From 7cdbdb44e47451e306981f5db653ed01af250610 Mon Sep 17 00:00:00 2001 From: ivy-seed Date: Sat, 30 Dec 2023 12:17:21 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20main=20from=20@=20unifyai/ivy@?= =?UTF-8?q?515200e576f80316d182335a23e4e4df6ed47054=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../ivy/ivy.functional.ivy.meta.doctree | Bin 95382 -> 95382 bytes ...vy.functional.ivy.meta.fomaml_step.doctree | Bin 34830 -> 34830 bytes .../ivy.functional.ivy.meta.maml_step.doctree | Bin 37244 -> 37244 bytes ...y.functional.ivy.meta.reptile_step.doctree | Bin 26943 -> 26943 bytes ...ivy_tests.test_ivy.helpers.globals.doctree | Bin 33732 -> 33732 bytes .../docs/stateful/ivy.stateful.layers.doctree | Bin 316882 -> 316882 bytes ivy/.doctrees/environment.pickle | Bin 5547548 -> 5547548 bytes ivy/.doctrees/index.doctree | Bin 674193 -> 674193 bytes .../ivy/ivy.functional.ivy.meta.html | 6 ++-- .../ivy.functional.ivy.meta.fomaml_step.html | 2 +- .../ivy.functional.ivy.meta.maml_step.html | 2 +- .../ivy.functional.ivy.meta.reptile_step.html | 2 +- .../ivy_tests.test_ivy.helpers.globals.html | 2 +- ivy/docs/stateful/ivy.stateful.layers.html | 34 +++++++++--------- ivy/searchindex.js | 2 +- 15 files changed, 25 insertions(+), 25 deletions(-) diff --git a/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree b/ivy/.doctrees/docs/functional/ivy/ivy.functional.ivy.meta.doctree index fec81229a34d343028777e583de6f59e71a3816c..cf014b9e6864e61ced56e3c4afbfc269691d8e9e 100644 GIT binary patch delta 129 zcmbRCl6Bfk)(zK9*vwN?O^wYaZQ8YYx~V7=lso;dKBFa+z4@a#XBCvaY14VEN<_AX cl*3K3p8mjqan<%(^b diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.doctree index 34d11d978e237a73240d417c5c6523f86d121b98..47b5405ac5e22b5fc4d004427d688bb30eaa489d 100644 GIT binary patch delta 44 ocmeC1z|=Q^X+yaon|W%gsj=DSTEp{9Q1;{?6HA!zM3dTJ07i_@% diff --git a/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree b/ivy/.doctrees/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.doctree index bf707d1a15c093cc856b122e8ef05a88ca2a1697..ae9efaebe90e022d3a44700bfaf65e0a18ac9874 100644 GIT binary patch delta 44 ocmdmgiE;lW#tq@BZ04z{rp9KQV^!0bq3p>gH7sGm9Gd1109|wq_5c6? delta 44 ocmdmgiE;lW#tq@BY-X0GhG|BdV^!0bq3p>gH7sGm9Gd1108jo6U;qFB diff --git a/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree b/ivy/.doctrees/docs/helpers/ivy_tests.test_ivy.helpers.globals.doctree index bbd5dd5462dfd20943f64ff4b5ef81f9ea764fd6..2cd37b51315ca22d6c6ff624a75a0d11d1a568b8 100644 GIT binary patch delta 37 kcmX@o&UB=mX+u8;hk2@DqD4w_+UDsTN{k5JK~Cl>0Qj^FhX4Qo delta 37 kcmX@o&UB=mX+u8;hna0O5WM4*&oF diff --git a/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree b/ivy/.doctrees/docs/stateful/ivy.stateful.layers.doctree index a61e946934acd47272b8ccd04c453cbcb9ae5099..09994c4dc9ff9b432252f9396df0ef6646e60d21 100644 GIT binary patch delta 816 zcmY+Cze@u#6o5%?&_zTGf*^|i1$WoGTrx;?aOf-|f`j2ai&Q6v4uYEq4lYH~#nu*o z(Jq#P(XoTzpo86t=-{lh=;-3nTynYby*$46-uKdJq&kh%?L&9i3j)gwT-0iJSAmL{ zRe?(?YVE$2)tk@8dSJhJ^8P5_eYR7B^D1hce=KIA2-(GU_n7TXgBO+2*~sRnGeE%+ z9>Ce%ERggtrO^@QPjlc;;e!Ew#gFkp0w3_gW{me7fiG<-e3;Vkp2O=oFe&jK75Hm~ z_o$BdC@oj4VVth!B+hQZ0zBw;(ppf5#gT z%tQMN@)#r`CwwgTL0V2vgdE?5(mhGYApt+MpmI+mIag^Y-G?bn4t4mw1IM?c$uSzp zSuZO*M*8F!@q$;*l!nLtQL_eFvt~R;9jMShdSS=~XhJ`w+`2TDvr)Mt j$|riN+)0!>l;ggkuH|aiTKh5N&TisbuF3PiM(*<;tyUGV delta 816 zcmY+CJxc>Y5J1_zLK_hc2!bg33oe%<+!c~oSXhgQVBy~EU65#HkwUN&!NMlUrZF+W zFOtR(aJ5V!SZHCoAX-=}30m5CWN$Zn<;)ImX5MV4k?1rMw-4RXv};r924<_>T}LWn z$qHUpQET_DEZ=;>CVFVUc=G-jy@#2d8eUXU>-=LWBO|-m?jEzfS@fbZI@`DT=^RpU z>JQ-TZXQW`n9}If=T8ghPvWUFz^{SAQ%A>BhZm@Zw*?g_{sRA|wKPJ;O6BQ^i}XR97t^t+#+QuQ$+GHqzk*!<6QpSp43`liShcU=HML zmK7dMeR44QL1l>d#J^#cs=|jU4eyboW(~7u&3KMFxI+KT diff --git a/ivy/.doctrees/environment.pickle b/ivy/.doctrees/environment.pickle index 025e6e6495f7464b643c24952bedab94207fdc78..b4c6d54fb929e394d7eb1f0dc890153702e5afae 100644 GIT binary patch literal 5547548 zcmc${3A|%RS|93l+-`5}-5%RBa*xOE_PBM|zJ1%{b?hFG$IEy;wr4!H(dbG?SGrfy zk#(ed``T_`fXvt+mVgM4M}UyPFA4h&36F#Tk0peJ5CREHLLlsfJRmFq^78)w`l{;G zk?P!YBwfwRdt>^l>U>r8)mPtMUw!VyUwQPr^Uve|8(b50>W%ikCF;jzJmWG^jQ6H{j&Py^(*RE;{Ur!S}S3@*4P{luF$hFf4}V! zX|PMUG~5Zg-9|Ntu%f}?;A}5wM~$!@4PU`LEke%risgPU#2ki$YYmq0V}+lWH?a=4 zYYXe#DxXbuZ8qB5m9UDgw>SU@H3}*{4B0Gi1kL0(?Q$n<24Qm<$P#pT5l z_|M8ch3DIi8k*k*Jk&!>;bQ&6CEcJIlp~=1!fLQH99-E8TAgOO7etCU)ixh4*&m04 zt4j4=tLgsIUm&S22%#>JOcyY1^}pf{&dLHPe4(?4aoa1!rNxD)(F;y=%9U;I5E{6? zlHQA6Jpd^Audk&NwmM-O2QLCf4$DmV3FyMp9Vk#;qF%YzsKg7pq$Ix#2QSPt_b~!m zuz>GP2h81FQ0Eri6-UwJWBU71RewT82nJWEscpqG8(gs!Eo_%NQ z)%uTsmGBguh;|#jN}cEEN<}En4_C`KCmLXACwSUOCb!muay96x(-)OCf?C)OO4V-I zsfN4l;S<%tjo>h0yNZKbioohPF_36Wov%aWBPV)bY~{g4&2TeR^S`Xo!q0%H&edDID#_D=`^;EUCx_ElM8o1-0*sTKzGWtbCr8-PPT{5w9W7r=Yvb&-7Rqs&= zEWT1VJmt_<1m@T8f_vX(rfxtisMDZ7i^w!UL*T^yzNR$2BZ}THxchF>%2jd-xGN_p zScm1v@PbAUv@^IGtg!HCSm{$l{8R^B0P31_qxz325R?yl2 z8HQaDBj!_XcIpsmU`%Bo=4K)XeAfNku6#qZxK>I9WWxfyqQb8v@+)Q^Hvx!MXb6a^cO6hvVe zk^{`j9nsUT9YVOE)1CVP>jt%;8?-B`Cr-7<`4Yil>Ro((P2xvL=yGfL=E$#IN_+H; zkqZF|feEmY(gZk<>n$MmE|r@Nh{FhaTl`hI*Xx$bZOmK|Q-p!yEz#m%YbjbWdcPLt z!QKj_;?#K5*tu>DuCp!CL!FE(yBkcP3E1_NtXGJefwxYx5q2k7ueCvej4DB4|SlB z_QDa2Ts``;bPonMTYVAw84vuceGo{k5mZ4rx0IW^<-Lfsyy4B6c(QISd&8{GhMpEk>I za2|ASN3*TeaXf-1_6Mk0^~KfoQ!6J|)=w?3 zo?L~5y<_Y%Fl!-UaA^H6`Fwr(6u)0yUte2YUOstx9iP90pV#csEAr1Wlxi?Lg(r-A zEp(p6#nqM7(~B$1r9iSu(?OQHvpRYD z^eL!YP-Y3*hrG>hx!O<$h4bC%<)yWil~bUrMdHDSyk>b1`lvhD>9td**H164L8B(d zZ}&`*2MgL|xw#o^bj!}iz`^qA)ny!trKRPx5knrN#7C<s?^Cy5l_C+#5WB|ce!DY3YM zSuPX*H+e>BgIy&S1qIPOUDjt}m?v?>rv9gB4M^ zh(sN9u)eagwt5OgyaXnhG9GhPz&3ECmO#fGPa&QI1dw8BED?LPeEQVt%4y&P z->Chy-+-k-NrzN%_X>97=~E}yfxwj|qEGFW{e*fb6v)PFBOfiTET38gCp-!32OnKa zoZFAakJa)b_$?Uy+L}UmvU@A6_M!2|E5`u>gNA4zCj<0r63|D9ZDo1or1PrR!*J9ocdxCXkSrD z*j7(1;?hRD8k{Y5af%=zV&4#sB6P44_0R@fRf-FogAGwq`bfLn3QDEn;EvL6x7@Lg zq~d+e5Vl41K(QU{+FyrJc~GE9;=0wK90aw-S*yuF!M$uR?DzT`ffeaTszED^7N7=H zwy|AZXc3p4Ztc}h_JZyAef0U^;FxrP!=c+Q!7?vxl%ob*9g9nt7i>vr?t3M1@maBm@;wd`y{nh?SDtNbEJQBFxsL?(7hZj_w9#4|4&E(2JRg;t!CB|4hhO~Q(=YD5f8&`au`{Pr zzYo-2oIrS=> zDR-xi-)iAB0@DqgBJ=6yhnLRmod_29!c90`j##xkI2%;J4`3v;1Mp|~Mr;%GeRz?E zAN%nO&pYpMu~>KmHcq?HXcry{;Yxp_01w5z_ZH|CIefT)|94-xPzM*d|ETedRM@Ww z#4Ew6or%g(B90N`C($$>`$%4Yy#Ti_BNEFr7LMsZ$foWofGGs`KMf!5@i$JTZL|j2NfNb|B|z5uN2;Wj(8fQnEGlV>g_dy`;Q{(vDs+DBiFgNP+UCO z4O;I#`oIfd8)4x&$eJz$;(ZJCRl)ZdoJI|Hb5PiARD1RNkDgpxJX)v+^sU~16yp5o z$RHabVl}OM3rlJgOBV@}*xlVVt5Fn7*IRW#6K2+GL4Fphn%Rc(+1-B>^Mcne+`a!O zTvOe>PA{mQXd$jwes7`EsPy{X-~^DM|Ec@ZZ4kk*3)(`$_bte3^%iFxWSffL(dBv}40>g9A8xd1UOYwf9PtAD|AX`I7;Zg>;AOx+ zE_nIa5dS$o3=m(?POvjkrQCrw@n(N;iR+)g3c)XU$v*(*@Cfa9Fmw#F3^rDhmN)cN z%%8@=0VlBr?R>jvzST|kWB2bjpl)>fy;2!AFulK52A%#!DG>sxKYk9bv-(r~F9H$p zg@S15d&FcE3NFz)4gBRFk)UDW-I)8^&<%ToVA=aYye^ss)azP`1GjmN(S zR|Ct85Q1n-WU&7I2rpxARo|2KwXJiy?_Z;{!3FK1{rxhfkV4;Sh#7H-{2dL;w#!YjSJ0{if(n39a=_p8 zdN&Mv=ZdeJwsWt;mvt@%Ux2`%dkgk84kir3P;+HadH4WCk4B>LYfF!Ra^O2*d4R-wtt=9s=Ab ztkU8fT-xu|POP6m@H(F05$)Nd=MI2W?0#_F-FM3fC4|x{+nrFw#N&N9VxkG|M~uJ3 zT`t!y$`TZfz}fwq%GIhhH|P_EK~#qp0XAc2euRC*cq?&t-L`8G*C~Y?ie~X?w~=Ul z=Xh%=qAo21@wme`0Ocu0z-@rh0-p$b#35XnI<|o5E7T8XpD$N{Bt#Bkv9rChv!|57 z2oYL{JFL|lm}}|~Qz{H-DHd!-BPO1~)p56&Zy50P_tx*T0IxEk_R z!%?MDHdLH2p4K5a5g<^v_l9q&epl+hwcx?J)X&!?f5skfLM-aWw~3^1HuPF8J0LIc zFIW{F2+b$XH(1;Xc#v!EX}+yhKHF%aFY`jm6!nb#;Xgrp6W_)YRzkW2sEqZ25jmq? zO`%x|UIhUfsTF^BnQGKCjZu8K*NjTw%FNz~f4z*qRzSR6_?TlDhha=&P5*C3?vj7QOJ*M}v3=uXDR-E+PT^OAQZJ?w|{{%J5elQaKIc?15f_ z4Mm(mv9};*S+@!Omyl&rhkF3Vud)H^VG~hN_sm_Pam9o zsno3V1{d*n#ncb09x5|nxOL?P*hv0|-(C~9IN1ocS%0WP$n{nG^JVHQVG2XYRRc{X zXz(!HdXwa08by1-l$wo*sS3__TCs_R@tXbWDm4_eW_XYgV}dz%Nx!|_W}1TSBh!h% zwILI?3hw$2sn21o>)(wAAPZBuSi|Fn#*xfL1xwlX&aZmnAa9d-Vn2}CbwV-%ot0wR zwn|+5CtM5&vW@5&{a_&2125NS??MA=APZzmzvGa+{UCxKgO&da_jJnC=)qFPyGuvc zsb%8yN)t?Z7#YJSVmU10e^rS%bM1EG|H3qwyb_(@}>JMA~eU(xO6@g1IF6Qm^=j$(+ ze)XODuKBmgg92zo0ENQiM#-ZZ6>XQQVIU5|SO(S4*7pp|`eXGE*ndA$|FHe{`|6LF ze-C7?VE5hf=v)Wa%K%WVO8pLESOK&KrABJuT7R|PwSc5Ev<8)MfY7Jp_d)wJqWD?` zP9zaG3ZX5^D$^`8iPh-1X{%3C+TnjpXUV^Ecign-gfhfodzu>FvR_FX)$EceX7LzW zi&s=8ZPewR_8Zjf<0hjv4lXM8pdi{YWR;v5PC;8-Gt|eE^W$+d5Ml*F=Es4@+XSwf zUu-AD*tfb%Mg+oc|r3p_rB9Yx4 z=<2sS%}lIO7L4gg>5Kgx-0XCMLjVbC-Z)VFs!-zsU&2{zh&6)l5e zjBq{_A8_yQAKd121w)4o10@wMQv?WfkL#Qs+J%VBEqr>d(-0wiT7f?VW?8kdQ?zPf z0WLpSI8IM7Yn2{7{MZ|Z&pXe=mE%~me)*M!&3g)Wz5MbWciwgUy@iE^!X0-OS^*s3 z1+bOEE~If#fIb2tQ`Nu@!!@yR_uYpJcNd;jSdI#sw^s|?(?SjD1%-0qY4ETjda>g} zDj%ZoI)6K-9eS!mp%)fFqCgzG+I}+aa|UqXk&k?&U=UUaYlSx8V1}XTARo(`qr&Tt ze(0%>sD+;^JZES03GpL-0?wsgU1lm&QsvhRhb>lRKK$^Qd~%N&#vm8O5%mg{CVZEL z`}J~)>Q6547_+^AOkz{|l+|2eauleO*Y*@{n~j~IfSIc8g3ITa#-bU79!@}zIhq+% zW$D%_rQjD4Y3lBML=)7*&87ua1nrzDSL(-zu)_ThsINf{JRHZ4AAhfcbIv6g0oY)s zIWh2Fwc87YN1(rMAW;_-0oQT4K=Lfec`Y;|EE9@(P%Rcd+GsWl8$qE%e=Fz#G^B>^ z)yuuYF7Tjx9>&VRV){+hr(HnoeM9wD6a;5K)~!eu?z8~xo13nh6d?JseOHe|fdf|Q z%oeYavyI9d^av&@TZz>?Lax*9-J_;2vwueA!m!6ZSO|_1aucwpHAKtcq9(5)1nKo8 z84Wia`+JYx7-@-rC1TEywIn-}r*L$`QXT;?s8w->P01rCG7#p9q&v#zK>tRDTqnP<WI z1`|9Af(Zer)f|p=NHFL~>mtd>h&{0x3 zJ_cP@4a|ct2q6-gB#W0`iFZ#{{{FC!ozOHEH*SVKX9E-gCK_XeJ8d!|k@r~G6Iyh} zBuN~LyO=}7J;pI8M$}!7-Su+&uH!DI6^#K3p%&F2#{~I;Ng|J%B;DS4qu@?l{?t=- zf%2>5@&#s*?u26;Du&L!i6s>~{iuG-`8?T|vk{&q7>EjY-suiDIuF8kHc6nX<-D}~ zN)q%K+3;Kbzp?Mfmmqvqx)%~y(zu1IKl&(yky<`C#pMpi3wOF_QW3F%#RaR~(XP4Z zn0o^Cmu3?ZUlIcLE2gE}(4zv;Gh+R^vpl9jW@xuN0-(R@v zu1TTG>9$A9`n5vTU?rbTa^wGlUaj~)mpQ@ZQInmIdxDjCB&ni(2fyyW^M&BfR<1EN9 z%R6DCsxmZA@JbC^mH35l1*vS>c{&5*Mw+Inqc69QCXTh!3)6G{Dn^jr!Lh}A3MZC? z`V$&~(-X?Tu>L*u@9kS7LqZa=)>771;s)PLPpXihxN6@CXF^*RD{~~=@@fJreI7KWLYR}UR+7q~vMox7}&sW`gSb(8@v(om{}yooKb1Cn}sIZ{%2@ zCV=R})RksH?fpoG497tr`4_4hlg=1ge2JmOSB8P@XTd=bA*2(#5Ns54*+enzZf-qA z8~kb45WmWVbTk!#e!d*-^yVEgO$;I_?`7O}xoPXu8}^p{<{I-m6QD|RcQW>fzTLLQ zZU(Uh=;gEysvAu=L`LCFVcrnpOCfB!o8SNZlTQ|&e)y>~h5ODt_3-0QKJ@UTk3M_m zBOiHSXs2*}{I!m7^#WX77+m+{!%si<{KJpo(N_*{Ikeq$92)NfH*85#Ni`99g&}K zjg|3f`cq!f~_Ol+%}VMF4NzLllB+D4&-+|Kk?ngksxW* z*p^0>WpA*pr;goKu}M4iBji`g4v51c0_&Ez#kgQy+8FDkBBo%2UEWg0e#GdxGKNGS zxTS!bXEp~Ff{KWb8uwB7VViMLQ`gZ=>DsRJgCuf3@a^)|w zhv(V|=cE~kI}VWoTvo(gmDo>uHI90tT?^@-QkPPAW;H92yW^{fMVvrR*x;QXg2I7y z2AH9BVAEQF;v`p!uXqY~mxCtcE_Nu2S;aMG5D#ZKV%o+JnrZQ$YdiB8ErUZQXsgfa z^#(*63q*Q)qlp~7zB%DHnO2od0a~_q$TXR7h@QbMZDbtYOYXk^#AhFU&nII3eue6# zH8S+L2)As`#?9BNX2!3r?n1T31Y0;oHHHoWCe#|!>F`-xp=OpJvbN(-ud0+9BT2p% z>@~c;4E-UQ18kd*RCpB~PWJ6!567mec71ROGDZ-s_6eb9Ivy^vMK(YBkqc>JM9dVkE z2d53Vt5u&gEL_Ld{qS%*JLH|u5q8EA>ThCI;Wole`W#*xHz;CMmrQlrv90n>S&mEY zfo`T}v*U!0=~RQ#5Y?UN@a=L%UL^$g+xDKBx=yBZBy7lkaEI=kcd18pf33BV^&k=i zM*wfkm>X+$Pp`+h29F7v9q34HT*p@950PPXscliQ)@$vbrX$p?r?*}Qd!bfxUEB;N zNXNbkGG83DPk^1+Za2l<^l&D=J2-zS?sjF|O{GA2$JySX`@f3h8qhenFA|`4Vh~4S z5a>vL?*&4)0+@cX{l@rPNw6?7=qj)?4CEG*pPJPMS5r(TyCAx|vj^Fz1&XpSRS$p2EN-VlU~E)tu?((y73vy~ zNjwE>0v*w9D!)l(8pYpTuG^Hd$L#G8l?!4+?K-#FXRTdL14b!>w4&(O<2_N8s%cJf z{k8h*=HG)G*&oX;$u~BM1z)uqX9Hvm7zS*6n(VGvO|^Y)G0*@}f;KU4bL3fk^Bp;r zu&_JeISETjt%9?%*Iprx;1G^Y$A} z)f}zE>O8sF_(I4N3=-yz>0p9bahEX|YTq3LZVX0ePg3q;7+2Y0Z0QuycX4Z2k6$5A z#~p-N=N}(f*U~WNR@^}@1<`1r5^7X=1X?w4rGW549Pa9e7>MMP)hp^%X-jB*&w+(9 zJGi_-S_5O&(RnS=5hOMvGIrf+pjZ#GF(4apF;VvsOABli^N7Oc4)XF8F1GH3HzL;H z)c$JSUFF+TMUV^^>+-3;VYj+|&VE||?D*HuiU0YzafeUFzkXi)&(Dwl`33Pm|5p6j zr|hqT>ujY1+T>bOjA^+3Y1_5_W<1?5tbdU?GWEA&xZiAjRrP-yfA=kMhi{Gl`EB)Y zw;;YF?);s0kim`d$>!W*9$DK4rFYAHa`uxOS zUy%6gZ{e@l;kWgv-f6!=wQts1qYXEx24v8&z!U|kF5dN}F>AY4buq#= z+QTfEIBE84aHDDmXQh)9+2=+aJHsDQU7#(MBrT2H;21N^dn|u;v2tDFAMiLK=8tTm z!G$%p#7ThyfN7Cp8oD`+GJcJEAm4>5WdzEV3J=OOS9hmfS)-baH7ia-mB|zzzrppY zkJ1NA$WsC%YV&H>6F+4KxJLDe`WxViJ*Zo({oo8DTZv{!6`hy@)9?J(@jqUfuwZUd zV7Q$uCLw9^YIB{*2uiEUZLOR`AWGC2)e=Kw@xgA630gQ*ET{5IXk7T$LXa0Apc_) za-F>+0-qI2VMy9)d{ZL6M4~V4;i}7~b%wCUzB#4#+5oq|8&~G z@;Hl7!{8$5mQGG@3}517Iw5j!@oMoT+yRzr-E2pK#6!)s2xrdrJ-NEriTiFnK}0<1 zVk5qWIF@K0PoUA}g&&y)bgq})9ldgIOru22htCKA~K6^Dhlt5Rn`7x_T=Ki$Gh zoG5&2uN-^*b^T8z6VIJH&P*hZ{ZevpxEPUA)#L~IpXP(xV>-Xwg*6=9W+Hw1=i=t( z!pC3uaCK+nwWmM)LFY3U;&AZ5=x5Lt7Ic?r;neBV>nI|zb_yj{PM<_=geBaCGyoda zbFmPq|3Li*%}#IKPAWR;kkZy&{NtGOOTWJ{xI$uls(c~*I!~O>lt)JW^e^I?gvC90 z8v;Hoi}Q4SWpJfj3@KV~^Ciz{zq6@6TEDJ-!`9buu&?ERzMlX22KKE1MfC!m+{QG{hE+g;Z{;x|Hy<+o~w4=3LyaiUzsu#b_7B4axoopYXwQ z%i1iM3O+udZpWhOSlkJ_8%TQHgi3 zvIxU)u;LpSz8eb_6%YBRi`C)aA>UU9*S^`BwjyUy=ZZhz17R2CgJBzs#%H1y2`aT~ zgk0faAO?nm$9yB?*yEtl4m-?`W-YBYZ&%)?AkpzAr4!Y^c%mpAAp7S*uu^=d)axVn z6GJ@ZTa3j>K6LeQ`A`UBI5=u?CO%6-pyFRHsjJwG2@VGz@(r2;gQ(>LW>mp-FYtY8 z;V>%X*2N<}h&qJDT35b>IL$>`ti!?k6cn|3t%oio{!m5G6e#y+T^p?_^_>P~?^K-P zSqsj<-g!BFi%wtMgzxOhMBnQhLu&8%AW93qZ|^LFfW0in8OR61X)dBLDhfs-0UrM7 z;b2+Kg>F=`0B$$410$6q$eJ-l-BgrNl(KqI*u=xu*?EMM3$;#v=14Jc)>U{@O(O zZui6)kup)ap?jo`$Zn&vfHFIA@ua2FN~yXBbq1kW6d6*JMv-;zEQNvi<|i#h#A$e2 zSHj~^#83kn6@!Fn#pi|q798yO06NW}8bpz+nS0|Bmk*?i<0K`*wC^@5D8w}!JnI`K zr?jD=$*`VMKuTc^lnJvEstDb}V=AIModq~HPyrqWJ8D>F&fV<{%0l@`I5Zsq!@;Az z0g;2+^TFot5b3BqRN_C80Dy_3O4x9qVhp3IZF1gmO*tQEw{OwiQl1AEqBx}{nu9fy zW7BV@yAB5*^DWUGZy{aUxZR3c^srtxY%ww;FZK}jLxP%bkI0mZrqj2`ObHmSe3wC#NmtlUpb)qxW;pO_D2CVg=4aZ9yqdLvDil=Lkn6*8 zTI4e;N}xe=Tq!Nm;aCYksp#TWfO9HWu&MhvVLDF=oSi3<s&3P15{PbV}t7Ue2Tz zM}6?EHL({?-y%zI_&J=@%L_5Cb6P|#*Wutv-yHWnv<--EWLZGD4c()w5-Dd>6@{kr zoHAXD(z`-eXz6}MC>Q+a^dg^@4nt?d!3PftVdQnMC}8OasfGi{d($}NjBv)o!bL=M4X^^`HoUi-HF-!E?zLHsEZA-+Pt1Bmr8uV+;(ieDq5YxJ}~M^CP>q<*g}+TSJeq*RIp1) zpRLr{?av&?_AK_>T?8PSM(-B)M><*H#_FU5=w zDcG#10GE(q3L|Fh1o(*%kYf=Bub!7!mdDNHw!1F36!jq6T2Wq~D6FyMEiD@@T>J+z z-euqJIXJ+Lu}x)==20EfnN4D~Nds*K9KM-J7)fF5owTc*Cc76mq%uVb_8{#Qug`y9 z#hi^$6ycr1%}VaM_f)v6%$%aupNE6b%3QpAnlj0Y$D)o5Fo+9X8-r|S;v%`TnL{PJ<8dnFO*I?Pmb}Va<|*spK_9$X5-@K{ zoB|*A%{Yg0BI>t4v=F;Kt1RFLw|B6h6h??@uRkk6c$1yNZX2A?tAS2HAyA1Kfy*|^ z&CX};o9Spsqz41j@4}okPD$}^tiw^>?-1#NIa z$yv&rs&p&j{&X9O63s@6__F$)51?%k{t>csW`+ zGtg3)3ga?dAfO8*ZSh&pcgA`Y*$>>h)!5lr;!6tNEw(nPZ?U#f3|7g^O9=%hS+);a zvPThNm`&VU^ws>VUiqtL9ne_`e zPC-4lSkSRv1k;MSKw!z)Sr9IIGg0JrF4k2Iq~V}3N49VFyN~cUBSBZIv1mGSw-^pd z*`gdWkv?{0yF->m`o78BZVx@)K!dTz!3UdZ)>QnQFbuW1nf?W3H8_{i7Zyv@Oa(RNQ>EZSy zVC4ZTqQW`~{I^SOW@h6jzChz~ai{BjTGfkCR69jxI~>}#T&EfC?^;jA?dKOmM)?6X z!ozBrQwj-HmM6uc$w8MkV-6RBp$mB>O%5>P-e<-(4y`x&$(|@5;%%ejT{Q-vmrFbR z+y~ETX09K|VRmo7onxM)L1zNK`6bBT=}Xxp^R4(u-~DVsYX{lj5v+tSpNx#LR@V3J zQ*zQH__S{nyHFo!+X$Dhn|7tyqnFbr)mIG8s+mZu)cGmsIvl*}!&h=woHQ2SO5M&VG#Dq%(6scX!gwh+bK(?!R2AeD zS?|reJsL&qlR+{*Z<+%6-t5PHl|_|tqtwOuxX$p%Rb?AGip>L`<$1DM^|MBVgF5#5 z+p@MQRlz!>Ur{ENjGSR@ zOU+ZU1pTWRr^vh!f0T_U`A}jTkqo@4a<9B{Cdo>CfRa6mJD3lhQ)psRO0nQ|#y)zKJ@`3=rcghgM0lonz^4kOTwLJ`tTd#>C}&d}Qhg=O_YA3xCGG zbl$XER@e7BA#zpm zjE715BSzBFx5s-IweDrU9uD5)!;@!&)cxB0uS`nVY+CA%E%6jhD~AeM>38`K5(mSWCAiS~VrpP^wlkglelNP?4^rZ7_?+i=0XR=A)lv4>~u<0pZ?%#z&UP-Z|h&VxP7W-MgWQOo~#u(-5_j zPo8_+sveFbM3bU5n}gt+p=m?soUysNqZAqK|-YIT{y6uGmZ zK~xYIDgoDvOGS>n%;cM-ZM2clk*kAV?qk2o0Lf8H8?59qh?gD97Syt9FwYDkh*#Mp za6hY((X4>f9l5$F^}9KURQp+2EG?-ElIs3=-kfu5c&D5r=hXU;;xrdgISh0^E8D^A z4usu4p_nZin`Sc=Ob9a*L!J&PmAds$|ZA@-5kEhW%LH-a|PA+M-_WVra<+ z$h5KWL!@(#vx8x-`sIU~*b%og?vOF7IosBoNS#`8)hVxuG=WMXQTgY5;xp$?8x;ig zSVqfz993Ww#7LR!{*b~togMdK+-Zj0gUZ*a)&MU2QQtD$-C39f(JJFuD$*-s6yhU z1a02=fa<1Vgv%s(va<|}^1(_>&~(J?+HnXe+mCL(%Rc~AUUJ*#Gx0lFa>O=`Yly7v zY`8P|XXLggB{_5RvRyAO2hT*3+qqbUIIe(3W{E-LRmO-n{$WtXDLQKkMWe1V?N(NE zRBgBs6pE|MubDHY(=cVDNxNulavX!mV729+4O> zXPBW_6RsQ!z{1VUcbxg8>8 zn4&;VC&a6d2=`kRHno-1sH9=h2HazoJeK>0FsukjNkpAst(&N3sBUpyYxgR? zi=T(vrdwW#ozZ3(3M`=ZA1XhTcQ#d!lm&&naflo;$_QT9+*L_Nh_WKYuVU^vu->hk z*o%kv&JZu(#`*Lra+zF&+LP8wV9$g&9rM#3pl>2BHLE`YlmW$QT5VChPKu26-RXj2 zIuw)R#fY?!3dj$u}&D`b;o zI#Azn#~Zh*oWH5ADh zw*sbEJH-E$cVDv+GMPIhYK6$FD>aw&O_6N3h%4zcG2(V+QPr^0P(>klhX+QN*Hm>; zI%(-X>M!r{a}+#-s8UE7#Upn?0aEI?;w|>GYMqyuA{p$l@?pU?G9BFsL~PFa0P#vI zvoz;?(U|2yyC|s(MmnqPt*I2`JJNz-D|DeD)j}e>-Y{h*|Ee&?2JZ;!mM04{daZT4 zb(#Ar7J$C7k!`I{CQw*Koi4dV%y8OUbF7Xlh3a#76&yC^LxFof)eS>^ceIFC6nY^f zI~)RD1tE)7J9Y`oLuC44BvTL}zZa4PrR>4=X13?#y((EHQE$zw4!h{cL>Kk86lYg@ zKBu&ZY@{fluId%!`#IT7n+ihaaY#=~1xT{R!;h@$;U$7>{UF(c*R5u^{lH@yEqbah z7e2Fz$J&!m1H>sMR;Pk=@G`d?^n+ZYO1-p=H~cmM?re35G_}?Lhz21YqB}k zpd+gkUvAPq)-$c4R6!DJ$P6kZ<$W$+I%lhXKvE@Bo|9#)G-P(2#RH2%) zgeB~AI>SMBlJ;aQKk89`@n&Ep4~37J>P*UM%87Nz zq<$0cldHh3H)1gXn+NY~EzRzGrw1SJO?&xG&SfPkcBfdG6D+I|iA&)=pSlOa^=%-2 zHks-O!{M2GWBwWE&onQ}n9M$jDBLm5h-^{sQhdcz!nq1_-W#J+Inw!VtyxhzXv=&R zhTMM6WmG4TZd!#1IfJOjR$`S&q#BXPe=?OOdB!^C)a3oK< zDNOPakF(dXX0X)xtrVR!q`Sz@a5zg+?qCww?{+~m>Q+ev4rd73p zv+vdACg3AdfX_aDx{#n1Jd}zH9_0uxVC#1TrkJf1`SyC(a>;_FL>WqNyd|4Ll0AyL z;`6}(Q%^wPMI3wH;>3dm#3ewSh}x(-y579x96KHtz0n$o*dpnCNOe<`?Do+YM@1by zpxe57_GyR02{-!=R^s4-u2b^ubD)Ta0&gYlO0J|yE|=(nBzb!66?X!e6LhRD)|K}# za1Yb82%2fn5@Loi)%^hK@>w@*;79bsLoqYJCd3-B(kog{?B!jVLO0A9cDInc__a zWWvbPyHT*o>&&o#8RnhUioqpCWYMeQLI>?~g<-kOXCZk~{Xt->j6%YBFC!!chmX#Z zJ&bD>oX1p77SZQ2;z^Q4j8bhl?38d~|DRX;$&9k1Ly4MRq7(?cet1q2T0&P<%H!+P zNH+izOwmg+qE1dTG9XD?d6_I{rc#l!)oSN%7a~OS8;)^ z@tQ85=zYl|2gZ!9nSA!!lNjkM`bNjCdj8jcvz*O%&Jg~gb~Q2`XVs;_z!keuH-Ce( zWj?X1Q#jR6$d*Lh5NX_7eCgD?Rr_92ll&>Sgy6j089L4cs!Q>t=h#LS7sNC0SiO!5 zR(wS2QuYi*%vvDH@>!Pq^$HVZ-b`9RxQDlHrG^lQX`jQ9&<{_zvFL@xRYWuK^i#+( zo2Z?HdF-^Ivc?S4Ya2Km(RX;A<|4}EN=;O+JWdKJAFN~#K8a$sd`gMKCBgv>!v~w; zU0oI{cH5bY!h3Muc+Lb$79KNzKY-rw+b#35ar-!2#t0~;?d1rDW%{sa+7Qp`*!uw4 zx~#L2KB(^5NF?RpDo3{x2GE!N$#!wljTda(jEqLPE6|0n&t4YD4n$>P-m(AOOlCZX z(#Gr4-h_E~u~TTNV%_4Ri^n8THUvqo3(I(Qc{}X38@Ms#RkacaYTCJ|qMLaxASC68 z57+K|M!mJFrnT2XF`U&0(X^>bN_pOmb0v!pU}B1HXI1bXHE(d-`7k%gU^s~BB*7UF ze}%@Q{M@RWH<>{(Ckh+iENo*@$H=`Nh8!vwvy^d4+u@;?8J08b z+XsAjG1TlM3Dc%75<}K_U0B)7laI9X{`crx_Fl$0!K(PoLW&R9JyH|ZOxf&)eY~)v z3a7?C_E=|2m~sas^o@($8|m4XM(BrT2MBM3<8(>e6G4DAxRu)1R)+ z?CbPTp0DAc?W4TJ9=T=reRFg>kJaesrnmscs=%XQjq;G0D)3?((^C%@)6>4m<=}Iy zhJ(i&Msr&aC^5}kYs0Zy_Dv9L9?dvSScC^s{L!%#(p;~OI+3|=8mVxSTJ<(QS->L< zI1uzkP)8*`=(l+;o+K$Pa|X%o#a?kinfE@Qnc4XXsHWdzGzXyfv?iDRYx(6 z*z-GD5y7x^9%660W#%E?&+nV(weWOPJBebIUjrBaSvZ(k=bTsgz30~5dLMG#c1S`* zB2v!n1e#POV64UK!*o|M;T1}h3&-5Nyfp`NYM{nkq$)0Z^`Z$@$2a6rPsi(w$fXy7 zo}pgwEv^HRstI3Zc1DuB;XZ1>?RMJM~ZA!Np%j&`%WxSt@qwmuc%+PSeZ1x!&M!#%dgd?YXb4*~->8oCi zSW9sQXL1+nGv;EEbWX_$wkYz=%{CSrQlHApIGjoQfH=)?h;Ft*M&GiX#nV&Yj&`Eo zuC|z}vP_m-9$4Y$2a$FyHy2l|%pR3p zwiYFKi*GC_{IDo^iV9`Pz_-1&u}B9Gy}C#YL&cabihkgHco8gyrw^L6n1|144)dm{ zwQgiKCb&*@IY@MR%j|kSamIbK{)tPG8D0)RNNtg!~_tw&p)iDd^X6@>*lnJ=A-FyQb0VASKtx8DoWM12AhPPBcp2BK%BPzOt3%7qEfz zJi=kbU?%05j?hAsQk$os+4Q1AKRXBh5#ffdsF?E(bJmfZ1Kl$0B3l}D)Z|Sm?@hwo z6bA-gVU19^BXO&j+K|@>2PB-)-l5XnZ920>(iZDMx$0)LcoVsjV!*fK$sWa5!4$-K zqN@V&8?cM07r|Z40!s+W=qCArC4b@U1Oib>i}hQ);w96KAothQW3$Zc!*c;BuikC& zRX$@YrYjLN&~lc46jkD#qb94p#V1b|8NFqM1LU9r6R%Xy2?`N-(=T#>lBx@{-BC%t z@scRPb+JCwej-eDs~b-`MF|Rxbz9??HNgRM1C zZXv#M?9F{it}F+?P{z4o86&3!N5KaHKby)eDj^Fj!>gO;K%n+JrbGvF06>x;asn0W zg4EBxBcINj6FQe>)Qk=wDaC7U8{z81kZEIu@@f-qdF1Kl2(G3c+2q_*w_?4&fptp^ zEXzjQ*Q$1b5A}nw=`zE}yctg*^I{+uykV0Z+b&$u-ub<1L>d^k-3UFqE1e;uo{xhz zA!f53(^(3qlbDcD^G#w!3h8Bmb@W(hDk-VZY6G(q?I;dSbRZ#pyjsG<>_?PeePP&F z3rOFkLgE}{F<8xl&$yye6K{5rf0{Fx63j?v1p4eZqh8AvWXLWkVTSXu1DEdXyo%dp zsF_`)k|0M1d_CyGDT}8qA=Ja&T%BR(NWK5BgBznl_sX|At|>#k>E8PEQ#JU{<`656dFUA7#b1j7e#rQ#UeKX zvrTU&9+pX0PTwLg&O#h!@6q(i2+Nv7s>Sup<18twikpHOCG$XI9s@L+g(S8i*}Z7O z$tG*+UPTN!Od*xdT@NCtbh@{BVI}4(+ygv2iyW{9Elqe89HdXQL5%iC`mr;wcCjy+ z8xuvRR0i+~XK!_u&~TQOkVTD1y_RJ{mm}CnqTh#uWDg{yt0aYN**QIF))CoBy&09U zV@|WmH9`~`3ZOSXWIv8?+HiS-PZTHYC8_nVu7Z}r8W@9I8a9Yc3F~Is->6t$0`Zo2 za2Z34?rb+?a&LUQ=TiIV)dX>4C{L&q*HToCg7j0el zwW+3TP^;a5`<^XzO^rSBHcQR07 zpcqF*`&I*P0%jBlGh8P!tH7V9@OzHAYo=HZpAEF<+j6hqUBSz40Na= zb4^ZP^_Hq66wWUeU4?VxfRYUzev(4#P7g049F9|io^47wjhyrepeVk@r&CclJvBNS z`#sImE$Li$x;!D&HPeAU$?6E+$^!Ss-9JzOWe*`%^b_=3%wjy7sT0Tc2?^&*_vFkN3j|}!|}S1bI28Ozfnta zq9jr@G5rKkRJyHFe9buD-IfWe0Xf*oe+kJ^#Zo-qMnL#>$FvoLJ+OvsBR-2-UBYtu z7Mt=QNVeE>mgAdmLZ~`@Ss+6_M&rGQYZJzNAZ=q&-wYRLVEP`~`9^cw-HI7=l3bOJm0URj9}{^pO?4-3v-tW( zx7lJ10Z#CJZ(^Tw(!A($Gzyf7SVp-B6U83kyo#8!{pd)FhqKps()G;(uXIZ?YTx9N zJ&Fto4hL6>2eJi!%|cj>V03x8yGsW?*lxRh9~*)=TUm9L+)T)B=OP0tee9;!y30KB zRbiae-^(HkJAr)7UB$b9SWrNC!$uP+irca)+Ol%~(7q?MKEs%S=YkqZCoM&3;waf3-Zf0u0$#qP+Y-KgUdam-eK}s!#-0CHC6YxvtG01FkO6L_W z)fJ^%F=%ZBRjF8#ou{_%$xlGHJ^3hRwN&ZjnK(Qss>@cYa=cQ)$m{)cK~0!`TCLz< zcrQriq?%-|k^9J$*OfJa2$fshO(t#d6+D z>~S-Mp?Xl;JTT#xu5te?aE#HR!d2;PdK#}LnG9jGRfepepPvV5wTOUZi~lTYaFqK* zd!PGAk5vh~qyt#Z}m%i=7&nD3c?|`uKL!Kf*j!EhR>K^dKQ$)6g z64)m^Be3+>^PUwWV%6zTzUS<61nOb#%n7Pqc$5%!BSg9`I^)aJFwYnOXX5?#ruJkJ zNql^u6oxz*3uy|@T8YKYkzj?IJ&+SR+YoZo%T{S+;*A+T#IlR}yxt=<+NW5-n*xnU zRiE~fO%72OpxP7f{(1u-nbu}+ET-pm1Ll~Ai5RI+Kq6dJ&D05|R|}Eiyo1;3=t9l5 z0w*EJrqn-DuUO3DDqv-j`LWKLx~}D2d5$d;X}o_4f3L-q!{^Wvr-Se2I>`ZH5hSUY z`%UKEq6xHZ9wk*sGDQi@Rx^`5SbY^n6%NwFid-j{%9!JQHap%}@QGYFZ+tGtHi#dM z9r?7hE|5EJ%dOkeP{<={?@1=nJaayn^#IQ~9vAm92ijIf;*^^z*-irHUP^c6-GmCQ zsUNfqIlTnZ*AYGtN z-y#dC^TFS2Z}EiD*Ko6>-`~@@#@SJn>E#9ZPOHS)o;c`tr3wC%rDplHz0wYDEg**& zDuOqVWxVvhtubw&Vz_dpmYi2Wn~wVe(U*U9kbPFQhlOC455jk6ee@|d;SA@pp)5`B zN^{6HRXiM*PFalrihID=I7s+ZRo=YdykwTI`4Xl=p9*Jjtz(HfJjNTSgCH_v^F!Y4}@uhZwX~8=c!xbO(2;48=2^w%q3>uh;>D8wt_sZ$y-ro zu9x*@2@$uw$QKn%AbEs7U6S$bnA@&v$>h{DWJ|V7*mB3rVQkOh&K9WYZr{=J zsJ?J`%rjFQZbDlLE2TOGGG$nrNxd-x#c5VwZ6m7jQ5%R5FQlxkbKCh?D4eEw*uMK& z=2p3#kwDPwx7x%2lfJ!m8jVQ{?07@2jwbCL+p!I>ALS}DGoYk-QwWlVs}EeVN3q#Q z0ewCO!-u(4G|w2`O1F@o&Tekti8fOm<7jF>c)U%gkNODMWq12!8oT{aG8F}!VCi)O zyutvwm`z7%ZCD*;!5K$p_6sPFP~9;x{Q978sW~(g=F2mQBh6%VtS#S0 zCXnRPWXgruY=0lFi>j;hDLVV8htfBx(LPAg;d8xGnbQJ`OWf<{O(qkcO!vfC zACQ`*+t11QNn$O_xuZ5~9Gv>u*x1<#S<`AOs0=}`eA!2AE-B1#wRA@pOZD1T6L2Y1 zi036e?{-fD2DzB5z0AUT{zISr#)&0^67v{vSiNgAinEuZ8F)j|R#BxFnETYT3n$DB zNee0dg9)&Ny`LS(W(E6oQyO1Sa|pzO$%i;+4c4cn!i}@WE=^V~bdEf-eZS3h4^DhH zcFd$xLC9=F#96TyAr3=N1R=rEkj#F{cd|Vy-zbYs;nwcbCiHx=`f^I9uVSP*^3C80 za56vQ$C?sJ*SmFO?Nmd!F|f=M6dO2Nt%QwlbaKIsc0cT+A8K4dQMSiT%O3jc9c|zeOPd5YV;Z+ zh!bQx?@^f1H7|Q}YX<_v`-WJ$_eSS1Vevb-eW3Jn9Rg7=IZNumh%Y2l(L;xnP<4)N zmv|+!wxmRpHz+pQ=|e?yFO+?Ks!Y$;E@JJfwN(elLu<=Y&`769PH#sThr~RiBjq0E z4;zr-Fz?yi7cKBEkH5pCLyj!tgzGo-Zma*p0+x&bn|u4<`cksMt8}@CGyCwWT<<)A zsw`4TljY6La;t@>-@Ji^eQx-eOFd0gKuxJIYh6UXW!gquWMBcjK;AO7Kc~=gj*~_E zD?V3Vr*w{BGo0G&m3B9R?+4&bTIks+6WvdXGi~w;mkz1TDt^_2VACE+;*8HTq?qD4 zu#Usfgka7?s*aHMQHFa!+`AWeVj8*oz_<4_XVJf-sK6<;)ER!+;7Cc`6v51)A)p{; zFg!OrHn>!!z7@Mz%hr{bpoW^hD)8)?haY|FOtDoRZr%1a{H&jc8}~lRr~eN>Jt7v$ zW*upTti|5vz> z2UCYom8?wYN$JJ*4P(d_WDx50e1bDwOa(JmIoN#n$3$;>#bKvvuKD86`9(TT+();~ zCujHn#PvR!Pkxzb(b;)I4r+gJ*FNfa-Y_$teJe*A`7BP}pwKDfiO9xwU$R`xXB))c zJ%T+m+KSEjkk5Lxl5(?}puN2$!a4X6D?Fa6Igo8DhZ3UGR_2w#pCR`4=2?)c&uFByg%RKQ-;twv>{lN*OC?NlcK*Y=B zcFVXLHkXOM4xY6Qtm=dNo^kj;E$|=sYDb|`7fOYP2)`8oXww3uHz&atF1jz3E(oQY%-Ap-^T_Xu;QEs;A<3fOOx{$^UP)UXre zJwG!~h*K2R^e!aDh=+8_J%(K^b88UPOeamdpak4$f}4rIC3BLyG_`VJU%1rgy?;N*f@~Q8xg_ZPQdc&n!{SOa}d`Cq1T?CvZD0A^1E6N`w z$OAdS36cIOBKAN8+?Z(p&I6lqLd0Lr86SusN{ady3HRj;V}H!59+%5wU5c@MzLO}C zRKs*$F$N&d7`8N*h^a0Q;pRLR!-u6XLwL+o4NDpBmx#N$tgF{e4D@HT1LiZ3smduU z`Zy6NasLC}sl+qEGT5(?ETqCg`e3dPW}G72R)^p&)m)b-;r2hn#BP2Tq-=t3L$8r&5e2~V^Oiocrk^d=AZzfIJY z5D6aov~<7Tix-6qsov56qF zUisfU2yncjBD32iIB%l=1c=mE4+Y}C<95#s(Z%3XoTC^&)9(xSgwG_%B%k8pI0%re zfg&L9BS>#uJ=$ecR+SRaA0Pt6BQS!189<|8l|cVmPTc#*^;FPnD9_GoWCHwmNe$wI zI*6(3m&gV7pAxqB{^C>8U8#JttfbFCBg;RVhnr{%pzk_(P=?M>kQ;cUw!ybU~@gcJ;AYW+Snr-yyo zPrm7)h>igIAn_&9vQd_xukh_lt+pDEK>I=q(ydiv)ZLIUWwxyYFSY2EGrn2jbdBfJGCWr}2GUqysX&tg?c zE`jv-Iko9otb*k1G|^r~ytx8dU%wy}uE#$kKQ4Lh0Pan8`I?Axz0LF!Yb?(GTG ze?km;8AxuZv7_d*Npa$#A7O1dfo*hgNu|QeKuV74L-s7^I14gku)R>0eTX2v+nsZ! zm2$hpi3+$A+#9b6kr!MYWz|{5wX7lDONinSoeq_%_%INOa$b$9OGiJ>rF#|JoO3m$ zBAI1s9~KZi{GWvFwVWq}?NI2ClUL7z2{T`(w581UTS%_6l%qG0?S*84yFx5TOnADz zGjQXZ&I0(Si3+a>%!}UmtbPp%%qyQKfmOnld3{R1hO3@sawyMJ)5r5)6PC9KQqIX4 zyt@yCaqW7p-%a@5TGErk$L&z_M5P=uJ;IO7x>b!B8$UlQFYr9lA_TR=6EMqpMJdry z{_=j}b|#onDZX7U^ZZ}43Kmqv@vy5m2-fSA%Si?RJH}Nm=5EcxRRFYJM(IVBARZss zk0To=A0z>Blu z*@ZiH+}=&fm_?m&p^u!8PZ74)(U_A$T-c)|eKXNAi(W&@C>a`b_2pkCeZb+6=sQDP)i0Bvz?-hfUf zAfLXh@S)Y&m(n?57TPRm&~~gUyTE^x^Y(MXEa0Z9Gkqn(0u#I4=Cu7rPA24$H%bJ> z4-%kX+GGK&qpBFn2QjRtt0BTR?>4CB3G73JJ>3Dqn^2_+CXCl&jEVEhq|E84iqJMY zCi3`a1msr|vzAOiDLeD>^ygdMw8Z0Ycpzu|eE$Q|(sUct!RsI?ub|2X{cXbbYv5U! za1{YLi~{oC5~SY($pg|QCe(V_ZL@Y)fcmNMI)a^UpS>shcc^oE*`t%W=Ti%u=3;q6 z3$(jQg7EG zBthOc90>9NP9yK31DPIDXJvX<9tidTZdu^{QyyaP!I)$>Sj$l0{S?vX70?sFb4s5I z)IZ@Yy-w^YpvsFw0{FWL*lScz0k|1Jn~Lgxn79d63(OGPr`}KjxfgJ)$URp-qebo0FWCA6ahsHwQAg&}0~1LIcWc7EiE0cnN(O z50eV^zJ$y53hqfDHg-@=OaT7SLGTbfK+S6PtatYR9>jj&trdaxSqB2`tj?hOql4I8 zw6EcEz3S5hw4&hY(y}tmpQE}n>jAEzyrO`+ zfUBMzT&NGoN4e-(`2lK!%jEt$q0M@L^*hD_@i$2{UiZ-io051LS>S%@LC`iYzrY#JO5S+fw5@qV;UJC+UYj-ARGB+7D{E~;NW9am@F*uZD=9WB zEkWPca(c6#lV%WUyWjzWn^hknIC-91=6IGsXI^orY4DDNAQ)EaT$I^8aS#NfDt`*R zw^O>$yd&YJ7AL!$o;Nxq{xWmdHw6IHLV!}lmq&nN91 z6jYm$Up^oNsJR-!`XGTG)Kslv{AEPztg;4oWg4x%W*K)Ar87fBWoirYYOZ`%v7jDb z>@;DpI!WYxdVInKJ(-JpfS zLsgUWU**2cs{N=}hGdSvcMy1tuU!4BgYaQmzu653AsJ)0*>`c1XQi3wRg}6`ChET@ zxLFmw2qte=vxaL3a8_;;^*2zjwW8_gsUl!MMzDU<&3PKZ>za4k$E%IK$mRRh3Fo^^xVWk3R#iBU z6y)cO6G1g^fvKbODV}R!O^~zim7{sfRIepmzi60bs)?!! z-*qtiKT>aDkJRdCN|Vggt;BF8*}6B4!!0tANvOUW4Iexh5^$?GTuPAsIKd-U;7@b%*{^?3JCGfx%yBm7wjfouqmE3VZCTb2lZb-34i{^D z&v9)Va~q7#AbsAJ=Zi&*lqj+B^YdMpdcjuq>v!fm66=tx$w)s(mQ|nIW;st5%6R{q zE1Ta*#$ycnB;Uh@&2gZH8R*?STk|{0OiPNKqx_-yk_N2;osqFV--U4?cVVZvu-e=x zu~$b@X+3Oe5AyF)qO|5e8j?HXsy|}7eybioC(V1Q(*;-+H}r8AsM;z#ny7V~xfVd{7(kZ(u1Yx)8XmMvSR8LXYe z-aqF^+0T_vK2qZ9|34*{isrCK+vP?SbW0lux&?URHt51PT}`0!ZW3d4enY$4c7kJN zOPR@$*}~#>1C@-_DxQRz|yZ&a3L_T(!MU@}E2B=+sk$e1Qe>Q9Nv&&ZH?@LUMx$2sIYh;k?FZs2~lD@=ZvM44^OI_}s^ zox|x{#FY$Hbwn2S6T)yxDSR(LV~}a z=aHM=vJl7El7W7f1I>>rSQamifc|Te;8y0Lo)(9dun!*64%;lqB+DDlmprPCn$DDa zKHo{6c4^gydH`G&^{ewG4rB)FAm2}NQQ4Z!w2P`4z4MPq7ukC5)Z?(SQV9tc=5+nq zd=Xf)-02&Mz-+r~>VpD*HQ|D*=CuEV$eZ7qkmhF9 zv+w0l^OO1Q;B2p4>lv=}N8GIW(K^L2E_%rc{`UD&Ao7Z|2ziSKINNrZmI76Lu2I`d zypr-iIp+Mh?pXvlbYkVN%vX@SX2aKi!GT`N)SPtAL#8fmb0dOkzoK0-zek!Lv6E19G};ZP%c^&VnxUV|891~wZZ_!-cdt`7k_(r z(_Q4`+c{+8fLRp_DLG8Bv>kNYfsSsRZaPBFyn6^I-X1%TQK{rGsWD1g{y&kZ3w+?Wfz;&~GPlvYj-OZ9;?^^P>qTe=?6< zhgoCtde?Cp*92(6`%d9ran>AQpg4y$k*&JMMwjqr}`7b^bqam|K z*7j8#Ejv$Xw%ubMPYL0AqBU%rtdxg1^t_Ju&LZdj=mGHXG$`T{cU-kevDd*ZzYYVN;=TIT%<)N~p9 zajrZ&D|5D$Z`YYAR_c~@X!U*$I&aRj-8F{K1>{WGj^r8Fh~e-Si^1y`a8Kt=(XH|} z3d8PH8MrPb@5BG6&&0k;0$|Aor(WZr^A-UJ=LAro_1SqJhn)A`s*(utm=AGpU!C)L zl`)fx{d2O(c@Kv({3c%^32;arLLJsdEHFCj!8cXq5uUumuPHz3schpg&W;xvbIXQDy2kyhT&#ozx0 ziN*U?L()4n(E!aQX9>@62|0o&lZ}8!qdQ?EiXgCJY<=H6hBCvnn@wk^Cy2KkX6!_( zidtdVtCte!`zsD~(CAYYlUwEPX2V6_Kg)N7+^f===B3-2j|xV#5&~oDalmW_>B5+F zz$mOVRC%8gF0^R|`PW2gHmjIn*dCsMfP>4p9eMQwzp2N1XvbGxr7e z`BGDeJMJ<0ek}*hPM)3~%iXYdT62P*CCkb7@k~FKvJh?M1)D4N)m-B|x?Xkk9z zLHa>Wgp48x(=U-jjcwvz5wY{!#9r7bX;piLW6je_gRR{v@g|yPu;0%C=c)6$=l@@F z|FWIT)9+uu-GKFgH|N?>P(jftQ^NQBd9QNEQ8a#c{)5G~*)Q<)WvAe)f^M0P5-Izp z;{AyGboF)M@8hl=>=2u%XWMax_$IC*JD+TlRUl0fMQJL5Gs;(UW3t_|lZ*nt9J{OF zr|_unB(@HCkmb=qzL9mN-JTd%zZX%-n0+v)FHU%R8tg%j1K;MAXi6*{LJ{1`+-xb6mD(WLh!0#uT3BZT5qx1g9RJmxIGw zHsha@6J#rJ5Qe=*)Z=Rw*;Eks%=7&SK&cqom zY<@$v0=TiYQ~74b%(B(2X(}Ek>;~)bzS>7^K_XS$ssP)GGVsF`%n4?x~%RKr2I#H0%)Hb z*5*<*Dj~TK&|E-FJu)qlw zJ1sOM>2&cdYQNKg&IMhl-9ceaz4zb7c}|PIN*OWaQcW|Ne@65@G36vH2o#y@Ct7<# zC^vC-Gl7Hy6|bYmR^Zm_1nDg-pM&<`kLe*74QWihy*N-$YW7xv&jYdF?Xoo627=T9 z6(Uo(ug@)i-;~&_2DNg(srBodIKOF;h+C3jCxSW68tv^(O*KEkt^UB2ld~Y>;t0=h zu`|Q#1m@DiHxk~%)6Ne;o1XS6ejRc5_>_QZVZYk|tsn~k`M5&S@8Qh6x?m1sF?S%% zSw@DUycilyC( zv{HgI>jt#|?5NB0Ug>uu>vmoyI;UN89jS59qx2-hS$0N?F0(V1IE8@z9(U%+DbZ;_ zR|8adjqja&DRDY0OqiZ7%x@sfX_<(z<=-?%$Adrajn5QFf9C57Wk+8Web9WOFlql8c*`OpxbMsh75Q zkpZk(&ULe3U!MBxh85H-x1r)6AVlx;Y&i}bnYP-=G12m61pEAyo7%y{D*MT;#aWPw zjYf)E7Z*T`ighy&%9$zWYQPzBeGh?6%MtO=k>C>-2928azbIL!mHz}7oUH`Pe&y{G z1m9xNKQoJ&L(qod#vp%smQ$!eT9x8Pp2BI54ne`)0b|4@>0U!{)3QSY4%O*HfGxui z6DIpVx!!4oDxs3YQdT+Ja@j1hfH3jUO$DzLI3WKWcY2m-B7~11ey`CAaOGT<{)dD) zE$84gmB)OH-Y?_f_J+1|FeCvR?y8z`rCq#gi8#<0-G7WjOzY9$5WQ9h%Bm)TCkgGL zY1u~{HTV$WOlvu6B645IJdXrFHCq#+v~Lgp7-@1^8(wacXc6{TT;|mLY{c_Z65UaQ zzLB7(nzKn3n(_m#J?O=(H+@08NU*w~-vZFB9gTB>|2J!#BBG(~4M`s7D-D2z54`jtj&K zXP>G^B>p8uqW6{4+=%rH#lPWk_hv9n060r5eiLyr?ctT}O9;jS;Z4hqRb;)S3`Xsg z|0IvWw07c7tE{hk|2Lx2ze-bv))yDD^<+`)r`&>bJNW;oy9zj|sxM4Gy1TpCr5mIh zqy$7@*_dT#*kXf5LCNO;Bdi#Rf}(^13c??xl%? z9L^bsJ)YH8Bc0lNHO`yD4Z&h0i4BHpTMBz%U3>O*&blE`o~!=|?eJx4C_FGC$S!TC zU*4kFnY7LAZ?LGnn079=ctjb2&w|*QZH~sSz3z9;tT<5+ZD~SW?RQWy+T*cvHo0r# z%#5`yjY0mKXf2`>zhaCfeq!58o*HR{+-i;xP8l)32ON&HXwJ7zn!yi_NO5S>{L{1R z%caZwy6}FCH14OXW{6|D{85wcmzVji;%{EAylTCWuJ$mf*}|Nv0P&PwJl7OY>qGRo zxmk`@Q;=EB9_E@+hq_IN@zlLa2@%^eVZ-o49ZlF=%Xg7Z&7YIWrZa?Z7v^p{3Wexi zhEvANw#)SPd~BvJOhT2_<`FjD4(r zcr}_UZ5WKEOu5>>Z(S4RsyY4Ir^Sg9u-p{b2R5|_M^{S#_W^PVl!eihDFJ!YpENu( zxKoy zj);iRi8qgfcfp|M*lQa=E9bUy>}`nS3T*Ng zOlq#tY=bysQamgan{AeBHp-$zHHS2p4D;niHi!5I!tTo#s`aMM57B{Nz6AKyKyjjo*ZR;e2a@^n1sW3-E|-w?P(zwKqb?=V=0*E0 zu=w)Xjuj7AbmseQ)}>G?t#9am0E?Q#oNM_W78o5k-29%zx27E;YBT#1s>#IU?bEg`rUqff3<0k5Yn=;ig)%U6OVjtaL;c zHBWITX+?Bi6unJyS|T}`&#&;5QY%~V$M?hZw`q7I+-o0*2`7jn4;r$Y*&yj*Xx(w3zX=OSmW7n9ixm6pZWugIU~SeRt~qGRGC#fRJ?qT^&a z?LnekZwqV(Q91OWi)iVZQ@s=Evax4vUF%T#uD5-h$+59#?&0-OZm#Fo!J0L73sHWW zvp}LZu#muy_UUc5!h(@a%?2wrhC-quwB`Yp_|ZcP92hl!Y9$*IrP(-=wFL#sH-7@dDC$u3QY4+ZnEZLb>^paonXYhl8OzB4-GZH z5ZnSKrP;SFcavyUphf5>&fZ(D3fP(w#?0?v4?+$#OWhKAvMI9}3umAbHG89z=EO%u zu&U#E@e-_QHhL$m*`&;XQqyb?qVsBJF;3hUL$`*BwG=1ly+qqX@#?dTmd23FD z)y{XwnRdfW-VQep7&G_eA7D;%l9sthDp}T4MZt{b{3U+fBz297jo2?(oO-ofOfVKD zulZ}*CWvO@tP#SZ`1C4QC6{# zgeN}WxM0pa8rDgCG<4pYwQhT)M9Ia*$)h6;Q^cCNnH)+9YvL70ZX@SW4Vu3ylepx< ze6NLNczukv;kFg?+P*w;rrFh`CMU63}o(_i51t3amj2zYU5ZSF%RUSA66E(iM*3`KQ} zer;u7J`ZSD3PX^FQLilx;)NT0Gs-Rr(@+tWDG69|=tAT9A~-Yg6NgCjL+K7f*^b}E zXkRIb5I9LF#xXJ2ai7VCT$WEFfL(%~LAy#4+SboXnj?roipnJsgwMTkYPuuCNh>m{m(tb~FQkgwS!81OA+Z%S6+=ddYn{XsUws6w zPhz|OL7f|jV^Vo3Dz^D!#MH>zaY$`dP2(1A@y>x=ql!it?ZU9UNF~!g7Mavm75miD z;sPWwL32v-Vv(R-ZsK5x_+pkk+m{ZpYnPi?E{boYn6tJWbyiw4YobR5MaAmPTXTnz zN}f|4i%eD-t;xB*&6S7`P1zMoW)yrw&G-_x5+-(mEGgcKbnwpu=hG1zA7r_q$6Jl7)ZqFfFNPmT#_wOlKCwPAvzsif;F$U@*#L08)>ZNOl&Cx%xMvY z1`gpWT#q0HE&jN+MT~sbUyfT*Bl)ayoE8W)-(B+tGGD+VjEFLilx+Kwy;yv#RlJTV zPKC>cb{0vpW;RAg2gL)hZsYLZA$%2!dE3(P4~o}^(|63pQYiox$U)j5I~BEqh`VUS z)m>EHmh$`@`iVq=mLg^Y-2E(WUa~x{Fd|4&#TEtXRUFRd zr2n0SE;1?JqSu?V`8JBKyd@2mX5h~&jlgKVT%FKZ`!UL~SYq0;=BF8`<5Os0fx0wV)+>)Hn`$( zgORknAC}8$6pAH)&Ank0psbnf_(+;a_aH|RnVYpv!tckSLuuL7&q zE^943EaS!3)kHIj43XLU4!V^!QedZRThv1lqC_GgM7_vKzB!Vtl{M>c3F@u!i6tOX zd?QNSOGXtf#sljma9<==7-Bd=?+`6REYr+wv_fJ{Ph5W`#%3`A1nI&=RAS8IM!g&f zDr1vB%qrFaI4C?S*gW24hHcwHgjA71acNhe^>;ZN-i5iPf}>%JHoxR!T^#&|bW~4N z-SVTKew@)j$kCiZ@zi!QoMjl|u>FytdQOHl|6~Xd<1Yt4jwD+fo^^us7iTWSSuHV} zS{741pldA+8(m>HG9)l2L_gAIsEdWVwS(KJ4+|R+fQLcyA!a&c-#YqRXJLPv)1Jpr z6;^BZN@CS#x!miPC^5ty!_1+5Is$nKLB2+#wXQbuzJ24~~jJ~zI&6dlHQnwXa} ze?i^f(p2o!MQu~@perIrfsvM<3jZNR4HF4QkF|%2!AUG!EG6NX&Iu?!KWz&#ESBy1 zQ1Ponl)lW}0EDXLTqtwYGUyouwJw_Mayl$b92yCU64$;_KMs+*w~r8{s&;JV8)6*u z^@}K(cwu6&Oc_d6zxNvLSZF6aVxrg$#ex2UUkRYx@GA-QG5ksa zeIu+HN&{5@Dg*RCpt3;6MYA@P13HNi<$(r5S^?-T>{SH%2dEOzaG=USClI0v&=2sd z3KWE})qrAw{D9tr)E{UpLR1IJgg-U#CoQBkfleVUwSfKyz1l!u0M!9n2zzybmcXwb zPz|8^K*NC=01bw{hCof>*9fRO!Zrq43276cY@~ueU%~GUpfS*E2J{}nHV4WH)B@;B zNLvE^1iw~5e(-Azlnba0AxPT-okot@0ey@(+5_EyUk9KM5TYYcE1*t5+krX*6^E5B zKr7()CQu0cx&kc(>ISqJs5{UHKs|tTKs|xpN4#$VT?Og|bOH8y1KmYh`T(Ve-`haN z5VkMSefYft6o#<8sptP_O0;C7h z0W|;$1&RY21f&9mksiY8flTl-0NsS&V4z(<;XvO)8Uge-P$bZYkVXOZLRzAM1_KQt zKS*PMmIB2Bm4Gx3=nweC1Lc9=P@uLz!+(TmfyM%rhjbiJ4B~hn=nqIg0D6GZ9S_tO(g{GP5n>`xCiqPPx`hyv zf&Ae&1!x)cRG`lw{SfE@q(-2MKvRL9B93W5wV^j1=rY2ZfHpz;5l~X(KznMU@ z5F!DnEuSNG#F?;&|IKzfrbHn2XqKw7XWpJ-$Fu&V-Zkepv6G# zApIU_4*Y%qx`wbzfbIh=1sVgi4Co^CegtX)^b^o+NS6cE1zG_#5$I>2ZO~f@vlr@Ougr3BP}V-T?X!C?n7_pcAn79Owa1s!ZZfKcLh=-@r;5ppSsk0v!ZO2XqNm z(gR&Xhzvl}Ayt5O!!IMy1?Xi0Dh|KQKwrTx3y=xz8B#?sQECn%FP%f2$(m+}Ts5hilf$jiR1G)$+en8XV=MOX=A*ur%hF=Y!lJKhu z6o?SDfJ(!!HqadS)d6Y>R2OJCP(7fsuu>nWBSJI)DvX>r1R4gvMnIW>8Ur0eh$cX( zVWlZhAf#^qy#dq=$OOISK$W4_0w@=xErF&&+6w3+NLvHt18M_QA9`(p#sjqj>W2{R zf#QKW0R4#&9SOm&6Ho|3bOyQ(zb-&~P~vX_=s2$?y1JnoTZJ@Uy?F*C&R^9@J>4DY)8Gw32Z!l0H zgbfF(4rv6?5THn)CrEu1&`$V80|f#N0a}l+F+e@x7YkGqC=Td%pm?CGKtq8JAl_j> z&*3*5s4DzM0F{Hikw9-kItr*h{6+)SgWnjSYe?0*K%cs*JD`fT{sa1j-D(NkA8%HyJ1uq*H*5kg7l`q#ptmg`W{<1khBVGC?L*kvKnV!(1<+dvF$d@r^u7ez4!^H}ZX?88pwp1f1DX%%*FaBU2}=0TqDsI8bVo{RyB{ke&p32y_bQ6QI*T z&4A7Ty^pYGfzHD398emh;5<-!_+0>M0(6n2h~pB_c<5aQIs@qyppigVfm#4v18N4n z>p=e?wm*UD!0!gozo@~RK*b=v1+)q1Hqa#K-2wU%_WlA|0dyCrD5Up*enW`+KwaVY zH_%F;2S6Pm{Rij?&_kdNu<{5fHPBZj% z4}MvIS|CJLphob^2DBD>*@4a>A31U zK;OczG|*?zD+BZ+q-BAo0+j>W18I4nuYoE6RfM!6&?ulvK<`6Z8K^NVR{^R4R23)- z^r`{%0`ddGhe-|oK;J{JI?y|i)&Rm+Gz~R@Ho|f(phu9_2AYHrb$}MbuP#s*pn5=h zgs2ac5qb@PTEnj)P$9IsMnFvvqA?J@b7yD*gwN0!ngYEA=^H>fV5J$*Kv-!Glm^lk zK=`hip(T(4y;eZoAZ-n_1b%IR@BuGFTcCpQYX>w6s6EgPSndE6kFXs{4}P71@I@#? zXP~Z-b^)3X^d``k(CZ3R1%BOtt^johibEVdfU-ibCs0NBy#=%he!YP3xg0}ppwI*a%A>IL+4!wRr^MLvTMFR~0Y6HChpmRV2fw}+%0_6n?0{Q}$gMoSi zg#hh`6&+A!)K)0ac1Q;S`aMu{`27Gh6=_)lbQRL2K>gvj3@8YCKLQN{`U$8e^p*ql z0a^i67U*Z7nLsOn@*~75pq#MxKcM6ATMdN!xD0E65)k4SpmWe$3se+n9nc`4^+4T# zHUKpM+6a^Z_I?HW8diP->JI59pm9K(ffhk;3(y+)Z3QY1zimJbfwlvM!O9LG+*4!N z33Lx3c99>@ZXjIJV%P(86n=Ywa=^+ypj|-wfo=gE04fW;gFpj;eh2yxu^j?B4|Evl z2tphI$^pNlK=lyf51=hT$AH!W9S8aV=mhy8RVRUt!S57M57;{mbP)E=00lvM7N{en z=YU$m?>taOw6F_6tsuP!bPCc-Km%aqG7#P}H(UY2d*OzwKz;~u4X6?Ht^;L-y+46Q zz{(Av4bZy@R1kW%faXGa8|YU^?*Q$A-(Ns@BiC>jXdOb_1F8?b`#=k!_cu^5qz{0y z!S5fS4$ylDbP|4#fJQ>^F;FLqgbR0bi^0p&qyqzC#A(hNX904YFGKpBC?B19&jXYk7mv<-1&0m9o! zhO9v0(8~r?2h!|7J%DlmH3Z5DbOXaoH61L5rs zLjfSXpJ6Bn^eIwR2<$<07RRD^Cv?5SHqcmvr~{N2C0Q3J9i;VuaBS94 zALuaj8USU6y@o(r;nxVL9sC*twM5t^K>6U;6sQ#Z-T+z;zh*!<{%L3q^aiZ70J;R! z66h>Kv;z7LeyxGpAZ#0;&w<(k8G+gXbpdJ*^fyokptoVABhbgN(g~;}P-mdeA?*TG z8|Y1-JP6wr=rR1d0sRWU?m$g}dH^kev?tIXKyLx{hvi;CGojZTXafBD0PTn0+vEq- z7pNT2J3t}O>jzW?e*J;I0~!D{6es|wIrIhs#ltTU=nMD-0aZX+f`OJp8UmCVemWo= ziZX-({RZhEpfd;?2Gk#VdZ6Qw8i0BL4F-w@3I|Gu5D`E)*<*+V!qFW=6p#VZXrM!| zHw5S}_{9Ky3KR=;2lnDf3KS3YAEZNpCLruEpaDR`fzAMp0D1&866hC%7$s1Ae2`&m z>Qt%30S;r%*yu2QmFXSLF1P%?14UW-Ain4#DyXLbT7n@ zgM1=@W3t4{jKVvtstA#RZ6$PU9B<4k&U@n=7@rOjR}4_LrWkYE`HNFSF}j2)Mnx8x zI0s|QC=cbv;!un+dtkgcBcl(&x2MFh&;(-|eMo{an?52?9D~BEeIkN{FugISPP_(# zZv&4I2Uo*%qIjnm^92iq!Q%1@ag;P5FeF4AdXCk_CQLSFjTT4D@ddAd_?YknW5KYv zxaio1{{F%{){jfTFDhn`e}XYPH0hh4;tRDRY!_qJn9yLGu;tBRaT*tg&jyQg|9V|q zC>apPeEh@WBEn$_;p{AB7w009K&@U3V^#_S?YoIXyx@i!c&yhJu~$BOq8 z#PNE2-(2t&1uV`mhlk<}`e31&IV>-ChPY^pnvih}d5Zgzx zc?oBU;c2w0jIVN%SP_cv+lcMNo|ER#6C!Olw=Lb=9wj&KRjtym7KkHkt{vQ zN~GqJ_?%=LR&%On6B{&#^L~Xivkllm;T}@#846z|R*u;8a-8@7h@Gr{kz{z1tSSY^ zaE?ADD_x^^lB^BIaP0jH#D-G1TE&vlAyrJ-_(Wc|oW?I^bS zJ;@?2aBWs1*{6BA)nO!8mF5dFWI!9lOs^`&zNv^|u27XPr=%r@@m*D}ZdQn4R#258 zl{p;d990?9CJo6jKdDOU(a$L@SX-z{{|e8DVWw1-OLOlM!|Wzn`MQ6JVK!5hpGtG= zn1NK~(CzeO6Z562{C4yKX=3hDmAS__WmwUuO0RGJCK={VRT(z$Au-HZs?tKw>BMZM zDuZfr9x&gkO1ZKBkS1nsRk=9j9x<$gR3+CqPBrFo(Kqk04D+h0EM3pJ#q6mnl?HM; zu_jOzMY&B@F!QU*4?Q_$e-Z2V18ZW&7VUa`YRcaw3K#no$A@*67#YfO{;*CH?81L! z6YB+4>ClZCW_DExYs;EgBdE%hZEOXr4ORJg7MB@LQK`z;y?K1eO|pC=i%{$z5F46> z%j_btg2l6wtTVA6c4sDbh+^p3j!SR|vCkJ5B^l1ss7kH>h4xWNj3LczL$gu1Ma2G{l!w?h z3a3uXP3#)U1`W+hEQDnBTXMghNU}+P=7(LX?)pBztQV+uTR8N+G35 zhF=b11}ayB7}n&f(!|)67}n~lvT@U!#Ilo>===V}u(lUtR)a3YLMhzDKyFL;6{ISW zPm7Z*gxIBxJ&0iquPTko_aTPgP^!}LYBgf`Z6)ISnHkpjs8FCXj6I?ry~Jn^9FZ z`LoS7Bs+DYI?3>BPE~$=%)JV~r&OhLSUr;A_misB+}xa49+KUE(25v-RjSJD_bU*? z?sE^xemAO0v&)>n|A<}ujO!1-_f%zM zH?BYYZc~*T3tLh+{1Q`@?#(+B!*5tsnH*e|*h~u7I~Uh2eod>&v9{bI@w-=5_7-GK z{IXM(u0uOfIQ+&|l>!C0CFA#+m{Xs3CmDX}s>-r)TxR$kEk^ytl}UzQal+=iZxO@J zld7DmJBk?gh*V{8FO?Yfwp3+Hd>k>{GO8*I??y5sn{9I&i47nY)L|sC4ix*Aj2{!j zzL=_fx-Om=_UTmRt^C2nuumo0#K_6Su)n4%MTQL_hJ80x$@?&h*anj2DKe25cC}Qc z`0^>luur8b)xu50us5eFZ{LX_hFvN#ZyG-#hTSz)sZo41G3*7Zihgt$G3?8!%12*} zAcp-l(ay4uC5AmQRap`@jTrW^R3-G%m&C9;rz)R3A43c~jj9rmeh@M2ZmG%_Ve^P# zCrnj}>gN!{E}@tyuMQ=KokvxfIwOJ@_S-~S=FK2xpm39CeoYL!e5#V~jY-6?+bK%0 zO9(OSWU9({M+Xzb4x*STS95N$7b((`Z8*uW2dFBSYkf!z`*x~wYtZM!ursPEnVK4i zVb4)jzR&m`G3=>|k_gukn?af%q@7EwKFLzGm`ZFU*_?gzGh)~e6y+HRTF#IR?kDt(V|Kf->Us^lKskYq8$zWR6qu_MI# z-{dmeMmASJu1m7*#P&AilE?0rs^kgcTEUK^s&qNPeFZyxqTdeT5e2(~V$D#ZF&UI zp7DB+=J7L4NE7?PsuJ;WHDU^d8~SksvGSx@x+lkgePva75>Sa`*eO<(|Fz=r`Yy>T z>K2j=PgF!}J+O-yo<@i@L&4j`@DxQ=rdK^kY$IvrYjcGdo?xiTxfM5w<)?5HGHfS? zXFXzmFZe65nZ%Z>TZ!ShjjE)(w1*g;bg0Va&3_S7NH+W3Rm2)l440Q2B6g10qTPFm z;fae_U)R4(Y#hmc%5j1io<50R6JM_S#u`IZ>7(k&&1CrqkRvDXe_cow88 z>(3n}wu?0D&$>hG9%(NA<{Ggz#2U9fPYlo2M7vJ-j@U+$)gN%37@qiu8L00KV#CPh zHFX2AsiZmae`|>0IhCqpjrpBecVe6K9wT;@Qr4mNT4F^>mLrb+_+tv{qNUVJ9ePVcerYafpoFvwV!X4eSi5Q-stBT>vhr}k6toY$V3Vw^? zDXpsPiZ4PeFKI4V_?R@mpcrztenJe-zQvm8lXRrng*1!peMGYAq*<(dYLelZxA@(- zBm=R@q5MIHtgAlYWptb8>$u`HCb&doCt!;^PasW4t4hUej`(yn`cV!;&d`Vmeip0lgU z*@P@4D?u^b9?oUfiNgJuI}^!pia^Z$b5jw+=>qZVtTD5yWOH$CPG?)PQu`gw!xPf{ zH7XBY;KFSf!JBaZ!FNbSGEM2LAB&$MJ&V1g37|yn+O3E9tXon*_;^&?i3WTCzK5{o0&WOPqrIP)TURj#(gaNb6YJqMc-D@bYiV^(Wo zH;DZm+KL#?3#rQUUge05BAdsHvTPH{<`wKiGKFOEv)>?=kyw}hHHlRuHfTw2VofOa zR%PlE8%S0XK5arwPi%cxe_~50+(++mN#r1wcWq;m%_A!xXB z4X0&3Y3@7Qm1M1nHD38PF`QLWmA~fIBX)&k?Xz>4;q;A|Nwx%#Y%ZlNcnz2Qm&BUx z>qau1n-VkZ+f|4aq_m8F)Pfk!Ua88eVqAha5v3}BG;2VzcnY^{3703%T!~*xJ*$zd zE3vMd+7atUY^tdlvA2lD%StIbR;3rQ*2JccsYMK@lEg2KFSy2V zK1}Rj{k5EA?~`VRnTv_dp**aaHGvpTzlr`3W+H}DfFj&X12LQv6u)KO3nLau;dafA zBDRV&fBa}FvBM;5)ZimxQz_hs3%($R(`{nsvi4G9-x7;EH;dRV(kvW0jo4_CO{g%2 zSSZO(eWxeZm}Iwm{6H)V$#V2q#xi2Jrj8|sQ*x?OyB6oYG^MlgzzC8(A!Zckcrhas zrf`{Czej8j$$~D=A=ZLqMOP0YwwGiJ8%!dG^NC`2vegH~J|o$W4?iOoMY5G0!ilY= zwCv9{lGr@btT8*97|uni%Jm;c5vxVA$LEa1z9yz``V}#pj1+6BE#ru#CYjQ2IeQcfk-h-8=47-Bz?ELZ>8#6}S-ns*VgUc?qo`jOa5VwayK5Zg_$XB$7B z7)~RKb?fw>h*c!b1!)!#`;0U@RGv(%J;iexwl^?@Fpl zbT(e|Eu(PLzMM_#PEits?6_SomdS{ z=TFNiz8%DrZ{8=_9%4axc>PkFSe5<{Nb@&}uTlc9rDl<=-$ZUp^@yG9Jd>=HB+VH) zmQXmH(Gqi9JlkwU=`2_3f28?}e8(2D<`|L% zzQ-whpJY#}?4=mSk!*02bQw{)_ei$(0k@a&B#V7~h%|8`Tvc`!yF~0C((F0m1hGxT zBIjQr_9dn4(fVt|ek0kc?YD`oB%5Pb+$C0xWF?L~Cx$cP;@4;CzlcpD7Pj^(u_vV2 zCf@^MPl;tc{FGQKim#};gV;!7gXbJ2c81u3i${pzWV+Z@`Ro?4)FjhydqV6O*<9Q{ zJ(a{+l09g$k7P}VtsC?^v1Y`se6WWYPSmT)fDFfo6(B2fmvP^`L9+K|ry`r}iPi3P zkTh2i3p3szhLi1Lccl4$#EOxXfaaHp;r#)z-#TMEu{6Y*H0D})NLI=$*-5eu#On9@ zhuD6~ZG-%&Dfav%Galu!rwFlGo4B2Ir1<K|ImhJ^K(g~II4$Q%R(4fB3a2C4iY=Xp;oT~+ZyMxJ z>_^hfU8e!D6~y#uiV&+xsV;H7BQbxnGRLnrv1noszkG+-G}63rYap?IiGB3ADY3O= z^ISv;VpE7+o7;g{ZL*SocM!2U#6D@*h1fdM?78DjVjmLgk*f)@!o=Q~-JMt_if_Vw zuGRUnS6yP3KuljTgk)za+_kFtiDjj5Y1=c)PqIAg+LLSth5N5VEn=-n z^Fp>d#0rsSDgTnhc9Z7b+r^1hA@*6idc;;yxKSe;5gS6XcB}n}l_Dz8NpC8wz&u}P$vElVF_c;iewwJgM~^;eQ@X_Sj(4~b>W^ain?$;!YF>Jv*vvMcGi zl)7`Iqy?Qc4!y3 z!NIoy^GPz)FDv6cD6^i8>PS?l}n*-_mW|K2MQmt`*#}W|8dX=QYUY+r$oTZ%eEvSyAtB%J2rE zsiiy^k2H195+PV4~5 z-kF0nUBcBsea#Ec~SR=toK9CLpfp{8+}GHyyY#PvdtMv3~z9YGcI-BCAO9{zc|P3tTM6x?OR2%)WrPe z{zPm(W8cNtPx5Mha&lS)ZvZiQOgk&CHR+`Vq@DdK0ls6mDY3 zGGcEK+dbfCVr5D5LIU>y+)5yx5!IebvZj>3_G7qi$5XfqJ$@zG9FmPHz-{SYPRj>l zNS2Re_nNFHR)kpR4wH%HA}i6IR}_R++hk=W!YDxxs_x^a&X%%LG0GjDI_aNtXlXyV#6sd zmHy&+(Isq=Ck75 z3YHT)x#TE?n@8cgUfNIW8)DnmaeTj!=C+xKNVc17HcrR6JwWWj)!igBlICgS8e(-x zrd;O!pd*$rcN@vxA!=bJAlj-3O#u zbHpx^O(wQ^#BpM{wMA7%TwX`4G=;mdY#*_&$mSazIW3zg+ZSF1rQ;{_Bhdh8y`Uon!6$jZ-)8&J4*C-`}B36hOj*q=1B zlI&U`E|*&YzH<+w+>Qa?t7syJ_9DGXlM~*MgIg))#vPtRrDcgr6 z`|}z<@%x@+TeouSi6i#zkg=4OH;Kho?nVrE&Z$bbm>6Pjk(I3@_=$TjV(0qzqWH=a z%boTTv3H1lSfek6t3Yhm>H{R(MQmpv@6F)8JaOW)JfGkFfMSm*^&V+1q1+}c<^AjT zh{bFuoe8VMvBWMcJ4`X;Bo_TH|62-roDf~sUk}(J9 z+*(?a%_+yv4c{Yn<00?m{Xnc%0-veLMKN^wUpFC?2yGqt50eL=Bb zEyPb8aHpg=kyTY8*=b@YOAjQQHAwTDwLv7yM5AKaGW_IxILUG};T^$PilO2O-tEms zn(14orjjp4DZ3f7g~|-KJE}_g{;^yVEbC+-c7klSxW%VaP7=%4H4WvcDY4Xhc_lZ7 z;u~GF0L4&&*gxrcKkI+Q1{9$>iZ^Br5#Rk5->Qua7B{OV7_$V6?`!j+f3Of;XrQ=D zHAEjAmoQVjHi28p#l6TvlooH7%uJY&&|Tarx<=TXE?%UlQrP10{

BE#Yg~5=v>0+rcq9zKq?KIlzT^#YC5PdbSyy z@c00QhfQ#x@@Bk3&7)6bpHLa>A?ao^6P|J>CwM$`p8PTrMt~fhR|#QXX%L-DNd+vJ`MD z1G>{e+hzR_f&Z%24`Q2O5EQ$r<>_eb0@fm*1hwG$mGKCvAY zqaP{mBoZHDjE#!%$9+SzyCu4@vH7&^{J>6y2csc<$J)MBM zo^FJvWdfS|M@7f^hectSii?U04-O0t)A@I$+wS~p`PHcISEH8y@Vd4A!}US_d<7hQ z#S_x#5j2L?)fzKi9OdKUaRZ#q$nEO%V50B7y~=qd&L(vx`tlrNtM6R?#D#rCy6{+=&F<+0bntWn?#l$2ySh_@-C(b2K{2v3Ir+0EINEk`IYf^$M32i4`yJ^z;qtouUSPG7|Cil+zirO z7ukidZjJoxHElYREKOHZzf+FPnuW^CMY}#=9ye2{znJK|1gNBfvXbKC^x?7oLHfwR z7;(OqD!hge`3==Y4t4w)7^{!dRf`t4dyCt!WBucXghcp@i_dwvnq3w~RuQ;+>*lRG zxAuz&5zE+6nc-qGzF2WVxGpq49KS@xJ=r701?g;HtE|@&_6fsX;*lZ#;=cHhaJkg3 zqNyS71{XJylXifOwu!!+fE*XH3nmuZK~W+@v@kc(hZbHemgtx$TprFV{1$Hhc#hLW zM8gV|Z96xO=p&+|V&d?#92LeTcGT$-D`}T?SxWx4M>LHt7HVc$t9Y%K~IpNYOnf(BjKE@B*bkHLlcveUJb)o8D!8y>6^y;Ewr+BBl&NMP>qJi_S2 zq5SxW0I_o-QlL>J7P+`U-=;`R^wAV#BpGui`pyazi`(TmWJF|Ogg!Wci-;ob^wOnl z+jC6xxfVoRz%JtOs6m5d6F1TKW1wOlgDj(9L{vz;92(3cvPBjtzI?zVvUyCjh;X)A z9~f>keBu^e#Ncj+6mKe+JEVPM5cL+#?^~eo#4ImYa!F;yTvwL##_EQ|iwR#OnT?E< zLzjJ2_U+C@UyMSY%;p?^2VjA~=Jq&DGKne%C9N2tiwk6nxCj_gYtFwsPe%ks>Z9Ys zUpy@A5c>;ynm^~P3o1u_6MezTsd5+~i#6E->md86xnVgZIY!L3Q4uH!V+Gl$6Ip=R zXqtyOJ54SstCopAA(ljDtX1%#%#2r5!Q7-9jj z8h856#JwK3&UNQ7%lZo-b7-jH+N-HRPQnJgk^WN0u)_GG4 z@^f}gfG#&HrGfVO%j`h+jiscHOm{}RD>GMp;3 zBeK4{BGofwOZMczUEkRTJksgrmf}CnTF5je-_lb&>Q>Gc55A*<7TBDBmx{-vv2kKA zTKo;b#SU`o$UkgEbW~iJE><6F-c9lk!DS3)M!#+4ASQ)K}KFFNt$nkQ+lF_`QY|gN}^a6W*mOXWR z)&}vLAGv944A|%!H6No`lWD8!OzilK4q~s9bd8Dc!|KEFLC}EEn7|0#u&9{9yyupZ zJN4mm07~Y_Ew;<_qRoj9ky88AED`xL!9mqr#t!x2V9`V$yhf>*ySQbC?!_I&BQnwE zJvxi3&GxKiYtAAR6(%07h)sAd#bkb)SgM!u+r`a|S(__i>>p|*u}5j5ucM!g(X3WTV z@j2-jyLqUkFyh3sVXHBJeI!4T^A|5G1jfndP8no2=tE$)Ndh zwB1Adv0hV2_y`@Q3Hg9Lv8L+yWc8`+b;&H;qV>@_`gS-^swvsh%{81@iU);91qFu7 z4msOx7ZVt6<}^6BbaNR(gNk_NikoU9mzPl(WMZP^@dICadIr(Yrc6q)=y1ro(7$CgE)}*A~;kQ8Ds9(YkW5e5saX zOeWD<<6p{j0N1CT7pJbqE_Z0#b6dug84ptASC#9f@yaG)e6JY&QFG(oy3(fE;yHbk#%kUK1nQ(hvYwPkfg0s?bx6UCunk!uH z?2bq9Eh}7yVeADxmyh-EH}IYFz9fZtUn3speWeuS zePeWa?@Ll8nWW@aCzeiXOlq}b)pDY<=k&fd^R@T&tX2uYDqG`yNlNz$_pF@g zR~x;rM9#=x4~eDT^4llL(Z#Bj+-POdG#Q3@-uJ5}!@+TnS|GzV=Yo`#N&-SJ+Mx zn_evwiOEn_jw6~s@L%_C!zx)l=Jsv3&uQ&5){WvMmj{+yT27NY_7{tW$BN%Fr5QfMD}0{i%umZVWnPolHEI=y$?&g- z8)^X=zh{QY%pR^jlZQ)xyNq9}ZKQNp>FLp$PV3?2KyDAWv_2kgX*WH*9KGS;1yKPH z*MC77zh}nTEFSKCZ9E)*6^|~6Hh8%2J(9VXZ#nxrJTS0(&VY+3Y%f-lZYFxis+!-_wO>D2A3EEu18l>Y+mYS+L1W!v6UJoF%S4(3CzVLASm-SAXd}$w zYkhW}M`!0rzE)g+c=&h6e2-RFYmdf$LYBSH3`JLDae3;HRJ2E{Yp#cvZ(qvzQ*1Tw z(o>Yhvh01Pu@>~`ym>+PZTEhsT=KP%A>P9yLl<9bon1XTly&oH>~Hy6WfhVe^FA~7 zW%cM((c0I3V%_)fBKRHIA>5lR-j~H~zGp0{U$oXwN187ywExwu@$1~81ehMg~M8r1T^a{k)8hluAs*xge5U^5u$gK1vogVRSNA1vn|WjVXFFnxWi zh*2_m-n-w`OQz77QO7E_*-99*|-;?W+*Hni_^MmN*PQKdJ zdquDB3ZMC4)wh>pwg)Z&949N(GY7(+$u?hJYb%jA1P8?ghUmrJbo}AM(%O4~_Daco zjN4AxWOypmkcesO9&sb0SX7 zH78PPB9M49M@}o^o3}ED=4sF&3SGDk_oEKe$I3R}T4%CJ$3^Aw%a|2q(!y~1YfOh;}j<2P5B zLnC|f>RprJtE5}8!{g3SSsID7Vux4JOoni&Z%&ZiPXX)CK zIEEYXNqPOy5y_sB)(HA?7q^=X<7Cjk{C75`YAp4V3J>C-Tb*8YIEJI%!N4t7`sZM&SanzH2>WSC)si!{JVpI9-7(3Eu zQ+~#0Q(n~T$G6n7Y<+3gIOc=n##vd;FY!amymWDGDX)D3#b)13;|p0$UaG^H49#9D zyeB8k7CxKu0i8;?F75t%ZF4`{Mnr= zA6;(dv#lXOmaKa-&Uu+{_d@Gl*QjqYJdw+CXHNFp9k%^Z=Fq8e-!fmk&Y5Y2Org1N zB(;HJbDpNED-)VWGUorfnuptup`*P%h0|m$JAb_Fl{a+p^xf;5-dfqG+_>*#iq{Vq zwY|R8)^RI^Cc`?fFZ&O@K81z7K82ZF89pqB6-uaU8o9(oaEMaHXxOOj}?RKF^ zY~L%W;zBrU6}-*{zRInle4QyABFoVHDsWO=@P(HLO1Ux;TGsI5r2{YNi|Ld%t zM{YGBlVO3^=PcIiJ8yNFLT5G?Uc7~`gRBAbhHp|GOJncI{Da9M*o&GbLt!`D$Y!^~ zz0TIZ&FfQ`U2Yw__N&!oxFYw1%++kSp=fh_#4>0aU5mlFx3o-#-m-+vuj4p0H@gGy zme+?yd;Q=NEVHHgOxjw!cGO?RJM?)uD{u8glWi9GH%36o*FujTen z`Fqx9+EbXXmGDopgq?YKVRtoGTDb${#_D&9uhr^fUrX>)UrX>wIdQoDv+;oJac;E3 z`M%a!bI3mT8izxZVTAhy+`!ig_`3VEt7rD45`3+rpOQ_&mFu@{<{hW6Znh2M^4vDd z*Glzm7ZUu!MS?wLqjzQmrRM_HD}itO+Is)CuXXUM?$@l-Ba%alFuL-j#38J>B1)F< zYuq_*C&v`?qe8ofS2j<*>~AtPCURAz^GBM%h2TCMC7JX1wp|Yb|(( z+rRja$hPnKNw$yIG{np=J085IfwsO(r!zYk4l|g^utzo-&sY2f+3#H+MRWQ{MdkLI zP8R5EBil}2OYkSYmf*@V!LRW*W>MK6T<`JEeXVpmd(EQe7q^GmNUs^bs=fZUs=8fl zHGQqE{_blDuIFnBP9+oU`oLGl?IH7;3){*Lt3=OiUj5`X!_5e{3%#5S>BiFBGlibt z;T;suZTsHwnja=>y`~{n_L`KW_L`K;f2Av{-10$%{Rbcey(ae`c}+@&z0!Jc<$+Oe zIlDUfEK2jK`Kx~SX{t=4=eJ#MdreC2cuh*ucuiZL?lomn-)qXm!tt3~NqQA2IqWqJW~NlC9s z$#Ab3Y>#}u5iwTU5)<+KV ziyo0+ESLBheLKBGzNGH(R!d*mJ6=T!O30KtTsUTXXH-AWMt@MY1P|r@f~@{z3o5Cr z-mJxG`ICnH=YN%~1G_XB*@%UQ;EzJ=--7 z$ml))1kCsfJE?P%V_nZyh0e3lzw-*q--$sooo5Gx6P_*ndtNghW%rr^;o>W75zY+= z0bWxpc|F@a&v{LwXy!F3`S}$#PbbF9NY4(}#XZ{~AIQS@{IX@T*Q6x9-1|wk@ud9E z%hF!cE5Gt=x7g&_LE(p2*ejizGN*gC06y|;^jGD%4i9ZGU3-PqpX{h&GGz2@-+RNe z(eLn@iQrwY8I3D@O_{vyde<-++R7G{+$TLOUxd@%t+(FO6BHP$!>+!`Fj1yQ^F*~Z zfXzp>oVR^n+HUS26&>dv78M((3yF)03J(qp4%7K}9T68673p8guSRvh8nyg~*RAaz zt`G8$CU5xqN5)44>0)B(@q_vFw%r~xAIrA6hsvk=Z@*aK6y;$htOP6_$wg7r)lyd=!^u6e&?J=8NAFNoGV~q&_-6JTOil z6`A;BBx|8r8|D?6Nb_`W7Xeqi%_o0VStm&}6T5F8o1}g+>vqRC-!$8ZR_gzdjView zYyAk1)27p=V6RG|m&ED?Cj|dz@!?4>g_c@z9+fM^I9hqaj)Jl9vwfowU z{lKR=Kxh<(`~;NI*;wpGai@#iGGsV?%cae*Va#vyWI2GIdh23nRCD&FA&1W#I-Oa& z&ggUnih*gUm_NnP%X4UbCo526ZmI5UQ0o%J*&sIE)7c=_C(2G&qwNAFCFVV6lWOyE zQ1e^A8Z(()|FK!m7&Wio(C9sm^Q_6xAo&^5rc6wR5^}`ToD!^4oOR4{dcw+@)YM_M zY}?VCw!K(R0aX%jpD(s%lVPv?eVo*XbuBH~WO!f3lEmca(AP|ct1^scR=5W3M&%S} zlqQ2tR$>wfby(7v40>5TB@-_~%jfxS%1jlOx~Q{Qf8Fq4T{KpBJj`h3*jmrlCEikL zEt!S1{YdY$^;Xil=918w9P_;6wB5n7jO%HYm({L)myQVx(d#1PxPV^b@>iEGj&+=E zG-s(qQfxCe7|q`qwHvq+31>5!yAsT1m~^rtj165Vf5+ibdkRe?OSS`(OL?-4AjZZn zr1iz|%IHc{vtNB_&N+$X)7%qWX`aHA-4er-!0p`(9~>1Pt_!B+qrcgf=B7cYSh_~V=tt^8 z0^)R$Vu9jsT}r-_e4SXA7$!r76s(hERNI&J@M^1pzr zBaO-Mf$X!bLUa*PvHrvK(f+jpBBDZcV)O%u##NQa96sHRa3JekZ zTZ8m*Vevu2w_L5(>0Eia5lc`>e)*(7wbc9}1Z?rBZSf>{gWPm;@ zpmq&ei6%oXukMW>%Q3AekCQJpSihLqxCCQP77vQohv;J2t1x?oi$`~nHe)miO@=RJ zuDyN6St&=OW^PrrsOg$D&E3^~6P8}%zKQDQj_1CKx|SyUk1Uin$rQ?qt;M`}LE8wZ zfqbFAnheL~3eXLUf#JI07#GQ8ee(#=*7c;>8LCyslD37isdh`oq+?4Ds9rB1PWBZj$Cc_EyT0WVo)EGpD4+@GB2e`P)*QsS5VBP5R_Lgd=l%?9@w;8X| zUN%j&8(2o&F>)Mgl}v%5?PIkVD3+Dh0Z1%6BI9DB0?ZBG6mQI^j|>iv57C7r7{1Sv zDwScW_%k7)dqPFS8j8yBE>)3XFSQ~=CHAbw%#WSf?EFg2-|#!Li5zYV2iU^0uUS@$ zJx?&($80C76yb2s*)tCespb{?^FhE={`=M8o$u*|^h4#&`(*>Yxov2%CbEqJMCCy2|JzH8OF|^ zoR!9`*@T^i?A&6N73}=XP9~P^s0 z{aF^unp>HLu=5>z9%i=@ap%_@Jela8I4EW61u>Pn7R1gv_FTuB1K8=n!8@|^A$!i{06p0A7_$w`eq|?^H4n0Ll2!iV80s-Q#m)$J z7P2#l12keM2RoNowv|n{WcC3&+1N3#tRM$C&(1oQ`LQe`m(oQ}L?>3+!YWx=c7!!& zuxEW{BU!TrvsUc@lfSg=d zLs|A6d*)%!9_(3$)1t7fJbS*!&JXN)m)S!$or66Gak!1_d6Zdxmeu3{GucUC=N8Kp zW(_#NId;O>a~!iE)-2CXC3bSM>}%HC#h&-ra}7J`IAa@`o#B)XW6i1T*^Qm<>|AAI zMVU2Z%~9+eXD2;78Q3Yy0h&w3;a0I{e`W*OS;Q)RSay!tWM+>zWqH~23l8ufdv;;Z z>g@TL159Smoy=yiQ;0qHGh5GWH(NQ*o}1Y-3mZGcvg^!(S(b{+tON(>#Ipaflb4;U ztl5@Tp0H;I4)-Rrf7vO(PG**wm~CgLCp&4`SZ-G7!=5)eWj8p60xT=YP8JT(hMg*` zvVj9UViv_#rZcO_ERLORteJ*o1=-3Cb~dsziZwSeQZ;KgW0$2>|)Q+%tDzpW|l=VcD`rN z(rohyJB3-chgl0|dzrOl_8GG%W^38XJoY@t8LP$YYj&QqN@`{!*;&TH8!`Kl*(i2; zv9pq$-5mTLo36;7pRs3q4nB@OpRvkQc9yYh3d=e%i{Nnn?74|GYcSiv&K`DZv-2B= zo5idiJ0;okBX%0G%?HdrW0lM7*_@sI9MSLW9F_@WSw#+ai&&q&q*>g3A8^i2X`Iznsp0*mDy*U$U{^n5|^Z zYRtMao5ao&_I%1tDh@Z2oipqdWzE#gj#!d@%3b4uzX6@No!Ol@mZZTF# z&3RA5&O=t&z|MY-Hb1i>>~!RCby$`~24{AZoljV^8M6Rp=b7o4J>f+B$et_MsmiAP zStXjCY3%tgJ8M~U3Olt~r4Bpm*z-en3bT`m!)0KVf7mmDowF><%Ch{-cCf59dlq8P z-RxO~omDIw!mJdlgtK#*oky&)fLSbSR%fRJdlqJu&FpMrCp(wt6)v9M>^YhP1T$O8 zRwl9Mde;1v*+X`IW|dUTx-r|!Ol9^KJHNB%eP(~NbCNwzv9pCeXRtGqozpDa$FY}T z&phn8o!Ot9+%RT8F-yz&o5JidJ5Sj;$;J+Ffcfm?-~c0-HDKpDN0h+fPO;}KW^c38 zlT~iB&D+eXvTQuFb{sB*J=e460cIPSU1gO3W^XbxGP};~Pj+g_XqoXRmkmc)vk!Y_ zW>%ja{=}}~0*A}Vp1Iix=b2{=gc~D@L$-8WLY(qsq9&k+3)PsV<#0m zWjFwT19AWp+}tGoK?0WcCp|!`QPoM>Lh4+w9z7Ck?Ai zXI7t?iP>Ft`mvLVWpA)kmOc5a1%{>^-*}eIVfHVpC8T2hc78GTw_^A4)6v$J6PpimQ`lq>s|To&_Pt}J*G&lq5MS_PvExf^{XV*Wj-=+-?B634f@AEVO$p zR6N#sco{zjxub6&^v~z(O5pp-pD(0E9}=T8+QY@%I(}(6_RF z0zzBLLR-{A)4-a7H>TkaEhq~$nY92`v@or`fcC}T$FQPlXra|-{enL!`c&nmH4ZmzmuAK z(u8MdQIr;`rWO=d*vB2LTtNkz_KZeoT_kz9Jqzl>jX|u5Pt6QnOEW{wIaQHReh7&tO|F+s*M?FR*b0zffvF(p$J5yHbvE{3xprp1A~ybD$0OKQ$F@mqo5IG= zYy>!zZftAdCm&>6BiqhqVf0dIU8I8BnWaVDbnCKM5UAwrTu2>PfO4$BwAS$TpW9-((wVByvQZ zL`I08e2I;B_z_f*~eJ8sR!zigbqetB#gz_yP#umjl`&3>KP zIG7zVc|=0|#V?%B#=mUD*m$0eGufEHuV2N+Vm2^&M4?P&8zzs)whh04$s@8gvESwF zh{+>zoXd^_S(beE+msy-V&htN{DEzlJfio?*s+G+!{iY;zRtFu>^G8MIF*f+Y<$Ch z`E1*sU-*!XT6R2yZI%4wrfdvhqYL|8%uhbejz6;FU2I_Th-7(yZJ0bF+Y)~Acy^q_ z#%^qU#(}NRw$c3L{%pL(MlKt9Y;4Rgj7{12z1!JwAGYns##Q{t?(Fv=+m2=%CXYz6 z?(BFjzktaja-7MI!`bl|iELo< zh#Wsbj#K&dL)a0MNAw6fj%3`xe#fxibhg#;dt0(2CXeXJ z5o~*sjc3_Fhmiap;`dHx+qP^3*zsgGcHl74iK7?J;zw4q<5)H@c|?Bb36p`oFc~+n zA9{Oa`-W|k*|>m1sb;?@8{e^G9UE~rX7dX#@gtY8aTyz!JffiYK|{ zZHKV!N4BBYP4A)KO~$Y6_%Ivib6^j#?KXaLDBEVU?IWXHeQ$l~{wv++I~>+_SH z*!Ctr`2pK@Vq+IJ#<9_hANh)HQ`xwM4NM-9xc&JNOdgR9lSgFy#*f_3#tTf_lWqOj z*p=Vgn*A_&gxA^jIvZ#3le@4DooRaHBesRvhRGvxypbJmVPgvpdP{z!fsGT`@ozTn z;U|w_V=I0HBLo!Kz3g}#8-3X*RGk&CkZL`?c z%(gGs_9YvmQnYNt_#V-|#!v3fjzw(Sjtxv6(Icz)y)Nun&PI@5c#4fP*w~DX_4$$i z*fxV-znhJE_8ZE67(pb4k!*XJjcwV;Vgn<7^av)8$he7Z%h=e24NM-9A105;xQ87# zW1|xrmoib1Z6~v_gdG<$(eZ42%f@$XtjCX>$hPg+b`sluU}JAK3fXTA8ymADCXYy@ zotf`&_B)SlfAb?f*w&AYuKdWZY<$d)=kSwBHZXZaVV=N`{L99x?DrVkHee&b#!?RD zO@8D{wr#|Im^`Au_GMd;jn4e!p8VwAY`nyNtJu$C+b`_*2|M1*#zpLR2^)8_<1_r^ zi)=Kr<2Gyyv#}RD=J0!Ov*VBKSjx7K*{^~fyR+kmZ0y3ut^7zmKQe$Fe__X?*}&ux zMS3IlyMUj3nEkG0#}nChG8>pYq8C1AzXE#1KBL}kIW^CJoZIk(tBiZ&78@2pM zgpHrsu^T_RnvGA{IF|iRV&e^dA)9TvY%Jg>uVBCaY}=mwHeg!`+pgwEFnL5#Ih1Xm zu@UAcBmCso?07vJ6WCb9kF4THZe+*H*mfM-u3=jv8?)HJu_+sSu`!5^ zr`f>d5xsC2zkVIl9>m7MY;<9xD;qblv4~$E#_wIgw*A;PoQ+C0?%)@e@+04~Et_oz zv2iUMUHOI6_>uG3b_p9l@FV4H+{VVQY+&Ap;&3HDc`m<>c^`7bybl>8*b(zSWLwI% z1iyfJA9Cz(2bONIZ%n6lgMI7KU?1j(=&jROgts}wci7mOjTIdJAU5u>jbw9PW2BMx zC}Swm-WbwcN^=JGVQa(c>ClD5%H~}A37Q%ha)>?PSQrm3NyL)0-*si}?ac*ra%;3I z9#T?Q(7kXH`@+E^7$W>;l4Q&T9zL8;#VHr56&F z!RDf1V`Ds0X%AjvP%}G1Lz?@nY|alwgNX!5K{&TQSjVWKD%sFxsSJh|#lzKjCfS_d z7_5O;tJuj(dlthwk(f9F)+q#QZ?{e*gJeFPjOM&xqMdx!Ipk(tO@AbtbuO7mo%6}0 z=PzXAVm2;i<8s?bT33>3T}6LH`yAzkK-)EvCWTmnJ18KH1Vbo~1qr%Ag4$rBHdq;T zVJ6xH_1O0=UY+`$`$kk!8qr zvwo#y#blh2@BLe@EX|^G2NKDKhFF}AOiv|2!pMi;mD0SNK^jCN_0=(hHFton>>o)= zPe_B_X71AtI$=hDZI!aFZZmp3{ll_yFGQ2Ivya&`yRz*WRhO>;aD(ut1%#@g`l;U|gC334> z-{5{qR?O-P-(dIF^iQVAfI6iR{bWT@)EJ{LKiWVI3FD(%uB84?PW4jMziDEAl#;$c zrte%Cj|Hnx^=8p-dL!~HmF%PCf?qIQQ~sy#gYBf0qK};NeavEz?(3YUlmzPxg(BIvwH1g)A!&+OHR`B_q(eI{REn}t zE*U+XUx&M+TBVfYdRdC1SUr*<8d=mbdc>mxid}5^Q=;sYvlCk(OOlcZMwXrlwydSB&8VJrgNCQS}va| z>ED+Vq0a(3|11_CI=3Mlid08Jf$`Lcr-SI?W*hn^Q<4r3tJ~w+EfWDWwEclBVbQGm zZ~%v~IYi0}n9aJsNJJV{|A&qL*yuzLkz=-Pq(;?q$wJiM%U^G=mc$55t*?$#-!`5M zH74U`{n3qrYd^N`SB|@7Im#EtgAH^rXkb#DW+Z5t_98QP0!k5%kaHn0gDSAdP%bU4 zg(RIoLzMzyLqmG4Zch&7M`>G1JQ!`APBNxp%IJ$4)_SVq;2}n>Hzp+=rf-_N?YE!f z+5PsTIX8Hs5V$%6Any@#p{BO zQh1Y6fDL8+oHrqyh}6^@@xEV4yN^uU8A(4rMn{mNf;QNnQL^tVvv+qkUg+yHzyCLt zLi{cZQNFM?*chmag%bfJ#@MPV^D|tn6ybfj^x4X9Y&;%ZX5_$+O6GHA=58~CO_3U^ zZRq=_3l^v-RGF=#|CBO}k!2{DOp~4oIxyLYe94BoX4xP)=gVeMn~dW=!(QRie(1lC zlHXcm#CN7-O)Wxczxt#&Ld~8esscxoXGlsKyUA0=O`ga0^^g3##o(Q z>QjoJ+N7oinx+)&W;spD=O(EjQr9{#E?i6BBQ2>iK81x!5x$p2=scNvD7Ark@nFcA z098tMY#~nH07&y8bj622?f+1?g0A9hsC9e}jVYPz&!I01?8NWD^{)SadzzfUf8*^|c3F*q+)ay}$;cB5~f z8=F+v`OtpzYr8=y!z*&d)0x^i=yKSdJyYG>t7M-mr$EV!>4Aw$8>rHy>vN6de@aPS zBuBk$9B#fsb7P!+-IT%qx{@EK4y0E#b|p|aFCO5V+zjTAP3E;WK2|QLNI^7Klb{tR zX1nWGQy}XrveQ7=H*9>z#t&@#WE-i`v0unSqhp83#3eJSyG>udJ*sb{M)pQ#+siNc z$1-{G5?U=xOPr#yScAdcMaexw<}OIYsv8@kN%PC=uOxm&{_^svi&qzmn1d^uDR~#m zymZb>qP8aPAl_C}XYS%v{qmK}me4oW(^nmP3mPT$6=!l+<_0)SX)v zy1T!teUp6(w_32Jv-|O?{|jJyMQu zaVXY68SK_5-zd3jd%8r)yF}*AaYgn< zB`FRm6gqE3=t@*3t7%!Tk;nHbsdto%wcSH^&4)g%B;H9T&Z7o3%>oq)+j0-x_y0?<_DY;%OpjA!oQN~S_#8=C)?K&wKYK+Ar%W0(1qkle9 zDZ%p@M15SOJ{WhdYZ+q_ueA~1vt@xwC&uHkcwh>R|5L8i7|LchQ!HyT*=gK&DjU19 zF@ud+wvih5okJEH_kBU8FK=nB1jfc|lKA+|rg#N~)P6yvUlERwKfWSfWrJl0M(m?X z>QcEp=3%LqW9WC8l6D_C#^toYh(<|h#>G3|k5r0KE$4gDEaI=D579BheX5fBF*)}6 zc3F3{BQ8|(R>{1DG_73~ah34vl+2gQiES^eniQv%RkS|a{J!p1vcH-^ycdMyl{CNC zXs)SwLdlHdp@l|c!R&af8tc!E@A_3Gag&_j_9DWT1ov1;`jJwE)8teyvxmvBgw%uo zTP6SNGJpO!+P6-{%}Dycl)QV$Dz#`HtsJ99O(bL%^ny)v70J$WuIEn(H@S9g_fYZ{ z$-Kp56ODn|a1`ryjO5-($^D0%+&$4*p!3~hNm{W;`h^zApk6V=*itFR5poigwl*W? zVS}PUzoU}APELiQv57=Dj)LilD1n0F>dXpo7BfD zsT<_d-fbdv-;#BKhG1i@r`|b3DZ_&qMBnbNyFd0zmDG)L^gFjkpO#6QO^ch9>}SjD zWvO~KkSg(ps=HswKQn`br*+EpfqB7%W82s>O6ndmb>W0?xFIls4(>A|{ic%nADOvy z!ZJF(k2W+$>To2PLBCo_-z?L2okEp6HU#Y!=6zu1C;y{Tg019I*Vk3c1ZGDX!uIa8 z_G4xLDMfih7NrPv937ETUt^|1$)>snUXDziKRs4c;~XaFqvSnR&j0dBk)?r2!3YLu zxHUi8D1w_RMff^btmSfN(pDrh!AB`saW{_8fh(FyQ@(6!eM6KM;0ES5&}DdzLU)3a-@XKK&1cT` zr?wq+WpKO;&Yz>D5rl)by((THr`4S9wNKZZLRpuPoyM#$ zW8(@ou43aF+enRBUq==iv#!h&KaP^>SY5D=R&>&eWwX0+4~5ZwwAwE@F8UIbLP26l zupzkAQ81p=63gF2?^Kc-CBik_@tRVQePuz4>2N$83f_|(&Z&+@%u-%BNLR`)%o9s_F)|k?|JDUf?w(5SxpG?P(+N|J z&O;3;rX4E+z-m!<*k{F<3QYbJxwV>NG{yP z(cm&1^j1%;TO;WgD!E^hxeIZW6dkY|G{?xRl+5qQC9M=%3@h^yZAasBv69}tY~>Tz0)iXFpH^8Kv<| zr98`IdCKefBTQGhUZxb`N?C-S_JLk&ZeQH26r)D|E@|0S4P9AlWWWPT+8t!t?o`#S zxxM|YQiw8Hhtpp$heo1*s^onvUuUmP1z;B5Sa&adnu?p6hPjbXKxy>4LeR+ z8>D3IEq_d1TG}_HP}~A+r4-;JS%A(oBV0$f*U%Qch-2_>tdjj+Im7c4GIW zDtU*=nVs$IGwh}0#P!rdue^H@J3L$R+w1i9TBQ)U99s~gr&kZ%F=mrgiZNX-bvcQ! z zi+Cp_be+*!`%+2$tE}M4>~llu2x__-BjKDD_|4>BYopQk%S9n45p>K+7Y#96asQEU zGz#5`oXN;$BbSYQ+enQ<7m|fWq5qH*Bb%xmBLjNTtL+D${c`>%b9NuwM6-~%lr2C< z*m|8FyRlM;sH}E!>cT;@cQ!&v8kb2+rq)L=5$9g9yt9)0HJLn*PJ~N3zVuy{w2#Zh zIxkG)5J_`fYu$1I%bSjoK$AAEr0pfsmQw9O&19UVo^{XHD>)C8Ig7{A`V>Ad&rIjf zl-#4`{LM}@nv(}VD>*yMoJF)Sqls1sIKQS&o9UV#2g^yFA4=9y>(7jGsgn04x!IF$ zd3Qf0^F7uYP)Jt>`6Xmoyh_khl|6iFukFwfXH;q%$#$?)@ zgmZc4EG6mlGHGYts^e8h?5$)!Q)chdy3~tS8@ZHrL@B@oS)p`oJ%!hE`*o92f~#Z+ z%39X4rs`>#?hbE+KYyyG-b8mGt>?4tK|QO*@h>Dn(7xKy@_e*dMTgQix6EgwJ*^qS`{qd63Lm+|p2U z4hL?p&B@sOdom%z11mSfV7qOC~Sm zV(o1D9Ij-}k$bwm(E!h?sNrF(bWOjLm4ZAVC&9p$^vB-C#G>#L`d?N@UBY-IgbgNW znHnG6`AV7Imz$$KD{9TK~S_Te>3F_vWTJ)os##Qjbs>G5)YY>)^Aqu9qqg_5?q z(A*7OdW`*~R8(E(1U;sdXO1jSZj6@0np1=?D_M8TfYn{oe4u3gOjf)Fq1qVjT3=-L z0KZleuP;ZpwP8#vc)uys#@OD%3z9sV( zMUz<-bm<1wIR*-u<60P@5mNVcBR81LYi-o{XgL+S)3)=lea?n`{s*;Io!1{fYzk-HL3SELzKe}} z*tn042W%rXhWrp&XbkyxxvknGB?K)=#G*txqBrcU)n1^$+7BW7m7=?xIpxS4x^&eZ z*!Q>%{9UC8=gJ>q&sGsyHubm*%NI&9{*m*ei(MpaYL5c(t5SfOa#obKrh_~F*~4@t zVYr+P0~+X{FLW5Ny~>sVC8M6wB3u`9T+-b|Db64AH`>F_4qCrT3ObCfjC8%8qvh3K zDaFxpp7ct6q-&I8Go>6)$*EB;=&Nm&BAgO!Otts5wmM19b`^Y)bnYy>sm8J0> znr}86|8tb=FUXP4iO?n(qvG6GNqV0g5aA(F*aTP{_~@|K(dh4u+qv?kT;VjrPoenifNVrq}mE*xr*$Cel+;1nfyv8E2YSi$A3#($g3hvkt$OsyrQJvK>iNr=P5E2u+KXGrpF?qL zh3vR_pu3WLvRn#_>^TP-?{*AUY^bFEQ%>}J9Ee-xSaml{$(tvC_g&hzL@S*)N$sE% zV3r*5T({DlqGbJBX6=)TwonJoS4z@LmZWbY*?<$N?Osu8+<>Q+%}=jVDN2!C778K> zO!hbme@sbylAH#;>XS5~E_4nLP|ERyEJs14FCVLX^t|u+*-1?M|^v72T+$-(AjyO;XL`7|l6X(-o{)6-(m52HJF* zzKe37QmU`zMshb>sx=JfJ*|}CE4gAUPpQjv!&q-9Md&4$jY2ya@PQg1=O;?$-ZFCm zS_RRFz3J`j4EY&T>dJ$(&;0y20L|7aX2qRUZ#{_J-Mh9*|QFG z2ZQ5?+#{9Ly=BFjUlpzn(t)f-(L7bj`<2Ywg{Jy>!i`!ju3W!RDZm4=0Nb>*V_P<} zq#6yVMN`M>WmWJNvsCGH_W-X`in+i1;gn->DG8EpwddVR5gwLPYJFRaWHK@Kgi@G% zIX#MKum^pRI)|QkRY_eSQy11!<0?k?4w_B7kCe=VW#*z9x&X~SJ=|P1|E-dGCs{S+ z*9Yre$6)=XZ??Z$ZQBsxRMf1#{_`?m7847|1` zknvewsubmXS(Lo+QfdL1{ga!Nv{%bHkR6JdyAtnLa`u*0U#i*JvNzGS@$?y`2&?3e zv4>{^-N^Gdl~Q~nOOXea;AjA>R?;TrJnupM^f>KY$*M@*cTA&Mjph{Zk4h^ zpP;#q=|3gyY?-!QB}BV;%vp|-k-9eD9GSi()f060$NMPB=gZ`1Z@W%a*;L8fM;<-S zs|&m8y-`Zqk_=QT_iT)>dKV?_#0+R7HNm>Npg}uBN&AzmObYGhjcamXPbKqSaCv5nNI_%gE4 zsQ7tuUDu@{X)pYZ)zipAkg9kiNsgj$+7FKV72tC@>UmA>I|WuMX?w`DrPUEEb~et{ zXgN;fA|?GJa*@odqP1KhbKBnaO4@okw{xmvQF9dK9wq7Ra#9!5su@~3fQyIB()Fa0 z`&Bu@RJvU0{F;*XcsYAJM@RDJbo(fC-Ct3+aEKkhpv?`1M?aZNmy z#O+$ndm8>$az8DncwUkQ3>;;%mujG{GANxP#Q z-&}XoVYrgDSdJ{6dKag=A4p%@_vRUq-bqQnqfFnKPW-~H1T=T-EMn7??AORi-nK_7 zebZ&3QjCpcEuM!9YNKW^tV&7yr%cj#wdF**AA*jh!$g&4{HtdjR0S-Y(lF?0GYCFMnO zN*B^u3Qe@B%dvyvQzi3<8FYc|A;pk$@#;@X=23E-^BQB+Ff;obSzGCvM;FVqoujGd zpt~L1S;_vNT()|*e$sqo6D_u&^$oO|z$oN>m4bAVlc8J7>9IKCfmR`5CzBz=Af*h; zWf|=HJ85?Qwo=mGAnTPJ)Za#2$0|v8$RMt@?q1(aCGCxJTsuccr0ezVrDWe z6!{aCg8V2~E&0*#Qr9Wy=PG#z%ZXn|_b%1PlF?|yi1AfQ=CkCaFHgj(so*u%;xcXO zmpLy&x?L&4R9Vk-#esaI=o}gELzo{iC0J_%%7@6=Qfe>Wqy93l|26XFbyFl(IZOksLXAvkrC$DYLk-oJ2|oGJSdFnx3o)* zSRbaOuaoI>XVN+kQgWR1(LIWwHYoaZS?XUkue-Q63Jw!3$=Qi7M{B9=YZu{Q7y zCFdnFr(LW^nZ^21CGBN0?V#3ke|#MB@sd)muJS73-r=Q~yP*l%C6Putd#mNUGe3d% zm4fUkm&W|mMYhHV|CN&WJvn2j16Wt-*;M;oNq%Pr-#wDsh;i<=x`x^cImTU5!>INK zeU|{`N&ya)W1XM6cFlJ4ZKU_|R!bNd9 zlr^--ammSaCG+2M8@{W3$q8m0Xro>Y4NRCTvi49)@T;8mT~aqv-~>!sK<&5zvRWy? z!?FOKTW9m*LC5B#gp&PyS^4&Cq|)EAH4N(sJm&ijR*LbEoCx`g?A7b$P|5L1-rMAo zUryJI;XGV>fiWGqM0cPXy6J4C2t(zl7Y7@o;b4NY!O=FkLdiW_j(!2A_+62{RY`o5 zOkCO+r$b~gwL@Chaev@LO8P(LH1CqAi_wMZ6nC%qKd%(vFIj-DbSOY96rnDjeF$*K zu}k?Kr36{>hi~7(>N%i+bdIYcajsK7^i6Q*{@~`bbTfFn{v6QjY17H!D;0C z5GCyga+G_uUNUIkcT5_eFO@Uo*hVSGPO==ui)wM3AgzQBn#VzmS90$nbJNjSHKg%y z=5PDkms@s;%~nb`Lu5Rj6#}Vj4#)*HY4dB}cq#Wjq$F3fYys zee#sq$XKG3V5%$uoxl>oo)4OxpdyfTHT4fyig1f8LY@ch$x7PS`^U5)zdA^dn zzg+AJ?TQ9FO$hb;R@u%j+sjJM`(@75 zTD>|t+6TA#xEjzOC`EWdZa{RV!#_ids2+Epp8d6wy{DW2`N1kHMt3Y3nf-^7x1Y?L zlW43qN%OYXwbgc&zvA-N?qNOlSi5q&n^J_W<=k%D&Eug&14{m4`O9uoq9aYMGE~XE zo*efcwbX7wTR9e|+wE~{3>JwQC2zD+iq~Z+=sL@2vW`A>_fq`HO7=74a__qAaGsKL z7dgg7sev)4ehn(AE9B_r(Iv#OggFdbucZA*j&b_cQTv!NqqLu3 z3S%8cb{ddAf{mltIEIbmY$G)weLPucK>AO)(d4-f^&EP={Xn!|-W%l{C=NE+!*Q{w zL(g2P@P06~2T)AXZ_8PhSu#$62xk&Y(<*u|;2_sK+!KE1fbfxzTN+}v- zDQFxh#qAjPd{@bRf}HB5@i0!K@|7Em*3YofPTP5jnGHJGxbApnyugsYnp=>rgo^zC}h4M%2wQhf3C2gKuyt?CFbK04M z!$Vq&m{Ef)QVQ{_oZ>mCG7QqCO45}wX)eBIGno(DYY@r;>Yd2Jud}wl{wVU1MxRxrk-Q z>rEBfUC9}hIa?HqqffV?l6kev?4?*7Wo?*Jir?k3md7=>!{m7$yE-pX z(tawB*0tzYM=IZ_WL_wzvTGUteM-&)1b@UI)vCgHnG|{A?WV$L@f0J2r zmOFP04N#KaDit$jdiB;>fBY@(9=IXT`~ zzF`@Oy_=HsSUJi8y4RCdNQIKL50BanE&GA^Vq#YdqCzRqd|9BJDyqbdRER1`UzU@; zkWzuJouyse2J6xj1s*>~_In{HQ(n5Um*qaNL ztnbRK`BffwM_i}meN;|jubg&j*SnQsoFa>n6Lj8&^MsQ0RGGAZE}sn18X9wU|5YXN zdva!%&}kUh>eUci;`p{dQj$L}w^Ry3v4&-6oEb{xTP5+p43fJ=jT^*&DT%wu$({Bj zj)I+Z4YMcYNauv()#gzzJ(Q$h%6$X+nu6x_N*gIjYvq{cMys6LD7I9x-XurWbI0zE zO5SX_f1PbLnJa0hDmjmlG8J1dQkXMvLR51F)!eKvlidYR{bypU3WzhnV&tK-gc z)u3d3Cj%|%dA7+4CGm^$XO!J!nFZ@uCFi9wXHK{If<}id~cLVy4J>a50{gntd_1hOm|4cBvUSH z2eQ)`?@nxtVPh;C<831~#ygQLG{!qc{<>+jleTOdANO2(x&08YU)Cx)3kvDFa5@%& zR{k5z`ze|4lheDXHW;r;)W#$A<~+-+k-c)61G0Xf1YwZVGY;NUTq zew32@vkXdC1LAB%d8LxILXL8m$|zl1SQqq;_C-noX35bm!l~~bh3tAIb+a6Ix>hf` zj1B}c()=DJ?-z2E={}^SV{hV{i zx)JxUHaYKM>ZxQelB3+M4tEJI!Tx^CN8^M6vynDXDZ_TM47oV(*DPzpm8{RoWsL@B z97C!*DM?q!-*YjwM(UGw;W(}BH$JXuO71RlG8cxI(bAr1#BmAHLM3y#%$%2?bwqJ9 z!c|Jzp!{WJJ6i>dm7Gt>oH-#U>48epGi1`PtvA15b&0DnbevLx&14BSSQLyTu*0@8 zoS=>mX*0Tzp$XD>GzrgC%Co*);<~g{B($6_SRD+RyC5%93hp1}S+5%AZwh@oF?%#9Jw;KbKo(g{{?@(L@@nWWGs`G$!oK zhUiQs=`xwLEv3zIs=budo5<7@U&p{nt&+5-Jdc!3iELzSQpx$9T%@w;12#AhRdU`V zCvKickM2a1cCC#8ZzhYAPg91GI>$Q9i%of~GssS3zh|*=4jbpOae-~5#(pm%3yuAD zl6gx|Sx{q$ZZ3BW-P}N7v>yWYOMaW1I$}!H3BxuR2!TOYv^<^WzqusXq$$px!~|0 zCGod1akg_&MbTK@=kr|#oHZdcfqN-A*UO+NRXbM}Zmc9dQI2S74Q|Fk2NqkN%yI1z zO8V{OI2YB&X!OlZy|a?~Bsu17>Un9*Y=7*kB>y1;a@uc#>$b8goaDPJ$@iAYvuQP_ zp(n#i&O$k(3rSA~t6b~u;!5T*GIMcjHSEadgOuDGXOPmwZKQOwlJiBm#n+jZ?8fMO z_GpBirDWe(u8e63kK;7>%ax>u%UN8|5KGWWtxe`Y>n%#+^W@lOM?+?d<3T0o-x-vt zP|Q3D_c_I%o=1Matt9Rz6X#IfZ#J(!Q<8R-i&H+;!>$g)&r051WnPRfjTmm| zi%#QoO`VVBB+gH@01VzzCGR6h$(oc|^XUemkyT++D-Txk=F5G5+MJd! z2UxaNlAa(JsC#K6s7DN)&II-KT1@=}FKPE?)roJL( z%Q>PX-9RSICCykj!uWiel&paaSR*usWo~pkOv$=bR#C-hRCsk0PEvBeDVHh?zH`IX ztcT81QhzB&JBPYvX1TgrNxG4o!+DW}i}nsBZC_bG+I62fpYy1abzeEM*|g`$_=H|k zat3A2wtgq|eGT&WmE@h}(!74^Ud5_#bubyFu6JsGUsdC>22*c-WeT&_25k3~%Y7N{ zTB%Q6^HUWz@3;Ebl*{^w>@;xu3md<&@dq1!*+y#M_8+p)!0p~Le;*o0q+RSyw2{a@ z4u_<{wKq;lipQI6Gry9&B$t)$_TBHTnMD%NM6*$5dMkxkC6}2Z46S-lZ=$5OT#f%ltTMA#AIkR4c(l`#+=#OPdO;|u*< z$^WCAF(s{4gL7v47bSVA9QhomMI*-RP0%&OK9+O8g!X(yDA(QUpiD_#At!fnYjQhg zFxFRccb8MUPf8UC?U5l$Nj{V%>E4Zdq-~j5N*R8U^CJf> z6eAy&C`pf&Nqe-G|2Xeiaen}ZE2YSl$7!;iCGcb==SFgt=h7|bQM3PZzLNCN6>f3X8-FLqUw*3_7dl_olw(Dn7^ zP1Lm+$H?N8)9BHf6i7Fv2v5od)gD4Hn=1h&>w$7n$fo%cqjnssz+<_qbj0VI}Lax$@^cpXOU4jpjP< z7nHmw$-HR~hk94Z{f7Kud0j&Ag_1T~j&hp&1%FjC=gQ1!Pa4ghq|@6AD;Nb2g&TWPf)U! zWDr{~^)*Mydv%_uHrG^9?W?4JPVNGFwfz<;X%CfST|7R9+2I7u(wObBOD9OK;Q#@x}Fkybs*D6V`mr2t! zx9?IiPmr0NX>C2OPiye50Jy#p$m1`$oxqnH+0xJ@TiL z_&7PzUN->cPu8`+u94&G(XHsNWNnmL)8_DoO72-Qw?|84n3DAixk^socicfqK0kx9 z<t)6l-n7_qu$s)6s1n9fp)> zh>&c-`egyE6E%lJZ#QMLt|2=O|6a$&4Q$-R#x1sy8vebFEHwOkP`)Tb;cnqXeYi0& zVml*M9-#o*4*>gRK3HZhT^OhBK7pxC%K{F;=)l-SAQ+esrZr$e=Pc-#N*QjFWhfmE8CnaVkp#af=@-ems1Nl;BB8)6 z8dtHeYE1-|L>g;R7z{~rrs#^{Fj+;Ek3cz?9$daG(3A*Fq%n`UAwpNB2p7nS(Qit! zriNysCIv&`z`QUn+@zfyOQ>)}<{7dKP|C8OoE!mr*e5WT@A|a!rZsB<^JkjfS8H>n zK*ME$Hk%Nxi?x+hN+wE|aKj8bUToFDXC(r&vF4k0kH@FZGSX^0rD&D1XhT{)9|#o; z)CMDqlB~r8jj=#wG7_x{#Oeu~Tcai_CA&lZx;v*Y&$}tvm&)aN88c?b!&G)7^=njauPWs#m*vWvoTO9O&E)t;_@oGa_89#g30O3fcy)JUn2>fM+nb0eh`@5-4`+Ljis z>UK*d{d+Qf&k@5$jSfs$R!{fMhS0CD2guEK4IM|;-oPMVP#_bd5#miaf}rY#SA#Hy*Y#3NOcQoC6Vd7e?qvqIJ&c4`DM zRM?_Q!tub=`o?&yD(UWryr~pukStKqoMa@li0-~|94fF{NqvV*-F4oqz-|*~Paive zA`J*d8XX;wA9WHWo9VQm`kF?Bo3Qt4+y#+NqAeQMfhagv13ib2`3|5V@O>0$DBNBG z8V2+}&^bU~0X+!q^E=SXaLXM)e@7y`a-c^M$_6&Vb6WsijOVro8U^1;KySlsF3|IE z+Yjg|yio_#58*8b`VYQG0TlqP1R9NZF9JFPZr20l!tEZQv*Gq6&^bV_0euSJRY1QX z4rn*{o(a?gHQHrBH^c2_paa110MOoe<5{3<;Pw{K5V(B`^gi5v0{Q?b zFF=3aBb07HcLN20j)3n_pobvoXrKf_Spf7H+(JM}xHSO11+)Sv2caAb^bgP(Ku_b1 zOM%XW+f6_lg5!RmeSn?;+85|epx=R31HF$oegrxf=s%z_KqVW}-yl5K2grikra<38 zmYsmc!fhJR&2U=?^gU1&(3_BIG0-P??r5OPfldRu56@i;^bpVuK(B!9UZA;fdkUxs zZm$FVg77{DDu>&zK!*WkZ$y6|19btK0n{Jp6@;=G&|;u%fgV996M*i-b8~?10@@eo zYoJ9y+u)6*K<@z^0kkK4PXT%Z@wfnJ1$?gsx(etnpvUpt<3OLo?G>OZxP1t8B;39M zs)5^|Ko=ss{DJiMEquEJl>%)DG!1AN&`&@+04>5BQ-Ikaf2q}l}NYPgLAdLC|LfX)Wm4d?}+3ZNqpN))IRZ>)J|Th5eNojFL2DNJcc|4}fUdxEGl0Iyp}#$WHp!#E z8lds;Z3H?P?;ZlQIebq5`WbJW1N1E1t_P|Fx(Dc9_&#YPy!#r^zCf#hrXl3-fOZA? z8|XOr77n7n3-jo&C(vB@4g`7=Zo`4@hucm-4+2dC3gO*_KraDR0lkAa76W|`Sq=o+ z7H-D@y$f_E&@!OQfUX3(8K?%KJOH!<(6c~gKyLwkg6BR3dMuy*egYZ~x2(bRcNkD- zpw2*jfh;^X2&gwg*$U_*ps_&r;<=eX!|>c*Km`T#R}1tpq)!4(#~X(NJ&HF@1S%<@ zzjJ|J!@E}jodVz6fwqI&BS6dX?u$U<;PxKS1fVa0eg(&GK=9OnT|h1=CYtKoJB&^8F=QJ^jb^!E}_ z6P|k?=yLde1=J0`zXQ#MZ|>&wHxThC2g=8D8vtzz-z|U+0@@zvTKG-^`T=fpfqsJo z)j(zNO#sy(yn}%rfba1@ufy$Zpq_Z{3ZRh)+qk%R?D3gK4!fl@IhVX(wx5Kv{Xdk%k540c9(Lh(>jnja3 z$8#40eF(Q3fR2XS!$7|yZZ80Jhwr;U=OUCZfc}B+uRt^5n>~#FhQqfD&>sk;KhV+e z-3;g{xNQq`3eW_gKJc9b^a9-W1-cJzi-4X1$5NoT;ClqnBk(;1s2FS)0KJ0et_Au6 zZg&BN@Z94-S;)6nfHpuV9|BFsbKd~n0rV$OccA<&>2C|X+Z|{!-q;Z6PxuZ4%0qZN z0L_Bi6rjI><^%Ntsst*+b1|Tk;C2Ae6F|oR%>z0eC>v~-0F~p78-aF*?|ndDBW_Ov zeFa(G0P2P3J^|_t^aD^aLirbH5>WAQ`r90D3;?l5&|si% zfp$X3e*x`>Hws43Uj(QJ&~bXeQ8qK(m2L zM$+FLpgutJfi?x|gM1qWR06hLfF=UX0Qw0b?+LUQ-lzdO6u!%W&VwvR0eud)l|Vg! zE&_T4Z(I*lkLT_Ix*fhx0=){i*MN@4bE|+x!0kJr%Ygm{dK$ikqv-Ddxb+08hTA}( z9pN?{s2FZL*=|77fUbe>LZFSnTLttd&|;vzcW??B0qTTw zz7uFYpvQoI!y7LH-4FBu&p+u%&cM6#fOdgf5U2uf^*|rNZGWIJ+)e=c6VjgpbR&GP1iA(2HlQsa!NWjX;*A%8 z8i3vfIsv|40R0X0E6_c7H+wYw9Rt(_Xe+$YA82c!&4BKO@3uh40Zjnv3p59)5aI0$ zl!rGK0sRW!r9dlzjsW@q&z%BPg6A#(>It`Nfu6*3cL7a=@8dvy;QI>DGw}ToXmg-% zfNsZge*!IrTmBC8w;|r>4ip925NI{fFreS@#tuMNz-8+`+yEWC{F{0;PwX4_2Bpt=qUL926P|Z&DoLu z9)w$0px=N70Nsi=HV4Xr+jc;6;5HHHIk@cxbS&H|faU{5fnJ91GN7N}b|lcxK&Jw| z1K$gQ-UYf2=u!CI4Ri|76F{c|y$bXmp8E*sdC2@N&_MY91=J0`1v}B-6L9MR^d(}x z5l}7MwgkEfZaV^HBmJfV9Rs%oKz{&*fc^q%0D1>(D}Y`^D8~X_3Umfg8A7=fXc^pY z0@@zvexNTP)iXdV5#F0X@4|OA(CKjd5oiyf|A6M?I@tn@Wx7@3bx}$0u{k+AkcO|!-1Z~8#@85LU_}Fy1;iK zP&rT)P!ORk26_tUK%g^#a9_Q(84zxYx7NoSxU${)4{o?W-I{@rajCg=HxRBFx9ag6 z?)|og;yGNwZ5<0=+=y+Bgj?1w^!GAQXP|9?`T}JE4FVd7P__cHZz>)ObQ9cW0xbjD z3uqIdS|Iz%+a%C;i20#F_rUi=pv{0T2I>TK1JI?A>RzBA+@1nD8R&JOCGhADB)H)+KkEk|+^lEq4TSsd ztU^48`{%4NK)4Og+8DmLqs@8|F~WUm*3OU*mzY_H<2l?aW}OE&-1TMsjW=)um(>Gq zxDw0i2ZVd7tgd(iH%D2!0^v3%>tp!hekJQ1yo)=JtR&E2Ap0sITn%KMfH!bikM%DQ zF3_=F#dEmP#(E5HxMs%M00>vVSOFkh$6_r72QEjk-ozWYtHk;eZn!|i+6d3#P7lkz zm;?80So^{aw_jL6AY4UZb;i562g2GD@8aeKzCHmrA6PHpIb1(rt-^D-4ZyPChST}2 zU+@M_%eOv(FV3sCZU(~1@zzCn4#&A$mjK}~b?a{U;(&AO8N7>w#;q5DaQL^?3|}0* zZEXWL9D;3yfp8ABwHJJG2(*=h@NfjP^)`HQ7_#*vd~q_dRSLKDCeYu0}5 zb%!rbvb8=0!f~?JEWxap0)+3w&`3sC6{Z;Xw9rnkNHo zgy(Q(rF8+`#nF-0!*~v-Hd@!h7l$TVC&KMzpp$`ca-d}&|Azzotk3Zr&e5|95K7)e z`Wpk(4d_X{5db<6&kY6I3~r-=_JG@Dpvib+PoN{=Rs-}CP$N(+-Z%s(0(1h<&+t75 zs2kqB5@Q1&GHTYz`F09}FS`UCZc z+h#!9jqv>j=rXwd33MFX@+Z^ZHE`<=)Cja8&@7-~K=xMQ z9f0QJjVVA2faU{j3RDTS7f=jn5YPcYPXiqTWN(o?9q2HGdHYr&bzzti3to`7Iy*bu!AZ&%PDuJ-|#JU5a zU>k_F6mMYfh4nq$um!