+t_g@CM;|huk4T}nuo8MmPpnl=; zy@KSN1tr*>1y=k!bol>PXvL}$+B@1E>d^nS&>DY-4*A~-tyKB%&|&{up_MBH1?u6i z@S*naE&O+PN^EExZmq6RH^iL!1VvCfXaUdOz{Esk0PcdR>#dA85$fL9TeXyG^l%UTzE)aP=#tieEiF| z;DDgW@b0nl_zMcG@b@*I{QooRAGgb=KFa=*WlCa6?5baQZ~0~q?Hv^^&j5MmgoMgd zD>f)RCa7}Y-v`v&f7HH5Pf0BC-+fd*S@9qHkNKZ{vf|%8`~1&7`HusQ{hxiZ>fb#h z{3q?(?3Bc+e;=p(SPzPi33C4vD?gLNqr-yqEg>j8+C82s{o^6h-v`;(x+#gp{toKZ zGf3VM;$mWZM#l7$GanuwRPFDp-P3=}zPn9HEc5rr?Bg$39@Kx|F>;Nf<6~oj{?Rnv zf7-tNOi6tC?@#;h)j;_!tHfpr_UFL|W#w&Yi2V|6zcjR8hTAW_?3Z}^$e7?B_J>y-eqtr&h=~mk3zxT%ApAr~hz*x_v&4Y-&?vcKgX4p3l`%H7 zXOMkM3hf_n>s<1KBRDohep*EL2<;yfA0BT5Wg_ptPT21Dr=*+9{jYOT!M%IS)wQ3> z|F1JHF6bZgFaGO%aAf2^TK?OIu_O7J78{PXdH(goG2Ko4fZqSr6gQg>Kkntmi3<;l z4ho5j3ks1}varw|N#hbTMh%b$s+^CW;bC&juIe2e8y6Z|4p=TqZr!BBEX{hfbX*@x z-8+JP@y#kPSWz+2@(vae6cZgeKr&wl>lvlv>~hlNwMgC@>@Dox-zH01kMKChaRcNh zcK;+JzvZ7IF^4@H@(vwgUo+&@TCSwsVM1(VP+Ul_P@MacM*hSnMROy+!6sj8xUcep zlA?J6E^QBaZ48&U#O8@PdfJyQ`z_ETJT_EbRQrY|N$(ud2~pkUab@2tgStn?ghbez zN)i&Y;%dqFY_HJZ9`eRJE-|Ye*>Bw7=#XA9v2jWA)}LK1E;1o3$i7iZvw&XlQISDW zp>mTMd7Dd-n6qb0Onh`qd?>#C+zV*Z*u-q|Qr{!aJ~e~n@tF`Gn$%=>VrF@Zi<9Q^ zLgrp@Tibvvf^y9w!=u9GT*w~VyI6aE!g~&oz5@r^$G@B{iOtbNUY2_W$qAGvg#0O2 zXr$Hb|J1nN!6BjlzO;vY!^GRAIkB`yOoF{y;nD7wGUF1nB=nYVoKU%g<9ivoP-7Fb z`e9H=WN=)Z+{(I%2x=KN20ul%HGO__Z|@4 zJ;}YM`o~}S|9nd=|IfEn{fPbh$^M7h|LG%gm*8DP*V`A-#5&l>|DnbI+k2?S*uM^% zSmD2niHhnS8!A8L|5LiP>^KcW(Iq=z0}@*#5J+g;Cj&phFGQI>Xl6P!+9I}>Dvr;#_vy^rh4tcB%BJV%4#bZThfkUljy7h zY?Ed;RTsw2H21DM+w=%luDclap1ElkGlO#NS6fTV4JQd}w`Xvw%t2DJfvXNl&2c!! zW!~jbPw&flyoF-hlD4XknjkHq4!03(OBzP_1;UuM5o|jemTVSZNf*V|qB@y7v7R}M z2h7SI78to=uH~?=$IZk0>o4bhvVqmXF{+9cUh2Z;DYm;1m=WzTcp#t^n0++bx&F)_ zT8m^f+&N!tm~odwLVv7xE)5{a&U1j6Ni(y5#yt!0+pJg^yDS!Z$i@!$JUskbW$+)_+}K&fFNur(6$Ug#@K#e!4Zf(1Ja-&P@_@taI!H# z2Zu1&(wJf3!|3!G;I+J)g(aUrjgwgLL6owkzqLCF%B%6Vphq)KLYx|pj$pi*c9X#= zr^)g=qMU5O^NI~XwMa{m z9JjZsHF``j=s=g*dW{p+ya8SxySI%%KA%f0;s9T;D0+5>H;C<57PdZAH|!b)D{xRj zOTsZxbFZ3tPUdME%+#z-Gz_=2KRB}*%k)Ny$gyW+H-a*uaW5O0`uU7TGKXourNI<^}7vs>IrNaEO3@z%vb)ScohpR*T2CD{24xgKcj)jf4Dl=iVBiga}g`X2Vg~?A6cDQ zewnLwAzq9Ez>8iTgkBniju(VZ6og(8gsu*R{tJW-34|^Ngw7(0^6)B%GI|L`_W`bS z1t2u(AT-_}w9+87ydbotAheAjGA zQXwP!uO$-|A%v!iM)bcHBE*bJ8=0L~j1ZJs9H9>?NQeW~I&!$bC{aTy_cSW{UAFv; zBmv3ZoA4`=P`!E*2c*?Eq=W}|X*TwDW%6o=3lqcZ76Xgp|CV-981J>s1^zGd6+DL+ I9IC5}Klx1c$^ZZW literal 5543558 zcmc${37jLxbsx-|%jLDaNr@D}6-Dk+T+F$%v!r;5T#*zHQ6zOx6b1DFjX}=$NoWyqgC3fQL^Y{PPtLm-> zs;3*kKykv=E~@%f)vH(Uy?R%D#>HRuz-)8!I~-iEVf1@Jvs~$Ty+$+G7!D3q zUg&k7!@q`KiVx3U7!EFKge`wKxTM=}w|#tg(Qeq?9u6)HcJ_vis|FVVXfzyLyus0j zgUiZ#kZ9N&K9A3$Zk6LTE<4sZ+_=1PMdQlGRrr5bOKUZ3*MrUB;7UCk^Y2R@m4y;)v$)HZ?ymrYUEdY7_#YY_|5b;ZLbqH{jfb8+-QBX8T1XK$n5>k*DdNCgWHHu3MvTYFIt+tiJ?2Z!1l^38B?EAd~h z03qdSKk9`oHA2*HwY=^g){r#Uf(Si`v~^K* z^}L~v>GnIFt{+8}U9Z~?+MC>i!KIyUxCI1(GM)rw3@+npy1{0Hq`ADfym$hCtlV4r zKs%_T`4Zrv5n>7#>mM%d`c2=9fc6V({?2f4RnKpAnqJS36mhC;K3s`^91gCoGF&xsfMji*v7$&fRV#86Mh1^aC8R>RF|md^@3`$pi3+A%W&|)ndUx5KnpS8`?3LZ zcNf&TMR&zfG`X3N{lQgg+EwgzJ!pcAdDyPPKNp17%J?hK%U&DW=@ZUQAJH5Dwp&C!g2>#$oHMOl|W`irYqJ?d*I}qef)M!t^WvE2~W|9 zXgBCp8$3r>DMGP+xJJG?5rCnc;Atb7+}iNHn%`BYFRE<#^|0$#YTd9?3wPVYr)qvym)e1+d^m%5>(GD2(VHpr}gbZk#@w_PVd(nx_X1L+05!KOBB$GSt+Nsr()y0j~ zb#L`lt-iW=dcEe`vzGu?>196AQseV(4R$Q8lWL?;(lLKn%)sb?-$&24{7CUIR)I66BMjNFEYF!=z(?y z*MJq49t*2|if9~ta`r0}Db~Fm(#CLrjgz&Av{2|$bMk@({l8`16od;K!0U%{}4hHBMW$3}R}p+-Yw<)b(~B=ym&;%=Jd}wEWfv$S~}J7%?BO*=aze zfiZbN%q>QiRpiiCh?ia$Y<~FW;O4lo-EVau5#qK_4&D~G1?_6HU-K(LJLpw#MjGsg zukRS^0k*LN7QcU|sN+`yubFiE-u%S>$j__Cr-7<`3k{d>Ro((ZR$rzXsJC0hJzEk!Fv@6p2CYnILkUcjyO-=ZNn z^>yPtqG96;&~mfY@<_Mq?ZpsO^DSA;`tw_@c4%`w5Ut-$gSc(KE*i{DPqrZ=u>qxL zd`RwE8p6#Pt@`8JWZoH_WSMW@8%ZC$x<2GS?<~W?dC<8n&9>UW@$j4A z`yC}9ZzUsFie0ryDHWAHlCu0s9)9iVm6etC#ntswD<@ahPc5&WT!n9~*A%^y2c#)zhnME2sFGYdD2xQjR^`Da>(weRXARW$7foyTvga6#k%^ z{^-=n#pR{-<+bJI)A-1RPh1x$Rd)m28LZWDcY6zFP^cyJ-F>Fq%uwFf)BcIx!{>7_Mj)WrB5jw$kBLA&&toBl@E zvpxn6mQSxP<4`OuEoY4w@*t%?TIDHPT|c?DN>X$oz2&uo4ix(lDqdY&UtV1YRjr*q zxr9$|a!j`6jgE6_b!l~dX&rdy@o*iih{{DI>Y#=7m6f&CQy}6c zFv*PZXiMTH(EbW+14n8JbjHm#y*K4Cc#XwY9ipQ2k+#?JE0y8k&dP4r>%@kn^1GTL?iSI5<+i^Y z|2mAkL5Wuq+pGrVz^?~qV@(DM?&W)7zt`XJW08KO=C{IV0ct>X8{5@|7IFFM)?WQ& z&)!m)sJkybSA{S zvp!swE3o z?L&{g^uG5j?bM#ehj(X9@nogxy|!1`i7GxU0=U;*e%9Mred4A1&U5brP8PDhTdOp} z-AWIae5il8d520Xh01k#z36|}8*^N~-t5x=%zZRS0(Yx;m^~P3#eBK@A}qa6 zzq|J8^T5|#=`YouDD>(t>+xrc@7=7w=Yx-&eA<69rUY}9#GR`K2VZ@uve8-`4&EU>93Od2|E%@ZBQL%8*_Za-v+>;1*qPIrUx}$D@;77af!u*f zzI}kh_^$=8eqiaz^{tosfRsJHAPAeRtlgJC^S<}K*bkoQoO%_;lzTGAZ?$k5f$0FJ z$b7o_{-rZ}C;Y{|a1%zCBe7cUpY^NY2e>4(eeh@4M&c&u`>-MnKm21Co_F5ia=G*d z?l|pI&@Me1!j%3-2^Na`?kmwMa`D;-aC2*KczxTk=%0|;`Zy$Y7%~8!0CYTc38$~862C@aU5?B{&o64Z2fxTr$s@h=jy#@8x1=_b3WTFr8?+?h|?^6Dg)Y4ynM=7YQtwJ~W zgUS}mf7#l!S4!_VM?8&DOk=ea_4b8-Y)2{UiCAio%@n%Rc3**$O+^Mchc+)oR>cTaluEA4e`hEp%4Fp zHiDgrs$K`$#3%cMOKto7)o^~nO8x|x!=t>vgP~)XWw5b|w7j9GV*Y6i9551V(AKw$ z=3Ctqe{BEz4X7KPey`%;4ovIsReq8$Y#|AZp~woni)ZI76YLcyh4 zr-8lv1#udd-hsJaf^OIwILqDxB3D0M+@sG8wvHG1zv`#MR83CcAXmYi4?j&+yuHbm z{@^V!Q%%euHoBm;_54lch#9Oz4R876+KET}`7_iTOI~KO%HT&2;&_QFRu{yXAhj#ev=M5XD8tYqo*m(SXa1F3b48~2&N4=#p}*Mt8#ZXH~veyP-3z2UQQw?kmr zn|sQ)P20KG zVaqy~fG-q)a+DV0U;zciFxs{3&1gIlde+Q&APdsSPkhHu7`I^6Oi zTz!;1eQ>eT(UVaRaaO8n>&t=0_@gVMu-}Cq8ujZ?trdM+iWoMySA*R^9G|$|s)e!x7_6us@>zCFyd7Hc?ifX!zFd z-|W?D@pXeXQCx@`&?3NQ;+Y>|AGy3$xVv`Sweagy!VN{U__Q0OT5lh3twhwNWgs4R z*ao0HB?!0;Fk0XfVUIY3DO39v;C+SqVeRu33Xr(SK`ilXuj=e6WiWz=7UB+TH3#O} z2E>$d1I82!Hlq=f%;1`&Tf#RC_{RN>cf|m&Hm>%{2Es0If|9YW-1hxW;{1=N*H~&S z8(4!IfmB7HIPNX@XY|bu5+NSqFs_#sA6Fe{hsl{$zv2v}f4x?r4%{7g&R(V7^bmEB z>>|Vnlx4V0HO2=QboP=(U(rU)3s9z9+{0&|<%v5Yzk%jW9LYJfpy3J_s#M5^@)IW0 zIs_vE1nTzQ@J-e4D*bOQc(5+@^Y!VUvB#Sbi@Na=krdX3UZ-UTpqdL#Mua{gKc@pfTjPGB6yWfFtJqF{65%OmVj@72EYyCpEL zwSKP9N=~=vg|9y5Cp&n(-9>W|ao}HOc(5`DU9jcBUU5jpG>EYWdI>fZeg?(f{DfuQ zCiGuHlt}~T0bG979iS05;T5&d+?7iH^R}S4e`B@rJ&I1$&qho={_r6cnswgbBL1$J z`eD^WMFtGFuDSpl$v^n*wMmN=jSx5M50wkKu^Rt;x%x_&!Vq%RK$8g?JPfx!Npdlb zqP<{B%^+f^g7uwNY!YF-7JqfM8VXu7EJ*M%;W~F|zrEdNm_pn~rW1i{LndyO?DZW| zpX0Kwe>WO{EKJ2>4UZcdM=%!^EOocHe$^8Pd7H?S_yd_;CnO`#Q7NWvtHQ;9+{S<) z+lZdg4+erg@N#|jE;OJ9vOu=lp1Kw4^}wM0{588l7FucnXb&8;`{N`)Z{SDgqa0T*BKMA835g^lR)icFo^S z927vq11J=pG)f%RsA#)P4FhoyCNijTwy|emHXd(05&!+U#{1*Hzq|3M`TIcT3U=T1 zM&~-XK?Z^zwBZ{w6;6xH}qu|=2 ztTN3qlSGY9nzs5Rr5*lZI!pYOz2l}u2b94N+tbwWX8e`3QO&N1VwQ}dwRlBk(nek0 zYQIs&DhOCk^!zpNsX@>fEdVV}^2124h$ox3)c$>gg^Gogt3HEN5 z=~2&;F#$nB9g{v9HL8!u{G?5yZ+H->?()9!9gXiCyp=;q=%sN_2a(9`4s`W9tY!w* zs2hywNa>6H9o%AdfGyY&ItzXzVenqF@`%IiVwK= z_Y7{cx`LtO4g)0>CQ~>FbdT$;9@>P6$Sr(&oz)P*eOiS*1lO`!uv3oJ!V*k=xZzkm zZR&x51_Td4KcF+0HSE5jtLaU0Ez(H|%%Yu$M4!2&Ox+uPwY> zzUQ3}eeBNH&mBAd#>*dl<)a^cWnuH)(%m2Z=$&`nef<8?!b0iJyGkt|2JjNtN@*9; z*e^jJfsmQL&1C6Fi($F6Zdnf5sYxb)}?FO&?zN@2a!1{};VG#%t)S#wl+{jv8w^MYFV zxzdaAj6N=Q#E-+c)N9C0g-UAtdf{-4RhbVzJSLyqYlbn%1#v{ZQnd-&W$6LEoU-~S z7kG@(UO*Hh^+>ZBgDQh|&Un?vF(Rz=z=P^*Py-LgvE#?@S8&eR1S0?gMw$}?_p9Ar zC_M`ObpwIApa__by%Nc@BeDX4_r9TeD++?KAL~{m3v-$e_RURKO$v~F*}l8Sp}+xaG-iv{$l69_ z4SEz4m94~T9wpal_wH5Gm)Sq3Vqw_hUMvJh39$*-(>lCmFj14&5Q6l2nv8}Uj{Ut? zZ;Z4gzY;NL$Xe2!$x}GGVJVM-qW}`E+~gsTh1JK%LDWx%01(}VK{z4VC;nR<#rwrf z4-`HYmUjJ;y0@3G)g=yt#U`1BP8b_qbo3#$_k;{Ia>|?}W^uwzR{@Ag*OYd~TWIftO;d+|W@{IX(tmRt?O9 zF9;zLnIwysUrBaPR{ox_kDbsomNagLJ!=CL0j3%ggj;PgB9Zra*b`c`#w1A`OS+gt z#689_C`Z&?j@|vy_T9&AOe-1#6hbYle;gC!3nqy?Zjy9+chrmKD0etG;3ztCP+>tEVUE}(wF+96jvX&O@W2D5yYHS9x}5Hq z>pV&2K!J_4poa(&$^okc_o=JX2f@@XZ6RHUI4+5`9TB>mPNX0j6vxM^93i#k*bap# z{=ig~l(%O~`J|5)PLGY1E!b4$oXLrX2E~m41AktLVhB`vc`^DX*&Am;hUx8uK}|(y zoM1`~Tb1~Qa0RJs#`ClWMn;;ZsiPllA59%=s~4tc{i_^7di%!~?=78J66#NB1XfQd z1H;Du)A+7_e8~`(gsioa7@sdz#^>a&BH14dql6j_b6EsqRdOYe8=Y9-Xe-lp^1%h= zQUXFo(pQey){daOor_gxHI@Y`mE9Zf-rpJNUEq zMf_^x($Q1|`uP&H)0%h0G|`Eqtd~jK6{f9EYuKCdH`kiq830w0+{wfu`j)sgF*C?r zfL6}fKy{Pp2G1z0DU2I}e<{SB?w0p_;OVDJ&pz_ZnbNz?JoCttPe1&~V~;(5=7kp? z9L7_)A^BQ+xOzTP7Y5fq{m8SAf8deF@#)h~Kimw;VRzH|>_`{&1jJzhAqF4$>4^MU8VYeIZBHK*9xm_>v0s}e}GfyWeZ zOY%FN;&cy5o?Y_kHFg(>d(h8Q=gZJm6JjiVh!V5+Rtr-}=@fYC;<1mAnF3oT#EG=r zoQ$Mf5`+vc_}CqW#wqGG!qWXz1{0b5aRGR1(h-4q^!32b1IwvQ_3?+hKdk%?()ltR zC2fz4kDbcX9$fk)6497fi=ABeo;p81Y*+G=goHJTzJX>p(Hc;*RO28WE(R-e@y42U)s zi175Fi5R`UIpH^(RuxPET8?wbG?{RSp202e$T+;0-t)kTPdoa~k0<>7O4UniWax1b zvTV*K&DW`B`mbZ%g=&p)ws4AS4DA9;sWqn4;j>7gW|SYIwv$h8EnTif0`?kM_V^dSRKDZPSBk)#omFjO{9jgJ~LZIiR6sQP~1oxuq6SP(E z=pjb^(1gfLc*dhwD>Uga*7u4Yq657e(j1{MLC~9}++GF67ITf>RPA)cXg=b7HB-i{~7rSL$v(6ZUF zT*ox3L1~B@mUs9LNs(6p!ToleXQtB0bc{so@*mu(I~QH*QQco_ZDc+01i=u%j2V-$ z7Vqf|IM?7YezOA|sf~1OHU1D0Mwi7c%GY{b{7=&n>ejPcuYG zT)ohbx(gdfjBW%>LrFfd&=td#Z?1{IF%8LArDPzGs;Y|tzNWIR5eyx|J)2+~2?;ww zqe+keV{g=tiaf8Om`rzpcXwwGvQY~Zb-z?S+%B`EoeF`uqsBLu!PT!qUE?uHrVw9& zj_5WO-=rdqlJBn2ZA#f=^md5K1<6J2db`YTW0o1{xrW(;;m>xkJRypX3F=}k(;1<&hvL7JetBlip6W)H4shXp8 zSRE&qT)yD)1cSu&#&j@Ftfb2r47Kmp1#S#RXHP=z5*Sy-BHN}L68=n_of7M*aErrS*d@0 zcIscBgMTFkzpc+r|MTU0Hzdv^ZDv$*FoBMuUGE7idcr2}>h4IK~L`9?PFytW1~q3oK6X`6HTW zaABP-Nl>5wU|6JF4egjl8Nbe2Ah?U@3o)GNLu(DvM_;(8R3K>xA}1wl1cyppB0CXV zg|!H2=g&O+Mz^!#!~~b7L)65rfqWOLlo2RbDLkmFxyqfkWsPbww^=b7sz|2f_ziAQ zeUv^}L7Wm8QJbk_OdP?FVZR*-A7+s_4KJT>Z{}9se<9A_jA_ z0>kZOF$oEiSDR~1Mo?N)W@}{}0#Ty=nk~!(A$Avur;g9PrX9OS4G9j)3t(_2bCE7! z-K0}(fR4}eK-MKOVqmCJJT4hUcFvfuji4J$o^=u!SRTx6l$S~vW9D8nZzoP91D z-<`19t&p?q@DJmkN#=vlP#EWRg_A^Azd4?W>0qhE2Fi7DClnuSZM4Da)ErEEf=(Dz zu&#k8R`R@2T43uz1|f;CsndbZxi#ocai#@lSLCf&S3 zrAMh?Mq5fjZ`msQ)=%I4F?4TKm$4`;Mc!$Z_m0}+p^2v2DfwAd~oTM^+TC9Y#9KzIm)h2Zvm{dI6a zNi8{dt`z?rfj)KhiGqcc>5?*9lZW10g0%w|xKiEsn+Rm{l^+(?u4;o0UBm<7f4ZfY zIZ@cwUOD#q>-w)sCZ0QYoRLTz`{nfDFfk&es>u)ZU(E-1By@g-4Qn{K&3O9s&*ja{ zg^zsj{k5Hq*Pea+9{M+Ieikf5tfh(X#fPZ zbBPdXd~f6X%ua9JK`J_GkKb)Gt(A&>O>>0iV&i5vIe z5;%NV7U$W<%HS$V3@OLf=1ZT`c4t$4v~hjo#;vd9U|-EYzJ`B%E&iZo2_fiAV-Zc> z+{;zJ!69h*>dp-n;n?6YUc?s64asY&x|DIz7gcaBX;c-1;>NO9Lpdj8eszX}_qxFF z-jbAaaluOWKr{ib4udCMz_h)bg>_tztmbkXZUX2qPZURaEe;3IxxNfqxp5HckEQv9^Jl5;~~|3ueJ$UF~K#c)+!GgGbj;rmYMo5tznVwAKr z+SJ{qqS&z_8xgYhtR|Rwnh6Zug5Tndt~FTAV8Aft4hQdYAwo`r3xc$iqXx3RSzsV= zeV#gt>3O?g+TBN)*ET}zyFsPvpS+ySh<5bjdEa5(Vu=RcE>G>kv*h>|U;lCx?Z_EAnW&az=LED&<6 zQ&6t}CasOl#iZ32lk0Y?p^pFw6kr&il)c3Wx19DA;qD)zs4^;&Lj8o&JRF>Hjh0Pn z(n3`3tkiTlE>v=xT~0FlD?|1e`Q*ZNd}bxvKFvzn1^ zp#o@z1ChEj&O1IWboh=PuM{QECVSLv7DO1ZRtw$^7!Ka=8nJ+M=p&OAH7U+kQHTK+ z84@-wWg;h*T`*lt!m6L?7E`IEJ0RHYWjSeu1cR!}>fB>n-*2jJWjsv+HJ$$$4qkCB z&7Q@AMJ2fdSbfWQhs*knY0j8HG@I~zed>_Fu zju9QGkQmYRM-c=DE(}9Ig-O1`Vy$!{tRUvHCWyHsz7o_})&|+oer!cBCMmhejI3$` zg4wJ>7Ki~bo2Tx39ZF!5MWcJ)wc}8_E}gm z^G`bEuw3gC)GN!VeagzJSGl=_!c?j>*=r!254fm3U&y3;F#E8JQXUpTI*njzOY;qB zlq@EesU|kH+toC|CJ>^Bq$HJ%NZVGKv0RKecbg@VCDwE8Hh)Jh4mKKY5IAGBeK(ur z3aK9|BdLfnXL<&L@WTr3bWZHrd+l1Z-EP~mGIYQKN&q*i*CH!`CUKwIBE26RKVz%P zjlE6?(S}k&@agN_JL=#qa5l2os5VJpi=S}OYC)O`+NivTSZz&DPSd${^qly!1X~@N z&Wsbn!$!DmnhCj`9#S9QH5t7-Fom|m4l8gVfELHug-1BykP*Qc394tnqtl{XV7qBk zRw4RGh~tpeKAv}?cjO`0#uNaExGjXHQw^O}Zuni?19iz~Do-nFtuS@2RF>$|Vw3_Z zI@J4ok1E4Nv@f&hAhQ!LU{(ys*!Lpq)f5ePKLVCj2DudG>i4%gvN?SR#{j0aXfR~>`{;oZcFWaEH7@#GrF{lmG$66@zK*s0mZJgk?u4qDJ9yr;kb(llR!Z?FxvsC1tI=dGGU#Dfb=PHZEm`UQ3N|7a`=aXHHGgnD~#BD6g2TdX)BO+^WsCN zjm>EGu4$MyxFD6OPF)e^>FPwP9xlxLm6A`FvUlHs6OF>PD2ubuQO9TJDrZBW$0;<5 zY`jPd6eJ#1t)}CPviXz0S>PP4!2EG_hVWjobVY_86LkzU^(wKwQT;^5NY`)$&uM0m zRIZ@i?DQ+pQ;|T1ccq|2WT@VGC){o?gC9Z~K^;M`x?3O>K*f%_w#=+H@p|b#`N}Ec zqDn0jsku?@KqX~*Y>~djL`TRBrC=3&Af&1oME13-4yy%gD`Frk`@8SW1!5WXM-x5%EXu%;|mkF=4wPI;Z5$WwVGD9$~X{qLUTSiF1lZfpG1yX=Att=4trBDaE`B zV2UOyUcX~&hjRwmbgxOBF2v=O3vt#hhZl%v@<4o8)a00_>JFhZDBKslP$wiGVK8q$ z7@sPk8w?MDY$A^nr`E}VQz? zt;oXRK*Xmp2Ixpxn@cWCYxSqaKWd;RDU6NIt7N?T{ZXTyyHJlp@q;4wz4V2`1>IiY zXmE{ShK6WriXU;^_w3IXG7S-SFKsvnbpkCgNb(~iE$q!oZ|=TcirC}pjLuO&^X=qN zOz{SUxrY`F&4>@GlY8u|7V+XZrWX0RNVe60+zqummpwcV&I|l9Naq>XIQi6)?omb& z8pQkJae{;4dRk6X`*V2ifiKs3@pBm!N|4Q`Ac2UJ-ndfw z7O~8FacEX?0`hlW)0ztjsRO3_sW?RPW4JgGTp+5dIcXzoE{C&O&1K{V!>{WUy7`(3 zUJ%D4$vzV`X=5D@3X6RSiIum@Rj{OZNJiGN?}1|;sycCQ%f4bUyxxkdWjI(8JJI-q zj;Hm5j-J@XQL=;z32raL!HY8x7#V^gFI}F-up=kBEnB6FCah*UHeg7$LyK_B(SH2} zIB7vYFj}h1rqi6TFJ9S*J0)_8GQ^ujKCX#c&1E2adk@}_W^S019_QRlgyLsh35Wlxj!jI9YxH$UVFm!@9f>eXM1d?~u+`W>e>0YqlozglxX) zTD<+y48eRVe}q+$fTgB9zvN`E^!DOi9lV}{>H=`DxkzBNPkFb&68x)51e?i@2dap9)b#vr2M>Jm?NBGx z+S@Rp`>tN^EgOw!L_QT%H42&+2)jHR{r+bv6of+tl>WI+a zRf;`7UzXj@_RVtmWShnVed0aKkVu7Y<4X6?eiX+`(gzY& zF6W?#J9@t<+k{^>9id_Kk_9QR-vx%R9Q@-Rmw0jD6CB5=jM;m;?-eh;ArA)~*P!;S zXOL-z#hROMh_}b884{?#=>sK7ti+CrQcME7mAvCq=47+Lj0N+eeIVszOqdHPA`tObd)prVB{iSgx}m=sfK^)P#(EXMR>B#*Ug% zoHx$gfP|4qgk$O;DbA}9sQ#v}3aY+cVq~V&0t-0bHQ4D z%P409Mc5gpntKhZ(tN?UGVzvG%JL$%(kaD*MPi8Ba9G@uT$Uug^)^R89z?hf+IUyB zfH%{qBe~c!9qD8u?xu~YM2RA>BTA3_i=DM&x%0F7mg6flHb|~K?y?T1G=d9wBJ45@ zNX|R7wTmvGRx|L(T3>E4oPGb&7KvumYsITE)=DENOcV7uBAxD zu~fUg9NSHXgI$HH0-o;i(0;j8w9iWprPi^+z6K3X`7Da zZI9J*Q97=Tm+hxlBEd?kjmkC(@KRJduR{e?QOYx^4du?vOB26qk?9^~T#vEm)a9dX zACIH%wZJsGsGBdWk0G6O<7f)$G;V^=jLhhDe!h@Tr;;}&&|_p<1JQb zQ1Vh2ieYYoly3mT2Agr}D#a+kDz3#up^SrXF*nzqSj`M{g;m*kOssBsP!Kn=T=Q{T z*~;Bt8?#QZmJt=9>PbxqwGD8_hq%-uvmbjt+#5Irli%&Ot)0%4*x*hDcwAc{?y zMFM8BHD?==aX6)%7EXoDoMG2?nKszE=?!y|_5_4vLg*>*GdL1#wjBnBA?=VkrOuF( zg4(LN)z~U)Eti5Vw&}u13ddI8vW~`P*jAB?pH2I@_9^!P$&3&Vna49W7-AOF2!J1%c9YZ7AJl1K!$+3nPr@cd*( z$X;&cqsYhGEAGN5@r~Ivg}4!A`!;nXf-`6^Tf%DF6wzVg^hY*6clPW6$~I?pROEy36iD zb7Zt#oPvnyI4`6H?e;S5q($QRCUI9bmz5+znGF_}acb)Y7Z1Zm zD#bcqbrJ0$ciGa7%nPNiP<;Y1z5EHKBjR0E8mEbKpdFGKq=*orE%H03r4+h&Be5p5hx34aeAgF zLSLE_XPnsr3ZF2P{lkOZ{5^JzVm(P&;3QSSC=n8ItmJOXCAm_|w)f11N4s;{RHHK| za8B`T7q*aU|3`Djv#xcy!&!aH%8%^~FfXL1G2d`jGY`1c(&BKi>{_G43~S9EZ@|WU zt?s>=6&s~X(mKPO6V+tPgE!TwPUH#IB;`0RV*oXDIB2+5WN-Y`#S~Q?6F!w>GUeRq zefi~;OoWJeZ2%0~RNNU37F_dp?1zPkaTjvtTi8gOC{1ufxxM60?GAu38mnuvv4&KJ64bzZ!xD}urDir< z1ecmN=@3ErnbYPxoLU7~DdNME0gXbb(G!JyrUt%nV*U zev4hq=O(j_B$q1GyC{-DkjE0U?itM*7F)#oFzo=0>ZVUROS4OOwR0zuW|U9F0~Sj9 z=9A^Lvu)$;La&a*hYZV}O&JsV&ua`E%(v^>49tlUdnfJAmk>q3jl)f1SFb_UD2MvGEB-i7#lvGmkV&aH+3=X3u)SsYO+SVT~A{5 z?5?Jqtg>X6`MP+<3CKHC7K_D|l$JM~0OwgMfCRbqsX6K5>`tSip=TE%nKtU~x;%$- zOLA=!*bgYD;6$)qJEMWjNc+yhi?lz>8Q{OKb(Gu94!Ww7kMeE#JkYvMx#nd{pt98$ zOqWr-&$@^==FBdDaU<-ibr=+l^C&Ka9D50Q14sG3S`rLb2@v+{3?iI>=uqy-JUx~# z9{1a_6lzRI)c9**(wlK~nbQ##BVm6GDV$UgUWY@DXT<0Fbb>x?h^=m8S9Hm<3nywH>-9l8B5@znQ7B(!@YOox`VdAKL( z3xmR);c1CIb}k}}8|ltdF#=-W9JM#5l)-Oqijvv>WdIt#`!zhUV(#XEIa^WYBJyB zCQLkpT7$Qo&aR*i0|mktfikD=m@5louC5=|EEnBEFVkNeifs<(WmE3SK`dyY{gk8##;8K^->1mo^-q35j8t>i98P}}zX>p+; z-NRJDh35lNe);K@wyN%eo;p}|XS{Q{<4e3^zV*ZYaI#VGZZ+!E$EDJo+gDU#`*n|R zGg{YBryiGkfUL|C>XXhQHa6ZCvO^>6ZrUtZ))7tmIi7JV>5{IeLxon#FXsCwt+20L z{9AqDs|D_1uo2t)j51j~paz(^cAC<0$!T`ZFlk1maY@5ehWuHyTv|5Oi}E3oB}E$= z4%U^rP$1#NEI_50DA&_k%zM&W1*k4Sz>{L(aV<{UTkmw$6%Zi2Rm3i`RJ9%FB`2E> zrA1y+WnpgS7&v)bn%lT`D&2$n0(1rE&9BG;5iP~{i0QI%`hN<*kb5X{Cs6YYPmTIv zA1Z-V(lT49Y0%-nP%e2Z2sFbDV%@%6II)_UmD36Xtmj~i-H4-8cHz4e*%}R3O~U-c zz8hv3Ge?){TEu9dauv_7pmHm%(znEv58pGNt%reQL8;OidZ*3!T!Y!|DIe@`fMb+% z+tN=7s1uzF-0o~jxZA&(gD@lWQ`e&5VBTqz4IDR|m#~W`Ct!7vhdvhL-Pu1{H@;cT z*E)?lh$@`P$zUc>o{St|P`#7i6;%wx!I?gA|ebvbX(>j!E zY3Uxy6`fI5EaF)VP<@2A2q=I&#FzxzeW?nYVazJR`%tl^+F-}bG)eYU-oR% zYuR`Iw5IN4@i_w2YE}t+on{|0=cEfY4xX9j=|$=*Sf-kMj544Nk3qoW0))0D{oiQ- z%YkY&gC^m@2wm$-ZT<9g4#@-)08$&m7V-~S0D;LM`7yp}T;?Jt-CgV;iZS5~L-BFa zLIJL#GTn4p8;QyjOHVdsQWEDnx6mm`N^?FvQ-E(mu@<#aoJYo3pipK0kvwsmuUlG- zKNsCr-||`5z~Opy<=4c>nDZsYln9oCn!Pz=EKrLJ=P9z*=){Mm;Hsy^oSLa|UArKd zHayjg!%=H?RARr}VzbvU)w>_n&i>KN6Rg!-+Pg4R#6|R+4m69Ix|VM>!?BMl9w^NR zOQX{soIc(zXz3oP7sLv#>g+q6YzFr(P^L}A97j4p%Xvyo&wZh28gs@fYJ3goNv}AOu?-Rb7P=kIn8uwG`p6N?tvQUDyh}Y zp^I@1yvmMpi#icK-y*Z06iwmRbc9#CS=psy($t(ZH~tY8FabeCuQJf+go_>=jMnh5 zgF!hQn#@v=I;b|+Oka8naaUVo$Z*>lG`fhvv;oCYV-xAb8Be_C+9=FUq=V9xNCK%k zy**~^edk5@WP?|_2V7f~J1rKb#=E?j!qt`@B}pyL*pvcNM9eW`k7A3uG~;$kEV#r> zXM@_;90C*RJR|5{Q`G=`*KXK{cS75+dNd<>wWPA`ciTQpav5(5gdM+K>3PvMHg+Dt zo_ITD4|3Hch8yCZJoE)(C$4rr9vQTvLqH@d$a!TiK#yj2uA`@nY%25_^Kc7M%K+{= ziT0*4J81rCdWbMZNeAA2@(r?pC1 zmAGvMlcr`oxvU?C%MbKRi|O3OrMs86yVROyzf_nIu>5;wwwjxwAg%KnUl8@)e5GvK zU544z1jOaXJnkosQcEx$$6t+U`Ha2GUr(N%VjW2o74R7p!gmZ1NZ0oG!a0-&rm(Qpl!