@(h8uPySO)=N`M-575Ek28T@eaayIZH>4J_;$5sywa!JzSR-oL3q7%1)3VoG zV#TC20=`(YXxR%7v4qfC3O6k0vl0jeE9WeG`5V@&S^dF=HDs2(5Dd$?tkd9z#Z}hZ zcoz$stapI0#K_ti2#b5H6$lTjYOFy(Sma{e0ffaS$>yBK7%f7_xt@2y@%a99oM&-m zG8zpxRzxF-#+9e8^gQ>|ey|WvRL~yCx-^dsZZ1nS)JE!;4x=*}>uHZ@k|;~>?26K8khFCZcW%|nmKEGKE;z}Z7*cw zVm2;i<8s?*E}%13!*SYPvhwKWJQ5-qkF0E-Rz=CRWy`s^!RVHere#}J(UI^KpoDE$ zo98fCTRn#b6RBH;QpdPA7X|A>wX|Z6c4n-sy`86to7=_LI)@~&`jhC%%Aj>FS&&b% z=&6uA5}HHoWrt{WCBrjsd#3YPKb^;h={$B0q~U1EG$Tm{4>1;}O{P%WZ{f{2=J|Af zoP9DQ$9DpS<1Yn0Gv69P;TW0L+_I14b=zX075iy{pb3EruLo8>EM zSLe~GkVm(MytD6+TZ&oRr^_<#(9w_#ZPC7fg?$%UE7}^d@(zk)CF~b@y_@e6KG^bK z#O;!t7fiTx&M_p3zvAmz?3%}_bdD{SQEFRMjn!5_kL+k_x0S@hINj4F`Cx0EX_W%b z3x_hf)^~2CKDK%EA{Xnce5aCUhFWJ*I7W^%7pL@yomnpRak+oq4AsXazC%t4*Y=@a zXa}+Ga<_DBJRXG3MOr!X_$`vf-xue~5Ja1XIk=+{Ni_wYLr*DPy_8mQb+{?e6?b;DULWde6-@M9YCRQT(18Y-(C2VO-cg0r`pzC#6%zKHTAn#<&7*M4W&(FN91(Eq zluG{sWT;are246+MfUD!5N$ez%aTf`?5L4~R&fu(V9C1EDczt`YJ-Vd90TTc4crwJ zAAc<$&ob9MUD4N|a@iu{nnpO<>6J@6nhR}u|5>rt^$KN?Bl-@_^0eBD|cgQZ?a(_pIXwxlRo>aQ!e2o;OTZXRN z_DW$WNH?5@s6%B8z7^*wjCBhI(V5?~q-3BVY%SwkxpK z>xwQs3eb{Tj(pyOr14jmyYhK~?=;CYpS!gi#b}Y=o!fK$^JkdbvwesBKhN#%ZKD7! zDdx!WBlS6cnD2DSG{<{6MlxFB;Li1f{mYPHuCMSNa++N4K*iqHHsC6v13|QnWn^_U zBB`;AVe7VS(9LlVyK6M#F^Z2rUFBKqRQ(Q;u_AS2eTMyxhdY`JZOw%T>>$!M7uH=} zf-Ewl?@%tE`_3X)b+X!bdU@uu^(uv9HXFF#;fjJ=x2*CnLWa8K1K%OLbj!OP4WdoA zaCuVcmU}f)P`~4xb*o!)-Iv)9nz44Y$u5dM2TNs?QjZSD#w4k-!?B?qL|P594m%wA zcAOn*W18>0aH);Sz7xq?ZEQo~7#Y%BWVcB;t5US1TBjT)_@~WKRgCo=vP)I$YzMLK zs)x?p)$q#UB_xW!y4#h*jlL5k(;V*7uAh-6pBMWl&oH0seTV!%&*!dfoeZzMzEq#r z7x_+hHED09Obd2%@cfF`%OnNp&ymlfKs7 zv_}7ywUSvC$@)aHp&=G;3|FP*H_Q`PKc<-ZQ&yg(uX%x@Y0x5Vdttf9LCadb7IU_n z>iDpuIn&nVc+UFl}v%EdRn}sDu9LXaQ;a`v2@`5N$e$%a}?By{(agx*;#G<8DYKQeSNzt2@zm zq4g|r&6;iqOJ$T-k8a2~-^DRiqT95}7(0lxT4h~!L+m&^6iBV_yl^Ryu5rb{%Uqt4xi#XK{CzZ z_T7*)`Fx^(@(lC2*>}kQ^L%dC4e`qBhxK{=fbT@fG_RfAkTm&yuYUnD%ir}`@X!ESaq7^S5J8syyn@89!UFv zauPGc>5hLpnjLMegum<{{O8G9pE~d5nFNkT!^Xa|%2lOoNI|TPUPl)S$80q8wR;_& z(QuD>4Dc^ThRUX&?~q-}rguk!Xj3*^u2jnA_l}nCl(Knr-7e+q5sJnV;RLCereHME zGT31(y$Vsf`fCw+Ynqt~O_P$6h0IXT?AOuq(57ehv4i+Opl4dLseJ-Cw9Jvdv&p4p z4)dL2o;hvBDI8PF^tQE(S1zW67}Yvoa>&K-z*=vCpZCjILf`8f!^~6};A-nX% z&K(V+O;2#SQR#^R8YxImj9Rzdnr^L4jx@t3$54FMM!Q3^L#?Iu%6#bL$d2Yhn+`e5 z4&wiS4r$4viq_~m^vSipv&f}SuJWB;-umQB3dhtZyi(MigD%~2xqlHd)Ge3z4%ww! zF6?L!ZMucalS;Q7tdW9r%iHU=4blV4&a)~S;<36|BY_}J05O+`d_^%@8`?!PWCAH$ zglv(~D8n9Yl+Qbw6K(oswH?I&0sUfUlOq8f8m4rP-)wSem|_aTU#rer!~99fX5>yY z51Dx7qD#jV_!lBW9h2)jWS5RvucJY<=@>3kDjl<`qa_7k= z4V|J{2EtMq<Uw{nr`yt;Ur^)XQ)ZcAQ0Im=^ z5JcNDkO>`)NU8~7-wwU*W=*=c4q+tIjA0b+=2u5~7P{scUL&8a2L*c#eYScIYv}<) z#ti3W^GIxeP3BaAYHJ>3+d-sl9;~|>q$QIo+T!nMDs169lUxAgzu1DisR6Z2GOQC zxcsOTN2NvzQXK!S+p&pKoc@=lN%9;;Wo;;r$zIB%wbkLJJz717(XnxvH%6ZBXxg`F zkSFXQ(rS=(I95S9(-w7y7Wv+H&bYM5H@?%#TZ_C);h0*452J1`y<3rd>7PAAMe>>N zkX?%86FZ1?*zV+g^zBp3k>CC2`u!4J`Q4X-@Yhh!G{3ps>5hXt*L(SwA;Vnn?mOiF zd9L?v+mybBoS&x8`N_W1CexhnXSWx;L`!i$B`W^ zLv3w`!|WjbPqZD{N8M4ETiI!pyF?9J8;#}fgsx2 z4hMHMBB{2+=ykjBsw7k!4lT;6sE)>h=IP)QeHU9#ZPPqSG3;Oqmy*q>p*&g+<9wIR zl>TUIIgGJ`NZWE)chyPfb`f`IlUm=|;;Ki&zEjFGXRUb@j*%V%cFoZCspiP@ z-$*Kd-=ZtefA*a=ndZ5(8QMM`?%e;uzZ@Cn{HJ{(5Yw zg49-(47Y>$zfhG>?zE4*L$U1PJ9k`)Wr6S1^2}gsB86jCCVZKRDZg8x%=OQop+cGM zJ7kwanPCU9?y8fXt#e523cMrFk0hCtmC0egQzp|q?_KdZqrCx1{A1O}$G?-@rRGszKvPd)~W`<3R?>d?r zZB2`>?I6-NE!JIK(~?ycMiMwGn;r}NW|gafQBFblYmRy5w$+KkF&h|s)|+=uroZ9Iw$S(D_qc1ERG+u9hf_-D;fNxbMgWS5e7&JJSTwJ%F}6u={Y z^A`I3&RqGMO+l=UMx{G{xhiOr-CY%A`RC3sm;d?yFPFQtjazu+^eBB!5BHzi1+-rx z9Ip>XS03G*7Y|n_MR5TU1rZcQQ6I_^;ejZMisA-{q9CFu?)=ZKs=jsW*1a=z zs_yO1pN~!_nVD~$`krr{I<@DA9NE)!ep0kw_I4UyzM{AHLnBADX^mc+cl@*~(174` z6nE>&mW>wTCt%WN5kX-SC}&A=Wj<$2THm!;^{zvKLQUcMs1Yx$fOu*G1 z@c1{tBwR)=dHm~WVpKg&Z?p=jgzWc+@J1;5{XsNx+xM0{$Pxb6$N+c}K|2r)2%bdbbt}S>h`m~yL@W?rwIRz~VQU>- zCt)L4s016wh0Q4_&PDoPL-DW22_0C-#N_^9J8qE0w8b-vB?KZevuIssGe3faK+xHQ zc9+!QbfZ}d^|*65;0PXS(4Z4h5jp6r#~Y#;bk?GgrJ%D)7lH>Jsx70SvzLh#FlG7g z)&?Cia_K3R3Sp7vYN!h?R|?gg>Bz-3PjNN%3SIVje7TH3M8=mEPGq_x7hd;3Sh*kV z8!4>ZizX}7z0OAfM+__8$c39P2a~(;#VZDryU@r|F!>~bXkBN*M=qSQfX9CcCgED6 zR#L9J9EaFY1BV@jbL3q}cHtG)JMXbiN8WV(joXU)1Fw z@qhSI6@$dL(a2Je_+J9iy3T@cz6kpFKVS*2ok{-vCz=mc{{}W+gn0RH__7tf{1-HG z+r2Dqz6g4H|C5b9y#yfQ7>39#Ib`!ih`0B`m#^sUx1*6Gysgn|^Nyc(1sV{1^l`hc zY}x2zb!#_mPstY}U*>kuf(?x;W;2-7JjEHzK3x^@Y#>Jn+Da7uz>IJxfk?h|W1{F_0jd00MsOB0b57!YZn?@?emB&Inas4i% zb{XaVciND1+amJuG5YZd`f&&OVA|pV=34}7CkQaqUm_EMF!LJPUs9NPC4{=+84Go} z^HabP!wj7@4|As!Y+lA2p%`plLL*DT<^^2{9&D(ljDpQKO{{=mGrzSH7ViE5U#M|6 z`-BCYu2bR(IGYS6O#K@Ke4CO4F^9~R?hmHpa(yY(EFlm(L8zG*&OspBY(hIriZbwH%YYNMd!kXZAYt|xe`d4)ji1hIy?Y1om} z>{GFBlH$w^fWRe$;c;dcz!AK|-U1KvA~WJ(Z`x)m-U!7QGYO3>#h3}Y5In|EO&P_Q zmvxoxS^+WUp4P^gj#AN0XA1ePwlG(-1;~seu;@S3=Nd-s666{ZOg8B{o(Gd|0udQZ zTDS^4(W`eLSJ{sCh!jI=XrjVnNEUDer?8j$Jk#au^7Kd1q^NqDJ{cXTfb8!N;|);s_swYJw)=ZFKVui=^Y5Aa{5xo3 zRDDk8T0<%!`~Cm$MkxCI+i2tnziV{wJVT%zg$4v)BVMmt5tbqB-rBj=Nfo(_%!Dzoo{l`1d zRE4_M*#mIIOo6_P;WJ*2A!&T!iZNtAG_n*!_8}0h%N1tQuGU9bz}shlL5A7FX=qwh zy*-C)FP5qx`}}0Q35q^H5sln-pU>r8ZM5I7F!%dqXlhjbPA>xut%mITi}7YC`u+km za)j?SI((ip&`v`Gg69n5bSuJghQ+PT8K#KKB|_Hl1XKkVuR=v)tM@FIKnoV4N;jIX@St)y;0V5H%qID1um*BmS&z3s zF|MpdBTI2*6@h47A2N^T^Fh`Eem@ti!u9i#-_J&Kqw06MpC`N?viAq^b|`wkjz(^~ z_jlu2{Rj&9w7CNAMDwGnfIR|th6U>)tKfFLEs84m7#cZ31saI~&n;+|q5;8&DSPQw zgbh<>j~_KEvQLW)a7&!sVC{5Y_qEL>&b5n1jp~2Exeh*Hqw(UXZ`=UiZ%jPPu9U)7 zKYs`Hz{Rdm*)>*#Wfjf)#fQCnoLHu|{P`PQ()sY@MFJ7Yd<(OQNxb5L{$z3n>l3Lz z=>P~^-WBRr=kGw5m`Bi~lH7JVdW^%Dtr$HxfiDizE$i2JLw{ zUjbhq2KM0EpXBR9(X6QYn&ynb8ps}hC*A@@j~|FeZo9|l@T?)y>wV^4&!L%7^*Vh^ zFRT`_=PkSyik?3mjU3^5jc%T23beb>fZ&I7sHnxOi4vII7Hf`mm(t~c*5obC-t}8E|O58>uB2$Uh^)a5y zBpL#p&0}bnNuABN(7c6u-T4CGh>6ASWSA1|QD(})-WJVo;!RPEJ^zD7mSWFWbs>1{ zq53k4J-3=z0W+Zg)!LJ_Gu#&vhPf7O{2AC}DO7w7lPOTRZc});aKuP628_m~;!I3D z((FngA|p);2QAUHN1z!7^Mn%hQJMGiin$D5)Ud_IRpmV(bcx)410P<7d65~x$Io-{MkvOZnP_Aw#!SS$ysj#P9ZcpRZBGKwR| znOFgF1xcb)(ofyTz@&V25`X6ybAe4CQ^9I3M9+yaccyG~R|be{1bp4EhCOeo~5 zwM@Qd4>10JNRZ+jeKuJ>NnrVHJ+UY|oaOAG%5aLmYsijj!KB$(cLEm zRJ?a${Eq1?Zp&t6f;-I#PU%7f3Fcjis+$`Vd+LRPU4v~>)tV5C@K`>7e_mHI>j)Lj zFIw9zbsSr?Q-ypn*bimmQBz~4*AKzjb)cFQBm~K3U*qujc&e@{czk?6WpjGe4!#BO zjmEfIDO;=9_Rw`hZ2uqI_{X*Z-sx`h^L_{st{Y>am$Qo?t0LIZ7zcl>h zHpUn013i!x*mm3k3G zu#}`DFmiGCF)k(JpOAWYRlKIT4GhA3#Qy@+DUOsg?Kx0LIo-U^O)=pjLBWKPg1~*cRP!M4Spw0*)N=GO z$DFW1$a*Vi0cxzX!=l z&tG)O;j;XbE=1z|j)iPs*~WDO!wa)XGJLSi@H{9`E7Eg@XX`=)8P@15cz;8~j|K#{ z;xoEZVcF!DTif5vI1vW+WxJAEU9kpiw~H5NH#WzkrN)x*u4X$eJp=trvveV5hNPMs zb(O-!wt+yju$LLX%IdQ#8+W9Hc3O>xTc-zb1lAhUI&HVW@{Tn7l-q3CoW=oN2;N#8 z0ug(!Gj_cVxs%BD4Nz1Z{f^A`q|U8wacS~ZX8Jl^nz&%E)`du(=`H;**bte1FhQnk zZgFYyRc87DU79%4_v=C=&h&&WcClKj91{p4&m~6ojLsSEQ>-v!GUbe$rwA?L?X zJGbS!3oFiQ0C3#36=#k6C(J6iyPnWZmJ_<^oc=Rt+QRosjIin=#N?1^gs0JFuw6A= z$xji8NEb%$gV6CI@z|6tO>b3F!CAlmFo&r-CzMy`RlpI*YfSC*L{dpx<-8nq|7lL< z--ahM&aTSW9K_p0Ms5|0ZESzWR72Vg*^je3K;V)nRX1T zLnAX@csQM{3&Ddr)sRt8{|l92oY9x4YS!`9e6cT8gG|(OP(?_UPK5f$kt)gUcXnsp zEgWV|?6j|N<^jHlzeU#rTnC#7ghoizxN?N>I(rL?h%UR$W7Fak_V&bxo#O>YmtJ1F z#B9x+*)w$^cnd31=R|2c78e|o@2Oa1=fs6W?gdS>&%dcfE+}}VOD?!kmp?ADTBWcppO}oCXB9VuU_M zw;gtD?zbxCR8KzeM&&Ds`F>(&)h#kjij-XbvaY|l%U{xkNSy5Ps|Kxsa&6#s(=|b=(ayo&Cb3jd`3|C}8K+F%o zW>TxNBektcmOE_NY?|LDZeP3%42WZ-Bh$aA(_Pl^j7V>*rrm#N8X-C4VqG@5s4vik zNZcVaR+duD@KQ~k2wQuO6k5UEiMe4$XRefP2AFEv-Blz{M%<-K9OwR%x)6zTKW7UJ z^vRWx?mV6627&+YCdU8VPIstpxwq%L^L3spWG6hS%OH2c*SncsN|83z0aEn2s2$MffXsOl~QWMSVm z4F9551g=TU8N0bFMd_-$8UQw=!G>WM2CmellY8WH0@1>l-T^$PR+kF7Kv?-)Vx&$a zr1sJxB~{;J&f%wZA-JmVq;80N31H46zNgC|7xH&>Arg1Otaa6D-L8^|vI+j+&L@eh0Bh59&fFv#gzOPhDx%tkfDCZZMEnSU#F4*CA(- zKdeg>=lW&>(ZUEZ|HKN+;X{Pj0prC~X?rmRw-UewRefT9_i$odF6i7&El9f-q`?B1 z(PS1#G2?6I41Yxzf~)yU)JbvY+4GvN;ISj5Gkh^IPt5l`(eDK>I2`8o#*!m`rOP6h z`pL=zfWjKf`MPkQGKLe;-}mxbpYZg-D$GCF_b1`e|R9D)qt&1c}6OS5hiptd&yX z9@&tXNA`tzMbDsgskhlRfI(^3p!6_~I$D=y?x;1o5Q#e~bz=XHRIZfTZl{X2olEuG z1^1o@Z`t}Sg(K|^tK z8aoy2$WwN2uMIDcZL{HaF8|E@b%{A>zs~;B_B6BTMrnYRk54f#Q6Nvql0aAK$PKw=I`@u4!cBR$~SFxLp}vbhoc%0+=_%ISoYj(7kbn1f+x(dfHZ1kVtmygY!A!kYh>62gIXcR zj(3tu+V_Gb3NR+?8AB$@ZDtHfBwb@9nT!F8472!Mbs-XW&`fs_lOfxbGR?F^@W=j% z`NN$Gd#6nI5?!u%tK3T$B5}H>9|!k%y7M^UDSCHeWY6eyZxDr&hs(v+>+;5_U#km| zIQ0vUv(ruXS6gtmW-h`BXC~%^-8w6Fy6J~rV#9FmDC%;_-LX{{BIpi{&V~0+bU{S} zf?IKr?lhEZ1zaKfY-^Xurn&7KHU`%0-g-egCjO~-6xKM{w^CNk_Z7)989b3;@w@!U zKf%U2Vo1h4I4&#!g)E@mp(`1#x{nix7EX_k3p;Q3SUfB{UjiI~w8r?($TN1|GH36b zx)8jz{11VMeYtGXx+1JXScN=1CoiVei&_p4eI9MM`8(f^rR0;R(7BL9#Wv6W$}y2&DnRt+-8BHLOP(J*K6b zHags?$m8AH?!`&RHStKvcLBfefE&y@X6Oz3LI4fvbyn)if;Z!31fqq#&K}*R)P_>U zPC;gwcMqbHb5~@`SL%-+x#^R_II1rmo}Ci_Mr~ zxwMMzJ0JLxDXO#zphI&m)t`HqJ=?r!lpW0 zj+XE1uL=A<9}mCI_W(zrE$W4cUzl_EoGt`!D9;jz*yAQ0KUw18pD~4aB4jwlAse%H zg#rz;%eQt~ipL(Ct(7($BZzoOq6~*T60w&#!*ADx2#Q#v!{B`m4MQ3b+=>TvrNa80 z$6I^UbcQ>l1o!D%{NiFkOJ~HRrN-O64kriOVngSYMw~)AO;;nlpE;R8MD{bzSum|9 zUZ?4Meatx*zKgga)49<7`4SZATm*k2?~T1MpG28ue34F1gtKr|t`((~F@TW$YZk%i3JC{1w!PiTiA@b+z;p_TQ z&JE-*H^SG`z{~I~S@VfA=W+mNFO%&-UnX0n`Z8IhkbDo7ZFk|}s#EowGuh+>j|o&V zMls<;6Dwer`Gc*^L#M48%=TNwJ{u0%RR*lUd5pWDGBJ#B8hd-v6jD%|m7VEjWeaIk zNcQ!hk%o1%l zMkIRLKvG0cft!FT_CNu)T(}=H*^{AYt)S1z?$Ct@lC9Bi@UDl(B@GB}#Yc5j!_v{k z;~)cQ-KA+`SCZ^dNI}=eqol@Eufw64!-)CjDqRt99W5si(F7)tZ=MK6@_ciTK&6-V z)boX$JHOLYfSWR^B)#Of$OUsM*a1$jkf(X5N*3==A`7l9MfXb?zDP-A)7xr^qjLpl z*{K2$OBnZ~3FASygwdBBW?U?@?2tOxsEHnFVg+P}r?s|;PIgC(u=S1&PyDl!*Fa5T z=v*84L6VU1gd~Yq>T=AR^5p~~vMI-(Bu)a7=_A4JW6*w{KNkEe{*>@sXFc5gY9F6{gP6d8lGLnxmLySId5CDOmA%NQ5$ zcXS~VCw=;HcD7!r!l{VV2D{c@%83geZzje&Y+Y=YoE~5$OVq!i%NwWubzO+Wsh_YM za)BBgr4lJ$P)thd9i49WK}(dVo(silb;g|PS-KF3Q$2QBHfvW!o)1rq=W(4DElwi& zFkOZ?$%pDfBu?^-&DJ(|>D0Y<>zI<|X1PMQc}8M{&+M#{qRH0(0xMb~|1@3ZIQb{* zLL^T9M6zIA$yXtN5Lo{}VysUhR|3P66r@av?(=lH;&h**3z0b83s%&twUWDsF9-XC z{P}~({vC<2zpyjwnE+daL=z-ud|a1F?u^@XArg1SgyXArYK2t|Y}R-zG44Cy*&jQd zB_&E!e@mAqPW3l+Arhy077a5svL_C949l7ND~Yi_o5hhE+-gFjyDLlQoY-jVm`K)_vx9(tWy07slP zodLHvxFuFO$~F^9ceG`_$=}700h!Cer;~C@GE^Q zIq^)<_;M_YYU~ppAGbs48MpLI9GN#$By=6J|lr3;Zb`5h6Y7ZW3WV&`yVZ`EarlijZikvQ3t z*MQvmQ(MT}6QankNsR9)op5Jixu3mw5fWUk)a8p)ez`70;*<}+S@-jau|6GMEv37J z)6Jc_QegRv|`bn8gMz8FeUb*#Q2{_CL`VQVF6bt zUvk3_bUEa1_?|9A;%-Q7s26JaG#y-%QWAWHasu zbw$E;c0GY;;k3zA{_5|Ff)&`w^_6&NcJ2ZkfxN~v-*dlNQm)i$zhutl7jz+bd%2H5 z#6NZ7-G^~3OrXebG5j2gjbrLWW`1U;7cxs;(GvMT)n$%L`Nz5tiIYFmohsZ=D#Ckv zsf|`G+aKIew@W1{_Ggg^!vRuuy4);VqW?d-+;RH<>4Uibpi#Swa{oJLXo>UBJ>1jE z&cEr$Tl8a>6#2)ukq>50;(nM$UUw~K!*@vUnV1u%(|28=;OGs~i=lMG40?B6h#>JA z9X`()Xpf=+!L7K~Cnc1E*mBD)t<4!`cEg_4KG;A7TV~<0G8jAO#L0_O<58CHq&I(g zujrMXfwJMUAt+nu`a<%C_v;FUxAqeVL<{qVDJ$TP)V@+BY^U0P#lx?&6>tRZ8dE#7 zVzE->++oh;HeCqbVyXlp_N-yr=6VmkN)_I4a&H?ElH!j*p>gC4GVRkltIdMp0Vh(h zMEotftZ@;4NEae;;>VG7+l}i4zQ2(e-{Z-9S?=w_63t)N<%rY#kS;{xG*4V^!6Wx@ z$^jBIf$Co;M)jo59$Kb5lP1&sye?Oq?qBFaBu@7N9!}QMmzKhxi5Xu_DzGf{1(uQD zSQ-O%80KWV>Ov&$jOi!9CDCvo7A~DF=gHFpLJQbGF(1r;*-TP0%%wF;mcq^wUEX** z*h?28NWDfb%hO?+C}}`&D>mykXqFBisg({pyB+Oa;l=Lmx^58}v@MSM#trcO#`rab zQnhMT#HYEk@yMw$-P>~1*DOZJ*g~@1Gjw&prF5Du1b5=ex)98X`?Pio*;G1BAh2zhdv;3*yS&sAC zhb0b+M0O3xJxttA`xN2SIRa*$#0v_^?@Wd*i(T)l!Y_gZj}UsqACh0R95)y?rk`8>zCX!!fGMY_gB>Z%YQgRJ#N@)x^&Mhc<_rpQXwh6z!$X}DWv?hU{PpB>({E1e?^c~lCOn2?^q0-OH6%K0WIRt{--hDOXo{PJ5zA)>8&m$>xCmG zetEPBOu@Y4=_L@6iC=U|qT@T#pHCpmu+ntX^~_J|x9f(|>0AIfVx9*F+}$^2!Y7-q zHK*{Z;VF#Foi#?6KJkm=QNnCw8~75MTc#6|$&rlg3uvCy-QzV~c`ooie6cgDTl3{i z)qNeiRLm6X13hr@^(B(D%^Tf`o zTV$FPDUm$|$~Bzpou~_uIN9S@4O;F4SmK7&cP2*l1US>c3Y3UGP?sgH>MmV~AkiAJ zhlekkJ!n91E3&%H)3pLJ&(~V}YHHLGutGdSYNWhuP&jYz+xagfHz9Mqd0l02arF`i zjigW`r6HZoxDCs;9J6e>I7`)thf?Qkz!6AmOzDJ|2ntqDntsUL&ZXuYUZe}bo5lwS zMC?8L*v;Ae#vLNppM|30=-OqjCv{e{`SOl5`6@I08C{yVT0f-=kv!8|N|kKC$n?_* zGF@|vOOvlM(@*Kr#F>6V7b1D4yXyl%P5&i9reRnCnkHXmrvIc%6KDE0U5Lb)o($1r zeZH1D#hqE=`>2vvna7XL{zcvXzBR+M8kFduwXL zF@=1ONc$%eqkV5Ui{X}?uDWHX2MSO&Ow0!VNp{Fbb=l+&`LHfT;tmF)qD470^?x)6!e zKX$`OaQ&#r`#TcjeNyMZAly2dCSPTy)4DWqq3@>)kvP+1R&;M!FA}{uF{0tp!eVV} z+WjKayiu1UPV)v`h{S0gzi~&%oXWPun4Z>I-a%(o*r&{QRhKNzcUc!AalXf_F4PA_ zS$`-ovO79^p|rI7MW*=%U5+@-*XcqePV?xamj#}1eJC-O$9Fo`U>g1}bNrw#L7d|U zbRiPw*q@3VBue@hiIKg4-R4WOkAwWF$U!pw&*^f<>3>!iB6<2(t~x1o47>zghlPHT z{#^%?%LH@wV7kCcg>#hrFEaga>2k;E|CcUAkbaFNRo|*CnLO5j;8tXH=bzcC?6Q{a z2PEr(F_hIgBzt5ldp=yf0X+sX8v!};l>#Df;e^@-aYb^BEZ26gV*wf_h z<*SXjhwo4@!f^cYP6E-w<=XMb!tu3jd3(DsV{vjkbUNz*M_jL+;5{lUx7riU`P-rk z!Q0Cw0ui}XtG!ur=BmMbmE5YZnml1IY4{u{IF5x|ne+FX~A~1l9JWX%amX!Wg zT@ty{zpM)p^n*s{&hrD>-ZUV%6(htu-G(`P9URbt8<^d#yX35nyb1NS#H26>t|;qRbvmvtc$cY*s-G(Bz?d?|Xyj-1g^G+z-9&CY)Tj=*7KF685^c#^L)UqF#t@nz=RUaSkj z+s_3AB63Kiog$EjeezZ60wz51ZJ&Fgb^@C zB5@DQTbAlB71Jy0EK)M-!WJi2gmqqS~Cv_nb zcf|Z=Qz({d!!(D#Cg_P~a{voQXcB+crICB$kGc?vdt%9Q3nrPfZqKmBhTR@k^EKhr z_I#~BwW=51Xw2Kitau^N{IimZQ~SaVYs{c@pI}hhH7IR!gQR484p?QFY|qq%NZe7A zH8wVNAr%Ju4ZW!Wk zgGrxyksQ;7_EHnuMkXE^T?HAre3r|PoI9rb=)h@hi1 z1~+_sL~~~i2yR7AHyX3?(H~noJ{smZu^Z#jTEknVSSp;|BQJ_&YU~{|A*l};7!B#_ zgG=lh0@1>O(fC?#7kRBs$N;|>53SA}fFrQhn9y14O%qz>jPLX2{C!Rrf;WzP2t@3I zpD{;UgJp4C{}U)Fj=_%1@>qAH2$Uv8!5``J!zKCyU5Lafo0Sbn5J+1Px(>9FT+pC88HWsfJna0$qq8(Hh+{ z@7Zba*MQ(wT&b%V*0cY3G+f^iwVE3l6Lr?eefQz8i&@Eb5OVz->2Ncomk3-5bqZ6M zdxeg3c8pg-orG3E=p{MfS3;5cjJTcTc(e(uDe!=C9D#^*VDxgljt7aqI_M*>(w$J} zGe?=;2~`FhF@u=cN%OJrOQFs+C-LmzNsMd-8q=b_Mi6o-)Cg_i6KIN=Uij5eA4Rhj zs(MHE(lqx@{w`lbmgDw^@r5g15Op&enK8oy=?8TocsQpzG79H|#EMA8X}8*G$5)$6 zA+#|G-S|(S)Hw1|SryaavM4B+%r~-vrSAMky3F%1_ybB?R6iCS1~r;6iGuT2!Oqx9 zYFjl`u+G}So}VRKAp~Ookr=THI&Ig2^tLK&nLTRzE=!!~ z({v$%L~Hc3ysM@ih6V(;VuY?*w`YmEXz<#^96tO-gIDSLi@Us`3z0b4;TH{lAu+0l zyJ+w}U6we}pVfs360OlNc-x|5QVj@h#j(2C2AkD*v9(89IyRJGiA+xaUX4dcjhWs) zt^r<)`7p&Jg+Y z_3(B5DCY+9mmA?LJSclb0l?+~Slw~o&{#j2JfhJ!WNCkCz+PIZ7a_k{>TYLW3Il2K z|6D0sT^driu1d8wMDN@k?c()l+|JLND|NC_bA3@)YOJ~5(c0!Z={UOp8BUIzUJ$aX zLx9d02EvWmp4a@Viz7}59<1w4-eliFAX?gFS3!}y$?}%wuliDWJuuU3Z&lK2mxOY( zbbG}r!{*qG?-o_J0grsws@Tkh!o^ix_Xqb5FWer4t6z$Jc7`7Dp@ycze>PhhDCY}c zX}$=yR%?}dwpOp$q;7|V|H?qUP|Ihw!M@Z|1)jcTzaOaSe&N5%eyduxvw7H|lmSAi zc|1Z0bq@Y~vpD)o`-c|-p_Rl;7)TTQtfKqGlS|k>;lJSSDa+(ab~WQ3qO@{3_+cJI zPj;1Ys{7@1_sbdXmmc>^&i&Hse(86=IPRB%`=tn9q+lzyS4_A)6X005T~5R8yH&%j zpG;rC-QXgc1zg%hjRJ1k#0t2G`Kztn&+)d^%Qgvd_A0PHjyOBXQ)RDp=7{07q01T% zua^>t$nYBfMB{E7;7Y0*{2!WRs`>mYdkRyWeEDoVoH`!{93i)CEP`EFo)PKhd$8

-yUvk5rbUEa1cuf}~aW_m_v+?*8q(?cpD?yxRpLcFj!k^sPSFWeMLM6gyL&;j* zF(-V6E=1ylPjjC#Ex=RuFxcHOV8aC!7Y?02bPgN(y*Dw^r^6m-C>X9_@d}oRf444c zocMR?LL^T7tY(ZS=W9!alzS(lK>q28kw4oD^;!3DZ>a!xY(e3Y15VLpk2~NbU5Mlz zu&iDyrB~+R($fm)J}*zLou8lsEVuAnpm50n=jyV@9dNcTMB)zE=QwElaAK@_0O@yE zS~bgE?4|+9eFwNuunYO>fY2yDk(f{R>8vn&NH?4VbKI408m8PQft%(?Uizpm#oS9D z)`dviOS9oLU%6DNrC_?kJD(wr3LZ_&Cv!UCD4$!pdmD#$7$amj@Q5yd+yxKoLL}~j zh06+X5ez+%k|NDyb8{w0bj0rxbHr|)7Plcy+J-k972=NH=yJ*3@uDt7;_jHvt`cL< z!Iz4n6DI$^q!QH`o!NS|RvJjN2jSh4rC`(n#T#a;<8&bsr+(5FxEW|;z6||BQGAQ= z9f`3%*?saNU2YaC5uVm%i)(#9U5La9A44{V2tDxT#F!pScZJBB-l)qDr+9-dM37>Q zIaR(6MyK{PAh;D5>5kpmI@rUlotB-sZrhF&Jegvpwp6TQm8@n6a=JVoIr&y!b9Ob~ zS9Di5GgdWYxhL(K1q*YIA?w+f=&FPZ?Lq?4!r9wJt1B>wgY_OSJF^Pz&iQKUj~}_| zlLFVDj)!aKCcqJ>Y|QWMWmb4unpJQ&(}(m>cbb!YyDkK8M;{{)u}|I3J+4%+-4o63 z9d;o3EbQQw{O}zpJB~?Q*$*?}GN*#=9$jvbK zOnB_T-R(fflpzh`^~4;ppcAH6m>Fq!1i>|fjwM4{#2<9YN>z;mm+3O0joy7v<-^k(bg;n#UL;0W|JMtA0O2g+&aYI6=(=tA%Y za+EFvZ>H3fM$I&3Vg>9D*sPU?>Pl(ShGXE8m*##x{|d+XP>&e8V&C2&-{wDI7oi}r zkQREbE~C5?I9nHjt7}jff`#9X)`s7y%j@|9xq)wap_JV!2H?A6^6ehp4iGl9=wXFs zdT5~|x%MtyQn_nCNgyJFZ~U7=7B)A6@H=_vsN(rsE)>G>lku?ZJOnrbk&St9YgKkD zjBG|8Q#@|Y@T0mAyzx9jAR?0t-RL#P9Yc$5NCmy{M<_amI2PiCneL(6fCuEh@l{>+ zxWs>_3z4`3W;WZxT6bpxjOc>w&pbaV_NRGmfNW3*yAOUE6mFQ>P1c1-ocf7TW9UN? zqkJ5@3qTh6!MZeYk-tM1BFMBx_Qn%H+M8%Va4SBc+ge$o@Rycd3PKK3PuNmP(N`da z&Z`(u(eD?Na}=-AkJsqO>-6K#s|W#L#U?5oRV zs1@$?WS9R(x}+b0iw@WihwnOVOsLpo??TpQ+jX{{FGhlqYeQEv8q?jK+hAhGUFW73 zY0?T zqnQiUfpZSvh)K*LWa~`-4*;nvuE3i(?9CPzdB~R$D1g`4&8knl%Z|63zwqGH&<;R&umW-;akJNLuSJ!5T!+riGyse5p{{kAB zg^CHVC8w5w#xua0&V2+aG7@Mcy~Ar{2G@wylg;D@%HpZ@SHK=aiM)&^M^z$6=}N?_ zsuUMq!W*lokr&X&%(&;_7irLHwK%4E;wX~7Ox!#+|G$l;F$W<0$##6v;|NV@G%G3z zVF1M0ZVTphQf zNl{hD;ri-;n##hs32&*QFm6O6w_O;sxiBgj)*A=J@uayp9!C?SDvo8k;_zxK3*=F} zwTc3H1dZHwfz0&_#Osj*68VR@MBYSGqbiXV`V#T#D~sd}yuFGdc^!@1c9F~vh@{yo z2V}C(2aJa>djdo60a zC2KSzNwChcSkA`VtSFX2G;-U;vM5w6bcHG)mwU|R@@X_ds&ZKugIw6^AoB^IgTE7R zwW45dMx!ecpny7yw;8RH)V75)`RBP(nZ zD`0QpjMna98(%2(Rblm2Jka(JU<9{}5!zT9%gD+!f5(j6`j@TPN7&Z%yEXAk{pky}c4&zM{96p^@9}?OE>qDsZ)!U5WDec5{!{(7dR6d@gC(avfx^pNY3Y(d$Jt za)j44dUc){&@Ms)f~P01>vmMG6_6NwptXs?q;9+FULi}Kfe^N>J%E;MsNNdy8)4g; zv`MWY_B`O)jdAeDihG}`d$qOm z9Iyu$t2#d;pLSzBymSi}Zq@pS$TicA(S3zd4_v%DE^C!*?oHR-jgE@7onz2@O}ojp zrrk6@f0BA6>V=i~H~vket$=iTLL>MiSYp^yze*}&z8CC&0Y_*JjYH)Tsh|VlFa8>` z(8;sw-{EakjO)K4$ipd&VTh}PxoyZbqVs|E%#mD2W1!7ldI`l|tf;j?>+;+h%3KdKhE}W|c^-?p}%b93`RP_=v5iZ0M;V;9~ zS(Zx?Z?mFYwxW?E6LgUN?SkA(yxGJ3S|kXA>t+JWG)673Z!cq~Kn6zW*# z9e^YFgsqS?Etf;b5%`i7L&tm3$WrKdH-Ttf2fPIZ^eqe}$xJ zzwGU;`0^FK-H%3YySIHSBu&Nw9{;ep$8SdSqU!PB3Q4mLve!R|w?WbC*Q1dmyspu= z^Ynmr5gHJDtT9iwB5bVj{jn{*eQg}v^f^$<=Y(;_&!7&t_!KI&#%j~-fY~N=L?Ow+ zPjorw$-$2Z#Lkc$Okf@fM37MzV|^m!2LDFW6zW#z6~GZ((wIaB7ELL!g82meKkx-B zhK)DT$WqvNgFv({HJC~_AB1~3ZSLj$00NgOt9p3`@v>mP+(qnzFJ95td!mus?(3O+ z+d;U$Pd4}WiD+6>{XK{HTdIQW^DTH26n(x4jU3@~jXs^H1+;U}fZ%Dt4|D?+OAF2% z+tRdP{D58U@2dpzf)An98Y(q|9hIJ0LjMzz65OCG9G((fM<8~Fl%S(o?LbcO5ZWKC zb@0i?2hlu*y41N7a0H*Q`GTh9a?p4HU$SD*xF3xy1&w)gyspu!^TdF55gHIYF}PY+zAQ2L=IGWY2BjjbO!k+=S1yl7%QZB* zG>!_JFlZj92wjk5$1u9UEMk?=2ZiJX$LZ>Z=LN?Sh@BxXn80cs2p)rIZ%Exm9ZgfH zL!BJp2rgk$1xM&bB*qtX9To! z(173>!7;iOVHv@f#d4T}HY8 z34KvWdN2iy#wE>6L_9s1NFa8G^kAY#Kp;VQC)zcvmVDmeKr~UI-gQ!dBRHioh0Hp7 zrptqhE_~67A!L6vvJ^s=5Qx^L2-E3wyhm5S(-xRxm?WHzCPmfLvwZ6bUIk=-pMp0) z(cdSbk=yR?*?cl zXh85(VZ3fdSgP<~Yg2{E^abuw?DV7m6{#noCb&Qqs<_4~?QDVCrg$*(ab4nhp71Dv z*ctMKDgLSlg2^AzevwjzSJ7OBy4HCPaKuz$IteCz>*Xl&JACPiQRFvhWGRZgNFZ95 zEzF|Xf}gQ~zZYGGZHJP-7XSn)@BZq+{2rr zGPwfW^0Zaht9U6|wxOD9tkg~%$hlHxnb1Fl%r9J|s~?^>e1Jgg40*$3U(EyE$Y;=A zk-Cvjp{WXWtn)#@5!}+4MuLgYcsYXHfiGM!f_xl}EJcvp2t@0$hM8=R!96ribsq5c zvtSS|d6&HXLo_X_-lkL2QWa#Me;;pxqR+pJMsB;$=klDv*H8j}AA7m6-`@rhaU_d! zD_;;u8GO}{eLo6shNAEP9hdJlx_h26&`v`Gf@cip=~jeg42QIK2je)aYE>%M4k1}s zg%)gRlrh++(6mbEkwOxM`}-T_{{A|e7FB--_bEjB{2{yviavi3jU3@~jozFm1hjL|fZz$i z`*bV95`v$#HX)e2rJmgiFORcZ%KeKEyEL#NDpYR`i_9VTU#gAc4P#>Vuq&j7AFyvWBx`zrk>>pMt0>47yPMXgH47y8ALM^+9`zS zB;*D|oKCzdOM#+}H(F6B6*O|&g(60jfl|)SuoO+6!kerpk|)r} zZ5PQrK_uRzjDc{n>lMZw&s%72RE1*N@pzS%C>Nn;|qms=7HQ zHr+tQWyxHFH(XINSE7;IE}2e2GTR`pf!TIDQ=?;xidEbih&Yd!E9YS}O{&V-Y^a>D z`pW|P8s2_I0euCH+;#!&HLQT>mZX4$UN@J}AJ9apO6d5QCB!ymF+cH*FTcmvKv6`$ zMI%RuNMjEj--buG-)KPaZFuv@`bg`xU(Cz&z)QLC#80URPe_((ncjRcXIBF1-R~;n zVctFfk<2hpV;wBK(sI<>6K}MlU>Bp2CBaguXsC?~mTnHzfZ&4to9-4xwr}+0)*d~b zu%#BZXEcu%cxY^GoR-L*(VFUh(Oz9u@%^G%0ui}|Ffua5zg=|vmMtM$MH^^Ov4+F9 zie8FlDb(4{AmE5wMGsNxNSp5L@+v6xlo#PmR17>HAjpyaZQ;9VGn>`-wn_$iod>{F z!)<@}<9Q6-9xA)~NIh43b(K4td-1j^`uuJ*veen!MIa(uf9(5*XK-5ZxLyEz z47Kq~G%KoMAmsJ)kS$zN80gA)Rh0t5&+x`7isL6}~A}cgC z;;*kPl0)(KDvIQtXymqwWSS?E=F+ggi*d}=(TCB{^6o!RH zZo4pe2UE6k83?)|lfpNe%VP-5jH*0zI~ZSe<=Alz-dshAT!}_*yF_MrvBO*D4fHOL zmg zStP&5+p8#&-=dM*E|Tf~7$PrN?|zN(5N07jBr}9LTr)idd4#S|&%;})D2&-?g zAHf@|D34pv$ZeO$LNAW+tw5n8-lxq~@)VjLRh6h6u9qW8u+Fkrp1|9zD3-_2$ZZ$P zqENAfZh3mkTrU4Y6QnAab(-m`UoKJGoc@ltT2U~6MI%QDMq|qd-!(#)kToFqu95R} z7oE5jbfbci6=#@OQSWhnG^V9*vrXM-RV-LYJSc1j%hA_j2aBOirIAfy2TPe5uDXw9 z4O9jIh{$~okt^Bp?_-(LbX&-7mI1WaSVj4676;8$sN_#xya1X-}p3TtxEwc01t8|dV zJKw9foKszcw_8yKSE7-nF7k2$5g8$3-|I3jC>L)Vh<`cq5wOZoEf1r)Q4JMJ$5%#D zi&t$aXnYNCxT0LXf<|t;T=oyh#VVHzJ2D=*Qdy2h zZo5=E15)uwEzsfMBBVpdS-4#UlO^A*Lj5sln-@hk|42fF{z-s>WB*?a)aj;d_pn059lE=Qa5 z@P;c2<{UI~+Xb_mESP4T4kSGHn@i?iG(W16QM!P(EG}0E=X*dh&8o|yxf^e~qG;|y zBez{Nb7j%UJ<~7E_3|?`HL7}1+9x!!UP3#hpWv-ll**6L$ZeO(z5%It8?6H527=Ax z>x~oR4uD7|F+L@Rv?huNIr5Cd*F#ZGqtVC_a?;qX#W#G>{T&(*eA}6&yEMnGp!i%OF|CuiLufd<`0!y2Q3R{^%p5#7WSJQlp*>MCSa>G&UHjqr> z^$vu`v(YYMEtl^v8$=To>Sd=7a0I6`rjqc;ZI?q@9bdL$NUNZcrI1$Ah2X)2D#$39 z9BX0)1d~s-IGET2)G$G( zA;IH|x}@{q@p%Ff89Z9JTX7Pvcp!TG4DAysdi(^#{ft03X2}xb~$?d2w%2h z^!Nc9S&AOtBM`0YBW5hCRID97kq3O;aRavfNxmKj5OE~Zvae^8o+4NS+2f<}7ASgr z7c_F)Jw9gzq)=AAXjh`WeyF+E--%{MwS~_oUJt8$AE!PUj6u#Bkn_9<^&@SW%+t6wam0IHnvm9Ya=!inngQ~7%czRGK5RvIY z>-vpx#0`PY;zMXhNS(zEXpTaC>0Agnf6qf$>DCR2E{zkD(TEj3+jQ#tNOu39yrzDabV>d_1G; z03JS`CJ;M8_~>ZXIuJqriFS_^LH>rODLjJw25(zIMoHvWPySuu$G35_fT zk=Jw~co3oLF$yA2nOFfqB-i3(gN!YN0CL!k@dS`}kpSX<&wZ)z7k47l{|{Z3J5U=j z$2b(s!wt5WQh1PfCxM6z5=)%3dPa@f_xz!AhL$+jEgCiIv?1qO_~?JYxf4E|?_U64 zZh=3!-~at$^8Huo$7}TCb^7sV`tcL^`O}7$G}eqj2&q4rsgY^vvS5yQ8=1?g4w)gr zHQwP3c9iX*#&RPZdmC(pHe|;x*aLR4wjCY^8EULG zF~=S(+m*ZvW)+6m^qk+ZVrv-I`F%DFW?d8`p8G0RE)V8_+n1SCEI(lNnfj_=?Eno9 zHI6nhqyS@ltCFz_eRfa9GE`5YRIS=zk&({_tYW@gFOYU>$g+Dj0?aXL5pa8Jt~6jM zn<{Xe?T1SohZ;wkc&lpH44Xl%0%S+C^_`5JUtMp1No1&(jJ z)v}$R)1IQ+IURbai-x+L4EsETeOm0Zhka(*XO4Z^?6a4B_OZ`?_L*m&4*T57J`3z~ zfPEI(XNi55+2@(;v%)^B?xN(w{h+j*pVIgvX@I-ta;E0KMCrQNpy#>vV z*jHK`W)C0ZUxl|vF+Fb(iq;FvIWQP_NmnE8F(qAn#lyl)USXshVFkEO^Iq#-e1N2 ztX{GRUc%d@D1sNz$UBh;aydx^^FL@Tf;j+z8(PLK0=HhW2xj8#QWU{7G;-TTFr^s@ z>@y_|tTxxc3N$0C8rV-Q5V+NnC2$npEJX<%jz->jB+zF|5~!L>pp0fDW(l~}k|i*J zH%n0h4jOqUl0Z$8z-{IdxE0Mv+!BCl$r88;Z{gZ9YMaBmqqZTxduBViNCI*k*ylsW!-72lBAH=~67Z&o%5ZQdI7M{6xdzTfQ=+N?#VI0EFIfa<Sj^NczjtH0H zZBrD(MQG%TnG=MDNz-IVniVIl11b_Xy9g%JQA3ZF z-D($e!VaUC%_Z;>nvhr}(5w|>neQ5V0dJS01b&G|Zo33Jni7ER-~PM&=iF>OMwkf@ z$&3+}sEiSMEU1#?{AqZj6rDdAjl8os-`#d8IDdt?^N&Kaq1yPBoKLDGIsb6HQHst# z42|4&=TD+7KSvLd_}hNj-2DS+K2+VWw1mVeB?-X6o24j#J~VRM1u&5bfSg3~`~OyR z|KEhBL)HKLs>J>rsgvaX8}U{tx_=0b+;;cRX71lnv=j_Npa`V0XM>iXvEuMsB+Z#?ww=Ks;`= z$=v!Rg#>4JKiWo=YI^1+;-=)VPLi2f(t49 z+5eBtz5fiF4pr|f4FhSNB=v@?@kYp{glFk$nBOx838uE6+J+0k8kV-0N?mnNjt6@XB*u3)%B;;H^;f{Of4s z2+wPD^E^|a-Gv4O&lGC96=9h|Uu$n6eVe^Q9BaSl!`KKFDzwJ?$c1(M^(6Yj61%o? z_(xH|BB2usNevDGD{%ulCKsL>984f0Q-jv^8Dqc&fq-!;+6kBkZ4H2 z_@FM^JYZZ;AR;Mm;qysj-6{t{#@Eo^kV3{+&>V$2)VT|A1b;LpkdQ$fCB=*{;Y(GF z8DBsnOO5nC0ukAoV!v#UZG{W*@9)79Tx*m3`&%?0s{Wai7DH%>@i{x!aAMK3>( zMsB;8r|}1dLOeb1BgUSd4G_5WNY&FbNlO;(m%Tj$U%sNZr=pP~yseSs^E`ld1sV{1 zoN%qKY}q*B53QY193#&qo`}|IsK^YSMxr(eT}?>WzeQIvyzAdYAR@c|*7XnLNR9im730L2Xk;l)6m=nZoS?cfiWA)?R=_Y} zN^9f9=u$DTeD@$!0GGIgN~>|W_Jjg4Nl;}-lz2dwXC5W)ClEV9lo;#QI1nVBL%Tr= z63?P33iYJ(ZNL%S!Nv!~Pg0EdA-+__81a2HvJ@k}s|&$n1XYbujJVgt3WyO$w>U=h z)(hhHu7$U?J4O(b1W|^>hlRg4kuLL*Bt;viiJ9wVq~jAFzL6DuG_{JFI;Vtl@LRK_k;#l?wp zpb~N95*tHv37r=f^S#tcL8~F5<1AhJdFa?qAa;V#F@aS&5It@~J4cEhx1w1Jj~)%c z5j@hEMCL7;-jV{yP56Qp1IUeNWGR3Q=|b=TLbYQQKx!sdKmgg=+VzS_g;L+BOtsWo z8?Xk2b&Fp>MdAn|^Z~WN3a4*jVx)BoFwnD45Nk;Icutpm9zLEW5Ru`dh07O{eKiln zkX=8D^^Fum-a=Cq9z*^BID%Um(?|^Q881(K{tI8YVjTH98d-`Xeh14cYf6;LT9<{bn?Bgzq&veV#YaPD2BNFLeA+H*mRDK;BSk?S`lcE6S;w zU4#cOg{0wTv}8l|);Mj1cRYI`fhbkr)N?LFtsq&1@EoD^BVE}t`{5DyO?^;TRXmTl zor@f9>nq0V;h0vs`gID`ZjRd;rI z6=WvzomOAMo2VFgzCe&8{oBGkab~mnU71YiOEbR(Q*oKROvM|kD2_>Jv6ADvG2RjofyT%=3$+P_0$Z z%=E$Q9|4uzVy==8p}A32$x3~d@CwT^xdCsmqD-zsBez{9bNn(HDCO)-u2c(%c|!DCDo^3i&gd7*&NV(^m+q ztt^l~;;mH_$g61NwhM%hV;~1vC&)~8_?9KMh}Bj)vK>8lB4nVDvD$c8hPguNv*^tf&(Hs$6O?5 zp{Z$sNWA*WBH50&S5YK2G;-TTGT)zt0BQANZ>f;8g9Dno%w_UPG&!m=S*4$e_-ZT* z|6@~IqG;-U8GAkgIZFV*gN`7RnksqLWQPqgwX%7Da>KOeA<7{;ofJi1=)m@Qk)>RhAf6y*ey~6LGXymqwW11H`nj=5|&0`0e zE2AqhW$2D$niXZ-^X1w7@un(9jU{O0whLn_7lu5(J>6Uvr=TfO?N8pTnRA2>ZcoD7 zsVIu$(a3EV1 zEMM$%*KIRf`z^SAJX5hsfk1Mkxm4bVrb#uB9IGjnsJhGIc@N%pMe!VhMsB-!7JA~@ z2CFf!k=M?^cZVia0U@n?GnjTfrtkD!ru+Fkrdhs?ZiY1FiZo60(g^Gpl>kr7~ zL*{b10ZovqT-L=P7j~wC`Gn7uT!*(>Q7~7dks}17ar}j!prPC8H6Zv2n)`HjXLBp) zp$#J|t~Id&&hdPywHFAC?z0PZ;Rw%*=q480K8)`xC58#dLP8Gw{z_N8{GiUy3B=BD zkYlV{p!|a=b_@C)aP@et_9vL z>KlurzA^j}EOuXMh=1Q{?%xCPOoyJ$k^SqxuQc4tUHGyUy}UmfS?ZQr?PcG6r6HcS z%sqWNnv>Ab?8u%D-d7s#?NjjOD|-7RG;)NuHTrJe{nM^M1A<4EpXvrDc8qsvi;wZH zt{1ble5okDC3YKHtD!<`yglRsp)P(ENLPN_juFq|-l{7N-o@WUAR@bX=d2#@{Oomb ziTi0o&b9E-|A2ERd^q2~0Cj`C^Aq^_(}tEb4hpIK2$!7YRjY9Is4`;%Rxw|$7c4hO3^n#wv~IwzflaDE4cBnih8hPbV!LaD z2x4K-EjRy_%+;chourc51{>pQ66xki4`ynaBFMxfR5}yc~mA}EtYD+WWdx< zVuzpMiNJATEeZNCp+gGm9D_g81%@&^g|TSJ+`uHTT}uc&ahO0Lq7#Rf4In3a)eg)L z9E5fdQ#*eGX(^hgP#-(H1CHR6#uPFk>X|N2gCBq|T5&+JFB(}IQ0%P>!2=1^k5M2Q zYhncilC@)6`u@>47D$9BawgOPcL7PL!WzfM97RSPdlYra=OJV(f!GN`$avZg1My=B z?HVb5T!SVl)Vt1kfFs6_iN5$D2ahZ9`r&M*vwD7C(?L+(TSMCv&{i>4{mt^`uuHZHasC%MId&DgkY>& zGx6{wU>5?hGb90%c*O&$z(jHxl#ZrL0#W2av{R&B;{h~Hp?-C42OPmA zjmc!9v1z#+Iqt`otQa}&MI%d*<8ECD9yzFbj3UPsCRV^Q)Zwj-9An|O`eL8>1oz*d z3b>9gR9}rF!{UZgvdN4R#2FGV{-Vn@j~9O;5IaG<7*FdQh!zV!jdg_-E#?6PE*lT^ zrZWz31cx-}7B}WARxY1#nvE}4F;>h#BTKPjsxAbN6;wG!vEnsd{j$O7ovn=(6TB4( zA;QxaZDV>HM^Lh z#)dfH2>J9pAbk(s&>PLeg0ZkCoFv>BM|H(xhU?>i^v)p0;t$^eMY<=}&>#5$3lgA4 zEWT}?grsMN3=In&lZ?kgc7`$*t%wIKWAO$%AsI_uo5v?(k)7{sB^?kOdY2r$jHP*b zr!r%SD8iA=SnO+_=Zq)1Z?9P8vU>>CcRci5=$zf-q5qG4p2t4VXP^JgK0m-dFJPY+ zvd@dy=f&*v683p1`@D>OUd}!n?DGotc_sV2ihW+qKCfY)*Rs#+*yj-WL>~`56MhYb zh*2l^;(vZSBIEla*n!LVq*2M|NmVT87C82L&d?I)_lwEh1+UVN*XYOV^yAOuBYaen z2OM!!vXsnW_!}or6n%eM;U$mK$mMf*+Z0DG_YmY^lE^66#{RalZ-Z1OWA#)snZU^N zS7554kAIHmG4ygD*~f<>eGD&dlRC;XT0h0xsOak-qmiXi>N5l)vb`rPid;?-#gxw& zi((=`#4#Nak0{(a%Ay#Lw^30PW6;QL7sU)OQbH@T&y+OrUUN;n8_kMpXK)BUP`Fi; zCGjr2iHedq2#vgRNutk|B++j!2^-Byf|78nC`+OTZ=#|kGHB$TOcFIo64#qc;#xE- zNlF5$C`;lhyorjEXrPhXE{R$Gjw4^p%cA&(xhTGl=0#N$@5Xl>w34zc9>N=`D2oTt z$ZeN}kWUok&f_(6QM`g?MO73U`Gi|VSrRYfO;nV`OK9YsOcHXO*zIoPVaI%cNM_if zBZ<(?V-DU#MM=y=Bkx?2D9TY{ow+1dqghEXO1M>&qr?iliHedq3XR-$NeEL`Ww-}4 zIAyiXToY9^EvlN(n6e^ultod-+o&jt0W@;kMIj`aaC50VXZ3M&RosT=MO76VNhYnN zEQ?$5Mk>nUCNy%}Wii)3_NY{<{rO%wt@y6FGM+?JqpFOMcS*C&C5y0S449nr>M4uk zalD<1;&>E|+;(yJHv0o<;oA7OxiBez`|Vs}!l z_ee>`e)kxUMfL%RWX2*o-3h6rEQ>wyMk>l;F&eq;vJg_wFjbsru8J*aT2#Y@M(PM2KzbMba6isNiFa@)lr zM2x{wMH0s6%!P3enif@IXhaNBM_Ck~#@nbUiaXKB5u(u8!p~0u&>cM*5d5qm-PNT5 z!L6X1(={Nt6`ORotFW^OueSD{oQbP^PpDitbpFseLk@XD;a})>71}5o$B(e_*?srJ z&Sk7h#o8h7l=pwPOW32`VHLCerApBnu!lm9H2qyy)%>KwUkOCyCbP)xMDcGQoYPH6 zA{UoM`D>5Q8t2oy0Yn`6^hCfB_Yy9X2U<~{?TV-?3p)H<)O@_PiV<-RL5_5M3-4S` zg_F?*yYRA^{6M)N93WZ;b{lRrT#Y9+bgQ8(f%V1`@YPxp!wS6JiefkljVyJKhZBg% zcoF;d!_ElRkR9pS3{36@_NZY;D*3Y@zh!T_H{OTE@aIYXqdLC^+TEi%FR{cm8enB~||s zPRg}LB@fRAB!SLg|vnV-WpNXgyP00NgotGfGr8t(Qg zDt9oG@rEk;y#tLbbui-yL}V0*eXexAB#_Xl^`pQnT)>v}aX6YBRec<;r4O&3QeZd? zZ>gd{4n-rkT_A4{3Z$n}vT|9gTFX@Xt+HJW3_S+SmExdTQdP=I9i;>-EJu_+yupfs z$)S|MOj>fMsB+- z{A>7bKGwyquk#NJ9yJ%nBWPw+g%Pq@T0t20wtUu>rSUM{OhsvY4UOD(Y0Q=)2Dv5C zuZ%a$mGL^77*%DwN2gcGkvcN&`Jm(vcql;6&ktive-QsJN%t>V9av1xj+Wd45smiiwPQaV2 zD4NY^NskurnLKCB^60K=BT1Un`pLY8I-bzJboQFnkyD;Vjqe;Ek zlP?Aj%{*YPjr-BusA@xNvYu8`jvDvk%?uUC^|MFqGRpn$66RvQE9h=?5fLiU*jL84 zrqO*X8W4PI+RxCNYFI_M6?BJ`kriJxu>$tdKQ^|t&#uA?J=HSw*Fx~!<@4C#L1^n} z&|@3TG}0=NZS>8zt-|)uH^0~AnI&w$3fVvZA6@zK7Vu93u`}$M>S$Iwka6#c_6L(T z-#)(>AmYflrvZ-O6ZYb2({ee6?T#-wG=|BcYatq03SILEMC&#^O{1I7n`{OAya}u^ z-0Reh<|MS~IB--8J1Vww{;t;UoS(khJ3*OZCn){9BEE{& zZK&v2h9I0D75<`fuycf+^Iz6g5YG_4NFX9JgoF;-o;1P{1L=&be9l1n5q8+%v?QRj zW$&zQHVOPPyweO7I>;*}ky_L$3FFs1d@Bi-YW3_^*r~$WtnY=vUxA3-W6RI8&llL| zi|q5)?DHk^i9W{s1Nb#ug2@6kkFvCx8AaL8n^*zEukW;Y__aJ=v?_VKDh$6mz96Q7 zYxX2B3$CLd>*>b^`f)7z2oJ7{h`!vnE2|_lkUw?7gbFQENaLGBtHy+i-D_9uA`A)X zbyVZP8oy&lwuU;kF+E!vfT3kA<2GD)^0wU15JwZl$Z*=iLn^bf{dRV1rWbCvYtj-( z$(N#i!D>IQkgwSltHA1f0Gh>6pE~maM{rzYZ<3{nzU`9h)lAwJ0swXFzIc;{P1@e> zA@7YwW~5Chm*368=vi#E!bAEUd~v>T&CBqW&5LqaXMJ$AFHW03+H_v zO{bt~Qq@FPs3sz-CTrs)ylINsI3A76`iU(bZ&Vb#pHQW~F|ns!DA=`(t1=-L;jtWU z&Mvw&x`h0qbCXt|qj4VV26(BqF=bVyQmUlZg1})s*C%v59|nVPnhq6YW6#nyyRt2B zZ(r(O_+H8PKy)hhEw$Z}GyTnyg)r9ae;gj4Zr0_M2ci$^LU8Y1uM5Gv`;?YdFJ^1`QZcox(pMj_i#0K~cswQ-@8!8TXWQirTpVmKZBF#Ux^J`Sk$n89F1y^v zj}VB~WD|tq@v8_$U-4+Bfl}{??qh*-bQ{!AmZ$$ z3DK#IrE1>QvQO#F}%DZF(*v!%)5mG=cG`H@U$*lobdg0A(AJ&MChhb zRp_!eCrCIH>PcKq5jX0x#R=b_3z0bC3&)XOUWw&KJ`q zW<|Q0@`SkL23hN zpe}Em`Ui9&5~qHKyGP3EDcBKB;1`K;KeMyQiXKk)&*?J9$$wTCB1pc*xZWMM(fKht zu+V_uRy?emTeHFAg{{3+vtxCsGGNu*!TSG4-IsvLRa9*ckbRr%30X)d%@UTL$R?|3 zNC*Uy5J>{~BQ!TXcV@cj>27*SGAIfvn>L6t;ED?_xZ#E(C@PA$f9`CGD55AId~OJW zsQjm@Zr|#-tjDpiwrd40{X{0&~HP zh&A;r4$;BE;?xZguM%t6G_x8ak7^I6x%~l0A+A0x2@^Zj6rTb%KLVg*2 z93phcNS^;#xW%p3N(t%6i4Db!lh2PR4*mb2^)^g&8OYx|Sz!jGU`fIIl2Uok04+_O zMWsc~g6Z+~l}gR6Bz9)2LkSks*l!17+FxRGfqjxJgcb{_EVm-XtVp#Ab5BxLm5%W^ z6~bB)a?<9{*=7s1Vy%+k14|gX{*r&f zma0>&siW6-wa26DkH7KJljf?fX(^}n=i!1W-qJ)G@4DZW;HVZ z9i7bQT9euKI54+~%36gHTFRCbLYLjqo*Gz>2=kf=<&CFU;~K3?z=DVs@ZMAi85`zP zA!HgC;zmm2&j|l$cO^M_8`pk);A7epoAy(ZLU7}EbQ+av8I(?;LP)^{)daPq;36~< zAfy#B<^Snxiy6LCPapJN9GmDfl5jYnsa5Suzlf@u6n-ZaB6iBnTlhW@8{4h6@ZCsd zNfP~TDugxBl(e{v_7lM?2nvMDf! z)nO^8l5$eg9KC?}ZFJ^;O@)x&{!1!^%qK$s-7%j`V<)y7o9-2VnEmCr>c{DP4%Kf| z``~(^<%o6TG%AFYJ*EUcnXMhbh`Oo{e~yfe?J0cuK(we)eHfJ|8QWG-A!4U`(wZzx zMg`Xf&W?@g$;nKkL5=8bRF)*sXHX$DqA%L+?*I@>|Ba0RA7h7pCRU4?YT1P&o$rNz zW!nVCJ~LIH0OvO0{K%-7K$-~u$WN-CJ6a!iN^#hQUn*{XVD$1)r#>xP$mDDN?f~SV z$|(GeNyE;rez#N|8a?#|_+Ncu#wl^xHr2-s=8M}$uc}WN%J%oWh0!bP)4l)N`;DvW zlf+g_n4CEcX0EE)Dxek%u!rNS`joP>Q(BUH0}$xca+?x8J*Q2~oesa$SFRcY>sFO( z?8g38aA4p9e(exsr&atsET3`gEBhzFyr9sMz}zlq2f){Lp9{zn0N$$yn|thVupZ;W4$KTTIRI{b#sX&F&CUkdZRa|AVrdcVJ30 z&759giwWCsh}MI;-|XAk)w&2IYp z-kCN2`?LJthtO21IOP%k+td8t9&j#%-;tl>PZ^y*XFu*`KkjEg9)us7tI1NVSjKtW zLjdP_+(BL8cT-(DT(RK7nOO*@>??G<$dvmNnCJv!()87v*C)=9R|r^zCGn9xA-nw2 zj&xZ>*!l{d78*PG#VvJx@?Y8G?$Buw$2aBv305)^WGrS~+{7dDrkn_~Lby%56Psd; zr%DG}-ka0Zf$?A2-8!(cK1*cg9V2~^|ElglEk9bH;r|}L+hDZ5tnnLgxk;s3>0>|H zHN$;FZXV_qD)50el5K7d@8qW3T<_O;{MY916QLSmkms$`p4-{|+p|yFm4Tv*o&GhR z?>-1vXv4PGy6Nz*+i2SUfcF7lPQ*dsz8oTS7N-4+;d9o*q>H3^P2Q=fE90lOhvVEa zfTOP3^4IHAKF_HPZ(AFdoE)9iwNwZ>ELqJV+CB@m9OgC#vV*lUKLE24_Npde?@MA! z6{?uT)^hM7(_yfp4GwP*V+EV=@GVIVgC%UwH(TA!T)<|)vNA~Tau4G zzxi*U4}((pGjW%SaY$Pq$2T%NIrDW%d8aT~a|Yc}cFcs09@S*cNfy1D1iM3FrX_G9 zM)VAm7>qY%7#wSFc6AFsUzPHxfsLWU0PR!1n(7SFpWaM`h}EA$JZAPQ_~jvP+7E(i z?EQYT-z@U{M*nZd_MY5LfJF11?{Gqe?@URobu&eNURC)n*x#vakHdSGBn3keOXI*?$09^{G&-1Gy-Q%Bg*VSe$A>M+l7Au#>7{fy_c z{LpBf9U11A-x!W#JwxSBO7IjFB6bO8udYr`@qTFO@It&Lmbcy&I5I&)!ZD}T685sL z_od;9t86u$4%~M6K`;|HUeeTjAD+WW?9fdaZh3;Wpb2pOXsw(b&FN~2i!Q^|^t+@- z`S;*WvXu3mXk?Es8FsJd5bYc&x7L3q*B=fkvn8mi8*qRhfi)2w;0I_+b0|RIDtTMa+oz@HouvnxKD;TG zPIoXz4y__WMQnQ!!IQ{Ye##9bk@KR|81v84~(l(Za4@h`FwEXopyd{<{cMV4l4JB<|IBQ*y z_Oh;rg_3VXSMzIl4lP4T_<%&|k{(IEf;Y)h*4xp@S|s@*hv;A~;bi&6dmxwm8LWx; zIX{8s#P)Lz&n0S~bPxCw-X=>A_yZcb>mD#gu%!)17Jn_W_6q?bp0Y4}K+@D3EuhcC z+heKwY&3F+?t}tB)(|4C5FolZAb}d$X)k^nN7Y>bxVPHs_Ub>!Q0WC*t$V@ zjj8rY_kg$JZL;)$IvP2|0|cnU2mi~U+@>Gwz%_3wC#EJghb8d-}X zPjZOP)fBxRw^yg#r{rXG!wts%&obUPP|J1h~4t2VPe*Jg)#Br>aI~uG?y7Ed3UG*0z1Ht8v=ZLODNh7^6-|~=%-p8{M?Dd6 zAg^E)Q5zEW1^T4LvoGVVvW#b6;>e-OcCI$rTjjtn=>k>C|AM^{=RE$1C(~G@>JlGj zEwSG{y<+)2-aJdKA3-B)x$9vngv=Vk<055^FK{b5=bH;ML&ajnO~YN6{l#IpCyIyU zfM+JZ5!o{n0MU;6S@+DBwD3%0=XAeZiZ{;EFBhSaHNWh%N6gC9%It=^5MS6F-4`~Z zNwG~t2etAAwOhIuoQgNg(hE*TBX`{k7Wa=7oZ)Py;RR_pc)bHo{<`HrY`8eOKU{>S z$JQT?XyFf`9n?KzC*D9y�o2yY3ka;YGC_EIv3Hc%ZtH_8#I4xWy-;yT#3DZfxD+ z&=ziC?w#%vAI4i}=@TDBBX`{=W;52Z@X}i&Tm-z~{^;KD3p6XX-XK;g?)($)VjTBEw9`p=`0yRQE7 zCaTiaV!BdtGw=piCJlu{1+LEv1cgJRdqiJs9&v1o6fs6ObuT#>Z>FV}tVAPs-AiUM z`f|>$kT`K(bgwuEO^R)*Xf?hFbW8Vwv+-tGdcig{a@W0J4x?*$S0OZCyd}CHT#2T| z)(^xEpzwU5bWHbz%kYL-dcqsf$h(Ipz}57nk&uXRdvs6uBAS+Vd4ke0-4i~KH_Xx# zK7&T?x+lzKF`?x2_vhJ#^`?o)KSXzh-=TT2b%oRzC4<^C-4}j?x6INP9zr8`-4_-z zUw}&nE5-6azPK~QA7{5b+EuTFo+;d#C%vG`w||J~0`M+;yMeHAA&n&J2aP z!^@+)!|`ZZY{SD?HG|SI-4l+%8)oSVFGVAF-4l9i1@;A*lSDqc7i7_t*m}Xr7D+MK>M%J`RYsjr*_zjooRTz z(_J;_x2SC4G2F3wFV!jJ-m0H*h|nE4ZM_bMUw%L7beL+~k#%<}JNch&51+X|0*=C3 zeR8rvvHrO}9i6|wQz7IR@fQvex}SuyiH$S8{G?sZa4GL5wpC!STB10RfM>=M4S!C+ zdqs)_i@${})Qv7}kYGj9d$$Z;O9e|(#eo!9l4|&Q$|+@aZ5Dz#xT4<+c+$7$afpui zcH<=o_As5o>T#Uau$Lf~uvdKCU2djUb<;exG)SogX5vru)Zs5ftT>jv332TC;s5p6 zH~p`ykJ|-T&W_giERBrTCziz13-FYX>D>s!QxU9V5RSR0%}FqO_-*IxIWnhOE2}qb z3KlSV!`8PBOEOntFGqMZrWlRBZ&my|&{NVf&r#&_BuDeUU~a?LeCOUHyUPQel><^ZQ{DJ3`vsM=p-UkS;C$l%H6%VaIvz6`9J@g`uuvGS+(v+; z`X}pFtqo62=o#gZqyw)Sh}a4d4G3-Fe|lgmal;}x+b|U(MrRX|VDB}xO0_sFvrOal z1GRkmD0Bd~kJdIGEJ|j$1%3qZ1AyTPiVsnFlsV=DREVGynBeF|A6b`+OhW0> zELzK-s2sEWxHmSJSez8EWZKmoKcfmNed5O)q9b*O`05s%UMnX`#e5dtdx0nL{2D@u z^H0Y{@WN!VR!)ibQ^kV+=^4Jbzei{HFH{KW>rV=S+LvjC42zp<>k9MufwD8~vPWsv z@VD@uxWeC(WJ7#bRacnHH`$;SKJ&nkh(-2nDn#sZ9C@+}FSj~*cqFe}%dnc1NphlC zwMsR1z9h12j5G`*eEzVoD%5eY3H8$Cps)@e&hxBeVtLc0zICafb((}nQ~8(i>PRX? z>=G_t*Z6>ZMiOvRrvmR{!{cJGUrCkgyx8Pgk@PNd5W|)M0Kh;I0m%o=obg*EWw!Tm;7yBVAKnzi;q;Ix| z*WBj-M`5l$JqfS<$VRnj@%89D-bsa!U&tLCB6Kp6@SuX2Az~9_4Nry~T*+osfBpls z+l~>T&ih z>QNETS`Ey{gB=m;(mkmVv5T?KmZ4&~Dy3N8q5wTOHbIspE6fZj$C#DoN-CrB3)znf z5xXcew-ss?w?DDEJXm9c0W~^picN-D$r^7s<@gP2q3JX#Ym)d=s1UIepV(3>mB0~! z`?XHhNo*Y{xs?PQb%rN|cVyxCnv$L`j7^B;$x6eJR6iJ!sxm`TU_s6|I(6J=>KBaGlWWIZEN!=4eEAaA3x zDFwNP3K6>?EBxf`e<<)odvUnP7v9dOep*Ro zJTo*|?x%7pW%&gaB6e98HNKfjVr{Ji6XfvrV`4L(DOUvfPi%rL_P-T)kiKDpH(9PP z4*rYEq!iyAB;t+UB36lmVBtkYph&^PPQW+*w z0$XIxMlJdwt`_;f{^&yZ+}DqYgleHd?) zrMkaDBYVcl*#7{B2rZu4p6RFgZm=VJky2O9`fg{T`y5~PbUIteR@3P~t#?9n^^Zf-VynKmEj}cix43)rXuL(1E^s6oIm87B zC7Z1JM0O!S$oTVVY6z27h)N}r71ulpMVax0Hs1!E7?f<+zhM)2vCI>S@p_t|0cx1nH`isSvSKy@Dk^wg=`cI3QN6RpD49`!}8r z6K6X4T44F?u-GI>CRxaU#`#$_FvUAX#D2Gu+96EQ1_-OD%t~<%p+dwiPVee`)~Wc% z2-PUQEjA@)CLPvptF1_9P&t#dpH77c(oQH^W!)>12mwM`F-9sUjQ)8h-^b77fo%qc zTJ=q_`NA@p(E}R|c!oD*_DiX{O4oQD6~bB+a(%UbOI6JE*3Gf0b3ki#TGU@3rcx|b z`XGl09ZiJRw$u-TmtSznTA(QSPHgOo@(WtjYl3e@r|%n724!Q0 ztPxK;tTu$BMg!TwnmB5tNV50$V~=ntRVun3KJ*Jw)fu2OM>- zZg#RPOyF1F@R6RLYYWl2y@1LswN{zY7)FNW7h>alMuT&9;ZDD+yYJ_ye96%8X(~jJazgHq z=|_A-1PE!xP&~pfI>Qy`#`#RvR+unKtaGw?INPq4jE~0V1&fpACKJTu_dvr0?JN8( zRZr;>zotUOF2;1u|CS4~r4r;8-|q!p)7ea9;T@9S(4IMKVDLUE-N+T%*~CB{91-h~rmuE`!pbqV<)AI%{` z%f8%2+x&x)tz3@*LkFLy}yf6Rr_2L)Pjdi)p;P0P1 zy0U(3t8N?KHHKpn>BdNy{wVT^$W|-0?TxFF(~Xyv-P|Rj51Vq^fx62_H{~+kul@X2 zH+Kd6g;QUE|K+ZNf7+D0lK;Gh|7V6f`?hff2v?8Ek5Y&j>7zU{iWM+2d)35_?w**! zj;}HcHj~GthzFiFzlCj1C>zuZN8pEgnpah zLo({HVcN-VmDezA!b^#FA88M-xlzDTn1lTigQ8JB)uq?3H$~_1{Zt5F732C!CAir6U1+oo&TJrkRiz$w8T2N4NUR(Ct{<1PI8z%Qx8q2M%WE)1FUI{{6A5dljQ$_3Smt?dFE%z zSwqFd)?#9HMP+@)594z9smYx~#ZRZGR(whX2x&!3>3aHR*rAm;!@UqPbzr;hC9&x~ zBUyr0Q{_ghTJ*Y@s+tu3A}U1el+W2R>;UI1&Sk5W#OVWY>zWehJ`@}AbCVU;Hry!4 z+lHGUS=$=@AE0t4>A#T*5j*_}xRVWTb%ZO~cEGGQTzt2-2=B|4*&=M!fxur@wD@*x zS}bSxv^5OjH+#ca9t>gEJ$i;{!rV<|RSI(#6~bB=at$@Fv3kblJ1dC|#SHkWddmIr z*yNZm7tZ+hNbfCs{o{CyN}$x>Q4SGWS+#vkHkBuL;pd8XPyU~{s?%vAwF{TlNt^%; zM=VeGqC!YV?x8}+%r2yiGqaOFr^St_54LrY69<>_j*iU>;F@S}CIoCq zF&k2B8!}u#Y+TqolB$RNv<~ACo%^(=v4KNk^T?VZr#!5DTW80{s#i9bMl!rnElX^R zPU9I=2>EfHPKA&kmk_fJ9~S{aS|R2v2@sNt*HR}gm=!P;eL`ms@=Y{diTB?2_;Y=c zVRKO9<~wB`)i4A7E~-z-0C59{2n`VJpMjn($V_a6dw}!mb47Qyhtk|90Y{;(J_FvO zV3!F(%;l|WG2)KsOx{L?kl)3v9HQ;@&XUHpXq7~^kYHP0VLsG*IZEBX@Eb6o9rMw; z0!x$rO`EA~A;pbob^hZaDx1=^AEZLWE=aHU4e%w$;2wrOe-xJnGaFxl->&u@yg=nl z(*AEMM38nuiji4L#5DqhwBkByN4zXGrL$RT>S`!y8%yYyjb1w1*j;&SdmJj-lKvF9 z#uP3-F2KVqqlQd&6xbMX0CWV0AY?Mih@$l^IFo|+5S`hC$ zl{cpSKQv$F6V~eiM@^M4X}Uwj+ojUiv^k?s@0u1w&cYjKd7;Kuj!e*)uwLF;;w2gn z{tY96<3m?~&A6PZsr@EAp~ef7bhVGcs_pkupTxKnZ>6Q|uR|ky6v|-!8V=FU(yFz8 z?63Prc90z|-5z5q5x^pww`nX-)wYtWve_gD9sPvh;i^qEhhk-P3Q z3EgLQWZ`DhwD|piw>%QvTOLMpWa}+2LwieePjx@}72Z-yKY0L++;u(zLpEM4#fj=Vcm!E=2{ z{kkv^c`l5uZUIlEW%YaLSdpipuHQR7(p-SI&Qj(fG_n?HTn-WXjkkSNv_Sd;dlx<} zrdtCp@jfsrVww9MG&Qy#{1MhJ(bPfRE8dAW(9$ceMF&~`3tlzwk~W%~v|;52(^ zI1qUD_(|lz^ItrfmbvJq7?oug_0aP?-b72ipG6~Uq33BTgbY2x>)H@{2oTZ=G22Xl zkOA;e>d2E>0juE8b@o8ke6}MnTc{Ol6~1Q>UOd;HaovFa!i+(%exPAdob3Y?&BNW) zRkzW+GJ9=USy&Gy;l{0=)5;aCbsQoz&b5Dye1+Hyn^?KIRvB8g`HTY-Tg%zOLAMOA z^|8%>!6n0dduY#{12_tw_2o&iH#SuQOW>`s6r7Y3hVUck%n&W%WTP`aK!uQBSB68h zGY9cY^VlG^=_-@P8rxf;HC#<=bbNyXQ&?UIy9%#Pff$6q0$S<;D>ae8Dq^cIVIA^#e_WWG2 ztZvO;{L{EH!v63&E4PO0!xA%C!%jZ3O~qwtjV94TFezdwG>-~lEfHnjnP=u@YPx{e zKsRNp)se)>@Bn%>8@Qg{Xb#cA5_K61 zSk9mePp>-gKJm(0Av-YQWLJ5i>OduLoEID0`|wx=cEHQ4U`NU`BNZB^&WXyoL%9yD&31*7DUXRI>?orYm^S?1y6$Vpek4YZzXK77c5}e~`+WB>sI= zh}emraR!S{FmutL)g~*x6C3TlNjOmHvXhHmvl{8&qB15){{|HzNIGE>OU{Fd#6y6P zR>U+?Z+W%rGqGt8BN=wJYYMJ*4I8yTMO99U|5qwR?6l9^?3S~|{%poLQ?>Wc;;M>g zC1H0RZ#aBrYCg0cu>hV!g@~Q_r5l|>jhzrqtj$6(RLu;*Y+)nutH(T!k4=Sr*xfhW zid4UEg`f2ek2xGe8?8j_3a)$ zOl!XUL?Qa7*odC4+%8hTe_YT`-_&gcx-|Q;d!NnaN?+ZY$dJRL&&rSt>;A zv@h7~l&e|r`&RV7JvRCmCQG9I)R;27mCB)%p-zQ}U52?^;E~>b2iE=EkWb)?v1u?5 z)>s;ixB3n~Pi0RE@EIyZ>;lZ*1pBU>?J$FHjzAB@M*o~-!E3q|`S((pljQ%53K2W` z^I!shhg-^gtmX{~N(1+#pJm{}MDYw(=i1 zhWxTux+7eSx60BHE5YldU`K-_jlYF6k~X4sVjB3+#bL?z#)i6)xby zX%9Htm1d6?1)Sih=uU71nipFqXuc#us|=evrMtnQc%v-cpbw4QbvKyqxxt07fh3@R ze{}sFG$FS7!_x&jM*8^Z4z9{;3?#jg0X*sf&og`6%G*KC!&_r1{5fdkt_wfI6Mh$b z_`&f1w&==VgJ#55`4ugd=iSkze+%9mOX;sfBX?bT@0%ZR@)bAm&3`Sr@?Sv{Vyk@1 zZ=Ux?7yfp#2@gcS-QmU(8yhPiKU85z#SgpUa|1L$b*7;01?lip!r%Utsd~aLhYUI7_;%# zSvp298oBF^(d#)z*@e4P%YguKQgl~15lxA0fJn9s5TZZ2_%FxXV=4aeXymSozgUP5 zu^7%PT@@&!R@#OwmBga ztR3GU-51`AX2sSQT230tF6l1tF1$&WE^q@Hx$7?A#RYgGu;Av?C8xh1j=}Tr5J(U| zjP48HL(^mH3oYY

MiVd>e0@rBmFEM((;(OcTi>?^c5I2+u|Lf@jct*m?n68W28% z#5$wP{uJIAOWFU5M((=o-pB!V$E9~VBWZX++3C-~s}*d+Rv;See}CkWLlPjmFmf>V zPIrt1-a1RiSc*pOx?^~CLIs|kN%ynk0ReB=65Sg%qgkQcU|};q88v(Ra)kRTcZ2H zC(!)Z`a$!9OxkRcsdKtp+>AHQ(k(uWM((;>cqL-BTni?HUq*L>`_X*ZxdyV&|nfRNi|529|Y@;0=u>+Dh7Str)Ac{U-! zuPB74?$v$m>(HKU3{&+3{L{E_Mgs1v+zy){3WKY*dyS`IZ7ZMk66f!vsx??@^hQ zVtktl5fp<^9>@wq#6tpvwBlUek#-));ej)uxCCUTN@8cWI#jGxO=;@+*c@ZI>KHst zd4_~0s%NR%O80o03K0~BpsjQdQJWATq!lltcEl?{Pw8v{I%i95d%}A$FTvlN4-`a) zKZqS%nM=?UnI~ySE4`MR4qG-}@2k|dr@enpH|$ahDnoVp60j9Fit{3!^urW~AXKM> zf~oaEyt$dY>y*Dli|*>4 zaxvaqOHa87jofulIbfiWF0d7~0eE{i4Ofh_V_W>ewd_DP1Lu1Ap9WUiJ{#RoXf{ea5Eay7znnZ@8uR+>A!eC*VoHj_ygnMAK&LNoTjylbT7;z3P5^ zCoH|{7ii?Jd)2IpTWzK*;4@Qx898H31PELaXzMekryrZjvqqWP7wDqy5##VCT6)AD zXymSY#C`#~($%8OQC`vtc*#-Gz2pcqQMO)ks%2!c=(g@ThvLn)^qf94a@Rd)4lJLw zj3)ij{lr1jV(TYITl$ICN!=^X!y9So73ZLlL%f18ry{3i#Gsr2AxCKkQB$QiE%T4g zPRmT$;_@pu65C43gz$&Z9&L2TdcwRQ2%i&MEJ)W%W3B{#fa)1?uH{A!(V4jxKF7Lb z9XxBq7DL$caNgr=eBqV7#-{LmcYAoweI9Vsd6A__xKM=|!C!@Iyb#xT5>EfN?~2az zSE&&4^Z7D|Xy+sc7i7xjvYQf*=qmI-2F>9nE{tw&pnoddlgwWH86M77b+R9&G9{h* zw^WGO$)31*WX+IM9#)v1{HwT_o|G(&WO#dCN{|cN6QEICiS9v2n)jkYSkp}2ZUFDG zmaA}?M8YlX$d-!*wtcCRNF_EEO)EKv#3sP9Bs9+qNi`diDilN4aSo)CDs|bPLv%2v z_lkAy;cOubYySO?;@ul!BX_2^s4d&oynKChHrG)hq?fM|g0y>k!4yF|-1fRdVZ0a{ z<5NAxd6OF1c`8%Vb+c56AlZaMRo1%V10q03E5=CHiRO7D0lhv;Bnn|M~X0MBfz8v?%;8>^F& zJH7U_Z|f`3*}I(zA-(#GLV$J$vhf?8%;{T{81_hPBu{{6*D^)JDZz)S{747=6%`_O ziYIK_UMo~<3diFfimUFNn5>EBG(X-0+KgCs{#Qvslu+=S80pX{0v_CX9?WZT%s?YXDqnhk} z&~n7#%E45KAmIefr0imyj{qU9csF%bg;`PCo=c4H=?SelLYKA3mE45Y<+3xPPTgeN z<4E%4wUNDs(Zy8C6o? zRqY`(w+nC-=IYav1>R_i^QxB`mq+LEjZ_HvOl8m#!BwM~1EW-y58$mL)O0_r)dqLRM4C2IH0{mZ5;_tC3v2T(sVR*Krge@u07O|oM zUxqHvU#Q$ld7h*~1mz)Qby*mQWI}+DR-8}mh*ucQ>F~a;HE{oelP$nm48_L|dblmo zwZ7C)9Kf=8qe&&r84830z>J6`=e``Gg9XAOpHf(u6qn2!EI|gtR z9_x$Q%cFu~n7tGxq=r2cwBUMjbdJ|jA>?wH&*0kF_@B%9uZXt8{r_qzcar`$Qz2rff2`-H zZ;g$8yXU7rOJz=ye+v~NNIoI&%hExl83Kf~VmY-VUg=Qk?Ayn4PJ-N08%~tqC6>gH zn=b`xh$q_PTlJO3llm@i9WG$24y7BdD{0VBPW*|=u=KV+aEQ*76Rpo(PtG_6xFjq1 z;@ynjVDp(*5y(UMQvm{3b(wcN{|mTMB&j#wOluIZ&+C#t#F&IP$?`!dm;7+| z{c3Y+c~sFHaVuZ=Iz-%t0e}-5-_+ z#!AIXCCl#V3a=H{NB4_$Xnt%XMDsmv;eKK2rS2bV@K##-$1BjtUH6aqwNgJklbL3_ zvCHYQTdC!>N40lE_lydf8C%a7YgB3KpY9VSynU8FF^onI@d?5#qnxM|6IcWYIp6U+ z>NJ`+QF&K~*ErWYRVT3(9&u6^;J%1*Er!za?`w>z6Chy{Nb!5BR0i|O%02Ny>CPw=KooAK7UMwkl)A; zIYj83AbBU>9LfA`)8qH+{B;Js}1DOZ6d$qx2^I2G?hH*&wm%>%{nz? z7BuX<0GZWkaPLPZTXC5;tG>MOk+|rb&Tjr-jWSO*oNbv0E#pdSPYTK7Y!1=ExUitX zqwkxEt?W`*#Y2y752e?S>)E4+{m^VM@{iZ9rb*FWOSMjqe94Vv5G^4h70Ou z)y13ORRbGM&Vlyhi5g3i1+byv>SM}rHkC{1_1mZrK{*ITlB~1Dw?}}GR`gOkBCQaS zG?Eo#WHPF2E?He3tcj~=;6N@PbR^c*3ViKCtrhMTe@)9kD61U(#=!-%AFU4mONQ z`6Zy?-h$hx^h$+p68`TjNyJvgNthn4X?&Y*K@_rwx_hGtp^$iV7ja&R?kzG8+joBW0tXM7KhG z;E}8tBLq{OZ~lo6TqFc{LHh9)Uf~&3W9|{Zi>p#wko2BCkP$Yuoi(q0*N1`)5r-yy zR0!#iF^RB1k`FO}pUPmPLRE#cVpCyZ(LWCKKl3|pxj%4GLSDn#ruEP|{E zI|^NRZmKbTm+%s$GMc<7HYFCb1jtQj`XJ!9SdFBA6FaF)N-?Tbh@cpR*d~Ltm`o%< zNGm?Y=Wm?cdtuWW+rxJ9zI^lAdhyF?;+Ku$m(%$#UWj2>{A>fw6<;QY1tDJA+vXU26-_oKf-1D)il2} z4_=nq0dFgt7OC$=E8zK(+|T+mG;!uB(Qg2bB2xV@({=?WW?yLc^vLmJym^)@PCrB= zd)&!S`Fk89bkIYnbXxnx+y-&*kcD_BHTcTdo{wS+Ak86OK=Wej5XSv0ibKeL>7MX! zyj_-_@EjVs>z*)&@A`!ICSj{{x-#UH+`#sgRnZ;c5P-lHvbK(3+{?xtLF<<82M6NK zvh;)f(a2r*gINk;)pEcKULD;FUWF#b)(cjK=7&J1bRReqZ|191fOXY7tBX?c-r9)07y~D|8`x|>&*=r7!bg_^h3An+%O#=;wcwXp-y4y zneGi!@RnJ6!$dT4_q`$S4nmxeo8R4CrC{0kvgqD$ESeeH5E1STrk?5Ea1`D$OK&&= zjofu_SnTZuA7MM*`IHkp=vb%?mx5U%7u_WW(e&85MEFcoX!mr#=*OF9=@$+fIm9mr z^UiYWT1;;eAmn`4$Egz~-qiKGJ3DpV+gLI5uIg5nMm~;qXrnjQR~RmF@|FtI-p%%7 zKF{}2s)NYM>kn~=&P-nOIqC&#N8q{gY$nl)F@sZO@ zZUMG2S1wSu0POpRwm4bX)2BsfHC^ScDq+E}Ft{8n!3|5i03w}h9}Yo?t>j&AbJt~e zu^TVf!K)kW*R5`)suH}mJp|_t2ONdM`n==-Z#*?18t0F)7&cg}j!x_et%+@Wu$*;D zac81hgq!2xCXnoQxFtp@3HoE>bary6xHDBP!p-r1%UYgtq7!-^6+#A}bEpt93<_Bz zg~8*v6`>A5{;;O|DH5*UQ@^O|pviXRMg5DKk@RyRTzY8ul&+<6E@RZyg0QetL2cc< zzzdHRXTeEWmwip8JiNh>a1xD9CK{W>m5=Mz*yv3rcQRAh=fzD)IkNWfP0_x#&qn9` z7Al1N+CCv<3p=w#*g?R>neDrIX2{K40Mk8HMU4Am6Jw6_b=kB={?Dn*Nr(Rl6(UGJ zAx_CqCq6p@gtQ{AP&cP>U?c$#sSm?WbSNYgCm8=&Tmf%xvhm%e;CZS>+nN{b2?j(g z&0Y}SPgvLsO(4_{Yp&!nA^rQZQFa|&?me)hFSlQ8tU_VtlbMo@YqYM2PU|u%gmmjA zR0#QT32}GJk83V_cj2U6umd*Bj%mUB;ZRQ~U)RTq!-=kN2$C@r+*t2A}9?Za>?K)K0N}2v|^0P zg8Gdfv8L>b2RWQVVtu7ja}zMt2%qZjE_qia;XTe)tFUhvZWeKep(qaww7(sj&m5l2 zc*eoW$W)dYmx2@4>`Shsyw}^fX)s8rHcZnp=-pHgkWO?L6(T4f!2_fdiJ2<`gtTHY zwa#W%z;T6n6FT~s*W|VE&Q@YAJVK>p;{`8NsC*y#NXT3faBA&v+R^gY`_*~lpG51zp~f> z20{Pi`^u4m32*CUdieTCrB) z2X*++W1h~1&#P^+B!9MnV*^m9%kCp7lLF~sN>_;E_@e=mqF!tjJ_T#1O$I~1r*vx*M0YBW_6=21wFTnqDSHeHl zn?iW*D)^17a&Ly8SLWWr|G5r7PwUBD&Hv>Z_z4%k-vqzpwgFZxw+Rkbo%X8S>F`Va z$W=qdVRu!zR)8m*R_!d7FIWYh!2i!roaxN=m0_YxjN|7qxb4JadICa3?MT`8X=?89 zvhRN;05j;>5%To@YtF+B`8*0Ycj_zg|yr?P}F*zQUyJ?FLAD4J%7p zhE>55Rb82rhdBhETteC1`czo2=rfBMaM@g7W9JQM*1c+2o)Eka&6RPdOzsVUqv%pU zplM^LDqx?|Cw-WAE#4-}&01HZkv+m>$^2$2ge=^Jb43arxhPgZ;a(?&4uW^{6^mJ? zz#};WwS3|Xw*qBf@KNu3p)>6W9tZd_-(QJ^Ji3a#kpqphi(S3O6-PA$ke^Z6l>y|( zR0!#5Kcqr<>EVcp9Ze65PV@>FKDoCR3YWy@M&Z(&D)#tOd(=kOPGf2QUn<*D^XEB4 zXwnE@rX{E31mE)jbE%Lv;l>gu9NlsvTS;t(`=JLDP#Y=ZPl!(LajnU1`|8`o)A`6u-M8Vy#^t0Wdr_fSFznbkFFJYWP$6XaKbs06 z3k@M*q(b9pZbjS0p2@x=$PpK?cs1+{suOzGLZfXc2n>O07XN}ENI}CX(XjUITumij z2BtStA*B3*c!G9Pei0rC5Ymc;t>q^tu6HuStH}t>Gw!6yDm~*4L1@^hJ-kLB)ZR@a%jQS)CT9!%?k+wX(p;DQ z&ZC)4F4w1@f4={>&Od)N$ETY4sL_6^S|#soR582>C7D$06DoN<#$hh4)UX@aix-_BGH~8d1Kc-p563c zw)C)5R>Su79?Lvz&p-cs{jaz2bACITQ(H;rG$d{Ar>5y!(d}zrb-lHw9mvAdjvdPO z!^U;?3dFHWO#XVamNU;kzxgk=QN=saEZV9#H7UEM$K*TE?P}`XMum{k@K!2>jLE`> zBE{sZxD_4nwpsnz3d95!p4q+t7~U!__bk}KM$|lf%sc;l?Qgfy@1908Z|irnlhW># z*GnyU{2krA=6-*nLP+=PnDDbJ7i3E%7G%V`~7c|@{l<6zurdaS3qO&l>Bp& zzTy5m6?*7dhHhWeehC$#3))YDsf#q*!K5gDMziA6U?A`Pr8eq(I+`TgPkb_4HRiWY z>*{Vmx2mbTo(d6Emyi`?Vi5%=0YX|KihTlvv_dRb5g?=$&r%o7m=&-LeLrc5k}ws< zm!YS?gmYt~Tl37G^FclTy#SIRs&3O87*Y2Bxe^9J(#n zJZU@|ZeU4!J?9%316z@vL{sj?X1NvVaWr4%r1AjZDB9GU@1XSh&=>5Fo^Bq)+he&6 z=}|PYN0$6df6F0a8dwK?FP(`K}W2k1T0eP9mW zB1<2biAE0b0YU}#%#EKMZJ1Oot!xv?Z(C^RJYrw zt;8uqO|XsXB{GMc!67=6LwK3hySWTEHe6WCmR)vyR;71Wd+5y#0**pny_c;NG_|XL z%(dubmZ=c(dns~=c1CVd+-`CCEdYsaC8ZX64>Z?~y%aj(Q3}_ zYTVYN_^Bs4)yxp%`>?gj7o0{Dt_|K^jb_SNIOk3S97UD-GCp`yh3jkXi58Gwg}23W z*mfpI4i&SVWnF72;l)&6%Dyz5QO#D<>AKP9%C~4UQC6MIY2mBq#Uq?TM_Dx?GG)JH#j41 znS~Z5uzVBji0Fb}M-yrrSeBXsi|mIMR_?@GV(E8x2)V+x1&8X`_Icj9e)s+FFA!9o zjIQY8cpfc-%Kj}C^}D2pl*jNUSxWmT8d(b|zokORkRlwc4Iza9A*~Rl5CKAl*TbW5 z0ZWc^Cv~*AowB~bp15Zxjg+`})c;}QqA{q|ml>C+;8ov7qe>}dC~%JeLn02G4&@M` zHBnq=8Vsuxvz-3^w77tT5fFST@Bg7m*Xp6O&~zDf%dG<(MVfl^5{1;SFVG`Ba&5(1 zWEr_$iAL5U*Cr0px%AaLP-xOWkh!h^Vk{_D`l zA>tFFy-XM)v=AUXTSa3j4qfXW$==&fagS z5b_K8HHTI8-7Lt^7u_%mxyqxnE8M=~1hPlX85Oh_6s?}(U0fRI*vmHJ_NdFTJeb#|b#1(xh# zxgO4qDt^@89zUw@*J3KZBAZr1ry<`sRQHe`b{>Za%{QTOu>EspQ$jeu0?oPiCCbfo zZ$k5AEE94Sz)>{uHq-g@wo<#krrv0g;ZnRkwuLH3#>?6Esk3>q|NcZ%U~FN2676b9 zV{iD6B3AA5sSq-D%;6BBWdR|NaN6gr;g2%&r#!i5!?T_W^)H8Z+u+#->gU3SCiWmS zYdgh#o3*Xce>{~t>CDGaA!4V0_WHsAY!_vBxEa~s9vk~};Hnz0=@#Utsmw|8UrmLG zo&33{*Q$xt<-r=;AZ&cd_OjUMpO-Aws;S1U=;067zJbb~6yWt#h}Z>~xe4xOXNQK3 zpBUMC`=xvsv8Dl-QWv<-()RjoM~Qt)yM5{e#$KSms}# zG|bHKPgIAC@?9#UQj~kB5V4CgbIXuZa@otVUQ$%@@SkIoVOFxj8fLdxH5%5E@Do(l zB=LWuLc~t|^fR;W&crG3qBz{!owow!t<=y1Xz$9 zZf?Fs@wt`CpcLViREVGmgt-nmX(I;H1PE!xQ`8~7H;=!jv+KvxAd89j&w~;5t?hBF z`aI(``(wV8Ri`?H^r@>jMCjB=94}?P51N!OWyx2HAZ7b3uky~p!3$9QeV~xP#op1{ z?o_fF@kUU{YX$tSLy*pY{s$nNU(Kl>I#jKeD#xx`RV!o%M*5uWD!#G;i><4CVfx{n zv~)kblh!v>9nQBh3SK2Dq^oeYrlnE(6AJA0B6-ABVS}HNYJOlzK1FmZWAlsb$CucT zJK2w~u^)HA5ACfW)s-!u3%Uc49Pwz--SCgzqd^CVM}v;GeKe@KLrw1neUu?adpAh< zaHNQIc@!&P0{4>6p6{9BR~+j6)+5l3Hq38@Y=QJ^jmnsj>0v6LGBW*&Lxe`A@JZYD zFDlMoFW#fuR)U+MT%UVoNHgwlSn9nZSuQZ{0T8%P!8q@p`ztV~P7I56DDm=>RIx9l zTUz!0U$mNa%XO&dTZ`Pz8RFJwf0moM@E7L-tB!rq)jl{jwU6Yhj+ScsJ=7@(zDRlFS>eB7Z%Vg66wO+{V`Ozz)JZNsvaLj+L0|=!0JJF7 zk0#bO3N=4p)*OYj9%%u{!P{i%iRW?T&@9ur0JKCC*8egCvFB~kHNFPVr*X%Fo@rhZ z5_^Ig`<>In&Rg)tS&Drn8d(cFmr)^P*by%G;tD%+z&lTL;E9()zq$PRKJXGT@O%eN zt!>~rFw`lvK53!nTX?H1z403yc{d0>`xwOazt2GM`A2k}|AuGOGWZ;3t+U@fJ^cI` zZ=R*#PoR;t@bf1sgbY8z?Ot5rXFl`La?$C}IF%}2S<*|N)ZZgVpo0LSvjZ@5x3nO1 z0NyZ5pWK%t?*>6=xmjZWLk+~Cv!biL6;G;V910tN8P)cCsE49g;w`k4eG?j43q_|< zA!H~L&iCR9MKi!p*Sb5h8N=x7TA(Ci5p*@0RofzH-_YdP+#N0Sycuthr4L@gk#~d8 zv$ra#|3L;q&X=RB`z1V?mLVr)qpsgGJ=A;wZ<(dcpF<;Sq2|+62pMXGv%R=N4Xb+A zR!2(i=5lek$nHDPtDdKTnusCiuV{8{Lr&PVv$p-4F2iz^gO0zcJ*&zV3* z#Ne|9&8Kbf*(Wq3ijHXEW;5OtOTXL5k#~b|!=~|g@52JjCD9eV7*C^RjT63pp!P`* zDHq{wvXpiw8d(b|RVsuGDZ;^CTp?u|^To#QMP(7|4j?3ASh)?&scl$U5gu0j&S;_K zR=hcu{`Xmqyc>j;1n zMmXAwE5u9(pIp!0FxN|$CI5&VWA+A!cq-}Ui>uUy@}}NsL1sSQ9!n3L!;yD`AhS>r z)c+a-qoj4wwOxbf(lW|~kBOzWe#i7M^9sCSmLk6ljjV;4W2q1_%m`O|afO*h+$(oD z`E0+op4@z{{`Ejl#Jc9SXohX;n(&Pq>kHiZ=9uX?%>F~K>*q>Tx$QL4Md}l zM_2u$cw#N1(J`SlPl)P%FZIy$A-t8A@_zu0tc9iiXeQp1&OB zhHT&Y9ncdoH2nt6aP-g=)-^3OJ%l&T(l;OE$h%2s3gN^5Xak{X+S8F$p9~Q36v5%4 zX{=uAp=ko%N=y0oLL+OTsfP+7Lz8gA7guOvgR?W8e9f?qeiASeF&dqSCe=0?g%8e} zdZPuPm*efR^uXge@@^1-*x*c35EgTa(Y4LvxwI^Y!Ut!Dj_F}0i#Nf@an>)`YBhXnoRM@g}@Ymah1I zG_vN3;?xYmkEAP#(}4sCd4lKx^r<$lBg_go^LcP*FYW8~PN>0ar0f);dhqj)APUZl zjV@SUp`UkNl@*5{;V8CfS2?a|9@SEeN!39={#syZ& zV${TE+QMw^8R(M2Tz$H7YnJ{AkAs$RrM2gulE*!$5b`VeuaF|_gd3Ic>6v0_#LW0X zu`$kG9W9Oc7nSLhA3)_xQob)0B6iBhvzvj`u(2^VsweOpfebewo=W9MQhYKMB1kbI zeaH+XViW;FTJbP7QhFKaADz9=d?`Gl;+CsD@G@ex*pp`0&h?}n{_n8HrbNxl0*>{e z{d;=O9nF12{BpDS<>TU)Px4>P`RG)B5yyacrJKXw8(qa3<`0j`-|x%9!wBs6`-F|$ zL~bD%2>-(DQ=)GpZ`CKmbBf~9%F*0=mcqRmZwPqT*rtoHTb~6_8kd|*HC=Mb&LCW@ zJLDn0o+E~4v(B9{T^veIpeX(XT0W11iTP~REyI2Hg3FuHTpHaVHwrk4e08zAE3`k2 z(0&8_hr*N(<4tK<5Z~w{e-MrAku^D=t$=e@-C>We_fe6iZm;F@ZZ*vS6{nNo$<~c? zKlVHJTB13*`}lvD`{4v2AN~F!<;=XO;Y#p?yW5j?hfCEFB^o^m_B2<=V{>72!}{^) zXv9tOEK(e}5r1;hLm#KoEnV?3K|GpsLKW9~*gd_e*$pkdA$Bg`B_o70uPgamCd?-@jc$B-LlY1}Z z(~Cz}=El~?>xdUPws$yi3>1f*;e1cJQgus8;MfFo#uhk+-Kt|MW7zNa36q3Hii;Wo z$7xj2W#Bl4L*RpT`vXT)#{+@mLbMoK;3%M(GA4rDxqzdn;suT-93nJ=v~|j^b?q^w(d|I|__?hv*Z1`7(Zl`+BUUju z)dI;+(1e)-$=3l#5eH@kSq0MQf*wWw2j8+~6!|_HS&Jgy;Sil0(9T?4E<2K~fZ#pP zVn0Mp=l`HNvDF!#tN@)=`*pSdg>T`v@qWimv!U0MU-I zh5ltP;EL;g&{aPGZ-b@k`=XIUR41f)St*EIL4c40otvrd>kTpP?CgcD3%$7sWzH1t zkWi=N^Jw=qMw|LNQ{~Wd)>Mpm*jk)&g^$#*%#ZV*bQ z$$kgo$KTLWXz}CEXrj#VLuP^6%7 zPZTR4Xq?*Fr!6Ly;h`W{&Q$`&OP*^_z%VYCum+36rl||@Cw&cz6z4P)A1SaBSEzd~ zBO}H^93nJgba2jMve)ZCyx4+PLW>uh(KMOk#mfOlk)%G2$BTwsUc<7&*obe~GFY67 zM%IGG$sD3{)n%_3=$lo(1dPEYXiepd(UjP#Je#Ymn6D>>i}1}`YP}PU+;y$lE41D; zg<0=gqU-$$G%dDz&*yq;UC=eZ8E=B6<{w5QhiFd70b>FhSqm6@Q6Xf&5dIS>U_46oVlQC4 zrL$8G;|B8Cz=jE+u^pk}Bx9&(TH7=YAez@k`?zU}hZ@EZr%_dxQR5U25gIi*IEI+O zx*UiY7ozphB1QqtkvU?V3pk1%^~pS9aG|_bZ}8_QFTl5I87zj-$Xc*)IYj3Y!ZcBS z8}xl2Sc3cBG=1NL=EGKBF`*=F*Hgkf@oihGd_5Yu>nhKbMYloeA4FIByJ${ql@^QH zs{Oj!_u$*NRQsD~A{7uI0w8$1ExHW zjY~#XtK-)kghkvSCEFOX|3oknR||VyBeVZF4iTFDJD4J5zXK&e3N3|}A`U_mWmGe_ zH{d9u)J2Mrw(CLT0DRk)L1SMuvKBO!Qz2x~5FQjMXzUTi3Ycct(%ET-iM2wd3U7%i zYYutn1Fn!Ux>)^`$ODIlb&8`JqDPj>x{MwJ93nJ&ba3o2+3R&6cDxm>iWWQSXqt?| z=3WChiX`6pLqjgFVL5`h3g570;J6%(tObrYa){2Q2XFnstn!^;4DQ?0RK5dEiLJ`b z>kpw?--d7AQtMmM$X(aEY5l>h_v6v^ehf{Et=_@)hfvKQ#hYNM`ESw4A(|7ix-1Mt zav(s+(L{#Y5pOi{Kxao2ELvtS?%}Z z+qYEvy=deRwF%i<762j@5Flg$u#DOfuK@U3XJ-cd=|rcXUf}S1=m#z?8C{J&oyZJQ zvW+48KSCv2P6#~AAwsi%2UCPMB?tWulmHX|gO$SjHstjU;{XCzCK=VtJq2tjqNvk} zOf#=-SqSWbZ`(3x{Ff@f{9K=>Ldc*YJSbAo_*E1uU^?-x&IXOy!c}1nqL!~_^`(e) zXood=TYa@@W|6gR+KRw_pWjF2_6xhL79`f7ozwGg89`pbA$EfZ;>jX=ABZDav@BX2 z89>uzR5rH_aMU<5kMB(IVj%Y`uAdf7GI$FtqsjSbWY0JmP0po4$Y>(GDN;0fSrjWE znq)e=rDICU_%50$bM*KU;3%qiRfx1*uR`v@w{00WzKKTG;>OoG zMCWSF*V)(zD+G}u2oSPDIEUI1uR{1$XLmBpUlHcS~k zu709vB0;oknn@6U!f#h74)eJLuuI8BhWcPB*ov#5J^zvQ!6FW^JJbigf&#Dafl#sr zt%}!ExvcRDG+9PrbE^PH5vDHoz$xbIQRHR#<}IVhv1nv1iX6ouI#(&o6C-kkvVh_x zFezfWFpMU~R`G>=fNAK2u6qt|gr)9-XymTzzPFrNXr=v)(Y1d!njBm0mjoskl#b~7 zzXNZGrT(L6Wd#$VR|X z^zimzbD^|gaSpy!%V2Rf8d(b#+c-q$l7_bj+o10?U|;a?>7cgVJA#uJr9_PHdG9?!h*z{Y8BHmTG?7zo2ipSY>p-`bPBN z!?#ixDQs+*sN^I=jqp#ZBy#le4-OGpBXlm2?9+;gKv*S+vF(%JAc+uOzM#T+&P zp{$;~8c1zN#KG_87TbWEu18ng*AQi1Mb%$MnKL=WZV+XJEMAmlq68w#>(R1kk>#~$ zy3CQ~0>DwEsf#^&ntq-IH~6y|BX|oeqsb05vKCD$R0tVOgf~TsCR?Id0kat&>ufZc zUvc4ia^|o8L*?28>erx4?T9FA(KQSh*Zf4e)x_ynr~=5Kayy6E4T8!%0|9}!@(5ZS zEv`I_X3QK{{s(Z>xFQzm44u#mm0#hFuna8^ppmuEaxWD^h8E#dkwVKCqgVl_{g8j6#pU@EST_uNLtkwqLL zG>&v|nsk!rbRc%DL93y~j#r>rGRKZpfTJi*SHvJ!b2zFo_3aV#2H3l~Rm zh|Z00XNYYOMvY5g3odzU8V{oxvDJ7M*SOhwJu&3)ty?NRh(_+Z(zE664WrsOMpygY zXjW|17Nd+{4|K)ffw#a?@liB#h~k7iE=vKC76=e>%5(v>Bg_gY1&-@%DKHmqzYUBs z++9jx@DOwe7p9C}XWsMKa+3y_);z`lyOca+s0<#Yk}oTR`#3~sWzf0QF-PluphkEB zEsT~w{*C6#sBP{Ez)`fRi>vUoF6bfUIlKv$A>|n~vKCUFqC&`!BK#>*NcnjbD_xiI2(cz zw4>(JH4d&snw0Lrw{EHQe_nh_2Ua3AwGWT3_Dk@5Ps$dmZn*##cU)PYP<97uy-j)Iy*Zsz3i6QV+lQJc$QOr zk+Y2USYraI8}F|jcB_tQdVu|YpJ$UWNy$BiYM@B<99a$IIYekR(7|-k-19(5a6MWM ztt5Cmnku8Bxk~{@k)z2Wzjz-pk$5m7a89am+MG79-C|1Cl;~P60 zJjUy$XkX>atfQ^=NTd8e8!7L388>CgLwZHk*3qQ_6EjLYcpBMuQ7 zJvzAFIFa``5I6pbRz!;%|3H&u6gBrK;3$IBr|=DLLMpFWIgd6)5WeplfwH>zj@1ih?y5_&cn_#K={b=N_Yra6{*KpmZPmHYl6o6<)NvMD2ivndr zQ#W+&C*sYp)P5WqIYfIxrkBNnNE!qPSu9*Zbz-kr$aQx0as199x2*0{-hg&jV~jDE z36_hG!YU;n8Ont9RHu<;!a5GIJCq3%d7lF*qlnf*OBs1INk%zy=Kzi(h&Nv#r1F}* z!C!gI;+wS$6$5BwEmUMUMCVEaZ@$2!@O#0Oh(*D>(1h43+&o_pqVo;-#w~Te4vpM( zotx$hOj>_0y4K%DlVYoNaK0c!@4N8^Sn7Qj8aYI7LjIN|fJg`g2w4KGp?1V80Ty=l zu+mI+0@3Yf_r(ng(VO49m^29+pNtM?t_E73eH3O%tCZwps0PM^rMMc|^B-9a?8zZQ ztAWlXj9G!s2g-tj(V}==mCs$QM6+eoHMan86lLlnkOVrQk0tiQ8(C$7pddYk#CNz_WDXQMDtaa==4 z8Kk;_3@QB_A~d9Qa6xiLbJqg_robn*5xG+VDnlPmD8TSk*N zp^>#{aw&)CT=tkNrtz8?3+Vl2un6}(YI=VO&5Nzx;^{TL54!4Kz}sM{`sdKdT~~df zoQrIs{2!w$|9dnyw#qLKOhz{MLs$P1yd9S6Ka55WQJ;|hWd$Kp2LVD3MI35JyrIaQ zon5+|Sh=v~x)-VQk^4`^#ww$`)uZ2=(6CNPPlmD~2^L2ji6l70?oc*N_Ie%2AnVbp zXc=T3nkJ*Lxg!Bbk;FSB*^tX?_y&J&at*#=%fRspG_n>rUdAChS1fq*28Gzu4~YPdIt|lhH8Ez-ULg{-;G8N z(VURgWnmza0|7!721}_O@d|^!&Ms5#1=naPcP9J}?8gNrqnFi>Fzsb(IW5U7QL>Gp z0Qe1+T{&;?5QhjY06Lc+#zTh#xqti=EcxD7Ag3Sq1PEM-WYjPBH=s#Tqdtj`A(%>D zqcZQmfR?3h85jPIM%LoOb5sZ!7lhA5iVF`$u>uY~Oq$fwgLm4Mxh1Fe^c;BU=*6Qe zb8lbT(=&8i?mGD8+|k_fus^r~{=7cd$>+u0jcfq}UU$&$hhK~KRimTT*PsIhn8xpJ zbo+h76i+q8jn(L{!gC`TH%{OXcnJs!oRA37%$Fw6|3DZSL`$QEk$yB`Ms;&r07nt0 zE+(N28fsC+!P{UNRn9{rYfSqe0shMq zfjeP83SDYP0fK*bf*Xgt74}0^0c2qL0EgHO0?RxD0fET!J+wGlWcfClF>_@3BH*Zz zMZ7y<=!9Od+>JNFGPK-)Jann>~Cg^2OtTb*428DD|tJJmPya=>Fd zDvdUr;^wv~?rDe?gH+vRwCLv$q0yp)n6rz&C3dFy4el)&j<*9HMhGTa8oPjH-abUj|cf-<+oKm(YaRD%`v)TZ9Wu=P%$J zx77J_XymTz+_Wp(^fmu6y4Jr(lVYoNa94JS-jCo7u+;luG;)aEge)!#0g(_05OT%C zp>~8>0Rx3;ot@d74>Q<-83=7|bN^}BC}niJI(`lUjBB2OuzLG43D!m&MI<;xXkE~` z)G^OMKp=&zM~kDSkacLrjQZw|1RS+U5OWZQPUv$GYw$)`hL%^Lk+snBGAe`&EyAZF zg_fmJtbovRZ)X=%;qJkb>!^c_E1?Uxg2(7;^^;Ar5U35>o^gu58b%qHQ8|~Rj5lzI z&}h=ZQN|?E=|BYeBw7z{?Gh(Z8^S!fSO8*Ssx~0-TMk9A!>85*UjcSjd9$D=@ z0RmS=*{U79cQ#D%7tp#`@1j5>hbT_S=CU9VX@LMC#~QDvcElTNyuGuNj_lfV{p9Cb zw6hvL&AfBM@*W7^FeUjI%7NAB&%$#ZSq_}QA$EsyU`nIgfr4NVt%#N^`q4ZYMa^vi z97U7*biVJZVYxnzaPTc#CW`aW$XeJqheLF(B$z2qH#OJ_=sXJ6L@Wy4hUUap=Q&(w z)qY*=Yw+z`s{Ix;a@W=~fE0o>`UG=ZvZLn1Rb~JK`>V&*5 zO9PQ22oSO~IF8y8uQWKivvUP=D=ut-YPAunX9hM{8U4=udR@z%*kD@oB&5aT*#DuD zFRO%qafr|=p>ru@j@JD^7D=Lo(W-?6K(u49(F-_gwII%NXkE}l%2K=umLX*k8d(b| z3#bq>qzHeC6jJ_4^=dDqT-4buP`zSPQct>8$PN_C!^&=`?Z7Cm^f5;h<96*acSDK4 z;2Wm6tYOfRrphnF$*Va;XgKNM9OO*3^MPP;8Cn-Dn7jeamQmW=g@B_dQx_$vYQG*y zUXO3zGLpO&jjTnI5f0J0>@i;y@G55k%|8z|;l4#p^Ut7}vDJLigTFBGAl@WPSGW(2 z9O4RuT0oW)BA*Z-YWk$^kPGo(evuZo0c=hXVc=U z`-VkImNL{2i@{19)>87z)QBWuCpNDk4tilK2&gdi)RasiBqSSnnAro>id<(`Nzt%vZ+vR7YW{XKa){=HOfHK7ksJsRvKW|0?TA+l ztnF+uFeOtgjfnY5Wm@5v&<$LCGCEuRSW`XFa*~o6#AhkTyfor|D%G+Y_yvautp+-m zET;P14kU{IpoQ>040(0LztB7xwah&ZIBGdCgO4hF)AfPmKk-dl28@58k+p#FH!6e- z7{Y%d1&p6Yu>$r&KGWHw-n|=Z`D(UQE@s?HC0iI&qQ>zv)u{2pN`5899tZMY_7cC0 z7r#v8zZgBOeiV-yLv9}KGpw+2L%Iql%PW2CXBz&s&-)|sMplzCihDK&5cSFMb~HTN zQOLNXx%a>=7`bD>&gOB%*mer%sn5z3hf7YTnl3qIXRz#)hCIZVa>UR;(!puT8QY!A z1#Y1~&1eY(69=u2*YAmN;>Rt+^Js#<^U(Ymb(; z=irTO8GE++$Y-OGJsKzHv&@03?yyJXHjdP}G}Aj!F2bAYX79KbjA_pKwqHfA;4^bI zni*TiI0oYwN-uTKcr)HgOV79hjqGKm%Y6!kOURUBt3rM1_F6sg$yl!MN?$dG4~t5QRHY` z7{DCIYgG#KfB04{L&g81k+o3qM=AvSHbs&YUK1%od?$((P{2Od*#dSixS~oaS`VAm zo&aGS>RJQ{W{={KhWM}wY@`&dIT;@g;Sjq+g*qO39EcCw&>Cp*;S4lI=J>E0a1=Sb z3lf=3T6j1e->7AH*nmdX!ozwF(YfMss<+2gQ}+#E2rdO{>b@RLhpoC|4#PKH*Z8&g zrY$udK_hov<6gOhtbfIyiLUdf(3IHfEEY8s^L4F1j&I&l>yM(5L$oI3YMJgu5+Fdx z0l|UPj(7ut7f9)zaNDN1RCDzXC!2S+=iS6W*%@|s7Rwi?FD?BU`hyEjMvwDWzAfgg zoQ6f|CX1AeV<-Tgpt3FtfIm?or1pQHLU`KeJ9|uP+_38ulv;1m?DmLl+$~wDI#n2Z zXERRTG$3sH<34WKSeh>YV~>b|*VTR-zI{uzuR$Y+s7iaDmC_YxM*8oG?r5?m$f>{l>raWt$sU zQj4Ly`#F_aS>FAGLl9Cu5MGr*JJTLT^n>Ww+ip-I=W!82%@jJoCi062;y^(4;* zM)CUm-gx%NI^Ze1J(e-!uN;}6CSjn|T1>XJjf>frhG!YF)pR;g#U_ zU0YobvC!4;n4T1t;tjJDco7;|O9~4(MCS^<#l9zG%5WW)o8IA+vutQx33$Y2Fbo%7 zHILYcrpMMJjM?v$6Km9cfogIYLcuv4DeG7G&CZvry+k&!PYc ze#j0)o?D}f{8>Dkld`aIXh~oF%GvE+3%kocy7VlXQ}ol(8yZg zxtR(f1CQ{z7gyk!esaE8E>^c0&SyUfj6}?ZkE2Po4Ld7ac%<4TE$BRkH_FltALYoq zLC{&KP~d-(fsiwQZe)Sy07N|H@1eE=`@Pcx&P=>@mP$`YBWnR?3Kc>I9N}*-u7ESO zX=+2Ma!v<6B8Hm{Xi9Cv&HgRCvAIK9uvw2c$ywBYk8yit~J_;HRL8hko14X;=^na!vLJ{cB4VQm z1A?F^DvF=G2#C9UA_yV~Kls266v2G~6hx5UtM^{_tG86oJ@0j@JN{v#38(J8=hV5k zURAv!if%uSoY;fXvzuvA=1HBW5KdG@C87q---;i3dgGwHHRV%;a2O2xTTh zT^p8}Og=eN>?;j8CfrZ6f&@;ux5720n#%S~OhwDcGM8KMn1~|0nIk8fONs;Tym$$c zT;`|Y{62)&lISwK5&3N-XS>Y zna|&uPnd3-CTT0=UwDv2g}ekKCn&_DnW%mw49Nqcjl=C2`(E~2=LXAh4+gP*F18jn zF)ERY)q!@!gCWXpXO5iMfzq>^={)s@IU6f0J>i6&jn|Oad3G3y&_-6ap`3|FMP&AL z7}+wEQ+y$mp$L6#ScWprb)WhMR*S$6cO6_#YKPmZi301%Sf+9f9u84@ALPi1rjp`V zJ5y%gI0Fq|`9V0V-^I&F^p%}PX0?%*?JVEI<08`g4H(&SmOD8_dfjEyx(-H|WBPP9AQ2l5bYdc&&rld`U35udBIBD zmO-RH!irR^ZnG603{iGlaOA{plb*>;=czX=*=RK@hI1WhhI0A(WvAeYL<)JRnpQ;`JpD2xV(Of#1fF<&2_;zAB#X>uF<;FZB%>+wgys z(TVkEXLGG>+2qBv0dZLE{U^sOX&>=bmU<=a!yF>fxsvDP*1sCyD)#r_VoSZKP079u z7s<(2{__k+Bc!&OJ{$|ux}{{S?sE?w2hpSM;>aExw){o386tVsf7k{K1?x4mKe9lv zQ^#WS1-y#R{$sPbO%pa73E8dZIXoaDt9vRcY+f5jov8$T5P&ess3eG#q*mHRE58UKnQmW_SZpNB_7WWFCpZaedJ*XOnBVdsv% zyYI)s$-fCM3YC20eFyWzXXJ~7taJYcJS3t5u7i==u7Jr6-_I5F9VH$NC;xu99#ry2 zJoBseng2sP8Y1sMfRWqI`xME0Uv_nleYqk2s==$_#Qzg62$gu_W|e-{%VexG{zW_- zBJ+QPk=xFE{fzIct{c>e-*%JWA%80dv3`d9rf0m!#o~PnJQ^bJ^I_z+^IkvWv#T@a z2GJ*n6Mq6+5b7CkJn^ER@li6i(=Ww?A@Y6C5%%^WEpe$-f=03YC20d29Wok7s0g{%v?nL=AirMsB+X zHkKMFXIHVkbF<|hu^?hx<3AOygeTzIP?caj$D%92$jf$w$MCp_YIp=jZo3*bGu04% zXKf(MbYTc$?54qk;3x*Meg?trW{W-zK{QgcHPMBKM%2U`8=fZWQ=#LtLVJd*U^l$f z#CtwXr$YW!D62E23%>RWNYBPct}JI zTm~bzT?6&I0Q?nx`$FNKa0T227o{}{i1v;a30d9X4m>2H0=@zxw_O4CYsG4*N35Y5 zCh$VI1fGMdLY2U_%?83oMz#k$i$_FMz^`EBwku$^>;u(urZ?+s1hY2_z9^W%AlA=C zLDThuSWdPIrs6RXRWJ!gZo3NVPl2$C<;?HN92U<1!Ei;W9?2AR_x&7`g52kC*JP)@}sf z6i)jMa4o2`FKE{FSKEAFhetx>`x+QIfp3rJ^VK8%;!$D`2=&bA9VtI^I#HF)7x-8~9(Le-tIz0?4I-d{dC&NH!`=3zV*qVgVukuBv3&OKzKlqX(9@PJUt8}@x* zTE1Lz-IY+oJD_Em6IsBF*SY?~R_ zj9-aIKxF*AFmeLp9=%+R1EMW>K&WwGqHiK{9QaYXc_PMj+<-?0= zTkyPj&irf7{GYlrl}ff8jYXB=+I;8VSdr;HFI(&zt}Sr?ajwX|s>Y5{+uHf(ed~&u zfn0A-ZeXxft`66>a{evhO+D-p0~XG3ZBg^TRPFDP-z^_bNGrRxH#;cPawpEl&A}`m z2$K>olvb^Z);SUqA1s%m;<9KrcSgH9TV7GBbWY+evwEKsTeUtsCHhNW|v|@N! zZCr1L*Mj}y#Byehie)IjY++Z|viu4Bzi(pd%0JJryoOliRzmGTZgpQs6zt9TlgFid z@xnjhrrXsn3tD4W&EAYJL|=|$XWqn2vA4g(KIk=&9d}j@&$42D(d>Gl9W{bWMsy_(D1@(u;Jc>kZu7A_nLpPnTv3LR%`DM7UEj1mMkYzew zz(XPm@pFQ|8OJu}UODi}@i*xctSw&%F->QWzQ&1ZEPeeloZ_ePdbZMZV!7E|KZ(ai zvL&GUO2(Kg2T#N^S>Jv?!(nd};xBKHU5xLz5Mz&04FJA~{Dnel! zrm5_qo60&?jlc-cxpMr?)jD~`VLLEvYG_WD7V06rOqhL zM5xlStmS4rAfgCw=@QIGH=IH!_nOMl2!QNOr&jBC@(2jBFXn*1izRNQAaFEFXgwy*$yqdvNiz_qRY-)I9M4sOV zBU@&3xi5q=8=(u?3pmNbZ;5# zC_6ET^>ZE6OoVC(v!<3sctAuEZp)E7z*_j!65}*!YB?jE-qY}E5_`4a;msEjBh_{t&A};K=d;xRlh9Wn<@RUzCDnD(}aGAd2k@ zj@$vJGLV6gJP4xLW^?2YFp{Y(@gxg5DxAi} zcm;_T;$BOMXJhku7#Pap#7|!GX zUc;b~L`%nZkUSm^kOz!xQJ>PhLIE0;L!|JKM^+L0im|DPJIKwu}j$=>Y1|E zQJx5w;A1c$R0+Btkd|3kJ>?NR4x;3K!jThuN_w_3L*$;+RJyhe_LDd8A`+X5`-u-D zA=^k^!vi9+`U;F}8Oh7O5Xwk|wl*vynQ(k&E#J0S-`HZmaQW@cAlA>7k^APIO2o30 zJ@HV8!rP4_cYvMDZls^&D81p7o{QI!=qT=+cXm#;sVv81B652cjBJ_8+k7FEsR)H_ zn5JSp#dtHTM&OKmBV17GfYQ`dT(6#ApB&0{8+C2e75#^OI>Y%n459+B<%j4XcZt2V zZCwA{7tZay$puZSV=LSxmXqx+-@{`fa{Fx<*>abAd?A#(2!(B!?qa+j`X;MJpu4;d z7qlhr;(A5&-*_lQ;r)vvcaW*XUaB-qWryv8Dcz1ite+{g>Bthx$u^a(@tBC*E`*US zQ(52(p-e?6Y{N2@na2+ms=1@HnZCoS)#%<|si-ZktYBpcbeA5uvQ&3TkfNQDb!Bum z9urZDXL95Yu$cumvq_gowQ!Q(hZmGM#O&sLN~B40w((q!2S;T4-7vCcJn!;_P{t!P z*8=15fKXA0k5hR-sP*J+LcTD;J~%cn-4BjU9V+I|AIf(1^p=K-RsF+bPcm9D<8-=S z?LhujJM*i_*((2dp!&bNqc15|vej-8QavK=yH}2Hl0EJ#KJ`tqM>#~I;iY-EQp??# zsa}KmkY}p;AlWN$v7D6VpJzB4F}0c8*!(ZU10nK%9E_a6zem$obAxCg9uR77c-Ys#qA1wh@L0N^RUTCt8qlt? zu7&05)LQLu=de)CRCASTt~XO~4h`y$yQ8?Y&g2*wuJ#p;8X2zQ5S=hGjA0oYZR1Xu z3#)B>4K9(B&it(mN28-QUR(?@n&d&%w@JT@ACzblUx1M?Cn#l3fFml^Dj`lc{qkzrx^hLouPhk+P82;?DSd9Bx z_%_!Q@xv3j9tR^QaP85vRofR$zym_H{VRP%E8G5CQ*QeMIel^U1X!d_Ckbx*QCwP| zakTxVzM@fW{}>L@5pADkY_$C{%!Sn$N^pssbmq@tI2s+Y?MF1pgQ~V)zz<5ai5!e< z*~Cf?k$T&=*}a7Y64>@{hRZ=^H{SN09N&l^n#l3>Fml^DjquCV2I+| zEC%evwnT9cTnVZu4i6JWl&&p_yYO&{lDGp#Zo4GL3!5}V@yBpcya3mNDvCg-5DD9| zcn%MkD2r!d7;QOjT8pSh&WZjfY)eaC03{iVLenQBJ6>AVzX z!Rk84!1ZzxnctV;Xx!BHZq{`qo!yQEWr*q$X$c-8(Nd1!$cap+IBG7i3z77w?`jrw z;HXi-E9!jI*CzcCKhhhy+6`q8kCn*&0E}!klstz>bcB{0!Xk%ER+cjZ*)^r|d3=|T zo&mmkqS?eJS(Jf_`8ZrFs!c5QRE#@q%RD}c2TqjFM_}Z(%V)krKGD`NJw+xVO)`&! zOXeqVeW;Q-)KfAlRZAv6#)Bowj4Y`Z8(H;=$qWDl>&8sNHbz4vr3qzt{w;DE2_g2HWQ`vgI`Spq+`1Ep~ z8?`O?rFrsl@`(2W%D&oE_X0{BBJlz(f5D2bt{pBJzG!$+{@Mk6(~4`@Pye0y&$6HV zpXYDXmA{$&Q}pL=F5-W_(GH1wTjXD2e}DP#qS_wRMTtzMk}XFs+*XF=TV8~lESc4r zTp_cfknL%VuhD$K>xV^7rHN_Y?B>R{opKPhr5v zzRCWRpUVDeS$-P-@9F$-L-}P3yV(DC0{`!uBK6nUzlQZl*&39iiqkL1Q41kaFh_lM zEK6m^v5nJQp5O9ppPTRpK1*@ev!c~Ttv0qM{4t9kyLNWFY3O?$QC!;knq%$rN4~XI zhWo!9BC+5pu856c85{Rg{sMC$6|Els_#<2*C!P7H7>-7Ve84lJ$r}G&zz<3s|DJ=9 zt?}vCAEPNmhh<3n@(xlaBPXZ?S4XJW_JdWxgPzuQ+Js>Q#HLwK}!pP}kt zHjl~+G<|Xt)7FtoPt(eMJ6vw72iyi%$jMm#I)PB(o4zQBxJoUzzXPC*};e76i*N|u?i$>tHk(6yGyWv3*iQNT8w(Mj_UkGI< zLS7q|os2%p97{^95P_|%0N0W_mKfVV$6Fas#4?i{9tu%&D>-rpn8~y#^Tugsc*%|7 zY+jF-kmx1GhL|Rsjht*NxfYL!NbA)wvSlS#`9dfw5#rjgtYpH`nQ~ucO|H_fUFQ6Z zRU^<(ehL?q>Lgvl#9mZ3 zmc8tX$3s-#&K$WD?4^-@lD+hV^LjR3$8dYG6SM8*Ogu0m!KcH>mc5+f3!&^q$ZW&1 zmx)VDt4_(S8Yt!ZwDIKzR*t~&s5bI|+9l>IZ%xsI<0*{PH z@q8HBvY1VLA(X`kp>0?eGln&XTvcB~9)QX*t4T)~jWHQl{vhCz(JSZZuN5aUKogD59q3lG+Ys0dW(UzOM zmlYy#GPw+{WeX+~o`_{8m*AlgHTO=A+yQ1XEy_H}OTH4$<`?l261}9!WTNF{Tgm_6 zF%fC~ER1Yf$)|lGl$8i^ZCF+^CgN;wZO!D5tP+7<@&a5;s+TmGOhhJ@nLLNbLR8(e z9JvF`WI9hh$xUYO9?a(q2C;r7%_ftHo|J7TQ}LjP#7=^dEjt-Y*z6ShEFD1PPUbt zkHmncUuJ~}w308twQPlzM2T2d@;N*dqUJuskvqal zSmsGq@^mTC@T@-+OVu-oa@=PS$hP#$#e#> ze#YW0lb?X9=VBSk6g(QD@+NZR4ltCNGWjG=IVhad{qZUiJ!QucIc=n6+sZz8SVVI7 zf{`s-+1(dH*@}?ZhGr{{=h;@XS_BR$6}X(#A*GqEBt6VFh(|+I-T+7L2wO3p_cGr0 z`FJ>|AH}QK0$VZCvTfxfcvwVoKMW&VwleGsp=?D+Y{RmZ@ux7_1`9*_{xnaqVg&li z6L3ALzOq%5)>co(npYmf!y#(#5suse#xko;Wuvnj&N6DxU{<>r#QGURcN&@1MqakH zys_TseGNvotmPG72xTooWE+;Xj6O9})L&3OFkFE9tv3NSS)S#ISeCLk9tzP?_T9vaRG?JSHNo%VA{8O3w0yP*x(u)dDN=fKXA0 z?czKj)MkJeg=|a3HUr#0-4C9Ps#Nv&9lyf3#D*;Agj5UN12~FH+mg<)LEsmCb*DB6 z{2vaHXliNh0n9QsyzFt93wdg)J%AsDOXQ?8|2>AI(INK$j%c!a(8KsaiDva6jBJ_J z{Tw23$F`P##!Bu1Y_q%3Ug()-vHM@R98`AWdjLB*{ttd=BFC@7$Zh91wg<4yb9Xq; zJ28k>T;SMevAGAZlj}wJ;fY*t3nM3R?a{MU+ZRp1146a^&-#isih{NMDe1QTiAR)* ztJ&u~vSodVWdPQy(@<*LHrWEWR~=gGD2@i7_mzig@T)k4M}u$u)}7Oj=btM~DE-xN z>8*Bf6O7LSvtlwZNfovM`cvgJ(0t(4hs4OYqw z2GNQ+)3y{;De*jQrA)=+Br0VRjNEpmZ0q)v!AxHt`|jERpE-=~b6B`k4u%UwHI)NF zQ_&K&wQ>L+C{Zi>!pLpcN<#msmdd^TZmAT*rE(rzC#qCXSBd9oE2STglcyX&!Ot3r+iyXh=m>;giHM=jV*;Sim$s53!kZFIW5VNPU@ z>aN_LaG9L6=C@)v8YQ*Kywla`k_T36al7FMCfdd>FtTMEJ93B=+s0w#a%Np!+Xl-K5Y52@LX8CzeG`#m!K0&7{Ydx3!zvYaqt5zR=TBK0 zm_IqiR@;O6h5L+(Lu)yXDc~XB600fT0S?g#Q@~7-cu%HK=;>qGZJ)?EdaBt+be2EB z$dRhksA?w0bvKp=qRV9ZIRg#pet&s{ID^VkZFml^9vQ1LmxTo|v zI?iq3YWXBwC#qVG2~>;9+Sbj-@u-Qq`6!IscHL~^(2YYZkA;in5x6*1u^j9#mMB$Q zAwR)GB`V~{Fml@!vKhY$h&P}5s;_Zb)3tB#2>S+H9;!wTC2AxwSz9Hq;lUDB@(PUH zc9l$Cohb~lD;svjXvkuha9QlgAlA>7&F(~5sO)SVY>!7r)WJ3|a)J&#mcP^rnpjxz zfKV%F_xWD1%N4Z$j7xO|ZQN0X(uzz$f6%=E>)7c{wOy&pXRBlo+WL%R?JVc3618@= zl0$UD+S$A#PCNPJBbS}pv*hFxmYsU!vc)||oUm-kF-K{e?S2rZLY^0D0j&lX&B(sVPwl(-pwHr7tvb(KE$+RitGiH^3Wi= z20oRw8ch}7V$oph+m?}3hiN{A&!`B3rGmh=*+ToJni-s5F zuUXL5)qiLHTK2PiIFaL)zZbEoQG}$o_MZ=D`?q*Cov%aK9>5<+9mxZd6169cXYfFY zwEq%DwoKq@UkEi}2=N6?7^z#)_{e`2XQ~;^gSOZ&*n{RXh*k`{wkr82?nhE(BQ48( zHo*fUs&Fnx?u7AURz3YB+c_qj;3aq+iMI1rN|UiNwEgA?JVGMVhr-B~-yFmt(rZZ5 z8wFcg>?yL_ciIWRnne>hbX4G)P=}7aAU)L6vrha$JV2rx24LjQl0&te)#dQXa5;P& zuE~0n15eMA!$ zi)!?^)ykqaU+lPl@O-g7gIGTo6xe)GPtTIWHh6$UIcy0dC&DgC6%kl7tk~|AWwj`Oh80Ls- zvHeNd>MMIfEjp2nn|xP?E8;4+FjPe}eWbO%_Ug#dmc^BLj6_+y7e;QoEM`@+nQ~ug zO)<$Pz8x-#d*HHAML}9Cu`;wJaTgvTQ4)8+$ZeOz#*KnCGmAfl>*58tHdI~kos33W zBz320i{m*wOrkiRg^?4);W3t|$wu5a_JB~6O>fBU1GWv`_31tuFm0%qJAWwK)su^M z!>j14KRX&Y8)$x@gRnW}nH;25}CPEzyxG8~PW+N@|&HOZ65S5E*e!H-Y$kRxDZ%R>(3 z5a}((&lPX5HsyRBiz#qPel=VfD(9PU&Rtp9-J^m>L1caqMs7Rvo2qwNo3ejfIQyT3 zt3zdf0cSrc6I%fv$0H#s;G-~df&x66znULJ8}Wcp^TR^lM4~9z{P5p&=ZCRuqlL=Q zfVRf>JC*`wSWdmwj&zO<(3TxhXj+qUj1Rx@t+*N=e$62|VSE@b_%OzX@du8?$aSN- zHtLH0!=8;AvjhJb$A9E$qUMJ&3=5mKob2XbW;N5OsZHW;A_XOntLBEc;KwC;$D6(a zP-pGyLI87<9ygnx^aooe{lUQt6P{eVo;|=;o7&ji9AJtD_@;I(!>(qVHv zBQ`H2F}*8(bRyF`!^l>bNSo=Is=GQ*?G@o{_rO)5p3!rR`5=k$v+)RsjGqZ3Cot~O z)YV)d`hy3Aa+qKEnv|RiO6kr8qbuyiUTrG)1T0ji%4!EVrvi4gTyd3iK|%acHxEc_ zIF4E1W4>}xv%pOpq7!C;u~EuKbNFAF1#1BKK3pRwk@+t(9F33K1a23cD69Q{2R|y& zBEAVDTNZIQhe&VPV6tfc4u1c^BEe>Fi{HP(^`P=QE!OZdHYNjOM!a)_Hw|+`0*!Jkzs_lzb-~pl9{tdpem2Lmw zbld(EZcGd1{z_W^Uk>ZlX)CqW)b|bh*A14c{n-k8&QHb@jR#4$!tB4@oryL_tpB?s zE+d@fD>*efyp2P2!sxJt$UWM>XGOV`>Fdp~tx{L8&GcQn`Me8e*6KMI!NqfmBVS-R z`b=?F)N_1Eml8-QgKcOR;As#IZ4HcU8CsP?q&K8Y5gJ-iDitcm6#4}gO5l|8Ik+HH z#T?xN#qgwUeS8KFny8OY!N_gb$CjGEif4)0J>QijX}N}Go(|W{lW>u!nmM}#nvqS) zE`+V4$MHmnI(igFZo7_V3mxT(eQXP{N>65O&a|6x2M62DXa>=WQQ2-#C$vC1@!V~- zY=p;7RLg%iJhg1Dt7UMg%J%#$6<4`*vsbuocE@Y)TuHZeb7l*5qgTOJP&b|hQ9(Pw z$ZhwVsX{?~3mwyGGU19j2d)UUNj2SsZlvoUISPxcZH2rYkD92EGhpPlD`W;&2x~>` z@+q@6Yl`Fp;UalITokHEmWJDkO5E1T6?ou8oxBG|Zo5vzC@mEXZtp=#y$AX_mr zx0Ui6JaVE^ehnkHT`6;WORV$svCUk1R%MIs%jr3X1YZ-)WDx7;n&_k;wYajk6*CQw zo~W3~Fml@!vvqGdo2h1dSm}D%Z;`L{$|**?WLKAldP?EyDZquHs^`R3s3)Ght(P1gJW($zVdS>! zWhOTmezD}droK5`EH}bcp^7DJt}!#Wm2y2EIZ-Ls!pLn`$}CwgeqWZowN_qd_{sy} zQn?Q<3sox1f_%kF-PX#zc<4l}d=Ex$yH@5|1?yq%V(8^x;d*%qE)7*LC%0BFQTn!K z{*H%F)XZOC~lR;Fch z?E6In?u+Xa!*y~zToS6U92?{-TH3Zoj>W?!YUC&wx$PR+d{vfhfR!t=ZLlh(!s=|# zicGb)zh@v*E$7x6t>~g~$y@+eh$@+|dyUPiU@K@1o&`}sRT#PL3fkDLol`rX3)jwP z;M!2Nb4rlixbwGF^C>)jqG~WcfPih{p3|xOg6iOGFh<*wdR$%V2Bh zQ9KQzh8~8I+peKatl~MXXY^sg6Y)k2V*O0Srv_V(b`psK*t+>I%x;aSoBzPbZP(4z zLXM3)rIkIE+y&+bJ$DZmOZR#cOW4yf@vLoy?1V>6RLCM2x$O!W7uCwVd3{c}G~N!E zg4%@+5AqS7uC0kP@NkKmI1NT_yC$|67^)7j@5`@qy>4P^<^ADWxdJW`RV!f=OVcvg z8hQ_&22n$o!pLpc(AdFpsn58ozB^nhUxzC}l}ghOjgR;|W|Xb1h_B+&5*6_!7&$=^ z9`8e{S1QFTavl)smC93nA6l2MRNj#8E0xoi3>AB;xl(aqv`;a6L{NLH@)cO%PIcDy zrM^{J|5z@6r7ns_d)>~lrNYa;x>4^%{)0nw!h4akGUZj3o@yz2P^Oy66|-f-a5gVQG_C_Q1E1s_izj@lc6wGXqAp+-53=Nbh~ene~Fz_X;+o zaTJRu@TJGaa8;aVd)}7DLCr?oL}}DBwUu!g9w|{72gAs1S4RCgZ{{2IiW%CdhHK+| zxGq#}90F>Cy*1B0vYxB0jv^i_Q61;O$Zc20#7w2fbxHh*a7}y+t_D>TO}Cr3{X%AF zE8!+QLZT9GfRWp;1U6Nyu9k<)b+d=VmGB^3jrF61dWN|AYi{1cCrsE!w5ea7CO9mxXE)*wv_& zs;!L^@KA}`SPCPzT^lp&1*=cthBPh>m&V0#RjAUyu13vFZDm}DM@m%2IvBa_%Gk`T zSI^2d(UO+s9$yNV$mikmP$jYix+qOd+1ASKc*sPp+y*1JT`L<~g>wnz7vVyA3a$-R zC`W_|h39Ll*O%6kCX;zb24DBg zW)SP=x(B;1cIRuWWCk8DQ6*Dh8=zB79vjvSL(KQZooq)YUer_x$W9n zq-$qYxirM2!yYNB_BRpGgW&?YAFdTuKuzBtA3;D#`P(Y`As#y4_C7*hYBO^HE=krHR&K~uYp52L~=DRSkb7NES4-9Pf<BYV!B$U+1oE-{ddlin(eoQ(&8TMQ~d-`J08zx{?1*iOZxZ z&OoVesE{45Eo^eEVyQeZLKRAb)!cv#yIHj=tedk(%vg@Y*?iXm&cm{Nj?sVl@Unbf z{+=g)3-WhB{ubqLN&XJX-}B{fng3?G|dpbYdP=49MF82SO z!2kQENIz$@e+_eZDPZMCLcl?ObYMsnLo4#Pr|U=4PRtEv*~ine^1Jhz8-0Z3g6+EC zcB6f`DhVHwAC$q!ouNnctPlGZTY1(nhe-6SMJ;Us2Q#%gn+ERPG_#l&yRcHVmaB&-_CIKy-}Lp&onsgHjxiP4Q5P3Z2K16Rj$_E4AFK7TAn;pOUT0|5qdb*l_ZX!YjJ|ohl+f zp0lNc#dy?29UKNDTTXQ_he-5@mJ4QchhW~8tMTkHYNQs^)KB4p-|JU~;Hxg_@fq zQA?qp!$T!1^fMeevALyZRSWDoboa3L=5p1Z9%BlBI-L6_@q!Y2+fmK#oSRP7BxidD ze;kjQD1t{}WXq-=_JvS3C8W4MZK~z{b&mELHCwk_nKQq9KkJy_wmO|bte+{o>0LEb ztd3l5kxs#5C5m(+jBJTibTJQwDUpgLDh~+NOFtBHxyn{0&rf+(@~AA^9yn8wi<0_1 zl9OR|J9}ttEp=7W-cCHa$-v(!t#tE;B%*r`a(T1c{@dN`L-J8Ja#fS9!B5N-d;3e} zBD)nd?AZ4C1Yg;yWzD4=BC*G&cmX-}@Ny~B*PE$Sk1Ur<`l{v-Or<=()T(9~u9Z^_ z`3%F+c&VYECpK8_HuAOxtP&nM(Y6XOvSnL24w2p{HYYPU$i84v$*jy)*Y&Jq_w7pN z_Taa&kOD6jZ-EO#6$|>oSyL>I^zBA>Gaf!sF*m}wekQSJ5ek5!N~2`N_JpHwy%$Ua>4!0+1JCh@^82*X=%mG z-PX##@Yso3c?m{tyH>U~tXb@M!Bz!UmfYgm;n?85v>k(J#nqNQ#GD&wG$R(nR@2sa zGDI~kgpu2>risxNY-VlF>`teLi{=!#8dS$=x}HSnPW7B^ZJdb5Ow`8lFml_qF*&N! zis&s6E2u!rsKhEhw}#- z>Khqk3ei&vyGHLt=GeEdd&U3mR)5@Ge^XNaad#A#b_?9`Xu@m0qEU|~yuu+m;n9RK zEMvoJ7A_6GB3i&8T5&}*nc--3)W%1>iPI#{MD^CxruadLHZc!IwrpZHhe+>Xf=P!( zAIOLbWw3iZ3ncInf@9%wI8WBR&F)mrZX|aPjPT6ioxZYAjs0sJ!lSXb{yoLHhv$l!^136+Ecqjg z)pBWYT~vN;?D_>wA}-?<5U^t9fHrZ=^qL&8;gAWpjTts+~M+d3`C%EvOF{qTs0GTfUZ zcYyh9W>%qbRvH%^xp0D4;^ia~+)X05k(zBdy?AIurq6|uEyG#v3!w~0=xxI?oT*Do zt4=KCDwR^vns{zyB?-Lzy#=l+b>i9DsYW9k%WQ7O;~`4$MvmM8X0wT2gU0!2Sj|J> zqqxqgMgfbeTwH6qS2ZV}3T)%lhsB7{shfH~F zDgJlqF2zqfm3@kgy%pem&v4!{)GeJ>S0nF!7QITSUQrnNHNn{|K#A77N;cghY?Q)n?92)2uELGSJ&7~sSlOg(4vC%>P8ZL`J!G)p9qUrW25&y9X zvfGiX?H0esVz5nw#70B51A;I znJ{u^ip4p4933u}BjNg_CYGc*qF4@rk=rhov6Za#`J16|S(M>QP-U?jGJr(M z*=|w7gCh!{03#;|z+<^ft(b}B6AuWrVm8&cM@CVw6|=p^rTXyd%%j&0ma6^PO0MEu zG`j;CVL6FopFhXA$^ncji> zs_O=`>cDN>qis!U#bzVtifp-&bnJ^N|Hot&eNp8p`TMl|{W<@IzmW1E``55}Q<|o7 zJR$rb$NQg$C^Q-e3t}D~xWBJHYk4{!len$W_dQZ3 z4}-CQw54a)gZjQzRwnlfhe$TLq^D?FzUArIC}ZOyec_2H2~x}IPQU^Nft?Oc9`lnK zjz&jqLNq!Fp5#&0vw551MscqvSzWj7bYwQ}1{k>Tie zgYL+q4O!jstnEv<3-PFlcC`*hw(M#(he+@Kq3tBet0|)H30uU{e{(AX+ix+Fd71Eq3m!EQxXQL(E0P`SE3AOHW9b6OJnVfXy4`nzSCAG=iHtKZA1FJD$8Gc}*T^t7^TXu0Yhe&S> zm?k=@o8?PbFoA=>JK>U0Sr)tKXyMzf;T`zliCnLRk=xGoEY(Tfe19>V@Be|zLgjm| zF$^T0-=D=pAaed`7&(D+k6y0E0nr>hAk;Xp$Ttx=4xEzi{ngQf<&ypc#$Q+hm@_$L zRy)Eu3($8=TVMz*YCG>1rU6qqb}se|8xSR~llX7Rf}Tn{S0(_#w( zZkG4Kk4o|@H;5J|7s0rYc9HJ8@fN5Ip#whR*%!kz~9)OGGq%?mw!_kPTiAzQ;eEX8|KK$@R z|F{=Mw*2FJ93s7$V2+pxw2~Q&|C@yrI2`;7E)13Njbp=smW0jwOL!1O-v16Gx1IM* z)Rdr=&ES5!Q-itRnnAQ;@VC$Q`Np`QC1Ufx5D$dN{{k2}fq##tujU5PKs+GS-0*Q< zA6_3JbqIX(1e3xn+2CC%Qnir&2L zX++c`BGQ_aV|rNOs~7n%-qE1@8u9z9f^)6v-Xm8bA0h3{k4)1|0<>WJ8 zWjGouwF4tFX|}bK$!d2zO&O?Kc(@b~lxQ{=b7T*uTmI6{+*kz~Tl*Oewv{_QZb)oE_y5a~^rv*RkMRLhxacGWt~7kQt1L&e6Y1?zPVgJ{K2YQV`bhT{~>(Ow0 zqsJW{u7^YL!V-JjDXr5(BY(T&9f-$I6vloqvgKxbbBIJAY582VeX@cwgM)>2;;O(9 zQHcc^*aQo3si;lx^cIRJRsvf`IXnfTj#k3R2|Dsw;Ums~59>Lp*P?00TSV>u{Nd9<57tKVfSg5N+&!^Xf7_K3nZC^||}szNZIE_pJirNQHZJB^#1+X>rK0E=UhAxMZ6Ex(} z##AR1_T~Z6#!fh+`Ksvs;j;Z9%nenxBYwEWz6P|GfUWNL13X-!NWaUGJE8l{w@7a| zzhPT1hV%b7yr9IscN}h8CjX7RZMXU}9yd`4e}IuKw|bsKq}TDbuoV-tdP6i@ye+ub z&1VqnXK-HD0@1`$w{^1#9y(Dsb7ABJ-FUPp)#ZeZc|f$W%gu_e*NtIUyIXxmxMWX* z*`fBi#js>u=~|ucWISM^P*328m@th@sbjI-SMr^KqGV8wJyXX zCyHSmjBL5qY7UWJx7*UCnwaSu!ub*lFYwy#^Kg-<=5b<6gcD2N*3RvC@I>w01|uhE z$D>`TjwkHQ1EP%`Z(6f%_xo_c{tjk_D%cUfwP;<{nWfl+tjE+ z!|M&Rnt4XBSxsXQ>t{G`x+Ai4RXZtb+odMsQ4>Wl0YlQP3LokQ1 z&;q;LfpCGSX0a6RZcP%mHM1WcI8ifu!^jDm@n}n`vkCk1fM{c9o8Z1%w>Dg+Log>) zneGqER3&M3voangQIsW)oY>9Mv!{8D^yBx|4P&}Bobg-mQWCG%@aL19DchEGGafRL z{TpFq%aX45g;16xG`K!3spXG`PF^vTEA;UPKn;ohoYf<+cm5w-QmQE(0GpD^)7Itx z!{a3C@@FuzrOOdsI%v5fHd!g(Ip|p_?>IOg4<3JJusp^vi1jmz<4>3*ByDTuEqKsG zt-QJ6X=P5MY&o__?bOLz!*#L;UUFim!&j#r3ELXk6%UxGk)2`Ww)@GvM#%>F18Yu| ztO!?04_q2*v%%*fXUeut&c;I~>f}rqx$Qcc-n89(FkB!txF%GA90E@xdakxI-iOCZ zRL12na@&>Ke+ZB_ghkCdp2XJF(6Rd`$+tLtmAr-%oHTJk&F_g(ZT3ic)7?b6+cc2uUQ zZ%wf1EcCL=DMtCR^LiV~6rwF;b|riWIEqKxr^K;)%(g5>?7B{hMeQE56^BS%%}enM zonu(W#>&WXFb6U}wfXGPaEY8W=J#PZ8XdLqk*9P=G|7XiEntqs4@$I$!(n909uDCU z=`GVvlKZ$@?5<^j1g?7x!R4T`JC(EB2;Jtmj31iFaS29lJIB-1o^tkC{ONF>Z-q-j z;H;FbVApkEVpiCi5ty-+}lwm zK0BOkX!q?qb#*Nt&My}~J>n-LetP+j({gG@x)v7-nRRl9`fhc%p*vcm7Jt&+h^-!) z)}`vxLv2DiyE0qO7JIY9`J32PVg5`*Oe04v#8jKnTN)V5^om{aSCun^{SxtXj@St^ z#Z0p(hTB{MGbVE%SIDvN5@ZT8<9EU}bTXemkKt&v)x_1QnMU1g2H4*hEWQJepsCqZ z8^~*6WLcvLg&g~20;|)2tkMuiN^j2CSj-t_@eB=onMDy%#YIOo)nE3%amb{l0?c11bk`lMb#`y1UdK&^?@XOFyUSDW(kW%4((2_#yd zrph3%`qDhXz>I`N?i3$w7%!4G`pTg&FY;tjedQpyN=|C?J2M=Ok=i8gDv~UDT*c1* z_;HC2vJZ@GImlidBE2bMs_4E>jt5vQ*tutMoQEqy_%L5IU{~b~{&zSBJx4A6w__0TrSFl)YAXNYGBi0C zyU}co$3j%WLKwO2Dp;r*GeHTbhb!R}xJFbZY;7z^xbm^pa3UTLQ4Pn#$O&rjm>JaA zAzF^@@ijL&cB~qk>RQAMHY1mFYrA^bmmiCj!BQowJ!yFztYN1BYo|FU4sFqa zwk*M7jfJXpH^=mGjjyWI^zlIs(FxPXOhJ`O-{?Gd!(3UN=j(92oOI_u#c(uku#$Xg#~)ePQ$$D+cn3M}4#1J{Pid;HdinTO5(ukkpD z?EeBrZae$2TOVfS3W30A-~2GNR{(?0XfTOVdFwhAWWu@F@-0Y*+xfyaoTrVP(}CUM zn8;$qMrWxXH4}{E5S=g+Ow)2VMuXj8R%E8?VTfJeVmXP;&u2LLXdqq^*TT0iEq25Y zPjr#(VPwliw&4)zO$c+ujR37=2II?FNP&aGS#V*fjBm`>upLR*yuS?(g2?-+Fml^@ z-$dQUXvY1O;oQF$E)JFZ`NsVVEfJgl%kV&m{9ghiC-Cpl`qlIx8i)sknjS{`CL*VY zx#>PHF(y|mX3N@&!UHS=%&eShs~zhc8qk{+B0jB0ITjS|^R2oX9`5B3oiIF%<2f5G z_v{jCHi1a8=qj6H3 z!hNJ3xqUTpD}H36f!qQkTLyA7he&TQm@Wo`dbJFm{~wD6o5?Mne+Jit%JZz)Y*3Hi zX8Wi3@ri6d1S7Yd?b&KPs8`Hj{4Fbj8GjS53zc!P>xZ3#&HC$j3`Exd4I?M8?$P1Z zkRV!w2ZS0DF7!=A4hh$$JS1dut5#aBKSOI8!)Q?xuvtuHxdh1Yy3P_x1-9HJ9ug(CmV(XsQFsVM&KJYTZRdQRx-gFw&EWllaNgIzrJ?e^sc{D)mWIuJ6%T{R{rNC* z0{0%RUri69X?Q@W>EUJH)+MKhzoh$6!r0zYu{Wc?=kN_!uTHVmj&jWn1DRrOaHx=} z=1N7^3zYFc@0P)7eaSH{-03SGH7d?5 z$3c=MkEIQw-aDM_J>jZQ&uH@#!y_Ovz6*?;z_>>@R|A1)3my<^Ao#Mc zNy&j=T)N8%qlyC+Z53e%)~QouwS8UFz=*p`N6~1_#?k)EzEV-`zr-OD+kblfVGK*y zX#F?91jsW%y~A)FTp=fi`O6rN#)kY{WyF#^sOtOI;0Gmo!v|qx%NuIG5Xu{bW`ew- z5E2FZn(cn+zW+3OFjriynZuJT0c=UbDXfJ3-OvY^d3c&W9d7ZsZ_SlkJjx*w-6F*; zV8=!&8-DQ`%!%a}ufR2O(wcvs;b?r+Ch+A3PLyRBFXKlg8pc0hWXmxA$|2Hg1e3*T zqJ!VWC zTq`Hd`CA!|#*6%9`>TlnwFc!F z9G3bDNDU6haEMMA9L5V)3?nJSyjU%y1XsyPZT=jFqcKw7UrmrDkE_-o3;1z~#*u@O zE#p|pA<`Qb>ietlS{WSQ!eR*=6K;kpLghGq?@{`O#q^E%(TPl74DawT=NbJ_ zINJ}vRiUzN-g``9{60JaBIEbM$O(*lbaXWoh_>JXp@xDbzKO`8;F5Hg7DiQ8>tD8= zv!E zsrgMAjz)*P85z+e52^-%MfgF9X0a`dY?;MY93s6zV3Js$x7mF=3nXv~I0G&RmEEba zCzPEWpN1cr$nnWAa@#qcrdH-{p05b!`8{w+s62~p5w-B`^Z8Qz@I# zzrGb$Q^5B*L`O^kEMsE|_#@1SJV(?N@B&;SC#m@-7>-7VoB|@61R&GX`Lo)3dd zLgm?<0-RhQj31uJ^#L$)0@og$TQz^t1Uw+r62NzSjY&5D?b2=jld9QbrBtqz3aj<+ zy1g3~t5az$dYL&MrPh5M!@#?IrKE;|i#S9l3lVG(M&!HBU@(j5e|{wa3Ei1jup&c`!N;}Hk4azKLVG9%69x^=2!|g z=Rd(iAaed=7`g47$6jWR70uwiD;LcB8*pi;yqhmG$I`I5e+>_V$o(rYasu}ronH+P zqG@eIs^uxg!>s~zgRk&s!JExW%%&;O)5 z3acKK)|MR8!htMO?8-@MM@{Rd$f8rEr_P!0imXay?qmr)57$W zpEfXGX8aF}A2TVZ(pq$%A&O4xN{(USRo{xMVd0+~q7#M%_I(`lRmRQpC?nR8uo;8E z<|!ws`H2iiqeI?jh-i`rRreV-#t%v~i#af|Wfn6zM0&%4eA>Wf_c#^^cD`Bc9u1d+ z%5MBVgOlSU@k0|iJ{(4FJIAs63^vbe!+9QpOG4$@ywBj|x{M#5$aM)uPT<<3bF1br znt%s{YW^?!wj$a5Z%z08gK?EYX;pMjDgODDyI`R@RaRT-TqQu?U#v%{bsfhLaEGsi z)DZ9$4$%oizyz7KaUJnA%#774o`lQfBsYH_!_g?IP38}#)#;K4R>Q#K_<@P$@hFUJ zna9H%BE4Z?ntb$7oP7q%p2&<9b%?89pc9 zdxi78J6`bdxneb2jy}D0MQv<3yK<u1 zg9n5f4!-CsUO626INkdQqk9XvL2WXqz)E#CkJ^#0$soSv>Bw86Mxkl_$1xHN`U*#l z1OptR6Gnou5gSIQxE|)ing_0hYviOfe<{P!_>g-XaSd6+z}5IsiDq#XjBJ_3l^i0y zVL;XOJ&D5Rdy|)#^lsm ziylK1VTv!mXg$a=6YR_)$F7W|mefqJ1Bd8@nP5sRb7M3(8D>c4soqUE0WOu3rqT)t0%|5DMts1r?*#p&Wz5?|rMU z28Z8qh)x(BFilo#`4L<+C)4>m8IDF!O>DWEz@>~sO%(r&$3b+O@59KJ z(|pGlLOG34R*=(tEF=o{^_K6Zds(uzxC~_$Q|jueoR?k0{(IfPK(<=W^>+1$4S2Pi zo)e1bpyZTdt*<2)Eb=0{TH>**(Cd+FVt2UFSe6YoolDs%HyXtu65S}p@4jp~LNyFu z+8Jij@}(W%@;Swj-mpmgB z(NM*iEXcqMq0`|~QB|>H>_TXSv}|phf`>)a#)&X;+qJQiy0RFdkcK`k57)=L;c`*+ z(QRBbjgXqHk$2&t5jAoVjGUkmkLg4WIHFm3K&VTpF5g7trPQxRr+O(hcSWw4DX;75 z=`EKkm9Cy_v05$-uG40kAF`A%&vObg;e&PTuvzzu;QUXzMSvo{MtE8`bPO&(@MS>_ zF5l%4oiMmaj`R{3zVmySBWqgu9b7Xf&H2X}j>b=I6Ye`sB4rfn8tONA6hw>pHH>Uo z%r7`ZdLznwF`~FCXYfC#gr1`o|1%i`HtbXR-y$}bxN@-@%``j~q6#L%$Zc1_LN$!I zs%I$S@Ngv@0@sMDgsqJU#FdY&h6C|(2d)W~Y4eG3H`}k`$0xG=PZ&9YZI2GF zh5*qDJRsB%u+}#bIRspl?#-1gD!rLPwy&#)Jz2y)jax4D4fV2r$W+-A3DsPwsLcll z4WeGb$ARNYHks&$pb>oEqnPUBIlNq(w$qzl!n-52-ZA z9uR66_`I)hp+f?py(?iH4>c1 zAv$3sm{?ESmKO@4n|I3-J`>+AwjeV4+u3R^!p|vhlKg*t{6-fuZ?!~ zu(#IF)9xbdQbA41skatwlqbRzQEGk3F)QrIBFC!oV<&=WLkB? zC7Q-47}+w7E)J32kRTsEa520e3k5sxEQa@n3qoZ$e!n4s=RNU*6M5bZMs7RLvHJ}! zu2+V0-3u3m%C&jFA%X96@c@W?FNcv6`1a`JY8Vg=!2?1K1JC%jB{>YdBi&(OTp!!4 zfjujuts;CHma0={wF8~E8%BClq8^dfZyW=_t-g{`1HdgDq7w#y2{LPA1h^k&!fFsd zgv;b4Gk*ue(I}B$;H%Rm53GiOAK(Wjn#FfvWXmkR#Uaug0^}F?+${f-1rs<1ya<}Q>p#QDZRa}n1wJ?5TMY&Cy#<44#b9rr)#exY5;>obhd|_f6Bs#x zbB|80h5^wWJRsCCaI>#?ON;i`>*VA&Kge)2PUIH)jnM7o#dqR| zCYs1QU}Vcg*7`yy6A}6eGLbVvqF@`|j!D-<<_-)Ms=2P7{%nT5nC*TQ`(Bn3Ht;wF zm#|gKNEaA9KptN#JWaO_FZrG?3(8Br%^?!KB*l$v1xH2+3}1O3=E(Au-@-L>(wzSp z!_oMW`@uPhlu@YbkZ15Hh!*op7}>Izr#VD=ZA9(|=c=5+|E$&MIco7gok6r>NVWNo z?+53~#cniH@K}f{mns zWfa$Qi1dbsiQ)lci`$>FIIwZv;`Sl98dPq@Bk=XeZH6Dfk4$9vJ{Y;}3{O=LMO!St z9?tT=;fhdMo?$!=?K+qLg&&>B^h+>u0@EHHTQz-Q{~i#k>96)pL^l0x(tTTMbT+rD zUt6j?U=3+y51CJ*fP~ zH-UAt{2u(+M3ygwk=xF4Y!g@q(|3n6{dKq|RHn^MVBKtg6+b?a?JvQ|32b|Ga5V&o zR^S1lhJZbM6Olu}Vd-A^Pb`<%?S@Ptw@Tmd^%a%|W=l?`)ed&90E~2#fdwUF()x{~ z|G(^8Zq@()!66d+e|k+~QX_3+2H12hN`^c+)LqJX3<8^zoP6fTG8~N)d6%*gx_yl} z8$UGBG-klamT64&g;1s;^b=$nfAv*y{mLQTS170SmWq{XrWkD-o$1pqA$+DC6?>!qktuXX|11o#)tI3NEgfg>!uz zTofwT=3WX3d>@SmK;-*K7&(D&k4~r^fk)d zKt-Dgu7dUI6kBbnYh56I%V5M?3L-=iq1J>PQ^A$KI#N@?dpSfWOa)V7nH#ggmtl6S z&hZ7fR8E5PH!~cK7P%#3EO`4u@^kpXiB9qv7};`?PjQI!CIq=9W2|5X+rMN1Ve`4g z_S0}#sBFi#WQ?U?bN(bA0+I8_VdS=R9@~;JRy2e6iSG#JeH?>m#e8U=<>r=*u{3P% zN8@1-x!(vzPT=07?W@T_Gz||3H91`7D`Gi0+@9_uOyer6`&MTP`p|F;ELf+@xQ7O@ zM8%#^T9sW<&bY<~{cm*FBh-7X+?AYjh6TARlbhumSulZv!u4=Ts4T~KWlH4w zTKw=tuCIoX+s<`tS0*>#_l5I)FI*NX-{!7NiJX5A4}r+}w_)T2&OJK28V*Er@PJUm z!J)p1$l>6ObRRSr#U5nWRujfth#HeqWwoPSs|kABCkzHrbXo^;3Qc9F30Jcz$;>qDdZ94Fg-@2PK-t7BI49 z7V|kodc(jZal77T_cRtr;2>}^Tn;L`Q#reh&~1)SzzQ3xA%1uw*Xv;91gRLXW|AzSarug}``1vmXaq6sgh-(B`m1WQ6W(uy}FaM}JSCK(!t)|}j zYZJ=ZmDzH($UZZXziB~NSN=POd`6B}$fq`=w=^)wcBEv_g_kp{%9+7_iTF*9*a`E% z#CkD|q2PI#BboEKLarJSAT#|fTstS%`9~OzMwk3LWIg=4o&1dbJ;B;D_>r61$x{vF zU&6?;HWLcDO0|d8XFyixX^xcMlpsG6SudKw`J9XNQGu%S{7a3}%w!PpS$Sj#D&6sq zMAqZCNuP!vpGf*-7+Lm^N$g(~icFjB*heDk6*Cw=oW&L&4o9X-CZ!lZ1g;B}aq}aQ z^&D*055!|2vc4aToWQzj`_vlOCaoAM6tdNx$TYORfn(*B2=DeZuY7@*B7a4?>j$%k zij^#T&oNgVEU*thb@dFC`t;8~UCQFZH0%_hd(#xcG{FO`$0x$m8dZI+$g9?Lv9GFB z54upWG2_^-t{pBJzG!$+{u(x_^xv7kmi@3{YHrdW%uo7*EtCG>;DrgtxSk!VCJ55< zH%#W!FhQ2d+zJ=W$#MQe3`ZlUCQQb`p^QP1b_*T@(PVChku8(C(H9~*t3`JbiVE_U zbs}52AXvNg}5-Xd=PHkhpz~y4m z@|TV9Ac+3*Utd9}so_7q5XxVKrh@$C=OIxrf0>=`^2f|*`Gf6?(ACphe_>d=6|w|Y zuCuGTcX=gDE^MG?(Zzz(wCiw|BVdV2l`CgCltUysONzTRFn09x4PVK@>{!0C60Vn% z;QVO}N8_d@UfMD>w>(6cUmSVP2%|;(9vDVrDA4>^SvQvicm-*=ZMFiMv$vvjjpZU_DTFg&5L}H6c z&u`{Pr->K9Fq>CliY&AFCtNWn%lYRRj^1R%@ajmy?lUjqK@bh*Z!ofDFn{)iPzED3 z6=X0Eg+#%I*EiC=IG)az-MFbZ7Txx_xHZ;tq~~=p3r-jcZNY6X7A|&yCq<-OWp@tI z0j?4e6U*H&l(S%BEJJx4Tr9VtEMYjhp@@4pdi=JRoQfZx=p`q?$d;EZ^Mz1eB9s*5 zCEX!WFfUn_?uGEw#;{@!DL1lIS}~*?;prr@y@|jyxjHU@ulKFH@{wyfM52$Rcmd2< z;TOO>b;Cx!1+!w=$T#3xxozaL3`gTdZc`YK-Zqgt@uL$>w|ERh)}Miq+s=Ayo5Fb24Cd#)E13CN3<8_3 zsLY$&6vp$g*`JQbL1cdljGVx}N7q+_gJ>Nd5Neg)hpDwM$5?T)ue{V)aRP@( z94pf6HS?3}U^vfOm@up748etSa-Q#FI2uVc@r};pTx|C#3?Fl^>&m?Fz&o`fsrWI2By!_nB0&j&b?u>Iw6JP4w{JPIRQ z{_?Odgz^`msUUy(Vn`IsU#>`ZS!AAk{-~+LY;s9!9LBl(65%F}cyU2ec5AbQGmFtX(-*Z4vxPZ4Sg z@|1E&6wFhuN!L@RR!j2P#!7!?P=6!imn@Z5_=)c=oob2S*ARhef^}RCJ?&d}^w$+eiM)a5P%v9i4dewuiiiAD!qSufWKbhrH|yp*%#W zD9A$|4~c?#$R_Dt|4ga$W~%IE;jW&Q?3;4hqtS=JYIRDj=4&A`G7*@jRfmNf$bt>L z*x8RmBw9$CcZK7r8y>O(X2tT59=KLcV)M%wj>e1hka+aAhn$Tco#-KF!pN3~oX#QA zTd9|Kh2s@7`2HY^2y5gP-!-@{RKDYPh2uHctiKPBfynyhFml^jkKGlHSIuDlTj9)q z1Fj8~dGoGtJP(`wJMlP(?0*eLPGH}o>8rUxv>qE zP3%gkg>U=F~`HbS?`Vo1&$%l)cR25FKDInQ zvMi_B4=$UN@BAW$qdUz4KAa|HVw=w1cqByA*%L;#OlLP=2xU4#T|uTZJtPWdI!~p$ zW-%eUUs@a*7}OtHe+SC~yQFeT&U-6dcFRo!rRmi%v8?qix3ZKW4v}anDc<9lSWnyV zkdMJ^SRQf{Tqh@?`70TY#);hTwjR0d88_fZCVIwoFtX(t*KmmRhEloFZM|9s&kwR_ zu(QtM`F^-2RG#A--PYr`+5RDZd?MRFfRWqIc5I{Ddc_RJUkzvcpKx8MjGG(X)^o5~ ze-V#?$ok)4UL6-$dl1#=Yq-YD}tBGb;*gMPsnEMtcHcpZB01 z<&<0PFyD(09v2Tw>qCy&U@sPG;N`~d9HJ9ugUN!BC~?C>&Vm`Sy2jh!N;yf*FJU+u zD>bqFtzx&m<5c|EMDI8WMz*|T8HY%3KA0(Pa;SP4T)&sa6F4DU23Lj3wRq~*%)n;+ z5KQM9v^BzrJ%?YAi zctEH*q1!hRIVVg?_f7bDe9@9W(k$PEckIgb63Yp5EvNWu$NA0-Y{8O;7~7vJ;q!Xx z=KJ4$iBKyGf8h{`(?fb~Wp1>@XI8*yEpsnNNwUU>SquUjxSTxa-@Prdg(uiyK0b#;|iSC+%%7IbP3*{CTcUkF)Kcs2#ql>I}jpcfy1OINr|WiLK*^};f$DEyPGv-_hHYxt=nx05$R zQBwBwlq}I)8#7MWrlhT9uHy&3(U%qFdkkU(R1~5{ab7DZPr=j}1?5RNTK0nSAmJ#? zG}d5GLz)9-J$V8*z_Fe@1|u8wlmKY8We1odqqb}dN6cPZ77&hF zTjGcIC{CF5Woz6B$NI7*jBM1G&3z$cec?G3R9~iqSV8rrZA_|%f=z0cm9E0Ff_Bv4 zDdfsfh!x*Orefk!Sf(VcMXD_K4ZJKVeGDS8q@=iHW3uAAR!y#ic`>TV<#4d<)#M9= zqYxujnJVU+b>vcfc*i<&35;yik&75adb4OVlvf)(+cn02NhV=;qQUsj;lQ{u&ijYO z36uAq;zl^~em{(yIq!3fmm5~@-wx;gO*lBN+|RSWr4c1tgjh~~zm6N?$p1fKPywox zYhrLIUT(t&cdQ@Zhmno?akDRktRFmwg6hWwAy!cRxINwaF}bI&R4?>aE1mfoegD5y zsUYu?FGEp5d|%b*wki2)sUmOt#$HyDHyOkTs3KD}=e0_**5^@bj7qX5L12o`UP;Cg zj>3$1Riimzs*%~a0glyV28?V}lWD#XvYPN*3aTcr`)0Iw6j~$QYBI4WSMTg@>p0=0 zTy<$psU^o!Jcpu|`0nq=ENdF3q^qTn9PLZKEF?!Th!IdoCdED1s>r8dQj98c8XPKn z6)6#pLW|hmFK)eALQcjgdUJ)VUbF{;O( z;Yiu5$FB%SVWs(bj3iBrEgxq7h>z`9JAMx%8@1zi3?jWLvF7J7t$1l%PyPaW_ZeJI zAc&#Rn z!jbtcVdMnnJ(|4K3A|l+K*+Z)xA_(=@u;y^x^G=*M+aJ6+Lsw(ga4*G6*;wI&RXhPg1>#Sw6rtaKLlBpij3#svN@RHTp?SjvJ!@qr!7#lbMLQ7#rSi1cK^ zpG=+c0th=N`RW$^qUSJRqbTX!mtQ$bnJme&jJlEYf5rFE7s3 z)V;*tAZM^DWlg!p9-g{@ui=Z1TxO;zy~rXDUh|E;ln1Xeh(vjiUiaX{u(OsU-?jEJ zvw;#LZkIPsU8RkGZ#&O)BPBR$31`dcT!+Z&C%y{#0;wpS_N1m^MkrR0KsO7R9@B-lhA*JR1zK)1?@Lsy@ zV2+TMtR5wA)%HAjg(a>v>lz1mwg|3Mn32e4ZGZ74L-ve6F^I&TkzQGuZI6LgVMc!u zCCaEUs}aOdXwEk%a%vCZCt=$CFpJG9xE+qg=6&C^khl4}z7Vq5@XQJ-Hh&1Qf|ke4 zO1Id|t@ZWxR;u+{TSuYXTVlu9^!0Y->e@{Ao^TS|tBvXW+l9M7~v=!HN;UiNrVbZj zIUYt9#>t{{EQ3g|<*XybU_$h?JXlHAVH&~6gNxx9x#q$8?D1t_f6Nwi0d9|DHhd9A z&O94F9GgCO%ZLZUGvYotPOcfTkv^ZE;FFmZ_uw`;X2o4Faza*ks0t}ecnk7?kdm7({i(7tc{QCSTW|o$VSDO;|n1x2G5?Lit&zb4vUI$ zLAsAJv*;W;F`a8EY!*^(Mb_@;qM=30tL&Nm%o zF*%MwjDTV?(-r}(u$%*vWE7Uq!XdNrT&xj}LQjK#CSdczEHY=}RyY=!(_v(z$eiK} zA&U&ps-PlsOo$aUU-Gkbi_DlpJ>OF+oUFd@e~_FQimI}+=Ui;dC?!=bmE-~6Xv<1+ zAA?A&Bq`2@jBC2Bm5;x{Y#8O^ML16O^6^{3Q8;Ppl4cf(k>za1bNI-PCF2$3}Ph61mZ^VUaKkB z!Q2>KxYDw_xOi9Pm&BQc&<_;sGHA#R^|XgrN9Py4x15Ar^rpAEmd`1!x7cre9+p z&p8LaW=J`VP3c{h*@x}PWbA26B$JdCA7>DWvLd}M!wKq$`>&Ol988eWVvd6YX63ke z0O2U)H2A}cg+pP3oRByMx52Tt90?;EwdF8h2w7WrMg`TDkA+x4bC}c8eYHA??eT2? za_MX23Z{#!8Q1XLRx#S^*!jDqulmMa)|0O=h!IdvB2rqOYn9{ym=vRu+y{rs%4_i^ z!ci;9R3=v9)|>j|9(;7i8gdtmY}An3eIaBG;aL<^L%tkh1=Wxv)1C0xfYp#%cjctE zjwOBN&bE$|s=40Yd^P#7id8Qhn$mKFr(lUvG%}dk+cXzBvf=|@ie$NYk3o!pa30jXJF!g6IK~o7wEkPT!O3;A(3X7z)SsS;=u`JDlk&Uu6#}`7DC7x|T zW$7K?oEMKxe^2-P@#(BAo!FP}qqBnRg`Rw+udd9*c2QJ^Lf`BiP=uIyE$ft2wmdZD zeDgq7o#Pn92&g&{JspbsTA4WqrpG8VpM~RPFEcg5QMhUF?H&vlOu2I=Zh~W7IUPne z>dGm;5VEfDd7$Anlxa_5zFcZZxNreoOa6IxhS(a!aJklY!Hva*+FS>X@z%sRKz zf*F?_^3)E){C(GtC#siJ=f5zPnJ;X0FU8B|9wz z;~d{$%YyM)29a1WQe1pGR(P!yj2mGtjDm3k9433gxQuWVO2jUdO}fOuQeu1qAK0;8 zTni%`_2Oy2|~u?wZ0<)_FP?2a>7ei9CeE6ed+C=&IZ^%(;&3LTTrF z^u@t^uSO7quk;>4EX-t`gzX zo#lM3o?Bd^8Bb$gVox}6ty$LyneJ?w=Qc618=Rz~d`OY73xh}$3F-9^Hr=VXuc?Is zOpnn=mca3{GF&{2a8$J*r#lrF%;$_w+yuwEay*P|^pazJA!J?Q`4m)Fb_}tC>dKz! z)|L6Ky?~bGs)eYw(DHV%Q&3(#M(>;CSzHQD-@L8u*#6=SewoEDbNFRVcCqGP;}Fl8 zPhn|C%g~seNZhpeB*F@MyK@5tv93h0!INE~@5A!uMam(X=K+@pi&d2yCpwUh@t_xVZc8 zq(9}<{tP!}z|wSI3;8E7vIy7M=vkT1uyGrI?29yhabKxKvvus@n`80BlcmZvm5Z;p z9J|WXoZ>s|4~v_m`(|eHl1g8-5Uo3*J6eA&Gr50gij(g?+`_h|X-Yab>rqi=>jW}4 z{*2(vo=nTJ3?i}eq&Pt`MRi`QHe0~Vh8*8L<(!YJXGqNVYb` z$9JqP8^g#VIPxyukU^v;b!YOAZq%4*oOh5-m{c%0{}dbst{fZNnd|JPDU>B;JTk87 zwpLUQg84Fv$^mek>_ueBXemri2BkRY)$O)`_GQq>h6`q0xgR&dv9A0GMmFlo z4;e&y+F=fVHE4uQWByGtD^Ntd4hP4T`FU&sO@bpP|Nq1dapeE+FmmSn&zCO;2g`x= zz8stbYZJs!JTRDdKVL*OfHP(u%)^aw%!4^FazY+>hy$rFcw_N^kow{Z--H(WVvBU= z9p)^}*V{VSI>>6iN>dQkd}m*^R#>JUYmkEz*;PltU1{@&a(nF?T(w>v^p}nX|s~=mWp(rFJH1E-NPV8Kt zyF#p>iuGW+%fY7R3*|~LQ${&DGNHUwRYn_JIy803cfTKQ9Z905aY{N{3eb9FF!n$p z@<xdvtyK+J>YoROU+h_eQ%AzFxuo4 zMuL(U-||~4B&%J9@?o@+RR{u;TvkepuTiuVQW}$3A!(Uz){XaJjv9`2<6Rips2gu{ z_Gj+f*0ynU11uk};SZH&}id4v8zv@eTeGx&A9Yyd&4o!^jC-d(?H=8hD}b zfRL@B-`5e*8eU1aHB9NO&}V-IdTUNcTNrQ3HvI~kvDS3+K4Q3KoUlzPOqO1;G1-ef z9f>TGy<$TKk=QHJDT9s`$z`lfTGO)e1>3Au{QKq2xRKmO+mfO9FSo~kxt+V&5&!?l z$EJ(4FEX#M+ zDx35P{<9!#h3cD)} z-gks!cK*pHs#OvRH`eK zxBcINQ`wq_jRS4ZO^zQ{M6Z?DBVUcIY#OPwGmF&tmTziFsc}7nNR%4s^_{uV2MM+) zXm#gNm@K37JPe1;%6IW@!ciz{@Qo{zJTa@zL%1c5Rp&t%*{C`X_(I64!?P=>>U=%K z3VNIwo$lkzxLkE9J;mgDv`;4{U4aTFYtH$vD5@?MRw)^4DJtX1QcRDF%#lT941*W} zMP)p(!QIxX$U>M7ql&b{ak4U6oKH9kC(Q*#P1DV?u?ar3W7${$BO7I7178SPHhBI7 zm5tRyte~f}c+d4WAL-&$e07-q~UEEm9mvXWjrgK!j5L}6)}ZWfj=;zK(YmM_4_MqxRJ zL8PZh#Y)9ixHP8kBXh8O(_s1@I4G`6$5$%095DI53pc=#@7rPI%=wP3RBVMzQDE`|1!Oe=SQd*HkA8bsP20nLe$RI|9K4|%^RgeQ=K8&uhKO874 zrN!+DMbqox;|)yOJn*}GAB?Utbl{!%5+>Gv>Y(` zUWOas$af7!&YbU(I#+7qjAGDk>dH*_Ygd^`?gOL+>_h{}?AMi%u z0U`Cl`o4|`eXwJ?UpkJa9i)5mIrTW5m&gaKL|JpKas04NFEp)I`jkaHyx_}*oLqR8 zL5u|PFjjc26_@c>qHGz`VGKcF8p}#}@jnzRg%a_tLz6Bs@SUx19ahH&b}T5X!pKHJ z`G7N@+9#0WTL(MK9}j2wV{k}ZS&o0}kjV8G`0$QgZw4c0&h_-&nv2nC=_{+i+FhLw z=X)_67FWLcq2q=NreNs6O>pG=Q!sJ@=N{c&3I^UBJRqcC__J?|5`y9QbeB)etn~8J ztJ*r)LW+FJ-1z!hICrgy*T@g5ANuMAI@fx|pli*=@3l9Lk8JN~nyz##i-@?|H`Szw zxRODP1QF5VFCGG|_WTUyPuyGb*x#SPF|(#X@%x0M@YCQ&z*>nER!DjAW84bI@^deY zY?Pn78AN*X67%>51-8g({QsLQ!}Pzw|G(h)xbn}}@Fn|VHlcsuwm4?ND=>2AS+I`m z+76kp?p48=uogiK#j}N33D(!PV6gdPX2Y7eJ&xHh8%9pZ1`jJ-NDaN=6)PorZ{2@*TAb5I!)``vb7w9?!x;^SD~q>|#}Xa+G7 z#K#!!wAOAu19N4xn@_`0veI3w5RSq~V>~M|f-Etv6d0%B<2n|TlVN0|n4H8Q(i0ey zcvH4=d^6b+C@F4)BjU>ORK{`Kdb4fZfRFCT^fzGS%$c4hMTC{@r^DHP3XX~^+k9(R z-2;>HCvgiL8GiysPGH=l%S)la+kyv#6beW9IwFL^jp;6in3Jp3@>M!hLu_u(KK!43tyR|4^FC06TiG&_KK$S|Dvik^73PrLn9>$$C8fel1~C$(g5b)Cf~FmI zhPe_x%c+VT;ILWgE^b0N3Ps{XjU+mSAyQ0iiyPutaJGh#je@f!gGf(Itj*hTLh!UK zD3Ni2>Y@OL$TbVri>ZqQcg*Iq1UJVq7dm0&%yVIV*{l-+sO7_D;rXx<4wGv>Y^Y6J zB)DYe#KpKtjyZ7wjGT}Y9%@1g65f0~AfzCf?(2vUB$Lw>Bx7iY=`y{-Q1!?EkrP-o zv!-4nH*9kkEwhz=XOSeo_2olKlE)duNRTAsnr>^==3SUCara0K@-`eNE9J$%5{|-& zIC{Kkxmi@+#7A~4DzC%HMp5}EgGf(wOyQ!V87+{ObasBA=rVl3T2jVt3vc5lzoWQzA*O$V9 zw+IgiDI6a4EmlG}T%GQ+O?mWqp=>*PydO?nYt{uHJuag!Az^oJ(zfL#`Ioi?VEf>tX@;%%H$GY-e7}=;R-)0c$X$S4- z@mAP0=AS3CFmZ1%{}(touFTtx9&b5f^8Y8?5J&$103&D4zvbxhR_L@Gn0ifc4oo75 zp%9Yh-Jf*yc*_|x560uhIOf3^7&##iJj8+27re1}KuCRYo^L`6eQ{386BC`4YPGYH zU!rV?br77l*1|K46B8}7m5yeS8wdC%mXsU&GKi5NH^w#H*6K_R=F8|cy>OhYlovY) zN8vN6BlA)q8TlX=dY19ftup0a7Fg+h2x}GiN(CG0}{e#`q)QjQ;|Ti!0;$#6;5vll7nBHaN2W6Bs#xb&swug#&L9 z9uQJE?B(l-5DrhKdm{H(w$ELmyriNihY4RtE0i_a8avxwX*g`98SVGRj8b}#MHh@E zLor<~@X~|Fas^X1);w$M z?pZfl2U#=AluWf0j}v?YFN;SvgGekMDQ;yqS@B&fAs52D7$xLDEeLQI2y zjjWh&){*n@;T`M9xiGR(N6uyt>2-=3{Jp0VGL7+j$t3JfG#I}d4vZ_~d z;6^y|ek+WeIq!4i!m5F|e>e1N#oW+}G3A(N*ZFDbF1rxfZQj*0gKv=BXc|&&U99Y!{a z$R`*?dg5UX-gn~>)A&A_EDF>PC&6)X<(tn|nLe1T*Kr#hSw9g*&Ybnxvf~cG{5Qgx zzZQ;-EA#w3D7zmf`&Z+3II@2wjGVx}N7t9afwvA12q_%a^>suDho@4Wt7JPbbrrPT z?_MM?uxe#ZxMAE}U)rs-E{mji&X*B6Bk>G_7zvVMe9LdGzl^;OWz5hMqX+`iURKhJ zZ&I`rQpD!DEz`}y@*#X^$HLMEBO8U~f1Lf)_P`UH>$k$CF}-y-(_6wpab-Hbd2Y)A zlkd%O104DOD2$vr-?7beTOrdp?+oYscsMYwoa>wCwwy3|KNdH_k@urvC1l9yVUmSMH2( zv$63h&q;}<)y;3K^Ic7w*#YaqVx@~&q{UUfNhhVn6$~O#TBP>~yOC2!w7T?Dm_|c& z+z-dlnhC}45st!F<0I@NQzy5~O7$b$EXPXqLm1hpRCoG9$V$cYE~rvn7GedxW9?11 zQcV_nNVIkI^>*dz>i4FrU60CVYZf;4@T^C|wx(%HB3la2Dr7Du)kO};!t*|3FR}2X z_?C5w>bzEBHiDTkO3a7hXj#cEPA43NnFe3jr`m7Ul6CR%9c#&2FtSlg)?^Ur^_iJ` zno*6J#`&RS6E^)|aDFfx8CTBv=BqX@Oy(EiRyZ=hAB>zi^K<1iI0ZzCQM@`>l&KppY5bhp}^E0R~9oi4W0%B#nV z-3Oo!fYng__YsM0#lb1+#( z$9V=0o0ae4qlBZX3|?~*`4pDi**a0=Y1|UWn)4KlY}A}5eIaDc;n@{bb8Zi@f}UNj zOtwNkZ=@6#OA$%ETdHHjF0PBDt3U8jZ(2KgGjGgh|PPg99PMfz(wa}9<*K?)K zV%zp(Tl|y7N<*?pgg^MQARjpXk3ozCiLg3xr0IiIzKOCVZWsBn+52#atV9=IB^-s0 z#u)aNBuXqXsCSO8wKP|29cgP7|&6exl-*>^ubr)oV6xgV=vD+g2+5!9XC$t zJr*hOW#2@SQlOtfj07pb*onKZ>4JM;cEnvHb-`V5ysQKlzeP9-Hx2%jVGt-RkRsuB z+ycj<@&g#zC@SA$5b248*+L{}X|M7AGFgSGc7yl7!m)AXoqrKv_rq){&*OGDvi}zt zIdk^s#rp5S88GWx!5OdyK@5dvH1B+Vx@591W)@7vZE?(kNicFk7I>%vDJ*zP@qm!R z;zHka7Q*7$biWIkQO?y1%ks3Svo}|*(UrYLRJ6t6a1L8bP@`8lp{EqAp3S~Q9A&2S4G8Q&B} zPPn%{y1Wz$ye)V@$cL4id{b9Etn{V(T69KdU$siFDcd?0=Q>ZwN1vS4>Q&`or4DDV zwUIRTwLPpjY`!ThY#PYyQyP**BAn=(PEsP28APH)NUw)9DT)U`lM7#lDKc6~KO8YD z%f-(Sj>3+35V5f+jF1l^7ve@Z)|c~PWTU>E=L;e03(u*b`f@^u74#soDBb!pDmvgh zw_GVGzatk$_JfEpTFGNemHCY?7qZIynn5I1nKU0nxYJr?c?agos4Q>6QLPct^f# z;^0=87o&090td@VZSiWtQHasE@n+PC;pGFzP5AJRb>urRvQbCA#URqt2>LeO7RH|? zlQ8LSF#cyaFs_VSxAC^~{zu#hN8W!ABWKRLZ5!_x_m`~Fwn|&{&uRU|%jdVX6(@fu zI0+^Y#8Bu(^R`di&)c2|V{t%W$Z$=9tad5gqVgg%k z(bkct1FcKSyu%_mZ>^Q5v8(4qCNoUfrSvL`h}h3Jd!&fin?Z~O5iv35xh5e_ggG%9 zN*NB7mDb|1grm^Xn8LmQh#7A#-#P&w+_8Ri!^lSc$TNua1jO`DMEfPQ#{#CYeI*$b zC?76|!{W;J%-HuHF&9kEFU3u8W0bv zPjNFGxxXJqPT=07*-O2^n}!F3)C+s~IwJJKVd?6H(e$#rw^~s*pc!`~TBxkq);QiK z71RZqby{axs~0-yL(#&r746ME7jvcd=s)AX+aCLnl$K|5tCfyr5fY=x6HIA~w30$% zH3l&fgv40kwN_p}3bQ4Alplk91P+sx@Zuc8Q7CClVCAJrml*iY)`l}1;R8Dsln=wm zMnPGZL8K=jCUXH{XZdI{CQv*a0f)quW&RPNV!qit4#kIexd8xbH>o5)YN_3+BQD3 z|Fr%E#fxZ?s{6L$#dJBgKe2c%D9%gzlXa7Ru#zAfqk8hjp&t*D3s`NkCfYErtrkWr zy~!dM9`NNt%7yzFL?R(+E@|LSYii+dFjwNfk!s;ZI7(K!i@zltg%Po&L69ZJm15yJ zd|bz3@(he@6qBbJMB@GCal7rbPQpFS?nAMp!OHQ>@1pmk!SQs0z=X3a$MGc%NlZ_{ zM|Wg;B8;3l)3GHDRa*ZfwdR@k&Xd9q&xVmRXF4VntZd&M&h{N}R9xBCg+dbJx8fE! zGJXq;oWQt8mzP3;w*?OfDHJ~D>xd8vZ=}0v%h;uP`VPBL&#N0z{+GPKYLhk98avz8 zA~<}1O;&NEl+I((0{`(1x6}gvW)O*5AiZWWuIaTV2Ik+4k|FL5`SM^cL12=}%4cyb z;V6_eCbFdlP0P)9k+blT9ZSXY)tK}^z`OB>m9WBU2bVL*V`=+4`+xYpcKuvM@B15 zXTlVV0E{kC$Eng%c^=5q;XqnbrFa72sMU$@j%s(NS*v>Juecqj;C2jHtLiP}BLUTYpF9EFqyKf9r2x>;VH!H0G%FHghBA};bqeu_b) zCw8aub&IWVX-rT59(qR_Oiv+*xaJ+ay16pFM(nGNmIEf=6LA9^`5p%&XU_Kwxo)u) zGL7?H!a3g&4vZ`3{6k-h6DIH5;YK*}z733=z`IA!j~X^Fp}bLeK*(xymv6xmvf-=g zp4%~{w~uB?a-~XnDP8DnPenbP0q3nX=^BMW)k9CNT6T7fwZX3JJ34b7`LaT?T^IAbu1@`!N^8AIfOx^Cndz! z9#)ReBU=I`#JO-pTse-f-biBlY3P;72ZGH7d663ev z7C16~6O5d|xJRFtQh~Px4+tq0w(xaCNQD{cN`*;F3Z+t82Ynj4v=SY-aCU$6H7cK_ z`472*6)0=IHM)mUGDPM}>yFODJ{g&48PrDDGMSh5B_yko7I3L_h}W)g!)Pe+JNE|rjJjPFGzVRx&+`0j9E zTp5pVa;Z3B^8N|j2uI#`f{`=lJ+{fE5;l$ddN}td!ohLnUfJD4q_xBLcdk{3Eypj*M>vBPTHK(dVU9;BCPJLP~`jd{b9Qg>t&fBvxBeDXDu}R^UXn z_6>(`PUEW`u%!{qXr(DxWJ1X|rKC(KFo=;L6GlZYYa-zym??43$SH>}!7;LuT|Av| z6h0bb*(-5Ilo(Y?ga$sUV;T88jBJ#V&oPMfB*Fx~_`$;OkI0h135FlS@o?pLa%{*I3})4^94<+{pKvfi}?7CY(EDhC$R0&*QGSz zt-u39N`oc7jtFURTe@#5#@DNbp0-q=fhjgBS@Cf)+?dTxl(3+-)dZhI|-J5SY-i z5?*|ZLZvX$S|G`COpM#pdLywKKCWXqSp`Nm%E|kj_nAq1$>Y1vJ8g$;<#?NLj<vOSjfA)@4W<|3qdPL)4kKsIbnK0UmF=!@wsUY)T-ny&NF*_S9BzRl+z^*%&&8MF!S>XVkn*r%sZX$CS~`-WPdJhha>y5VB`e$ zJ*0qC6TEeJKu9(572h-#YGPr!6Az<%D}`FEQdZVNcEA~HEi{e82h|bS-ce0km1boT z5ufr+CMhD0Vh|%iM2r<)YgOeem?NW~oB@Z)N^`MHI0_}=u+Ao3V&IZ~P z1&nNzk!1`bJ?S70>$J0c6B!ez8omRE#FgdvVV#Lwe+wVpk?ZSW0erdJR*URS} z6sfT09cY2FW?SQkL8SsR<-n|Evkvx+Z;P@Q%_avhX)Q8JYK0jLVkBsV3DR**F6;#J zB;1tK4co(!vQl0A2;r!5fv;|mwwn(gAIHabtSBFYk&TM71%pUWF^JU-GF}?jCy+gX zqM;j(iYwRg)eX`Elkq%mfg|IKVdTsikF9QyG1FMTG@SKI;K;bLuCH#8UYN{Zgj?ar z{Fh+l1m-<%M0(Oed~a#xc%wVfJJR6z!vukeX;+Tps~eJ-UKbzTk?FNyF`TT{Olx!wI?Ley&1K7Qr8!yT!UevmCFQ~w8N^7C3*(w@Yl7i6m@%W7d>@XJ zmGt5@grjgG4)|(XZa#tBjF0SCR&Iomjk0nBgGf&@OyNr#n$gmDevYicWW2%iGjL2? zdFEf{srH*}KaG#?$o5k(a^`HWA(sLqFh1q3V8$mB#8AjY^UmfASxg^H*2m#CII=z( zMowVeqwh=Uz*~d|gp>|n@J(MK9hRg#%RndS(NR>&>xl#5WVP0oVVz|VW-BeqA{+Mi zO)DuI_F)hsK{kxxPHWAi3bSQ2lL{OqE8)fC2uEQ=%rXeF#JD}JB@HEfT*q=!fRT-I zvV=jTCmF;ngO%f}$d*9Ca0MI@SB~Se3`tC1hL7&Z^hy{xbEadn3|6)u4rluzI4Z7e z>$40=j6aB5;K=v`FmeLp9(`U)1>P1sAf!~-)7KFp6?RB>mSOd!xt^Y!q7=s8jn*Y= znl%m`bcz96^T;h#T9HK@j3MhWMJ*CZii6b|#7GbaqnXc|HfV?W5gy6~44c3~vQk`} zOE?N4jd5)KJf}(wE2Y5#d|1cwu>p*1l#lfoM0(O-B7YjUF?uV`Z^+H!T5A%5GM7NtGQ))I)0*1?#eG$^uf=_6|6d0)2*?1P<>F#=c=9E zh4RutzprflX1g$4*sU}ti(2@JFD+6n{Fp(E1hp_(@m*65FT<>fJ4vdBzrw+?5?}ls z;V8t2QzsPj%_{ReKD=X<`3sC}RGB|9i1gHhICVk^na236AENiE!T1^kfr)8X#^a|> zC{CEXPsNRJ8gu~y}4?=kRx?rEQb6HoVeDkYb+g9T==hV5Y}_!l}2V! z7@zjdF{v<4V-O=jVN8m^L02@R`QD%5st!(*v27ly;*0zhL7%8XTAy} z8+GO@3?e;!A+~XdM@-}UH)Ij^7+~=IYd9{he8;zOi2Go&{s?Y^BkR9_kuzsKwv9tP zY8vxx_XIQlKR7n7%krUYW5C&3P@Ydl0A+^QHzK#fO@$Gb9 zXv{3sXwqWYinfj#QD4iqb>ynm+zMp|V`n<=ZQo4=OUa4cvsmCo!18{FmDcwa5$M zgz!P>X%?-q1NntLu8EwJT4P%Vk*GD&Yd|wB0nqBuVwgsw19iX=vt~kZ5#cE8H24Fq z#R;ngm_K`6``#|tms=@Trb@X@kcEw6?#imrRZEuE?|1e znrg$k085yyWU{5sTiSgOE1&)l*fRPgz_vrIdD)6@80U@7P zF7-`a@x1cibfv=7dhUeiA*EC)FQv=!f_j3^v2fN}Q?5}Q^ijosJ~Z-xJHYK%nw3R9 z9POKGQa&8PAVz|GVEo0r*L1|EVg8IBa~d2jYYG%ggriW?;LAI7`h)>eP@Ie#;8=7{ zf{~4)Q)dwA35r>K*_IYGjrAMJs6b_L0~{Jx*5}3+aA|Is&!*qN&2Z%YS{ONV?$?wn zp|rqh{67`W|C4ZdT=`#%@t^35nFCMYra0!nV=!_;4tOXADLQyF@qmz`<4|8mgy@)? z?hDut_2$&C!{+=5Em+oUYaBO>G9$8C>0cIUF_Zkj6uL+#DJ`Zmh>;*IRws|O!mV+~XpCWnC89|TDka3$_@Is@WJ?&?C?T6Oi1Z}HcrGDKb_--k zplnzIhr^ZKNio@A<+u|c+L7bqVdTs?o-F&T$@9u^o-c+&;>t7M%UChryq_`N&?;lJRqbbnBwb*kOU8>I}b6VROyUXWL5LE-by)oZyIegtGvPZEqR2M zCu`0%jvrJcAUoVLyIW?vZFT#&FE>&qJjx&vWkP!0gcGL*KvNBG!^DYuN~(r8;fPte zFFsE=s%qdbN^L9(BczIW9XGiiQ%Hmc6weIaDk;W-slbsi3}f?kyFn(l+hsP0;C zsZdwS%r^H8O_|9JT4wyGJcZdxCR-jywjx&oA4e84h{QUR=8ID9v{qY=hS@S|%Moyt z?6qZ2!ciCzFG>YjMmaeYAJ?&*91J5H@vZk5C1Bt&<;8rVb$s!b9^W{Q5ki5zu zMuJcn&3x8$!pt9|Tp2xNIzeD+%1U=}Rl-pS5xZ7!s>HDJsbdO0tYaye2qPP%WE_J? zPbP?6D{Kt!My6nQqrvbla6nucj_+EL!1Ipy;Ep_R2P0?Bb8OcN8`r(zT=&31aphXy zwIYGG5MWZh}+R zns1H5FitBpKUNavD^1Fx8ouM3XHqqMi$RP8)i6bMUXu@x!|WN&i3=O2(wfr8>aI5MuB^K+bR zUYN|kgInRq{97<`=FHEHzgirC{Y~!=W`ARX7>Wl5^Nyddt)Uw1-ro?n#4!WbhmjL9 zz(XiVt-;%f2ZYob*ZZcj&>EMeI~_5pP_ET;8PeiBI9OJ~izgF~DlPbG48?r2znqH??^s>VhLMfx zau$O~Pg#hav6PT$jNeTr1qzEh;J~;t9^V;Dal+*NR@?|j-fw}Cy?DQ5)wWgIqJK6% zv;VaI1;vZzx3zWOR=k)l$MzT3-8bO}JFS!OgO&7$jo21hO8m4Wcqu#yUVx+Ingse5 zS&AcOB0P&5;+P13hLIBz!9yEJdBHo02ZWRti+vpt@}iRNRL1BfrChz9FDvgmHhKW9 zTh@GY*m=|ceMi%7rHxtUE>eC1ocDk)EcQ%%Ah^ET2Ti1geQT91>TS zxqej4H`~XF`0$Qgmto}0xt=cPC+vJ*8_xIDa9CXVo~cbtB;Maw;wCt9emRVsz_~}i zmy&@u2M-7-8P@W3L`a6a)7|-M)q=V@;yE%Ot4r1-YaBc1EQG&WAd{7@WDyF___82{ z!qW_5BnXAo3Y%*hVbo7hmc-p6HNuAo0+Ui!qKmInm=rb|qggc}lEj!&9<90gimX2qS0C_YB!~ zlQ^IE(_qf$5X4ZZfAj9nG+}>z6l4#mFc*IXgOf=eI0IqBj4A+$eHsUlMt?J$)=j0Ej4n)$3%mhE7!gopCg#5Qn{ ztaKMQBpihh@yRBqN(|f6TD-6oKCELcSqLK=wWOUvq^B9gC!02gmy#)gdZ7yrh%3YK zPc{>H&f$YQ@_ZbOoH@_2Pd05__lI+RAsiG}uJung6Zk$KH^7na^I+rzzC9Ye)CjyG zctA*vFv-^up%Jc0S0hX;kwl2TV#t;BsfOQ>Cs=W^W?SQ^LEly&Us05LW9BL?$)XW{ z?MsH#2#+v`k)RPK#a-8=!doy`;`WhJ;SD%eR=SJN5{|-)IQ%niz4`R<8a}#XWqB1w zHY&@@3?e7 zLfmV)gfw?pq(M@pBtm#m^l5iA)8vLXcs~cuD`VMY}V>S8~jBHe+ z>ls9P3S>TCXhEyrM;dnqumGU{? z#1<-Lm2~GkruUT#C-%|C5uMRS`<;FD!ZLM{#eQ%aTkBDyXBY(v_d#(%X?_-UvbS%( zNp-RZgBS_wWDPR_S}`iaEEWL?|9jI0`!r{)}w;VAh{*+y=+`lZTOw`m>lp zq^C>fa$RD^P2>J@vMW%OTnb0Wm3zK=M8b?Meu<%#&%jx3LZkuzs`ikxAvFuhAS(>ua3ab=os zgs<9f&LV7wkMGF#HZXDm+a7&gN(0^sJRqbrxXZUVMOM%;p4+E9i_lGbVRx!udYl0# zsx`}obrwOGt+XSHJUG=it)x6y!5~J0JQ%~B)&#;eFk9lzkpkf=I7(K+i{}%L!bs~F zPnKh1TqzN*z{hngCzrvfB0LO7#FgXtEP}W#4W=K$ zM|WiUK^Qr6rem`R);s#WaJJupqvFc8K8ujV_*=LIj*PznBPTHK(dVU9;BCPJLP~{Y zzK#f~aC5q|2op;SlRo&^{+DQdvZmWmfAFyo_~7H?+pb(YGMmtM}(R^DpDr>GaJ~`++ ziE6IgRq5HRuxv&9lD=|hy-=Y&ciW@?%rEcFR|`G)a-IGU{%h^bP^C>-CK~?j8+|Ds z{>30hf_xYixvUkFxeuf47_wm&L0}TgN^o%$;V68F_YjOIF=|h1slpogsE(y$DvWHD zj!6t6J-Hy>Ls2FI%N2#jo0onJ7B^pr$wHN6=- zjsFil609xS2x2I-qshO%n%?xr%!L2Jd^H?1;lD6)LMC`L57~csaq)nV{pSW>M@0X* zHQoL*esQke+0Ey-mAP+#zJu&##H@8Y4ti(!&Jh_Ud(93EVkGpM3DR+` z#^hn1j2^QXj+B+^;=zQY_89*BB5gM-N(Vl+V@3HCjBHetqZmYby=59-EhpopaeWcl z6Zow9B{(XsT=N&Cx(6oX4cr1p#y<}uXU_Ocx$-QL^&f?^{zEu2uB^||zR8nbn9Sda zTj9w3Z7^~I^B%2Vst4XKJRqcc*w)t(p&ovj)$T>KV-erFh;RR+NQw8!DXeT+voDq1 zi^z{?>muQW(#{Y8UZjLh%Ya2>8g@4u8L%H5AZtM=ni*i*y-0D! z%!9pgV;u8f4;VS~Jh1Fuq=Zk)g;T2y-0D$%!fYQAjf>D!pI5v;2|-j zO5qL11462lH+|clP${pcdoa}KQhs?fX|0HoyWrHd=3V2+LFYHndG)5XN^i4>kK29I zNs5mjFo=;LKE?{KwF2`r%#zV;o`S<HjLCdrz|QixM}sBBXo46DQE9R~E%q&7BG;?o!#i@l3XGgN*VE;shMn(i z!uj3`4vXtuJyV;}NaTDWZh|A{?J#lz=N?^N3I*OAJRqb{_?~Z}5<+1?x-UbL6Hi};B>X-nuAn87w9#uRr-=eD%5-vN=k)Z1~C$(!uS?Tnpn6D=1JT(a)tj& zI8auqi)Ry#LW(#wvSqsY+;K5Jv|~BB07f>-$rl+!dU9c^c#qJ$A2p^QBy$4iARd5& z;>vXV)W`w&z7IFRk?(t8CM7SM#;*N~wz$(JA_2i(jMF%9?hK z(x6if{--xYE~p+T?aQJmHY2aFCoYj~Qd4ZoAVz|wm~Qy5RiDFP4u!W;TO0xh%$f$p zPY{kmPJ=(P7%rH#=Rn*9$J(<$jBM1NeHcV~8e^KclIgmGZJJyGVu5973(PQd9Rm{0DgxFJiyks;%wV z{^BG2@+iMN#xK8N7i;!4_OMBiQf@`QTC;sOz<<)tZHt+vw6CVNXpF7qm*lJYa%aB3 zc=`Ocw&E)q2ZLM9lc_<`=;_UM);s9LlHAg2uD4qtzQhnmg5sE_2SqD6(;q__6TXiw z73%qFt|UC3LO5}mHh2uJ%oqPhkyB`E@CARm8_i<#0sTH_aUyQPfW>AM;c?_~FtUiz z*ixZZ@1QvKh$xL_Na<;h*<5?*!P9bJSF#GbYeg|#rxl`|;Sjmf&p%|h`(Y-*4!9kT zNw6)9EQ0j$R*=$Wf8K5t`p~*i&R31nsAWKfYz)kR5*#1b3|L!xQ=(_HnFR&h7RM}D z0wX76ffNmcS4vS$#xJH<2KjnNR8*8cgJTtCQoi8X{EC;cP!!Kh_ua{)Ww}yxLR6tf zACu(NZy0YPi?A%VreI??oBCLqr~4>ZvdIteqjqK*S;h=gnpjhN6lJ^mj&CN(zVt25 zz|?))+BQD3|Fr%E#fwPJbl+CIm@dcCf6h$!NpW7%57tfk!A|Sg2Pv+ku^OBe;ks5^ z9*0>my33<*tgOTq?~GW9S%x??qY2u3!l$%70cJ*LHmNb!hie1AX| zVRxay_j_<$T=|Y~h!pq1>>=;qHaN2W7L1%Z>#+@y;!)F>-}Lcd<~JsYp?Hii?{s}b zq_`g@`y1kRII_P!jGVx}N7s*9Hh-kyt-}LC3Ww``(^v?H_tRaSIWE_g>uKw#)$_f| zTay#uq_x(X#_m?pP|bA}XtyKltOZRN@E^8Erg6)Z?qpF7-M-l)RYRUZjD)#~@h!i# zLUKOLiP1vNg9BxywRke&D5QuL7A@1w+Ho#Ev}5f!8%8#2$5{*_J-r}SShT{WF?~0g z6DSt$fP>=7bbN(H%K?+`TX6#%`Mw24&YbVq3X4|AG|pcN=llgYFs_{ID=b=0n7luW z8{x?NpJC(#-aQ(;)Cjy$ctA*vu-MlTp%LCqS0jwwJy*}IQ(w`mzSY?1H)xTvW?N%( zn?$helGsI7bTBKF&SQ}SA12E%xhxVz%7Jwm!~k;O+$Nwj*U-#*LLit4~2@644u zBD4A%dj@#d*`4n^p<_v@k|Ur+AwVU15lKO!XSzaHle>cg04X(deWf}b;@;Cs3-grJ==h5)WFhPO)y9>0;SFNGZwmPNf|aiLDPP>3l@ z3gsnq?;IN7O>;}!j#^)DFMTeU7a2>I9X=GWePt6k#N`5aIV52TAz$rirmeUGLT)D7 zL@a)*2SL?37FQ~zX5NQXYnu7j3dTMGgc912-Qa}PovU@{7MEJBEu`ZTT9~ZX zcHBTJ<0U5qs<&F{snqjKh0%?9NC1xtR7YhAg|4?RszV{Ila>HS{fQUGkZM$;7mCdr zQ%l~EjuM9z_j^bT<8aDN5z^%2ps{p5IDqRoWIPo^if6=eM>C07p^e#m_uZ*%#^Xqrl{7WgC6qT&JcmlO$NpU??Tn`i1!^QOoaXnI8j}q6T#q}6*{gk*KE3U_hYlpZVFRnRp zT`aDh;@Tyyd2wALu1m$WTU-m`S`^n4#I+=@J>psx*NV9IitCBuS{2utxYotBPh6LY z>q+dIZ;a{5E$_ythTgNS=_&Awj1%$9VgmufRT-fwzQd^O0kMdCXMW8$fH2ApN4~Co$j)b%_r0~ z2TZ=7!VPfb`$-r%bH2yWGz%#Jjpm6@1k*f@Ah5YZSDMGO1$*3XliktyxQ^_u1|w(A z?ld_k$EBUd^LF7pZv#igm1n*(Tlc_Zd@I}nN5&Vz$eA-fNye*Q(b!%Z&UP0Z5m&bP z*@1EEO{R1B=#ESu2P0?B^tk3MxyEvTILjBp(QsvXBCFj^%T0#Q$47Q#_&gXnbA~6z z-e71X|2UlFd*Oh%l01cz9DDsDLMa!$-i;6L$nzaAa^^hG=rmt2X?*`9obOlQz_{|w z7d2R%Fz@e|a3dUfe*s3$ocCGQnNf}THGdl{#b*=5@JR8w>`u43VRAnMH^Y(pX)to; z+)r)>jm=|fobMgZ`5tgcT<>M*5@Sq(2PD#g%ma0h8&2$@)XM4UVio2qS0C`e<7he=nTqci>RC5uQ9$&IOAKvA#uI8`CO`EzRC4Me0WE$ z+hODpz;*nC3XSWoaISN3NI?hWVrZa5~cd{1YOXR7@s+jrpOJFFxzIVnAaO8Uj7&&vk zCsVi*UwT%<*{;ALab;UPg~iP`xh~q}N`Tcs`fhYnI0co*I|O4Q`1<{JGEhtvNM93@x!`AIVgj+lw? zAa00bB0K;i4|gIA%KyaJt^gY6?}T&y790>)&iQimnDHjhZ{UMF^86Z%oH@^HCVs!K zvA*H&gZ29Q1Tj2%oxd(kbj8epb#PN0b6`GW0bvH*hl?xxW@h&Yb(%@t`F>#Xl8J{*!QQT*>D<@Z0?` z*?$7J!;$^RVC2l%pJCYqO4E9yp9m3{uCpXiF21LxwVIOf3FFmmQOFh>nslJ37d zJOl24gX5Y3{HZU&5tIL0aYG#WzXe9lod3CM*b=q>OW_Id0vsLJ1enhj-z0frX27$! zC5{>JXBav2444?(1yoc0GyV{)`lk`Z@Th)1uOBnscH;o+t0K6qoY0fscpN4v%NDM7S~&xYdo6^BCzuF)g5pn99iEMM$Vk|2_j@B-IZ{< zOK?0~>E_F=6x$7+3;5`cJTHNfGv|4#h}E9ac_${>SA>&&85|T>vibWO(*c9=mADCx zj9&~RXU_O!5wLyA7QP<}=lel8B(8k(<#oFG2HOwd1~{^PAB>zi+fzii4x=YD^Y(r# zobET^n7Go-KZP*tH~4-Hx4@C_S7GD?zCDhslPBKsv(P*sH%mDW_hWxVpD3(Z*4V^$jE3c~yK-cJvM0RdoVzW^DC`+U zq=!7`ZZigv7}^EJ0nfQB?oPY{+us-Wqu-AXw%g4XhRA2z0c+9!-<~U#I--A}bD;|5 zu0kgr_t4l5M(M2du3#|z4eL=}1Dep)*IO!d=IHzzwkdUF2OWae*_|tt$(Ze7WBA`k zL-seUrv(jY4Go&F)}xOSD$JvfT=XAgQGdgFM2!y^5A#;AXFa*z{>H98f2O-)JwJLt zS7_`w2zSAHV&T9rbdXR%P#pcD55dvjQNHHND-w=Z8_e_?84^ox>&Y<#hSGrHS%GJ0^qO9?26svWVYcLp z%Xw*BR6L4Ga&&;r(c*fHxPD4pj}_PB#I-|Qj~CaRxGomgPI2uL*Sxqc5!a>S+AXdH zaV?7L3GA9LUPlJ9qhE^G)4we$euMq*H<{U%vtIV6KTGqhmo>}|q0I_@fh-C<1mqm% zRQQQ6yAzJm-5Y!dJJSbqa`3ab4UTg2Oc>dan`yH?zSYq+vTr9}0?GaX91g4IE1G0a zV)Onj(@l=QhY#(@@pob5%sF0bAmOFa{(Ly?e}N<9O8dHu_JO=HGvQCTHIA9^2N*f? zOrR68Bgq|gV2$^wPY2)blL!KPnsVix?`bG)H(4H!kL}3v7#KNome)*tw9!c4DV+4} z;qbVU&X;#2x?<+Q$8l2}bKqkza^^WOKOu0DSk|)Ogzzlrh6Ci91$>F$0M3|skjIU2 z%!9=+a^`ukIz4x4d|w*Q_a$&3T=^cuT72}dEJ7z=?_Put>d5PtVC2ksolYTApQJUG ze;Us6{cu=ZS>`YP3>Qq!e}tRh$oUUpHO8u+d>TCZgSi8?7h~d%h{3W37fywwB+yY0&XTr#tGd>}DLgO>v z8rS=WbG;8757!%$980SHyAl{mZvr&CEieIRIdo9dKnxPSE~6^4$T3R z?;37^Bj3F+a^`$D?`rCR8r9c_Q~h-~9mDV>tDlBapjtKYuy8r@kekA92x%wjGQ^+6JsxFHL~0O94yWL2M5HJY`%~_X1vMs zfAPT`dHxTKoH@@kjMw1#!#(> zYrZ_!141sn-qiOszgT+x`PEZhdOfqVQeM{9u{2-KS97Jdj;=z9R@` zjeTs(8B4hp`D)F!4w?U?Juv4Rz?$~VXi?5+_dY@NsGyP?bH zld||c^CWylbr<0%H&bH*tMbisG79_W@PQo*`)6Qeqp+vV?`U?@Xzboeegv|68ypI2 zSuL9E^5Z4>y>4*(eSBC)Zf}N>Gv{_vyrO9ozZg#Ob8tjlDdu}A#H}|U0H47}cVzl$ z7&&vMM@5ZEV|e;sf^Xs}1Thps+`Ng$vJxFxZ8AF%AJviBaWHZMvmUBh3U4mUJRszw z{rs8k>AM;}%%lnV4AV0`nQL*V?hmXC(3@a_{fC|bcHybttE5-Gg*XAr3i zZ|hgl!fl)I7C(x~ZT*rYwH^MtmRpvOOYLP8_DE`ooX^=O}p$8TJ``P{$JfX&Bik z;py{QUZL@N8+j4P>-XV6Sj%TIkypB}4PI}?2X*B2Mi@DBUPndMOC$EVaAKcV|L23!ME&0f*1-pZQim%PDlOFV0Iinsw1H58FJh z(@U}~x?-j&qQRoK_xH^rskirG5CiD#nftc2Z5-_zx}bOw%{_MCR=k)lbb#Evq#vxC z^n-!lkWJ&%NcXiWQiZt@w~U-Ot-$fJ(px-^a1?GDd<~`Ufmu;XxCM?Cr2r!v6=ey7 zNbjBK>`zpyxfSf)a6Iib-mfC70tMd{aBN(8=LgZ){V>_T47bCP{gp6s=Iqbgtx~Sj zHemVcU>Wdmcm_NK$Hz4T)@IXj$-bCb@E~rBV-`FBBPV2mha`}yg0~b82&pRe^mRn2 ziu+efb&_tv9?N_4)k06661t=ait*2(#mky^jV*10!t#ndA2&p4Q5N|yhK$2RwMZ8! zA691&iSl8Xc0#o7)fac&Hf0z8d3&z2URai^7b?*%gw}lo}5+K$gr;bGFk+kuvH?2lrQC@o8_be>F>tg!G?*2Z$lBV zrPW+lflMPN!vn?@e}Ch^U=K^wCv(+~Txn^3aWyw2wpD7iXg^TvmYxuqJ-KqBw~tmF z(%sZ=fAqod@^$ji`UnN#M9ZK18`g~vF`P=ZXGqe49yz-zJwuVD{QYjU9?QNzB;+40 z8Xk(9P%Q8nij1oD=BhQZW9(3r8>-FqLak2w(9+wQ@Ny&Guf*SKPIkQi|aPx`f+jHR$R9e*X_l12XWm|Tz3-JoyBz*as7n2?kcXkiRvljTJ)vhig3B?gfm&(ry=Oe|m;+dn6Ru)EM;`=@YNT-oMd zaTzX{oZpX|;K=!pVC2j>pC#vEl6ikKocGt^(75u>zuL6AVRHXZ+zdzV{|+N3aPQIZ zrDotw!vjLjBvpJJ5i?0YPggUH+Mhp`#aDZ6^*maqtjX5+sO>4#GKW+WPln@i<<9O( zwVdn8_giL<7Lr+Bnox>@b_OwkC>WlDG^|rJ+-sX=;y-C$Tqx(ND>^!>6rK*6A*j-^ z7zqb942q?J_!%Ugl2okN=MzU#bfagIqr~-Sc7?V7ew?J#-UH6G1zKy}1+poybuVFV zg)i>fjc`<<#=n%ad0|%YPTUH|3Vu9{Y*g^HnV+nrvPStz@+Xk;i{X%13u)1$d>a2a zQYj50obs#43-I9`x&9)IoH^GsZPiPo{DE-F?}H=bN;$vFZC;pn`8~K5j?CW$BPTHL zA+n@S<9*x%Lh7_ld>s)w?csEF+MMP@3Vm#!uXU0fuuk->`T|YR90-TVH4D~bQe!}O z%m%bSZjNIv>;ofbo(t>C*%h~ZI3qkCPKCqdnhzUl>yHv#GIL@DZjxh8EQ65~a>7GV zNKwL@j|YSlCGYsQKp{%DN>`MO+MO@Zh)*8f3+Jvi@th}*nrlP`nLN7NH$|klxPw6q zATEYy@@Qw96ysjoCXe_}+HF~Jf7%hfjZau&GpGYg`pUEr zjDk?>>+NN`mk3{Iy~n{`7PS!j$`;H;UYJYi0L|!-!zhDt(UR#}i#O{knL*uN+S}Jr zsCDF)jXLI*Xi+}G35N#=D{s?q8s zzqE)z$Vd8n>(V|aBP_x8yXRdXxBjfR<=$_ zJ0Zohp{LSC$>o=%kySN1Ji6YogjQ=-s{IY?X}p8mq+nQ2o^{2bYC**_`sCZXQPZF> zbm}z!9p9MLE408^DcpXsts4cvk8dh+mfYFTtC(;sGkg3P)9<#}dy!{JI7IJ7o)g#S z#q|YoeNkNhDy}by>)*unWpRB)T>mbvuZrtG#Py%z`kJ`@OI%+U*EhuV-{ShFxV|N> z{}I=>#q}L={ja#bE3WUcEBs#PxAbReexpA@Y9Q@-d;J%KpSRZ`h@qHud4z(Z&bsiE z5TxzqgVcO{Y{v(wxiGTvAeA=DlPOYCr)oqW6i)O3a7e7rGewhV{tibm-{g8>ttWdEZ79M#W4#Oz{r_r!CI}zS*9knJUA{q4~~H&eY68k`G<$2ASsVrh`*ikSmv4Tlm9FnAXoC&VfXz2&X{@dXWSUa zJoqDwoOvEhR$j4b%ujnMSoBXOh~W|ae1=Xj-{g7%KD;B>V`1dXxgOVi6ROd?b2!aA zz|nBM!TGaY({hvHZSj#E8QvO3&Ya;{QJjo-)f(NUaJma{Xk6*$Up!jfFu7lXo8icP zCybmq_j3}K7HI5W7S8@kI5@8C^ZEA#M@;@N#tm`g{{k2}bN=TKuogtifd|8L-~l*5 zt~tOJ-2l#*d2kt`Pi~H zjr9YG3qitF9Z=WcWlOvd-ZEpTLfcNjTy#wW!WLTYTE9M1Mha70|$7RQmra@AzI zj*srh^ocNX=1fl&OgERBYGi*Soa}4iptzE~25;n??4|=I-&f-XIP!fZjGQ^&<6CQj zHKv~kXZkTX9Ii}HVobM8H#z$TKB+Y z{9W7vN5$G11-J!{jBfxVXU_Oc+oup3>&Jw% zek2?j*ZZ75joG{~nLiA-!jbtyVC2l1pKbqeMdSY5aPH5BW8=y_KgGoEhspj~xE+q{ zp8+Fh&i+*GLnDp$Tf=F;1rCZU?Od;G4w!u3gd5<<_jh3A%=w@!=hr{ymJGIn!efs#ca1O8KgCpv&Y}g0=btf*2m<#^0Q` z>^Arvi;wKc?ogd`k!q2)X6Qt?a8vWLrq#h}iPu$D`9dd8kAuC0Mr} zTLdSnwUpS;&uDHkGsxCsk#VlujqT@~L2^fsy&1#+JA$OP-PpvK=b9oo5#~iCnA~El z42Q}}ZSh#bQ9pL&d(6j-H`Txi_~4E;q#H&yYDk_zq_?e@*ke8xFpcdi$)Lck#4d-! z;>vb>kNKDjCg+#pCOC3_35=XM=dnHJV?on+|7AGuKZir(%DcYDe9R4#`=8=wIC6hK zjGVx|N5hwzfj12g2&ozN@O4CJhLtIA6SjYDMZQ{7WbL@Wqjk!fY|h(+HBUwxWSg+j zWELisMT$sKuo{CHKoktmHeuV^_CRqu0lL4jz4zZP>`K^K#%bh*%GuNYR%{VuMf@n> zkXURPWW|oK4u#MO$sv^JJ5CcN`2$9$s$WTWL_Vu6%F3J34)l_SuTg zL+@|w;FWV-bO=JFkB*P?OBQ~rVSi&6ufa>Tx;(+kkD(sgy{^#FozHc3FVpG9l~1v z#I`(=7BjktbXT(=e1?ZkC^aos^&cNEv1 z*cINYXkGfVG`A`m72Oq@qC19c2vqV%GB=R91#6Qn&LJH2xos?aA0Jt53b@1YQ5^-` zAuzHb;L>JxOcbMqT^hINk|TlKo(;#smD}+xZmGMA0Lm%bv+!{p**ybB&Yaz8oZXIA zf7E!sHJs;L;HbFr%wN0f9+-^Zgj?Xq_;+CB%o%6*^A`I3{A@VSe}-e>%Co$mNp~6d z^B?hX9ohXojGQ^U?0$|v4`}!EnqJelZ*wSJwHmIGYzH^B3S&I5Pi57&&w1XDcyF zQsfVWbAKNk8&~f6vN*dRCj0l`b~v(s7mPeO`&EtIs8f;nC_7*c?l9Hd};HPO{9x2X^Fl4H!9de#h`x zdyU?G!|B}%j)m)e%q6;b+hDM}J3g)>yPtrOGiP^V?5&DM@k!wn*WrM;QY=<3#a;;+ zJfDaU?#Oc)M$Vk)nYLG78sXQ56Mi)u8CSx&Ft>SO_U9{cD;$}>97fKZ`PJz~rAG8) z;Y9xm4umVwd>`-V?W%D{{}Lb6k=LKY$eHsxzV#MaWB2`VcHf1=;mR)mlDK8M$?@Cx z(2g9x2_t9D@md4D=+|i9|-*-G>CE_;eu0))0K(1Wq?W2WJ(Yl-Xv86>gd94Mfv88Qg5p9>)-rPPs zS89*`vnOtdvbLi8Hlyt<^-UMKDzS?}q`oTAdRkoEciR!B@t?PMmI}T74eL3B@!uO9 zr&8|B(ZaCA%Dt2G)e5_pW9t^rr*avsTl|u^ zULdX)it9z8)fEUuS|>t*8l6>+^>T(1zc2i6;}|B(o-8^y<$`vjqdt=d{jr7cQcG^$h@?fjn+d@pVYX0ksJx+ z_Bl8fR)JMCxoxe7i2A$1?lbtfj_f`SBWKR;Bx1LvT{MoTzZT5#6oMFv$2XH>zO7%} zdXwpi_~?#IkAsmjXL@2xRcb`<5>E7va6nvdW9RDnwaOIe5F7Zfj+{Zu0$8}`)UKlxZcE^h83XR@>htvBn zI2f+<^5rSbc@~4;f8YZ<^7{&moH@UvqB$gu+;#sItfki?h~d%FyaThDFN4`N@lhR_ zoed*r&g^J5tEW-BD4g2;;83{Ux8vBdGCmn;aJx4?tRuI3z{r_%J624zYV4j8&hBzJ z7_RK{s@$9*Hu&ws2X^GQ3L|IE?`SqXtg-veaCWbQL*dG#oe zmuo8aa?7}P-@`|BWcD2xIdf*miWhepxtoQPyD32ok6`9~xB14=;CEwuU`Kv8gpo7n zcU<#rsz&gq!U;YKj)v>q%WHGfaTpX6(_NJVcrt4Y>xfiBI+$(Y;+q>adS(z=~KsX974ZhvE%AC5uQgub>yNDD`*MKh3VFj4;6Er$~w~jk^R_832TPg_jPmJ z1v|1y$xchv_^)rAW!3l(gBSr-V|8*^s}<|Kfzn{qiunXF6nb(3;V5i0_y;BtOGbs5 zix28pA!fnIMuk|z7eZDDo-;ue;@`fRE0o6eqf*^4f3@gyex*coP#A}zM1<`4I>{*fS5fx=aB0#uz0g8SfpSMF z3Mmv2koz496cpuNmhI*w+3jXG>~7MFq9B4GD+mM-0r7?)il_*pD2gD8qR1UV6!k?> z1VI!*Q2x)EncdklGuu4BGub`)^ZC4tyh(oZ%=4Xj<~eg_=4??Mie8g_7d2))V#RK* zM-j)d6be?MF{#j)RA@}3YdZ3XJL7s=M~XXyMAJyIAlI4;vyXPU#B9IoG0ps)o(w&y zWyw|V9cRTtk&a6^@8>m5V42xhET!_rBAuo=X50+T_N9V+nRfIaJ8qJd(yCOjGD8!Kn48}olfI+2J{Rhzfv2vYUxdr)4*>t#-NufWRIbk}aW-I6Xv1q1MQ|MUj@ zc9Iy6haDTRJa1h$-G1cR8n2qkcnerLamG_?LE1okoIm1YVQ;t-RvWQgKCfAB6Fvs7 znMwF4SUGXRQ`D4c06yCv@R_hPxPavgu-aU2Md>r}ikW;@!^(;Cou=~_1M%1W5#I#+ zgNt~k*g2+cw@2}fc->6O*Tc%mQ`Y&ULHTKa%1^@nz$k0mZOV`1bu%eH0xLJ69AkAr zFEGf5%@`8;Rp;$-Q%AJ`d1ZU=yqI#JI`bD@S(yJXG--5pvg(em2S4}9f;f3N_L9Oz zWEqx=s*a+U6y^$vH7qH#?ZcdF1(CJiePOSww&{16d%^B;g3G;=bfV8;*2;E`gLRR&LXe)_r)LOr{xFIdP`z z6w=Y_fUfk1dO7R{E>v|v9hq!Vy%evMN%fPka`IHOg}%s8z1N@W-LM-ls-eji)gR)O zGO2zaR!*F1S0PxDUPQ1 zu^19Mq&sM^Ba-Vm-sCML z+dR|m?S;e|((cy0$veR1jfSSX-i|f=xF@}g9!d`M70DDy#ku9Pp{_AaA(esAs&|We z>1H}_TMGT*U0vReDQD?3qu$1l3OUBx7`nJ`9E>5AMdKqwZCdQv^Oj{rph?jsf=#YB z1Ug_%EL#`}O3hwB$I#0MeU(&sAlpZp&Kv1sXckLN-nqxnDrNfz>IRM%k(Hr^zFjsG zWa)}R--sZhleZ}%I5}@71YF)5^e-xfS7$nJ6GVivBiUYxP`RJ~QawoAW`LGFacqIaH~29^a9XFH+y}MMWYz?KnO%;}Dw38Vb$M`)`5q zKq~3pUNKjA^QuXaS-yD>nU&3?^D+}1FEOzTavWMIEDL9%@iI(gcfN6Zke0FrhiUYB z3sHa+Le87Ifxacaa5I!&`;HI#V22*hKl8^ zG|D&94HZ}TcL7SO7g2KUKNHAF$#=|^f=qU(RHT6553Ljorn80KFv0Pi4@$-1@Il!( zu_tYh2 zl^Wl!M=cs!JsvW{1v=sB`$SbKkxcE0s$o<7akPpXZi+u%l_#k3L{*-o%9B-jiYk|? z@>Er(RC$^z)2dvi%8V*|RT-$VPnG?u98hIel{r-|S7lz6gQ_g3vZ%@-Ri3WOk}Aup ztf+EWl_RQLp~{u2T&2p@s{DW|Kd8zxRQVxQepr=fs`4yVengdLtMa3&JV%x1s`6v1 zJWrM9tMcQjyg-#zRenO17pn3iRen;H7pw9TRbHyfQB_{1%F9)Gg(^R#$}3g*X;ogO z%Bxj*jVeE*%4=2mSy2YL>mFXKWAR(`Pwq?fzn0{#7yrJ2{=Jl5c`l)^`Yy>GE&hEK zeaJU=IQ>~W4^K>@*8s*|zJHSmo?AQqDO%xwa$^A@Q2D>FmV6V%Zukvy>Sb6?4wAv=S8D1-s>?W{s;$*u*9}O62 z-{X&V3G50kT6xExFxzH(1YRwZ?P0KT;%q0;`i4RFL;hqx06T(9R_@6nqiwD$@k*Io zhhgQ!xpt+)x5@_DulSR_0d@tKtQxc8Ww>&m-bHyGUM-XD=V9f<*>SgxAU>`v9z*IN7d{tU1$8dd)kDTAL(VlSHXe8=7sieG4W~WwLz} zR!*F4XPOo_j8VJDAML`Hp;eUmCaGSawg}CVdca*cZP>B48T9} z2Ye6g2`*rDhirIs#3FkaUMrLAov?D^WGC4#hyUph_GQ=+T(I&zlk?s1i+H6>uFu2D ziF2h}pRHHJTmHv8zut@_T9aR^5gVScvPSGCc&$vb^I+w~$xcz{$Bb~i#2@Yvurs)$ zR^9+mJNRbtJq)jy$@gGbIdQ&|l_XdBs*TJsf!jiB7;8WFPe>`w;91E?JpNg~xU+ zt`FdqGP&LlD^CEfD~AlOYro;0O1%X;0^~|3sV%N=;*~PFz78uV&b2cWs-e6teiO6E^&6>KzoWm+7n?{aL25gWyO^P7Te?SYME@0g_VX8m+hI z-ml}eGfCeBD<@96GrWPsApA#v!q32-;1ZVWQ{vtfYYab)*UBXOB&<9U$QI3QJL|pa zoi0x&iB@J+eS>tDjYW1UUMrJq7p$B(*-3O$k1=HT_6PfJ*b&?zE1z$}>xC??yWy2G zx$XihC(d<>y7S0joAYPe4?Ba)R<0=5Zhf-&_Tm*Y`KDpz#QDyQ+-YS{zQUjKDC`n0 zW%*U{i23$dz8J5b$@)TAIdRsV;e}%c;(PoN-vxVui&*AW;+iyT6yJ&0$|QRSteiO6 zskKYs47xA-(|r;42A8h)6~dl>8r?$E8V4KI4M*dB~m%Vc{1teiO8$?_UY z1MW(HxWlk7xNzkgdv*P$MYn|4%cNU`l@q5si7pp4&|c?{_VchKxM<~5Z+IiB#r0ae zQYP1{VdccRc7`{#8ekvt2m1i*2`*TfDT`ZbEwcCHwKB=x2P-E|cACC}*Wmk>Ki@ZD ze{lKAGbh@1d;GqR*UhB-Dy*D1#9SyQ4`jb5lb_I9f%1l|9ZL>WVua?R77+85?ur>Emo$Jr`Y}gezTgPsy zGx2JfY|ns|6KC5=1Hjx(b&EgRufv|;qE-1+cp<$Nk#E9lWs_GsP(ubjzwCs=vnaHfwv7@Yh4 zIrqX2iN~3Yw>hWr%9)%`g_RTM97b*RT^9rMs6Xb5VSjKj*Q0jrn>5Oi`t<#Uc->6O z7r@GiQ?5sC`<8{f{4w7NJA{il8nvCbEZl)t&g6VMteiOKDe7ZL#!!CIpYijsGq{Z9 zKCIeToUC#D99}V#@3XM-1mG*bQDyMmq+@O0uPn?XiPj|8im&>(mc@4tUNMvJY*;yQ zzEf+T4l@8B<`4K_*c;pdEO+SCEVuKm1Mr%eg!hG&6DK@Pf6~ohJnYZ71p9-_Sms;W zcAIh$ubW9Z4=X25d1~!rdj{jr`!l{4_6C=+9LF`wZNgXMH8Tlc2`eW~xSJj=W1joH*f0^wm%U?sjW==hAN{iPq%OatA>8sZ-@Tz231kUMZ977O-;ST&JiHxf*Pb z^JjZ3>l4wnKC3oS;ubW#@dR@F)Cfl`O z<;2-`hTm>C(C+4sb{E(a+@UMyU-89xi|kH#txU2#uyW#LC)pn$?DYqmh8@8LE1!s* z-yb{`uawF4WLP*!dkBmAc-7cYeUHsmYu`k9a~hm|J+F*ut&Iv<@LXf*4w0C!E0xdehF4? zLORG@y=h0s8KVnwKi{RJW9ew_7qWOj77xneVNocFD<52|BX<@3Rc`xN!$V#%BzCV$ zY$qhr@vInLmfOFR?3lHh%jR?Dv(b&U>lIW~c zTqGo#a#+w5L<|o5Y|#X^05scdzAj~-J;&u6JUQiA?FSyod}!i9C3ctY=IqD z-j7?rj4SVjm6dz+h(20Kw2%0_{Y$0vDy!QY+|MJc%FANJ8O{A1*f(76n+WdicG&bk zg4@BQ|6y1;ar*NQEEX#1Y#}I()dOzz?*ZS0{lo16n~NUMye)PwxEZ&F*$ci3D>vx{ zF%kovTgWLThJ=np3*$Bg;FL9b8F(V=bX1O^8e~j%oj&)4T8ZMXU*(RV-(Nbqpt_&S5wg{;wH5i39&uo{P#nyr z^P|5NwQh^0~vg5J1ZC=U$x_2q-n zAh%KiS(1B%I>Nc5OLC8@@-bCDuF5A=`D;-Ix$Ec;7r#aSCJc!NsPzSg3Y*gY)M8UT$@gwpxe4DG&*=IwUp@xLkkF6$*T+pB z)noo6?S0Ija%k;ke&k8Ny9-Smojt6&qwAT@@uXkhH82`^4sbl|PbSN-d{lK5{jfht zNVNT7{~(ty>J4{2@7I6WlkQCqrplFIXta8WuZ-F*QhkqyP_Qz{3|E5Gifm;dRX20A zy03?3C^K4puctz|F(uU-lrv#jYwA88qPcX&&*}N};Ig_UKJ@bGQn@ZPzB_Xc^KekP zQXH!Hfzj&W9#SLe{BV$>M_HlQxGuAh#%#DQv!g0^Qsp95?ySmPRJp4v-=)gkRJpq< z_Yft#ezO(*Sv%Kny6Xeq$Rds*Lp)b+juLJ0U%lCwbRto^Dv!I@O}F#J#dy`sJmOGT z*~%l@&3L+Slnhk{@Q*E#K~?{%YTiu(}2D1WbatM7D-^wK3v%I#ll^ahS($fe=wyglm8pAa^n0a(G!Bf zdMAI@JuPD`4{L^xHP*O(CtfL&>jGFgajw%F9^4GRr~30f8FmPFEUQl+G(2@$oKL_j zXL5c&tUM7o*Pp8m&KLM|J`Z*X%DHa5J)Y0OD`#^42&|kq=dn)Y-0lziR@f_C*xVC2 z-^49o62BQ%PMrA6$kLQCwx9LK{Rh}3T-@@ldBl8sbpH;op2_+*uyW$8*Nd(l8n9_7qsT3GEm!&h)!C`Bo-|gnsw7cHD;t_3rKF_MYMG z-k(m@j-gb{r#JB zmuf@PU2otTe%#X^QvlFl(_3HKJAQ zPnC;(75bW1ll{Da*q~^hufJu(oG;7(Tj=J_!D5zPEP4yoymP3ht3x*r<%i3o)$vdg zH>Hy6}~7NQRNC%u2khJRjyX$2UPh%Ri2^B4~Y_fK{h~t*3K7Xo#Ci7Ci_vc z!Sk)j#iAMh@5W9eok&Ejs%6!1(5hKfFRNaN*UFsYFMyS;DZbrgyX%qCz6O z&%(-yQx3l&TT3ns%$rR09?SDcVmzM9?6F+`hHTAvdo<6%D`#?^4J#+kxiifB48Vu^ z13nn`1a}gvJH;(Ik-F_Z6=u<``pD<4}8z7P2Gy&rZ4$X7jYTYT@s zD`xV&7gkQ3@6_6Af&utVf55N9-rxdOcY)W|K`g?r;x#h~zXB^y48q|mk3o35Ztv9j z?Ih8f)L9c2>r)ott?`Zsh1fGy4rea*yIE0 z8-?MkjL4ge0l1SoV@P$OYt7a1CL>cbBC_b_c#RRn?I!v)#xfz%_SYEBBQ~{myWT$3 ze%6zwgSq{|Xw`WdruJK7D9{a;qwZ@CAE;mxeOS=qi+;G+N!;HPU#-4Cm=C z80UpD?7vqI-9NSw`D~#~?jWyvXcYUsH3oz7Kz}KG?{skNwiGCyj?i%^Ibxi51+g4k zECi{6B3ObC!@pN-^^}ZgzC6!W^da2jn(_7&9P^tdmRF>{M$%Gz_ zAHeA5?;;5}U$U}#g%FTT8eSh(X;KScAAUlW7pn3iRen;H7pw9TRbHyfQB_{1%F9)G zg(^R#$}3g*X;ogO%Bxj*jVeE*%4=2mSyg^cm7iDT7eooauKY0lSvy}>PL^}9k;?ys ztnhrJb&qI>{|n0%q!Y=V)TN#(cd!!qyYPCMiTs_gvX#iUn{Jl~)dt*uQae21z6`s< znMLPpxboXCa)zkjbhn)5O?NYr7>}oLo330aRfgLyuQtIe zX7Zf}D<{r(ntrY@5HImZd<5(d?f{mrqP6Wd<-_p0nUoKPl@q7jB_7)hz#s4jyb^W= z7qE=b@^RIQ(8GAOOtvLhIdQhr^dq?e_y&K#*TMea0+u6K+is8G&*OD7DPIdKCr)`1 zEtwd2AN9xk5bOvpUU}LwT<5Vy?*n+HOs@CC%87HG-msQs@LhYlcaHTI><}(rxk;$O zc$@Q^c;!saufxiTbDpLb8x710{V{J(60J$4Wt7&o+myG%>t<4ZJFJ{I<<34@3^w?l z;?MU)*c04gEVqJ%R@-Ec!)s-dJr-6@oNRaKBe85~;62|T@42u$xOnBZ?7HbTPhdxSfV zdSJ!sUc6!^-!!b8IN#22dxQb^3V*nxuqU{1<<)}^-E^Dr^LW)v#?QgZ zi8JmDw~ZNiH=F65NpC_Dt;wWigch6Kl=Jj+(mcFYCfPZ#@`NC39&J3rpX_0MqH zbu%g72P-E|dB&1}zHZceY;gK;P@vNr=Zu~;dd6r@d^7hgf6i~h9^rD9cQ+c=TO;~) zynZI@S7GHQtYe&2)W;p=QMecq`nY2%?v`M6-0_9>-rczF$Y6RX(oOeS4}BbP_Oa@o zuJc0uK_Mum^RB~r>PJ1opvcyJ$Favf$w=&hLv~VJ?(e&73`@U`68MfG%6VfmQ z)xIqrq%XLOaC0i`A}7b(QKS>Wp{{-toU90OGF~e)LYx3ATM^>@aV2zwkiEt$LhR~e z1s(D^w7n5x#*x`VkS=YJ&i4n)O6f?f_$)OAI}_sUW7S<HNqZE|pF9kB*bidP%ETNYmNM@o8p|CDX>InIuKG?T$~^AT7G6 zJG{Mje7Z)qKok3T`7B!)8LciEmm!cJPW90(yG63i`K3v?uMMUvgTvH2ju{v8NUfAz znJN@ZgQM;bnZ_|NlpHFq2!V{NnRM?0ozH*&c(%Mkn&qKlnGU*-Pe&}$=Ul1X<1^xh zL{D^HZwzxeovb=?TwGVCdniTp93PLBi}?|9|M-Nv@(5iOFiy=J=?z2FctwIrP$(Bm zz2W@<<1;9vpz_}MprFwZUimOSk!pm#KN}8(aZ(F1?)8q#s8EvhCa}Cb zSdl8P8XOELxMor^#x{P0_Z~{>!pi}Etjc>;`4d(CRF(Is@@K02xhn5h{wLH~$2=1PRK3!N3!IMb>TPJWnpyX~Qmqea6s&b28&2oELbP`@O^FerR zSlN0IZa3ksO!(wr;N9IH@2;>bxOnA@4Pmy;b`f4JlkGxSIdQg=C>1ft2L5E1!H(dP zl?NHa{7Jb^ZzxFNl`^@W0xKuZwKIGYHo#uu5B4J16I`%zLqTY@O}2{H$|QR}teiO6 zskJo@gYFOf>3$FP2A8g!Z)=v@gujE=%p`mpteiOENwmCU!2O#)+`qt%;KEgh%W0|1 ziphV%D`j&1BdnY_*UoSW&;Yy9Z0{_2E=jZ|OO`QNEL>V-*T-vRl3fp0PMqx2+JdY> z_Yi-&2g2Uq4qF+MYnIz%cR##lCgHtd<-`ehi6wFaZ`mL35bO#rUil0pSN5&ZJBU}y zWSfJP6K6Y#)`<QBl!>u^=7T6>E2HXNB@#|pa#EEx_y*mcxr~ENL z0lR{WSw11lEl1X9eiW~k$@U>wIdQg~;Z`aG?c@!-6R=4n(V7HIu3U-@U>4c6@miT= z-}?WL?7F9y46eKSb6tdccyhKtJO9F+yXRFqOF`doDLd-ex6vgcGi}DRs4m3oWK!K8 zR!)4pPEnf-4YbSr(WYQ$aHFyMo~qg%Y4JS;ub9dAL|8d-zFlJ9qCxi}f4WuJ6kNhgEu&;05B1oj0;SDw(a=-z|Z%cOf3teiOA=?y2(48;HTNBmFNAzZ|A z{%tVco_}A)D`#?k5mru|^Oj>A2Q=7kGuJ!A-jXC*lVNWomMq6;kli0P!wq8ghfQGR zCjBACJu3Pt7I`&C3<-T%(-q>RBl5Lj)ev=A)3uZ6j*nT3>oy*lB?EU}XVj_g=sJh%xP_%$w<2;R(s2RHX>mJ> zzJO(^kZ9`UR$aidzsnc(hP&=cssFGiUFsi9uN80W#CRn8c6gRAOlp&^HG((AD`xWD7*ujdR34@q{d{$TY(eO_pWn3QV>L`XjvnaQsKFpj52W6vG=Hk) zw?|U)HKkl3)ZQW?XJ3(#bgA)vvRi2Qgb&BxQsu3xyiJwgR^{!g{EjNWtI9i6`8`p> z57A$uKWpbh^b|Gjj5O^bGQ;yZ>jBXc|EK8BkWM6QR%M!23mDc^em`C@b1J_NR<@?{ zcJrM~ZlW+|;C+i4;)(Z7*cZ-OG-uSh5&I-wE0gTwuyW#LC((nb0e1RE z-s#g+l4wo(q|R&5)3e333$K*PbzN9_0&uk+dfx5NbvM`%+ySe&(t?J?br-x+CfA){ z*!dkBmAd*U+$Vj>o&%~?e_=V3ws0u94rcyXZLJ;)X5 z7!vy3!?|&v&DFbye0$$LbY_Z$k)3)YuN}Sw_fBWma(~+|pI#M|%C4no`I8=HP-G#^ z@&4fpaXXBD|L|EMv4-~#&9>&n*qOJ_7EQMQi7k7RWuuKKaUaY$@*MEfRy8T*$?=~b#@8;oBiTRhh{Ux7WsWh`%< zYP8;-5?;b;sF1N}4`DSaQ?edSh?eTad(fB<%KxmbVd^EwG7iid(=W zzA>!agm{b@Tqgl?T8JT`lYndDc3qVO{Jp(9#%Gi(#i5Q=e<|IY4GNV=GO!Hpvd-w@ z{%}~WMrS@y|6xyPp0+MB4>>Y}RNP*qGlNrv#6-vpW=7g>OdjXJY}9zs3BpHUXF2ia zPA8oRnCfhC9wlPF9ZNopSI>+kAB2^ySh7k;v@cJXBWK!(%M9Y*B$GVTg_~i=aEZ?o z#2t;WxqlTmg30~MuyW$uH_~(Nn%Mu&pZ#xO=WyB27wnrf#OD8N+z=-J$6)0q{9_~l zI){)GNDK*`L!215Au5L$Y;O)RX$gIuwj4=PY=nXpH}!uN_Dy(&MT#MI_X=+rjT}yl!UjI|Np?f}f-uBXa5B zCx=H22_5|A#BGQQex>#XzjcoaD(Oh@G7|NlLG#liGoK2@#+L!;Gq!++lJ$IiIB#=1+vP$ioWWaSOV zS-(ln3wP|^qRMZH65e@xon+9qKs>#{mqsMMn@qvFxe7S?3G|1eHU5$K8q$eIVtE@z zgYkAK{yttgGZcRpR<=TMyE%8)JH0{qC2ET&Ce9r3N2_{pG})TTVI=HdXnq%WQ!iQC8s=FeAzc ztZYS;vXE%s`t-cUH^EK0f0eBAOcuTj`-aPXlZGYgvFU#aw}VOl3$SwH^yeRFyxVTt z1Agt_10I9@!|ef^8w=HA_kxFUTbRAzSFm!EUJxTC&{>6?QesHxtm4?X4N+OegYDh) zw$8CZ^d~7U}xYijQt2Je+KQbXXl7%^B6P8M=&Y_cq*+OCs$wDjEsTWlD zaCw26>`JBR|J^fO$eunNq|*8PsC%Jj?7z(vhYJ;2`**I@jQ!{I)gjuHNLQda*O|ut zd%ACbI4CzB&fbe$A1?Lmt;&5=xvwbUC7*@#XYD*}Jxwz)(z>I`63^-VNYNPo6`yTM zCo+oE+Pk*hPUsHD>t+V?Ltteqn75nqOywy#dJNDXr1p4%UIn|v8CG*PXt}v0V!q9K z1h1aSx(q8P&U!uNEEVbu*kAUC{Uz8ZT-fW2lr3t%P5TRY{Y=`Qg_RShT^reQVlrSq z<`4T}*d<)pk&&(DRpm~7|KzXm>Y1#60V_9Q9V4ICDY;DCVo2zed}iE+sFeH*?M=zW zIh38F=TPQshR#6FPUdkAg$#-$7>+c3HW}%erq2`-Ye>`Ewx%b}q3moPGu<8LpvHuL z$+s))B`3<EHZxXQWaDmoZI#T6<;);$`-*6$*ky=qo4-Ew+@dhvxbfgB0y+LHB z)q~VVEOI$JV)aDVs#SkLXSvdO*UFXp5v^X4&BA11an0axbvzSDb0agBBZv59TugeY z@8?3IX%5l8NoJd|{b4+g{1XPKMw?DAUWOg$>;t)HNGAfTx~+Ql9FwuKNk5~!h}*;r zPtU{3R(N_Yu7nOxvd4Lar=R**LCc}DCbxAn!n|N*kQuH}5L%I~4CwQ6(OvI5Z$3Wp z=snJOq>ku~abQjvD(tKuoEv*<{ElS0=d;WXLSh2Mp&Bg12S)5U4u)mLo?~IBxns`( zq!W!j@?~`smR7tu2DgJ5Z;pbMt$4FIu7r*^vS)e4n|JtFLGk9K_HKUaI#gyKk#y%W zYQuP>J3X%O;&@f5(ws5ZK`x2wTb;vPBqW-~j#hod$@#@1M&d{BD^tPg!*pkRbzhe= zITEG*RJPF9?6XNsh47>k1$XE5(kuzOoubx~C2?C)E(aw_gNKKPils`KS~ZlX{5QU9 zGU?1fkm{qm#1D;WQYN1rN)4tfrR++10?JRR@vDke=N!%|G+Ny!rdV&#mmbd3mV~&jrb}{*L*-P7KKWKk7y1eNK`~9K zEA7#>XZX2WxQi6*Nlz&i0y@>#TQe)}R7_$8`s~gKZ9J1++A}V^a`>^5_>{`@*&n)WF}?!DpmKIK zb-%cAh?1ntKx+94`d}Ol`nV1qq!c1c*ALUIL>}oMtsW86pRLWAG zP)!Bt8#8rQDl z4*O8C7T3h0ee4b{l)NU|P=PKyr))XgzH z`FMJW=KXBBrsQK3ZN;U{xRvZ+P#mVt9d{6i?JEzYhg5h~O+4PiTj5)w=C4@dKK+Jv zRtASC2P2ry?Z2Fn95yum(~9Z^z1fj$_>>Skp2*HLR9q4NQIMV^$p(+q&s+gW$=rw( z;|AMGQDh;aGsSNhspRQlF8=gJ0xDlnmc*U$Lm~Qv9OY$kSDr|rmNdkDK(3T%$tO<% zgT5h3T`q3ukuUoiC!n~~v{Z6WL5IhT8d5Vl3B{dgrIwyVj`XrA)QL$dW|rQ%c;ZC$_$(#6t=_UBrDh85v9uH6Ba(4lS{V z$5Otl$~#o~Jym{Rm3ON02dey`D(_O|k5qZLD(_L{k5zfEDu1HNpQ`dcRsKwsKUd}b zs{Dm2f2qm`RQW4aKB&rvRQa$fA5rC_s(eh9kE`+tRsLF)Ppa}MRsKemPpk5`s{EZQ zpHb!SRrv>1{!x|xr^;tl`6pHWS(VSJ@-M3Vt16#Y<=<5Kf+}BB<=<8Lk}6+TO;!F^mH$)aTdM5XLiU@rRJpb)*HPuVs+^?C zPE~fPaf3qjsk{D8$9PZNOZH=L-K_V-X_CNRuDjn8f029=eNQZJK&hK< z?}9xQubTO4_+(hwdNtf`##3pPL%eh|5MS(%_(IqlT*TAGHl&*6HsK5Knwf;pgOw8} z+#UK!yc9JM-|3I|4%i)B#A+1ROt%@|j#tfOd@HP+IOFN^nM1sPHz+^vPx(36AzaGx zPO=8$ZO+f)l`}d20ai|&^G0d+#sY)+ye+-w=Q$+Nn)zAYjohRmHvieUAx!==Vdcd6 zPp$0(F@PWJ5Bvbw8{9!IXX~2fHsO8onwf<6f|U~|Jlou-V~{TSlPHSCob#2Z>*kMS#U3z)<&hm{j29$w?uxbMvX ze!oBP`(USVfo~uly^IFfyzj*gVDi2jR!*Gv9NL3qZcj9rzwXccRoF3H=JHD>jz-wr zU%`!Fa(@X{PMrG`wUg9f{r0WAv-7PzwTVRz7^~}8mUNMvJrm%A2d}r6U z=Y~(Pw9(f9eXKv|V_>gv2er)A%of-q`Y7B2Ch^6va^l2i*8LT3$To1F>5uyi*d<)t z@*5 z$WQu1ejN4%7jn0lsMV1Si|!+My-d0f!pe!$T`zj@#Gu@@wRbwUE=jZ|9g~;6MeVoa z_F8!TOxpkZ|Bv>ztm8pOC)mZm6YPXTm`r=I1Nt;ue)PO*CmmX$<58nI`;GQH#8787 z%kCRJxLM4;@lIGd@kp>;-HEg>X$@z)jNXyKkCSo3nEm4f zSUK_jF2}u-P8xvk@CST5><%tq zxf7ypx;=t##j9pA{wA!PIOC0*ooqFbKj)A9S=c*Vnz$DQ-|cz@PHIut&J# zTHf5*XuVB(FT8dp={;cO#7S=y`pR*d-+*59hn|O>!-X#QJ2h#D%|DA9!sOovD<{r> zYVGm`1Nhbcz^{b8!38d3dChX0@a1^TOv0DK%83)+xON^*Yyxe#>A@g=pFi z%Y3a_OY9zSH*N{D2mBCLPP_-KU-Mi2G7|&+tN!R;f!)GIKUbvcRugRIFX1LInZE!l zPaNj;TW1XBTffaaS>J*rT9d3tnb(_OGv5?9fysPhSUGX#>(vH{JOXb3KgJ*UQLs*g;(MTSVf!qcL_rSb-bE><1NC zIq`llmCkI7)Xso@qd)ZPVQ+Au%M89|xlQ$M+ zH(=$&iO*5~YP@66fWDJI^q!VMmpj)Tjj*}D6E}j%eF3bTIQLoPvc~Hm4d$o%Gd~%2 z3OB6F6DmdnY~Cl}1~7TQA68DBcW0LFs5Bs7;1Bsc*b`jHQ)F5m-ZiS6r_U&ygV)L= z`w>_tULh-s~c|(!q55>{sZg{ zkZ|p;UW@SW@S2%~e*-HgPIyM+jl>4!+1q;O+%rj{H95C@!fLeMj@Hxg+L@%Mz{-h} zo@Lw`ZNT2wANF3bQ@BG~=3PbuY~Fj|1~7TQ3sz2?_gvTI-Ujr%KlCi@87}mVL>}g9 zg-yN>w}MGN11l#^etz?d*bV+y`t!dW_79i;=7N9ow%EPkQrs41FZd*^oOmyoQM>d$ zygJ|Dey>0GyJ3%TxyzZo(R!Qo5AoWWq`wal)=L~pUcJ6GS7BwCZJ%Xi#S`)%4Avm{Ca=VUxdBEB`w!eYnI!DKZn=MB>Wjz zIdQ@>LO<2MY++D-#Gmqmut&I*RZiYuy-oU;cEfkMc+pY~~-qO<*$rFsz(7^SNPIG(U`GV87KL`!`|FaIwqxDXv!7i1!BJz5EI90lR`byr;_HExwYg z+^2Uhz6-CG$#!R0IdQf#Bi{lx7-#(%_rWgVGM4x4M$EUzaR#rR$@(-{IdRt0l(XoA z%?9Yp{Xt&}`-2Nwy&=^fo3=*uC-J(Ols^G0Cr){a`lPmj_-=p1KZKpZMJ(^cuYC*L z;`@EPVkY13!pe#B-MHBo&kf)&`2&9e_6`@gdM7F`2&L1Fg`s>p6V$)mZuNk_;+8Ob zz@K5|#CyOD`W}0D9@LeVZTe2{#Cv0sXiefR-=8#EZ_n5p;5Lp~IC26t%7Sgs7W`5uH<%;dX2teiOCS>z^l3eYu}SNLceF2Kr(^PU>IYj|*Il`&U;(I52ZU~h0i%e@UX%WcA+!E0s`z6w@OoNzb!i8gcQ z(%H4Fw@jJKo&bJqkL~HVG`BvL(fld5vxCKn& zTfxeS6Q3{r#n^Rxf6d0XsW@Lt>&W-mAzR!+PZY#=>XTbOX{JU+*t z{zqWHaOrO-UVzwbu&I9-w}DChgRpYq)Yp?9YqB@>oBqUahJC^%E>D+4?YC)v6|bL3 z`^&I$;_Zze*?RQ3w`5;VIFqchGy98e~p{LWd9hfoH+YAlKq%hv1b64|v<1SC*L46N@?C*m8!X5C9^Lk?&Z0bAX zHZZC02rDN}U5)n0Mo$BKpFj2t>=-Wg#?c;Wgw6dl+z2N3rLc11+~>&vImUj~Oa0M* z67~%j{U!}lyx9(${wHudnDjpmD<@8Wn;QM*J3Ngb@I(Ke@O{`%+@7#)q$f0Qlie%6 zi`&HP72k%H6Ymu>Wv_7WTYbU51N;?s3AY2t)!T^qHtRp*)iYWDAFP}>>lq{I{BV#G zSCyK#Z*JVuu5-;I%VJ&w`Z`C*3(Rm>x2s`Jw)V4}v|x9nA86 z)zE62?EZMIOtSmH%88SmvVWH{5gNdpMl-MWh_sTG@5QvzN(?}%hu{xt0Vm9 zjL`+TpYPJqv2--|3t2oMiw9-#uqe1!-hZm03Z8Nk+(GVY8di|Rl@G4fAqV3{n}-u& z42j+A5>+9Qj%UU2vfR^M6clDH?&#Pqj1dcRmr!d4Zp&Rt1$laIlOHU|&2RFP+?LIL za5+gZDJ{?LnP&c25e4rruxB)crBM zzt0v;5DP5R8(MB;1M4hAxhPj{QEz7lNsLFn_jmGF1WQ#0lLq7Mq~O0WCvFV+53Fp( zkblb_&}^8EJLmPq+}haB4ca^U)83(FwB^xrs|hyqci<*4(}Znd<;0n9cwn(mNoNZ| zX${<$`g1=Cc8xQD=j>4~U)MRCVY5FTH-pLkeXw#9_Aw@WoioTuBZh>|86J-txI!x^ zXSjV*TXTkW!wEW)D_jltR%chM?(2~&2%{pikt0dCGH#dANy6nqqG^)Qz8s-5Y_Tz2 z`~U`FB?sSwUF2k$`wHnqa8%_|f#9TS)en;2!E0qkiQ8ahD@xoFS3*Y#*=xL_#HBt~ zP?R{My-ybFiB-RjRJzdHk+LGj|EMwJ@pN&xN5qiJl4PGWFVa~ZvEz-n{@1bNH6bwp zVuyqivJq`JqR5szqHwGzvKdK?$0Npc(ushn$_-)$J1d@Sg4fTCC-Y!sE1t}WE1~0w z>`7kn_7v&uR?(%!72E6DZ}^>QTfIE_5n7)G|;O)QgaCyRH=Vh33)6oqrLs`k0U zNU(A!C}js}nSxd=@|3WrOR03eKUh{uyOu2)f4wLA>peBwBVD-`W2#e1L0?b`3YkDH z3NJM}$k@%2eXKewQyd&hXDX?obSX_icW6K^$M7|zL!uWPp?%dk%D z?19zdm!sYsP54Y>&^gOkR zq}J@^RU2~*MKbCFBjGp*CTUGS`@=qSc81)Jq!Zy&mA893K`JXWxqWaem=S4DSlNn5 zy9(Q7{{rkEE`NFIv3XnUd1*Or3$qstz{-jDf-MfLzhYtZ zgwOc*gsWg5aeKnnVz=y?+hg~JPvQ13d&6b0a+BT=BeMw80{O5dru1K8f5XaFjQOXKXkXqjSI*T@pBc<|@Mr!Gl4x93A3ICuGM5>rs}(l+ZE-7@ft8!|fEdYv&M)LN5<^1g7mvgZ zVk*D*XnPkwrYtYfB~Y2=K`D}1TnYDDXP2uEjGb9{yA+>W?&Qrw=R=`ce#+8(4E9^}7dfW;o`7grCiIZU`C5@rv0 z5LRx|17c(gI^mGhNDK+RlJdT|4N(clkJ_7XOs@oma1*!p&8O@Pv%%w(QNxSN2I@efVNKAxWV@6}sjkvQHOwXEi_JDom>;Sn1q!Zy% zRo|o$T~C2iwd;qQcj2`&W6jR6vK4D~6cX*rGd7U#I@Z8DOBQ)%8GW!{xV+^Jigp|9 z87701^v->f8!#Q5{UvQtC>|F^cqmBIrjFjYp|TSm<*0zG|t}iAF`W zgc?$7M`T`eS%-=iT;5b!Hh(Ihn1~J^fw{VzU*TYHFJ+i|82XXBiW+A6-i(TI+y-tVsm2Crr3R8 zbKDeWAD9m-C*B7(Z<91l?*~W2F5>ost&B~otaxxFZVt0A91bft=?gK^3Z0qA zNhXGb&P?u)8`xB4a#wp-KDw6Y=?zPEB$A3;40l{-udBX)>{O&!E(eUgsp8jqmgj}3 zk?G8lZCn_)FX?RK0wFOGvW>~I(ME#tEtrrs#e4(yk`r?7v!oLtQtcL@MZr?_>J^Qz z;q@|O$X8%xD~8-4B-)o#%#ahYlkxA#7VLq*V*Fd!BV5LE?W)mwJ9BsnuboNy30OIC z(zA8u;G{j{UEZ|2Nn$*bMteldtr%ttY~qt~3z)xm+xCr1CToM^c5O;BM=TFjd+jVP84gcs^xeST#RYAhT;$ zOQR!Glp|?a9Jhn%q~TB@F%go6kXoeqM*1)WQ?sU)LD*kT@VQe+C&EVU`!ZW#2b&yj z0W;Y2!^&2$=@k;~OC;vWso33m}yAu$p1jcK~!#*DK)OieXYzX{n6_LLKRZXW4Gs8nZ)g$ixE9bev#*UgMC zTf@p$eAz-sv@ge)E$3$KFN5`oWRGWdaUARwE^GM+Yqr29ek^VQllU>Pa^l42>bbZn z^>h8HpACD4OI>d4b+y7Ke8;xTzQx65x`>PP~Wr0xE)9SfLF|nBfo={tvK=6raWhNbR=4oXOje$Msq1Q zUMJd=^-R2aChKXia^kETt`l|hKER*%zOY-kyv^%Gn=;=EH-X7~4_LVg^B9x7&J*P1 z5JN)e3Eztws8pWtvG(Q(Gb$ze)>*m|&}R?IBhh7tv*14K>~Pim*x7>DZ5s6^h!#X9 zEXV4@hvN1$okM&;NKAwrVrHc6Mket^n4dMrd=7S&vkT-tNjecQRXN8*%(wH2&*0TF z9U4{!7>~T;g)`t)me(_n+fNFuDH}R!*Gz zM*10kP3-^Y&;AYAIb8Ph%`KO;Sx1CyNVUDCjWoI%1!vkND_3OAt#U+5<1UV z8Mh%S&-hP!-)*c{9xN6s1GFaLT9?>+4>WE$J09moP-rWKG@5MYEl<3gnt?r$sm`TS zi`|68L`W?Zv0CGendUT@m};tixv>=XmJ@pJNYaVs7V@J@20SasoP^iU3^K>V%2tqh zpO9!@a#6bxRE*Ll%s)Xkd1e8!~338K3C&ET;+%#KY$DO&j1n#J>lW zVgGP@fVpwgY>V9shHzV$yz;9vyhkw>BiJrvyEW$1We7EZXSjG z%iug|Pw%v1ZIT#| zbkgQ57qFuC+qB<;nN*py--MMDr@euGOVWh+B7fowTSi=7kY=~RroKIH1C#o8uyPaX zG3I`qKFBE|hJ;QZz8bgts`O!Xd((&R+Vxm;=rfW*oDTO`=R{J?wm5^3_NPMgBlDFb zhbYADV>*XeE+i&G4lzwP+?ZWPVRBX$aWU*EC;Z%*q!Xc{&VFdy?HF?*UN?coBVUQ6-@Ha!pcp^$4CZrJ|U-z7!o?47>L^tl~4S(z4^qv!SwR* z9mojn=`4g-R}_MN@m?g7TU#7%`*{M4LgY21GW%7U=5A2`@ss_7-m1Hz{-jDgDv&i z0H-h9=-(Hvhn>Xj3)>jGL7fe<`@O}a-nUvV@fApH#4TJ11noGr9()xFV|2j9ok<8 z>pjRGY*bpT-vxVx%erx;L$|;tzB6tCllYFXa^l1rRywrL4C;OU)HASWxYW&+4&4fy z{AsuqO!7-%5`NLZ6UFqmfmua1YzAe%lM31gs2lrWL zhimPPS>?Lvky*>Jn(_I#{Y&Q(*9wUVkxQiO4L2gqPho1-{PJViQ%>-?Z;?)fO6|t1 zy6tv+`4L_>Grs%)R<`2H_k={-bBU&`|3&tA<`Vyay~1VPm`msu*u?*iTfij#H&{7w z;tjck_L(ulx7x>>`sO4t9#0GQ2sd*H-3puheB25q`Hf)ZCgfuz0y>wF(?tvkol9ID zw+pLW;)(ViAnEKa59PDbEu3k%yE-FGH9h7sMEp}D%IwHw7t#GnZNVG3?P+tad zGX4hH;+Zyl4fY6^apRXknvwnrUOSWY4X|?Jq#M2r;-vjsf7(yMUg6S~Nuqu&(~S5N zxCKn&kHX4Lh{u@cb*dnzg%}b#RX8DTLsY8pyY?N43AC@i9|DcbAl#0E> znP~2?>Aq;Ba(29y@2^m8kxi+$Br!}jCGF#AC-tekj1XxLxjbf3`|KJDKZu7I7y?F;7q3TK1t z{xFIg#Ox0j!^%ziLyRm#Cn|Eni6NmAl?~!HL?tSFw>MGgUOo_hdA%c5N*5!WKYvZ_ zz(Sd`@3s77iL_ssADQqR8OdXD(ddliVIk2pBWd5HG)=eLh&yk>;M7RcS;*_Kqnzw> z&yh|9ih4z&ZMQ?rt9aea5c3MGY=xMY;!5ZcBYTini20R|6~oJN`?WX3%nGvobgf_b z4weqV7YpfpB+%@+-}nTY;+QL_d9OQ!!&XEZ5$V~EaI-r#%<}~pNFNl#m==?)YDKRAUBhI3@4N;Fc2edc;m@-)GrNeH$#pvqmzo`{i zTE_ZA6=m_eZH&^Ua1Nf#qdR@VQRX zi7-)@@6;@}W6K73&CJ*`3s$yb%M2mWzWhR6zEks-!TC_K1{<9g=YwFMa5*<#zEiW` zroBI2Ka=)8uyW$G8!q3edCVYQ@h5&d>=!O^^YWcq8*J(Y+y*A~<*;%S>MLDh;ug5mI(uBpKY*l~pjr@_wH%qm z*W>myok`pzBql;8F*DM3Bj`K^^RuRzhhb+qyFl(oq!R(7K7bT4-;OuG!mDS-n_s}n zR=oL{kZ4~{p+0~VahXAUoddiRiw=?)j|9>t-uMBeNF!|S|ApyrulD;7teiOah7TY` z+-9)f(VzVeEn{zf04dTCoBum-Lzv@!TUfaX{}@Sv&NJi$5<^1g88^o5$STixzP;-d zvzC>L>E2AbT%i+d1L>il97#2baOZW-GcEl-LA?dF21F(_N2ZaF+t+lakrfgXA=8*` zHs1(8m%s$AWaA>(U(QaD`w;0w*r<0TW((}NQ^hS{#+~zFWh?HSDT+jF(>>n%{)?VE)* zl6R(AZZpU)A+xX%Y>__#c8)U$8D9UZ2pJghA{ab3@azje^Y(JXskZ)0slU* z5_S-`56BJbYiNw!4~B7LnEjvxD>vx}F_H+KhscQ~hJ?;T{uOt6Q+dcO?af0v9l6JM z;a=>?J4k+ja#v_xo88;rZZbo`t zymlt(wP5AMNjDs{cGBL>pY|@WSGXhEJZRmF_)fS5OyWJTaueb)=6anj$Y~*lgiaT} z5jRMwbm6geJ35-qOHBjUg53PY9Ua@9HG0PAg4`vWc61Efmb;XSrK7nmoBiN&`gyfG zUC9Sx$$Y2i{ca<0e|2^?M$QobVisk4icF8pP>!6T9JhbzoMA{vG-cDq!vxcG!;QS* zN|>4&M*8s5<*=um;B)7YPJ~MBemB|SLTIXPojY8L*UgMCpM;gI`0@!M(R2vL7=in2 z(PYeup{eeQZOZyyvd42h;%?Y0T-K5M-PS<-hqwhy;@^jr6DQtyzgyjB#t47KpZZI% zXSmd@``zlTu*dofxD`zDe}$EskdKiF=v+ch7cnGsE-@IlAu5;Hw5=QcE?c`}t&Z@Y z>J;%|oW6WE`mw!52crSY+3#9@Vj%n!jxatleL0efh14MI@k@0yom6ZuBql;qF}2og zBjCIrrluOHQ;PS(esY4(?N2%pChEjM&2l@)9F5n^3^GT;%2tp$Tu8Jpp-?9VYThz9 ze}t^@Oea1J`-IE6@x(yQew+3O@%ovxSHa4O({4C1Q1h5U{APdRUxod`C2pP=sI|eS z{$<<-CiO4D%1x-p$O3dCA*YBK5;~FCE^b3qBC*!wwk}Gnn<*Bes}V0!1F+!a>}SvD#gYQ0M2{sxnzI(#{;PRDUB+|Cq6UOd% z-Au~6!pezLUhlwSp^~PXT}nL;(#!ox55PX*l9owf)P9?GfY;BYy$n`vLOaIXuG0fK z6~vIx>A|ycCnS{~tlj4HV0o!ni0tjZ5$>kWKGyQ|Ko}mGjvVR1^>MqEP7l5)Bql_9 z5H{IJ4}JmDvZjxp!9H>V&wYn^Tpd>hjPH|2lgbu%fy3@ay2xgkApklyxCZ_?Y4#CRn7_DD9<12^q0@%ovx zH-nX%(2g;;>-0cQ1u-Oadhofp-BzUs|8DON$aTz{iu&MQ>I^2;Wi4Jj2v+{n#y7#ri8G$5pSx|& zfAr`44D1pv=h=dD#C)6e(|Gkv)=$F9O<2d6({)-PCxI9eIxSclw;?JmxU;=!!R&Ie zk8TDSOqcqzg%0_J`Ey3Y9h14MXeVTDtHaRP>(uDmprI@lTEJ~+)HGYXC_gEeZ%G6cyF@V4tuJ}<90CVXJO^U={MX6VS3K!0oVHX zfU9BuaC?AxBZS!&yBA!E+rsPxm&3|UdO?hAK_?t?N{Jz%6ON7IHbf;H4|KJ47sGVA z^f0rW?jp*h^XcfdhrgwkVA0Fj@fbTH;~%aN*4K=W%xjLEU*bg&aABCye9_h%A__8;($Mc!y z-9n;id}-tHttqP2Mr_Hz%&gdQ8tf(~_T15=6G2j)CKgR&yIJ+vv2%v>s-VPJ02RO1BMgnqMvesG^|;>G4Nt6?CuA6isJk+Ks0ZP@XQ-h80TA86^F05>Yj`f8^`%(k7r`o~yNU{VQ zeHP!tVSjM>Hg1}7Q$7T*n@RaVSUGXZ4V$JMq*wWq9)W$rC2ek+a?>v3^)qP?!OBf& z$C%4?Iv}Tl7!o=icqQ(Hq|$*S+In`oI(w*?EtiY*VziLYJKm1o4tH8-j~n;5qsr{i zYTnz?TjO>xohW=$NKAx8p+>FVd?RUi3Z`aFDo?=va)QtOgmj`wgS;Zd0;nv|3B;qg z1Y8TmS#j zZ+JUudd}zpyZZNlMY!iD(>ioe3cpZ(UbV9n^bMD?qmGepz8y8&V)ufDxGl_Husy8Y zBnHID7IeZPr<52HI^noEZg*A*$FA*tJ34bHT?+5ZcV3oXfqSoW(y0!Py%gc~`a-pV zdsF`Dar>IiJqki%BIF+HMH_F#pDSR3R^~AZd&}7ga%YoHH1m)TIZ^xVm~$~+KQrcB z2rFAL=K>+ozPw|ud?^t1nZf)XvdMD^<1W}UT;}p>GFK~X@^|7^Fv;HmD<@8VWBqzy zjr3pkr~e}C9WMP%jXmGdme@VudE63a4|on%Zqfr{BnvvKENEGOw69 z7N(|}sW)OB1AEE|KDRIFM5q`S-4Zlaw_ejY3a^_PUlzm4R(v^BNVG4vFfO{aSf5Gu zc;*#nz+U09c3pJqBEA~8fJuA>teiM;$3?dm^_%>u-w1n#OTF1ew=VM6<5n=qe-T!0 zLOwn*#~xpl@sp+o9m?whx3enkoE5eeXxtT{a`C&eZ$clyDwyL zbC`YMG+4PwUx<-a=)^=$GBG4{V)DnhQ=Ljo9&2x6GCfnw4-e8Nj&dcPSsqD9Zh*V5 zv+uR`$eFNS86TPE99hV9ar>CgLOw4fCPEf6LxPh{Hv-SkVRF_4^i$YZPWZWRlTL(7 z?aWytI90pOJARDU&WtlZf|ac}^8+E#zPw`tnRl##_iJR4XTtF>*e_h(@>+Jg4fgEv z58MVO^}oZ)iBq4aGmSNnf7=po@>`L_csyv>BVBIWaks;!zd3FPlm2{Ixe5IkiGj{7 zlkwN^s+o+x0xKuZxZzqooAdAeIsX=R374~Zt)7$h zQ+V}E)=$97O<2d6({)-PCxI9eIxRRkZbMXBuwQ$Z9HtHq=PTI`y7eyl0%VJ$(U|1y zXw`uhzW@>D3+p43k|Rghlv;$P)~bi;9ART2F%fcv?s~h8OyNM7n`))b6!wE1|B}FG6(*33M(123hT_`q z?Wz(eu-{7@{s-(_Jzh*m!s8UOKU1*(v?(SsW_M_2d58<5ZKZ@ zuD3jt&(imoTFIzaZp&$D9rOu_G<`gqv2NBFys$_|aXX*t&8GXq?^}#AUf_9DMN@bs zpjg^UE`9mzP`=dqI);hM*q;aSa8@x-HT1S{Tn+^3k!+df($+d_pbdj@Kn=#FEp%6Q z$JXK)OjBZ$$*v|GV}IE`e!m(ljs)qIS(+&9r?t?PrDA0d8o2ou zRw2FzQW+=(15 z=#pH&DhE`VRb@_<%T<|I<)A7Hsw}E%*{b}gD$h~nxvKn_D$i5p`KtW5DlbrFRh6F*Wl)_w zm|oc%3{?h37r#aSRM+j#7nhALsdi=3Lt-gyNp)%|y+ZqZIJabrj*ca{qs70)hxCpo zt?)A#i|gw~YQab?AI)#}gDso=U>_1!OHfg%%flt8Y3cd`kFg|uFIm#~{$T8-DYaVG zMUR3(iJoobrvdL4ElMLxT+W-&jv}4ty0pAlS2v*crt4_>O(;TfhYW zH&|J{lz6`Go^}(jUj(v~c@fA~@9}26IZ0rP>Ri@pcm3b1Z+*pYkf$AMq&DYYJ;DkKlDPDVJg8 z#3|1q`gIdS4^`flQ5{PrT)ZEf<42H-0~VWS1atf`gq(5Ci(Zl z%88SoEVnxttUvD0`eU#!xU6LaSKBm{1NFH6C|)mW!O9bZ?y$Lr{V9LCm%+Zk z>C#qIi|!?Oy-d0n!ODr#?F_fk86)?{{%n5)dxFb$ia6pXHvd^O#BIdQVx z^-atM-hcSx{X6UqE?#-{LEUtF^!^R6n#uStuyW#zC(9k=2H?%#=bb*!CyCai&vNEf zJKwDlyb)e6lkQwtc_PqttZy9YPxo-x7u?}nqw8MZI0UbkN%uflIdQt{W_L8k?J9q= zBd{O1WV^(?OD8?7FCnvvCIC9sB{mgCts$HOqJYjn>>BQv-dK%k*AYu=l)n!*gUS9quyW$;>!0kFr_K!MAM=O) zQP?M3=+RGht5b6p?X&RunY2FyD<@97KGGw{bPed=@`wHn*fm_}(UBf$h8^X5ZEdB$ zD<{spGrUc~z&zlOIeNAg9u0ZiUiSUGXtbUh|rRbo*7kw4`hz^>p@mNT=wVZ|ED-@~hAvi%OMoH*NQ z`i>X_@ZbFb{|)vB7qC2&u5GtR@L%w{nUwzoD<@8QvU9Cu{_)<)^+qJon&eu(Yi_ni zG8eCxNq2o%IdQrh*moltWBG7@(ucr);f`hbHBP$?_Lx2pw}DB0KUg_&>XYRSRR-x1 zf6`^x7hKYEOsku<;>ZKi$v5zCh`^cL!aA*UO~)X;`@l zUHxqV_8nW@%ZBs$ppptNlZxC$k89=h#YDTtz1!#)!WFroy1T0Uq`!Yli5+Yh}ie|Hfsm2kn0(^Y+~s zC_jwm;JdRw-yLyJJ1+~g`N}6ZZM#i*2fS`3<#)i!)=VKO$B6D>XqJ~D%HR+~Lie>N z<91gyLHuXkj*g~ZOKBRM7Ub|-FU94SUGJ}C=`zYykvXCS_fq#9aoCu1#8}_3q1$AI zb&){im>7z2yN{k2@&N&|O>Sv;cOm~9HMw5;{iU2chLsD(oJZB~^%TWLs_A^H zpOT*-9}LoEs-x-Lg`&PCxyz}U=hA=QPX8_LV9kAp{@0S+cg4T&5WnTPboG4cowkM0 zxvpjyljRr4CM=b)CdN9pY+*9agWwtzd@LPs7SqSe4{s#6%rd z<Dp~Gr6ZbMX9{d#-957wO?>F-Dl6^nVguJN4F@bgx3hWP`v1M9Qy(0bySp%qKN z$=;f|k$&umwZDstLdV+Q2#Gbs+P1}+X}aM?beVJ_O3I2ZYm>xyq~b4=yCPJo>f%=o zP1UU*mEM9WajzVE6IQlj%IlJU+bGYLNo`Zsi~LzHY#D2LS)|zldluOqw}3f|YzHeR zPJFKZ%x_cbDSzsxz@Bl2^PD}xW&Yr5g-!lM+zKZ7<6z|`NR~kH0C4Og6i>OdPsO+%qKGOTRqFtmCQgY{NJPFtlVEJ4i72ilg8ENY=J(1LSKbd z;$tV9h(q!_3E6aBd{=CowHGyNkNpuR$nIi>o~r4SN<-m?Zd&6SiBq~JP|xfOmgIg! z10nqE%-yQIN0mQT<-Mx>i7J08$^d=Hzm@*1tzTBrW5Y5=o55BUUrY+IE}r+IZbe z%5VMuM|oys&M-jl>JNGm?ri644;!?+S1@9}&3YkTJ(KnJuyW!fdPd_EZlGS~k2(c= z#F^>lY}E2JZ=>}#=~M99nWRsIl_vn{hJ?x>eUU%uD(n%Ebc6La>GSd0nWWE!l@ljD zCvT^>2Jr9s1OE=}7$@+{*6CQQBmBoP#^;G6L5|kg9pE3OP;ao_CjCdeb|&d(VC5#HV=Qm!6*9R}5<^0-kX;rx=Ts|X+fQoi z#)WlgcTHq{Y{ALs!-TVgRo^@2N(%O7EwnT8{ODLKdmGt~J;kU_q}R%}5)x}zD{I@! zmPyoNBYqqKvr+BSkMoDYE^^|{?M6Bg994OTPl!oXs$ZfVj91DG8wbG3R@m5ANHpCN z6k|uwn!khFUEdjI&|OJ}crMlq!|veHl{c)_O}81B@T!@Ni?DLyjA!Z>PWC9i&Y$z= zVV7_@%cuB=`8Mlo@#>kZuZESIu#Pc@>oh=40x=|X8nAiXhNv`PVS6{Y&q?=&Uk)D$ zI#Tp$ap#ts|DzUR;mO(Os>{YXF{oJ{8qVE&^ZU4TbfWNEAu$mWg*v+i4;WKR*C{AF zHLP^vur5hpxs?-t?iKP|G;xqmnl6mW2%Si*g&V;PJpYT^BlM7eL-vTaC5W4-y)0_v zHmARfKmDC>$2*seZTg#ub%v%*u_vD%+!SUXcqgoEO+M}J1Dora+A)BPD3JE=2dBa= z;zoh3L_b(#bL_rwGHwpDFPs1?H|Yy8vIw1s$Vn!KgpNv2#SLsK5gBT4B0~31tMr3D z-QBq3_p@;4b@sgK*c&CVb%|QmLFPuLHOKPAHF5it&N@CVBql=EF-LK4V5H=pD|`GRBH*p|`jql0uvUcUxzq zsh%>+uBe1d+U&=zFeYwOO`H&xRnL+%kWRhn(@nzUCT;g(_%Fzg$`r3-4G zgiUvV4Dn170@xi~x{doJoQ#*@RWliJ30U2NgT;&uBy}f@dA7Lzn?1vYQhFrFr)b$I zSlMvV(`(em7#BS~FJ05N%>Xka_8a-oq!ijcRkYCg(Ap${rHsxVp8F&DCDJq1LQ2GZ zJ2QGqxDz^s%8aCM!pc@8m8@fgK^;luNQxn$Bk9lMHbh0z^V=LrgTZA%Z?73i4}!a@ zv!7K@7&DS$uX(k#k>2ZwtNX(vMRh10SN9PTYly3D3oG6Ab{iq3ALe9*lwR0T|Bt!z z4v?g%{`dlSySJC`;5ayP(i7w)iSPqKk_6$%nPZvTo!gzh*_mZ__5y+mk{RMHNiu?h zqDam;3nCdokSu~CCIkWHS5s9p)fIZ@eXDo6*FWr^KbCL3dY|g|URBprIZ+3DGaU^| zMHJz6)9rAQ!J8(AlS5%;E1Vq6C6b$HO%Y3)b$1!02bnooZDWx>6Lt!fw7BfX=zz`p zG~56p?^9sq)Ok-+>#xh?zh6q5!^j;zA76;qVSMV zWy2P}9g$_jCduv(8&#_Q!YI5ktmQB?J~;>4u%E=v4b}3JqgeQ_ulH54@F|xV3B^Kd zwaZ5KSPQ0OWslXF#BfYKCNUk2hdha$gOaVPwb)hgR*9iw2CQs_j_F(?xe{T#{OW1* z-Gf;YvpU!f_J{KY4s5>Rli1yqcfs2xQr;0(PMz{(l~WyW@=@_g9|8M>N?P1TtlMvw z0}Ju?iL}eGas+LUT&~IikqSH{R5|dmZ$gsgz}J&42UcLGv$wD{yK=VFSIlS1Y~$Db zY^jjVYbC;+@X&RRyGnML7Zs{U%ZF^QnXV-%N6~Pb?_g6!!_8bGvS>&yvs3{(d|*@& zufYK2>!lVjUxA(G90S4QOh*G$S&8orareWHK`-HU5M$5_u(B0{p7oVbF-VN8STX2^ zI99NO7w=4VC394+t5ctnteQcKBIj5e_9+QBR2#gG=&}+s9xJ!yFjCQF1uhX8U6Q;U zs@i2Em}~>nv4Y7~u#cR8gY}t?#zRg?I4Iewnv!gRw@M5ho59Lf==eI9NG@^6DT#w` zfmsrBN-`hz2bFJlO5gSSnjoQ0KBryQD+I7nX*pY(aKPpG8LDT$l**?9Xz+GoMa z5wtyWxhe-lD)5j{Q<7=E9g$O#Q<5zQmNBb=mzn)oJaP`P;om9BsunHzIEsN6eSNQr zf#S z&el#*7wbLo=83Fl!^#n?J#x4z14I(=kWgj7)4qX8mH{)8Edxg9*vFEBwhVa=JWQQq ztg_EAFGC7TwcO(<1(x^@BvlHW!6imQDbU9IY%C1i2J^Af#m%sjoQQ)fnT`geGM2A0 z3RJRLRSw*MH%km3zk-#m@bL>Skz6@2L42%q5&k1H1uMlZ!f(M2p%R|V35Sfg%f8p~ z#)+I?g_Tq1JVkx(bFp5wGdAnVOky~SKl^PK`__yO*t{p;1`v6Vg_R?Cd*pOg7Knu4 zA)(5GQ+)@nEDPF`{T*rRuEqZTtbQfkUhqhDhLp;V4eNqNzaGg8IH<8|({bb_{I7<9NX> z!>n|mnp543w@ajZ1FW1n-F6ue4ZQEg$NNXv8C1OEIo?_%xA?w=H%#RFI;@;J->G>c zcN?IW?~45%FUur`V=`sG$Ksqvvj=v(o{U>SBt8LFPM^40OBuwsi%cKB4j!dnt7LZQ23eK9P1eteiUSspd?>;C)ei z-amr9Lgg*qZ?gwB@pEwth{OkB00kEv61L zkz+8~$T7P5Q(1kV&!wyf*rKO%Xbt;5A7QCBSRJwBB47Wj*zqGS5g9uY{QXZG@3Rp- z9)S5+(c@m&NlwJUwM<6?BKP?SR95)73vZSfK5mDVt?