(CmWa(*9Uk!2XcQc%17I~9|_o?$*hMUyhk_m-P7v+#M^6RsySQBnH43LYV zl457w0^Uhx-$**R4<1FV82zbviwN;>^bMKf3r^E)oIv3sn79$;3fjCH*%f+HahEN1{xqoU#_mQKJ$zJRjV=EqaymdC7!x^lN=Qplm9OzkI+N zC(9W0+nq3ME@jzXvgfPOSnGxz6`h*T^3(F!MaSuV8mU~s8&Lir@lnWyANPb1>!KQF zlg?RYH#u*(`$jrs%)aeRM3}y+unz*hY`sjk7z$r^5Jj2u!*BXA@l^`#Ru;9y0`J4iJ3t@L<+6D?W|r<6 zM7k(qz6&Rt@7jnog=wN@zyhAJppbl!k=t4}NX^RIt*i_3zGtz6hl7v@i_ljqQT+P& zQc1H0G-wHRa{AK>@{Eye2xlBo?ixYUJ9sS}vHnQntp$7@7NXC|fb2u#qEfq^z8)+R zmt9q_$!Vwqn{a`_&nDng=}jzzu$fDO<^tw|n4%EV(Q#Ab<^P~lBcmRb=2DSM6B&53jGRC?@{=TBZA0RR)nf3{@FG2Svbk|Jf`ET0&h zt<*gU$LxXWU^r)1QUR_)%eb0Ks-S?Au}p>uJU}fzyL?7(bCFyW+nvh+iX0wDXqI)N z%+`&Fjsmz$JOX0B&n%dCDh{ZH^44Y$$41vmm`tge%jVM)b4}eQ%yPQBJn2UXSIK_O+sxPn z+q5A_SOWiNHTMWxFT0lQ@HlF!8xADYdxR$Kg->Ywf>9c8!)GXq1!$dxNc3Ye2Xoa( zg(C%DTn(m?tC9bnF(TS-0PgyymU_&;B=4jt2i>wgSW3ug&GDsKy}j@Lm6=xhJai%F>R{0 zzNRjxa#29GhXUUTtMrDwI>9mmNLxO+=#4LSDi{=r@dy# zI?IRSTB_BoTs#?$^a98>_%%!y@>7D;B-PeL0b0+bFKYu7ie@e>R~9SVVYeONttTy2 zvaV}MS~%FP)BYHrFV~9WMm}3G@>*4LB~FgId3{fPXPyH}{eyQd`v)p9l9gG+_`R?3 z*d~{9+_Sv11tIr8ZtJwEqi0r0rLA=($!~DD99Oo zUf@81`S7h=4_d7IVq)&~E-FuGg?}q@nKn$%1uaE}rXy^efePG^+Lrl_Gy8s=JBr;I z_Kq&KqKcF;aO(8gijdZQGEcwxpOrg%R6Cr16;)f4arkJ*%TD>2{nS< zFJU1ghUMWPKf}dFUGCiN&QcAus*I2M;XY>7xkH$a<{=yGriZASVXL=GSE%nzGd53u<`DiW9rD+ zomFCPA4l5hHjJ0%f*Chb^y$o2&871*D(pG9fM-wG>mm05*kR?JqnS6$4PMyfTKTC< zgH@|fw$15u+9w24H4kL_I3g70Mf;c88i6{n>A6EGIEvQpBFCs;W*> zEFj{l{cabg#`rNq=+4w@Sg>*Q;F-6!f>uZ2+G$GL*RV4dEF*Hu88A^`?xO7UP}H&( zVAdyuuubivRVu%JGwjfO=0VSF@3e8#Q?7rdmpM&b@d0&`i+PNzywMH4T9rqt2P4e< zY_9N>f`D#!?uS@dC5s#76`D8E5MHO~?83ume=aaV1Yf+IMVZ<08B^7R@%bYnUR*+VWZ9~f$XSi2^ zi3!5SrzZA=DTzh`ii~}sz}=ofF9@LtgECNzb&IS&Zp@HZG#iaXdWXWcwS zBX0AhFQPzVBwm#xoklmgXVRIgw++;gVonf6C4C`R%gOksiCv;)9 z!Vs}z%_Z%?l(N(X2)7e-e0oQ;szVDug)BFfFPtd+n17VR4(eWO3v_9pe!B9RlO`>@ zk_-7(GjPx6hmw-eiQQZ@q71{<1at=L2;wcB=PpY?pEc4W&lhda?bS}zB_fVBe!!{Yj z9s5wCVdPFmYtfo(K&x4W2uNz;e&>VA94;%$Lo=&=8_#(R2Sp<}Ffb0Oa?Lvxk2LOF zi%s`Hwiu$Z=N}BG-kF6xSXZ8KsuMOlcFo*wFYCY`V_wY`|5GLJNEGFP#CKZ6RV0JT zSW0pcU^S)hL#rFyAwOU!7%_Vzh_q}n(JSbnu%M;?3T`-k!Usv@~otBO~kd_N|lb%kpd6AA&E;q%= zoYKeY;o@IbGmF?)B52EMea^t~)L|f>NDfPx|Fqj}oXt6?PsLyvuZ;8hlTG5%qKm~g zd=HNmFd0xBQ%)s%f=z~oi>#fZii8#U<)kh}Bl%f-s8JKZ%PUvY`5gmKkx9NyCl6g& z$4nLbr}ir8`}sjP*?XKKOTFPt^4>3`N}{Ap9{bzmc1!0sFG5i2tyfd|XsT1=-1i!T zR~6JH#>x?tV5|aC!Z!2mtAXPRL$684C2Vc1ETmOX7pJhhkGQ{}v6}d(isV?E7q}As zK#;&4ui-A}(!zR`MnM_*G(H@zuj5Abm?p24e(s8G6P*iYYQ1*nvhkd-M!>7N-yuX7J86BBaN|7c?tFud4!4&S;GM6O`^zZuXJ3R|TIjUd@rE^Qlf34*5HL!g%Hu z;jr)oSkV&*^@Mt@LMEbxrOL8Yt*ZIe5TO^XHf-XZf;exY+^1?7%P<%VLI zl0Qy+L!L;m)Fe}BS}LeyJbacSlF7t?DrqA^GFt^3y8x+evHO?Dx|DnH1E~Vk8QH(N zys#hPa*juxPkc#%t8isXtqa;nozz_m;19%Uh-C~WTFZZy+n!NN@jO%~Xq`0=9-?l1OxXm&D+ zow{KEzJTY55GA$=6M$kmP)!cHh#X7!P`6`PgHwy1gq;1&Wfi9-AwwfOX`iME^DWhL z$>QR+xyS^OY;l#5fiw4Ad21$(_r{*U=p90&%zE;67#?@8OEq#_8nwe>R^AgtxKYz( zC93*(Va=13ruW)jWe0~BsnM9=L#_!HI0E2LN`acM%2LB|%}i1&FiVE8g9B0<0OM%5 z)|#f^RCOsAW3s!C-T+uz5}8n$`Ec1%S>MNMey7)9K|>Xl!7>uA>?e>gV_Wzzuum5VmP^196{>Zpt!N@)x1_*eLFwa zcUt@?Yh}iTtq6%qX0FO6_;48%_{{JOYZ2R3T4cMn zCN;%$cRa#gqZb`B)frw{G4_ilx#e=zx%2sO=g zyvOrr9(nAUGv!uoxb>G8<7b^}J6;`9K0SOX`WzAJ6;HVQ{%!nSgS1Av_7Hx4i(8<} zhviGq<3{Q6YCouMLuz(=<)E|I-WYCuE~lhzcjFqm>GeN2_&Wv0_{0~yrhk@Eg6v>E zSs-9-GjV(pN6ni4pT!{_${a!!Yr)fKn@sVR=**LMSqh^p_*&mH|j;i_OIer4GU@MFkOpN9}>8j?l_d7mI@{c68 z(|VTDd^RK&?oE%Ts;%3}v31FeHQ!uBJglU@$%!I0pMC*n35zBdH?EB?Rd%~5DxzYH zS?b+<YW>(?z&~xWYHy+4sAYN zAx2MSP5QLnIZr;q+(~h~*yvNb#m{e$&*OMF)A+TVmSwV&{3b_|nE9Z^5A+$KVvv&| zWj^cjGfSTscUx3~n4LXLMBgbh&hl{>z`ttYm3@&t%^g(#!`i<@hH>=5No*tL9}_V; z*MOgn7h^Dkyk`VU)cX;0=_R|?r31Pfui&c)`j%t`nx!qR8;Hl*K{GUt?J7B=^(*tq zHKbil@L8Y4Rcg#fr$)BRHBQ2-;$z?7XZlETtPxA@V*2iC2K!%>#H-1wN4{FZT?qnw zH|%ahxHNs0RAavVEh5CCtC4RFgi$d&NpI`z8XA+m78OZB`l^JC2l*S!@&WavPWc$hiGm&FBXSOj0c; z07kzlY~M=NmP!2+u1unUv*D=zSqQQN9n{o*np2wzBriX>sWaO`X8E7E-4aJPHtGo@J|rj zObp-naRlDq5}rglW$#5Sug67Q+*BSDci&IYd7L%=em~H3D9Chwh5LOV(;X9~-$2j@ z662c|seeM=BQCQUF|0mMMC(V0-#k`X2){ZMO3~}@bGiqD;W1HrloOUL{TVSaE^>c_ zun#0uKP7rAWC#bcc_SkD2~wMcs?3NBOB7$u*&YZ**dqD!2=#+GmxMxe<`T`X9T*kc zBDzZS9tf$8i|T)SU|VO2>^^}W$ky4S`(F|2fspTr2!DdRmM16+(L^lDf0|@=ASXB_ z(*OH`@v||}{#ge$^W4G#YxjfdToXF>Y!7(JP@_@&v zc64x?C<5O~%HGUjN@FuEvKUj9CNU2SI@i-CF^=|egm24KpE)2a;N-xATagj zl?-+s2a}MdY_hOzFyk9#w^{^uigX|mT?YbrOlkR24j=|Kt~M&sV{fFOeBk?H-EJ*J?)=zhYOFaB3p$t+LPdUT-*9gjw{Km`4d-x z>gphVV3N_V<(Qi>;yk>?8+gL<#!^4q7fa*;vnda}vT$sZxJ1 z$$1;omi`C7E_z^63en4)v6xUsNWkKtu2X9@tLhT6$N!9Ib0!;F{qw*zylyQ*@L)q= zeml3(nRze)O!$nq_bPl~Pk@G8x7-P)U$>QFDNuig%byjSa5C$a`vz;%{)ta`~BlUzqmVY4)}B{%TJ0AV9Keh0O9hiAgc!jLdRW z`nza-w2v;$Eudc_Xt4+!9O!nadGM>mg)`-AbW(*TZeq-3>VL_ZdCNWfbVnm&NLch&vc^OsDbi6m4Ld3 zNOndr7X;Py_5{**a?Q@le8nIk`zD6sz$xwY?14978@?KPCSDmaPH9GYsT3`JMZsGJaK|lzxtFaub%s7u?9{S*(I&?c{e5oKszkZ5uA05jU3YYL2qjui|z(mHqguT#$AtXMy@1 znGB>b)WlHp<0KTZ(2uaTg20k`wd&yOz4lA@SC!Czs z*EmThFP;Qe1;r5bDSeaxXPI0*XxH`e{1PtInSNJrat7~X<@#lZK8-v75tnK>DSQ-k z?RQvcoUhmryBZryvtlDiuyOgUCjg*OgxFA(b+#VjEN3~dsDY7`b`soPGb;~3E;F8v zLj{(ESg#|@Sp*AUI@nb}#5#>~1<3$l$GFP>$GOhJRRFZ%p@6jt5KnM$JNIf9DG0bD z{Ny8?>MSY+K#r>vpCDFeBC4n|%K5%?R-!`nXuQ zh8;dk=(DHGy^SI8MVhXFLnx+VHKzduUcX+i=H@+uejd zi#lUNA2}cIhvg9dFU zsC(HxB36aKkm=TpBruRsfCKHVO1VyI%l9LM=RZ^hdcspLuq$(x=*N6wV zw8;aAB2zW^Q|Q)%6jpCPpe9j}!2VHAcDe(UD(fOMy^Qf3(@_WO|=VqMz=3t4vGWxJQc73EclR{RSnqC^M+(_lOC%2A+orTM>}Wm+AfoPSRcOo45a@JN&v~l4l)4V20Q@lmbUFrd8Ou1Z?oQ_=5nuWdWuOL~wFV}fA zC_vp*`1L&D)9thKWdAq9bFxP(a?fP}x0=g%2U51?9HBY&0IPd0w5o9*{3&thT+Cf%hMHj%S`8LT3fs zpB>2F0^G8|d-I^+>E+%;^f?9e1iNdB+CoW@S=Km9rxAM!s8T9d0RJ(k>r^GD0NnJU zO+}5Mt{pM|G?PJ20X*!=jQ5BN=bdp1pxt1zk(%UCpdjX!zi}Xw3r&RKDk;i&EuLU!>mp@BzGo$Wor?n*0`vi$^R(P;0nUnSp zIX|cRGy$zBc&s@eQ_R0Uh%>_4@UrUPCjrjN59+vM2)Jtxf?_tS8ru1UHtPY_uh+=@ zeu~R=UN0xu6b(@-D+=6ya}cTp6LJOIJ=|pHjdFr%1`#}`sM{tWKXee}9YC4VykX&B z;Gt}-%A^{lK_3M&i1^JwUpl@&ItErC|$^kzLLd^}aaeKqOOd10Gig9*+i!XG;b zVT`bUnc|;t#k2B5KwDZAct;L`USv6jakJ)3*O_P)6^m4KhH_dx%tg8sKuFUfX33S$Z znulNoaO2HfzKMsE-KUa&4f9tFzbeWV+Fa8q%$iX zla#AJCb(J2CbpY>^TABcn9Y8kxSM&cucFkocp*5uSrxqqSKh8Za}RTVvmWE9zri;> z^&Hm^Vn1R-;g=u8p#wB+*L&wd&@vX=c}+ItzjCp&o{e4?-WP%QEnM!b7heT0b@9EQ z%XVMgtT!>7rg^J3E;9A(stUJqwr;sP5mb{Ur;bjEKxdz79CIT3 z_1Q##`}|BYRoiv+{UoW`_sY_|WvV|*1h_@RBvVaQRrtDtLF!1og}=#GfhL)$U5Vj; z5~MSX!!9zBOQ^0I4VQ7hW+wr=kk%g%q}xw02?ECJIz$BQmLC%V=F^1gRQ)aKe|CUL zEr>7R4BcwmBr~+CMBH*P`(xLSxQHNU=OrVRCBB!qbjy-SmX2@(*_+?yEN4IPscIBo z$2rbUnf61cGTHOVNoMDIV+Am-z_i?VCE7KvxOmd1)*nLxywHnu=_g?)evtIv%Rdkv(bG{UBK*8Llj zM{EA0f%ubS{Y}M|xL;|3lngT+%NtGP%R~9B?81s<>~a5+M?3!sM*}2R6*nErD4k&? zi9g0+@@0$py7({+uLZ~NW@=6EF2;hV8LXYgUWd!df8cTQky5Gue?*Fia>;P=QMNt2 z_}Q&&!0F~A3DNJu=vzyn@-19oZGJ=Br1%3|X1mQZr4}ANO)?!8=MuX_S5qs z6WD0sH}LW3yEf;&I4?3mfd~wy*YgzDGY?|ygv~vq(+JjnoulL{zmxBh+~n|NtBmtL z;w+!jPd$z)Z7ZX_!O`Zps-8C5FVA}%t@Pf;U7E+a)w?8hZ3TBfM-`wt2Ohz)Ea@UB zJ4Bz9Z8o_!Qh*jun>7ae4U)hh>h<)j6!bWu#=Nsw1+n zzv9C3uMrl2$p(WDUIzLlu4gvpzq+SwsH^kv^cE7b=#}7!!`>t$@2c)e941P_{l)uS4_N2yR=%c3AJ9^ zvOhN8MIka+JNfSAqVjcsX%|&Ddgr^ipnN@d>T#N(*Q+4l!kn%zp6}_Z$K2^Bxv+eL z)YJ>>LdXmKT}*~MKkjZEUozN#EM}^lc3F+Rj;Ymm1>-yO1?03N1(7AQu9)v;HItCR zJLgM(O~0$D;)}SXd_{Cx^ffJ}^gHvF_y|7Noc47hZ+>e+m|Lu#9U}G3Pv*D%vpuig zGhFFzE^L0ZPBDx`FFC>ga=yETC?zdI-p@tl-yNoU*i@SZ?5$^W(Z_;o#7L zmH#(KnxC5XTI|05_Z;ZuT+Kzit_KR{lwlRpGP4Few!i{uYtdX}Nw z)+*J0)I-f*BS|Xex+(;D1CLt%J=T0Z$>>`8YE=c zjIEJxaAB|HlKzB4jqKI$QfZpkAO>lFNTkhckQGe_U&uk+DY3TAX)<)xOjzdM@B|$= zbdw`|jC0TD0Ta%>8+O8e&z#Cfi}9JM#xNUw3$Zk(b(npAY98zGTN{22MtU8q{%0KH zpm)1&cKg2&OU{y9DeLHDI|1lAOXnOXpKmdo47|u@R4epR>>b5;nE2bno9-ef-^L+> z17=k$q+~J0%C_Ha``WwlYdkOqjlv*4?H`;A_?Q6xJHb0E%FRFkF#7cLcKj=DhdeN6 z^ck1=eKHD=t&sgbK?=@yVNElDB>;bk%Q$GUVFbEii~oBb0?-U%_+m8Al^DkOSKO5R z5P``yg)8Z|ZSC%_NxTQG-L+944-cBz=Upi6$L7H+xf}ui%LJcqOPma6U3Gs+xjFu7 z9t@=$GnD@}4~9bUnxXt9;pg8dCqq-z3@C9^c)D^P+a2|cRF5fNZa$~ zOxs;^HTiwwH{aAd;~FuXpWyXknhobo(JgNqrCWDubS+oX8SCHvsn}Nu(Zg$h+Qzs- zM9*6Uz~SOU#nor$2=P4cy;VgEk}==TWxhJ+^D1Me7yEUeih&VrM@Et25;qge^A<)? z*n}k+jKXVg_M4t&P=8KdF>jjU8LBq}O~$`NG>3EE-=5DHGb|T{0)!QRh+=o%dZNl~ zhJCq4z9HitC##sZ@ay#|np>b$hpb&j|L0tF0lU#mI-D)>ey`wdU%dsMuZGK$;f?+V zggP@&WmSK{K?;~(CK_ZLf!~2H&;B2|Y0lRa()Oc?252r>OZZ7{OaV8?WFv(169rKO zft6tE@8>a;8K#Xw?8#8yLcA5Y#!j@Vs1=62MkR&5Z{R=&jXqV=xaD;>0~>u0aH#wv zWG6G{(zV^0&;CWcCHR_SoL`JV+At;^Fbb;ytjiDxNIBCC@{f3^=DN-v9%+CH$`}TJ zYwn2E0~#aYE5(@M42abO8iV0ya)tS#Zu$X}M-K6JRQwLvU0i3rP@jHS*g~q?B%N4~ z_&KgLKMrk{A;Zu-seP6QWUlKAoBdWBr!sz5^+B#LUqzc?ePO$bXhrotas=Ox-!=gn zU(40b6SXx}uU{nVF_O-F2TPE8A@$yQ4hCTz7s2}^cQF4dGyM+M1Bk-3spl1LUA`rM zhB0BRgSsbscj>&(Aa(erzBqjPys46d^|eI&46ZC++RuQ;IMekXb6xo{${9X+mrEL=Xm+{ zwdohu3U_=Io79(`kCGzu!y2a_uH)%rcA5*Dr(8A0k9vIEb~$9eadwu)X?u${2!xd# zU&pBa1IoI5#xhyA(>4bDIVowb3-0q}t`IKAgnWOE3(gO3 zo*v8Huyf?KFir?Sb$ECztUb={KVYoM-dkAvZVr+k+ADPja_Lx?1BBhY9rl~eK<&(zU2@*} z=kfox{x$Wk{P5062Qy_CKSb~cy_QzA7j>(dzfC zh~@uTjGQMOuIZoUCxXD|I7T;D8M3Q6=C2Ev6dZo_wssk{6!FZ{_IAph`3+VLyWMK&>!jB|qzxrMdUo2CRYUFX{4c~{{sm_0ar!7? zpeuKjiNE;{WnBKh%T*QNugP9dL>CPZQ;5t&tt0*n_iBC%vnxUT2^qlrhHCjRV{4=G z2633LW=%^ONV`so|5UiF`R$h)D_Pke&6nmmnjyrWBx%eQiHx@t{`56m*8KPrvXa_( zd|q24ev^ke|E{j96X%{TQ^hz$+A9NQE6h;RIpSLGa=^!20%)HcXp{ELN8_#c6w4&H zN2i6=-Go%C>yXQDoM~DB)%IGxHb?vrVZCSSX?49ldyzL$OMZS@Xefu+#lxljP6s*{ zbfIsvdmEmAYm!KSWSZO*zRb97QJjiMKr=l&|M8mol$#pWy{LQ&rI5M{b%5oMhd zclw(q83#4~glp_G(r=L#rp5K9*F(I&pyp~axoM?>0IHZoo1f*Gd|}Fcqr9S&QMX6( zOO!TjgBsLP6Ag_b7PuOzr>r37cz_3J*^QJ3ev z+V4iO+4)97o_5U*gvLRS(vv(%^i8`nT6CG6iHTDP=xaF3r>8`x0bTP^ZZpX{dFw&I z#MRS=`8-iDEmJY`?04`;kY*}>z)3pu@CzJv18@f=480A!SekGbLF^_J}tp(GmZuBA8}^WN;VBH7U{CsA0;ZM73LZw-m%St>D3%W&#DC7{##}OB7zyk_qBGs*TF_E+T+6%lSdhY+CHg zW1QWvimKwVtN7Ci(fNQ{fdfaTt#)!uwA{{he_+Z@?cnK?{p8l~%z{*GG(yz6NB}V^ z);}b;GgHphfHUHHo76llN5oS^f=?t28a3;S2yj{{LxBF-s;};^%szqhEdkvi=xLb_ zK^umffV_aXoc0tdkg-a!N6MV`=nxdl9k`5`Al-||u%~5*1{~_ghXCv0A|_1s9!_#v zK~1RSu#{ESwyYC}vuq2VqN(Ej01M=AQHh*onsDL6iQhvVZ={^d(y!q(r{x@6y0Vy$ z(fdClSf^{d07DY6;jXIcR@ue7lkfwL(fzC3v}r9G9HQ6iKv~r!a226FJT3cRn7rWA z^7Kr5hnH*;Ey8Y|iJy&Fek!6nYS2qu@w6O+ zULCsDk`3t)+_Y;3xF#;&vbB#9(zIe5kc<~9ncMdgi_`L1LhQFX<`zi0oA$B_P`2jO zn}vpZU04d6D$t>=&qSAqo0b*g%8#?E^b?B}o+jp|)l39rwnY7Z|9|SP13ao?3)3%M zdhfj^^xk{#O`5E+1d!KXb~=oT+zq?p%zsT~jy~u<^umYBxAFrArDnYCjd0g+a}42f8rCS`8+e z43EIIDV<{3uEunjfZV>CPZLjwAG~^2HKxRHSk?U6qsxxfo)qW62bu?d+%TNnw3rpS zPw522)n_*`8jvti`jj!Ui zpTG#Qxvi7-HlWLEkL_;Qv)u#9hPhUIgmTTIZVXOZ>cl-u;x$!k#%bT8D7>gWakyq2 z_IOr{hbis78rMzX4qvhL8yk$!)(gFz&%Ul%R|Dm_`n+h@uTn$dfe}G=dAsL)K6fo| z;yuM!JBz!KNA1P5YZmbnWduIlVQ2QJ^L4*#X2pquXiF2~YX2Eo)gF&sv&mf>XJ)Kz zsUJMrRBPgNe#IDb{KU4GJT-D1Ml?qVmyDR-11=3Sn)9uTX7IofDGqI#A3gJ-L#I4n z=GTR{!0{>1S1s`&Py2jzdo_QV-zt9X)$&z4QNAuaT}8Q60peGB@w=w@wLV0TyOrf= zl?S7hW)E}EsDlq*Ag?K_ln}8k6E+$T>S)5|TF!*VqWL(PY(7Ky{$K8;ey5`)StR*~0;m64+@r@Y1t<15gjo?4cS9O8N5G*lthsQvSJPS;*-Q8Zi`Q7>ZZSFqT5wHlMw!iWZ!z85heM`Lf<1I7Ra&Cbw(Re1Vnynn_8$ zq0;8^*58or)EU;IEiL*RWL0zX%xzzclzZKs(JnN1j@&jGD?VRi8P+SnZt4sZbgvxu zkd02Ce%#Nk`TDd;aB3=fU{r|pPSozHH~jD`)|NXHSEt@M!Io`2d_VQ-jeeZudb42RdYyl%P?PVWOInGe(E^YdQ<23=xML+0e&@5+$w81ZumKJ`s%e6qqCmd zt&Y5EF8$qds(AU=`lDYa*nIU?8WR;RmyiQc^O`%OZe`NuMf=lEr(E|eiXT^W=KF0v zOr=~}-_WlGM`{jp?&WfHV07RZ^Lr9Ckj+=G9qY?1t2RFUz(*$(i}crP4?JI7&4_f1}14GBtAM^ zyl5(Z6yo2*={@X#;4twDh}^A7kL+pg7ba<#4N<}A_oWpuqq&k##tgmLBhLMavkAhB zV(Sau)5(`KU!a9)PEjebsuw39*_*G!ZUe0rm!w_GkBL*Euer2IPG75($KX57pC;Y0 zW-VP)v=z-0KuOyZ@7w6v`!)@47K-YA`#?%KK^!R;gOSLS=6-ULc`}=c89rLPWg$<8 zOnRj(St>DW%G@NgByVmv|GfM+jA@RANtQ1aOkV4s4UG`(&~JlUMtjD^>nHVGHaiI0k4RmbzQuj`(UEO<&7fb0VyErZ{hy$=l)P0b}N# zEbe%6vTl&2NGe;_T)hJ`n)8=B7aPUo5(cxPTU~#N#i{`};|j z_~->5K*cQ|a-uj6kML;fiuR~Lan=a0@q~)|cXXqpVn#?i9gzz@p5lTX%WLt-pXD9B zQ1sl|u9jqYcvO((Q+pe%73)IsVPm7kmrZoB;@GX(FZ59V8Vb?a)eO+GSM)`@_Y8-- zWg=Q1t;270G8i%}Mr-5_2%5g+`MwGix9ZBpY9*RF}0ly3@}-@lv-J1#pyR-(Nx zyTTFUT=iw*8cC`VCzcjV1YE#kSDQbfIsJDzpt~IGbMOw__{M+c1M_)6J1=ZU9>)J? zc@Qt$;G0o)Sy+drP=&I9Ia3!J&lka&2|sa&L_dn|FqG{$8dX<02@RYi6yul}?6}W- zk5X1hLcuOWU%`CUB&4mMl{6>N4+)e{LWR%0ac;g%R+xYGqe177KS~~Hoe z(qWS~P{7jKa^i(laXX95>@5gZ)D#REE3S1Czxe7SaD5WnH6VR%AdXq(rKs5E7xz!f z)kaq|kZPL7Ez;th1G`4`k#lEQUZj$F&j$0_eiQrD(c%ImF+p>_AHb@%-^9TZ@x?58 zwr`(vzlkYId?UqNv`TP98O@@J9u*W7t2b}W&4VN_xg1?4tBlskbRix~N=Pma0Zq5M`p zP74H@@2;D6RsuuIM z-tZ5K*N4-0%*9eE02Rn8pF^dRwu-omMqJ%R{F%l2E+x%nirmbBq1xdC{VBBa5iWCeN>(kyC|f1i(YRo<{@Oef+Y`@X5h~& zjlgKVTw>E$tB2*{&ZMR1mcescCS^wmkoo1zW`uN24U>uLCBVFlWW}9OEUlr4+NHbD zWPX;yb=92+>LcT$;&IZlIK6M_0hb}DRYuEWkl5gg#|=i(a!V+b*KmqO!RFquG)}V}A4wAl-w$BP zO?Ei2l!kGKH|PdHPOG(=-`ur(Cp{N(VeML0=iymYd|gd6qsS0hyuK)26^$I&$=bSF z!Cpd1CmNz&RE;%)*X#B>$|9H zeq;y`<1ee%wQqRV3DRGjxe#Zy#B6F=OhrJ}>J1xNVK*`)FeXGl&St3Fft*=~8XNJ^ zVPgaEW03q2b1+(mb@aE+!u~d=J%53a)tbGKSoK*hcl`&+YFe{NG6q7{qS(&t{+OH0 z1(IFv7nIyOnb?U3M@1m<7%|q13g-QUc=K=1?VxDwDt3xuAQe;naIqOg1D;Ik5z1*D z3G6g14M@sfr$xM_?(Jm7a13Tz}wrg7Eq@`*rIMKRjvUAMnFmY%k zBuZTSM*TQM?%w{5)T(KxX1*cDv0P7tL*tFPu)4!dxVZ8?THNoLFd?Cm`dHMBT1*VQ z>O&!=76-~IvZa;)`Ua>ZP#*j#g+G2G2Wn}csn93`^f%j+dBs1r~}$aMyqjJPg9S%A6%Wdyey&~l*eKqFwU2hb*e~Cb&UB#lZ~*Itp$G(CgspfF6Jw3iK<`aG+;EVLLl3Oasb|xamM^pkV-tK-_yk1%Zq}1@Py6{Mm{; z&j9KLjhR4mVb26q4RN!88UcL(lofwwdcR z2yu&nBBAjW&`EHY0DXqIr9j_7ZW++)K+Azfg1Z9fIpV$sIsx64Kt^!C0g6Z5DxfNm zTMhIbxZeUb0s0PT3go^Ax{9*>08|6qH9!@iyB6qc#Qg}=9C7P_4ny}Rph1XR57ZNJ zKLa&_#s;AMKpTOogS!dnAmTOyWd_;;)D>2?0tEqW13HXcZ3p@lx;ucn0PO^N0Nr1J zz6JUf=u_zKqBzLy2HFWL{{wmxaeIJfKyEM47I1$9YLB>mKv#hF1Fe9@0icf&cMzy9 z&>^6qNcS+%QOF$u8i%;wfm#C{1^NKoV?b|0_c%~ZaQ^_xhPV?z%@KDJC^s}t0p$hy z6G#ua(?Bl}cLt~=G|mDIMBF)`w;*>O=sUz+0Ga`G5vT>wUqA;@@=HJ?5O*0UGtd>F zia=L^sv?bRKo<~q9Y}|`8$eGHcM~WI>D~ew0(2YbJh*p&f`IM<9R&9tP-9s68z=zi zKG2ttdjQl2aSwq`LgOExbclNdR19*Dfes+<3DB=7(Nmy$;64M|j=1MQS@7ot{v3kF zOQ5N+oFk2AfjU697El^Af!aX9h^qti8SK>s+5vm@fNp|YA1D{B zGyp1txQ0NtfEod91h+BJK%gc-`GA@NwS-(Vpd&!dfocG?0J@FTS^}*^4q5^2M_g;5 zO+amcD!^V_pq4=GfHFa&J%W2Dgss4BR9fv$tw59n)f`vWxwcL2~%#Jvtw3~>X2 zN&yW5dI#LWK86ae%Tei;UIA1Dwg3p9d&E&>Gu#R7!@J%eQ((EErB z1u6_Q94G@&7|@T9(*vDGoC@>>;zj_aMGnG&av&}OXdU7rffgYy3MeOZqk$3-HxlS2 zavB3P1>9Jmw}Ik-#zQV1C=2Y30y>7c(Ll{0HwNe~;>H5a1{w$S43@_O^+ntpK)*m^ z0?=~Ay$SR)EKdY#12hS!73AImibmXIpi9tr8>k54-T~T(xG6yYgT_>#KH$C!)ERNp zfKC8S2kH*40q6~&_kd~v8G(vJ?tP%&koy@xqrjaBv=phCfG$IB7Epe0KLDBr?rfm3 zh)V!^jJOYh4k7L%pog&hG0+uQnFG`s+)seYBW^CxVZ_Y?T8Fq#frcXPGoWgSn-A0k zaSMPoLW+HA0&>8411sV_TGN8=R zT@F+caVvm+hTPXcJrTDOC_m6QKudsD0UZNc4YUzyd`oh$_Z?7qSot0(9NZs(Mk8(w z&>En%K&4>iN1!(lw+`qm%Jvh`U*N6>ngR4P&{Npk08|Na8-ZFwcN0)ya5n>WM%)&l z+dx}^u7SG^XaeH41C;>U0dySpb^`SS`UU6?(62xnAh!#sI;`vlI)u3Y0X;&V_W;Er zZZFVd$o&TN1XlI|?Lgdqpd&yBNDkbCKsSI60X+md43qo&lWz+Kv331nPzSodVhp?w>$yfKCIA0y+b90`|@VorLZ=pbOxh2g-<= zz5uieau!g z1Xi8^O-9^PpbCh42J{=^o&$}6l@~zG5cd*jA>z_x6@My0BP~#Rlsp~KG{~g~8Unct zKnmhA0!>6*CZI`(Q-J0mE;G<`X<^*bpxYvM2 z1LXpG5BbXtGzKUS&|PTc1v-wnd_aYf`}{z0h${fJ8>k@AKA=KC*?|fJ{R%5ZfR+Ij z1Hya#afm zUwTw)16>2R4v-(Xb%D+zt{xD+GN{%Ex(Uk-fP%nn2o!+0MnIPk*BA&NpHrIvEkImT zpi{8i3@8MsIglT8TL3LXTuY$MK&^lZ!W*rDdPA-aae>+bErR8CKz~7_J#mq42cYSY z>j-25w-b;78l8diA+8J1L&$Xn+5*%Ks6DvdfkF}21L#la_5^wjx#|Uk&-SRjf!c!G z2k0&6_63>;)DNftP=BDhkQ)HB0CBGa6$Kgy)C=4}Ko=1=7^nc^h5)5QxqymkA~pfFgj>K`s(#EbK)AWk8;zfvO;GBv1p$#Q@>PdNmd(H{#-eJ_3pd8VQY2KskX% z0|kOR2FQrGu|PSH#yFrt$jf-3n&7?x6b&>1s14AYKtDomB2Zh{n*`9^yU%+Ksr6fpAx-ItS=y z#C-zP4{~#Xt^>^jDh>20P(Gyl8PFDJ%m?ZQ?gF6K5cfF{?sHTZ0_8!jz5v3#iRvPt zOtA7L&{JqE2C4-sUjeNIS^~5Wx=Vp_0xbi&3614IjUcxIXeiLvK)b+Q3A7pL8=&`q zRspSsmDNCNq46z{3hsA6-GII)F64e7gt#?87ZJA>s5Ih!1oB7RI-shs_Y=?{aMuGV zi2E7nH^glK`UY_ufjUEX6Ho=9%|N)lNZkT7336M3xU;`Rg8N8ACR?~%qq zpwAI^2&g*Z4g+NZIs!BRy1xVAnh5nM(1(aS22=}j$AM}f?hl|=uy+DzA<#*nqL4cU zlpb+^0{sPz(?H)N?hH^D#GM5SL)59kh1Q|R6W8VtF6KqZ0x z2GWCjALs_+9suE$P4ywr7+CoS=qk96fbi0z`WUDSbe{m7g4|P}Ymj>ebPwF;K;sbi z0%#b}OQ31srpYG$LfmXqC9w59#qUHrU zhq!z|$03&=s3YPE0EHq41%WnzTL|bia0>$s2Py)z7~G;j!9c};<^mN5>I%6MKtI7= zNuYPYEd{h4s5Ho@4+nx^cCXD1NB2(1)y(%DgylhR0#-&oz==fOAuED z=qsSAKwFVUH6Rn>ssrKlu<8edpf*4_QK_~CN&|cCfc^k#5A;6L?Er)$jA}<9J>oh6ErXTLKpBC$ z0PO_o3bYhfx&e(uTz8;H(Cq;f2-FkkO~~~ET7tOVKwkm%0V)CAzCf3O`T?