+RRmq@PQl>2;Kg#X4&!QMcN z@CUF%sD#7&d?Gl%k2g-_{4T7VI_JN&nJTSbld>dww%$HEe?T)sdJ1~c4)Za zq0uIv-l}O@(s5J)2l|d1RR!$lE1{t8?JFUnkM~-<@`gT}EnI2PPaHAO3sut^K|jvd z-3t0Kz7h)h_kATK^yR(Y^qIcY+q+7|zT!aHxUcfYVM0IL2bn5s8;yqRd^xDm@JlW+ z5+(xU>isq*124jytWxng*ip{V9z4KwG$`^Q)4J*QO61dc)5OBzNm$t`93JNq$xR64 zL8f(g8Kg&b$1W6?ViLnqDB7gM2btD8VDtVTOr=8P{TZyBI`7ayrgfJY%r}hBd{)z# zn+KWJJ7IHQ4>y9yeI~3N!QG>}R}%!0C_E%o+3<7U0W8agN0VJQoL0N9y`>|wpu2@_ zoG#`!(yzSkg9ooOuMGQ_&YI;_!)tbHdCM`M==B|Ds+b74#7HP6>g+-uFapmKn4MKt zoB_Mci9h&0)6wu$MBs5@lt!oz7N_Dy5ChN2u(B0+PT&&B6&NdtALlt7XVAZw85VQ> z@h;dsRQjuierM?Dik*CJ$4w!Qfm>kZ)W^VT>PLGH=NaSRgZSg%eb`0Raj+&I2Sawp z9t-c{<`Boi+pu!PSn#MKR3RdgjE96OM7n)DA`6inycVsz*Dt29{Z<+63{`Cj>#IFz zD07a#3gO3QnZ?;sf8$@r@jshYwHn%M^%d3;Z0;tNd=PRK?jTlX_Ld{xntYCX3 zR!nxOv~BNVschc(bQW>vSdcB1JNmMv-hpzaoGTUv33qRyt>m+ds{hJh=*P0xGY?jOEPDfg z!ast&QUFNoBCX|YM;S5uK4ua29#}E^Zr-W*KZd=C>1Z!OWje1F?LOF1`wrX&V${AB zR<@#c($w4Kz%@|+mGvYh>OaHIa7N9*MlF9fDc?BhLbV|9C%j=I-*;f;2)-UERb^!n znLQ-b1mHN|j>rkXw(gZFbQOEGs(<|)IzpYpYZ#6sDGB4WaOB9z>oS95R`*}# z5{c*J#vgcv3mT?m@n^Hxfh2|EKt7)vBwfhTGt-Tq)Ptlh3mK35`#-!wl}u z^!74~8=s(p$;uy|hRcyX+2E;`BYVl`-txJReD2GiaGA0_``3~@t7BY!^cX2?9y26n z%If5OiC>*;$#k@EAU~7WO}C4Z!|_OISBz;ynZQgfnFX zHr{q#d{(Wt$)1Y0N+f$SteiU8arIDY;Jr6K-n(FTQ1Oa`kn5(~jBm%ACNjPSR!*I9 z8_#J5-w)#ReIIrOm9IFtRHS0*J~f?q7jKrx_H9@>b++xYurTP(2x154=}ZDEkEwLU zbg@7tl4cu1(};@Z9gRZbVzOLn?AuD)GmLw&o-f$%VO zjxov^jo6nWxl4tatCfw8S>%4cV@j>;?#(5Jm_;VGzJ!iu%BcL1!lajBF`aHB4 z_LLKL(8F{zD)QVtWxHJuEWq0)#*}_o*@`KBTq40wfpSkueUKZhuV(hdtn7aRdxgqc zdhQ1!zez8#VE!_CR=H&OM2@r#*h^U+A<9B@smADFpXrgGE|Q&|_VGFy%* zRX>#(Psu!FUkjz-0(9~d;*wwiNpgttwMDPMz?t(fvv zE|FUOV6o0Jdt%lPb78MgS-a{77x50<0wVE4VCB?_JL(6E`dRU*pALJ5NxaV=UVqrTy3eS;oa@Z!Cw4u}`hi6%=YXs1 z+HjLpqhHwfhb+{RlcQvK(%1W{WO$rQ3{f&PXERx*p`Sv2X!!Ly^tZF-<_ev~fdcy= z+`KkAi=|R$F*|Rta!Awq(OG2IcQoGk9O^pcrp^KOb$d~>Tgb5;eRG@Uq8|1p7rRTD z-ez_qC-(s~4@GabE0n_F2$el z4w64HnIw0RjI9N4V;yn^Gat*&vRqPg#_3D~n_W8-eDFGRiI$ct6T}XKTH28#QhhXK@>5i+<%hmvA3^oy3P0_ zylEoif56JAGae%*ss`Yhy|F9jb(lnRDrXU&Fx?Er%tzBF3=cwkBN`>`>->pc*Wk$+RBo}_ei{9BHzWZ za_W4?)mO(1!q>(pd=2alDq)d->!#cJ_iDUpBIBRH%BeFRQ+1S8LBA3o@Jp~SsDMR; z7IxcoU%=ZX(tQ?IPMvNwLRS}tjrX^`5WBo;WfILPuj&z+uV`BldKtW7BHtERId#5c zYpe1G;7#KL-Wc`<_5Bqq&o#^KH+TcQWg_AAVdV(I9-9x;{sr;v+CxI^UwD*%;Xr;@ zDmxRqKI8&%({&cYidMvc>9Wh-h_d?i%W z5Mw4*)X2xNf_+fUCmS_tw+t9Z1i#37fqhkVjxNHP4p{7vM_Ds#wK406AkX=7P!Z&5 zE)f|)61;A#cFVvhk}VtRC)I~;88Cjfy#yY- z&XGshmxz@R*6G@W-*2DcJIquuaVnP>3B^R6UHz5;>xbMo!|beNa|7%$C;s4arlXe? z5w{F5jM4}-U-=bo1TpaZ0#>#H&(F9-as@`zEdv()x0qpA@o&+89d-|u{*bo}xW>S% zxGBUj@G`8N`WP7MmH}%VOzw+44kj>(;V3!nDA4eh0oPaJ7jcsc-%UJPi5a>Uig%zYT3-OaeP9e`3 z*q1sSeMK$o|AYNQ#lAepZgs(i{~2xq5&kEz^61;_lkv8RG35kU*@`L0atY63!Xuwd6$x1R%V2#Mvj?m4E!MZg zUZJuMpF^d3U=zOuw}43eMp!v@;-Pb>l+O(6@5iV9F6a+qe}(@^8S( z5#&9Rzp5WZy6})t^+T6$M`Zo5L9+G3_`UlwrT*;dnNlgUSSujDQbI$ObHr74Yq%iM z@E|H~VuvtMOHYoX;Y-YHtkRYPNfixiafu;{hUT0^#jdaF?El)lfkJ2X0>VtbdWzE5 zvWwWIgt^{qq0Igt{UJv*K4U5L$Fp+%9ZanwEHGF(ytxe)*a2q?vPPTD?4+~7lbhH{ zM}r;ZBD>GGE7zIr?^uw@53mQj`m3YAC)1~$v$Go;W7TtZX3OX9^0^0p!sp|Bi~Va! zo{uxlF`$g3cNjA%W~noW_X^n)?+ih~W=uzm8x`?Y-_Z#>=N*I_LCksk!^&39OPc!% z%w>*IZ=gSwbu1?OlVRUb(XS-dN1gq!>7RhxL8N~yteiUiX^qj}9v}TJuw$s`#ar*_ zgw6d%+z2A~>tN;7xo_xj*-(kj2nX-R9}{oGPNR;AO?Wr}J7|xWH*f=qZwYw@WxY`R5x3%qe6<;`H_2+AJI6>7yp%ym5^)QZRIz5zR+>G=S&M9~seiCiZgSVU zvxRIalV>Yj?AcL0&10aGVJkJc*&gOm)?TsH#s0guSX~Vrtn@Xx(Oe-{&SmnsBeEUk zfzJ8WcRJVPCg=BL*tqE^Ws1#@AM;B^b}&LuvwOr^$qMH+du;Y*=Cj4-1zjD5Vxgmu z?dDUE<}>T9B3snK*6EucjeCn-S$3v98~n}Y);o|d=R{MzO&%hmDb=-Rx5qws+RK8A7uwta6Ec z8)N&X+2@o6toCVk)+v`e4=^VRfpV!LgujKPO`Mh2}Z;;O$Ev4;5;Gb83Fjn{ck;(yILo#|-v!HPIv ztv1uK)-Ybh8z!z{ybLQ_YZyuMoutjv49b(su_;er62q}FX;YrcSE@Dh?RDs}c=JTo zZLo6ctXr#-WCQUx<0Jk**b~lGqQFMn&Jpvez4aD<182qa^RR-4w<8!?ab_B+?x^QT5y&G?o$n_3bId!g6&1Fvm^55e_{wwSiDrB+q-Ryx) z{Li=rMB;yfl~X6)&iqwfb~Zq-IuN^tUWrLGr-l|YC26?LcLls*BHwASa_W4iJ6HP+ z+TV#!dned6)Yn@4HqzM*oBa;B8ASHm!pf<$pXT`FVvt`HpZoyq7%F+O)6dZfn|ld2 zg2=rHE2qwVS?jBpLH)}3)GvqKLZvSDZdqNhnO}mNKxBR)teiUY@#?dq0sEQwuzw5t zg9>{RUn^0z+mxTc+a^+e3|3B^a%=U2ufg|=_Gs?ECA?`OrTUo>i#+k}6Cw@f7bGgvuw!sF_jstm-h$4C4s><%ho zk*DjX+l*hvnx9||j{PJC=_C#^wxFh1!sVQ)}Li<+!vxlQ;qyk#QcQ()!P2~P~~U^Xb<7oYOo zut%trr|@hYw%#Uv2i`i7^sTUR>ZB)WyT=XGe~pj&&#+6VsKvfd&3v2npYZ01tlxo^ zQ)fNRv31`dzS5%DrT7X=qB*6w_TmpWZT@GoYUWGpmGRmyQXD4~ z9P2ya)CmPgbBV|k3X(hJw+_+tf)ROs21ArDnYwuUr?A_c;~+SP>1c>5tMCdklBX4m zuD~rJ#-ht$Wh)k4>?@&Skr-XEV$t{FSiyee_CT_+XaYOxx20pC&{r(xjnm`bV?Dus z?&chJm4h4qToMXD)x(MF25aNl5pw?Mi$jH+x41-P$Vu=znu+1A8*yg*Vw9E@XWE&> za1^tjFo$VeDq^M@w%)E{Tk+P3v1J)p*@`VKTq3#bvYa|YzBbei-kURvu(#9Vy(#P$ z=L;U#yr=WLV)wzOzAXav|wCW(e z<`J<;uf`;XV*+5m$zrR4Zof@?WxRbN?G<6=2-+UGT$KYN6?jOfa^OPWVJpjliDTHk za8q`PxC3+fh<`9MSUKXK1Zzb71Ad=o>#lriuN4Ftc%VAtNoB`|1wq3DR)uj|(s2|4 zhx!g4RRkQ&B_bU^GdN;y9f`cCR9;(pRrMmjIqV>);6nC)Rqr$X;pY4z)8oYB1o1dY zJWdghE^%;FWo|S=v?4G)sG9roGoN`=qOS9O~lyax)JFtM<~ihevhG?JP5W_ z4#%escEW8T%ML3Z_PI8HCx=~?Gu>yHU&?A}%?`5McerJF8W^k`)D+z&rI%WAtVXEe zP60LTW~7&zb~Q#d_w&7P71FiVKI| z=u%VO_Npp-+lM>blnP9A&M-T;KhMsSFLXD}!~JEJBSWXo9>*pv)l+AWm(LUA^F;YP zNj^`O&r{^HBA=(q=V|hJx_q7?pJ&SFS@O9=J_qIVZ23G#KF^iU^W^h<`TUW5ULc2u%6Jn(d>@5bi-KiDzORhxj! zoz(@>wQAA-Gu#Lw_fKHu5yZV#?pWMs#pk{rlNgRQ;fCB*Cv5IBaU+P_*MXH&=RTEH zh}yD}5#$e!5B&hxE7X@={07bJflYj0+yWx;yard=0ETawu2YZ4)WK1S_Xbc{E$_G(z>HBV*U#DW$|HucRa`v~pYgr0JG>aXYOA~O zriqMihn3T3T;C;N#OlArXZ!)|4vcZ#bURkRk2g(Z{4T7VI^)sovz$S9m7`+U&oh`r zGwbK-7fR_mH7}ZuH%jEX9ITu=*H-4DjSR56#0R@0>Dvj>^87+ z>SU?EhhG?0baVr%t~$XD@j@9iR1+uqUXj<&Vp%I}@ezRL*`JZ)QCN8dkhP1k z|HUW!8SDv=tg{;X1aFl{_9Iw1b+T=Iud5ND*ZW@VI(sIQXil9ymLDu2w&+@K?K*g~ zM7C?f%Biy*BYt;cz&#*7+&uB?Gowk4lAclcS7h_MF!&I;v+r= zb_f;mWbyuneiCK9#oxypCvrX#R!*HWyZ1x+3`--Zqi)GO%*$l!rQ_ZS(k?H-$YyeVZv~v~7&HP9(hnteiUOX^!7&8MWBF_`o}1 z$54Tb6Q&)Vu(S1HxDiC|b71Avxwlq-K4*Yl5+C##uqUXX#Yz|d(VujlTIo6!Z) zWLPi;&<^@iDch~l~X6%#(&dmpq=r9*d_LKCefS{TdZn|pCVgqm&2PSvYi4e zr_OdX`(d>~cE|W+w}%};eQCx1+v=~uEw0<(jS{(T1uLh{b+Z23b^~!aKH|e+pHLBt zqwRG2ZQ2FAeIo7ouyX3OTdOAx7>qBA&-h~46I8|`_ww@*toQf=yj3FE^I+u&vK}W6 zszVFK(RCgY>d?Xie1BXm4=w!Ts6-DfY*#z#j~hIC@TkGyg6biBufrqMIlPAb&@5%G zcAkRcAj4OE2b4O<@MSJB#6gBpM@V{{Ai34*^)nIWVTkf*M1Hhnga^ceSh2tBKLh@Q5(@beUkQo)$kB;bisRV!jF#H*!Qoo*(P3iW%tIH)W(u7>#Zn>D zn;movh=+Vpr~z?5mlz4fVtpTtwZr1iFew==)%|>bf<5JY(SsM6j`o^X^l$I39TxB4 zZ4=YTo3OH#Mqc9*$z6jnRoyrxj`TKahZT;AJu{fbB!**VV6zq{Bbhz03x}z=1w`VL zVCB?_FRyB?+DoKMe6#9#$a<;3bqd(i-n=O=EI(oAi{Tkq7jq&^17X1E)H^k#D z@pwl(-sKPH;H&gBtRp+w!E)7Gh#Ou6T>HaWHT!Gk3+uHcRx2$k?WOFzY$;pl%*q9| zqm5D5xMO0}Ri<43I;j$JB| z$;)p41a_ozgak{Nj>fJsgNG+KWf=m_X8)2{ApJ3J#*p#p!n*RMu(EVidp=h^OuL-z zm9DyoD*`{{YuPt<|1dT2Gv*_m3pQp4dH+!*3; z_${m~$Lf=HPbEDL)=(+l={{pDjQ(Nlv9L6g2v@3&hZA)ytZmdR&JNk*;R~4B&@0<2 zJbVr-M~nwmdo=czj4dN7SUId=-IC2`tF_a@Tz|G<=@Rbn+4R)6E#SgY*IvSXYC@3`Z?Sf(#ym?}B*%4N@lFRm7BDvymMO9E}ZZoJK z#mtIXMjin>he~~AqpZ+6V)I{!8$#q?hLt1udsGIhxDbKFLqg@4wS7AxbIiS7#fA4* zmC@x=EU4+LUhrWdt z;dUm0RaR8O;%K6f@ph_c#TzGbUItc9o%0k`D!5p09-sB5uv4h4#olbA12*rCaRZ3F zH-MERczfh^RT_wd;31((gByGUlq?NCPPQ}{bwswD(JF&Q@Hll2GQwrQp)U^&i-XYL z&f+F(*~n2I4EPQxRUVYM#7HO)TB}_)s)Gw)PFC(X5B8B0b#MaH(RftE?*lm~*{UiI z&c<6M29dL1Wh;oB&Lxs74#tc8>frk*vjnTqExr%I{-E*|`*4-*cB;4^Z<|Q@9#}bb z%9B-Qb&&ojKIwnJKB1BpzvkBMw`qTfw@;+~7g#xhwntW1g@H%~9ulfBDEf9p76vyC z&klyOw`f_arTU+qn*;gl(KU7%>Sv{`g-oG;pjWFAHaQ-RP0ry~>1f(c25GdGl^j*V zhO8sl>`9I;RVB>g5+k8X7$Z7u)Cv2;tgJk;59}o;?qEBnqYtuW^vn6J&a5U@@Dr0euV%T~+e|!&bok;q-uyX38r>bo0 zqQPVilN18DZzIO zLpx*MU(OWD{aUH;H`WO(G&x6FWtWDfLZcu3cGm6Fa*(4c_`uiksw#NjS3==`*H=Q~ z-*b2hMrxfnp}OeV(vd54v5hSH7+Cp);TZ#s%SFGBO?9Ii4U838M`D(X%X5j5P%cia z0;_f1C>pnhiOCqMb}?)T`^x#^2kS8%jY~xo6k+S_^s+hLIx)R$3M*UbWn(UpT%ZQzf*9Nwb13LHLmjIplXdPxx`3FDXrBm8)4;1 zn3EM&9*2G8L>=7DbTl6FI|T}}~_haYt1_^}c51`3_k zvm3Ocp&K5;&hb|%HC&CT8PeZyYeW4nXH~l*ds6R6N4+0f=5kaLUA`kwRT3F45m`wj zmu^-Y(iKL9aWV|m%0MT;zH^R?U;)$7I91lk+)!FD~P<#C6Y@h za{l7ryW&acduZ`po=FTxRcrGN&tKe>m&MyAQl1Per%pLEe{qohc6`#?!9JnB$>#jU zP5WDT`$XE`gq0&`dt`N07>HEhA))3k_xc7WIe&R3*@ew^RvKnXxg)YAtvWak9;?oQ zR+-yyq7vF!-EgWB`rGPcMcS>UBu9yGjPKA=CBpZ)#7HO+#?||6)CpI?#H>7WCG03C z^k9(bXi(%W3w6`&8OP;#)5O4X39M`dmJ7K=a>atYWufjagY@&v9ISG;NIwHRg-SYn z%R;>aHt*l!1`v5a0V}7@J9NuJ-DL*zrB9B{{0rDIROaR_3-wOe+&{;SAaef?tQ^7J zBm1iYLL>?g2~|KG>Dv)mK>Rb=m4)SNrwxXW%+2Y`p4-5q*E#em-3_Y=d;?C+e044? zGhWMHj*?<4)*)=hB?p@-DYoDeBcY_I6AZh+h(BF0K`ZBEV4pb$L9hqY(fCxvncYs1 z(h9XIaVTyDF#sJ5D_a5R04|YSp|P^q747nz!T(HVS{;Tmd?&!YQY3LN( z7UC#45mrup6s*2ou~5$B3fYq5`0$*0z3biaN5UPjkEkPIE#s&e*T}XzbI#L;jQ ztQ;{KJSqxRl!#R0A)$(r&3ro|i;{mOTa=9IEq3XjJO0Z$fCVt;m}}za4sNoR*c^q& zr@kCi;qft-7zu?(YqiTpqFMbEl#_g8)Xv{km;_dwIZ+4WnU2Ooe(vC)WUH#Mn1Q!S z3?kEEWh;m*$0d?0Eac}72jAV8CD?mt@!bXX2bFL5bBCMqj(FQd%G<-rsZ$Pp?r@Mk zB0lMbuurI@&CeZf+GV_bBJIOr&KfXD;s1S;9ADh^)2n1asg%{et(vSC#yoP{?`3@E3=%2q(BaEas! z1$lFhoAN`ym=z)J7MM2S%+@Uar6F1eBK|zZlUrvZ_bHi z{ukT?BJ=lP!YKnbeg0jP^rq~nqnR5^X-(or% zpQ!y0RglsORbb4 z6(uu$J0gpcvyv@JMrC@9Etns$4qySyIp&(U|ACvVB{oOl@xCtyRd~G1B}PKw(OT`Y zQD{s)4do=?7*%LYU=mny=0qKQ&K#xjkozAvDA}qiEXLxk5`#z^tZW65QCuRq!b0wU zaPa*mvjlq&Ex!K;`-93iy#K*X`5SoKM9Q1M%BfQh?SF8P4&syUhJ8XMZSH??)9%9C zC(_Qq$`Q0Zvbrh^L@Mx*P=&$Uz6nVd21}AH48~;g`ObW?U%%@2YIvwR$5|!Qv@H;I zv$cfeC=h<)JFrxN@MA795(Oez!j9_*Us_6o$q zc+13~@&K%C1(kcbL~@0~Wbvzonzszj|6$g|EEfI^`-I9_q!8VHoAy8P_KCFr1}mpd zdpY$>iwNRhIz2Y=wV1?kl>hddJ>B?qMXe7u_0@43h}2hsl_RKoWPMdQh!o)=p$dmf zeTT0s99~U!U&Q!%`C_Kr($QC3XdD%hg@>#&!c@ANRy=UirR7?#a?}rVeaDxoA3C_i zNT?qsgnDkImJ?xWRta$&>?$Ytpv-hMEETcSE@ZqNVUEEYCq|g>!^&2KIg(2xS4Au< zvT(>@2JM@eK`{%7>tVN0X^W5NRu^pM*WxA+nO_4dr_Ox3swJYizZswVYp`pm+-Df& zM5r4!`&V!?i0og2l_S`Dlmn`w5J|&BLRA!p_;y5A6i<$7X^G5Qk-^OSNc}OL#lFS; zxo-Wah&9eYBb9TwHE}7TZnl=Q9HqpntSeX{E(ew>C061Rkx&vmnsRKd+eT*D9_A%G zslHci1N+H|JlKHgXiVf%M9p$LsBDF|ObjYpz{*xo*^Em>zIPt?WNo$jP#0~=rHGoh z49a;^k5jBq)#4nCd`~ui7RO04RM6C}t z_49BWh}6%9l_RKoWPMdQh!o)=p$dl;d^;iwhqV&^hEY4QUi%s6tE>}PfO3wtCKe8L zv$Z7UC>&n)<)I3P7rDfUC>(0tHo{BGnJ6!-aQH9mCnxgYFHA>cA`6F_<#tf{6mOXr zR6d54t)TKRE|GZQQ1h0-dHwjD*JTn|Ax-5RE*xt1+qA!ow@;+KHmsaF?NH%R^O!;W zp!mf1hy6k&ZWa!;KG@Xv!EGQ?-xF4jpze|NRpB5~golJG9G>$HRl|*CT^oMFXmm+%=!l4hKf*Z2cNnQMVF{NQqD(kqZhgwQWR;ed zIfKDj?7{Bjy^1|5ZRKKTxs=Tg1{bpbdDP&{;I%FIAH5+SZ;8h{;_)tjRL18Do%w;T z?7Uo_-P1c~aAp%ruKE|srtVwKEE;U8e)T}oL=IA)({TKT#wT=y3BL}liJ#c^4<{ca~ zuasTXH`v72u3kMgu@gOu`-I-^i$gJ* znCAEiY)$MzAycUS_^FABw2)m?&de*b?J-Rptkn-@b93x{Xx>=rX9e0|rKf4JyT30} z>d(zv+)>UJ`isn4%?p6y*q$c(>WFMPGnlQku~|haC(7B`!9A?1K7Md^aIbvcC!hDr z=L7QjpnN_gpAXCDBl7vEd_E?hzn0I(UzE?^$>&S*`7(cID`QyN>dN+&dj@y;g8ip5sykntJ2<=2)|u(!SDwzUj4fpr zDxVAlv)QMo*}?Aozb{~Oh2U3Ai(P}b{4VwRg`8N(X~xP?|6q-%e=zjdt*EWkZD++^ zh8)EthGTi^D&`W`GGu)cBUb^`Z?2ZYTP7}1{Ey?w0P{L)i6Uvj?ALUeMaELpCh_TR zi2Ha+~&KoG@1_PUJyVxjStpP2vv+!1lWY>e0M*>;vcaoX-WDkWs z;av3@f-IZ3TVxN$TP2b`09H<&Y~*cbr^Uy63hWLl-iiFh9paXw6Y-{rjE{qrQ)k>- zUHdWO@*VN<-U@qyidV#CzG7v)y*J^l63JcVzkC7DH>E#!EbHN$k>jDwAkV=`2p*)6BPX@g%%?BJ1(6a_X#Imyd57 zAMw_(C#Y|-h|}(iinqjDC6e77R!*I4#5t+O_;B;EGpKOK^BODi9K{^oFp=*(SUGjR zt<|qBMsU6`KHT$RPf+2CHntkUoz&;iq?8C4ls9?wN zx3>Cm&f@w2-YAjly|8lXT!;8!=D*|f{U_`YDqq46GyjG+PUQRnteiUM*6J5t;{{%8 zFm~CzI+JKl*(@S6|1NF4!K>h{63Nbhl~X6%#=or_X!nSZb~o4+)OUBRh|PRUfW>wf zyjddK9bx6v*^aGkYcTL06(8>rus5i9#kxk#ay$Pn#9Jm3F2l;H6K><1N({U|i;wrG zuq&u|#oH_P!dP$b6?n5mwwJ-msk3dD`*{qyFUF_)9PA7#T`}9OZA7y8K8-g_G%Mb%PFqB%vCcz4AfFpKT~U;-5)+s|O-)Y-OH_puphH;j*VR@2am zdYSLOv&gQ8w@M^C6IM>0>=?0w&|rILe6|O}zMux>alBxbJ0C5&2jJ}z>Fx_Fr%u;( zllLj{*`5e{g34CBx9(eikHcFfl061iPMz!+v2WIRZ*Psy_9oaDRJP*1mHU0I_x5_c zT_W9UVdd26j;rrkHUPg9AMl&7JE(xg{+qh#_FVThylEoiS77DT8Mn(V;|AfW=ftj< zCozfURLo*NRNL!ry~E@2hKYRJVdd2MwpRD+8*sOd4|hx06V%sNkDc&kLR zo5ISelbvGxQo?|oj}JKqJB12aT%c@pz>d`Oa07_EJ7MM2c{?w?KR-U@b6{6cDT|ej zh|95;;LQ@*o&hVT&bGDsOCjS0emFkb2VhT7(TXU|f8S(9>3i{3iDd7Bl_SV{oNJ+u z#t_FMcu1(DG0yP)0gXHw~)EdP%;~Y15^x#p00sn#4=yTEf&^fZ2_}e@28}qT5 zLT68r{o1BCJLot|YiZUEtVWdsN*$8%1s{_`9FmdPkJwxry=KCkWCzs&oa?|oa-t5F zV>YVVIltk$C$=+KXZ32-+T5T@?l*6?jOf z!r*h?3P%I(6To~L34^!tDYhq!*P1X{TqcFJJcR;Da;0`V^A_@b? zZ=c_WIa!J04cJFc)WK6sN8?eyN!0b*=Re@B5`)O^VPz|b{EkZ`UKlv|PB|}jVK9+N zV8t<&Z@4hvucLIN+UGwGZ<|PY46K|w@b-zczYZ%$ z(DumcsxT0#z(Yb62DkbKCs`QuB)eiTTI^>ER|ZGHYS&jyS`kkKaJ1&W7sKF*5X5; z(E*$HziNAUK@?y5i#3Bf}`6$oYDj>rPxx@1=l+IGwqvL$v1R=7mi{CqSl zImcOLr-r8!Hacm$TUw{(9>+Strp#h&jwFYVDh4*@5eN*ooB_OQI{O>Pf!bfrs#>cJSV!Rei7x>aIDgC~A_He~h4yIHVIzDz0Rxh6ikd<_27AcK zIJlMRXf!I~9EK_-D|S4LH%g2h55US+?6}ugLd6a-W@5#TOXFC<4z)cg*+Od+-%1&- zvc~;rc!Ec>&zNqo4l{;zBWCF}noC4RkOVJKb#2p~1#_}u$a=7k+%aSZ)6rwdP}_88 z;;j;c$U3mH6-3tL63Hb8xp%{{4f|kb36{hyz6Zempz;lWqH%A=-WPA1NO><HEhA)zJ}OZ#?2PAdMBY+*3D zw*9`PcGW_-NO**G1`AHk@s{L85e@2v2YvCV8OMEGVkFcH4SxLbK1|O_E$_naat?st z1*W5y4#XdSyp0<`j5u$=%2ver1D8myikL1whtytK`NkTP&gmDR@2o|AIVOP>)l}*; z`0wSN-LR*jQ*bkg>?gv?sk2{6eI6N_|Mv0uZv(rB%70bPKe8+K7}yFog*XPbfR!W0 zfJeEYDh`oMJS0@bakpa_XEzn?hWyTP}>v`oFMKsI1LR zArZVk#SI|x{uow{;O&v!Re>N9f`^1E5RUNeh%69(KPu7hoMW~tWi$Maz;KPQH9S_G z1Ff=i!;hVfc7=4-%+s=uPH6Z+ zxb}y$=H@e<^LsOej)l2GS8?HB<=}=SYX2_1k?i7ZM?N<{J9zd|Elagj|3kRh7;mO0 z)7zUXbl1Dm_;ymCHVVpD2Q|T03`4Gy-A7s}HbH!TCfA=Wb)%COkc+tJCkmdtI!7?Ser^5M+9Oy@>T?L(Q}YJ5oZ`cNj_ zhwe?FJkUA6dW&`A>%{RU*qfE_s7I&9yOaD{7@*u=jY|(y@2f7eSl6HJ?qyr1I(oC2 z!eFJl38d|&*kz*0w8XDTZ$=bfP%O>O_16+bR&FDmIXmcNl~DD<>@NAt%I7@!?3T|S z`OL{@AfNN)GcTXL@>!72qI~wr=i%~MlFxqmEX(JBd@hjBh4Q(GKeOn5*ZtVPmgHU6 zQ;c%V_=xZ$W=_mifOC0|;%|JN&2+R%yCP_?&SlOBxCe3?ntui)1 zKf<~a6ZC_yH=HxGzy>YutEgFS6TS~`nMn9oK9TmHVdd0mPw2_ir-ugWH7<(%O0UW!u$2ocYO#VFGT!FA65cqG^9rzX>YUqU z9c(b39iQ=cU}sPn%bQB%@`7}s`VzAf-Y}8x4zP0Sd{-T6p~Qgx-T2TK!5*SQUxRGq78zyqD*%y43}n`EPL(h|HgWl~ZRvA+)S(&|doD*cICsutTV{Ma32} z-sb!{-Z+u-e_-X*Ik(Hzb%XKO;xqm#lW0y=E-JR#X94L#Rk3{qZCz8&<%BhoXtNLodKzwd|#DlOasEEZcO}N=M+cWWIiEK}Ul~ZRs-QJ|c z_Cp!0AB@lXKG-!>*5W6t&TiQ3@5ap_vcCgXPM!Vow$pMZ`oG6V|5w;ERP-zINbc%| zP5#fg6-4rXf|W-gdA4EDcYy6sUqSFMh&fLlQ%KMht+o%|$i z1E+!fJMoe41iOU#vWp5`Gv8*t1KvE5^|r8b1Z$6pQ?E>JV>1*tVyS8R;|@`!#aLV!QDW@40#>$S$7Q|}Dt3r56DxKc9mfi` zeg2AMW5=j@=EY}!VI9D>Q#%J%6E8mFCTnBX5kcPb<)9+SAGt(i1WEE#&1#p87&7TH zl#>-h#xsfGC_X=9j?#F@i_bVHD~Pn?trCMsE39k+rSs_EdnC9?#34=ui% z!~Sr-%7M){e5$6K@}_v(M9Le(%BfQhovP^|or_O;9_$k;Y4cP~H| z!;=$2e>+PWttBHzad4&Ypi;%bMU6bEBOr;YO9ahR2rJ|2a=# zOSY?4qaMQBB?goGVPz|r+`}c3D-b5i`@{I#XfXbS*%Grv_z3n0m9hAS7`EP?PyPdM zok;paSUG~UN6c4gLj(yA36(Z3@$HCA8;g^jPqyz^yFEqA9N)Mc9jVS?R@tTD83c`v zKI*R9r-dX(lGudVjLnYZ5K>8ELoP8yl4#D^N2P{ds(YbfcCG*AthwxWd>x$w{bhD~ zN$vmJF>j#I$q%|}(qbXMf~WEM88v&5+kL7lT%pq$4rZ*Xr!yQPpL6&VJ_TX6K%UsG zU#ks?#Yh-=W?amKk>mY~eV%Gj<0y@geSST7ox9lL5?bLY1WgNRp1vK=nz$4V#Pwc?6pxA%!FylS4Vx0TnBcO6L_#3)6tMrP z77Xu=PV{i>QTc31->-BZJW`#*tchC=xXD^xa+C^p`wl3zU~~tU7zw39YqiTpo$xly zNxm_vPIv?MkrQ?B6w}do$SnsPlx$TM34g#_B?gh-!^&0=`5l)?u1Jtu4jg=^ToJoM zn8+lsa+%6Eyyd`6c^uw0k@6T=Id#gREe8(LTg4~61?&?lX>-egoAzdS`$XDbhm|8} zdt`N07>HEhA)yL`TYZC*TuB&A_FAopoyCDdxuv5}EF6(76}1J0qu>GS9Bq|(4L^;9 z773sQ1#W!Zb}ctKYK0?w$C#=W7IKM^P%BK*`fd~rm%`-a+oXzyi(qFt;Rh9_qk*Z2 zX{TnsJq7s@-aIkVoC_;kk!FxfBv(C56LWOUWd`xzFq2{~H2fNN43+o_{40~A6E^op za3hG^AB2@t=f0wvs}IHg)A;N^hMhxYzcObZ(Gi>fzi>l{{QnLsNAUM34^)LA5{QR{ zsxZpF9g!8rE6IMVXf0*C20Ham6`Nm)Ml0uVtL)#fvgpnh*o`>(hE;|9yIIm$En_)K ziA`Atuql@uOsbUFm`jX=Qeuqgw2@H`ff>mzsv6=z*h@~#!A?v^BO*65N?5X8we+wb z-YzkS>-rX z+Be6ieFN+jD(z`Toe)L*SGWa4;=h2EBZzxscU2&WwBRA33WN=OJ0c5&bCO+x7~QkD zuUOVr9zJ3{z~Yi~m^JZcZ(*~RlpJNkKYU53GT}omF%rszHr{8WN?741C@J~Us48I^ zlfY^zC+uJp)6sxb#Cb~sm26fO2~+WAiGgGitZW66@mwOgB0=8l?IOGbGX;AWEyCNv z4xthb-|QX1d276JBIhk(<RR76^2P2Py8^g*u3`=J=em1~xvpk*qp!q?H@;xq z*H2abO$RHDuM78WpuaPdXV(D>-pzaQ*fs0y#cQHIJEFCj!>PYGuUvccnn$}|U})Z3 zQPrcctelN)9i}Lw9`Fu$} zUzX3`%jYZd`Ko;WK|WuT&)4Pi4f%XiKHrkhxA_zPUE!nbUrX|K<<@E%G$zhPq=j<&(BA0O~{`#P2FHsyWrwuzMYgq2gL zJhoPO8;nng&-hr_8&t;P7WA6sHsPc3mWhPF2P>yexQ)+y47@kS$9o;@3MyW)wk@V> zR*e27-Yk*r&tc`%*^XCJP6O~8@d5t<_6HTPh|$V+`wjj*-Zqi)?_lNBDYx+{zX5pS zRk4fbaZI8)HI{gT#Y%mshYAi$oUNuj9=U z*=__Yr_OdlXrap>+!LR07Ip}gu=w&AGTx5QbMeNBoI7CU)H%0SR~ik#XU7M87VHTs z;C8+tiLZ}ZZ}91Ot3UahVh zZ|;Zj`Thm=2bHg=oR#f1<@fNmiIo2cE2mDmjep%R0Iz&??81zl zLKb%z*G;z>_u)+w8TZ1CMbEFN!(bQecz7B4m_GR0#ZSOVT5u~>5z2YmO z@W13MA@TopRHEljEi*5-NZYbG@n>jV=_cQJtDx_h5><;EjfHWn7g%X4qlp>|W4Oc+ zTR0OtpmH?pv5`zRgel4Xsb6)>f?ebU9jwB1G#v7-yecNysM>R~9^NQ1f6RoHt^BbL zmq_k69pl7-3pU+DnISQM(Qz>B4k}$y71m9+86SW*O=P?;teiUIN$Mw`Hs@2~b3PGv z36--r1x7R9W_=vqJdyP=uyO=zk77>MgCYrdNT`Bfv~Ndh1%X#RIMcfzEMymzGxN&X zl2#V{n)Lz;NzQRrX}ovVw=7V0YuU(AC_ds#L=^`Qa*2^p9E_{?+b9t}fQiW$NRKe4J%uLFG=Y ztCy*y#g77w4%obx!wn$vo&qbU&U>25x>3w`jL&>~*fCV*;y5u!Cv5K9;6@O+Zv`ty zaQDdms(=uQ!b3t85cl~8ELlK&HQ677j^bbBj~lG6MFkhIHKyQrW2|nm6rRPL)7XBz4~u}8p}xFy69a2l)}F#l|*C?VTq$lmLV01X zKkLjY>L1S%mT7^?kwTvJ^|wkPPjQKnF#l}heKsPF#d@*OAHr(gO#mt@d1}eE@8+M3|)l3^b7Qjvk0%nB!*)$ViOLZU>L!9b-ZyR z=T%_k)H#PvFm$orJ3i|@V5d;uX7dEY2;RHl1`v7g0xL)G_Q>I?3=j#yLqe4Szwr%F zvJB`-cF~%x^7dxfRMYtCeHJ`eog=NXQ_NC8S*K+mM>%l1?*LNeK!r<;gmPe9z28Pj za1+eMN*LF}j&h<6E@L_x6!~qtZn`~-xE61k7(T9nm96k`HJ3=PERf%}>+Uj0zsbzO zigAndYp_$Oq{H8~>m9Ipzk(Y;=`Qc6|GMXwO-idAHuC5lD{8Tjv((*1*k$oqzexTRY>gM+Ywnv zJeBNv!)S5xRJev1do3EHoI|aNN6!nJwM6A8AKF+yu+m!&DOEm<;u0gFd}wnWY_>j3 zO7>8F%3c?Ck`s2YBGb`;$PW_Q!Dgyx_%hxsF_5ecD_enN4K9&f(I7uaxCkG_Oo>@9 z><>GHN;v#MB7*Zic;iIQd&0`8a}IrwaIroiKI>y)r%+j&A0#4pAB`J8Q5$c56t~TdJg++bYQm(p{ zA(Nj~`$M+ zO*~z!pNY@fP1*@^;2vhaKI4&^~>V+vr?~N(R zCNMWEuWSgr%ZWZ%o$2V6gNQXo2kgnnEZhKMtXU6MwqngpE|FXfFRs>VWu(G`0PoQRu3 z90SL}$`ND0qfk(_hDatJ5~|i1D0&tMW*@l9nN-cF}_V5gJmxCKPw%fZU26Ax{t zQ$91O?-HN-j<9Em9Kjac4p^9jiy*2{OH83YDty~Se$%#5RkLhSgD&zTdrG`s3tm=oK;0+T)$&X=W zE0kQyC6cQjmQ@o}H|dv{L0Exrk$wSo3zhWp#>6y|`LnnQMCMPy$`Q;xV!uisB4Bt( zsPypz-;T)i@m{hM($S^jK%q-Z9xL2{4prwki+vi5uuO|djx;fiS&Nm`a^R>mF_lY< zgf!8{`)nkMEnps2=-3Q)k`rn0Wu~J6scpXIgGe^3QpDHsW{KfqBUsrA7hmHN$)$+e z=Ig4f48lFkl$gmO3p<2LIQ$JYPL0z+G?i+3{JQ1v`bx+WZC{ z!TWUF03z=StQ^7HBZsRpKqLeY2~`G6^6iK$1Kv-z3>aI=cINs@#ZF@)`5fy87MYww zt+KOoBB_pkbAIzy|9Do&JT3n?3WBG7J+BIaC%ME(C1b5s>a()lUWocT-Zn9W{1sNVLdc)FL~^BpTzyvlGFY#DBl;Fvtk+-?SeZ;^ z9bSD_J+O(did#S=z7njQI`Pozv+|iieb4yRXTzSMQa2Z!RWEGv-@&aQlHUndjv()m z>s7fR(uIeFDiE9UII2iE znM;g>B7vPD%V-$U;|7?Al{07e;L0*!pJZ1J##E1=DrX8k zS|zY6JXW1Sg>YMm@2~6XW@}l=Q6}u{JFrxl@NF(J63PUAlwXyWQ7IH*UREB-!+vri z4-RHJ8k5Qd{%Nuf%t|6Tyk%lgnFlLdL8X&RBv&jjX z+i#bK=iu!VX)l45Q>VS0+H+8QKa4l~vG~LvhW$b%KHb=KQ0s$D{Q=wtBK3P=S1Xvfs+YVj<_8ySR?8mY_)nz%U7yb z*v<^jVt3f~+#D=nk2!~WJlGvh?%gjoYaHqOh@BVnabmgX1*O_ z*1?-6hL|;BWh=z2<}0B>j2K6;Ld+L2L(KEZ?u#AOe|V{^%}WC2My&pE4zbF1&cLER zRyO*U$qm!Ss3UfC`!ZLtql-&K#*PH9C(vLq)6sa;?pLmk zAla%~o;(3>l^80Hg_W&PaWt2ROxVMo7HStO+k9_lmSAt2#rGE2A5^~D#mY{~H{xv* zDPIRGr%pM1v9eA2-T0*6hJ8XMZC$MFr2PioK9TkxVC4wf9=Thke~}72B-9KerO65WBD0o`uH1rLS5~V7zH|#3nVf^I@|~D<0JpGapq76e^}t%p=$Lbf)w#q- zs0Sv7yKdA4JHvFWyzy<=S5Cme*O`vSr80%jCBoL*^}%*{>%>^{Em+x#CEw%{$<+tT zi50!D#|+*Jm_;$`gnrmBRNi8Z%IY zdNbuxZjn|+yvh25#VzO1t8_W5hn>=smX_Pl%GWux z;(r6J8m5g+N38g-ueVjK_>@aT#)?G0fwC?ev0^Qlh7~JTXA;9P51GVtG#<5YpjA*- zs8|JWl^7~!z{*yrn9e1VO9QoUpf=w*dNXpHn90>-$0#|cfs2xQr;0( zPMvc28>mhCsQ9FhfPF$GZG8iE(q4$SPo!Ojl_O|-36ECiP$Ntx@Z$l)HfssVQ6SvrJFrxNa5I;PED(~*A`?O# zH_C+9U|d!jc?I^AlX&nr)6u9@#1H*K#@p4xOL*hN$npZLY(MTLIoSn@_Uz(pOGiF8Uym!R-j3Eg&QVr5xC!4xn8m_iZTLEZ%1W#gSVb+zlnN>< zaEZvElHjakY^~cyNZAG^WrdWjU_Uuw2kSE(jfwotSIu%eo@{})OpGU+!OB)V`8tVa4s-wV$MM3!#<&M4*%w>X1`6l2XCK9I}0nPPCN9QubRgU;upjxeje-> zDsl5SU$s8i)X&CkAW}aIR*sW`AX0>fgqn>^^X-V7jZ96pW?(-87|4|Lg5hP> z1uQ%{M_OeEXTgB{B!io#r6EUY@S?BBRcY`Xmlz49!5G2A2p|82iCBffr?8itP=oiF zjz*+1j(;4L<4CrvzF&Ndw@VBe|ALjRknwjekz83YQEVe{GG6x%^sTcPf0;>OMKYDK z*kT*D-cAl{Mx6WwQAJ?bGBr@Hll2vdSUOS|Gfk()ZYys>NDDa+C;5 ze20@N5zgQeBcVhX&3bIq2e-kLtlV)k>>?-V;7X>W;i!z^^+6SrY*ZBoH{gvD1IVvn zWh;REf=eV<9E=m`)u#JLW(Zb~TXf%o-9e>0F|<9>$@q1=X(HoSVdc~rPf|(M=Dh5k zu{lp>62nme+HbKqut785exE1c%@bLVg_R>%dt`G}5Qrq;A)yL_Q+)@mEC?P;wjdbQ zS$(O)x0vk(k5XqSsmy6wMZitga*(4W*xh$PsghtL9~(G#+vr69*+*RYgG&ZjrxuQUBV{-7loLLgHD!2sp2bFJl8zK%@c>2~`;E z?AsAp7@V7IVKAlKQ_A-D6!Tr#u9l9HStU%o3yn_B0awX2tx5>lFU;36l%rx8$GU{o z)^en&ieU_w7zq`_RI~d=^{^q#Pj*%v9ybg2mvaaNt1umnO+~Cvnmw?mBkSQ75Tnja zSlNm?>u`zWDv1@u@`C9#gZrV(s+d*9!LVBysj)G%g<%m(>Q8uW`L!=ZB2~~NF_U(wQJl0LN z@>p$tCfA=WwRFtQ_V-uMgXqeZato?e$if^uzjmRvTJdYvH!PkxhhnAJunxgDRf~Se zZq#~F>x7o^9M#ApzR*-P@*tNO3DwA|L%G7pP#?fVt;*zm*murB5xm57G)|Q@czhbF zH+F=27q^BOq27j-tqAo7mq@NknW^&BP+l~~#EiSqx7->N)0qTT-BZWJdPdF~s$cf# zSPr*~I69`l$`PZ(Bl)QOC4!KLgvwv{`3`fLzgA9m%iZMKG3$MqQf6MJb0aNb9S9F) z=Qym)Z9>A5$9323)?%L{NA2f3!c>mhn@dFIsN@3E6r=M-1UeGNW<{XIu(zD#gC3@% zk*SEQpo|XKp=JSY05R0`!^&2u>GPFPp+=0QSfOT*I99M<1bvZgsXV@)T^(JmjIEPP z?qD4mj=H$Bl_u@D}u&Y>3j@FH%QmXREVLfLoN zs6ydzE-?}ch1P19jo9%cn1+=z&V_yC1R5OAbTl4v*AE9JTUEP$2Ju#jq2f$f*$Ne> zaf#$g1G($R!S@kn30AjTd>@4ULFF6X_2Z^|AKo^R^4+j<>XbvfejKF#6`%CqVV_V* zo4bD8wEv2?Po({4SUG~WNA6bXU!(#L36=f}z8#V2|Mq0le;fP4mg~&+YfF|J-;2g1 z=P;`r)PyC=n!Q>gaufy|us&cDB{`r}VX!`zh%5|}%O35r(?)5qAB@RL9ecxGa*__V zWjY#>%6LAlsL_%QtLk76ykTM_*$q~UHcB0F<1AmVtGIDGmxzoT39dYjtuZko$E`3G zD{|Zf`^gD5xPs|uOys#lHOuWai0ko|iJ{|KSlJ34*KmpCQiD8~sOBw$^E=EM?CrBS zzX|(<$~k;4QO$mv_G@_iMB1;w%Bj;1ol8{nm_dB%eX)s8ViH*8L?v#XOH}KFO?^CW z1Ce?=tQl|@Sxr<(I?vXnY zwM^xx9%lQFE>%5zhf9ov>S2=BcO%f0VP;lpIUIJD6MJwN)6u}l%jh-p?HE(QnN}R^HiP?@%{iWon!LduJAtYE8J8zoz|j?NdmbNZ6jw(t;jN0URHOIpKmf|jsZ8@rBp zvNimk$RVZT$(CFqGM*&3($&WMYy^`mOv(x-b73brVF!CM9Sw-QBut=^&8p?`4!l`n zZE^^#Yz2}7xkPfwVuIL|<|2F+GX=}+7U9!jhfoQNI~zjA+Xw4KoAMRLqg3tHuvp_oO3*rY=JPA z4OMpkUvDwjrOi41$GU+;}i$PL!BnLXJ1 zX|ete>=oxL9@wnKc_?NNY~nlN77&T=04t|Xe0eSVx~YFRKJ`VgXQClb#0v@KFN5{i2V)l!ZA@Y~ibk7txR6jiu!)btEg%wK3RX^?c&Lz2J~OC) zBR=&_V9!wBaI=t5y|Bq|h+9D1|9Z;%x=;IQR#Y1vgrCoN~2rK8qn5@F#9N0@v z(!p^|M-#Cn z`WMjOv2I{%C(a?(%>5M1Vr}p`!pZZ#FjP2shD(fqa8lb(Q7#(+h3Z~pUlj`vb{z61lTE5(&D?j(E*$HvA6+5-bcgA zsq>zuK9oc;za>8N8)3&#nXh1cC#iSB=6)S+1d;nMVdV(!9@$?N5F$}{NT}6~4ShQz zS2wOpc1|*?KUe6{YKMQb4q)-gInZLCSHum|@{prA_@}S8RdMh)E-?~{gVt)7jcl>v z!zc|aTP)8cumZ{nG#JfvG#>K2A`VKns+KR7#aktYipj9D6)GlhiR4NGd0vr&@3)yH z*xP3D-46B#m2ddGA~)r4;cXKse-l|v)FsJM!zIaUeMgn54zA%6 zk<~$RDWtw6Su!ew=V4S<26+bdlaqFEAJfq*1nnnY<&r(4_$}TvF{C^JD_bGuF<%K4 zQpEU)6;iH_V+C81TqoI(!e$i4jmXPAg4Q_B;nl<&k-5p*$aTy$rm${cb+jB%Dw<5> z5|Pm)!G%aR*RXCx{szp+iX@xBK60WC)?zvukNRALjV;-#nrm!`w@M5mvtVT_h^)sY zl1mizxrW8Ji&+wLu91QLLFKE@HC&Vr#oH!QJ{VR`ow7F9ut=X7pY&<4PpG8rxrU4O zDR}!t+9$%w5wtzBx+)ArD)5j{bB%Gn9g%a5<;NuYt#TPQsnjMJPci$kc;p;nm2I8B z=>iTjWOixE#*zGg7N7GjuuG_%ryAcGo$vFGc=JTo+r!EctUYqJO8X)Scu1(U z|A=p3l4<|LWVa|S!?w$7X}M&m~4g+GjmB(*CtD z3o9{P1G~tHGq`~1XgFlruVRvosAC#_MNPk!J8+tZh@5}SbOAb zmG(sv@Q_ex|A)SVR;K+slKl+O+Lc?7>&k{R|Jf}qOSM%06YOLR*mJ+d_d1_19v6tm zMdEP@e>kH`WrvtEe`%wZc4}2XrM;A$mn~%ro!P7v>~;+?LOkv!zU4_A`Jz=j0vi&vZ0cm2rGh zAvwx7_dxbnf><}+?vP>Su)1;=tSmj#p3n7{JD7KRrEfA^DY)W2mU7aMWSzYjvRleh%I`5%>~VS&qiD>aIze^i;J};H3Q+vn(d$zpU;*%s=-3b6}VQQ2H@7dJ^CmA7lU<^ zEg{-^GmCP)1HIuIB540LI%u6EuJY}er9;g&EgjWrhd@Q7R%UOwu%-@yK;@ccxWq`P z653_2jWXe@FcbNvsI>7F*iBBX!3s=ALn41>UBe|CR(!sMH%yElYr)D^{8*h!Bv%_u z64}*F`9Nk&%yh9I>=G(vG0W7=r8T<&BRC zk?;2pa1)5kkAjsWn0w^(YC;xM9FZJ6Bve_@;@c5f7A%!)Sx`N2G}oEQw{&C*`XR9o zv5sI7$~oLByTq&wq=DQ%Eg3oLgZq7*uj+$)xWq`P4<>|qZqx{Wg4xKoMb!xJz^-!Q z4W45<8kUMUT0CUDojcyd8z;t**I;EUj=aJplB*Mz6^S>4Wf8AiW0mJOWX`1`^{nH2=*RH zU)2pFX?RGey5UaWz$NR3E0Vp=YE-T_)2*!~91V|F=TM9NQ)h0NmXREV!uNcKjVctr z%Oyraq0n0GvXL{cfN5Ac<1*MsPN2aVOh@A(e}2G0$yU`8!o_&2#87botZapf^SDHE zrGfnUfrIbU%o40RxA;B@`-93i{PP1h<;U^1iIg9Ol~bo2`uTx_^#9_M{tWgBm9+Wu z12^qY@b-zcKZ2DbXnW*tmHtI4@Q_gHf01uTWctq}yKFEz*IzJpB7XA;G$J_%S!Mf} z>jlCxE#Wu{fd6CGViO`ca8v>C4K6Vf3V=4=XQKi*4CY~Fh&iy6oJfORnT`fTUN9$6 z$!1jva1h=sFbm2miixd_fD;EfYG9}6p| z&N+0!oQw7C@mb#jJB7;HykIVZ_l>v#MBdlI$`QOha=0o3L_+Y8P-Va-z8#Tez?sRG z0pnQ_(9%&ZwsaJXody449l>IgbFfu*j#&*b1DSo?JS_t`N`im;`d*a;|Kt)Qp(Lo1 zksUYcf|Y-Rl9BI<`gX7)lfa56C){8R)6uBN`(Kpp_EO^Vc-zDvvMj7@1(C^IBDvx~ zUL>ddWw73v*@L}>7VB@rUZJuM-~Xa|U=!aCw}43eTd;EK#6$PLD4!YB7sRLD4||46 z-Ms%r^};6Khg(4;-wP{8koU;;s$dZ5!b3t841e=YTC!kRnDA!<_L*oS?X$s6@L+Y0 zwAh~wxM5l{a+C<;{A}RhJNn7k1;NrxVmOLFn{W8Dft&IdFpCP2^5?K} z>XbvD4IHF5ick7$O(Si7HgMDaD&9Vk_E%u#2-+UGTcv-I3OpoK`oG3^*vj<3f3nxV zjhfe6)OQ&k4i8gjwuqhnxnWwmaisr(@32wne?FHO5$V6$Wh4C$!ZhT2q1Fb@gni@$ z8vKCiXgp;4=b&V(D*c~^w@M5Zr@+cqs5p^JB%b~qeD7nH#9R-!8}5T{fkuKA)(TLk8ek0 z`ad<<^gpI|AYab)t8Ha2tr!FN2jMsC(pgRUU{G;US^QgSCA-BFlrnCR-jXlU>xORR-@d z`?1*M9A>c(H>}#FB_Kyp@JC-?tD@j7E-?~{g3+wUM${Pp6w1P?2ilngRyR3u2A?oL zX*lHJhE+_mQMEGAiZ@CO6U)HLR+wnv63LYU@=Rl!?&i!8>`k-iZVJ1DN;iDCp_B2( zc+*728^Fq`GY%bYXmg$ypK~Yd5-Ml&a6>2S!|>*btmnYW5v)COwo3aV33y1TwEwzq zDw1jc!-Ug*cc=bM;7WLqI!9RSv|qJL%QKF&f4T3VQEC4YE-@m~KI^fO_8)~=Sc%~w z*hNm9!HrBu!y(gt6_adKrTzQyMu}nK9$4856L)fn#M8b__akOV%(VXx*d0{5;k55$ z{2|^nk?~((<X%yq9el52 zmc-2czl8lk<*V-nP@H<9>{$Djj_lzB>}>nv29F**N}kTV z$}?zaa*npjt}%B6NE4-nS_X0~1O-Nva~4&Lu`dMKDS0yHOf^3+5wxs!D_Z z=kCk{@<}hm}b^+18UtuSZzZ-(Zh~Ov!kkFv+r6 zD8PZ?W_)e08PqsI^WK9S!OVL%tn57RQ{+*BcDet$eeS;s2Zx*csmghQh$A%r%W*@P z`M&^Gj>*446CnEte*iI%kbT4?Q%8b6Vuy5>5mqdfYq}odPr?nXVrh}9?{C>d2=kcz z!yiopFZ+i_Jc;4ZKTK%(t&Aie!g(RR!+UU`w5ct;EOes1gTLh5GM(0scko9u>&IKL zGN~VLcoOOL4HNw#w-qiW)0;km{sKv+X9x+brRHYZzp_SgfaZH6+yG|2r^Cw5^S!3* z7vge$q=Pa`Em%RHaDKY$ z4e~<=OUsqWYQx1avs&O1`_MtdzR0koS!=k^lp@(HoaadlhhCxep#$N$GKSm+=Z1_S zH^ZUQrnm52p%Y1q@}Yx9+JcA6Rq7k@hcoNQ4X`q)BiDHn>GccBhYo1AUlaymJv+(v zb8uL=+17pNK%4Ww;3hD0{%2U(dCoN-I-q%9{ZZ?@uPP*x=oIO%JnlmW+T5>%o59Te zcvv|m_XdN$>>K<+!$3mz4Ruq9gTCR-l>3H-`P!0vHP?}8Bs{!JaTrXkw$xbn4S|84 zeUSl5(>EMqN|Edv4)i33Mc)weTZUQssUxSsM=RDLmgo38z z{rC2H|1BIEZr;_tA>;2TGgT!V^L#l9akXRJ2T|?Z8X;qnYL7 zd03g0k7qrJ^xA>oG(sy}N~Wj$5&Z>{OivaPSXa!=boewv%K@72HE;u%`CbiHcAoFh zX@pkDl$`HtpYy%pz;JV}oel@vxZy&E0Y>>xhIicuMm7UNybab z^<%;wtX(I$ei)7lH`n3sCP@$IsPQ0f0W;$dz{<`u9{O&QjG2=46&|y{ zH%WRyGyfrO1vB&S!OAh2HyG??zu*rS1`@JgIK|YFpkLTH<=q64?#P0|o-nIg(5!b8 z8g@m7B29y^o3Is|HwDnh24QDUVmLGiqlL#x-ROpMK}L%#93pKx3x^7wNIHVughrZz zhsu`Vc>JNvGI0#7Ov=PjorL9m-ZvwMLs#IhGS7Y+wEyW!mgZH~{uAI;41S+KJ6 z9EWxjXr6y&pXZ;#A>rm(-A&Nu`ZoOW%v|3LE63#8V9b`ozCQ>UNXTJ-2UACaVgI2~ z9UZZwP;9Z9S(ti2N5`g(3l3%$E}YiU(R)kbBJtrrkb~W($7Ib* z&MINom6l-o6KHmVAB@~rm?k8!u1TBV!b(CXl9&2K|MH{;TFt}-PnW&HI{4F>wPY<= znbeX=o>CXJvVZW04g(3K(==~f?mPg{xW@fnqR(77{&>f4KU-BpIGrbKQ6Yeiry<<_I?XB_WGqb%VtQ?bV zgRxr<|Nc;5AR&kUADI@XVE8{H-BSkR`peaPEx$Oraxeg+s^!f3dy6gOBEycR4XBvn zBin$oCovq_fEAl=E3LrS;H(6{5xHV;F&rmtVhd*ook&iC?=3bhr|rOn_>-BX<2+cI zl#aS5kzP9xd~dNCEhW#t64qF*6#Np72{+H-?=3d%r`i5F{(NS(?}U||XFK%0#b(5m zjQ`6%jq=HY!Cb)!azc{2Srmyg7)AW>8=ip zEOzxp76)cMiPk19X7+~)gk6yVNYfN_3R|&xQ2>o>3O4s7hC@>@T4X}08b`pn2>g@% zz+rHRwCODDA#@_?XdWsMX$l@HR|XEjAIdBf2g1svOziJTq}K{G4;7H?o-Pcr>;g`M z!@+iwJF}XGv zv*obw4*~`fa@e0~>PRr`f0*)F!me_3PvCW7KUR#igjo;!4Z9-ajAqz>)il;}*#Da+ zF)W6C;juF8ul5w0i{M8ghy9g>1lAd8(^>dX#3_=FVAyY@DR`(H_E*Fo$}AIOVP#S# zMtKsc5BoH`y9z_FUmD5oPH;H5*$of-+8l3>Kbo22ZDD2SISvi`G|vV5JomsM;pSN# z_O-e0#vjkjbrx2R$+f|lEr)%75HOIC!~P4VLs2m7ubJ*_e_ScolO>x0*TAG|F|*zb zXc-q7aWoCU_f7GU4ZwFiiQ&)ytk`s0=>i^rvqHv+`{6ig6I-}V=tOc7Yz8zfr>(%f z_>-BX;~rR+df~U%rfzRVlWtNK1!pfvnoZ?BO*A4_n1vUA-Sy*D( z3fu_CgPY&*Q9*r{Z@{0;%<^@xvhys5jtXir{hWQK{{qK^n`!l^pg!Aw#-Gp3_Mc$o zm~0!2-E#Q%hXMl$Is6}M>PRsBPfYiy;Ml%=Dc?5`JrA(K(`Zf7VpiYR@*TsbZIMAo z(*&$1?8Q3c03O){tm{b(hbCZr;I+~R>;vZ{@KJ6M>?SH|7xIlCMHQWSd&M$_QV{&dVrpva#9~=xMWLvPd zsUtyKaA3M^LF2ZYSzAYz1)dfjV5LdRS$!YNrogu>GX7{BX3!O+p>MME;fuE}2v9cX_AAc;fT)Yb_lXCI4Cy`z| zu(Cg%>N32geTFv^5?E)<&G2eohC{~FVPO;e;mka53@ba&^F%q0>T-RweXbY4LE+}w zzouGofad!M+yG|24}+Cs@@+7N%QnCt5DX+_8}O)UfePAy=hNLB7~50HWox5z5p%Y0- zusYC8SMXrj4%~u2m{~S{0xOfU@gq+ny>=j29nfd_6=4k4f|D%21c!v1AH zNXWL}d{cOXw&1dK-y|6A-6s`U9heWJs;w*5s{_7ek?}{<5*%&{j%*3$dJ@B-B^c}Z ztTY5m;e3#xVgL@3Hl>Abp%Y0+usYzUDtN4H2P*hundPDkE0c0j^d!=22ZGfBU539W zOtEYRz6}S2o8j>4Kun&mz#q=c^X0Iz^E`)E2Xwi9*gn?}!a?EYT3sE8$@c@e0nB{g z4=cyy+h7crZGb-@7)Z!A;2={+f;M0v-8NusCEGo_I~V;x!Nh0LvZUqAdUc>_TV&+X zv;wOLd$9&NfJe3h6FiCG&HeI1ILG(cy*Z|Hu-1aCNPtKCafHje1pMV_6PnbVIU#Be)dEd^ zr~MWEwUPX;BP6iyn4915s|ETjuZ2IGndM2avhys5UMLxF*W9RB~$v^WLB|GDX&Asj1~24;(PFVX>=4U?+H%zAmC zXHG=)bt0blSWhC>rDKJZ%U1FnN}LdJ<};4o>^TKJmKiKHZ09%!a3c(7~* zzK=hcSvI}{E0ePEEl(o7Rv=g&&}aEi!WgXgCRzR?91?Dp!^;D)xqbwHJTuo1!OG5a z9aLFr zP?3X!q)lnz2%!^6NN{+-PgU?(*$ynkAImHk8CaPN5yyHG>9qsF;Q?KSFBYa)HUk&J z0pVsie0U%x&*$L}XXd#MD?86~=;d zQJ2lY2cE=mXa-hnx~=pB8^c)%ej{?DU;`nM#8hH6p%ckTa4liea{5-%diax>rDI)K znUs#TJ&E*Mg5X-hX0((%A117^>EQ&5;lFHSzn6Vz|8sptQ?bdgRxz<2mTOYAR*g>|CkO`L3{A4 zbXN&Rb>;HWMS{CvRJEMhpB-oz78!yxZNVL;*vPivR!?F$v;|`txljtnvv4*@OYk%t zBW*$p4+xz|KAL9-8i@*?Dpv@e#GlG66_3Npq*OfWNu<{fG|vvu{I2|hbt|xk?c!7`XrEoAna1fFG)0Y}pSEH(v4HUL#m zVmLGaW4&xB9l+&qK7yZyTokwz4w5#dg|mcCBq7aB0xwm;V`U3)3I14Sxwr^cCgtLM zPa?e*pt(uV2$hoI`-Lf%%K`Vo0pVsivPq!N^F8>(nR&h&R(77}@FsyK*YDWp`Ykvp z++34Q0)4*UzztyL`*m13Cf^2QxNHOb0l`2*wgLU7js$JM^px9xd^KNM6lnvtdl4;4 zTFR{30N=96sH15EW(#YvIZyzOYy-CPB!)#B;Q6c!5=X)L2t1T+zNFERjWI)Z}`r7f8B5}KLdry|>ei9!PFowUgkU>9ZuyPN^`62W>{m!~y&D`AZm!o1-&5T3fM$GW+yZ9CcYu|h zXMA$#uHRP7lwWwsKIO^2ikEer7c}#|xE0LI=V0ZS%o_~$vS09r3j+z+FT89z zXa)Vk6X~8UTv6Pxo$c=SzF`$^7k&sMtL4qUU6AHQ1}06r@B>qXWV>*cCow$Qg_h$= zF?k5i3>iXx2S-Yq+`^qgCz6$ByU?{|b97 z+lBYxsBm)~X%|`^(2T!}Tfoft+px0pjECEWR?L*FZ}vCqtZyPDl9&+CUpQ$OT3*o1 zZ;V^P%=`wha!lq8#(LQ<_``*PglreSYl?8tF1(uV^1>+bk%Q=2!#oVDw!T=OHS`RN z3`Uw3VUZ~|vPJ0fB!)waFs9+MQab8zHb`@DHXI{uLJLcUP9z_}Swk;T!Bgc9!x!LxF*W9R5FJ>PRsBZ-?Z2ZSw_ zjX(vC2sg(QLmLTknJ(i`XJ)zxD?88h>T>yAo9%DgXZs2`D%@=Q>p-dpbT!~|+yZ9C zFNKw3GHx)I%XYvY77Qe0J22JMk)Rz|C*50%y-y$aN6sAnRd|5aB`s#wXAT=54(%WG z-NR>0<1L$kr#y+_&GkCD1W zDAq%tK2|e4%Ra-MLzdz2nM4048H7@{e4FDBXXbe(tn56`p)-eGxRhV>@%Fhs1`Z1M z*Q}m7jLG*=xB<+3&xe&`@@+7N%QnCt5DX+_8}Ni_fePAytFX(GeI9r#0;W#U#?nUsl}Jc;yH0w(w?0W`a>3q!DWn`HM@I2_#Ut`b@X(B}AW z_@kLQegRf?p5s;J44US7omZ{%yq1tiqK&7&V*f_!i23yQJPCh1GuIPg<(OO>jM;M7 z_Xhz32|4U9H-$DB_Os~@`zwhCFW;3dc4SKBT4WL6(=e^tl2Sjwa{Lbr^z4faJeoe> zNK=YrA28387!G~F$|28{e&7^1H)Ok&ke>k&_RAFUO zNBTX9^!kD|g4YfFA7X=ZCEM2sgDm@l@55o?X4}8np144B{vF%|X3oC_D?88mT5_Nb z{ZN#=|It40kHDef=6xNnFVwn0bN>)-1~d1+gOy`)Z!qY~zQG?f3?yXVaHy#xLEo@) zy008e9Vk_EwT?`8Zc%oiDE=SfE7;k_f3Gd;k6v-S=4;XF_10eA;_AQsKkxc~-t+%_ z;Qi4eSU*D7M|5Xv*-Yb+Tjduo>s&NY>Z;|-rEIaY@n2j2*y$PDwAD8?urxAsH9Ly> z_)2b3u97Qt<$@P4R~Jr%`|iP=@G+}T>?-&5XS-^d{%j@NQ_1%C28yeCim`o0dc)7U zvB6Qw(N1t8gBXl0ifgYc;>fB066^MGEVV!sHWoUO^wrn%YErB}&AK#0{11Iow#7|p zTbH(MDbIqHgJ6v>=Bu@g2v}bbu1-^>2@3~`#au1Z5R5=4>l7E`LZ;=|N`~eX7J2`} z!qMrTbzU_qUZgH%Yx%{wMzLBPnc|!xObRzvgNH*)qJD`}JS^X(uS?#)bY`o8VV+$P zlADF7AW>ar8h6R$Vm|{D<94r7+Xxd$3AwJ6nJeI=1S9%>;(zG>tS^USrOj*M9HA4* zOWj{3iI`8T%BA?@nN{TySUHG|{QX{JD$)4;`r-9CvZ^9g8!HAD7LHA~icBdD^mSxJ zPtlRdRw~(LqNbEfw4OX8yh@^;XqQX|ttZ09hKYfN!a!DCdCD{svaUSgNeqKlW-V<9 zl=?E_?`V=pefbEEnZCZfE_9;x#h+Da-Jo^m1KbQ|o%s)}OzOucmL=RTykCb1KOCvXdt< z4C+fGJ&ONIap{87LyF61;DBi}T$n3#BFU-y-HSO8NK|oDEVwehCLkUp{^;bRtQq`zHZfrqinNbNtcFs&OZ* zOsdB1o%p6G9hw8Eui`d`8v>~}{p{ZBY3+)Vq202K#lzW()7+DkQLOiktJbmHnKS6EyEra3h#`pA0L<>;7*lFwZ*Y_+5!)N2H*Bof z^jaA&PKQ%L#*5S7Fln<{=o31TlmwroY+6nW#>x1TnFV7htV{~VfT@Hm7(P8#1!KOA z6{2ALJKY7*@!o=HPyawQGMl(tc!6~_TEq+sMq}B`Gbuu+reNG<8f;lG?(igrL&0cz ztrU#s;Z%@<@hluBZ8i%J3Y|zwf`ZYsoED6y@h3A2#*?rzDHxBNO2~rY(_>XIZnd#O z6pRx)`zHKawdQ+Uu>w@YH@kwy`kQFfdq>@Xd>G zt0^Vx3zM;iJm5)|lBu4=FeoLHbrDd?${aXFq^#@(hfH5qW(l20dg}hQb~-O;iP;^u zf>~mAft5*#+0j%&mKdKZs}eKC#tKnlZcMktthz8?TavGe!jdm7&Q+qP+0PKZB+;21 zteeW@in+dA$$Pl&99rm~I|Cb=CPw(xl$X;@Qy|OBX`V!Ec}a2EbG4}RN@ckU&Jd|A z--V;4uPhe{ok(Wt{#{v7`)N(N5`R9krhF4tCN|}raFd8!@=Z^}TuwNy~ z`5)lOaC7dDCOR)@=6{b{!OZ+`VP)r;Uq>#5w$1*Ce_Ch%BRD$T>`znHL!+Kh0zSYk zVG{5kSUH9OgJwYX6aFw_AR!k;Pd0U=VTI@?u1t4PbW~P+j4!ghu?GySmNx5aay`Q$ z1C*w9*i{&7IWyVGlNb)I!PRsBe<$7H zf8G9ErAy4}#lC1Y*DY2nbK(fN?$q~(!Y`~&Y0;}6q+41Tbk#Dj(lfGQBlq0*d#2ft zD+}*<60z+;dSl3xm>?((!}@Qai3)y6^39T|LIP{5w7D)!5IWI@VX8OZh;f8YH>Ti* zFzd}^SeewDHB2RBz46(ysyA<$5+2l>JJMag94%gDEzOS1H;xx^Oro;vqpK{TRms5? zEq%)(ylN&K$CzeaR+OVWiP(yg;#%cc&u688oDS!M6p+*4An6N8pU{aUB>48XpQ_-o zGg?!Qlkvwg%f(VynUsqGPa?hHBDjZBm*MM$DcCQLWcXS*AlwXx@8OKe^VRsnnR)&m ztn56`p?f%Wxqiw%*H6Gf;pSSshchPMkKqO|^ZhWa9FuQ@F96Ju=9%VO78!vwEx}sC zTC80TAd)S?Bu^r?B}i}7@Dn4QS9*h8;lz-UV<$LT+T0d46*`g3)ctCrW-l;6b_v_# z1~9A1wy-j(CbLW>WHs?wvZ^K%ZLAP`7!RdeO-5(C%GKV;q~a9e0oLMZDbrUFWK!W- z7U5J=L6(`uTUL<8o#oGxK~8tn56`;Yo!i z*YDZq`W-kZ++34Mg+AYJ;RZ1C{RXTYlW&7DT($xJfM6gYClyswM}kR3J>9iM|BkoD z3*f$2r^>3ryk*LE!wOMhj!AcpG_`qqct@r>(BEIK)EcM0{NHi(E%)O^ zc$26zbG4JC!Cq5snklVp85zM@Q*Dkh4@{CIPq-j?%m#s85 zd%Jquo;1B%_?1NAF*|AMSs56KoHV`5G#j$&+~G+KgQ_znCJ0K&c^*y_DLK!=QPY>4 z2Zc_wFOU4 zC8u1;MVp%q-%h5+Xg~Wp=%P&HN*G~SU{{1&O+T}~uoasM1OUm(GS!n929>3e6zRHB zPv*c$A@yW0I9B?4GE3-0@)CR#A!0tQBD>>{XI7D2U}aK8b~KfcRmA7Ws)|gpu|ial zf2BKLS}AxVT6_|r)E!yZJwrH>M4O`h3<7Y%r1{Er!@dZzno@GQY4Bw!In9%ZEhQyU=_|=aLMM`z;LDLA<7pka5`Q?ej(ihVCUxX8Pa?fd!r;r1 zp@1pbepDEQ{SryG{{V-Do9*zIBSS9Goc|s-ftmB)!phEb9{O@*C}>LFNBrA5?;pXT z;pScaa%9L2n)?rMGnl#m53C%MdxJq=_6`1^VIU#TqMU5%NW%)zH>{HG>|<2pRfb5v zum?=57B&4oFwie}hDAmsO{1`@FxGO;v6Ck;92$i&4VRVL(FJFNj2WMSW28-JVXn}L zsWVzzGRNUhWtNJgVP#S(7I+frwFb>=HE4d%7nWG|1Yd#U!Od^vS`BTM zzl=YdndL9R%FeSKzE*=~`Y!uS-vP&jn`v^bhBn)`;?HMh`zBa9Cff#Mw;cZcp};^w z4*%PmIuZ>3&!@ZDvC`sfG2hr&B_E3ZP&k4WCM|3AeYM-FVx(hyDB3fQdEE3p)4AN)b67&I~Ccr@@iZ7m+@p6Uj>5Z#qLs3!Xir zHMKYye>Ss*EQOUx4H@tx(iPk38S&rI$%on50gBJ z*#05Cfn{xd43t)4S2#^%c-aXKnl{sgO@&Uhl~~ssUi5y@QnNj72eZ^{3oDaSGs{#$ zmKvWdt5P%3#tN~y@oc)KW>RZvQp`0zbyV%mFN%JMNrm*0r%pTFbTK^R(4Ln zdUQGvOTl~g6ubjRh)cl+UeD3a8%n}kxHU`?-hh>3NHAy{War_JGX@fJl2bKxB$(vv zk#6TPx^XXk^ro*J{)5&oEpqlZeR-BehAmBZv7NBiawap|ld$V9l-|LxsTk{JLm5ks zf%8GelB3`tX;WI*Pv}Gv(!A-*OI7gL8Ljot`S@d*<>GKynUssUo=w?11H#R48fW<785BGwgJc&fN5%)-+TE0e<0XDT5JkI$D?;W^mG z3bALhUb-t6Yt+iMtf)G%A6UCh_>)AnnPXIKJnNAAE^amrzbrC0dJ@B+$gHkO z;M9=X@&p_%eQo)*(23R-|E!Pd0WB$y;TAAU%EPcSDJc({O30Gp(_~drZm_XJl$3v` zI|~}s`0PPs_Os6W$<&a&bu|RocJ&O4V5(UPT}v2?HTD5EvVu(VBw{NFYoj%prO+`A zmzA=yE1V5dHgdCKoPqV}p`~~Z=Gk*_C>$a#2OGwm!3w!USvVLshsnYLuyPCw23><} zJp4h%KteVizcVdtLE|xcoH!;tG45dStJP49Io*s(rXqb_#-UM?sLKrtc@qx{R zt_?YJ zpm1|dPF(Br{VUu6X1;$3E63#9U<{XSfIlD@NXRx|j;SL-8*oLs=O$OLH9n+~7bhjN zi?jJ+cA?S}toUEFLTQn!8=hVgAJfQJL#9Q>AWc&+R+x*m$pJ>PDH!ER#5M)#jT?>B zM7&o9k1gTU1is2M*qg!O(q^|XMd(CQQx8rrDIU;Cga2*+OlSun-5f+7OSpTEtPk)_+n8@b4a@w!8d;ikeG&F1{ z`)h=G)2zr!v&fSe29>6jGF>E;s&gKkGE#NwaOkvIFPtoNqE*L#nY?XY18d}5v%U9g}%0&FNsqW^vd4f3%8P}KH5_h z-MlM%{mYh`Uj!G1GOzFbt!YYR`MJ-N7zX9Xzu`<&-bLAgVlC4Of>L?jgwsVT&p+U( z=_}9ELMK{z{Ld1`Ws?-0*Kk9aMdxK$nG~HDO(kT}@!7H}I=`~9LKL0z(rtTIuJ#x6 zqRcGHcGZ-NeYgH7nL4wl(Kf1QSJSKrw3_+Tmcmra`O{{e#4so;tAssQYRNn}C8U-d z3WrKxOLiAJk+jq&dOI><>*>7dVEpOK0&)PXObW<;rV_G%_!LYERt4y68!JQs`rD{fkAJN`P;LAD z_P2#QNtB#@j7m6(#ot*{ zJ)jk(id(>}DE+W9sVIG>60)NBG+9-YgKex36=htyd)4dpif^G8bE2q}8@H4D`#T+( z#o0=p>|5U^TuY+5n9YxTLp?hKGo_Ugnl(!>H=8C!7MdG9iD6J^rnL!#Qgfby6Gm#z z6L948HRsntCz7SQKR;^Y3@ty8;l?n_&%>}XDL)UIO33o#GiFtOZm_XJl%L(xEkCRG zv_C4dPRGbZN{(4WBaDk278&%S!nK6CSj!(^B$1r^%|KOti5=RFwPDUGg2>_<(uz z*7H+@2TAlT+C>)RrXSC;2&kG~WtnNbWer*ENyOHW6kop^>t#c!99O{kAeG~CI7s@+ zagNZ5B&2x;-%C~S*cq+MelEoy%Pbd{z{;dtT;xflcb2kw2EP$1CBqL0Q?Oqg$?*Mf zK)4x>oWa-U`Ck0t%sk%%D?86~_zb=#*YDZq`W-kZ++340`1*Xmg&V-k_ZzTsOuh}q zaM=d<1A>8sJcC~~b);d1Xai15ccpY>w!1s>BHj)o(2}HOtiG3Srv+&Ogk6ylN7Djq zCv3HxM$GmkhC>T5T4X{Q9*%)?L57E;;1FrkS=dkLMAA|B-@tF+6FgK7|MT&OGRwr_ zuretVb3KXlhX3FVe45>}gdvuL|Cw+&xY-TAfv?T+=kZ4~bNpFY*?EpbZ{X8B-)x`f z8{v>}^Q^vsug&!h_~V(mz7AH7$+f|lEr)%75HOIC!~RyLjs(O0X6erUM`jmBZ~1*& z*pC$>En)V`%lW$}AJBz{;ddOzhV0vl|)qbvfP* ze>5}4JHyJ(a~vM_NuE!%&vOY52{+GV*w^Ly1pM*LT=&AtF}XGvv*obw4*~`fa@c>( zbSMgj{ZFSm+aI@}lI`!$mwF;o{vRo%&Yk0Z75p&&&piLneE-h^?~fL<`a#~5-+TG2 ztC+1;bJeXP|D~&3s%7(~T*Z4YHvCVWt$*rV(zGx#>@>T8`uIw2QLd6Jb>)J40)MEW zG`R6TO7)3d<-UIL!c3+=Tgmo_r}hSlKkyWXLvOHJrV))y^PN&J~LZGq=w#mhpu zO12pI`!F0qZTbs87dnxo)wl7Eb`O&1&Zv{kw&E8;&A$oqLEOH!W$3<^@&mAP5W(@q zd{w+GSj+VVF}&YXO0T=vSj^MBuXwe7IO5gCs#vt`%87%@wcc{K+Ek7j8Erebzmvjq zt#FMH65*zDa0xCb`>{Y7+-C~UM{tVkOn5$km4h+t{Z>GIYUBVkct8XGCM+B%7R5Qr z28NNUg=>iqPBedLSDAX$>48z$FWoaSV-6}e#+b-Zwhv6X7SZ|vNepF0-@ZsqYz|}v zS>N`Ae^voVvXJfOCm@yUdUu=N(Xnacp5B?tS8lv}d?#gEmr*Xr*LpQ6>VZ=fxGM`$ zHykl-mJ9QQP9!_^?b{V1KcAgi4+9%zR~}o`z`;`APsd2e+09z*(?z zV4N)VXL=Ip^())xNf8}OE#H+{m@j23%Q9URQ7|*PQms<%U#2v>KNAL9;`38DY}~4G zgfTvC0ziA2+i(Y%MBNN4J11(3wnVi<={0+lUWVhvMd@H$lp>x}hF-)iXEO90tn8ej z_Eo7W76z)hwpD5EQPx#yO(BuQq>A=3)>TOt07}&AxC2b0R)v+F6ScXvDlx{lIrb#& z1&51Ulnyd2N;=0WLA&FIGYQ%SR(4L%##(|RRb6R~D)#7<;W%;8nPZAh#AC`#5x1Dh zOdeKt&Wyh5=*qW(&K36PTn>kei;i*C(K${Dx)e8@Nzf&*atuKRt9gy3IDgsPUnVe+ zkh8>NOj|l>g}*XoWyQ`mR)`a|UmTt4RVHKSl`A!Mi|tkTho=3N)DKKzU9uV&7+Lz# zEKL5*lw-Lt`GO}AyH*vu0AcbSvGxm-YevUaU6NKFZQaeUC?t~T=HC->i=?N%W4nPg z$f&Y3+4M1}E^=*hEN&&U^o{bAWAmNj8&&IT^Br2S3x8~Gd;839i^o*EI7u_Vw{hk} z-Vz38;r22a=!BKY@VB`q5nCM$J~G(8IBXIFORzkbt@Jd0VM_DVEsV5WlFY)P(hds+ z3eBf1pow}-JE!AutC{E=11md6M_GpqYHnvH2x2vtt#tJ^=*g*XcU)l4&$)2CxcnSq z&rjHO3eh>Z=}d^uf|Z>^q)hq=M6~$)%pRVf!g1olvu^_M2$v}|x8Wu;p}84Wb`DKU zhoc{?UbE-rWjI7!UfOQIHfpDsPU(Bw&cIuW%8R(QOjMqOm7Sw9P2b=2HDarDHEWNt z?rPQ)5<@cy+TFacc)n6hR>y5+VzMf%>>QJrVJJM1E40k9r)4iVPTaC$F${%WrqJw; zo6Lk}7g*UjG*k7pMN?WT_OO)U_;6v_&AhZUT&0i{aZ{O)?Onx(BVrI`qOd2Pob%|MdtaT5*qL4_W2NyAmq^3TL4wR8hc2eJh zN)prdhfLNErA+#JH{uyp>pY3h&c0IMA#pgEMY9>B6!^+O_*_h(f zRm}Hi`m(i3ercvuuJkF~yk^hM%W#~y-0X#y8r5A2%!|0WOkkdam4_`bi*t?dkLrL~ zdz^Ixv!;+3ni-8LFd=s-FstL{GJ#nYR(1}IW-b(baak!WbL=_U3l0yruxO6p4K^SJ zUQ#@E$E{@Iu?wv191qO^l*^aO{nboG9G|IVOFe4iQnBZx49AJfi9tP4-KD@3adVl# zdH5 zut(*7I7n%r((sj{axZQx6P0^lW#_1@qp2!O#SJ^^RZ8#KGx81`9WEm~;Ip5c=Ol&W zE!;>Z9B;tN&f(aQ!m+3)(3tR%jZ6pn*&Bbjg<04qC(L$mMW$1PJ*UlI76 zJs+pS0pjvuur=87lOl2wZYL9wC9tw{M5fchrbk@&R~qQcbm#lje&mPtl>7jW5tkCp zxw^roH(^&PC|BX8GC}z+tn3_=sT7pnY&BELmQ+Zdw1?zzI6hoRcEbCSrkfOyM{zTm zfcybgb`HoVC?LUBp!hg+S0&dcu3J-@lCdjVcdny^#L#rEnwMb*D<{NXip&VyUM4ah z{eOi_zNANHTYF??;VEDqVX{D`_nr>1+&ce-P z0&*s->>Loy>_ioVc(U>>I1@Qed9L&1C}f7g*UjFdJ!RLyg&TEx$OYEiP+Lu$~L8E+mF# zE~I&Fe$cs4)LV+ns<^dGTvmdWo#V2$4wrmMsVRHeGqO7z8*WYcB)+neujWe>j9qXO znPBV)D?0~6)1g$mvNiFkfy|;JIa5%!2c!tchzp28hZ1&`f|AEgWrDH@R(1}`dbENx zqenJ-F1N?zQaD0fOm@NRh;)=fatUrI6OxNyW#^D+PP2*I!xk2EVzXy)o}4VW-=33u z;UIB2F*wZ@@s*--4{j?HmAheO=cwrFiH}Nud5O}OykpPFTX2N9oS4*;mZKDsH*iCl zkh~5nJBMTo&7h;a2bS@dWz|i>jaIUr?o1aFLo?kuz+ec9ahn1(4L6$!&^oZPbAU9j zYt+h_Mfsw-j(?~uJDG_59#(dah-QIpake;+ z%ZLpRakxzxXGX1T-L{Sp5<}Cr8Z5AdU8SIW1gDezNo!a+1{8y<)#UAL{uNFJ5}`Zd zOy8-OR=nU{7G`C|Up84uXHk0mJg1xKDW!v3H2Y-Vl}iJ#lMpg8LZ4SI!;#Y_x^TSEiDaq1UF^)g=~VdAxaR+jR=y%`A#;e#d&;pXPx0Eg zaC6j*MCeMjaPlt~MqAzrb}1fF?Ws$e^Z12e>D8XCOAzJ%t@ZKn;Abf(S(o6pGP8dX ztW3te^F4{!(vbM&ap9Z6TEWY9XZys5M{@m2e{{bv&JvV+;Sh0)gCQs_Uul`R2e*|8 z%H6QCb5O#YOHoj?Cv)GiN98RzNL*Cn54^NI(+rrM9xA@K6qYw|YniaT4l6r{WlLT7 zdV=7J7e=aGqCE`u4wM?R(JIz8X1b6_Vh%56h|cu$%-3X~Itcq;eT@_qS}#L+u#L-PZBVy=QC#U)1b9SP33q`FM8`7UlU6Pqhx zW#`z0Pkpz>`)aM+pJ@*8N-y)cJu{EOVd63q|2kvKH{H)9;x7f}54gQdV15rP#{grn z7Au!?{RJKa3Aw1e$h4oAR`@H6R#xn5V}X~X>kDhKc}YO9TvDFuNeqYe#nmzmzcY&lN?o;lS=~vS11BbM^|=*B zb`&lX8y$tc;Am-cTbLzuBAKag6}ODs%w%WOH(KR($8BR)xm{poQss8^B+^?#oSyCO zmTy&x8{)-5+)`IA)0eCDmb=xXffZq$7 zh7mau`31>9LXL-1OdScfH{VY86IkQ-$=0&dYs>m`k&j^gSa^YPt%b6F@E}7`>y1?U zA*|Lvb&9JJvKi0BNafRvN!ObOUye!FdJ?f?Qfwhgew%Zx=qDr_i8?~$DY_5+D4ZxV zH2nb%nl{&kyM<09L3PdNO*C0mzF{o=3@nv~?-6 z499+`B>x}aQPu8t(){m7TN5DvA&&_O|G{l$lJIX>IWSHR0srzOVk<@ByPh*+krBO1 zE#H;NRvXn*na*#%nl(8yg#(wX)+ zeIAY&7pKFM#;I1OD18<;pNY~bu(ETMHXE!ub!AJLMsZRwy3rn^8{lYhF*+m}jGC@f zgs#I)XCibBtn3`2?FU0B_#RQFtK8RL%q`7yYucs1*z@#fICNZ|j!A|mZ5$|Ef5QD> z!u3a3**RR>ap782EN5$4v{ssE-HDGE5<}C8e>z#TLQ$Y#jlsQOf;AFWb`I7igMy{0 zQajqC^hr2W+$wcoLMS!-rtoZo+s%Y$Ygl>s!?P$~TBLT~i|pa)fU=nST%a<^RHN8fP{_W5`@)3m%doO@ z$aZBzHc$$_*Byu1-S(K>1qYCeSvFzJXf!Bjci`SILAw=Jb`IL0eNadl&4lL#SlKx|TMbsF#GCgE%jKeWUboKb*7Lfxgv8Ly>*gg>mm>aC zm?q)&GhvztD?5j2(2W)m%yvsq``Pof4;(daQA%i|MGXN(YERq+CQ`e>%FdD6no*xZ zOD@V9dCeZE6XBR~fjT0w0u>4X#i@ilz{KeUSlKyFgYMgjpJ!gY>!@2GztSG2Z^9Ad z!j#ayUD$n!(q*{$Oq9L`D?3Mt(>V>qvGjX;mVOI|jLTATos;yR!gL>QKNF^3!OG5I z+H$aAu9B+`6l>lgQDuz#z#gUlzyaf;bXYQDT*!M0(!X)*nIQcOR(1~3^f-{TN91O% zVLgHSgpe4T3EVz*?D!5-TsFiFX5z9wtn3_@*uy9C{F3)(s=Dw!-yWR9;b?J-j^*JK z)pd%{T-fBt1+_kQka?*b5x4UQBS9?LbG zu-g=!7jUzg==>E{c8*TF&PQ(dDTQaPHLd4XlZ3?3%&qJ@AL%!RXCiJl6P{IIW#{mG zB5w62w85vKvyVMGd%}U@mYq-8ZBd21rr_*`Tg?P#XIMD~9D{qL zR?)LF)3h^k^OELjthy=H@@lNJJ&D*$l438sN&afAb)$vSPuZTDjNJ%lEch+Un;UO{ z1E)=T;hRDylB9auEs^b@j94szJ zZO`8ua3tKP6di|~&!p&RSlKy6$}Wo19|b?h?tHdK8Qadc$LK3?w73|xJ$i3~k?@~# z^kv+BCP!a_m7R0M>XRBAl}p*8!qQ##EZqS|jLTBeeNr<9l&4#9ADBGd1S>n|iB*?! z`JP^drC04)`WqZAE=x(*rH22MqZe@dnH>EUR(8%2t1gK+im%33RhHIT%X6KnpKFO_l?r7-Pd57VA-xVVKW>G_)%07}wsxC2a*c7~Om zlf;_8U&B3MvUD-5?3|@pOqMG7rI}K>(x+6W-`WFp9~?9;P)8>ZR5J{e zs$b!5Fsb?_tn8dBU$FUw$zJF!9;dIYzg$vbzKD_O1wFV#sA)qvM;4Uy}`tQe&CRUGBEf*K7jrTV8ENzV^f_ZW` z=^n`o03~Tl+yN#@o59M?>k?~^rMkFVSsVC_Jx9mE!Qu{XN$;@;_bEk3W zr+4qL=jm2BWL%z(N_dZ@6$DDuO}GdL=v* z21?amaW|M$Jp(H{r;62ui)G&~wF{rLj`fUgqL3Jx8C}v{xEBCQ(ki$EOp+$R%Fan* zol#kwEp?Mc?>+5N+6|5uw=^YvM#YZ+Woc*J113v5z{(#JmU3ORbt>7jbOIbNXDoRU zpe*&`9xz$T!OG5AV)adnb6vG^MR(rmGJBxD1_zA`RMLG@C=8UUi*YxYR9y%wJEv+6 z=LA6z&RRKBJt4OwQ(e~AmlG$Tx-$L&AY~QdK6}!B1qYH#S}EaK-yor(^!*ZdjY;3n zVP)s^DRJ(HwVE%;uf8@7hwY2 zXzw5R6mB+?ntfqq=hP@4FNuy4zUa31Hr&_nj9YSJgTI8haPSbZ_9*qj5#yqi)D5_53}{u#;XW{VS_msU=c(;{UUx&p*X$v>7!DH` zqNL{YF*ie8h#Sr%=R8>1IXP|jHZ(Uv{K_7jU&2x1f|JzVhW;jqpW}8jxw#WocFxW8 zb~Ac%1H`}Vsre@yBQ7;G=(; z?3|uW+Kp|kOEHvztYdxauKK@lsJQ$j_0`&z^K{gDA2*&!(7Uj*bAsCLXoRl7P#D_M zo}tZz#L&#llGv7AO>|6^gJ7=eD-xIpRLg{<{Y7fveaIm-lCDr$Y+^2odQ@Hs|ik^U#ol~@H zyZP53*Hb8DtuozuRyILM3{6M9D52%WK|(@l8;85Zq-`{;979{KaQU>3j#HPw$5ViGc5sn2o4svlC)hGX9E;+ zp0--Q!;NP$^cz^&IYY{o#(IXzrLL^{(sjoM))f604i}fAwi85{BF}xw(fhdhOpe}# zm7Q~>TpSw5k@#VjYMK75`gxHp?P=OfNF*^Sq=Q=9OZ*LJY6XEZwF&M7lc|kiW#>$7 z9p4&vW`Yu*TiP#f${rtYeQp0)5&~~`-OonE|%FY>5ZY9xHqiTOK zudXrm+C!9sqs4`&?H9GtTI6|8DO!kI&!i{=D?6u%Gp1Ef9LVKPQpdE5?K!#-ju)4s zM8~wie@fDMxcy9$>aenNl34YqmhC!08PtAh&(Y7}XmL48wjMRSrxe|ZThFBEc39at zManmj^`qL7Y=3rXPFklrwR}+> z*rsk|Jz1L~B!*_PmS~sVaGo+W88@EE&>FC^bA~wm(LhP;n~-tsQ}!6`3&)FFjuP#U z0{y z(7U+tOorZum7Oy*v(2HS&_Npoq0Kh7o``KCB!*@p*7kcw+yWHxof5P$Zab5p4Pa&G z1hwmUG-rwy*rRg<93*b_Nu=Y^pCvjBH=4=JA+WM@X4;Kh;o~z(**U|Wozvl9aoI^^ z&|Jo@l1wJhLxQ&)UIpRo*DYFJw4aMVdB!0NY@;9R_I#XY$i8X!^+ONY4-}6 z{*2Hw_TW4P$B7G0+uO0Z-A?S;peJy94RescEQEQI642S| zZYDXa!OG6bX*W_ekEkfC#{1f%vo{Fp!Z3jcaFD=QAQu|nLl_fop|?2SI8TYZ!KuDnt298V(lO10Qqu}p3@Y=5QNs+m0-5m}J0 z_0pu=1SciHA2aFEsB<*%a<3=*^SOHd!!NZ_QkbQ<< zmJB3hw{x{A=h6y)=(DooEE_9CxAW!Esop9)cD|U?=WEL%{mzl_k4if(*7vsQcLoB( zA_J?Y^Z6DYPi^Nzv%NE%?U0uw z@87`fWajxP?qC zehn)RODsyulz#ZX_E@|Rhh`|TC@rH{yo+1N#NusOIR*=Z9#XcU{#a!oA)DboQ%9r~ zeph5=#lbdKh-UcwberJ`dv?|Gi@gtQL>B<}pNSS*?N6dUcaVm-^%)Ji2-y0k&TPoY zNC&2Aj^_x&vAJ!)vuuv{@+4v#r`TaJ`Q~^^^o5?dWSsyfEAUx1$-QvcwD~S95IT_* z)%T<$qc*e3=QYB<2G+{O!W?cbvm7q;lw)(BV$-Y~i4Vmi)K-R@=Zl5umi^I%cwDv3 zGo_&Iu4?G_9Zx~XYr?~MxZO-1>acQPoE(_W_9SAfM&ix1@)lqOoZ#m1o?LN2X`_BA zthA)(=WwjJHKgqa%bE0qT&Mljow(^tfNqDCodcv?p`in)H(TkhF3DGW6^j08Pto7u zfN?2mdm9TzQOkdd(kr<-R-~z$T34hgLIP_Bxh%E4 zjs;^$27tme8FzpQ(;Bd{bC|Y@?S@;Q)F_sFGS%{;T3>dlQkgzwPt(3|$hb7kx9*X3 z5uiBjjeEevX%AT0IZli|sgI6ui|sk8!m;9VlwhCKaGe6wkDJZ}s1H{DH~^#>*1ls8 z(6``NIRL2PItAz(xamxQz78up2T1v1hOW`B=6m|edG(WH57{&HJ2+fihT2}{i?v39 z_Y|Yw;MOxS`ZcWlvA{^%6aCj7qxa!(xxmQxo?`SaZaovDw_#=H7%6wKYO9e5WPfo$ zy%Kt}&8%l?n+S=anW?q?fDc%X0{1CM8{_6PLD~RTb`H|?_<5RU;cC!P?6iG{j5l0K$04$mfS;E7#Ge8!%h zr{GX=={eYbyb3L$Qhc7kEob8M7_96ZpEiAtX5nzc=GIN}I3Y1KO>zQ#j()*#G;T5z zm=$2<;S7vsp>PL#V77x}#4R)l0Ha?ZoQ<2z1ZFE(**P$6&H(8b26OhzEQG_vWv1;7 zK)lu_c0n+MTg}AgSXg;jW20RNywDz-^WZS0iA~%BU>&!biOt!tvU6;di(JCf@W!6H zX5sJW_T1bF$BD~L+go^<3_Taa2j1@LxQX zc?^G)ClPxTJN7_r^2hKeMb`;5DcTZFQQ)pTfxj6XF>RI$Q-n_R1it3V26+PC&!=)u zFYqw1QJ%Zs1h5W$qpSp4?TNe^PXs>Kr_&=J~K|JvjTRclWxN(Ls(Gr-`;XrZg zMB6!iTVR5tyuQnH)$lajWF|Ey!^+O7QBJXHsmatT*;2K?Tvb1s`(t~4u7^X$<)`gO zQ~3Ny=P60o;>I&cx*Aq?PSW7@XSP~@p0VfWDL7DEeiErav%4uZPv9mqsd)@mc23RU z^=Eds{0S;srxUic9>2y332bJ-Fu{>;WrW>T{itn8ec!Rya9@%1NX&(A_QWL$m{sXt-oY5mFI#xqGe7FHhS zBz5QdYrWzX)m)}AEg_xIh4v(!2Zt;*l2qp@Np;+KCP`<*%FanrPLU~dvhGT`zdTS= zTA`oY19T@GDK0?!wL1sInTiEIQ*Lg@ZDw+F3#{y%8|4*3JvU?#=qf41Gk#V&aSYsb9UO#+Kc&8E?ZGrovJ-J{cxbT;8@SveV1vc(}$bP zq^1BXJEvwd{jO;94wq`JFEh~Jovo=G7T>Z*=NoXexahQfPlwa%6s6ykpReO~Gx_-{ ztn8ehZQAnFH&CqQGrhTNcP3k_LdKyWZYq)dR`o@wk7Av|r_4By3Oje$Sm4`PgWO6ilmi6Rl4Iwc!lOx-@qMIMBhFi;I zWo1~|IV<{EwDzpc-u9sE0SAa%RE%fQac69H#Z6^WvJ!!2eq^9xwnIWzi` zeC>{iCt2*tiH8pX6&707}%GxC2b0{sAk;5M^-dn!LEpzs|`(Lf+=Hf$7x> z(hC0uF)J%Z*jOR1j~kip_uR+N6Q}pPdh?~8<>7m(_L_~(KDED>`kX;-kjqvo*=6)g z?%w~ov)VE(ay^;m8}7RcbFrCjz_7eLZWm7?_CB%LOQMp$JZ_E5o{gw1$k%%H$;rXV z3A~ke$1Q{drp<5RFrgDkPJKH%q$=6$)cF@!C~uC-;1)6q-m#u?Y^GDZIc}OJ5~0h~ z!avCKgwdAwfYtGcYWF^A&NUknjGTu&CD}h4x0RXwFT%=!adM#ff+rDM5fZ;PZmJHG zY^8^Ov-VD5nI$E+!|~x(hFy#*L#OX3?TBu{4P_$o6IglpB9d2Mi+RN!k(c23q<~1i zL=kx&H&$=g`hku`(_){=1{(X1(RMjKH_JXa|utKp_H zF+-WnR9wJtcd<0pe1!tJ!E1cuFDJ6}OZL$xg7cb4b?J)e>DH z>9%;tl7<&18`^nxDeIE$t7ZzMst+O)g|yWFbJaN^_ej$8weCW=|q^ z?jAcQOMaDRO<4lt67&q5px}2a*J+-DL#EAf;Wt7jlAijGam6o`(a=gw*vG(1xmNQ8 zZY8tyJ?1IL<~zl;n)S8$4y|E?S8K*?Yu!JO77|JH&ouLzjds6(9yIeIZwUh{;Px^Z z_#aFc8U8->F`9fpN5`h8FF$qp%)*7!Iy!o9DO@D}9Jf626`N3h6#C(GW*4d-Lf_6F zl-YRTwaa=Gl-L$}a8QJ&w1wUZx0H#<7O=8&L_&*t5k$JmDkBT+8Ogx$;SM9QlW_(k z!c_{%vAC&BNInfKJBK7R8CN0cRVL%-*;7)71H`2yc7uRNNiW6ZY}{5RCSQb=onsO= z+;pqAso!Z2$?b4>xRBTkH{F`cLvO(?Wg_wuSlKxuah0UhQ&bm!U$KYeB{)D_NNg%e z!&h2Kp2uxvV)87k>>QK0uB1x#ktT0vJ;hl=NDR#s$EGV0u2M)=!%byEvNEjf9Fn+N zA|j`DC41XbvIiWXG-^r1SBlB5xUEb~c7m0iV-ic4o9^Ctq5e ztEiv!+4z&zlb{WR#L!HFG&d5V)c8(QaMr_(W`eUWtn3_|&Dw)g%q^;As=fI|Dm;hT z!*d86EpExtyi|$8BORvz9f%vw1ZaO)**QQPwg;%JeqG}hp@79NMg34>8Y04_Ka*bWQ|o7yVbKTx7(9)3mhRXDSMbtoqcC1 zC_llCWrFe}SlKx!F?)@<69=+t2m6veC(pwH;&NiK*Xa35F?klZm5IsIu(ESZVp`Z- zWsx$?Sz`z5Y0hdwVrZs07A>sslp?Y+ZYdLy6=CIJi^$S`1(7}M5!n?E54VokAhNWd zBC->1DHDS^x&p4A?b#dokJ4Wku2@+ zo268euiI1dRX9LgN^ClkhOZQp<+!a(OfG3{(+m!gyuC^**P>ZeafOf z^2WyoJ6cb7))Nv#Gu^T1QyQ*PNY=$oWkRwxtn3_;m??2jm%0*rh&>|*!r|c-6pQ(e z@RTC5KW-@#kvXukb3|em?0YJ?Y%QmrU^>|zlcjKoxR_Wh*azNHR0eQsnW$7?W#_1T zLf@wZ!OQ5@W3RRc=6i6UxWMdZ-l#-;rr3NNx0#8}6|k~%Y+^cQnmITkI+M2^=0SB^IkG!c&UKk8n$wi2M*%c8*BQT&I|; zs<#6^Z_miHaD2FoSj=@Au2M*z#!Y2H@+7S69Fmy#1{;ynE~2cqv-NCeWg#&%J*>rh zgVJFN%!;_dOkl>s%Fcm_8+gj<0?MxTr0fKThg(!^2A;BJ{bYOGQYIqX!phDOiJ1}? z%RRHUR=SgdJtRGFfVhxY%ym3pX(j2#ZDnGTg_VahCh8H$ui9g>91c)Qm}m|`UVz)m z#N=F9**PY0ZEU$mJp}oG_LTerjt`d-n>JRsN^8l_a8sF({1jGp4#@`kC3{hZv)$d| z5UDckylGF$Kj0v7NwN60Ld#!@%WJs3Ok7@um7U`fH|uHQqE?pmcCnuItScmj->j$Q zFa>69++Zd!Yr@LTfr+{5Lj2zHUD=}MQn&-{iP;|x6Su-xTy+uhm?AR=x0s2{Ua<0T zN2XL(@A6t|kIVoZrWBD89#dp0xW!Cl%CNF?Wa5V$oVqO!%V)>EWSg~ZTIk!(=$ zy``wkz^!GXvJtH89F>?OlYIllTE4%yOj&;Uv^^_F!ZG5O6^kR2O?N3Q^Kf&SupA02 zJBKBv%@wD^GPQE1L`I=6+T-#CI7(bxEZSV@Fa_pwxWPMFwb!oawVfi6$E)$j?z{<{HiP;Jes}I@(EzjE1@-!SIE-e;Y0WE(i zE>Gh2GI4nvR(6g{Ol|2eSM!?Mvhr@$UG9oPVraTti`vq3m%=g@HuY7ho6L}6p?LlOPPqwf|Z>k60^P{E*zaLuHsZM>9NP88x9c{ z6N^c6;4MWZi(AV?<#<@xIVv$HTQskFEVt+60ysWgPApEgG+d>SoQs>vgybAp**PRJ zljTaTE8kx!i_K@Hr2N7jm7l>;;-X?PS(Xk{V19}l%mn5(SlKx+G4r2Ft}mM}b(3o} z{$bC{YjBXbyjaYCTK-a8UdHWZ;_@P_>>QVv!`hYd0Qu12y1QFXe%2NeLo@lYIIQjY zN->aenNOk#SKYQ9JP5cB@_l+1zS!!0Nly-LGX3dvr$sZ2XzV# z_L#f}M~I7w#Z?);vlNtfaATREyag*e2PI~Qr#i5(R>^j$r?5BO!+Mf4Lr4tGB*$Wh zr|B+*Wh2~NCM?roW#_QOw6HaDOVg3|oXms6!!0QmEv)dAB628hDHD-{VP)rt#I&#? zaB2(t1$#z52girYh(!zAaFs%GDsCzhl9OO%=a9rKtBDb(|0HEH{3Clxeh3GMONqs@ zn&&IU z(U^EZN5`h8FK@*1LJ^(bTM8G6KO&@)WBy@gVQS336gG(ahf9QHeM0D?u*=U}-gu^; zkooY>Oj}XwbGyr3)vda-wQQ!Vn5|ZG%75u9muh1BHdomyzj#?^`2SyL>z_Jv#av&m zR9lj-=9br2%$B-(%au~LFSoq+mVl&Rv@kf_l;`_e5_3I?bh5D9^q5q8>6wz*yBVJa z`C4yWvX;Wh3c~hW%jW?&Y}$Mmx`j?8MRm<-D{W>w<9#JbuHe=(%VF75j?Mkd*q@-m zFR*>?H;Ro%XC}L_E0gc*FGhZ{-xj7<7a9~mNx>C(T*u{0;u9t%aop*w`j|>?(Lg1? zTtmTu^uBhGf{@pQhs$xhnLJzyD+k8Of$0)YB0X?6X#-BRCSEM*68xw)r9LQ(w1npY zI8@vca&Q9hNY80^bw6%76Q6rwW#{lC1OaMPIp zy#*^f2WV3sKGlYpKszcb1>au^c`X@;>`xa~}YI$>q!2yHd^WPV}Z+nLea72ItPQWg#w7o_>g zP3c1spcUzO+yf>~$H2=KL`}6b8sh^P@M%U zJBR9%e5i`KMYT+|H@`?d9sM(Vuzm_hjtkbY$%7>WLE*X$cZ3Po&9Jg_xZ<~^J2Sza zQnUP%Yph?hhw5cGVqB<>NFFNPwbn1<4lrSQ4pw#!)AsyIRmu1C>Pywy`&iHL))W#$ zGs8PBd8$H@ptWjs+!H2VtHR38@dBE4dV~5Ld#v_?L&hyuL(r^iZ&cqM_kfAhF0it5 zoES@(UAeq^Pfx|3qcR*TE=LJ2VK!W+^{9xO&IBkAD?0~>v5iYll3ZcW&*gBaxcnrz zjjKIKaw%>(6Q4_9W#{;C>QA|p-O~;LALNpClb`B9^J2xk8_)xp)dG-t)3I~f@i4xq4^L(cW z9gN$~MCbrm**QXtb~;yCqzq-Bvj^x@I8&=tp}frd12IF9q3 zF*s8B>LT$K->Ox}J&)o7=;X6fWRor$a zLMy?_&JkklqUEcaPsHtI&(Q90w76v`!Cf@pc?!`kxbaMgc7&CkL&VquDR%WKRj6!F zP!SFlm!Jfs(QE4<@Wqs3df4ePl6|k8m?1-F2PM_ z0(23q>>MD*+aQf7YUlX(+hcSu95F6N3BC;?13+QA2X}x8)7`MLbC@`TSy}zE@;mkv zy#%W#{-XruD^g&#bMLZfK+Zt>Vgr?!P zGZ9(`R{ppk)UP0Ps69dl!@=U#pafTj8VG5Qg&cs}&O~TGSlKy3oR+%Wqux?;sy#s` z!Li~Jlw?aST&Fc?32r(Qpc<^~9H1=+-{ug%!)$kVjvP+=fjvc6!2#n^G%vY*j+Xxv zrSIbQGf}z{R(6gOaeJ5^g+s=LDZ%$&LlK}j{Q>uYiPP_4<&P6i zrLuaV$f!?Qx7j0v#L%?aLx7Wr0LAGeIO%mJP9MO^&T-uCPtr!l|L33i34jCqucB;x)~0a3ygg4DMmNq z)-y4>0akX75#!`z-$1dJ?=LP>RwiGx=jb^&UR;h6Jo(skpMvxk+rvCi`65vs~=!JeOpyX49)Z{L6Dm6Q;=4|&1Zr%9#(b^5@V54On|l9{=3_gvRT{zYqXEr^YaHdR$P7(tv@BrMcBW`O=kl1TUhyH z0nmx$V{0Q0vhJimf@9?ZAmKW#Kp)_yGXeS!tn3^h#>@LvaeHw^-A3!QM`&{)F*K90 z1Yh3wou?4Z#EoY{^a)tmIYf*NkLtj}S|!`19;Q9U9;2h+cyTLHf*T%9_bEv8ar2oV z9S$oy2Z_;6i%Wm;`4djawa~Xg_WJ-!)T`)Uxrrrx!Ind z8{t@S`AM*y)_)ZH2HbQeK-a;_&H-X9DT-07|0IQ==j;jk3mhyiK?yD?dcM;d^k>|5 zCPIILl|LQ`4V1bRgjPM+dP=sEkQkbNI#Gm#?-Zf&xa~}Y#=y$X5n^10U8{&N>aW7y z#h#=c;h1rYQG!=theJSt`XufG6R2%qW#>SxAO9wHcAX5#W0SlKx))7#)eKkIpkJuer*G2-&FZvwn%zvp>AZZZ>?ufWRAf!UxvFzSTs z9(!W$hJ(ZJ(QI7Yh1<+T<_=idIWp~rq;B=d#vAs)ybgzm3rrG2Qg=5Ul3v9v zX5#WUSlKx)?J7*Er>O2uOgqGSHnonB7@FBs5*4Q5Geu@C+-4>+lVD}%$h7NX=$VWI z?1|YAjuE%SB+E8_$GjF0AYvqBd`hHse^#EvjXzz4=AzslYSsLHax#F)m06 zyfsP#KwWyhko_)$bezI-9d0-io@-!b z=kWYL?#??-lB#O|L(W+cB7ASfaTGJ?R6K@cPe zf}(&Z2$BUsP*6}51r$MeK@>$%pv&TRrEg)75w8#~<&0bme)^dFtEe=6l=R zs5$0g$r~6nm!jXxDf%sJ8JD6C-1cj5fa3IPJOd_9zk-#m~bj zOq-Q*x*4Zm&Py7$h|5a{R?3ZgaZbV`X5w-JtZW^ZcJ-xD)@KVZmh$tQTEvZ*2_3b!cm-F&9 z*ds149T+XuQl|CgDm-K+Fqgy1)`4l)gPB*%P172rpUH{&DQps#m`?OyYB^J6euBr$ zMCLJAc_JgzpDmDe%m2uc`4?*+r&kt1B(WYtSL6%#G__na}%s=9h)}yYc&iszO?pRIXu6H&Emq-fy2N3oB1-Wb)+Z;;+h)`3h`OSCLUUQ)Ir3$IL|LOR%zaWZLYb z@yco_rSFOOk(`+y!Y*-{>A*gkdeRh{@8dx;p}7lIwhm33*_v!Rr>#N#MNZ70VT-uL zbYQkdWlVATBOWmmmseqB>$tQTGiBYfegWvG4;PP_KBXik?3k&RG6iM@JY*&?%fiam zfoXHzvgV#~l4fr?HhaQOam!2x&RYhFQ+Rg6182gsGpuYKo_38>L7$*GSx!wJwunnj zCmN@MVSZ)~9x)S_L0H*3E^UU{*}}lIEw$dv*W|!l1)IbLrUS!lKWAEDF2`eLB6A6> zJkgOUYRLRlj?7PBle&zIVWa0`c+5;>9)^{zBh#)6To}+ddj3mJ%s*g{xWsf|*+3N; z!$!});UP1Dc@I{$4$Owp%Ld9lCzDZ|Wwko9;Su72(|SrGnSs**@^yn|-n4mI8;_fb z&Kj_?b#&T|p2pD8E6!nZb`F7^;#QnajGmf_Q+N)<182gsAFOO0o;KHusNbKLcCv=M z`#vY9=d-X?TzWcicV8%TiqCvJawa~*u<~TUCtuL-Tl(TzWdwbTtyE@H~$P&V=VVSlK!}jHZj;jJ4>I;!g8I zN+Ov~a|fF)ynHYdrk zIRUnb+g^17n|jt1n`7~)nb;f!D_h5=&9=~7HCyqD+4QtM%S{Kig^s07 z!TAy%HWQpL!phdcY12hkyWLWiLMl&MsvpYH`9ACv7o84tk%Po3Ja^%NGvT=tR<;gL zo2rv{2b_vGtZzpDvmBj2!ai})=|I&POPhl8DjqfyoL69F>)^Cmj!?52#tk{2I!ZjU zT0u!9GqUQyazrz4iq5il+)Q+qf|aeK)28MW3uVtxbM};zvm5MF7i-Q~+7z6f@vxcT z>;NlU2dB+Ou3}-X);rG2nVADy#AT)f8@W`*6qi9fVkRywtZW^ZHUn{WiR@PDT2&31 ztK`UB4%@^m!HU)c?|Z5%S;D$=G0QAz&wnH z%mn5^SlK!-Z3f^aH|-Tm1+_@7m70IZvH2V96c?Kg48ViLDLn7tfivNG2UfNYPn&U6 z$;~-lK0~f9S?_4^IBIPrF=5A1&Acf(Yv6G+(OC^vwvJAljq0UBHLqWibch_A17VZ6 zC8q-$)%~0)GW+2%Gm+T`R<@2zo4!ri8^~*o)Mw?y%!fVV64QacO)X^#%rG7@6PPlr zY#o?3LvD5DgvQG^<-FVkTg2t114C|=F~#KuJYps;*TKrxacNs$^7>;xzmoIvJnRvd zmyXnzyy3B*=kSo3z&ryhPiSCHCJ#CG^g77?m=uFdxI8b%Y7bN3gPW zVA@Ri)hzO8sEJaQ&J zi^Iy+@!2B!+JVMTuz3n!KSI8n9HO0J!?-1Aw*2}5l0U6PJK*s%QQ8((o&+cb+qSit zxD_cit{6@{NRp)X!M3=x;aUtqlqh{W*a}gdn6Q2uU zW$XB~*@0ZH_EkzwTECItF*!RA!#;7@>AT!FJVomkA1EhgKiDL0h3UYSEcW_6Ukr(l795kv`Vx*LibLd494LvR+BbCbqRNdG_V4N0AkkQ+T~wD$k5{w>~ze`&^_$;kehLb^OP<5Zkf zI_s3nuJ#|&g?vSwFmOv#z2W)2;s0H4^RIeK_4ryY6B@jy!Oug@kN<95iht6Sc-xog zj`zE*6Y+ulkMgP3NpHg^`qc5_zWNGEq7!}f9;MUrbw;*tH@98?p1sBl$yZ$#kC9pR zmhzP&KlYT!Us{YGTKkW^mdT3Vl+%|^dAVY?<(Ijein`nvqr|<|q?PzN6Q3YTUfafT+rZbx%M)oJS7(%~5d*sTqXbGBycA zl$y2|U$iL}y(yYE?KZi1+)RG@U}fw4X!|(o%}Ue9n%C+oKW)5rxtyI#V5hk3v>oDe z*lFZUxw#0BnaRxsu(EY-Hg8*Z>OQCPg;I`Gp2y_$JPiBArKjzZ7nhzwu8}!q=s`Sk zCPVkb%GMdu_Hi8M_v%|}k8-k__xcq^S_%4_9HRGN!?+N&9ryzfHBzS(y@Q9&r06YJ z**Zn-Td?wAwZETiqhI?3aqnjhC6UZfN!)@pa;Ds@hR4k0W))c3Iyc&>oksPE?lB)I zXJ$XxC2q-?9(SA-%9rx84<0X*m+7#wbzaP4@>)5kJ>>avR)%4RxUB3Rmz74Yl#?OHnJyt9Ud{0nQLHW z>&$33?zA#v?g2k9hvqrhC@wT@cV;l4iR}44gNMwd<|$a&IyL4N$=u`ZIZ@o>{TOzL zi%aYlDYB>g5gsd(lMi9#2u@8J#7s(C;s3?9UDV3Kq{tZbd6jmIa6 zg7h~zNbkW`aX~sV0g#Lwy@RK~SeSn~37w7Rr*N?e!LP!d>o zl8e&`3E&hsL95ehcqUA$R)LkRQ?>c{)v4yC;q1_Xa;El!{o*opTtZBl4;1Z#=fNau zI;?D+s7=Nvs`i$-zUyed9H(K}EG|w*CxDZ00Qy;aufUGkq$+TNQuQ*P36rXqU}fu6 zZ83hoyfRpF%Y%iiJ_)s~BOd21r6iK+l_#;kplJkUYH>UfCR2;R%GR0M24G4J_zcrg zJIm490rrhsuhIz&_?l=n{Gfzwi|4~6Y%5qfg0L97DT57}^_^ESB!Yc3eg49C@|shKj*tz6lgsf$n4DY!E0bb(QCx|j*wtyB zT*Yp!pjDr)F2%0xQI6cA{Gzf*xL5E6*kx{|Gd!1K*rJ?nRL&*O zs=Ovg>i4j7T%`Is+U6PUposkzPlt)vuVH2Dh;0ia=H<0EaJjU2*tfKjNT!$WButoR zc+_VJJR2rpi^9s253q7ozfo})Ibb`&#&Jtn!hk6^Xa(C2&xQ%u*06E}U@_)CgXz=y zL|6<7_F7TLCpwlW7P9k)$&IpAIl3kIlW@`97ORbo3@MHUJVGXpSy-9i*!4xjwSyLQ z@7h}umH9Pn1nn6E0fal zx}7b;m(b5VT;nd1<8cA*FSFyu+vNq}5wd}RGJ+?<1m#>s3H|socm$FxD|(YSq+BNm=AQO;RkpgOrq|Am8}yM+N2dpRL;>?tlyE- z^cL(DmnPoPSdb>=0VU}TJO?I8ufxidgCw%5U*f4HkN}}h~G=f&AJ@7=BOzjFQTW5;V&Z&b5 zLmEzHIZj2`D=tn+RHvE;l%yP<1Cyj7SlK#Bj6Qg}P@J#sWYhOJTqmdL8rUx`O-b~@ z$9$kfU5V$xBS{jJ7kW6 zm929Wx_&g0qin&cq>6>PWajA(IZwC2mT`IF9pVCc3ap@9-GZmWLu7KE>KDI!D}8+l75Njz$EDxu=3;}si5D%w)lX!1HOooNTvgx3`vCyC22uC z2PR3MOg@rATZ$vwx{`WsQ|o?jD@SQ7{4+3jrtr2DgRNZ61j^D>JP9UCo5RZ1s}f^I ze4ylHJhdxM!>Lb>QwsKr+r}j^BR=K>CF*!Q4<=E^z{=K%VpONW`Ne{c(*<&zMqsnJ zI3-b?d=n^3=i*5)Svnh5w$2h`-qI_Zw#?lxr|AczT12&6GQxdhwH-WPBI-UfRr9Z&R)>&fA3}oGs-U(l2P&}SnNl8qe z@m$RVO49Op4os4kft9V3wCVVJ2(qTdx#@D2_JG~umZf77Se&c7Kxx_)&w@$QPO!3d znizE{SIFqQ28wc)aQOuqCQ}c= z%GQ};%n#J|^7fGjyFZi@^#N=bm#8G>2O2g|p5DjPVDj`XtZbbpM&GII<@J3{8+hU| z-MUI*@{H+f9#E3j!gFAfv^uP8ousYDAJdhKj(Sg~e}1as)~@l?mRDxUp*k40ja#93 z*LGs7b($TNuLJOOn0(EIm96u|n8}=%Eey=ps5)Iv)v2&qT&j|o$@ER2EX~7{V6s$& zm94YHX!TBUEBe;(+vF(S0(-?pDTx__ng^7m8}S^NBwY_HN01cbI-cN0pZb+7F(lYm zad!TKvNeOocV9Q}mYi(l{fmE;Q~WCYowyY5&zeIWsHYgZ$;Xs*gN@+s#aHmKnc%+c zD^G-5d_ud+4W5Lqt_k1Zv+R(#JHM2YNTxe~c;}D^rBC2k98Z7=$0D#YscH-Q65YGG zCv?@FiK3F5siyTidv;ba3h(UM0d|U8S7vn(qI&kUUECIro=MPFuyO=JF&ed?U91f`!+W9l_Oimik#q+;V;D{n0GVr*p9t&xNS5hP6}Wi51onc9A7!Ib?jbQ z3k@NSG=$oRaP#;zITu&q=5}-&F`J8!1%!~x@g$gpTmmbT0(VhdiJ-vMIh|YuZuOw! zzhBN7h`z-0MdgpMd42)5m|NWTVKvWQEx}M>qX`pae~yRDMD}OC@&qVq8@3@J^lJ_m zv<2pfS@<7rEVG~;+8Gu?sS_&xg9p!~;$N^bDP;eMD-jg3I-8TLkcF;TKhT-4-kp!^ zrtKuBcY7s~%xIN&#d_AyFjUG6DHCe9!GmT}JIz;)tYuxigg7+tq?Uw!(&1{Bk@Mi- z)-tOZ?|Nzm5254<87Jc5Gs!p(RwniAXkVgxo&3=IrUrzZj8m+5!*0qM9#ALa3)yM< z`O^zkyuyys`LJu;juLO{4F@NK5p+u9JUkI5Sm(gXlMSq`bg&+fgLNP5+5`Y=E5qsL zd+|h=VBHNXPZqG$g#&)YB4E8O2kTAPHH%;cM$n4&Cp-}*Sg*m#*1-zRcbS^Ps1|V5 zthfbSSxF?*!Jf?;9WKHB*VxX6y<)a3(mH!pajJoPHggr{&;03A=hTE&P_`;)2G$v?|Ar3i2e#ITZgE9v(-VX++r%wA2X(B&Q_Gy9a}XXm z6P^8GwC=osht7oO=diMMctSU@ z7{*#&UR{+@EM%REe)?dsytuo(u#!loyUaVn!a^u8fP%CDo&Xc1|4lxS+OK_$Eg_QK zAKS<|nudP{=4PVKEm{QmQ;d4?_?Z}O1}j^yM?8$k+Lt58=tS5oZj07=j7)1^$Kmla zF*+Jno+KENwXgH#7@Y^3We+3M+SfUF{7j6_f|adf6uSM%&^xLX^=jU@sqsEJNcX~a zaX~twV{<}b2WZ1~H=Y3#rSHPZ)=>&QgJ3|Ze#SL5*UM)LbG7-!H{~q-3HFQ267MZC zPFK6d0t(Y>cnVCIeh({KhpGJ>b&1Xvty~Zf*H%;#$qd&zH%DE|oT9TF9yt@8rD0|3 z=(L|Lsu`%y7VRZxXLr~qZvE-pY>}Tjg=ZH$bS6AI!phd+3Ei-2XvE4{ueL64Zp8|6 zin6d_T#9&?IdNLCRu3pn9-ader+!%3I!^7Iv2ukh(qAoy=nB{-E<~Mc#%h^UbS}js zXQFd4tQ>((j3cnYDcbs}$QTk9?>h+-?B!jjv}bm}?JGHvhiQK)C-@ie*Wwb)EQ5Zc zDW{%k_)u-60}Wh)tHGYdb6~Rkw68o7&enz-%P40;r%b~~Y(J4x@?YFx=B&8Gn?8Uk z33)+y`8S>olb3(O%B1%F-IwUziCY#}PG+c}mhZH=gw2cMao{FOBAIbuDk-oUUeG3W zBRm%-R_nvc*0Bm*D1BgLz3Ou+=|MM>Dpcts3dhLdIuf>x+qSt$!PVjjMQk>n5fiaP zVP)%xg?Af7B9<=X^)pFl%gH(uc8g0E^Ns+#J**i)f%-h22otE&U}ft-aeAM<8P6H$ zS9@5rw(xs$sJ;U`#)aynq{`Kp85FGB@no1_-3lvP2P?b}A+l0s$Q#3dkTdl=*eotn zyeF%(c%f20P@H~)=fTA3MOb-q;N*JxnWkk<7I)W|R1(Q_*Av4@`9N`649|m!)55T_ zb)2>fZTXF?PRho?RHdZmtO!&Q}IDjLTPIQwJogt4?il0>_XT+E@Zi+ikQ(Eiro2lW=!PHgO#l#w<8C+LDgg`)(WMJ`oFnC&LtD5 z56OXh05*>c+?=Fj~KYs^cz^NJd9 z)p3Cvm$MS=8J9EOleRIYUjsWRTm?KGCR|xq**aXT)uLP>4m|$H2D_aL^DywQ$vlY)k*0XZ5o`x;sl9kwIuiTg$6s;%mY?x?04l7$n zYa2dVV?S1{QT(r*uYbe7arx>`Y7|-LYs?Y~*+21=n2`M)R-PP?6`fLTw!%DBu}N7x znA}K7Br}*y46;^BC}iv7DKQ~i2UfNY8LRhI8&URWJ-uUpq#Uo=uw&dBmRRp=%nS`XaapNC!J!j(y?feaf$0Xq#(hzZy! zu(EZ)SUaODrD{H{F3QT(X2rBF*mvZF-45HvB`mR>(JhWp#BRkiVj^}ktZW@I*79Vf zl4{KLR0^s3?^grucXH5v1DnSMEwSZEgD(`f7xBE9xV-=?TgNSY8%cDNXFA%BSYzp1L7`e0PlXB90rz zcFTN1VtgJ#$rCaL@bH;rWME}d&m3Q(d*^J!XFw=IgVjE@Ni3`WLhFNFslpUKXnPrK z7PqP}@1kT-6y#5v#Zf$dCPo*+%GNR3Ff@ZtF`AQ2WxQbxp(o@BJqjDeMd%P-CyRkl zJ$H)FLwM{=d>(+6t>e?aA`>FlBD-PL%^S4>pVo6!T6k zMsKOr1Bz1>&w+_k30Ag_Q~O4*TGDuRIYZJVQ%5QO1O3{=(CqOAU+r_=_uvWcv8LB^{8EkP(EH zMetOZtSksClbZKQ9k*5X@9Ej(jM39Zrwm=B4#y1MGjy@~L!E6{BkC{Kjrxn-)`^h1 zR4I;xn$bw8oN}sMyJo`GcRlPN=W1KnGH&JJ-2i}c6?j1#)2;Aam|#tXm92xdZ7?a? z2CQ-+?fD1GQsuOxZ`*R^c=f@?aq;49s=@JUb%a8e!ZTt*c08SJMj$)(D;p6RdM#Oz+nH0MCU9);+ND zqyme)UiXe1thZpxCI(ohm+aoab76w@I;?CRtZ9t?R=SX_=JKjD@1*Bw3(~926%P?t zQ4+}v5qW16(Y{vL4cZ*8glEHqYk64NI$WX6%aNUVb(yi+9iQqi6>_Pvdvevyr}gV1 z_K`z29X5|!zj)W(;E+*QC~SM+SutVT6;`$mTj)*BNZ2yvV%F2|iYv?UD#CVg@#0;k zisDuGfdZAo^I!rs1S?MxpbU-Tb#kDtf$g#lRLutp)RlN1OrS1h2ncJah1j z9H^&YyX*p0_kjZS1fB;Is7GOC>p+DLxJEX4{hr!w6LHn^M{=${gk9ru#k&>>ZTVX4 zpm=?Nr^CeSeOTE#UYwP~+WQ&m#Gy7U+<2aNSh#_bNM=~byFw5Kt8N5EYF#`LCQ@s` z%GQzMbkb|rJY-86QHRTkng!d%Emg^M((67@pbp0KU;=djtUPIes_Ki-XUKs%9k$Cp zP*uarQK#a0FoBu}D_aLDbhs66yfpCkbT%gtI7CZ|kOgF;H z)?s37O6whTonf!6w#jHM-pg{LUVTDHfAgFqypqf@ttj@(#VPbVQtZW^t(5b@6QC_Yv>^k#2{Th$^#gPu)vPGz zEC<`h$tJ%S+$aKvW5IW$}oa_O3v96ux(t<5~^n{eo(+3#q(hT_7JRW9k9^Dt&t68 zsZiNbpFjOj&eaF7TU@S=O{AUlZJ;>4kEg-J>0MaaI!@a$y8Hf>Kb66fTOL%SNiRR3 zb@ewmRXm_vS4ku@pyWN{gid-9ODJY*;VCgOTOC%mju~g;Ohr8otdTWKPS(M&S=^$P z%*L6T3lydU@GO`x&4iV$!xVbmFtQ1(*%;l)I$h4ysjzQcu6U0(p%qIrgd#Q%Pl$}gwVBG?{#RV&wUY2hI#py;o4JJ<4!^+li;@l~tZo|r@PH{^G zeNFKtIa9xcE#oqk%$+iU7Zj{t;JGltdKOl;4i;y#pK;oBk?2H|{tGKx2Wor9c(9uH)Kv^AbvZ-XO;;=4u-`!=`P@DLGun!*+3-!(=K~-3JQPF?b$KppJx9eNCmI1;**I($9%dvX}w!JTEEz2H6O zG%gIG)Cm@E;lVSpcmq}@mF#t2qI+)=hW4IPe)^nBdN5TpTbq1e<23OQaWy58%n)%_ zXX;6BkUi~Qt%66-WN0N=d15m(P%2c5CWiKtGqexv6}L_56hlGwl%eT(^h}2KfR(K? z6dLou?Br0Za}xFGSK*&QFGaQ>8|Yw-A)99;=3PjHU5isa}yIY-aHZgribQ2vyo zr||fh96bRmPjHUvT_aOH`dH4*5^ekMmBz{(LE#h5S(=A7!&2r(oq z&N;0S%sCyVZX7M-A|Hy|?sV}Wacd=!%ph?lYmiv-GYri-8B%V55llO6i3iQ3b_-v5 zB1}7l9ucROgeG6Y^G+wpc{l;LmO1ZqSf_XhB~QpW77w3E#!;{`sb`1#5>{rO3<&kP zrF@~9&3f9*(^piK|^Fuj5--m7D@^etficl?c ziq2hl3&vJhL2z$llr*rkEnLdT+RXltqM6bZg z)*;%UZT%T=ayh*Ked=@K25bc-kxZ}n;Eoj_KXnSvvUuoBc$R{dt;5s46J0EL<#Iv4 zA$?CdKD)tAaqACn@wPPnpsKf#JOyZHJa{HRJHW~j0L2*32U7y|Azlm#i&Fw?2SsqU z>y*-i>KtI?tiUO9fak(riVHBW{*}j)3{4D}6K@a_%nelV(3$w2>?==%xq;AuKBFt4 z5psBX;2UxjL z-CQl)ZdM{&%q2fB#&|I$k<5r;FV={m>{eRZ%GP8_30xQtmkH|vzH($M*}cLRnz)+n zw%8GB8^X=wHgXE4;kGiH#{=aQgwiHF^x}atdDskACdF$?T#2A~)v26Z#cRz_@hYgx z?b>wtbIKuMJ3IuN%x#DF=b>9qF#%DVGverp~4M^%u*!txMo z6}PbPCgXV&HPWZu`UmjvnGD?rD@QOCqge}D#(J5HAz`swziy~ytT+{~T=CLQHnMyF zu^i%$;BVDoh=Vl4EoAWDwj@sq;fHwmOo%`5l_x?g8QR}I+w4oIsR*}}8=oPraT_R! zWJZ6?NsJ)j@$m@RKtNd+PlO4|TCg&ycB}gm-D@#Juk1z<)#v5Yg=$`JHV;>k3Y*PY zuwUGY!#gIg&V!54<=FbU}ft>g~x`$FE-p8=uH=fHJI*@!*m;L6&I!>dD8_!vW)ViETA0Sf~Uab z=tfxCI!B>1T~Tdax~lft=qo@k%Tam>c8iM=?~+igrK`I@Y5FCe1(T*nRoIzm*8~29H$?^c5!jyU4V^s#v3+J zp6P^#@qlI#Z1Kf|`|N zgty9>;t}3TN@DVi@ais5nwH12VA8YO74#>Xr^|8L1GbA>pAu^EYBo@w zcE!_R^0X7IY@H{@%H7FTCtvZh`t9jOIZ!#+FD_6?tlW+HK#3Z{^I#G+04qlj6=T~< zu=Az9bs>g?#hovqJ)uV^dcDg0@KVoccw56agO(hW9( zBVae+VKc$K&R3oYyIn%-eg;oMTRg%@JTFJ$Iow<3Y$$I}C<}>D`UH+=@C2A}JOwM0 zs`i90(Y+lmp~u`z6cvgUuaI}LsR6f=aJ^tunm#k$6a%yr6C7 zM|dtwx;})JBj}3J;00}Fy#U6L(A&%y5ia%4c;?!vHIhL(a0b0l%X}E{*`s3{^C+4IkH$|<9|yFe*pa3 zGyZT!re_N2^3;q|aZ>55Q!cyOe{f1AXZ}=gcz$pAf79##*S(GH)uSUzs{4Zn3#Gi1 zb4Lg7A$51A3Kko+Hza9l_Bo#C$?%98wuFT&$we)kJtpSGSPSoR<@4DI;8v1Tfc^)#)qrVaj$)rxO}XkB(TmGmyq3XLc*z1P*%f3 zWrDH_tZW^WRSlrf_T@l1Ap61IZ~@sa1|TX$3dTNoh)gi1!^#n0#2AqVgW7t}H-<#e z1L})g3WF%>V=Pe=dr6{DL+iB{>*~;Yk^OScfZH;DyA1w88Gj8U`;9ZOR*(2r953&d z=-|5fSG}GeUQ4guFuWd(%WyEfzR;J59C}4|tm8~-wC`E3l$t)~%u!xtkba;a!XK#d ziwy?Y--it|e&eB=lupaX8QGRrJnd`tn(}Kz7%XGlg-6INcz62B_?PbZ5Nb_>5ux#C zc$ED|6|-;<^(trz@n6AXWq$mZVP(?Vy;PUDWZ|9#dTRgRcf|({ zPMt+jgL6mRjDjfYwNDhq`I0D9v$u4YXOtTYJ}nL3)U(kanXxF29MFk|udyyO?#%M$ zDrjtQ(*QbX`Zn<;@PgR+rf=oeifH;shru7Ik#ErW9Rgcs{LVwWDV^5F&oG@7G=9yM zwwC67EJsoU55%Kn*1-LI<;d^d#aZUHjo&-eGKAZ}&#JJ6ZQy*|Q)3%Qzx?!eZD89k zAIg?6FpS5`WS|TyH-ZbsTSZ?YvSZxw?$Y`Zu=tzi(z8e>nUE^05l_^E!WB5akFcJ9(R-UkkkZQ7}9FZ+1BqF9NvMC-Z6OoN! zr+76W5pHp)%{> zCBAaxXYb;;J#+C5mj^&7WrD)Pc+gA~9)y)i zlX$-`5m_rbK73yLGGg4ulQj7MI93ZaA^R9M2P~+vBa$atNUE=a0?YE5OOqsa> zkD1BLb+EE^W+Gc6*VD_(ujIHq4;#eAMcNXnbSWv%;o&k#c?MRtPD*4;q^uj%D$7FW ziaWSHN+OvKuCyhpUS93I)(XrCa$t^yE#kIC(h;JYps(#znbT^5&)Tg_3@I{U7Dfyb2q|g(mU}FXkLwC~Zp4 zD|pyUa$bg&t&_9SIOG%yb4f>Lg)fUoO3NyVWJXE{2$upH==gb4c9z29X0o$5tZbc~ z@v2VA$yf%T=eAHYH~VJZvU8+rrA$$qC)?O!_yq_Nt;hEEfx9{RY)J za(o71x48Hm(wWNB%$+ji;;}Os>VuW7GZZ=YE>tU|$+}z)&Lyx#TyUggZ$Dv5%SCv= zOj<60m95hfITKu@gYU=WusjSq#DzsV6I{!evhpAvFO!w~VP)&AtP#~GK3SjA`$F6!7nFzf zd)(&BSs8{6;<6%LFHq@HQp$L^Oj3%lvUO6TTcY7iZS7i{g}F&i%MGweTw25}Q9Wf! z%yoFkOk%Eqm8}!AepDZ~;^x&&k(q*i(d_ebW}bs>;xZ#WWztNVQu7QRG?SXAU}fvn zM9%ou4K(#)dPc;(-j89UxZFtBnL=q(az4VtW|H$EtZbc}$eyp7?o8`F-!0_KY^o%Z z87WD7zJ9`#mW}a%nY3&GD_f@}a{t4ylh2UJ-DBmr90hyCEiuyl5A}>GFNfn1GkKW> zD^Flv+%)aVd`ZsB7h#XO#*3dZ<>d@KVkR%A!^+lqiR{M=yXi`yWZExtmmHcqVWYUv zNc%CNv?)1v;9)b#xeZpfPR@=|?K$^g0L8O!UWgK)UTF^ArV||b5Y#mg8al_NiJ7q6}PjQ)W`m$!uPtC_DN7G6CvjN56vuZDhV!yUto?ds-F z9m^fDeL^P?AGtr!+t1UpA6bufLWGMg5kV zn^cfORBnK+;#P&|iJ%BnObOG@&~c4<>VPWQYI%)!OGS-q1B~abV_BnZFT86UtC>2hOOe_0#_GP!jzhi@PL`rd5)5+c-Juu~LCZKjZX!Vx^6G8bq|~%jUd>ANIq5lWUf(>F zhd)u{mm7?|=D?;Izw*$rN~h%mjYM|HL*G<&!fVfnYgy9bH;6~cEPgJmOp0HhFVVdY z`4Tm|)WhrA%;Z%n3}Ki1a@Y(m44Xv_#9Lsf=S4sNC3sxS&wmlDZ2j{u?f+VwibwXH z{zOi|W3V4w0(!XwW9Fg-gQLY!ZTokK*ti z9v>5jcVK1fI4o0pecjwFtapL9Sy)?1U>z$i3X$`(;btL}8^vG^JT@ij*4gLm;S@T8psISH-=>9wm`XZ;{nUXibkc z1|P$pY=jBJN3e1P3^AskgBk4l6lM&GU><$1xC5YC6lwwtr+YlF@72s{xpqb zgK6tN*e~PP9h#+dTE5Ll^z20ATZT3bHM48P7i=3!;qfu6%<;Z*@WIgJ&*fUWI{%M0QMMg9ByY(fc>}hH3rXaYiR}tWkSgWmbv#riCx3vICnP6su2`9$%6fD3bEvCaC@v-| zDTz)DV`zgDi<2N#%E|J0s7y|lft9Uu654p!tS9}YLN1lb7S$#St)NVogR%$g5x1c1 z9;ej_N0b+X_MT3aE%<2D`A7Ukn9qtn2aS#8MzD(l*z~_tUNIpDGZnxc}mX6 z6R<(aGSWztGV&-MD3g(gVC4zPNX{(}4wO87Tjz&zMm~TIN|ceYL@6WhreEj%5IYbatmw@7myv|v^BLPDH}K9K{DC69#)>HY*e*L zw3p;;{1P@NX*Q~qjbGqFGTC?*R<_QDY2D@&w^T4TFN<6(?x`-QB$DZ=#+r{0Ql*@H z0)I{J7Nh^d$`PEz*dG*ZF{*Dth#?WILmv}&0V;^1zTZU@#g39F)J7+Fv98{VwA7wy zb?VFC>ePBv_fYufWvrgEqq7o@lZoPJX9tm55daTAqmaNMf`lnBYvBPifmt0^whm0_&6sd~QIFlF%7y+)&Y7oGm|1dS z4u);wR+z|(`5D9n8B=5qz$0cNGZR*}j!bBIDU3{xwnnGRSveK79JxLkJVvi>v)7VfQRt#{2TT46Z5m=d>jlr#H}5X`+Fn#Xe3Di zIRFom3CK)X**YNR`Z4TetFB%@PM7m>Dr^v!54?WVbEJ68!((LPQH7Nw@Q5+m383)sqpu8K>f;(pjhWx@K?luX_7x(Y1`!3Oc_^AdX=(k|6j9+)?C8g8yT}BM=D71dZ-qyq#p#{U}H}KGyCGK@!ImXxR_=sus z77uz;sR6g*Roq-ErEPRr^X}m2f=02kZ^E4jB48}19wU>ConU3_WRS|Ch8V`m zQIx}xgYDtMfme=Znv{q|U}ftpZ3(bcc2Cw&`cRJ22e4;cln&`6N-B3s())Pq zOp@M(m93Msvx%g%T02UWE9xX^I+b%PgN00Lu2&gM^=I9AUSC$NEve_kG^jSXT-+I6 zS4ku@QaUykR4f}PUu)rMF!@>?R<_R9dPcqq`Lt^J)LKoy{z~aAIYtM=E^%vC2z0uPnR$+NJsbxziaswcjAdN+5GE5zO01(ifH z-CV!j#&do^!UYSpx5Zf`3&AX5_q1fJV#rr0n)SSH*Y z50Y6!Hi4C`lVPkOIoHV>$2ciDBFDoXaT}X>H6+ND){tZHSec|82`gJCWgAm#Q!G{0 z&AiNs;1M}J=fb{m>6smCqNRQQl&G`u_?bkV2`gJCYHN%rIvxB2IZ*e&wsCbftLUw7il?X5bWWCZ?Gxd6SZbaDH*^cWm1xXm90~ojc` zU7Ng&n^zk;9sO32Q{@27gN@<>WVrpgR&mA|N!80yGhxb16%UxnObJ%D&dgK>Gio=m zx%}KBr{_l4GA=y_3mUT~JwfV}qwDd|nH*gUD_iGiT@y#4^DSC8=$CSGegT`rCCBhO zEu-#)lBKLXiwDbOO|+5;7ZBwob@Kh8m)r%N6pWjaM2g=gL_*8+MAzis6})@v8~R zm{M~l9x;=e&%?^rsaefPO}^h7Xxa38j~tZm!RBy5K`(o#QB<3}tR>m_0KvB3@8DrF z>9`$Mwob=pW;({70)Ac2%O7C7xV-EiXVhGShR%Fbetw6C&E)4du=2#`Cu-JZ`D?_( zp=FdrGTmG`Kh3l$KTG0aGx=EzR<_QMxpgY)XR3FV)3Ot64!7E%M^YNCQ*l0JV|zSE zCL7zp%GTL1tpub?u2WIF?)pjX0aH7JU##d)&0Z!)W)${`i;Ur^*+w_TEt#%ssF#-3d?_&(;_)(xIUiQG zPK>e2G#wmty@5f!$~-DZ<{{W9E;8||jFvEE<^eolCNuZJ%GQ}NZS&2zZc&XnN!R6l zIV|tO4sl_LwavGgDW&9XJW?hlZ^FvfDOttP7O7icTBcpr`kHtcw7QZ=W*CHC!0NX? zwG1292Xii~;xRJ0SQ%Ef&c$cUT+~+STi7^2&c;mG9d6}_HP5fu@UtX*%)sMh^061J zY@H9&m^kD0_iJOFd2&3eusK{jVvUJwNz&R;!h>Y8QGk`Lv!Pw%W^(gSSb1V|(_9YG%FgE3iiba&D2Zf-KQeBbDN}AX!b4_qvp%eBog34xmj0|$ zskotSEgCk*$gw#Rc8XhWV(n@n8B=Oz;}J8dITTj5PK~jZ(y7t6R-P@#=1kZsE;jM1 z4M~}D^LadECO4e2XQ+w@XFw?)SM$I4O)cg*1Dp_juj43t0!6Rl;^CGM~@u?Xq7xEf4%Umb! z5HG1DlIak~t2JS2Y8g{%7Q-WEQnN6uY@M1-OylpcheaJEn_;`fE1Uh8L-)OVbZf44nnE~6yEiSRn7@5VbjM}oNm6rd?QTaD)6Bm_Ob9JrhQeOUvhs)&U@369UUQDM+^q2cKxn4X* z+DJ(xGe(ManxvLt!}{Pf$@+MVOfJ@em92BJsiB_|+^nxor1`g6c=-XXoE#}< zx18)3r>A1fn$mM99yODmgJ5Or^qBf8wRNJ@P{GsJrq7fU^Lf}IE-|tCD$PtOC8yz$ zGATI)R<=%w_Doi-rueIg>M)m+o}(3(@5nK^9kz&z3HtnzmMZ1sRyl*9z; z!Kxf784KevGRar~R<=%tY0Xf%);w^e&zWp5XJi}LC2skMwPx6oEv01|9xaoWURc>W zEv7vPIcHw|Zl9L(^BFlO4(tz?lUV)LAkW5U2*$)G;*l~LISy8~&WLGLldEPcUW&Fj z7s@F)A9g5NO2#s!mE=4;QYIzmz{=JsG0mJbDN!5XQvKC@y5f;N+7HNyxes=WOH8bp z6Jyqto_q1Ane^NZD_f_>G$zigm!ti2_Ij7)Z8;!X>Lh99o_O`h&B{j^&8@$(8@|8nW0du-7Ds_DL*UXVKezz4pz3#&*p~t zeY25z(U~C!XfN0=ZqYd)&J2G<-jtx-@wk};?E))XCuki5LB&!v@21>bv7+zXF3G7W zz#eg_**y+5pv(b&>vDErXBAKyNtnqh{ zD&=GyJX9tpYr@LbIWfHr9GI7CUv6g0xj7WJj9YGEy$u|lI_2mfJai^U`@_oCIa=K? ziYmF8Dmf$lc{wwu!S-;OiS?3NJx$8TDR`JnKIX#8*7-2a)0EttnzHa;XUw|!fy$uT zHI?)9OBimK19L0v7Z;dV^E458Q-W^B<7N`{4OrPaL8d$H8cr5Vp1t#eCxCp&u1$f6~;zgqG}hhDmL zp`MW?oqT$*p#Cc7j*i5d3l8N1Nm4e>!GmP7aTcs>oek5f zLD{Xe+YND_oRfQDqqv;JS~buUrp(-p2h3#VyRfo#W=ywu=oaeJzHiE*`4j9E7n)eN zc#w=KHLu|jGpYGKtZbbcQ-3$`Q0Hako5e$;6_rFXL!(&z-B7NSl;!YPnWQWYD_bYU zbUw)+L${nM*h@~x?yxu9iW2K(t$L0P`-AfYyWmkW+1L?Qw$6sJFFWWI-Es>Y1vwm9 z*c>h#v1b13*Q(LV;o)I2>F9@*Cnz0-x!P8#tL1cD0h`06Bi=}7urQahaVZ`olZ}gE zW$SF1=Jd#^ozCjXR!^LN-QE;zAnpEKl4$@wcDGn1VEgO#n5W7-#0R&Rj%%h39OXZ>5m z1Dj;%0cfOk$?M%GQZ7&D4c{bLLkUPn1J*9BdW0 zL5ej~M^mPi=4d=*CO1dG%GS9t?Y>neM!mRro}8F-V3WAS#M*ruPL{HA79K2$!)qLqE>BAAj>Dd@`p_sUVZ8}^8cN~}?IC|63#ckx)6qYUaVo&PQ;{7C{gtMiz zRPbn-w44kpTc^czL&987UGkK1`yKTLNBxR~LY7SI-z>-G8?aqmY+~JzU{0Iz^L0FI zCO=<;m96t*dVj<>(#@-}fm=>FWq(dZZ=+t2-XAe$P3id=9yODmpTf%4 z=`pPk`97*AlT&@_Sxz^vzq`1=x5QoG|G`Fa!HKm(q$f<7`41j2lbL_P%GQ~QtT?s% zmfPG=*eeHTGbNGC*eQO+(X*!XOu?gO(z79~Y@Hs{4IKUtuzowCm(Qq%OY0#YCnx7< z*ePzwiFE@9$(T}e1RgPyn!{ja>(oTHQ_*)?o+F3mEZ8V6H1XT1P{Nd%FW><)nfV;7 zY@Hd?UAm#)T~?i$PL+#J+RN)B^1J2ed>8hMi%zV&bR+Vn1brKin@P~OU}ftBX)8;a z`RdL{FFn>TZn?GNH90cBhYjK)gPwua6K#Bm;9i&C;-NAr`8BL;of7Tj(creJelM#^ zi#lkp^<$R1T|9JJT1h0+14d6Ch4Z9!WC=V@CLxQ$%GL?dPSckMtNs0okcNXAB)iBV z*%7uVsY;@yN;%mM50%Nu*08d5PPA3(axv>wj0;SjoRNOm9xfy3Ds?DL%10UxlgY

faiAUEN4s z?TaDt(Sl)_8!dWBgFV>Cvi`~|Vkh)YUjx3w< z%Biuvj#}}$UJmB9@OR;Yxy85}Y{HpQ7O%!5W3qS!tV~$!HU*2NN^Vg=t54}( zpJLqzH+oY}UpnRGirJRgmg7|5<-Qo@CiwnG^ttjtW)?&{?o$+yXLNR6u%F;xvES ztN8*RKNF_U!OGTQT0aUVC*$Olp>9zF=x#Yc--T`B0wki0 zj<8W&h=i3Wlr;rsJ3MM8I9tQY6B(RR*$j>+2d5u4s%zjhv!>vr@u->LoCGUd2WQi$ zCah4bsMo1aaZ6@;E|t@BG3*wXo`Yp=m!3LB=&R#~eo0Ty0zI{V)WS{6$`SXP#jlL} z|3X)`&eFzFEVUcKKOzU|$FNmgklOCi8tdXj_oQ3$rWE}MkDFPDeh4c^z$03Zs837A zkO(HDHjFzc2v$YvQ{tj17Li1uRz>#i?yAT_v)xL|H0!e8K?fSfAIQkQomdZ1kI;>_ zOthO;LR7%mu%^LpXeGp#h@2CToZpPI7S(DY;ZH7n3EOS$Q<;ZW`#dVL>$u|zo|DQEl+s;wnCvuz$ zSvX;RH14N)#Y5?|e(knf2aR7llqLD@N8oWXzx!dZawE8)VL8N?h^zuJ7Npx3fsG7+ zH0Jl!%?&44-ISBfYLkrTs2GK;oCQ0@tqg5XK18rW5~juC3wXdxXg&ukTZd+oaiK{U zs%rCt#?9SwZoUhf#pR~$ng)xTdd?J`Z{smD(fJmvY#kkKT(27D=6YhI-gx<8w^Y`* zw!bE4=l8H%Ty|!{y^)BdDLlW$gJ#0>YgpMjJmc3L!_?3Sx?OUmrLcWTnxL!Wu@(l z8f{r=BunecSMgw(uzUqpwhl{lT`~4o9+9*1W7s4vEAi_}R6pfMc&toReh4c^pb}%2 zKA7mQ&j!Yj2xf&gjN4ZaqFCIQ5JjQ39#=N4d?rB#0oSfF}-OGL# z9S|6Q9V3T!V%@Wj1y9yGEDEneVRFpK6CUpWRJ z9iN-l7IDnhgl76%)-zNV!a3@raf{9C8A_)WlyqXCgxny=9D(PHf|;APY|%iVoA*s+U@@Wo)VL>&%w&p8QThC zj3Rco9I@}hu5l4_lSj-**thYFn1p=`R<=&qju2skPAO9!EP44kS}l7`4%+Ww^SGd8 zlLsv@hE}xS;)yYN`!%d=oww~_-YQOhP@`?R?}=N^rIiFW4C2x@)E(MtwoulVz|&%~ zwkWJ@owc1H*2-xot6q0A;I@k#w;f^kxVYt#$1UUxC2l)BGbV9c!^+l)!^Q+a|q{OKy3vkk#J+ z`Kuha|AW2b;x;GwK3mflO50!XyqL888CJGV+h#1<470au-X$J`env?oGX^~|Il#=b zwx7mRVKVh8SlK#L+79K2RVO-IyT2T%ePOq_HS2`rkTTBF?u}={Bx+As**a0$bu1A? z1(T54eA!$%SQXebE?Al5zzPhZt>DRcLQKB$u(EZ&w43VM@MV}D`-YsZufvvc>FP_C zu9_W`t*_zfFxk2aR<_R8=Byr8wlLu7k81r~4%W|Lzqnwfk^{^4f>QNUJQpTaKY^94 zQ^ji$m6K&}AXo78;o<+}X#EE^jf+--En;8@~8VE zaEg*hW?-0L)$+ZdRBedo!lY_FSb36ARfB3ftqXs&oT?*Wzqkb}L8^Q&C{>5yxiG0Z z1Xi|A6>pbVXcbpu>nu52Uw~cXvX$U2v5+H_u+QNcF$w!DtZbby-YjXEHiqAoqxEgr zE-qRL&XU%wpiF%WPld_UH(}+;!W7*j@q0N_zlH6Z2uvCGM*JF2g~`;fU}ft}@kWKg z(!bUaE`5)<>%N4NNT%za;HWS#gx0J@@r0OsEd(oD=Zm+$t8u=;G^MqpoUrX++qktW z!TnufODJPo<0&y2+Y(l`&KPh1LtvO@iP=c^4gKl6R@K=ac|BAJ2a$;qv3N4P`D`xKrXle`sRW$WbeW;KEh<{E7K%3<3Z zHjP`_5}eft4557Oi6_M5Yd2WgI$v9|DqFLpX?RuSc%2M;#>Feads3QyP`dJXK1{mi zz{=L?;+^$=c0lteNE2YzFVauRZb5c9vpi1`n!ObXz? z;z|Ssu+Ht|DuCME#?wn~`%4*jm1DhAVpt!}9uKD*d1}`V8q+5nZ;vOytbE(}%8`|? zi;qcZyJ}6wgnsJb!Z#o%B!e5wyp55+kq96pWCUTw!Bb(faw4ouYTj|aMEBZLZR*zy z)!58aiS8#FRq+b%VZ0D_jobI)pI?H|3fn=)6zAjVF!4GMR<@4UHm$QGM!fp6PI^wx z$*1Oe`AlK1Hbe4|9Iyvq-?)JBC*TmkG(#w2_u&aK5xW;wwvN~q48+{|ZYt}|(Ok3%eI$ql`YFkcKw7IS~ zFjz_DoJz@?r;R9|l_T~v>>L*{{-#@`pb<+bW>4ZNF)@1_R<@2AXR5VW$j(=9s%dcj zR}R;|VZXR=9iK?gtYHL2>YsQbOr-t}D_ciuXGY~}Oe|{iKN?}1{7^iy+(=0zGqU6# zPC?3-*%u1j`gmSU;MReatpmrIdTkgxHYuc$cBGuN*|2ZiT9(Yzt7ZsA>`*)*CSnJ{ z%GMFn-iRD@K=&I76YEhG)ivt`}Ce4jpHyz0rd) zPq}5}s5!80T-1PV-M~_Ns~;4w6Y+eQfE@=bTL(%vcqOwqZ?uJ0ugCGUn7BOxD_h5n(+{J*l40k+<+S}1HjhhNGW{@< zD-^cB<5@9b`zx$GIbov%&5eE}9%!zwB$63ub_q7)2y-1gD<*7f!phcR;~Z&e8ANHl z{@HTM4uxIgmb7G!w6xekYuQ0~I!wIwhm|Anig9I7aO+V0&X^by7O!1fzjgL_Z>Qp< zD)Wo(jCnBOxmYE#JYDVbXFttV{~ut#KuS z!dGW@auvRHw8G~OtJVL=s`s8UNqFDUJFw5(s&^>A>iJpfC6A^~2!0C>o=NZb3GDCr6sq*ra zs*mAsKfL@%HCRK;S%GRl3_TSTm;(Ya{wtkr4%W|^5 z1bfCME6M)*m>-m`FXH(y={f^ewocc!yt#*Tp{fo_Ka;)>3#nOtuz>m94YItXOWTKdpha zn;fj2VZSCq#j1HhsoDY0g-O-6u(EZkHskfT`pMnNbL3DB!gg_?;=d$@S1V-&Wy-}< zVKUVRD_dtuyT>JJUaLP_a4M-{VJ?~3x?IlIC9rK=w)ppQ$6zb4gfey!o)VL>3t(mI zj4@loe!9-{m>jN$VZXR=CE0(kc|oaq5YL54)%~#Y9DeOx|mgKaDK6%qcvZS z)-Y@s7p)|#mTv~-s*ESY7N9vVL+y8EolXU}Z8JDai=SUlNP`0ka(_yl8 z4XkXPEoRNiW@u0Ac{y3n!G>|kO0s78W>Bu4!INQf^%SgZoh#;SL)I1eSZcwrg$FpIQH49d@P8M^&a^9U+ar!G{ zRp(1`xV{LR#)T`%{mM;4C|_sb2{HLP9agr^7jtA-+f~}<>2nTu$?3Wiwv00 z9h9v*@N}4L-3BXLXN%c`FMD}?_spwuuwH5B*Ch+}EYMT?XK40}o}Lp%hmNTKag_fD zm#`!|T{TlEUN5&x%A5-mua{tD>v(Ao5=JfYl#5QO?Dfx2RovR65890UvX6+zic2Yp zWP0`d`!(_2mu3rPZE-v;CTokp%9Dn*ic|5@sj+jz8f!btS=#}&j$6zUWv$f~%G$Pg zT1?iqf|aea#@x!)c&o*syKM&LoVl=VT+Wi*$`!JNGS-Ku#AGZ5D^EJc$QkQPVzBFxDE)hvlF>2z$o`ZBBw$L^O(7(-&IN z?#J_D()I&b**a}lt7$lY{hl1OcVOGNpmm|uG#|r$3r~s3*c-62b;h_O&U!@~JAJGb zv^5?Tk2qIT5|ePm*=h@|XRF|8F2Rp~bjQ@5>jA`3?BN};p`x-neCTUl~%GOE4s+r*w_j7X0o`G%SV%CLfWx^md(~L9ALCL^1=|j`V(lJI(e}7TV*cq^G6N)j@A@I}jl$ea23M*S@Y#V5#*>5-tey1F= zJ7C|qkPUR9%`_hgzYWicN!cy1vUSR^Re`aS&|2s06**`x!`5*@>%!ikF?J%c zCTqWhm94XeRW#E%@ueOYj{+7~63L7Lx=_&~j*BmX=ftFJL0H*3W!Ma@`PBFha?ZAe zo#Pg?F3iwI9vp2BltQg%G7Y@IS} zKErUL{31DI7r?f0A?w0?hWTLm2%Zv?v2$VNNyeDreEEZN#_or0n?Q`2kD31fPl?Ic zJ+QKM#+VN^H1-4;Pn*9Zr|d1*I4)&LKGe`+3LRy>fhWb}>~&b#I%n9Fyb)~3VGam!j4Mw^ib()Yl# zVv@EitZbb$Y#d-XmtK}*R)lTiV%CLmfcaE<4o`{6*buC2ow41ZH7D&9w$_4PC&%p? z*g-CCCnvx9q`5=e(JS%nnB-jsD_bWIn@gLQEey=pczZ_9+f%S_T;94cm*#syDSHCX ziAmX`u(EZ^ur~A*x1v9}^^qL14`JK5kaeLAtyw}D`v6ag$=Lg_vUSFoSIU}7*v3B* z4>~tc63GlYle|(kqIRu|C&T1wEm+w)SIi5k3`Og3Iaae^zqmy!$$O~G)#_k87baB) zz{(L+xkFd4+0%2{=#-&D>UVq1s{diS@T(!wyU;>CLszMPYiK|JVfz>oA1yd0vEg@X zRb*(D{d;;gIb*aI$3;qc@SdTI)gLFQ|F}lP-wdrA^%uLXW7ZnFR7sAk+dA;r*Uh^n zCp%+a(Jgs7^%RAZ9X)Hb7D+wDugHo1GW@N$L?6Z;TMX3G)GlB(CExhS4>iBgm+6Di%w&L-9IUaZ6{x0t2)g7jJh3YvYiA`~ftDHMJa(w6U2-!eDxf4%>3CbO?GO2dA`4ZhDN;~glB&xC2 zQgSoZw5yFV|ES_E_c?fVey#b#eHC_%TX*=^9kc6BZ>q%&+Vg(}&xT3Y%doO_x;7oR z5$iQlwZfBPs+Ls}$#naVNuXTSU7$2Ag=fK}X>nLNf~FYVs-S09Z(3tWSnQdtuR+~- z8>}4JH``xM^ScK{#o}LQ*EMSUz0JR zo=Ld>UXe3$GHx)lgT|le7~A(><}ebng3yx3lVQ>_2UaG9Z!oSzQ26T1POieYc5C6= zFXs%nEx-9N(6=j(gdM|MVVk){?_hS(^J+el@o<&fNzTUh zxV_9OcWkHG2$?`A*#=L8Ny#)=nbf&nU!r>hgmHgm&FQ87e*JZx0TrvTLzRIY<94X{ zQ@G4>6E=cQi#T{9OsGzTm90ay<9MxB)5~(!%Xs;L)Lbv0Da_Soa!2KST?m`U<%_>t z2<5BQ6N=jTcuq{z&V!Y$qo(ccHZ+G$#wk|3VK?Or52T8PLUvk4U=Hg$=Wh z)YgXH)zx?&Or)-Wm8~PS(YR9*nY2E?^{kwwr(vhKEFIqQ7Ec*Ko4P0Q1eg##4l7Rv zh{z=Af8`MU8+OVfMEwSc{)s2Rgy`?EvUP~GGa`mAxSQ*9Gqq_^ZJuhAr^TbYjg&+( zqr1*8;WTZaRcU=Z4JJ_Qz{=Kv8oz0yOE*W#QJM`qWv?nJ11Lm?;t4PzItW&_4$;Qr z_K!T;K{``T(dS{SxD*}H@eWeW0gBOScm_<2PJxvt14gtMeMgSb?XXoAF)~)8Tk#B- z7~KpjTgPb1_|-_6nAiG8zms$H8`vu@NBmvw+;u#!W&y27FXAaML3#mJwhq$x+gtnt zfyF}BsptpEmV8Fs-Cj&dB-7pQ{PvcR5frM0@kE$VEdVQ9hid#ql(F?FvejUFIaAxf zhH*<&=NC}|A1G4O@I07E^}@=N2r06Nl940jz=qjJ%Cv}bBAy2mspDYfNrV(xM7dCo z)cLSs_K`9zqMV24!9?mDSlK#KQ^)O=*9v|$Z`@_~fE=p(V9U5rozU^gg0K^`@w*q# zgo)MNu(EZm#-DpC(Mf~1S{%GN=eHf}T5x?5b+qk{9gj*V@y6%Srnu>>HP~zK+jN5IZPff5+2d0`^x}dGY~9 zO4&xwibtC3D~V)Anu!BuYBblu(_sR(CagU903*}(v*myt3i~!;Dwt{Z{vbRZCSd!+ z%GLoJf7!axCeV$3pO=$$8f+Mstj;f62R_h7@f17{CQ@@@O=_ z-Ud#J>dN~c6af(gQ50X$)=>np2Sza{8VLx#pdbn;iP5I$u9@kkr)%sN-VzcLS7YLY zjXEJ~Byp29F(LA3bTw|=_}6vUCvHrP#;l2n(T6k`&eW`n&AzMxyuhts^z2q<1?mqVC+6DY*FcD7yAN__vpAaHc zqv(Mkq59x|GF0L^_B?&4y6J6!JeMy%sHDr;UGzYZP|YS=PCQe!-fUBUK_#o&hCWr- zkR`)*g3)ib@hc(bs;lUcAhB9YwwyRtXJA(#efz<=3TuZxTsM)0!@`w~Yo^qvhltpX z^mvenT~D^0IAZ9z`1xLyPwy9DkhX~jM^l*@X-AA@O@&FU&;$PJV z>=m+Z!v-+fT>M^oI7q-=B3mALfC+Q)Q=icuD^39u@r)H?&tS5-_(}9|kbq4fTTUFX z*2mU*C9T~jglwo^tdH12vU1oQ7X4w55<$dn@*H|VNXX72TTUD@^jw!@d%dL(SCOn3 z7OvQ)CFHy8^YlQFQ1y^4Ck_>QT0*wjewRK~w~-~oQWe{@M97}|o%BeMSlvptoH$nK z#p!a1|AOO5eW;!w3xr^kUr>QS=g#F0XGf0e4RI=xSyskg|AVVR1p z`?G}*p?Z@Z2okE-$(9p`s`a;u5}G=n)gBC{z(hQQ!RWtLlw&lV9sv@gqsW#+FjBZ1 zj$JS3UJ<5XBEgG;d7ASj(gBj9lZ+;}?vSi1BG6u(O>W z6_TB8WXnQM-0GNU-&J&I$c$XUg4H-~Rq}ptSMxTyd�<(-PsfFg3_LO~mSL4?QL% zV!O$f6Gv=5xA+~J$JQIwY@eCSShcEI=0JN{AG80 z6UPl(RCHyn5`U4!#9wHqv+-aeo-qSqc3&->*@B30jim>Kglja}a^i5EhRtQUywTeO z=UZ}VY=J&t^U11V(^y~JX{;`a2-!S(P)NwS$(9p`jGvYb?J#o|&sVQLUpca1SiT6m z#MBZP=pmwI(Bna(bq(3_$U)1@^A}+Z>7#WsS+HS)7U&_OwSyiH60MuamJ>&70k&%d zDf=?jGTcFJ^jamO$aRsA>2vl7Sv@Rg195keyf`9s57UD~LiZ5aa^ldTr!PR)jYhG; zvG#^OYp;<-!?G6p^o6I1h}f(2n2?CQLbjYZV*Kf0q19L)d9e@t?_sR&)IZ3{f{{%*_MbnBi%C=AI(!hGni0KXY|iM9`k3hlK>~39{wH zK|`+;^jkSIBhKW$uaDWgWYw^k#lBKd7e$0@A3Z1}WN(ozCk`2ZZclhNs}-wx31zc> zsXZc{0Vd)Zk;cABsK2g?h*>8+DkNqpvgO1vI}=^AIfB+-UasT3LZ7u&WbLpStrUC5 z8IVQj+fT&EA*cCvQE2DqR!B5>R2p&^0WO13<5fb%|x zmG6eUS0A`NWbK9xa6xHA;C9nPLjrdf*>d8*or~>KJyioc0J)C!MSbjEAS;N)t{Qj8 zDidg^_T`R_Q62U_h3`y=z7ct?DrpJXuZ4}vZ;;5ZPOnCLZf?TefuaDb2vUu2BXSFHU)wL0k z>!!zsM6Qc$IdSCBbG_bMEKb7Z^l3B5x?yRHeXf_uB7$}eJuD<>SCK7`IM86@4VTt# z)(33|S-0T^8ptAob`w1;BxpC1Ehi4zB4Q^BiZ?B(>%lh0|WZ|&fwQI&szEiVEj|+)fo@_aB)Xpd7 zJLz^rF6Z5$&)zPwl34aW*`}N)6-vx|x6uPd!nl)cIdK@#pF()Gb?ElZr}PPYk}MyV zz}P>95Y!Q|dx9Pv61&IAmJ`R0x@r-!_32%G==PDt!$Q}tRg1bdB64rhV?!eMCfRc0 z$f3WZuD{FmO^jSuJL6Z{qufp~5zi<$_V1{9aYX1+^x%-tO($DU96Iz@IRRbkZ!|~V zDt+=+k|o4uyV$?Vkt!tOx11g!62E0+%OeiI;NC_KzwP??Z6ixK-0%x3B;vP~9w8FH zO=Qc7<43LX?5`4gih2Iaus!sR>n<&9D?)o5$vY7 z5b~V!cCF@0WD-H_qKAnDaW>g<;#m-VDs{bsk)5k!=(BeXSvqXj8~dr$0cAwouA)bV z#BD9va^kq5j{~UJ&s>(T@(?r8|gtIA-kSzIdRDN3r<5n=V>yU zcvv5_hserdK`X|+LhBbsgzW)(U`W{RBU?@!HgpFXD37_c_NqQ@uaKp~(iVFM8c;^W zZ7)4CByKN}Ehml}dcs6f3Ukm+eL;KBIt5I`GiZ%{!bGBvh~6Z6d`R>rkS!;U-dyZP zDCyaoi}h(+NY)IS;(B85P@Q3u2-rFFkdT0#MYbFQn8K}s>|#Rq8aV|M30_Q?;yAY| z6|)k0BjG3Xx!z1}DlFG4@mxDm@<*PEp?i?9g9K`H=aB@L9m~Vv3c^!b5#hUM&wuye zxAfWgCS6|SoZQEvX2U0fK*=5SFp!k&B3l;n+-;7D_FXo}Z(bMPvaXCbr_@(l4~M81 z;SX@N+q2-Z=7ob#lZC@(9l`}SxU3`5L+nbQqQ`?o>`Aia#1Z2!ga}7$Lot)fZ{+a$ zlRjSWlSRYgMYv{{h?lE{h}OIGSdeJ#BU?@!Eq)3&9IaxvEOnjw8|~CJ3rxf_>|7Up zr|6|}PYe;R8T4R~aCMR`Ck_|?eM1wttlrFkm9JFbSaeAT`B8n!t{}^Y&0vHRU5Od2 z$f+XYwu&AV61SCP%OeQ4I%=h2QHI+M`nX+3mM?kScvVE)w$r0R;?FD*NNZg($TTUD|{;pmzvxQD&O#H3(cwju3h-W--RpjFV zrh|yoSb7{tq(+l1CyvytmXog1sfz{rIL#-Eh0Rx2Mvhb1l*K%H3`mr^$(9pGsrCH5 zywK{^XDLTk3(L~l$XN=VqA=(|AYr`c&OamJLgl5j|Bc zrzCdJqe0?z6WQ_zz>6Prb9g{uQS`^C7OvSH%*Hca_SuN2Us8!)QDXY|*F*fJ6EP)JKHxS$cd(_?{+PP8>dN=WI*(s>TMBOLqtSPCMQ02PWbf zWZ>5`b&#`F5kdPC8HYh6Xz!CPCk`67eBK(ga=t&a)ht_lhC59kw>h!lhCd8T3%7rF%ZWqC&Ekb-KBEF3sg(0MlRpb0)8_i55Yw$<@{f$0q50b^hqJ}>7s-}K9Au~QkRAGx z_SkeXn22X=+8)SG%ZZRpq{oDWY&_ZWh=c5O9h69TB|8=+Pm;dxUH`aq#9KCwFs|fnvVO z<+eZSqxJ`~WLVVj$Gxba=ISBB^#(m2BwVkNEsr3$Bpv7RFKdrFj|CI)j5_0n%hp4L z>u7pBNVukvEsq$u%*_Kvi63pQ(1+_{vSh;}bGdqma9v1`2MO0wvgO3#;?C+0t;Yge zw7A~!6Z(v8CM$2bPlrb=tK4`vSwJw za`8gu3L@h5O?p5`yzU@dP8=_6fp6cKS1faM{ZgN58`obM+A6dYT>&60WDn zmPZs^HNFPh@Be5Q_s_+t#Npx&Zwar#tRj!r9DTG-1rza% z9r2&+sZ31tfEr@fnnjNW3Dyj<<;20_jtUJ0tIsqx<}0w5jO!IYu20uT$*N%!SG-?B zH6#%cyMi7P60uce%ZVd~t-AVT)2g4>=j#TtWLUo9t-4%2M7XY_$Ag4xJK6FGf=e>3 z`k+2s_md?XE^x`GRqv(8gM@1j*>d7=%|zv};_vmrdYLR27A*W394a+eey*6Y zUZlr@gz5#d<;0=FR$R_y!rA;*zT%p^S9_>95lqBW&&OMFH6#%c8&3}jiP%`O<-`%= zP7n$$>ieyYrsR{~59<@QfGip|dzrD$qt+D>0h>>c2npCcvgO19I~Cb64jBAwL_wde zUb0?Tw(wU=sPv2=hKN;;9t;vIgKRl*tgu@Q2aIwxZxl23{0>)neMO(IA+m5-zT(|t z=vPGq?PhvZNYHkWEhi2d_HdTEr1i^|t;|L<%MthY`ouj(RuD^Eyoa+$(;b)Rj{Uv%xbtW*5zn}@J$Wu5kBHthdU#0mrjjiujvhMCH9LIjVtwW=Buh6; z@?1a{5w@lDxR9_dCRtpRp9XUj_%JguMXjx>- ziKDduIo07D6_{69xo7o}dz!4?FhP!&Mnvu@dT2=Go+MiyamY2!8{v@qlRk3qlhqqu$Tg%9 zk$aaO8WOpEWXmHJIpIW>Q~$5_xO5hnh-X|HbI0msIS)D6!7MZAp&^m$BwHS-$O-4O zd{iH~E6C~%%Pc25rezg9G$e8>$(9pG?jzXYgZnD;XOeK;>kazgT}Rds3tlzeL4;f& zv6J0S4-kppHnQc!@jHixpZ}B+4!!&J(Yu$d9~QlVcA)1MN5pOqJvbzGyUCUl$8HG~ zyOt-pysVGki)0d6-V!vGX?s<@&>oV~b?cv3EFcHu2 zBHl081G0#yjirZ$L~S(L^2kF?@;Sl+ebnZYmBZ$^HlZf}Dq$WyEF@~(WXmHBHR+iz zz51x-$jS{X)WVK_G3a3-QM-n0IdRmmi}+qoAwQO5NT0Qv$xY!))vzvLjt#uY&mh@h}D|(aF3ckZDq1@ zSlZfBt%aTOVbQ}vqE;kZ9(kxq=GMNckJ=q%<%St*^0~EL^stbq-A1;YIBM9#8NALy zIQZjfeaxOBtA@oa-oqIhl87DWlk|{~h&@5JoH$~{O099`1y`xPuTR>$Wbv@1wWU&P zC?f*5j~*EkxVOlb69?{0+6c6M1O~_3tbfrSh0XvI@r*)??HGmDg%NS=uq4Plca}F;jpPM z-qYgzs)(R<)1yLy)%+R)>nT1=XcXaeUShy8_Ts>6S2|orG(nzct8_bMRv`W1h$uYk- z>vOn+tR+rGqQ`@T>rS%e5V*|3E?C#LSGzA=>MV0#=Kfga z{#fJwxYGIIndsVo|Bk}#@V5#Vzi5{?3MT$*zq*N&?z2r44qq0s>V8bvZyX=?8|S7% zOgRhqheJ1iIl9#FV$Fi`+uJ&cR+elzvBwH4M zZGpeQU(+5fOa>G2j22d)p()ux za??Iy;9lE2)_9F4(p^V_Gv2XWI3(nCpV_|DF{=d*T^VD2Hk0ok2!iopeJ~c#)g6~F zRn2k5yy(#~Y<=p9R0wZw?KvjTQ`_1Og)S=|Lb7nMbxP)*JM0dvD`q?Ir7l?VLUuF-}Ycv9HR}qd@Xx zkSz~?o_fnxZ9vA;SM+%rBI}hDPfP`or<>_fAbHwBwwyRm+%$ujpYkQx2LPqB45`1@ zN9r-MWLTs=9&w5a2q9AS2t5!aRS%ObCr(wXy0WX-?eJt2^IQ2r*&pPVtuAABrBF!p7QA+GPRT*2a>79WXp*&#qDMYcR*=wbsPj;?R%)AdcVYzfoF#1QGagB}c$u3coyiPOb>4-}fa z0%IW#uxIrFdz!2q7BKwUvppl%a(=waOJ4y!M8=+?$Ae_-NwVd{8RI@~3}wteG~y8Z zlRjealZC?~hTm~YLd-9RNZ7mdaFB%UBU>Ihg!u+a9AT%vu03F!1t#JdFvdlgPY#i= z8T4?FgmscFj~v2$!zPZfkLnY41zEVHbC^#Kk+4sk-HTdZ2KnCCjse+5r9_ecCQSubp|i5{qi3}VOmdwLj1pk5|hP8_I{TjrsI7ZyQElFO=<;(eOU(u{`ES;y%(nrX8 zC6|{PGKfHZm>vcas0C!pi32sWWnStv`uq9BG@uVtKUpg*Ojksnm>da2kP7q=kRbJv zEhi3A>jHeh%2z5@iOWl0(?{v6WVNs;;kPFv2WMTL2qH{hp$CD4X^3n&ahSNpYDqU& zU!V=C!v9g9s{c)v4NDdN6dNp6yc!~2e@~AFiPvLf%ZcOFat@`wfF`NQ|5Kl=Kav&0 zl7-(~N+wHIn*V_w2okC{$d(g_3Z1hWr771Fp7`(DqrKz7L_DLt*m71w4KZgOOOFPL z*U@CliQ~oXh!5`)W%c@H`e>~nONLEaS4Up2d);A3*?uuS5+qg^k}W5WRd>trpC_ig zdjFI@Sf3z^h6O7V7g(W1{APMANVIBX%OPkfEcCIpLU+AK!9;>08h~VHiwMPU8fr)rV1RK!3D-ANQ-U#R-jt$1q<3jRw0NHZlym3QMc^(T0%7J#a zK4@o>Wy5xPxtKr;2qF@820b7oVW*KThY+Svh_PDE?S>UhBv{K$=M!r+w2G_hBYiEo zov=vb4^gU^RiS-(8l8fy1vLPhhLwn zVDa$DAb|27JrE=)?~pAE+3szZwYHr+$$dn*N_^A0@}-Stxtf6!2K#GOqnZ~sYjo+u zH5*LCGaxmi&pi@F#DT(0dPGRdP9j@QoH9h-Dw><^x0@S+UZs!LTC!Z&ZVkV08lSg3 z8AP7e(8ECTbUE2_;yiu0bwB7$7`04ZH|i61Jy}33Vfb5z@Pvg5BQp0{dSFQAK25fq zICH0=nUklo2lPR^kE|LNH2g*mGH9V0?H+nGNV@JOTMnU1VaUivo$jzf!9;>nX(w@z z+x1?hn$H@=&?&Vy^tpbG++J9&30*V`l^=bw-wBA|F~b%|U!{kE1o{=n@^Bb|avP3T z$+htfzx<=nY5$=;3Y`ij;u$Cq78F>}I8=Oc2+&NS2ZV%X64|nl1t&Nr+BbvCk4Bl$ z{x`2Hcv79P(`ff7Sf|al6DT+@<=2t z&wr#+)+fy(D>vLo%a=sbiu9M1MAB}fM};J9 zC)sl1q|HSY?_KNjrL0ve@l$P2=`;2uSu-qS_@nUX{bpSck*+7`@gV7XoNRfd(3Q2y z<*a4)a1*)j>eIE4tl4m&tFDJg*IV>>kaWFCwwyR!{0c!x<)5`Sa$wDPOS|0f1QYR$ zDX+mVKCyt2d7cVTF{9B3J2SwUVqDHeV5DYw1`yYKUYlr$>V% zYZ=+{NFqz9<+tmTwT-OUa3M=JTHH#H21(W?vgO3d;=a6F#oph*3|Jq`%3HlP5 zTRCpl^kIFp9wJMIMJwiB(UwDG>j8Q=NVe`HTTYxU)^e;Z)@N-YSvqV&YXfU_Swz;(p@)TJ?JTn8#98CN5DA&P_g-Le zDcjP=tVmW3iy7fNN)|VA^urVp3Cq(XLK4}cNe>Ij+Be9SLs(Nd&VrqY;T~h4U?Ra2F}QOW*T8yLzPiOf03Pxm zaqxS6xL+o>6&7y%IgB+oOm6;87QDv^I|buKy8B3oUvMlBhf^@PuazXa_>O$=<1z6+ zwTBPm!9+a62mCpVXgqu}2%wCm2Z97;G}*F{?M68!+IR8=H)4UVebJQ9ieqeXeTnW zaLlrfj#-}>vLAU1Ji70}!maQFo_u`RZ|sEMA3Si0Q8iN4Edyqt_Pme$GD_d1!KFDX zTbYxCXJoQPqf#-s|1ipBW6PZU#w}g`Khx#>-|qkAxHdT6C}sPsa>?j7hx#7$6k~RR7hJnO>$^vk*&&=`D<IIE#;DuKrNCAo1t!S*(y zeU>bkw0#SYft^6(44xroO0G4#Wbp}2`ZV1`WWsyOu^igcZ9Id0xw;U6pxmY0;H%|!1$S^S~c4p*i zs8iq3reqeFh+<4AQgV(OC2pW%MKpu%C=!uQvgO1PnIS`Dec3W{S#N*O!JaH!m`kIKDdg|MictA>?T`I9FwDEnB*ko z%FFtUyhxS@%gEVkj5u+MfV@EW6A8%kWXr=7ke+<0hwpDDzN=l&jt3L*)U%3!IB|-A zjHUaD1Y|VX^6&&CF9BqMJ|OeS^2D4$oH#{5=F$B`0@6*koH!tzvMwfH$*i}mVn){0 z^y-6>Bg=#Z+f>gat-%aO@9P#N}bSyGUFfB3n)zm#{9W z7RJjP`nT@t2+LHuw@6r~kS&M6qOendZ8mV%Ar(xpm8d6G7qgfb?z*>@7vI(K0=7Kd zJEpB$9u8W?zCI1CtM`!KFlja&ytKuphpbhq8u^l07B@aLeyhvb9pqlxG!$52mu!E? zs`AXXKdf_1gf5DQE_SMHJZZk#d1P=?Sy*Fzp4?d8JIppg+(4F1+TMj4*aYUIs@s0eX=v7dDMt z76Cv`Ka$PB{f6?7(q5o@kHqMCvgO1vI;BbeVM11F{8{-E-_xdOJeY{0HW$;-%19}K z;KfpXEZun|M5D=;6Nl*J))0vYv@XymXg*mgY#v%39YGMeh|fH_=SY0I$(9qxXJ%`B zB>h;gK0i6KR#<*kM8}W36EoJz{7>P@fY&mgUQcZ9X?+W{-J}-BW zHNx^D`M8R@FkxShCIYjI?lKaX+sKv^2c}tm5iV$YTA!Dv$P!_Bi6Xzq=KY?edyK^8 z39{wHacPoYB=ddm>+|w1StBej5#$&7Jl{UL%Sd3}B3n)zm?rt9Qsr;yn)Tn>!=xEt zBA#JV1o;Ib7Q3TPy2nUdQe?}+8W&+f^9p@jR*@ybrk5yik*#8`qV?#4tdFRs?{ z0`{kVtG!2ZjXSSw8us~&fz7EuBfnzO_hayqC^n~N>mCNSJxX?_{zR2zwlnp|j)~CS ziJ^PUqTiW%cyIO3zQW zA@w!7pUC|8s$)5{$=kRgl^c}R#qjOR^zTMJ`UCAEdm5OCqR18-ziHLfqVaw43K&eK zdyK?j3fZ#I4Nh`Qgyx9I_n~roFBmW0?m?q$lzRD7yDkJLHTR${B};|P8Oxf@Ew{ub z5Vkl#TTFKw$<9Ku<;2(P}7}*Sb$jQB160At|J+`jchq_hGxhM+{Pyq zX8%BS3y06s`uIFWRtk$x)9pK0e4MC7a-O7njU?v@vgO3dX_b8(4Kv032EO)rUmu@$ z$#P-wi6r~5&_#y!(OpL}^cLB2;tZYGD*J5V;hFU(?ZSBmn22Y*bwLz`v$@3-sp+Kq zjHD(-wwyRMr?#M`r)>3Sa>W57yMgPuuF$7v6bW!udVH~q6s@HDj-+Tg*>d6( zoz#k=TCvFCbDcgu+sQ&<@oBn;5L@{4K+qyL+vrXsx!Fp#oH#e!2cyEM%a%}9_S~xv z&mOW`Sa_O#ZbN~`iCiRTH{Ek2L3fcYCr;3;7MZ6A`Vb>=JWqEV$R%KbIxPIL_DQ)H2iphi~NkHJC5XM6xs5y=cnJS z^!1kW{C=|e`uxlzi`CZrQx9C^rDV=%F=`&=I1;aAb z^wbP&5#$eE{otS^O;%H|ry`gRB)6p-5K0ytqYrZle2* zq~}Jm<;3Y}HGT&b`Rk7!(MRWDvQSubA{oEiL5tixM0Xm=%>!i1iF4Cx{BBDq8^6D% z56`P)wXpC+GJbDFE)w(#-E$;Cd&!m)C#Y5Csh0En%;B_A+GDS&U?QHeS0tIo4qD`9 z3f*ZWHd9CwA!Pw)ht_lsZ-Vm z$093*1t*d{8cx(AIYqkHNOJOI%ZZcIYLAAap{&@sLm!`AWVx{TM6ySNg)TC58{Ksz zLp#Zq6K5!FKfEE`oBEVKI8Tx_!h$2Y;R5|JM3)z@NXrv+f0492PPUvlE! zDq)e)`XaOuu}I8abdQn5+)1{aI5EeEtdG~XH*p=)3;Mu3PZkLajO5l){E(?0u*l1E zbcd0=JVUlTe0h=Y;~KlacJ(_NOvF?D>hTh~e`^%oVI(gf{LkT~zI}88ss zy)a8WqCkt6dcb0S>7qM~&mg~uu6Q?C?oYdG=!ljsp z^?7-StP++Nt#MK#Vv(2!=pG}9xsPl)abm)DVtFUXuo()DoLBY9d4;SNmK?2}SVH6? zL3`<*BMEwmY&mg)!oCFdbc8)gwM@R0%V&kHpi@U{52B`kiFgK4T3-T7VizfzME4y@ z(FC&P#3`B{GG8Ov$G2D?n}uY7u&L)GI^W>Q_wSuUcNWRXS!Bz@nG=5Bo~6%8kt|TV zIFanv%hR1ja?(S#oH!?8d9Cgso1p zt!i8${G>iLPmpE8Qlqsx$wC&Hd7SPtl9@-zmP43PIJ=r1f9)QHt6+j1!u<;QoL(;w z=7oC(vz8bCpyLG`!hO@2j*ie1fkO{?RXGHD=k$(_!7)qBjWALO9Kn6q0n}lF^z|5A z7R3?VIoH3y0nd^HxDNrJY2y;F@!0{~2RkO(qy4$5j*eNM8QL~9vv3PEL*IjiTj2*> zQt33xVZqv5(nRygP2`2kj^Ca~R!rK;g-);&Xr00N%}R2&J-NfTy$C%Y+0onGbRUsf zugkF<+SqM8diz*eWBU%G_8+`$fY+KQC|^UDRJy7qHv1yQX7|M^0B{xETOM5^THi9!0}SGGOo-VH4p1k^AK4pEHzC(qQX$qh+1Ul0lL>ncJ3ovPMn>iq`eX- z%+d0yJ}s}1)xpxz^d69Aw7~C)eC(zBiR9xYvgO42;FigkI8}OAD~(yGJcAuGH}YDx+$9E2D!}RpA8AN;RJ~ih=s* zq_NZ&O!{^VUeKaGaxN{Kli#?dD`!-VOtxrLDrTk2`M&fjrr==N#*JdK?p>*&*^uDFl{mt$(0w@h5TL0nTZ{vWqMcHcd$8kg%|L z(TbJQZFFyusO%(LP8^kE<#`3ftJL_C`YC-~!E0|z&zvrlq;F%Zhs*{!%$LM$gi;kDJchT{Hi~5b;;Kx&+CcjtG zu61yc&T?bkaVxNrC0S_vq$;~?p>d02B6Q&?bSWYFg~my2tS&anH_46Sy`^l4@eZf$1=TjBVQ;wl51Sw3Y&jD@hR|E zbBX9lx|q^FO>Ab#S8?vdzqFZs5eg0d1l>nugFjBTEc9lNs+wT^h>M+8KeAKb3pcfC zd9hK)3+T=Mb#z<51)i|nDCGxgMc7AUl>&Qcju=mUv82gw@IswVt>5omAcac$w!^?< z+VI6Ane}alI40=XFZ#aiaF+f;n`i;KiM)VW7dM}*nY5J)Gr&%ueFh~T;<&lb-=@Bv zE)b=V|K`#CMCQM4$8ud8X__kd6lWZ59Z=W^zTgM;KC*@(XL|9T5hYg!hq&VS6i!2nD7p-2& zAGF9#k?u5-n>^Wa;@pH)zGZX36e{04^oiL;mIzCXR^{u4E3$GM-CZOrJIR(4XC-X* zrEFIEi~*AyP(P&)%ade{u&{)F#)KIrdGU(0JVEytNz3D8%ZbwxR=Jd|Vv$4TU42yc zkp;q{qE)%r!HS%`MRyj-$(v-$iF4xnhAA-jQW+@b`Kgx~6SPM}onRuK5mD&ZZkU|n zL@Sb#qI-)ZWjfh%;-rN2Kb321rn!~xe^%+UvXZP3HmPX!KVG~dEz9ZtB57GhwwyRE zp?RfhWH)df&~|-RwviRWvZ9w)>}W+&w$i;tlCp_xIdM{s51E;(Y%&In&BA>_d-P%1 zO%@3Yi{uhb{Ipy>V3C)*=nf-!xsz-;abChI+iJeZcS0}dv+_JyAS^3dm8~7D$jNhb zXOWydL$;haCt>wU&0aGR`k=8BwQJkaU?QH{R;ym|;uUEbMfVp;%LgNmmawd{F>h|- z%9VNgsC3h%M{aD<$|`oSA}3vRXOW!DCRRMPUam+Y0P%$Wt)Ec4Bp@E}%0n+?}9WUL36B1#AUg)8=b|E{BzR zt3R*__-^w1C4D&t7wc>SF1vmOwwFq_|9)4MUbg-B+m4CQy`Z66`=a0eJDH8zB+c?P zxmmmym2LceimaBjWeX33oj}VB&I#M3<+h`5%dZ!i=NtRFz^e+ql{H zD87Mx+g|Yp**dLf`+$ zxAyv`_uQAHtG`yP=1W$8-r(1lW*n?dNGF(xVrV5268aTD7$Lqm#nLB5_Y=v;bh72d z84)vxt!ci*FDtFm=VK*V9c*V2`h{E=A6|?i8_VfFBH36*wwyQ{zR8)(o$9H})zdkR zT*x5X^$FQV)(A^T=(zyR2(kLTNJUPz(mh3TvWaXtaZY^0?I0($Qoct#xPFg5D7(ob zVL=H!s;C7hUZ^4|chOx%l5!{6a^j?jy-lUB*3%=d3Fss8JXswqBIMr2i&13bIl7NX zHl86{4q-!K?t)E!xC12x6KoRZan-V$dEt)7wY>N%9WP)K=8E=C!i>GZESY8gI)h2n z3Sas{3|`z~76!g|sTz5BzIdfU(DDcXVv&moJwf*ziO}O@%ZVd2zXd{YD^1rn_{$(9pGYi@J2?Bh2w z{YJH%-z>Z7aK>cqKCTl?(8dv1rY_fKiVt6eDMfc53Db14%+8-tXUgj;=>nV+DdmH z3DYLB<-}o1H}B>eYUXM}-Lyxaq}^n}uq0io-^T@F7cshv?mH5rJIR)LjJ~{I$EXhb zpF+Fm1h70w&LMa~pQq=^$|b>*9lOZWb9CR4JUv6U%=6TCjApb*OPk^LWBy>Jv4?2a z+@rxnJT^{ zo8A`4`RtYY9a=DW5u`4<^GJ|plPwST4Ag5>`%M0x5knuKYsgArd$0&HkQ=lJ&Q)}$ zk>IQ)TTUFD7ONtzhM5w7n&b|Bc5Whzg=Hs#Rgp&AB0e|L{YK(*J=t>N_?+6j^653J znNqD^cJkZ9`UE{h)(cC}3jOZOAG!$919aDs5Zy<%oH#@?n?uxRR5B%_#23)7>I3u& zSt~3+%k%-Nhb_Xhm+m$ao|nj$6Njg}IXvDXS|(>^%VxhRY`dR2MSB=F1x&;<3|pm7 zkr2O#(2 zvo?@3s{8=o(r2kiRt(Eh1OxnF@FGZgy7NeoddQX&2dPDkl&@r*BbK;BI(F$JbQ@VK zEJ6{~NcFHqcy`j=M#6I|*>d9Wv>2sE<*G;-E|~H zkCH7X4$+(zg|3+^x^hU1YVe3`LQL8i9)d-AQ*G3D7slmJ%(MF?KGcz!G3;RO2{Bx5&K{t~1!V(n043R%{5u)qqt|KA(EZK765FIbC zeZo$9cu1d|2go8}$7l!ggeOb3JY3;vd{8bwnc+5lcy^MtY6Coc*djc)(%nYF^Chz7#Njzf zUNkpUl$^xygg!ZslZC>PbAfu<9Ee%O=25!ONNj#Ywmj^yksP@2mOeIbl7(s~Hu8fO zUZ?wv#OB|~mJ`S3*pO@^J76Joxc2aBI+%!OcqO@@5PQHv*ue@%(Vaztas=6O;-G|_ z$PqkKfGdZW>jSfltQ0oEXnYSJ3|j1%E}%P&1ZN4^a^m2GWEklI3S0Go*+f9cYtStKkg8jA~!c*VT(4Z6QbT)s}WoH#Bg z$}1QDDFGZY&*>BM3|S{EG3Tofll&oz(EN<GrqY&mgoLTa4)m;GG2c|aeT`^Xw$kfws8+(UO4 z3CrDN%ZbAhGK%tl#m@n=S09*{$U0$x(HKSfLl&X=E!|}#G`}WWP8^z$Phdd7CI=Qw znx;LNngAx^DT_5ef#ISS(K(RrH4>dMWXp-8bBufdp0DKjZRh9c^KuqhA8ekH+_{Wh zZL&iZA^8y9RU{;*lPxC>NmvC_HTx_1t^BE8d3{iN$Qofm(Wzj(a79?Mba#=ktRq`a z9F~v@rhaIHu)(H!YMg`*!S%l_GbeECPe35K9acEAEcSCgrg(FTL*GJ}2 zvPxKFmZ;AJvw%flenfW|3Cs`4mJUdxvgO2)37L(l3n(8nZPLf4N|p+XjmB&Y z7qy7awREqM=#(7i>X@?)~)#8C;kNWBtr`WRObf1uCK zdt}Y9>}Xu19u~d`(>rwckubeYwwyRjA$bQ50g@cLHv1^;!PHDJ5zk;sBky?8im04K z_ZErD31rKOqY|=+0OH9GSzD{m${Mmp*gT`Lh)@q#gynL&yGU3rC0kA$mXL1`Ks}ft z6%SRrUZ0lFl10MOqVerPBVG}gPt*NH;_^wd<-~CbS#$EAB*xV-_vsUJ4_PNHF&b-5 z{*Xmz?xwqpgyy?s%OTL1g-AD)S>{rB%E z+zx-MuyB%H9w?ajul?#K&T&i_I$j*7@5M1XUewkXW{d$f4q4XGG3zr!wwAYmI(-io zZiOEp>ER*2F|%+?$nO-65BrUsU~+KuVxwXXT|Z<$%x#JPCcj_Omt$~k&dOHiz};a+ zCR?=6UE=ML%8sKi?(%k*@W&w}a!2Qnt@3myCXMsP93K zrN=#Psc=i+Tq+(NMkz+SJo?J zy1fm+FQDr=E?tRW&f1nsh4x7L)O-!m}b)=nv1QSVZjmD%At&k?JrTdHIq(ruyI45F0 z>9=xlYmCL8seh+FDBmENneb?#VscLoMZdN z2|nll?kc)|1tyOq(|UiYN-vw%`8(T|#7@Z)}40QMzx)4EH0)a%cm$aWd~HUWTqr zW7@($-To$ctT{>ZI$cibT%Op}k{R5lP3?oHe<52Iy0!o7mlq~+^$XOXnrPPUvl zE%H2aI-f_L(P!jmWO1;JDCLpUC3)m0bQh6i{FrPxaWdq2@ZWEy2|^TCAUwCmFY!9+au zDS5=}hA8$dW9Tj-$=IK4IdL+M6)KNnrP`m79ut3-J{}(;D}>D*XHzRvUz{Q%r_=pJ zGBTHJIdMi#78vQT6|4D7pK0VWMin+kR`V8r4sVY>ELpNtSXd-Sk~Lqckp(PLvySdC zlA5c@mJ_FDjzEq5O*DJ}2V3$p17!;?B(8?ibE`f*Um{C}rRNfAs%aLuNYNMRjw31h z0@-p1MG8B~*k&|$+lqn-wk7U|s+%B~7w+yTEib;R;{|MqJGs4E;tpH|6<@Y5U+N9) ziu)b;Rg=CagUeg&ih~)^ssUA}QwF{sF!9+ZzbJNRl5v8;D;)Gy3eM|T*B%hhDdiQ~fE+7rkwvR>&{ePF&sRtXDC)5ASm_ezjoLOP@`(p^R(^98cy z#E}V|0+g4*kLnZiBeFku6)gs}~9;*y8Ei&4GOolbqRpiF4PZSTSbU?2vg3vS3(_Rz=E@8^4Isuj&3H zQTivc<-}3q=8ydONScQxbZY0J1HlBX2*mQ!^h!-!9&&>gp&3JW8VSw*WXp*|!`(2? zK_ksOXX$hEA+k_dZX&3E8u?a4=XAQ?NOb0sEr+0^Fsfz)bGIs2Fu|&@OH~sm^THh$ zYI!k7#|xMq_`~S7-Yhg`iMcVK4c;yEXXMvR`i|%wH=1+(3XC)*lL4PmrI$?xe9AEq zIv@-!>!aUI?K^H%(kyq8o5g!k*&M)~WVNI%TeubM1X?EixKXzqeaDS@k$Jwc5&t*n zz9BQ**B#5D4cx{NzwamwR|emZ*FVsI20YdrsQrvCr*xn%Hg)J>2_a4Gi&1FwpU}NT zHu{grmW6KZ9~={*?|kd#Ug%#4WbA{v7)4RGCq*hgp^+hwa zB;V6hv)9Z5UmR}aUa{|8;9U2)$Nh1S`{VoWkNce;(#$z{a?b3xDswjF2j-lfv9G@> zR^VT{?N4Fg;h9|H;ei^fUi}Up2-o_-UiA``?e1lu6^`51e!1KZ9+I{C2jJ$)%z#lg zddtQ@pJ#DE)#8Enz4V!U)$I2y^{ZMsXnn0%G^@@<_d`I#p0O%4s1)fA4u`IGPGHRg z3`S{7%4wwl4Bw6jhO`Sq5k4R-WvYE<25wKy!=0>i&-4y~1s5{lf(uH>wW^;3XIvKk zN>T5^j)sZ9bWDWS%TX3Yj@08Ww`!$asx}bN_X+UAU+J`lTKcjT9soOm_h|6IPUnGX zc%YZRnS75sv9n7%TR+t^!Q^{X)x?+KFS?ERBUKZ-8YbLEWceE%2=n4=I$ppV`)Q>& zRyBVgc)3|AnblPHnE{MGfFL5kXz);$v&+tdGVq`PSM~f{U^Km_svx839aR&o9p6?p zVbcWdxLv6ol{4?bSC*mwNL{pXODYR}W1uxpIVqafoEesMyEB{Yr`wCCa1<&$y;T#R z3?BJwX7qc;n)pP=1U=s>D?AP++wH?|f*XRCMWb!uEU*($4H9nSfkMK)KwrNl&Gn0P ze#hys4!)=arCJfr>FTvH4G>z0O~px_?6GP4v4WPp`da2xO|W!hxXp2R*p2qbg#E_x zVZY&sKJlXd0jpez$Zjy9PP@=3<%(uGK>fYG7Km2(!#d&FY46$T`m+V}_o!;eC6~kAU>Qh)w#*o%VCnzUK2;KDSxN~J$rQ8ezYL|TdK-2@!wQ65xe-4ZSi3?rfT-oMCp&55lI~=sZ|bf zq_00%F8tx}bj_OYP*oGL3-67_*91r7=foy>eKZaa6bL^{RV7CFhg41QLMsfV*=XD? zQ58%uFBYl3s>};_prPf(@j70>SaNcE$CBgccFkRoT2spR1grGz(cnCI5}Os6n^|AW z7jsabX4V(2>;{;@%glvKrtL=uhC`Bhf^DjhGS0U;Cg_7m)#(;_n)u6TbS?Zj*a?W% zn6#6niLdF)_f=IB>;?UbstNXjx{avyf^O3B0$$KV+WUeY+TC^9g4Ci)%1A9SvsT%t zTEUUUuOOZ%=I>^)H?`Y8&EB0kEn`$N1}v)9A0Gfu^0xj`RbuwGKI@nWeOsfSvN%A@ zf$v14Y~f$PPC&B3F`e$yg#P?(edYc`)dYJ{|J^YW`7*}X^I$Oz7Ha}ygriT61Ye2B z<6u(FeV!omGvj*jShg2z_pBLXYocPZXp+TU95P3(izE5xdm#KHi8; z>1IQLYgAQYLSLn7f)`q$gJylaoB9<@FfX1~&4IQT(8qtjy?y+_bL~E!y+r<e2xd>TvtOfYhdZwNF^$`U6B2MM>Vt zN^)n@4+cZ#K~9%n~QYVTisEg=1-*rY$D)AcCLJW8+Mk_L~`wnu5JCvEStN!uO? zEl|~OfooMwu=k_nHe%G<8D^}oQY91KimH`@7orUB%6hm{HCC?$Xs;i|)?TNDwO7Nlw9hlU!~ee6bU#$poi*JLR87R*bVoQ-koImN*i+q~ zg56rj!wdDr`vML0a%>GW&7A^;=cn!Gr|suMGr;qOH|RxG4Ouh1plX6|28GcM8!)-u zoq`GGMT_cBxfnUAQH;RGy;9C7+I=F_BaPPu*cc4fBa>#uRTs`+^$7FEE=d~R04d;& zK*|JgNwY#f&@s`*l4R;C*ppq~I(B}&E(yGab7E8a@J@JoWAhk$x}fZ-`pV8yHNohg z;WkdxrN)FMW{+L|Ew{fk3MhYhY|2mUbRU{_A1Vlbsj6Bm>0P2~B7VWoE1R%!Ng{YH zM#0^Oh6!F)Rf`F3shWsg@X4Owmkw0({du^CBS86I#3uS7ou26I!2;=DR#lA&e~YS# z_=UfyGysDZ=u%Uw;pA+y8W8^B7=?EpoQ4Ody$1`zKcuP}6aE2J6R`_F@e-?2X>3jn zsQ$ayR6n@WermeDFI6m1exs@vll)hzCgPVIR|J?iG^N|#B6*3ibxUevCAHM(<$BMh(Xc(}eR5}i^v-R-nwu%Y(=!_@8Pj=sVBJEp z|7tOKq&W;)=$L5ZFi5ih%8W+X!fLP+kSu)v)p~v9GO8xn3-WQtMC406(*0LA!n2}S z-4R7@vj6IORgG9q{;aBr*kumcfAziCgl@Y3>N~1BF{!_$Y9e;2<=Z-b7Ms$|wsrhO zRV60$k5x_ZLMwF7tcQ0~zk&(o#W|{hcs=|b?cLUK^o6zFUZ`8oH?n4GwOOiI<({Io z2{v5kR|iH8V`fK^EC-Ka8$0@XGVrCj_e9uZov*gs(Xl^xq1nB6I3_~7_XxY5nFZ(L zhIG3*s6pbzRe^pWe!Dl#v7tT#}bjOrH`MR{%K)1l38XUK7o&5*ats5$Q$NulJML4*iY!rtIyWl@@U*XmY zE8y8H3YR*+-VT4SVEY7BsN=!pRF8cCjs;PbtxXlKGIYJCyh-w}t*62hg9XgFosOPq z&@;W>Ofx;50e?f!G_2{{5~OV}VNp3<_fi-obvi+59qW=(HNo=6bX5~9d%0v&H21V% zUi`Oa_FC6$d=kD{N_l{ix~Lz91*uhLZ$F$_;cQH6>`P0nS;5UYT?-mVQ1A_&<>oMR zv(Z0LG~ol0QV!CWeQa0Wb|+KuxzpIK2A_L@I{}s@`nlIw zZ~s&vecc?5)`jh0Cm`D3xcb&9agJ$+zIr#QnqV){jgE=Xjzk&u$L`rZvU4n+aVz*eMHagVdvEGYc?lKP+jsu$ zzd!Wnfu{IRa3LPNkAs=(ov+$-?4>);G111#=-7)&`D)%C?%7L2E1dh1Qmd_Uwofch z^RbD09PI9AZlql|(vBNxr$!dE?$Oset7?KVzRqo~sC%7xel?t<1Z@%AVFUEWReMbh z#^YC-`QE;2CAIhN&+&cHU~ElwMzE=1XPVPOY5S8GyHxO;OMA|xJ?Df5{Jg6A>}9z@ z)kN$Kc!XEC^&6E9_IuUi9m5ppsqTrbji%L0H}CoB#`A?{xLZ|2)(qcOH4%F=%vu8_ zf?d4z+k40Cz3Se$H?_s8mEDrg-uV30;NHn+V{4dGI>95Sj&nS+x2t;|rEQPgvcmr0 z20Rj)>S2FOgn|j?MW0h5hYq7vXDg<- zv)t#~v)t?5V+#X`V`4h468F$f_ULr|(E^C$;rW_X?pRe5v5UX|vPEkHYR`>L?a`g~ zvjln5s@kyk{1jCavCBJW(ZB#4!c}2QXRdd#C%T-PA&8Cpm?8FEQCv)38J$}j(n3ZP7E7--- z64M-5o-gJ0ZojRPT4|QECfwm#zUb1xTlwi|P#8RpE%xQ$x&83m41CA!J~NZIT26<5 zQnk%kvu|-sv~kdP$ZF@B5O~EJCtLdm(RW0nZD9x42~Lbp>2#iKzeJ5E3;A!CzM{9O znqV)|PRB&_eY^8vfsJ{iE)8(~cktLKCJ{yL4|Tt3fJd_eRP22IKUL)z&VQ?FB7X6g zJL7;XoDJceM$9izyb`1M&ZFUTVc(+#^7pDL$Hae0)kN&#PhDm8o2fpt2dSf_T5&1s=T+pm-_fs{&H-Ta=?q0&;b}9-cm=_xzmLgAqQ(;ed zsRC!sg=fL}F@oTGdb310Pqh`$2*W8FzurZ0)5cOVpIQ+PVd3# z#)E|GB;;!DivW>FQELk7?rn|=HbEV#)Adrx2np>Qbt7^n#eo@r~FS9~1 z!=`)P%%os~c@a}RB;O}LWlmhRaI<~#li;bEA%DQZ;Ep@U+c(cvZ94X{ zpQ&nswf-5ZCcM`FL3_`Kof!V{VIiU>_HNu2FIhc<`0Zh@s8NR(O(c55EwN zu7xdNCpbYFdiMM0^p*QFRTJ#h_>5yB@(gwWWH7jn**^!o2c8tgJfuuw_h~|@v0GIi z2IpO>CSsR3r?+$;esuPp?A5~4nF15U#dMh@io7Gcqs;b0$fsVzTJV_WwL#ls+B1in_DhS&IETfOZk&jO|V8kLDhuU=x?^Sn47ZH`(n!Z^wD0M z4z5sK8BrTgbC;dPHg4Iht5pSM8Ras^L}&?D*t(wopws?hv+qIgL(Qs{t(Hxb@}cJ7 z82BIvK7Si3^uV(R$HKps^KcXB)k8B^44xRK#T@Uda{Kp(ZWvmDeKYJodP=C#{{8`P zmume@vj4os2XoCmGm7SB_^i(P`mRL~n|s$=R;BSr&A|!zQnpyj!TERa4WBJm;Zq=A zVY~gyXYF79%>LyD`jixKgcuJsc668@d=u-;g7WiA^%f=?wkj{VB zA6M7`?zms)UVM`CdG6rZbNXNfZce#YDw*Xu_95DH@*B4}|I1m~%ABzF>MBA$DieuB$?Mq9t zChi{kdsRhcS#6JFB0Q@_J{f+wRfB`$xSK|Q5sj>czXLnLp=q-+^XK~V{Z!Qi>+Anf z)dYJ#-A2@UKX>bR0q^IhmEKR)GV|0W=0>w<4cJAd0dHw(qgAYVH#S4J;aoOQv%mTj z?lC#2JDL|b?PlKk{NX(4sp=lV^r7vM-F=~NG#LkODJ5z4CLf?`f}yydstK>`yjuwZ z~Dl5}HBgb^HV*q<$gP9o2b2mr0K(g?23Gdcd?z^fc*em;O$3*071JZK|pM_^dz_3K*Cg&19t*Q|N^eI&n zvCAB?KJa#ILN{F>_zzW`nAHESY9e;2 z>Q^wqytqM?7_Vmka(kzW4_{q_vKWp|sH7IbJV1ToIIxPkG8(7`4|4l@_&CXIJ@LO> z6$tk7E^|z@u_K>+iD{H!j|_aP?OdiAoOK_FM#e%0>;(JtLpq&_D`z9P_h4aNx?f+< zf~pDjcJw+XBJbYET;S{*3Q&71JSvLbU6gxlr#r$Fw{w0;RUroL7gbH5MOGde$Y$UD zyDc7!P4PoJ>uXHz;gimamVo&Es?ss_?{!Rsri|u`N`)#++7S-^EPTTL^EO|FPr|=B z%Se;m9C>XmpWOf#Q> zr5AU)>myyL^%18B@GXh_6rQbAKd_$LZ8)u-+s#c1CYTp)kE39My}TFbXaTbYUvKYh z!GyW?Y{7X}KYR%l+=&dP(=!@d94bziRJG+Pp5! zK`;>%N`qmYQ~)u_dugbO$==Ir924R1Wz)SNYTb4P9?80G?_w3cgPt?DJF}?_M}lWy zmw>y5Yz6p9Y5)=X)@JGO#Xf+YI$!USk!+TgA5jG4Whdr%Jf;A z?ENRTiU|vDSqt`=S>=jTmW2ML`96P)(w0myzrJjgw>W>vTg4NfbSC$g+(jIJIdh}k z9$&D38MJ@dVgK?a`^Zr}V*kW4`2mq!O~5@j(bNirhxoh}A0J-LEP; z%XjyxnqVF29#s=Ig3$O=lp0@o>?s@J?~SN&gCnR`&G(Y3aIE=$>zHV3cl8H&BDMC>CJ@Qnk-2o!)h(vke|jji?Pc zbMqU_a*4ZyJ0F|ECxgO{JL!fy&K#!Wjx%HLxg%)bqpy8d)dZ^(*163W^~}cc=M}Az zd#o)CjhqI8pK0&Q6u2nD3M7`n*xKiWPRA3cC2SAu+l-kfX~z?xX+E#2E6Xo8sG5kq zX=c^mA78_`9egF#Q-*sy?DZ{Mm*Dc&J+U>>DUDai*Fc^}Y1<>G@m!CDrn*~IXVz5T zRW-pkl|s$H$__V=Dwtqie8dSPboEWS=bChR&0Y1hyY0Q(za4mWe-|4UlRM$LPTSkh z?ds|h7vz4U+H|b-f8~nSzUy+Pf`ax&W!N%nUtmx_z}Uai_Cai#9^MH$I;Y?}PY*vn z`8|DQ-%&Neh<@8`oTz)JqoD~L6;kZtL}^1De?}w)ucR_N#%>6&B^sAEhBwEt;D~0$ zd$g*F*qh_f`WpdXj7pnfNo>tD1Yae2(8Oi1()6z`UX5J zf+;$Q)=lmUeN9y(hU=@UCeSh~4}Y597kbEt;u0KlU+BT`bj`Z(Ajd=-6UC9Rv}d2R z;7l~wr_90;|3zcHSqx4%bjK#_QJtO#&fwBMZWfOE_dF0%NSD6CvsFznwr9GH6!k!e za&zeF*xG}BbLeHNin4^WLe)gfot60=@qM|&kK~R-;ND~BRd@j*cGB_w^{}VgxvU7s*TBb_)Et` z8+)G<0@qds?hYs~yA~vNvgO^kW?h|deB53}&zUGgrnqc(*$ZfW$`=c`hjdKyK z9My%O+$;L8u{GIQ!6pL-8*c~sZqa{MZ3Xu7{9e^W>+CVACiuou=(bqT=jK}l6U>V?_k3r}4fK3x$3{q4&j$_& zS@=xV#$+$=8IFnJ)bnvlUlp6ut$RM1=4e8G!MB1!f5f^pH<2os zU|zUgnt}=Dg*)G_V1jw^P1QM2+Y4Aw`Ss|IjyCoulkNI^5u6+fYbhyvi$zIgqB_Mq1W!#z3)YE?i#{&|#TzWYGo~&6h z@26@acEOu33Cxa7bj*^#OjXqw=_je0h+X(&{W&LJ>VZRlOIb4op9!tDcT)v2(2Cfa z;kZtF!sb2{s8rERz1Cg+@) z2DezQ;@lDv)nBVB&Km9eswVhGQz)jrO87hN{Q$plS+EITI&4YRKY8{qBm6#^HV^+; zJM6pbK-DHGj9*r5E!N;KIwnF#9+8*3^0V>wKP#G2_dg(-fM`vR&FFxqYL>bGt=aMM_o`_0Ei3~&0m;J8!CkAb+!|FA>{YqkF%fxY zl-!Z`DR@#88v}9IW&EDA+ zj)~BBHu`FOtS59p-fA@R7P4R`All%#&ieC&a`9Sy^-8KH*ekoiF%fxg93z4FEAXfY zAeN{+w$po@Ao7r^LJZNHRZYYw^31|cxb<@|yV_b}El8Q02a5KQaU1gn{JUY#b;7}M zeOprAEA5;mm _E#q`@?Tx9!BOt;+h&hZD^}r;nsCqoyHv{lGjL#tdn`uaMfsuA zgoShAY~)#=8QKPyUfv3RTs`EvbAa()7cV%@qS=ep9u8MEOK ztX=S1wx#b~;8@z@{l_9U z_zS<_{B{0BO#YsID%>4btvAZ~a9Kettumf{>>mjA6@RD)uUp6dSWNMf+h>3KDrNt? z)PMS29=mQG{C-Tnj_L|L*yV^)l?;x{m#T0glTn15TgQ~mo?1CSBuQP5bvo~G+Ixr7 z@D9VjyYFxs-r=mJ7~~q#qybc8gK|K-oES&+<+e zHr&&Y;2d6X!#-=cWkot4T+( zt4he;#)ljep>JdO&|g`|DYk}21-iHM%SOLx-`^al@_rYMnuVW&o#2~!sIzm>%NJa;N>=wC}ls?8m~xHA}Ih zRZYY$yOT-Iua%rbjg4Yz(aMVg&@YKic{h`=N2l#a3*s+QRgR_Sb5%{mF23^thCSg2 zgKAOw-q@r+#K|}H2g`-esj9|=H&ji;F8qWG%Emw+OdrDbhhUQbLTsW>>~tOq^BvAZ z1=2sKsumOc&*&z;d~nC84*MT>9+OvIp*m#+uG@txm|$M~vUz8tTtGRUy;DFzb2wKe za2)(iY#g|qy;DK?o-N?;AiXW!CS*9=@0d`iOI1s#35#I!Y>(HO1iF!5$0p~*PIzd# z@lZj>f6~|S7pf*0$3J(QBI=^)AX{+RZsqr5(|dxWcm0`y-0!Mt#jxF{Y9e;I547cW zCKLm3ANS$7s?+g~*zOYrsgHrjYSyJks+!=XR!H)!pK$Y(f(hn@+fOK%U|zVRcm)&8 ziw9IkSGE^09aCxVR}WqF{>PphH&X6*SUvVfVD6+jES|2f<%>D{CYh==5MVwV4fE)$ zivqI{l1bHdswA_#bG2h4w7YE6r0R9i2wNzFoq%XfCsnuW%ePI{1bctBs+wSLvD=7R zZ}G=;ynwfOVzWh$@X0{cqN{VMvl^O)ANGJIU$WokmH7d)n1>5oU^4~GYXx52hatWw zrdqwrAni+_V9LzCX43iLxsVy~T*%~0s1>h=RApyx@B^wQ7=rgXCL({=551^=z$#bm zrg2NBJU7GjyJ#Av@Q+|8_}asGqyFqPd$v$b{673{N*byTD3ZrgK1lP7nuFcZnY1#gsrZ@mXJK`Qt|JzIWe|o zOLtyrropMS<5b#lD(yMte6edgm2NmCyl=;YXPVXfv8pCwZ?F?rn|98DYlBnv^t#LfT|z;h<;Ipgg3@tjF}&Ik>(L{(k(MlDh`5qkqoTVnRO zm4clM?UgS$14vj#EX39*M|Rd7a55e^kghu*G(@keimV}WswQG@h!Yzn+a;DY;C4o} zYQC7SvYE8tTG$t3YZQ1>yy7iwJL7ggo->UZwu-n$^95CPSp$7e)kN$KG<{{!syc<6 z{iamw1$Mt#E$6ermbo{!mN~Yw?uGNZ)V)a8y%64+J*s-LCfTiOBK9UZe3h}$y?nqC z!pxbQl`3}+4oJHg@R^v^zPE3z~KCk*X%xOLDlX2{!ZO zHnzfh#=O|4ik$bVzNYlOpX$WZ!KZi4UBGS}52W8KLC+}Wn4DuND|75QrqjI}W#M1u zW(Lf1*355&K}3K)$;9w#)s|(i@nxzeSj(o&+5X$;r;4X9%4SX2*68*T zYcE)ASrzzb&c4eQj)Duc^gR)^^hxf1-1>(=zU%Zh_d@qnsb-vRp;dF=ttvEY?(eFa zV9ot)$3*0l!_s@;o{gpf3Xg!DfV%J{uR9?u8Oc4Zsu7dnl5%${9;+GAyVvMrEPrhO!mqCkT5A)VfXone{t zU_tn)@N~^WbBd}7wD1ZW+Pp8Q$De2Q!=-$-_yN(+c0>>R(D^9H!WsCo629;(<+`9p zIM2Q1CC^RIF7}$v`TF_Tb?d_aT7;jm+O9YGB)WNIhx|X@t}{T6;#i}Tgd~)RN+_HV zG7_Lg0YnapAdrNRM6_YqyPG?0Ywz~hy;HzBWBY8*SU7-jdd_}+e$F`?a84K#Y-3|^ ze9k%h)z>vW)jiX*J3Dvh`%!&gPj_{7bx&_kRZS0x*q}qZ?G7EMJLHxg^?tPSWZ-}2 zHo26ayCfR*73o8w&D}|LB<_&2w7y65w(A)@WJg^Zy;hGIv*!ch+x4TrrJ0J8bA1lG zCx-)^{iXb@N}s0B%{6T%w0L0TS{%&FLe`lY55#B(93CycNUzpkGiF*pCOjt^@k!}! z&^z;LPJUfqnU}?wD}UyWgS&A^x>xg`9y84!xg=~iUG1O9t20siNAt26bG6UjRwdta za9~equs%RG2Xius^E3PSn5lmbeb15H%+kI&RUx^zd^E2PWf&gG%OXAut^C}DYpB@L z_-7;s3z1@sp4HZF+E=O!@&mN-mbLFL_Xc#{RiSEU$G-e#u4t8r{`rc=7SjdIc4PN zWmf$PTpfd#cyd`gW+QfDB#R7FBnw8$|1h&AuWsc|UzwN1m=Di!;ik4uamO?o+dQt; zYsYLrW|=KDwGRE8))RNgReAL%L$E6^i}(=aSSdpb^1K_!% zGpIu+q}m*5an5LPd{*9}k>LU<94h`s@#%@1xlf5ag4rLhLke9`n55v)Hht;D%Z(I!0VRz1+@=Iej z0`%^+jtSNSV46-S|MPh@C(6G&FN@5|&tWm+L-rbf0_;~~ru!_P0QRI~Wc z#U7lDAj0V5QS4OO72GtaKksF%ik-A^uJ$>Te8&3G*$gL_nN##z?vY3w&Spef5fdpf z`KOXxBisN_&dWk3|HQm3>5CtLRTSCI;mhc{M77^3=R6;)9Z7 z9Son8E@gPPfiH8>Xhb- z)$U@64_Gfo2Q4^TdQaTdf9D-B8T7Yl7O7j9(RU_I51&iw?Z0{LZJ%&7{I${1u=)h? zaa1=n!#oYuSLjv~x6hYHuE{UtWg)lEJ(@-8JkJ|yHZ6=rA&uYpY)9k2qXtJIgwUh$ z=_UY%6i$sM6#nbH+LEdJi@YqxT;buHsM-v}_jt_Jf82(#(z|&Rbp>AciP}!6|7a3m zggftx(xR(M_VRyZTCBIQ6+Ae*@J8en( z2M3%v{Nypy_jGy(2Oo!^XEijMSV9iu)s{@#!MrTST;cQdtCRG#;_#p?eB>frO&#^W zX3W%oJion3UnUMkz#08Ugv4OnnOBoC7_ZFBV$28Q*bRCW=hxAUI-Ftn^q399aoSZ? zrrUtREu*nW-VL9~t34TjkLG1D<^wQ&!=9jXZ#$hBOCNx7?dOk=ndWCK(XFm9ttRID zqj~iuDt{y|i@3^jKJxNsY53PW2Mdv+$&*9woz#hZ>mkUZUdFFMdtWeEqcd##_*Hg# zqawn6$z7=Cr6S*Bi!pw*DU^n`>Sc;@6Wcx zOSfyrOuy63FAg`F(BsOH>v2V17BbUM=Ajt%9hQErGw_@|c-0sxoEz0&>!~Cs?ykJr zk_B!@UKV4o@NkAFx3mYxP~qHY+Lm@-UTulO>v>s>xx#0fT~xSQIvc20kD1Poj5biF z-NeH3s=PWAwZA+si!oPwgT2!y$4u!HmXy0zB^Q*B<<*iX`onoy#1)-myCeSA=~{{$ zEJO<4G38((Qn2kj2Mdwn&3SE@p~K{<|Jl<_wM8>_q<8z4zJVG=*67eqXHglyX;ij? zLrcVCQr>s4SgMn!gia+1j})h~52^j8@2DR}!i;bi_)k6Sa_jQ(K#$( zkI!+mykvB=td1r=uGeHXeQl7AUW?9QiJDKW;O!$-N7Gm#bCK} zFTEL1bNz_NY#x;#yrCm`uYQxX;_N9sK}<(d%Ol*FPuDC`_m1g7Ou0Aa$6btLkxRXF zh-j(C@w60h;oPcgMn|LS1mff9aA?*NYJG)iog-+`dg4A^Idavm$gA4C!AdjCkFw`O zdAr6;r8A>|jZ($`t+pK_*X6dnEM&F0l!s%~t>5N5b%}2i?i(|eQ+z@ARX)GM>v^>$ zKQjG!S;Q5d;}=4HWcU`!!9t`sd5nggw!)q8?RAoy$yvPKG={?-HcG(^)M#SOdPCkZ zlVN{tUKW`Zp8I#B={NB{KW2*0_)WaK^D0mD{~669$Io%z-;DHc;{9~Y)Ymx(juXMi$cm0@+_mm~N!4=eC;s^P< zykjN9eRWe%_zOqjq23zH`%#t?M>yI)_eS z8K}5>yxT`-It|U?NB&ZsK0#AIZRM)s0DTLFUaAV3`s8lQJ1=Bv-I|w$4C+u`7Cfkf zLo)}eoyESvUivm0eXxQK7d zDLPo3ihPsN^H8r%eU2-9j<3CeE3DznhZ%hpXoC6z7df8m{hKoWHIZAm z1E@{i$;pp7^Uo~qQs(kcM)x!8S8|cfTwxyYkGEV)5tA7N^;p(}3?bB#>imIc+M0GdNWHktM zlzIrs1T_H_#;bpF^)I5xIQ2?Ki<$NHNM@)Tkc?MutC37n7a|#_PQtYb zN&y|NevKB6RqKEztM>p+R=+_qQ9X!;j!=(ty*G36aa^0BK8<98x)03S)GnZL>Ik5T z>W`>5LmkZxJ)1KhD5*Ji7`fsR&PNT#YcBXg?y7EqhI7a~nm z`;a+J-Hyz|)whw1Q`dso40QpnO;AU0y}u&!81-DB$*LDdQcFs)Lh{A#;NI7)rLO z8#uX?d0vL3O}z-26V&Ut!Y;n{AoKhL7x@$?om}!8oP39i{Dzx7lhJpX%Rx@w%1IAb zI2TEqn#t&Ku5dTEw}DGOn=_|#qWIbzuJHtX8v` z=Y4$b3{L)qq)okquN@9FNi75#rygb2PeZa)ox>HTBblO}!PmY4A*QImqryz}a^~_c zPO6-I70EpHN+b)_MpPfC-o{*RLNZf*pL?_gXp;I7^IVGx{4ggIxVN8V^ax9~pG&@&Gq2!e zCnrB)X7d@H!zG{0$wNrm)I>&yb8;eASjX2+vs`2< zGrNzk{ftp3S2&C(!y@Lnm9Kq}lVdqKmAPEZJpYEw3F>gx_2oe0)jzo8Y`%5`UmNDk zdpUDAC*!%VC z-^iJpIC+?5`7uzN>gUYYakH;so^R*OIn3pU%;j;eH^}w2bCDgKT*1keoXlmNO=D)8 zIQczuc_NCmsb_KKUEIP?86C&TXPHYMU;6-Oev8qI`PwQ*Z{p;OocR<+-Hgs-G&Mw= zyaSnS>ICNbH%{j9wJ!s;sr8J$!q+x1dKIH8qmMG{*K_6%STAcBy@8W|bCGe3Zsz1& zT>V@||I6sfoLq%uym~*QFLCwXG3#ZV`6|xb!quP2ng8MSLVwB2MOUG6nS}tHZg-pOD$64)L|`+?BXgX33Ule?BLBn8o{!9N>f&L?{enL8C{FyD770!#;ISi zfWP7jr*e_!0F76daJ??h{5Ti+I-^f=k)LppB44|l(GXwz8Ka+bvWDyJX7qV9+ota4 zde?B~5sc14LJvkP*$+{#O&!VCj^?Dq6~4g9D>ykB$#^xNtN)ubw{f!{VJ>}KeFc|% zA!n}UlHcUyOim6%(x#R$v!Ajo@8;?UIddtaS$v28nu~mtGf(DZ94BvNAxey1%E^At zyqep4F(<#``oOvgg9OPsY_x2@R{;Cc^p=I^-r46gSWUn_Fvv0UT_eC;Am-p57ynAt)u@<(J&P`7Y0kvn|?S9mR# z{0!IoZ?14FqnC2>6AU9+jriJRu5ckIpJ$#=V`e8ax)x}>x)?>KsOJGqRli4aqS}KZ zN2oHA@#+uAT&#{k$@A5ZkkHzSWP*Aju1!?KNRCqvpu!S09%! z)dHYzsk3oyl3D~bUQJ{4b`)t>UqM$6SI+{Ps(ymxC>5aOG*#x3zd+`5)c+WdIFLu z>WN5>Rwp5uuD*z5lKL$wOjOTC^>ON*5Uou;9mzQL3?x(3k(_xHl8NfwjP|1Xk*a`t z6V+>h+SH9eGt^2X(^LoZ{256J|zikqE+x!9%-08LeOt}q>$Q`7=5 zYg70VCkc2vH}o({PE+4OGFe@K8U9F9aDP5-1p!k^h_uWjzn%79xRK z9G0*2QdS>GKaoHihEe{gr&882Ajc62)SF30{QUU2B z5~yc~?S1z-l=VF#f$9pgZg>S{6+vzUDS>o=bb@q&1R&iYJs^8P${-44FGvNX7o-oQ z3epd96G#oDP9)HFU-aa2Z>FrfLGA&$7v%FGUjX?c$d^FA4DuC_uY!CHdoMIb{UF9vxD$gLp5ATI^E4di7Yhlm8~z2OM{=v|ccW00SK{FF$b-X03}==&(^ zhaiuEJPz_BkRKBXw4EBdyYnNIbr;AxLEZ)OZjeubdb*jV3z2L|L66T|@$HWk&u9KcTD>L7o7z4CG{xQ$Y$KD?wI+oDQ-U ziH!7m&Y#{0-#qApZdQC&<4*{!Jv%c2hL-s#7TI4v;%RUJY^= z$ZJ4e3-UUU*Mq!)NTBVas9L_5vJ}W(kP1jINFPWQq#xuakQ$Ldt)0a8_=A^I)NDs&!kTQq@*-IqQ<`A@V@CTH2 zGsu%co_vJPZD$Oe#&L;?ll44S>>amubr1;#)6J!SnE z6M1^F4s&xr)us)b@#{fV-!2Dt|0T9E5No(S?Jkn2Hi04ajp2vP#+0OTGR)VYoSq-uVvubs(~CQ5eXCws1V?DM^e_^AoqaW3-Wo8FMxaz1bGPLVUX{Dd>7<rk0`dZo z7lOQqNT6WzMTz&$rmXjYydUHPARh$z5Xgr?J_7PlkdG0egkT#I;<2jj zauDQZkSBvY1>~t9PXl>6$TL8m3GytEXM;QkkR-Ujk^kavLmH^@6d{s-h;ApZ;UZjkqYycgtsAnynH0LTYHJ_Pb%kdJ_T6y#$d zA16XjS7b(jD9^o_vYrR>e2`l}UI6k!kQadrfxH;xB_Owg41>HB?J;)nC{tM)dAa4SBGm${SJ`a&U`BKXI6v(GR zJ_GVukk5hK4RR02y&#_l`2xrnLB0g?Wst9cd==ztAYTXh2FN!-?gRN2$o(MS26+JF zL6C<)9wri~ck888UH>Y~Q@8*iVdtyqdKX9l(hbrBvInFLqCob7R6u$``ar56{UA4i z)IjPW10aJS`#|=C93T>C?*f{A;u|RINg&q~2^4$@$iM&1l=W?p2S6SKc?jfTkneze z7vy^&kAQq1s5D64aV<`6UYRdX9 z$Ri*>AQEUx87|(khO%A=G6eDxkYSM9Kn{VtoJgQxOhbjkPp7QOM1sMgBfIHT(t2^A zTC4>fgXKz>4m*XN=~gOvHKoJa;3No^Cqb}O0aYm-)+Q@Kuw4m)jSA==PeDl-s|3Mn zCFmBig#qoy5(FEVAQ;00!73&Q<}pFAlL>;s zOb{$*f?y^C+Cu5DwwDQl;Y<)LXo6r$69k)@AQ;yK!OA8G<~BjFy9t5;P7o|{f?$#p z1lyb-80iGTS|M|8=oN9*?`KF4r_y(AXwf6!2~A=wm3mB z$_avXP7us=f?%%`1jC&mSnveFlqU!_JwY(;34)bR5X^moVD}RQ1E3&S0tLY&CnSrClMf?!=11T(WB*qa5x@GJ-xXhASV3xZ8r5DczB+bA8@mRCVA!3u)) z7wD}YLP?l`fr|JY;Vc-1V_7f}$Fg8Bj%C4oj4WmYJF*}clm)@EEC?oML9jIog3(zJ ztj~gAh86^Sv>+I!1;Iis2&QU5Fa`s?hSFhe6&3{Zuprop1;Jn}2$o|(FmnS!6q*V#(6=o(hGub0q7A*hqaSI5WEe7;C2uM|AQbn zA_T!BAqcJsLGV!sg0n&pycUAswE%h!rNi2NAqaj9L2zgYf@ebzTpWVn>ktH|hah-A z1i=j=2!=GE8z~*u7BxXItqFpSO%RN2f?#zM1oN99*x>}hASVcxIYBV-0)3rQ`fYO% zjJ|RW)?Yy|0}FyZSP-mzK>H~j)@DCJu>T2yAy5!3f`VWg6a*WgAQ%e;!D=W7=0icS zBMO2+Q4lPPf?#441Y4sZ7##({`X~ryNI|ei3W8x$5G<5}V5$@Zo24KaF9pH91+XI2);Q%aMB5aw@wh;c7ou)69h+|Ab9iy!L=s{K0ZNk_6dU5 zPY~RHg5U=f1c#s?cm@T*MJNcqLP2mE3WE1g5Zs7@;7=3;$D$zk$$-8>>9BT~34-TL z5L{@2;7bz(rJ=!FMYNPFz9o<_bb61<*W7hjmPaAOu$kLX?Fdgj)zg+=U9F=x3WCd05PX+{;KURJZ>Au)H3h-HDF}{ELGXAAg6mTde4v8h3>5^g zs35pU1;I}$2o6(0@SF;Q3sn$&se<5C6$J09Ah=lt!QUzfj#okOzzTvZRuFu$g5aDL z1TU>1xN8N$Zz~86TtV>U3W7^l5PZ9W;N%qqZ?7P@eFee)D+rEYLGTC*f@@e1e8hs_ zEEWW>u^_mQ1;LLj2o7aI@GJ|0i&+qS&4S=`76k9JAh@9g!5=LMj%h*gPz!>qS`d8J zg5bOs1TVHAxU&VpuPq1;Zb9&L3xdmA5PaW)-~<;0Z@3`1#Rb7XE(nftLGYLhg6mum zeCUGUOcw;Nx*)jM1;NiQ2%$4T^C+b?*+B@Vk!y&m5rps>L5Q;vgn%1Ch`bSm5F9~> z#Sw&{96^XI1DZ?eunsX3gjh2{2s#sl=rchGLlcB}G(iYV6NCsgK?qe7gqSr!2woF} zC^kU|XA^|DHbDq*6NE@NK?vgkdKaZ+QFjmmd*m7-d;}rXM-XCu1R?lG5TbwtAsk2$ z;(`PrKu8cGg#;mFNDyL&1R;n>5Tc0$A*@Ic;)?_!&`1y>jszj}NDyL>1R)qn5TcR< zAv{SC;*q8$Yx>`@Tn9|a*0QV=2{1tBz25Mm?+Ay`rnq9z3)d{Pi%t$^;LbXW&n z2}1OhAO!dVZKQNqNBRmv$gd#8{t7}6upmSO3qn}1AjAg?LZGl9L<|c;=&&Hf5DP*u zu^>bh3qp9YAjBC9Lcp;gL>>!52(lnVs{yUhIzwb5&?hM!)*+695bG!iL63qE{U``w zkb)3v2UMeUSO?t+LiC*=gy9K7Jf0xL%K@E4>97u*6NCslK?tQ2gb-_>E=q@WthFEn zT?<0=wIIa*0lkLOVI2r42oZsT5E>{5F@k~+EGP(3gMtt~Cz}gsK7EO6jnUSrdfdH9?4C6NGR!L5OP; zga9`|h;$Q#kT*eyeG`NrI6;Vp6NIohL5PnNgg`k#h?oh*d!dT@{2FRzV166@;i(K?rXZ zgg9402zV8Q$X7uKffa;USV0Ji6@=(mK?su-gm_s&2%Hs!2wFi1r4@vjT0sb|6@(~T zK?t`Mgt%Kl2*4GDNL)b($rXgyTtNuZ6@+MAK`(X?B6V@?osRAVlN}LTIia#OMk_ zu&y9P?FvHpt{}wm3PM1yAVl^GLWr**#QF+C(61mw{|Z7Fupq<(3qoM9AVdfYLa4AH z#0(2UFg4IyDIL~P)q)USEeLVef)H>m2$9!<5P~fTvDktTlr0F+*@6(JEeP@2f)KbZ z2ocU|WBO-mSI}80)k*{9 zY9GN#UDeLMQZH3e+uOltX1TsIu*DV=*teLVpkDXqIQDTH>B$(?2TfD8noK8F>lUYMzmb(n4t z#mILfXK-kIXMex0aM@)PNBJyLirPy5xe8G`C~LdA0(5AK?)>Go%loOvGtA-EJ4g$? zb;_A$a@N&)2&-MX>TXT7Qq-07{|nSrMCo;)Yji@ro(RR+eO9lazFS?H6hBUy-T)Xn zyiUVJ2YC-IrqAH^QTO)+#jb&a{lT*3?aRu2?Y;CR-b&C;-^pEmXy_P93bAsB_IzOb zz@d^pn3@>Ui$x^R(40~|jmZ(r1edvPSmk)D3N^E?Rx2HBr!Q&lsdiD*N1~R_BLNb1 z7rAveRQm>K{suLve=O=p`3{djpQcT+v*?S<85I#LXB4sAykG@AETKYsO7%UZj!FZ) z9tYtPB@M$BhwGO$LhrSz|rmkldG#4U5b8=7X6x%PW{Cu*VK=6 zDLiJmIyNmm?!;nO&|Mm=P?|PZv|5)?Db+^k_ogC{e!McA#)Bd!&XH-GhDlL)XQ@zWQK)f3-G1Yq4fu_YLqOh}EEu zQO!49)s)M9-Blkytr~sRRgF|=sG4NWg-*>#1u{uusUona)tqFHJAIQoeU{9H zQoN;&IzDILlS?}*)p}4LDDEp&%AvA-x|t2Op0W{BdmtAzoy$joom0v%dIJv@FF&(y z4r*2J*z2*&a8r zF#Re^8LnTmyBp3$eU)pP1y3q8oQuht3!R$H=c2_S(BD6ZZqpNu#s(WIS1*9cqDB$N z+td4adeN?{(qHP_>zjMiFcUSQZBBhk(*3gwIdUzwuNb*vy9%p+ zc4>#tQu~VG6ZJzDwpjn{TBd*J*tge$&OJfr-ePy9TJrvu>t7(N3^OUISGY=|FN6$| zCcDa=f%opzO0o;NowKiG@0?xBbZ(;alhaP)tGkxIZ0jwDTg;ISd#5;ywQ46 zqdedp*%^>jiWn9@cE({A4OPW=^GrrVzof_{5Zna}3l{ zd+lFtZ&s}7Jf*xD@_!~&*io%k(&wR3p_Fnu4i(C!Oe&P(4kxHkE*ValR4CP$ zW1#Tapy=LMLHlLv38Lw(r#H?G>KIkNGI93|`bNdvJ%dhnarbcXW_OQU4|h*g&!e5> z-4oUi)Mk4nT2$_9vZv*dw@aCh@3SZ9Qre>hwdT)f`abfMHB9H)KX}XR0h2q#r(XSA z>Mw3s;|o#IY*=n~sn~|ri`8!WMeHB+FPr*?N-1xcUu|o3sXJ}t*)L`t(aP|YHBA4< z`Qbjk+DDRB%6q+*7QO$AN-&3TgUfiOh4u=z>Y{S7b=X7tP{6bWP zInhyv&W*C57S!=1pY|ZHH#1flN1k@;f{`fJC;iyMeXsKW5cd*DW?=ODyf~$fS({c!cyw9lr~ev3p(AjwxbrC&e!?+ku`Ou>s^Huar(MQ@{LrwM>3jPU))P6>+o12 z`G!X{`oc%=BBT6*)G>W}kG&$C5?Nrf*lZR+YpFH3fs%TP^Bazz;HJN6y7TdZPUn}$ zuQpIYY;fZ>jUt|8-yNseYjjh2wIWh$7)89p`5`j9_UdkBU(1ahc@d^2$BWHWCFMOPfqx-X#EvJD!G`2yq=RA zIQa`Fk8p)ob8?|hmRVkadFuuT$oDf)?rh&cpHnB&w~vmrCZ|aK(9oiRpw_!0DzO43 zh*%{iz-@Gh`~ei^u$9c;vp3KqQMF!%SEW>G-y9k{iPwD1%elNlF022g+QQ~I-AG?K z=<5t@Ci6ljBmrMcXE9|nxmSYy)!JSh&W(OZMy$1?qATr}l=`|V0S)6Ux5^50Ay#$f zda~yPeO*%VSY0v9POCQK;##SH4=KABGlH5sM%U80q~I_&*4C6Q`wq72rO)(;GFEU# ztmrfp4P_wRAEmjYbd=|-5H)O7i1K0;rlW;u{X8^ubku}o`l@WMk*kIjMp8)?$&6Jw z8m*XFLi1_ejxC3VW=BoQl@+)Wt9%41@2-_Pq2QTOr7$N}ct%*5@6l*PD0c-_FuAcx zGq;rw1YMDU)F&Q&ot-{4r)}46H#3$zI-KVp&ZD=J^%@=}yD3(Kxsu-6vLX-mmAemOHP&`^jm%2?YhHBM z@v8YAM!(?%A7;gKh~|A_3U6BNJA+~m?sBxCcf(emY3FfnfY0n#ALj->&B=YdfbU{- z1S5Ri6+12SYjZj)jela`zAut@oxY=7FLakW2dcI5&G7UGef4UMeu2XO4h^m0YAee0 z!<4y}_WN2t9T)B1xm$B?U#1&vr{BC*7?NJjXr+9?w8z?8rjFP~qr0U@kACHWV$tk$ zvi2upC!4|xa*0zg5;$^QRxEXN7RzKHB)57CY8J6d17s!W7#s*lQ5WW7QHW%4M7yM~ z*pJ|Yyn@lQ58a^y2oN|wpIo5;j#QVD_k(BZD2!xIeMKTTl5M5zLGq_ox`M7zkZoN) zomoOS(p^j!_641zAlP}i1*7&InRe1z6OM6yx#%Yk+tMf^lxU?-qQGuoT-6!-nvFVG8gAlTp=!zqsgnI ztM&ehaqfFaC|6ra!vi_>wu|YRB@kv?lSAy+nD+3GGMFdEVOXvD(Ql+&=p-3izeJA?+=R3b^d(fPSYd^C)O| zPfyL?7d<4VfYX@;CfBGm)*EYSHYJ__MjVxJda*FdHp+|* zhUF2AiaH!lh_Vd_PhVml!KjKEj}JS&Sr`VBm+*_IxyJ4jZDh9#IT9_luNa|X-Lj&$ z?9vXOrS=uW$J4o3^p;)A^zRo={}$*)JUxO>+jy)pj#TZ|1tV0fbC$=`D(rAM(Yj!` zc)Awzcv_WA&(=CC!rW3lb+Sp6P+!rk$0# zP4k$+2FYSCrm!>9Hfzml+FQ0uc59}&%we`TSuHAdor2xAGelQ3+`u*IpTky`=;Vf@ z6+Zs$+^)z>mCYiR+WU6fWR~2?wI-=C-?=KK*+TDigugm8?VUYwD-DdAN{vL0oI6@F z@ue%&GWBgr?2KFKZoy~r+ZowB%xX3Y>Kx&?MD@J2vK^G1A{ z|E(GDvg>|y#E%4Y#P0~TPgh58@r&z!$EfJv64B|x_0ok=SrOyXUp89O$JfU$vHtR8 zXvJWiefsPinfyK>9sPI5ON`ZhuzPenVjH(ZoA#CTVn&@_GpEodvOUs^@$~vwS5VVG z1@@zEOM61v@wdKV@e9Iwrw^2x$5#Dl)KY{1#q(;9erpi|Q7!wC=%U@bcjt)?Fw96X zXJi>tQ@&u@bEaR*(E$l|vQN(x9gwK+f8=R3Iv~N;dDKZ7*F9VF1dEjDfL+CbfmWTj z3EqhOiv;6#>+vg7 zq(y>*_pxhNe~E&E23m4~CO9W_mve+ISsc~19uATeF?xK-d4u?OMcbmi2A!ml^+BM4 za5*QPErp}G76U>WNR}xeBvIf0v`58S-2^8%C+1vU)mg$gs=JErib${7gMFF{n(6sD z!KUDfjJpwy2GH`S*ucw`LM=+=R1N%<{n6 zm|e=gv9HwMUpc5FOZEJsy$cTI!kZ)+Z=}Y}CRVE_ja>KXB0IC^M(sk|u!E=e==3HQ zcXIj2JL3rH$iKT4Z$Oh#u(qUGY^{yCdAFzCQJp?Es@1dZ@S}>nSjHBF#01J>GHA@Q z5M7Q$brc^&*J)Q#uh5YlqceHpzc0H+K6?_9IvtTQF&!DBn|d_IBoZ~fD?CxgW>7}C zD=ezhl|A;LwP>N0s{D4y4)^CfKEtjW-5F+tb-L3jGPUBrl3JO1a>eNOB);vvie}wt z&Z_7cb`*ZNBhehSUqjhuJVxhEh-A*<)M`9@c$hT8Ia2SU3)vrj8aE>Qxhxy?#=Lw_ zzm@38BUX2G)E&Q9uN(OcPZOAjAW%=`@S8ADbf9*y7#!#f`n|z;I#5)KFpH9Un~C7j z0ps(7-u{7usljlXhZJ#U!Xn8x`izBE9Seo%yn>WKL`$!=`su z%WQpJv$Nd;^l+nJIMi2-GJb07b6$6~mKt`eBQ#9`Q@zVE`Jb5jIH<$C3Ys1oT9WqQ zXP2@c@%ZJ`MsNFBHL05?B<7)YoyWr&gwu9=;(roVY@_Ij&08q!cG@_jNKaPvl(z+w zZAB~D$r)M-Str`->Ke25z}ji=^kOl%srBZTXX+j}$6Ma<8>NAdRl7g-y$m#u%`oM>&#v`HreC0e6!?J?>bI6Hl# zyS$&?4r#f$Ya~yH7Iu$bIy|083r!agwxm6 zbO1_Et6j}9Tfo<8X>FOl`cS8U##UR)vZ5K@PKzshTi#wT&7jU+cYnQ_4kq>;EYa}h z&Z0r^b^5cq7SM@68RnV2jAUsEe4Uoo(B~ZbTOOzkk`**#r>)g_=0uiWfv?lj8Fe~d zq${Yms=_QQambq6qhtQvM}35R^NZ8IhhzPyFGU=g7fHT(OkaoB&BTCXJ?cwYhsP4h zH$0j@>PsEdryl!J|G3~FTlQlQ`jc=2(KW7AQm->^TW#~0)myI9@jx^Hv1*f14Hq53 z=SIbiHAA|sm8MmZthd0f=jp0`b2G}f>Idpqwpn7fzK4DCPJz7os_EzqyW%W*3)1@n zupii}ZSYUw+ZzHuEfz zWPS-FVH`29q{5Z@K>a2h0+;pFsAK~PpY;Z;U@eaXG%3)CgznGCQj+j?LHR6^WJwdZXi6(~yGtv^r5%mhbmfcaBWSABUi;<5e=kKzSz>%w^$bFB}tT3sZ_pxu0*)*~hCeqY7`F=$b>&m6k zeLM=omvdf4A~@sM^6LYhF^treQ!@YRk>fPUMzZDnrA=EfT6=k*kziR~9!S>rg-_hb z0U-3Y1x{Wl?%h)&%LO@H_#0t)_Ctv^ZF{~OB26%7DoP+cb+?7LIFrgrh@B-6KFLPn z%0q!1aU~Ews+s@hj&HLs$*1Qi93>KoMWz##_|ZRn0H4(pRMJ1+gNsgA=SIbo59*dh zB~fpIUC;Aq9~zeVW_AfTK-7;dMun`F5q`e6UYzWAl(xyFFIh(}~!DMve@D+VAvWR@!)I+ZQf6 ztR==+H;o2qZ+s^N*Dr_y%P z|1M6a`ABsk`tQ)tDO^118;{CZrERm?*)m)W&It8zA$wXOu?l<2$$W5zYh9xNs)lUD z9F#nrv|&ZEoavaYgdC|67Y*5sNRC9n)kO^gt}=>|e9ygMMN&s15R0Tp4a925Oq9{O z6o~*WNRbwgGImnLLyguq4BW~n$C<6&B7Wm8=_56uE2A8(k4hrY3sU^YMTA!nyK(b9FiHW%~zrT)sIioO1lS0Fa zbi+i=I_vsIgnBiIYir0=RT_Km#A51gh(&x0c;rusCB(qfo*~MrP;dc19!sH-#ss5J4bT|m7q818`w`r3LP3+ znYIf|tzvHlFWW8$#%~g~jr^@?d}(u-bc>`FF8JGZhUcnAFEY2t*l~4Unz+GRHx=PV>tfVxp}IQ3+?r z7Dm}d0kNlg>vZX;sKeoeDBEz@V4i(sg^ryr9aS-%n&LcGot*ku2^v) zaGt+i?xXcOY&8A5R*6>W&PhfeCQ8}244QD%wz=WPwJ9%A?YWKT7&;yo#J_>PB=g3?imosJHRns?+{pAtvgl%uVpJaZ=zXS>60(yZss6M|i!;9Uq}hg~H7X-!$Ae=cWB zSQnm^k=|^1M$l^B8No|xrJf%8LQrpsKc7Mt))uuE`5%)WxU|N5_<-*6T&#cZWxsXFwc^l41wP`*w;ZPD&`#H=%&f@W5q4AW&-sE$G13-zMMu6AMjxK7^ep@oM)@&5fqJ{%Nvp4h-7(*eoo8>U z2M5ZPdV%y_s+B1oduXn;g^pe0N6(?d>*SEH(8KGR&OJfr-Xh*fH}$oww%euP@}SMK zez(NUEhHHkRUEm4KE`%#CprH52K$Tjt>I#KFwnWDl?JtoCEj2vLo)~N&`MKZfTCv2VgO+?%Js2qJDrVxQ)t6?T(5MfEh@sP) z6`C#o@Taz5MPunh3DOF(0v-O#puej#4Z(s&;$Q7>U6pkVuFj~PtNo*J($;m`)@Kqv zb^d^ZBYUR#quY(v;?((rVt&c9%^$a!)cK>E$v1y=3t8q5w}Bhp(H4!s&RruNft|Y? zo*74g+RZWoJ9mw21ng!Si~u#0cLb<~Y$Jd+5+iWxyPO(KRgVAC;RNTvMau`*Ixqw#PWNnH)mNW{+R$*EeV z^j|sfw{DTtIjmcdJ0wtd8=JA-yezgiFX3K^-`6kfp-opMs2v(=x3(|-BK8Jm4YsAh zfq`wMzEV$6i;b_hK5b@}VT8RG^)^@dIZ8S&KHOP2$k?yS+NggboZq>pTCE3&@a&?m z(}r)br|yJZwNjr?OK;xG+3EV3orAR+xszINR-X#sS5%Cr)8M+;YxMM{Sl_;&HsFc> z@((2ScujhbQ@J}rT+m+&_Mz9M&d#7-r!%uUOO;CUpS9e1ry5#>L(PeR&kFe{0kG>~Kvs+BeusFUYq%%1s(| zxH^rVgPziN7-)TOz136GZ=obxr`Zc|osY`wuFz>sEqA!V-Ro!VG_S{Zpjv|!fp3cJ zbGnJD9j;EJXAJg1w3ZvxCp`Ekl*7?!?DYNRfgGLFdpCbuHbZVIP+e>Vc{5u`zUAyE zj!*6|kFx3gI8-8 zw(*5Wa9UH_SInM7=WOZiuhs^3)Aq4Wrqtdhdu6LN|K8CmP)M+LhG|3NZF56LvU}FH ze@E4}Mv@}LhI5(H+m3DJUMR3ipW`OSiPngDtZIR`NTpx>ZJ}l%*}kKzi}#gj?JBZD zM`YjwM3uE^RA7an}TMuwT^iT z6e5;ROXs#QizAt$g~zj%aOSO-VJ6em^CaYN-fGC{{aRAW zj?%!M&H9ssE$G^_lZmw~Y@HS_!q*S=V?m}K3m56Nj%{x+)$A@6qUKnNK>d}M>F4q? z-K){EWlFFA^OMVTsa~hYQ+$nteuoo30oGM}Q9hMDQuI)%JL&OgNky8t3+2~Q@^fu-Ym ziM}LRIt^doG)!w?t8H7qHEC_TT%G1uhRxF{g$;~t!k7k5yF60{u7~+JO`OL~P``Bi z3Qi8Jx1d}7c410$9-dCq;jK)YtUj`M_l4if8Og0Itel3zKJE=_eL+PVKXAMNx|(VJ zH0q;=r_=NbR&RwYmYLeJp1EXL!@CPi9OmKdq(k+J`%7d*s?p}FlYY@l9pTobnJyd6 zPA^xd`EdN|rCvHvYT#ghHf=UqiiMTaP}qMRJ(Nj{jaC;Y21!4MkTD-IE&2kPcU#t? zWz0{EnUAT{w{U{seV0sKYcxT?#9_Xfdq!3xdfKG$#Cp(!_fYu$)?aVy%{DEq2fjoX z8**oH0=1cUZkIR@*ejAdH}edDcagΞ*`feBIhw&l?rD_ja2RO+=Bu!Zo$u4Or6h zYAK>Y!9ub*XIw7V8{E>qQn`YAbrj^%C&RegYpb(Hg}kx$x9bRaZFgUh4rdOEc=z78 z0mLs5UQL^@4Kzb4yiB$(4GI=AN#F<_WU68-J6{K`9>osW(m0*j0MoHGg!x4EJat(- zqiGRq%Ms-2*u^{!B2Sw%5w>L0V}|w}fj6;{+-ftQ?sPzX^IIy>8VeJsKk$;*&L+!a z81*}kt{w|xK%1e#URs;Un%}^}=qqL~cxyUKeKD82c(gU@U{sw7lowl}jzUJf1ou=24 zGYbc&4yJo7JUmI$)`PvLKtb3#&7Da*_@E2lT^&fi=oda_dDu~VmS5CUpkVQJ8a%6t zaH7z0>?=zTRK0*UR{6&ONQH zokF@8zGfV8E*k8o7fFI*RX_RGf;zp5kh*p8v_nJRyQ=N(CSA89%;P;(kPt0(BA&o~a&@xXDgx1(BVK4F_FG|AFwa%B%TOS-M5Yem?U zWhZgFCajz$*6k^Ub`i5Qb<$hR^prG#vz4HyLpPiZlXPTD)-IMktjj#-L!@3{C zOdYOfGjS%zYTkF-*VAT&G@>JZ`4`DFl4N5v^)lAfFPtD3Cxj%59mcV=vG=HA*KF-9 zUtglvnYL4%)u}Pinj@)2dzoBb1*^KNlDJniy`K2x^b((5(C-61X=~|VP(u%5-ba@a z$?v{tqI*?{Dm&7rzvmFEC9>hhoa3RsXuj6owQ=jL&-11IJw#(+lI7~Hq(Wfdq+t=%qqgiO!c?$GVn_$ zTFTkyMOvmx;kAfHcgw3DJ_ioIcm$kgX;$9Naqf+8EmT6s`R*E{eszC69w(QoYTB7 z@%qvY%V6KAL4Oa9p&qQ~7}8BfbMEuJ$t8VyirT$Md5OUlD&Cm%!`|LBY}DVASrE^7 zJ9go-XW@XP%rJjxyFVFbn3sukDP@LvYx#RMgL<`5e={-c&60BTeu=ACyOiCFGqcPs ztFlOM?{%F4u}b@;##n5G4~;@Zd#m^jYBm_t-BXkf1Dl_F}! zFYR=ac1vGZa3EBuwPAL}wF=qtCVn7&@=9G1ICV9U!hVV8X^C~5Mtlu(-hhgW@2_F^ zB_)bA6C>%EZJ~2UVoRS_g!Eo+uMTYK?dQ|@g05&F8}u@*M$5fSVU(elDK-7Q#O%AO zR2eis5vjA!DrEO1)9jPFB7W-Zlfr(9PiMDrQ6@#&u31XZzSF;uBzT#f^C`R&`~&Zt z<(!ODXv-bi9?51wN6i&WFhtVrn~;JU)r(_l4Q{KXzO36?rjFT3M^7y1uMJY%N6_0p zkc{#pmNU!rt7nxlOgbDU-PPVwZ-w4H2w(cO4GxBhRmL#+n0ZjpqRgxBFZGuW_&@tN z4RV+QT;KG-SF{P#+85BhcMAiM3@7 z7JYX)`8-EznJc=Dl{N~x!Dc*PkGq})zQLaXZc@asxYXEWv~Y9rrm63}7!qeH7=+gy z4b8VJB^7)W>S?8WYq!U0d(?XzI7Im_mq1;{J>dCze8Y)09gLz9Mg=c24^~7`69t#a;pqTT|#Ueq_KtEXj@Po6r{ZlGRg-&^y;bDGSNV6j_E ziy%czmv_0NPS&Xbde-puT90~o-RbyzyHc|6)~Nexx5sKnJrxbaM&02Os0UdI;Y~h^ zjv7i@|7gv=?u4Vu&s)Foq&ZF;KtZ-*;ZQSEOuA(taIvgkpm_EOtqq>8Ns6t?GI4!YmZH=yZ2(R6IGUt%V{{ zZ-HGe(t@mQv4ukF2kN`_>R#v??5~tN;hHbuqvX7|E0Rx;dalPYHmh|=YNJXO8u~b-g!rf@v5b7D{DQlSaICnFBL8qs;oP42$2JZ+= zUB2uL-|<$JF0QO{*s$9}RME`fU7xfAF1Rr|2)`KFrg zL3rJfVZL3dVGn$@+hetx_rT#oC)+sNCOskjpLCBVWa)q-zn+j`m8AHw2^p)aC#2N% z2=AGYhDV?_*mvkcI!F||lhj8tEs9-;yHQflb_Q{F>b`LbZZ3V*QNTQ@knF#HnB;9j zvgSgkrl~cftN5Ck*U{zvnfl|(toV}mkT=H&&^?2y3jvVu(Lb4y$cqD5sbZSO2itMrR zus8&2j=efA4tJ=u;0n*!@0w;7E5{uvsYjiaaUs3z-HS+3dUwzJ6RD@RUC2?$V*832 znb=NAZ{B!(?a~gPrS=uW$D<{ExF0k+?G0v6bK95~zaxS9jKg-%V+SjKK#i$kEM*@Ln)wpmFV6|F%}S)+>k zoi%I@{p`?-h(0CipH;r>bm@4jN>Urv&#I^HBDbzbAF-cRn@6B-bB1wVqcu!Fahd{- z{0mI3Stw!)j%A}XC7t?5{ zW7azC{SlAIrtoF2BKRi6&&ZXQ-7~YxK;Nh6+#AsQ)o9WT%XPcRd$O6{YomDc@X`pR zfe$gG>;$#WCmQU3)E;_SiZd5#}GRxSMsJFnb7b!>X{Ft#x>IbT3V}b>?RM`d)o;rCO^FT*>=}jD2;ZjqN#BaM(FL zO`P`R@2SH;`nfW_pH2;bFIR4nn=E4=-Kb=zj}|khhwI|=O0P|+bJt=c{al;gPpf<( z-jXB7>dQ*><%+%@M0S@d8T;E{OdWPkOBu)1VIX~NFs4oo|Cnxw>!7i=9gZS{jvn&Q zM5jh$jW55Pc5@jO?Y;}(Oe}D5^t(FS>Y!VX4n}J*k|^lc=Bl0A2iDS*(LpwT-Pzon z9wj1vo7b1YIxYR?up9LEaD8j@#bziHVB4DVyJlBtJX=m~<#$E<;rvR{Y#i;b$u?iO z{b<50OYf8}>DT9}t^H=W=i58eK4j$dBoUYCSAmfs>WhxcY*^OcoAXS`5_v&Q{ksMK~G`-u%0#2*)ql+uNnv z^!bcw3oEmuZLK!)#uyd2uA>SP8mG+{i;15KW);?v+g%5p`x!^P;w@lmk5&uJ%V}Xn z2N^%;yw%u;CEO0slQLPl2M#8-{7$h#$jae=O2=Ti5`D?d-*-`v_J{im5qDzb@Ls92 z^s9tf#do)1aq+1E&CO{=_kf;=oK?-KX@7U4Sq~z!uzox_wM)N~kd?W+=s7aPzOt&h zpVEbQ2eLA6B)MkfXyxQ!U+9gqf59A)WLVt=#wk<)ABXd*3LRM19h*6k(k2) zGYk+6D6$VpX)@yKw0d%6ol0eqZJfZz;k+6-#r;9KXHR(gLWUOH-KyIYo1fFt%K9Gq z`an;u)XxW~WN4?+LL%H^t-wap(zI*XO2o}+!Hu^UeL@k*l(ZnbXE9oT(GE zrm#kLkj2hv=M=gSh7e^Kl12-dX5{cL=q!4y&AJ3M`tdfroEA>nmzA~qKD0Xm`y8Ij zx9Kg+wg8_M_kR=+==-_wL6b5J2D+_RiR;u zd3Y>$o~Q02x30$=8gu8_JOXvEmR;>M4jpY5^=}q+^eLH)?N3fbJB{$7y;)pIUwx#Y zn|;B$eLXv>)yk@_G=+0zQn-7!a&{rX#?jr`sZUsG)nzd)IE!{#`Pj~SnbN}?@7?Or z>D_Agm$ud3krdIdV3yvk?(+9;nHjUxlN6#cbHCVWlo$^AMrW)NZy?5|PeEFZdf~2m zarTX+Pd^7Dlk}_eNl&e2l798Z#?r4DneNx*lb%}5B>kEc>6g+9v~N{&(cMSHa9p{r zGiM?lC4P*ZIwG|DE8`T3c)2ZbtGjFT)et(shPM0upM_}7G-x4W;^Ep26;}S$8 zaH?;Gik0^FN{>T^8z6NYVzWPLrO`OpQ$JNpY4aW)uYIdGMk>rd4i=Nv$HA&BlPYx_ ztkRK&oHq41WVn@6$02qfN3Ap(2m2;Y9f!0#SdYV+(HIAdiKCND_k&eA!#G%_BMmui zp0Keq)hQd@**b75esfYqhtny|b{uFax`W+4b+{Z+3BQzujTEQ6XFr_@#y3O0dmzTd zk-n+!W0j>R-g_Wc+TW`uY$Wp+9c$OLH||$yjk371(~HDsu@Zw8wiu0r`;6wY_Dj8N zQ*TGmMQ?}F15T4)1n(Xws_sbMbPp6&6U}?~Kv6lr^e1fIyt}E~-uX@y9f_OHceE7g z**o85_5Gdl8^rS6aIG<_YU{j^K&!UEL zSlf{}{cNsSEm5!c3CW1&mwd_AUAwn6mD;Og)N~|ns$<<&V;!T2U(z#hNMz`V(jV^Q zpe@^S5h})Q#&!S=36QFVuF(={ooCKJ)SCPn2MOP^s|+DQ7?&NQp^_U5#a^lAH3qx%e- zxkl2*_H$XKx3_eSq)*$`t=fiH9xn+>U35+uR9ePw!QgwGH6z7nIuDxFeJA5L&CnVUIgmeaqT9MtI) zcQ`%4xnwxe-fn=*vh+c}sOPcQhn;H7F;Mq8cE;oAJbTSBW@MbC9~lRuZwRtc(iBdb z7p>q_D&$B%->T)2IToB6)eh7duB0h%v1&=_n$zYSQ@Ej|@mlk(TFoVmY6t3HMpA9~ zbPgGeHXPCS0_<-pEF2eOPW< zy!4)f{W#{lPUjID&UD&u2YJ;(cxY$?vuP9s+?l0x`@7xs$VeJ77XmEc5N)hy*O#A37L@s&S)@3VW~p06=&jXi9KmF zY1G3`7XAxzi4*$;41E$;N0I${7mY{^`kJctq2&;fK0e9kiIUPT%O|B*9!Hgz>4+M9 z6KOQWyfB}bkqnM#SAdzmGsoq^+bL*J|$7m--BfrXI8%Z?B?>1X+QnhEnZE;cb}=^ z<^0mGxTI9;s*_cCPqz8vzExzm5ixScA^oi)Z(Zq(`&N;+a7vH12Bp0RcLrH!ReFyi zMmc&E)y>kQsIb3Bg{{?|UFDwMYPl=hAi1_5TX(|A=~KGp-d|ZdW#4Uv;5HQQw|$<82)0xKvp4)yc|}bf8??) zY%E38pY(-I7xZ^!*|yB9Li)l69?qa-TiA5dk@)Eg8_M~mU%n&z5|IAGqM11IXVX77 z9(5pH|GJ>R2g|Z|AYK39;mDs&|GMc&{B-@JoL~CoxU@Fgot>_K&BT#EoBp}+r~~Qx z*9HAOShg$kZ%DfS!NZY1oBnmvk@)HQN4YfV%UOQ`8%R$)@<@-Svq(?n{L-J&((j$? z7_`^Vkd4!a(_@d=5?k%5Dcx{i`t=k|>q#rWaSeLn`GL#WllZS&gPt_{X*+cnUG1+7 zroOpk>4cs%Tqme?tzh^#qmup-n6Ih~i|e5CmGzIyvfZV=jCjU01k|vQgfF`yZ@;S#8Zura_uQlJQ)%=+^s!b=w8ApV zA76`}c{}+#arBZ?%EyVU0`?Q{nr+$uMe^V?bNU@Ae;|d_r#b1qCnT4`m%)UaGpLu* zF(AFg?n>!EX!bJB7Edn{oZ3;yejVm)9+~h&hz2s?^bx07N2sm(Dji~=k3?G0-5eMGixjYwH7ie!R0Nv`YElMsG9B$lD zpq^pOb9zyo+d0@vuT^>%R(lLta{(PLbX>PN zUPv#tD|n7Kbl#Qf_}&Fu8&Bo(jl6VLaeE=&$oWOQYuj0&80UlqHqAdE3~9J<7Dn@e zg?MAm2pCc7Wb!ZK?aKdzC{bgMDBD9pqpL+aav|lz!Ogo(`njkj{dk&n#M|1rC+OTu zC&<+Y`|-t5ItkKxEzQ2WG6~nn(Ilf>NNdy)?W(j=T7&vs*L=fzNj42OZ{892GEe#Z zQ}6uTGNMgKux+<7Apo&4M(; z%?Il5PK-kqzj9Bd+EJ=x^DCRO_5!(i!<9RCZrZ-PxOwO0+jno;zOlIB^6i_qTuctN zEH_%nl9mAcwx{(uELBKp%TfN!E%~bGf5zv|=!a9mZ;w@-HpLIha8bxx%D;A>m95F7B|F#zO zj~5^2kyXde;53R-N(hzGx+CI+12{&so1!&a7 z!v4~-xGIC}ZX=EW8~GYNAM)v<5Hg1pjrOl*Y&S#98{f)6efqJ?5xz^8R^rb5ueOrdn$Md8?vq2xw=@xT3x5T}sM>_ei zrr%g_0&v479bPB-d3he)VkaNF^-N#?<@9w9J>QuaS$m&Aebn#z^JPb#w5ZdEDfghO$eJupsJ4Sv+DFrk+_LS^2y+Vi;moLqvA=at;1Rq^%mImJQBwa zYnA$e`l^vvKP`tbstuo(Jwd7^{TZPs(sh0FXXvI(>|Iq4^T&f@hxz6+j!A9tF|t{k zG%VLPxKEo^r*HM(V@fGfI^%pL7ww<}8%7ix>*$@tzj);0YndEj%T6o&+f5;R-PJI( zIWfJ{7P@8%qz*iBKzURLV*AMZVTPA)W4A#of^lsG~Xtjm#X)reb(6vrvw>*J^QT#?WHq{ch|CW`Cmq z;A|3$T#nE@+v`R8NqpcVJ~};JQm13r zhaJOrDD+oVeV9<)6lGHJTvCxnM|P6tBG^JE$I{lO?` z-jd7_{AxZxZ4B1UEhCvOj#Q4o-FOMU8{beU)~gjd5VE5*07rI-Uhg?DnhVT`Hf4>3 zbh>k6yyWP2Wamf*!Y`iFg&vft2l}UOY=>k-4~-3_bUIW@6dnCR*)`HZaTLz-Ii0ww zLTAkutKG#qefniI?~4)b_HCgYaWBV}QQdMjdh@I4im#<{1ni-&QVvqY!9ky8WK;zo z(JXH$rPHD9-f)u<{KPhj7ig+*2*ct9>XnYAY)yu^660sq($g~+`4^j8#uAlmOW0-f zg}r)_0(WRx7}qDAqM+Mzgt#os)DM3& zoBR4lB2G&;exhYZuuIKlGs#CHS4%g3ykSSIUGb~M?)_LdN2a$%Z3ah#a!c_5rb}k) zLnGhF2Ock8a9VW)x-z7d9)cq}2mGx8CpS z$8^t3mv&~gyILfn-JRL@?Cz{)W?$Of($}}X>bl?Ds#|k!RZsVV%@K!VB)O3gG~#e< zz%sIZu(1uckug}vNHz!rMqn%hwgr|E5|)93gg`HYBO|}aj9+HtckivbZQ=f-yU)$| z#TOA785#KoVL$4-G8cKcXFJ)yeBai!`6Uyy@O=>S1-~6d8o2Pdj5p2{g6z+Oh#y88 zzp3dm0(OlG!~o*Ed)CK6JlZJYwhzs^tyBQ=p;;RVd=&)xRw$y$DF2qQi#g}+6wdHc z*-Y2OU#e4Uyw)_9Bp~>=q2PB$!*g0kq5Smhh{il~k-lr5ZG7Ti83K)bQ1FddfIIyEJXZQaGMzz@L8_M0@!) zdbvrB1|%e2cC0&7;?g057q)JmWi?Zj2*#<0`=X-!)T>UPzJHl$9T?Mg9v zvg^5b`EKidwAW%l_jtku;iXDU7*6O?6Y4$uB2?ce&rfMN-!1HLU&@WQ93;9KZ~GIv zK4y@JU6a?{oc2&EkobM5&4-2u$+H{N+pufGpj$xqRgmhX7wfZDu+H7qli9-l>x-Mv zNw^n<0%2eNc>nC^5lGv$3OQNvJtY;0`#x3htlP$YFS&r{(bRbURgmhVQyz**70=nm zBO>qV=%6R_u@8+r57P}aO?lX#ew$SC(FuJ=Ld{pG%LJO6+ovyk6V}bE5QpFGLuzLn zHdZxg4-y?jAGDE~j&QYi+IAgtoq~;y)?fZE*_!+A(P%h&_+Z8jC5ec82|N8MIu&qA zD_-O3us*xLe@Itd4D;&_ORhdyEvma2_hqEA8}dPm_;k8=Z0b~SD(Pq3kC#fH3WuWC z@?ggtHfJPXCc|G+^i((y{W$qtzD0Px)xc-+HA|}@(#RO=xxwN3%OD=d_b{li@ zNve;oI6IXNUMLXtV@}lDZeTzCgx%zCk+5Akz+?s-guPfGF3&R`*VPHVmNETcV)FM$ z;I4V*$qZOv5e!6r*;#meRLyYkfAZ%@-mam>WCkoRO9jGy+HVutr^ADELk!J_&$ks` zGNPoyf#{za)vV7PwkGFI?~?r|iUwl8I6l8kNATv{`nnd!rf`l{CJ^-C?6u+CH@4)K z{#ZvcIfdjUAwiW--t+5J{eioqX}&JrH5oL8{2-YZx^Dii+@j(y*P^>gGnpwMd=Xi0 zkIF#RWg*TFvHd1T|4z3&m!Z}b%8gx;w>$XOnDBc<*UkGOK`uP2JESXKDDAbM)%Ars z!+guT`X|-s{<9-0diTj0y>oW|dHOF-LB#uZ=(ZPPPxin&*!<6XHZL&QZ%KwoDeD4{ zI398v45kFxgP*URS=Z#TH#Wgu$_2Fi`bk=*=%}9?sAT%33Vs(i7tiH$nB8x}I1@I#44b@MaQEcv+RG_!Ip0j0fXap*V2tXzuGP2(d+ zJRKJ&GH0A^Pk2+K>Dm&RQ196vhx+(XO5=EB!K*YpOg>2Bb=~)pP-o(~auDu4t#Fq% zn!8bKN*zQhV~OIqR-8+ksO!vs!9Cng11iY(`6V;gynob{qylHqOJG+v+=&}gT{9eM@)61-t|z@>x~alnu-y{FwT`<`|m z&r9S*uAY-gqFGEs72UNlz^v$^7$EIuE>rErPedo^+SfOm*tSc2n_p4orrE}aSqvK< zhs-O>4^GJPFVE_0MYHTFVWAdY5Xk#a`e*a;mq}x@G?oNQfCwPvC+FcSz&`p(SF+aW zC&174kxwhLU&cq^Q&IG;Edeu#u7m`ue~b9WhxpOe`FKayP^44lL?>ay~llV$du>SLT2%BnOr1f!%dXwf}^Z1c=cOc!%m-3C2 zb@Ym^g>p-?z069sKYT)&`9l6s7WqRn_a`Z@Vn6a>7ot)Zyo?ug9Vs%+YX|^-@bSy| zfx$d_Lf5MJw4&O+@Tp7sLZ{eW_d-oAwh|Dm{egM#|Ka}bx6Z|3Z;AO{Hh z(LmIvPG~-Y&fNVNGJudT27+VGrspH(%-(290fIh%*mnB!k#N$YXBNBh^B~$sxPIqp zznOE*Oac(_1M`%v>skV{E$feavFheJOb9PjC;24=6gGIz6qSK8%R-z_p{hMoDQaDz zjOo&3&s0Fy&2I-u*W3A5x<@LDIV3PoM@JHnTV|03nv2i3rTba<0uQ-~Uhy!L;hX5g z?|Uh)y7}WW@ypZkn`3%Hpm*ff6pWQ-(u!|^*F>P#jxK3?vvh4_kuv;tZA4Q8pKH2A z_yjFtPq*rLh2Qry%JZw6f7;gBgD)J@ex5=7@WJjueR_68PuAD&%*fqm%%x4PLZPfzmRQDEHG^_JUc!&ef3Km zKVJ+ottp7qT9kr)!E0t)65y0rKG!+c*F zY0EzBi$SI}1?lu*1G|M-LyN?RHIKUaNvN}}iO$PC4^V+7yHF&iO{z*Q9RfLUx(-Fc z$xts@Is};1&?21 zRuB5s9k+qb68y_tbQA)ReM5c~6DF0x%gR1>2qoZmLCOm$AZXSXj8*Ml^8IF!ERoE{S4M?-C z3PhkpA>N|kD@G9mm#eBkxEN}!U{|a_qS-%!_OaaK%i%4hID+|NkYr6k@+P8sVFSB` z*k|)20!akZJnH6)e62LxNES|x^CK7(c{w$wGB0%1ydA>c;wim-WU0%$^;{t+yAsHA zRrL;!6t|&qhMMUPkASb6zX$SewpDmKe9ewyY;a8k^6%&p@tef^R0^!Afsb^}Q4F$& zp;wXu=ltsC2%6UNUD}CmYv#L9E(TfF6eO<|<$#_Juv>^VG)Np!^QfC|hq_r9-!-#! z_CP9wFE0ymF0vXNrl@s=GK5VAhXGwTx1pIY92gh=Nn4>ZlvId2B~4N53N=~MfTjUA zNV-9nbkcZ_FZ;HdDTi7`1Cnp6f`YTFP^*Z6%T-k%TnvqpP^&aX9m_8-_SH#!NFMw}s&=`bncG&MsofHj7 zzpVhMz^6L?<37c#jIC zz+pH1EF27dc<2>=rz`wiTqS8mo7cC87&w`_(WAL1_sS99Fw!}W=PuqR_pGbthrv)! zx2B}~GsmygukDZTAJfF^sNXBStU=y<#pSURaA1PgLE+c`}a2=sfpi&ErI>h*eT2wiCS&Re=Dl4i;L9v zN5Ote!*kl?ZB;nW>ToGYx*7p_m8)5u9JvWdLz!e&M{%f|Z$YVxNi9pwr6_d-bV{8g zHvu_WYQ>>$eil-u)!xx?P>)|R=eKz-N(eyq4f$34An`Xf7bTQ{-;rMhZzz$>;RwR> zshf4MzRcm!6!j~X=jb^cM+4Hx98Lh|^`X-5cGR13kvSaA#ZW6rL^5u5^P3_1E%BX| zmQL(fTngH(MnJBIY7IGZ6Oe}NNo!CX>gKnC)GG(HXhN;UlABZUwj3m1*PvW>m5N*F z?F4PepQPfzrEdPV*T4^C)&}RLYs)BNbN&}7yb@LO1z>{fwElJ0r{i`NJww_R{&^Y6 zA_n8!v?!$cB+XBC;}#0|-m)l!uVKTa8@JG&f8Bf`*yD|_nlb$gU3c;72xMAnNpm0I zki^=in6-#8q~>{}@O!}4%~c48i!@VgPG@tf;R->{l|Y_Ls#1*%=cd5@X9yRhifKxc zYD9e9yc3*sH0;yM!u>n>UE$)Sfx-)3HCG{SZuW*JbnKI!J2stHH~yMNqjl-b16u^8UeZBD)Q&ZO+XrACy`%qsGDyCsW<9-r!=d( zf6%ul@L3K;0~&0r0&#=Hom5Y(h=I#hRUljposyndfjqam`C|~kR%im&t#?^9;-{B< zImqIscmpV}71gJ;gn-^o(1sRCp9Wm&<`d8w7ATTf((_avmBF`{g*ca5O=+j7b%ipd zO{Ve!nifV{TgSaKt90F5Wxf+b!HqitArQI$^e1Vr%!d3bRi8MJ%1wn5@H_IW;0-mB z+*A;rPu+Znw|c|!T%`v{=s07%c}WhKSkhKUh{PH-tBq4 zf7U;)3z-&A5*f6@^o`=*Ea)z&L7lPNs8o2kj_l6yD9KAiNWIlsDjleYg;r=vdQ3A6>!i%8O*>>t<1L*ub%aum)%%MdZ) zujr;iTk+2JkBRL;eKMqfE9=%^;>}fT&#ho(xaS$j^NuP|E)=76O z2+yZ(eiZzFy}ibUHZxdW!gU@=K$fleyGWC0!_C=i6KR3RmH4~xFf>ZGN=J<7^rbrV zUUxO=ud%J1b&GwK-;rt%d$v{cKWUHR0Cqa6dv1GjDK7~DOcM&bf2gJ8nxvPj=xOz0 z4C8Txt3O32%zC=nv?-43?DLoq zcA-crIB^n|37o{>blv1+xJt4u5@24oy4lhl$y2@yn>JK%M_q=9A)nV(z2O}4?D&*M zdFI%f2YHG{nEcn8$qvsQ(F#eg9=rYWR%>N{N$7;x8#Obxld5-Adb>}0Pfa9jo=T!e z+k2jvn}2-t2qd0I>l<6rceT*GztPdd=5ZzGVYoyZJrZ7Z^InMTYt-O~@4%i1@oU*a z0UEiKL;-V!xO%*&2U6g$8-A9yVyMIICH(HX3I9>gscwGNS9ELU6}s$&8gIui+?RtK z)G0(zu7@6m8|du>9b}E&TsjQbTxce=U5)1;v>j8-+m*eWo|6kC^XgR1N5B|M#YpQ{ zo!kZUV2ITS$jzYUh?q<&;Ma9ayW!9%9(!qRtYi^Thc4^pws6xv_;GF8du- zW@Y;vrvLz@Z*{WG?Z9)~Z2+H!|I?HB8xF%uvf=l=5(lY*FVP-EGb5^5CTVaxGoqVN z)%+e^gV)_ z!K$%&CK;q4#JVqm9&RMwCMayBV#k!wfmTb9z@x0Kn}=QYhRERX1Gf zAAa9UfTHo|>tw5)qS6_jr867RH)l=iSys(gYZs-%eSRok3UPiEs)&TmC$y_R<1^pk zYy5QUzIz+*l!mt5gP*H1_!%FSf%3WkTW7>q+~+1vt8uK)D23tA>s*X(;B$oRM%^iP zN+|4>v{hFfGv~Zk^>7Ol0)a1kxb&UWw+{NoUE7o(@f3Dj?$Ir1U4!!GsrpU}y`7+g zXT~;=^qs(^ZoX7|DpwFB`j#a^1p%d)gGN}n>aRtjH2qYneqqYwzNDsUo$1>q% zR1f#F;rBhnd7gFi=h|k(a<2BO-Vr^TZcfv%n+k!L>X*S(tF$?+N3Rc=(^rfa0#Io~ zeidaB!>Eo#C;`7CzY0Dm9ep+FNCY8f7)nRt?Qm4Np5(+#Usw+z068|~SCONvhfo53 zM}8IjWIY5SdVCMm#}#q*gSt1Wk7*|xb50TuZgm+YNOnCd77-H_dC=>9ID-JkC$eJU zXeiAMH~b!&aL`J$f2Qq%xDs!=>wHJ`VLckrvoQ3(-uY-ulN^=_SnLA5XI?dDn)%zq z^$ryOCFaod_uW1XiupO3!rjIcu%C2cXiB_%{4e-sdZS_0cI*Dh@YLy4Q8svT$JB`j zttlbY!L_thsvxOUwc?W^fZxruRQQFei|vtTFT(G8Dbn+;o6iG(UUQ2W^!BiQ1d|8E zfdVAk3_puViHd4K97ut~ZunU^1mUAn$$&UOM4M%qvfx@=Ij9dS+H1rNlQ!x1TKRI2 zgAVjWP-my!63VxKzU_|r({BHVUn|@{yMJnr$=M_coo7Z{$u+Zg%A}w_e(zk8uC1j- zk&^>%4gL~gZWM74o9O#y*CuA~0LyKLpT%TJ6{xlwNP)v{_*pm@Mo-#qfOt-Ia|5-x zQ=J`APH4|IvNnMNWZ4Wqi!5br0x59V4L=Kq$=U>nX!A`FS63+4ajzXR!=z<$Bx=h+ zj&%*{j6@cCJ3$*dB*P2fLc5nBmR=w7>KZ+6~$NM4;h?DtxFI>2rr*3g6_ zZuosq^QfEu6x!C!ik^HM(ZX3Wg=Za*GjBafsO1tEI;FEDA~QiJ}< z;jpNN5O{di`~Wz?R>=KN>&i@qd8P`eK%qDq3Jh|qsI}cPr|VGEQQ_=H!4cx<#R(ur zdN*jf>G~x%C12WK%K=ssfsQ-6Lsu} zyJtFFXZAUq5Csa5XfymQ;v{OR^e&JBhu!eAa4-}~(z^f=ZT^9;EkC|~TNs_sI<~(F zWBV?&|8Uiuf}3p1v`G0z0&d?(2IdGsRk6t1gPLsY;Pp6`b=WtVY($(G`QL*Pi_lbl zMJpJKzmkMQW?uq`DgQ90K=nNuahOwhoC5h`Fx{Gh9!zGoQuru&WD5)wXRTxupD#4?|T7VH_On8`QdhZ8gBA%TM>c| zez>hl#nqBvkPf#M0{Hpiwkj2VL8Tb$tl_podcJk@)4J2UX3SMse#>FUp!H0v=I=ug zU3OuqBWw4?peV=PxZyD|mvUJHyQMxyzGIjsaaqlyZq9YcyhgLDBbs2|zg_iSsp%XE zZM`TO#Gn;}d>GmR4`b~2vBNMXK9S8+TRe1k1yih@ET@&7*E!0NG<+ zLnq128CuM192Hb;%xeOJTp=s3$vDNlMsqUME9EtjW8HidwA|q6U7nQXttpBIG^BUp z++1Ot(arVaNdWfh_PI$W1};|(E{1N&u^|QW-0J3K(9BJWgcsqG?nov@;u~=7%)FZv z37}jXwdUFqf+lWKM57HY@=1{>L*1;%sxdc(<>R`Pka6qr#UR0&g5=_>)?;9|5NimZ zgcHr9ZoUkAZ$D*ag%FnA7o+S7(kZ)v-9qeS*)@;4c{j@5zf)0cDa!7PQFaCCl-0`5STPN_$r=H#N%|+?(6v!v1%NW#9Q} zT8m$!eXIT6(ZIepjkBFVA@*h9X84)q$W5$98G#fy?1rC(gJI}olo24FQ{DU_$(>lJ z?bCBNXFsGTlc8SHlLJg@=trf$V{cqOpe^b>^A--SAzuvAtSLxm4H?)i#2P9j zHKcje%?Y%m#lzvi-1p6Ai(Dbdy%NZCsnyw{47Z_ihQ!=j!|$}?M!rkO+rgvOX`Au! z{^x4CshsODNiSH2NCL9cxg>z*8nE5ix%MJ0@VF9x?{FcG8c~~w@x1EhZ$ceV3-9zF zUkq|k3lET74`|_z4zSe1H8#i@qh8`a`ulYC6Zrn-;2FLPkM3l!cfqnOnh0ds(IsNh zqr&Rjix)xw z@^8qmV#TB;)Z&Fu0)9t+6}+KEvUni~se?nT1Al!4vrD2d*MTnv8EBT!-IO5`BpRqX zFt9XBsIi9hNgZe&b@Po-2TR3a1|K5fQjmN#0&?e3he&cHZCj8LjqN&|KL>U86bIS~ z3>GIh994Jgf!iNc-?I$Qkp-wg3)-8VGRU=2*%Xiir|VE86&kdNT}hHn0nBrxx&bXW zX*1MWpY|h!CYN{@`-vt3$#!&!2$p!7>QOW`@VTZ-gpZ+M(xYgU==Yy^-)lHol*6tSLxt2j#2=b_=mV>lmaGXVpCF=C6XYE{%p~Z+{c}LlTy_=ipM1 zd^G}c!Bx+ZBR2tQh@JEtibLHz3l`s&u%r^1M0`JA(uQ80zufSyaK&JeE2QU3%Df)8 zc^N9E^Cbq)y7_}pLtA~m-;J({C@re7^8*#s*e(=F(@z44>Lr03IML=B8fu+rQOIP5 znn^DSFwe1WhESs`hXcN1(egwdm$c;|&$?N4Bh%p4^h!K7d*t+?C@TE1n%knN=bYdS~;_w?NK;q5t zbHRVqtZ5(x4!hxJ;Sj`)fs4H`{Js|;o)cX$CX1w;dbs!IXcD+EP-krd1<2wbZ3)1< z8k9CR2mhj)<`ASVYLjrPn>RzKFFTF`Yb0?0K`kvK=vtpEyXNS;Ju z#erUI0I4?zekeX+zC;m$4m%k5Y+NfajBWd50PJ^7d$k94j{X9N2(| zDCg!}a~PtWW9rL8lopcfr?NgbyhyM-M2XlSZwxm{)~9*Y&3_KP?V?NTEhpw#a#slU zTnXg4)M}PI!)<7sA#pNG9`SYa4QT75IK`Xfd2DN63^G%Ot!IUkhNWz6U@61aSVQu} z)|yA%{0Xr2=HTgRW|S2X=&_T*^E%KGvc%__#mCSrjgT2Xx+omEld} z^}OrmPl3GaxA|VAQu5C>izFc5R{UM$O4d7I<8VzY7n;`pJBE#E4EmZuhFx zm%1+1_gGdyf?gGo?EX{qpgRt_`AtSH^nn4;`fN=Ne6Hyd;bZ8S^w}CE`u$6ZG_2oRbx zffP9GhM$Flp-|FJ14Oj>wN{%4uRpE&qlXW!(&dupgZdjdm6szM)nLz^!8oYSDn8pz zuay6*7hA#QY3=D-F^=zz&` zHFhWSt*>+L>x%)hdwVpj4tiA59s;+(-1Vn~z-BX+o|$L5SbI$baJob0WZwy4echjG zYY6~GFB8?hSN0DFL;DOE&ul0f0MqFKdfuM&rZ&*0Ck#rKV+S*6f!X8j#R)XbJwBy= zugs3K6q6blZV5?IF7B>@3K(3IBDPLh9#+qw1!h--z+DPnl!&{xj1m}KmE!YGP8{)a zQed@Il!GV1xD){E{L}vJzJ0!jv*Snt(51uDSw;R9mjd8Pi7av;**y_gyfuRt(uxRR zd@GQ_9Wq7M+@W`1fca9tpyu!YlE+^6nEUg9^<^?ZULzpgY#>#}s#X)kFy6mC9Mbm7Qls_^G!-y#uOm!s$s83^LSVB^r4yPTk42FTSX`kpy07Vo z??o=E!!0kP1V;Q|L09YL2u(af!vwgxCb1|5_fN#3J-Wnnz+{UGyBogLOQb>ubZ+5z zct-DFlrErQ20#T2ZbH%i@Q~D{oyg{fO3ttg^uTn3vVOXfhlR47p1UDM1K=m!C4SOw zCi)yliXs9S^X+-UxL9X?NTNi@Ywf1~-UN4Mn-%Cmy2mw9a5>9*++mv3!0?79iSA=@ zqv9?)KWSZAE zO^IvcOsH}8$RYxyyoqF;wa$)Ipa-T;AW?VC^SVF@0Bko@-(uA{w`oNK;N9o^eOu4^ zWbirX8{0Q}1G=w+&T6}n2VJ?rbzu+!r?r;AX2Bs_Qvi0mEqRYik8K9r`ZF@%ve_2D z|D?c!qkcjJ9JboRm#M;SF}Np9sXPx_j*#j7<EtjgweG$#cu*LuU#`^?MYz~kgV0l>Y3b2{Wgx4P3tFh1GHTO9X$M-}ab zuz2yvwF?C7*F8I@q{WQ0-beyanzQCRb*SFx5eGL^s@xkmg$zY;`eCwa+)Oe`V00}hE~&z;-k=3$yZ)igSS^-OxY4A9 zz-GPm?CQjP@t3PUk^po^ejnX=jjk*+rxdv1Cv?C>zEA2}3h3_>2|#ySzFxlq1GYd) z2y8Y^N9QN?etmp;W}1MbxS|2@HDBO9(CPSGr3Ni9dpsj3d5B-eV7b+&9W^ivmm_z| z7ScP#s=fz|_#G})T#}2`bcsPi>zUQfclv2jKO1)4O}o;yYA5xGHc=k*X~&j*y)v%` zS;U@g)jSX3f43w2yYcz^hS_WQdjK5OnyXmlsALRSrSuBEi)V6~;=5`;&{TnYfX zBfT2+jvUIi1b60|2;hsQ&+*c!EA-@bb1VxJ++TJXj5cG?