~B>JO9# zasz;}!^-PG1Aqnsa22#)$h5-ElxuHPKAQu4C5pu(T@*^$~s2=2kfZ72C z1Dyj30eT6f13C?jP@vI>8xB+#abZ9aKzg7Z;Hp4_k=h8LUx31a{sA`vC#I=3SZq9t@rYb@x<)Z5Tau;-kmLg(3Y6iPFdM zJ)z*3E%6GYhz_eJG%~TRgw9RkjrqhWZ=C+(GeP2F0V>vXV;;MBaaJfsmoVL^NSBGz zFUHLBC~ho{!WeS~#*33N`Vetpu}&NYO)#d@ha?zt=pzEf;U~P%ClW{q(;IW?#LF-E zBJfyoTs2H5+&kTvKUfHi5LaG^1Ec|gAtBm$Al*s3x&nS zMaMSs_ZQKze(V9isF>mY3C5g|q%VDn@6rn0ZpQ2}p}{t~70kLggNq|)BgAQcy)G`4 z42Z)${$X(u;jjcfJ4-pmY0h}@@ict!7Nt-Zi*{tpDRkoWapFC{F*w^LijgN)yp95IWBqj4HDL7j&DWhc!5Ruz_V zRiHZ_^(V&dm%aSw5rm5@>;teF~vt!$c zs!DpBR&sjy722TeTD_WhACTnE*bPMC_hy4~p~o7cjxjxmJbmOQqTVFx@j2GZ zOp@~oaSD3k71_0gB%4#}tFN)%Tf}?eznyrki8sgaGf^YR%9!7F64jn0FJI=e<2Pc1 z@@PEsa+BnaE}Kabzs?(!_5Um&UBi;()J^YLP@-gwok6BB+Zz;WydEXHADe-3BWa?YeYu|Ad@k)}UQkZMy zJK`-~&z|T))E|q!CdoI6dQj^-qK1-QwIx3i6+|ht&%vdAN|OJZ&aL19Nw#dfk|bXc zZ^8PlMAap|qS@KXFT^|D^-tnqtT!lgN}nYPGm~f`rH&DWdBvbS?{J&LbJgid; z%Gv-<0qYWj(rq5=VeT?0KOE;=W41IX7k~Sm^e~GWl&Gg{1+%6>*?)`muzoQp`KqxV z);|Vi)ln`VW^RM>$)^X&3g$n9a`-Bjp&41}d+-49FxMKCqi>!hDnId>KVm)1uLh<2 z`+%B3AaRNIatY4oCerIWfxUEs^om@)N|Gmuns?+cqN0e(G@R?G2~lYixKBSP zD?NL%-X5a5AK;o^PU-!5a5GtnC%txgt`qe&@z#BEm#CFQRou>Vz$&5+D5r_{9Z~nD z-XQ9AO5sTtE_+3y=KsNUJBX-CFYc3M6{7YW=k$tG>T_ec?Hb8u$KY!ui8EKCeU`dS zR8Nx3U-}_YOUcTXE!>Oy5O3Neo;!5J%kF=HB&QIs(2QF|Vf}AVf~&noZ353I2Ia*< zu3N0?4a!@;6eb>?S`5nhFSw?0-q)b)>yepwctSELs``{{;#t9<+}Mzxcv!(3lsx;& z5rs9rK`HyF3{iNV61_1iw^lqc7?dk5iW3j(eKBvIEKd}kqYTPT6MGQP2g1s?Wr>I9 z6@yYfOFp9TJZ4b7i%CNio)E-%RiTa!*>#wRy6!z8(O32HuL@gw0P*{7SuoEU)UfuyjVXsV-Z)IPiu$yL34FB{d z3VU@1r9~IE@*Yux4TFe>JwVYnueV@H%Gt}M;Y49CP}Iuy4n$$!%b<*GHi9VZ$QhJg zhx!rqA=$i`y(v-HD-%9@!Jfd5m_bR%7e%~rM9rNvlBgR*O|GpY3j3A@)5QTk1gHrllFQTSWUdCY`~o}od>(wuqN z1r%-mLI6o(*UzB*K5aNrrznMwb43z$kE|>n7EM$Q;`KY7lK z=5gX%l3eiX1mcB~r2o9yL}5SAp!BVggDC7%8I)z&xGiB1%Am9#@HX+VnO2m1Bx+|j zPW>yQx~(2ck}pVa>l_~0&ymfaj8J%e`rwJO_)eL?6-<_Yb_qj7ZdMrdmdk~%WF`k59Bcm`<=p{x0#3i zT(LULlZ&h@A>P7W?+}H(S%cE{OCH%LljJ@l`xAS#21U{FD2!ivgwF=C9)9UCDF6Jq znyjoQ$%%dmMB%p-@hp1yE28kbi#-L2?G>0hs+994Bi)|q4 zL$cz3d<#))iT6eJc|_s2CWG?#fhj}{CF=6PnMC2&6N558`X{1(BWh^(6-43p4})^1 z@Ghe8o0Rb9Ndr*|@m8fnB zm8Q)OqB^r=^KXd4Z%3l-e(*I>D~UQd?_Hws+m%7-vG5b3x)U{N#rH(vS2UqFnDdF> z-VDm6#*>MM-;~6dHRlJS@SBf#h7I3IRB7UsdoZ7RF<~h_`M2X`&iX3R|u)55K63wcEt~#KW)e2Bp}g--sGP)Z8t95{2Ku#XMH* z3{i1Jjazq}sBn_Zd4p4LNYqdR=M2ABi@vh%GD+4UYV}vY6P1-D8_d2a6`orgmYDn%E8R~If5{O#VluL^f0S0B@ckCCO3NR>ji?Me< zBFS|*I4@<1%3xqCbBLPWoXd{$0%ES}!)3>r1~Cr4U@!ehWf(J^^MW%0qQ@2D65)J< zpyqQKHj(6pCHpAXn}~O$4)bunz@Yrq?gH^aF? zcI|QE8Hsmn-9@4{^C(=P_%l4GnuxcxO$nlK9z^uba@C3QBVNfOX^6rZ8nHidCo56& zNOJI@f5_$nqGm0~&OFi^A6=EG1w>UH$u>iXI_j67csR);p1E#jAPOgFMDHJ1lqj6- z5$WB?NK{+mr8!xdD4cW=&sAfX+DwwAUKA!C&dnHLF1}j+G$_XMV)9MfZF} zO()*wAofH7N}>Gbn#9BT8iR6jcm<*^lHROP<}D+tV!ndJJ4=#3mQF_$&i)vbh@HiV z!nqzXwhkyw6i&<-lu=u25mkVA>+)A4syF3j(kw1Rd*a2+C{MgzltSbxf1)lCReMSn zqHtzPtVV;LQaxNFUU2RgMByZlXcN=@NYal|IQvlnq6{S2dqqj2aE3@cEv2hOQ~*il zY>}C$&17ZEa4zjzL^T~!g?Ko1Wl)+u&O}sM;;nr138fxNR&*KIgE%`S=G3mi9 z{B&LfQRhi=_MUb`Jtv!a@=qXYH%VqV+MlRjiI;xrAeN-E@7vUtD4fz0ZD~PQqUMm~ zm1Av)+DBH}HF=$={X~6seJD|*NiX0;H=-1x`ebND6wcF$`kSK?HJ*5jOLQVC6Y(zH zjwC7vrB}M-5TYiL`%r5>=Y?KA+fusEH(b?gW=_3`yPz=}A1C zhcqbL7PTj;2T9)OGLfhfM1^e&BdR~yOn7ZHQEP~Ib$bj^I5Q~v=9^=P!YN9F^5p%_ zL=7P-ouLI$cZtgIMlYi76Lp~Vn?wyGDs$CwM4hJeiY=K$R0vUdZgI{kljIwfxi)de z(V*0?6it%v5w+oQccO3>Q>>G3^dSmonGDLBoxGBpPLku}-X>lorI2@b5K(v&QtY_2 z;gJ^a9g3&?Op)mC&6g3ihV(A=UqU?~f^s(C4zD%hiC4cVuQ3}D)%A28(i=pn zch5hAsNJOZxY%5>GM}itLxvG=E=lg$lbfi$#QUf#_mu|3J9}pa>Agn0&kKJ^k~jrr zP?kPiLey=dZe(Q1+$4Ez=0eiTOVrcMym~51l2w17O}v7{D_QGjqHtDB?0auA5{0u| z2Br3RUg5qZ-n*U0QhJj~uXE86MD-$Gnwq(YIzUu}p6j+RNj8k-UUi*HRARtPlKg?F z*e2Yvx)F8Y>xIO_d!eHDFPcIWPNx}^fP$RspUGysQ3{15OBBwi8I--JKP9RFQMs2N zAiaJhIkUxQM14)E?{2V;Br6f`O2~eqRuM0&k<0gt()(sJdtw(!KAQIfN!BJ_^@d*% zm6oVp#vMfA#J53t^X9ii;S9G}S#|xHsAfdX8L*eAABoEI54UTaeHVLVD@?>2Lg^j5 z_A5~ph&q}1e?%>$^cJ++M-)!18)3;xi1)#z_lY-#dByh-)t^%TWXKAl&JgctiRDDiCcVt1xC}TsE_VH@A0Qr1o*R^( zrgN@wKHs3sZZ)5HIGHbYn@(_TuBH?k_gP823zR|;g?VL&nzf#LYFVOc*X2HjbM|6? z{?RJZt4!%l9`Q9%I4N&X8cf?s6y6iS9vQcgUX7%FrWKh&PHPFCRQfye33VEOwWuu|$Q3o+BzF zr7+>t-$Z36-u7&dh-%GxHLel0k*MfjvQY~8iSnCshIq%Q?0*)@O1v{zJW(_DJtfIvWV74Gyu^EltUS(IoT!<^({*Hyayq&3PBsr+}9kTL-s0ME}BFPLyZTg74gf|Hd%E5nl)JRMDY_T{a zN#YG6@e9Y|xy&R(SN-wBQylbR)yd0Nr9Z{3NlG%wH;ffX?>Omoi>pS|W8#%*-jJvrM2)Q7n5d^j{j8QIsxawo z?ZT}tmQv_us877p#LL-?Q*TYYqL0cEZ!}S@4;LWn4We4iD@@cy(i`^lJbAYiQG@mu zBHmv_)%k>5NN3V(lDQJ``VsF@Q9q)NP(F(*O^Cu9X5#F@=%PfeA-yM83ljAsQ3c9! zK5r8h@+aGzKvc1;RY~#&r7-+bbE2wK3Zc_$619OO{hrq#ssvG+H?!Uy(wiCVPrUbu zio4Erg!kOUZ!ZT*60Z_by?T`;>KR!{yPG8+5^q!Mmc)BZ)c%aki28-73(JNOm7b_~ z@^aauDW7?-s>EwRyr&x?CTcmQu=m7JqAn2?G;;(|#Yr+w7e~|z zqSD^r8tYCee0-B_eocDD$(=~@ZIWDlzBf_hiPyAnU!wMt-tf6Ci0VVs%gLA;u+XOmtgO8uQR zpAnUocrROUJscsb^Zr@H3nuFB#W#q`MI~yTeKJuEiPyVGC{ZnmcX8sUMBSnkKJLK1 z3UA&Ul$j0Z5HAnu4Q|Y>Cm-ppIW~=WPe|`d9_|k;?+$*g?Jl@*UK=KsDVVCG`>sJHlkYO<6c#Ps2sn}CEhT~ zOU{D}h{6p91|{-%0#Risg$JL$O;i=qdv}(!f<3sCcm@=%5q9!Y(s9l z?~>k{Hp7T#AgWX4y7bKaKcaG+T28!~MD?n{zxcgQRGNHUgezTNsqI_L2*r8m7? z72+Kv$q8pm5cMhX`Zel7R662qX!HZ=1rU|vv>&CHnQVUW{!c`WBkJBi6NvhWs0|s{ z6SbbGi)}`d&3%-@`1BtWFB{oxc#+qw@x*It;L+^?>80O2nDn+1)gdYa=`AL`yG;&J z&VDDomv^U=t1nTw zDNg)O(tRDJ_l$VkJ{w9r-2Wy{^qATc^(*m~KbODM6Sd?qpU(V%sPFr9C&@BIz3iEn z)~1&!_38n9QuGtzN@fn?uHY+qYCf1;3hWli(m0?h!;$HTNQ5QZ@5Yec+5+6) zFA;T7;Wce-k{ms{66wt$YS6F0QFk__rkaHc9ULoKLZ-B)Mx`ElTfi;(b$st+XTR`Ggas_a{j{t*j8$n5fg~*Ha43 ziRz-~bBFJf-h^ko-+GEtFI{&JNfse$>XLMnURoN@B0KPJZpDa~y)XB_9%SYC->;Ki zPomaUizKQXQ3p=uCo8`b_53BbrK3c(8N8A5Ih?2+A2%ebFy&Jn)Qza0hzc0rhNy)k z`Bz{Z*?h>ncfX(-%T4)gIARU)@(^|GcmDM_kaB&uJO3JgmaORJ@vnMeM2#DNjPxFn zO89FA`k#nR3EbX&PU-CinQP9WLxTC#K%v7MZWPWK}R$rulg(eahP$Vd{#?c_>p zm&#VgL>Hua)&+Qp0XeAP+-LR`;Zki?(XwW_)Y-mjO?1hfXT1<5n!aaqFvH`WVW7-` zCtE^QG3a=<9`FK=r~AVPUQiQPJl-RYdb~$ulRofdk9gDL^^n=)^`Ljh2T9D&c8dh} zrl{r~ADG^9#|g|wQ=Mf%nitRmK3wYPk(-Tx~kJkg+JUJqDk$Fg_fUZu4c8+jq z8|zIkaKccJH-#YAhGjeVy14i@x>OBMJ>DN5xHc&MdoFn41ue0z#|P#SG6$Ni%eoDV zn}uk@Jel>WMT3{3HC(G?SBD!rIhWdb8d<#RTD#1l;!ELCG5T@hk|psy$=IkEe@ii& z`HRn4`-erv#_2-hqN2is1B1hK{ypd>DgWAjHEa0QtnELhULF5%eULw2uY_3fGeh)P z@>4z65{!$-?MgCv_StOdvr1YPBE<(oMRxfY3QKPNlNHs4>+nU;(R!{%6MYQ`4+)y} zp7;k4V>y|G!!Iwk-&%L`w-*zAzsI9bX7$~6wTV73V-<+nF}jNVa|0wkvLi zjXd3TBa5B90o)*qnN1hfY9)$(E(9(_nz32xt_vlsFqesO+0PI#o5guI$24c zZ?F3uoaN*vc~{%3ot#VU^`NISaKfR(xYS%udQAmJc}-55$ec8AtxJeoI0HpTsb$kK zjQ{l_&_rKVv|TK?RQr46VBz`hyIl630@CNmK7apR+z5*0UJ_Xp1EIVZ759%OSdQ-4 z4FPiUjEM=PRkMjcH0id(zV>t{Unw)-;&2@t{R*wpL>~tAj^)UAt~vhSTMfMKupV-$ ze^qo)vTKpnW#GS;>p`w%z;3onVijj6=hCcL#kCCldmb=4G#r=e4c8mmjt&2Lz4dgM z%bjGvu0B$=-j>RGOJdk{czAL3x!v7IqCV0U?oO#Lj*xNoTOvBIDfbjlH-Tz016Ade z93Q6-j}`k?VjC$k#9v&gEiUpV93U=b4+)p^bV*HV8wnGAbO61}J;O!p4C}@O>!NXk zH%<8_6_gyw-qhjK)Ul$(>$iQ$aN{bX)7N+D;Y!iJb1FfZ?U9E>l4Ige1 zF~~YBVJ8wYHZm|m9~{6Qru=kCVScQYWPhf@Bonr8VmMkJW7FQd%7&OsyEf7HKTy=d zcI6Q3<)EloeVkkiSCVPAN?}>zbP>_GEuS3n>a7SP4Vfxrm+9!3C?rB1)G<;1Pk5`sny@>kAc{zgqJ%WFlGf!pkAIj&dgY3RV(+h|t9avLEy^*A-=@ zIa&V2hA$ND&i#;LN2;f6ZYmbV$?c z=g(ysyrSQQCGB}@t`~Y!uCuzD>qu7xo4P94#nozl&sD)z-sIUXa_DmM)>y1AFeX@h zi;CadOXe7Yy>Jo-uIvO&^p!+(Ij`s-xR@Q8@xZ7!N!CTOYl9DEQ}YUkU6svQbD3Zr zqEoc3<-#O=O(yTj20YFS@^C}u!2|6UUmEb5{yV^%`o{ONQk?W?>pJI{tCPo6SI3AV zNhfWc=wEl$;@_@XEGY%eT~cGY6)C<*$4^n_O$Ep0lSM#t99E2c?&$^?z`-mR#dcp(8T6Tj%WktvnapHH_*f_B>sU<*3m~GIf9<(y8OuKsAA3&sp43J z7^}sR(a`X~;XH12OX2>Y%}pHk8Nqgv@P@ODnCq7K<^{R@Ny?dy*yoKGU;N~aln-Sk zX#R|49Z$u9TyYf$ulF^dy5;k-jhK_>XJg4kUyereH_wEYHY8FOJFvpH>{fFtwEu<0 z?l%*B&IhKF8AdHdqIQ&Ax~X2B=Dk=;L2Z6KNvbEA=yTgBU!pE$)7{Lorp3C$FOVks zTsf>H^BW@!=wsvb;=`@vC(YI&tK31<+&auHQ(g<>V9`XMWJgZS@^;GsOD*}EH)&E~ z4`+iM>ryb@B-5jYherhkhI3PGo5B$Q<(C)aaL*hr*GtJ{H$q(5qZb?h;`70=<{sKI z=|LlGY;;sym@ZZyYyNS|KSb>3>&z5Yx%)P#J=obu$>5btaWV3WV%jESQt!x`^?0lP zus|B|5o7UBeJACO&3(@&sy&lBMW(OWb8Whp&48`h6H_*>hs(C>@d{D#Ej8~L@LqGR zKWi;_TBmSKp)pvzF~cKMYcVRg@XM5Sbnw@Ur4fEs_7^9p19`<@gq0)~Bvx&67xf>m zi`2yghMVaWjxLGXxY7N7l6Zt_;&y55mWi$0R*#GqACix;^F?E~>jnK+9Bk)#VtdL* zn$&AouiheF(F=<`x{m!yrta3_GpV(pNqylhbDDZi4qTpkMxC4T2A%4C(>f}MqM#QAPI@tes1FYe z3fBdM;>mn;RLlsT`BLw|jY*yFHT@DFT=kBnO+V=q^JBW@`O|T;$fR~n`6?)x+IPAq zOyG&z=Nj%3y$ zDixpnf08LCQ%71$@6=diri!~$u-r|wWHzaP$SO-}7by`hJPOzL@@f-bUG|PaXR$0w z3M$n+PC4C9G^X^<0i9Uiv!k~D=dC`~&|I=>>BgJDrP? z+(|Vb@U&>#{Gf=BgnLI9s3*&+Ig;|ujm;{~Jm2s=&WSJMwiR_{P54x{@MO*wSby>{ zmgUD~`wVbCZKTXK=dgopl`yIJ-a4wloV25;K2n@e3J44zt_zBx6Qf4WYdNfw4Sry9 z&@i7bw%eGNnN1{ZQdi5m@S-eLm7UUyvUE{;$$TPM!?|`xf?UtK8&9Vub(cfa^@8@J zdS8|@cwdwLP&R32V}xa;lH^!pl`^+4yLM>RRvfMlFX9?yMA+AKjDmidD*) zcP$bob*MwqUeJT0ysroS=6zYJFDuR~j=$uTeael&+vQubTxi6K_ch|Y(j#6`J&hdv z^B;~c_oN@3)uLr!PI5@IO1Ux6-}kX& z?tNL>=g^G*!wSkIcMy^rlq~D5BnLUGl(WIoA|W1Ay{{s!$e!XAQ(kHB^UwD(OJ3oh z3J$%-3r5Hkq<$Yc%C$r>i9c6u-OzM{mt5kC9JBy@A zy(fRsaCKwc$qzL0tR2r61|x^b5(>m%1a5_Gd6-JY3e29`5P0JlfLRNbjd^O}o0b z>*itKCwMshu^w*w8RU-*o_ezQ$ix0G>*4h0csTt(J-o9}(8KNjM-Q*Ea>)MYnbCKm zhrPea!`|QI;qnK{-tWR@iT2WIriUGP#>2zcc3FY0EjKK;I6M5}X0zMm&Rt6;wWch7 z>h@mksy51^rfyoUInJbR_V7Gm@@z%d{Z}4`Ty?&mEWCWj(f(&(e(AvOCt!!`bc_wP z-mGx)^Rc6@yrsq8q01zdo;X1-TZ_+Rc%H0Z^H)!jEG>Qag1_v_Z*wh>+P+gO166D<2gw+EE{=~y2sbL&?1ixkvHW`tXV%A zb?P|G{pUkuTj?%Ob%MRJeR*g(;o)`TmVag8=IVU@(4(oJ^0n2(bPqR{0v_(Fe|k9m ziymDqEc5Vc;jHw&&&(`;d9=Fnc{KHO9^FnW;Nhm)+oSVJdym$9FWF5!v!1!+bAyDh zJziY%H4hi{Xm{}Q=ulwrXlH!Qqmw{@^t{ik7dCr%)_Tjs=?D4R$Wm51%x79ysD~fm z3VL)v7$B=l^JN!}ttrc8QkIXHCbem3m9Fi^F26;~q@I_RQ%_4>BYTeDA|4R=Q+llokCS+h%%a*+LZbTpl$QA&HQ`fe1_PSd3BmbLFo?)_D|*O&7ATrOyR zDbEdku^?Z^ z#>uwf%2GNu(b<*bK3L-Rvc%>~Sd&`*+dS!PlMPbd37zaQs+hpYkSMya+44oSq*AgG zuj9t^f>ljie(r-^W|74&0Ar~9cHx5hyTs)Vt=onbJuvc19Qr~Yww+^ z2K(R;I>ZO_eAfr_d|&4IKN>M)t0_jZ@lazsqo<66ioX;=2aCiGmccD!_gd(Q_K zV}<3M;!D4kY>*4cWIm!fJSH$iFD}C5Py3aT&*2V_?e;w*^CqX+wlR912b<&?3 zH>r`blO}spoJrj(i{(T#L^nzwOrMZ5seemR^C@$OLOHzAAifbQ<=wdHEj6#tUn8C1 zqz=S-Sman%lu3<{Ba=C^4u!+&S$xwrKzwR=bU;+J{M=Z)Ov0>WxAwIzxb40f<0LzF zHSMY!OlqT~3u$N7qz;np$I0uycJKe}mJab`d!H}!V7{r)p;8jxG;31l$|Cw{_dL7T z25moo=)V?}qL?DQNPpy2**>t;H~@w`KC4 zIc1w$`rXM07#JL<9~Bs<7b6S5mzh_}dv1Ivnu6*|-4Uvw^g(Iu4jCMyBagAej552f zwiqV^S&HAMKk5aO{7dPB650;4?4Ov_$2pl!dynXp^g_xcGIg1W5^FOc_;ad)Wybe zYwRWk&C`!v+ScjaIzFY|FndupL?;d0ZU-)#Tupm&rv6#hy(jaKRrH;!pCj&nXgmGh|u}XT? zT;?Rbn&_jm##j7k2)=f&A2rtgS1gT_(ppb}&*XsNdpX}F+llwK7_2c({JmiNbse&+hSzCyK<0nbaXZI1^Wp zdG^4oP78f-(EP$@r>HhE=bAq@+H5%_UTvjtsq-qUtjRt&t`?Aac6sS<`8uW1>|wic z##$%#4;fZ9mu7B@xJe!5vyHct&(2w6q|aSB6OnjZwZ9yl%?-q1#XGpOen` zY+IY{vu!QC+*|Rb)#z{1+bQcGC*_JTW&OjXW|SUFss3u8?VlHXwttrK*_@a4*_@w$ zrGECRk72K}lC12rqxmK2b6*0?km2M8UYj#;+M|+_VboU7 zmACF}zBW7TYfbl@uk9DC^R=d1&et-$US`;peLUM&^oROd+t2Q6 z!}ibr{ezTSpU+LSx%Y)^5^g_>m-n?!Q_h6SWy+4qcf|ZLj&bFBfL6=viL^H>qjmkZWEkC$-&>_(J4I zGF9*OXBO#C^NXntKI*^j)}7uRH6dv6Zcxv>DSy8$SN*B32T zHbhrCTH<5dU&zMg%F4*@!i5}eOoNGT#VRblYVJICzr$F6Q?ZUGE?z3(?jUvCjX}|x z8I$_h>s!SRnL~Fy^3>}~R#?`V`Hi=vhEtn+Vq(316g@2qX1+lnse;AoT!o zqs*Zz54sN5h28f0!c9nd4&5DTZ+Lw#tDeGMwjt$CG{5iVWQlD5^k{j5)}?Rd*sf?x z$Q-&`XLr25&fb?fG+$ko)UwKY?cEHoFIOe6&*3xKrd;v7^{0B3(6r_r@*JB^xmeslJr83{`N{eQUQ_tlvXlBuyGii13_o+@XhWi2(%50e;kjP&QWnE!8p_8GOB&C) z?tikko407~a-wl4%=RrD<9|3R?eUsXsfE`x`z$giKGW>qNa1W|Qh%13-rh`e%4X^_ zRnpAYGTcgL_&*$bj``ZOzR1@y+{Q<`_iu8c;cnwIsfA<-J^x5iB!z?UD?C!1`0x8{ z=M*MsQkVN$=eZ;^?0%yxo?<7hkeZ%v&fQbkoK5Q2(r=zG!`srEKC@~V?`wTzzt;@E zeNxQEJzv?x^RaLL?$z5OT!y8jL&%MIJrLV8~s8)(cm+M~BMOJ!E7xDKR zpKOv39-d#TT=1IO+2J)lnI(q_&)3dxUXzo(UXzn2Ueitvc#Thf@fx4h@EV_F@|uw? zt=IVEh}YyK*lTi<%WGBz4ZX%EExpDkx4fno@AsN9Hjiv4bzS^qo5M@Wt{!Z0XZy+_ z36q-7Yg*6~uW3Ooy{3Pk^qSg9Bj5V<{91dr*R+$jyry>A{;MrEj~u@O0`!skxPSou z40MNoHBEO;>wV@mEuxUu_@uwrw9T7dmN4II z=I2n)wul3s9UBgLHu-{H(;&a}Y%`eZ*@58?&z63yY=xfR$~+=h3T2(IS8dj!$*)$E zdHvXG%cP!{b>O+l@ei+gd>iH2_V|t0w8!(F9iI=%VaaoCvX5sS(8;q6afrwLpGE%4 z90$1P4j%ohusCrv9dOkC@AI7ylH7tKb9@ArGHd(oPStU zY@9A6E-ETKI50R&=ig&&Tv$}3e{H{-HT-JU_8(KPj(@m5$UmB*5$hir9}%RBiKQAz zBA0d_qdX`} zKLl^R!LNYLMs@)G^rVZSsxx0RnOyq%h`{08{mhqpC#NBszRM-FxhdWC5?ZdvH8yb3 z{Tg@aYu>!2Q3s9}o*P|tp5^9fmm7&)XLVW2?mkeLooLxY?GQ!j(4fy)+C;5ZEtuosR1%k zO$CkVG&M4(d2Y#?mYoYT%c;t(-^a%#^&DYM$g)Pz?3q@%#DjoI{YfUFIlhI8)*2O~ zAEyfmh|@)i!PwuDRL2xfputh$;kw{Bv}6CkpkQjtO;cz~>YLQ{Zu%*i)t^HjHL3e# z`~NQ+mu7`n>(X&lHmTX%>;amKCTjwgsn4XwyIK5XEZYnf4`jt@_9VIBiwlg?$HwV{ z1H;i+OzKuQD?5d^|GJ}Qvto1S-2#VpW~{F@nOkebZarl`RW@-$Gw~>3`K*rJxb7@r z-6(x9uZc8Q5Kh$W7LD!{)PCWpIqf+~(suEvxlDDUXK9~q`6b-CD03&1w(CE4GHL0a zZhh6yaW&vhYZczITY;p;4C+n`vYqd>moZN2)4U{ir&?_0Znqrl@Vbz(ksBS;aY%P- zJg{2?o7BZ}GDu=zb;zno{oT!BzKARvnsBVYZcMN)n&x#LrjJT%rL;UChj#N9SiW>K zhn8wmJGg1zeA~8@@z8Ea64u?EkW!=LB$Gpj)^Jv~h9tIOtizW{EiMa`8X47G z3z(}vFeW%m9xWBk&z;})P3p6xyv_;OA2vNM?VCS(WLLSYka%h|slUo}lGyFB8N*HL z|D=2pJn>;9jE&hsZkS}Paa%u$C1aRmPyLH)^XPIIFL+_Of=S9PJVn!)Qdln zc}l7kTlRiTYI!N1#6zoP5;ds<-7Ii29nfxhW>PQ6w&&^tL^7Mb*1Zdpy1~t{Eg93+ zrL0Nq;pP*CW|Oxz7Q1e8(@l^3Ydyf4KidU{NxkD{29qhg&0^G~2B&VF*^b?ByIE(+ zbXf!=w zHVCL$JD`SNbmZ^^V`F0b3$}mx`mON4cI)!BYK#hu5r1QZYMd@0C@@6qx(?UJg~bPn z*z&d8mapGN{7*18a#>sKGX&Zzo7DQUk9W0NsS!Zs5R*_qP>_b)5_;R zvgviO+N~K77Y4_~>Vs31#r7#PrIkB>*#g=p(*ks30wbcsb+G|~ks$$;d_Z8hZVXxk zsDRpaMVnBgMVn~%ik2EkLnif-tYPo;+#Kn-?#YxFeMcvp78k`qOrUs;ShUb+eY6fs z6!BJZfPU22fZFxEp;vt>OV!4OQX$uYqD2J6iFqbAS|6^95rv71i3%_m#iV{F?WLeq z$N`6%SIs(>R?$KZw=G@BVTeu_9ibP_kJiNm>-6G@H$Wd1P^V@W8yX%pT68$^8hU-%T1@Jn(#77{O`6Nx4N9h%8UqY1=mKJO!y|N&*f)%d z6cbTg81?acUZSg%t;@Ln<2DQw#j43x^ zDPqb^)H7FR%1zX=)Z%b+v$w7jYsm`Hi^Y8kmg?aq`G~7USATJeB*!#Kt8Ui!j@9>|katW)6?n zhv;G{%A|(LcI@Tlk2hx4M+S$-hv-5Q)MeSyq*1>Xf2Jh#N~ok(q=u#b%7Kn%OLYr9 z5~?+silS1gGgxFG2UVH3lO;dk$SW*)l&Ne?y~#mlj?^>NoYmiAsx?z1Sfo8i9%R$G zIr1=5<5)5;N4DT#1}j`(sw-0~nEIHhZ&~kCNinY^M}Egt7Y^R!U?}r~Sm7y0KH$g~ zOx0!HFH8+*-b)Vt;h-J|by?(h4q`Ym7pu48pdCjZ=HMTIPxM`q?=E(eV`h~(fi4w|#xVb*KHks~>{&O9CS_H*Px4mL6G1oKXE5GAc}@SH{V zaIl>9;+gj~Q!6=G#ld$Ryv_<0IT*x26%LBCx{)QXvIl!|SHc$8cnNriO9Q zlto@+-sc<{#=$}kvT_i~K~oO8u)=#Bw33l*tSAR3xD1n+`j92Bvg9=m#&K|igVU@q zfF-}@$YV@RWh+HE@^z;EW~w9y*I4}&E8Js|8cbDZY8#7u%aNfRDel!uGc!T`o+JOq zBGDZAIS2Wew}FG*lSE}XWnAA*^z^MrA;K&bIWGz#*m>SAK6ifcbL4A(Q$&w0Fd6{a&)IFx|bMP() zojLf1MOJdqjcs=4U>}QQ;)1Q_$SW*anyK$OsKAnInOe&tH<=p5!FwER=3o+w+~;5m z2mWlO6jS9mxW}&hfc2_yWEfKoSfLJ6A8{~(gLKS`;~<QlD@W#L$sWCnKRM;uv}gE<`h$;B+ll0R|^IapyL zM{eTCO-u!{-b{`>!_;=>)nv-Z)MhqqVyZ4H_%XGMdGk1O0SEJ#w}68X4)(C*A{M#H zDYRv3FY`8YDUDYnCi_|+B4OQ6)s6V z&crpQin53wD;PNPH8vK&k(*iMEe?WMq%2dREK-ma25{tgj(pCNyE*b#rk-=^4OwIk zNA6>h{Tz&Dp2EQ=966q;Oiblqy-6IIog?Eo@;FoNncBu8(>PehkrOzGW69FYo5+!4 zIPw(dvj<0(;GjQCu3;)C7kV&LLpZq0!F>*fad4XTLO7_*kXGd z6}EEZ-yFQ)U=8yk*jPMMjW`&@>bsdYpM$v^xtFO1Oufcb9@e|fL2i!B%Ry0&EXb6R zsiT~UmrPA&UN5E&aL|_{uX92_aL|o|i>#iF3;i=oW@V}xtKVbE%PiTOsVyv7nyGxO zP=JGe9Qie?S7K@vQ_om$7f04+DlG>OIEAJx*^Gl9IoQp-A*@${gN3a31qW?7n9K?V zI2gr|otPTKRDV`K!_;i%rRU85#?(npFC#~;W`zr^P=$2j#f zESaCFB^-?BpcqTO!y+@8TFTTerb=OXUOUvOl37OBX=W9IGTz{HXHS+6`tR^!Mg9Ax0&KBu0RZ9ZZu3-b=K-Zkc} z;~)nIu`Kchi{#*-F!PQx?=e$5IC#oIVdllM!fB>jGc}rnH#oS+yiy$e#X)E0^<(M? z+dRv;Ucy_5xWl~nIhesgB@Ujk$U~+cbMOlX={bmIn+=$n z%?b$|@VDmG#w^00Y*#;K-v3x(4+kw+Bnt;`aPTt+Ia#C`2dy|b##R<_(1s=XTdnfL zt7;LBJi!W`IatmLmpCZSkt;ap&I(^M?`@78&(wbA_2FO&^A<35m8q&s-DQQ19Q5U& z7W1yNK0SQm^#S{i#WK=ynmP%z|;<=b}|*h!E#o3mw5&b{>Q=0|1)>h z@ogMU+liUuFh}L2kThwVwkd|2Hq=15O=VfOb&)MsvK%Ngx$H7CGjqz!+@{RTDYxG| zH?rluJ7sj9{PKSKL;Eb;KC^JMdy8!B&PIYmp2^R>#E$2&tvlNmuu;Szm$Gp;8~3pB zJU>v%A(L$TmHi%K<8twTWYbHbvVZ|k|n!=A8%k|1p95ywl)sJ ztB|Zw>=$Rh&)C?69nWGTkB#%#DB&RIvu%5h>~MCp*zsq!O=06*cHD}M?btYh{g(6N z1KH@tZR23J&E_CGv#~ZCud(qu8+B|9;5hGQ<6?GP!8V>TvDzmj`g+eew6&IXo^5Dr z?ax;C#03ox23fujn5UkN-`Vjfn>E>59uLRE!5Uf;wJ5kG(RLCI{G(THq5Ex(qera$ zfY4-H&GoB;@0fNT2ZY3&fcc7!-0o`u30tMk#gFkdV zEOgeaQ{WMW8@>@Nd>UBjXIN+|EwqW&xd?*(nzaOfxp)?ho>c<$HvZ5ZvoO|Xp{=q8 z;tyRP>t`Ue-4;4F*1Gt+79QxfSonmn9)J~J3Ksez7P=tTHVB8d(8AY(g_h5H4jymd z?^XQ$0ylgQS^olk3WT1Km5aZ<5WzO^sD!m1)(NmS0!;-P2oE&0);~b#5?V?4qSI_0 z0E90O>p&oUQdk=z$nJ342nank3*QVUxAvtqTA_te+Ao<}7rDSbSfK4dsxY(xJwl5c z$;0hg)DUhCV$E=BHs~6f4QkD+iG-TlPHRg~3mw>IPYaO|CU!C~Ekwp>w#7&qvYkkR zlCcLH8?Yayg~;(#cKm`vzRtE%wjIPq5j#fMwjDoyDBC8oZ6ODl%8r;8qNuCb5z|6s zTgoAOvE%k^oX8J+%(fY9yOwQdvh8Mm?!1(Z{f4pQEo__4#zAcC!+zELz+de6D?9$n zw$0e@akka5-+yfU#>QASHsc_#u@Ps-9{l(OHm0!SD{TD8j=!_9h#lYK#~axAjs1GE z-!!)E$hK`c$m8tThiy~X_>hClWn(W6f@vYj-JjXnoX^H~{M;-2+}7;49~)n@Uzq(~V8@r(z#C4&LsO9P z4jZvlENtKvB)@0axQ3s@+enVrvF&;`Ze-&YHlXGx$a-w-$;SF@4B^M2`X~sdg~-^M z9k1db^Vk+<+mUQLfsGB>*pK}RITlO{(Mw&tC>E~?#gdK9^okE}&4)G7HlurfYauNn zOg4uTZ95et6ZV7=k>+z8IUM8XY%Ap$gX~zwwu9MkJR1@A!-NsV(t~XWaLD60$Xjf~ zgb@Y7gb^7hv)^NET*W~SV&h7VQju)}foBi%%qmKEC+4zASk6`0SHlpl@2_uTE zl5LN$-{l37^wsCCxiEY2IaWoq{v2gQF2^#J zZFBg6&r;8^5MQxv5C<8_4;;sim@uNq7O>-k9OO_osyWD7Y^&uUm@uLTc4Nnn*zq3@ z`4l@o!8S}7QOGSh$XV?8JO_D!jYaHN$i~_1xIfzp*jCQZ9m0-f?AXkXZ?X+v7ew?h z2RVj~tJ(2DHkvu)8tiv4J1%BNOc>GQv)OSd8@qDI+u4Q*BMPz?+xBMTM>c+8V_!Dj zQ358JI94<97CI;K-6}!>23x?a7Zn z#eNsCaSl5^%eF1pR>`)W{M`3!RIy_(HU_a{Ken~94HHI0^dH;s=}R_z{F3n^8}r%m zYbLsljhSpGCQV%t@0dy;JdHlAf;XMXNwwqe4E zWch*}KWF0=_QQk``Q62iYqN0=8~bn&Oc+s+dztSNc3g*ptjES5?DrTOC$l4lALzMt z*l|O4{F9A5HZYJwLAr6Am@pz+G5fvD&wa&ycd=2T}7{GpSvfm$Udz6j8 z*ciZm34Y)`woPQ)A~rCtLPC7PegQTxok9XoLjK%G=89s4GfNvWLt3%Oc;^v zO!j-4A9#k1?Kwy>8wap)FB=scWLq{Su<-`Raw!{=I3z{_iJ?E+FnmR}xA}pc*tmut z_>7Gq?0793v-pAQ*za(5+@EbPu-`m3j%2?J+4d#dHelP2{J{Ne%x7Z^`+dzJuV>pR zwqe4E85n`hU6K%=1@of8! zAHakW#nO}gdb8i3>^Ghr-(g2g7*WWl*zZtwoXkOXVB>uD>(91bImowcJDP3ZvF(1g z?ZL*wY^=-1z8niCjEHYdeqep}+m!vfvkenQ6yzBWavS@d&3>3LBEPNJ_9gpObI7r5 ze8Y|hvT*@B*0S*;Kld^l{W!>F>~|E~-eTJl4uT0I;`@jlF=0fu7Pj5MK|W&RC4PJ! z+jit2d$S`ZjOe*p?075(xrc4vv28Hh-r)x>W#fDH`;Gk;u0Zj%L5( z*m#jI|I0z<;=#);wZQrlhk@Cl~87`XkA# zGsr|Hokb>vK8KC-*tmd=i)yXx0oc^+*x_9wZIs5Z#BaO8&<2@XpWc?zGnjfN5 zeZmPU^p;>W(*6P(Qmm_#;&nOgy*pZrWQKCzL@7k6oE7;IR{?CVWIae`9h6ptD_4Uv zl(H1b#n8)q1>H(;52XwdIX`+r3x#4h(r2-kCaP14u$`=l`cORx$BDeX8{^K1W~CH| z${A6GjA*38MOvtP;FjP}r34e@d?>Y9a~4!bn$5=OL?!n^xhf7etKv#3#JNggrpiT8 zMwfPk7N)whhHkt{NscuwLUU9`rw!SiX;-6kyOO+0E{2LoW5#yjVI@6Q@Ca!~*F0)u z_zOzXrE;~;cfV}Qm8`wwoUX*{P6xY0y9HEqa4ZNyodtLMh6L z^6OS!9ghWT@KusSXOkJlpF2#~5BpfohykYN$F@t9W;Oj2^6mqpTpL`(OK3E;~>;f%R%5aOE3$|9yqyiQz`KQbL z{XoV)LJ#NxkC9|<3|~nO@GzHBGnBBKuNpKoi|Ba15*!YW$e{3T)u>K!e zNTB~@fqG4ASrP~)0>Qw%j^PWq z_y|L~VJYb_Ptn?I-+din_uaRR3#o&mW0E3^yll)pb3s62a9&D;dy$n%S80@o^?D3VBz)*@kHUHIl;;R&uE7=&SUE-*O`=+F^ zD`6#9!c@5S3TUlIVf@rRYa~4|(;8*}+p}zY6V%kY9%sqg0;zo0u!l6iQB-EiC&5}PN+6ivm21$5G@L41{x_;;DO$K=JK`e0*SI4~s^ZwNXDP;OTW zut?7Ea%j4VF*=%>)V--^A6BxzC#$()u#b<&gJ#CRpk!{4nagHO4@_R%M8!@gavP<- zTuJ_$TBpTR~tN7%@T9!e>;mFt~dwV=$^7_A z%OFFeUWG=TdY7T_0=hq}sov4FZBhQi|}W{37(+m6Q#=iKQRwC*V%?BTDLpGIgcQ&Bk&z-ecnf+enQ*eMA--eaew@qkLX6w2|roj*DKvY(bk$|py|xRGX2Bw@Bd|0uchW$v;`bgW3AeaUX;X1HWcUBYjXv%M%0 zt8I3DWA;-LZzQX|^7a`rdwRqu@3oceo6C8gHzDXK=+R2jqAW-;D{Z87TP5i^GHKaN z>Rr>fl{=evQj(98$%~?~x&%%CnD5kXO5#SDxR9!JLo8wrU4@mr=gYkI>(mrYn#CMf z5^pEJ$0fD29=Pbnd$o?YDw)GslyE~NQEybMWlGW))A9*N0l%#zen2kZsws5ubSxfOO6uC98}zwSg16;@E{f37HM+IQ)Yrc# ziQkcl3(*Z}2rf1%S+})x-Jh7uTS^xfEu*}z4P4z>=Tr%Nx85~7tzi? zQY)_Po~7izPEK(d`Uaj0arRP@UoVpvPi*q4-w`GAjae|)W4Q-?(V0zGi<0>knK|Fx zH91_#y1V>V6{fl-#@l?dl6O6sH#fY*Y%k7Na_%W}mY~n+F;H=hl6rlax`4Dc%}^S- ze5aCjh^#=0rz9IgxG&fIw0Km>+$z`R(&jj|km1FlaFf~ReM!lUgC2#U;e2~U%E;^Y zl&m|;d0j+fk?zmdua(4C$#pBQ&e;$7T}e7mPHpi#&r!GhwROF(a2CmRb-Q{hNspA1 zTN;WrQGIr+=wV9k6J+j^x#4De)_1z^`91 z3T5TiYi_bSfU^*28D@Z%p187NcclzChgMK>1z1|=7&59=(w-rge6Pu*<&q77reJe@ zpgtVMDnldt6G|EKyRYd9=2VCK@9l^GzG8 zq{i9t0(HgYc${{X*nK-^nNL*GpDdSo$@oMf9CtS^vz643$|EUI3|0uQtNEhY6qGIdWRoL+fa+c|l05J!TTA}mshaAm$&1xq?a zFsYAFQePoc_w4A~c)tOsC`A}5SHqrDB8vl4f)T2Bb==sEGc?}?N)cwrb)dYXe^0xI z%~|@d=gZ9Y8vZG9YVzot&a8WnDcNz+hM;-v^`!0W z9^IUml_K0G7yNKq%DB;V+V(pRiyA*V$^4soqFQeT7`tsKePDX`o4b$NM!- zN&Qe3sh%6&FG+PQLK|p1_jRT!sc|!qp!Nz=133ooJS8u#A`*CuCPW&8ap%sJppy7% zxtI&=Z&_1?HY#az3dHnQ?LY%{*o8YM%sY`y3HDb?aIKv1QaVxt2h7o0M)PCt7?XRI z4Pu`n=St58?4`F)`|uR)TvIgbWU|wE_Ni>Nv2g|)XW2$-Jo_B7(0KO01!BPrp}|!8 zpjla3Z)#3& zJglUS$O$gBYd~YH!KwRRP;%$W$sR@rD@P+C8rexrD|J*v+RRGT!YKUZN_h(8yeOn| z@9Kjc=SK5M1z#$8_mZ2RzV`WFM$LB(^R7^eu~;sSN}8Xq!GafTyr*r%M)v2fr+fEu zl z)zBfv=1MUxlFOl-X44wzV0Kz|6=^Uvz$7Jmz06+1bKI^bdS@l|#WHmv9lYdfd-hTC zmdL!NNG#4lZwQ)=&q5`4qYv(2qdD5KSjoMO%-xsL>!|H6rF*1OjOm5qYuB6f4U2&? z@H%zvRHYEd%R=<`diPzqaiLO>338$2HPa}E(e7NQB%Lm+Us{+}=UhU4w~}^{Ok0ej z&FDUcpt;%RaV0aZa23A&3KR9T;l+{BuPAvBkyG5GUDZ&AFRG_o;*FC2KqqOXb8ql9g(ywIFBF|hd9IorfEtQG$-DTTb$@-1VT8Q2&eM1^` zY7Hgtd-BVapP+9TlXaw$bvL;t=fz`=e(F|A(p%*$E{|j33s&R1zEpQmvcDlGxwpH) zc63kYD}^{pR$;l$UQ)G^bD*52E-i_tt79|!1n}UlSYXF{B5^p3YxPUZmIB2#iZzyRWmTOlY zU7lw4Mn5r0SJ~L~&2r`!Ovh_x4gvgTier64b{dcVj*TDK_=$~QY$G)uy@D(>9$hPE zeUFaiezf4swZJrQgxP)aE5PZp0A-1AFdnK;*w>R8HNHwoeyg16CA9RWg@)su89!7> z{j^;93g|ekq~oJx10`*foZY44X||IOvN7x07E11mWNzwBm@^!cm7Klh60U3?=%jmA zsFclbp*c$a`(*w?IwP|>7&Y^Hfs(gQZnZ1zW25QH5jxdA;au7mRq_|h{DoM#>*QUc z$N$xh+9+{aexcy1v+l zaz)Qe1Rcx2`Y1`ykrUb*Ed}i^!-WRa5ew8tgLP(exu#Nx8|9SeI;UhtDLIdjYgV4? zh1yz4I!#V!@9{0P+87u91n4+buPY>`DTTN|F7kpGfL9S<+N6|?;1)~a-$#qrjq|5xuiQP8r>qAbmaM`O8StT{KC2Rf!t<${gaaS zVOg^jQVZhx6!=fcd!?M-{FyWmZKk$t16{wYSCKdjp6hHZ2PioYlXEzKKFxiZDP32| zI#$l#T<3bUO_ZE}$*)jhO+3~VOPZh1+ncVo^soe6A^twFB8{Ab3YM zrn51VjoG%58VH_478(e?NzVDAnnH7^{gGfz5eQ{HZbgz|}O~AUvs~Jv}Fq3(EDGfWSG6}5e7$2VVNU4u zRZ7rHPIY;R&eo$#LTSs6b1maqO7?Mb`iCV#!6=r_QWYlwXfT|v!@&k3+QjTS7i(js zJU_{~(YG4=>gb%bmFU=Qlw$lMi&4twAiFzGJ1V)4mbvpn(TKT}d{-suPBLlt{mkx4 zjgs;Px$5OL(G;rDcFE z32u@LpqTZEvmf!GlKBg{!WU42X^Wsy^3N)1*N_ujKOE!Zvi9yFts6D32whJ}e!NVchY=Jbvo}?eJ}8ssIxF&cCFdboR4QtojC9Ua za{eN7=G!-J8mxONS(nMIYqgJCV6T2+VR#Y!FKM88>UboCErb}jGGwY($}~z=UmbPa zHI|Z8k_Y4rDQKb3O~-fcVM^MyW!k=U%r-6FTj^)UNlGz(l1FBT(5BTeeQxm~=X54& z&H}qyQdMwX&3m3H%_DLVj<1 zb!>ab>I;ujd0i>PrgDB%MG`ayODAZzkO1zZ%|BL3aE2^F1tf^Hc%H2OgOYxsOkYal zCp1=qk!Z6C`$x&$U9JE;~VDp{P__Mvkh0uv6d`HkIwC~DM%qvYsSoeGgj?XZmQqQz^jvap;(rsz}qd&2)IHV@UiZr3jc`%?s+N7wx_kCao4ZG6rn9oA9OJ}K9L zg2rGY^+=6;9;2i^SI+0L?c?U{b5SXEXb&0CS!{IBLe2u-g+nR|i!$A+dOM|<7s_H5 zQtr5R#!Of8o-0>|iaN}U*`Lg=#i+Y0=`WP&2X=fWwzm$cVOGaUgtbahYGhIR#_anN zgVa*lc@mC>agCl)UlU3(o{?XZ;(GdMkI{Xp=11cpO6E)DD%cY%BI!ddwXef9Pkn+? zgm2~6u^>_xB;91>`8i73$#TjE+XbFYC*?||Fwe>rprnp&Z1tGxx=l&_pq%~1py5ME5x-t3k?ucTce(^k-ND6uAL06b1Idq+vXTvjIAnfaGQ=NkvcjvWIDcdJbPxl5`IiEr1C(hMbGmj!^Q?kzd1}9SSJY7>c_)#-}Jn_)Hd|7~hX!TC8h! zPA*U~e=7ILibAn?JQNGp8l`@%lK3k*$+@AJxpn6*CFdZyrlm`|ChS$xk10hMDZh3l zc2ArxyL0Sne_2U=oSfrT=?)=uUt^uAci&e^P$}!(0`C4BRqY!k?E*Q^G5+8>h~*C@ z?}Ku6E3tbPbcMKMp+dnJU5D>bnY!3+XD}XXWOgqlbG2N{3Ow{!KuNonoZuqb^=Th$ zWTbZ^C2_4>xkjYB)_ywH62kz85@_3q0e>P&I0y~s`j;`^|%FB{ct)YwL9K)jYLG$8(u{8G@7NO3yHkcQvv zD=3XR+Dx%@9u@aX|CC%9dCkFvrm{a&N&1AG=2BXsMT?biYP>o2aiWs@AGudkOxs0U zXeFs*F6dk(^OkZ2%XRL+ze>q@mYmahwXvwVbo_QD>GN`(szRNjuc&COkv^Y;G{j}p z>W7sQydXF6U(`q=oDvxoa*xEXilW-6X1?2-D`}hM9Pi^fp=#v$ zB&8H@%8BpMl(g5Ccx%?3l>$u7A{(MHTFi!-gG3V@E#uXP+eazI!*bOtrgK^wW65YV zVidqaCG#;dGtJoG3?qYfv6A*`Iok`8Gzjfz$&Xah9w^fmHpOW5V$5t(PF3FO?htK{BQuGD$e;bwE0 z!JkUf+vNn8M^l|ccTcHsQ(Zr;LLTZUrY&KSP<_;Kf=X{C^ImegiyC4rVb|Bs8cO25 zW#Wq32o|1t9+5gyN&llv-@ikj&^#h3aoUl?2NW6lbStGGzsQ30vTsqMc7(4jr+_qc&w8Bc$q!@BJ%sk?;^dFM(&@X6l8#`gY)CD<}JM#+h``0zLFE>$jom_L2j3eym(^j)K_!hHE%OrsW-@awg)lOxz$m+7b&(V zKx+(*GN@7tkd%|2M@xv!uk)cw(s43r@l+y>(85A9xf>{%_mmY%A?`hhG@HA;w@~sv zC6{vx(upv%m&(*J z3zX!~%4si{L!(bIbLu{-q}@VJb6$({F7G8u(#kB-3VphX`8FS=r0prc&3zqeyoPQd zYj$kRI8715vT zh4ZV8zFHq8_lq)j@m%{db?4yzno8#Ra+c@KaE^nHQj&h1MH`BC#mM8Wm87?2K{}Jp zf-y*^DM@F_q*X}i7}`_n{ROm(Qi4xpT~aug&a87*tdNqoR37Ol<1q)1esPnM{9d_M z(_VK>jkmX4MyVgDq%V=vUNAkl#Ci4baZ1_^Wi3*ex@_7=?wLy7pX5qTpFj=Oo-Ng7 zO7hR;`fa~qn`C^$ZdOV#S5E$b_G*T$Vu_HwtIng^KcJLknOyC034!z0g=dtsYseX3 z(~dU3PTo|~_Lko=yW~e_Ecs8B67-cND4rB-4hFCx(0Jv3QZnx%XL*m*Cy{+#0qUP2 zz<){su9J05&(wMd8q~)OThw_YUfJeGhi#P&Ef1ITrl7_>!!gVh$LdXX8eQ(oMt?R2 zvN6~;Qlra5$wH&cH_AEEzrkMXNoVY1qJuV(Hil^@hjTUBh7@1t@n*k*{4HyNT<7&C zTPiu9l=Hj@YXDu9V2YA>6FIS^?WYycY9!+wn5*ROmIXHsaN$EX&G&C#CHJp#vsYT5 zq?KPDdETJp-bSwJsWnLrv~vgN#Jh@psZxY(WfAB$w`j6~$lVKOj#jeYDYIAD3s-QR zoBQ^_HYNR2a@o5shq+kExwrg+mj;`o;b4N65IAmixd7Hjg>E zaIaE=i{&>R1EF*PJ*{Ss$1ssfyM<^QuG#88sTAW9S&Sa3d%kd@Ds?s;w`IPj6kw7p zK);R|J^OOhj++b(&HIs3j>F^^FkKrRgW}&Sx%Q(Df{K%p&RZ8kj9zUnS{cIq3y-Bdv4hcr7LEuCmf8?^r1kr*i_0 z3cj(D{e3yn#dbH+b<5f|O6Jq#GA<0(STQ=Y(Ma)*O5R-gTZ($^uC=ebDrujSlUq*b z9fcN>N_QVjTcc!uM{dbW7uMsjE!sp7G!ItUPsyDxXL#|#I33O&TIe_e^B^VjP4cVN zx0zbf_I`VYMUlrV#rRl$$MTQ?Mm0Z6NxG&?T7f8g6e&&(XmYAXQc!^vQTs0o#mV@ zb-ks_5&4xbOx=TQ=(vGO-go7Mr+ep)LE-h3+#kx^g$wQV z{^soBrb^!aay3hD9rAe5#w+=M%tG7Pcc|NM8Xa0gQ|RXAshLU%{*zzzo^(4eeGu|C zIge4HJ(VIHBa6_N)@{&ir>*eAb@)Oe#hWyjh}D~7tg?aWs9ZO5TP$;oa(`16tBLG1 zDjjE|nT-}U7TZQ@RC*~{XjFQITrcv1&LfwPp=UdfK>H>AOD4^*3iNa(bBmnC<C4^XAb2h-K8OkCmkN%cKSIueMCw zD8+a~?!@FRbuLgU8K+ZV@5{BiAnM+%)=x>>M^0-GduLdrmTp<~*eAHQQh+OE0rD49 zBW^CCAFX8FUuMmtF1mTN;Q^X9UzQV0-P+({qfXtbBrTG^@o<5O^K)XElJ*NZgNy0ZMmipyR)ZS}eoo2!xy+1f zZJpm!t}{a4R?6{;T-p`(p_TTs8l048WW(o5`VZyLnWFXueg^R`O5(fZ{Lib2)S3-r zx2<%2pS5Mu{Ai7{M_-|2y+>yC+9W$jNxP3+vkGfGE*u%IqLyocfL}fb>x!BwOY(h{xwR@4doKZ3&(5CPT-wN(m!QV zy3unn?rLd@#iEXxhDS~IRW{0-Cree}u`l@zQylAAveQ8C^K87x#>;HHY8$D6-q*=O z1HHe$iWS)BmcUSV3%e)znuBlaW50DGIxF#NJqGjEV zWzGpD^P6%}_vh;<((g5$?MsKdhRu^T4p9p7hnxjzwdz=1dxDbtQJK4UBkhEyjk=h_ z^Hy-@D24b-79zJMWPT%EspK3Wm%hi2``eVPi7eiN0y1rO zm87rAIy?`b1xC+!qLTE3EIvp&%GaS_W-GaGm&>3y|1JV~MnGcki^XPkMj8WB&P?CO=#Y+`;eubT)B;81UsS3DLW~B83CGCB3 z2Itc>NV7SJd##dnsLVQ$H@o2=EV>ksCjQ8zD+yg^6Wyg0<%cW^8yR5a`eRDc6S5$6 z9hmd7lJrEGG~Gfv+Nt-I+{0z=+!{wFf1~95Tdrj8^OycmlCF>wnh)J!zE1_)>bhWm z$gCB-j?HrkuMGBbAt8An=SC)tlgHAg3Q*L5PV+|)e4HU1>#)fQ+ zWMgC7NDUN^Aqx!@H_1A@tUlOC8|OWSv$m%=Iu957CEr3$a#12#O-ErlKCfpeiBFT? zvl85+lBkbI8qNEX_E1u{WkFpZjMsQj*D0z0miwdmw5PJM-l*@*O4hC98b*t-Y3d8t zF0?o=7d%wS{-2!YB4oEK*(WNA&y>qKmq?AQK3B>4wERBxYQTM&i?GY8V^5_a!&OQd zo{?q9OY9dnJ14g*Nw=5lSV4liVsUfo<6$Lju}qsE4@Z+@jU0YK$$Egy+JlZyr=yN( zsw)@|)&@i7$HsD{0QY7gKy{QZk!%Qhw;Nw71*nkgST1F|k?SjzoZHHrc?l)FGfy$*phbYM}mC5r$&KzG~Njgcc+r{A}^o19V zI4=L)T*>^L+)`Dvzt$dG1}7=$`)85xc({R%wxIJwj5lj%CG$X;dDy~WB!Od0s>2C- z$#8CBoJPi})_L?w_fg98w*1o3<$lp6bfTV-4-1vNJ7vL3+teuk&4tX1mAu!;?^#vH zrx5ZSO`4JNBb5?-CQDFA>2~eVJ5|X$M9%S&j#tj?v0SL6zE-BrrFHT~HeaXYoF%_# z9mx%uE5hzpQeP*RFm3ywj{qaVk1JUZmovG9_Ak+b&xTmUJg4XtCH4MUB)G}-B7LA_ zeL*haJgQaZ2i~_z(s?pzDJiYSWJ5UaTzvGWlKV)xg!8F{9V?g%x7T&cE|gPT5)X$W zO>x}#YgFmpO6o7=1XBq+7BH`&B;7zxZ=S3BH&RLZqx=R@N*yiHR!Y+QWzvfFzKBQH zV+SSue3`xk8SODRG+#+QMlR!y#-Z8l09Grhzn1GXH4ee1rN)~SQ?gz!C%BM4tRfAL z^B@i|c~{x^@2D(tAwtUA+~0GODUEdm*=hXuC^n8^<2W{2Z6h`Qdm>qA{PzL*tD}r| zvC-!p-9<_&+$e(cD2~qKzkbO-mWv>-*13iJY9;BTa*9i%^qIkvcc%8fL&<%L{C?-t z)`Xb(em$aOeNJXAq!Yo%)P(Dd;(bxc`>f2HM?1&N!KrtZq<_lAOQQx6vs}MYlD;UX zG#^vJChKoX*2m?fR@C7}Bz!r$>GQ_x-rkMnM3y}xh)Va}hfs%8)oYIoU7|qnUU*D*b`aAgzD)5+)TcV_WK~`Et_Q{h?QS)4p zqm;xw<>IBzM$CM3Pg9cimdiJ-BWcdYsL&TF$^Vo~xRBcXG0xjSu2=GomvcIuXsX>t zqVG|Xza!^(ZYXA+^!0?2Ge_R^SrAE3OKi6PuPSMu%A$Nz?Z1)5A1Zkdm9sdX6lKF` zgY`Ql>twlB<+-x>FD2;?GHHG!K_5s)Qi~?&dRFJl1xqLMB+N?OM@iaWPHHY~+BFio zrjm14xh54w616y%*6hWNQWAfgMPjLkVI+2ICFjv{V$0~P1zacT?k`VMl7A;BIFAx+ zev9p*B)wlwaWRnwYg`A2gp|yC$jlh|XJ#|eO-kyAW$JSK8{c!i(}7C%b!GM<&wHkh zQxfkh>#STlZozn?&Qx-KFZU%2Y4eV22=6i_@0#+QB4(*?8p(8r&BQI!N8F&3r^)SR4rW9u@IakVX`gPd zj^&?QD*3DB*I|&eN+fA#5*35%F3u@RS;oq;^sH-2Qb|y01Y3fUs7pJ{Rf_P9TpT@< z39RI42-6x-uj;t3QiKC#5psjo<_AoJlJf#N=X-b5!e|&uI#C~S?BH3d6rxrZqE~aQ z8AIY3GyiC%3@^&MU}*bUQ#cMOk!)&8o!ZE)mRT-sN^xG6#VMwlMLG$qDQPlatYq#d z*TQ_dkk_#u<_0C}WpWi56r#HkX;LN>q}!xc_8#7=l;tQn2L{-AFE&t5DkXVK&XwL` zqy3svh$V7WEbUMcj)|0yl-#e%9flH2vhyowbPm2(Qhy}p{Xl2?n4x+6TPez0axUZt zT}#x8C+Yf(Epi4_*>^zmA$)i-qvlv`U!?>$$ThD|N6m}#?i_dPw3bqek7OwVO|<2W zn#Sz9ts5%^dP&w#Wwg#ZLORmjRog~MK2Oe#%9?QIPlz3r{5#6EvS;(kyNbIiMc7-; z|G`epkUBflT^=<`VT$ExluEm?3L#TMF*^3iP?P&9`De-HkxzFeIlko&QnDT^*Fw9K zVvbTCuVlSPPHTC)Mx@=hj<)bDCHr@Bn)8CrS-Q)Wq=V%o4^DTBg--D;N@3oSU%XuB zXZnLm&P!#^0jZZ=7&m%WDarTQls|RMjo14vCFyT+`44Ie$3yllV8ZwDXG&QX$Qe+H z;hM(OZII5Y@UxQtQ8_Pq@&IB}G(x=r+C%Ep0XdU(eX_^oEXaorFo%}Qm8>-~YkCsS zxgcYplKdL^1qX;?TAO+lE`M1ncjxP9TGZoKGgB)$1tW zO-+p{r&jY+nV8Z@6m78*2vI$z9)+__2j)l52I*uCza;iMHVz zs{1J=@lu(1Wv7b2uB5+Prq7!YOqf%OA1g`kkx4V&9Pxva`+50&%6z=`KT7h_e6e}T zpGMRBW_FiM(KS#>ImsR>q@R-Y*DMNoZZq|L6V2E@V7ydoE4d$%xif3*(Ms~mc)QnKzLvu5~cAFgEnSXL)qdUP`-?R^EZ z`u4b!Yl4z?wp^h-wbv{q@3(R;dw;L*r6m4ACiWbKiYR$QS(NYe7#$>LcKuqEw1>;( zoAI8a!zA0OUOcFy$yvT?Eo6Oh=c;OXl%|tqCF8<6ltyxOlvW>o!&$d zb{+xtE6E7CRus<(CmO@efzewSAG-G|nKzg7plsujqsIj%#u}O;j#=%emE>)5g&Z-D z&Q?nhGYy*sf`R&AWMMLZCF;>Yb1YDuj6`b!F{-dJa~s7QO38kcwNlT~BR3uwm>yiZ zB+!xwOr|lHxKT2nC`A}0*NGlf4+G<);l(qlV$_5i%sZ@qR0!$3#C_kjiu`=8<%ih zH7Z7br3`1uGORVZv1X&@*hXXoNF3T4NpH{WNK=?zqi`V7=u%+oC}ql%Wg6L@FZ?FY z3*#1eS|+q8i`RLKQoQqI@sK5fAZkv#oZ)z2T4QrOR+9|5Zs*ueDNu=AmwQfL9BgQ! z9lTVHYN$FlIQFAYSBh}HoF_fz(>!yXoio(>kdiU#@$O0iwwJa4`bhS;juL?|lfvPq z8FbF)M~9r92+YPx3_83eK5dpETCGyF!{y?sT+7av3A9bcE*yhDq2#yZvgx;Loc23Y zb>+q|*VQ1~MM@ff`@xMbk1i>OH2qOXerm z7fLC*6^VVw^2}Z6UzO~G%*k2>=9jG}qMaQA7tPUCF3iVhhc zqEqVak4&nhyG@-CizS-*t=Vz>ZiW`CR7$h6EX@Y(T_ApAW-pl+i-+p7=%)=<%C@#F zTc38>xO*LqRL6sH^J{#BQi|7PDb_a1%gCVA5P`GU#wvw+T^4E(`bKmTW=-dQ5x$P6 z&Yo{np@~Xa>SS3;$KdODr&zo(5;VAHE4c^A4N#v=&PUo00u`K(EEC)!<9^q~#*MN0M+a^myd-z!HbS*zrxq-0}c zx!vnQnU zEZI332`!{c+Z-nj|LCfWpYPn}L>LO!Wbv z(QtbPD276P6X--d@hQ+AKtBO(fN=i-J%(q?hSJ}u@Erj31)g0O=ykYl0#pjO?ST#g zngLV<-#vgLaH|8_4ly?a9SXNYfhNN3M4*Lu;#{Dq@VyG?B}i~PP!)V126_c(;I^~vhH(1; z4TJAOpj+U!7-%}skw6CloeH!M!d(bdjaaS&`U}2y1N{o$$ASKZ+bckuA>0Q*kHhU- zpgM%h3DDnvK;=Nc0SyEi3p5sJGdwX7=ry3(Kymo)4b%fMHv>%oIuvLMd`|>=1?XI$ zAK`ly(Cp zM}QUry$G~1!hH;s1GgW5PJ`P&K>0u=Ytr8>@a+e*5jfTc+8n;4fr@~(1v&?4C!lda zy8$%#maLa&RfbVlaF9E#`^Z>$r z4)iv{{Q~q3P`9<{F9uWrv^CHmpnvehaG+;^HUqi_@l60qBHS#X>)^H*(DgtOpc{c& zfNlXg9B6mMax&0*K<5MP33Lt6`apLA4MEJ00=44Vmw>)RS-uCfGkm`Wx(ZMH4m1yL z`D@c(7;Zg*j)dDVpc8;L1lka2JD~j#ZaPpQICcm6Bai-8zOyE8hggHTVD~$RX5N%y zqM6OHY;3{CI5xJnjnvHMwq&81%`+fUg0Phjkq!aMf!hf{pTq4Opi+o=B~TE)w*i&G z?IECp5$<`Q@j&kYMG)=_py%`G?^mE6aO=Jf{T+a3D}j!~6N7=?g4+n7m+{0{pf`Xf z0-cO-vw=WK)b=WU|stAA)o$w0sRgX0QwbZBcLnr#5kab;5HTL8>DC+ z(04#VpsNwC5h$mC{`LpD7H-D?odUOWf&K-$3TO<_?LeO*+`~W-xV-?B3%BJ!1#tTk zXfH^x0%$RObJxQk+9(DXw3I~C}7pbLQ}!1p?!>0rAXXb{ljKyM>oUI97;ZXW=hUPyo60)2^R{{;F9 zsBk#_Ed}Zg^bOD&K<^=zkwClQ*{y(Xh3^hPZ@_In&{5#11{w(87|`x;I{@fsxE%{L z4CoA?uMqR4K+6%!O+Y{4iTi;zhTGFX8^P@jpoj6qCqOsD_cx$g_~wnEzte%LfNq8F zP@t#r#0Ef3@ZAFFBB04Yy%BB>(0xD)fa)M$6sQ%xJ?7P0O584dLI&mfOdgf6VMEVI}qqDpyPnvgzuR^#~{ATfbIsm8R#weJ^=Iu z;(G?@a=5(-^bo>*3KW9dPe2bN=Kp}Mgj?AL^w+D1{ssUY2H$mo#=>_KpuZ5y_CWW8 zV=mB5@ZA?^13b|H^a?i9K(m0(0(u@#Tn28K04)Ui2dF#3m5ijnW}tpR zQTVP6v?b7JpwZyi7HCtToq$T&}Kkq z0ZjmU7dbf#s2`r)3+PVB5&!}oBY2jF|Mjo@}ZP!RE519TF6?*w`uZjS;z zf^aVZjfUHMK&^258t6et@H^1Sa4X%I{x(A_{eecpZ5^N|5pE37x$xZ%=t7|Bwj09j zZo2{10@VN|fS$p#hX7rQCr$wR7P6cJG#PGJ0zHdxw*fr}--m#f0X+}20_Yu}<%szU zpkv|oD^Op=(tR}jy$e(c^a;WZ2D%z(1keZY9Sig++$I9`2AU1j9XY-?P+z!NKy$&d z2xuzYjsTj2SWW@@4Cn%&Pa*xaKwrV_E}%hp;xV9+h~;IVt`AfO-_3!V;X4WFO}On0G!<_906mN+76Kguv>51W_#O##Ake8m&3N`gpfwQg zI-rB$dpFQx_&yG_9O-=pXf}L502&JPEzqub_D`VO;a0dQ{Z$}$djstSw>5zF1{w+U zBhXerzX0t3v@g(np!X18HBb#u3}^&=4*>cHQXLC)JkS|H1Hg7E(0!2fCZJ>C`v_1Y zVtEnhA^5%v^fS;`K>q^$26Q{ZMd!W8Re*?9^w|EQs+YxSk zffmDUEudWy^Tt5$!)+U&(-3Y)pj_m}u0YShtp?~F$hRL*K70=Xx(Try5A-o&ISXh_ zpv!^Q0=fn0BRu;c&=1n~_7dKYf% z0euLxDNuhrF&^kg#5@z|Kg72u&@n*uKv6ugKhO$7 z9#9164}@z0dJO1rpp)TyGEg7HcRtWM@Vy3TL-^ha^e51xKzTrK0Q~})KLP3n-XDQ} zhugnE#RylrHT}Je`1%8Vg>dTt-32rTs2pfJpahBr30Ih&q!M3mh^#XbvC;*fTv8}?XcXK|0(t;>a30Xd@Vy$yzC`p6pi>avBS6mqy$JLy z(7QnPZIoXDy$HA8fF4JDxO~yt7;d-;(JDa9xSG)F1~*(7XuS%A>-($_5H8iTdO#{% zbZ2b|H(WnwjfWdFj<{6|gwwpO z7ZD#0(zad(!ok*7KRkiMrmf2m4o5v(N5Kt8En9EF4d)$OOYj6vAGYixgmD7PMoyvfg4VLw7!EIj%2h3!wu&lTJInhoKk3A3WQSvt?v=;Euh~J z4hQF13*d$$?5s!OmNS|D9)nvsPz}&PplcAzdO%0#)8D2*#{o?RdKzdR&`Cf+pxuEQ zff9Ijf1ooF-!VWh!S{5a^Wb&~P;gMmK4 zv#mfw;C439YkBl{1<>DcyA{aZq`wU43AjB6^fb`hK&JwI4zwoFFF>Co=5ABz?`*hL z0IdTw2xt$W;Xw9&-OYgRE1F-jY2B4dOMj+h%K%2wuX`nVd@dl8+dFvCPQ3&@VP`r@-{ssCB2>XDnP2h{&IM!J} z*aKtb0b#p|bsiA*c~~WQ0^2RD^Wlbl57zcz!!`r!aQI@uzh%J}OYW_o;fAH}))XKt zJh$G3FIIkATLEDqwzVD5LqI1W9F`kf%MmkH|5^iqumabzm(gN1tTh;JSdePX#uHc! zYV8b!rI*&)Kv@20y#|Ceht}&rSn+4o0b%`}H2}O=183b0gym?~#qh<_Flz?pAw#g?t(A$U`bgvAk#vhpBQ1DO zw6#`+XuBdEN4cOW7!TIbv0L>S9%f;RsNmM!