>B{?^1``@>um$Q0tp?2z zmdZfzg+lc4#3%QGc#%>SbDIQf=?am2OlJZtNxV_0P>k}mFlWze70*n&R-p;u^SoA} zOIehBVJ%s!&k)>5L#<#!(F(KDb_P zK|sh}Q8iD4bvJkpUR@-VOoVgLRWx9OZB-!ZC+h|r)A+YNMGRc7ssiC+7?DG5_&w)V zH$Nttu>sq_Vy+#~WHQYrKYXxVHeE}io6>cTo3y0suz09r|14H`v(vG3iKfC zQw1Wa@x*V`^^64|aDP*QNVo^Ti3^Cy^^64uVxg}S3r+Mbe?@qwZ?z=ax7KB`sWz{L z;`A$$fbLsrmB~i49|09GpsSRqyQ3u?T75Zi4~Op4D~2Sa_LpBPs*pRr+Dyb%55FcvVUW0QOXvZV$JUwGx|y8;;~<2(a$F0p5}l zRyp@+<|Dm!9@szW?&)yjT(^+PgVAwEz43srhycdBcTUgU5_xsEqEwI`-LPckbUq~n zHn)!G2<3oY9CVv4$oAv}w0h^C@vu1ZxUmBR%(vV{i#?K)F0QnPq3rWO1q@bQ5y@}X zGP{cq0PJ!1>r@8k?#iSFhBv7v_aSyXUE3?r1Jhgab>FFEWz%;jHU^v}guv!H zPT!U_;tIBift@^XH-*P=8t)l)`pnMx+N*ta~$Qe$zu*hKmzEc7e+(6 zy`>&yK#oIF>M?cm=Vgq|x!MN39ZBnSr?eZ!Y&o32D;oInwklvp&xb=Qe^&aoDIG|yo*XdZ#OLePtD-8{Mbv^m1%4LZIU zAUsxmdfKt7CImM8^|X+O8iCttla}SvjC#K)LOC2iv_ZKvnJZ4m>zg_C15(c(;=%7A!nH0)Di+rMM( z(B!@^Pylexy{zf>?hNS^z=)<5du}ecLwHWOyFi|O-MkGVQ`gkYadkpRd}s!hjvsVR z%>W@rDLN!%RkV*%R0vAD7E9|<7C@pD6$50GAnv>`S;?Nj;{-<&0er*XSW>*_oVy%F z1K>q>e901)wR43)zUfbM&_2t)?LjQ6CIa~Ks17&ACvzff9A6BO6}Ky#-sZJr|m3M_ezCu}9IE9r6#=5lS09ti7sg>N7MH2!KtD9|~CixW( zx{=1E{2lM2bB+d7o>A3&uV%E+ROTU34rEj&pl|T=`u^+F<{ee@OOo61EYp*IcG8@| zq}EB(k97IWfF4q%m*O5ic%nR)nGx%Fv)rTC;_bUBeE{KNsEsubIT@N^$1k5ViYNfM zdN>^I4~9cC0&q170l-%JhxFo){UA5HOj`~hx`B@_9=_M3PTOi}Jfjv#5c=8?d2LZp zhDH((rRyD_ljz#IE}@lbtz+wYq|(*(RkS&Uwx#&WZg;1A0gdwau$6uFX+NjqI}1+x zpzGJrjl?;n@0hC-B&EHe1yU*j(xsF7HFtMdPR{k!mWt(m23En^^$gSP+jpN_687-H zwX(-+I&Hm$>UKF1p)ycnvFh2kH*#Qeg+RXKemSyyjpHqs0$`y!Ff(m7K9vFS61@Ux zPsMret`q=^)!4ph-b+t~K)&S2JEV7|09d5+7iNa$`BNc~FFEpO%GPnEIiN!z0-!+j z$m|(s=W=yh(n>flQ8e(iZ7J}_H!V4Nx*ExV#Z@UA)HLHcKI$Kufrlr?a#CQmF6Bcr z<>vqtNdS6HejoMk9Ce7nI|K|`U=~bz&lUtsN;Cjo?A7*cJUfUh1af*2queypwnkm5 z-PAm9Dg@s25a*p|Xi>|mRt`vQIe?ZA`gaRAs&L2Xivh9}FS<{hj~gl6Y|kmzLOn7c zhvE=GWx#!bl4?r>PkawE=S3nmn;Tom6$0-i`sMg(i@TTHl_G#L58Ejiz@-4#hOv#64b+_b0jIIlJdL}iSmdb$l${l)^_pCOXCVNv`4j{Ut zltJn(gv3QS1qCW#u-HGY?pPJX8o5FsU+s_Sqzhg2Zb3NJ5(0oN(JewJrb}|Qa%l>n z48r0Gy6IoY4GbJ7$T{Es6czu1-+c zr=8#my+G4HJ~!Q$V?|pIUtFPR)(!II09xf)xYL2TBZV8h5CF`*XX37EpruO7IoU9g z1fZ)YH9eA1xFd+aCQi{rusEbHV7fqa3w4NDm|GL-=_@wSH=E$rZs||nXt1b3jx3uXbe(Rn#zEf?q=#xIvdR_kvylLv$%7GaVhX8 z04+Ip0H_oIn+%wgkZB?hubX$uc%5_DUH545G2PZT>R4^yb&-@1#JQH1vMTwCq}rgF zB7h&i@SKT7{GOe7nS{-^ZvGlvws3(}Iy!d}7LIbwI05#1B|RPJvxQhg3$}6ionG{F z-;z4}8zTF}4QzBL$ieWqb8)pL(K9O>+`F6%kLgNm%L%!6Ry3d+Mcos+hsA7uZPev* z0Bw0G+Do{sZ*oQrRKQ@nEux#@Xxh>2{&>ufWWZu^T-zJOeQ2UWAYU0DogW_B(>SbW zTkb*h{svT9*Oa1cU+kVzj8wYnE_`dqr8W=WsPDNe2J8LT`e#S`K{Bfzxyjq)VBST? z#bUs<;R=ELk?eDwZiS#-rKa5*$G1D8rcY@j4TyiKtsip=+FN6Hhp1GZWqNLdKm|%{ z)3HptaFUuobFnyZ8$>eCf{q(XN5ny`YvP#t_WoU7m8BNaF>$QvbQ@W`QxDE9>AY)E zA*i)>RE-YCG#hD7U~--oC;&*q(dw1^bd$OLH9t-XBmi~eBi7Zj@rx4_@QpW2O zK;j#-Ub-L+mg?GN9COWr9=>n41GMLRZn@svfLscIb^d98(6?_kwJtFm6h& z5XjfuFGXu`WC;`iT%|oibOyxUiq9@C1PN?-X9BDxK-e*DqqsA&n>>F_2mnTJ#k&E1 z*|j)F)8^l4fk3xox9DD6bAbYYi*y@$ z*+X1mMqci!h#X@x4FmhM-=Fg9!hvo!xh8_IEfwFm(f0kTN$pSLk6?^Ik|WZgyF%9D6P0ESuOBVbk#;Y#3A0MOAIbFjsck;;I0(LIc5F=unR zLLgu5dPkF+z7POxq3)X>@xi)}-&iDKGqqxoTp{pYrC%t6w6if5NeBS8)IXs!(U#_H zRxSm=0<9if(+tC2nKge)ziknK??}x3vz-Eay+}g5p zO>!v!7EcRR$qwcUf&7iHnr^}yZeGP@@s%;<>4oO!(^_8+{FlbVfqiyiWER64( z**1G3l>zYz{otC1T={*`RBn>A+EU`%*Lje!4B7-hcc`{o4Nc{_$~5 zO|iG{ecG}w-$p$F=RZ<6e`M;7Y5qn7zL%k6V_KxrT^9{j?i5CA?O??fgW?Ra*9`(B zSvpvyuM{si;Ycn7@THZL;fYHsEK{ zoQcqM+RiJz^JBNWy{JlC4yr8Ek7Ij*Ar z-D~f3H*oC%IaKR)C=yPFdVHuo{BCiin_5Imo@#9O->{l4k+ga zfdYV=bRxr@7$|<0Q%y}Iws=8CYJN@9Eq>|qbyg!}uTBX;9KJLrW0Sk1T9fSL$Ct)f z{DSkvHfLNKqmiQbUzf6df@;^6~&p1FA4QZnpYZ(mF*oMC34j3i(;I&aZF z{&ap~-`Conw@_5TV7p~Nc{UyNG$-+Ru#aTGLS*2T12eVNGI%O6>K_%O#&A5_p-2wL zEhKjrc48mBoVz3kDmffStl=6)I2IoCs=AlmA3gaxf24)pxp-~g%{cGBM!O2=xRe`D z(R~c$45n?byP!20>djR(U-gE^9{Y^ktv}Coy{h??G;4P6t_!l-`^!2n$PyYI=+@jF z8pVCP9IFBaIG9UCY2NJ6Oe!T6WdeY$IoL@>)1OvM^4}8*0B-Pnds$SD$chHQH|aW4 z_c~I0r--{b`gBkjNpW{rpa-V(5&&HpvwvuAf?*2?0l;>9bj+_E+Z4MzADk0HgN+(g zS@w)<6d|zLp(c1nd#YTcC|y*|HvlAbz~ox*d^B=5CEcdggPImI$7g2V$9aoE3(RP@ z`e8+PR9pJ+V5Kbw&@ScUbPkMG4xI}WR*l#iDIu`g3Z-;>){G4tHG!(Ypmg#Q88|9n zuw2u*A-mJyp^7gC$oApzeAK53q*>uYMC0B9$$-V%WIaw=h&xBj*E!HdI8>hpMc=ro z6TD6|eDLkzgA`}ei+(12@=5q)Hy%E^O#3zIhEU6~*tWhHAZz}&eS7mDhpRvVz$fIk zAr46{;J8~!h9h%oo9}uq0f6nQqoQr?=5`&9IYI!iP4}z2j;He=u_gleO;<9iX?br% z`3U`w+VHrr^VMI8X43=HReCFcdIJ06U{*y40QN*1y5-WR;5}BgvSCXAV0%TV4r*GA zc9#oU{P;eQjM8S*Kbe+Mpae#A{WkYe9UEl0StA*+pv#Lr3%Pk}99yWR9^Zu2fdS@p z#G<@V$@M1$0OQ9UU?tZ<6)h)eZLiN^5;jkiaN*j0{N8)o^G&Bs3J=b)ff71ka^1zRX`(4#%3%=$yQkuf zU(+z<@n{(WtT)N50~SxX zGJkNKF7cQ!QsVep0svdSolHVYY2d}}*0Ixsz-E<8yZS#N02tk9e6~-=N+?0Khts}B z6cNDr-f0IvsNEJ{YQy$98jcq7DMbs+!fn|6PEN@ba2s}@1V(JqQ+HH??&K-)2`1Hq zz=q|aEd{g>kv6i|g}ZrzJU|JI{C#%r_K*oK81J)7h=JWR&XBVX-LJaba1szcv*D;a zuEyYTrJ@1wQt`4BzcA_a0|3nr`{$90=RkRU093$Wy)7!7>hZzBe7d&`XsY0(JR$`u zV6f{avbsA3juI&$uzAXtPTMhXcUgu2>#Lql$9$_^`R0I}6j;&3scWiTk-nWc)nvfp z@yJ3&a7!S*($Ay@hV6q#F4GKg++xR_hi3=0z^t{E4(1jwWh+eztXjDso?E<>TtExV zn={YBd`71@;lwq--l?f zC))$akt7s@Jy&1wse*~)UQQ8sWZnGluoQ5q0~>VRCZ6`lR|ep^%|HxV&~=-kfW3>j z7;6OCb(;Ysn*C|Ndf47kHRaKns`)qc`od+7Z&c0iXxA^}!_+J7K0K@0aJSZ$i$#8_ zN6$>HYfx@e&L`L-_AK;vf;Mc)wGw_uE_L(m;vp=IyT_6SKl{8>eBAC-wbbDp&>{xi z+=`*iE?1Ph9IvQ_0=~B_iVk<$b!p|ZGE?r(7G_e3U;TotO0zw-$Mj$?jd+PE#%wU)I#LNmaqWz% zRWz_$hz$ZqMYu(V-}f|+y7^PkJM6kMdZ$C0x}=#U_r#1~UJ!Aj>#u>XyR>a%*z5a4bTr*!uBUK& zNeMy5YiX%SnN+QcFDU}}x!otZSY$z?f|K}?B1P}Vpm*dmN2SFEo|JNDjvN8VwIRP2 z^kcv9t}B#)-;rMhZ|K8WL->795TeKDK#%pdi!a>D#c?u{fGk__cabKkEfpstE%2Zh zRw?1blvJSC#{pkEQEs&LR0Iums0#a_p-$k@?O-EYb zaV7pPJc1fgy`-iiMs#`|)U=FwGoZ=?ktSK{x}>l87f z)8B%Kx_nT)tevw>Ukq}rDM+q|$~Fz`7GjM$VLOE1_cV{X`MXdbkIS2`d{R-~L}1$_ z9U!+nlNvOmJw5)B*qmXmsA_p83^?zZBpub5v^*0oHTq57Dh&^$)?YbtL2iFknHx9R zNh678Q8n)X!_sEEJ4bH#?V|bc#J=%}D=H-frLU!>qHofiRX3X=fZxruRQLsViA_7{ zW>ch??p>hws#|0&O(k$QD+C~y+jJgbxu>XZRwx1Qp7I2|p-XT>6FQZsBz{%tRV z07u$uXNg8GY}613yzqO8bKU%xp#5@LW$s{nF-WzhAbD$29gKn9LTnH>Muwz=(LCzr zC*?*mA4_G7Y#&zh9ez9Vmjh!rd>9VH`grgxsU+Ru+dRUsKJqa1Ns^c-vUuYL#D-Ou zsg_=;;TR_bP$wJmYr*AIj1x-0@5rx$H#A9NoFGJx*ZE@@t%2REBW4=L+v!{(e19d7 z=N`rN=$lK1+t9dYWq}}i6YCv*cMAvYckAZ!P+m7T&dMjb3CrsWQQkn_DQ||`(6}I1 zQQnBJn|}fAcA+q%&PO}dnRjj|%R-zB8y771Qq;Oa8KQC@6@HKCy7_Y;DJ?6|g9OL4 zbCEW1l?EK#+EPNW__efDJT+;zDqBer!0%>SD*S>B z@tOS=1vf2M2(qsP@?3Bg3NqY=#u*|fp&;Vx=7SJ|cV&kB#9ejOHA|inf*#k>QgN`d z!=?z}cQY*&eul1z!=^~jw{G47a{}9^)yO469a#|D5XnHsD_ABHCK{`mN~8x~k7Jqe zGPF%*DiJ5Tekp|eup(f;qX?;k++v%i4lOkIQX_Rpc!bm;@-Xx&qz=N1x-h7}YezIJ zq)8pR^Mw9B9+nPK@W8;J1?%512&4*<>QrlV1_-!5We^Bg!vM(|odK5G{YkI{Jux^q zKR%%;ox*K;KK3dikdn^iCGfnC)oQG!20nCtJLhAl$z4|XosyJ@68-)FMAT_7tMZ*c z4X(w;NzJLwpNK$qx2r`^LA2N-CY^sk*UdYiCf5AoxnvSaZpGgZ6!87c@Uuvf$j&=O z`M1453LJLB&%(jbgWE#*J>^t4``+%pOJAnj&xZE?bsj7EVlPD1{2#3$9=!gv>W>~i z_&S;tI3LvJ;dq+yu1B=_n~s7GXc|{P;`wF|yXAJk$f3RV*3L4@pD>Oan=Upr`rS2c zZ@T=N4zmdXcc!r#LT8HA2%Tx+*Xy0m9_#pPPa#e*Mz zaeh0nD#tjW0tPE? zJ&$(6SRdsD__iEC%Wh~tFn3n5puRYVoR@WTkn=E_W^*ha4hJTHGj3N1Us$7umhaLD zH~TgQ4$^@FfXheSs}sIBg>+W#5%<{ud1K#vxQK7J>%R#|>E;)j7Vj0#*ZJ;7C;&)P z%Xe${WTaJ_?bNa-0N6s|31c3GQyCC%N@7~79nMNL5x`?U-0mV9?$f0Lmb|>2B79_T z7gGbnknf+RHuN4yy&FrqhB>|3I_*||a>-*LZ8P}ZM^K{{Zv zFScZDxfB5OFm3;MpRc&Je1}Iqkp!U2Wk=!QWjF|(muN59p@Sjx-a=vNowMnj z6u*AAJJ|T*6w(=N?y6u@H?`#0Z45m;d&aVmkD*iupISK-@_ekIW-T0*$JNcR%4GI; zxjgG@r%eyZh=cyw{f7_srpycl&|W*k+Ff^#%($h)eRs7$`(CZ3EssGhV$tGHNWRZ} z*Q>j3hv9J0m8%63u;5k#&F!ei)i#eSIggOs$H7ZFu1|sWcqtA0Q6vHDt>2+Xv`)LBkp!Sybkia|07VxvIf*PM;7kapfWap1ZF5jw zL$mPQv1y_N{>(IRMFeo#jY5zgJ_aEWwEZmBB}sg*bP4PFegYH$|;0l;Pyb2tAE^p;w{Gy-ZW)@ z5+S;$r?Zu#>TW%tJ00k?RW^Gv4rkecO04{yB0I;lwfgvWeNf7e*>-^fEWR0jmRe8z zN6qC0QsA%~eijZ!9VByk0V3Lb9klkvk;Ko$9Gu^|LXco3kmqir^1BSTp>c-L$*NSu z)9Q?u*G~l9aCsUn1J zj=H7S;pt)aP5e3a)a|1X+Jq-LJ)7&u9`1vYizdfxr;C! zKA84hE(bhNP)v{_*pm@HI<|e z0pdB;&5wbP#UWEN-H>Dw%ry)@A}z=lhfI+`Bu&yJYseHqz%>q;B7tx<^e+vWB3LZ( zZr$>CsohtTnmvcKl+d%QniX*q_RFc~!026ExlHHjgI}C4CxWS zz9lQS#6STmF5ad~{4ERzWLF5}YX^N=h&dYA4}JL-FBAY=x>Fq=n;+toiAw>n(sq}Y zY;60s+=J@oNwGagrZ8dIwJzOG5XL>k3=I>OasO}9VAY^sT2jIzOjt%9M)OPt{VA`y z`9a?*+ZEuTlO1k(xFS5{=JpmEbZVh_z%_JAcm$mykLh(1UUl=T)DyRnb{oXxE|R7) z;{!L(OxaUvkZvujx9M)!A-y7CITtSr3IVv}YHv6i^@jCf5herxTj&kVdj)u0LuEkh z-qfMlAL|Re7~_j`hASpTx=jL)mYFz&v8) zDO$ooQnb#^kamhDoa*LhK$|>8v*Wv+q9s8(PtjtuP9lC+ik5KAQ?$s{h?kR6G~r%1 zzpPWVWj|+Rd6I93Jf$Qq@gIQ^H`IKS#enA{6b(2rU7sB$s~DU+1}~|%^BIvCxKNIk zaWRa;y9>haboMELJh!?TOK-x?9;W(juize1rq;!<(nH4I3u>tzGSY%pVXD8g#*Qd23p*%#Cd&SE$nnA9bYvEyODmVEXb|61TY??mxB$6Hve(AxH= zw5^OUcfl}3p&*{FPxNkgUU~w6UF2W^i@NQP1$2Ft*W{24z8yABs>95Q;IMI0pJA4E zc*(mKTQ;+w7G@h<{I)`dU*_U2W-zbY1ew_^C)jCyPAA9hg(9??N-s*$YqR{iS!o`S zPnr3PK5~HfkE;1mn24cgJMQhDpSaZuJJIBgQJM(+Y)6-HyUKHDbq+~W1D|WUMEHbk zIj&bE=a4kY^Q)V`0QxPuMMSH?`-S6d4Ly+OdZ;yYM+Ne4Xq+K;vW6bTkA* zR(|YsmW9pgK0V9?LeF&snlrP9>Gp6|2FY#Eh|F9Kmp5x7vq%eSUUmtfl_^YF+U*3U zERz9QfZ8SjXkv)~oqeKoracHV?N5@mGTRb*A|^3}0Bt*HU}6RV+E&m&nVoHG?ZP{P zX4)RPNbz8Xo!IjZ>aDKx+OLph;*(V{sGv)q>mi*HDKxf=8w-onAB$=^4ghNd_T&TiX+;o%Htu~jt z)t$dL?WGiT^AF^h2IC}F&K#X(CqoO&GoXB$Jc;izO&&QIxe#~S;rG3EZeBRm&BxpP zm-C@^W5*PWYBg;Gd1A^*8+zKsx45eLZ8BZNwhK*f_EsAYrTCbh(O*#OF^Nx>As3H3IV5RQp+(43L|E zG^FQv8GheW9O$krkb3cRU0YXNA$)lykmn+Edf*)}!)<6>5G+QPWSAQ9b@N|A%W><> zG#g==nb+)mG05!Jv;~q&&C?8CY6H84SVMA-t>JfCyKvv~->;j;ysew>bCGN6^9?;Z zt3`*-&S;Q5?fHfXY1_?5!D{RkY#3LFh6&`IhRJYr%X<46!c8_z#MjN=fQnor z9jg)DEnr^Xz{BJ~0g`WqpT)0|E?lL4ffP9GhM$Flp-7VY1&HTVH@^thzn*vH_SP0o zh%91|@TNr}!Y1nS?PNY2St#Ip%c2mzh7ppNqAax7&7Ad86+&IE1oB)z)xBl74UIG8Pm-&MubbZo z@~&2cL5~h1l{eQ30m!`}ze?;$Vj6$n$26e?{Eqx8ctZzX%L%{l3BvQCw;-V1DC6+K)3|)W8Rx=&Qc)J?0h6EvcTtQEh?5U`S5P%#T@~fCMsTie) zPy&8Oeii&=Jp>_oe2sV-=k!x=y>71&d5zvffB0b9t=AgV?(g9|^n&e_!jZixx(!Fw zJuudc(d)t~pxZYz!yw>-O<;@ns?!Y^C+>b9%k8+Y1S&K~$d!|3S4_!^yS$6N`C>gf zG_S4VZ@5AbY2mPMZgS`CO;iTNmkNrDhh47Y3gKHzhaJ6BdWe-S#n8C&&A2m*OWtjxO`g!#LMOvL#i4Hgq*$3#hp7*A zwht&xf2o-Objq;ouZppn7{?f2?CYm)KHqN*^24x&=B^pcxR;?a52~8)6!p9l&DNqR zYP10$uMy?+StQudIHNuir;qr$`4y0NE+OS=5^vbtxk8-v`vFk`fCh3SDHLvontZk< z{Jxg}rCNUtG@iYaj=g%WlWI13_r3|pAZHv0CCx^0pt&6x0dccwXT&G3%l7E}wcD@w zP_7TWHR%eDfY1$R=k|auN~e3LI~JW-`h*T@a<#r+?+^O+4VawX2m!#hkLbMb6fd+R z8L-$ms!qB@=W0_l0A6X2Zdg&nXG*gzDUpBk*1qO#}YCM@strooXz_M=ci=Ad$t(JlL z46D@rWq(oj}Y7NJlo!Cy$hO;GWIKZWD z{-Mlh`n-L%xeL18rJd@?1y}7OoAcPvI78&5eMEfSJcKOv((`(|Fy+TxYpx2fAN!0Q z$f4t)=OO4i447ghPKI*H<|2T3ji zGQ7RXk*8<56aee=6RmC?5Bug59V}ub0qD}{s9+5K7MCKx(ZAJFhyh#*fQ>QTrA;H5 zk{#GH6%BwFX)I)I4*dOZcPN?HZ0$*Bkd(O-X zW_xfc0M;G-gl|O>fUboXB`o`MavvxFxEp?^iYQe$$EK9fv#Fbxd~Y}7mb`=NtlB@j ze@csY({9O&5N_aA^N(d7gZtT;)^3(%p(l@rY%Je1r7J$`3T4DX&MU(2djVZH{}?iY zwJ^_LtgJu*m9-guW?(KmM`JI0AO#M);b-9x z+PJwA+HS6b%5fZ(NYA(pjWYyKa-4{-o8Kulz>F?855z1U$2p=7b0#lFB2H}jKFLm) zISqNw?d2N|9b5{Qp{>sX$W5wx_#8=tbA>dFn)L9BL){!m56@Clf^=NDNtlkQ384V# zHxZa?p!_ooUvZwb|AnTa08@1LnSIRs-xx51*aeZy@?)-<5(TRwJO(|CtPs zn}9U@BJqF4ffnLH>h)3G>(dp8H16OkP3BuU_lP7Q1s!SyXs(3vhDZxMuEgKPqYQNt zZ-^Mrt8U(mG5u^*oqo)cDDyB0TASqW+NJI3bCKLx6CqPZiJ^*Gf zrmjGZn{)9w1C0Hu8!dqbJ1O2!BH4E-2(kW;`B6vXV+5>vSd~y(8>yQA85;HC_*MH# zXFo2bLQrHSkmp9wDRhe4&^SZ+G=&cMy7>fDpwAoWP1C!Dr##yeP?TJ@L?HhT=aCwo z>!Gfj(bT|)PEy4$bTq2$BvnL7#eNCY$2?Xw*+p(;i=HB;?@jnR;9l&_c`nntaE1ic zpU8@Zu~Dyla5wzEmqEn{U+<0Jy?go@jH>x7G8kv2Y5SSIrMjJExf3?(GdXW@6X}yq zR(mrs1ryL_mG(2_Jwdx@%ha0#zHWZn2T`x+#a5oH<}1NvX5W;+%5TV4g@OT8OcP2l z!jAkZc*77$OcR9E`d5P<%VWCocVsTX^VTL`3^J@KNZydu+_-_=LaZS@_pIUfJHfi=8uzeUz5#V_@(^BDQ=*nlB!tZ-2Qd+|k zpm*m^8va<4MNYl_hU@1o6LI+f2R*j97= zQhSLvr~^WZ7#!iMDiAKgKCyWw1APS&GkplsYkFtdp2X*#EK4v~0(oaM&2SqUXNa9N z(}=H|KcjoH*>;#!%?U*Q)$#dlO4{uQ+IU$?2*C6k@~hZAsXf($2_@in#*IeL#$-w8DJvYcj*d}{ae%T9;=#XK)G2K0a=;VxN4X?r5f7j=s-J2eX*5DmST(8>P5_42{rVNwBTY_;_n@`nGC%nMym2{sFQ1k zYIY~-2)J90Bp}aL{9WWp8jaE^(gKew@ps{2R8gW+#E4Fhd7XUsJli(Ps=1>36!Gn| zskazb&CkKO;Uepp-cv(oE~ZG#$)3u;#eN^G8S@+AU>Gx5LI@ufTmDH1r|uArxd7ab zf|AJzw`Jdx=N_(7JVynRyDj?xX9%729T87k)XeJZSij*%q4s5KY1Ldy6*d>;+jT&7 zVGmatDcq7zP&iu$RJdsr7JS_-%3eSgV1aDGwVkwF-tIwVVCH2Z&V^N@g%m}XO!-d` z$`CafEd+Gk{1a#x3)F6ll2RE;D#V?VrYN`lpu_bONduZ*9d3Oft_Lrdr-gU~>5E0? z&kkr!nBMTZD>F&C*lGl6V7Cx!m^m3iY94j-g!nKEvOxCul=~WNsd~)XnQagAMAp`tF%}YOI#eaF?%WK$C4%Al{IKQk9G=V&HOB z6$lqYt0Wm$AkVFCen66OuA9aFadpR1i36%D1SwVmd0r(dpk}xYjWfhf0&2w5Yy{NA zQh!YMS6Kq{+&q_p#H$gIi>y+$9JvWdL+B(`Qyl8%dqL`TlG(j8LT527(b;m51mt(u zdueE{gi327E%3M!fA4UeB&~@U&#P`;L(d`KG7ns^=eRGDfS)b)~g(zYH{@5T=_J&sk)u!oen);4ykYZX3##~y>QN)D`{DXbEB(_ zfQUfmb%ip-P5Rk@ri=h3z0)%tge9di_~x<@cS@R~))i{9qyb$wpNDPluy9~&4psFBcK9FcA-dIGjVOT z10KkM({(5kPDWiM^AG^@9P8%mp;p#ThG%6B*?$8C$g~-L7I_lQ)KDvs0*Br3vv4pp zN`_hiBHH{OsI!ps+#8ys7sz>t2IL7jkAQQ>Gjg7kOUQW?7elW?&J(!R%|AuW=vrHM z%gw&9O~xv$nW90>RDsw!sV$|MA_gv3Re^AsteFByoqZZKTcG=-m|da~M=&Y_8J2}O zuNxI>Q`EXb84@S4HlXX~i?OXxM_nD1E-m5j2MUndO`s`YF1uLBr@fTly1GLq-+ZIkXK8;KTu%s_>aM6@nae-mN9iD?|16jtX#e-Ywz`xs%>L z;%P59w1(Bw;kbWBN9rw^Idc^P{J#7uwoB?jWv)UA_#OFG@P-aa<|+u!r*8fb*nMHp zGly#&O{omNzAVJK(RB+*Q0oe1h?}+mLD$W%V_WSFO$T8~sSG6*;!a6Z)Ve}VmNcO2 zW&v!vdQ#uv=P!%CAp{`vhWsjZTlNj11pJQtDtJSM#5V-t`P9uC=&?wni1O&y6~gyd z0(ow9)h09ChQ=8(Cv7s~>*lMVO|DQTAEwii@aX5@d^t$Hu0grr?44W@do3ZLw-dA> zemV!IWvH7Ef(CAp?&&vKZo@M_TngWJi*zj@mtD>L}Id|iWb*_GWb^mc-tYTz zCul?b#M6OG-TX_?V5vAe!Jf{gApL3tZX;%XNkD{gptTn_l~S zirdgQL*~@q1HNvyK;9+lY>%I|yxn_?D+P&HBOn)9drOAg1f(H!>MfB&-E5=OeOeGT zFUn`BxfG?2fKI7%B(0ywrwBP&YQ>>$?m;iQ?gks>sWq+l)i zaV6(rsFRMb6JB-mx1im+!LOglF!M;SQy>9(+?;`i<`tuL3beq(%^4&-rqC&1JTE#8 z1ogB?)4b(2>ZA=veBJCqYgq1&1FIw{=2dlH3^K1NNG`Qn zRX4C(h&3eVdJDhrX&&_WG2{oF51Y43aZ7eNDXx-mKI{Rx;41#)NX~}?GKd$qfF|)r zaj2Wmg2fl;PFE{t@<^4+z}Cw`oXe}m)G2CRp$u6$rwG6A1vITRgQQ{po94+aiP>VL zDNno+4M-m5zXhCYpk|3nT*Caf;u0i})-TL|2bt>TH~GjDx05_cFRRpNbo1e1bv~f? zf%q|k19y9br79m2Eh4<)Rr4ty3YsTRX!FTdHQqnrfj)iYuEmt=0jPx0r!}L;Y0Z3} zc4qHaqfvE#ygxiCF=R8C)WZ0$`wI3FUeyNhFS=P`at@P|3d^6Cn9f?S(Hei575i+U z@EmS55x*RdMI^+?<$VxDW{Z?|WN%i(Gd$cjtCngYMI^y6K$U?OMdb_P>BC+LlF>{>k0i zJ|D>42a4(RhDu6!Q!{rheEwExV^ zt(aLtCnop_&#ZOar78^e6Nm67h=cnUuo?l~CdiPRfSkevkpmsh*MY#jrmDKC^FBF9 zv8UojQUZuk-l{E3a|pfj%-d06jgx|Ua<7v_IQn`O(z`QGXIes4IcO_4bj z04ibh3($l&BMI+U@57oIYX6aZp zk0el;Tk&`4GL!CCjesL9@Ce;_`*|{@VUlE2pYp1kH)>zM;al}Ic?&NC+vH-dzXv`N zTyIcQRy029ADZJ5PFO|END8WltRt2e%*X*1vzUkho=@iA6rP4z`ABE@eJ{s)-gWa1 zu)&f`9?V&B--EeQkZLso@}{CY@eH{M$RKJQcBP$o(;VPqZ~Jap`dLwac;1Y z#EVbo2z4Lu*fn&UWo?{3k5gj85$}BnU;k(uQoM9lcH$V$F~GK zJ9wc}(sm}mv#Od%*nF>MbL*7u4W1!N@&zs(82QN0`pss3T4HC4u_<>937s(e zIc?Qlp0@BKyrS~#3n`(ndxLhZTXe_X!Jvj&le_ffb;--v038_l$T#bc?9!CZbpD$X z3cDYJz{|t(jvk#-(6mQ)KNZ5MZp0aqhvfk|MI(+J>gL~s(6c~GCsyyqL6XY6u5Dkq zEW~-xQ9&|Att*rvYZ4>_nhxKAeHW_RWkmaWJdONepk&J?c|@cMm@!Uh&}}&5*xDRmSOD&~3ke;;yjn)s%*v z9SslidYeM5_e>+!*l?_?cZoV;AFlzMFr90%v56!AKaK+JuPW_yF6Rvo%_Lq zKHfh&dY+kW-(Wx3?w@e)Rj6#wjcVqt9VYNZd)8N=cAnp_Zuj>4$ESns8y91@U7ekc z`nS)|Y7*%k7vr%PqyXV4#GldHN^k#m|D+n--|vmcO#3u*I-)m_B{Fte$uz)rdU4u| z7nQn0JW%AbqR6At;Q32x0CIuop$_;VyZT?-I?5vCoHr& z%s-0(_(jidx;WqRBM!4^yST7zly9X1o9>IqV_H|}9XXL|pD>q`wb|tU(52{(v${$q!^l)DDWe#?bT$3lS3UeHxPAMq|;vsxCA@_q9& z-Zx#?cuoe8>f>#zzkJoEk?0a8^x3eg=(_nu=+mwj2QHP{R7&}DKz)l|&>U;h1nV%oLa9e!a%x%$s6(sq<;qZLacQ?D7^kjqP zg(dptnI*!ngJkcbbH+#Q!&w)WXm%UmDbd?!_96K$Nb{k#Po_;9J$lxR=2kD)`tvz~NruV< zu;uHY{07Sx1OWLyAmX2&QUZ9%-e&f=fL{m6o^y-uF6qBqh0gA0@?DVTee^4N>^vlz zy)Ei*gH+GAC1Gjma<-a1TS&hT(tVIh+p{HesK|WEV`9t1&x365aHkkAXRWu)9KqZ- zL5la$CH!aZzO}=_Wz&|~y-I%@qz4}(7m~$&7G!yj1f;~Tut+>1?!_VL?0uhn7o>SN{YnjUQ2F}> zFI-Qv=f&Z}AkX_~$NG8gHaF4Tx0kD~*`ucZwwJ1Ij$|hfugkR?DvWixw&LjWjXou+ zwD;oi3A31iQqN<4vzlrYf+=P)g_Pzpzpm7pg+|Y2%5P8wADCi3Q-BsTnA0pqOV6YGJ&y$nv=_D)WLS67ZB?8Fy@jESy22o>w zuy5jEpzA}?g88XJQGJ(t?12zozPjl{tZxH&G1kXj zknPG=z5&AwN%yrfskC`Z?P#Q$( z{+t;9pTT0`Q^m!?Fdp_6a`z>KU8{KwSk$^2-iw=Ho}LaSEp<6q#DWBrVP4d zD@^ztw2*J<>VRip3LSCRo>cBeogqu&6*}b4$R>?y9ImZMGss!wO;@A4_E}9KvuC&O zg#!!U5y5YdhSfojDB7zn%y4uW6<*HT=?vWVN@9XCy`1W7ICn)pI%h@BhM+{)tkk2Y zHe7|wU4gF6O4B=&hzG(Cqz2@GdT&UZmg{@!aPB;t#i!;{6{f79R+FlgUQshor9LrN zrIe(g(x-z;k0fAyU_MGX*=(`tmchgMx9$0e&9Z^mr($h6<00EE=z;^jKEj^4nju1F z+vPtyml`O_3+jzB_2B%UtHt>%_-*r5Fqarq4DF@=ud(B?Y#{c5)C|od-5w4Hk0=m- z%UtRLWCS%rnnEOxwo92$nv#kM%7nujM5V&>-23^i12fb2^C%=J67nsg!9%$7><{OY zZ)p)h3Ee`H>wM;^#oSs*lo8apEe)M+wQ-l|J(6Dig}F3yB_XKr;W-VS!nVz4FD0%q zTKdG?M@d1}%O&NhTwvFiV(A=)LqXzvwQPoTWlzfl(!L-Ai%ZADAZb2#H;beq4@mi; zc30+n@@f`C;9S(_(Staqvj-Eo;STr{ly&fr6A|!1{fd|)b}T- zXugS25czVEDU}PP{uq_cGXn}TUv9n(r2>gxqO$p=Izisc#ZoO3Nb9^f<_q%+sF(KQ zC=|&1qDl?sCvAQfVV2mcMDnuM&DX#+1W!*fK|i3|BIruPYH+8%J*w!OO=(FyN|r$M zRQ(G$RsTFQf2Zd?-E=)Nr#btsE)t28nQ{0yROYu%H+erjcbLWhNJnlrJ;YHA1aW32owvk16qlPkw>X^q!D8*qm!c z1O|0N)3`&L7*Y<=gZJU0Sjizh$b^5pxdKfJ2%&TeZ)KVoWc<+J}?o;)Pu+f)}r^AULQO0{4)v9Q*%I;AUw-k&qYAHGhvV za?d$0aKeHbVR_)yM_3tM%L5m1uvbT*LRbSF(+fq9bO6w`26zEIT6sa4&_2e)LHjiI zBT1d-oY=6mph!q;#&;)OsWiRmvRre{i4DmLN<`PXd*HI>N7uW|+qJyBpiEy}AQLmKHlq>+%2@EskE zG&<7ETxmv{ee3;W-t62N>GwN2l8%m!B+vc7f|-z#4FL3?1)EHG>GVA}0Em_lk%NK_ z*zY-HSMPaHz~L59i9127jc+Olmr#*)M%fM~T&w1}&M24(sW*z2Eq#G4oLi62w`ZF} zm`Rz!7PQ=$4o7t8x4m1!gOI;ZxOV-qlhaR!{Lm5z3GP##oz4<;*&Ls}snIgM%qP4W zmlAK;9G?ST-JN{WuNzsyEt}(WfvfwC?-TCVt*gfZA<^TLejUTUg$krJ+*+k zZ{sxd`d;1960o_lw~9^P;`oS8oK4++g_{^w$tYWr>}kBLfF$T2NPqC`V3uB|WbJT6j;Bdpc553a32#hNb*HwTq@R_@rMaumtSM)-t@l z$9;NxCEBuhDhJC@bMKz~*s|Y@B?c28|!2LE{IN zgzaL+)s!J(yllmi`l=QUt>#M#|BPL@xMk8LR=li@uuQKYP&^Vd66|1rCF*IJlQH*Q z))88!DPyb{Od@qTeGmQy*rhcPg|hz8nF0bOB;<@YkN^V_j@_L^%YqRsvo%ViY{uI% z&8##OxP(v^#d~1_v#P~gqi0?s%e)OfWdnW7G$o%nLrdt$TGG2ZY6*i$2uKB+#M2=J zw1q4Xp9-eJC4^+PpT>n}Nz~UZpVgiNB_w2M9xTyXizdq=CoQ$vs3B#}NXs;34M~v_ z8nSjw$Ae`t)t31g9DMd63??BUV+-+6^gvxmS!|)DRAeb2PC`Md((K$Kjvu}nR4GMD zXk;ZZk2=d@q%Eap=#tlxU^oc{85cD>A5EeQOZN?`%AzbT$}-JNpHirVh^*H0qOHH{ zH?TgdHG@eA$T|T#BL!3^pUrEEl+ch01-rqH0~&@t6-q!QM2>kJV@OxT?vnAZZ8b0k z6(>Nm{S780)-vC#HCA)5fNkY!THz=CTHg|_4=uRamU$SbnrW)86=%BDn=G+-X&rG^Eq{H~n*fyt6C`tGtBkCH^l+{Udg z*%!=W+&zdkA=I`o7O@PARMw)yNwGw9Ikd7IMLB;uIrU)K5$Ox4gvosK^0Fh+#d~U5 zD@UZCQClME@LBJ0I4lveqx z7Yt%P_+YB!4?KfNz-QAj$?9;NEDK4nDsH1nmrci5r6{ZPjH4`|5U>t-q`*-U3UaQS zRpZHEv21q-E1?<1P&U_Xm10&5DNI7*h__Bn8ti3Te%c{6da;wTSMbtSN~rZs1__Kv z^;FjS`vqJ!5Vn(ThKwLS?YlpcGA;{}vxHpG0Uhzy@kp@sb=T-=j(F=~JfbwZl;de5 z?N?pPT#j~SpVxOB_h~mtp?biY(@C80+BrzDWz!{=f+f8{-2Yv2GUtm5-C@~S2VE^N zPEAj2zQOQc7_X{B)E#t)dVqO~O1)!xYA`T0eN_5O+F+08LK?mUcEeFlHa9sk2rU~c zm!wfJ^gJ!YfXAbao0i#mCFvVxMOi~vl8!VcK+ph)NKyu-@ZZ|j%Sf^4^F^zVl*^_z z?O|uo2mvDP?ORRS+e@Uqy_->5(t?*r$xsp>(pI4rOZ(=nCheO`q`uoMSV8Sk&C3q%EvYWDEld#+xc6&ty*A!u zriue#t^L*^d({n3khMlohwQT%dB>4$*KA||E_uSPH7T;U;VZ>G>T}(`odY83EKjK% z%;v-PVgkFqFN=CJ&gEqn7Q@iMou z4gNfMgvf)UIhn?=Yf;=jpNzWW^Bx(LjnZux5L^WMP(Yt`q5(UWb_~m?_~uJN%A$1p zrD9W4>QWg@LTnGWb88fW9L~LZ>DVdPJZ|M!;m15$-x6P0bW53b=vYko)#_vPgOQXLCHy0^Z~D~tNh zicL+Pk-I;ASj)JT$f~+dBnToifz3|?Qxluk#t3YFDsN3}TK(Nq+Z>ezTD4Wqu|E$g z7M_o4TDHkRS%;>;Alh~+&w}#-v~0qs3}_x6g7`48*nB{}r((-OfDnuimf2!HAXl~9 z%W!c9asRO-`YUyk=R|+;ShN`&!r{9&unI0EOmBo5#X@N7n zDBMmWQz8&$7NofLmATTj4D%8rj&!r1vPhx8jec)5T`h{Uu}C!w)Vjk^af{DeJa-~0 zM3m$YK`oN>fhZXfM0)_``L%eOKdg7cWVZVjpED_8{sh(T(RjoHw{t7IMXH&gUR9~+ z((DPQU7o~L6lq&p;aZA};{M}E8}s7ANjom7cn}Z4^}(FKmoKF=eCDj3`L5c|?9AGk zU0HI=TN)*AXlrgOC=BH-rGZc~A_Z}1d3&=oLDJ@!R)Hamd{_nT&hBU>KPbpD+2z{1 zlwS)V5TWgfI%7|uit4!qD8N8a?PaL)kH>VDRZ-7j2aARY?vA?oGgHo}irOCwR9!k3 zwKp2A4$7M8rAcObRYO(`1S!Kk(X6ybbAVMtvj77@wU?o~@|wj!5L|mA*ifpZTWdyI zfPtXe%TR6i1FME^F%TxMD_@F$i=~IsySt3$yP#DAQ7p`T6MvfSnJm+fI=|t>BLFd0=GumZ-#-O z+U?D_t8TC8wjIoq`7-UQ+XV~*k<|Wfyt;i_u$`l&B4^ds^ubyt(Mn+uZ2P*&M$+|U z;@wrbMd2t2vc2)SMdV5CtJ?<%g5cU6PkVm)-|Bh~5Hw5|^0#iaREmWY+P^xDA)v~W30b`_N?{OeN7ILGk1f9$aA~V- z1PsBsCmBYoewvW#EgQo?P#s8Sy=0UW1j|{n&N_k}mHTpmgP_}+fLp>-zgfL~Ll8Qy zkuT>+9b5o{;M$kWprU#*f2!MM90ftPd(avBQU2AVFGc?TfyI}Kp|3;7)N7I?$hetGl3DH z5R9y(QI5WbSG7tyMM4ltDQ*EDq!5VGwKw zFgk8BDBB#&!GBxbDi=5ixg7Cm7UWFa3HavMKtIJQ|Am|Q4 zW8>4ntKQ2=AOzom$#|A*1?dSK1l?{pd)be5P<s7s$N+1N^-syPZYfiuV z$O1tSTzgh_nFLV$`|vxBvvfbp&y3kvTpU3r89EPm%r8ZFVkqjn((n z7<6rS<6U-f=&%-f4hBa&Z7Jz4+1*%qQ(J(oWJ-$7a(82^gh_0A*%k>_sTIVi%bf*^ zV%2lyRxAx;ZwE6>%rQl|GG7m6mmAO)hO|58WMD7b!_`vg>Bh_qB2kow#I^{o=2qk>OMq zy+_&WhE*ne_$7aaqAq%mvS%0zS{(Q(-$2}2@M()9cTN`p%|#*ibxD-%obJ|aDo9C5 z$YY$;@M_V}qrDg#VPN^T$}h!xCN)g@H6 z5WN~9EnIyh%nd5;LQi&&g^LU7 za`4wZ8fy=vNeHHH5S8+066(fyCikMH3R_6-`bq|Q8bsNOhPwF6j#6-Ipz;du45?cqpxrhReU&3R!+Uf#^ApO=!Z>Eq6m9#&y4=7tnP`5Pv z^#OSc4c0_?kQo0U1#-$;fe@^uMC9o}BJw^6ld{u++&VP@laP>Aym+BNU8VBZLYeCb z6!=B!3APe^eYt_Oib|Fp)Wz@5D#}@vAp7Q`)d_Xc`!g%_#S3yoP`HSpE_Qz-F=LH` z^jc&q41%;i{=60$P}2Tn3RJKpqHZC0R3L4|glu~tc(-8XL|yRynoh(>Bv0VyFBjNa z@ag)CtojzM!>EhiWA)XSX~;8Mp;$_mYt&^>c4n)a?I3Xy6_S2A__=h=L|r2O{BjD? zaw-tn8>B_`PX&+?Dp}u9z5=6ep?K^YBv3-cP_M1;_7&=-yM5*8t!zC<-2(A9ddpkx zkx?jF_OXR1@;9n87mvtcQQ;zzy6F84i;OiUvLy-?w&$-U z(xdhixd)28@+tQb4ZO<07p+{`LQ11AY>__Hk_9ex;rsKU=B$5_Mub>@5~SVqXG92? zq}h~J7a|XX;P+Q`0U?1dwLe(Uq`#`mAQJGhyDDCMQ&;)@byw!v90h*S8l9~KUthu_ zXPDLHGeOkf-wd+~m8jBTU+Y8U@lfWjB94V=oNaK#+d>ct(%cu(8KfR;cGTaB4++!U zQLhS2+ISo;I{Uye>1_Kt4<)Xx z57IPNksK*JJE1a657N{vhoi-3DO85(L7D)Qt_wk&e%6EdY>y0MM($+qYvG4PTi<#V zG3o$~^qTjJA3Uz`kg)5IJ19DW{6XMqpm^lYZ2CWgsRwx791%&i=wg;)YnzxY>LB0XH!%L zS-)k{&#E}?bA^f2)cSpA-jb60$np%o%39y=O~6rYEj-JjvLe*iR^x1o6Jp7TU%~FJ zZAJ-PM5agmEn$&bTfcoZ*Q@|eUu#vo;?x(X9P_v+MFOpFm*%WOIqYloiG*3dRn?c9 z9PzfyM1rhe*Kw;&E|@lxY2Z0wpkl_mq6>S+*YPzK|r9@M%Eob=`@S zaeYsu0*y#nVupxfzwMSk%m9sGW|~oUmPciq)r)52o$Vo|yaj#KLYTUb`nb=vAySj; zkGt{~gB&kA`=hctc)*&o>f?l1M&Y-*)gQ$OT(qu%8D4faNM+&HuWK1Hg7}13;jz`^ zD{v9CC!ujGIXk4XcVYIZEhLd3eMoXdBS??Te61MqiBex8a?In> z5Q($CCo^X)h}a>^U(hSx0xg>*u0I7Q_PaMiU>{6>@iuF$W3NBLRS=T)RY3PPi5LvJ zF{SuG%E{NvqK>?NADjWqmASX6Fdex!bulK!x+x_X%5x8&ACH+%p#EA{11Bi~K_eU3 zd9j9q(a3NT8lv)gvz2uM-W18OoKJ|wbY286`=XJcIidKad$C@@3^icGGYoV55~jGm#*jU-mv^t^+c^5?VaLutkcPS?HDF@ z-SwS8G@D(QjFx8%=V;x!G)wK!D4q*xLJqW}l}0?UO| za8lM;VSb}$b~GL)QU2koR+$*53zRtrO2MYRxPpqv^o)Sb5=lnOrj<&vG9Z_=DJAL1 zlO0k-1g=~v&J$>l#?zr!IhS?UwxGwu6c>Rmmx`y*7o(&H=$AA&C3zYGFKcZ|(jfu| z>?tq;UaHA#ZPDuu@{jherrCAXBt=Bv9#qu5hJa(#mv_03jHUq(9ZKKN4h_k!ArhufpuDUr{8yswGTnM%;fc zIg;}wg=RxEokp82aKyyZWEjJ-n1jogUR-22gGIOVHPQ(&256r5Y ze1VY^b>hJyw?VF(VdkVXx9_i;c8j4VMe|U28s?@QwQ1-qR@b6wceXZ7M(csg#60e+ zHkk}NDVdl(FC50#%{9}q`;7re-LzW*IpMRyB7X9%^12yjWXw|l>!#g8*o4U{Jc8M@ z;W+7DecF~`C!AI$)9@`pfYL$OlnEnpYv6(jzyx6vCTp`!G>E(H1{#3}{5Jv$c)}{0 zg;%ryJtsr0@kp*l3t$GQ36Is;xHrFA`_2qI<;1GY)ygTuPB``EYtwkPHXelTbOPAW z5;|ctl#ij2YoPmC@!!bl391&JO~|_BxU}C%a?9;a39F8R7E(I4c2$2sn*eg zGzm}vGbSR(*cOn~^3Op*3O{o67g**&irs2dYMHQE;HbmBl|j^5A3`Mi`2=RI&fD6g zmbqr59;+7HGS!v_niNbs-i+IWWIf+&UcK})D(1#b)l+Q=w1mTW7!TU#<79Ph-X2Et zX>!4Lx#)otR>rk$@fhd{xwF8>-YT`sGb2`3hi!Wp z7sOgr*NTiyWMdE5vdM)`*sYtdB>90PKFB>3mRv%2k2bl@7Wor`Tb~;sC*^kcWIWj1 zNatop*YWPy3>7FL27Tqror)vPQNTd+;T9M3p$mI*w&$CZ7;<*7AF|I>1L90(K-?qJ ztzkjPOh7E=L~o851FC z<<7rR3;mc<==f`$62}CfxXozsyyC{U)v`A7Ck6e0Ye6qhpA@lGr`KJcXhGpRO)M(s z6}n9DSUGKLVLRoQaj|muI;GuWsC6Fp)|yjZ zfq7__T5ly8MbqTrcpA7+0@N4@ot6wZXZnH31kf;sn(&A_%E6qDvZ9s+sQCgp z;nVMo7chhyjYptt5_1<*K#n(*j$lhtTAi~>`+&wtsZ zzzLfOHka)LrV^l37;3`fp`N`<%1NWMj>gLQ>6CU0Kob^gut#Y$Z^O0&!Fw7j|C%G4 z3_M{K^{z^5hN0GZjIHMpokW)@S%A9IgE1}PvC^By7xMRN^VeZojq#m?)I!*VNxTX> zUnDU83fzJP==}w9!e?b|b5gLk*Oo3BgiV-qlUWl3vH-ng3Y@T68Fa788iTM26NrtP zhOYVn+AxNi@aPPhFv8CGH^Mk>!X<(R`YN=H8EV3#1BCBp$dfxF58EpiH+uwjSMU4`QohMMpg%q9^8F!eUu^O()! z1}+_|*;}WI+0qCQb}JVka(Xi`rvR2F!X`|jhvRwZA%B2=lc5$oa8@i0jLKOqo?~FH z#-n)3)_{ZY%{< zo&%W}F^{*a3cO%Kg~-K zfj=9|=&E6q0VZYiKwxDv_s+{{53Q6v z#G;t9R?2E^hee7l07x|ERJXU)5%(zKv+-~xhN<#V{s~LfDpV$EZ~dBtN#)(!>hcDF z1o3HjkiU~?T~V7`VpU7A#Sl`=NvMkG4KqWiVGgAl{xIvhaRx$I=GKcQEZV269$JN> zTcp@Rh(yv4!UkC|>oXoib8A0_MNS!ZD<_OaiY)~wVeo*kUjiA$-ulT5XFmR|Zl?(R zx}74PZ*@B*!+H4~*KWIJ8~dk@XJN_R1=yD_;P}dF1))t{P>~X4dWd`a99MN(WSLcH zs{k#F6jP^U3YD-pJ>BxnKSM|`pJ7k7c=L}C3F>GzNSOH;QemtnTx=AEVkJCI&*p(_ zNpA)NLntt#8}^mlrE2Gf9VDYTnzp0CYP>RyE?>Ic!5^!AtG0Pj=9oQzIqcvW)N$nz zq~OxCD}VBp>e?%UC1i;%vVo)PmWsqCJL2%OTEXg`M}hw@iMsu9(MG0u!vtqpX07{! zHj_>jn57g*p^aCfd1nolRF4-95g_iFXY9Ix*byRxV-MC+*!yp46r7#!);R-MYA~XH zoqjioR(mjBunjn>RqB+*16h2jJ7 z37;w38KVt*GqBPdj|#RV_uL?^25K^NE`(_UzrwQqSrerfs>M$!5MJlgaD{dMHPkm$@6PZOM(2modfc9EblKv_wm6`- ziFPPd4b3G)I1l(>G}uvuVo8}0mVMTo_6CXdiXivOpLP48YM|gi zn8Dl;3#SL0JhI<`q7J)GARSeC5Qbws8w@7LVB@!qMh5bsd=!KT;kcNK?FQTPvEvGf zI)xd^Ld~H=_^vf)mRhaHiU?;#9?wb@y_JF_$YEVLixp00 zGZ@DO(;KU0qE-|%w3LhBF&Yf60xmjQ!X=sw$K&~0JEUUS&A3@87R5?I1sn_UC)vTaP zwF<&gzfszoB1A%h*u5r>^RJG1k*?OtrgF@npxaHN864dT6ArPp>F=0v){R;D;T=yozw!mY_mTL-b;84ni25jz69V|@f*WoA}hO2^b81|VZVba4jJ z0Ug*%tv7`ujc4(>MLe=!4(*5{t8G?uJ&vifI0u6X;Tm^mlY#xl9*+5E?5t+f9aC>{ z>^h%DG%^q$hMn?(=^Hrk*>;HOD8azx!?6=SgI)ro9oJBY%CxLzr5sa-ofj1fgdLo3 z9?ik)8oaoyW=@@Xaqxsu%sl)9>#b!Rvka_%9J|S9ah295#%Dp});c|h^XV#=j+H~i zG4&QhPReF&Esi#l8H`JU*PkGxEeW5nir22<9+qR*`CPp{>>Apugin;*7+l?~Tvx93 zC%KXESi?w(4g@F#rxT?1Nce;m9QwQwM;8+72?9qcW<8MALF108w*-2^X=M_H?|`iK z+;OD?zzLIe5g*V#5ApE-1@%;Ai z-L}j4LLg<9e1gCN2$;J-*UO48R>7`Y?m}BZKg9c&QnL`Y2aML8nNQEIMTt@6k zlNHP=Ld>*=uGt6|yDoS-}dMsR0qSWwj&wkm$_!X2Iey;jkUH%G6f!{rZeF~Gk za+-id%ixgW7A;EmMn@p3=+90;xs>33i01}rl z3HmcmM^8B+x7tt9BE=R$B&hFCgTI65xRu#wgF6K&kYnR}i%Ssn3^t?ctbzZ{?Ldg^ zGqnj;4um)^(yh@7%S@mlwkm1)fzlS|0ul1U=D6b+@@$<8X_T!dr>v7MXqtPA(KOnK z2e2&%oWN(Ry4Ja7O@>u4j&-^%0$UUgD)Y@v{I1qOK%cAq!O0)6R-ok}^?FtDU$@ftm`5#piT>5-dQTV@u?6evl7tV0gBV={G=3*TBIffQmn4$Ct2k{iq~qqXqBv4%&3`X2k`~=y>*Mj zMN%%LthKQ+3GMKwKt%zdlBP?4>{boI$bO#8=1GSg^mVICTcdoaD(hLL&Bj zptN?f%RW)dBzvmD5wgRQhuPMZPCFS+2G?D0)!JogF3*W5v0azrl6-+O$18B^;CNxb zxs#$27M$dPHDFUa#BQbXFQ#D#Jps57=+e_WA@)z-*P zX~VLF4Z@<+Sqx$KXX_TzMX|Fov6>rpB!ak2F82F|IOP|dOG5X}>a9WRK8BOotbOJc z=>%xcBy?IjiPHeQBAo!5#&J_F!x$D)ST8o%I$Stz!leu6C=cV{WUS&1oCMWMffF`8 zeAqzY1gJL>I$^}l=N?{-ts2KoxG-H~n{)>5Zo=pq15Vh$`ow57PX^YJ5>D!!^*8}6 z8i8E!aUUf^hzP7++;lr-SbU@oJd{!LNuH)^mQ|XqJk-2s;{NTA+qUh2 z%hzAuM?L=JCC<8Zh<^Ff3(CjM;yqPc?@)%x+Xq@A!^3(K)Yd5Qta0qAYcXwqznaCQvqBe~TX31&)g?BVWa2BvhA4-3J( z+8K_TH$nB9`og)z9Sz8Uqlo*@dxBa+uP>~j5Pvv_y&vOg3r|D7eCdTnbyR;-t)+Lh zcZzgQC-XHtrn#)1YH2}DeYwF_d#9C?1rhnavf65q7^$&$R)M3}+PMD|(oVkEq7>4$ z`SPU~EiVW0u38d1shCdk9^S4j()6G-%qAieVEUF;9%)9TL=M@NNNIwkRPHV*mC{u7 zlDWQ*#>FYNsR#IUA-;W(+ooEwzK$o8b;I{m2bv)wvdo~4Hn$qo(I$bqyRI~4PxY$G zVgv{prkY~&fl0_I?tk;+)zuT$;C$pvw;BNNmaZzRM zLtdiLL=<(F6s%(DlMG4W94~7p^0F^Vl{6MbC(+vhENC%~cGkv&c($Hj2c57=jk?#+ za+h>k0ud4Ep$;qnDO&+zCxxs<+gTGNgF_G==$3{xx#BCDbGJ*U1z-regKXcH+;-Nb zY%=kgJ(o*5c-#@echq8E89VA3#+rI45D}aQ;1n5;Vys!p0EVDD2oKgg!mC-z3=P3| z6rQkSgnVMGS;_(t!FdRe1M(=ynyn4OAqWp7qq50E*Q!!e4*?88cNlhrfKwJc3eYq_ zo!T3YhhRK`yH;FSwzk1ll10HacIk*SQ`m9WMTtCufpa|OgQXX(@#Ar4d&&nL~u8@m%1Gh^@D1<~ta35NBP^DcanL5;L zrw|T7cyQvkp{m&6`2qC zg6bqR^S#Hy=a`=iaWa|{CFwXT|Jwqu;vop&ji#GzblSDyeA(%EQtDyMPu;>M$p4T9 z5F7cEV%qHun(5Ooml(;IU^+B|o!n-yg$na6UJ0q?Mb3tQ0MQ@G2Ig zQC;LkO{q#=$$?~jm-vB8rh@2ivLH`0Apq`?ztz(FqG*&n859-6D=I7fi!5Zo6DQnX z$*Ox*m4B&So;ezS7t6Mmv~9|qX2N;L{l6wnYZ|XoXqt4UF^C6F$-b0^sTJ09@uJ$O zzB)5ccBa2CH&8^D(3Tcf>ohUNND=9i;@z{{OcA-|Bt=Y>qK>!Z`vP-iS2V-szr-vr zNi?%kio)VbK87QMFl#EL4wy^4N2&{{XjZ!nQkFYK6%Qx#&GsNE-3ziL;Y?6fP-VFj zRD1ELm+oLvewd9FEHg+dH57`KyQO4LaP98F&LUofRYlKb<^KS8!@Jc`?E zUZl+liJiFoH?26SnnK{99H+W0RCPJ+Q^ok0l#_~0gEb3}?MI;M?WDjoV z>ZPEn^dwpC997(pNpSJ9!EMxm-A&O3TRyl|-&O6fotYiBBTH_%DW;@XGO|_PQmiN? zBT^iPmfK`Y6C{>d(Inl{R0`~~J*)AcOmml}yWH|vnna6XAYwbX7EQae^GRtm%hGf+ zXw{`Afe?I$;Izs0&Gyur?24uqmU3)mNC?8i>_}*~^?3OL@}=o#GAwf2FHNGQKp`0S z480X_QCqbf9K%3S`771xs2B!r&R4;EE=wmnMP705BXJUEEK|a*t1364uRjp}O=5LPi%a}}+KXy^yKSdPl%SZmGdO{^lkagT%PCVLbI;PU?^;Wt5Fy@I`Z^p)T|@iLK+@{K0SUp~<+x!pxPe$g z$d~i9&%^T9b`Q3jOI8MOZVpV!)u3SRt6@RG3KU^;EM>z_(1xz2mmhpkmbtM6(lq(X zK2P-qUSWrLBLo8RUJj9MpwNx;Bl*jc&(zs;GnRdq!b-Cxi1sLm=9`oJKDjLI43jye zDEm&u#4;{IHCv0W3@Xf+pxT?s3V*CqC(KC)OJVVx39h?2F6bt6b}=kV_Bz;`W)e^5 zo6yg@HsLH?78pU09N|dVzEE8I-CGTP4RR$xWdI1g2ROXRbO9dh0G*6^FhrU3(;85Y zhTuQD41c|@#@uYP7JR+8NvqFnkigj@ApORxPnI*0>R~R`*<$ERXDhXYGJgVY5AL=D zM{L0%Tg+y3uTXM-y?+8s;=-sm{@S38n+`x2$H@ke2CA zu>+Q6PSD*e(aooeIs$X-`AN2Uh-U4T@pw?DE>=R6W=jygmV=$mpi9C!i6em7VnzI? zARfJ}U^4T>Jn^aQJJ|7*jYZ0^SYn?+fp_MMX`Mp%gyF-a zn==R25|=0lP~K3dg(6>pp-W{6>yQt+`5JNsm*FAc_wkpN(XG3LWm|4e=v#AF95{}c%)AM(s3g76?mxR{T70FSwcCiDFLGVH`=h82{3$E_VWzgNwj;7cVa-&kY2d^9dWEqj8H zk4d_5JOMMImdaHblgNAtrX5(S;OeW<&^gXIh#UzH-irbbW}DQ&Ql+~}b0v88a+FCg z|5S%ERW&@cRT_vcKUxd**nq}sjmd) z-i&4K0dE;|fDpKRbO%Fs2uYb0#4wiSk~tJAsi?@8VB(E++77lClP*~6?$VPDPL+0$ zW=_!Yv1h%YfGT58Jtly68rig%n9PB*QfmlnPX$MPE(Rhq-X5|}x7{BX9G+CFWqQ4> zqHHpI0*xE7_#0%>$=_bl37g}5FiRWl5f&=ep*tz^@%&&M<*%P~f>mWa&vGWx;>tga zCN)&7itCwUWWyh(*cINaG-!|zc=%VoX<6R&`_U>75N|t zS{@lOiwbtowky{v10|LvLBhK|SR3Zc46D-Z>Dd#6eBi6UQm0U>IMa;$2}WKkvUlpB zt5PeJoCz*It&Ocnjp1FDX>H7tVBv9J+<{vIOqG6%XG+kdHE?ZwzJ}dYsRlxp1PSkv zX7E`02=FA!8n~+TNG1S+@+cbjv*h8pJ)XkG;BmM9n6iqWI0pg2$qmkIrAG}ZRxvoU zj0q}ky73=3lBnj)R24T6$(vwH+b%eCwY{=g6IrFUE6bVS;yt>sGvL^17PRADoVr7( z%D7PjL16OfM%d!B<^ts^(~W7a1P>o)<1cl>2&9o#MP6F&<@l<_4*0@ngbeWJSYc2( zU_e5w(j1!rh!pt%0bcSEB~WF6pk_^w@#X}62G`y+f};=ItE?1UmF7grnc(7vuJS8u z>gw2ORSaD{dxB7Eo{(I-WOov~AwosX(*O{ZvV2+1iC}kt=F3;)OmOkZSP(F51_?)~ zUx~;WnmIwojbC_S8r3m4s~EpLQ-UV#Bc{o)T7R$isZ~}0!bX*tI{}u83C@sM@6^z% zN@BuH2^!wWdfG^$${@GJ!9$Q&bYz-WI~y*xY}e(ylVcn2Uj6 z<^3wY2O$~cypD~{7KFq^?aqKL*_^fP`m8Gbs-8VTs7RBQxhDs8Wohad2v+XwLOR?z z4H5PARw`9-b{Y8-j7o|7aiCW&aV2|#kWWe|EZCt^ZMNfhy`ZBilM)3e2;M#2%~3Rj zQ?}C6Zfdy49GwUFD=}oG{d|)jk*c6rLcSVONw?Y&3jwjM{#$1Cq%)a zd-gQ!khWVSX}6=IL;%t)3z?GdwF&aVz zq+^}Vwj5RoiC{f5p3EVb1dea;4!A5>M-+Ks!_(4n5!5IBHgeJ>T4sVShfF|mym9{? z(v_yii{%_dmUWIW-F*2{dYEe2{=n=#wfnq-_Gib-xBe#iL6>=BNfm~ivfx>T@847V4Jme(e~g(3?@mV|0^3!72r$zukRlkU%Tzny_uR+(gE3&m3fVG>4^>9_3iEV5@o0ds%*-s6jY8T?n`mi(LgD! zvPrs9V0kJhBvwP!B(Ta7Q*|ruuam==US=_%i!Z?5waE~y#b^MhXfGerkq^>-X&+PR zI~;RsDQ9Y2zVu4BoXN*Z@A!^uwq3K0{kznm-Q*5=Qq(SmvE7hUrL1NQ-RYTPF%`5nR+aBhguwtsX~dACfh#P8y-jXc5w%B1q3* z=TnFtXq@*TIB$g+p)MP+SyFJ^-qqWHF-nB2tkvx7t=XfoR%gWWi8IZ9R1(jK5#p~G zHG94W3p3WngJnz9{kCWQ;PqPaBDB|nnHG)TFCwqFY za^dtcV?r1vlfv^_|O^X|P5-JF=$@*BfO_2*aT)-Jr!P35J_Wl0*oY8D-xmMR)%(+%nncH0F>G8-NP#8Gg)^UTE z$8CEM0Z&(w97IG#k_yxD4tWvnupWsyWMC==YCfEq#SH^kEa%qgJLGLdS6Mq69Ws#t zZpeg`-Dm~&+g~5T(aPsxRoK#vYlzFy0YMfsZQa2;q~6j<5QeMqrqym|^{H9A_g$z7 z^n}xJEgBAC*;!MCW^J^%Fryp@zdjtr(3nQH1GJAVg#cmpy7ef5qiEYJF|1yN?Pnm^ zYy%9lhAN-+V8W#w%NP;vgY?aY$OdUi2?fG#GKBIxk0;o{F4NG`UT_&uI0!szORaq! z4ym^c8iZwUG9GL~kY#XguMJTvQ}Be5@X%>}NGO8(_}=Te5L;i6F@v=`|+qJL?M zZ;<|9<3fnOF8z^qH%-yC9tT$_Udo7&z92~l??-t~S)r zApbIcL?91SfrRaGbq!bxF9A-7Q2vyZveADvRq)o)mKCbHL5fhHr_=-Y&3ZWp85K|} zgyv@Y8ym&KNg1#=V!UiWgvx_Do$G2qomTk}!eRmfwnu{fEMb^1i&xpwl=d)=mK}}g zjd_qULt2u##E1yqT=?eFla#zkU>vaQO$j9Qw8=sN%of9@TDC?70KA9>h^}m7JY9jE zM;<+086iX{ud6LWs6v)gH4lYQZ}KXG;aXuyHi$Wy$7BiDfDLZLT=gb)K$@c94Nefp9HAge5-0d>cb(wF{RQWn zllbzbbaJq4KMG=IWS^>2d=JqnzI)jIg)IGD^`?VmW-!Tj(zd;mA8E6ExuAp`aXt*r z54YLuB3~Xhxsi!JYp=W$A#u_NlosycM3 zI_%V%RZD2BC6mCrQ67C<8^GOnN^&N&igvGy-JXJe`jHj6{pIixcf&z9|G zN!mr{%rnc@+Uw$+M@ujvMVLfzs;Y}k;GA#9&3fU7a~>_mLg(dXygKLE5HHPPFj`4Q z(Ufg%)=;4ZtZ|YGEjft%>Ni9#phhwlgx9b$o@~M@0Vmg94Xq5=k_aY*-xRkqYLCVv zP|k5f1!(QKbrvLSJ-z^6Y)XePO)QQT^3@*%)KJEP@EUZJRfs%_8Y(;Mfueiar9=q3 zB%bz`oe*&qlp13}c&+u^Vo{u>nRRs5;hD~Pw15O*HR%n;(Y!qwpKq+EvyQi^z%C<0 zSSGzkh4sZ)=)A^Gn`StRG*ileEo2YI|Abe+H-#pmq4v?*N8&8J7SbThhGHk!hR6l9 zP6QLeufMiA8816s+E?=*u;h>iVFqWsG&w*G*lVXm2)q8E`>3dKNP{qgV=|^qH6;Pt zNXCNlf<|-Mp_{%cT0mZm1>v_KA z%~dUzUNqye))`wby{J%$xjyInuSFS$cVp{}!z;Am)D}&a@CZNJnk>PKG+A#-t2glw zH_LovJM&*zxd}N!UnqEZFL?6`ZurDSd}<@Eahm&g z&0XKDa$B#>u54gx^oWX!KKTOdawM?blK8w zp7ySK3mnsoV7by!TW@yyiMCWJ2M*Ep)e6g$taBpEldQKjvrfKXS<+POUOJ7ti;mOc zBILR6tsp;5QWg{Z)3 zuLKH;-g$lcAligo?cLX>r{AfCudPo%fGO83eVz>zzxDcb{)JZlCKjRqRo16l=0jA# zdM&kO;-(Vtg~p;s@AaI*)Gc#0I&*7N#WDlgl>>fKP8S5R*#H*KRod0s5`w|edK_t) zf#gW35W1tN8%^f0?Q=WYScUaVU|l$Uy6eyYX-(?y@e}#hYs>udF}vZZApLv^)aYN#V*vH;mdz z=t^eTqmseZ?jCfg^)=}^pX)Q--11&qq&ni z&@#uYetRD{D8LD$SlBLs4QTIuV1_%N&(&t52tK-vBA#DuHcEz@l+P-Az8EzyWV1d> z%Cd5{ROEzHdwSKi&kQl)@DO`)m9@_ZnXpKx&mgD?W<4=!t6vm5;Uxlqa=Zp1IO>z< z)&W4)RMWMJrWePKc9_QfiqY2Ee515QTly%WozWqsJ>&8Z?9$T<*?JMVt8VA}P;`>b z6lrLZngZ)2!`LoOm!#%x8KmkOXnd)&^KL+A@JTI{w89KI8>6M!H`A1^^m8=PZ(7H4 zIJPa41Sz>;N->njLoYh-V^jryKCwV%c4NeJqkAM6hqAqOX5Pm{Dgjbv;yf+I@6bez zv)=K{vBoJh2u;z`36my_7ez0|P~CaPqLk#-ZL)XgdBxoBxeV`PfMvBFd+0!9@uFg5IRUkaWrj5gVlIt8eP8hYRAY> z?Rzy!Frgu$2Qa4{Jfph7f&?`L4ca>|$(MTYU=c*3C-VwHq*P3{*^-b#>jiw(@+ych zJQsEQW3U#TjNM8y&L#`(Bk(F^1hHyJi4^Mjm1y2sgY#6!3&#yDtBE^fYrVlqwTxPX z7~wpEow?j1g(}HAqiSz9RmuoXUl`E{qG>mYR(mkJ-K6?jFR89rpn?-A%VF1Tqv~pT zXGLj0Fs)XUK!@^+6SoMYO4&BY59knn55t4CHXMY?N_RYp22EDcaSII_|W-NU4m2+udHK?%px_ITQb>u}7@iEFZur`B;@m8woFhaTbox@45h zlV|{oZQJujXWebv=(;6ty)3?3MlFLJ;XYcQj@<@|0v1cIElVr9{Bt6~Y~5+pL143fj<^=f>~g#&!b5M zA)>Pyat7%9?PKvOnMAFWzu_7X`*DlW^c5(2>;1SZcHAj-!H|@?*b}sw{#!5f&?bvu zt~n6|X&9bef#Pn6G>{`DeK8dVJa5{;pcnf_Gi{yDl!!xgdhk+1UI$$Y4Rv}cK|=mB zQeDUyt6zZ%vDu6|qo_Y%rI=)C$51i5^)Tg4=XrMC47|YNzM1m7x zy3ueGDA}$D9wVr{2;=jl8ECSAL+djkMmWDAr>-~2Jak8wLyz#EG}eYm{kA^Ep<1WW z;*11K454=4Sar;z4JvG`%D+=XruB_g@r}B%(wK86v)Fy)F`k)PGOEy8# zK2qP2BBwy;ofGs1H#Js-*86`moq`}GZIJ{%RBOB}!juCc_^>26X4}Rlvl#?mHKnZf z0V=LcH8S~>1>MnLaP?Ex$q>rfX2`?wc)r$dP@C-oWgW|SMyL?FQmJR-9vewcSCdD9 zQtM<0uuQmRxc=kd=T{O%ky_F2J_O$m=QA z;Xtn7J%prWzfp)~+34trwyo=}XV5z2otuuHa7$=I8I+lK(~M##yw>&hFeo$cWu~JS z+;9Z>DwrRF(^c#j;SQrwGFiYfwFIK-FWtdEzrnVBBVVhd$sV;W4=TB+7G{N`TGT9I zWNE!bTm4S6e2dTt$>J#UT!p2#74jq_PHPuLg^UVDpKldreJ=syw#tgI3RsN6=(#Ei zXj!UqR6`h&vVNNo!ejv}t_Nc{1SGnUI1R&nNWt3aRv|Mf1xk^KL0ZFeSYYGQNLIjO zsDSkluR>;$JR?RZze$ulgklWa569DS?krr_ zQ&m7_l)rVrW`)dT`I|I}IL<{g5C|-cjh!Y{D-^|)!5eOsckwY z%hPSQv8~Tj+bi|_%5)rcJ4|zDYtbYQ-apBabx>7B;fQrko%PU$h~yj8 z0#O+euCIeW7eaa3z3F(^p2g4$kKE47t)zMp;Kp8CqxwJSJonNCG9GD;DLixe+^T=&qp9+#~sQfq=!f#H7jEyx!)~mNF2(v{f5w;_? zdl5w8G{)0<=ZH!?IT^xm$RcM4)5Zt}t&g0G$#2oz*d;i>1>Iw7y*C~-$IjZ5TS+~E z2`RhD8l0(^%wX)R)mr z;Wfc1@(yem)fl~?wNKI^EXTv~M%;vFTaKw9(#vkAq$*`7*bt8WNz_~yVI6^0g&q(g z%w}SFP@}zI&{46uPjE5mbLYA=xXZB_dVjA z2wz#+P{!>_3wbI4%7&GVls2J8*e~dmTw_WewzSDi>g9Lbw(Xj2?4KGmFqn?#w>M`` zSRegSL77@eg%s-r4BVKnP2<@b82gULT35i3DYW&r9~E+G8MFxNH>PW}vYDsQ`ph$I zihO$dqMRqpCoiXF9+l)JyHfJu=bx@f$*1JC*(j;@>CfROrLH7-ZHh{)O4jFenpS@6 zRmqi_Jzn#5j-(2Ry(`qoo~DIhy>~?oA*lR_0L1=Ac{4vv3&MJTqgsMkGQ%adfoo=> zOK%f`P9*Tm+Bwr+8R;f`VONHt?2tbkYT|Xm2~(yrYl8Sn{nC{TF}76lTO)sdx;ty7;`TX)fRh*$myG=yX~M+ zM`>wFa)i22@Mfl{^wMskR_9DuWuzaieRa+(*7;Nq!cS)Dr5tq9N3tSnEo!u!5_&Y& zXi1Jxe?uw}F;UbsbL%a0YP8^j8zFunCEmbXn6BYLW1cfwgsvEOi)oW4CQWqSO^mx$ zenbGDE(MdGEfJ4q<0+d;X<*h&m&ApTbG~IniAdh6z1hrEnl6i=Q%kuFi4b(XAd^r{ zw}wsX1tCgA@^C7(M&_P$bqG3{t`Z}Z#g4MZ%uUl8V7;SkjsDOeNkk#{5oJe+JxW)4 zrh35EIw};27(^wQk0g@gb!+Y^JY~9D^>$$mv}+&E@osRn4HgCYZcvxi-_CHdC%S9q6!`p0g=_ zMqhclFg#&&9p4b?x+*RV*qvx^mG4T|$>J_gx47=|G#XEbuubsG9k+MlpQ$05XXw68 zhgiD1loO6CZ0LlUfUFMM$_hWwHv2JvkP6zVuy>PHE@ZbR>&^76k}lYvse^}x!b#WD zp-bCpm1Pz)dB$s5v@*=JSXQUw#pEjEl3^xXddUbZe^{y?nvV5`XI4cHhsP_h38NVH za%5>l1IJZRRvBlyX1y_}Rk|$|wZ>=rRmn#|t?}Vi=V~h-1vTMwj*pz%S!3b9fzt=) z*6X$GbkAUrOE7Ceu2zB>143|~@+WOdc#hV?9H&AgBnZt}N>goV!n3pkJ8gGmnO(pVk+2DyhgPHEFl>>W^j#zfnXp(%_d^e=TGnm? z%d&2zpb3+yFhxUFd!9$8Yu2+sw#;-AgyK;C8m2AK*;x;~o!MzEgD5*$(?Y1D&Ms8h zNfM;&nA2gNblSmM4V~Uu-;IY#fKZ#HzXWVbbaK`k<2Y)j*07*8dAqCYc@{_0&Kj(C zzkKO7NB48~scKU`L|xFwMfx?(N|_m0meyU3{75q{b3qX`S+C%dcFK)dnbv*|rz{F= zO|b}UF`7mj@t~cIy72{;C-mrR~nOelBvwk=O~nzRzpd^tsE_+$^3OwVOa7Xxo+Q^^zP&T|RExl`REs z)?X~YJGeR#H8bgYV&?pD{lTu-6H3yK(QaSmLC5^FM1OWDSkL8 zWTn$ihLgc{*L%;2sDZUPnhJS25mOzo{*9B-Mm(LjC-HQ+U}oFcX-8P=?6Yx%^(JxF zX~Q&^&VdwLcM!w&JX5EkxOL_kF>CjTb=s{IIAJ4}IhmxLdL`QmVD!M&VRH5~)85x) zM2L%#Q_#}Xt#9j*lQUbbY_V}pPw28g;0xi-V6YVpE?;`3YhTRjd-}23NO!eHI(w~d zL!G4rjkSG!$v)HDx$GAe8c~~Zl}0;D*DgoWc-xz9uGthc;_@h`&I0^&Zq~Rf1fxB$ zUge_bs+~~fK|Y)oDOEx_aqF|L7Rt#epYkXg4IhP+IW0nYxRQ)Ivk?*Iq0&U zYP(I{-F}j%txlCxSkjwjTjym`>ys5md@#9 zzIIPEk4`{Jv$6`Ur3E$k<%ZW>d#9C?1u5x$Wz(w`iIIAEXB9XFRqftr#zdQ|Z8o^1 zEAWm=pm^>?R7bMoL=eENKDJ$zu<1Am$^+T2^KpHIJ8B}Fj|sXxooLkVfN<+0dvzsb zB7cHvSJ#iKy|NM{%$(wZ4GVf63a=U-%$(v$t|T7JoZvZ_%-SpC@u2Og-0rSaZUh9u zcL;v!4aU*j7r>oW0V*g6!UKRX8F|B3t(8zQ5Ol137arkNF5e6U!M7id30w^3Z9lEX zYbq740)byz^nj2+Zwu(bbf;`HFe_=u$Uwu%B;_7T zYy8Q*P-QlvX|8qa*g6 zn;K7zpGTw|6_M%Tr2w;2@cQZ%VJg>i@Uxg0TL~3@73D_M$M8r?5jJHg?4qNUooRx0Llu!Cj8jbaO4fde*R(;3$cw1a5xWt} zk|fF4q^yjVq*E{|d95%jBiN{5HQz65P2aF>%J$-2iWl1f*hUtC5y_sFpl9f^U1FCl z$;m)nHUeCdmNbDQj*P&TCVXc+*#urNN#GfInF();JOf9--!Ehy4<~cqxXWxxTil3? zK$h~xpW1_D-M4=Gkaq@-fIlPUz3ChEy(LzhwX`>50{0;Sw>KRR+ugxr`LQ2MvNEdW zArG(>bOio=5P$OeBi@)wzfJ=mRaCS%GaowJ|r%n5#Z9{I0D;n1CG)P&}Wu8 z9G3_}R!5&$m6(Ef z;18yQpPITMJrm|UuXXFw${U9r$%Z(-AeMQ`mUSW-8Y0Cb*}z~cpv=$^lt&ed+84|^ z;}ZoA!Fh!Ju(Ig&;$^cqONuLVhSw?c3=Khf*q1dg>rNeykpx399ul^(ui`eNVC<{6 zz@j1aW1mYQ)3a%5hvEVQvCjee+Jb$9XfvML9B_%k z$RnCrVP*C~;peRkfzXdR(T_Ay(U$t{f`sJ1i3<`eHWBmZ=oz%>J^tPs^k;r7>F-%OqNPai051;yf+W z&7hh3Y?%aurpI;eD~ap0Ox6dooH)+iMRA=?todq_nuqJ%w?Z&Y-GG%80|xrvaT)EpWr6!q-&-ZSq1?X~JkyW*%-p6DrNxf^R=G)1CD#Av*?y zU^_HBA5EeQ1@mkbglEpLTPM;ISO~&>g?k5EC+w$AFdPKg!3FE^{FQ7Sy-T4GeET+% z_`EN*tJ9h=90b`RHhbmMZmFYn0t-hN_fL{}v==NHm+>=UFJDT>Z$-|~^fh&~aCwnh}c49Aoun%Bgo04i%kYt9XXyjV(VJpp&;MmPy#>s+uk}2}( zl%auTKWq*GjyzKpc2A0FF-m&yYaJ04dB2u`N^>TtcFfiw6tG}>c}wkaEwMC9jw9}$ zA}vPo97;BIv>L@#p4b3Kl<*UR>GdJXa#^?(zOEQyxK1xEVBPcO9 zQF|CcoX`cEsa!WMWykB5rX;!O@JdK*#GU!rYCgI&YokCskx<~}lYr^9@nqJ9y#YWC zmoIp4nuHFIkdSL^hd4$if5%_YQR(t^t zEX#LFR>f_))htuW#Ezf{V7Yj*H(pE=2qKB$)W&YU$HOu^L*QkLC++lwf+GZ^#8;#F z+R}9!rP&$4>r0%2B7mjQz<+Cx@_p=8gDem+{j^8F&GdsXCRi_J>Q zP3pG_jewUMn5;#!Hk|6}5dyLfzy`Z$_~#C@t5)9nbwI!(pk=GW_6y#y z+YiT0{p+_nDl`IKZsrPas4J7a3chSJ*HTHyR#QVqC`kFwV7__|=0Oia8NA}JFMkyp z0WbFu5pQ_zYRh)CuoHa-i~yH5Jj?>D4A|uCM&j8ft8WAoYy^HLcMg9t&Yvu(+SYiG zy97pnuZtd6cPq4cWAE2&xUY7{TLhDkQdeLMU{K<<_Li-{u&V;Fu7IH;kY!f|KZ2<_ zS+#Rq2yEHHZ$yJd+{Vse*-6cA$m_T8 zDl`KApmcE7(rUS6r@Dh!0wMSg`|_|#gl3qWWh>fJpb(6&4dF_ac&nQy1+WPA6S`B< zj~Y~OA#^-BXch0{mO!iEp=hO(&W9INDnxbJ>Uap+qw?39IUUoq>MpP<2lqMMKJZp9hzu2N~x0AP-6(pC9p6?>8k7 zBDo`~C(jSWvL*4Q_DoB~LQozMZaY5+&5%^vS|V@|bSH%`$dB7lDq?j*)Bu!^SNh-l zh_yam35ei5Cg^x@1WMsnZ-*!vf|MQjRo~+$F;>@8frFqs0#E(8_9VjUbzQ|mP#%Y0 zy!r4X(CWiy4GzJ&Cz&PnhHw&~8BS%}CNT^I)q!Ll4`)e1G__^2Su9))ElhC`bVr0M zuC{|y%C5Q=s#plhL*kd3o=l0+3~#k8h*pM#AUsOkf__@?>UKB*LvS8Sf2!-7^dZT7 zXXGhBI8Qp@k*Qgkc{*9msqR8h5D{VCFMjY*!*#gT+ei%+fqY;3;|#*Bx&@0AEUSXy zV65JWQ&0pjto5jmRBEfaPR5dKD}_O@oh@=i`>Frc!@i1e5%g?-o!X9Z50Xt`5NrqF zVSNv{1XsP&6gUXFgYXpkfx51439tGvQUW3Pj;M}fKe|}GQ&+KYlyU!)NqqOq3Ri^m zA{I~ywo|t~k4Lldw6zk=V9|bh&g%`vOj5xIB+~m{ndk{jvnZkb9!9QpxJ9GE38I61&FZ6D$j zIEeW6uoWME3f3HsSdwco3!Q!>ataKxNq5P=_w zM~ChgzDe4wWR)GyMp3EPv&dqlUdwmI$lqcTs2$In;_fKosK8tMSeI@ zX^qLMTG8srqBbbalHk~xKCIUWxweKf(_Ad|im4(Nt+-v1s+{HE;q0tfk7e z6D(E5wU^*IlG52Vn9YZ2BwrmUMJvLKv{uQM;5md##oKFf)NQli+R;22=ezAKWn?;Y zOF!gG)wTQy!c%N;4`WUkS+v>afQ!!D4^lINvm9v|4vskPzmV8{FD)EPLpwT;Kp&^A z8R%qZEg7v|zLaj`W)7tD-d3%^-E_V5agk)%U^*vFunEoO^f~Wo>wRT*q}Yzxt(%tg zixMUFVwn?uX-WmwqYM;|rmIEUmpTZ+aKxHw=8&3=59i(JHFN^kEDhO5P2#-izu3I0CM{IAE+(x_(_Of;B_SjQ&1iB0k4kPrk z7zcacro<05N^ObzzeJ3W)GeR0*?pD)+--o<2uwckKHb2rl```~ zeP1;|_EQ67XO^s;38JJ6Mo8Jbpz@|>F({c{e#c|BU9*k-Q$e1xvq-FRAXZ6P!)KLR zfn_3BdxD1({8LMM8mpX)p0aFNyj6;_x8xv6eU^)d;Wr+)6ofHN<#_@D3Of7Y=_?YH=M@8th`i2v_K z{%3{%`F{Sv1^&wW`2QZu|My1z=Ue%oXYdc+!C(0b{=cu`fBuEP@=X5cd-pUV^bd;Y;Y`2YTZzxf{i=T83T z4g9+o@;~2?e-?{NkLk}Yzv1%r{rmS{yX_5^FFk=94eVL}P0;7=-?q4PE$kn)roQx4 z78}mCCS%Se{`n6=dXMx!1+sdi|EqxFk^YPD$qjhl!t0mf^(O%8BmH;d{oC>VpTReO z2A_X5KED~C`~lwo8s7gR{`#@_{)h0%6Y=^=eCG@C{&9H!C3yd(c>ODU@}KzC3-J2C zc>Qfm?Thf&d-2T;eE!k+Q>M{t0+JhEJXa;(w(7U3mX`{PryV`Ym|> zBE0`&y#Eutz7OC0A-sMnKKV(^WrlD5EZ#5h{`c{EEx!4`c>N`g7Vkd+zkL9&590N| z@cPI2>zCp6F1)@FpZD?ppE1oHc>i5^|319_9;W;k`26ef`lI;#C-M55n8Ih+s{yAO`;`KN2&2xDDX?*hs@c9qo^&jwhEB^XNc)cH={4V5svHu2q@=bXC zIeh*%c;ChQx8waP-hU%ZZ39eNx{J_(=yBBXq=|IK*+YnaQI;PqX2{ZxGOY53~{ zc;Cb4Ka2NWyna1C`7ONvdCYwSpS%N~{0?64!xZks=O2dG55SX){ZGaFA^v(V-tWQd zzvJ~f{PrX8euD4(1m4f_{!8$B2%kI)um6kJOL%=b{`$Lky%w*ZkI(-B)BH%(`ES7I z|A?4hfWPjpuKyKVClrpL`|0c^seo9^U^L z-v0z%JNV9T;PpND>-#XxSK$30;&l_R--y>$eDe;xemGwL0-ygZrnVFB--_3#;(Ah?Pr>KEjqiLOKDiC=AI5j?#`}Bl`hNWO$ME?F z@cu)19pG0}y#6*`e-7XIdAuIOZ=a3V-^3@k;PwCT`dRq=@p%97c>i8Z;ZyMXN__rQ zyuJya{08RuKltVs;PwCTI>zg-;q{B~dJlf}O?W+r*FV8;_u~Cu;{C1o=F?FE8~FU| z@ySQvljHd0`Izq$@cAd>lQ-h^Tk*-i;QfDMY9EeIR`LBG$0xso_aBANx8s|ikJrn1 z{YQNM1iZf;-~3a&uHln6&H|8czkW5jSC z-}y{@aulz}@cP%7!pGtLEAgGz;q~|N`Z&Bk9;Qd2*{U-eN z3_kx;yuXO||AiPn5}$k-zWKlSyP1^|AqHs{Pwf) zemmaJ@%nT4&SUWTbMV{0$Lo*d^>z5pPvQL&@cxN-y&kWx#;+d2UlY838$SPVynYq_ z`e}IoyO_(@;*(u?{R4dRS9m|c>sMk5UxC+e#wX9gZ~qM6{0qD;@cALU9>METyq?7C zN245`f+_66>%ZYwuf<>Af=|92)BGE}e->VU8h;((^Y6nazlHaoiO+As`>(_6FX5Bd z<9!eBUxoKi=J$C07JTxFn9hIW^<(h)ui*XNc>k+-zZ37j81Kh;|HJt0SK*UCMdUZ* z{a54lL-^}8c>ge7{~vyJ2i|`N-oFm7r||l{c>QJk>R&On>+#7KyOb&A&``2KI; zuU~`LufyvzP($v=U;hZ7`~bfH2E2a@-oF{|{}u1whW8&tJnx4m7yCbj&%Xjw_({C~ zUVP^Uyg!2XpN7}}#wY)S*KPRz!+8B;ynYij=z6P&%!}VhS+4$?< zKu!RJrrU*Y}l;Pngf zo!8)f8}HwX_c7l8H|F>q_~g6s`clmOW%%m^ub+iaK8V*J#&;gU>&x-iTk!fL_~bM2 z`Z0KY5~6xM{`!7=av86Gg6TX3pMMnI{{lYWg-<>jpZqdDc?n*>51*gI`%l1M2YCHU zy#5#d`VDwL!*_1P>ppmLvHvmn>rdnL=kWS8l+Rxw>(lt;_4sWE@4p?t{WN^?qxjBG z;QfE%^?UHwZFqka?|&8UFZMqj?@!|O-T3Rj;r+kk^*#9H5Apgl_~i5O`uTYMBYggA znAh|1$w$DGi~XO+`@cg}Yk2>ic>h?${|MfH0I&ap*Y{uwzm9KyEnYty-`vFe+wuCh znAc@|{}1uW7vTMUcs+r?{u8G2Pk8@QeEv4P--GXW@yUNXl^J!Z&{ruV0AQ z7vuHg@YfIF{XzWdhwwVW=QrTWlZ*Y+nDS@B^*Vo|nd+^s0{`&Fw-@FU2zkt7f3O;`^-rtA!yYbhz_uqo|bG#nLD?7IF5j=wB5jm_PDj{{r66Fiqx+yx4y(rp8>67yIwP)cye9c@JLi#OoXI z{TJf(``L9N+>HI-0e55OiM;;OQ<;-`Jc?(qkZv8;B|U34fw-y*EjW7yLak=4$>w}* zJi2`8$%j|^us8g!(R{jj`SZb*dH%_d+17tobnUiFPwXv59p|upTs_8kw7$? zKhDbr3j*KeI;s}(d-Fc{NR~KPK=ZQ?JP3#`nEanZ$rOC}I`cym9JuP?`*wG}If;ef zZvD+`w)LO;U{MXh{jBH71}y(FzPc{&s}ExcqnYvY^YdOtR9pu1lP}r_{NHGn2nsE$ zfjJ+&rQoBL={V|k-~+x@i7Zj%|H*maP;of8qK{wAifLp@`{QXbm41HC{2axSeKa4F z!g^62*pFg4>R_`Ezvwss{d-e1TII;g6F>bY^V6rW96Qmd&4fw-zBCUYR(1|h|L8df z0Nm%AIUuL3uya4VY<~9P2y89xtix`?u3`QNj4OCd)}8H z&GPETy$B8igB29R$soRv^X)Bp-#$bA*39p=yl)Vx$Pd}&GOir-i-VvU?=*`TJMT<0%x}Kh{019ne6zih%xV4K zod*gD^b%MjNwj-k-n$9`^2OPsK;T^_7>$7W&AZKSp36#5STW*cA{IT*RF(2Mn1}Is zm$?WPbV1Ga!u@n?1nCva-q)y!hK2 z%x|%egfEJlqjnxttR>8_KI+cq<|k2B;` z^zmcOkFhBPs1Ula#`ixr8v8g8Eq2TBU4A3DmiLL$E$4mshsS{4drigGy5+)8|HAwf z>k)jAZYE~dhxI(1ygtm@1r7Wt?;EPy=9h0i4dgz~6u+t41>Zi;{1$P-Qla5^9=FYQ z?_3^E%#VE29{1RRZVRm!nCE?s?HC++%{q8PP0r_if$GJTI_JCRJpfX9$Yh3=L{{UA zzU-J^V!tqhQ*%TcSX}WRF2t*TZ|ck&^1eg4s^8^QLA0*ll=n6ARlm-!Rd3Dv7ORK) zt*Jnm@!Ru0Mzv)n$(Ed<9!1OxKs(S!^1j3l6#7joQD4eS0rRFQn8N<-yf0A=VSRNc zZm&+G$(k@pCa(i^`XEyZ-NC_~4!9zlo&TJUNB^-4?|)g|``Ed&b4oYGyKkGryZ@f| z?n_zo3&+z$?aqMhqdjYxdnt4#>HZfYxo`d|NbY@yaFh*e{Qwj9#F$GjOA>4CJi>RA zA*ucwOZ9PxB~A2B7lbm=Y=4$iT!{Jo9CHjlrf!=2T@{m$R$#+57$p$&A7JS}36^M1 zla<9>h{a|v5-H=10X*uAC$bEYzz0nN=Gp`sp|>FQ9y>;ImaL8lhYy)qm}_xtvw#(? zvvW+(yCjdt97f$y%fV(Ro_rz6tz^`aew>+uxnjYV#R$#`pGHGM;fZDj)yo<8oKfLF z*-X89IrDRrVNWPR;A#J#x9bj&tSH_nISGQ~pd^X69Cu_6f#U)P7l1o*80KbYcjs<) zW|^7Y+XW;e$RQFXND_n}2oe+pQ4kb~3P=(Z0YMPtBqs^_tNz}+_qzM5_a^L~`~ka5 ze^p;sS65f}>oAfkWJxr*BF9njWmdsweVT0qQ4!v9<0$zGD`~S&8~4IBHIDq%Sbm!! zNp;jUS$vy*qOxI^`jw_|%DkDT;tOubFZ>mItnh{@O8^Xn|X%_x-Q zo13x*KD^yj2T&Yy3l`3AH8mwX=vQ*Q9q0Gw_L!H2GnH(#T7scxOIF7xy_-^pxw^cF zmyr%9SxxjA1!~5y8ot-FWi?80+J+U4X`*A8kwDas@#5V<=SWJlybPUlPC9w9MS^sw z8E5jub;ub|h<8&XNMF$m%uZ^=Cw|y4=?W-Kf~J)@1>ghnt*i1=Cg@t#=%SSA(AHbR zGhIivudg_Sfg8;wG0=Qa#My@WNDKXIa9w8%UwM~INHTtc3w>*|zA3}k=f!?#`l`|7 z$NpKv*A;nGJ!;GKlD0wD=L*goL8TH1t3~-<=;+*tb&h03L!Hsg687C>p(}Nx7L;zz zO7|aG>-tF+)ON7ieMVNTxtGs&qpeuu2*e<1NyVsJv#x2wubt>pZMhw5Yi5Ltx?NBK zKir8n--J7|qJxKDt!VW22sy2{GplZ9rJ+{wn&+D*$gsN9G-p_CW|bil)G=#ccPNF# ziH>De8ei68eg~(+^`1W zpRn+D`HMb3=Y@*TSw&OfU*QiGe)xxyMK}#?x1FKH8iyf&QI_9S_~%N*;a_prC0I>U z;XhrC60w(NMWdU@*lYc{xw3P{6}aLVG6Y;Ht!xbeO@#?tSjQ~<<_-mre6{f(XDDdO z@`=J}NPw1W*-QCO9$txZ4C2(mx_hPGo1y1=qlbouVb;iB?}w%vxkh|RTT3IC}jPr1-^ zCu?eE(IL%nfhN`M?q+RMTa7GkN2(LiyzjTHteGzpjjKlAiD1e57M42Q;~!*odyj}I zlN|r|tgxA-u*T+8{QptbweRpM7muugd)mn$n(uK|+05c?O7(n|%E0&(D{VbI%J$=G z@J%68Da*~*viY|&UkTGhRPGt0$KTMiHdz!Km*mz`*}fFQr(7W8_W_a+SmXElX~5vn zfCE3+Od;gdM>NPLrZKJ3Uc37PVC zlDgWJ)SdSv721|0FIqW4gzsYycV_8;5Qw>nxtl8L~viEBkK}P)+SBV&)GkV3SO>>;!PUX;8{O7*Ev+m z_R5R6n*FcTgf?UULT@%&0s_6OHA&6%qwsxe$8OhZ(l%UU$ik}COZv@aHtZqXz);}deMBR=2?QMYQMnyH?7P~0*2ZJMNJ0z~+*t=$*z(1dZa zm5Yv?M?Zy}3fD`%Hzb>qtbC87Uj#F+iPc{x***Np5p|5&-{jj9PgTHL##boLhOkwmOod-9OIvCwsv9%si%yDR6EIo)YC>psx`nv>U@^EUCZs| zCV!B7Cd+NzvUVZ}sb`OfRNn^Yjf7M?K?K(eSZeDo>m-X1dohb`y}{hX5ppkOxx8UF z?f~&mc2}Sz5~8nQ(L1#4V}5!H$yc%DHjLq9gphj;%Wb{wSnPEywsjj*(h0^lu;|tq zI|(Sn-o#>gsFG_{YH|oT$cOA-!hzv;C(9V~4Ox<~#u#R2BRia5rbEGQ_A&)T?q*gw zoUw*K^EiT>Uo5Hg6#(KVG_zRah;)9jU!i3#3eu^Vrm1g~c=5ci1jE~ou=qPWmd zBDEbv|B)S+zmqm0+y9~u;ZGXj^x1}wD>arM-S>g_1n3mvM4@D0o>@(2m9JDGemQ zs!47Tt4!zfdyf+q9lO77G`O4p+A&Stc=lpBDzHGS0DsnPZ2L;KyIaPJ-fW*k|1GB9 zPIn5W%USCJ>3ElQ@Rs}LYY^&?gW#F)QVpk0AFw|DtmI?BCBLJ%L3!{lfl)Z+nty+_JHF6nQCw8p%E4KeqMpt*f z7~PZMo^9mvOx>;s&M;Gt9i6rC# zM#9s2{dWD9M$Pgx8}Oscgwvxe+4D4lJkAi1p?3Us12Q(?;Om4;jvK-wLy#_pENfaq zPR93^3sHYXyPcu&!Br-KUwN1X-x5k0PWRE$aZl7xvl$hzQoQNAjaa#u%dQnx2XU=^ zRtoA+MlAD4Pd7#n8TKjRmS9Jq~=})#Uzz$?sM9jY80L0GM zh%IBZJntQaQSp4&}e5l?RtD`K(kdm!pIW#W&E3qooU7 znS3!GWl{R;T4{7nxhFM~AI#wKSmz;kI0bs3{zP_tnx$n(O;jcQ!25wk`X zhMjS#aJz>io;R{20PkfW44m)nlLP(rF$K)7)tI3wD9e|bUatYHsxa)q^Q9_#Fe9%j z3BbJ=xTNuw{E+KaH)^~voMQDxxqJ5(4PgzZ3hu(wr7CB0+k3-l67oDo!qlex?EWsf z$j)h-TQ!27)fl?!kA!0{hg^)6UH!%ABOBWPHcbZtl_|>2e}`7yO5h0fwQmcZZ*s-G z1Wv~t&o~6dqTKo{cPYCbaHmGi8aaH>inj{0#rLM%$QwCS*isA&h?TpU*xikYd7!1u zg6no%b)T39+mT@))|;>PbXVfU1dadO2E=^OwWkWP0&DPysjwo$aG_rPqB;)d_i5yy zDM$n~;B&^=PGwDNy2(Hy^mK+|uqn&;p`LiihVdTM_*sLEhv_^`s8w0MH`r*X0Y;%S zOW7#v0Hxn+l+XjrOfoNhtix=EjX--X5KfowgC1aC$+fOAmka3_pRMJ3rVDz^gfK_} zeuaTMvuu1S3<#@@u!9Ncet!$Ovi4W@nui|u4iJ1V>y?#hb7h!vLOeeuRE>h zOEK5ip-Q0zA!cJ1gRcup=9(>iHf4sh_J$Q-E^IY76^Xs$?Ni%i{Z z+IWY;SfY^FA_l87*p?Y2Rs>S?7TJNtB(_K(#&mI~I^&E8zeQ54vF}U=zDq0C*mtIG zjqzNK6l;hS-5L{FOo}y(7_!D5nl;u-^3NGzXLn4p7nua#Q?*_a3DE5_oh!6?LoNx% z*@tB%+Bl{qUwxxVC1SuV78Bg@8IB!RD497q8U=tofDD6eOqyW?s+;6s)}Pq@j1b*Z z4r3{ajSMN|C`T9xez$Rlf~q`uEbG~Yc*k1xO&JPqmm$O&3S1A3F?_%CS~b6rA} zK(+*vyLd3e9Id}rC|2cthN|4`X5VTw{z;+#qEy_Xk1W6kbmVZeem0&)0Qxd)=B+eu zVjMbIKt@(JvZbL+S9FymM7^qsO65|DrnC_7x+Y+&6fUwKRW8k}ROD1fMwVOTjq93q za2GNcXfolQ3H6h0k#e@4O#GH62MJSx9P>@We4{EB;#U^H=v__H*HUU}Ug?hJeh~42 zCIX!$iOis|h_WBZ_*j#XMx!fhEl)wjrM25HFqk0uW% zV$o91PQ zGSQX{bF;hS7AtEa)2vm^_Il6WpmM8fa?(8B`8W#^YiJ_2OtDX}y(Fb_YiknIEN=Fp zIp+DQCSm&&PI8ZRxng#XRrB5E<8J-s6m!8-Ji|nF*Vja2rX2JhZ^Qkxhh;4KxpZP{ zEW$j(DQzAZ%Jk%maz|<8I#V7InQ9n$Pd=0WlPy^Pe?b_$x7zZ z>{e!$FYOYvlRa0d~Zw7V60LORgyav(7zq2FU8u zWGOBdvhxltNgi7oklfxgVO5i=^n_4qUnM_a7-n(u7%Kv){^Q>Zi#$Mw5fRkvb_$j=Ay1cz&TvcHD>wP44cr%yF9R zlvXyf=VS*}o+oOulujSEhmqAgSW2k%DQ!qA_4mq`O3j9+Y0|dfC}MLnnV@_Z*2K-% z#HF~NscLZaUfvU#r;0pN6WPFewQ?obqe?qllco$dVSR)5JG82vr%A#}jP8B&3N@Y5 z1)3nGJD4*Hbt3YbkrRH$KP%yPV@bTM@T=r5iiD1wY*&&Ewz2Fezk<-sv}_JneYv%? z1cc;*@g+NuEfn$al2ydjF-p_17yF)y7ZP%Qxpf4rWVw@%!pR?+o zRw!jFh4>rT8b1@C|C00_%jfN0Q!id$!ZI6cWNRx+SV`-B)_Oz;LPsg}_sJqwXQnGJ zpT~50t7!7@89%5-IE1@N{E7dN%A6(^uqtE45*O4FV7=@TBIavG#A;@sJugcF{k`VO zb6FD%o#>vIM0w6tZY5m~#+)fNDTgecNZKK>V?gGFSetRAb!j}Td_k8fu2IcZ3Vrda z6Q~t5Vb)me3PV;~?yt#Y2?mhj7`=!4#g8R znbw*_RAU*?y)}tXo|mq)yWp*UYy~9+iC1+y93tXbsrgzcvZvl3dZj)<6nf!_qT$7ae{We;8=jA9e`9dW{)v5yH{D&9T*xP%&&FRJ)v^5qhqQpo!!&S zE}?COUHA_BOmj&G8}C__U_#rf;&hJBF~<#bhZz`}fP<0D?FE&aJ@7fkv&86}USdv( zcAH=hRPK!zE2TRyw^vkdiFQ-O=^S5Uj`q0cRG3-4p|VQsR1l!^c$0ZpUn<=mrMvz+ zDi?bca4Qr3rt^89`Pj)>2u7@!V(#Q-<9wtNO7wtOiq7a0W|SCnrUXx4r-q8pReJWQ zJ9lqDCH#2#H)1MCx3ZV6KTRy??gYuLQNF zReFgn9ZS&}Eys-XE)}c^)lYcPaJ+&M<1brVqqx~)9b8ly=E9TyC8PL{#V@Q;9Q%BN zsbmc3Fjw1QOD|SlqU-?zZZ?kP>$Oa3iILTsSc=2qr<#y2#}Qplv~^pXIG*{ZFh9p- zZmF!7#+IV`&t@(ieWwBZd`+cQ{ZL4-sF5hmo>8`Xh&bgJi}~uZADE6^*=IV=zy#BeVIiK6pjiT3?hE4 zim=SbA~Ld!Am1OOJ1!yTW+TT<(s2ABu!bx|%r47E%jjFh1Y^BR1!K7^c7uE6jrO`u; z0-L#z3zidNo6V%gN5G1$rhrBr8_om$`Xh-_8?pxP ztdFk?u#Fi8-v6Mwnf2bNsW)?OCILv zPleLHEZ_4b4YePm&~|dXq--|UIqtNKM$2kDA5{I1@ET+dUfZd#qZtOr?JDbd5%A~$LOSoz z0GMKn==x_BS&|m2nXLK7B6=N#cWQWKW(jz*(%qVbB~3`T?)iazeyf#)vrEYoj`wLe ze1r0E#O*;1i6OriH~1tN_4gVKtx)$C*>~<(@lg$c02~4;-ScGAaTLB_kH7m44ay>Ky9^v%hEvSUf-^`_uCp65G89Nv-ua4GaG;AC;4J z{$0a?t%oCx|ImOXXhc2+6M(7k;~FM>t`^fS-c9dka|pIDxObhs2PmH+%j9~wysL5tSa4Tn%2#&xupyF z-D1M&0d7feZmEDCW>7?_5bYlXrM;V=6hpTBqENbqr7M&?&~*$#W-08Q5e%eeYNV{p z(g)34UTAI2?cimWDr`H3!Kq5+lF39v7X+{UHC~oed6=b51K!0I_nb;Y-NPtM>eyBX zX`HM{or5@JNn!L)mhDaI81pa2U_6r^EtB7jb?|QEb;Qwc)ks<68N=Q?SeU(c04=0= z<5>dmLk6N*>c#OLKgx)~@HUO16_-`yt6vwAznVoPy||o={WW9Z)^$X|Y*~u0NdnP3 zG@@2q)}h<)BuxLkA2Idfatin}2HPf;&no@#yar6~)R?kKUF7XEh3E;~e7Z>$?8%Hp z|CP>eP6CDfxAR5O^RAYcS^d|;?7FXDdRe~Le>GGeqtJhQiPHxfC#(NDh?DmbMmd)4 z^3{~j=@4P}IcxG(X%nG~97z5eqym0BeyWi} zJgSqk05^{lQp@j8lF{$t48?92KvrZ3{3<6~)GOsEHMwjx33o?mo^Sb;hgpAHp>#F( zFVC+u)U}Ml$S!4Nzhu~gAeGZdS;>YAdEW$#MY+!2$gY5vU=Sz;+k+fRT@5I?koDIV zN^5e&^e8Eybr@7%Ifzy%V4{M?2dhMZA6fa^a#MxOa_rk^<=BmU#0rdnOZVopQ62^= zMU9H((l%hzm4wS6=PjN~6Xa-y1ZIhIHE=0wTx_$%i?9g~@$vZl8&Vc#sibGLVhF0K-*|ZotGU|Lo?%WO1&c$HYf0#RxF5QqJt(MDiE4 zj~iC&Smk&7vXr00oxx+`BYGJTFo{>~z+~}8Oycs}nXLD9_CKGAhgiS}bf2OeH4OtU zs4S&X3C2{}5bqRSRx4_@1k1T6xn7~e{5xZoU+X)GmFqg5H{;q3L3`O3cWv90l)6AO zm&oLba=0<12eCI9vHn-@)&%3^y!`?I1ph=6Y>o{#u6M{d5{xq!&PP?K_?f1{+@#-x zir``s`Bu~4XO4u+wtV-UIw-hZQ?SSI6re87J9bd@OHI|zZL6Z@xJ#42OLOw!qPD4` zn_ud?!BK;IG!3Jh(}4L0TFr6Jdo__;riqLWn{~;(1o?U8%G_vr`nictM@p=j^QG^E z*SBq+A}g#UXjz+!mKZN`a*~``a?%>gmm~Myc2~_gt6aGGBdjwdcbT-$?~vv!f09!t z%9kT?az-b<%^%_mn)tLnqllMJVyJ+spr|R>x+VT{1lhiM2E5C|7Axi+u0u=&Yf4(Ol{wB8Riu)S)>hCI zr)uK&Y^4rHyhsfWE(Xpd!(B;EGTIk#L)q!WS0>NZ70hJ?ogQ-p`31amL_|0Te9te597Am!Ozt+nfGv-u0;?vjQb*pl(aDNJxxnX zo{T{}^0F|hJ4U-mQ<9dlg;K&HGDv14CB4D@uJt4VZGMTSqNO$u>d{|vj-x^L<(lki zt+a$AJ34D`{J38>$yx`Kpzlge-@fhZ>#oSLxXz4>QF1UXN$J&^($*^(^_=iRfh2v` zYWiBQWTdaDN?xxi-L7TJD*kt)CV8(mB{%etTQqHZx2vrw)7`46Y$>5JM?KA%?k*WL zj_fZ~;?KqK`r9-GEk)LO71=%%1&JtzQ0jDtrpavMPl~MF#qw;qZ!nB$M{h5Q`U5hB zuoCqh8^b$x-*4Z2Cr+Q0nY8bW>9ZzIpOD#o#`H;3COcvuHZzmO@LFH+&eE7B1W%Dv zrBdndliB7hYrq1}M~px^)3Q_RQt1#0#Q)KVclXh!&3)>Y>@YMZSTDgt){{n-bIKqs zz4t}w{QkuJ(voBn>Rt2!o_~f(C3&tCX3LKG`oYmw#n$AMvD5T_RmE=8L`#L%?2tq9 zZfpYI7gfP&sRWt9U(Lw42@BM`tg30rEWtP#O-Ug3RaNX(O_)V?eVJ=D`U>dRj;&ue zLjB2b+Uitjkw9h?WDH?P@B&S6Gj3dy4||>Ed2&)o zo}oT-sJklO=G{{8+ZhrWC(2@{6&ce)4NH%W;B zSDc$Z-FrQtbv13UNE?P&15I_>@@tcA>h5-cS--BSO3MqI zQziBk-?dL?K-;F8w&6Eo)!b*D=@XB&mMfuf3r*qF;WT2@AA`Q=`plM^y0pBvp*3ak zPFCn86Ums1bb_wpxak;8Ks8{tyRakf%P5+D$&|lvw?pz}R zjoWJ)ht;M?7T~c;57|jmmp1Wi*rs)L7)WHZTP50~kLrCx)3?uX3`+XUO+}6q?WXA* zfjS1}G-}b*$eVqjZqTnyz8RaV%RFD)RZVS}qQl`ykDwXmX!^r4VfgK~wIj zsZLu%Xy`h=YDMWZP3f?b5u>!4Mxky}rM@wdoIP_nn#F5%D4TFkj!RXKCbyWDGF z-DnI=Gc`>uCQON%ymSHz_aAYErU#qq!R5du9D1PeAWh+<)_Rm%L!%IXaU1PWO;OsX zL&dcv2g_IFwlvT4vQxzK{vv*DP5)Xl*z-#$`j@7t#Zaj!nr*)0M7<8G-quv5eZ_6u>rf}N z7gdf>$Gg)^7kp1s)?!@N>gDXfLbX2BG!3&m1euLIv2AXqv7U8-!hdTDhZ$q)_jPE! z?=wwZ+D3&Yn$28tn~!hYLACy?>DhmHovt>ooSNuB@fWqxpv83$-&F>Kody`i-CnS` zrY&u&gkny)u64E?_4S6HV>T7Pe_l4%T0>9T%6UVi5LR6T7*&vO8}NSs}FU|AN%tm~h~HVM`m8(gkTI%E1goV@hR%m(BXmMLUZIghn#-vkG50e#AotvUUG3L z+9o{jiz8!EHb{^SZt|9SF6ZV{bl~(Cwp=47?f5%97ZJIWcrihO= zFUw~jxf0KPMGCs!H@e8@)Anm6kNj77}{nqONq3Id?e|PmhhqEY@>vnG%YZzl?glbr23}6 zS@JR87%fVipzJ)dTG|S8Yl?ImUcffouhoW1tXoI062V?~F>6ihlc^P*BGE;+=A~rK zv{_yAN_0zJ!F5Vo$7w-bk`=FFjcF6)RE@!4qucQsvSZq3&{ovwmb{MZmG<4CC51`0 zyn%J51#ewvYTv$zteCcR(wqX_em~*5q<#NuQdN@We#Y9;rh2M2(}&YM@OH9Y+Hy&= zDs=1plIxT93A|}#N%p&o^`)gis=hSa-9xrZn};SlbajMiZU3b2vdXao$D~+{npotH^S!?9r23 z>*YL=d_%R5J;3bSYYH0m)&>f^rAz49X<_J5TH+g;o<n2K>JaMweVHM)AaXMOOu{yI@Cq<4&Vl5(p*GM$WcT5&5>KxW(4rX~!ZNQE_ zWXpYZUZEO2^9EzCM?^MnEJ0_pVJmE==CgB$_RV`{*|-HZkp!L1X3S=T#F|Ylch4+z z_m&IMCtw(76w%qD2@yJ<(XH|+ch#)>n!smli+lnRI-hNsPjW93`xK%<2UK<-D#^VF zXr0A4W|7>Bruojh3z10fMFy;M7|$G%EwMNG>_j4wYzd%s7JD#@WJ?f5Q$_<0Ijo_#VnF7G1Ctr2M~#5OBk@u;oz1y6udBYSSuU^taCVm zIpAJ>b&$})SB_|Gni#(7c%4aCOH7o&RcM7tTGT2sll7A8B$E1y{ci43CMss$pbwcd z>jHGERG3S$pU%pb+<~{BcqIF&0qYzFnFH=LjeJBtE1HL<<>J<`s~)qpWN_aSoRz_C z;+P=DbjTOu{$gIfuxdiSO;s>!Ah9V^umE$@0j=+uM0h~J+L7q z>K}mr*?j19CMs(vp06)=et8w(Y z>9{I^LIXsdVnn&qBy&7DZdYAa{lJ!7bXYL^2Ho17#xmU@#gRG59BY|s-jtXr7a&9j zoxyHCRn(mQPax+B((8LBb92)Vhuh?0xl*p}=RP$6W@i&KbNyNZGe?Zh>pbS=b_0jk zl-RMtfDKj`5G%6`lfcRn(vjMp7c;jMo9&e?^vaULbmtuju)CDlrP$07qucBX=Hc7T4*m{{ePwT3xmU6J4aCMQ2qpN0 zEk$Q_6SFeA5Sx*gYV)74+^;6fK^Ih?&!v{VBL8_|H>p(te`R0l}g#7J|;&Sp4`aXD??7N;?t zI;RfikNp%IDD z`AlU#iPrF3Vg}JjtVxnT?919yWJFbQddGf5BheaTCPX51YaGaY60PAm=OIKRu_j5L zc{poNkr7qJu|}3?BwAx^BWrXrA9sPG?r0No(L@OT*-aeWwXYbax56COtJ-0LJfPVl zUq!IS;W=k7aZv5xiO~7z&eLxn1kvIlP1k_v>!*>RbLR8uJ=UN>wf2~8*qxR_!Ls?CX5zN*L)gl zc0ZPe5<2CwSL+3Kbb>NXHfdMuZg9Hh^H{T+E!XP~ z3Fat7J$p6>7UiC~`pOzCaRG}`L+VsHUlcz90qDh44K)k|NWCJLvUauWOv?@;F?GlL zD~N#Fbt16N;i}d+c!BJimN+C0wAZ!9!5iCdXo*A8@OBe((9LOHy4@q6?cB}W`fXo2 z3$OSIk#T3vb=RCmQuNmO8ME@HJmqRNUP^etywtxJ;+&3l&%)oQs!c3PkKxC^VQ1f9)B%*JhPcai;u)ugo_mPxVI z+HUj;%GXz;!`21t5t@^`(aS*!+njlxB;$zqBTvWEWtcGR$#{}wxb}B>%$5gFt#xtK z?(C?@@Hn@4v2~X^F<*VOF-nW?GTCbF^G6k6XA}I zE*1At6v%j4laXc*=du%scvTbOF8R1L^43jVknp;Z;P&)1y#0U=@Cz94Mq^ih@LNW% zNObM_mR1orAi9Do`EI#WNsf~Rp5}PTyUfXrJPD$rGir{s4_I27g{s!OMX=DvjCWUz zT{Z@vnU^ng_r#|-A?H(;lji%?p7Okm+!o#!eRGDC|FkH@Bx2lLUofMc-<91F!mX8j z+*5kMVmxT3IZw@8sIAm#NfwjVjYLfR+8d0r3=2pLkPskWK^!+(UNecC>ANNwaNsLy zaQC}}1D}?!WgP)48v#xhfDy)gU^Q1g;+i2L?ydu^u|Ni*JT8OfwN<*a{#d7jopAi4(TsWu^KYM+?tD_lnm%(0o87PT6STFw|D z*He~l26LlB&o`|oZ`Qt*HDgS8h^3w`u4IY_74SjFSA^^s*08F9#AH?2HVj)D#LT=a z>>yzEuEq*os?N$rylDFEc`O@q1&b14E?^A&sxu#@OBu(8TN-7Q?Mp~>snka9e^y)5crRgZO(u=E%m8J z$nqZ_bY50SP3P)*{-eV7VHny=(zuY*cdO#l*LEvDZMBzGzB*mX59Dba^4iNs3^4-j zWfIDe3fk)n+QX<;d)a_J=ZR@5Y<#c12-43Gw3if=c}RQ=0fZJ)2=#ArhSg#|Z134Z z>p(WW*J3K{5Qd@07fOekvs}-Ee8g`V0r|y#?;c0+SzhCVtVgb&lkw9r<%(KiE9-F~TO20*S7J6^ z)}w${VGtUuej{EvmP(&NkZls2|Luw_m$^)Ubw185sn^2 zdJTAGUO1l2nvkT&VKxzZDno5E%4A}$W5zW!j%-F7H?Ara$8ng@%}B^y7zyvFSBd63 zaM`srn%2Z63H-yuh3nVZCf>v)6}~CM5q9KzpV#1D)mU0#$3ZN0q)=Ozjp2nI#;nH} z3>SS?RDjXe*XUTog$;PMQ`j8EHT8xIf_#%9OPB=WNH-vFq*1}R5_E;Q_?ZJjq=&1B zt`>Iy4=|Sjm|Rwi}1vxLA`*4|AUh$q#Wgy~(A9`U9ijIk-XH>4uwYoGj0A z5ce9-*@SECc@ASXXAB0c>Oiz)3k!8tbTWh?~27yl#>XV`{dyQ+3uj#RC z>$o=<2mc64J8g|N+)iU>1$G5@PLJ@rf%SNSJqdXeBjN25(R0yaKDh0uakISLL40h6 zn@QXm@k~=xhcBl=3;>yLN3v$$=b^ z5lW+3x=)EgV;O{&7|5IZzcZ9~?XK~%{7S)n!}$I4tjF`KB;?;1iIv`Zd0D2e&dtxu zREK)y0Dh&A^IqYA$4$~$ZyL{Zo0PSBNow*T^BH9%#XYzcY5!(vSWBCYkI0#vS!c+| zw{Y_rISh-t|6OQorY#m(YiVf$o;3AXg!_lLmex?jqAUV|Ihpk+jWq&b5HwZf+Gd8f zBO3}^v0}3)V|Qk3u$@LeA64@yMjoxvwTxU%5%8Ls3$4wXJtH?1@l_Uqd@ollL=Tq_ zy(PN-s*$zwJsWW1Tmd}ElD&M7Ab(;AB3KSDMTHIuIxlK;tf1;b9x#)$B1`uom;x#@ z2wJ2lPHJW3e4az>WsR6MFVlcMgF^3kc6V=HmIytGp$N12!9Md!T4y0%eTMN~)i_#V zR>56zlu*2k^>|@63Hbv?B0-nC=(F})=|B9cEOL#`DT`v(vX2jX>=@y8Cu{JQeN@=p z3`6@$VF|kmxv?5Kt9>=#wZ{p;=UJ22zKPJkF%+I#2Z&z;-^fBogcY~dh+4DSB=CO6 z3fV_lBjRWsRDU{+n{Ee9DUvBcmgL$P`IgP7aT*Gq6~yfX?AhNHrk5W~E27wmw|i(5 z^CqmO8R#n+jqq2HyVxCT?xIn&!k-OT<|N^@1WWe9A3>I8NWGJo4=V8oLp1MrjZjd$ zmhY{~DO895M6I~pr##S8XG$H;XF`6T(qI=d41G!#Lgcvd+ z4<`Xx(2y9+4L1|1@h}$Esi@&1Q}k8xIXMBrrYLK$NS(Yk*`LqU3cY#jzyfGiG+dA; z3r#$Llho$@8Z_8k1gPw5GGB!=^JH_AY$Z%;`$0_%@+4!ZT5q2uO3}h1I3KMcf<-p- zvYpfB$7*G*We4YppUyL++YGYzV}4U_u+G9j!E?hCG#%FbMn#@}s^}WWy1e;KGIkfn z20bG+^ZVmF^(a57k1Y#bebiCy(t+dr59_FHRq-OUpC9g#^)V+*CiXmm| z=^@wUT#X&#zCrc(#;Yc%`uDWrR+8m|PCr>{vpVzgk}MUr7Q=$&WLdG|Z1EzE8LA(6 zl&Ek~r=Kp=j$j>#Hn9uoxE$lqq_xUWCSR0MrBp7t(eo0GAA&}I$wX%)V>}pLuECJU z1+a$sz?GT+m_HB@_EH)>uhxKQ>Hw$?^4Dr0%yVK;(lCF$hDB=x*yMr!Mh$7zF>$EB zMFUzYlLz}-H6)VOfNbh;f13t|+OVGn>tgVUFqmv#k%fbAYrAR2n&ndknGxSDlw{+1 zzG|MU?w9|V#S$k7KQBKe4C7!j-~_V-#>X@bmF8W{|BL6FQjkXL>rd_HCAh*}mO2K|RY5v6$9 z0hG3Gf>I1AUoMpLEM1}GfqEE(R_KxOx-5qVqWKM2ZKtuaMiW9EcZm?&nRR%hiH_Tq zaWGe*J1b4-xcH75F{=e#$h4b;)pm!HgL~#uKsz!BlzQ{B8!%cpf~|ILK*@zX^<$y5 z0ZaENDWI=22uW8dTQX0XI%e8c<76dW9_FJDCOW^=dGh*LC9 zZX?>5HH>Gi!A`=BNT{_Lg;D0nez~fyP>eD;m};s<%NqWC&_AvaUPD}OZE&~_&rC}Z@>UCI{*>&si3fS+C_gb!iO-j}zAA`WK}=o)72 zF)!7Pc1mJu@wE1h+3FgEdiz45xf1K}x`vKhg>h(cS-F**sjD0s6V#s7s0CG#;^y@` zcXs=nRvs%QL6*;ze?ddQaf5+b!5wykRDT6_TvprYjm0(2TEWv=Oq*ciQ^C2WQI$ zV6SN~>oZdl__}MQnlCUx^uoBBsqmK=9urn}e1Py9%@9_=|GiiUZ_XMu!b$KBhNBPX z!jDy%+EAa@UEb9Aq8I1-D{_TqO%{{!-mP4c;VxgkqaiV#bmqIVa*u)Iw(o1Dt?|Ue z+;EYYV{NVv8X#XNmHVohikxzjExO&&2!RIpNK<5aOcHo&6VaApja~z!!k1+@su+Rf z0F}%36OAp*AM|Dw`Gf0)>f#A8BzEp(>{5(%dG_VAZu5QKEKeKx&8vjx_t_@i+Hk~^ zu$M6wIaGd7CJt`cUqqYMTRD^q*~-lJ9%kuY4yAw|VGz=fu5y2+AYTXaGH3VJ)fd&M zA(IH&Sck5Ao=|*}XW&@pjT<=y{3ixu+gNzUEgWae`M&%BRw}TcgM-8pS`9WgD<6?8 zS$PRYt;W)p)}*0byR)^PczYwd^Kx2Yt6g2l**A*OMzME$?W%xAGYCmWP&DIx%3MKX zW#vnR+R03ECbRE&`I3&?lX36@lYch+mb{Wi72`B+K=MB>uA&u(y-jiR>D%7#gC<&C zgCM~U{96O=V5U}AbG^Jz&xz1$8H%W40F}Jl1yYggK;$PG#Hz9@#2Jd#()hw6J#x*u z%$wZEvaVL#nsWG{kIjnP0`7a>ltYER#W1vVxKL~cJlQo6bv376>uE%h$A<9Eyj+`W zPgl@>8)`UMGibj=^sV2MntsTXabHCoqSEpIX1v2$7C{xx8#l?B&{zFHIG@DclfYTW ze~a;Oh_I&aNp~1|GmWq{2MF>D+dsq$X18g~tkh3ME@5oe!@9hbDj7SMvB=rwVGMKaL1+jt zyhCGXAp(Zj44caAh!(ue;0I54QQkIXokelxmP9Jlfy#`f4 zpE4+-)bIM(-Az!6A*((pl+NJ_E0jFY`3%B#!me_BZxw9xTaA#lozMmxd#lhnhAWGJ z76);H9LEqOOmcQdOqT=tG05FxM!kn=y#qt4|!2mcC4z}j3ou+87$2B&VBN1xO?}XG5tiy989hYMq zYTjEO$Y*5|>KN)NjhdAx`k*U+A$Q~8I2Rn8#JC(ev@Ad zo#nW~2>5a9`G^%5f%cZK=;pnej2$>Y=`R{3Yr3ET&-s;b`zP1gn=T|m|HV)&)rNrJ zT%h@8FKcT~qdu>(MFtfbFsP;~;j;UM_OWaroB^{<+DOI;ECY@e^6!^bb8igzn?~G9 zICbb<_Xy(-*5)OgDd4Rb?3h{%Z0sD^%Q5xeHO7jmRSC;KBE+9!-3g{nmhlYB2u$5? zCfj9s(V05_KQ!XDsa5Eiw+Q1|?3li(lfeft7~4nXnV}t`po~8EPmQ6qebhmG(fGiI zYz9Qx*lQWHF=LSXRpn8;Os%JqmrDYRoz_iu;Px+#n>GDRMDO;P@O+PTdQ-V{{D+K3 zPF2g!jaCgn^KFf$l~dV($4!cN2}|~JDuP_j5E$JQOme>WG+yX&L4ZoY7Vi>@Uu1pW z>6SF~;*5s-)yjPtcV76R#?f*=2l4g$gxMUH?YSRgdKrWEk^Qs18F@A>etiZF`frUC zvZlJ>2)5(TgxR;a)1j-!9fS1&_-zIv15{%7XBsstDRm*Q-Y&FmXX#!BsDOUSAPmI) zrGo6fGq*5SWd*HfEug`2|JCRrYz3A}h9CTZP(6*?33tuK7HlA3J_~>)2ROa|qV_4? zvZM>y^Cv>@a5jo(Nd=T;P@R&UcEfs$H>6}kJ~Tde7E32e1Ui>N=nk`SPRc$U|Ko#X z?Pf!b7PJJ7%CLR@Ak-e_w(z<`0`L(Af?ju}+~4PX2nM~48_;9eW~N)*$VTw!B>-<> zAQIsM4(7@!9x~u&8bfP6M@1g>8zH$po5EYqNyhHPSh#m_D=@@^kztkvLyppDTIsh2 z-1A{!c{6MB((gp*PZ=7J9FstDbR&`q@FzbPk{5Hc`6QE|mogNsS1ikhclnecFB(ZW z&W;n{C}X3|fn6w5%k|1}yP=VRQ#e_L4Ay+{q9aN{(+8 zay`ZPN=z_XQe$KpicpW=EVTAa@U?gd)N#`ohm_0Ns|sGrXuPbH%R#L9OX2i1%l1+( z#yraytS0vbZz4D@wY<`uLD|w+6As z4h?wMAEix}I-I`DcwmP7#C~|HQd~9wqSRl#twcQq{PtT;!b^8_fZ{%K;cpCO zjX-X|NVHLY(9FZ+p@u@O$Gk|;S&*H1(dskE9-@&&E1B|P0722iwW5exp=j9n&e+ko1PlpR?L7QyFaqcvPG?$j8g<%`+g*;*aDHH6jj z3hu2A@#n{k|EIQm67mT~))~q^7Nr&DG-OD)!`=|fU&1!?d{eFh@ihW@IU_MWG+WVo z&9n3x&0dWrTsr7NN#Mzgi8VJjVAq=7Zp>782g4DL<;+oE)QOyq(WkMs(f}2Ct$=L5Q7CCAVj?I=l>cLfwC~OmM$jcTx%>KM=u2vX83K2z%BbFAv^8(w* zjs9}L;@h?JPB`xjEZ}%>vjS9;V;B*5^AE&_Mjs(hOI0pfY>@!CxKR`>mZHR1DRIVP zomqJ_Bq)Oqi+#}?1BJHr3!(GM{;RM}P-+LYlpGUqN{#bNA)P7Z=h=((khhCp5?=_o z-g0Z5e7q{k;4gcPLtT%(C)Hn5Bv{o)JNtOqn{4N8^OhBxUnDlSaA@P{a)Cy^bEX_h zkd32}4N?5>riq*vRyMPDT-F;H@1RSD*wH}JoO7kUPD^ZP(^S|U9@cc*CrnLcz_b`+ zZ8*q^>f5!AfwHxX^HS7?Z%AE7m4v*%69|@a@#Z=l2mRO21^wl+f`)&(=zfAveplcp zY042zrArlLx2xIV8dh}K4+U|PhCs)k5bR~&z1-U;DeD9q2@_pratf!FMk}opnYW`E zd2@aowH0!~I);`1fRsBMeCsYk%5_0=ZjH2Jq^oP4WLlUJKP1(NH(oy=)hW{E{4&yy z46v?$N=ecFf24hjW~`nlYtC;X-5AsAy7v?R;;R3Ml#gmgd9tuM4@TNC7W+oT=Iqd4 z|6uZ`Z^&3|bxf>)$lg_*;=}hZ zF67ZaIpNc3uD;61Wk?qK(f0&>u7*am>kK-RLCALVkmhx!&z`D*Fd$gsfAFc4{6H&- zT^Uj`BVQ|`qiwzalH!xK;?7VR?|iHii^6@csm^yb0hn%w?Ua$IiP?c{p=d5*3e|49$fAqP*;G@DucJMZ zRTT3Xd>RcJLoO+(6l@9i|5p@mq)CADn4RD`Q7-56;}b<&y)T#xG_q(PgAu}!c^@_H zvzJyJ-M|!2w9CJYpKhaJ;is~863kz!s-G_VwxGK;G|UrU)0U|J2mcWXYiQ=dT-;3f zb#I@sK!7`Fs_|jM0PSY6uLjxbO@YqPpzsAi%?3B`;f%a#$@Mg<7+vtu%!BM=YPX68 zL1?Z+%&l0mHXil2P2Ukzzs3(s0J7`D?fADCQ|zpjM}2DLnk>9?kh$Mg1c!(#KK567jFsJ^b@i7 z-?Uc30=p?1J!mxF`1z1lHXzU$Ew@bmf)LnFBM?X}b;lw5u+K#5e>JHAS?kWw8E;9^ z!?dD-SScEjo&2$seON0Sh?VJGXwn%UNYSgcqJdZ`IwmaJYa-~})UpwU`DQR0rC9+< z`Rqc?G_1KFCzO7!8A!gbNk<+LB7#-!2xP+JObvvP9D<5@*^N}~DRf24-1AKjy+;Eg zu?m6ZXd`;BnKS%U17OY&0xITJRaez3#?9W)kd7$^V_io)DToh?%7h5*m&?cb&hKBA zq7U>cMd6p0w}19$DY>^+G7xGx`*SZ!(JQo~m|}P4yT@4Tix>V)O8-bJjqMQbt%CY9mzl7rC_^v91%$vZUtu!5ZOh}^yQ zoD}WU)CW`t`+Bzu{qVHEOWDU0%gU5FZr#oor0f}5S&YpnE5}FdyBe2!Mj)GL5U}pD zZWrnMqZEB4v4UNaT!f^Le?*F2qZNhKx^q#_i82K5Zz|!BOW8JeO^kRsIkR3 zRxj;dNwLM_f_X;MfEpHh(`|4Vu=n~%thBB?P|K|B#iL=5yMPT*T{>!Du7ot02*8#9|~P#?>|Y&b+wW(nv~os+HJbvuTpj}wQSV=-Zpml zl4ggXcIED<``!BoDSC-!Uu2d-A=@e6bR*HvJSF9q(P#wL2+Kzber2rjwgw1R;mh3x zvkSx;qMm$65H*dGgDAx>@AUjr5bJC84M{;q930MjS^!^ZNXi;4e)xnS7HFiamNIR8 zjs^%Ok9j#9ZS6$7{V!7dV2uu3LhSDP`)eksyp$-uuUswI;!l27ijUL8qkCA_(yncM zZ4s>`Y%YW27#SqPT7Jz8r{B{`!|ClfG58ND`iWK)7Bp8V%VkR9mZ9vIe=2~O$i*cJce9=-A|#`Gmg`)fx%);P}p3KUXqQH@icwz+5-DO4HoGb z6X{rVaVb2;eE0GRMLNcGvW~-Fl6tIQ)**aYq+@KPW5abt$2}UMNXJ-3$LHp-$){$6 zlCJ}+N2dC6ADleqD_KIPti{S#y|695_@Y4HFdq$kD0WSFK2$7}%o2OH*qxtUiSD1g zX+>eZpb0OKC%5ADSUk41vFim|Kkm(z3Vr=T+S+P{r+ohGVllh*_{zg&5z9;05|$Uc zomj(|+k`{wOn6SLbE8i96Jr^oEKj@)~cQFN}WNb3~hjh*Ev!}zsvuW_yswLVyt z2FUeT=aed|3UE(X9o7^)jYh#o&;C`{t(OMw5F;a>f`0JMz>K<-`+rG6f0dj@&+ON?AAnaJhpQ|gxpUxndb z{k-6JFB?Rup9i|1L01Y$ec-cpnx*MC@!S;7=GFB(k-5u@MBjG=j+L>jW*pvU>`x9nFy| z#RwKHAF?w;Fd@ly&MC`x?J#V7w<_W<(l)_jfhOSNVP;Gb%xISH?eW!6V;KcKI3*dN-Z)ZliB#toxNz)eN|W;bE@a3>iJ9|vQjC1W39Y?wbq13TzluF0R}^&%{c zbhXAQPVYOc^8J&A&gxuYc!@F9xXxZdX1J9){?+` z?kXH_)7J1!ML%qr<>`Y>V~cpF_Z!Q&fn^|6^oSb>ad`<_{@q))??40l zTQ&CBp%Ji8!GAhcxX)(yLvkNGY$FMImVov$>(_FRhHS9S)cWNn*61S?c;BY+Mvx15 zC!&|%U06TI)3%#)?>))=90^qSN8@=ClM4J^rvXzns4YV%tSYxRv(3FF2| z^-f?*dwrv^jFVXgEQ+gd2IY0TX!#tZ@6$*lrUtIXu;X_Urt??}GOyUD5`afBFj!cY zwV#YNK!DtX8aZo_lP_BiXbF=K+`}5YK~9C;%P{x}R=kPX?=@!DkrqO2IYX!&&%TJb zWm!#bR4&-sfIEqCutK24uMSN2s7BCAj&*2ptgu{~E#W1{Dd6Q8465N>GD>uNya81m zdeUA(bvhfyqnZNVhrw|CYPl%8B_*`Ut<$nx;)dd_*J);%3JlF&j z8?>9r9Y0|kdLFF8K4)040-P_&`h%G_$1hUANB*LbgQlSGhqoQsz)iLmf-AEo!lctBz%n}V1ZQWd4Jc)TFVM9-Z$Q9cN zt&Lf_XE6n|8G|rykjodyTtCq`S@Q-D^W=6yY9h<`<_#KZ4@RLX@?}0#Kcda_ex}j0 zre8_mL$?*4Td_uO`jrabn&BWEk}b)mY_jL=4G1TJ?>9?06L?VZ2&cj)GaREuwYOZB zL!n-yz$JgF(X~c;9XfRfA$t&;#~VIVz=tvzw#5$FUU}t3o+u{U-ldVXoFNIk)gD53 zeKw9~+f?{Q3`Z1_6B6?3h1_KtjXSu(=PXm)UtUBFgVB*;x9%(?&u6oEQ78d;Ap@aJ z9%(7(3fL84-q(!waf0Nz8cEBZN#Lc-a!`&ndiG3(cQHJ$XHAZeRBM^|t0Jg=Porwv zlVGPz5Rz}R7T=ya@I3}P^x~y`(7UKfdNFJlvm|h!fw@bz3G_VRAq;fr#VhlmcS)1< zV%X{?&hNxVNTBBdzrjGX)$B?++nF=Xi$^Y_fg2<**GPIUl_cQU@j~}0){4PZ4kG2| zdauhunxs(g(`-Tv_oc#k{8BaVE(3K3*wsqLsTsqu+7WkU8i20hcgiN;M!_=4&$o&v< zHeP0o*#VOUm5XuQyRs~t57&}x9T|s+p-dR%@ssjzb&H6~J1WhT!W% zyfpoKR!W|)i4ID}-{m$wTuRQ?N@B66vr_JpZ&Ps#zID8mpQC-pv&+Yoe6=LyXK9@6 z@^Kx1+a=|nOXQR9ot^Kr?^2zak@8ioJZjn%*K|AM2Rmvdu@);OqiwP89w0@R)`}t< z4A$f2UJ`l2sVb-S%#M9~56Sli1^${=XGA=6_|bB>j4W=K^3i^VhmR2OshV!kEOf@L zJj%54{N$omF5q91CMf*s&eG|Ho{o-JiB*Tf=l1=PcCa(JHf>aLy-}hL>+N z9c*Yfg zON6{lSq=kd7a8uuT+fxz(4Ov=GTgQIA6LYtjqFML%Wwx>(UqcIOX5_;+H7{c>E|`+ z=T>8E+>nL4^9*;rz3*~p=oyK(svYloDOQlCW2QP&*4?Xlq@7{!#wBjwH66v-(ff^t zHGrt#+2of>%-QRk#N-@evVBWT(&Wy$CgQMpL!rFK4{soE*7 zZbMtk(2bJTtg((eeesr|8%gM732FM{;S8zo>%zQ6{hovcEJ4#Bj=wP)3G`$}C)Gbe z!k#Pv33z?+NYAIg!bbC_>pE~X1}fU(N+KCwlPM->^MLCxP|+4A9LVI?Wr_*fJm7i^ zL^2&%(n=694Y-iGA$zc zo5AH;NVKe4s8f|b#<8xrH8EW|fbFa6@^A+;j&;RtiK)&DYztkNhkJ=}mM(poG{6{7 zmyR1^oaGNzLWwEX&Rp8_2OqI3Bao;E{w$^4iP>_g#c6_cCKtySgxGTkayCOOLIsOI z=2idZcK0>-kk1%``BG42qan(tF&(>-8KJqYN)YC1#vmc7>)<61%*@Kn4BLGyO$o>f zBds79jtbtqZiqo%5KI6b!$3t_+(R)bJes3Hf;JC$ECUs7aUaEuavyGh1Z^I076Yv% zR$~x#I{Fry#9LxbgucsAgoeOZk|&ynFjH?wK{EDm##+6MCaTACaj%yVKUKgFupibBOBRa# zj+%`%HCFA7iU{%W$s+q2mhIJ^G1oB$(L(M9l6jWdypr!WyH4dkqxeG|%&?ip&)OWA zD&gD{h3~gmx3@X4v5arC40KUO##@Czf0Rbw`m~THVDHm~{X4AL`?Szd#QQ8lCohYX zj&F=^mAoZj*Y61VH3~EvX++)^u{Mi9nlMnV%$BR&+~X}U`B;s$7j0DZIOE-yv$3#C zO)m1v$yfPk-T&INrSN`+od2mC(IyCpKIrx{1vH9l#)^8>OhT@ z6)|nVV;2aa+gP#}F$r=9L+WH={|A{v8j^_tpBb0gfF%I(bg+Sg4teZYMqViZgyS5QSaFMv{?M#(af4fu))Q$J?Oo{0!@Ged&U zeFZmURy8j6+%+!0&X0u3ee4JR+|@%o$Ot4^a)p&_O_2LiyeKuGF|wv*3a<8DVYVID z*qfFmA$MdX8m`M9UxqYlR>RqVPp=S8-{87?4M&jO7=rw@t0Ig1PER{VV`Js74&t2e z3!Q&*MZNr$G5=x=B4>CXg+u8$jgl2Peb53EIrm}>UgT6^(-{Us^$hjJM*z{^PSjXg zhH?;#T_coE=0@-g#h6nWgP>HXa`tqJ#>fgv9_A}o38zC@z891sHRkZ=j%@@g^^7!Xfl_39N2&yXAZCUdUIKp`v z9jmG?WcP0gp*vVQ7JuR;F$HudgD~)v@`JT(mwi>BnQ&a7v9gj^LOpAStH-zvyyR8K zJ;6A1W|J$*EuK!$yI5mpb!HDU>m=cI7T4YD%o^%kM!}=x<}5eExKyKLd6W%U^J3xi zv;nxOq32Nqd6pq)4t)A8bPahgdBe4?(0E~#4wA71?9+zgi>wb{=VBjAL%+;u#KA#1 z3=my;0*+T{9IZI$ARaK?adDRI#X-g_#TYc@QP!PlmfTM(+3?v>K( zX+Dk8vekV^u3HJ?