|-aeOlfh}n2Z0y#OU}LDB)@9Nbg|_-Tc;2|RQwCV4lSEbt zB_UZIw9X(43hpeHb|pzj#pIFm9AlmxqxCP<2+zXKC4Wzk;!GYDnLLIDGDKyU;(!cU zGkk=xU~E&0-PqHcZ4MODVW_l{JKDzS9!>H1%Sq45U=5{sjKXUjycUW)Lu%SmD*^)a z7z;AezaYI53nNVn61;_F0UfJdO`BYgNyWTgN6Z`ej=88hFNVzFE4I@rWHo+-13TdPgK6d=hCWpcLfa!9>ou{8P6?NOJx{QsSbZg1Ha;E?F0re$ zqkJDHN&LNMuJV1vcYb7BzLj?Qre$|G4a@vg|@ttFyC2ftT zc#P6%?av(rk5Wttk?zsW@-IY|I%c}>m|Z$%T34e;>lm(6DjhRIBLyw;w)fMlJ{?mW z3euIdp&$*{9NC6jB3RkBQ7ZiPd^~Gg>qLcKA<0-Uqq=%1lT*5yWwIK- zGfLW%?NA|i`YsWd3c1a9K6w_Zbt%PTlu2v3twP!*clS+h_RpN9-nhYc%r3ogtsO{ii}-|)z`js6q`pzI2xOT?_zT`Hch^B&a>pL1r(1_O05A~^{lK^Q^KUb zPa6CSlcf%_e8=q4L3Le?BCUhCj;VCeRE-q$eGEpbD)_wQvEtDdEJtof@ zs2T&YrRQet#hukqwrrGtGrLk#bjoHL)X0KyO>2vDk)@7#)_2S<9rILIqe$x*u2U)mxst*nJSXl-?u=j7Nylng&l?e5?JMGrP4^cL!oT$yJ%br zWmDgI<*iWGqIgV&($ns|7~;D>nMV7k&r+3)^c}NHm2A+}DAKBg>yb*8lxn0PRkFuw zRwWU-xtSJy<)qeSbske~p`@&ee#%sZDv2Z@-O3h?b^0hubT#kOnxx5&BBLf*jpM2n zos;g+Bxn0B8J8wG!*^bJYmy@=9#fN4*_x!Y^ln9Rnt%2z70JoIV|FQ$6YMBf-}i5C z9-r)-V~+BEoFwx1Cc4V|5#RZeZF%#En>!8eQeWm@hAd0{e%~?w&r7|3dYpA7CI7R& z35;!Pj?=;>F7cf>G9Tvt|kOhQ0HNT z)jQtW-&}~Ep&Kz~reEddS^rvRE4mS#S0`uRpBP1wE5A%Ow4=z_pICj3Oh3;oaI`b? zeHWFhotfi1&pb=p8c*?<{fdFMw((4cTiML=FGiNiX1ec~UCL%!SEEQP8?IL>Wivt} z1t}Z*Fx1sI=utpRK4==pT=hXo@YgT$tZc306{;mAmQhzd22W4vYHp{$O-{6<$f!$J zC)%Ms?(|(6F70uf?_BaMQ0r2P$0(83Qd@hZ3M<7M=vb?Hvwz+!)x{0IV|J;F zYwajjUsF-ReR34j`{68=0p6PE8 z&(f}%r7rCXio#zXD%;ZT^lq2>mmtd$FY+C8h7#{WJD%r`L&V8TJtiA*}iM4XEkfxUeOa^sf=dFqa!e*tCc3*5!lg=;{QWOpwLdU zqaTp)T^6o3qRDqAc^0R&fZ{O8eCK<+H^Od!9Q)5s>1RevrARf*-@;%Za_IV zq+TU_5s9Mg1)T3YL$WR59(DC3X&ewCDGty3+tN=eB=W;u&lOmh3{F{i3jx`R+)N0G6Eu=?7NJ{}q1 z=q-%$T}-LuruU?8=sU+eOWGPl@tC~@-fHHN2zQ$@!oLt%>X>zX$L!KEYjrh>w2t9A zrP49E8YyVR@%7dFnbA9Sa1E^{&oH&oND1=S5Av*dtuqu~9qp&K&@kp+UfR4_bw?ooy*8PeY-$NQHdOZ{?; z@0eZs<;bo^k=8FmwV{lQqRK>UcX|q%nU-^#N zr7AwRqgZ`i(9|%7R|yAp_WQQEN_YrG;jgovZ3%ZC#>i041O1a{Sp5!~`4CUR0_B-7L;0B=!QKW}4p6IHAf)vyR zIB4~D0S2}27R*_YNH#Ua;?3dqu?%y+YOC++>sj|&=PAB4+GS0P%KdG5i^s8DtzPNQ z!cle<89NKBuRZA~GFLV@`VTkyE;3i^a-Hvd^DK4iT#Co+KMdt*kYr;BM<=?H;vU|( z+P^4S>Ygin$L!KQmv%LZwC>^hrP4izYos9EQ?z=AH+q??H{JVGzoYc5ijR@$3Z2t= zxnFj>RKMR*H`bxV=&m|eOhzpGKCbqm)gm2Ua8tF=1SuZgVQeoaqoE5qUE(ePrgxtZCNsjEV@ z?4(dFv|Ax1VV1+DGrC$6(wb#QJBo~&Wi<|YPzjmIcl2HozDvlZS(<$3mv`@F0mWl# z7GC=0Oo3amH29YwOT}XOj@hMH>g*_1U&nQDdY<2zbB?mVh$Qp(cDl;`eBb$#ZP^cV zO!+(0;;sef_?IQiT5zWCm^0LZF0>8l=7p6?7otdiHc#zpLQ>7kcB^;eQ6CyO567ut z;hQDATA24KMgHorX9ZNv{@YTv3z=mjv%IS%k#1z(vZKh@$gDn%!^LD~fJ4=EpX;}n zT&m_j-#O-4($;qrkJ-%d?7vqjri2J|Y#{jCzYtmKm_K~S?9wqSx*A1V$8eoe>6q6w zQqbq|p{utGTZJxcBi$^~LMK_fKaR)yuDG7Hu60LU50(YYQnzeNGW+|~OI4+`ZrRF? z;{Sneq2fuE4kzBBS89A0k4vuvedm^E30t!%9#gOIaK9q~?taTY{sqWVr|juFW|vOc zt*cR_bqd!dl}_10BL(S{iL1BYQfljwoCVd9W^;J|QcB0F=&ejvXcJpD7R{)x9+UqU zbv4`5isXDdivI_Sq%56ohYoq%ccHj+$RoZp%3FurLh%@d(#p4~q-A%jk7fS3vs54V z`;OVAKJMvi6lwLrHAtmC&e2Fg>SN*R9kCy5j@Ykcd@X<8s?jH!>B7zfzy1c=x|8(E ze#(D#$^Ji3FM~2>gG1X4_g!QzZL^N=eDl^ey(u13+wgQ@#-zBF&zk;4$x`_Y^BuEG z`3&xA6lvwd^-HCE{#GiVsjK&Us4P?;4lT^#TRe?Z80siHS4HP#ilXyk3zw43sJb4# zmzu5?f4cV)w4?ZcpkB&5CETGW5GsgQj%Qc(ZpC0v8O`i^iZi-!}*DDByD9pv&9CFFmtLRdJK z&8Vy%D&+C5W_((OJYq+YG51&FRA70hlsk0DH@?for9-~-omJjC?KRIT1IkBUfR#vR^A`mVR0m9ABD)_qF6EN5U2>uN1Z z_ZtqjqsZ8ASbfb&rIB<;Q*xE>qH#4Pm;25u&(gKpC?2!pz-QeX;=5JJCI0ENR3#Vs zj@hM3&g*IvX;s4YNTo^+&`3e5C{tS$ z+Y8R@f=aOlI+lIp`De{iNp$lavr9?*%VnNR(vHAQxx=m2AvrnqcUUKov3J`lzxG-p4b0K^LM(e?z?2)dnf`4Y73fF1yILr^$_$ z|5D%e)U%SQ&WmKJjK;=esPUq%R+@C zogvwlaOZ;-GL-YT{>if}=dXOn{68<}P6sV`m33fOby*LgC{{&Z-u*T^4_e4j-UIy$ zkY#!I^Br@B^6o|8lU4UMzcNp>isQVH)If}CVMRIKJJ0XF< zz;Fa)HpnT6KyDI}5OQ#79C~MZcV{v?Gt9Bcq9~vs>VSyLB_Md=fubOIp`fCC`l%=% zhzE#(;C-Pep74LWx~8kEt9rNIs_vfr`Tg7mlYQ!~=Y8s}x9%CvZtmVnr6k+SokdGl z8e7cf5$nV}#d*Zn>&l2F1?Lcm-61Ie-}vetNDeMR`$p(G-hw7e>fT}*aQNhaP9*xx z7snHC!WXX?Ooq|OLNFO35XmJ8^W1UvXdeGGm}HnNd=gEJs>j_UL6S;{e*ZY$2t~i& zhDPqV-xsn`_h`OiL6f8E`+dZdr%sPTLpG(D4Gtc|8=~m{N6^S2{@2I=SQ6oO zAQ})Xi8xcYA~cCOCD|lm5&!OXSGLmUJf2%^22OMAeKt0NNhR3YEL&E{TMdhBQj)DJ zcz@W#z2pprw(aCPFv)boUSK;e_omunnZ-N;5t>;f*V!x#At8`roP>54tumW`cnz90 zsmF_l0S@P(mK$_JDk63|uf`jq7<7(7BMU+2NL>gPbX;v21)bR@R=}#|mC5eAp4MBd zSos{hZUp-#`A2Uqgqq+oC8_FKCJ%Ib);Y#;(v<|43v{Vx!DT0b2n{X?E@V#kS3M9? zZbf@W2q`zCxsp1!*a95RFD>_(G{5y?9C;tUbj3Jw9U57PBO?SNxqgH`(Cud|;P3B& zMYxtI`1^m+yr}xy|3J6D4x-op2XBL-*S~>A?zq=|4|Mxk3wZut=AM5M&5f$(gAa83 z>mhpo1-u=K-hUpA9O8YAj-TZYZr7m!!3Hc1-HOlw%P*20uq@;cjD|g9ar`;h=p_|k z>kNbOivMgO;wg(`!F0pn%25O&G^0qan{l2~_b$s}90UT+>(R~uAw8Y(k{{XFZN#u3emBC4-dfbtz|qlxqk?Xh=zLkTS)qcOZ=1 zhxUjNM(#xuC3R}?6M(}xr8S+*w0fqCk>d;aq7@^@J!oVha@<8AlIu5SxyunAT>(%3 z4$Q%|J;BqzMw6oIX?H5%01WQQaRygNHbxxVHsw0x!7 zYi*LH3*H)uEMM^cu&4bd8}90wt-7*e$-@~0A~bnOu3u@pYSeq8FF?CW=v{WAIg@(3 z*atX#9^sxHm3xw!k@C)RH1K99#+vid$U>|s>q4+t5JUDR(A&mSoBWcC8|t;@JCj(FBwgvYe$ojUh`}+JDwVEK{4~*b9usCHGW4 zESAh85TUUo!8wkptm1)4auV7n!AMek4Vo!=067eB_yFRbJ7l(t(c{(lvK6DpF=%8V zdK^h0lFLSCyORWruYj+2fIYYlUGVh)niW-FyAPHGYan{u##^B1@m@4?$2~ruO%a58 z{d#k+UxQ{w)$0ob8%9|zM9*K1w?fhL??xkscwVEMXPJWAU1&hCnU2}I6>+S9OyQ=4 zM;{iX35B6y*@=@MK~-?UN~$@dom*Dju}<;8$)md5vxMPc0uh=pB-fKn_t!koi~I}i z7@-$=5lxlUx5Zxq4xcf&8@K${i*e)yeCdjDHTc84BOgR&8fMQJ9f<_i%$|hY17E@d;8O4+%Oss&IvR|^Z7;~KCume_o z!0IhYpEtS@>JvqRV)FJc929GtsFVtrCdWGc7wPAE(%mX5Lxa+yGV#E_oDfd zN0v_j4j)g;m1yLS`<*{(&u9zy{sME~??jWM>U+sidsY$A{|&q$ivB+zjU3{C zjSPS#5pD;f0l_9uU(oHw94jD+Sf6YXF%9mPY&wVQ^M#zvzm@n!v~Z=WYf0ZqY%ivc zy3p#_=9$KIQ?hLvx(Z_X!)FP^?vOuB_g6g-P@X{hMd(a^g62x<+TynWhw}?P^Xj)= zj3STWOIM5{kD!r-DDndWkzDrRJN@WqE#UJ>Z!k_ECICbfDWmA~;OR$yJw)&CiMK=1 z`(0?{5btYr0IUyjgNOzM>q9=HD`VP+ygAuEWR`c_wJU4YYSu8{kDQ9ut~A)RPLple z@%9nRIuh>>dprx<269nL(wnT()e`GXmJ^8Gp*NWwtbQQ6>_B@+=urmHd`X>LJPU9* z-?ZE<9l;uiamB`4pcq$r(a1tv$r6YJdlh#JOpvvJ->(O&42PxHpt(`?yW6YC>mhpo zYP=na-hVe5x#Qm7hi&K?Ljm73SHRcN{HQ8mzrePhU|mEN+>f_KQ3YQ{BZsI!BQapP zh1;cQK(O56WZjC;+~N%hFQ9ox3kqepm`OZeFfNOYVN&_EOcv1Eo72HW#RarIz-nAF zPUXbXiT3z;PB~%yMQKCL5wZ?<4sVE zE&HO8h1jyUE(D7$uAYoy%fAg{OK-9p2PZcw5K&51E4PDtv!V~k#HB@2u^C*V(5STS z;>0Q$r{r`U&jQJL1Y$P`BvZU<2Li}D&<+s-$Yp4rq&_V+0f+Mmy+gq>T?`y=#TTs@ zI4(jX3xVT8T?iI9T>TgYj_oE^z@+)Vlb!I`w^`;dd>ZA5^|zpEQ3R7S4Q4-xx!#RO zxP#W;)O8IDFkdGSyFq|iJPHwkkn=mV+k}wwYczB6knfQ>!Ft zIRxx99Q_{HR3?h_WUVY@c3 zfMClpZ`GBuV+AA=$0R#tI?r2<3C$=@MJre;zt%>BjG{fAk4Y<5=}L;F70U@kXj+k6 zKht*8D5=E`w3~!(W&q8Y)YHYY0EbU4+%4%cFH$4efW^iep%`O&(a1uK$?8I|7~^Wn zD8`&@VguD}6T_){9>R9FEl1 zxO5@^s&?LRFZ{84XW+L90ao!^u)x0p3oaj`#x6Qz6Tv!vO~lca@ne5OSX^M!l|>}|WCrZi)-yM7t@_|-xGv5E9FDivl(a>P%ru4u#m1dB=P;!U!J5%x z0ug0KM#$dt?Dfkyme)c#5%gFRmdB-cl`N6o)w;(ta6=nM4XsD z9F3TK*=63Y7y8T2>~|I}e}U&@S;1V$lyo&8&{YW&+WQGaf?dtx)wN2w0o`kAb+epn z6e?w_GQ0}Kx$tXTl3eMTc51Cf2|0o9gO1)VXtiN%0C8GsBb!$wp^D z$J68WIe~SiRa9^-_=V!Z08sp(^KXYZ|ArZO_rNb~EG{KK$<Z(f*fD(k%7{aq#*M zjH1hSt-jQ&O~`#RY^-)N+6+2<$0Ey#1VW<&T~eF`)AQ6L4#5MTYddCo*dGv&O@}y5 zQxm7-uwdVAcVpte3C(|CC%qY7*UvuEeAG=jti6)t< zhO`@^|97FeQuUMjT$|@B(M^}*iyn0{oHd0@(a4k+7EUkGg4** z>8p9|i0H7}PU!hr!)Ie7cD@%F9eP>m0<%w>Gy9}21Z!cByUy7&tc%g?lsFfxFZ9-| zS|M;(%*1?L+U8wQ@=6z6Fb+&G%v|@-g^1k+bNsCUh7iqCzyXKF=770e8-Q^GDO;fb z5MAzAY&lRDB1peR2f_LnH^ON^Fe}FBV|0_l$y)}jS~b;MXz=mxoY;InB@H*%)~Xp& zq~P*1b^XO$zC{-zcCx!y?Xm`|!DjZR*r=YAw%Y{?L=Wq-#E2f!g$NR@(J)xsatBlz z5X_3>b-PJAC_gr_K{*+0%-+(h!noCLq?X$Q)=;6+!&j9}x#<51VuQkS+vkKi?q`q2nK2C(Ju*z-pulbus{IYyM=;2QNa&QH*~? zAIwYdgwivGy6XWdd(i_g=+ej3{k$$j>>k)_S!!dYoLSkdmI^u8)0Ap^fpfwlJ1!?I zOk0^U7?5upkZH#s(Gd&43d3A|t}aCEj#$`k3gt>;l;-f-7(LN$4q(9;P2vPy8d;M# zP8T9}Pb^t(m8^2k=^578Fnw&53Kv+;vSey!p)rtJ)z??Z6<{mhFxN!Ri_I~IrhD54 zW%@aTGLAtRn;9hJfZKIhW{x^n7b12?P1{hZ*(qtp{npsLF+Dv9rDnp@?u&H!Vw7K~ z3lTfzOEy@$3WJ3UoW`-OZuOIu;*HQchHT&JeWAg(joV`L#-Zs!&!9}xG00guc3(U4 zX5OFygF!;u_>eBk%u%=MLIfS9F}PvlBR6-}fM8bKuA89H@zF8kVf`;`dN(v})Sfn< z>1@h@l)Yj1HOXEPE)+i*joeyC`9??ljvR0EC)uO}$vZJ5>nwtCdA?+<^ti5MnCgB^ zAVTSmel~rgZ0_)-Xjm@(0dP3dTHO$0L*@(rZO-05bRk%4`5S=p;2(s z4H)}#ir&93n*3YjdRn^RFH{JU`$EZvIrrYW5U~?J`SfbT>CJ+4uZ)fEDd`F;QXqSo zE>kQvoTLj8BwM39VLg%?p)??v6+hH%rnE=;;rK**q-krMqd0WK9N&1~6pfmE8$`L| zN8}8Uvquzm%GJm0euj1R!6Y_BAQJ3;x*L5xgkCNt-V_b3#diS?-~UWXH~KQ}(JG;d z-eAt(wYm_jalDs6MBV|7UuW&A@-xl%LrGCgzlkhQNEbxj}<%dc1i@Ff8Q#`3r zspSTGiiHLz=4WD~d2*VRm~l!JsQ$SwPmJm(bRlA=y4$6?Zx_e(`2M&A4PnFaZ3YSy zh<*i>YM4g792L{*?l_#{TpPbI2&Y}3Bx_rz`k96oiJoF;6_x5MVlDLij<3Zu*jeBzgEhYf85??7`)b#jQ)UdUG1%g{VY z)n1gj$7{M`jD9P=SjBCy7om|UCoE`Qs0+bDx2qka(7l~l5v9t=c8Bp~Dw*r1?}w72 z$U8+1On_~#Fi$M{|I4}*vk3P^T?pprm?#e01@=sAJdeH$?B}{nF|wb~g@~PO`7W^W z193@uv|V7YfKp8}&!~vjh&?QPx!HpT1atS%x)q_B=gf&oWu7D~PFVvRz+jc523O5+ z!SS`xD5*8qO9%Vm#t~S?ASH1bjbsJm1an0lM<6sZLEWkKxogW%y%HP;>ratW52s!j)5g(mxa% z=?nZicZ$!@;sqz%s>>jA!p*u6%1+Q8bS{R)>1Qsw0X8+dr|02HvarKl560#U@Cvq!pbjWBXx>%lWC^UEmBbRFU&c7 zN*98u`e&{iqCU+ve~aB9Hxg{ClHG~UwQoCYew)vvLR|5DK^peLJH=<3RkAe^c3Nbd z;sqy602>U`-92?7Vt2yawe@<_hP!AWqMQN$;%rLf*BTFx%>|IfkitnQIo~T>aKNFu z?6F94ur5T<0UCn^Hr{aKnFa*2!p)^LAea?yrmO+MtT2-f~YJ_+1-`FecgSzTv4WLLM66{L%TpPF{?W$W=yJnE`6*q9 z*y$a&@yvjHAB&CO@#*rA?1sNbblG79|3DWaNU%n4!8#l__GmybEBbXSLOYz*i7oKD zH@hrv7E0tG;PMj88t~oB^kO6}wY8tu&CuKZdTF8AUbj##N=jzkrhp-aiETH5NU&Sk zdpSIkD!bV4nVT-<;$crTEEg984o75bFE~6yZ19~12)WkpmF5gD(S=}*=O6+Rc^5RF z43@o{4av3LK`)#EMMu#qiC!R&{scTAj@>ruvd3cRX}S=xJ77+`Eu0FYH|H|zAp4Ej z*q`aOfdRK{k^1v>d1KUe#%yNB2Ku*^19e4pXgkFBE7nDM3*MU^m}w6f=p}l z@+?tsdlL-^X2p2jiqJ&ikz^Bv2`kCPyj;)q{b(fAni0qk#@vtfU0v>&j=oJGLi2&* z#C6b{PHa?ijhbzbymy4ZE0S&sa;|@5e+h91WNQMvU}2Zxk%K3}j@Cr@S8_qr_K_tU z$4-|n8`0uHFDXA-I`h`=Sod@Kn8C3uaAHs#eaZl#eX?J z{sTYkRyQ0s%-hw*z{t9n;h)yToCW7OD&>(@TO6%%{iRCp$U9mS1`7GST^_l-HI2g3 z|KlC4?s9Xm7oG#jkDLbSN~6$#;wt6RF#Oi!nzfTLLH@H{MDZ0nAO$QsH)o!97`ZyL zb>z~4%Amcp)-1z0<)!2`5}2WOs<)K9gA}NDPtAK%;+Iezt#pzF09QUn0pLLsE8vZp z=e4G$bQh7k*OV&tx>e(6y$=DeM36PLW_iv60lCF+sjOs7aG)cIUZWRJ_Sc1AQG8!r z2pYxzq2)yF<++)wcI6-sf}_i;E44u@a4Xi9h`f2Q=S^-}(WYf*`)Ju?xpaiv_|m2rNEX>HYCJ^t>$UI7D|dB7D;J_E(T84!w-?>_v&)QM0%AjMC>$ATmknzY*^0|{l(abo(}h} z*X+Sk#{Gz7e@>SvM)qfQA%bLUbp9-VaO08&1hZnDZbfL>pWWR8^f5UPvM;~*b@kd>bncjX!AQJ3>rUJ?JMy*L+6XAHCRf;A; zb^#9G5lwR*Okjly3**z_Hw=@tDY_7>#dH&h$orz{o9$}NuEWTM+?2#oel!#rMW-ZE zJ|kV@ixo(Jl`dmUygj-Qv6DV)vz=?!>dxIe8|=nFCGhO!S+Vgx8+fNBX9j7>0`*&U zd1KU{p$ic^^^=@6Be**-u>IzO*eIWzb{34>5(TPv>hi>>Zs?~Vfv7FUVE{1!fJ1udGCi z7RdjKE_00hFX=+WPW}|+-~OpVozlo$9%6m}v|;S$g|UQ!dJ{kB#+tG~NUX7aXuwmp$fy z)w&R|J75}&O8W}^&6+qys>H^;GoR!yRiM12%NL`(pbHT@wBM!68KeEv zx)4FyH6}gTys0~zrUAjM__gkw9-TLRGTF=ZCOPw_%W5@?UwQpQG;(Skt~h6E5ev9k zKgpu(Z*@h&boMI(k>GskjIHnh9U(ZiqGSaI+tbR?BxlvjIr-f6P;A`Ka!;v4!QoTabzRmN@l{=jAn_XgJWCbajzj~3S@EoHcSci% zL9J9lcZ=3kSg2pMs|p*aoK1QDeE*JU6xB+3$--a-o;@H#xut`ptnHP`^>LB};dWhV zFm-)Q7lQfqBf1dOuP-LMYisIey9BrF=Tm1@YCAZ`{xl-T&hs4W-?263^7xN*d1T&v zlt6^0d&S?vF3Hfnx5YogpCY#17XRk_{og>5#lOS9k=?dwY1NlPC*@oURL)y9SXy*8 z(k_wz#hq~XHDnQ4Z;OHZw^>v1GrBbJw?Yc%ueEjxSKU(Q{N0S)P-oH`_V(7Yg)&&- zF4i||HmTdO@?RNjmKudDJr3;sexMGA$$vL^h!_ZUnL!^qcIxy>c_9#c$eojrzK~PO zR@r%G*ZGA*Wt5tV7`(@_a>-@ZK6J;H#+eD2z(uYl~fW6MMlijPd z=jvr=aB=o1@Jj^SI9gLZRrXouj~QN%aMWP7#W_PDLc?qH`(O9j06VLk-Br*eQ|)74 zXTt6L!gU>6qT#f-9B{a_qqP_wM)Hivw9h~ewT%$R8su}X3+X>+LY52Dl z19omlaD;tBY~=5iZb12DPXW9|4gZ#FmoK>CT3rsA8{Vr65xX0vuGzFLMNWMNx&Lx( z+)qpQSDP8HP=W9->axWM|C}yF?1ayRr?Tu)YNZWh&|zn#mFq))9vkVioHw)VQU(sE zwF?%Ae?pfvM*L57Az~+fZac=qB5R{oDWz7IDmyvyUr~)K)X(!mJ*>4lg=hMl!UYGs ztjivAz<+ch;&;HZW}}i>S?KG7lZ|C~$Bdkd^iRPY6r%$yr|^8BaKQlwfCYxx3v6A8*j=#qvQopYxsSxANHf_&&WgZH5bua9V{^nlX^YvAA#KB( zjgq+IUAkN{cU-Ou5xYBPx%)Bc8mKTvzB4u_%%#>zg-t1cIu}( z>;9VxRp=MW{58>!#>Vmy79;#2U5MBT9}n00H+ZIBjE(6DX_&o- z(gccM(B+3w{JbtikYbHFRW>c_PVH$xFe?tzO{nQQ*xF>*!RBm)(-QrVTf@{MY@UJB zqrnMa3*TlwmH@QR~ zmO{mT>1th$7|rk2g@~QzDeaXY*muTJ{e{@5p6XrvC#CxyU9K42cj-dJPWK`fPENH; zusb1Su>E*!?Ci?k&5u{!tmu2a&nNRh}`i!@mnjCZ^+hF|D&&SpxNg;6iaJUptk{%xgMj58ZM-Yev)8k2JG~p#7 z=Xej-iqDLO-{LC3;b?1xycw{?oV!iB5Uj;)AP|wK!xLfNzFD&P7t@BJtSGWzImJhc z8QG97KP)uXbs=J>c*5zqMrFf#PQ*9G%J5Ml!#C*C!x+9+7b3{8M$f@IA2$qXKrkyZ zx)q_F&q-Q)&9(a+ax85tJj2AV8ax_}gj)M}8|ByxjI(32K}zHzq@-hcSeHwttA_|g zf*s3DhfHT?OFAX}LNvSx2}X#8XVnTMLJY&prm4!#atfABomo@>Ur{wul=u~WZfZ5cwp+n1&)eJR++#Wg8B0y3^sQ zKKdS2{bVldoYaUb>rAD04h(1VmCQ~%;~0_|dtQD57-N``?x_nAyI&4HwX!n>4aLc6 z>{PHLPuZ}S7p_nqvf*hG|FGcj*c^0NdZ4m111*JElnM6i8NWqBH*=^i&#Va@tP2sl ztM+qxcrrG&YOuMwl-f|(1ubcHy9sd)Iz2WArPxr}wIeg=*fHA5)_Pq|nOoNCLd5Qt zgO^vz&H4$xw)4zIH^3DH4S4p@agS{^gl(m@*u0ZY_d4eI+l@_4$@H~N5!y{fmtE$d zk}gEhK^pUiYzopHj%q+KD`J{pIdF?z>dU~<6qsQFX*9?VednTzLaxvt$$M~3^aHVp zrbxdB3iYnM`ifg^1ljbDTj;mRv=ZZKow%Nc~1^ z{&1$kjuz?unl4w2?)!8hVyAo7W_Ys9>CNOR`mbUm8?LT*OCBv3e^!?_M*Y*e5V2Fg z_hviOW`DH>w_)T%oG`f=R~o(#91Y5}{m@5j7|k6M!4Sg~e4H*s&>b3`3+tcU1r-el zX2o}O*AVCu*@KB~SKb%iDdcahA+K%Ef-!Ipc^oxMu6S8;C>Lf|QPDZCOBRpbAAUFw zOcoCTFvKM{?)@Pf$@L){i`O^^%h3vGbvvVZI44wsHykI_?7n8LFw$D+t;$u(cGfvJ zQL8T{^%-+3^vP%wXdleN%83L*W5Qi~&0_La_wn4|uEibHQP%>w7s5-Kf7_2-;qs#U z`KSB&xBK}o`AGRJo(nkqYTOk1cCPbGx7aNXn3HIaPGXd+Yx}ZBK;KJs_c;|++QOA+ zim6^mYayzC7n&_qFU@qOe*Fzubk*hf!spa?6sp;}GwV<(XWeH~M=lqd!KG+q3c&*D zCAttSoVz+Q3g^AVicrOAx7wN8>P~j$oDdUTxIpc7UH3Ls$^Z@yy52DBPOolJ{udc zi_*4ZK?Y7xI~Ks`jaeWt{Iog4PwGOj7WTO7q^Q>&r@8kO=PdEY)`>%L>3Vva-cn3U z6(}DEMH}X*d+0*MPWfcIWg&P!@nNy?Jtf`m?vikd6v#eAmnjxO4%CH+o$PLMM6|D2 z;_~7Ru~9wAJtgWCC=k6)mnBB@8eNDW(Hi|M>#E%jLj!_YF-BLddt>cnxF4%lP4yN6 zy9nPDo5QE1;YzGpHA9LNTt2MpFXr+gU5MDp?q0Ra8myKA*F4-38`YE2cDq1<=$mv| zVnpAd3lSt*qhYYN<&H@;Aea@$>t-8tR%2eW8-HiG*Y!IYwsX4= zw*R_!^+UN?=Ng^*m@^KK>I#Hu>|p{CI^z)i&}Hv6rAjZXZ#p*?!Q-Nkb#JOU^=>%V z+WJ?aUyO$6;x7S*pMlsX-A`;F*Ax*OGF4`S(2`#;XZiWjS&ni*v&5Zy=w4$tfZP-K zcg+{=+CqMr%4nV|BkpfUC?&_xwv@(`1zAqf zqt|1OBk*RKvyJ<8+h3CfZcPGzKc>1&X8Wo*i`)vu(JYRG6=i?3$Tp}z@42CJ%@>x>k26PPwX2l(_4P_PDzg1buf4^WGGf zLrJpE>vc(HQQ;Z_5gHYu&pIboH}`BoGOP!u>W@U=gZjr(j!m!CBjM9-SdOlj^BI-}1hXa%0D1qv5%D z5a93ua_@Ax0&hDw`?>`?#3p={InhVxLa@e@ArO&A%EixIbQ4TI!Sino`e%OX?!7F~#-BQydbi=}S6 z(|}-BOw+9hjitXE2g!cemc&q%X>akI>TVXv+7{vHw|3|Ld(>1dwEwSLzbV z#Pu!$5z1=xndQU{%eJmxwwzCN?u>@g;;n$gk=B|H&onklR&U1rhz;}(a}ICUg4sAroa2X|BGWJE(!`j4UKb*MrZ+YRgPLA+L42BqGZLU_@>67b0TgVQ(9YF` zh@I(a5Is(V)6?s1t5)Wv{o2?FU*rUl9dJy#zR_zEtStY5#U?v>%+dNZFaXQ+8&s1ZBgCQ^y?t|0O!)L0vYPLmtqDh}|I* zR#&v;{8nc~cJ&Mgq0 zLU$KNh25%Cp>V@&agr`X?0ipimyDcOp;NEoNk1|+(ihQXBj-8j%&X|qk^3K_+?VQd z$K-yvE=26~PuOtwM!UiDzAZN1r=|yYmF-4`{1lnqtVwcl^Z)U&JU61rY=W}=9(@<>@;_88kWqd+!!0vGt<>!cUFadMZT}sC5!QWjV?s& ze2-sUYVP7?eP3*3PfqtiX&L8-Nb|kA95I@|pbHT@&EwWBJDX?u>DXBAP8Y3R8Tg;b z@sqj)F^(VCg@~PFe=2e$PxiPs#g+eYsmPK3R7A4ncMmYbFcW-f_oaX3s8k8s zlidS2`>X-00asna739v&;AQzdztbffjlx=ocspIV)!Cg;de$jDOZErn^JDILdA+Vs zSfo9NKqR5Ujln z5s1i_YGjVd%rP0?qze%{`C(f< zz8M?oQ_`c6{dHZY7}@vhLc~t?v^5~Nfs}jgAusY@$Hw>cG`S3u-kBy@aCuIbFGl$@ zx)8BbK6BMBn3OC-HnzG_gPkxu>r*a_E40jl>sj1_GkvsRA+U5q>4vHBcwLCtiB~!; z+Y=lAd!^lL?3@b~_|v+A8(yi)A=Cd7U5MD-klN5JH3}K`_z1mR(0Q<&^>_Z$%V)&q zkNwkw#E>EP9E<0i(fWdox~wwCoTdvAyJN;a(bI^{8S~)ja&nxgPLC5g_u)!|{Yh6TOl-d=5DCtmbd#HmgF94bzd4#5dk?_jr%h(M z7Z<}GRdRuGby%G4oB_XNm|{=Wgh@a`L1BG&qpU^)$My4B1aj+c~eu_+Q)1`?qy;&C`cBbj^>-B-7 z8*hw_?Dp~NlJm}~a}FCGBow;-UAlZR%A2|nu~Xi?(Qei%n<{y32k`r2V?5-2_8WBx zVjN$u3lZd4BR68{mD}%XKrkzQqucw_^y(YQu1w8nFPIcA5FajhEE*xT(q3-mJAmC@ zGievhB?yvpgOBJcgo*421R}w-YVwvHcC`Ty=+y_g7W(&Sh%G(`I2>;+xW=0mDFnm6 znsfMPT?p1h{y-oi&#CrtW&uhCa?-sv?7Yh1{2z9s;Jj7K(ZBF5(PUa8{fo)mrDufm zFo!cNZ5tstWIkA8nB>mUg^1lDvsYHwdTi<}xCDz|^*%8+H_T4MYtHQeQ_qn5w*>Bw z*Cmbxlw)-vV&{H7oWn}FZ=(2@#kppXjg9{W&ateF`#6e!eOye>Ua!j_bHX{g5J4ws z^!qGzaQhYw2xi6ibVDmm9ga%)+7`GZG37pW$I0rtXk^uz<7Ex(O}#NUu8io4f$8Zz z1R^v`h~qZ9+n`8xo82gn2|BmWvFmIYFV0(oojC@Wp(p4*T3sJnKf6}$wtlfF%v7Gx$a1|xlV%j-svTz{`LDM;2VEy z{V}|9yM3hiQ}^?P`+3s+JVidz=P6pp=PSAT(!ABMvbmB~uiJtDfE}Pc{y*(uccOA5 z$@U1mH3{ChwQF`cXOFlqH6G-s$af3q*p|AfcWV||q02S0aJJSWJDVut0R%C$r7s!1 z%WX|;RC0})4feIKZXesE)>N3FEj9CYAM}~^5$FwDr;ov$N0f6(Y6yot7Q9jF#$s3~ zIyDN!UaM}8L}MJ(U0f!7-QA4R;l0atyxi7SaHH{L|Peytqs*CeO)#hZPnkc*r56?u@ykL>ZdBP^5hypWIjY1vfhv6~#XqtbsQ79D}!x2Syvc=x1 zuHBjlQK06$wFW)q#^NUEupzN6o30kLZl&LC^m``#o<+ZB)9*R-doKOHj(%TH zzuW2e4fLC(-}C6#qTgQn&Cze3er@{gBVW7KJ!tL9!;JjE$hw!|pVm0%MK?&$C*~}e zriX-nV{3BF+R5tbX3HB%vb@nvf0h9jWQ}3(X6fAAxNl1SVzv92N=U+ZCD?&W7-fl$%fcBABY< z=;DoDZ9hk98;6gNL;AQ~$M#Gx^Yv%(HY)o1GiYSmQYMukI%lD^4AQppDS{N*_G8vY zJ}+qFS74B#Hl9VZBOQ23+P{uAoH~lycp7h`qBfpHBhw)DGx$X}NF^X3dr;4H^rsGXil*AM?^6n*xep`^lGIL3sgk~j1NjOy$CGi@( ziHeeVH5z$0lSD(1MA=*tJJ77eDG8{eD2V~QiHef2(a0T_#9V*J;XFhjh~h?bQCyGa zMO759#&;cVB}G|WgEvx97FVN@J1z?@pD2l)$G6Ny@l7-Qhb?gTayUnP>siGJq z_Q9K|D2at=>%o4Kl1b_(gl>E@bPkETU6OlZtbkUEN@Sc|t&Q537u$Q>62mt?~7 zp*UytCUaE`qj^zPg+`L;R#KG35Z*{dS=7zzlG$Rv#$ziD|{h&6RN* zni^GQyaqq~@aidw<3o5m6~%EY8oA@*n9qqru8qgcwebj=8C7kZprH*~O;H*@z?-Qk zjqjn6J1z~rJE=E&g(PFow;Cs&T>ueJ;;GY}kV=ZO_%GUdEk#-U3ys`yS#YVROch6% zt0EJdDl}5h5K$b4w^30PhoF%=E($KkXw;f^zAz+&i|yvZI2TQgYCocpV|euxBgR>H zI~B#T6^-0+ac~i1SEVKhnM#b`1z-#eTY56dWsHr`i$8 z-Y77|9;`NoyTBDY_*2)9fjPLnD$>@`T0ypi_BG3})xH9o(46h~OWPaK$=-bSXFbkV z{q~>r5X)S{xSeY4vkpbJ8|e{UF|#dZKXB;}d;2-kSBgj9Vm6gkJg~RypJ<=ZHp}*w z{TG;+s1?wdDZtt8;}E#_X|gl0yyg)bytXR|-7 z7NX}j;H^;f{5mvpi03uBd6p@--Gv4O%M`w+8?ofP+M9yXRpj{?(FL$A-l6t-P0l?u?iIc<$+A;jv!&Q`;%Dnn%ys3)O=#vCl z!`YGVK40Lc0G4f}TgHA4=Hjw?!R=4rxs;wj5#7GV%us=#3sB z5Xohp^Le3Iy}4`wuHxdt!_-TSbutMcqR2i)ot$c_6R*lbpqPL+T2Ux_qLDi;6h5L1 zR`NDHOVtQutjC)xuGiK691i z(7dRsWVK;DX;)Z?Cg;?=0;U0rX7!0X)&H$ zfj3%FD(^%icU&rqf>LRg`zocpoezlRtL9?)3Yr~Nv8*$UDj=42wMDsn32(NdTt1IR z?zmj$1?4hi=K@OkgSk?EizY@@DXYwt0yP#z@+-W>iXwRyjofjO1Y(LiDU_>JhXYDk zbeZwUX8}OOGx9NxDXiL}T;}4(G9!nhr5b=zq)<>or>EQbSyy1$H*$<7}aml1P$qYeW1NRKt z*@io|fZIrS1R~BhbLDJC)1(@4wiqf$R(~<(oQ}6&Q9$d_$Q>8ZL8A)D-3%0v&?V*) zdJCE;RS9j2SVDAD7WEU``0^%v4HQK*j7AO-k;Wc6whhnSexm`ww&8s|;q4cDWqaXH za6 zTDI#A*fC1pHxoCE`v0_tdo*CORn84m;Ns*#dqi^P!~C`Qa^q}%5kN$d%})Xxe#_`Gu|o~>Y)?pCh0b#U-de?2G?yTUIzGX}MkzTN zJ#e?RWLw}Gusd}7=rwzE?a}4@QYQi}mO_Q|WD2l?7ObH-^NDr&H znA?=`hAS#(2O2pvrul!y2D#hBb91ydRdL z?}u^QxbFu#aji|-R9Xj!DOT`Rtuas5d|B7EEMNK}fe7t3M}K&%xW>u5)ZZK{ZiK(@ zyfk)U~V)$bnygSvrMerBN3oXTq;omkEFCjnQN`77PB+Fy)Yq%tk1}oOaT_G5?@z0r90q6AZnwaP) zs=Hq4Yt#$KxeSmbckV-z`FHjEsZ@rg!`X=Qk}Y{>3%CqTIHQ3O7tNDo$#o`%H-5DERyHXkJwPy@2>z ztb^$FyYV(Cdi_o`a>u>C7rQ586wm+4-1E<(xl#4}-o*3rdWhbC8gGZ9_n$-~hj?G3 z+h>`B+jVF_u-Oeuw<2_2;kaby6~--h9<%l@*&O^%Y@m{At+jECp{ai)O7aK)fV;>4 zr#n((_}IJKB9J-M!D7SAp^B$dx(*|{ z`$P?QdleNsm_fXuiheJmk%bPXpFo60fyftL777B9F4)})W*O?^W;8jf;o!Ae`ta&0 z1cvwFEmaiAb!g;{3*>;HKzeHxE1$FAiQM{tRkiDZNb)^%rTj0NB~_)Y)KN;X!eT`E zAH2beg82p-x#NPF8x)MwPjlJdzsx1_BAORfiAe75FZ(wBkUTM%TlA1B3UTBGypf8s zcpi=1aas6x208gyPu?CX1 zD9GYtcq0{M@ewp~$7Qi^Fn0Jm>%f@hadUzE7|oEXKu*yKAO6aU2#$Qt*n!EyUtD;C={{K%T`)uUr%6n>7e?J@s z8MLZ_SaOWHN{+-cuQ-z`xe(hQDddA&R#h>QEXA9uD3Zg`$Q_R)!cKORC+D)>K)r!lGbak2hFRFz29=J1!Vu9x2ElT)v)dZ-)xRnRlCur-f!rRXm$? za+c95FAC`$c;gj?bQv1C<3c)6=$`Cq$;#PT*njJ8iVIHDf7x6 zH|WZiZJ>W0fe76qmD~oH2~Ldzq3vyGH_&FuPTpLMrbz0^Vij;WceEyv+?x1F=*HfR zFI6#8y%CKpM5hB{3b>jeKu$O!v$94%q$*m~sx-{+fKz2Wo%n5*>E%G5Q_I zQ+$ag*AM<3EWv482*7_Om9Y>9wWZCY_fYJ2)>l|i`8ZfCY+m-`z7!NhC>*k%|P)}a|vjSG_7>^N<3|KS%( zu+pMn*5Hj+6wFFAa>oU;Sjt_!S}HVxdbz+{FFVl$sp>`Ys30d1?mtGUvnZDa-eyI) zoR3Bhk&8wS&xQeR@1_C4CM?`sM+1Uc;pU|p5X_1%p%VZ~r(*>SMovg}Fw$MB^w+Df zuD~U0-$XYuX$xt&ch$6)yR4G>>3`2GE>V+=M!v2qUp5-KpFr#mnbqWWwFBAIuhIUX zqGGcb&!Ksey0rKx;BY>n_lC4B7em)G_>vVv*U!<&Lg;#eKqQwM&2&%8x7iB#dEUE? zlcCuF5k=N4`gsnSrQ+=uy*&e8zM{9MqLDl9?YZoPe2B-Fn|u6ZG%u1WOFQtQ)LoVo**tF_;K9iVao@c`h%w7_C;R)LN@$ ziy6LK!(xzdZ2X7=0yF+p?iPk#MXM7m#6CpSF0GcMLTZ>l# z4(F2ARMKa(-9-y#YxM8O7pxdIZbTysVdHuNkz8sp!|ht-UVa#iF`OoO2u+EqmuLGj zgHT_82VcCRufK&x?zpe#uufI(@0ZN|{ckias{Wo&{4G>LObh;jH$lpAE(sX90h&1)FefQ1JI^G&8FHUKkisvRa6qUxBwm(etOEkwZMM z5%XEM;RX*42-a=9}IWgIpr-@cw+%f-Kr~|G~lZvZ#igsSvwu+OcBvSlJmu(g) zo+S{Wks`r6h$qon2cpHatFhh?qQzu@h$5r>Cve5Ngf2z3-6aH!iTHvQ1I9QsvJf!# zAP~uQ1#~G&?&TA}7+jkZynGy*5^1w7ieC0FMTPqMXngUCzJ3)Nx#Pa}Ek()w-EZ#i zJen3&e+QSMLVa%GO;Ggt8_>uhKG*2YSwi4;4jK?_(D1Zw7exmR=O>#GOwJ8fyRwCP zxzgZ<4!5E8DivF6vot5DlpD25Dce_q6AhJWT{`C!_&YsdD7BO8k|bHehjg{XvV>a+ zL}-?fTqiQct9Bqw_%_->LI?67nkT7`i}wHy=abfSG7;gKF3vtYfG=7xkbD)5ECiCT z=t8hS;_AmJklbuy1&l0ym+YkVq^*rq!!Fk={G4_7d$DHd)I3hwwft zi7EcS(j)wpo<<`}P3Gh)2`S^D8n}#_s)~h_R}ct%NQwSv03b_JJ zjjBR)^ACT0MUlJ{Z?B?A-i}7@xJYLCW5|%53&`Uu=JNOwniN%eNM3DKN7kFM7b-Z%F_0TXT8*3QdiwJhY>SufC#4p2gd%D3Yhq$Q>8SLKZy; zX>KoL2QT_waEgDBit;!KZ>*v`UV}#NxIFgu;>eIyDmc?*AtT=N%~euH)1#^q$#r~6 z`AD$NqF8p|ZB`V^02;aDVp%K|i@Q7>NMGM?E|(k81gXkpt!BsLmkV8#r#@kex7XvX zRus%NXyg#VXl(glyGGn4WDN+m{cJzo$zo=OyHUZ&ikA)duGk5moEa?C2e>Kf-=LeA zw0+2rTKXJp(a0V5w(laQ zHe&&gA8?(q$M*w>DAIeeWd|=}YS%&Z`aXCY6urI>jU3{2jb5E425uLj0l^Z3n{?$% z6N85nP7L5R!LIB;;AotMma8E}N#I_qZjZ!s$T(N^ z4jJd-Fx@$$1q<>=dZom3RJs;3KI|!R&m_03I9O^lb31IW4!*a6mw||#w}F?_?+W@| zNx!S;cQyH<-wr++eod>Hu_)^{GovUw*Tf2#ko{@0>#^O1zOJlYf+p!dnOcNO;Br8D zaNR`o6?{)GaNUS(VKx`|J3WOy*UGVCZND!4EY{`;M0l)C?A_u?w9- zKqflZr4L%WxcKp1s6!O-!}#4TY8$6fNrv`qUCvq5c#uGZMvVmTq?klK5(pcALiBo7;p0}khs_PbluT|(IS4ZdK-u<=VYvJf_YK_C*Jy^(u)pBu0(Pw?_WfWYNZ zs$TZb-n7Gp;OqJL;uU>82aViuU;AcnOHnY*gX<;~rw4YaZ7XNwR}Wbv4AYgG&g+?vNc!Wfc!32)Cm>BXk`fLo+20CD#EC z=N0j*M-A$B?uYj+A4EEq!q2TKuqFGV(^*nN} zAy@;^QAVRZ=&~7IB`%R~}-6px^v>)v?p^wRdhe;|{L@qp zPLA$;uij$k^e(*JiYmAqjVyFdmlBB32vMB0uB+?Ni$^XTSyF7luyf#Z#Vg>meWW-& z><{)$h5W`<@Qbazf^zY$2lcNv-3L|~s^wlZH>#mxeH3c(sx1VKFW?PVl*>J6xa})oN*&+>J`s-K(`q(atprm2&Xy=--(u=+|hvR28&60tJOLAx5C*@HJ7C)H7)0 zj!SCafTWz48nY`lxd}_4*V^kw<2W=AAfgx`iM`gQ2vo#XUKGx3yzz>{nSn;`xNznN zgwwuu)ZcNfG8fEpG&8DUXI%t>X;)h4wob;Ittgcf(a0T_N;)8wYI~ztxl$X13u)@X zTbpaF1EPc;#MeMkLJy#k zcWVi`TZRMq@;}Wb^mjB(ostmUG)=w4X8rz(uYsb3{)|TMxP%TGr5g*m-1Fd@j0at5 zfQV<%bymbZS(^hf5~c8UP?XVPG;+sflo~}w;?#t+8nWhq&H7*z?-iq zo^@#Cj*DkeKs?a>OM9=2%w=;SnjKZyL^12^Ra}fV7vK$76wFREa>oU;k0_XSoDL*B zpE8%sC(!(;N@imOkp?8wuDU3ikK#>N6wQax$Q>8W0#P(#&-7Dsz5EDGjjCRh?vJgu zr?T7-8dwAG0li2&q(|{qD@x^IG;+tKa%ey*-UYk?as$C;;?2g1@i>5pCoz6q1i>bZ z2Ql*Ofv<<6oL-7bP8z$l*oH56e}@JH+wk=|-K9BZg}blF$copPSOKTk{+sM21C#nH zwXSTbQmJyA)HkDBo;2pR&X8?V51wt6?Nkr`ogT2$HIv)MB-vheI=ZFM@W{58ttSwn zn~jp&JTkdm>p);^qTNI5$WFl4&@@RsT(kg(a|yklux+^*$}0Gh6+>AGjV$zx1ziXh zL|pY41(CHTRzMK>PO?E{YN^uSm2Dqx@-GkH4Hd!dYm%z0wN4gCe5YAtA;kB`Jz$_` zAE#DH0J&3_d=^0NAP}JeB*EQ^(|k1#1d$)1eIo>sN6}PC-CKMBa5%TLW|Hj6XS^6k z9>y207)KsLBMWilI|L%Ro?;F?Ey8pj@bl zdtg$ii|G89&@NIv0P$}$a>t#&fZZeRYcT-95KEL%8GZY*C z5;Ss%?=^aVmO!|@hXw>23*D|OV#f+dAU=`o<)`CGi|0llRkU2CT}$g2k~#Pm=21n@dLX(zKp=?{V ztX1l_dux`VdP=3X&`>sY;5at`&u@>k zPBxKE-EJ5*gLGvb_dmH_J zlzu-(zaJ-G^nHnMhhKwSC+s@A=nsoZ(wy&r4Y&ysnsKtx*tbYEEJQ9K&6J970UUl1 zo)(ulXd2+;NIlC)rbO*I-bqKuMJ?aN+oPDCf1MzYk}-w3GV)V>6G`2BwsI-!-@rUW zU;YKpo%G13=*xo?d|Uc zvHSM}h$tpjMEAc^#r?Eiq6qfE+odRig=pm6NCf%3AcE7)MX(-CiE2Do6@gPPQ3Px8 zb}5QrH5$3&BAD)W0NJd4zMz3OnQLGe&4{W74pR#RPPIe{4B^dElt3Mgy!%L?-xehB zadQdWhGryU2{_dfCGa7Fi-F!q4q}jN;Use{ zyavsRYE%VD1}$!O;eP@F=*tDOM!I{^=7Y-Bi zzsK99D1zUhkvlGeY3|Z;uLZ9Nm-E~Xqy0W;JYLubAmSM>C`q7QE6Ot4HMS6Mm!bsb zqmerFEa|1i9s zRmf%A>5^XvT^}+|0{@F9MpXz$DG4D^J3$iv!rP}Pi5Jnx9hU@62A%V6Tt1L7*TG=` z5zk;iDH$YH5}bbs-Y7-qABaZoxbx}0qC&$StQRieM+4`Y3*am?BdUQwX`J3|9CWV$K6i@ zzmW31#@zd_MzaxV+b2~LoPP}7C`IQViAL_Y^XURmy-_RV;Vuw=>mM-pzl|nD)&EKh zKmw$-BH($+ zCG~Rg>wv@GjxvJ`ahdJnSoR0_vK2$x_t3~fNc&%12o_9S1sMgCPncK%m-l=!*^3IN zI`0Q}W%H#f?9SkN=6N5%=H*hI(Mz0y(S%-cCygTX&w9wy#?&%SsggU6XM?r4Apq6S zDPF^xK_EiIN0N6O`)VEtAg@MyMF=3rpsA8Nws;`maBiV@9Q%wHBgm2X!WARPQZ%v< zK@KMn$=$v~w@Ug53wYZGgA6ZV>P6F{>TUnk#=a_uKF{J!Q1toh(a0V5x$kOYA87%< zUv2L9ccZCM^?UGYV_!8y-?#8)DEj^#Xyg#zYjpQ4V{khS4G1>;n5tV5I{f%lvKhmq z71b1dIMqLpe;8_k3sq9RwYHCO7iJ&a*juT=%3+>90Vv+=EBuw7T$TRiF|R>>NY@!G zkN6IO2+boxyBD1S;l8PmQ70KGcCXm9)h@&Jo?K%00@_nT3h_LeC8@KEPXP{}LL4hD zvyI};963>b(I1msqR1`eZ#< zdvz5%o4xS1D*AjL8d>OUW)q0e)*tyK#B3%Gt2dV|3|9G7x6{BLT)-BzaVnY>Rc)N2 zs|~NJLO@uBH&#&`%hAZYkvO1h%vGwxfdq7yxj33=R#e4tlBPIlRmHeb!<(uojS3pM zxKSuKp!75*T)CZ)TruXg}y$#`idgC1#hpSNNz$ScU&ZU`9)Hy zH|pnSoo5gND)~Qim3$w~jjBpk>Z^oRSd__k@dhi(}}eUnYZ$#Q*>w5uyh*v` z#-WirE)TXM(;of>)Nz8jI*vorq8dSTS7h3C6~%Eh-d06%yb6unadFJ_Vn=)A=U+hY zH&;d;&55cqbjLC6ic;>`@~nk7RZ$pkKqGft7&DkK#PRKjxh~#=rbJa2uhGmoW?R_sjf#T%*v`o0*H73S&9mQbl2$j7ILbFw&kd z+-Wd)MBQ1p&F&bm-~?~BW>o@#q-idd8k#0mshqAUm9V;t;;G%BxTgyO za{0cwT)vAYNL4OtBajO{Q$c;gW=g(|w^~s!52BGn1fy~Mg`J>rx6^AtuoE=DM(_2f z6=7Dmhc=9?_?C$kaPs%l6B4~fVA6n9%hz`n>I2;AkVT)s4hp1=q;;z75&<~7Qy8)u zg-W?DJNfJT;~r)mcR)mP^mhSRj2nYc@3SL2a|y)maHM03SMNaldo9{8w3h7VfD_O} zNnKk!6mU4Fw5F5z=b0|{ddK05Rt#cCqmhLm_9_CA+{uht?(K&jT>(!Q!5qVb8U1Kd zR6RYHcsfu4(cgKz0gC>%(8wM4_q-LAa>FW=?HY?}0iR!I?(-2eF{(b_i}+kp3DNKG z!5g9I_bbuJA%55B<5`;Eb`%;AELoYQTM>HP_pW5qgz;9bW({*G!edYaT!4})t#y(t zMaZe#4C30v^+A%v;1OM>Sz_=50uh=RB-dw5BvlSXjenvYA>;&qM{^|gW$`({;r!8> zOrnPCDOxNW)ch4+tYVz_Ga6Zl6MxW!U~$6LjZvKVo{1GOoH%D2p?RysyRkk~i!~CVd?*sdzNHI>71`d@J!?B1Hr6fvRr^_-+Fh&T(ZV)BLLxlq&;wxw; z2qEH2Xoln=;^TnBd85@$LWJWbAwGN_U#MbyxEqZu#D_a|Ay|BHHDeSX-eY0~#D~`< z8y_b3HA^M9@wBjm4-@}^YD5txmTQLz$1v9}PM(rr@lRdKS+Mv!fd~y23En(2#jAH9 zX6*M#tVe{Hu@6AtaxZzzm;yMQQ|L6MXSx_U7UGLmj2!dP$U@|pLm-kHa?)u^kFJ2H z*Mm8@wkLRcEt(WnPy44Sy$Xo_UX3?E(cdf3$Q}2$Z<^AhEa3BDbDs~PiBa`=aGKJq zgy{D=-Uvm%SJB8Je%I*US%%L z2I?zXE}N?SA--J2Sn+>oWFc03Ul)SK3RgKsvEtJvRzR#+JU-E>%1Nu~(+2!x<)Tkv z6B?<&S_eqNMGw3Gya!%W7;|P}0oa1efvGfDM3_q;!Xv_Oi{90tS1j)8+CEaG?^b*e z{;RmgxfcCe__qs3mK1-yKl$^Yx}PW9&y()wDfhDx{{HrnC9NYRl^tuIQ3uQCW%K{OI3f9&JwAc=e!1}y6@^hYigKs#>~>WxAUBiUx7P%1QrN9Pl70T*~rG?$@F^){Vt>5<@CFPepk}(D*9bbzia6CRQg>@zw7AtH2PgnzZ>Xx zBmJIEznkdy4Eo(nzgy^cEBV^Ri=YDQUWR{)7sJ18EM7u>zLiv~S?ozU|KC#b^BN~y zzY2a$tG{4*fZJaf({%z%9o|YH!c&K^C#@pC!+0vIcVIyANwkZE0maABL`l6|ydH2kr?lLM zl$h<}1jKFlvK0pvA3`GwgNj>qAy_bR6=W1lE;6wKg2`{jB|4}WZx2?X>+#>{@H?nM z6k$YvpOkA8Cr(Mk__Z$6EMh!IAa;X@F_Ba`5G|DXBMYUNwip}>va|_))0u$Xp!JL=Hzy@0}-Q&_JguiujThgGN6ZSqK_=0+HN&^vq?>{^g!FTLC}c4A$VB*Wt@o^!5lEx#QlR%T6hTc>I6OJ^nvvUQ|84fOuT2gXr~d;B8R! z`q$9NAzs($)mdWTb`cs7Yz1?rZbfKf@Udi9Fvs=Vr6xCinDl9EaFXh*wL+E@_|966 zF+bl!4CA^WNm?)gjKw9$R5mOv*poo)4r##zr^9l{oT z*@|A?ghuYTmuIprRO0E&%su^9G$*Q_c9TBde$m?(;mcR__JwHV5N~Vr-K_g}y8;ae z*8O+sR)lu{Ta%p^n6$Mfdsg+EPzzjCk_s)JXH^?D)n`?|uImhz9o$bKLbHR=E+mF$ zRkv=IJgfR^w5MppVHY$!hh|CY?Bb( z7oYp3Q8JfC0nLf3G?Z?5mq?>sQ9&4ecvBUHkwYVQTo`jbVZaTf();ahFc-(QXkJvs zp&K{6%8H%Jd-299%Ht|Da>wN{-!G4lw}&1y7svx>W>f{DbX&6|dVoOM)fFZ3RlK>1 z68Q=mx#JR<<(G(fTk~Jd)$wOEDXQvFx~*BR4(XFaf52O+D2(5tkvlGoc}y6!EbWa0 z^$07NC(kE|3L&fp|S~Kq4E=C9)1pjcWW* zdL>gX5wE_YNY>!(RTRleG;+s9vM?Z$cCQ?e$pz*z*@-4cRVGRgAco4MU1L!w4ZOvQ zLOCCe+;O4!Mlvw_D|0r8oA^0*xQRE-c|U} z;w0DqKWeU$htc$?szmAfe@P?>)>#zGLwK7N#qu3Aa>vE8SSl9j^vE7}8Kp$Srz zi_-P~W5^}!`u~69tyUDwKhVe_g3(x}Wh=ezvX2G?Tj_lQy(UE~!mMx?7mcj=vWXS2 z58Y09yIC!`-E2L&iAmds@pdy}7`J>W*>1KLjKz&dsn6Mh@@fLHJ1jU(aH<^0v@2+D z&nmh|oI*I03 zMh)Y79Z4229*i~20$xENc84rrDyw)P7kDMwC$y2UTwn>BDXCkF3jl}n3O(%3Y!}D8 z2jRv_HtX{-jK$2a3GQ1tle zXylH2d_LRE%{U8q{ZezUUxH>v)$0obr_xw0M9;qkZ-t`g--JdE@x0f~Uo)X=k1ppQ zg$vFo7E2l2e#663hhQng%Z4e#70IRylegFn=MtyXwkmf_?Hd8@9(^FWE$&$N^J@2V zg8Mm}y-lWKOKU9-z@q~5(W z;cEeZE#jFTb-vaix*ib?kh zU5FsrEQ?j`KU!0I;o%dz0Z*U6Ev9ZS;IM<%rA`KqpunM}SyAQFsl6VEEZ?Xx@i+qHiY8>`*v zowPimkv(P3-p_O)n5uv3Iw0zZHhzPZJADfm%qH9uR~kAYJ!s`Bb+HTH6N)s7DhGNbep{pkapk(r!!dtTlzksm}X z2CmIsn40!V7NYKf=G5=63lUVdM$*ahRyX!*Krky}%3G&yg;k;Dg|byEzzaA2>n6^O z&G*yN&MHuEyHLUHTXcQK0@@~Bh#=t_K4Wfo*Znjgm=*VGE@>4VD_~pr;mI!YPCOMB z`$~Z+|0|wC! zpc#{|SKbUboOfD>lFcHVXWM@42~ROjW3_rWi^F8&Fg%x*F-U4|#OE^on^guZ62Fj5pm$3wsTq&9*@h?xExUCyw4jeb2dQW z5^~kxbHpghlvYmEl8KdUNmyYH8I;^tx##!+u@It>4T_3qk@Y|W2q=m-cq=NR2%aGPK@d3ZC7Jyv@g`}q|2P_X%-LV!auvBIs8q0e)BTV` zK;lqJ=W`xWh+h+UR1pJ+Xhsz)^ddr4O*u*y;?2~Il6h$4F^`fq5+#|`9v_|996TyE zqMf3v6ZOUyo@&Waa3bC;%_ukljXdU2&_Ucav?u4=Uz`&>4$elqMK=y!If^<66_X=j zH{LMKNGPL`$44aODnoDpTs`}ARq#mo651_cMS@T-L zU@gig6z&Ng3cp4BMK=@@qlki7GdULSz+0vn3%8+>$2=D1l2~B(qxEO=yM5we!Vdzc zkoy5dG$~}gSq63OIYT*L>>cz8hr@%1Lsw+sFj~$aR7{S9 z!|;Y_M#6G5@|Z`$j7pBQAa%a**5FZaI@%?=oy77worF*+IRZ|@8>JZm+tJ8l9s$$I z5h|YmI6rs*>_vM-HvkT)69Dcy$^5?$Z<8kf??xm0@Ncm6%~#Lab{qo;zJ~w4AZz%r z@#?I`-p5IAiAm=wFmXaLb5Nt%c6H~u;P(z~>;llUk{G3Ag?#&7H;Xk^;YAL(GA+~&Tr8L;RdCQ@(ZN>BeY_) z_oh&4ntOH)Qx3$ftgY8#b9-grD;StcB$zr|akgk6utPd!LRC3W z$=L!IUX{||v0;IqOCsav;CSt-E3k%k%wP?)9_QvO+Zu_Yi%k8?Df+l6gf>Mc+tq2$ zyjbim;I^Pm>2i5Ec0v)pc#od^C^B|pp8f+a3(65Y5(70mBwl`C>Qv6l_b5aIQ`E&o zuweIpY%APHXT_FRa_RozRJz-iszZgg@Q28}4d>CB9SM52EMc3G@Rh0G1^4ycrVzXh z+{x$)`>-fEif$F*0ws&4sBq>EHZu^CPKA5&$jr3B%FB_lvLp^i(3v4LbA=;#%#g(H znjumnc+u3Wyb(Na3K2OmGdEVUf(2qG%T^Iesye z9&ik?z!V~K$4}ov)CrEX^rfZAinWoseMYEE^Gc{uBHSYKeOd%q7{6aX630G5QhhuBfkPMZ32Vu6b*71uS z&b5)Tun2D9Vpb&j94nk&UonIAeN%sOO0G7A(5A$AOwzu(C$>3Vu(Bj2`^)85{PUWR z2tEJ(krB}n?@cEPcG2==%I{5m#@&7og=pZAV*(j?3-0@0WbT_7CllVX-(Cprx93bD zc(^{pTp#xEp=C2%nHk$+omGL0y#zbi0LOC36UvsS8@bors=Ip1;>ni{+1 z^7|aVg!Y(v4fGXN!T!BWmUC0~!hsUGaGbcMyKL(^t^=TSbH-x z8hOm4=SZ#Sam$Yxh$}$Pp`%$Diq(lQ zezf+e-@VN6Ewj&;w|4!Wwd!N#<*tW7qm_VKPW9;Zh>Ep~K zz!B#|;NdP-WFnQ8TkstCecX`AZfD%tou&}l&NiN8oN~jv^^sa_iZ_-MZTpf@?$B6oPl- zjNCxo_%>=q=wZ;z-f@I;LIU?+h0<{Ir@FntRQnl6Wjngk)YV*+zGw=;31_Z0V2cyZ zq|pF^TM<$J-wJOxR@BFo?u(4{>ExwGSE*7=1eineutchqfP;9BIdTH=`rw{F))azA`!S{vygy<5kH`L`g}lH} zOz(gvDm-WY3X#P_E1dIo6)H8jAybEQk;|AuaM~m4z?;c&dl*rd#fW4n4Gy=adWhk|$&nlD$M^1bh{;N*zO%>Cr|$;4ac0r=AyBg;2cJDod8U?wP8n+1CR$foMdK5Hmn>OQNI?%heh4?eXre`WtL z^E`q2FML>;2jP?YGxHGqsXCRujFu{;drKpkhv7TtW&RGIdoz#FKR*heCpBgMLI3g? zd;%}TeKjgFFTwY0-%Y2!%RB+!VUO!H$}6*3-O2W{ToN8#gMD_iKEy9A>}La&G(5lu zKG{^A%f3@frju}hIZ3}Icx>7YP>WXbF#|p%w@q9_+^y-cOcTLrhY#CRbH>V39ZviV z<;&?^>`n{flv&OXidHrSQ<_N<^nyngkxIl=&X~Fi9w!?p<}0~Alt<#+BTL50BQu7l?PltXC=uI6sQBJy{$}{bzox3t4Xco zyxbP6AJjY73;m6jEU_y0@G8H$AysAyTU|=Kh5kyem-JAnEPbbs|Fw(Ei=}KG-;~)7 zRuU(0EhbgmL=|~chRG}=ZWFD;^s6bz;oJ#g)Q>Bu{9v^gn!&QOaaaV!m)i%~M z?;7rc{;v%0vSmlA)1B|pxAsP=i)-J2t5QqlQWyD50y$lSRu<+KO3-K4I@`=yw33@L zMf+=ses#A`1ZxI^JbR_~qQ<^$*|8R8@hd|yIK4L*t9iw}fqpNzA%scf>T*g2<;C@? zrA14JOO4^O!dmIV!lPoF{QJP7fHN`grVzd}F`+JqFN!&7w&G#S=H65;*_SVSwtjpC z?R9&s!S}|08SN(Z?El4pBT!OxzXqZpu*6yI7Mh}|g+~@9{v>cb><<(!91%PUx+9AM_glv*Rp7Of`F|zeDorgo6pcLQ{I?Fk>|5V3&5b-V zkPIFGZ$UdmR|ec~0I34NRV_IJ-h?+xGXhRQBae9mOwYpv=uj%F3V~|y5I7I*5#11Q zzZj?r0e8LR7~Vb{_YbVMtK zs=Cx!zu}KS*td%$;hZ1c9V5(zDW)e+HVqKI#=n6=G-i5|o+p{JhP`GVtLNlmI8M%_ z07r0Qb#B~#Y(8N-J5h7C-FEnihkS7FW=$b@+euT1Fy{&>4F}cSPwxC)SA^|RB;ZeB zuLH-nRtklDQM@JVLNEk3L8uIT1t-hmH7>}N-*5#3H6~$S!;mQ1#z+Kx%+$L){6As} z;U&mGANg)Q)(8zCxD`F76|p6@sj+K8)7RMxnz3!e1=v2}UIw}~oItBCQ7CL};WSyM z#R}S>5ZIedy~-o(MhekDfolp$Z6PY3K2OComOR1QY*b41wS(NAE)34rVw5V42B(i08gIARu5Wmz(5!Y&iQ#bsq!Si z5gb=-iNlWJasplvAZ1E33!U%}0;b1prVzYkOs5dOqZH#)uXABuvr>rhK#pz5_ma02 z1m~}S(!-eVk)3~F9Om3Ag+#v-)`_fbfW*XWOx?)i`6%W_znh{%-GRxj%-LKd&*KaY zrNtSvH%I2tX)yG5ij;hKYH%NJGlk&M{66QP?6!@aaT$<3cK^$~aT zrKS*GHyb2AJa=NcWB|df7^R0WZBq+j9&0F{i}jRB@K{D{cN#YA6HO!E_GsF#BMX5= z^cZnImq=4962uC4quXER{?C+E9vHteh0vzNxYO2op#EQxkuisiY+y~YlCP8!?g#3n z=J`)k7jhOJqY&dE0d4<9R5{Ruc)IThxeu8E1qMt!TTCH%3^!8<-^9~YR%XyVpQoKd zUvhM0uAa$qeV%Q~Za>1*XFO=TO(DE)H|P*}pTe4s0R*>#^(h7r+zK{=G=Sh%JYhPH zwPyvUHTH3sscZN2!i55`?jw$1hr@|#`*fjnq>UFU3~v?l0=rDZlSg=oLKw)hNuM{$ zfu^2ZAq$U?Zl^oY9N!Cq@=3Jo?Y@kkYr6#PH1(E;y?`SSRDGrU0E@$7mru2%PWB?a zVVZl+K2DK+Ne;75s88_{wJ*Ao$u!($lT3QHCjS!b#?4kpZ2t`J)F~ttD#EF3xF=*% z5l#jd(<2#~?V~YlJ2jNMsT=SXYSMlk8rgOqSL|y|A$Y&Rf-g|N@lk4pZ53LWATmr{)+0eT*9lV&77%Lw$Ft@CBpAStac zKno;dotEj*o^`oQw`4Z zd3cX%CO${_ijOyTo$AT*^M1T}nuNaxjV#H}yG$Xt{IIawx8!FwiO^y`)z_OUmA4M2 z3X0U{7vP$J3iMO7cXbuWZvdvQmLx*g;|&^^S!y=mEz_jA z2aPOA%{o&EE;TIJ_ARL)Sd0f zMJ)LCEh(A;aVm??6X1-1;`0x*KXt`tk#CR4Dk90v-|?ns#@&Myc^t?MnZ~2F_Y;`8 zHw9*N7C=Ok!TPTsh;@=Br5$gRCbcur$daVAm_l$#VF9*pNlFWe#oA=7u!!|Wa7aK| z*@X6~uBGthAT4v;bo$B5+k!K@2k%PF{6)Cit;S`kOIa^j zVk&sMG$}5kktK=An?i7jVS%=9NlYtn*F)Y^mQ$Cj!6N}R=38i|>S|2fS7ThYkwoU} zczZM>@GBH~9Ei+Zflxn{c_28q_u+l1sWSd60i0W>VzSKKi#JS@B_ONa`K07NuNu>aspQ88I&_QM;d zN%BkR@R4NZzormeW>~02DKnvOtM3?u3&P+wdCN&|?LP3r{hRh{BLAH;!Y-aZK6qdr zhv#3jGxS;dkSZs~-^_)($)`gDn15n@GUMp(fD1kvN%v7gV9nfor}@u9DJ_M`zaWJ%LA1`tzckbJXJFS?w3eVBkJ9t zcfF}Md1(L06e4m$X4q|j_9p4vfG}zKU}PN3thEBCT&W%W#nflq?SC|d@Vecgi{ZT# z(=`JKZpALsirBqW%cO?(Qf;;SkYlG7Q-y*ztQOu9O4F_$r0B0|_kkyO*Gd-TSJ89L z18Z<23OiJJoXw#S4eYs~)%NC#sdBy;%NP4B@f`4R;kY;RO284ES0%01E;qr-m0InJ z;NELu zF!db|<~N%{MDG6fo?O3Gq}T0IUGaMVJ&}38Bc84mUB~(FGW8sH{yC-)kvqThp-HKQ^Fj1CK>U!