$b~(}DzR{v|buhM;SV@30&;zBnLG#r4HS0a#G?dyhuh8yPU*UW^~K|=I^E2E)N!lWho zpha};i>mi0( ztwYnZJGi*lIt00sA(nqxa}3PtZsyXSfBA@?GQt{D66S)7FvuHI5`c>`(CU}!MDlQk zc>Pj^Wf^Aqo6IY{Ip`AH&pdx)%+idpY?m;1U6Dba?Gk`1GtjCLPkh&63wSkR%({%R zbnt|E87}YXV9fH2u|C=*O|+k7l=smt3Hcl&tv)J~nP}@4rs;p-Ama5=f;`UpKoA2OLCmZv2w3T(+0_dG2DIEI0iHZy=Is|0H@MNeA-a2*E1hw4#VU1HdR zF&m#eIwEqDRxLe1&qTN=&YxK@Q&QSxd(X-m4y6^kyezXSLhx# z&(^rpBQHu4IL47J*Zo=N;8 zH>KA$1bLDnjt1{_#p}2@Y49L7FvRj-|53*KxwPlMKH{MSL=dsGryNgVt9lVjL!HJb zYb$H=BanY#e%_d#jD4Q5R_o9sk|%I+uXPA=asnicc@|@iWsIjI`e=uDN59NIqUdljUtx^h?*4nFm$S3`?e0UaWC&OV5k+dP zJaf7{*W8;;>$nveXZu*FE6QN-MCyAC@_kGPe#k&;-AEX!@2k#ZdwBDeB;-+yRP>eN zEyQ@8bt7)!1bseo6Gpn$)ZTVojg7+A)PQR;P^q0Y`@_SqZ?R1hYUd;0WhDB1;Fq$0 z-hL<+&&u{P!pjphR3D>kJ<5Z$M79Pcbk$!3l)SNy@JvXkRuF6~*$M|{c%%fIC1Xm`KJEek};u8i^g zOULcbIIAw%+0h=3MZdVH+@M)*vjk=W2+=e{qsxr~{4c~TPc2aLqP9mMw#RVWSQAKSTYE#21ldnnj6u#J7YS^IUsHkNsXc5b1-99b=?%T8UUE4O0cgO?^b{bIy ziuJ$23U+J12BM&^*zb1d-B?3XsL9Fm^Z80u&Ok&W4n9*t%|nB-3H$CJh9@bK!i)u% zj&Fh&W~KRgnb~q+A|DTr5c&rZN++)H)n18Uj%Z20#YEv)3t^9G!bT++(ic|3jk1os zCp39unw6JOJ9@OwS<>qkhy<(GC3;^SYmMx?YvSHA zgq&f0T#~_(CGvm{s_z=vG@$R;hWu<5fg|jUkp6*@?tZXO8liG2)Xj}LL0EF6e>^hM z^SynwA?JV>xPQvhaUpez6DSSYfj3z?i+$GfF%bVB7T->*cJ-Tg%B;g_5dH-oId*EJ zNsIETgAk9V-H^T52+5YSp(K0Bk&)di#~Qok*)GRhmSNeuv|*DV2r1sUJj-vV8_Cnd znV$Ho1Wdjni*CnPM0AyXWn~t=T^n{WHzGRrUUkIeMmv0Aj5SzpJ2A!Fx20HPZI+JN zu+r=Cr`k|o)IIL`NMipNj(1}J)(NJJz*fwdkga8BiM%L)bXKPgzGYmleEd}}OY#JdB)#C9yw5x)(FQN}gV@~kB(6;H20tfdxR#s)L3$QqKI zE?tAX(w8xBq=j7t(pP5bNueWMdM7o&sv{-3t5E84ZL-Eli7t@nwOMr1DnPnHGiysDg>q{S`-^9{~LEiqz2k}1{Y4NU8{*1*Zt+O}w`S8<^^*IoAxSf?uP8gt? zSK@vHgq~lrp1p>xhdb~v=2Z*`a>+e{Rr!i4u4?b!=P^MCjs@xSb9>D*w~%CBTrE91S?2dy=g*$b3zL8 zpJw^(he79@6U0Bu;@fXp>yQ(KKR2Sn;}cF0{sIec-*4>GO_2T)OCN^W?SoAa|H?>; zcg{3H{A(;eX?3HqQ)=g!pydtL(tZorXP6-UO_tuiXIjULAp9K`-hNo{&J{ty`>bG6 z+e3_cln81*Vm0kIfqje!(m!G8Ny`L{-N-*a1P!0FhW5Leb8-mc7pc;`W;o)lLqib1 zD2s1D_PfW0Ab$y#-+mXc&I&>J(k#4v*RjtDLHcqmz5O(fPX|HA3an!o=82C6LHJ56 zynWY^vmo(FB8XpQq{T-Ef*^i%7C(%}wGIP8`dTc#{S^;70|XW8vWj8&51sshj`dha z`Ut*TO%h0}bO?L;Ep=PUk?yF07*cO8BR8pkX{~ zXnzEAtDU+~W2K*1iYp#4EYcF9Da*&%%|mfpUb@?E0PF`ad^??iNkC{*mj zD%#HjoZCYoein;wzYXl0Lm~YDmfpU9`m4(av+&_ikB^^#`e7p~-MTIm(vM*2?Pu=p zMWK+NWBKie9{+++Xy{@M?KiEz_FiD&?KiCmch|;?EWQ0M;5CJ-oBC*nyW^$`w@1(kymS-Yk}4Q)_Um3 zYvp@ep?rvyAG~ms+d&Abk73mZjJ#?yD~z^OLGN*_cOlqY^m=Dcp!`Huz7Q(y-2V!_ zr~FU!I(NcC?`f>}u#sjpU>JCLL9NLjfL7X|2Jx_yJVsEY*xDv9GkC}h4S1Yhc4YQP6!c>z+OG9v@RDe<8^~l$fPjQRx|yq z*-HCYA4BQSSZPzkSF=hJum6Si+gW>aeX&V%n}ZqA2?}WZC2P!%q>=ke)pDgKF|3;J zHuI%SZ$7?}0u1hA21hJh28HNK3=p{Ie@(!8d=&)lWdcb@MbwDY;oS)hq4yi1{!@ra zXK5X=(avor(mf>dtRZ4rGffmpvf|GKIoN`I-*y~uH2uLacZP?i66U6rB}BW&j9MBR zl8!RF7IXHG!~9RU=1SZnXb%htyS)<)^)wl(sbJBBngkO)tD2~(%){EO;57DguAQ2y zfF;Xvtck%^@dIS5c%sE#Ad59Mnzf`b!FDgHwrgtY-J1GrvFJQL4tIRTXm`ibrshR0 zs`lcUbL0@GW!r+Wz8! zMt+}FXPOxuTJx=3xnHt}Qn_RfYdTf`i1jZ7i+2{fq8Hpz?N3&*4k7;-lA5V+LO=0UTHm@1_=b73@N%rSsnn}QTUR7`a@u$W*1HgbSNIC2qk1J)y%4J0Gt?I! zdK9Xh3arkW7ebAToqi*)#d;S)S1RT!u5Yc&Y7ZRwFkR#*y&fxG2=(nPce=yUhOBlW z)K~T}`Lo!KS@A+hx=Q)MTDGg^h3U;$_d@7RCi9VVVNU!Q#hMpFE6Y9*cPt*wYMWZN zX)RLAr7UufSeIM?mN&~dPQ}MEgM|=A2IZ?-d`Fo1!oDr*T?ht0DqqVw)!l*B;t6W3 zI=ELoO5lrEjlJii5&Or9ENdxcN;Bc8F2|bhPR^I)DfD9ETz414*jYxIIbwj*$mCad|=oCJzwU2A9#63B7hkz8zQd5l7L@UiAE6r%en;I%f zu+9Ohb(&fOEM|w~(nTj`9PFB>sWrerjAfsxkeg_r!^l8QEul4`Cc#8Us3vM^q;E!P zwlmu&7ux1C*@5m%pIq0nRdjO~TrOwSy9-$hPxlyCch~O*Vj2UIU zwB~+jJ)N~Rm6A54tt4|o`3{T1aV0o2X`EBaB#p09t^WHZ+GY2q?@pJOOPO-=m?67 zA}A&V1yKwj3JNMJVir^s#eg|yML+ec>KD4JtKXZR7xwsLxPARz{i>^~tGlYxn>eJ^ z>I@rYqF{RsL+}3<4r-NxwgL5Gi{jd9qtaYUZ0M~VH8W?^)|=$pIap>*62WMbd>2Qv zil%J@+No8sk1$E}JsdVOiFUeLU-4cJ7IoeliFe?{Tc^}6mTHsEc$;Pe?gWxb1aBuY zLQWmwi-Lt7OyofS16T_Z&ReaLp_Q;fjTrZT2=Q5Lf4@S|Lh zm7L(mOWpDmELv*9y%sd>^)b$bUHmb;3}B9z4pl$Fv8^Ur6WBndTAG}I&Xg$NlN{e_ znkEUpHeK@2+(A24I;{OHhn~#I>;QVI2y66E`pt&6wdnJlkGxtR@G)Jg(PYLKIeaZA zG5EPoIOY^GoW)ifF2~UVsV{S8+?<%10-XRC&2|NT>rGt4NE*f0I4e^*u>xD)yVX(+ zmYfv3J-CX4dZur3M)LAZtJ_UFjQAGE&dWIJrPWTcGhM-@AaHHNB)#E6M1zSU0CPtxdu2^*)Vzf7tV^+qNW5c%Ft8%ouk`LaWwHlJL2h{0a8jJWH-ej z$f%)+cn}%+{2#JQA|Ja%=3tnJQ0IRL$U+^vw2=kqRBs%H5;b^}i1Jx$0hP{doNCoh zEg)CJsrS|J$Z(Mudk%-Qnp#7?;Z{R=0pTg)fvUaH+QGbfn{YgZFHWuyK5nY>`J9P-WYC4%Iy>E>mb>3)j^VXD z{{C|eujTX);P6&)!>|@mZq|DB1{k4o5t`_f4&)421=GVb&?v(#E#f}54xG^JG_+Mk z3pgWIsjguesdQR3ZAIZ>a|X@Cf5aR?L%gh0PfV}9)z&Vg0_ zWM~ecr-P7y^gIhWb}r_I!C{T2jgFr~=pOBGmT+jRk;>2#Z`LUANgOzro_@+HO~VPv z6*?uojHBnG>?!VBmd_b9^DQelwAE;MSY=laA}#A|4x5XrMYvyv)GR?ihof5^&@ybL z>&>+9X1fLh#f`)27^1#OkP+;Z@+JAA4{wpXTePI19N714MwATpN;Jt2rn62&319N&6t`@E7vPvqf>dyOhYaYa}%(Q(Q> zTtH4Fa5ZNm7YR)BA=fo?2F-?CeGYB4(WB99*XdB=I-sOv;;c4$2r5c9dMZ+l%)MQY zypr6TRW^DcNJO^n283hTHmjXVgCWK0A()?T*NG9{$kmY%;3OP!-Qs{Zb3m&c>fjo} zUGQ))U)kZ9w{T3WiIc&Ykn6^m#QFy!*LUUzxgY}a*8CtnJ@Q)K&LOQP?b?uOX;MSH z14t>Y*=o|xBcn9uGX&kp_IwwzOWL#5q@4v!M2o%~0a=UA3>2p98qHpWK0l( zc4^wF!O}lCKZ0oMOI%y~+G&g0^jE2#7FyCE8tO*s<{L~mR$HJtPB$7LLLZMC^(RwELh;dr13IsL#WCo9is2U~O2;fuste}tfP zF~@;c679mgXs3&pK@oaSQ|;JsFKMZQlTRbH^mC>qyJjv)4+f0T)~}4(vI^EG5?mUEeGgwv)wK?9eQrdA2_tt)~4ZVU2f7J z8L+k#@t+(x2jiZCM%;w68tB0L-yAy!X&X+A`|q3p*BzKxr4ySQtYd!AD(5zweZgr& z>{#IqIdTqq7RapD8*}U&^o-b=ac{Op{+(i zkS2t+7xZ+Y?SYmuinkgC`E-;%=PZwMWdFJ&a!f|>R-+&*poo5T7ldS^cdIP49c&Yh z?Z7=t#Yv}I^pBY$7V6SuBM_qs7>j2` zQLcaP5|^`}d^1vJavq*KoZ?#~SH}zLw;**otUPLH#!KyXX~sbOot*fI!xM+q!R>Cb z(`&V0Ox%G$u2n0^#Z{sfw{oDUFf3A?qh(mi5-hS;Q>_Bw_RJ7qIxMkFNg&+K5sn#}^$|`vV?$0)By2S4l%qz2DRw5;GjZkkl*0+hnIh~Qxx3^ zk^keI^6+*8l))Md)W5^25APs->M&p2g}rK8llmS-VK2>|5a zU)bc2IMw0B4h!;Ob!r>75o&(-X-@sfp?MCdYmVmUoc8cN5`>K7HP{PVomLiH3c>t} zlTX09M_#!xTG0M2ryUhEMEe?jv{dw(EA?uB;7G%dIACQKtbnGD;LjNmu0fwl{J`Hh z;o&_Da17l?D-6?w)c?sT58vqlWxPhPMElc!bJD}NA~-z(R-*_P5avS!G@ki81$?b34@~U35q=?ln{Il5Tv0{WYY^6QiCD+tTbLOR_m=WZ!Or}1gW!d zC>a7A4OxdhBTl%zSs-kV2s9*$bk>sDg%|^^tahiCgwF(d+D{6AtvEo`9B-`DM}txr zQgq6A6_x>PTMm}2HnmcH+yt;gb^z^;31BA<5Vc$=5Qw^)RO$m03U$0*#e}jeM~NKb zg&LN7RwW9gX87P_^kRNc~1*zf>xC3OOZLkeUHfw1!dLTEwAa zypDqI#YmUcF>0I@MH@zl({hiXAbcqjrXDA1U>;8u4@zisTFp+_9}D_daQaEOmRk!2 z)vGwwBwR13L~#9TPCp6Paz~=z`n8;D60Q%4;`-Y3^eaxQJGB;W9mCb9)0))Z!0AV| z-zZzDw3{tBhm178Sx$D?M&py!Z2Qfb5!M88Q)YxU3wawSJgnV$r)m%Zzk^ea8em50 zt=8$*wXRE;^t(CfMZ>wzQSZzf*j-jBioJyD&Ut}x8^?%RhZ4m;4vpau6*yWbIDsny z>wO&S1yS`Ohu{SQf6c34TzfX1c!?Tv+Z}*HD4)Y7TcQ>`+7aj7ji|sX;{?lMD@mvw zq!5vR802Vqs#$Y7tHa<&AQkyUN~8f1fk(r%m9r}Z#yH1_O0rl=ts>VJ3IvBEM2+BV z5#ZE3qWLKfky0P}#$i#D)f^_Jtdt`N1ww-(q?8q&G)QE%hC`&3m4ApJh3Rsbl(s7l z2_#in%P~^wquK~p%?N#5$PtcD*U(}6C^&UejY~L4RA$Mtf%r#Ksk3FGI+t;zlTud) z&&4D6=?SP;a;R)71taNj&y_&Bnj=LWr!<`S*q~j&UBls08a6q5R$%lwMoKr((k=Ts z4iS}qu$0=GFuf+~a6JczN)K29bl{38y>q#NqomYEr&*JG%0x|W;k4? zLyeq>5+HYE58{+{z1+n?QtHL9Wu+9!b_aM7JPl=>mWY)7<{cP42w*7na^$`q&|U+kkwz2vAdZXk3a;ApG3MW;T385 z5wyjv)-%O2h6J#Vp$plEF#HfO4{c2czLqJc(GjvovutmaQ?a1T%|x*NQe*BnDywFLgG;eU zH5MTR&5%ZQjaKxVcv=@hSj-WkIxR~Cm_CLn8RaY!A*`hwCn_wm!EwaFS7a@WfH{T3 zq)~`^2C$%i8mFH|TyVc-9d1V8^*Dp$q)~j^QI~&-nw-TEqQ<~B3TZo?sZuM4Lt?>8H^{4>#SH!zfok)Hy_&Doj_M@aiK$zs2dN zQ3IY$!hCFpV?<4~ica$)Xm1nkkD6Jz0S)NPhxJ(@r*OJnQX{4&-+KmLRgVAaslItoNlNxHHIc z0)o_qs6VUmYy>qfJ3;pnq|0O%HPnitE#^uZ%{rXUPXurox4I~WN0G+o$|XgD=~r^H zQKREHvdy}G@&w`eYEC?AqGSMZI4@^HIiEzZehsHStVB9fy@?6AyiAbobFzhq;dZ!B zJgD{Q3!sUwYZFtATJjWrtXS)cU^6`-co7h!1{<{?DV8QTTfy!tkUBHls0D}d2yoK2 zvT;(7zZ}WaW}lq4TtO;mU&(1l+1Eh6*TO>ea9ky*zlu|jY8vs>;pP|YNQh2f!-+?E zig@Cj@7HnCyG9yt7^d`Z0Mk8ThM4Yt(Vr2cr9@5yBGg=?uCHUq2yhb>Y@Li0nTZ}^ z%iXAd+7|3l3UnaIo{D6tX+}8^&S`jpR}XGYCuC3OWTQIJNV1UUhTFMAdlc-R$>|Qw zu2|?v*+UFK|Gyx$tA5$HqYmRIb9xJLD22b>b zor2AMkTNr&s6m0li`BS75QU=Z@M}1J!ys$M^8!wFuP9@Z#~%bXaOlQhOPfIds~A+Iisa`iWAZ5>x;b|0 z#IT|wn}IvI6(4oO4)ZpchyVFE_zM2FLMUcwQPJjLxH7CJS9UK8jBWWCB`S=v0_gO@ zjsJrF4q4KNt#>;8ojCo-u2pK(tmjc>#37j9l@pI_H-m{g@`M0EeRobh1?zG^BZwC` z@#L&CtC`QKCuhCW4L8&a*7wPjxMq+0XGwfo?w}ByAHa!6b%6fX^1!t?`+_6=6piSk zI>5+X>4ey)SyUg@0Y=hO{FCpN1e*^VBm1b}B$~Q1h!S+az{C0kL>u9pjUf6cC%Q*O zH?p=}YQeIAa3$5jTZ2yagthQW9}+eD6?{8d#D5hhdX2KWG*OV+8<*8@5*A(4oxOav z9~FOv1WT1l5g7Ki1Hz_q@WOcfB+T|rH7nuxO91R^0@#PuHr)C*S^_4gVXGdT9UIur z%Kf0yUj?BlmF7K;k;G_mQLw2H_m?b;ApQ;12j^Vv|KY%3JA+MMZzaL9^3jT^H-qd7?3a{+y%n^Kp|Zu~VI_H>+V6 zD}?#0TmcQ*`z;6LC%GlAApo{&J?g{$z!CWpqG1tPi~lo6N$<_fE&XpCimz-Rwn7mt z{GS|)@BAAYE23rpn}em-6l>A{%>#wCx1dAn}A>;X-0hIABbd79ih+R9tGoI37i5u$NbJ#^b`GNP}#(dkx2~vA>o>#*H@< zKJ56Q!Eg>)*tQ^M!YI#AP=^*nb;G7}DK^?04I}a3)T;jCW*2yHgx*Hfz*m-py&p zMU{p&;PLI9Yv_v*E>P}`i=K&`9wjPsTYi9WYjdyM?a6s{0r)-+$k%9D=-#U#9G(P6 ztSaY^3yk-3jJUkR04atT(50Jd^g)isr(-N?q>PD(Eq|EPA98Hq*@Qx$8r?k{fajfU zD?mx#mksH1vkoi$X*0Z^ljh6M2XhUi>&=GJLlN13ih~R}N*A(+pNVRiq!u>%X{4<8 z;Biq}l$H8bjBDf%^ID`vGPi{*XjUIR`pgo6c()rn$hyaS$t z==v)hgHIFt(stUTk^1O$n-c(l<77B%gFt+pLnNw32r-3QqiHoB;}}VL?uz5IpwH0s z@NG_f$Y5CLSC1gRi)8i2ki-W8Vf4~O=-)RHPhypo>O^=8g0RXTa%u1d3xh4D!eXAE zm{^X>=0zD}r3W{*!*&!5Iq@827%q81H<8fKcs=5>c~M{!a1Tz*P~(>wqnJI=Z#YVl zZUIk}gdLl*UmybeJqJl7Fdc+;o`2#fiK>G4&_#Csf6WM_4U2#))y`_n<4jd14kPmV zM-Cuvrx~7BC|cvcI0)Z1G`KZRs5NO-%d6pF8B&@5aGWI3i@-rME2>9Piki&35ZobM znwSJ(3RZkWvPnDCTp&D~BP4ORc%U)36e6CDIO!zARiCt%BP0Nua)2ZqTsW*J#JAwY zlMIzY;=bQCq=vTUNJ(0^L;}->K_+z}+i?)SBXDq=kRWEK`&n53qJlq6Pg@X&Ia1Q6ZC$V?$#5fdDwZYb92`#*Y10^v@ zJnCNzjHwEa;?$FL0!>)OzqSpjRWjd2x|?G;QrudEC}yK;fc6mOOqPhe(owfz!m; zvZ>c|(n+`%q$4tVZ_FHm<@4UeA(AvVr52`a-di|IlFk@V%(=X`a{5UO73f1C(JsOD ze#B7U&dDd~$`tb0)Mz*GE{>5<5kVD-bSJX#uJ7R}2?d3ggtsdZLA{rgPm)CfK{a4p z1U{8zZSUj=NxC#ZXqRZm^8rpd$!ZojYp~87>4!M&L|nJQiI$1PKgua589nf|j348K zlXNcr2}L5MMh*TG83BlE?2x`b`Tt1{kYorg7M1$fa(ZLvW=-=C4{@X<85x0u=POnn zxI?cajGxNvvm7XiBN9N6NG*;-p3spuuL&3Nd5)2|G8mFa#(`htKuHGgqB33-2vei_ zdV?=>ki-&;3N^pRF_Og2N=5LT<070|S=Lj~-{eq34k#-#jZz)9lbKZiEu^kT3`35W zrVbO=$rW*EOgz;Ssaf}r5-R!-g!+@5`j8%09GYkFQ%`Zq{75lvb_efyGj@Dc&RjV(Q2w8<2lS>_u z`5-Fkaj3YoxNW6yshpQ*A!zG3THKJu7LClm2nk-qfwHKU03s=7f%XcH7MG;5uGUQ0 zF$IZWLCFIyOIiBAm%G2!{70`5u<7wg02~Al29Fa>8m(a;(?qgH?w!mM7bC@4Zmi8#z|ozDHXbny%aycyHo(S-8U{ z4Be-i;gpwvdJBij!sY=gj1L9QTRBb^Hjg;m=HJf2vZxe zai8ZHX?$j6-}Xh0lcv#|`m`@|h%~lk?qj~jLDF<+ery!cTE5A_(hP)y)Iq!2gC%w_ zf2eiV-{Np_lVXF~4eK|b$ecdyFQ4S})7UcbZ=DawssvUuNQMZsqdD5SnMgI51B1=HEjVMPNOsf-=$CTnmt_h)0SnM!%O|s> zMI1OTl(UyGhgzH$6m0C9pmwvAL!Fipj$`07 z&OkO=tuj%c!J*=k`Su0`6G3v(6k>ZAwgOQ9qaf_qG1!03xxS@BlhTy%>bk-2u`_6EPbdEmS z>t4*E(phw@x4o33r5jBHT9lW)f@7s?J(1q^Dvp#|T@haO)f_4=Cp)+aMS0WLa-coq z20P9)#Ph+pd;W7^0{UkVKq@OK;#Ezzr>i7M167VGh(Rncu%nW8>G+T zy;vU=&3PDoDd&y|l;88nI#!1k5U`fOt1Z#MpEyw5T7Wot>2>%kC!JIkX5Rn70pgbP zI5npZOWokq^Uw$@3n2k9(;-F}$D=|*v&0i3h+hoEsX4|qdn@|fFhw;kMI>gJahX3$ zv>+KV9)>ys?+V1DnTWVvVMwsDoc|GMS8=qsJmc_a;dw{`?$sPFLrGS`4dDXpwHz!% zNp|F>d4YBfJP3B`z@3T8&2qF1D+g!`2;7_VhNH5)iNnR+l`vc* z7_SP~ScJ1#NFCqCL087~^2tEO#d2XzPN?!79QWm!nb)_Cr?MF;{5}qzy=AS_YW#i>M?F)IrK~S$blt(#STzYsovlMW! zrIi`yS2${Rt#48s3>t1^5K8cN}hmA`~4=3Gf2eN3e3zL}7w>e^V z)>?(3Ds741%@?krja9$T;j(k0)eaa=xF%4T%?~+Vc3!Pk4v%RUU_aqt*>!+5r$b}W zpK-M8#%qXXXb!*Rm>G(*86L_k#Q7Tr*4wY2U0Z;A(hfd|G`-(5z>MK&zw{>#m!Y{d zCu!LBSB@4p)isfy_?IcRqMKAe(Qt;_3Xg=9C%6%e{#9dJ_)m|c%A&eChu!ZTV$6}QL} zvEfXT&2$2BYmS(mFMzgT=sC9IklBf~)$CNeRe7$IsN{1wVs?F1OP)p~z;@E9rO8TnZIAC@jr|p!haGjBIlZU9}^EqaAW&_8x!SPFQLK3Owo*Xi}5kR}y)AD|M zbGYofWVnTpCT{oTXxUk)o&tX%2g|Z*S_XV1SF|;4nz}rQqh%LWbRbnCugwt+;Si3O zoil^$fx2zDSemqh!#QGhrlLs)Y!oj`e1nxKv zmtA@WPK0cfP3f5vIBMLU3%kKS+|oj-b|MFfTO4HxqGy#)<|uJX+U-%O6`smrGLV=y z>3KQ_$)GNcNqM@Ka8GA)m<$x7cPJ}4N(Pl-bE)TYm<%eTyS(!_N(Pl-bEg;N1w)Ow z%wf{^7EyDh6C5mk=No_-=18j?Fa5|jz>An0t#Qn_^?7zqD8SU>`X%G%O93+FP=yRQ~;3#n`42a4OOX9>io zkFMl6>D?`#y?GUfNpAxBT;^+X0nt*auj3%;?F{m@G)Me;j*@{|*bM0#^MK(qqi^Cc z>BE@F8PT_JwDcO9sA~(^-pWzZTl8d^u6}wu2TAX4Oq06r;y~#`zv#)__i(uMDyr5? zG&A>JjuN-N-p+>_r;6|7Na>p^pCbN1J}~;!@P{}|`o707CHzs2lfDV*Q^6nOAn8qw zO#y#`qof~}Moj&Fl4E5cHf_rHAr6w>qWMJcXY+!g6TF}2Fc}zuKC$~nj*@=4y?H|S z%N!~Ldkf}{=~(1z94mc95;bZ3%{;;M$>MKuuuP;Vro**h@(GTWofP%B?nw@oe%xT1 z6n-ifAj4$vk2z5KzT7wo{8NsU-YB4pE#h&i+MN0?I9B>v87G>5&5_dkCi4XI?>JQY zN*O1X|HzTj_k{X{@?SVe`nF`6Nd7wqO5aJbb$HKkl=S8uF-`q{94o!inWv}!$Dz`X zSNOE_vwCc)PkJ4(>FDQhl=OD3&l+sPL9(cdHmA6GE-3o6^Hv-seZ*pzZr+yTq)%i7 zI~>{U(GDCf{gA;&V;QHNas*?^lU+GjdMD)9OwXb0&apC+B1<_GI9U3HIex{$NPrH{ z=jR9+F>Kj~LuMvY)?w|>!O{;Wj7vKX;7IA+u0FqcAO}hBcG*&n1so-PcgUA;9F`A^ zzI5XV4wK&PMlRVnlB4Y#x4~sy%YhrDU~j+N@v!@cVQ2pV7m=O)hgi}Wg%wBDX>qwh zxXMG&JCM?gJEsl2d&rYYPdheXVTg2s@;Pa!zWwbJBrTxp3hfW9E3yO#ar|scP1`gmaO

&!PU4x;Vv_5!2y%=~|#(8mb zHh1d4-7JVVv`jp9orQ-430(gh%wl z$>?f|!{;}oi0ZFab0+e0LmgcMjX6cvd&xB%J-;Rp(K~iI5BZH3WG+E-25UJN`SpvE z3zJW{kh7AzK)7qTWIb@fJ;Y_4iyS>f7sAeRk+soRawb~2^_0GCghM76Vl%gWHD@Tl zW*ae(yoU3TUuYakgLEH#&O&|xSjd7&A=hzEtn(eprI)03*8@%EcuwnlheA)wJ1h!s zJ&nwF+<+A!2Y6a5by(bpe8-K*0n2wBWZT|?OGk((Z>FM*U8S#%^8;eK9PwBfxO_8G zinlN+T8}7(fQ%5}JB`zR*Y`qGn@zOAxr{s#CVI(aZV=k@D{!_qMXJfoQ<_P zvSIBzzQp;O%AYTT3;8N%#5&iXz+&P($u~GNx%6_r(U=^{4HkdgiAi7oQ4#e#H67 zvqeug+v9LSg`q`1%^8Wiwkq*BEz)#<&KWo-4@*G?XqfOTj+{&P$Bk2OEx+ZQ8w~s$_MsgV~M>mYWaSjf)waf5g6*BVuCs0&!DzOKksH5JHnii5BA6%*# znF{zf)`28ctYfgDKqHa?|3!F~O&PV8BDvy4xXleNCL)YIVS$J+`j(VP;cW<5RCv~Y zDdw&e6)r+-8zV3in{`T0*-A;wZ!;=8>&htfGy^=ryZK}#M8Imb2Jy(7+M$ z+{P$R>!ITCY?NxXa;+)vnh~bEJ#s;lQr45L30Qy)Lqrcd&M~~!vFyU(bF_o;YNOPy z!qvq@1kd9<&*)7g-+w})|r>#n;`5a(qrs1I0HG3$r{eOZfT;cdEv7-4>>jh z91y`7aKsI~jB}8q5yD1L+7-W?!&@hzhPQ%FtJLmPCuWLW2UEC25a-V=C*E==W2jW( zoa8t_@N?QFy@#%>A1<`OX_9kcJ!P4|K0K|M<0qH1lD}G57**$7k7_H{(52I*H!C>3oQzJHRr;5*+X*0uwd-9oQ?clsxcI3M{B49!8@yE!ZQ zHy2YZcN=FUe>-I%-TOEf){Aixd-b@;?){vh{JqFJ*mM})@FnssALMN0ubm5>E=|3E zm~)Y1(u+&s9*&=5zJXQ$J`R7NZO}65z*22(N$veWPg&FudjXI-Bk$AFW|WtB2$8eN zpF-}*f(Glg!`6Tiv&f%DXf`Wvov|AN-uL-!r_w8jx8jNx^e|VR_0Al71`NPo;K0_4 zVS<4kJy7LQps3i5^eTF7Em63KbJf}3SG!SXiwwN8)=NEi4xu#{x$_)CYc6s(4sE?Z+t$QT;Jt=nVDNkno_R}d z>y2tp4w`wRLQvYM_U5S8=?+^t#|#7aQ0-#|PWF8_OGWQ&4GB|whIncb}OE?FacRzl-s1GoXnnP%9_;@Ubw$A4bX?x~T z1EMe}}V&OHa3_gl$1$UIl%n`7jV@LbMAUao+R4A0}( zc{N8qK)is1=hgMJ8+2@1=FoY`ywlbCo(Ybfc?iHjs~q%j>qH!!(^P5~OSMU7yiKQ6 zYd}_+%dsEd6Owv*T@)_#;3Bi^O{@`_)UjT9P)md!k#uh(A8dBVKJlH5mr})TLLWmi zQ$4O@>&1QvMKWIMmZ#v1vm$cNa0G(g7v{L3AKSokrm_dI7!a#xV(g7nF6uE$#u;(99mbbH}M=FqN&$$maLaCC1eTip6pgjHQ2db z?Dop5wY@^G=M3fTOjfs>bja{V&I8N<=BlT9X|+@AOjmFxby2@xQjFo>#F?^Qznf4~ z-obuFN88r<7S2iDz7`f}Iz`>ly_NHk_qagZXUZ6PJ7=Vxx4rag-6}L_gIL}*_uRmS zGi=hP_WYi?=f;o1Oyj2aa&9^~Ys%*)diZoF=gB^MoovY9^Tb9`AKZ9w86Mbm)G0w^K+*okz2ywi_+i&)IbU<+gxKio^PH87=0VSeK%@^5zsdQ@dn8ZzF$(Eh>y4?HaoQ7{sW~zvjCv+&ReEg4lboHrLuFra z-k}MQN`N!#NvQl3XK9Ycj^ZL!SWHyG2$AsgW6skYb#z@g4_KW0UhFna2TlBxbC!38 zGEg8-D*S>olXt{wwCZ1TKCG{dOxXKJn)B~CFL^5{+K&IonaR7k4>I7taF(n$vL)3O zx7@#TF6{S4H1Ylo;xC>7a>^u*{oV*cN}s$D4Sw(IxS(4k?B~peWMMU2N>ZIBntl$4x84bbb%Bdpii?7q zTUJ)PQ>TcBsw#GU=!ika0%U>> zGS(y!s-+CV?slRI-HUOa`!KF%>tS>v(f9*^R<8?dhMI6mTxngE4ug*1ELnFqX;|vQ zgetL`BRM11364~Zw5#ZjwBdyovHQd-E_vL2)) zVXM@EK_sl&aA;oRc+Q4(aGH#bPP1GE7YF-%;TCV|=az70@|8)q=9D_!qPB(Wr1ivx zwvu<*dSXLc&byqmk*kG_x0|I(8P(F6Dz&t*dIe`DS0`6))_U~@hF|5?#L1n_8L^(9 zNYZY=jg(8>;zYYyhfA%&u{5;9OwQp9SqI`t7^-wyHSO%*Rddb)Q%iAgPHDQ@fzbvrhA!tKS7VssK5Ffpv%q}Rg`5TJ5IKo4R1YFbxP-&! zY6@cVstk)z2^W`fF04=TO(KMPbJ}4c()~VYhOteb0RbI{Ua~;hDv(gi~d$@)( zl52n+FcQp}HH*^@J;=Y$IkH|RlT0<s!|^H(Hc^JLkrF%}XLH_OGUh3%2jzJXxT(BVm|H%5{gbi}0XAzuE{`r?Fnl&^A5a*bPk1!>XqH#iq_ zVJ7Av`f<*T^(w~{ZO0f(e~0su>)eg69zCS~9%o}N#w)FsR!6U;*8}Q)oP3x;_Rn6M{_Bv=y3bzoUvTfG`^^KsQW9j(l?!7z`Pgy>?Y$!_Fn#og|IwOv~AIG-dQDBD+tLyPaae5Jv z_lxp}UJwC2nm@FsXI|@rIkfdmwVlBIVReL+A39g~5yt*vj&I!s4ORbWn;+vWSPzhf zVjkDfCQqFTU9=Zu4>hOmfpV7*PV4NLW!)O#-ma!S`|y-m|2rFBOwo<5Fau zbdJ{BG%evGy2n!xn01etgTv;`MzdF|Rf)eojVtU-+X0Aewa4{aDbL`bnOC<`ZCA@v zHHRMacNRysz81o^x|5}PogNwcGLC9J@Ulhqw|x=izMSJ)N6@yoLC0jYuJbtq)`Os- z8PKjiEphC;DsQ&63TMFjpy?qi&rNQUgIlj+91`4Qc`k=P*w(Fd;N<1bK}FY;J4ylqg|SIYQ<`!;;bXC zWST3~da?R&tVHuL!+Cg-y;0GQ;9{Vqn3Hv?pyPCzA$227=u+gEn2`0oX#;^G%;pM& zWM*@qwVawTGo@Ysb`_P?=|j@e<>etn%IwulX4YLs$0I!$FhX{(HOkI<;j=w_wK46q zyTz8%uJ>@Im$sq!TI7Q!Ev&~!_Ds~Ab@(!A=5OH0)+uj$WZ&BikisnI#kvC@nirEW z-pm;|#M<^zt(|VQtewDp6VO!rj=fqXJ>9%zNo1RP8`gyQA$#X7$=d-(w5@j_3(PNB z&-)3J@#JaChHqu%9t_86XZCKc*g0ZEJ4)@g^}7wISc0{Xz-Q>T5i&liayNI?fu=*t<=yg?wNB2G%LK1GmxX7 zngajagv;(}%ISX2LylUg^2qH|bIL&7fde$?p3qNo2COrw!}|hsMvlh8!<>U0?LctA zr0@mKLymS}aLJEy2J%%ytKFpg-@d{*$gxvc(L^$MNgZP6bw7`vy( z)(0oXUh3PN6Z;Tl=zhYNiQZX#mos6Xnn=oo*<*j7vtqqOJ+X}#9QO~`2OkFi{S(ed zj-y-OK1^=>XPlAzZN%)&f5};y6PYld`Wwzj{tnIPT7S$fuG2gFn~IW{H958-XY_ zmE)4qeiI@vi#RDciZAjKoNot*328!l3!>5N;3?^$+U?Se0qm_DEN=ajuT-;E z!h`!taI7w*KRdlv3lfkWm~Lp*O7g%YA=9^W;5e6J2V92ZXM*F}anVQMzy#vEazli@ z3*Ba$tkV*R@5uwvsWzIePO%O1TQHF~8IGp~;(Iybsi|!zM6C2QCEl4UT+5M{PKw%n zfWs|GUpqL-u^X<~6gVH^IB`o;>}+$Q*=twf0Btxr3~n?a$&I-ChAm)HulPja-l89zI;DLAtcMw`?$9^y!6 zq&7j{KNc%axlKj^qH>?j6B07D2FTBI$n*^$sAaEJfjd5kVSbV0rPp7zQ$!aTj$(x{ zzs!-++a(}@4H(eA#?h9iw-z)@ae^nW-Zwd5`s%?!p|F>}4VTww{`gxQ?c~(e3(z!& z@&w09-?PCuY`g{+ZdRw2v(ki}JjvlQsG0}YYOW>L{}jiHn>V!cUi#px=rud)&3??0 zPfV>q*zH<_E|paAryMAK0|y}J4O+B;|AHf>@8bXo%(7OZ-RZA6RQkpSmnp-s#o$q( z>mefi9Y;$Z=a?gpKXQoU6Ptr@PKJo%FB~MfPqc|N{>}lD+g@yh@l57OQIW;}Wr-Ay z?@bZK|2Wd(#5NHku}I=sSFoTr0~i)TJcq*^o4htWa@d5^Pd<{5i5NELILYf_h!nQs z^piUqbA+%hhd3dzDk39;9XQIu#3;syU?+}{yu%5`$mU33*F2!i5y0*oD!CyCwK9zS z3mhl8evBjj`5Ym+okfoH_u(kXM^d8qj~LtiU3Z1sr8jVkreET10Xf$4K5~MMok>aF`TTF-IUra*X5yKR>z6Z0i^f zlDvroASM%A$bpjkE+5Fdyn{wh$8(&QCO0y1I|v0>!U2-!$gKjxlQ?4XDwzVoWgH;6 zgE0nx%Q-^wp^G{2Tfrfc`>@D>?`)2;cbs{(OO>kAkg4q5Kk)2%?k_JSGj2!O5YT6L zjD&v!gz2nXtn&+KMA7CmZ-V{bBMO^&i_N$WMhcrW92f-a1BKLrP+Oq>2~p_`T)N7Y zDkZo#r0dALpHVk|{>N`uu|f#ccu&WTM}Uxg=yDcmp!loif;*pIjnB z{1*pJSG!uNK5hc~Pxe6VjtOYqMa(Q>^F5)s=mn!vj5y_9hXGRCg!XKX78_R#M1$3^ z5%#_jhbqK4ifX+iryXy*3M~2Xb;QdYI_P7~3oK;>UjhWFcR3~rP3~0$yGJ2)=2iBL zL8z5xoOakb?{Watd8;<5^Wg)()+&7pC%G++Xht(c0F5xdCZ{TaX)&W`T!sptN@GT}&U0M}&fo;3#qZsf~haoo-$0x&_pc z94c;KunknbSL;@ba9nkzC=NDP_mm3EV>o8qsxcePwu5Q<;#$}(E@vzS*g_5#w>;AZ z4CmLJO0m*}ZL_dZp;v~RR`CRPR?*`*c3c814%^UkE#cJTatDK{NBH)WI8K^cXiaw+ zr=F%3kv-IMj+3SqnqOGKsi&z$WRG-qb~v#;(K#F^Zd4m*Tc#dp6(^r`_~?_@dY)qD z0Gip3XAYoQl*0j%+N+_5nc~#rGEZ^(jp|uebBMTQDRB@3dz1#pic1Q|VMX^OYdA>K zuF|>(>2l2dHYVb_z+cso4!>6Yh040v6O#DKA*7D7dj+CN>J@L$sQEIda?)yUCGZF{q~7k8|jJDh;W$@V*35=?6G++@W&G zE6uWa0{%e`pK(Kiq>U!*&v49)-Be3&NuT48aSI?5NO=u)7LRbixa0K_0CsB4NxiH4 z5=YHgo1JEDI?MwL3;HU@%-Ah->RZ#jS!LqH4P1|1(F5O|;wB3Ih$IufK7qjPzxUY5vLKGO8JiW&X{fGOC#|hWRgt zi%sa;>&)M+1be_Ch6z&pM2Q=$VUd4Et$@c(8*;3ST7f>w+n6K8&d1nG)DS0a#=$Zg z_lTP>4e`;I95JJDvyaH*qHQ>2wv}Y@(DocLqlAKANpl>uBZtkXLGbuz7mk&YOJi}* z^Eg!O47q)a(BhpvI8fX=ts%NPQ=GFGN6ScCd=&fwjy0amXvxo!4))gjaTYT2pn7Qa zB94@m8Vw=UC`ZdE({2u>4(50nd9$bx>QIiDk)iU?>BSr?qu$RDGL7X2#zUo}Iao$| ziwcom$`PGx8vQV#(IU=8?1D*{YjMJ)#foRcWZB9lnJhazt`6dBeTIdTJQqmP*|FFe z?`W!gI!v&99@1yiVX=vaI1Jy(!ugY>_DoU4XmA`%7gm#nb72DZ0)(Y=VX>{p0y7${ z%)!!DumksT<6=AvLX8!i;Fz(lD5in~g<0iTvD4TwSkV=#agd}H8YsLb$J#fhEvYw8 z2XWU_0ovmdXwk}nesN0`R2o{VTvlpSTRk`#M7iWZkUt3>206hm&W0@!csmtX%MgpT z)42ZI8ZVeUhLgpJ^pVagG=l zyAP|-w$qs^wZe%R0qJnaES1@A*20Nnfj7nR;^x?fts=QrT>!4;fLY44v!>@b7gCuv zIAo@ERIgwbbzH*%<301tG-38=@ z95PF>!uGNz^XZpx%($hswyMO_aY&za8OMps7Fgr(-tm$MLc-5JRtbJx7YmblNJ+)Z5*_p|VgG>*a3bIB^+O z+bZ$i?Pd;?h3rhd+ASO^lR7cC`%VrN7qVFk&(w?E%CWLA2-bVu&T+EPld0FbgF|H@ zK4Win7sra*pDeEX4!WV{MiAxx`!W*h#_dmzyepg#{4Wrs!EM}5j!2q3oE7YDfM>3; za5nCMuV@6ZET61z6c8KoW8LD?c`!Am+}%BI6{HW2?Gc&ArSrV6wZy?0oaAvpl1eo$ zofkuu%T=&^0@7!4jcXyX7=CI%Y@}#3>s7e|TA-bXXf%r#xAD{l3g4;9d({NY$s8sw z(P9hJtP7*j>U1gxi<^@f0<71lPADg~i>jT@(b7t=Gu4}zke3h%m@_#{Trw=KQcpa~gN3PDnuWek+3OsR`k`@yH*NGmW$NfwZ|B6zqQlQJ5Qy>%A?Id}ml{ zPb#-@3b=duIY!xG$@A+3*2g(koPQdsUTfhv{V)R~&>rAuajw@MtiEW(|*Uj5v>FRSzz$FL9JO=Q|k1r2VgQkhnf-FbJ>5 zH#o%eW9F6M0`tH=cfT9PgPXx2LW)y7DE?FC4k@uM@kAox2*-w{$DN;Ga~q`0oL{_o z8?J;8H#0&X2Dw?-6c{F;1$NPa&~ zey=#m!@W+`Mz|RJnGL}KbYNauaR70bd&OSg9(WZ&bQ&kSi6e-0dmdZ5a|xc7#>>TO zy%n}pfiQyz%pt_(oMO2TTNCto_#&yz#eC{Mc6bsnzNp#gmS8<(du6pdwIX=x54k*F zk62DPaVu(eDMyR#{sOx3Xz&)P(-j;gE^3b#o=Ip|ae!FMkF7?X>EzX%d~zv8>f*H= zCGO;jcqy?uT+6Aar~_W#3fp5C${RS!K5;%mUIQB#Oz&UdCk~{^xL9M6B=j~dO9=4= zEHM{5NS0Kh>GOevsK#N4#Qa9w46JCc9guCQ7Ki3HYq-E&yp>qIQFaVAJwi8X?Ce94xjs zvy!998c*Utv4c-rAYFRP^1y+sNOYX#949uAv#O7h4H4Q|!9ikOwH=5fFAEYVXLFPc zs-iX6b2v!)s<4K-ild~jN~aqRm4v*CxqxWibUY6bz4bdBByJ$@UlSbkp~qYe9rR1- zX})m-`Pf^A3DHIDMBli9d@NnwAq%z_8&CC(vy}lTem|vz_5x=q;?Pbw1CU0z1YCfe z!a?HF%<(nRYj9eo#5K;(;Kb+0j1t$jOD)(c7KV}!J_{`H6c}kLq2vOK??;PBsW{PV zl+~rkg4}W(xNZ^_UDKVte6}B#zX+HbEmbN-058HaATI!eeXL*>4LBAPc9BmtD`EaZ z0Ie_q?aR2IDB*pxc=;6AkLm461useA@>Tnq^o;phEF~RG> zqcz)l;M_c+Uggx2O9{?3@N9@c)Hnq9QMMHTh+bo&S*ytWf>1@1gYcBs5FoG}iBzJ^ z==a){^rZzwAh++0_>xinSCP^-SN(O^V~n4y5YR3d#COd zZQcC|zFqs&hV%Aw&$%8-ww8WSRQyDp|VjIw<`iZqtX-cahSc z%hIK9hSHS;w|;eqTfGxXXHHXb?~|pUyAn!|A(X!)OTTqDlzxePyWOio%A0=>N{&KbSZduy-J(S)@zP(?T9``tu{)l|L<251fvM)jD zy`*#(S-SMAQ2GEVJzkc+{~;)?kkZ%6(&N4hrTY@D?vSOs+ykXsk#FyjrC0m{N?%RB zeL$9e`X^9YCZ)fSrT=;gN*9sRtzHw>_m6*s(uYZDPnItJ9hBZhN-vY8Py8B6uP3Fi zm8G|R0ZMNrHM&KX9*?DOBc)ruF68Q|!#9}czW*#$zX!|G|7;7TYgVYGhsx58j)T(j z*=p&Xvh<=Op!5+!`RB6qv!_An2`klaeijg!1xhL!KMUp>!Gfc2bs>mO|;1 zPfUqrE>`Wr&|U$V4&CX~LK z@Z7sDtkFKFLh1gb^hQ~F!vRpb1(D>7ULSsY@u5(9H7Pw+mhOu6{SM*kELr-q?V$8h zQs4Vz=~25w>0ad9OWzRUK5`0_Zcli=NtV8UCn)_Ap}giT;kOrT`mA~G+LEe;o-BRQ z-{9MWE>KJRvh?eJfzn+`>2H=%rw zEdAg%@a=EOxA)1?ML&ga_a)!nFH2|s0Hxm}rJs_eZ`%zh-$Z!+v@AXT`|#}th$J7D zr6c(58_Bm{kfjek2TG43JU=Q++dD$(N#xtF$kKgxhtdy`(yz2)0_ebb~`dYLROm7(-~6Kd%z zW$CizP}+CY(yL|Z>Io=)oP2wYEPXSUK0!+Rvh=QVpma}CdYvpistTq5C8gKP(x=ad z(i$nfL6+WmIh1yZG;WloZ<~VBzmjinmZe9uq4Y8$tM|*&AFYPc7m(5q%F@eU2Bq5& z%DcWZ)WSozLFsE2Am8E}rACx{wDBmtix49BZ zZzPoOkfrZ^1C*XYDBmSZPkalMK0-?GmZgi|1*NAD+y`$B>sx#y#L0yjmFGXm(sQqc z(nlc@mt){v-xGd&`s<%kD6Ai_N@0(=1(N0TWY1JlhU2F(sN1aE49))N$Ib((q~BN zw(p}{?X*_q`EITBI#T+WR(c01{j*m38B)5z9TfMgq;w0d^gE<N+>N5p1&(g58W7WHzBxN+!fZy*%!Y36ybRfS$go+ zP`W44!V6{T%Kf19tK{2DWa$%cg3^~0p8FpRahL1`|NIuw(e1MI2mgU@tHkM@ba(je zL&(*O2v=W`rSqQyFaC^t`%76`SqR_GbW|NJ`bbE5_YXtq0T-#Ii?z}NN$D50((6g- z<67y>r1Z3pQrv%%(sQ-a4K7x>aDCPS}X;~|Ml$18K(#J^Yj8^)6QhLO_ z6t{MX%JW~e(q~BN;UA;l9`FkF+co#m(p@f9OW&`RE+(Zv)Jp55^v_!9#iaBG@e-^OE>>y_^sH~gxkDi>8`R=Z1cbkOR{vC zEEQ|HaZSH0y-b#h^^dr?RhHf@sRLm{ndKX!`=chuR!^t*TdXy{;CqiWD z5?Lw|usBH&miFAsU=Vcjyk7s=?M`t<@xuO=RZ)M|3-QKTjlvrl;=+?&+k#5->W?Tq4NAk%JYYn=buxa z|6Y0i2l4M-f1_Gy+=0`_(QGz>(*fZwIA`6gyV*l%dHpRrt*L5b-Ds_ex3|sqw=JFt z+kQIUX+X={&2^ZO-~aMi_nOV;&FgRMpDsAtf6h`t=2f%fubS;|0#h&^Suo6*k?^mn zd)+MoCivXl8vf{S;br>^DuIo>Rd=)QE`lq=SDUX8+ieQV@#0z!l|Z@A_v*9#@)?-a zYZNq){^omfYpc}0D5_rK&5uO zG$Uo{!<~(A_ycgoEaAfGUIuv%LgEiVE=z9|V<^E@p3;RyxO<_M3$qAKA%*q9)Lo_4 zf)huC^>v#g-e0rsg=e7k$p`pv|J9V%7t%pU4+yMpL2BzGbcOYWPdpU&d(hp9pH#XD zsg8A;Dg`aa?k%MoOLvkTR&? zXio(vrzh!2Kjhlo8XE=v0LN*J)#q4{_gcIVhY*ds9fIHwfTVC@fmj5HZ08Ela}fxC zQ2vRVI1(IFs2+v3; z9V4>u(RL3*LE{f_oX%_{`Os_vkRuQTe*h$%*+>v#HUZF)2!uZ<|1@UPL$e8}o*bBs z(Cf-nZMO$Yb}H4f(+SOI#D6gB-g_pP(H00CKJ)$zzCp7(DLZ%%5zOo5o_VDhEg;hY zm!f8YnFS9$Ecfr&J>U=2#L2EE+>wOb_`uH~F#Z7Wid2>n)JRy!s^Bjl=3F!tp~A2L z0GB4ODQ-dbY(@MF*5)h+BYBSZNAQ1uSd;;TM;z>7%Cm=M8PF7(QCN2$LPg*YFnxSt zMF@&xD&0wxye}8jaZ280xFA6Mc;T7zLHL^~Py9c^Vd9Bd!Opsf1-j^Xx=7)51iP|6 z*fQlK56A7HzgF-~;aN+a5m4cXcrfd_CG0cEGyGG2 zgMG#+Su)^Zf@NOeS*F=s!U_yoJG4&1zNn#lJ!%erpf+clG?xHxtOQXX;6Z?a!u9Iq zUXBW65;RA)_Mi<&QcS}dS5=GNvp|stp9G5B8Wc$$`7n)EG@uNA^(N)!04Y z57caR)-_XxF%j?$gvTF%Z{`9oO*n#uHOK<~01M}(FlL?nSomO7U_HXn+}qH?rL_fx z0H12O6T%g{O)=aFAB=S2ET$V*;BbdLQ~rc+QV(}R+CBpwCfN18o?WLJ?&!pYX{irA zH20V2n(zn2nW{HdX@_ySm!DCKeAwS0EdBuOWHxr}YZ2S7$%X@+y1z$g`~m2*GO^!o zQ?=a?=pM9NX+gfpr0PD)rA86mvk)-+F@k^0x;vi&wz^69xA>=c4{g*OC|bHl70|;0 z`}~||pXU5p0>Z*J10)Z{y%x2EKTv~IJ#;`bCK88y31Sv(A%0rfGO}Lw@TZChvs&Mg2Fsz^NKOYg#gV?Zr8t8F*Q&IR-C4_o4 z=f7;FVP+1NqW~kI-yeGVO*PVr5`gF_IKGGN-iP|eAE;s_MK@tUAM>BB@~4lbv7B{^DflHLeo0^q8{iz}bIpa}b4m^kB2~W-$>gky z?0`x9+B1n%qu)pr(fEy}9=^LVj(+h6DmsU<{9=XV{WH4F8r)q{?nECT3lP1*QMZQ+lednNcUo_A_&c=RSaK zAAdlqD>G2Cpe>cFLj4tW8i-YjF_p&;Dk}PBLo*l81HEp7Y2EDuy{bjwQ?DbE%%$@9 z5zNiH$Ove9-lv7wGx2n~0MO$b@I7qzT5Q_*16ohx@eK%4_kyLcS!12u|Dg#48qj5( zDkcj!fdj-1W&lqEBe)T#`nL67hbiHpAbbXMj6MnU@Tp=LBU2C-0t=x2%{}#JV*eq} z;b5F$d${hy*x>O8DtAE!4L(Gciiby`+Oe+gW>C`z`KHQf1$FF&Oo-|S%EiZl+IPlf zVcQu>!iPmk1r>irno!-$7(_$B1!#UpPxIC6A&8$>DkPBIZ=>$<2kJMTf$k-MR6afn zwU706pNrZLM6XFXRivbJ;9i#a@MWOn=XiZi@PDZ438~~9L=iBN59C36dwSYSHDM%K z7mix8@4gjvgg?M|y5VKOxUdN?J>_@DSP}Q_2!uZXlq$PO>mri?D%iUa41WM@aT?3R zN{y+M3us-w&NC5NalG2~W&;Gw2>uDnaxp;IOnKt}A>KxRVO~OH85;_^A+U!AmUfV5 zY3a2SlJ@)q3ejU+)XUu*hXeQn^*BAPb_8KhMXOYh15r_)1ii-qma6$rRN?F%;qb-3 zX5Ce%WApd^2>uTsshWQX;*kfX9GOA$52*@$DD1mm#)g7Fz<8?WPa(YKuL6Ayf$#@_ zQW+QplFeTQ`zC_n4}hg<{(|P1N_k8)fA0wp@1$|{!A^%_r`KwUQ>VS5q~{HS(vh&# z8(V;LxTgq)w@dU3vW$^N*O5;A{<(0BGPVqlH89$fJfmHkpLnnz3najJ@%V5rML&Z- zQ0Z0*KNE>F7L=@#Eck;FUrp{(G?-9V@-<)8sE=%<1b55Dnvqf-8q%L}0JB?Ai4nsq zvJ{Rk(*cnARH=~w*+APfCu9)J=`7EjF3QB5cs+zuCkDmenRSsD_crt__ybk%W?@ns zNiiy=P@0wC<4iQGP;&9%jch#`F6aRu-{i)d9d4B}|2ar_VT?pcl2UTC-sXEnY zH>4`MJB5As4pblh0OP5;I||`-cPh|b2!uZXl*->yAlcoiV0R-J{s35-?oQAgQz;kG z%zT{#@l?43uqUTo3_?{g1oavoJ|77}W$}F0eezr|w(Z3yT9N;h5<+WFl{<@I&SM13 zvgw&+s@z!whG(Q)I3BjU2s<(SfhwlSof*)_#53?L-tOCz za4U;8Vdg&xk|#5${4MFj@NdaPs)RUWV%9}iQ1ykLs#7Jz8FgRDO2s`q_gGXf{(ySZ zB*Y0KC{`ea8pW!)GpNx(tWu2WblEA6H=8w&n%A5=BlslH<=bB-bV(ip6Y6K!c+=@p zrREJB5EgWKRTjF`se8IqpU%37=kANT#2=_oszf6ZPdGa9dl>`p3lSK9060~a&kU^e zItK6&1jio$e_4tl5y2j-!n$s>qtJwfgs=2Wm~a8Gsa9qJE}yrpcJwLRoh|@F-iAHL zNA!C%=Ts{*b%LHnBR*L4tY^__&C5_@2&i=ASr<{=SE7dT2WpmTa#*Jynl`a8!kf>+ z)yM+=01M}*GcrP6*qQ$%G&ND_H=?N-m78kyAc%m?oprp0J%P(S;ViJUt-#XAlp#D& zzeFoLHBCH3$$2)0$Y5jd^lU6`t77%^EKGSk>ms829~{5p57a5$5R-@~w64%`a_D(z zSNH?a=>~UZXkyqL{@DnRKLCGjI1%X1ISS00`r5YakG5WMWwJgEtt0Uni*_ple3@S$Jx&`#s&J_0d}GJhg@oXI(^dpF)k|57Z`Y8wzQ2uN4;gus=pv`~lds zHXPCpVTs2Ii+$*yA~gO0beb)Es``Za0#InVLbjhk%Vjo`E-0hB*8;oswwMK8>P+-f zTZ8G6$M_`MEqoe1&xR2kZ1_>nhSQpqx|uFiuZ9bGH}p+cqh9d`^qOW1pGIA%R@=fS z@VFe;Y_1nR{nfpRZj3Ce}wb3}P4f>HSydZx6&sHEnp6=6ZG-}2O&)`ltd zAQ+WTXI;c|cfp|r{y>G&MhlX7Xh-3gN|yP+&qHAR0pPU3s3aZ&6aOU3eegXH9De{j zWiTpf3p2()Ll-3^{5TphrZVK4Xg#S+7!DMyH@lA5Q|`?J`cFo15*;R$o;(jtm_7{u z_C8B(!i)(I7EJi38JIAmE=-s__3+$DR3`p_RMX_f2<RzPQdV|)$`YS_+_3}N178bQo=GwB)uH;yHiwgSmH4+i6XP9_MpTt>oEn||AVLf zRFmE@INT1D`U%0fC!`4BlerSwP6xLUge$4M zzlD*^x_e;D-&}nZ{3Sj>3rIELr-6Hbp!I)wT2JNHG}=Pb$}DmyEs)CVpjF#Z5=nr%-CUcqiGD$pnMtE{r;1o(nVxl#HL&$fKO@wUYDGpY zlCb>9H#|Pv*PvzK4^(oX$#>H!?B>TV;R+u#O!(>qr%I8xfdQC{=fF#Mlgfz#7uzjTo|K z1uEwDsC<+;mv5>ekxEfXSPFj$WufXtS>QH~#wo;|qKZXH$fiOx^^horSva!7n_%3- zGl|UnsltEQiA3<>@!-x!XMsOp9%+U|5h$9G2>!w_2!-H2A8iHI6QzVyd3BX;n2log zqQv;y;BLC-!e^l|$wKiwWHTg(mXc~UP$ZMHF0uoz-i=lgmU{T^N704g z4^*_8QHK&@Xchv`L;JwWyZfVkphC=oucw*BQmM))oS6p}h28`MtQ}SRP)bEX$fu-; z7IJnzj6yR8j=)3?^Gsw-J}|6{Q7R`maF?JX!5^sW>Wqv;f@oHP1)-Us0Ng{-Oi(Wo z;!oAFw)+VB4g7&BrdfMtKp4Yks{&EVbBVCd?y+bKLIc4I%F#rr2IsJ%RwC{K0K%1Py7D2pfY_iV)n>&_eJhrHe73Gs{qM&k`=i@D;Yw#RoR0 zo%VFq0bk=dtzrev{lqg+;WXHWcSH~T0mli$r~>~1YsGqJ>cR~` zkj-7X4)pv2yO;a>ECpJp0MW4m{A=G%VUeI(SOioHizQWHurP>04;nOE@-(~upbzE; zHTId_B>cO-$!WeYP&9`QB;>5CcDmKZBp1Z?rlS7#C-@&|bsQUr6l@=9wku8>5JSoP zbqKfJ@E7{KEcQ1to#uZW3K(m7#6aw+=Gu|&l%nmCwaxbGK;=6{758^OvAMPYAIi!W zR^o?a2z&TISg;OfvMp}Q87Va?BfSpZ#N*l7bIpbQ=Ps2W72u=7S>hwW8ySd)3CwnN zyoXm@`7m3MXZe|G|@lSUFJ*0G=wa5i1xlOmeK zVF9X18UtE_+d#_kCVyxgeK2QXw4r1R!rI4t3AB-XtYse@M_sX7VV{aoyVFQI+Jg6s zqe~1`v=R40B*#oPR@=fl3xTz|uRsdKPG1zI?k*e-=EWIkt>Uj)_oON45;m0&`kR7X z7S6<1(dhRaNX#PvuKi}<1in}>@Qe8fjUKsGZ8^|ufx{47Y{Q=Sw?RhW)xz@NRX}*b zV1#PrV4vu-@t^(8PMm2q!OeB5qE=QE7Dx&UX8T(o4`-_vmN*T^b9X45BL_3Gwp|rf zooV*kBh9sqkxm!BcP3|i;=4q@(BEaH_i+I~F2Kiy@M8dv?2k~2o|*&NQ(@(a)_0C9 z@9!KyOSws#IBamW1ABsjX1NI!ZsO=eD0zERQGffu=nBWn51^8V42B9S5zq~Qw&ex= zZG&nBaKai+8VsVi1e_iB^-zUN-=L%^MqNVeekJ#_ejmC4r8jI&6jpfl0i+8^8i!s| z@(TxZx^@cA@o$c-bw(PFQyH0ZYAx8#7C7WUIC~6wtzTFqVsm>)6n0Di!foe|v-N1TZXr;Nwg*MbJIzx@aO{l(w~ctqj_-Bb%IabVU$c%cI- zwY$|)ZKPgZ2Qm!n>}z+AL9g}qI5Tit9-+cABve@JkMV@n9Y0uh#XZK zaKj?71UD4+V0P8#XfKO5`+FaU^?OQm(CsX<1_*3Ah zE5?4#x>l`Pu6Biw0iW&jws*&|c(=dz3VaO)Z$3%U^Pb?76fFQr0(Vxv`%oVoy#JxI zkh%eNcqyA=piCrX;a%Fj2HcG~$y)ffyr94B8Q#mZ%^p2i&uwQUAU9E})?9{hk<5_s-R!Ml~zixjZyao>w{O#S%bvBdm-#Lx?i9?g9}l8x`HqXx^K z0s;V8aiWjAk$!B4d{8X^fqn~mU+jJqDMxj^qp?H-o&(~(CvxvYlICvqgjj+~k6D0j zQ1-B1H>l%0fH*_-okz#QLw^|G+j+Wv2w|KI4B7g}xE?w`W}LyQ5+m z2-~dRL5ZGD_U?Ymdjw%^IfMc}$Hx&Rsym8raefbh`32%0obE#=)QcjhBL9 zEnL17#rxu6m>-90h+$N!5ZzpT)ZhF#?}dQ4ad;WUt&{+dWQ2@%jd`QLtCZG>A`qfO zaO2P{iW5jWcOdHsrxLZQVoc~ua9du`-}Y?p<-%Fv%OKS;Lvu8sjmc-i=4B&sw+9Q3 zY!jwIh9ng>3AjCgo3y(NQZ|_Ji!FH$wE&|GX~FL9NY-exCTC~j7TsNFuI`>lPqowq zmi+k^sgQaBlG1I{)SZ~PlGWAYV$Ukv{gL_r^E0_;6PRyc1lArs*F zWNlcUvL|6qW}B3do)`O0e~%@CgqR)}JqjlMk;pLxNd?$B-&QX8xnyU=rzV1M zbmw9gF?<>Xyn)CLPxy8J$Q4QzfJjlP227Fw@~Ag|DW6MhsGg~*YQi21|1K!z=q^S> zH(B5@hSndF@Cvn@wcf5js*@@>xM$He!supvXHd5Isj8b zr^47}8Wt+}Npz1i3dP_exlG1_M+ME*xD|AI5w69QLLvpcN-atS($)*XD?UgYL1J6=vBT9QXq5p@P@8E4 zif_B8+98F_&`$=_wxu^)_d*07szDxN#|Jh$NO`Gk(R~Gi@djvFGuf63qU~V=@!DS4 zsVi;Iy+YJ%m{zr$>K!qn6a94%+^wubAH9+PSAV19!&Jl$rq5?wSA`^5;)U-WINqz)u(cJ(Yt8a%Z>~FdHsU>-bsxA40~!5sf9vD? zj|<0%k8uF8x6ZT)!J`P3c&}FplHiGE%TJC-hlqI+@W+C^oq|M(Ufka;NSa7@hxwCE z;U{msie+db(J>mJq{ifSdK!a2|7Fb3>H5m7HG(MA!s9xH{+E|cbkn+Z4 zgQqZ|ZTBvuJxH3fiLq~^31tv8@C zPfeb7JXSxB^mMI}+^k>_s#}En>Py85OakCCFX4#Le&J&K(n$Dt)@{}>a4?kgw_A!? zq)wq!SR7D68zBjd7&MPGH2tpt&+wg^X^Z$w%&H1RjY0RzSnmji$bzB>%3|TKzk9sX z#pTT2PLWynjx|t!v6M>`&w7)%3-MBPtnI<9Nx-+7Y$TZI=447MA(10wVJ_aYo@;wJ<25NcUT4%wnxTXlCk=d7#q9 zzz_<;J_?F`xKAQklS!x}%)!J1ofkA~aDOP;pjrDb)m>SvK+yeqiiZr7s(ANl#E8{H`mn#{QgEfPOvn2S zn+sVEXbt9(2jB8GH9OHs;`An>?m45<~wOgS`ZKnkb zu3)i~KNBdhw$h&Vw>pEq26#(s+q8~X?!k=Hw9>EzTk5rdkl0>OeV1oBo@K- z!V>dGj9OlRx@*iE{aw8sJotHm+NtRG6530zk$h@YB*gSP{U&3>f{uj_9gVUwf?xj^{L*Auo&2T z5g^r^l9ejO*dfICu-t!P7sk63+wL(WHwOQbPF~c*o%b-%-eQqj0DRkyAS7wp(0s-> zMB)Z#uWk~u6HDmMW$%t^a5q5&vtw5m64-%A7w*Ys3nWgRxjNHtM^yFW?lwqK@!^Xs zhfz|_o|6{-I52IG*&UE{guAvKZAuu=VXMhhL zUbWzD3yS-73y4DfuDbHlPPIn2>S<$dq#x;Ehj$C08Qr(K`ymE*sKdJju@IPA(*a1E zc~IL?zqBLYONKttlg>d%-Q+Kq+IIL5&2^oLUabhBMVRUc9(s$c?sH*az6}n{$#aMW zU~Im^|2|l5Mdpm+v>(t4fM;FAff0HU>I9zirHN|*bNR5g4Vr;qeBIDvf?>Ka zoz3~x25hmyfdNcR`Vd=?XZZ;^)P^eHCtVr^O8`TDNp*FohFL`=6FjVqN0dy zGI-!ES3;?|=c8d670fb|5rgo6DC&1C(1B2iTS4NgHf);%p-F`95uQTAO#HS^f>2lF z?9r|vZB61a5eZ}<8=V&Hu8^^=NFd7Rv+hloLc8oL893wgwgMQ(XB#K z#&+ychvsw%@C_fv1RC_i`4epjw{eA~OfCD92!h|8Bg^}{FZMsx()ykMr|wPQ z>0iiNE~|DG>IVo_A%`w@rE9wJ0;vx17fbG5jDmU|eOnlJB^vvWUYsa z#KNr0zD(Bb(n!%^i3Ik&gAA-LcxaJ~ci_Sk{F*$`oV;I#J%sa1%RVQU9zjBBX&+|7 zXs1mGm}`ps9-m#n^(mOsbF|lH-X&{qJ9t-=Mgf)Ui&UiKVuAZ?yL*~_d86MAh4;w@ zDW_QAo<;@5M;0ksmBHlZVcNW)=mA4@OYmE=#cCDKfk~o0OcJKvSisKSsTOvq&Vk#O z8TJ#+ZV7%%w(MY%UAZKn?zO>e)}f2QB~_Thf@7EN{mGuJ!PWJy?KXDC_hyVVkE|Fw zx$%%8`xwbx87DZ|lO?-tSq5wAf+=tI%QA(P7`*wJN2R2djWy7V!yl824{IWxACXow zV)@>29u}a{#==#zMo5I#PP=Yp71drjC`xkW4o4so=?=^2uMmJtTZ=}b-7+&Fgi&HE z&&J}1WTOs{ndu;j45EP&!Aj6=cNE6gX5J-hkD%i7Pc68#$eOfoOcr0D56K0G*?y-< zZb-c?v{%P}jT!$GeW&$$H)kSwt}3!KxmkA>zmchjI;|@*WKCI$JbxAc9O)FDlsmeD zOw$30A&P&Bvi>Q4D@hD;MVDu|fX8tzMtpPpPEsiNo~tv-#JylwLh4I2>ARRT=xDCX zB)75~9}_tr6TgQfNf;ZQ+_1uZO@=!yzGiCAmFxJU zBo!{mS$ks3G+Tz_k1=hbZDQUIfnVoe$;|js! zXuYiQUnOg>KY(3#iGad?c_}GPj#kaL0FIbmt0oUB^M-BK+E}2;5aJs2Ex~Wemc1B8 zg%u$()|D}25}tSK|B(_ut ztxHP2Vu4GVEMl_ABm}1-_sJ8jj>j`?R z$U@N5-8PN|Gf1n6WZopJK^W(6$>+i9;!1zX%~|P&p(9_z3IeOHlCQ}nhcy|_v6Ai> z*B&q#um%}VueX5nP1rnn0e*0T6@_0iW=kvd4aOs{#o<3YO#+lCEkK@P>iCUq-d>T2 z|A)mXUlLpm=O=ci;n}Hh7oY!OP$@O!D}%iFHXN@c0ndIP9ZceJ;M<_`u$CkSn5o-8 zoDph(fhpY$qMP8a>`YK64P>Azd#1_L=qscgJ_R&sEuOV+VnG(T`uv6}4+; z{CCOP{rj+gz(xV{UL81qvJ!(Ncc>)pfRU0!^_eynP+J^fC4LqKD=^^owLDsIG_qaC z?As9Oa_{=_-O~_oeg1W_{%|%i^T-?a8;qh4??Ta2n)8)P7So|E4%bA25!yiB? zlhe#fzOY%Tw4YDfL-X9NBOHK+^Tez=dU9kVwtR>>8pJ5cU^gW?fHE8Nx{i=_lLax< zo1{Jw;Pe<-O(+)WjeU6>XUHiLc!kqo z4VL8XnJi1PwbRA;5D)EW)>_=uB}LdY%Y>yX2E<6NJK{$@U?cUG?w!iXqTC^oE`9 zSk_Bh0Zx31xtUYBn;8z$=ycIXhU`VvnelHS{9PnmMNe+VErA zbTd7zHv|`=uGApLPpTN+P*;pmgqy7A>q_ULGO2d^Z!*tuwJy z(>5`XJ+~J`*1B@CVV1KC+Pdt^WS!QGHWH`~)4e&CO_t`X?!7n3>f7{$RkIY|8>0@g z2uClAC5+Bjrq9XB!}e1Jo-jN)H(NW_;u<*R$$Nu(m7gQ|3}VB0a{K&*)XMZZS?TYz ztx#b6a-fXG|Hbp^8Gw;;yR7Sme=#y!jE){PBwoYP8!l#U^fs?;yMYI_t0D7xaRS+* z@~E`mSxB#=NuKG8qT@G_O0ZnG##MoqSbS>Lg(4BZg+vG2{*C3FYBR!Gw6ghjQY_l~ z0DXBztt5U?^p!PlH{M#1F|}k({mV?9vFQQWV!Udvn)=rSJ8Q-Ruv3fG)bAH;-*&wb zy)5H89OgTGebbM>JOy_zn+af*=B2oQ8o55JtM^(@WwezV-2JD)847~8v#BfzUB05s zsoNKRF3P=4E;^D%v+Jk4qjXA%XI#C3F(PjXeoMAwssft?vXoW_8b?%Xx#m!yH!v?E zT^#(zqd)Xl%Oj>!f{y@P_Y=f5~3Q9U&~5>0pxQh*@w7s z6@i-1O*gX|AXD*Qu~f7D<;ZIRbVsWODO&BLT_Kf$5c@k43ltuA=1-7Trc$tlK-v2o zDVCO!vdTeeu(Fb0SzA}aUm)S~(y$21&eoOkmkX3LRzD=Ce4aA~AO8#Kmf5%KJq0!F zR|S$&Un8+xi^iP~9Hf!8=J-EJA=8xc2E#l8uJ6o7zUe!^Y#!Bs>`~Ph$r@Uq{2tWO zPiggIQh@8f?Ei@Q4}+G3>hTrYy}%-Ab}Ox)_oi=xLYP}1gvtf_kX&$=y}Bga>P^|+ z>NymVAQ|Lh!Yxck%w>phQ|4ZV=_b{@DmDH$x)la+D{jm_uMFc-gd24yWFo#4`BBKs z^cJ7(1uBwWJ&2^gn(4DS;$|_5sr8;2NqHSpx||5Miv+Fi7Y0ds1C!>9cx| zZ)WODLGUteu8Ce+b7~^pv2I?NQO@05z_vE?E?Ij>)5zE+d!ARg7Ji;wKPCl~gJ*yV zM0H&IF|l4ixR9|nO%gwyTo<6cD%mHn9WI{p*gEJcjSsv@$4=1%crqsi)@5I!rR+BNlAp;EWZ$z3sWa6&4Xk;8nWzwl%X zh~s>DIa75|Nk<}$rsCVE{i1r@=;zHP=WN zWJngRz6bEaf77O zOmof2N_1x0EiAYYI!&Qt^UE!&sze9X56ZHk)FLG>v%D<_8Dh;-lUNXYyg8wlROzU# zeaRJ;xRnoH;n#U+$%exFWW#Qg-rUS4UexP*48>B?C_Uc=hGFpD%9x>Pw{|<7Q#A&L z!By@>vg*zQ2kwpJ<6_BnI!zoAhrp6`FOpRU4(#3&$w!cVO1SFVZWWc$Dy|r6Vp>}N z7}D#qFS(m+u8GNN6A2KPno?#-nhVfuo|w;=0M~p>vn-r7ZZE+=?c%67C6`5uUrehC z=6Q+DTRK(|7^Ux=iXLS6psFDL|48!!$u04~;X+s-#4Ly&WM~O}pAeG#5pP$Kkg7U* zQ2$zDuOzV*CO1gV>jh_22bZS@{%Fy0kNx;X3n(d zjo=BXyt(;7oS@*g8^>z;$1t-l`w|Dc?KrY;$E}fx1mfNx)ga=%$<{3P^)WQ0*Z8lJ zHHRl#2Tw;Dp*mUIz%_ZICZQ$kzrsOGj1Xyr>SQ|$GvHQ2OV)pttU0hS18y|}$a<6Y zLzHkoE)r@t8*{iZZL*a<7?8{Tci9NZ)v%#6OmJ_GPl}pnS!lG7_nJj>HS?R--1N%@O}qvgTQg z5NQOEy`xe|!2w5@2EwE-78&1Po52FnV`wDjUm3s~ieEyJlN)vjh3GJeM*H`HC|b7# zqSa-eY+$nn&Z0nQW%plUk2gPIw=^SwY+03<^%7g*usP9+?KSe(kY1mEovh!f5wOl( zBLbqL!DD-0uRF)J<+aD*{w()kz%KXSWg{e)ACdUn$r3#dSA%$otE+D26gF$sB($pY zUnOhy--}IjkwySnZ&GwnL7wc)-(O>3h^}%kl2tno9JwQskJa;H_O!Y!^VjA@{&lkc z;A!<}Hez+2r`rpsu$5>5Z6B#;R=F3+sy%p*JplL!g5KEjASJ|&Q#JfI~ z+#B%&NG;w@Zt=|k{Sx8Tx076ijGf%#+sQ49U|_0w3KP+t;|rKr#$GP>U>We=Wg{e) z@7jHDw9h2Qjtnm`G_cV$$6VnvB+UnR(q9kvd1kA7w`jE_AF$KXHYSv6{025da%9}9 z+%hs+oktJqUo>f`_4v)wq%k!mZ-2o=JMR z*0qL(oKn+Ta=%V;D@-L^jgZ!+(S!Qe68cRcWGdWhDwFCndQkpYGQT4#)9RH}ZVxw; zoh4#`h?QL=m1-oFYV=^S0<`o$O!}Jxb!Ih|rPf1ZoRyy?`Mbih){3N3(%0}kivsC|(RM%zdw`#&lJ%wV*TFnyslnAT!7^%2< zt}>Hm-2_PyS{i>r8W%{#RZU-}`hm%5#bpWowdl)MQq|aDwG%za&{Fw3VMppDl5oo} z$|OQ<1FLPM1U^Rs=d&JS`bA~gEtxF4#j^ATQuMRzmWrfNA7GV|)-2J3e(hjMe_2Rp zDiLyBHj*dH$0jhXhHdWJg_JjDl@=P_Z+RhyuCp(bb+>VOnmMvy;Lvq}zEVVY@|KTC zce1R zHbrWFZk4p4g0@)iB41|OhSUj?y7104tL`fqn3-8<&$lK{;yj@4oRllh%ed3gO$lQp zoMggCZi2|QaIt5tP=dPsTQ|*RIcsp+j230W_0$mJ?v&@v(3pCE}`Pt zZt4L{*|#6Kqyep`*LG3rw*TeOVV4jWo>-w3U*Y^<*gTVYV5-v9}a-aF~68t>W_ z#5pwfhhco9eRdy`joLdrbi|Bk%}EtpHhoye^47_PsYZ=~fm-EWV4(7@T{|NA2x+b~ zWih8juFJ3rHc_l!&E`S5p54*3L)BC-M~`1myD7~~clO?J5UXz6)0<;onkE$g95Gg< zs;8BdEMW<0yiQ%BV~x-fd@BiFAc`ij10|JTo|;{k5VraBYyZbCdDz1r#((k08Ylsm z=hT;0kr-OM{BEr^(_+BJCjG2*2Fu!Z0~zZJDhkB=wLo}lya#4N%D=RlrO_$uYoqhL zy;?aek=i6WV1^ogCZKjNHD9&lWO?hHWX&by&X?cG`3LS+_M(#Vk`gfKOuRy&aq)&^ z&E9Y|Rhlz}GUSj%lK9tYlY`Bnr0H0W*|K_ye~Z*@9xj27$-el5hK}T3$-=^ox>$H>uM zoJg@_YD#v^mM!!P0xEfws854wSgp6?JX4~AiRHEyZ|R?Kx(@z(@S4A}mR%U*0SqJI zQW<~NLRGRU@C7>2=(%>axA&xiSbjTDWE!+WVsRRi@r-n!MFkl?a^~%7uE4%sh>|X} zQJAW0qsm%H;q0+xJ-=v9F_*T)asQ%z|^zjH`=Q)(8u$M;!*H`?XnVT90B> zi)}rY_2;Sq+k8UPO3;^Hb9<-GRxn0yctSGA43G#9iyxx8+|+@TSv?<|X9PEiJ?%pB zGL2AUgj&XrmbuH4{zXBn*gqe}jQ@)MzQh@q46zic!)y9$oGDEFcO+a~<6NC%;|uft zEdHEw9CVc>120963sk>As=1lq%JS#Njz#`2i~P5N&CEQ4yQg-r{RNf?3fX@l+29hv zl8!@Bc3YYX%XkIgYXlgyjJIS)vxwvSws6m10RNMKm3saqGgC$6oZ~XRGC})qqLucG zO2!t3BUqgp4;4TBqktLQYILVn46y{y3;BbjBF+WGDIX;DPV3KtXz9rh7zP?8@v%v? z;1<(dDO(R?i03f-0)RH$c1VIYTxn||%&}|&$KpftSE(iI^RJWjyLkozmQ>h?13Ecj zMz`X4L#)@6(7>$mUnOhqU<90qhHy|Hs)YPJt_z&RT0?}Ey#ESoGx-VY3>g93mo`Mh ziqc+u8^>?R(y%txl}gT<(G>rK9ZlJH+Ki?kG62iw_DbZDj;cUtM|I_a=E7X}V0VhN z(yCCI#rchHVUDCR5o(6G-y$k&CcE=khM0QY5G|m_+gO@PTH$3CS3%u%V`9;R<_AVM zC{z3dQeSBek!mOzEh%cWE>;yiD1R)yCzIZVYITdFCPu`SG_WO0?P)?yjf~XFoNZBF zYf*N9sLl05BJndx(+m*7nn<=}E;b-?hxRfHdr?}uM0>sw{rGkq*x1|7vt%da-pFR| zVY-2NlsTN7J~g2{@?z6%e*A5PDBC7yO=O*}`khc0AYZfmki2}hvT~qaqYu^6zd}nf1MvDYXDhGUCa|fjH9s+7vi9G} zGy^dGrn8sn#<9r>o)Koa{!env09?QEtmPWTZ?el>4^oK!i##&`&u>1Pd7f^!W+!;V zhhh9%WSjvQf6Lj-c)K^>djU@ef}a(Yf7_kloB=rhxwDyb%)vJ?28l&U!uJK_n*sR# z*|VAN&IHeB$JDg2y^?G*0NZDEsqA2{qTzWBd1e5f&+1Z1p5;z3!}vvHoWa@7_@$v6Wr{_|(Eaf9)NjvOy-{mB-x&H${Ry_F?feO;`lLElS?<)!4B0k}SU+a);{ zcm8hgl3X(Y*Jp2A zr0DZ*Cf^Le_Z!Yyqs}bGL$ajZ2g#9Z zDFp*a@tfz66xNMRn1*@}XH|$m*Ha({5a_Hd`EmFEV^!{A)aAS(}M_9cUE zqCgDJVSzG^;L#L_0R;N3bJXJ8n3LquHj2amBEA0{6-maTM4HD@8U~Q&Txu4ej%}KF8v=q&zetWpA8jA;>@Z}As9f251vEW zk#?W0a9Jz+4vNJ9V)d4zADV-$+h^N#8`7;?o>dF;b4%-!rs?|ei@yiG(UtpU#m1Z! z21;C>RSPMw_CN`a9_R;_bJaoyvP$36C78#JygX6MXlX696f=N&mS=XrLF0tNrSa$NGqX#Ee7XX-g8s zbRtHWuaS8MV19WfV#dvUrg8FEvd;kQFUv$s$~|t_vF*gt*5fiYcjuSb+_mZY@u?p| zbNACw6Ba1XTQQ)rWoqtPU~TRa9L?RoS=Q#R4_T=RnI@Q@w-zN@`deBQ1E^=2n!71< z)#h%R!1C%fcZKQCl4%BDdYK$&%EJguyXLNN{W)^Y09-FqBWxU8&(FK2f$;rLl%nW^h)UcG@q(;uvGvUnk=X!1ywCjK*Nvw%sVY{sviQaCYk& zV!N?zVf??zI0G=gOg)To=vo+eJq%&}VH_}J0M^gqQYoxU7h1SJk6beV*UQwy7=yxH z4@xuS%hSWK+}G#Rrg>?D{q@T-cQL;(iOrTv>}B|A z`|*YZJ&iZPH{e8M`Qr69rq2xX$^?2G=l`zc+A=jQeYvYnS!ETiPuAK*b8n_=WdLjY zg)^hBO1-6wus+{jPecTGD+OQx0eUIR%acn>9D014i8PUJw^qHba7U`gk%87=JG;LOf-)5cr=axA0;q@GXgv{l>$!^m;r#NmRsWH3sT%^;xafBxVT5$ zD!N5n24@6U&OVY1ZWEUQaEA_F4JhIzpS;rJ4WkHhm&gpxgv4#9={e#uI3u`D(+k99 za3*j&PTo_*WdPh|_Z_p{2U3%M5rG*1c-c)02Oc@+@m)k_0OZzkJCC`!-ig+<%jfSQ zI0JwW-Sb;gY=YfXzbxtRiHRKc%ZSb3jHtY~a4gO2?;|n;ATPU>`M^IwUQlHH%2pSzCNP8L2R_!o%t;4hX5zJfl)wxCJalQ*Xx4qK!CjPs z`r|}pu>7bzPST+MBvBavb(z~BQ_YjI$5NzyEpZtDcXD~%*VO#!S*zqX5S9U8XOoHPgVd3eonPiOK+|%Un&h=9@D;oL_2?-%4Z#Kt8&>3ZJn( ziFXi_!Sd_4Gu6TgbE4y4Br1dDN1bana6+b_zMH5FfV#}(sCS}~mZSF&mcjB1>lxE~ ziOK+|%Ul8Xa7xcq6C0>S%kL*J0{}mD$dE<2La0k?#*lj~dh*`j!0n4J7n9x2e52KA z&dJb2`qYnG@4)cGD)$1X`P!%)hIsmDNJ<|=5fAE6#Ns_@%2{}--F*)HQuO#i9@@hI z@+^!dPjNgX0K3h-OUDhU=J>nG2!n@&5$y^HBQGT*48X|znbwGoD+nJiCm#$R3O;n4 zLHKwD`C#yn@FBe<;p3I$g8}$Bd8YHlp8hPHyo#JKcqlZY;}XKh50eiD4+$SGXZqxW z!9&4^j$4R6eu8{303T=Emzi-4VdSUC2m>&3#!c0ZYX~Q=BPR^N$>}p)XuNR_Vdjlw zh5?v4b;g-V$6SP$pCvC09+E6F!x6&CTgV9maB{}2)@S5xWQ4&(VJqG^iD>1WWQM^* zp%pW3B8>bJ8DRiMb}qKDnl^Uo=`YjndJ!9~+2-WEi!KtyyDK;h=-!&EUU0MKdw2N{#A^n(1_W_+?P$+RVFT?Ey&>X%wh%$H=Jtm_X3pFRS(z?=cH<6gpFx7=Z^* z;&=xqni)X4?-^OTVrL-$Z?ZtYXm+@ZIH;X?7nx!JroR6nV@gifo5Ms#yV*HDe**nn zVeU3E#{kT|;-P1*H`{K_Ti%{U-WY(ly^AfEepc1>!C1Zu{%)4WLXmj!FctV@ix>6y zU$=3jS312|RkzS?7O&?i#O}wRdKV1l_u zh;~#1QfhQuT;%@*t1||W{)f&E&b(<}Vet>iA_K7a>a&GKw;o=2{1fuX06hN0S;FJ7 zxo%@>veBELkg-LSbYb<+$SMP{`pUC}Rh=>s_WqLWF#vl%c($--=2nEkzb1nWz+iH= zFsPF-!ry1e9|Q3BBWDSJtqw+0)eMal{yn*5a28piPB(}W|B>u50DC`rmMGD$!i*Nb zKsFhiMR{%5)HR}_%rB8k2H^6C&k|+MHI5%gn|`J-YgG9aGRXi;o-H2SGP%&6Z+Wc# zU$V*otPVXa%D0-Tji|x>f>3K>Tb@KkjfTHQwi$r!pFCU4pgG%aOg1MV zv34$OE%_g0mI0VOTfDrPB9t=qP4dS8{GBb;t6dc z+kPKsd#2fL&NMso4`8iz^`3>7s2{KSC3G-;1u96^>~_T1&v@<_&EJD0p9+ia#+S6a z@zcu(HKfGZm8637ujIJMlMUm?O``$5!h27&eN-N{Ern*EG z^h>#k z!pypzUPwak^S0y7_JWAaAN}}W-wbKbm*3_OWHie*EITUWQb3eGl(0^f@a(a1&x~^t z#7|+FVgT;%87qhmb$U=wBNPKbJ#VZ~>AZw5*)s^ofcX-zp~YrP-4kUk?MpL%9C|y^ zn49XM&ORabl|J?3%Q4!Qta2~>-vA!jrc=sV2@?)Bca_@Q$a$2ZF7on7%ilA0j9NfHubu>WncD{1E~(0Pvv^Ei$EDPk$Nlt`y(r-U947 zqe|IsHts(?F=suXJl6Qwk3akKFwxcC8}lHs*=#gZS4;PaS#U*!l|EXn)a-p57kM#L zhp1@rKIR+)$YYjNjulW1wE%l3VHp7S_?YvM<-?h30s0W3836jO5pC5GuglN-)HcL) z;z!Y3)qYZw8QJr+yT>Pb-Rb$6#wl?Ic&?e}e*DjGgvGA$U&)hAK%2dDWMyX=P*50c zU5(c4pB%x4vh>wz-8;pL|B-7{89=0wJzZX>&cS+L4Dc5S%mBb>8i`m@{1h55O(}g3%#my58QT)z4_vGHdbTv>xA_B*kz1M;MCrpc z_o``*+|sm!#U`Bu@yD1g445sWmahzmdQT7P4+zBoP$T=243x7w5AKf$$AI}VqQQ}D z-J^XwEle{X)JHb0veeth?x-K-*5x|{B`j?Z*k zQ&QiW-~ISY-wOj_}HFn|~%w?Fex zYI0e?2?8gYWfk6(iJ7 zeE^zY036*29bi8u5RCBTxQx)zRwFcg3r>7DT>}G%F}e}vpo|e_0G~rZ1^^u02y=j* z5oSQ|BPauaj%2+07DBX`LQkXdu| zVDBX?1Hc{})hQZN5QFqEUPg;_h61Fqm?V5}CpAev^y4?b-I}C4E2#Vg=vYkBf+`kF zvOh+Xw8T^ID6ETA@eAlU7>p^SNLn(=!}!rOqvR!!!c9V2(_FVbG2O=U+U{&{sv#d| z+vLpbL`!`Le%4x;+jt4b+AcIt@&hqAUU4MoJ@O<&GaUIi9<1Ua%if?_7B1L%0*eHZ ztW!}HFTR}_#{hB#yYC|))`4^%btbBeU(fubK8+f~wb}@Ho$kDpIL$IV_2X-phpXHR z`3-!2q{QRSNyCByBQxKwnHe4q8iS}Zt|%H!#f^6{OBq1G=ZBo;Xt*|49pKxTu~f2C z>=>IYxJs5fCH)Ru&O5{w%YS0YrPw*s{`K)LYZ{sp1su zx0sQ>GRJ7M^K+*snx`h4v+8#7SkuRTeEi3do2$Jy@?c^!PtDG?+yKau@-)kaVk29B zU$ZqllQRY&DWwiuapN7#Tn3PFVr-e~U~qljX=Jcy-9Y{xvzWTJuK_*ATz=q03meE& z4=j(y2Y=$_%w_M5c}Shc7;`zxMn5Jta`{ikp37Mv$z}ISapME*moOM>E<2dI{InjK zqQ;++Ty{}dh{EG3lQ^A*YixpTL-P%j^^MMPUA3q``|%1MU2>s$N`C-mSGYD^9E{RO zj{TkHSa{NJvApZF7)4R~@d6t^48ZrEVEL=gHja$(D1U|-VATWadq>eq?$FxlH$e62 zp|#QjXa4RS14KV2ap?U^s`v1uMn%0_w$s^2r5^t&y&eNv%LrNreS1z1xsJa`og2M? z^eDXdbX1d*xQA_KdLF@lmS5RT(Wa>WO1;=EZT7D zw;nV)sJ7!&hiENVE;mz5$cx|LW#rVE>@Ep!AGYw#ld;3 z$9FOd7=Y=e*Dpe`?$g~uy&JuN^a#aYs7|z7_iLL<9&3E;$G??hmFcAPfg0gbZ3Wsc{Yc_;u9xJsYa+IaOd+!t}eia*I z3?N3y5bshnn06<&6(N6^kPHA>GODpuNLS|j)mv=J&HLL6I|o;Jsly2pNe3FjVHdv7uifE}R?>ZocZL@XHPUNy=Qx+7V_sZFYg zDpMS@!_NRRj8G>8pt9zX0i7WzgYWAv+!S6ZQMuG9VKI*k#_co?KgS^8ZA*3ro;W#sVo zav@6mLb^!?5MYGCfUM5E>cBFfLd7p890S0OQvX=8f%ad@ih+CyAsGO2|47y*dJ~hg zjXzQ0Q5v3@MQREojE%NiogP{y+5ofXqrT8irUi2}o$ zRl^&hBJ;_L+qW-NlK9&WB2yTE`w<#FmTGDS+V8Nh4cG+)V*s!bx;d6=3g+q;`^f;V zBp?F-K5NM)XNlJB4@136dvm4$j8V+3d)zZO^U#l1@w~&8*r_2OvG^|i3Aj-cZf+h~H8;z-ND@DRK7awZAI04AFvi@nVBbzK1^^qy-11skzygz!<^YW}3Yd$8j%!lp*`jkKg)zG`IBG`w6%a%*|3%??x1u+p9)4 zH=nGSn|+~@#M8_W2H<`KbF)-ahok0ZUmLI%!59E+1aq@gQ!r<4_LBi@6OaJ_mu_yB zXx;uW)PGRSEqw`$5&9n;%%h%cdZYUK!j9{Inhm22yfd_N{4Oz?GT zf+IAz@}$KK{g;Xrzl@p10E!%;cjZ$~Ekw=H|71YFkDv?y+8m$yL`G+p0pK4XFarSV zfkaDb6ZwSe`jC$HGXvw-(ngKlI71m>;Jk|y?N6A+kN91~?|wY>3Rvd~`zXH{X~eNb z4@x0mj_*`+9HGzTQI%XW&x#PwGFupoR+{r5YJXX%9-$ZjYJ}pIhjLbzg*!<&27uEe zb(dmrhGrdq?~^Q+ypP{OGou06Y#(9t0915wG=KEtk8-`j`SRQRfdC_n9$4~987B1` zYEmPN9$1pro($LVUvl(-0XbfB^nwG7&r*9sC90YhD*Ujj&@A4u0A;+e&u!xv7LPUNCr^;u zTW} zD4SvtY^PN7Ouvof8G!sF#i9mKuS@oaGuTWFgj08C=UX$l)@`obc3hNxJoy0_&^72o zCadpEQ__kaHAthEj^{{w zc_SE)AO-_qnEGjC_P6z#I4_xH+X!+aK^OpJV6pI+u03JmE1^_VQ^dn30 zfT3L@Z3bi1&;$8wcq~B}0Aw6i)NafiGyFfEq#1zpIIM`I^Xxx~7!1awBf-d9(NhS* z03hSAA_eix^l1cOFt$vXL-i-c>=`7@U~HKHH|Oqc5R6-i!C-8e0E~Pl>?R0j*&@0K|+KjU-O*I2uht`5sbc0Lo_QYgEelym&4l7yx1%J`l_oO2+ev z!2lTJFkHd#3dT{=X8`(-9ngwOa}Vur*RWAlhuS*>8&$pL3l?yIZ>ynGqoD@5i_(vK z|BOb}`_R%$Rv%7N4sBF93fib56*Q_=eN1E>=<2gcvkeCCoBL^a{0%lq893#Ut& z4$D~MgaxF^@qRk5EZX>AL}D-`+Z=_u`#C_P&(sFt!hEZ(8+hf{wnneloRb4YgD7228}`E;@7lUXY{gdsNR@|heEzyJWF^W8aZ$bNxj8Gx*@s-^Rd%g84tyK{5R z$@vNFGn{G6&$l|bE?Wfn5|J1H$qb;5fYibv-8~*UYp8#P)ER)fab-)V&NGa8l6||y z^_Rl^|0R6}puf9{tx3Ta7JLI&vq2%`UDHDNYb4A7giR$i0^_H^u~o@`kTQdDusq$6 z9i77RH%XWQ2p<|%7sng(CvZtft24VWKXJ0rZlR79l>Z?L1E82z&(alRP&!iqpoi1l zF#wS1$czBQ8TRI!k>PxjW&qM=>U`;>p(44ofOmKIGOAiZ7zThDxoEX|SZ*-i=uDz3 zEE%zy)ESIJi2E^$(`--7;!JY5h6%lgTwvA_h5=yA0N2uW)o%7|G1x%53_y2eJHqhb z!~>1f6X_*Ojbm-Ar_BUnFpga4HD;O(24k$6oU|uYu5F26LTjV8B+( z!}SDY0Ki8{tF{~uo0Dwg#-t84UTzLM(PLPR-0bMYxcS|W_y0bpfb3(k;#Q5sHqdoL z$!KykfS#odphpDRH^gz@hTv=ERxsisKkQT>l9x8H+f+IUS4{J)v*lE!7)?ifrB_!ER?0O;8> z1f4hBKO_$fz(em$@z6ZgoSe}9s>y{vAsY<9#{J9A#w^;-)3|#n&51uFJOjWloI&_) z^z30gBa*{mL~8%~LqUz0){OBN0K4GjA9`hM5s$ z2-G!UT(7JO12Gw300tIaNGyb%Y|FMB?AOT?-EOZrfx338J2PQ2)W|((i#Nb+*_dT+}04%hZNA}sd=1I!l zn4Cl>49CVyVw4QSO_KE|iO&G|)60k7>Mr!G4h-^XA~OK8S@l-kB~?>CCpoe?{vbga z0Cds*c+sE}^Ih@5t!Y>QvYq2&M*8n2BMiXEGTA((j~l0Q8h9yz831_E&64UGm^sxc zDF5YzX0W`_orM{k5|PdKR}h*3pieB1nN!^yMZq~vS?pI5n*p$wsfZJM9^uJ&PVyIMZrz9hmSpqcg=3L1 zugEeBc}s?AP0WD60UVvUBNm!ruhC}MqC0aXbOTMJP|QhO=7amOozghOMByLBAtnZp z_4~(_3B_ijhn!}YwB#En8?82nHbczS$Q%PO_oHW+xy}UIH_Zw5du`}9YvW|BJH(0?txjXEWfp%IU9|*fTV+*dcWq>omCThRa}m$a*>XU37@ZI zfnWgMZV48MERni-v?2|bwq)MCiHXdG8BX3{4koPBOq727JD-J4C#lnQyCrd?i818a2E9@-|aQ=P5M%&Gg|hbB%sHto9_Pr)0X^@H=Y&2lw?Xr)CI20$?@_LeS^G%~si^PKZHbCCklCI|z7lvrYx-9e&c zK;|*}B@kUgFc^onjyF3K3!Q}?Ck#)|9P75Nw&sY!04OCh^3?@7&bnF18yOZzodKwu z9ZgHmixUmAm|((iG>Mx}dlTIb2W>=UrwGRYa3wRu)rDyV&d1Ayro$bnf^S9Y!68R(IQ z6?SwP2Tr%9ndTz)<8S;8T;NXdn{3`~UEur)f7-P+#1T4b>JCW}?(j3}4ojB71b7jT z?OFw)7?X_-4&=rfE#Z0(Rm}jZKDsC-L%!D&W3oE~Ple79R^Ch;J3TSgnzWdEiOB$% zC9@DA#!LK`hbi8RdF#ul4dc7s$wY#&h;f0Qs>`o#v0Fv2nU23@= z-@_$4KG$qcokq1hkE=OFs6&Ke04Q_3_;{dXHF1N>jZ&<;h{XU{-#Jbrk(Pq>Hl}_S z>Fy;W10a@+c`q%?6wx@KCLK`DSe{2@20$KbfmoQG;v{`nmhR0pdkby06GYnYBqjr3 zJ}ubN3kd7Hp66p?VmE_IkgmWn_1qcs!bCZ20ucrG5}*`RhA=_D}(Ms7{i;N6K(t+!59F{ z?5!*mM@O?9?Br=I0G?|dgX?V0&2>@z3i*$dJOhv~YfdbMd|r%C5{ChB_E*VFzZP%| zAhXQ4Vm?#;m;ej_Q09vrok4oa1LQ^dQz9_{(kLbdQRc96V-nNq((LxLu*V$0ce-?RH|i*M>{XTX9>b!m= zZxDk4Fh+CZt&Xhw&pSbr6aP&d2EZv<-&(nq9hRq~c579&x z@meKm%1b?X9&s3qELaInUa$)Z$N+$&865Pukny>zNSXmik7jU=be{dS#9#o75qybG zBbs}a*d#M{ww~k}fP8pacbb8{y8CHThgy&&tyA=>u~3eN5N@5i@BMhsm(e=?1sH#_ zdT*MHqmd=8Q22R3Q034%??MP?tTtXSv@R0&bB*_ttjEVFdzHzpa1{Jh#vtv z$%=iNfVohz;@%^vDUk)w)GXLFoC(*`v2-{&XMS^79XlU{ogbr$7=V+K+RswRs@}fU z>8k+c*N`#;P!8`AFo}3FAhlPfppqFVG zGf+02nm*G)@B38mPY>(ePvRMV`r7_5to%Huf*62_l3`t&LhQ+9W%}CtfdPFva|ESH z1bsWHGXV9HCRmy}o1y9J^vB883k}s@AXNsST2e;SRKuvcjl#n4yGWV=NQY;}EakfW zQJSYE8H8nQ$GTX6uUDVI_!rvEnp11~xgYPMt-KD*B&+VWiD)ca!#SU(RBK^sSj&9_ zttFGjGZ*)Ma&`{6YM6N=)x!W>+!P!NNfXx7U*&>q+%AnVF)VKA#trE4Ti=J>Ko^>) zq@Joh}-hmsU>)sVR;_cpm`ZyGIPG!VHqOk@GO7mwFw zTQ~zkbhE`H<-R3bJc9B%ViJ(u;*r((j;&ShMY8HH0!4e3najLX$mj(&_~gDm!^OJn z%VgcIOeElL_9!$@HP~vj*}F1*PFC)=pO7R2+B!+OrXIYR@`R1T$#F9@9L)OTzP|BGvkoqx7nFebOu_cBG35tfOq!N-^ zgzaupjEspYrB{nGxX8Qy90F}Den>XnYDh$g9Kqqrfs2n>44zVlupd`p?^sOYtp%RoRmDkn zu^kq!R5-t8NUY?Vf*3GgRy~l2WRM5D7sZw`fegYfjaC!e{A;?G$Nay9C%v z8kwYE;?5;7(d2OzR7q5p1{Q;7Ee@$@vMOJcmVo##iCNLYZ>@@+$+@g`s-%BI)FDQE`;yRTC#lh8 za`UsqtYo22E-5}T2Cl1S;Z~%|kXJPs^uw!u{0msrnp~87n_RS;6O_^I+z-KMD55u4 z#!#ZDCjJuwAm!u3ddV_Zmq*>ykTMqk2UQSYrmULe`W~D{Jb^j*?!p{4+=%(HuO&*cA4LN;H)aq+Fv?)+?pjI^8;j?5#~> zLk0iNH|2mP;b}|oTe4-3B#HKDlIVye0iWMq4e>;SG0Y5HR5Qo&owEB9D0Oa zXiC@~r*06huMji29zD^yCM6Ye=zm&rQA!Sim-&^Pb=kBvS)i_`go*T<0$-9%d#nmv zbYMNDnjS2BHUB_00oxqc7XpcLA4RBS>HBD3yZj0l<`v!AOlSCN-DR`V<{Xc7LwAD7*-mAP=tbXzbEgxhS}SodW(y=4h0lUsJm6=dkYG&<27&EZfnh>rEc1J z4fs6+hn#(MxJq?8#=)U*>7K`rSF;kydHN>~C8I7mGVVI^+;zNx1WTRsEkjAe{n7#D z{c^lTYrBvm-Zqq|bvTjp!SQ7zSaiHQhY}Oh8|);-%g0v{p`uSMX$^TSLq+RafO1c$Z78We0;E+^5Pase=_jP!vMArY%m5Aq}D}i8eCF;3S zSCaKy@sr8L6Usc%XJ7J@1AS3h6BM(w9L$(ln3YDjd8{p9D&m*_l1)(W4G$ZZ*wI}w z?NHVP&C*mtXo5B%0KDR@B_2MTYAfvje%5yA+|(x9-HxsK=9;rz!`oE@<0Mz1jwcCd zdMYv`#EgUlIH{-;oDG6@>C8+EQ)H?W?@hA$AU<<|9-l$8R!zFu)7-FvW3Yta3j3I> zICy%ed;qCk)kvLe&CTOv)>^ZJU)>JdBfVOun~t&w!Zkx;CDGkVCi2Ndwdg?C8)JE5 zHI8)jYo^s{q1u>g7$Mi^UnlEz1k6ROo+nBRgMlY)o_KFCT_IzB@){vq%W8a#LSk-LiXkJ}AELw8yE*b5K_Hyf+5|W{V$jjS`X7T_A>AMf0o1$i7ACndL zm=BQd(bY0#rZL&Igf7sB7oQrHRsWD#ia6y)3e+m&};Q- zSSHdd@^w??_{mNCK|0!HNJqD)q@#Txo#VEwYn96aPb+YL=wLR{v=#H%9QuUQD2$pG zX4$5Q_Ami*s%)ev2iKZM{?=2DTu13er(Ei#_RpUHXm9NtG6 z%ElIQGMFC0Bo-mbg`l<=Y%G3AHk$VQP8S(Kw^XwvPVl(h)WY!E%)4am5lrj&`_fDL z2u=c=Qm=Kct&-!TYzXA4;_nEzJ3KO`t_)X(qTG0zgooCe!#Vb6Y*nQS_$d1uClsu zXkx#fieJyvULE!Hp~+p5lfJa6S+cr%6{!xdgZ2&uV|9Y%En59VuKI~s{jiS6;{FJ6 z7ge#8bUHoj@Z@C`;p&w5$B9-}g*;-YY^mdp-$X*zZoZ$?79?_4*lANLgnoOH&D< zv-DXoHlX6krrK&(uyJm}@Uk}ZE?H}rwB61qp!}qgDlJEOzB|>eaj;m2*-&+gq#FwF zlMP3@ySmXnMAacO882ua}b?F#`jaA zin;c{i7rRzF^^&}R(o%f)%Tp}Mn}5Q4txg9vKB^;e@;hBACbLPOqrlbCTiMP{E%$A z2az#%F$2-2ps!A|PNcFXMhFS};U2*0AO>WufY^7*I-!57MiJ6wGb1_DvkUDuX5Vnv zj?DIm0PC_ZlXV9X3A1h{68J7_w&sZUX0Tw=bfbHJI5X0}q%aS!@Q9V<7THV$JppmD1@tq=#rOSBuOQDh;Y>D_ViNlAgLvN8Oe66O{< zI*vgNqkCZv85K=m9R8SGd`J`Nj2b!)nh2netELLE4%^@ns5SnpWR2L1N<~B5QH`v1 zFA%Xd(}jQF%8u@It;Lo80(0e{D9M%9A%Q?d0ucyA-RWrWuHB0*4`~f4xLO|UyF?!S zZedBI%jH#_EUBMYQR2U2HIZ}ZCH0L*#>g+nP#8j=m-@zvZhi6N!c~_?itaX|8`d#H zSgEQq|eCl4~e-+(j-Rf}eXrh>P zP$x-`S~nW}x^O2pTkxSJGY_87Le{uSOYxheSoE61iP1M=8G!FF<8KMEf|o35gL#~Z z7Zi!q+?pZ5pgugo8o^nyIXo-5=yv+4WDjE?6D;}t}y__)=0X zc&6)|>*acP9NBWRDZ}!7s`05Guj87SRqjQyY8O66SSBySI+vD^(1d7M?g28q{8g!X zQlvV6MGht2O(wJCz4lO=Zo6)S!^8~E*G0u99LqaSQQO5MM}H4|ug||u*6)~`Ysj>; zR&aFv-ooI4ApMv`A=8~Ilh+g(m~LxY)uQe)lcmDm#^Q%$qpg2wCh4jcuk}0_O8V~r znZuX>uTK-4i*j$1i?ly~#72V>ys`F52wW7vs#gHk836M#S*P?Vf~j7;S(w4(=bAV# ztT~5`A!wdcS+Xi<0jr-3))fO{Bv%~rl8gFeg^(m)jF1A{yT3I%3pT8f*_X*W=1z3j zMgn=)&n%U(E*8mIMLTUy1;z(x`XSqNj=Y>?>i(c^@@O;_A0g4OJ-HS@Ia$e55cEwc zzLzuu=HrH{h7tsqspZ7?kzUbU-1uTSIo}RMZds7vEG0fl+Cwa&3g6Uelr@HUO872V zfY=^fxRZ+Pu1ZG0Zj=P^djKH;=IY2ARev>VwXgK z4C>mup&HXb*vzvx z>_wT3i{C&a3FTEiP!RGY?ZLU`eU9{-NqUfGZ>s=dNmBz>sgY4?lu>H@HsV!QnYSy( zl~ub{VS>FPbXIy3*s9xPKUQtu?D9&tgmLq)eD22^{t3k(yG@4#T#Vcf2aMeGqJuU$ z^Dt;<`K@Ugh7=X$4lka>R#~Wx1}B)UiTGGQfl2gZI63cl4NW2=Su`|W63O~* zG)p{E825;TR76sca_P~5Qc|U?nR=% zSqLd~u;DVK?BW2+`4-k&!6K%yWW`{t&%aLW8y;~vy$un8=k188tYpll3rE=JZm`z) zuafj>8zKP1TQ*i1!!*idwWYbBTyk$?@k6q4r?lX(pp&=hh$#bg_Y(5S5N|BZcX8zT zOk>U}b5r0;VqQ-8(ETnkZg4CaC^H%UZO^&Q$)GE1^NQJDext6FDLA>V;Yb*nNit*=ml`PD%Sc5+{*Mh z;m-;A1k!HvT@}j3t(rXW!mB3ZUt>+3-S7v$maPsCgc=8>wP79p%I*xc)mXOf5eefD z5V=xCwQF(saMz*AMp1v8r~~RFw^qB7er?^O#6Lvhel6q{N>rjo&f&yet)gTW@%&uDrUc1Hn`ts2fu1e@^Q8TH_gu(}+4~tol#u0L_3;lXkd< zSY$akdQ>rdf1ir*8N!rQ2#d7Zqep#rpCbGN5ehYd+l^8&hYOxP1^6e?RN=eS;ET(P zqeoNcp8D|==1ZcfVg%v@duHXH5v9Pm@|5~lNj>A?gJVo+0qI=14hOl%e*6@iv!AT? z-XyDcrm@N7^`ZLR#g~?xP(knI`cFzPKiDM5CfS-kVu3Htqv44XGff;%FoiK8;pvJ2 zF_J5GS{^ZDrpcrICOLQxj)A1~%*Z3AMoOT!aN4BsE!l#-dqKG1WJCatCpfa@niX_2 z(ej^?%>+BF34GCl(-JwX4#sCQjS#ETO@S}TrUNE=WH*7zz-wp(%;CscEi!#+Xvfzf z@AJ0v&@17AtF|ABO{~%mR`kvLlA5pStOfw6C6i{X?tWD>ln!C#O{W+wxi)J{ zjdpZ^greIlA@CL)SRY_q%tjvFB%48MJn`;yqm|3+s|QC)u4Oj!z^22qjmc(olcBQR zWbn;2#Kk%mECQFwU0sxb0VWJjlg|gRHj8%_8>Mlv_~3X6_Z(>yopYCVE4jVLk^+0d z$&dkRo56)CEfj1H=3+&F&BG0a_sNF+CTeuZL4?*942T zbgc2i*3dS_W?C?I+!u*j%371nzpDpFO0LFAKp}!PMwUowM^cLfN5Kae(qzj`W~jef z=q$x7z%kSiTx;T;w4si|O*k1*0NUqJi zOV;{J{s^(yN_(o&J8`Vrn8U!i*xxGm0&B3+kD%;!`wUZqw34+dmzB=8%_Io%9=7QQ zG^_TNw4RG?1K_Yp6x~EMZ=an*U6;0FSa{fuQOteBtk~>vi$sUYi58DtX+!132MHrH z>SPe6WF9LN?{nP7n*ir4}LoIl0t=rGi99WM&!S1bZSm+z!@sl@V9zt{fC4 zx$*!A4B#QyL&@>bm^&_~|I29?azAD|e+N2 z!>q#M%?=pjz&$UzE)CC&m?=h&aNh>RMLWlmkP(i%9LZ>xHFYU^hbkCe706n8d8Ad` z_QfVkwpU>~+F@_06#lCe96QF3ixks>lX;h{wFCY;83hI$+)sWXtO9dj@2&KG3FkBo-ji_usaVg zQB72GKARpYOag{3&kA(m&S)SQou|CLY$ z&luVV3$J|?|7=N7<2ROhXR_$mS-zVk78pAh9e2|+9b-+B%t^ab_?p8-j zvH2DOhIq2z4nDn@R%gG>?|%G_kE2n%!agP|cFE1S;*YNl*2(%^r~R22ZQ)1%p|pj= z?Qs`>tD>Z>V1ZtjeTi#cB!Sod4X!}dRAwgMHhnOiSu3=j1ZC9LQ@DCBisnv?7ufYi zxb$_h-iVjJL4E6PL-8Dg(#DohUQ`U*BE9%gP;@4Xf;CnqX);XL(JvqT)W8bVC{ow-m7O5W}80OVi#6L?hkG1!(db=SABavOe`? z82zTemt@l}8y)LwO>|_@qk=`jM$G{BV^T+{*bDBFG`Jfeh0Y|Etz=jWqa>0QGLMW$ z`L&H7Krh_m46-8h=DKZcdliXgRj546nxSp-a|tZsT2G%vJ}Qg+1$sdbSKzRoDgn#b z{G5qzXTF!@gxl@y6_z4xs7@3ng2x9)km|Hb47Sq3RGj|eLnK2brkYy>H>uL%yHjqA zzQT^vvSS=}`q+=(iEBkMkm25-5$Yb00pWp+G>STJQh}Ks2RBF(^dxBtmsfB_Oc+m7 zh#YLNSf-cW=5E-q_ZoZq9iQ?WES6~k_a)i1+eXjqdkhxKG<^mTtI9wf^3JNf!J&b0 zQYl91C*3)z*`0E{lRG0>E`qa%Y3dBSTpu^xI=(O`>$uns=c!D* zIC1iRUadEYcDbnQy5SL%>vnp?q`xI6Q645Stau?Ya2MS3Qohsqpw5zpOU?d^W0h;f(Bprnk3I&lHouozSW z=B{(yOss;$3nX4vq(bBODVelHaUM1;P10JI0wAS{cS_pQ6rUzmwc_ILq#9(Zb;ACZ}msfWA#c*{9*zREE}QusDPvft7zOuv24X!w-{#pJ;WSZ3_?rw1Gt`%)0q7d z5Wk#2<>nr0E(8!#drlWe8Uy)$k}t9B;6ejj*Dzu3YVb}>!Q1?WJIB9>3Tb2U1Fjcn zoyuOdBO8^x<8+--1kw62X`?#&SuhW06I`tjOt}?{?yP(4$B%q3`vKmYWc8jjHtY3ZKfuM;egLV!5&Z#pLz3WH?rf5+ z*dsZwmpP%0BTTIEUnOhyAwsnCL~~NFN((#Tlv9xl4hM(PJ0N#DqX1l1`aQYqFq3*0 zSNUf&R#7P|A8S4JehF2n_eSrRFrT5HV3)(OEwY^KfgVTBh1v@Hn5?+_Fjh+HlxP(? z>5*kh$3A9G;SRP^bNr}{n*(IcoeFuGuO1vJxq7F%O1XVWuVO^Y-M@JwI9FBR#O_MS zZaokIm$LQXkwHI{HLcdvEhZ~)g#Io4f_VlDB{KdhiR24nXibMlMamd!CF5}1$$`wD_|Hjl zU}+m7saLF|XvCiuNohu|fZZ@y(vv-`NU~)s{tOBD#cD`uTZ9z;A0)MRD@drV>(n8u zEO}WFFCa5Tpdivek>>Ei60DO`#k0QxkI&sZXiR%sbR-|XM2G?FMni*Ao)ls$?%5dK zzmaIjdV_;Hwy!ynjt*<(WNs0}d01vaLqGltUY)whCh)$X5p6FW+>u5v^{^&t7Er09 z^4ju8Qh5c(MlEzU=~g%9C>*X#pR1D2Gsm!iKqi_n?8U*Rblk=Aa`oUy$<+sx2)oI58Y1avjA%YM<5gnD;vO&n z*W)p`*hOo(*jW6KY}`v{h9yxbDQ zjW?sPmpPBnz`iBq8~{eL?1Tfkk1r?1mAmarC?zzy6QJWtvY3}C@db{rCjClfI@oC` z6bhUj$Fk}d=lD8e6bf-gdMuo_P-yv$ZxDLVR)W}(f8Jx_qf_baQ(8_cr)_2^3cWK$@&>EZ^@R!X_BnC;htm>(w3HjRu^;5!Qjd^HEvGG;TEVC>(~Mwr+5M%Wz5^Y z&x#m22f*5f8mz1Tyy6-kp&tko(a_5J96eK-eAhw~jGrrBD_E{Vb2mAvnKDzL{hg#e zsPu%EH|7w;m_um+6Z^qzVJMJ~Nxszd zgZ;uRZEN)f${kWJsUrr~Y+_*SbEdYM*U217a|S1kvBxka4c5UvLMD3C@k^6VXO3mc zc+FR2mZk6^*=RwcdpOO^$f#DrlPp$8K3G2{X;er*1on|~uwU_0VyT*$E32Ug$Lnf@ z$@TfyT%BYhMj8>-a8lL z%OP$Gd`UL#wb3(pgDa#Ap5G00YqdqjEx~WemOH(!qQ5>nJkJ!$`K`8)~DOY79oA_L<9Y0XFvk4luIWT@9%V7>gu;X5LBpBBxslCwyU}T4@GW0N zE-Cq%T(aL!mMJO&YYVGOSJ~S)nq~2;=y=0^a9~wo$zTC#);~!W#eI?u`L2Qel$5Bm ztVrIaZYzEb372`Pft657Jat2P+OH+;5{ERf)=x>ZH*34OZdEmXQT#>{FZDdZDayS4 z)U9*Lk^VW74!W6vJ=~OQ<2!QAl^n=h2~xp}RFgy;1-JfMub^i0PLU+!G6s$_q>|7v zcx#75@$VwdqKl|zE2($LQ+*GqmaIq$j`9~WGgH*_ruaURA5iEY9U9!k=?_!rKbQ-8 z(x-m>`46H2w936mR^4W!(jA9xCEA|GX4hUxprP|O;0q~&lZ%-YTkR~1L0_3ZCoAtn zrZcCA9b6QcrDVp^Y70G{m4h4Tcp{RG!edYaPdp5;!m0F!{K}CrloH1Uv$4n*p03 z*hC6;)6Hp1J#ugmWB+h58d$)hqmocB+P?#2G6Fn$F-elz4lLDDfJm>m86*dFA8hKU zvdTD~nJIowx*06Gq(*&dV^qf;ta&DAE|BbNj^d z#_K(CZ$)FK$pa{?)~_5C1(&Q@g`zc;7 zOWE^5EOSp>TH@r1x5?dD?dY&Q_nxeqt*v^fCO~n>zJDH`m{JADmTDj+#3pqQXP5IT z9l1h4?D@Lk5tHloSaqhv*y#3&LCc|gZ)~>p>gg{vrueT}31zE_(DZkjEM323(*Hfv zXS{vr=w6rHISS7=+t0kg%h3Hi=~naPciU=byPJBm6nkhI%fJxcxAgyR*S1x9FhQw)dTnGO>b8RC86qF#=3Wwy~IgVqq2=TFnV8 z<{efN%e#L3?_Wb}cYXeKvVN~7j_xuM;SYn`SOXwR6z$&{1VFmrLgzrbt^NR%;fxCv z+*$@*w_y8>tc-)RZ6Vr|-C14?rz;H%@pajki9DxWQj!lYSPYS83mwHjYt|l ziPVZ(3oSg$lk*f7*Ga}{E4Xe5RnCOHs7l+Gc$3}-2Gzg&!!YD^*_X+>z1Z+!Z}^gy z#tlKm<%ugfnD8B7jTu-e6|d`?!$A_bXq_iG3rASjUy%pgezyT@p22 zU?qkZ+)YG@wkp#Ew>DQf(K{tT@7hwPY2D?s^xlZmnk6 z_I^q(q_gL@yMyz^BCZ-3C%H=YT^a`V+5_gjTLOZE{6+nw7Rf^zWR(PVJDNkbu#u(B zC0D}F^%Y_!*QZ4!RT0)v8*(_Vm*h}tDq1YozMzt^hX`3iv1jrazOES(D~Yfo?cnM3 zwt*eS-lCd4qlX+-EXP&{*p9g{i*7L50j57}xVd6LjN}TdonExdCdaxdcBjchXmwX6 z!(_W%3ZRJbv!u@0oA=A1WwJS9zUP!Yjt`Pn!KH>8wpmheneNs@-fzGL-;}WUC;@`LE_C%z zmSpPY+`%g9o6;jTScu~(LR4~Op}T;xkj6iW2edxST^1p5CkQvxQ-$UUvQXCMop9cf zNS>35+XSrWgoZ0sJPS@-m3vLn?1JMkC*znBI4er6;$?;#ypBHhDH>GM%$Jxa!SV%C;?vaM^hSmxM ztR&Nxv?o=QvG^xh!<6{>&_c{0@l4xN$i9JO3vJ7x%?vGRb*n7l)K2P|QXT&+Ne}SB z!Qq&qzobfxmlbCj|2*kteecl5o#B_HjBiz1?;x$5%MBg>9@3^UqsVw$GndJ?y~y{r z@h=giqBjiGmTCQm!HTSBwwHybz}gr(cZ>K|NFM-c57C5f8a+ye*QPmZatqb z`{s|-=3|3V1T~;ponx@w1`GFvoAHIZlorf~Ui6^Tk)p_-o8S29T_^Ot5OE0r3AII0Jys zEEBjh+W-UKBm)ebMwI3L`c(`?L(1J$4X_$SuF zmM=6<=?}=cZ*)aFIK_eGUi2rT#Cyg`Tx`~tC%*A8@{0lF7=wRvatM^#X$J671Y`if z#@JwFpG#X{8XM;&;t_-!x+PJV6P?^1AvXg<@#Wr$vMCuB_IRl&*=6B z!gW0ynfVhxnwFO4|FcKW{~o3fwdR#yXjZL(p3iFc}O6L=LtAlYRzcFwy+ZsasXA z>UDKbcfIOa_S--1zE`j3o*T}ss#h=Fk#H1%%h0igewBptA^(7o6o5RZHsiGBhOfUt z&KX7kB1g9H7M1o@ZQZ@~WxG%h*ucTo?v`7C%rMv*y@V7f(C<+~zYKklr(N^HdZC?C zzh##|k%<#t^vHJU^Fqj5lM@tx%rMwi{qu-T%2}uFS480&V^92Kz4C+$p1$7G`GMp*)ceIvUJIxKecBfG9 z{U0nI9_aSHO~9U)VFdGF1q~eBDjdu~4Ntw$&@>2^`a|Z40^VdeCAD$V#q0HkA?RHQ zN&(Pz-VkaZJxYeaClHtdz>ldvHXG#)>$QpL7IL$s46rhsfUI;DWQ68Mp-%oa*R=Jv z`42D|PCzV-Ab^THgo+tXK&)z=qS6a>8IwW*4>An?0gUv89@r*=Q2;E%2}l4|(#`{H z5|D!VsZBX5Zg|?alWIZ(=+7`0#5dU3r|SAO+l9LNS0LK~cDLLDWQMt*2Psfs-Lr&s z8R+0?*Tl14Xs6Wq%nk)y$uKfj!GwMxBs5?jx=81~)co zPH4KQg7nm!u|yftd$m_u(QC|T-#Fi0Y%MM{@!cD9iCORC0pK>TG;^|eu>3@t?4JGu za`Tb#`OXB80s}h!h0t-x3D*P~H3L1z1VP=2X`z7GXGhaACI(*j&7f_PAm}Km*E1O= zR4zDYPad2w8{9Lw_|-3viw$LiY&)n&)PyP&0g#0oB?}2u3Qgy1*|msv^)P0D0vR}c z;tV)#4Q|=!(`@w?MqdZV1!Tw^bySLR6^L^YtwLA1X)qahD$m*v3EJGQgFR*PJXB!| zMI@x+U6P6+bJdAFVK#gm!BC%KLMV`sM^Bs(Um-7{F?cpDbV2<+(_$m$LKGiw_~M;d zFU9tat%ZdqH`;T}&e9yerm6FT<{4?m^F_M3P!}D9EFBd&q8lq(*n^!F%~*mtf{na= zQ1TX^fF&r_{n=m$1Wz5xRWSc z#3y6;gFF8zO+rR-%X;PT?c6*>y3;SO$+c<6#{@7!b(DbY}0B4f&AMMB4H#Fw8(WVm zMYvn2ul^kKm4mz%v*S4X$CGC!gcA&;`rDG~_=rD|{YY$yA^O!x%pL_obmqj_E7jpy zeH4(bWQIq5i+Pb4xv<3VGh4$8em@cwywcTbnl0`C%p`?JQNH+Q8`aFTxPzmGDt?9> z9fx`z@&kJ;qMC$B3it?9#ULc~$CA*+6o!n@ue)jSHs+BIhdP$&rhtQ66Vg2dAKB*- z*5?Y&;+P1OtloF2P(LCcOg>^3!lZmLakHo)`Im2&fB(0j$Q?%g#2y_mSSx_Z@e{ff zMq85$MYBMZUkg#L%tjQ8Fp4T=VAOL+77Dnzkc%wTKZ-6M{;x4`cVyaB=g6xhJV5k)_2u)5tXz_Sw4Vw79Sluq+5N1 z^dG>agcGNVYt|&(djfdm^-hx4_)_a6d9|8#e;7d(M0IBt9|hcr-YPyRW+c01eAOM9 zUj{iA&iEqzXaiOkRyycEF%oNydfv3iMswD~zb@1^p7R_r&~BQ%zbDboNT}6_8G?$G zo+v3zSUk}Nd)CRUkjrxwJi$`0WT8^Pi;E{O)QZxEMsepQWhB)J%%X(TvyQP#I1`~> ztPZu7u+G(A(eIAuYj>7*73wFvwtSHMK)2W({+e(JXCfh-U?55NlO!cfj6;RG+{z}= zuV$GT3fMgPnMkQlzvQ|-hxw-skGd~&VPa&%62JUPHAC0wEJkmO{)BFj3e#4o+wwu8 z!{w)ZF_QjiVOwx=YFgms>5~^x!~}svdLAz6Nf^;1T7w)}o3(T5$4nFjT)1%J3aVh0 z*$P1(#*~>b20=@&9`vYw%CK9g<9M;$Ru5b3PLn&es>i?y2GVnO-Rdz4{mjrv?SpzW zlR{CadZ5nbqf~vCUp;IFM8Ys+5-;5{)C9TEqmhQZpmS=41HGxv$AAb)&Uf(}y31nm%&y zfNl#_u$~iESfZvBionS5QzXL)T~}1E&hEewK~oQ5B~!qW$yZngv^LNZSz)1L>dDL~ z!#Wtk`mQ=EL%*L-Vbmvh7JhW>kZ$!2(tm(pB=pi1*Q`l}B0Tc?JjrW9hc!fVEVHG< z>NTud3b-?QFCD>*WY>dxF7wME$HF;eUexU^_M_uH4{Tg$?P~X$OW4-aTD?2N-9r5> zC$tB7EoMjmnpGLUsfK?%HlUy&aepd_8!|1LM5WGH>6Rd5LvyB&a9 zA`}HVkqN52sc``AO2Sb9EI~(&t06U#QpYkKW^8zbV{(^eLhKg8U130igJ}u_h9K zfXlp^d}g~)kKp~A2iVQwpD}OekBOQPjK+x<1LbLe9eR92yY~4j`wRTNCnF*pm3==z= z0VgzANxUlL(+Eic$oTUtiT;HotinE%uoQreE*VdTstMU$lp)qKMg1drY3O1D4ZIpv z1~*ohI`bIEU2oT2oH0#>x{_yKhl%N~)i&6_Btzpj;g0LGXM$jYqMs3p#^*%|ihYg- z{;5asw2K0M#Lov(;R2S1pr;U&0-*8bgH+G~o`%4u6PN0%3HxI9;TC{?B-xTJ>mlDRel=o7U)~aI}cM4jX zG*(d=&ibtX>KhEP1OYk|=Q{nZtMl{bQC_oMs2SeAeSqC9w*Zqk*YRLPJ>vWWiF4vy z$J3}w+ghuQS7$TY6fik)u2Th&Vh&->Aq)jz5_{n)Oj*7m)cJ&>094vs$LMQ>dcRK= zxm-heJRkjbt2et9uT_oBH{3zIZDh-0OYU2h%|d-}Uyx~kv*$Jd6u-3Pbd3un2;kGN zgirCa&WY8UX$IX91oc4<@f1UooeF~6^G)Oo)Q1U00jT&0mJb7~v=YcUG)# znh32C=>8@7Wz!G+wdvJa(o+?Jbnp>^lXwfB){i~60ifFS5+FeUy$<@kj!$iR8T&ar z_&%uDGYJ&1J>Hj0kc9xm(#wWRy^&B9fT~R|4=SXWgL^aKC;(TNUY#XPFQ0KpxE|go;T_~98D-P zFu-|WfDGMyxcd{10&wy3z*N5i%K4Bd6Osau(FLao5lK5=|LsV;k`zFR-!(QS%u;uW z&xh--&1~c09}b-d*xhmqVDZ`Mc;E!U2yce5Lyfcf#2heQ~e znT23C5sU(0@he)1U?t%~!1oi70)WvMt4xO12(_O;wmBvMB7Ql0OpLN(4Wl1_0Eo7q z?AZSS5?@K56r@m84~m^E6suJyrRf|%J@eIfm;eeGUaRj6A%t8$(Dw*L0iaqu4uMKy z`CvaJ7zM!2s4+FuIvc*`2a-}I=TII$f5a8U_&j`NBhL5ncE2VbCf1#n?9N~pcf0-x z=yZ_RVt4p!E*Hg5)yD=C1Tg9hVbriW<+!$!N~JrZUH#~Bh&%=C9o8#O0w6>hfcXhw zC;&5T+BXSINuvR%pAm`zP|+uv$4UTRvctsV&LEp=bvmhJ@@-Q*tjgE&WwyJzv?5P1 z3($Lfp_mEAO!%UucsI{D~@x4`in_BLkN!m!%hL# za;>wp9beRvx7rz&nWjQL=po?VVUa6tq8=7fI32D3^0@p?FG ztoBL$>=O0~5J=ImQ^84rf}Spf`vu`B05|MJU{bgN4u+7wCL{$Q&yA0uV8PTs4 zGeH5fhxDi^5N5HXjFeg=5CwpS5PEW;l4UjzIxT9MU=#q0pB{{j#RU$}ji-`YF6&S~ zWW`}^{fpG9DW$gx^^6NasQqNe{ttj5-PQyEq8e0skx(hQ4oZ_baC&B|D;RJJ7(8U6 zF@eE`rzDXNGD{E&fFyG@^r0k>4>V683ILrF9UI4Vrr~RSA*o~XTgL-gXdrvs#a~{8 zl7>Rv_;}Fh5dTL-Wf$N>mS@*?%hyZt3Ld!iTH#i5X;&3%4)~3Nq<+cVP{4~JQ>Dqh z@CX-y{0$)~02#k`hOu9xYxni)s%Ht6^z#oJPj7W8U?~6_eHZM6sJKX8<%xO?IT?}# zXhRmb#&8lp(azDdLcR5&pyIxI+x!RR@yC+K@x>??y`bEUnsTcr4qK#|z+NV!v{@bW zScIMe_9hR!)aNoSlP?eAP(n}uV#t~Fg!X%6!e2_1)DeWCVB{0KGFsj6On=MgK^jTx zaN}3-5m0;>d{({;TKy0xUSDkwZ=79ST<&${J{GfGs6TojXIFN&+ydZ`;j7dbU79No z`+x!jF5Lv5pnJ$tQ~Ade=+>Qz^*}qMUdNLz3P25+Xs1I7#X`V05Rd|Zt@!je9k3)^ z2>K?1QUEmiEjus!W5%-)BD{wTbnF1kkU7UhzV%n-Za+X_vrzxd#f|;Vp4$Le{007# zIc2~E1^oMj@NdYpCdm&yz<9o>TRj$ep@0uV7B!NA9Qj=6)INlx0Njv~IvFmYUJ1EB zAt?YEzq&aoB8gY(|M=&@J4*>*)TUho1p4$LeZQ7M!f&$uo1r9-V zZQ7Npb+709qHfFOP6`0krd-SUUE;@Zn z-SS0grO8~|Dz-7 zp9w?(p!)rk2jmgTf&B}?C;(QwpTdodWxNhVHe9Z2_fzg9lN*KlHP`R=)!XJj*k8M! zvLK=#jJlmLs&+qR73*=S^gyj(fY1Wg*Y2kR5FwQZwS!O;fU4b31yCieJh-a}N5Q<* z?5C&}uk)~ZSGT=|{giHi_S*eaf5kk8vjSqh?|$s3(1d=95&*UPDFYzN!KxErKlIk_ zr>x<6{mUA!uHgwh1t4noQ$B=Hib2s)Qcorj1%PVzQ$A2hs1odH1fu|0-F^yM@u5rW z#@)y!o9p^yGAD%kwDWZ*Xfk0v0sxS(y*`-)pioo}GCeRCnT+9@Ok6>se)Rzk4-{F* ze4vs{CD?%kqsTxeXl<05 zPt#=LK2*nVOIXGCjXEp4Vhge65WiETNu+OWeB_ZN5jRCb@gt%u%i}996qSNJ7Yljf zJ>2;EQo&PO6$;j$u>`fFb||0OAw92?0uylpu=)p#VtqN!jr* z_#Gr;_C=Z;+=t3^a+r4$>$mQn%v+rI;igC^PA7*b#y4)E6y%t#OAccwdlYA^`u5`x zRtlJ!P7YtSkc00ars3+l1fT#wIypQ5j~ou<2Lz!2NHRH=b~VblY`%qa8ty~o>8S<2 z&^6x# z)ZOrOUdi}MDCz{b-`Xy>=5nJ@Uq6BY*4yU4IsvxIMK1#U#F_!N3Uz=>i`6XqHi{Yn zrn-iw^BNss-2km~!r-m#g=O5$%)zd?f){!AH&Qm)C744STYY}frqeaw3tQ~YtuC}@ z#`=RoeGQkb)eRWQcOUdfr-v1Eaw5K{MCh-T&@UzGVZ_JqSe)m>3eDMtZXb-&9^J?Z z3I#k_9}D`e#ddRL*Rr+X?X-Xb7VKP?7&r^?;`q5{e{0Lx@($WU0b90D*Ou9>?b&U3 zQAmGvc^P+M;8Or|?d^D>p~=hN(Gm(+@{~PeiH^>km#KHtCJNZJy6!f4hTKF$C}7Br z=^COt5kE`wt4p)&Lrk9DPg5vh%GT+cqHlNBm2R+aCN>4IAEpPdi8{eX*&iB(vF>ex zlHA_vEVMS`d$jXC)cB5WZ<{>UG)6}o`O`xEhEx12F?Q@e=8^UX$CtX<`I=j3$MM^0 zs8}a3=!Rb--LSmNDp6shWl?-P$8ltNZ0=YBY9`>;M1B6Yc8IHgR;c|?L3n2$i|`(C zh9ULwq&svnv=6Igk*G&l|5CzwbuDe9#<;3u`kwwKzAWfw)5g_#xT+}N+*Rvu&U~-C zw9;O}Tv-RcLu)8t%{A+34Nh?T3{SRadwT0=Prtcn1+jj6jW6vt>p@2PCu3v8E7g{S|tTAFIji7)L z>sZak2t66$=R)yy6rH21X$}R2+e8} zEt~-?Ez6gVjcw1RZ4~QlTdy_OX)p1UytCcKW!%oK=X7q~tK;^3+C~A}#-D=MX4V#K z8z(9zOfRG<6fotP>zG1oihp*XPnT@B{Sq2R0mGiUeul}=!J5+}$x=9${3(s1fKlt% zCFt`gSAUiVCW9}hO%$-{N$VG=(5A)q%2wV*py~Z*w1@&0ts}j~qOj6lLsKYV%JbGc zIL4Ib=GN>s%v~|3UR++~O=LU)){%N0&7**MFWgh+ZRz198gord;a0XrYN0Yjd%&U_O? zMij%_XdDHMyKc`Iw?-cSh89x5!gW0DT{-Xb zdq)r7;vE={^nhs$dlwC(fMN3SkTKSTs{C!(2Dh*xUJqY&xqNKaY+2}TZY_+v!e)Mr z4|zQZt3DsbqT%iX&J+z??74pmtSG}8&v#{wr<PXNkUTqdi)hU>(&~lRrY5U=#5QG%sVU1rm^AE zw1EOPTrn;8>GND`rDZTbOH2x2cBYM4b@QviJYC3hRmF@tU$-Z;P1T*7L$ar{ff zrdTiRm0sIof0fu2z*bWadZ*vCb+lez_XEOH0Dg)!-|EeE zcPv$X|4)Kb0DSz*)DyGMfXCebFIqqW3r-&QVw*9bVg5H18W?>aGj=w&?pp4yY;E^Z zon|_sFaMOyGp4yvA2=U3j2sm?viqpBoR;J5&*7E1ookF~PN~$lLLf06IP42LO7iZp zBz27v!C9ysQinqKFb8g`5ynyXjg-bXclAxBZjWQi+E?J#Qd6jfhhc7Z4Cb7>4}B!> zHFLfrJL50858~8yPAo%aZzGxg+@1{dh||YG&v7vjade52J>K=Pxrf`+j8PhfuMh2?{;)^x4VGFNbT0`=@tdtx@GTn%XBF+C%|NQzH1U}T)h)rrGTp+ z-Md}w;KO{g?S8Yhvttu^JiViUcc1-#!#gY~;>NV@(iY#(JJU}J_<8f*?WcW(p)SO` z(Ju=4^`X7mFVGS_X=`WOQuFR~jbg7aynYj(h-)sR|K!~;(u3ZM-ci825AUssbK{?WbE=sIYG`F;u!Xe?l^p67meQ~e#Pwo$ao3pr2WJ%9l^o*wO zPLFjD^8h+a0cSt9mpi+Jg(of?FJX)@b@(8{bw*ZJcPbcz_*X=t*JA< z>6tfPoZrLqGMbkUr*jl=?i2sdIM+l1jf0P*gA{vz_Jo!GeC#wjM*-(PxVL6c-n0~s z4QJ9Z3OKgcPN?pgpG>dY+$$P`ORRMkm+=aIf0tWC+)HHj$&{2j?*}IeMtw-5bJe32dmn)#{Fz-^Jrshc^MPmervwHva31Ynq6@&ev>Xzz{PdEDv;krmq2&b zL#OcH=^w@3?q7Rxb9-(Mm#W-As{Q*8{iA??U)`hKLCpfJFd}y4UpxFgI!pnF*KrzK zF;AZ{Om>?}RRhOYx#q9^`XT+IfM5T#cPDbCxtY)EVBVlT`w=~(fM@G?QMDTH`n@PK z#@A&x^~*!GZ$F`L6!2{wSInp5o4G|wJN7d=Mghn6>Ty9<9GkeCQf>q@r2GZ_qkw;V z^~9yu)@chzyMYe@>{w^0k_uiGERQCR(5oUEJNzzyEV_W zDB$NhULwx#=T3S0U9W4{B<@G&DB#?)*KJL*;#Z zFNtJ#rGx!VzGj*N0ba+Y?TSg0&wDBg@Nk;-=-=rP1w7h|vm_3hEPaPQQNX8Xty_N- z#<(H7t|CVl>-bN{EUqrBbZ|Wg_ZRoae~(z@uL|{OyqHv7%D1!~er~9d50*Z3?7p$0 zSZbfjQTv6|{z@HXqfSAq*!Ed{M#p%#2_7m6I5qwQ@KwcY)LZrE?m;BakR}bGfFWm& zOUa7jMrD7kERIjA<<4>&_sq7<5T#Fr*M2mn@>hj=^O+#kdoh{YefR}Nqv8K#q^c+u zQc*cb^;#j-`0x3QC>uqp>dy_Sw&JGg1zyR~KK>(TtrW=S_|LyrRj)y->d!+F&ahz!=5#E z_mn+M8+UY8wuY8{l9o}dX97Jla0k;$dnc|g>jZw9)=U`x6m94m@{_YUa_WO_icx{MrS(y8z=gBzs@XPtj(fc zyH7X2F4TkWfxi6vm_zM8;3Cm5*&8Q3SW$+)`|qUhR%2J3r({&0ZGUFdBagt#n-8=f z{~srW6v$A2{m?z$YBPRJGbmujQ`XT8_x4?R2ZgY}r1-yS69sGRwy zjrwgE@{R@_oByF56tH9bk;?+qumkU5*R}*v`6aEPfHmV!HR@Yq-c{tq5Eql%EqDe+TlOMaMghylf16&^|CE^7?#sRxii(A% zVqQV>C}3VOcE3J-^QsAcDea_yoiF`evQutm@I(3vno0pvuibN|a%8Ax`&BfJ0;Y}s z?!@fb4os_N`n9x?0ye(ncO-n~mK8tCucw(5F!MQk&P*9~t9gDSjiZ2ZFaDh|uA1pL z(@F|hdHwH>m4g+10}Z8sq2r%R<|`ZXQq*deZ=_iiFl+Z7h+oyLYJT5N`zT=F3w{^u z8_euGXd(qn9Dg+|TV~l2#w+;mXcz?yyKens7cs1w-FMSM3Rw7}-wg`~^LrDGq=1p* zzY#lIe&e})KaHY*QO{lf$W@H0=JjS;M*-`ezvrzR%;|?{AO#E@e+eyHPOH7}M`;cP z%-I9eJ!ej2j`9hbMgh~tzowooQkz#h3v>E}+nfviGwq>(J$rD@)U+ovy>0kfX8r@Ga^qJO1D6tHOQkC4T3*I?toGT1olWaD4vB}93<`6LT?-d`2! zZs%d`?(Xn;_u&_dMt7G3qA>ow0}*pXIachB_+mnmJuCI)juH3$RI%myZh3)6>eTpp zFD97+?oBoXWVDDD8+%ToJruBK{JR>eE|0Mi=9_OK6a?nJG=u_%jDKAvk0D+>9zZiF zV8&#V8Q;MP7~`aGSVh(Su&~?$WE?S>J%<<2M|H zQ>U@jiTH~lV8@kU{NA<ulGb?5U2^(ccv6`g>tiJ_N72-hJ>R%fF>__nZJn z^uWhc#m5Is@V9q%7x6^P?hR$b?hO~%tA{k{q)F6v=I&z@?!(QBsrV1fc-Pqq2Z(X>V~Z982vK(0)-q?NujkM;HpgoSg~A`EUm+ zr+{+vruFd(WoQ*`L5`~~{60}AfO1|I7q;SU^!**3{#HY$KO_PL5FVEoq3XgLI70{uKwO#`qUz4Q ziA9mso$ma~VheAI)9&1l5ENP65s0cg4bRToYn3PrX&EPLgCI<-?|%Y)Wlb>b|-P-M%4=fk6^ zoFZEusJ!aJc|@VemItCd(A2|))J~Bt4_bTGiHiwCku4AXa_D#*l~ZKP1C>`@_!FW~ zk@zh0FTWIP|Zn?NEATIGvuwbmh4n_mC7lgJkO9v zm}08H+weXz zeBG}*x4MAmt28HGOkfHCo3Gl%YoW}My)H6VLM776tvNjU79w9yWQwV}jCWe`b=bbk zFC#DofM=(XWPE@<66seGmIAOBWPk+rzX0 znB#@IJ>NBO3!X#ReZX1mg=O?z?14@gQ@8v*x}SGS_cQXG(YGn+d+Y&WL}=QV_?!d< zth&dDe%$<3BmCL2uqPMYuj3#MO>I%LeB8Hlk4}r z)$iSk|Ad*ZA|OS^^aX&`^u3mV6aXAKLGz-uR$xQGA=UnR0#g8Z_RXM({{4j1a7cfvIIk9Zcb|2cZ5#0l`-Ms+f!V)<)K zeSa=f-;t>*|16yJn)cRQYZ>=fv|HP^@N<#(!6iX$+Ff}TL9teWJC-XH))9>ecvDf2MurO0FW{RXJ=#{{4Nz_^`Bq!-!9RS#FOr&1{el#X0g zSc4~`v`UgQsGTBv{#)thcFZw;_hgEK9y2r zh|D0zA4BaFS+u*zn7Cg;?Gzc}e&0E#y&CsR2}6+~?ygE7Po)$YA~RT`ms2}M7VR!F zChje2r^pcZ`wfr#9APK`^Y9u&(%dYT!