(yK|2mD*ZBc>kZq&#E_5jiO{=}BO?jukFJr=6nE z56}3&sQTfyc!?ZAhI?6^f~8Kl1xgQ?Q8t@GMDF<3Q_|M%*m^Rv>dotqh|KHL`rEw(RMWcTR5T zbjh@prE+Z0$`-r>ns0^^SJf4L`QB2u_ew|mCB*LZuHi2Fvo8BPU2xGxvSyDk1E82b z`I>3a@VL8*LKsY+m@K2zzlp02c1yu)l-r7_T#4M`>X}-(6HSPn9Po=CZ%6w}J+FN| z;0WAQ-CLy;Om@jtlQNfE@y2N`7~V{g4LA;cRd|8q2fytK{{x$GvpEvmFW?=jTosnt zcJJQQV%w>uJZtnE-bzi{pFtzrF63hV6om+LF0Z}>94yC2dWcAKK1ZG)hd+ZrcsA3$ z;?}^CatJ`+1`WEpu-bK^L@!e0`pPkL5Z+$Rm|22G9`l%q$uYAlU4pw~+4nusa%%8s z*@pI!ZnPYSjuv-Kq z<#>4q-dfFgc^ewpCteK3CVY6q5+MT!-Xq>vzefx|D{h9}og3f=K2J7$UGUhv7R`xn zY%U)yHk~TjEZ_AV81!AZ5I(+-H%c=EucpZ3Aq(zwD0T8ekMcYmoZY|S9jTf99=P9Rod@rKm;@O>jA8#nj*Dzgl?T_Q;XuE**=1w!kUSC1i*6s} zK2o3@c?s2$`k@o>hG~Z48j9@O4>eA9$n}ey*{*&dI9V!Ky&mD&9h~Jd-kF+x(W^%n z9#s`(={XB;q9)%tG_oW;J53?D^suN4L3#`zxD{-+*#LqI;FnBiwTKmPXkcYy*B9EI z?U=RwJL0ajp8~bGc}}GOR+rV=k6GKjGx|}2>rEq#uPFS8Lip-i_(ut*tlg6$=d4A? z{v{m8X6^tSajw4^7G~`NrEcSo!Tt9KQwZKhen%m~>`CYWg4pIf%&Wl$%v3f8dk|tL zS;MyC7?Rk@3~_d;DK=;B57yvvUz=MV*e{P;Vp`x4 zExJRnm>L#ISRNS(t*|W<3I(6jLZz0lEV#p$nnFb05?WwSq!aeS?x&L?bhvvXrkug7 zH}w{e@U^B8kvn`|AGwd2st!BC72|!HdlPsrGWXAqQxmA(*r&+22~za$H1#AWW6%^L zaxxZfstoObMLBYe>||J-qh}#%d5)+*7evO#qIiy3LC=xdR@6I6_F+?ha!SrOg@~Mz zwjQ`+X22@OwpwRZ$S!@6hN~l^p&hybT5_V~lq|J|Z<+dyyZ-B@5RtpS-Ps$iZUXm2 z=KBu5JG^%EN|E{e*3@&{`FEH?c%5%B^5cU?Hn1>&;8y&=G=;MVkLkvqIG?eSBv-MO zn|os0tWsHQ(=%=lCBLpNRg4^IQkP5>(#bL{R~P^(HlnqFEdjIZW(r|2Y&2PNqr;iD zEtOmj_EE>mgOWa{u$l{69TTI*&xDR;uLkpP2fKyZpzd5MGxXG$Gy!S$1Fm z!L68NS`j<44<=0BkRKR;hAjyCi{XS)b%F9wLe?%($W|2D-t(rOTaMdHRyk?cob0@?JjTHr>IaxuLF4m5klErBKQ-T^*ibyI^Fkb_T?D%Wd-~4 zI`-v$^83d?k(meJPiKrQ-&Bn$tKJQ{EAcjTz9a7+@%=5B98B&=mD0T>`df#nv369_ z***eBew~aE;g_q;Yb>h}Ta(^pjZ_aGESC$V72VyHT)Ka_E0yl1;V4w6m^J>4q=WW4Z_PLsmDL`L~MQ zuy1N7Is8xmr%rSn=&n##u~e>IlT8qJq!3YL$1qnU7Q=xQDHg;E*nRoI#_qnHzGfIM zO-}d5;8ZP~92U}uw?S1xNF%Co2|xg70vX)t{m+E?oQ?}LCN^c+?9ZSNw1T|%AY#PAb%n>2^h7ow4+;q=E$ zA-Hs~;0h!i#UNIIbo{Qd$;?#P*_4ZIqurBx9rJ#uMi{c;)1SLKMIkm7SB8UA~*rGN>#{Tqpzg=nq zHVY|6^F5|M=ghC85C$4$uvA3zm!+o;!cE7dHL>~BRIFCXSZ$k~kVs}Db8kGpo0vkH z7d0i3O4LkocDl;BNIJOB`%NKuYwKmS`Ng>@IqgoE_YPXUJF{sRAi2Bek3>dB2ak1L zv?O&^Q_t~$KhG4x>wE*9;!?+&odE>5A}XotsBN^3t%GagQgi}D2!bC+76hH~ngk@s z6?JymQWX5qltLZ_*H8#w*$X{`=;XeP@%VN(tp_6WDkNr(GZVaU$*uPVck8{T5In5! zGKJuci;+7n8yC5pB(`=B9H>Z>w}RlPALJ84>uUXNRLSHlvY4H)T!oXgLhj+Ff&~Hd z$;lMLw|V)Gd`vs8S!?%@?2L?g=vGbeve&VR$Q(Nxj;z|H(>=$;%}UR{BDiM{F@@kQ z>>x%?*tx?JDY3IJhEV5qnHk$gC_bDfuLU^e$P%bWhtmzp*a4Sa1 zEKJ+zQLBp<+fAFw#d=DmiWP&`W20Q#$u|+(0TK4^LLe6i2(Y16a%%&+O zB(FA&3?5wHq7c4b4ZmA%Ie{&p#@53+qtKM^3CFLQUjmNcIoQ}UzzR)}#Z5WA`E77N z-eC&Co5yVwBJ^>_%x(EK`Pc>+w=;zmr>b6nLPMBcS2(>bUe5RB6J)}Gsi$JL>N!)d z@c@3t6e4oRw{J}4Qe;PY>`kzcPKM4qg?L|hS5&U=h!5FCCx)SDGIHK2NBuk~KVVWn z#}q=_`Nq?;Q%@bt$F}8TD@&r+kB`jj(;&&rlc_^k!jipxoT;mLsIQ<94brhWqW)#6b)+}v}h2KoZ`sa8NprpW>W|rz^5`+!X7)dQs1vC z=69E@qUiSbMCSHZ=Jp+|R5^&>W$G>-#OIhocs*{Ait=ohH6;TGZbd}hb?fFzHXGYQ z?so7l)P6fM-lxY4P->!BD^(iCe8ZGAPW)F*AtHBq$JU_~_?+lm8s6$YxgTb31f9Dp zGRJquOQdWnbWnC8Ps^6v{~J@^argh)6e4o>$H-MG#Z+$@_ArvMe{4;@cPHGeLYCH3 zApGJTsQ-zKizW1C726Ox&WDX=UR3+5FN5qJ)X8UAn}Z<1&EYR1)X` z3-x=bw}lhcng=|Dc~!-X^ev__#s%XhQwYxPFH9k9c0bzKLlaY1mSBue?)ml1&4xtn zV(9ec7co=3(9u|Z&eWfr)n_P#Z#NL?Iz#=_64U5@mn3Aeo@)md-h)kLZK3BEPs{@d zTq>$QDbWl#0x8wSu4@N4b6rkdW+A+HHA36&CyjF4`tifBQ83-%U$YUM|wbq{-_RzmOIQ?a` zJ9O!<-}-aIGU;dGZP6q>hejTA(igGT54T7sd-KJj)mu*T{g0kF_(8rQkvEU$kFzgTVdvqm&uCDWwQ{GS$_`R!Zn> zM>h((>a~BlYH~pkmNL-0V9`le`D1-z&&FLQ%e+(WKe?U7(H!9q(MN9dB9Tj5j z`9|E zyn<3Hr{M7~k0|s9kA+^eS9D{c?xYc~k{kkO;!V;Ffiuv^V;%ywF2MG{oRv)$QhoFu zM**I$liH`8-ho{b!dO+ zMnSAz??5Ue(|#@97){#0k47GI+U=1;K4&F&r-qYodLq@=n}VKUN7kzbj|Y!~N6`+_ zjf1))2W9Q#z<3yMon~PC4UIhJfnnzfrPL5y?@Qj(_4Ez%ejj-7Fb5!_89da@6L^*6 z5a`64q!|KjXyh>u0egnAG?Xm70O_3pBD%pctGr;Kvo%)@K6ET zRrbRc^yW1<=2nVrP8TeCir;;cPV0Tx{8t&D)r9kwgYy_hxAe9~vQRTY*jcSO#4r`i z!sXO<*zoP{lPQG3c6Z~$WifgoH5@F1&Hf2mc{oCwF2#0OSn%EYW|7spEN1aFHnlr=L0AfICh!<<&MM%(qp-dkRszIQ(Ads{DL{u??S_OrorBR`6PUrfp zJ@nBlcV6~{?Pl_#TDA4eGo9Z$^URS9eP4|pdDDMijlImZi9XD=DRUutq3s`N2kJKL zsc?@6)G9%q@{)M_JGxjKg7fyEDFkmzf1wazN~!Dko15SnFtjYEQ&~9olI!m(c<%1_ z1JhPYbH|xydVV)VvgblcxQtqt?3r=fYLW}}C!mHB<+IR*OO&^pLW}|B(+Wk4=Ko!# zK|ws%yXl?*bo1W}k?OT*SLssS60cdDfSO4(uR<3r(fkHe2rtbB9WC#xS-)Ta!L5j@ zuWnmiDV6g>a9urIkwuS72@&=VJHqrk23_vknU-18M=I_Rez#B zrw!&&O;NjOW;@e9*(}e;NnPlzJB!T(E-ONMBA^&=a)OSTj zeMj6eyw2+#hoQ@tq-VJ)#29ct1*R^NeW`LvVEnCa##>+@Z~sz=JfDtsl5W@1Ox73^ zv`$jXJ`G)}#O`)e2rs(^y#nu8Si)%l!L4A)z5xWcVlthNFo57zOfa1lAy&YRYF}>f zYs0H+x66umZe3}&n1Dl=>O#emB+O8-3vElIK2QEd)8OPi*XJmN!BEEZmb!V4OW{Ue zb}k~e(JBw-`$QN2DjXMQt^piz?QwqGadDz{G$S!&n;>b(FN6E|XQmLm-P}MS!b}V4 z%x)*VbylB-$DrUaR#s#hX2s#DGYtYBG4&n~@`p?zA}64O5U{mi^}_6{vKh>HAS(ZN zQva7&+5Yk00tVocbEyw)Hid}X{q39J(rA(j$7*kviXwDGWZv(H=j@`L>{M}pqTAGS zJoaB{3gLCWLBG#a2iDCPKyWKQW7>%A)ZrbCO&!`{u^N^J$+nucds6W5nolsWNDHXowRC23tgaMH`9P=nD9vJqYw>DB_>1W-vuWtg~7}R!|`io7;prqRj1IA z1}RTU5zd+#-c;4S1_3K4peKn9In#e6m^`1xy4SQv?c>}NKjqXkNizRJ`~JWRi2 z3K6-ZX*|OjQNho*N9Jc1&!jxb&9|ERh`ae_QwXn{4LS|p?=Vd=fZ$f7Oe@M@~l?TFpYls|^jT$LkMr@I+_#5xho2$)UoZwkRFeK{bdUo@iBc<)pD+C9A% z-Fv9M-2JGKxK*VRR;}pdAiVAdQ|JSu&Pp6^N)Q*1E(+1WRHCDYKCfPL^Xe>Igd)iB zws3r$Sq(U1TG2_<3dhfhURt&!$!`qq)lH@lyycukAwo|vmcXP?e|n%&q+_v-`93QK zSMSEQmQ%euW82`dC2_mwZm=SZ+(RZ~DVZB`EPICwyMpBt$4r*#TV%(LT0{x_pXPv)zDWEMMjP=~VE znHpPT!42W5a$a0BC%;qL5k>SYh%*nt#-^Hw5`B&hQUKjXjSUn)x0pgi7(mSXv!Jgi z!6mG4nr1kb&c*1fH)6mX@TaKyhuNfmsFe!6 zi@W^KrVx?4eAcOOH@Oun=VPhTPC9F{-pYy^Gxg6=Y0T{SZc=)poKHaMbf#pGlrBa6 zWH2FMIy}J?!b^ccI>j?G)?FJwa4WW(#*&?pZH#y!`@;R2_G=>l4Sr9U*lAr0yQL~a zF*r&G4^axe*s5?Mth$seC3MqQO1jCaBYUp|?xuip$^AE^Tp_JcMt zlanoqIkRYFe#7JQ`7qqv1+RX>HS=(*c-Bhof@^{3mGhoU0xdKHb{pl-Qtm)IPCfbc zM!*qBs=6N}6UglHt)46)NxXTQ7XZBljcoglx9K-gh%mFp`f<@&b6lyigI($2y%_3a zU=c2{lmg--Xus$N#9?GMRMonjfZ+9#BcY17OEVJALnDuQBy{w{Irbzx&rTjEQC%Q; zeegi|5!x-ff$$37K#-~>$H5QqW@*O3_t3~=9tUlL!^++lC>{$Q1&^Seq8kP7$LYlW z!BZ(Y1|Gs2r5OW%MI(=S40H}yxnw0*DUrJahlh6Lv)*3ez`q3U6=nkjE|u2}1OHw@ zu9qAM9eBGmBVi^QdCViBWx#^ofQEo4QCt^10#>8_p&J42r)WeW;PsK2KOS$7CiBOk zk;k0*g@Y;k>6xVM!QMd_I3@GBtoJeNQt(hHpdF+e3P<^726ZYZ$HoxeK+V|5ppnNs zHfE<4q2bYo&jb&OPoX`d8x#rOpitFJj)qI|mT5-A#c1TQkA|!@0FN1#VBZCsV6pZT zylLaD!K2}3v}b}xgQ{k7G~9@{OfwpOjz%8yXqaEf!(|XVvcu#OFgoQ_&L?w~p@O&9 zcp-R5Jco9VZb}dL6vB7P zx^Xj;Q+f+<=&kI@D&B(jv|U3!J^d!Mlayp-)&q_}NOis|t8hr`V)c;K;S{_bn(D9> zjV!6dW>W~R4lI%asl%&+SOGh9w>MTDTFDOQbw#*$!OD4VA-D``f}2HG23<9#IHd_w z;K_ccR3Ri48u1BJpK^`3kV5!sM5tHE(oNPaJ-Ko*-v@W}!Yxz6g5eLt@oVNPz!5xG zZH0SXU4_~$gx?~6O>jSc*A#;HpWmhsVX889cn7&9yB5i@RjE?CSKJx<0F)a-JS+U( zNiWK-#dBf@D_e5^eWt$SVSKMCMC9(DcWN_((c!J3hn&GDJ04T=s{sc^M#$oLiI~CZNPEnXNLd25 z1WX1OnLE z^(rT(&lDnZViwS|rZyKn^=`!aP-LVmjMGD>HV-fvNS`bBzZ2+#rrzX)e83bUazd6m zoww6a;H+SNC{MbL*p`a-BA0JQMoT>IbmHWGL)ui})Szt&Y%(UMNUh~-rk>^GTxALo zIXSUSm7&eU&W%~MZX}k7t%j$Ry~jE4jEtJaaXK}cs9m2`>sAuvMQ37$M9b}_KIOFB zY6=lKE%Rz^rW9LKDP+^Vsj?N@oQFS%6K>B&M#y}pt&|ddH4_pAW`ab<)25!}WISmK z;U&XhriD+|upzwx1h?X2rWw3Fl{K0!BECl)q_WyvC%vt zb{Nh|}aPu}N1^456QwZKz)=~)Hc^l)Xo?R1A8qw+-zH2eKvy5A3|qo)!__gAu6kEgGW%+u_uI8vmXaDB_vPdrq= zZVC~(tCy0a(d0PkscE=6xl)d8FOk2I@0Mbxq_P#yfc~DyD2T_&K}RS&v74Eas1Q@w z@yEn2W{RXEzcuwNC+7}Rh{(yAu`-)Zm12D2)qVQ(g~*tg8He3GsgiRqf?{m=oT<;a z+n+Io@Vea~Y2|q@>qHD7xD}&x<)#<#EpmEt&t#4wS3UHhsCx9pyhry;=lGpVJ{W8X zn5V`~A+$*`&aV!x%ZfVR+7KB#hty}MPX5(n>SEr2*HH-H(S&bqYuX@a`USU)dXj={ zWZtcFuW35C`}$2Gc#!v+LU8?KB#uY@YhOQH$ith-a7j{(oJ6yC;#nh0sJ70wB6YWfKb?st9X*0%;BctR{ zE_D4hgJ=gtGDO&C%5GYu21!Ky(A3MEsB26iyhIr^G~QO(^o;=ow_=%T(q+%lT|KFx zb9BpLjxMnQ_Tj8>p6p)Do&;S@uJ&A)FAk;3aGqUMhG)YG!|HsWnLD^rsyyoL0Z*HT z43D}eDTHqa8~!${DJR3O#a(G@w;;5$9}XwEoCrALR9$nt=3!Z0JK(nirjavEA$WUf zr4YWUjBy&-v33vKJV-{`J~8}SC^(EcI@#%+amy~7T(eSZKay&`+SGYGevf3%Yup6g zfwf&yCl~uH@?wVLTp^&}6q#@5#cN~rylsKwVmZQ33GU&orVu>BH#3sLp2C|;Z_Xl{ z2x~DGI~9_Ml6Xtp+aqIQF1tZ%klwn?f;>U87)2sCZ0bZF>AOrJygV3m?mRzW?acs! zTQQ2>nGW4%!Tw!q04};EJ0Hkiq3tDdxw1Q*|4L+`Fq>@Tt(8tU2vun5lH`5altms0 zUoeG;oPrie+uQJ>li=DOVchTd6N!Wtw z*&MzLY{d<&Bt}bkM@}J0NHLenj_j>YDq8)OVtPcusQU&ZiBX|S61xSwQJU-yp^nqq8W4K_X*36}(7ta*S?#BL3d#N&Alt z$K#n-0FIbRE{@mSod9yPdU7#Ba=d#^x5N5lqTpAw! zv107fTOqDbkIc&l#@U`WmjMae0Lj0n1^4fEQwXk`TNp)QPY*9;MATLyV(B564~)U& zAPf4~`pOQ0l6OQ#N!+HSW=evZl7LqLSl}lH!4!#{x0!mDPpIrMg@~M-d4eJ_YO?v> zR5mLf!nqpneu2jiRS_*@#JrJ!77zqqL3gdCO;>F6#=u&{V9Y& zwrQFGsdsoR567RGIe;U0ty*t~$Fku5TWSiyTf|}t;VYQNY5kJ5?CcX;>Wt<4=@_aO z&#{%8dxQk%BrpRvE2SJuDJWP9`#tC>EXd~}$x7t=X@*~m^F*qUmNj#|sbjfju4RsW zsYiV_D9kD0+5^MeV3aC&btmggr0`JW}1iFg#M7To|T@Ek-QmbHs`lh)Kn2FA#S)2Sj3}^gu3E zt`x;<3zo8pjN6@>Pz!9+1oVt;A#tFxb&JmIXw@gak25DUaJu+*VLU0|}!8{t? zK*tWsww1Y<-2m-zy%3?FgJMfNf=B386vuwrIFty@oCA=i@ky#x3E>4}xkq_rJOvN5 zIf_R1|N6(DENq{lh6M_?PnkkQ7;NlC;{)x@u}&{j+Ycws+uaQnh^DWZ7w@Ipa~%b6 z1VFLx>P}NX@;>HvQwT2=7;&@(jOXR7r!#=yRz#JB%v%HJCkAq(rXLgk5miXckM~g% z^zx4V!H$4A^~*FS8kkehIk{4du?s@T43^XR2|B+lG6&C%=PO0~f)X-q#mkp^+NHt0 zyVw+h$NB;a;hS-r4sGT;st37siA20}Qbd%$^^sArAYOAm$*M~v;g>=)+?c9E9Su(@7w_vMEpqiZRg{<2S@ zIhK%9Uv5hzYR)(HE2n0!DTJ3AgWQ0p7py}wfZ$fJ^uhpwTfwHP3?R4_F9)1_d~#xA zCm+{XRw1?~y-OTT|0bL;ueQsRkE1Sd|JpPlc})Kwh44*}GLL4Q`I-;GGqPulWbD^u zKMQ}$+-NWK(sC?4$1537aIn@RR=9GR3dK?VxZj5FRhvVGRO0Us>Nsnpx)uxta`uimh(a##x5Hu$CdkICs zwOt?1CYxj-U9iAb)&P}}mEM!=Po+tH9G6;|zq0n7d6qQx|B#Ot$j6K1<0bOZ^cZ~X zPd+A)k4fZX3i+5yK3d4fbn-Eie6*8~PVzCEe9R>u^T@{n^0A0~#K^}|@^KLPI2b;x z%!6RXi7&%{nTOy{)n+c?nTO#U=Vks5pL;Wp&_6#4pC>hC{z3op7<_`*HQfMMhXNLx zbUo=!nQnMjyLxo@V1CHzE>?2TzPrgmGV-iA{htJDx9r)jVyQfmxsZtFBT#*#K`rln znQ8~>eSa0i3YcsDPh)%Esm`Uj;^^%J;3kC0tEx)DUGgj}V<{H@){qd{5ojK9C57fr(Rb=jLjTcy<3DU31ar~v=e*AoWKZdUhb83EcVl%cawZkJ1H%I2u zxsFSn_)L^(`BIeL7~H!*H-+FT@e@W+cuR#$p673Z*;^ed9*>NQ1@Ro%P>b+U>3G!C zms~U+HihugVUQc~^olh(0|;)#6{Z#8Rxkk#WW^{QnCaa5g4+G~rC1sklVFEf}e9ofRTGqy~ma|vohz2(JaU`fCXZK){)4~tODGAdsSbFdLy-XP4erMG znL=>cdABJ9?~NFlfqJ7I!L3+JAp%)3iUgYm-)ws=lj|*Pl7~r6_oX(!1nZ+2*3F66 z7AyJKdIu?9YS%wAC4sB#4WHMq7P?4jdA1q~0G z`jFG`S5t_{X_yDSB3*59H3qw*6xu_}6H&E?`J@A+Ch(La0pB7|)yZw58SDs{8%{EX z@RDJmZCs?;9HIdPx8n6d1}-o!{O<sw5p5gd_LTgl`WC!{Vw{a zF1Y)=R;VzyshAmFX&M;3p}(F&_-3`C&Hycf<&8tn9U<$v_Cl|{>`TvmwZVPcNw&sD z9N^s-KY(_+-97Qkar)5iQg2S*3OE8aRrhTQoWCwljbw31;Vsg?IacPlh%4q4e2gUxqt3zZ0r~3tna9RhQ8YgIqHO zmpWx>pHcfuSDqIwXp^GbxZTvNyxX{yLKt)#CbLlWWn;q1zSNN5?q|{NmbBt&w2PFC zW&Q#<0v*+bR4Wv;bdROhzA&>IM{)ufo z5}OMF0+)m9vUzY_Hk~TT;y({>k|wQl(8!YbcT$MP_53p_|6~UpZ5N&Z*a+6()Kdz8 z6VX1=4S+-H2Y^#2IRZ|=+oTx*YtYDJ9syHX1dyIhkn*#GbH5wy4PEY8+UF?Z?fFdYC9O$zHjAfffJS>*$gnRrVyL#~w~ z`$|az=OSm2s{2XF@xj?V4(~%vDe)hW2vw4mWCh+NO`|*fVW9A0{YO%V;%uhnYW|?$)&-$zZmTeUGDt{B(B;> zfqTc%OPIz zRNx%q5P*ngNKh|_aMwwWfP?ThX-2>jH1e270OSzFTT%{jYH;qip}nCi<@It1r#6zH zzY%YbChwcj$UeLqBmg{zVBLxV#2Drf&CY7HkVt$qc=UY;&53UGE%lw)SX$7XFMkOfwc9KqHTNEX;JpLfI;K=BYaW6*vsq z0HV=3rdTIA0;c0_(u{y2yO-29c}=@ zt+*Mz?b&uGu>yAf|D?f3#kN{!Rp9X;I3X^iK?|P7YNs;%>+bw7@uG#T=8B#F2ZA}c zbl&zV-}yhALinaEzI|5soA##q`1}oMpWBt>C&gZe_LGvf%wd2da8mV5uX66XT(z<7 z;d^dgi?>Hpwq8w<@pOiM24EJizmv6j5|K368ZZ&*$2(G)hswlyrZtqrIu(=CkzTxE znhc+bMz+I`i}4wz5WGuZaTcgcI5M~uOuPbF(GkQ7=$Iax04IAIcX8ch`|1dxSGpSN zfNMxfd8;l^9$>a_ix~BW>2H~Ol6OX5rx5<`4EKg<``+2=ih9*{o#eJ1(UmHdlY>^4 z+!-)ZeKqnQ)BAkkQRM0>Py}%|4ku$n`Hwx@^hwT7QQnBb6tkU9nO2M!m?H}D>=%Nc}-eB;pnj92s@uq18#VRziPf!^20=y$( zvSR?jGu?lgil060aAjjJ9GJ9{y%XWSY~X|F7*+;gwa&8?f=DU4kPn!K1MfoKOCcK5 zh0yC~S~kHO2D_{n^{9|7Uloo+GnW94;JIpR9G*~xLKF1b8@a)LDYzd$ZwkTN#1#}G zOu42GZ|>POtnl`&P#R8xmEo)K_Ee&uey+aR)K5HQZ#0F7+||=*P{-ESo(6Ht#gmcw zdj{O13$NHDoEJ%K&F9lvkDGdoJN;2ph{&BD@5z-d`npPPAjaM*jrC?zrIJ;Okr$w2 z5dVVCbo@K2$Ui8a=C&m4cT;U!*fYw|GGzIg2?pWvTAN``Ppc_}mmY&&ohJsYGckbR zR-9`ZXLe%HG|6Pz#~>AEcd4z1=?1tWD7M8a!E;o-o{{EB;Y3>X5a%r#@~9BK?iXI_ z=_Yd>PkzKpOh7qKs&pkI_-X!Te+kx+YYD@8Ay>L#VpIWGSFE>Mpy@_o3w5G-N_ zDJicu!%Os5(aQB&_Jc)bkIzT9m1#`1tv5eZNcEPJg;X&GGFuq55znHCzL{f~c})F_ zsam)lZ9|Gs#Po#IVtB^($bVn z(Z7Sd2>HwL=m=JZU-d+^urM2`iBwp?K-SQF7BhLk9tSqN$4aA%p&eFSVOCIxageyo z_jQ9uYI@N`Nm6qr+HXp(GbaO%C^hVkEZ?fg8O<4ZQ#3W_&1hsvb51pd;F`nYE0E^A zCWsZFIY%^Bb0)&J@ZOz*wtN<95Ju9nPNgkFsa(2H$dwX8V_2TCObG-l{aH*6o*PWDWPX%PY55yaw$@gqDvJc+|y*N(=>63xMx;5rddL zLWiTs08TfJ8J+>0Mj?DNfW~za)0}F1x`=bpL`Yr4JJ5boa+w(d9D$SSbT(<>FlHCc z6M?tki`Ep3J!oV}Fe;`HTrgPt1QLwxL9775NH=!mFpW-8!0%tL7f*_^Zgsg%g_gYa;(; zw5MSB#OI&TK2x%r`8D7O{8U+*>8gdCcHECITvJ7Uk4BbM4g>JY|&WxYyf+zT42VT=3cT{Y{3&{ZhR zeWqUL3Ue=o@Ku-w4qRZv8|B2KCi^{)Wkphxm(XrftI6YlBT!Opp=wg2%Px4Yvv=XY z_<}Ws<3DI*NjUyZAsW|(%wXdbHOpPWSw0LP!Wg5-EVsMHD85`T#}}{3^)fW_m~-91 z$0usOPY=%bX=u0TwrVyem8u{o2HWu_XmY*Kav^P&?wupQU~jgfmI)n_B1gE`G?I9ZFhU`G zbA-lqA+r*}dxMe|ni2FsTOBiF1)hbOHb+Lr~f@7Ev zvPJLG{6y6xpGUo@n$09;43 z!~lX1P@XpJ%!0_YD#tO$Y7{ps+JFO*BPhf; zkd;{q2Y7_#bTm1Vu$+eWm|9p)031x#~Yz3EnCpYlC+#`3c;m?#Z(|^ z=?-EANXus$JDbr8Pecq=$nNpJ^pLn){8Fe%7-@=fx43(orfOot{qru{MrNWAyo!wF zVp9Tm#xg=7e5Ivb!dJhQMnfFE48Rx2{-~T)i%1k=C)o|lkek8*Hn|M z(a4gTe2YRfE;;RFvjlFBdH8-5EW))%iSLKee$nN7j%zv9T?d)xi3hkb+YpJx!P>o9=e^BotM zhOs^0G1%A)Vrp-`0H@B#*hDyNb_zOZl@X`D=%Vf{2Qi4*BlJm%Tw$we%@Ix4n!@oLG_oWdzorn4>m2Me zV``SCyo7Cg63Y_-B8>D>X4!pa%$Mu^@x^O${qnxYwd>57n(w27^L+%~;mSviWxl;< z#(X*N#+#tY`76=LKJD9}SLcZV>l_Rq_(IqMVKmAO$_aoYDhk_Bp{Rr`E!*)% zXiCc#G_oWuC!0cWX<;!HNLspsSOLmAJfco= z57mAO^8GF_jS7p^=NKkLt|CFX*wp)6S4JqrIM5YBji>$|S-B2PjU+4Aq8+A|l`8>9 zAg9Wf*yTFNs`7oj4VtQQH5yq`m2a6sa8+Ru6-ZSs2x0}O%K42|mAR@Nppvq@2$c#$ zS(Gmg)m0X0_n=nN^1LYtTwI=|5aU2x<|tj@(U-+=Q8&rC25%q=L zB&@84EHMY-&CryX*=S@*VmeGAxWury3M4U4n?^UW0wiWtW5+}j%IU0lkLO##jksu4 zhFW#4>OiY|gQqHCasRxFnkGc6B2_uvly$Bqr%?!BHEH02>?BfUk9wSo=0j4Ccc6Ww zq%<=GI07HlX1WcG5@naV*I9~v8@^OcvDkw~mc*h$AsRTh&Ng}~`29Lqf@^OQzh6Q7 zLziFnJU6#p?h?L?FI$u4FQAdfoaLE(L!^S~`+_rlFWM)%OtagtMEhm7@4}a_$@Xv1 z$UbZv^xixHU|oR$1YdsLZdwsL0oc&kgR7HL#et!e_%8Ci{jidxj576u>m@5y>>W(! z22}mO^TRINETOwmbpLa}R9s?ghYj!kJ1N9?=>Dg$N_!H3mz0EN4h0;6 zk?J&>0N7;NDwbvLqLWQ;5c;0Ml7Fs^mBWwggN92GAbS<(Qr7aa%8U z41M_0HJMJKk;k0rcHWID*}gb9+aqYN=(5djFY(quX8Z!Y1)7Y17>(@1xIsV8Qvud3 z7(nn;pv|-*b}BHxv8h1w*;X;%lq{tBgd-hyLoIOHqztucPv8jwVjne6=z|nl!JVd# z=UKt+6k`AE zEUCxi6rypN!A#b-*1YB6`QZJr?N8!44iLC3S(j%vY!vO6*^c4M*JOJk8hOmw?&N)| z593>dGrk$^7hT5Lf}~srne~l$8#Gxz5smD_xid1C7GEk z07sz2KDbq*%Px4Yvs&;Ce8HMx@l`akBoSBaXZFD@HOqeiV{rMn z#PT1}F41M#eQ?W{>p$R&*W~(lXyh^H+I4VC&G(E00`uJh5Mktha;x?p-16nT8E=9n z=abOLKAao$+BBrKK!3CY?ZR=^&l3md!5adHW6*0;_U_2ZjR z2V9n;jI$7~hNxL5M5{tazGmumt|M1b2wxp(=m>*x;t`NL(X2=Uay!~hN@6qD1CBsR zZG>S5lU*<$Vcd!@SW`G|Mk7nYaU+FjTt`tGVJKN{nt*M463hQXyF`~|VT9qw^$Ymo zHMxEcjXdUDyGIyGz7xUueg!~;F~X2rwKT%;^z3?TRj z<4dN&YmYD+G&rzfSY13fgX+S@P@J$06*Go(y z1b9+_kDw`#I)^ISMM@SkZvz~G4tqZ`4I8^u-v6J6FI7_?-j7C>^x-|G5L_Qv)CAIp z-XK=Mz~Rxx>I2y?C(k_G29*e71 zYK;$%WITmtM3Rgr(0)=&#{GaJaANONs97%0H~a%%vZieO9gQr>#)A~1aUFuaQ=#T9 z56_DxVq2cX^L&5^Baf7McJEZE*)Ov_7hk?6+q2NfW6ri~r$WtR9>z}!&iHz?Uvyix zcc((F4l?U&@iu6(z6y=(!@5Dg&Qk-{MHoQvp~Ejs#mXK!oZZ;eV4|ECd=MS0%0N@E zNNDB-dP%_tOoN6e1@EO0;~^=SOzZ5?jjy4(ka~)%&`wg)nYjdT#Ef7nU5H>**~Riv z#Fy~JYD&fD(a4fiTtOikmkzYDjejbJe-EbMvT%vvd(aNiWtctT>@r^N5`K#>T$ATJ z(8y!Xa~t38r{a3@q`+KH0EjU1KDjlsWkpW~WWM*q8=%SeOJVVC(0}t3fOQB45IhAq z*R&#b3h-ECQ-H~2J};dU-=|oI4ppV57;aXqStRr~idlix=wP%Zf+qmSQ;6}905sdR z_M`x5G!s$>(T{eMlFZC@z!501mlA7q*#+|?pch}TrdXVbMwU8b1V!o*S`n-)`n{U>9kNf~EV<-KX{i;PrD z1@51BG24V5NRbr0Z0d2I6ud|w#zRstnbz5p5-dYAVmA(cqH!regfWh20~~>nDw`Ex zRN2MygkUkgSWUrLfJT-C<3I}0xP-u-6;Ls}1xyK;4xEg3h_cycWQN_d0zN!%z!$E` za}OGM%z1Xr3aGe#XK=3Hj&_PJ*WOtHAHIk2259oV3ytife(9w5hcnll_vrB;Y-yNi+j1k3suHw<`$d-DWBrq1U=ayNw-2SU;zRo|l~FQbW( z)Z|69zm(i&{sA}wH&wPWAyq+^l;`m#XiCbnXkQ6>s9s%9Ju*5QU;c9?L@IEF%u1I?HSuJ@=!3hjJJCEkkmkXj`+ z0*Q|QJ-5-)b4d!6f(PRAFjsSBr}ktJQ&ZVJJ5fyGQ9T{t?36`%|A8aqyDu^)f3 zh6-izjoZ&aMZ!oiUWXP4_Dm47NC-_ua`7oscXOe*ltPRHp=fng+#?u2Lz5v1#tmps zsRiR3fFrO{Wh+`P<7MHv4qv#Ya9oQSPTUcj*Ej>0mAX7#wHYt)47sW zER$y_%W$1D88g5gP4w^bvy}T!4M$5hptXcqNsUCmd;78}BV1cvq!8mkTNc)Fghy+Z zp~;f8W+_16(l@o%v;mH&H8Gl;)TxZDJ&WTljMQZ%T5jxn#i(7>EFpRo`Af=_f37iar4Zvl zV{BR&E2Q=wVfg@>7D-s%i*}bolv+LR0vv&rDqGO!w#!+_U-4yY z>c*eY$dYc{Pazt&9@oycZE$~ixSl-?+wvr?I{+e#6jbJ#^%UM3$c)d#TcF8!D;jys z8K2FMM*6b8IymdcqdlYB!Vjba4^=H>=8wZ$p~?ITG_nu#1|2-l5m z3U8+n;~`g=A=KT|g?s_ciqwUC7VRu0v6%}1MDpb?qU2lU=l7}ml*#w+A+F}&!ydmq7pLi|A#k1llNbtk;k0(19^`t zG#3x|F9+xTMYMBtxnJN(9fXR={6CL3M3et#(a1jh8+83Vdte=i0R+z;hD|GCXAgg9 z?0zo#`gJ-dOfI~>1*=xda0~qUHJByzO^T%9STGegl(NHyCk@9?i1Cm#(ATfiIgfs% z&}>M3$6L`}QWBck2si>GuGg=DEW6yj&V=OY_;NMn;xsg}Bp2H$MB~x~*X!33#~%h; z0_F$jqdlU_vG?_B71Mk1rE4<%J~Z-}Gwpf(T4MW$!P&kB?G;_NRj*&G82>Kb0!_xh zjYjri+@K%lsQ~L13?O(aaI|Sf>{Q@ijomgeIhW6o_gIBo;034yPMMT}rk+92yfd<9 zm(cYnl7Z(;{mqksXDGyYNCukiT6?mAg{@dV?8d>5gv`SB6ET0I*;98x;@(E~{=(6m-G|HFjHTdE+xn7Az z9&@f;mqw}i-W{CpGTJS=e0wjA^5y(2ya}3|=g`PLoE!A#JSAYAg8>9j37#_TqU@C5 zRgIk;m{QuEDx~&UB_SvH9y(f;p;qlt?O}4?3#D3HaR0o^F;D1+6sf^?Oaq9g2H&I* z;~_PeTC27vH~1Zz7pd2{8|^10wV7W4j=+ii%0$g_d9L72e94;PaXT7W5|3LcMB|bJ z`<02Bw>&&gnjSbiH~=8R$N^=Z-LFj4?3dYY!k4ef_W$-hwq37G)I8>4{K(*pzY6d1 zDX@RuD&}DAc5ii3(dw@h(<6$O?R{mURtK5&1l|Ts)?a}}_G#k=y*p13SQlXc!4rh9 znTD^OAS4<)X8>VQuu|f+l0|f|D*KS?34zlC+c=>kQX~g?)8OIBL6$;{hvZ-itF%Wz zE<|%8r3N2Edr3)a=3KxL7_k=-Y_jZf_d1IRAHkQaDH>HYvLqVkQHaJR2KFL?lH;F( zEdeJDu19-Bmt*%Lf*;dA!k4be^bgR;W6rc|5kblJKZCRV7}_iTY+pFBX}>1&pV+j$ zs|kM8KY}+!llq6y$Uf8?bn84bVEuyu1kVi8rWLU>gP%5bTjGRlJ|#X~+ciVfr^l8z zHJve%d4hd;l70CX`|=F^q71j{v8ueF0ykQv%fqS}1N%o^)F2@|Yq>zR8M0feXytmX zk<5h)o0>9*fvxWG(df3asHwK~=7$QY-g2^#Dy9aCsluR*xSS&TW(bYzLM9PEc+!Kd zXlm^0P6nr2MHnG4w{1qdO-XU)IKUB@vag+_6x!|c4e&dx)Q$L3>x#!Z2l+%avhA1V zY`RoVf^UXw&zxY2G;K#Eo3+YG0w{zM7Zcs!%_XxJ_%Ty&@<{s#^Xp4JO-+ZM zJ95s*@=O(UXz+WP55bo+;I9Xq==YOmpPyu=`~6^1OpTTKC=^z0TiKU_3j%jpD|ZcS z&gZj-i!y!<+V6IQJrn*RYp~x%`%6h(=JS9f%EZBRKck1gF1bRIhI|`ulBR}ygCdUu z;a?!Rp(_cu52VY+S`x*7#QRe@-6T`otw*s_x7sumZ?1p9+os9&@6gD$ z4Z3;n@nKdsKae?}WuTm?sG&ra3W$bq*9Z;EE%RVeZ}5SdPgM?Z1-a&St&fcK-OxExZS zQm0Nbx1Yt^q{;24(a4ghe9{zxiwcXdeN$A95JlzB;EjNy@&MYQp@<4pM9N(5!<(WR zc=uA|aU?27tZ^EkCu5n`7MRj001-`6T31wDb&|QAh_^|T+x^kVlBm3l4m=xziwcXd zeN$A96h&oC@CaOq<|GtRfr?0?@_M`}nt^vLMIJ|@a-^@QyWNruX zHfeHep^+s~*m6Womn1MVSl`(PYW>f{<57l9ma0gEWJ1KZ-mKq-CCmQ>RIK z20=#!r}uEYH#IdTQAcAOdYzidV$+4UOq1us(8!Y5EH{PVV#A_s-x3>|wRk31hQJj8 zvz83no58ad)y&EO-VV)>>!ZlyKw4^`MIHyzLbDc^6a2E48-mk&9p0Oo8snd}sA?vQ&9!*TGnZ_AT+4vBoNt2Y07S7FkO0 z%-FsKd=gMd-h_6mu8^qHWp8yPQ8@)~kY*5WrO4wzROWe{;3qKe4^HoU@ZJoRsrc1Q z7MpkBEz{)r95k{dHfNhcaIs<0wr`2e_k16LaHDM$vg2zXa?KcDe^cFlIc)!KMDCpa2mgg_n@YPsOM7L zwUPO}5^s$rpI<~HOXBf4QwS~|EUNY`@tDx#Rgb@eBLb?&gJ@ssst0?K);qSLb&%xa zFL*07!|jh0c^t^c3{rDH{b-*Zn8+Cb5lvRPR5_{8G>{e0aaUdieH5UEE zq!OIaBHoRf$%y)LE~!egpycr;X)>EdBTIskHih7V!s2V+5|jxWwr<-fh{@N%5dp>I zD`;QpiitWSp>>dim^6S%V^H3n$hqg8rdfr3_1hepD>v*fZ*2NgL8RD^(PFl-CCj!DAx} zLG=b{yB1QPatz)M&5%2qBK!6!jgyr&R(HQnWiU9I7T$@Por-$Lho?faknF%4q{(U$ zjVuYtTTCIikg(X=w}hm5W9t8@yV3wTs;WCk_HD8!EC~q&2-~p8zHfm*Anc1`Xgf1K zneOy-Pr7@u$R@}pb_682A}Wd~iXwaC~gRX2#Wf-!T0LD*Zuk})pO5# zo$8K17;utP_ug~r+*_}zUajZb7V8^Ze27&ea5}veE+}<6b>F;GiCA{>K0Fkn@ZQal zJHSq6*3*x3l<$R8`W?KEL`QMoyt8w%P34<-Ohj(K1|wUh@)chQWhz2pTc)WPPce>~ z8*D0DF^J7GBR4e_*Q@8Rz}!;D;(v4G4l`iXiFv)*PEefJQSkvF677^WGW5sQW~am zV>qR6$LrXNNu?nt+f?3$$3*1zS{T_fm8*Oql&J`XZCR!={nX)nCA&0}?mMPZiEjB7 z3)-5>L#!-;?(%K8vQ&48>2G#M)&G)RIvCmVymL83a`zgh z*9z8OV&cdY%nw>#&*BN3a;k7usM0vXOB%IIZDqU_kCdp4t6}7}D`RH5R7!8)zEP`~ zVH;lz*T(1Ix=^)o6sQd|S6dzTF8qOF>n7wUq=a|7DuqkZwD4~|2t%Rv~ghVAwhLPK@ zgqgji4Ey+RijNel*F`@JO&k}liKF4VP&I*d3_Dj_9Y^4?64h}ijNEp0jPK8 z5<}sV7=(*KmBju~!;lHuI>_Mx5_PZ&MsB+fX2>$7(uKb0qO>q%DB}I$ig+(v7OEn! zt5GXeTO04fLnUfs6O7z;ZA`BfEar;ip>Sz@8?Fjf8rapSnW?ReZ{U# z&a79ef1T4k{t+&bm*MhIC31pKKS|Y2hI-1jR$jtGCTisc7`g3QnQLjq)n*oL7kquP zkU?yo>yzWcgu?T+RWcusm#C8MVC1%|WP0@8M*Y+(Wh%xPaz?m5mcvz{8VS~G%uH=% zEW;xuDq|^(+;(Lwi0Z`z!6#JdC7C`psIn_twoGW~`c4a=3s@-}tRP%{&)qD)D(PmOj)4Xlf+>Xah zRLyNLa@$qYy{cBd=%%$HlE=eE@)%qasz?sStfetcTN97sVG=d*eHgjznwVGD#BiZJ zJTz1+RapD!t85s`my*Hayj)$}old!FmJ@J5vzOoyP+;*MJ<Ez z+H|n%Vt2l_N?wP@OH|3ZFml^fGFz|OV5TxqG@lBphHK=laAl|(IR>&4SGKl7uEwJ! zD&#FNa@!TsEovs8sWfKR&xK3lez+u5X<##}mZq(Vd+{)dnz$QAZo4LS(u$Q@neJW9 z9wuZ@oDL2RSJ)KgW zDh@}thD*bhfhGc)F)#SiXDWl(JeNLa1qdiEe_KV9@%V`X*)r)6nQt zM~4gO2)Im}(Se$!ZfoaIJanRV4uX-}t{ve(^#aD7frfwv!v&OsYef~1hXak6zpbKG zc>F{a^})z(SJ7nN$D9{T?+usAyWoOQrE)OdtVEKw9yZ}Y67_H+jNEoTENsvNVIux^ zxJJGK7m2EoQ+zezO5E1XSMk7!y7@AU+;-jU(x@9^FM2s#JTJkOqKfAXZ}G%sZ!72p zJbI#no`aFwuArHfQo5JjGs^a}=NQ%uXGZg0`YRX2ZY*@;6UG3)uJfajs!O+yCcD*GTRilcc9E~rfVCyY=kxL6lnE0z8gX9 zY)a>&4GH#+j>k3}i2l943qd;H6aA$D3&YWPsZNUq8l5hAVw#EXRg>$98qa_O4h% zTkP@eha2W~G23UjihOE2e?eE*ZkKPmWYgkYm6dtm{@h0PW5uQ%FZ$F|i+#iSOibzX zaOvf#peBPXTrMYjx$_y0Moo1$F&VI1-kJX4d;^6&R!%Z1H8J$#Q4!svmm_;{>v7sN zr*YoUj(#R+@J6xB(B7 zNdHC{*=iowafn!dZMjYsxpgv-&aNJI3+3x9!a$)s2-k^f3x|I!@2(=jUM&3k|o2t7RX>8@%ZD4nY3-d0R7^*OhPadnKksd82TZMPx zArV!02aIf~Q1I^|A*DjGY~ul;RCu)SC?}WX9vYSClH3?!xY}~upJDAfg;!nJWI0X@ zh$C(t{=Ba&)Kc8D9KvI{ru9p4u3}GL7(5hrGl*6U#jmhR=?iei*F*(rayiC!he>!G zM0Xg^kv%wU`BKU>alWumT=b^%`Bci7M-C5X^ANm>&ILA`P2+Q-8k_ZmY+4V*10vG; zS{T_f{e3t@a!p_HAAP0T;y=s630ybphl}EL-yF=pNXX{D7Y~TY{~KZCw(~zlp8qR{ z`}@t?Snmuc|0cL1RPuMyFGlo}zm|`mW_SZe+iF<$o%JFEmA?2M0+v7P=_JQyPH?}L#$ zhWC6iZ4UQ84Cnn3xF9XzJxa#r{d;&YMBcvxBe$LR>9WI%!8p~I?bYYISHj8vH(V7e z`NpS-MGkU-wx=;8%k%#akBO*(zro0D*T7thV4u>45dqHwn>Basn_$v1#u2s9;!9;kOWar&DO-3 zcxXgToCYJeT@$sbu$*3New**Aa1~qu7lf*Urc+^*jLrLHcrZlXFNTrZ&igFs1yQL| z>oVC@0~K@I=zGHX|1?|}D*ua{xjtIGr2Lr`*DYm!M(10-< z{3=`pzktg^RYB7=;Bq}BTLVACLn3P6Copo`HBh??z+X|ZFBB#%3LX!~GluGn_PkVKm3Cw3!Eoxo1eb(LebcA^ zIQ3CFvcRhUe;yBr$o^+xAm2kj zN`m5z1P=%$!KZ!Si-@9N`^60GM1|_9F2{t(Wx3} z>xuHP{Nf5c5~5#R#*t$wOwReIu*BJ$8O~P??qNX&zH0Dkyn@bGO>8cW4Ou_A1}jf_5V$%%%MJjY@P6yGy&F{wskj2?~R z6PZ|6@_RfMqUwGl$a>|Zm@T@tJ~`$W(+{3c?tS4pLNjDx8k=RKvvSlaZeIb;c2zhN;b~5Tjb1YfT3K8fg%ivm4-DJLg zA)~9$HJ2>KLm_Hz2}kaLxuiRyuzuPZUa~%%&0)NR#KFW^05{pJ=VV(+36F_LYY|4a ztR(LXp{zuRYs<2d@k`UCzVf_y0I%d(dVrxaJ6m0dMh%=T&H%Q{w$!11L5SCl%w z7`Krd$Crk5EQ48t2Sn6gfg^W-!OT+m$2rW0!kN7lFC@`n_KF{19GTe`^FBN>BE|29 zku8h4*%v}tj1bxuXfeh9%3ylEW-&i!0_fGnzGrtp3XE5#bs< zbhBx&$=xB5iDfJY;js{nWq*#`0md?wryl1itHSy0!)r(!TbkS*(v!07B#j3}B=$lW z*|L)hd?A#b2zhN;b~5Tzb2ayatPp{-%KPD3QfHMWcZYZ)mYKX44~3|?cX8wnFq7^m z^EfYgD4fl2<0T||Nt3%nT28i=d;^b(Nb6T&WXnpv>Zn7JL*gV%cP1a0!B9@u#f`>xX+)f<11I(m5$~?|X z&JAbtEWCt7FKM!7qUB^;$?14ZL|RXUku57Z*%v}ti4fP8W+hqUX}9ZHAp!@JDqKtI zVA9M=qC_k!c`F_YQFB*way2+p6a#G#I*d3?w*|u6PmZ3b4M?+NJvmCht3}w1ZKF(9N z-y@jQZ5YJn88&y1f2z$)%eIx-cvwVoXTZpotxWZWP_`l@wx!vM<9W7oSSF z88s^72A1E1v-&H%j6`QKKIGtHwVs!4Ex*9yBGUUa7}>IxpZG#3YY`&bvaDs)+3AA* zg7S8I2HVP92C;c2<|b<@JQ2%MX5pa_H8-6jcYvjIN14}8J7Z8;63*tacnOJi(qws7 z%gMHqqwtuBv>py4TUK(2FNCrZA+8o!i3fy=LTnf30iiYnd;`3Dkt}Bv1=|epgUN0N zxV8B*(hZDDY{+s>NY!KcCV>6J1-9W|v5?O1on5z;;R z_e61NThci;2;AtaJGDXJbsQqr)E39??3HWvo=~G%#)g;O3v(g0q;?3r8!nNP&fEtW zjz&jy9AC?cXtH|HUHCzXW_2fwY?;*^93nYhCmvHOr8h)+HrRcN1%jPv7Q0Wv<)E@V zg|k}^-RAh`_@Rj${}e`UJICF}6$=%%`+TP4;Cb?1!8}i35UrRm?X!3~=UEHi=6WoC zcp}%MVB{FCJ$klk`=SYWK&ZBVjjw2B+n+g>?Su?(Oz5+{1mP0t?pZD%B&LBS5ASjRIEd&s2IuO!bhocH`*&C;4heb^jAML~Pv??EX{r z47&S^W4!59x=IEf4AC5XsF1vqfXoYi4kM z3yUdmJa`XW87k-7G>iv&7B=(m#G@cGe-n({cILNLtyZs_!Txu{+5Z+?9V+``bMUxK zYz2HBkA$dz2VvwG1$Z=nH9v?p;sK%NhvR$`k@LeBlbs*No|rGLOy~9cGvj(t$8rj; zx;LL21~T~}Hkw4kLaLG}SIRxnKU2}{Ab-`fN(Q0zBgdpLngxc9&r&67Qg{uA=!8jO z&T;3QdFGPkXQxg$^R(q>FIj$k>bTREpK#KN+6xSOz*NYL)ylzQxM)r`b8{GuMo{&z zsCkUQX-{01GR~vw-;miEkCSLFJHp78x$M9pVh0PK`Mvqh;@u||*r%~e!$Xx!-`VVZ z(Nu9hizaZSI0vo?RTZzLsKU(7Qp1^ed_*;zCa8q3(OSMxxUEryxH}oBdYKoj@$|3$BbI~^|R5qa`}BY!N0-lNVJ^;D7Ir|X#35t z@Cb=a{{lv~{N`sIB6jF#c|)37FIayeRY(u&tBKS14nE<#83Z=JQ&0H)AwAU6vrha; zcz{GXjE9jsOAeJ%Mwi1;;c_?}uE}PT15eMA!y$NpL^&J?Bez`+)9db#EvE)Em4TwZ z!E!!a5Lvh?R6!gF`GZQ(l0-iqB2f~(Fml@^v7j!A^6=15vBa)bQ+=7W+1^a5ud-n% zqc1DHCtM)!glj|<$nlUs;?lL`auXgfQ7$*Y$ZeO4nlCER3SfUhTh#bgxIDfN*Muq$ zY`&1@aS`-t zxG4VvGeZ^SeiYBr)3dLD{)vZ2l;q!GWJ{7si(!_iR)2{-29zoExfHSIKEankyD^B( za~X6HT@hN2wk&qRVSfvf?--LzjRAu!b>LUV!Mljl)Xvd=h zU-MOsdQ{*m9HJA}>Zhzs_pXlSk%$e$VxEDSkf(=wLg4pst(;`$e#~$*UaAK-vlxTY zp2j3?gZT{}B++1g1tVJq^9v4<+)90Sz3DgBx833WPyXvKtTE8-AD5n7hEB)ah^ ziISKEBgaU>qhY9?BMis`LiL<4`f59hg1yByKG~i#Hd;_Ld(GLfo}Kno-GTR-_(zsT zd`;~PUsb4{vYbQ2_LSTob6s7#UB2m(O^b6I+4KD?Hsz}9$H4u$+oGra$5x8H{7yyg zo$NoOKlJ=!{)b)=KVB3+{vv+7%zsoTWedIe;l50NHqRDhS8Q5b-H+OI)8%re6utIW z-c&uD{Fm0Iv-$MOd?wXjV)qc&6-%qxUq6`o*K4m5@@wx%3LcLU9!fpfz=ok>Wgt^# z3;yz1#7zMs33-?q$_{1n>@6dCP$0!}r8L}ILFnLXkwfW-3id!*sz0Az#r`@u)ab7> z7V726RL5otl~PtnX?gBVOwd7hu8>|ZC8((6SI@naA8xNSH11!5MLHdQ*N{kwc? zt(^Hz4iW3j3BE!!nlWJv`9FfWu!j5}z$J3hnfnUE(dekXK+I^82R(|-4mo}%K8zof zIH5fRBU=;Nw>d;|LwoH7VvF6b{m?VbV)wsrIjHPvFA%#p{uh2|BFF!Lk=xF3;|s(V z&wGXQygP%yS{s#T>jh#L*Sq3}Cvv?AMvmdyqi3tOFPeY{gu3Fo!&kKOitEZ`+y3O^ zqX#t>)TZC7Hboa7!o2gaT%B60uJxbBo4qt-&+a|^p_BTks&y&H(2(_&oEjSXIYcK6 z4O7z5?iBK|8)JI79wyT2FIBi!PA%jvVmKNv)svbn2#v&XPh-~h`0-XeYNB0T4I^82 z^%f41-1srMHyu56lg+csKtmv3WT9ZAz9o>)!3CiTWNDB<8j`m4aX%h3Q6Klh$Zglh z%!X1)4>e@+Y`9FGhU-F=$!V>UNo`R^5~40^1aTTO4q{LwC0iiCWdVNh%UPxV)?1j|m!7_UQUVBL53Rv4t zVai)CwHqU~Eg0F+*uuPX4<_-e9ubi?ZaXf6F7p+Px(vFQLv+Gr&{&?c;W4+vJjhc* zJtA=%TqGxzxf>adMo4u+Gj5!&tc3)s~cw8UzmJ5S=gxj1x&4eIgArB2!e8z=d#?oTTPXWjGom z)rs6YBw6yfY81EtKQ7TS&WDjL%Q%NaBsU675#7|u@!MG}fwREd;EGT=p4Ko6#4&v> zesm(!SHZ|_XL`EorB1fL5YF}ka8;;m&oZWgIL7b8BOo$<4~!hcxJNHn)RvzizR^Bl2c{X;{t~P9+=j69HYQLe5O$O zW56Ua1~~XVnMHz~Z5F>L!u6o?+ubk(xLH0PKQ@u&V_@XAvpiLe01l?tg)?1&YeHpO zY^kotZ?6Wd!H-X5y8t7{uNe8^>l3UOIeDr!ta?hKk z`7>9wXXg?;u<@YV`ox~FTa{to#!2VZGj{6|J9J@qa3y}s?n=S;^4!mv%%XQt zo{&F(A%8x}e`azwus_J(Cdu8%{%v{g9sHj+@xShPedJ;G*Ra7(nx=9*A^af6yDKCL z_WH=zlfC`feWFl?)9zknxnR?n+wR(^^AXJQKfY`!v-~HAh&9UuUqG31Y^j*;iyrP- zQYsZo+M4!`2clG3gY^y!0z1E)YRFAtIQoUtsnK8^x9zXvSyIEzdW^hfsyvWp+d~?QG8c!-WdmFls$9?~22F1lx^e~Lvb~R0ip4&~Y&zjw7>w|)anJxyg zc_v@zOp!6=rh%^Pq;ev+HC4T-?4M4Lu761 zV|P4iqCR$ok=w41DbaZ}m`N8><%)UBaYeX7UJqA<+H{r$HyxF?t&#KaxQQA$8%A!s zMkYoY;nzRLNPAtlK(2wyK@|x47N*NWc+$2yuEc{Ts^fAPx$WwhKA2{^E3Hql9jU~- zb%sbj8!nRnfvZ9lN$54QnY*o(&)~5Wwel$#x$Rn+TFUTK%DtNMyKtra8mzC65=ZESCjtkVt-zMz@HAU4kh%?W`6iA>p6#zZ`1qB6$8 z$Zc1~wv~0oRDETVzsl`gnLRRGDu=<96SeT|*6=cZcp}#?!N_grdWL!~+RgW_hXnJz zh(WaC0>wV7XY;e#O2OuQAszye^Z77x4CfxbT#W;wIe0**ao|I~;+5mTNy&}_(@v;u zY`>s4AMKH^f9JFxmaWrcs?+#j5cLkW5?IOf59deR2fNo-5vtd}kwe7x`pxvr_AWfv zTAqAUo7#W$uqVs1Yt!;G1UonRgT2MVTK2tyOo?r9zhjd>S9^rGx@(g^lr3Z{*>pbp zCJwi-$)C)pH;nveid-huW;lbzzTtdkQ*}X;V-<>}L6%*!Diqm1`GYd-W`C}nSu@PG z(PuesYIv6VI!1r=EcM&u&#L^nQT}|p{CU0nd4v3Uqx|^}`ST|J6Mpvk686_Hzm}G! z{748m$d6WpM8TfD{%Ep(Gq$?Za<6KRB}qaX0Cr?RE{I7GZH zZGCe6!zuEMDf0U%U>EJm}8jdhHpVJ<8O zIRY+`+d=kZI2s-DJ0B5EmQ5UrACzbl2f@geP3+Ghl3T-&-}$iF9b|!EE!ko>2bY7& zZsT`8oE)#h4^8B_4@Pb~#|_{4uz7xOIM45bOG4$@{LY7y>rMFKiCo_ZBgb&<(X&a)=*5y~$n}%#6Ohx}g50$OYm{k&R0V zhaJ`$#~^=7)cx(s5f&Q`W>E%SBOJgXVl5;78ews+)yoYNkKe#H=*ae-z`on5+4qGo z8J2Tg09VTG949jz%{gu!)3sGs^uOxi%^tOI(c9CQujM-D;}H{G=NyjgL3zs=pWRS_ zo)mkFEn7*YjJ9ztix%tM7Wr4 zufQWFl7AVDY_*(=IYe^9#LPyOu&)BM8$_!%Xa;c~izrYd_rP@_8bqK*>iJp*@o79_ zqDDRmBgbgOW2R7JiLfaT2zB9dCQl?*sjY8e+ni7;GUF)poiJQrxAKaGXwZoInSR6K z1r}GJUY~v zxKvaTo!deYHI%^C(NTB`L>(OtBgg2-qot{?C~VFHqK#c~R!z<)u>s%R5iboF??o^_ zRPi=_LC1Mz=T6w_hU@W=iDDh*$enPFx4>D8dM7YU>|^0NxE(Jl@oKN>JD+qN)N{Ap z>oz=gq98s1BU|ou3x`Oq3-07rPJ{g$;(3e(7}xP2Mga9bVA$Bf;aWHVFDtPJp5Z;n8(OGmZ@bujc=SY3>9pPB{PH#0yI7 zdrfx@bI(8~|Mk3WxB40$H&F;*fsrk@`XYx&uH)@sE2hEf4bl9K1sB-s{sNbXY8uPK zO{1qFbz3)o#zQCS=6M)7MmHWUN_9D5V;&G~>~b@rRZe5r)$UgJ92qRxJs8C1xz;-# zmaHpXtJ5vU111V}XO7$noo>FP5_QivZ0r1R4V;6Ql-TQLBb%f)4Fcevl+Q4>Y*D;U{wsb6r2wL@t<0*I zEgQXS=X#8M;?co2GLAuPo)H{hopvN_Yh*MYFi|6~fsxy;kva8}4e|%poGLjuTqOs< zrJ=eBJ`Xulwso=}9x_oUd&9_W*U8kT?Isg0kd<&vr~)|(o<{UsZDpkJSc%Gb1B~2u zWz68srHOmIBU~KU!)2k01Ao%TO4rs$6%UuFkGI0eZP&+?CervyxHP^9SA;5!BVgZX z%+yxJ=kQ30s<9_qRER1}Z4VTohssek*5MeRKGe;guqH7~)puSc_tjg^sw#{^%}%x4g-xTKlP za5OsPR+AA;Qn*Jk;pT2;`|swq!w*Wdhq*AaWe>ABL~_fta;r(3-Q_Hhz;&->a5e$qPAQ9Pw}G?E#k*8 zvSkrJyQx1M792?y8$1;dkOmsHC-O*KIkBZ%9c@%zZBFkIB$ZcnNs`{{$ zgXx39ncg3+3H3~#!I{?Mx7pqoKR%J|9vC@>ZI7O<+P-K79uTVSf5z9GWZOT<>nh*l zRxJN6%FJWdrnC9z6T%DnYoEu`H+WkMtJW#GDtY_ZbSh9NMH>F4pI6PbP%Ms7RP)72Q|WP69> zg4y1lL9}Azx6kNV#vmBS_%?V1M8;>s$T5t2%yDWI6m7u+LX89O@s+L|2Yxjw(eI^i zU9R+Lv%rP0PMwxg4gJPg6qnX^90TA5zM@fs!1)}a69$3NEMsE|xE$s}o)l^s=u)^u zPC9dg3`e6w-uQ`Vk_S~Iz(x2$i8iqwMz(BXm_sBt0>~RbHoKo@IwXt{=k>PvrVh7&(S(kDjgCzGwm- z5UTB;mdMfvt!XD%#L>1YC5PqiXbr!ew&umfMZt=#Ad^9C7rtU`;ta^=xE3Y6dt6 zkB8_P`*UOuHa*r$n}1+>MlJog7syw!Py<_hA6`f2Yj-xUd-99E`e&w{yw(%5hrBc% z7?I!$VPvZ*T)-ic8}hcRE1|cPVITNOv2S%|qZM}ZHKt80us}uJ2$zR?rteQtgqfhN zjJM+f5|!~b7&%569=%?T3&MarAk?_9FHa;^pRMmZ-6v#A<;p4P4Vlte*;1yUwV#Js zG=ZXg2xf*V%H5lY(oD+gLf^*2B1-Wag2A}&^~6%!@+P#cQG~i>8;c452q*bvyqd&b z^jbQ}_55t(c?pk?$o2~`vSmEa`9dh;5t`ewjA!zR`C_S9Ij4~AFP8M%j{7VLww=8g z1a@&iwVlOH6sf0Vna=KbP(&H-%8_G7-{eeZu2zEjDQQ^F>%$2?53eQBa`vSXT+hxn zoU`%hh)kaWBU^^E+!sO_j?mkdWjGTXmNv90=O$Kp>a_BKHKMc$HQaH(<$16&-oP%g2TRGas^I1GbBJ2MHBU{Gv8D9ux zJVJY0mhntpmd*~c$J>{)Ifs3Cxp7hT@2nz$*7H}ms8s7|HtFaoS?2R19u!fAf8xlo z=9AzHd2_WI)Q17XcNUxw%8Lkoa>_4PQPimf}t&tP)D2W<59!8GQh(}9NT}had2Sghe{zjcv$mkDu zUmY&Tx4?8z<+wu=Ir2=b9`t5B7NY1b;mEN)C^@_7jxvwyJa>oFc^6(n;>6o*w$PHY z&E!rzC?cmSrZB&P*5jii3^`_gPkuz#jKBTvMv4?ApXsw2Uls z`7It3QG`!%w;zf&2+=9zEzA@W;K&UTy0cyL6bC&0*-+l=K9 z$@QBZG)0Us-5$+?3q13WfJ;O@^ADyf!%Wgv$f0p#BgZJjqnW6FBn-&|qK(7t zX!~CFhHyEqh54Y$aX}L~id3u)RK|lL%5I1w$9ACP>}D!Yy>8CN%F2hs3H=~mL*jh9 z+en1gv$754{diPFX5R}VTZZy3UkGI=LSI{!p^SCir~U=2MPP^f8C*`PrR>;5fwg2T zQ~3!V4pDkP;>fY4lHgc7U1ncD0}Wppvox61tr^7TnP~SInbmq;wzG8MaS`eLFDx9( zS^gyyvh~SbUAtYr>5@&0b5*uk+`#?0jqJyYO|5@Es-^>T#545p+HgJWgV&wdXPP}9 z6_=l_i@osph`QJvMvl>iN4roRN0^TXL_0^=*JnyaeStO~uEZ?N2escc8(~E%R=4TL zgCWYUmm|k^n*>K#o_gJq4QqL4IH5P;H6&U~vk_L$$~Kf6@TiE)ZiJC7L%GfuLK%wC zR|^cq142bHlRr7?0ikSdTFAqvY#ZWJy*4QFd5oR!P}CiL;E6p-v0xyRAIg+;d;B%y z6&uH$-c~(`?^Yv^5N%D9s<5M$d!m1)qAk$mulWDLf=Sha(O!>oyq5k;U*V}Y)}G)H zvBs9*7(I7@E&1m&Y+t5gp^_=|rNoxthQp0I3FSnduIdH0tr$crhUphs=`@C_BkqXb zKyHsaUEBIzfl00st?%D3vSoe$C*+gZj6K_|T67K>64^IgB0ZZ;A|rlCx0ytuWNm@$ zfd@+z$YL0|?E>kR0&$whh2hG$04|BMC**AN;LpbpJ44MpM3%NB&c~x9O5z+Cx$Tme zEG6NvinoOe;##;MR6+2EctJt99pWlHMxq?9fRWoShgpT;!PHQ(%w8@p7Sj1ty0prC zclLpBS=hypkeMvf7H$8wiiF%!!t9uR89>~Y_# z@F)tlV)j6?D`r!c4-c-)l$;A@m%?gxO0l|*x?nc2VW?Oc$dt3?+L~Fj3`bvJYx-H^ z5$Wv_3EM99K0IKeOT8OLwp{9F4w2j)rZL%qC5lH_4A@GzC5rFCm7t2E>8k6BWj)z z-N^$&%`?NkiO6~8@nkosoN!FJoMB%JW4k44Z&Dw+47EI`G^_hjXPLB$Lu-1D`+f(p z*sv=>sTDPb?9U-OVGNlr5>KV``BZPdSk4$WvjQf<>OHTA>*eG!cM`+VxT!W>qg9Od zm^s?cavmNd(OJ%hku7IAgF_@YgVZ!pP7h{Ml?_9tCaz=g1kNMZz*X5ynyBY!YvM{g zMxrJzhmqT^iS6Y%RIgWxJui?d52P)1d^TJi{{z>Ds*Yo#2X5mQRcyy_WNYi>GkCN_ zoqP&LZo5vl?H$PUu1*aX%ELoL?Awul$ZgliqPV(oPw8`XoN1>7cbq8<0-M^XYB`DMDI;fX>t-SzHBmR?VC1&z zW*bKZ9b!2$Tr7vd#i5GjNPn?JsoDxT7!Q@GkON@kwku@2=m`w1`ScGLdZWur^eMH5_7j_|t&$8LEKwyZVdS=}WYXGnewba^*bgthJ6skw!}Xxbf^Y9d zm|azNwhrEbM@Q7b^)Pab4m_5>)C!tdSn+^RD`@-r4pedl?b5cml{uGw8Q;YKZzBMZqA9&rnoT)fJ^qQ&kh>&U#X=^r)^|T-RDo3rS{g6X+ z!g^Y_mb=k){sr?P&k=QZ?;minoRsFCW;hx#Rq=@^EqvQQUd9hk^pBTdWXnHZ;1J2J zlg$!eebq{4Fuv=l!51!z7(^>BTx`bY^0$v2N!YwE#DgI6J|9MIJMY`DufSB&*+QnI zJDtJ(+2P!u0T+jQwr|h5k4ePle>olqk^f~dat!|-O<&CoqJelosJY=0UjvhK!{?Hn z8z%Gf-uWQWO|WpCs;jQ0-h8tk696A1N|#FM4dmyDZt#_y8aOs`h)x(db`ZHotMMyK z#dKe9ntkeveUZw!Hh(|NtTlk#3m4BRj@)ewM;}05-)w2bmPn6Ay8N%0GT4T8H=YL3 z(C&hfEknDLLnJrIOcteFSuEzw2hx7aLJ7Rr_Y_u3U=2vJ94VdS>! zXr|Cnw$R6J2$oan^;y$yjtG~|p>SQOc5_+_q|=zYt(JrE*okV{A4YDwTITC&85*vz zr<96pg9e9ga^bpJ1y_iwo7c5aH+mIp1@+-s5EYb$k=w4IDMCSfLELnjcZDlv6I>Ch zVw&DkCXT`)Yg-{V;!zV7@^%=x?FyO36~bB(yL?Kow?5g#Vjs6;Z?6~g?EPJ1=zS?%Dlfowp-QC%lZ%$St(NET*okU+ z21ahXTBg@mV#F$p*?Z=n7JPxU9fR0B7f7cD*@~IDt(3WVYOT3p%Nidlk3PgKmYFml@!vywQ`29gN|rClg|jAfhRBsHUre2_GVVj2Y_w_QxzSjBUC(4pZnItVTfRXt}1dysZEi2~TV z*&k1UsGEIZ5Jqmh zLdHh5GH)zx3YW%>a4D$LK)0n7Pm0w(1;x{~HSu;lT%so41|zp!6FUqJSBBZPaT{Fk zotRqrYPeRu43~(im9UAWX&Gz{eF0B{sG$d7gzbc(g=C{2oS*QG~~fk?P$_@vfW)gnGB~I^TC@xm29wTSx+@0(cM zfv+sC!;9+t46jZ0{?YYqk8#GvkX=vE?im$4KqBjFU}URj6nr66&k))R>KVuLC}LIG zdLx?J)PnA1;RLGkZn&;g3))G;Rw$ z8BXxe@p2Mvr-wvvJvG~Keu{@iWctT2vSm0w^o3A{BlNaq8P1ebimOg9X3OPb!J2qx zpA~F3GZ+LmCQ|KYC#M>XY%H^xipN8g;AD>60h7))dJXF5qhU2ihm(5*UQD9Z>`5TE zo|tVkhvI<|Sw09xwv1+fUkGJ1LTfEB8V?8+g}8q6fKb=ui$YA7eL3x!QHk!8IBGDH zE@&5pZ)0R)6PeTBs>kswa&vb?c7e{;%(J~>x5OUx>z>*Lfc$k24@|oxbX>Dv>#IC< z&3+Y!h;_Nev7>Ts{K+v>*p#?mG{0mY6Qyi;+NWSP5UTxO;hRVl1#ADeC%YuyeR_5%!(Q9Z$Q=*0N#I0Su})*D9z@;na7YFtpGh8Z z#r}9$kJ2Ml_dkY1cy#~PFO*F=Hr=~AQ|MdDUL?zBN*Wb8m