*ro;p+*X5JhPt0DoGSoQ`C(3Tzh$CEABhv zHwd@8DqW;@ikcCxXs=I#1pw;sdw$+V`pMKt0gZL|4UJV}pGMUbQ2mG+ z)aaDfK9edbpmOBhziaS zC;(Dty2%%#w(#ap9hFy5DFu|)nQn^GYFu7L?G(^nr%S?3p}}eGYpIt4dh2vaPH)xl z*AsvukKu0odL#8xRQt1Lhtgas^N=N z`f#B>d=3_=j>a=#Sfr9B7&dy5$|;t=#v;|`FKK^9_ipabDoY~LzPYp1>g}4vLSi48 z!6ata0yd3(x8Z|p6tL}2Mvki~AYO`eG>#)01<*!M#YUqIapsOxPXYBKuUIkwCWGP1 zfV5ZDSKasn;!pr*6`6DW)fbx-7Cnr)~b>Xf=p#aLrV$l(4 z2-Xlzk1Q5h#vNKLa=1`8+!n?1F|0Z7-v3;=Q3r;NES6HS{56VYyA;c~_5`Un>H>Q{ z$%SwV*fMgIE^P@bFi?sV%;GcC&8G48)6`CpOFL&TPWxx6odViNa&$b~H?Pjm^JX1M z)Gbs_0p%kn`r|6c%SnvtFHtoGRF9nEPN14MNMSmsIrdfRr^shIPJguOZ%{P_RF6EN z7|-;%_V&)KHT&PFn<9_d`fI7i>~B*w1yr9gY6uw5?DlrtBOn3!E;Uo+(Tp#sSeE>N znkk@p8p9^b7k^Jq6TfC zqxfhlrhwv6Gcqx^A^(}btxlY_h++1fOsxgJ6yPK|lX*YE~X$P@m z90GhGfhhpo$(T_?>lJj&?cOl(g9%On@W&-lyXsZLHEgo{&{R@?Pd1l)vIhZd&SNGH zx4Cem>1!_y{mlyB;$p7p6y+9R%=u#tm_kuKsQD40rWu)QXcR{J#;bELLrN%MvbpSE z7r^i@fVqG$6wG`g?Ysn3*cL!tL?{YCot8#2(buqf)p<}KCZk-gq1;SlCJmQaZ6}ZH zYW`hzfkykAJ+}dfKTZo(2~jBO28X^N95R!~8aC^Z-du&CZgnl=O#yq&Nls1mLLfgl z>bV4=0EoG5u_g!x9@AL`K+h)-1%OUTVvne61X^z)cWi=d#0i(LnydO-YkC;vC8rtL zFVuM*kmz8)N%qViaNIOg&50uy!U_~P^&R0}hd6(+}iVhp&P22j9&E2m&U$?XwFv}gncjJP6+CJ)O`*2evoO@VWgpFEJ39jzf0AKI=>Sqr@d~ciHBFWENMPtZ$|GGYX6-G?S`^JZ_7{F zN0_ykN&AQZPCyXsBP7^~lb1lJ9>rXXAgEm=KLrdwJ1Ou^V*^`YIwNM3AI>Z=P-SrX zX&mh1!cu##IoDlj;$y*c_)ue6QaU~IgBko_#{9tV>(5z6#_l-sH}-HGgLyR<_b1Kk zTBa9@)*;n*kW}xOQiND=qihj7)R80v1w1z2fy?c&CZf!8#xUp@8bkquo;t8A{RGV!Uuy0DWh)B@-nO*PTL_fQ+=9*y4=#<+-pUbOoLx+ zoZZ^RW8vF&>1wk(g?dU4m35%o_cjq3b9KMUpFr`1(1M6+xrbECkcn^|2u)Atk@irX z#C%i0t08M*wIQV~ztcleIE}35ee*nQL0RGr0%Tuu%6{Ne9$|a3}H{{H1 zVnE&%B%I||p}xWOjQ#WtFopdeaOcN+mSi{q0#6?-JiRQlej#b;l6nzyMFD4W6@`l( z#|}eJ53(R61t5o15(;LjDC-0{;T%z~;RK!nZe$v9d>|oT3HLg} zQ2;Iz+kLpQM=T-VKu8Keo|A=k(2Z*Zh6?ITQcm*$07I6$CuTyYwM7_*jY7S!3(D;~ z$8GZ;poT1Iq(TV_Sob(#-H;XaRQ0-F&>m=S)B)@aDBy{Cw@TgV2DR&;mA#$^cn|?8 z0NBdYsRw`_^<2)>p#-I1zVdJn${U_rk0twr8odcFIU~XKzPAbJ zOmjx7ozQ{^O3n)r7^d}qfXXyXTPQ&R>z*O3%QQ?|^}2J?rfY9hmsz2J zCz*!n0Ll^1girMdNCCi1!*l=`P|t#{5|o1Z$}&t7ljO4qPbd2vC-PM=ZfV9#^LgDL zV0x!e7i{J*?e@J*xR+^|w%TQwCL$>L5}{JkoE6!0q3FztKg4b!$+ zLaQz%Fa>}!4bv7uXOg}KH1)lHJi#ddo@bc0*rcnE^kP!Bq!I8kjc}bM-p)nN>a9Y3 z;R+CTKiRSW11{6jj)M~*@bq=U(@aY{PQPZ1=aPCPb43AXG8IJ#CcUQ*c^V-p0GVlN zCxk4C>BF8$SPH=AS=!Os@$N2AMe?TpoP0Da0ZgVjV`pi*p(5_1K1gxSh$hS#DFKsd z&S+o+0u+3kP%v9X87I(l&~ELBdJmIA0XH&@IK~aHZ!F>7M>q<=Wn+8kmrp$F;Rgsw z0mwXaMz{mgS^aM%Ge^+|Ih1D6^E7UUYYuQjXaNGQpM9eg0bvk9_ zCMf9mKA~f#30Hujx#C*HP4zfVxG3P*WmzU%4xzEIy2*x3$5g$SSqy`jY1X{hTEQ(O zy8n>PLfz{L$m0HH&uzfXA&(VIx}H`-3Ko+0F-cyg5-$OC=6t`@;jA|b_>+k%6*w8u z0??xfN&(PJ^SlaZ*|h|~#}b$Vz>mp7Qc>RsP(Dg_TEb+FYp=7j$rs;Reqw)y`-M7W z79>3wX1FH1r~iQ6O{S4aFq|0z4bFZ^IGZn@fwP=Jd&q*Sn#?B!+#B)?PC_*f06PlX zBL;pm;VA&$&9eaQ`6!c^;LO20YD{R;1PYk&gj|faZj#p6-Xs*#98+H;xed`AwKC01 zjeE=89p-F88fJ7up@GfQjlUUjYfvH$oGF41ntxYlKIHb$x-hnbW(GX3 z)l->f3Z!{4E7P2Z-VD&sgE+39K?5jYz?D-pAn3TOQMi^yP{0V>Wi#79sqO_P-&4nS zKk)xSx*N`wB+EBa(nY*tbDQ6zb06=D>3co8ZgOR(_Yi};J-RhRph5MYPoqb-C_dA* zKiXmSU``_`;9lMyJpc}RbPxWagr@*}-X1-GA7Hs>!Xsz`1x(1=qZ7k%+ynd{zem^Y z*<BK2wR8VmIomxJp^n4Z0Cw@uzds4&gEIw(`=J2aXmmVo*Pd}Rt02%voay90u+ z?#zCU0^Y7>?Q9*An_L8y;0_x@?nXl>V92g18!}K6Rb%c>V<=$EmYlu619H{jT1*`F z2OZ*M%+v+r4Weesqqhom;FYL|{ba}f55F@lpgK4K0^x5XgwM2q>hx=tdoHOvuy>OwBL^;BMI`wu8+4N+M7(xcA@@>mx>OsyX6*OGhLbTUl*X!T}2=si6&@)q?<@5_V>6{>`yRr+RfHRrq zg&~+BrU!WB2g+$+YApYOY1xRNrC`Ly?a^4noJ3l_JD-?FRZk2u%U#OjivYgo7^0>y8=t z?-QN^@Rw$pWjch0+cH>BB85Fh0Wxcb%UP2kn`y<1w}QwA`%U2<%*ZrAdl*7zLW9oN z37s?DUr<5u2<0F!BH zdON;iZZ7%AW}z;h2Oak}dv1fC<+=1$LJAfbd4n)A(;Y0X0GW%L4pOi{&3EUerUMXaiUZm&HN#|4z@J>y4B-qleb9Rolmei+s2PHK)bxSx zM_>v7XQHN7-|)Gj-X+u&;H+`QefI9=(>ntb`{o|lhx26XV86-kxf>NT%~1uznNcW0 zgR>tM&gRQ!;4G(#92ale_7-xTV0OQ?iDSnFr@7em3gsGI3=NE6XfZi(5bqAyAnJ%9ZI>Q&Y- z3&lG16LO6Lp?S&r8W>dI8fN~CW>Ub+m#(jw1C_dlslTA96fpJKSI#SoqyS`MzZIx;Q^bB&pEFr$?fj zeSF-m-ww&Hy_Eyi?)g9Xpy)BtW41ZeRik?zW?G?W1qi(VS9PQlyXRr*HIHKl1y>!% zBvT;CiQRKdyQ7$}I`$J|z#VA-1q?{+o@3gb0VT&{KQl)B0ga%55oz6XOnE~Z2fJrx zT%;u~~|LeBHjsT^y>0%3v+*x(`D(_7 z5d;wVSRr!!QfZQE>5QEh>eEaY1w4p%_~|gF8!o{vt!{Yk1m^A?<_)(4Qko-KE)0u-wbXsdXvZ&0s0?F8d*?DPI^u)D=HoQ7Kg0b({n=Gu^}&9V-P3oh8Qvf=?USAu! zWb+{WpA((}@X`15q@p(j3t!4`d{U1jl?|yJjn0jptDEor#^#6S(8f-`DV>CV(OiE< z?-c5v`C8ZmJ9eL&@;h?&v>af90h(SYG>sR+#2(;sjx$wzq29&hP{8u|{38WKf>wcg z51}Xk6~FwS0#!1v0{1?`Q2;Lbaia;)8XYW7dC6B7kY+*Je<_c!F+Sv5H46!BE6P{af8t`OeEPfn7&67D%PK~i64mMGvwd?J+!<~Ue| z{2C!C02!arq(TNjPb4wYz(V1uw-A#8j+PgJf))d3f@x9a0eCj~r;kLPtj z1M-&96X;J7ngY;&5}O?+AeU^aqAih8(L~lQo~3qw1>bcOUp-<;yX^q~o!mOwa4R^( zR!uKo5xc|q+SB+^@%2fsNFzY9YlLKV^Ig^N^UOb1DB`MrVZJHgTB}~ZeeGq+rPXyL z8uV(WeOQ3&4Btyw{M+6Rvo38m<1cyvGJZHR9yGJ1>Hje^{pcD4pRY@@OkiaBTFG*q z;i#(HX4r2p6!Fxb{Ry&50e9lJ@r*}YU$tH}MIUV*UZ@66fL}vk3INAXv1j+K(@aO{!lVfW>3zVa>j_|WcAaq-k)%RvjZ;W|&#`6RRo<7KLLGS>D1#FSv+r#Jti~y12__hz z&l`k3HBKQ*rKTVAy-?3(@F`&VS;@f{l}JFK`!AS;GEB7+vC>}bcdnAhF*;_aP@j`T z*nNQ6&02}@zyt${cx&B6cuFM^)>Q3lk?W>hv@f+cD<3dJlS5Ry;jaWmxX*5jJRhxSm-#4xk-(2i0+Z*X z5#5r*)rFN#>AX0q9?djTz@6yFLB>gAsJT(Gz#x5uxg3ZqV3Vi8ORI}=VuAC*rRHLL zvD=ex7UO`NU0@w;X+{nds?WavnCLOxJfMpO8h`#|jGzoNPV7LQKPP!ko{J9y(8-P+ z6l8TBGfn~T@Ep$IOKuaLYXH;C#IbzZS;DQZIwJ=5vrIpu9}RQ-R+=#^S?+akA+@!z zFrZeS73sq>I2_@_+*81Z+mHB#IT+PWZp6P5U)$(H(K0aP8^Vy))H8uKV#71W;Xe^8 z)VH`AK>>f46WKBxq@fRiH46)I>M#=O>!gk(YG^K!M{!I*SMYAk<~(jw(v&d`Gi)f- zc~9dg9<;e#{WrBn@hZ6BA@$#v)F+SPRmHkf@EZk5{etPGKzfr$9A9r`Ey6!!Ab(9r z3idy#)b{l{$Z|sIA2zVRB`gJCQ|Bwb+J@P|mqQ#;)c43#%N9qEcHohEkR;~8~BE1-e|M*dP5S-Z}RFYJ6u_XI^<#G#1-_9vfblv*7z zW)4UIV*kti=q? z2zxQfPhO~FiwwHOIG2i7r+YSlq4$kOoZ`u|a#C(6zV7;m z{Gd=YNgc^9f-kxi0VTMHWg_9Q2n5p{y;kKWl-gQ|XgXcLYftdCk9 zPG@O(VW2Kdqp64IJ{9$F1nVJa*G)K|EB~GWNWQGksQSu;_rwP8XN333m-S=HUFYhf z7K(`K$LwAy;8E(e^(vC$ z-M-#z>O%lazTV)22?kR3AW2#J9GBs+9@ws-^g_LhT>%9wPrb3r8g5eKLZnV+Mi?g- zob>rElq_NyYICb!&XmwF!-hiL_(Ejl5N5=+>0S3Xq(SnHUG%^Q7d&L=RLM@Q8KAG& z6_afgB=vuoB?@?vdb^YFgk%aJn{+@8$|+12gXo-P)Y4BPjiR~sQWsDyyoSNm5%y=i zcDzoTt3^lK1p0?`tG38*g<;88S*?ejKItZD1hRUbWHtH5lp*?q2DJOrK<(!6X<)4a8w9qUd~igZRUc+QLII9NUk5lQ z#{%8LFxzB@WIC-bCBK;9FhERZoo>ux>0J7AI}Lg{LBn&OT64SQUVFBK=ZJ%obkk^v zJohXRSr1gG)-r4^P%*QuaH`q zpC*_;=Iam*ubZb%)ebuc7#VsU8TA&{69qEy#9A~So@HBG-5t0j2~KUY%&V+$GG^-K zq&vB_CUH_9L0C(-UxC`B*9=x*@;$@^Us+tnBcbIPJ@)Y^GOp{q>Dj2OgIQO$N$=S| zV6~iChd3UvfMF21K?2)TM%iSH){pj5p?BdG%Gr`e=3`f~wcbeP*X!^Z10jMB>n*SoyOuzOJsFlINH3^FP z1Ez@r_SdZe8#ER`z(^N9^+$xG09^X&fOBFv7fZ;y5|RRt$@kVcM90Ds;4`G4;f19_ z`Y?i*F3+{ix5s1~nR*_WcR=6lmRs=X)Z`Jc1QGxc?q7v)=@%$UorZ1N8PTt{FcB0m zy9TGr`1m~YffRu#0F-`-tKy5_+xcLN1fu}h8Oi;e)(CF-n!ib2xvWEd`kgSV%gf!~ z3h#%P%k`_vbFCH2GIMao9Go!+vGo3Y(C&8qVaLluRlV#C)9-{CVXW8$rv6x%ntmtB z2oRy}kRONz>M6`R1w7r6T!KR|T(4$2(IG!GraYadP{5R{r)G*r|Iy|=i{?uFbHYN8wc%L{r99e?W8Nz$;(IBglh57++lQ|@4 z<8JvkEQ;hS`Mx583myvLR$teVPVVNaiZ%KDMnO_PVkIA|^^sX9$`y=G?#O;NB$#d+Aoo+~~ zvXOC+@jEg1)Kan8;Whlkb)z^6KKUJS51JaR;Zdyb<_7x6e)a z9g~)Px13cXy*M$@SKL*ym3-FfE47`4=Y=|!`JsU2$%{AxATm9%%@QzmJ3>(as#b}) zjId`4It<^lI}nZnaH;nJS`UPBW%AWsNVOpCb$W9=pkZGD0aD2xg7#dnY(v?=?WQ>h zpH5Gm(K#)KXn+CH?k_}3UO^AETBiA~s3$NX6fnNdc;Q7W7@7jGD+opbu;hDX27Lr7WCYFVa=go zquww7j6GfQnkzJynuLXf1Pf0U7N&O(Rn5Xgzg65*hcaIja3uPL?=dcY1b*NXotU#S ziu^Q}4Wl}RiDN8Fj~TmUPOdKTQi|?i%ljg9V{lKz=Xfpnh=F#~-}tq1f^oy)vRfGg2VUV0F4_n=Aj z1^|6H{^*f9gO@08KjIhW;Lzt&lJBw`Z8R46U>OSgG9kli>Yz0m#-l|nd}4(YRh$8p%jgV*x|FPuJPl1n&4RHjdG6*;VTE18V>4c|_C)aIsK^o1=+;N{ z&k?WqN4v)8BPC!}qr?L6VorFGd;u!1-s6LhEU4;cu2@jOugh!kz*lbbZ`$llmyEQU zW!fd&1CdRh3W@8yIo>@&A_?WA2=Wlgt$A_$uu7|G2p)+@e%N-<2;30{RHU{msjWHE z1^#iq7a|Ipx{{?$ft02`_8Ka-=>)!gq=bH{C8knB8bmPp*@_a@dzwL?RqG@A@gMI9 z9(d$>;<53ArakuXL-Hx)Py@vjWcn(}^tO7PJ2UM$szVSa+&e1R>W3_43gmsRRw-A| zgY*yL?jj2$2eDWu-|s824xR?^s9@X8J^Cl|)`+8p2;m{qI{1u2@>%K-!;l6T0SY`* zC{VKstQY0Xwj@AsOmNi$SoRc1f9exP5zlP$Eu`(s>8pAMQ!h~;jBm}c+rK5>%e!ed zX+M`w2AZ)uIATW_Ukj)AHOFpW9gQj!EkMp+C^@e=c30JVW4C`uP}LimaSHfVZ|wG! z+k~4on{WE5Uch{tvD^O}ME3f--|F{n#eeCK6bk!-Tj#yR>-O@QhM#cOW(qz$WCun32eb%<|qSJV?F+ zVMH9tzQ1aLpsQ=x8BoB-Ewx7fDu5+~Zm*pF({c3%l43;2uZ_-y@I{(-50B5_%Lof6 znNKR}rJUGTX8a#-^nbk3UfaO~Ay~ze#df|R-(G0a?LwVGwcpH6BX-EPHhtyfOMed- zFNUIHd7BXGd3(SH-T6d6yegGy8_Kbsduvy4OJ&1UU!VduHefU{gn=`6|Oy6l)v4GZ>Z09SC`~o z7rRrahhC4WI?(NVn@C9fd91K|DbtKf+IhCM*_q*09 z8Jyq9;9W81Uug^ljEO%~m^~FbCgs)5ib3C^K@>13dh1?Rdm0t=e_~aYRD}&wESK4C zuQ%Im&+DgD3Y8fr*bBogYm?7b=A{S?b( zzziuD+iZ+^K8>M(F;grTi>jHy+AYh)9x?{KkOon}py`#11;sa8gWP;hmy2tJ4e=G4 zEHyjZ-EJynd!c^#mnf2b&{T*7bbLW9C$zw#D!wIE5kDi(iD(MKIIKRyY*WD9sdh{f z>2lOypmogE=V$^2Oqk*zYLi_hzcu3vG=lgwWR zYo~BsZx-rX{|9v6e^&O~2F#e7-ULF>WHcZ?c>mwR`)N|I^j)Xk^I!d(Ij4Z%@vHl} z!|xSF!Eg#9EM@lg`{d_zZm$|d1_+06G}ZD#T*;P;eE!ZX24 zjl4vtHVvVGAyY01&k%1~6QdO)E4C9)?kCr#rO?cS-PpMI79Dl!5hK# zK;iZZ_2fT8VQeTH{A~mze%&;`Nn!{p(CPIHqlPF-)!qkQlhuUyk2LDJ_j>lSoWq}07G-wP3jG5kuB9M&$`FK5|n5O9##bSG|(~_^r z$|ml1{=X~=v*$LZTNI@kf{&uO_tcA`1l2|1`>&2?@+si=6i2a&2~rY)A$O)B6fk6p zB~dY?EQ!FFyU`d57&E<+5XeS=e3C8+(**SR4FOpO^rhC)V%yY&*)G)oyb48efZZ*( zV9FGizdTdK1k}YNq%Nj7%k)rnVOXzq5Y%~`G*H0x_!|haXQ4bL4^6p{rcl6?DbDb! z@hFQUH0NTPLjiNPPHj46FmWYO(^Pn&9?tr3{DcA1=7$?Lv>n_l)KC9{XCY;SzYUY7 zcoyO?IlU7@P%7t1sZ6o|4sgq2DZ`;|ASo!;fuk-bm4flixsm2jz?>LEVFll;cAA2vERIMwY9X;S&)b6?M|V-^IDY1fo|X1ggH~ZX~ZJRT#HtqO0JeFnd0SP zA6A!%ZIDQ)?d&Tl;QbUkZj0*HSEW#FvoU5DjiG=sQ@m-!qB>*BQn81OLD$eA3K%rK zn?@{X!)_S#t5_{1Rbj&zlh0LfzO%Ax&HMk%?>2Vz2RB;_%`JF^L3^Ri8{u_e?132^ zz>6sKfkOTDt5H73M30rtzAj#9RBNx?=Q3L?L}@)&O6%$C2d&G?MkWY>j+(lZWTHSs zp0mzoNx6+M?(sB^0>(XmosBEYZ-jxD(?ALsc+HyY1Ucx`u-0s1GWi-2uLjg}Se&j9 zf^@^e^P?dg(*Xr`&xuPD(gizF}4vQig@zuXws>A+(AxiJa z*q``4GWTtt{Dd1&BM0lT)ijyCvMkR`Cv^Z^D1sq7H%WGqUo@tz^&E1mp2lX4qYmLo zA_ZcX-eFc^=b+>XivaL&0#X1let+^fgJ%S=oLqRGOElF{1f>Az`LQ|0WSC$ga^`w! zCQQADToj6wq=>JSjsw>3w|n^9Pvwov(sk=&Gxiv|asAHaLfw;Ryti!)Ic$#%D6LmE z!wnUKz~oN|ljBPOHG`q47Pmq0)dKq<3gkY%beh8i5@Mr-elWl~Gpb8NC}2qZ3_OD& zUKNatN{_}+z?kUbP`WJ*2?HL^GwgM*1veS_I7`Lw)cpvfs?Zn)B~Ni?TeDl+&3Uq9yZWlCo~11 zlZU3N?#M|}^(O}YUkOhE_|$hqR#i9HfLF$7rt#gMmR0K8B(tVgl}GhRy}dn)PtR9K zEsciMzvVOYLTbO=7~}nYeNubMWNJ@rkospiNL^80lG-~^C?cv8nOch4r1o?>W_hIc z4jbru5}KkmsXg5ex*Sh6^SqxJ_>F|8s7q>3wIQ{%SW@da|Fk5v_j~dv`K`Uq!{*Aa zWphgE+GccHp&mj?A6{+tTI7#u$fHwFgq-%$5CI0C_xq*}a5JNBp|gF0$k?wPRmU@@ z6maKpiKhz{Z}89@-aFG-YWMIu1IAfgQ~ScPXc&{tSgh@1>mG*5=DUR^+Ri zrX4S*)a^59FVxfd6y4FWL$1|V#QY|&dJHj4j6jZ$kQ}Fvi9;OcDMAEWaMgb^*A#Fq z`q<<+qwydz9)i(n;Oi@OyfGcN0au4J={D;22l{xO`k8Cbw^kSAnvU5n)D163f)B8} zHhLg=sC;4yfapBnp^)Nd~hugp4X7&>aax0iZJyE8l2r zgqm;9oV!Foeex`%-C61`_nW;o9a!2T*S)22#x)k|{=ANG#6Y`kD*wLLEF@-(V1pDV z3MrDO)-mNeb=3ocsP<#_C=lM{ZltQ)O$CH6)x!q*KtfXhI(cec)$O3&;IXm#69a!R z;VA%rSt4(%svFX<$zzHpl{$e`Hq7!40y=rI(qYf7&Q=J`mO}mcUxCes%Fn=Z-Dvk= zgWiV$$zMenFhC$d;**8M$@8lL%^`zJ_tdSqN=X4n>embvI|5a>>w)e^Pzr#?Zyg(B z0F3(>VXX&zAb}|Wocbl&0N3NI2lGIZ)ey%cN`0m-w_7sSiV+|sTMG3=UQa8TsvGS- z4AA>om}(6WNHFz`Tuil^L#ArWwR`Gi>~1KsFg1XyFx3NnB|#~&Ff{;;Fx3NoHGwH| zFqL{erg|`^hfLK+Y7u28o`;r8jBUMHsQd68G5ec6w*in-QYTfSi~Wpf2MsR~8YVB| zmMVpRp6%+xOa%o~QQu|_U>N7ae2g#@fJyHu%J}P35PJf+(a(nZB%vq(bz17kt&tjm z-iyg5n`-DzzV%|hyV~otd(Af9WM{q-Z<=PLsZhVq_4UIlt**iRC8wFmUpg2xLQp}s zIiXwfbb3&=W<}U6XzJ5keW!pg$tUQc=E@Kq9yG9@B`gJCljpUeW(Qk#ec=xb^eu#@ z0Q4n^^b8d@%q}jUYDO8LS@P9#$Q}adwW(D;zq&NL(&;YQD@^S7v${kZ(yNO;yn@=VWKG7>?0W}1#t=}W0RZ~7r+ zhc}je5?1w2_JR}$$g@&uHcrAD)+%>-vW?e>nsl3&iuwsxJ@V3JePpbe&HAy$JGte$ z=@^9dejBCiXI=`*o?u;`S>xyBFPq*kZE*CPgiUDRXnOZ&(=-}Gh)V}R+$RZfUr?L4 zYhz01Kc0<+qJ8T3NL~tr<+*jqJK92zzTOXq5m;OIL=xC>V2sQrpF?kHt!!<}VzX@G zlTUBqgwyP~4a6yV!dZfdcCh0)!j9w#XQ@&r-?v@egJ-D}usM0cSpkpA6$tW^_Ki7#bZnbtb_m0G2#g z9t5kBtOR@%0Vx2OdS|r5GgQO1Q0vc2NjF0VwgP1_b$H+tF}%lGN3M@Mk(!I`#cof& zJk6(Ka8SPJ(8t|&Gjgy{?|votc)Ov;^`WR<8hi0Hj1`+e-oF&`#-GX@V?l3ZL^PL& zgiI_@_hs@a;A!-!^%^!bU>s&@yj5Nj#{0`~3y4mc!G9y!!PE?mfBI+vrJa?w+|k73 zbEi-n-U>1t==Sxd{vDH@d>cJIuwa6Ld`eQ?1; zcHSe|N$=3BUfFW9Xo93(#}cD}7s>ZU41|ziW&rW*FpzH`Bn2Ro=l@YiZx|VbeG_3R z0Q;E4`L&NKoJ2S=Z+1*k|3G4rE&)H1ujNruuRY(!T>w2^ti}BR{myo|B7rYdr_WP{8!85Y(;pX3ck2|3bGQ-=OYg{W!B@ZG8WaWGOubim zNIHZH4w~0GgJh_Wkrm9yu(&6WBU@X2JOs2PJr{QH4A2sKt)J^pgSh?O2io7&8b_=W zIjbfHvU-bTHF+HImFjWCHi#GMyUZH}@|Jv3V|7-hx3<|p{eVyufJ(knYjrxPvRAT) z4BUSbjskG0BcxT?zy{{EF8S*7q+F2pBjlL*gjEU_qh=w^( z&TGrS>YS)=ks3BJ(dZ}71gueW?b%-WZUEDY#YNLvsK5DBkmJa~1Fj7VhW5t@QgZ(o zHAvvWgC7eIl4l`N?EwKwFSN_*C#-o2I2HfQ#RRE$%3WV0ldb`?#9{R_f>Qvzc5g5U zUUqcD4EO~Npnw67Pn?4d=q?HGOfvrdh(xy}3kg-5;rJw1gyF8WP_O@UpW)?!(x9>} z2g984t8yZ2igOMyCZ_Bp2EJ3A_v2r@*xa&#|`+?2~LrN;ZC^&A7r@u zjWOU^G=L%l!=3Ju;jYQR{Wf5Dc@*f$r;fJ3R+r~mE9T}eGssI*p^oOzewg{;jA?ZZ zP167)k}uT{8X>5l^x;D3$@q%lUBe(LF=Mcv-&by}Mj@YPZ`@sXGt61(H&mHI;c z?MuMuI~W!Cf~isA{lp!`w<8Atcv_WwanFSeFC%c~3cDra|T%~xRgKi)XkU%?X@ znpd(}sDJ!xP-uU%=Qa?fFrOR9EC5gLENd9Eij%Yy zYJZL;hlY)^@BWNaj;Yr0fRSPrD(Fn9peIKsA_!r-*Wr61@s;cJ4s`%s7gEqF_NX>l zLxF%ibNx+{vWgkDm4;Ekurc1?m^)Twk;RPLM&l@8+>Y2ZZW?)P&=OuR^Leh$VCiYH zmq%b#{5nxCvoPsfY0E2K=4HE35BvbC?f|=6Zo!!NSy+B!#0b>bW2MI8XG8gMrMmn; zs7E{j455JgyQW%KUM|Wj$2JW*E9w*)Ljhx+xSqy%RTM<$bQ(kfgQ83Ld2`eV!*K~q z#xWHpOm`%}+ff$emdts*S*W+ZhqF1e=Qd!-RA+O7$7!WlfI4YQolNy)r-U_S!f=QM z>Zj~SDd785XLA)J%&_C7L;aklP{5R_&gLqn_$A^+=2tX_0_IF}HYe7gKs@X@)`z7h z@TXoLt8%hKBUUk`yv;{!d0)rbE4$rcl6?sh5XmN?0Dwoa<>01wJr(gx!T2Ekpf;%cXH<&V9KF1 z;~JVl0W+psm%bTZDU_x>nWj*X2h%(g0VEz9v>a4VV-W}ur=5$f?bh~AzhfSJb$f++ z%grc;4P}GB4Wp)7mkw3tQ#1v&@nWfssd6Gf)>A6iA|X*1v2&zA5T-iacffkBvON26 z?Z%+T(jW>L^wepde>h-gP+2tYm@(=y8btx4mZn%a4!7a9j0G=Z4SD>9Aye&DxAvFu zxe^^3*(}r<@8eXW%K3AtoT;9Pl(14ZIviqwx-Hp20pF)vzGV`; zg7HncJx!s2DN~(lRpQ~5if_)HXbuI;ndVeWtZB%9CM&OHg;;t5f6C?Iu1apz7bpvL z-AAQ7cmQW2rWuAzxjd{PVgbtIt?N=A7S@!9_FBh4y`ChXfbUZ-kH83-dim*4Z=@*{ zFlEZ+5t!nahZmVQ(;NzzGu`qaD9XdbzR{G2ZUTOLnqzC{-ZH4(yHNkdrQTb2?pD;$-?}o#?iBu=$rtP|ZjrDBjD!F&h?G;LWkY^iZgTD=Iq~61%fcuvkeFACihYvuH6`P1r4HrK~p{3aKO%>vRK?P zW7I5-qJUA;Jlk-%4Yy@1_yjA+<1Y-E>TG+lyS?4QTd{O->`tLx_xC8H1Kqy234^vy za~!dlQbV)@HS|@fq4-xxGWBCVu#}JqjYLDemuol_h`>~5Gy{g10t(IfN18(cbEbNi z!hktm`Gh8YkS0;Uq=hM-t6Pg2cEe=oE3BQ8w6J2Tm$a8#vgV8b3w7dqQ84>(QzXFS zH&bU~s{t2aRLBpcLgG*1=Ec;-;ha_**k@9}<*9a6#$^pJB~co22#uhC5mW6Yd?U(2 zC=EHBhETwe%~PxaAT~}ZgGO}XW>LVb z`0E6-^&};BWLoBj(M0TrG>rnLtxmPBO3P4SdIukV(w9_7B=t*{nq|17bo_00nWKf9 zx%&8^&Pun5Pnrb9Cr4&hx-&RZs8@doRd}qiekMHV+M9to*5#BtP6=#)Dw8~#ivm69 z-*k3gupad=U`0@=!BGjPx|$t31p;;bo-@%7e34)pL!U%LDPZW!_ne{r;5gjar_xvo z82g-cDC;1zWqnICJ~-3e#M&~E+yFw3D3^5^NmlV)-O5NSO@+GY{iyQ8Y?Yf<*MRpI z>Rt=$S(1&m#fF*vZHtZ_8U0PI(gIw2T?gFj`t zOm_@k-q9@3=(M44ZJ__icI%4qMSV1%F9Hr#l7*a8l5;3SeL1Ws*G>rnLO?NB_(Eoqp-ZVgxqq-IbG+IU) zEiA$q3>F514YbgVSc_FiViA%Mh(!`D6*b+}-4#<^)vBtVMIb;3N$9C%wh|Z{9+=G- zY&MH0p7`Ja;$yMFVDZ540cJI3Uu}cI;P0G!BO)WSvZtdfGg|ZGc4lPFIVU3SjV&WH zy|f@&b3d^1oUsH+xnItswj6?rgqkknyB5_`C!Sq)^B`DTD?> zlCDAKg=Aq9in%w%&_K*W!e|lBM#y|RBg6V6$dfMb4f_kD=4ffq9xh>)*y$}wW5U## zFm-HB`3wT(wv!h$EeF9UPP&d?Dq1BXn4YG=l(cUsRUm;iaYc2RpU|CXP&n77Y~m&a z`0haiZsNKX_;U)RfxwsEG6J(eTuG-Qe?ATBoB4?BiI=3XD=WJ^!vZ*vbtB%N$|5lW9>dw~X9+Fo~lGZ(P)Y>KaBvoQAXKzGO*}AXxIv20D zn<$1MzPU1T-^S78nIL&=F8DaY=5{4lTw;jAZfUUf!c`?g>m3?eN#`f)lpTk4lb2MP zxq_n^8kA4c&1jPfd>`S$uUPX|;)^Je1`=Ps^;Ia%R2Y`)$h?L!X(02mgx%R>K_XnK zX*TEY5+3I5j9nWexyullw42+TJyWiSV{^v4+0EHAe*hs#ySYq=DnKlLU<kap@Ed7-CRLR7Ed`jEy|&RoRr<1k~VVO@0V`QCV@Y3 zc<=#fX#w}z$EW{;vnqs#JUQ(TAS7{kI3Z(01qhE%ZAo}IS{ojcYf)gXr4!H~?}@`B zC&GnCAmt^LLIWv@!y_jp439w0%PEHja?*weNf90a_a|+5ND}xLH|~jh{lW5Z!?)kd zuTI?E8qF;=c`QL8r!zbqn#-X)`g{>7mo<&9$>Ia49wtF8MGb;plu~cJAY$S#O`<_`IyKp%8?`uQViTZkH$c zBr0;Ls=z#u%^?lyB4V^uu`bX(Y5!0rzq zM{wDSc@4$T)E^%KS);ov7avj~zoYRH{EW_6cZ<=V!|N@uqk4t+TO?LAOqf37((TCW zTYT%w?YkwHY-%2eawE3OY^qTympe9;h7h{9hET+FQZ=w@Buy$(HRkqgT4_)Wdutti zNDbu6x*=(^KG6+DST5#X^dzk}{{yLN)==FIuFhYB0m(|(;C_RD&Q@<(lodQI(3sEacszME~bCbpc3jHkOXYLowEay;F1+Gq7WJgsk?az*u0RS z!3{23G5aWn24ZR+kOX9nE;d!M39thasgRx8;08aVGe#`&4Divp{_=+Focgm9cee+< z{%W_|kpl5&V{^r)5gXgHgzy+bF5GySUO|Y`BPdSMponM|DzHgRWI2_rn{Tt~X^`27 z*>qKUyUgioLkqxsmm+8&A|fiQipXN2SQSz>MAI%sDd@zmQjat_C zM=gBv?~`!*ZM)kzwtql+Uj5Flq{;_BKS%w%m5Ru^xXYorf%Qp)+$CsJY>{RU>`Q@4 z;hGysO#|u#aUD>H?(B2^e$vyhUN;;FZPt@VEjY2~dJ_Ftohd~*&vyo$xutGfKUm<; z@Kn(|*>-0M;W32N-gbK?29nalr<;k|?i`yqwog%R^El3vXpq_3+ip+hhY;F!`*bVf z42qzEh}zq3Pv%8r&hD>SA!ktt4TRL)c6+XdKeDVBN!y*Jf;?god~@-(*jirJ##@fY z=Fabf;~%Og?k|YXue(|G#7YTg@2RuTC1Vmt53*@K%W9=T1|uGqoVH}MHasN%JjrQ5 z9&yX13VG((p@1(^01X6OP;)abJdKcTna*te3WT-S@=Cum9QO5dvG#audN;tC4|k{8 z5d=K5ZZ``AC^206Qg!LthX(V?*QpV=kng$>Z++OyV4 z#gol7j4S8PnfpfEnZ}D}M^Uk*zdNzh+uI(Dnk((W^6IEH>e!A&lV^hDvH38kySFR3 z;u1p?Mq9-92kMcl+7NDkuHhEr;Wd>Lb`?w(q3SUo;`EUQWfAf8L_K98O+e=2>x%mb z#nC|Az70Ez>e{f^fSxv+a}x0>^JnyS>sYzVkQQ+pX0zJ5?fv{O(v8^TvH1jF19`YR z&5j@;VhUVAf>OhG-=e-7F+8upCf?z4DVa83rX$cGs}VaKs*-DmkeBdPN}z#+h}Vi# zm5@b8UdA^lg9b7-{u0xaDjIptzohSbzXS1A8xPlqc%>z7c}hucJW2_Ed}3$V#2l>| z0_dW^a0cl!nm!}IV{`WV5fZoWlw4x!1Q1*Nn92+E)FNJmB7knt0J`QDDM0oEC1oOo zXnx8u1r3VmijCXaI!mb08DeO$_rR>JbiB7>FlZgnLNou1-nU+5UYocedl+u)ZI?Qu zUMl$G9Ni1f<6w@gOHhKk{sA6CbF=`ABen*4PNM--Y<>7Fzwt83D_ zXGsl-hidwSld=HKhv=jSsowJUmM^w@?Ln(s*2LILm{ktjqb6R-x39Ud+M8?c8?;t1 z;%$xwE$rf5?%Qu<%g<)`vl;$u#{O(Zem29Ojm_8YcAHzR{XxVp?T-%1N}ny?+E`nr zR55(>Q|g;nl=^0Ebar04QE{s(^Y^>qk2ENU(#KJ2(S?~8^uXm%vG{TbYIfFn0Ny}H z7nl_vu%bRmFVq^|u=1W!tu#l=D@`nh+jS0zoI%PAQpV=3KSLXciD8&%&zttY(R-dy zn*gPRqkKUfrF=CpxmpY^)Y~_;-pX%l zM3m%2u2^khqB5C7FG8)+AQ$B~Z>A;F8AA!>5u~I6W%)Auw3OKlp@jA*($awTDO37q z2-}bojM6Yt>$R+>m~YTK)m;MrIDKmWSZ=LIgR&O~V{_JV=&!cPvHgS0Ji02l;=<{E zrcO6?GeluJF`=`0#pXLL6g>^qPFwVVYXq1-WkG9E0QKDRG8nYxJMG@6^pVg-ck#s5 zd~3Nm9JN(D&t`ar$6anl>~GH!^jLm+kmlOqmX2ZE#XPA}p$2}VHLy-kMR=DyBosp-s zO4Vh`%|FedqG+hPLPZf04?4RNF@MM^&|(2{`AR;29x;w_KWomnhjSSA*p9*10U>7W zwHen&-1cA4tNf1puf@yRl>#VZvr<>*7z?-*J2n)B`rN7YS-w2&05%xhxu2Er_$p?> z6t1fV^8mKdG{|oGZUBd0QHIWz99X%S2U83U#9Ug{$4l}oj>36j)@vPHP=kVKAgJ_< zxhS#lNdYRcioTNZy@S%RZ7XU^eeFVJ2pFhjxafdhiUG;h{86bQFwA@D zVCcQ{!tZlt*2V2zm!xL_c||YHk&g`t;iVVU;-xuk>!m(Txy-BB($iG;QV;DN#(Al~ zVo6_3Qkv>s>Y+Vp=%xOuC4Mc5X)1fEM~0UUuu$kmU93QJzV%Z7BMz!6wE_K=QD+%% z<`{&o>Jy!Fn#XNJt9sl-dXVIVLeM!?x;f7g2pS7N+_$6dTd4smBM=`hUQkx^M_h`e zLC*Hnoiia;Z(fJ~zNDuCeWkH}5x>N*i$Ad?a3UqpK*EI;#sfw8hEK@coQ`Ie=;oQX z1+G=8dmZwt1a5#S*=LGhbQqh9?+hrKCUg_% z;$XQ{Y-c@JaCDV+yG@q3Ql7 zz4+`ZZP}y{WriDHrEXlQSDJ(uKh7sBqxljCh&0Gk=|ew}?vw|2_v%n$TC}`Ur*@oIal-+(TerF=^0bAMy|VvWKUxx;kIl2TbMg`r4nAw3gSv)(p1F^ir{Ku(g1U6 z*JUXUJB!Qx4i;*2^4RZX;{}6!E2Oc8X0w`Bsk-Z1jnI{ohDi9BgD;?Y6lOxY#!N-;K?E z{~gnflduM~w*6H1zuEjeFg6lB7JDhhL*w&yZG0X!6^b+y*n=n9PUa#N4MaVBdbpL2 z#d{F(Xn^;K>G5P=hX{Nq0colMc6tj|;ll|?1He-%C~WW3&xVW2M-h|;pp8gZ^;O&O zM^<8q!;}w}%bjmD=y#h7U2N0ruc)trfQd6qoI&E)e1^-a$4#WK9e1k!^aTF&1pX8` z+KgjNkSiCQ_CxBl(OrcVm(K}vJcs>$9h(PpSC%{tbe^$^>YUIiVWH5yK0=KpWKJMD z4baQ)$;DQI{H{M}cKdy7a1ro(5S#|!H1KwF^w!1^bwP4?i*fhW{Ujo|<_GoaR z+1@|bUUB8}$AqV;1%BUBr`rxo=6-~yVaddYQ?5=KRZPe{Sxe@F>;p>OJifgew6jP5 z=IqJX>^lm>&LjN!+7YL^OUT9pqJ1*}S4_mt=QVa7H4TV3b_=fwScG#>qj@zuRvPGf zWCcihFhUStOGFwVMi1CrN%=`0Jt#7<>reCkaRc!0BCzfT2r$ny56D zP)GfInBGiOno60+XEj|seU5-MRROUEBBl8S0@46*dS8OVRlWkCGv}-6O9Z9?@bvwi z{UokP{bwT50CD=hNf5)D|2ko502@C}E;c4`r%`);*v5zA@OcGWxZff)4WJ(qJEXG6 z4HvK$>vJ4Jq&B>QZ}d4=1TD2Yi15(*QVn-d+OS?GF*jO{}PQ=9{5!>>>dT2%Z!>l9?o! zZ!fe~yCZxoa(M+$+2<%8ND3NIM7KoiQ-tatLTH+5#pBdV$>+2`j07|wh@Shduf4-P zia``TlJGQuKeKx2uNLu7AwCW8r)*a_@(m@QMo1b!Mi2cBQOnsE403Rae-@C%7W<<($IjWg2RV2 zp~GKFc$#W;5W-Ie?ej@O1Ck1Zu#lwark9g~1{CGH0i!ypkYXYft|SKyI4X1|GBR*Z zE9*EeAg(3>4G1dqwEE_QgE`e2iD;_jBu^B&)r(0$1A+>{ktdjRte2671~e5~kUUM% zwXP!x4M?6ceKVCOnQ*Q@B?}E$DzsCR!-zj8Fb#k!c&&9O+eC$R{Xa=S1A+>DrX>iG z|ANRgK(5gCS!8ja5dMvXrvZG0F4@AvZ9?$BBsdMgD-5wLINc>ge=E^xfF64j-H)&u zJksSNU5+>oOFo4~q=!a3dV4RH59Pkpyc~|rr}((uVfJk8u+uadN_TA@RMD_3b%`!Z zMc>^~deMcKp0$?SBi=3%Y1^}ewe9Elix3!nS0X@XztXZRUhTa~VNT)hd>Vkp&myy; zw4iRN=W$OXE)8(Yw^NpNb9vl3Y)>0tb!Tn~Gri^Zab-J94*;1M%G!3BRyWBkV5;oFecE=5P))BEhIOqf{O|sB{W!fO^tu8m` zkcqiIW(ZdOZsO7acUs>h?&1pf4T{^e2}uLU_=U85fe>=Nx?CbY4e+OJSMYv2eWH6< z)~@U!0}U9atgY1K9YHU!g!$Enkv|uWP!t z_);R%06G4aP9B+ebtT2d(DR8&Q=xoE{SiJ5I?-ufPH37c(B)0xm4v1N^t4WwpL*m9 zHPvW z>bdy4j*v8fd_d$KW!2QkNjt!SdN81V@aC|xaj*6&&y#U~ZUh|NI<&j(WxVzPk5A~} zKR6$oQ~rYw8;412N1dMihfO_I5}>dxQgBQNKB5zX=o%{E=$-1_=wK<W0F8ViI6mvb@moHgcH!G5R|5J zfet%(%0V!nMogN@LV@WD^gM#nR2GT{9<0!35|gH~P+;z|pcfI8rVdb-`xZfI02)2$ zD03&=>SSBMN7Ss|c|y|wI(h}^*e1ppGSGk_ zy5~9=1BYYc$IC>f0dn+u_`#3|oyDcR_!UynfTEUq-S5>82~7j&N=@Zln{#g|k-fyE z0cNEZJ!^dr5R#^{%s!tG6q(NwI2AOd4QT^3%mR2l+Ze(g3nj@Go+&DCY*^t8XAI4Pc{}EXr!j!ZyQj zeKWynsupc$xwU8o{}nN5fEhjSDihopVmDJ~zVBPI0 zK2KFbPr7|IpZ#iMg9(vX{svjwHM`kRu=dB#H9glrKpDg z=GxyM5tyc`;FbQc!w+y-!9OJ~4R9-UY%BeJ7V_T+Ndw4AzKcoNE=@NsQ1K3K9 zaL}#)ikLLOtmI&W_FM<+%4pQA+TReF2FR5hVbES~@oUF!NO~(i07V1fO1Mob!DR`RTDjd436X{yWgON={+NmCi~;(=S8I+mC;z^pU|9b$Gr zaG`oTqS64hQY$-L-OUeOIkm?Vmj<|%Dk@uJy%Qm6sun6B-TKa5h)Dy?N{)}buUulo z^lk*DsSb*}q!#q<1f>CJr8)j+z+11mIsQF~O#|%Mmk9-<#zt^#)!xJ#O~pGv@lDo# zY%S>UZWG>UhFd`Qz(CX|jLn_-&5<3sw6z_lhd)6+9um9bD8$kGO~l9jrn!HW0xA7A zP|2pN5C@+)C<->a0XHc#`ZY!N^HWkB_IPaG$S+tN?oQVZf1G}(khj}Tj?I4ntboXR zSF;}d9C(0nkKmr8$XkE&UG#hALio-+meK_H5FQrx^Gykf$%up8RTJdN8RW?|K|UaZ zd_YZ*56mDRScHsj4|CPS&5_tcX4j-xs^;^2BPI>pGJ23T0XkU3a~^yYPB6bnOd4QL zFBF(P>=eaHhk$;WpfmuD9%N1m#j9U(`Tr_mX#g92_h$ljIK(H<-6MN^+-RjMFU1h$ z-yj7|l_HiMqRj=|(-h2qAtntlqkEj9?741drMcX~iwE{Md;I~XN`n0zV$)Q{-rMH3 zrx5%5#HImu^oqiSZoD7~Lu7uzRUcpy**_vQ4WOg<=1f4Z4hHGKayuz$s?-P8N|rd2 zl~UV5L>eGY-7hF&lQUTXJ(i#}0FB;UU94ocyILOrL;KBLh5Z4RrG(>lJE)s2W>oNJ!s=w16b==9Smg&Ns8kx zq@bx%9C+fFUqN-U??y}-U`}0)w%>IdKzc;~Y06uj~=9IfnN=RMahsZQQj(!AUy)toI`iE{P)OJxiLmC>;OdUad zHi6${v?YELF=>D~bp-L@aQ8@s#XXt0G{BvDY-MrzE=L)vSnLN8n+DiZ4^k|)zAhJ*mt!wF3T=;-IZCLBeU_QdfXMLZhdRq%)*R$yDMgLw=wX)0l& zjUM8YD7MB|?YJaK7&J9Sm*?Gr3Row|kQ10zxzO??tYYV!gj(*Swuo{`AoH%&CKtnArD(xgOs>EM>hwTpHj`-8?(o`F5`l z{FXfVBk&!<(*SoCe^P>Trekwy=3P!0r>9rmAqf+HV!_9l`o> zf7Okg1_Y-8_|(l6O9iix!E2r-0%(=^G{8S^+PRbBYFZ^}7_8Z7R1BMHx?b@~Uhf5oF?l+Q+ z25eKe56YJB-rrAP8URn-Pv{5CWb*Fr5`B=kG{BvD&c1iKg`K9-4c|mO8sJUc>Pib1 zj4eM(P#SuP~?-j*7q9rug&!yZVm`<-^ad&+QAj>x|=Hqn19zz z{Gi5t2vRp2xHD|LI2_vzw)>CW;fC?!{6!Q&^n0j1g57TcSZq3Yz;`xTKaN{ua`f4n zZ!P0?S{uGZspe_i*Fpnv@xfFM>sB-c_&fsB062bNHv!zmE2QuDd?$&`u>jhpO-N$JaeVOPqK#w0q zPoU>MFKSChs34Uml8Er+O^@)CgS+{in zcbufr(8IC$-5>A;X7+6DuruWs+(or3w!_ar6%Fm#x!RsZ@9@eXB+Rg^k5_b2nRzqc zCP4#5(J@s5w-YUa0R9yLX#g1QL#2RRp1|i>@HTb}{nv!1si<|A)A|kq(p1#CYkorO zy9rHGQR~T0>w5@DQ&H>5lUmeGY8*un+5%$a2 z;{6x_X#g0#WL1#Z9gdcLS0FO~j;J(1oz^Gh_D*xD-I{OmHb#%%5w@Z~MR*#(N58DqeP_9V$>kZo0UyuC;9(2wLc;x# zLP30Fje82zD7 zT|4GX`Pm8XXPc@?`L7|VvY=~wu6AwlUB?8Jc5zF6JQKPH3vN_ze#{{P4OB)?QA>)3 zQ-QfbpAWDK?$3xz1KjxFE0;Xq#%iXZ{yR}=fEqogTu1GEhYwo|>@NvR1K6tNOIUst z+(Q4F&@?raL%ZVy|CXpUHIxHT@nnXS!>zehkEVul04&C&e5r>(ZzD7fpsV^>r-wbF z7WZ)C($rACc=e4%J(8$2K#d-huj6OkRsWhmDT$+rO#|%cxz#$@*nfb&#EL$Sz%&4k zo&v28ob4VK*|#S;4bbEJz4Cyzdy{b=$k*c?2~Sg>cnp&9Nk|d@yF{k}`jeuk7Y7v| zjJ1T~_eenlimDEdL6I+*-zP2&aH}?XE18G?0bywX8@=SWjFV$%S-YWtzsVM#xj=rlmD8XvOH#j0))mj<|1o725mKk>5>qLUns&8gp#MJGMOv_KCaJbuy1gDM(E z<~QlcJib@-5Hcd)jlD$pp1F*k@i+p$5zgD;RBG%B6vgWXrtM6e#`y!D#?qtp*2eeZ)!%;>U!g0c>6tAj@8 zNCMLUIQCTnp@%iX6I-(X$i8TzlZd|kj)9Y|A@X2sUUL_$9Bz~2wQXlH2~tmr?cp7m z;-IJbwe~d8OS}$1dYFa&a%;J3@8MIJc@0N&G!PZNxSzu;BEF7@G(e2^OIK!ebToK$ z$x!AS2uj1UiyU}TWrIe`&isni>T4jnI=QDy1{ORRo729G0mU{sUfXsylQvVG4oq=S zokxCG@)W%k=>ViU`6d7+V130-`3GE~(4Eh5uQ zT_y$OK=r>8n+Djioi6j=ps_x?9sOI@Pe#8#i0?AdxlYz5az8 zAoKlY8K&sr*!-VEQDTSLv$eyXBEMjnMX!Hlpo)ev?6G!Pa&{w$#K6y38$d<+q3fEeBSmLT?*rFy;6(}_z1+~^*t9Cx+XS&*0YND(}q zz%&4k-py739=5sFNZ_7GIGPG2I$T;^Sm2~k5YHwe4G?43_*7p*|5%(;>D+-MMt8SE z?DUyi!qd^>;QnlE26u#yZ_g6ewx8>MN>7g-<9h^M)FUjM{rpX~5IGbbpbr-DGGEnc z&SDEe17*>zPB|uD^-q!J9AeS{Gdd_sG3`J@P|qbQ4N#+}aFeKbe2TMmEA{CFrMYUn z`bY6Ytx4EW>G=eufzsG*uO6}CkF3P==%9HQihj=@x>4($Xo&88SNP>2NE)vlaxN^? z-9NUcvOo#~FYKxpMmLU52zx0sG+5%|7akSPT+i~N*<8(P)&j&iyoi=BX<|mr4FshD z=q8+S0#v?7#GS5!dLvP3DoT~@(oX982}%Rd6C-&UlX zdOSAsU&B(u;r7ya?eKH$1!#+Ry9`(X;W3x0$HX_U8HQ`MC`$3n&o~OCfvo7wnqhwF zHp>CvzY~xKfYBXv5l};ysqFYzlIEAhr2%gAqf!&NS;l`&JR0D|K7M538uqVM_8j_5 zSiR9V1h9rW!V|uHhrPBg+4UB_>T}nH*RMWS@{URb>V>KOiPeRhh$)bEZ{7(o}}@p0uBk zG*uz-DlJ=>&n6@dAY)$u9Ry?}IJSt_vPCHddvtHakF;)XTBJBoNTz>DpFth|Q(Ymwe6{m;{~3N3HWbu<0_S?KP?mgshP zs#i|rVvpjmvv}5AJlFx>JzulCuBL_P%@pJhC)1C`uU{GQ-(E zug=!2F_$t3lmN*%mCyVotBeM@Y1d2{y5a=!TS-g<;!e%PMfaQ_{~MCifczO195n;B zE<2m0*aH3>z1R9va1q26n!sII6Ue6z50MpY`Yg^gRB!-_3QeF=C^o$EUn)0&Rei>7gqIb z26`(rfdPExcb?=UB%uLGg(ff{$@`cm`WT65Ks0?5c(OKu9`!aT{jgpuG=bq;4SW-L za;^#d&1YN_m`m3tF#P{?u?kIK2&JPyGQ-(!r_NSk6j+4zO<;IoY{+MReIcrh2Dz!w z1ct~ZO<;K0691OOG$5|f1cu0-xagi?6DYa9HP@|aKt6pF7;;M!cyhi86sp_Od!f2NS-@d#0 z_F~OBcg<>%du+&SzR%jGLC&5v^_ag1E;T;uQfITbnF!|ztad4O_Y406sJOVa0K!kU z-GBYU4u9sBorc{G_IE7eJzm)4vQON>Ce3Kl*!*B8`pIJosXoE}Pgef!^x{+v9O8cJ z5Uc4ar4h^*ld3TP#&_t^An(uKA|cvKm&*AC<-WBJO@q`lpx%=-zk!cu^p7At4ePaT z&jt4LY$p6WE3kna#a&q3otZSS=^!pCZPqC`}(*{-iIk$7A!PC%~Z(ccNQJ=D&rna_x0Qtvp4yEji;97kOI1zg#|6Nh1rzhTd2ty_zOne!NvE&wuz zUrt?gC?vlQh*iMfoX(LN6ERYgKPaB1trDU92(~2+w&daNbI%x)>`DokTeFR(LGF`x zsyPvU-O*Nt*+wZe^wX`X2)ERg-J^DL4yPO%`bFZfVZm^Dz;Q1!M!Z+XOm-{v1$^lq zKLsZJl{*=mk2DY>NBHyL5Jl2WT|)k3&Qq!gpDzg@Bmpa~%Sd93gb2hEP9w2-%F&Vdd>z z%)B|Cttt(&p1xfRBxrY&3Aq!6&_GD~<|GgjM2d3>a~F!CftZEVLDC=LsUGW$<_boH zcqFKk2Ls+}DlLY*igkE4gMo)?As~4$SOH^0asIM=#OSsX9`!M>-V;31q z*kI!m$L5SjBTSCtk8|mo6#jpT9^De6RU@M5jT%kKr|6|6XG1Gjq^itZ&oKxMO6bM6 zLJqmM6@tUOfnh5VlDi0r z$=A#wiLaM+p{uW&?Vp5*J=|WxGl=d8g0`ZEb%Mr*LJ*dJt6`aZdLI^sjmE4%%-48N zkOsw&e9gQl#dmmtpl?zT4SjhFLeAAoVadUHht!t&Hbv1uRO&Tz%gne6isjvmrqE}T zx0vqpF7je}_eBc{DYrRAuFTkPU5w5B9)$oqzWkz3$7_l3o_hz!&N2DOX5EaaWQ5{} zH58M#@arlO=PSLc8qJ&8!qcF@UX?m3N`*+xv;EMZE&YuZ`&Sf81F^5UWyNM)=fMR3 zH3ic^@LJ;jvs8!sh~un=$E=SJ2`cj;2EU7}$q2e8br~R> zXC!?_)5qr5XQCOnec2_Knge1Jkh~9ECj%-L4ZuHY1CYE;T}Ow6f5|n~XPTUP(V(cV zyQS(n3;p$l?xs*02uGs1hTI+wJYqt&@R?SYo7Po2@!u{ruwg!*l>pSufTnuTDPCtpm- zlmx<6CW8EH8sy1a%Tg5*;uBX?oB1O99~u z{m3B2o$%L;+Fojh%!^Y+2-hELxF(;J=IJF)vm{kx-bt6DL3ykucBzcKp@*|l6H-y; zM|2`vTdsnV@6p&ZupgY@!Pxxo$HHT_$+7)|Qc1o?!--IS_{Xo*Ka%g!aK!2vz68us z96!(?_sIvaIT1PolM0Z^Fvm~|4WuOBqmh%64YUF|x1}5!`bFw!L4`B|?*C+fsB>;r zy|n!hi8|zLY~Hd9L9#td2#+CbOJddwQ#pv4?cd)zAMxxyaDt*SzvYS=4GIIF>q@!{ z)z^YJN~q!plt-avlFtE`TYK=r|Go2g=V}kH=U&8X&-S*ZTjrG+T$#a@8FyuD9{zB+ z((&aNHGKkZOV-ua&4@~dyWK(EE&00Ix=O_LO0TL$^IUf9G;qV@GuBceeqgJudg*Vh z*vlxE24a)1tCb4zVzYL?^mkV93n`ceg0D>+I5t}7AbVzwY_A7#-%R`S)F5?Nt%7NlK5X*7_QdM1-8LmX1atoW|D zw)q2wp7n3%(#aQymizPgbeY}u#giG?b9ES>{y4&)>mh%~I7_~zHWW2B)PgA6rBRlA zWgsNi7_&vBO3Vl7FEl8LG?@ktlYFPcq#PSt1yRqZC>n@LzSnM2R1jSSVV6@F z4TKF-hnM4Sh(a4+QfZH7fT>eEN8X~k%QcRo3%6Wd57s>yv35)$)h6K9lJuit4)KlNq%Q&vTQ_H7>NaW+bNF*@?O04 zRVVU_FV@wr;19OqYY5u3|qmp+J!+v)!_BISU zt==L&sIL1PB$1o>ZQ|G*$xijSiFBJ3{C|p0zQ?~zv}#1e_B3LX@9{4aAu(ILpvuf` z*g4Rkgi`NJFG|3tNl?wQH9c3QW|@Ac^;)RJj7_vd%nC1$zQuODeYg^#@-;m_qz zezzqH5TU5Cp%!@50rjZl3lJf>dXg<7RbqZY52AqwC0~G;5Th-=OSY1JMM*S}lzaig zahJ66?vj=D8_J@Atkeq-j=F(^S@l$L9J8OXMNjtbn|z^o)b8OUM2KX3Us*~?6Zk@8 ze&pqk9)Q@|kxO%@`hOT>E2+oUMUkotarPpOv*csbq5z4tFi{nm~(!^>_tNs7gaXzET4+dBZ-T zKqJx>mz0DQmpPM;MT3G#KEf-PWn;2L+>d$EU*nEq9=Iuu%mzX*M z#E4CPpP_`88Bno^+c#_6CSN66M~6mlN!dtYnmf}AX;4(jcTXQoqK)Krh2E7yX&^ND zj+lc94f@)3#hyU1G!T1r>MnOuMPoF=gB$kN_Nb2@ScanNlIBf}^!36eeFv94x#6~< ze}a!|9A?k_0gBEfZ@0aev7rit>w7d@lh3#{yS}do%fftpyy z#HH2Uc&4$76LAqao#E-&{F3`Fj|@`miTs*f-bHD}r~-t_M>JGoZkSieJ9jr^#i8ux zMRWifUoPsiYyiv+8T&ismN9 zg8HL(!B*WaxTlK`9O$Pn_jK|3iM?atdZ~Tv@QJqeK0)xaCgchA6U;!C}3fS7S`rMzbzo)__WilBiA?Bv<#0hDPpG`c%o1I`LJ zU#F9YP8Kux-5ha$vANRk42O8M#E)sZ{lyuZX#IZnLGb(ICekG-_y5_-&(|IaB_hX$ znh+8{)sTp}?Nq&FBsL0aREar}?m>eRh#8C5BgRHcxul(xL<31NtCRIe3gV|+)&nSu z2C^caGba9Vs*^f~?5tmjE=#ikGdV((NZ%U zPH57M8?Ko%ABq4wrjY6q-2bGwm@lDis#%&8Hx@Mrtz$K`YHxHVDJ8J-$*RIUoh>pA z@*cCSRWa`(M1!hS&iRx>139&KrFq7ZfXe^Cme4FE(Lhqf`}`^tP(%3UCDIH+0nL_cmNh4u5=NYuFrO7wLRk z_dm3TGxl_Bu73oA?8qR6C+^o27I7mclLYR%iQh9TfM+12gyF3!e3uCfW;sPboK;p)a zSk$Kw@#*y-P<whtV2+pXcKxzqN6dOEWc8vw63P5Qtr1&xURb^1Qg zQ|SQGimO19xgyL$9AM2AeQeN~wk(u=gdf(nY*P*p`!zdzJ>#m+79 zaBRNMmuwwo&-?+(W?|!PJ9P+A1@MuVsE>JgP+l*uTI+D_4!nDb79b5ZVuZQueN)0wi%WSGrTb4 zE{x4dI}w9-KxyJX6|TADJQgz$@dBAD)m@$e)r#1BtH$QFw@4{+ZmFeJC>AM6^F6*R zo(829@h~5<~3f$HPR!+|A zDTfAfQjR;7w2|X}FN4LoC-~3ZxYc1(yMT9ea9>NSdm>Nqg7@~I!;d;5q1!sp9_Tua z9>N7LVG!7}wZqPoU$DnIvranYfvbO9T|MHlgH7axKW)voR`{)rW@|5ZiTAs_kHgHF zLzYm7G|1Ez@N%77cn>2lO-i2Cv8QM=jh^oFa; zO^khIhp8n$iR3gOk9a6_)8wPDS#ILPuDy2GQlCs}nj{6>nfEQqgGfY^hA4BHhmwc} zL{G2XWjY|jZbNA#A5JD3Fg>GwCh18n)uTv71FG3XRAHz681m78ul`Qk4NQE)d^+i9 zlG6E>`SGNqNlNFN<|mSl26PwJUU@9c)n0B~do~GaKv@5{w%2YA+PJklIn;YHd1=5~ ze{0Pw+HiO(iD*C+@ivxCHkgC<{OVl0xvzsqg!Wm+XONL5N!A8g^K}7T0Z+4b_aAmU9GB#4YmSsONos32^5c^Q648L@>Z(?TB z#{GX5wRts}X~0}Z7g5fPr7TP&h48f`qyb?aO9ADC^PSe>0@ea7>FY^K1JXK1G3$`> zt5}lBH<6DfDPOyTS&{I)g?u#Nt78&To`ll>q|Gj9N%@2~52CV74yYvILR>4hFK$En7?fZe{^RrUiA0;gf zXw!8L%kJ}J+LnBRq%=wESU<%jALEm(ev+&-V69{6rM$_`e*nx@?x#sjla#vfnH??b zn@LRr>U14d@xv@O-=8Bn4an1Zm;V%n=J*RFr2%QgO9iKFLG(Sq?uGo~U|%9J4T#f? zDg7(Q_4V<>{Lf^j0du;pvE)_Gww}LEej4!CG4Cr6tz3WjEmG2e@}la~u^eMVXG4DS zqkeS<%uveaMRnYgmDi8x^h^%NrZp$GWc3WUWc2`c!gr&AtGzn-GguR0b0J-AGP z!k4QuPv)-|P;oTKOC3w8c{=xwOQCuPsc1lTUJVn=Je7ahpm4pLTr}XSqp2%!72kR$ z{$bujQko>B6K{c1()W^-2BdWadp@Vdm-$HHzK@hNN%C2I--rf<`2b02Kw86sk7N^X zx8tj;EyI)9q6DE`LurP4VWd3?6UOGObI_{n$fd3AI4gJ&3O9W`rFy7@43weFXlFXw z&eRYgMG9$c!WU^UujVD((n^DT)iCH=htxlrug~5~F`Ji@nx-D7EvL>NOjgoYkd$T% zNO_Y*3i(werP%^f-f9ujSCf<`Va@u-i`)Z5O8r_=(}22$xp-;K=AVm^9KW8lG@z|v zF1`+}KJ*}jZz3U0%6x{KytR1WLRuQoM!cMRqXB$*K1;THTgQ4E>1h%cv)kh*#r$>> z(j+C+?e#+VE)votB*YR!i%ZZ#cs&VeKv=_F%F-HL=-_3o*+QxC-auX&@YZniu$&i* z-k1#9oZd)AnuJBm4~lkiJ3+GeeiG6oCR}xO`9TuWfUt(?LV20?yN>QA($RpfhPCce zx}|n&Z)b@2x!E%PC^=~omg$mgMYn{XAR$ds!k`8CBnfFicz*rEJsFF2PO`cCG|6ZZ zR-r6x&SBNua^6f%8gQlqViCCYzmk{+#5LT>EiLgufAmn-T6~XuG~ioG z)HKPAf3$?XO-pcX+3PBW{6linfIC&+Hfrs0jnq#_M+3SV7K}@amUNSq`g1bVB&^g? zf2E11m8D?+gM2jLOEve$ee&hzCGA1qHOT)-QW}t^nlI(ri2ouX4G3$v*HT)atGx~$ zPHkd;$FM!O%7ctC@jpg;E*HDZ-Y)sV^&bVUa@5knqEXFTLF`mtYdWz9$QG68RC+aFjA~)8R{^aT& z(CZJD^dD%nXY(>k>4`N`DG7?{W-X=~M$1_?7*4Y9uE{i|GWTTD zLBpn_#+=ARXK~P9T?yIlO*R^^)zIA1m8*IqXAzHlbu5T`glE46Jx;@_Nig9o=jSrB-vD#35)eX1~mDp@<^T%04{PpG3ZMTnxK8V~!Cl<4DYDA5thvQ%~rE#k0`Wk2WqdOS9-S%T{y zZZD134nNmkKuMidLrG$dk(issP#iexk(JEyu!C>K7_Bb8@4jzJmb>Z*n%_#sxKF+9`P#b8Ux zJv3oP62|5s131c#T-w@>bLIb>pg%!=YuMRRl%dS7^hN%!|oQ1MV6gqbTK` zWPKS~X~0^2g)Ss*=!p$wiFR`rwlWhjUc-bN6YNoEIOga$=3Udiz(qA03u+Aow4<;o|x-53=oKpB25n*(tzmi=P%0HVz^7^lSi|k|09`u2K3*Njhpd~6?NPJcZR?}I%%QnG=S(!nSM@oQ zC2rWinl*DS>n$w6XKy^1)z?RC_>EBgS=rkWr8eDL6KC+NQ?nb-GGv$rq1l%
x(xc2p3_bhzW63d?+(Z8i;xB7Hc9lJu)p z#aGdKVc(@N8VE}tj)Aa)grgVt1B#=8xa8r;FT>el3c}HASuPJpT!*-H;pkpjXG_j0 zoI$$uj@0+_XXe5&xDi4Z;zL+B-UTH_yq3WA?x3-K({a zD+;fe){!a_XL2tid>HQ!9f!9R=F>GP_ufK?jJT(>$pJ=*$g!a&#NV36-+?VD85x=u z)Tk2k6Z#MhN?_yf=vFI$25VwASME|A<{CPW)Kl&vBt>kL-J~Y}o^bV=C&Mh(;&aY+MUz0`F74W!2W`j zaR#{*Kbc)$t7BV?#1H`$yE- zBW_Vn#UrC2pE+|K8#fwOX5GUdSC%>)AG8jfm=XUeiD^Jwd!rT-XP%sq|2fHNK>qZa zhd5wqWK1{FXT^g+RllD0PsY5w}T91LFFfH6RY0)#rMND}VD0il9jt z0D*{!0PsRCpb(mL0f6adu?~I`27vlqssOOl46A^{`o>6wSIBvdU?Y z+1iIdp3ILvGyr_M6|t8hXdt5YA&@8YBC-JR*Q}5O6hZ?bbq|3&SHmA!)?-ln1;49( z!iukON&e-tUk~QCfkSwx7P+l`!fFY}hGcN@yQz!UzPjQv#tEy>oN2HkX^^$rC#)f* zI&?<-2olqPxb_KaNSrxwM*e7$(}2A02`g9{8Pi?qvf@FYs=bi}&o1Y!_+0AGo&k5= z#>BDx1JZ~`w>LLmbEMt4?;O?+7wnTU85;pSY#=_ryh6JtZI@Xv<&=ha(Uf^2WsQ>V(zcQ~J-LCL(JW@lQD zy5TO&+9JbW|LJ3vmw71N&R1};U^)7{tp0+`eY@0t57|26DBMXj<35%A_s@bG-Vu)g zlwFkz;RY7>g=L73c=C0#F1Vifv7t&h;OXjs2|{>1YH7XrfJCqh%N2sCGFP!Bqd}QG zw|3_%BZljZa(j+u^NLQREl#E%#h&3kwQX{2|A4giZq$*E4f)_4 z=csek-g`PCafK|0<{DN!4RTj|@0laj-ZP;76H?QFy7tA49CbGO3+P`;dK%Vi%`Q)x zM!@wXIUrPA6T5HP4d*>nlE>~Zh$EgW-&{xSiIo!m+f)CIcvan$Ox}TQHqC3<1koUawNHP2 z28A|rVMqRYlGA{^_ARY>^1Kr}0dJxJ8VK0$Js9;EqcZ!5(5LAD2nHQuYP}?uk+U}>R?VtcK zj}7xEg?Y-^Skh8BeBQwR-&)cy!ZnUJ7mn-DXg7#fIKND>WF zFE%6sr!-eFE{eWbdk5p5CE7VJ^@3CX9Qt!EMra%vq{vCIU%vJ&xp^^TLj{P7S880; z-oNGPq$SLfl-=xQ{nMcSYu}Qau@!}sF zmfVaC?}fKd!R^F7dpd%71p|Wq7`R}vc(A)Cz~-Mk{in;qc)+%WOpNYfNEQz&W^AYc z@$lxv@eu4Baiz@-BV;%GxnqhZWjq7|w3C>S@odVVNf{4;jLCTLCGuQKp-C7I*h7ON z$es$7s(4c_9@GVs#e>~U;o^b&C*Cm|#sgBac+f2k$>Kr9r~<^pdlJV(u#v<$qRYQI zoAV!bTMX3%%#z!96DLzowG)@ZSH!)J^ zrQT~8E47zO53fpZ4|Df^q@HYgc$;r*zCVx1xqaCspBmmoqTt%si`NmX;t)=s)o^-V z-4pb6cqOVzuBjgLVK%fhD2jbGyHE)$zJ(*znY-U-rQA%1a+O!CrrPh6u=N#3;sL%H z)rRM6lVke_1ycK+5=W|haE5Dgh?~Un2c)$(eU4Q55DdRe z)bu$bjRBuSb15sA2Dz)f)6bFW@KH)q3fDZJ)HL*~+8y21CU=$v{+;Fga?;bVUh8&i z&@_Uq{z4jkNdQ~zcRdKKH;Ls4vv>B}hw6#@3*y>u5_@8$g#RA?6DiQzZxVYZ@4&cm z$!waxV?EL!gSD^G#KJFb?AQ)N?FRl- z`*Q_@o^|6M7+=W8DGxyso-3e54r_m|z!EAM-1m;^zV%0_%@|uF=0!4R&f!dz23f0n zhdo#t8PoBsI9G}hYZh~O;~8HZz2RG!-49R1hl=I9SNwK}bfZkbJXAg=GB)?U3YEDd zm!_wf(&$f61`)5ab9~baQ!S|LyK7xX+>otKDy>#nM5@C4zg*#_LGB~wzBLKSnvxPp zAEzW5NLt>oU#zC6L4MA911~Wr&{xG(`~^sf=uxKAvg*Bc6cgGry|Ej@nb`o2$)A`z+APpMMozp)uy`4<#Z()6wI|-FHHmN zU;?kCKpF^q>DCL(x}SrIyqY3uAoBSM0mra(M>}Trct8D3JydH-1#A9=9qDTd(Mej9MQO zp*zy|w+>-CPVnv1g#aW8WFV5+{&P}jZ5k?{_JW2J*HhXhV4i3EE8J?@=NRByLI2g1RhdGesAa z2Q7a9jS)ACHs7-B?GJY2i?qSLGfnaL&K}O$;nDd-cOKlDXs2kHC&b~C?T~|rG#Zf+ zdspiy684`tEvm!3n$129Y9~pPnj@7dOnx$#yKY6jmZE4Ns-IvCnd5BeS$6x1^edt$5Go$L08`b3618JqY137q!`e;yp7a3a1u7f?(s zM^(UQ_o>fDgmE3T(tr4zOG%jfu*IW6?j!E`)+a+>3~lR33&hM&3=PCY-1DtXOx8CP zO6MdBqJbc@Vc=BN(S~wV+&%6?0vQ3WdAJ9j9Y`QAF zG9xsu)X<2yBU+VG!@}pg#j*XvY;Qb}nZEp$UYX(c*KL8@+Z=P; zkmcH(z>20pj+455NN?TV6}`C!MbJP*QnwF8gl_MJ+>1hJSpNy#zSD!-d)BdadnBZ- zh25QAYtXr*J&-2fpN-A^IdyT2LJ$vc)Obkf3prlt3w(+ehxrzV z&on52h%L<1wgsNnkLqPbiM@cl0)J+yGp0(kRY>~Wy zaT9oLT2Dne7^x#3jLnU_r@u{(?H|x5>@ys_G9yO*HhG`nC?!0yT$@j_-f58IgndSi zUV|bK@o9>nfry0dL{0=wMy*Z{?Pnn5W(uKU{U?h85;g+XcT1lk3E)jQp`Pon92j;M z^{$IM8Jm+{0{1_{p9hDKlW;=q7`3~g3WUOkH53v~s6$#C4q7Z)66TQ{IM5*X2`AJO zGF({X#GFDgG!T<;LOme{-sr<4C+IW^qJf}v6KbaiVUlD25JM$%)zme#ij4-neh;Ip zzU?lMGGkN5X6=m#oTKOZVWK^E|Ba)-gfn2_c3c`q6ookYM~$PTK2t0nUB?VkwTR5J zfzQyOFd}w`OgrA0C=6W}kQqwunw7OeSu~IpvGbx{Sz&-pme`QeXdrDhVMi1&Bh+v< z>zv7!(PtQN>f-(iG$oux%;S|(5^Oven=ibGV>3Cne?XsbZ06{d8G-aQ4WxuY>?p-u zvs|11kE0P9k&5y>!<};U6ankRe;ooIhImrASK~qLg*0r8-#f|x1$^y$XQAl7g8Gtjj&dJ z#OUz;2>}WFh4x@!PNIVcV{-?&y&=bI+vE@E6ZQ*^UYQXQzfImRI7$fz$)e=iyp=Uh zgB&Le$Q-@)3xSBgp$Hm?NZ2prL}dL!Amp7CLc{t`=KmyY1gyW2enAqzo3Jrn=;%#7 z{2iOSz7_q!Av{zI>WJr?r)>-^wbH`lkN&9?a>TP~6&c0heTL0V91PPSy9rlEY<7iQ z-93}=QA(hJgoH~Ip@huYGZ~+t3>wIIRx)1)UnAq(fm-+8mN3#6y8YG&uWj3BZ)wOm zUaW@mu^GJ>j(=2`WY6?JaF(6YE%VY;4g%u$G$0Z#5)})D1A!n-m6!*x38XR?>qhi3XAqPWc03FDVF|tlq4w24&Ge*2U=pDC2F2LcW#F`?0wTBTAh) zbKis`rv==am(tPBMJdEup4XZ!h z1S&^wyOK=ABPoIgB2u=euGaID2dQ`Q0doq4(6Ii~1p{<60@nM``_=uxo3hm&wD;?K zx)*pfHZS{gIR2q};{HNH!~>aAk7t|&C5P`f)b|rEBuM^zV;E%J{3{zj8e}@B>{E$*;AZ0#X1dy>2*2F^@1J)Bkop4aQIB3mx@Vulr zggY6VAIL2~f4+8vKZKlwxBMIp<){k8#1k|o61rqaD_-dmRD*du{eT9!PdJ)$tUfxm zZ*a+0%o8bw24WK4zHzKxOco;Uk`;6|1<^oIx?6sZwBZh1-7r>i{+Y1PSURxM*I1FG zvDx-!_8EHO{-PKX_8DG+k|RFOOWtRAP6>`6>*g|!5onOG}*|Y=peekUm3GK%H;|(HUlsUD#u+dcFaHaJW0ojvyuB>Q^8| zB_JFYH5?L--vd?&2$yRq1am$efF`Xk7DZ@KfAC0#EejE#_YReA|c0d>MvrLOx5 z77y^y5BrC0a%}&AKH;j8qgQ75{}t;030IXIrMkb*wV7kHM}r(E?3Hr#*7-9L3lu>E z5eZk7av}oP&xCX+gogE>Y)(xb4H~U~^FsQ)x*vE`IzhHep=)o2-|!c3{ln~;KY)yg z*T7A?vZQP}jV3<=V5|XPypikKNI(lV>@BKyc#@A7b=ViGzzvQ+s z8ss=(I15a!?9z-p&S>wg6a8U{HbH&O@< zgd|)@EeOd%At&bj6hi|s>3RaCY~+~VAw7Xj0(-)Ssn^~=YAxWCv>FxeY;3;By+Ygl z<#BinNeMeA&#A)`3PFVYAB~WN&0~&NgCt)Z=2ILS(4YVku9r*-v7u6s^BKyaft-Z< zHYVi+0aK9lSxTaTq;$`LdPVqPjCEgiSn~l!PT;kWk#MDx55w*5=z_mJ9-F6Lj=(wG zon}Xnl5nLnkfIV0GXJ0tf<0q6IuU#91)`++y%z475nYcT9A9B7W(eDAajtz6oSrj5<#84Sl3ld}~2pSd?R zWfwLnRizNM~0(& z$kEt*oJ(GZ>WTXc2?=kxc?n96`1-ZRSHkG_oYEZySvR+#N6;YC32(XO1?b2ulyN9! z&_G7QA!1%e7A>KaBPfLiQqtXW6UIi!`zwZn^+Zr79F1Ml9_a(3JQ$m+uHa})j_n`N zCmfAAdS!vq(B=64Yd?_wLT+i7(-eCewF-HG}YMQQZ)aBLp`Cb;}z_RJq3 z+p`<@+0)Z2FC6}N)!`#Te0nl*^)SC?AJ=4Pkk5#|rXsbvc}~D36hH$35z$srK<45( z5tmW~4Mc4GU7P7N*bjGVeVaSc!JV^#^|}Zj`~RtX^8iVbg8F}P_Fk4<5ai|uaw|Q+ zuAr3iRajs_j%B%zfug3ny1R0!t9q-dduEpVT!aBxsO4Pl`;t?@MGzF_5)>3%MrV<8%Z&T^#e)6Cg8#*W|HUxbWQ&aJ9{or5`>8YxQnt~2d-6h~XCt7}bu(MK zUQkvtGe$USW>}@kXQ^%hCE9bgtZoZWGxp9~+UK%zUuv0ssb`$bn_^#Mi=$@yHeMi} zB?`%=efLIxwKwz&TK(&=3LoKm7PX3`3E|pfTFo?F8&Z# zE#o_jj5et&!Z~H+Vd=f>tXT%-fuW9ymjQX zJ7oU>3FmKJc6KPi(keUeX0!7lg)^8Ex!Baz=3j0C!y&XDWeo=%i z7sWq^6A)*8J{8Siwb$&gcH6$-zXwV{l-qb4c9x=%QmT9eb-;UJ2E_cJE&Gl;Ag+aN zy!Go{>1d3$_K%BCVGZE%%)oXxv@CF=-CWp8YWkms$*;7eFZrOxS4U1c#|K46TLIlhf-XC!gbfM=IW{ zSX#@bM7+=@;x^`=x3oeSD}KDc-B>)Z*68?Sr%VKsA2Q4W6sZELKA&7BEn#gQZr0na z15F#lH0o}R@q@9se{RNDG7z=2i#~9Ni(lKdr z9Mv5lwr;V;G#!uw4IMhxtM702)hnnkX;8GO`qmzd=kj$A5&%gkpw%9Wu#=GEJP}Sn zoZDEZyyF71rpO*_wpLbkPIg0wgKO6xlia7k3y60fcIqrOI~!}7Em|>Y`~n@*1PS)n~k4iNN)3ce^ll0lAgD2lyia`B*>(DA-pr2W zFoTp_2eyC_%2H#{s1FXW+oMIdIYLSQ(=hqL>(zJpD@FatDR)v(*C(igMkpx@{ZPxK z&h?)aH9|>)ukpzWpBkMD@E519z`m$97^4H z+0?yPw25tOYxd8SC~V`w*H)EMuv*iMR)Xtc^16$e(GPDOIqlBvCJzHRfw!O;{UCg6 zRA`lye`S-hfX?LzgXzv^$E!k@+@G-uAZHZNxtz#o_H8t54}uMtCmW54VS6ZSfY=J? zB20>#o+H~M1RdqWp#xv=s9Dkz-~I z?FzKO{F2okSYg-_*Z{H3p{gO0=@|fqa1BCWe$li0t{b*>*Z{E=@E~teu`pX-8?ruR zfXE7%@|j4MZ58aw#U`Y{{L<6z#%iK?7&bs`1x%t%jH2Ce)6hK%IzV)DD)fG_ic8MN z!U)VSf^L^K6Tv4y2Z(M?#V_6W$`C#oLSTOJbNdS!x~D=1h;B|zuHDteust0%Kx_rf zuuO8N-@(K1Jrh3QqT$BP<`q8;H?(Dk;ky_}$biR|enD1jFbE>HhKKOt%8r4A9(Xtt)0B)R-BTLlVgBla_{JIv`e6xPbiaa$*;(% zFv$w&0Q%m7eO8@b4U@aPLOFFxcH_t?=lT`f1i$pxqKbdapGGR(tGaIulbovD z8*$1MlV&qA6JHg`zSe6ni>>uuS4*i(U6Nf6lYe`MOnPc?CwHN^PI=g$g}yU#%P5y# z%er(*gFb8Uu3GWYwQR|`2b6b!;xlE~9!2P1cp0JnV`u@ruONtGgN|FMl&NYOm>Ugr7w`rTv?c z*wV?VH@8lm(nXpvbZ1l_6BD)Mf2d;sMP|xuK@6R@X`b}QkOCr|(*KMh4NaOS{$Gdz z5l?>lGXt+InrFG0sZX=JBAc=bYzJ&Q=XlAQlTX9srqrS*^vs3-E26ti?lR3lWGQ6E z-?L`CZ($)@BWBS^Zco(#C<5^7Z9EUAt1s(p4iLW zVeZsyt{V#^zl+(N4@3}MAu%pBKI6kMIpZ&6GwoiY&+d;%?iyBVJ9E*{c)4e>jLVj&Z?`Y zc)RC>zq9p}KAX*!Rxwlo^^_&C;mc9Y!s;of-dW1UAUT`V2c*7$dMY4EP35U>3l$)$ z0_v%NDrYNCcRT0+@+IC^s~F3Nz2xdC-B9T9*1DkQc30GgVRHCg##(%qwfI96qU$P0 zV#AlU21QxR1#Fu@f@~yk~nK+RBfmLQN>#;qzbH+(RHB%$d_1aDcG9H zWSeSzYc0qW`uXv>zR~E}l|}sv_&7|yeVOcaqPt2zi0qGxBeN_r*%PhF;+rcYK5G<% zxFoM6JAh(xKTWW#J0B)p@*3y>(M@?gw1Z|iAFt4ES#Bk-hY}FwJ)#Xqz_MHr{u3~r zw}d$2vuk7jpr?1KY=h}8hRLfwAnTpn_t(KkA{K4GfYfryfX}uDjPJ$-f!mtS$HK%a z`5svW6yl0eGFRi}DSrSZAj;?|Kc6XS5euxCr~M(cfM_Q_#MpuTUC=d8Z}Tm=7(-@8 z5mWSFK=0a_xasdOdC^B?#65hpD1zw0fFrPh%Xu%i&Wj!lc;Qq>srcmnbZ-Djk1nnu zg|%8n^dN`;5k;4xkSH@)M)pw10FlKG1{7*73;AU@%H+6$j_$E3Tss)x!!UWuU(sVT zpWPpkMEBS{i49+ldaHF*bf>@vZ0fNr2FX__*?`nX_tyUs-=ePrRlfTZ3iMNX{o807W3aGD%Y^>#5mfGHI6F4>CYx(G#!vI0YsPV)sA@ z0TISdyc)h*7@hayGv@;l6ks&%p5~0EPs8NvZ?ZwyyGDOi%D&Bd}WrJAh1F_7VIxw`myrXqnp7Zm8AxOS**Sv->0ZZM=^hOFv9t zmao5SeLW?ggIL7JnC3T&b@FcV8BmNbm|SiPr?;LDL|ldlKq5Adk%-Lwfspqh1R(z> zy1uBys0FOw!T#2M;%&|^0le$Yc2ci?uS~y(j}}EerCu!}&W?JRKr6@p+&aEB|Hxwa zG{VW7$zedz?H(I)YxhjTTaf@rLjTxE$jqL}cn2~7$#}%vye>YiP}Xbo4sX zR6uF)=wm9y7LYMP$6-)Ff*yZN1!cu$Ow=Ak0TQLXOcwjM%r+{e3v$bFqtcmM>x{OR zeRTPBirg~l**Vr^@TYS&{$iLs^v_j{PEN0bk4l(rY%n)#*U2;50)z?`pljL!G{?#` zq)m&DomWCb@=$C6DE5cv>(w+fvWXP0&Sp#UaKr!-Gv|_=6O%7CLFzOR1V~Ua*FpoS zDKY{3H7GEdRi$B$y$-X%t7&xHR{$L?3gYFiJqsC4|UEgkc9MVKB` z+?f`eCduiz0#F*vvC__XP1a;>NcM#jbS8oT37TW~E8|TC<%*5>iE&Qy>xcp*YJT0X zOcMpjE4bv;llE0!f==`5cipOpv1@vSf?M97o0@%%-3O_pFlS zvzP-=GCX#EqoIH}?bO&p6MW+&eGW;0Bt7xiO3Dh*xU4TA3y`b}<~C#xcx(2v4(2th zbudn{NSShGPVGD8IcyOlXU^HMMaoQBU-CwkrQ^-v8}5%1V~&pnJ^e6&S;eMri_IJ# z3wlahUeZ`6mopg*ko|LXrBCo|9Ac8&BtY_cL;w;o&-yeJ5tNB6HNJ!pfc&3dVGv<0 zh<*?ETl`VxG1SMFh6bgq({Ifc&4I?M0~fwbJN6-rAlU;+$*7=PA_$P6InGi|5EK-dQBh|h3XrJz%~EBWYS~BYm*iO#qR_xnGS7ZL zoi}WKmBp!U2FHJ-<~ffV)Xeb*caEGITu9a&YtM|xdI2r+!W-va zd*+FaA+lRGO_HnApaM#RIo6&TugRLMZ=HSN1YHY3fCSC4_RM%wL0RpYed$D97g2yj z&9C;%XwCZ}{(L_ClDxsxp4l(xh|IA&m>!&GOHy`n-`)OJwdg77*Te9$B+YS1kaF5m zgb>4nPU;$oUOQ#)a4pNP2&mkSNJ5kON509A}hL+DQdy zB!zB?BtVkdbL+OJifZX6mn45d=?PqWj8ev(I+-s+&7}pVWQWOh->0HjE3doSa^pkM;~$3E9TEYH>n_3H&Nb z-?T+(8)NY}LQ{r(Qdsun1=s<=4)gG-=Sv$?TWb7mC*x9N0Fp76`quNMGO}{wzj9Ju ziWERnnsX>1p01`3``n4c7$NxvMFKab7Tm^IV&{&?A3SW*!`({Tod@v#^p!^LrZ~k#c)Fbj<*<82Y*0qTh6&o`t7}_dT~dY!W45DZfmNA&90vkQ zt(TT2G^-!CA^DR?1|<1U=TKoDO+w9nxzAZn`&2Z0txe`p{DcL0pInO)=FB_YopWgg zoq8)LEN5QeBR;5tb-MkTFKzzX$3iLFoTC{sal-^TDl0d$Wo0e{pYbH&kyq}n)sg%Z zYXM4txy+;FNYh@*nEk`NN`8(gK%% zuQdj})*+Kjy1QWSF4(&|D4e~9t~~yQxt9-u2Xu3pRhcN(N|UK?V@tt0#FhJ_3{&bD57DBTfx&Cp^Z!cfuZrFhIh#@erZNw8~1}G;vQv93XLr=1}^^ zcx$?&=ERhMeXa<&g!&zdA&wt+_gsdSI@74LvDWN026nHn;Ch&RoWng%3vcDGlwNZg zS_X{x%L-9pyOS+!b7@pZI88AN?pY1VC0GSe)VF?(edjg~7;C|2$9@jx$mNG*%w-^_ zv76{^z3e^@lP7;jb~wpjW}hTtE(5thge8{+&a)Pn%RnyRbJ=ea!Ez@z;F&t0=+0vx z=h&6)A?v-!@-)romEG&z_Tf!;6rcM%OrHOCvfE!~pXQa_fe1^k?0(1`vpe83+3jO$ zBA(oqk`5@kbD5zYrO(=_ypY==1elZW99u2V`e5Tbe^1nNDRI4qR(Gw{7uQWU!d@*b zt`C#%GlDrKyWv0Ur*!lh^BB40#8?S(;EHwNTpHgTqw!#R$MPq?BJ%-7dSwn>la#M! zKkXxdP3kAhIKX9rOZK@8-JFE=Mz68lSUf9qg1L#U4W9(b?diAx^Q}V$z0?mW z^`pW%#3uV(Jzx(oan-~?1BY+YWlcSx1Dbq=rZ4C10VBprkO!W63_M_?A9}zgL2_d} z0L<9~gUkb-`l6f%OtQ~q0Ou;F!N%eNe@w5d3(TEia&^w>I^CPY-t^aX``_@yTxLbb z#92A=#dEAL=Gn9cNfLS^NS35Y%K<0><}m@8i+|>kP{OnEiOZfKJ03c@Ip6-q*ZW(8 zgROqEeyD3(2zR}pYfTCNvpjKHcq_f)Kj4S+3Kn2VmGdvLIX`9SJbMJm;~>(OFZnSw z05IL+ag=VIV3yjB_So174TW!-N=EE@g`+t*PwNJD@yFZH9U5g^I;mewDw$?nqsDRDbCW}Gxku_xt zK(-W0VqF+eeHr> z)>&OG()hoBm9h3L>Z3&woLdlq4P37JOY5rW3RNnDOmO0pdz12jq~E_F>BhItQa+WE z`$7bWDEh3Dd|Wz%MysRV3;AHOBzXX2fXHG`*ixvqEadm%CX?d|I=-Ij_U+rhBG5@o zU-*itr}!+#@<$}`^^_yA;mc7UFRGq$0o!^Cxh4k5%Se4d>f`IFkR&ygr+Ot+fT-f@ zsgNqDr?Qy620DOziLIv;EXMLt`IxPzxS`PR8(S8ank#4Z8g?I1_gVA9UzNd5@|W2s z5k^;x0ih+5)Be>uE!qS@*v4!=1|~wu8^{$v(Rf&q=|+2HEte;JGlYN$r%bADzk@Uy zx6F8X(zikii1c2O-g6<>@(iEDfvG!06Wx;ujzjVXAwBS;vfzpCD*Yg`=!1DPvS9*? z{P%6^zvzZ73)41{8 zEo068aVhvMeCI78j_9sVQ^)?=9;f*WYJY?o-8w4NO&29fCys`eKXswQ3S$5%w!2{;4;&16lEqS+?dIWPcEa?017cvK;g`k61@*1pb#?!M1h%7vJXH8 z6k(=A>$NnqldD-X*}RS(St?xnP?!(HWbg&q>3H+m{gM9Yk)s&;z26J-a!KxHWHf zb~729oR5jEtGo))MtA&{*IFIxVSN}T>z|_I$4xy_Fn>f6-SP7zHhg)sVLck%@$&&& zZ>BLwK1sJ5koxG3Uyj6iF{AnvRDh_WJAOH;zcT4(9+FnQ-c%2<2&Xi@T`C(;~& z4P35ztaVj%AJq%TRH^vnL!>+)>CqEuA%(S6M)YBb01-tGS3;u9P#M|BAOl1eJCUYP zYgx#T!A&N|6?F9IZl%}Mi+Oh4n)^IVUiT%L>Lh=eeG*~3dow~yB!fNE8Z5f83L|4o zX1Od+@&tM;fT9sSf*hrCX3G&i8A3pW(LK^p!oYMn(x*ZSh&1-mr{k=-zb+l0fdNx@ zh$i~cnhU?4J@jyQ7Tg1gTYOrEJUxFiy|(|21~s}%H6~=3KrM^D*jjYT%c$Fbf<4Ay zdT+VAmNU7W8U#?pqE|KM2uzok@{u#GOGXpnt4cXRtM96X^Um#BaMW6ty zrzw@T!$F!QUxo}2S#)1DAE(fCS?son}lU8}E8 z!{i=+Z;i$UMEn&|0Y-B~mO@7RTwz9YAv>d?*hC|FDs2#;2ozwnkjB?>8QIez14LGU z(L%D&Xc^%%Ap}GiZ#0D~qh+CA?u^DA5yba^`Wjrh7c$JpVe&iQlGRRZ*{k#ev59Y7 zJ(*>Z+rDMpRzPRL2kq>}rDaKuXUz|wIK+3cf&>d{wt(&==m60b(2D2c60%AFRqz>iT)0gKQb@Q@bSnVPz2Fae2%~dE}#9x`YgI) zcHtV6q1A{_?n2`NNP4uDLke4;Wkh#_2oO&X<0U02&*eO1RTFXNIF@ExS z9X$qZH~aQ&CO!<4kMM-{c=Or)k^bm0s3)=E%TXu(#3W2~4eSH9mP%ugoJHybQXf4A z&5<}$WmLC;3J_Iv1(~A?Y?aad9&`Zt6508Otp?b9Nls9%WVs$+L=>`}EwR;=F8!3< zao>>5PKDatu@~9g%DrNnOTx~`hY5@_-qoz}qB}GB;8Xj#2pG2H8)Oxrtco5UP9V&z zn4|qRw18-%R~<~C&D%0Z{avU5QQyA+bK1a-MbjBMGBUX;PBs2<{348RSG#sLuHDsS z+`a!r4&B2?iz0|`S1o}JTxPtHHDi3c>Vz|En~G1aM`i$IMs#rsD4g$nDkV372oO4xPmSsPi}oHTkmyOZhfm^^4%}WP$!5^7yhq^ zq6eWSM2IYfY<0G^RrG8}8nUh4vS=iS$ONFE9Cs;|J$10jWYR2oBxHcd;_Gc9j&>khE!g@^xQ2x$xKGC=1;;qG8mMQ)y}dMJ9R?NSaJ( z`<7ZTM|wJ>fJmDKbPPx0m@{LJ_)Lfa5#J}?kv42>nPaKr&A>AvE28PJ9BB>cE{Dlq z+M%o$an?}dlI%j{@k7}(INQyGQ7-LTmln}dg>iHBV=jKlf01*5;uAlV&Be!*ixH!$ znjwp8Cg71ERiPQC>B5Xg*~-xOK!aMN~Yk#YVf{=-9=eG9=dv zx*jI~{4v$3r-irDEB*sB$VGHYLjjglo_&nMWF6!liswRZUZkI=o`$^>v#quoR?#-x<+Nawr+w8wg|#iWvf8$& z{b?Pc-ynCGKq}L|vEbU)M=)U%OREVe6ASArgp_&TX2joz7!Yw`eT9&C+_@R~ ze?tz4yr{l{LeIRLQN1Bo+j3u=(R0*mjYF-q4Z9w~eI6#)poe>szsx>~F!~`;Kxm2N z)XS_>qohhiKwWsHN7a3GL@$ax0$qoTOJs`D&Pb5@EavGeS!w6MnQP6J}vs6NV8= zI<$3wq7iSx5h`cG9N`5J0wRnz;Rs=1!W`)UQb459CbS{fyc3Kul8;yuI#$s{KcQXQ zXb)QJZJo{1AKcJi43j@#`>T`F>)@kEqgVXMHfXItK_Xz z6@X$AJ)KW0Zj%^R(}R77%Uhihs{q^B-Jl{tJ%Gj3TD!4AeT? z`k-6a0guL%x?C7^7j!vHPUh*+slgp{;eJieAbKd2C%23;=Qpi6qwB7G@W!6mEz6cX zn`{G$a7z|?ItyeintkDDFM$>iZS+tm3q7UHY?^)PsGkotAnFH1&YEU{*Yt6pys-}} zIi_!5R}2(*Cb|yoG*=n}9ky-l>Mn-Kdp=Jc>c1QY9~I5$I@E^?spXPQe_T)<8U}7n znu}HP5L!AwF^R52$H<&P^OO&R5)fr{9XduCm@`lN2xtM(#@3;pwdOzAd`o_0>d^G2 zn4-r7nwGLl+^i?N1HXjwTfFsrioW(MDEXYNhKqhQnucb537vd-!cR>CM$bCrLbt|D z)hBQzU!y7kl#0q<(s)F>r8*!QT`#6fGDFYO&@kjnfcOxEXiXI=YcMqDl>F+SP4r@sE@X?|O&W(L0=Ll@za^4NC^P-=ddg1sW6`veO zE&!5VKykHc6I#usQnCjkKtu(UqKqgsm?t|CGC*XpD|wYxvXu|{H*u87aRnVcyQ8x| z&eHJ?#!&9_Fu6Vl%$(#evri(7c5gsviDa;|tihtY6G7OfX7e#H5lWs*mH>)I^ayE` z%GPUn!WTdYh%ma5A0^C8mnXdxQb44!vpX(i9Vuu`V)HAxH3m%GA)4skSo$KPeX;P+ zH)X%$&1d&VB+-j6J;^X3e7Wup)^*W~FMYt)a^~ey7?Pin6M)pmTRVLhH*G|-#7cev z6(FkU-fJ#Cfz7g*9mivAfP9JU&%ss;qVh+$%Vxep?@w&YmKuXbeQ1h6`F6p5yI{UuFy9W78+}Ixyyo;D zxbG$fJ^d+rsw+aYl_u}r+j{rl{E~;HoSJ}EN3wtq0OiyLlY9^x=bBNV9Z_u_?z5Sw zYjV+vI1j_v%<{hr^O_9l7MDz|&U6pyJMW+`{z4AAdfq|V*Y2BCZW<_JCs!3SrDPf| zh94$~l6M|zy;ES(%JG6<)nQQNm(|#<6oEF}4SFS=- zs!Z;mZ?pCoAs;3XD(f$>SwFdFFM_;#te*;<_3(J${{yimF3D%e9zfbB?k2JWmRh5~kF-$E__RtMNxqDv(d0RS z?GSa$>ZmqPp6Z2x-uuY$#p&ZZ)DNr*_55r4-*KLOBdN(nmhxs^KeZ;%Bwa^ z$*svNK#`dEKFZFxOm^9%aXChOlBbYk=z?*m>@^l{A`=eYqOQ`qa_3-bISLY zJ$VjU4=9SO6PwAcYM3eE*UbHWE;09!Mf;RT&Je^rxfny(+?br^Q<}%E6!~GC%^XwJ z`mvk6HB4Sl2kJ^AchegfNi{jyK6x%-%WNN)U^$iBFSfZorG=a!Ze((v&vGRfk+*>2 zF}a1@8JiAwHREHGhop~5#^h46(WhmQba$A|&q`aDWoi~*{&VHi9^KNMHK>@}J}Oun zq_W|4HXH676`HA0(Pe}tKO(^a$(+)=+B(H;>`j~6>ov$)AN)@V9#HTz_COSvNnBGg zbp0{s8O6_`07UTzGgSu)OFr?EUyC<<&dr`A^^HNx?k}gH7q}QEYyT;0oSa^pkLGun z3EYf5DqX^`G7R;GzTaxN(jNcFk1rnm`^WZxGC{Vo!p6tXu(FlBaQ zD^vPuvwDAHeZAWosKr&NssZedS^n#V^lMsMzE&F2;$G`0zsSBE51pL6-)uSQ8OH;~ z|5lgs_OET;PMP3{Ocx5-bRAYh@~7lKpt!bY%KzyUHUHJVEE#;|?eZr1ASOvODEpny zVe%k0c{EXRbmIg+$gJ~7CdRJgqp&dPH`&+q;OkKO10wA+Ay{i5)X6}fum+kkySi-y zO`$OrhEIWsQB2U0oX#v6pv+p2GtmSkfsKN110xv?e~*#U?3yT6>SpZZu4s0?(Qcao zv3Y*h5BvN2c0u2o(X{#3cbFhb-nra*XUYWPR^B-( zhcV97Uswgn=csxB@?|F1Ol7F)8@(Xg)?2cw1@(!pj0W-P0DvS&{sqgBIny&>#%}V; z`bNFguQxUut#)I7+djt8&4pHfA-y?FZhqXJ{M^ZKU8hK07j-}&_ zeqYr)`R!)C-(BWG9o>uiW~0|ibJu>q!1t~VS@7QvlMnw&)xfon_7nf@L;|vZ#>u5E zWLs%+!uPBbrp%ddRT*r-VoY(A-&hsNjqwMd=yqrF$5A+H_B(Y<aGp*q7#^lklI| z#${B|S)oPK^+g$SvD?oWo8~(EZ#ZGbdA>1vOQ^j6Uz_(c z&hw3hYjQhx*D@u~qrwLiiP`4)a-r6Ar3oHtfFJ>rpOS^7Vm{So9Q_fFY7slq(8U55 zn!GZjzw}y5(cSOJpczMhJ_y^vgF$(7{QsKdnsM|O2AO6{7K7yO!DdDf z^d1S%C(Go8yj!+1FsKoCZFt!4(l?X(T>r^*`PC+WY3`2)N3KOA@kDvU1R=`8Gi(;l zIMF;k`i$=;eruVN+mN|{BDXYi=8nb9=Cp24=vEQq z@d84VOW%sAnG6q$N(C^<63wX7j#9E%)LMORN6mb9 z)bScgk=zLX*sPkK88eP$!u5ByNiq}Fx~<;4dF^$|GgV{k){#R4u^1S-6cCX7fWvJ#uw_geot9_)rsGk+qofv`7e?-`IXsi<;Wyy zR)sSB_ictxSwFQ^`6C%81%Jc!Mz68f)bX+|x~F6}j+}Du^h-r-Wwy!8smyd>CVgpz zBmKAKNjsK~GfwD^MKqt4e@GwZin)94 z((6*B?=oZQ4U*E1Okq>@J;-L?jEf}3Vq~%|;2I|IBv&Kb0L9?E*(!k`(3+vma?4OW zkleDV7bMq=vmq{CTIjDeC2jlA*kz3FX;DyH&yH{Y1LfBlqqp6iIuBgTf2QEwEh^W1 zNH*i3RmLsajGO#o(bmnBP0lc6+iS?*w~P6Iei`;^n7obd-znJ*J_j9>b7sr1Gz^K znUvnK(MWDj_5jMB84Ge6q)8`Av3UOr&up>B-MN*J<7k(oAagV>Xhv*zi@ zLnq_b!PvvUYqGxJ%(46C*4RU<8T(%fJr|VCQ<#;fPmRmd2|?RD9r%a#$lt@9gK}aO}3gZ#%2gkW7W}BCw}K{t3DZ>C75y8 zI8B=7`|R@G=h$qXaqu=Rc$3wWzO=l_(<#D$68#Y~72!#NkG=Kct7YPvJezE{$vz={ zqY_|r6d7bbU%Ae~f*nZS{3pu(-!S^e=M>x*6Ni`go~`d-Q)-e#^}?h@W&I`A1P6*H z2y8IQZ@H8AVFW-%Xhs-eGYfoSUR}Q_?=FoW)i(~K~w;8UL?oz#Kx*l+>>P0;!l1{J}{;!B8w<$Y}has{Q z^4F)Wzb4OL&JuEJFc*#FF!=x|0`Zkeno`+}M3835qaXuBHo2XgIZk<#`Pe-cLO_JE zXAGK%7@PUfKZVbn4@3~(ATHShi*!bk-m1TXX%O{Mm84Jv@eQISuz|~7U$yp%FCk92 z$#pM2`CXb0K+@wI#E`<)T_U>VLC0O;IR2UBN@_3yVvIL)z!Ic2mujBS6_r%3oMX)-&S9SPXzH@uzss! zn@N4p;)U;#!VI-ejKe zQxF0ojIP7rGdA;~pRU{q@;|-~8#G)UrVpwCeq`z}KFiJgQ7q!?Fh^p;m&dMaJr-Yw zxqz+3kZWR)yqY`!q&~h5%aK@vWmK<&3J_I%9Trjr_R8qq2pvGa#MWU7wq`QfrrLGz zR+{Vab(n&;2k63~lUCPQCVhgv@P8GJ_&UrJSqk~<7Dd%zKIGJ3E*i-J@&Ql;;_I+H zO=>Yu)`1KVS$rLqBg>o26J7uzAj0T63_fEsANp_GI*j{NFNGM*HI@ofHRaQJ;n5gv zb?EyuW4U`O|ZV-L*Yv`8m8+cUpKWz4B+}Mmv2(z%YSS zHvD62!^!I=b}+>>627VRf_s)Pc@eb(pfqj9K3fQaH)E-6A}#pF5x)dtK*X(i5N9SG zCx1EQfXF94f|@OzYmQ0pC2(9f8JgS;-+C)~^F(i$?W5G{Y&LuLtYvp=!QK)(3(>DM zayPwEcRy1C+^4A2&%{`Enfbxi%!N5CqsaL=jB|2dG8a(XCO^HNA$LcJ?Si#@F4#yX z4}cyJeYg0eHSr$zb}j`Tj08Xu9v0cL%*Qcvc#iNvnB03UuvTFOyWP|~^!?S=a^CCQ zUNE=SQD6zhRlMJWZ_=CfEEJlM$s4WA;EgO;YCWq&-e0xeUn|N3d77O6v#%_B@CFj4?XSuUtdWF%R+;GT92z^X1URwx|am?IvH z?gjed>E7A!_UGW~H8#{eHMo;r6m@2Kp4>9Z_y?`=qdT4X;B$ue@k`!8wgSr5$t(3{ zD9|o3$Ga~n?Yp1_L_2wvSRC!Rp;PL=fEo~W?3v|R3TFmRi8k@A_m8toVeM(JwX!;? zMmP6;mHu@WLj1aSaQIbvw;lvUr5-&)Yy5N>(-u zby~Zd9C?MA=fRAa1BZQWm(_R}oc3U9mjA@qJ&Yg5}icRO}< z&{}tCqupfx3VRNS3uOG)!=(P4J;x>2KP+jd-60Ew0^;5*4(Vo>WQkNNhPG5ZxzPA- z9nrmZi;sh?!D^6LF8ViA^bQH=Meg zqYkJ}0aX#?+QCN|k|y$E%nG)LIqW-lW6^)PwJ zGu4au*dclm=VYP8_aXuk+qZ^Dy@j>xco$@DF0fGU{6>0;DLa6$~<<7JNQhld~S@ zSDnJiNZQOR9DN|Y=zcm(&VQELzwau#M@~M+-&D-q+Jjk*5h$?~YWY5CTfRpX7sqMN z_w3ooc_hByCyxQe^eJWP2}jE&C;l5{fRsI{RAr66nYeKd`4PGR>AI*?U5njyx9h2s z_EV$*rAuqBtq%^@+pPmy#BXx*=STx2?Wv`v+H$YER$pqbtKa9e{Ss|}w3S;1mN#^U zK#*!zU>pKSS=?-!FZSt7YgnK8PV)5HVsE?E=_|>6b{>x~pnPH7l~CA82m?wNw$|*g zuJjm{n*wku!T<^TlTr(S?RD4|!HGK^ae%~?Ti13w&H8Fr4^vH|orx|$y2>q?($x=3 z=C7j+kg~^@nw^6lr%jpU`VB+@RS>0lWh3gEhyo<4-1hRqX0Mye#OojpkhFW6RRUqH zxRb%Yt2t}Fnssp>?@jiiykg{~$G#uEW1IeVn0)Xj>e*i5aq8Kgawk2Hy1qGbTyb`r z2F)1hl)%pFK%&0wk8R&JZjK-q^t7py>_=JemV3lb6L}`m$1BnapxDOMx*6M1W^=M1 zO^_7!aE-W=5C=$HTkx5ybX&iK&_0B{eAboK?-i&(Y++A#Rv=<`F)lB~WI@$nfi|bbwplvBI z-ftibsDiNNR%hAg<~0!pR6$rP5Oy7e0TLGXII4iG)R9*EyWO@sh}?SZ|3e@kfpJfJ ziV?Wn?l!bxcwoBUL?IxBrPm}%LJlhk_1zeKKt-~6V^rYH5C}-%)61@kb#~H5dr%MZ z_qUM;NZxrd-MrL*H9pyH)YQ&ZJ1!y2cJ14kzw{g2J?Dmsww z*`KT=?8_NVKR^>8O>s}_W=I zTXLGPIpf;|K5G0pg9Zx-w^0IvUk{UyovoqP#XTOP-#Ob~F8(2UKw=9dL@JQKWea3n zCvGJ0X{9p!SynWIyDs`eMLz+Q({W4jg0M|SOev({&n5~Bi>t|@=OGc0#JF)`$bFRV zdHA!*63upVM%)V#2S{ApI>C@NPMp~e&8T}Z>Hw*WYwQbEr!|5`-ph~&R48ZJh{=e1 zCE|bzrJdcx$H;pP@_-5%Py1-N#CtvJfC?oZyL>o#Z$chWp~TZ0)lS`8PzO{f@uW^0 z3mE6U9eF^t+zwM)FOBM+#KJU!(|o3n2r50JcPSEGYq zc>%!;!J3+4vy>0SSCg zH5}*!*2CuGC&&bQ5O&iNMuFECEA6ewYK4V z4YxudP$7ZpP-gmU9h5`pR@;(E8=3KH>-CaoLFdi>x7-W7p>1XiSz7z{q|jygc~HKJ^t7XyE4a%j1f;Mc zMI&4L)w%vZ0qD zu6XD03#Gz63sq&Q^g6`H?CTIOEj0A0??VJ}+8gZdsJ9I`pJ`;DV$CL|De01CO-Yjg zN|4uATyppdg~``-!~+uls;Y}$G#m69-F&|3vA{&tGH&k7=*|>SN*Xn4C zC6nlfQ4dJ{>vn^B+dv!bk3u^j?XRx7cBb6bDKo+!i*R5!SVqFrZH$fjC!ikK4avT4 zH;6XEpNw!|HwZ`fZJl49if}-}-&l2{_cia*T&f4<^y$b4B){?vQa`KNpNVc@SLkkW zV1V)Y#pnj4yYekkUmJY)!xm|XdSExG$K^To&qF;R^_A~A4py}%!)mv!Sw3T&7a|^z z__tQQo=L^4vI#2r7ZV3SaVTN55$vKHj5dP16Gj`aL^4p0X996sOCB3-yaw@r#7Dm5 z6pX`;`cirLJHM}6sNC)OHX)_ogjhggOBiBoQ|wq8zXjPqNd|EVx|`$}cIY2G~CblXT8)qjp^K&ngVa&1@jTC-h0*ffW@tu?ga zq|T8s^527eK=R9|1-I!Kw#f9omiHnVkmR>i*C!jDez!MJo6~QuF#A?tYqC(-r26}b z0-z}T*=~vgZ&R2Ue2^FbyDSEMmXw$ne25qTiop{~%!BoA`|u`DppB{zqY99!7ae<5 zW)B}W-U_Pl^xlMa@)O7fB)5c_l~meRa>rWAe?&MS;g^(<&XYH#nvlYuMJOPlB~;LE zFRN@m+};RAyfaup5$G+dF6}ib?Y0Hl-Vo z?h;|_iXI+3(&<*Sk-CaL0hJv|k17z-~zN)x+z&N@wcCt05ea@X9ws zt$sMRxCYXJ-H_&O`?9J@^J^mPJ4~I`g{TD zz;1B5UXJm7^IM@CknR$m`s}RNqVo)Og8TB}`k={EAeZ!K69qs~sC>ukke2gtkU0y$ zZ;NnXH+bg4=D?3bZ-;I`x}SIK+oP3cr`gk@`)u;u-I*`}{f9^eB=zMLl{z-@d`CnB z68(~@itaU+HaPXvIQh;f2Bf%z$7_C2&<{P~1`7QNuDCmL0m&_)#@M#pF=yNh;edok zZWk9W;yKz02;uM8b1i&?X|5-v@BNSoNal-=y@9usIhL*uL@*%1B|NrlHx4&@p?U3% z2`T$9gaQ&;!eh&A2pvn?M<5xHYAcINPBLtLoHBJDz`e#Mz7vzuQd1f8o^9w z+kD~fPna|MGjs#eUBX*2R^Co@k4+)HjTium!JA6xGw(R%_coT2t`38Dy^wdJACUgH z?+X3<8-vAFy=2wh$ezx=n^*vfMHv%$JI@8J74}mGmmwaI_!8FJ&QJ)JT8))ub!DB0 z-bVxgMWBRLTC+qTUF`G$v;(_FyI$#Z>Harp2c-SacSYIdb=11v?8HFbPWlSm-w_c& z5!oG;s3M{__;gf=nTq%*`T^;`Y*%E2dn{dVb@afxt{rjp#MBq(zb7_;V)LF|5t~)n zO3~={v}taAt;@T&E@%FMxB!aFyLLrfIGd@}XzLxA`e0-6K)Po7)5HW&Om;^Tcc9nx zqkzvK9@sSnWUX8)!4SmYtHc0M4BoLTswNwQk&O6vq5c1?kxa$0V;e2M-KA^<1?Z`&1ivMVLk9n^03u3Gv}A^|88yJIwJHV)RLzBc{X z^aHy8A{KyRu{%0Y1MO8}_K4vOmfQ-~{~<1b;!?t!W;3*Pxn9$ckq=0I8LOwd{eCmI zddl3GFcbEF2n8gxjMY# z+=k`@ZT2B|72*l#1*Erx<%*=-7XIDazIB+uCnFe;;1XU4+LquhE9qMOzIyh7HBLi0 zP+jF-b*J49m0t92LWgVlQ8D_2H0P~8+~3sNvF7Hw$Ok09gh|4k%5U`ReP%kF zzE^mC^aIjgLf>}h`up9*mO1aPu6>(*5B-M30@x+FFlaX${Xsol!EzJy1G`Iqx|-$Y z=m&O}{&Z!_Ezl20e+lz8J1qr^-S);>M}z78`^5a<99l zeJL;4Xm-+9qs}5GfMQa@bGx0!WU0U2PG4%h4cdX-qCIfX@1Y&o9op5EXrvFTe;@6D zw3jgVy;ILDx71Z0dD{5@hytJ}l<*{F$5Bu}Pg63k_PGP%f!*O9CMetfZRk6p9oRkE zH+=8yT(kqyUc$I`$EL}4?*C(y15&;Vy8Wxo#%8OpezPLB z>ORy1QeVQ`>pNAy-tg6X9pQk4?}A~8e}uW5RrC9a0iYPX``FKH?>y<qOl7)&;zaia!v9z$-hzGDc@?bL@Mg9ref!(4#7)2gIJ0R^P z>-B=G5zX-*E6qoRjf9o`Eb@W_Hk8?uNFF`aQ(IqU(+FG=hfbb*phJ&k|Uyf#= zvYO8t)BGwl1C`Zmy&R_VYtalya|w$fdwPo0T?>|e*c%h7<2NG|kkAqqLvBOpScUvn zBm>oztfi2h?nb-aa>ec)NCqUignbXTlgj(Eon7CBTA;cKywvKo7FXL%|MJ;iAQ_P4 z61HmCP6CHJqW>jw0m&_)6SN(RWlqxm6qO{P^xCe=GWq>`?ZGP8alz_>WKy>=xze8?8S@IUwbguU}SGdvlMoN=2FD;itzu3^Ij~C{!)`;a6L31x0ZFfX2j+r}MrY7!`$vjrq8*U-62?Dz zx~aDz4hJ1CcPH#Ix@7(hqymy!!uV%fQpY;C*F-cR(Iq_g-=65M4(DJav-(PNP(z*5+EM(lZC>fSu z^hT!vVd}BHT2$%-Zo>4KO^fU z$O0tm$>pV%DN#9LFGm<4VHcMuOqD`!Q15T7uWLS~uPMy+c7r$dOzOP~k$^-#tvr#7 zdYi{@6k{Ll8+ETm9Z&&vTEIH!_S_S3qwWo;1ElWp<)z(HbGfn6)=ZfZ^=3o?peZm(BqdCZ@0Ii4v@Nw%1g3TojuOaB-}fY22@1adXsH%jkI?m4Un|Qm6&RJ z9b=%ihep$1pb3zsrMPpRAQrU zHPw0R)@0*fBMXqMr<9kCbaFczYkHw}%^U1*Q3goa6UtMzs_iy7Y}%#QM^FVw)ziyU zT9`=+?2I4ML zzlbX31d1YzC`3-ad(p6$l zRaG1RPI*Qol6Xd58@6kBi?Da9!xdmyk!OKzKwT{{>DBNkS z>y-0aT`UhPmItF98c?FNrRMrz^+WIxW}b;}AuF6qQwpIz?%n z^*l5IZ!5507xy$nHs1jS7*MhNN;*3w~)sj6Oy zDnP2@rUYhJWe>~KZnjHxvwt(|L|vl226=$w#chf+yF6w+b!eFmRP?96j>&vIG6BiF zTTGAHs;t>RE)7OItdEN8SmqDl-bUv+_aBDI(=O7);{&u<_sEs*VZOS)JG7q8^mzqq zvvlfI|Hdy(;>L}{M~+B4%G}V%FSCK0{ldrCCdPwVz6>Y<;^wVJXrl#&U2v0c`;ZDq z>T?UutEmH(oPi{X2gl5!=F)QS;%c|u>>tom52Lh>Qb0;0OMad|K2aC7VV$N(jLiMW z1SB(VO>E(Lzr^kuMr0F_fJDYUrz~EijyHEIS5XO6&zsq?2qrxbpcJTHrkf-0jmQon zf$C*CXWP3>zW|j$^)lTZTxJ|0&B~~kESkGqEJ`uG*Ws_Dj za@tqdhPvUHvI40jZ38 zURikdU*OBrv(X4hW898~g=_4$yDM2|^b&*u)pKUQ+h!YNQ-Ge2Oh7U#*0DForyG$k zLL^YZOy6A6(kwqrdI>@S39Z-=*`DF9*&UbhFGngMsTFJUt<=z^uR<&!u@$T4)gtjy zrt#@(kqJm<#rk`j+G;gzj^2Pypn^J^i9?iW~YBK+=hy^6}&DHAcJFzTn zJe}-mx->o=nsf4|y$VV=fNHy5tHLJVN&gw=kl}N*#Is<8c5zIW=DA`zEM)m@V zVdPW3S(SwIv?k@>hbBOpA|K1ltVz4jHF}5ZX0}tWqYm_FRFktt-UpBeNM77KEbW=) zP15x@=mJViw!Tgr9mR>~dVVlXw>-0+JXv z{4Q9c-lx;zb#r{9$?Ur!6p+xku6U6`wO5n+;qGmDqw^l<1S(}p4rz8dejWmWO6B-^ zv$v-CwJ;^`gHS+1t5bS|`{qp%JK5B5t;tdI8=DTt^^KDJycKWYFX3BNC9vsNE&QVo(b&Txv`n@x;9`Wlss) zdH`mAH%wl36HVK^?E;OwPPi8b`o+I7l?t$dYpivt9c%TYnwT`$X>E)BK~~wAYZt+H zDuM~19F1GsJDZGf1Z7hE-3S6CC~oQcjDpO9QMZ+!QFIxK04a)khsy}6g{ePcuegax zca+iA2Dd*PCht965j&{TeB{LYm{Zc?-{HzM*x=>yHxw~3nT0#e9o^X^LCLKD#EfUcA#?Yq4djQS~@f0nz1ec2)e(R!8#zM$r>d z1V~Zb3~8LA?wUJ~(dl{$x&Y~l+gvtUmrfvFHiw>?1p5<&0VQT(e|2MdnJsFJq9Z5* zq$p~()}~a={&9hi)?jgah-Bw}ZC#P3za1v$pQYZyp`Pl}Q|{|eXrnrf+e0KJV4l*F zs7C#Otx@Cl5Xl8Sty0Z?l+~;0Js0UmD$)s{*v9Q4l7@V=S=sDI6C{OotjUqbAP$hY zxSe$}UVJg-_1)}8lf*T8E9P(+qwMi01FE8o{oahSC!q|Gvbd)JS#rdr*+FfTs*1#D zy9jN7w8gzG0)snUA6R+i~EF%Z#imA z!=ZrNsee@|9=Sv{@0|~;=G}8&y{4f^-l+&`8?b8I&)V8{t%yLU*Bc|}HM(fsRnbZS z#p>WO6%f{>CWY^g6hKnqo`?Fpomz*Eq{UwKZZxl0*XI5%S?+}vKw2JoY?H-lF=xtY zg3ct(`N#nzC+>~HS(8TVYqbT3DoLZ~e&_*8OCGb6oKKzyA_tJ1bK>fsfoh(KMLzD_ z5r69BHfkJu+NaJyd6H_K>udeNk(2K0?kReAjWeSS$oBOhQ0?;{w)TlTcO;D8v{L7| zgMLdcsyAf41)x~Q?VK1RCajfA4%`G;fMmsO$QdO|Jv;utv&GF31xQq6Cp~k-)TU!v z#_e4TB;5i@fFwosgJUGwegnFi+Tg?F;4M)GNLk!`UsMhTX>}Hg04a*v^U?{bxxdpY zjkqOy;n8{9sK2r^UWdu=oTP}JtWo)q)9xGGSG4aDSC3_Z*}4oO)n&i5by;NRI3M`b zViEi-sME5$F8Zf2GXW^paZmI|Gh$jrn@Lb@=HK5A|8uYprpcizArX+oxaWT%3tpL7 z;-dD{HRtIWfmcQ#Ac04UbWW7O{)P?|HTtfKKA<}KbjVDm@9O9Sq%U#?B`{Z12Ag>b zlX%xc93XK|t48M9!#|C>>!J>*P|`7xV#Hk^aX@vFE-1A(L>*9_r0WmVD=WJ8-@9^FSqW+xL*#F=1nyU zd%qsd9y#g$_GD7#f8s`AfecHap3C)qWzsWl6cz+Ltzq*&$vOt^j*IFCc@zyOmT{vn z&vcYl!vADUOgIWNIq)H50g@HBh`@8sB+EO_0IOnHl|?xPlw5^&rn&sfi_V-a`FS+|EDnCtuQ5)LZxx9Esb%r zkY2cndPCQMZ2MziR+EnH5yPX3|K-^Bkh zOdfbMnedY;XGc!ELlzP~yx&$nOhep(JWD7`)~qGBd|hD{lJUkO4JDUc_4GD7f&~fb zlI2s>L4Z=@rSnLQXrW=lVsi4Ikqk)kD=I44^oZ>cA-9Ks6xMudcRH`mL3PVR+|31nADc^D@u(Sc*K^G#v(F|Ii|3)n!wH0mRM_Zg9AsLY5msQgmV=c{3(F{oQ z%PXpRtcCeGqJio75Xf1OZ&#~#C^uL=3?oBU)=suiPPJkl2<;v7F zfa2xst!pScXbqZc^}5T62GRgY+wuj9`ATbbT7y*A61sr$lT6FXa!Iy=G(gg}T(2^tENeq839L!D|Qx zB>2)oD}kf+oK2+Cd@)x?72I!L;PkGe7m(g!CU2q=SO;dbb?&HUM75Kenc}T8yQfpo zn}=GQ?#==m~9A?uDBkxhj1F9p>?df6UJr;R@?A?6VL}p zU%53pk>?4H%hx9(45&uJvA8BzW}k{aK>CUqphs1R>%EOmbE`(@>1YO|xtMv7Icd(? zoo6B$sD=&t?Uo)Ys%`h>=VJ5$(pQ1nQLE>2E*&BdC|w?nie6XI3oG;}T_JxS@&L)( zauwY?Ye!T0(5G0|j?%tqc_HcmsoQc9>@iW7bt+u~z8HysB$nE9NE2|-+wkf4GQwS-#mt<{SQpxq>-U>I(>ENLAwz#-fA-wkDSi!#fyyfGEAtlz z8@!fk()jf#2Bdh)eWd1JfNUDKmbBAsO9Kce@=b^YB=SXNj>JMEq#`xQ$*1XCkPAre zmdoDfpQgb;*QMv%5eP_NslzRso`FDL^#2@%fD~@ILg^SKq1W~vv;mdSw%A?M9?iZu zzZY$Qv~9W9?A+5$+Sa$ zAdy>cj5>c$ZVbB1Qpg09j_`IG{}GKqH4-w_xXLkuJ|X`Jk$^;&KbBc)HrLgIOuhJ7 z)B#dg>cb9GNV3_*&!G#DuJYSr>7v8sZ1)AU0n%1}#j?~|UUtI1j4(jLwtQ`Q?qzl< zn2r4!$^a=VW?fLssA_3rUGp{6dghH%`U>`uj7!I_qZW|bEzdTZdpa(+v_JWzf#0`~ z2~(CP0Tl^U+0jVtJg^8G|b2&`Q_15Bn zHd|AeZtX7+3P@=A)1pQwg}vTxu^FI|c-)1O2vkDis`l;FBWW!IXqyA;jKn=i1SGNi zj?bz}j9N#Rd?%s}khb!taGW-~n!+hO1%-eVmfzVm#V2R;?AfjU6y z%CERxby(k6Us4a8)g!f;T`ZPzejt zCfAcLdw-Z#??$Ktq^{J*9nWZi+lW^2#6ax4RAB=lU�TNbzxmauH zh$@p{3+Mu*tNfmVbfp7mU+LWng@6>6-&4?=jk%f4vrz|BL)}Ju(9+4YK6h`6IzZ~m zul3BP{HRk;I@ol;`0#cp1*Ek6dZnXPIA+GloA3{i2S{G|9m1}5MLpQlGMwBxWmlsA z5UGHqKEL#qZn9LLtan5!Ag!e?t~9NQU4qwKTOasw)Sb}>NMHHSRz{Wxy8ON?8Ubl6 z{~^_gMxW7lME23qj z0+L$(Xsh4Y^m*Ju7$9Ngw~2ZQZ&F9CjYvQu%b&R$73uT1i%LK$%P%gOO0TbnK0x}) zf0Q1+IkbT?K+4K*_i~fQhmZzHS_KO3YFDR)nqlB05e7(D`Hfs(!qWK&E$eRjg(Z(c zCLo#RPiOaA7dGqN-ja?JTFMVwACFEzI?M0Kj=g*HB;)~-SN`OamABby1P{_KLLnf9 z6{!7mz(9Tf;XvQh&<99g`2$qnm1(r~6hB?;^b9lt(pdh3(m^+Ti~Ct<11gbzM%&ox zhv%RXsG7!L?Zb1?2uNf3^>&bs`IQeZKqerWAT)0yW9lYYe)+ z;d?3i0O>2gV;$(DPV`;ES0ECoiWz+(*8TZWrmypAWCB&mYszy&doQ@Y*z3>-NMHF+ zo0Zocjg{5I36=@H5s82#mfyve#9qVqWd96lfTWfGV&|aOS_`@jZ$lhVjdbg&OS9-) z_fDh%l2-nBF5Kkf-6#X3to+{U1{-8A9x&?%e8qPe3V~`UH0weTn7u&tJ`@5{SpMXe z*>Ps6x!llWQ%Z-lw$rBW14soVwftwNMyg)=>9v}DR>x8a`fUFjlmb#(exq!ZYT-?N zzwFuU_yrJuhe)70$w`h+m}vhfN&zV?e_qZcr=4ck>jl|sUw@BEpgNg8{xIMl5D7?R z`OjB^q-<+4r`}(0EN1JjK8;pDT1%ZPSvuTltZ7@UeEInd@&L&zbrijNoBDD~tD%{7 za&7kIXamYly8i0MvUU)wJB?1>=aC0UUa7srzTRfCdqnuE`%6dzB<;duyI7;%>eokl z{9i>4AT|ACtftpo_k+xTM+P7nTOIPT?X|)+UZ!w{$Zz3U%mE(~!dbv;GCr3Zv)%s?SJyFwqohmdu;KStP=aCFZ@~a9dNuiF3$LZ`? zvfF);Nfb71GrGToZa}(UTY23bZ6C=qUnBjiNCzanm<>4#Px4$+|2ukt>bjaamoSOH ziDW>M3)%WPNa0%W`DoSQmIu+N<=|)=fSSD&R9A2FEGGZ+Ve-XaXbb4p<2ViM9QI>S z7*x{d7gJVTh_;4?N;UKmTSFH!8|)*pWv%Cxj8u6($~GO^N{0kc3KTO$E=XTkADbNO zq7;zQVwTJmrqor#jb5X(qPon;?I9PC+=A*dpP^f|9sYNdGk&k%v$xSV>!Y3C4fF!i zTTlz_brhtRoiyyTaVPl@k^xCBW<_ezj&KW+jUgV1TA;ECY}C4Sc1H4JkPJw2F=PM2 z6Zo(%Z;wYSAg#sh1zWUM`#N`9GZuQ)$)xX-&CG-Fd)Ij9FJ7AC2Vg!*Umi`(SSr(vn$cnRP1V3%iK*OzW}{}^j5Q4lU_~V z8L^il7LeF#R%?h2tF@P+7^rOW>JgW3HC};Opvq!5hL>FbxGNmTKWmCtqZ*LvYW6HI zZ1%d|!mmRuAhp%(x*N5jhu?@~K$44DeOpvLoF5ha89D*!EaqW%Q98#)LvKSWP&uh% zwY~fV@bPd$}U4HAgR@w%V8K17XSC56p+$_o?G|< zP2^<5NRRvj2nDJqG~W~d8-xOt6FSlZ|2u>N5?Za!;e?*|M-dB1Y_*!He2@F@(FsUr zwMzbI=k*^@3P@?Sy4!9NcdSQQ!uGYkofBM&JZD>0V9c-5lYCeNzK$?qLPF7U6 zB^Vl9j!2-2A~#%{`gueG5?QV4N+~&-?O#GHAhFfzt&R-pQtw~H5wzZ*HUGh7 z;P`{S#}qQtstwZ`b#`6e=JUt&_rv4^XXpXsZ?EeCa51Sdbtyn*d=DaM>j+Y=T{)U~f-P%}m#J z7&^@EAS&iS3x-xPV#J666%`T8IqOrOzNhb*pFS~Rd{5u+`);aR)m7cqGc~`ia{o9x zed^Y^-*@vpH1=xG8`;nPI~s;4b2WicE5a`5a=V0Oq^WT2Az4e|&pp249-ZtE=xt zVR<|WP=LTY(oSF!cMIYh8&*ACP52ampUi^QB9s{$@P!0Sk!HZS(|=Oe%C!Vc0l@D~ zYXO;TRg2t}gnJ8SW^i5{2j)bg>)vu5Nl<{q`%+H=r<}rRY$OeeG#8$dRd_BZUJzGR`Y)twEp^ zX#{GIPiF~~B8@=pvCtfWQUGY`rYd1$pqmJo0)SK3c14VRo=VIVz??cy6EJs=d7e(h z6hNH1);46U^DN?}NNF+d8sj{dfGGetnNtu6Ho4tnn_CE%0&uTN!p(2cj`1()I*)Xy z??`44=*(hiEv}ni1n#&?b_MaDVtu2%+Zw4t3T#XmkBkQ1{Zn@qM?jOgYy}_S)O>NO za8#stv0T8H+Z#MesSZ`DPyw&5&Hfi$;-LWZWG=Q_Ff!YhFLLNt#7F^*$y^kX07m5y zhb2{x9wbT%piF2?xX?T{r-*RCP*PS{e@Cnoz?#grJ{F#$UP?YhbQCEnlfe}HGci&C z<7J7onIf~teAyIinvyv|@06Vi?l;+9YQ$|Xtv5RE#40R|&NX;~{sPZZawq7m$k?3A z2+@2#UN)b}Oko0%^jaLVgZdj%>xoL1n~*Fn1xiISn|!S}`mN*IK_h|MjjPDXrxG#+ zASZL!!p6~O@y-s~1F~K&9fxyWfPOkbQvmcE66vpPB*}s29*eOJZ=8$JdBen!kqNDFFVR*#KYSbvkPF zH@?&E=9Y3C$Uoidonv379D%N zG&SwdfVYtZ1xRG12JbLA@J@oK0Qi)T7>f=MW{Pt2Zlb0D>XZ-8yn| z|MUT(rU2?>_KhrB6`gRVR@C{$TTwqAy^&<7KQw41Wp0q$!vyRwANbz&)cox zHwm8t@RQm2w`lN74ea5-7eZ9Rf1AiDfIQ{hPYJFT-ID(+VN+xQcGdV={*ACH06XP_ zlu`o~RQL8jByI}ePI+%%E>=|0{t-b_0CdXdI%TJ!z2iS6Y6_rE`TU-!ea+x6h@Bz> z#iTZ+ipj4CngXCx-U60uQ_Ghr*bfpmMK)mT(d_RCn*y-YUMXu++S&XNQBweQGWS$3 zTK|qRQka-<%=F>UgiZnIDR)-^dZ~zyIeHG~zY#n|cEDG8wVW8!{+-|{06y(4xk`C6 z4ce&*>=fBac+bhX3&B$We9C7*mBNlvrKLwKyAe1=27qG{;Q`;1z$pMc<@28kPPCL} z%J>3-sHFQ4IYs)BSDh(!JH9}^Kao=adCL1Fw28iP;(>%tk^V%VsWnRSs}Ca44W0LF*KP zrpQ84oBdfML`{(a)Hj$-E6a$Q0;p5&Gi+diu&zDJD~X!|xKlnRY_!Ik^+Hik+|D3! z3LsB;mGrjpokh?T=`Y*>t+yLIj;JYsI^|srO32KOs)sy}uqmB)^vPUrn79+JV7BI8Ot2IHo6N23$%FOwDqTvn6hNEINzFw;t6Pl? zgiDd)l3=#rUq-MLDNft!R9Sc1TL_mT#Rbx96ygiDd)#Px<0*Ap#8 ziWAp55wMkTDbfvBH)2J?r2yQNjxzNIZf`+mlAtL7I;E2l4cfQ!zeL;=z@1W0lE&S& zX#`9Gz{%XhlRRL1lkGE! zmjZZGI$5&!rap&oDF8R6Rn6O>|9pa_NHJKmwdMr`O98McZE~>>Nbg~KA<hoxK5G)12 zrnDROAHjG70aE~QN?q|`M=#z?*c9n4!lg<z#)>K5HST1 zr?hFtlp~MJd#mQG(a(vQBE6{`IPmgIBBlW1l=j)dgD$@&WQz1Aa^Qf=Z;6-!h*LVj z^A5KBfnX^BHl=N`|3J&12$%wZQ#wetZhiPG(NX|yN}IK=V>kax%oMXc6S6>4i`{4j#1NIht4G4zoHO##p; z?VMFgduyUc6Ej8X6WUs`%MmmMK&SK|uS#g+G1Tt2C4^3qdgxu#(?=6JMe2)+HDErO zpeX=4rJjqxQO8q>m;#7XIy~~uBP=CY3V==N?8!RXxPoXYfHtMWdizM@>4Zy>X1Lx_ z#xn_*0&r70JPJ9&cs5Z}0QD1+_*|B?`(w=dTb=g|{XEq(leyJ)$Ba`i@dH|ga?H;S zV#H-$>9|MVjqhij`XqcmYo8132S}MK76qY<5?|12K1_Uo@Lh`%OV3YeSv*H^+`Kf4 z`+REE#;E_BPu`P|6kCB5b19HcAIcU3`Xl?c0Tv(57>lm{^cs?(0GSVF zkc`#iTt_Mtpz{8VQQ;moTwWzAd!9TfGFZOA150<6T1mHD<0M0o!AzN{dzIcH4~h)( zAdNFr;hH873h>C<6sLQTxs7Znz$R<`V#6z3RnnlyA`Nehd;@7vfJW9j#;&n(lVm7B zCTsH-Z#BtuD%(ki0(7!AD)#93`<5HYi6XmMWOp%7CLN0G(y@D*n@NWPbTZe|G~w4R z=B+0B8Dv8NHlNAZ;8N8eGpU55#v0i?o6IP{ENiWH*W~|sBtro*S#z$N{82--Hn~uM zOV(VShKs+f-9}0jpfu#wn_`XM6>o&B-gr+!R&QQP1{A|DU>?rk`jhv>X3({Ib33_E zfJ;JGeA(+`^+q%HT3V6cl0;qv7SgoZrlD%bYYCnL;D@cZY+pm@ZUsXUvp8NA4mQ3UK+ra7SQ+aj6E1)_X{V0z`&9lpKV} zwnC}l)br!`WTaEh<69%8S#<8cO7lK4qX4rEHD-#LkIFryLIEm6p8gM#Nfl(xcBeEo z-ON`C&3b8vY6w0|IuxMu-t1JKnOb>nmLKF1t=WAfK>-p&_F)W?C#tIq?`Iw$Ckk-N zP^YOl1-hG0kPHRL40*;fj|>X!bv{i>6rglpb}Ej_pXoxd^Z6Y4P=L>uGsh=JAM`~M zqyWMDvr5p{6@7(_D8OjQ`-A3DtD<_Ouagx8SY>Evsw$ShWBL}kP=L!vGgsy?Oep6u z_bC+}e8ODxwBI2i3J}WB5LIPPtJa&R3iQKGr6feUHp2!0gkR%c^c> zyjoKb`*#wf_~#(j;58S5*nf~11&C#@L7%PF$4d?WH0j4=L;*(kWTy;UOD3KXD_p)qTBOW?I}|4m91*{U(!luYCH8#1EEI3urB`#l*^fKi5AC1K6k zA4!D*RNgV%Mqr}QEaaPWGfu!2Z}cGx3I9X*6o5ZuzoLN|2Y%O5!aqoa0z?w}Nc4P{ zb0(Zwj3$FDgfb)t9)1&mQvmpody$yHyV8DlQlJ<<1?v!DAOox?A-S+GDNumIkUdcr z(0CNO^5X!Kp#Yg7&n^ciQz(~<kqjpvWcBAM&vr*M^Q3F{Gx%j3y~ zB8!TP!u~xz>fGLXpKhDNlG6Wi5$NfJo*hjb*2brWvSQK{6B|lewmgQ$~CP zTXiQ_lL|!^YYJ{q)+72SkOu{L40%Cr@S4(?Dd0@Wwxa28n(%L?gG zfKK+BIhjQPzvT=mQGn8?hPx0v?@|}$zHE>eMTSeB<;9#O9SYDH@`kE;XOrKVIY&km z8O|Wfr+E|UP=L;mPtMOfgFM&fQ^|$`Y=*pjdH!s=Je*G_D~b#kIm^-cEYhLKG#%sb zd@kuwfXY9Ld0CR#fX|ROGsWdom?+HP!*fo)Fgt}!*R}F;z03DkBtwy5GAlHh2T6t^gJiI;MC6Pi z^E;BE0Gam;x8sOi%z~xsA#$L|9tV>Te~UDBE5_f*fdU+cd~0vqvNTcD{m0)4 zo+3lwP3O1MlL4Lr;4?A^aVq1^1iL*og58A_D6*6O-r!?5f~NrZw`ZdjEqO(MPok&D z5PC1|_aS-;pda!SI&Q0jbDK?lJJ$Y$PXYKD8GM(j*rtwq<_b;ih&hlXC_o}3qX<0` zGGo+3$blkz9Ly-o)ax!lwZIA+MCgEkdC_fD_4s0z8JiP#>FzI+GFU3OI$FD6-GVG`l0@ zM3G%ix;r$SmXQ+$I1Tyy*`Q@F=pR@~DioQeVshmSQlZE!71Ph3MJg1al94f^ayol6 zr^k^4MfNxt-@$q0KmiUzUJf3xq6b|F=aUHqm}F!srAm}F8NYxeD6&Vw8$Vu55)>ej zkuki^32PX6DOpf}#gMP`7_eq^&(JrJ3kA4jt2@^t6Eji2j8rHxOT~2OTS$c>vs6rX zeif-ufJ#QzD^-;bnY~|2G87<_t)9f1#9vPm6d;kUM%bRqZzT%~u*lXhv0l~wh$1;q zWUe?hnr56hNfHzwkr9uUg}y}e6hJ?0mr$wd6zcgxdCD2D7lQkY#6$HgWV=y~JSf0p z$mbl&^WxF9`>0Mv6ks&$jXU#WRG4sU7;&kE%oh1jfX|Rm70)w=#tY5jG(J*OYkAiZ z?I0@(uo`yvKEGVT4HtT&!jnjb0%V4KqHCU6G*K!{O=1B~mAR*o5CsSgd!{nK+?gZFJ!U^Rtnpkd}DTkcdX~D&QyV$fmI=V z8QD>Q-H`8zm}eoBUoFmKOs*)sf|MvgDVw7R9CCN^UeEh#5~2X1Y|bqzt#Y$uF}j0{ zD8T5G*{oB7Q6QtR7BI}gA zIpYUOi2{_ql;!3kV(NG=`B8vhHv42%3jH(4kCGMzXni%y*%m#K{1_=xfZ~_4OfhOc z`AHI_0KrUmX4bUwGvq`8PG8S*ruCX#ex4*LKr)*y4%Mb~O)|ekW)xtS>9I&)3iDO+ zq5!XKdPa4Q1*V+eATbIM%cdL0M=X$S|3Y>YS!WkI0sSu7QDnWc(Fr$ME@@BI_sNR_ zyt3)tR%KFty8`PG1@l3HACMabxMg~F-K@8&MI5P{pbJ&G82^*xC_paLgUV(zue!Eo z&Hn|GpO7L2C}wlHT$fFIW#Z>#MFCdX^bH4^kYADz1qgjSlf%f6w&T|%MUmOE7uIO} zmaHhiDx0l+bZhYka-#sZA>WidPuHAp0rO9!LjgL&zV)isXgFQBUI}H$HnjgGa0&o_ z_mG=|c)+{%o&6svP=La)_sqnlpt_pr);JdV%XmwT6CU;yaG?N~Vef7nkju7mexfw1 zc{^n?>U`$^L3_Gzn0Ez_8D^#wA0Hn*2*)xhZ(`%%cO zWGP8dfW(kzhc?ofB)VoOD@ca|bUr)Wu47(w)W~?UgmG73|M=;oMgeL=_E9W^+Dxm7 zb6mCRRKBpIq$gu%k{boM4SDRp5N=KE=2g?Ov&o18jE1}jxgbXMQYC+*Q?KcqI+wgC zz-!1`Z5G0-RW04na`+94hEr@=o32-p9|iagd4@9|euV}m*Eo9O=;e?#Jh=B|cK zd zt!X~_gboP{+WEa!H@ByN+BavdYCOad~o~ z$R-!e2@B?w_c*ywfXk4#yU(YLg-x3rQlbE*As=|07bQ&Uu?(+Tw`r20$YxpN{;G0a zaoI*L6xrp{(xdDuxln-1kR7J;DrB{?W^x0WP=HAW{Xx@CVYbx3{6`hCCh1UQvye^O zo#u9Op~xy1tJA!ZTqwY0$lmPvRG88-Rlc4~9u(QEE@FdW5tjrgIyaLJ1?b$HJ@;v) zHtSek#b=NW1=tLEYs7pC*-Sw<%FiYd3J}TQG)-?DpY*z!=aCTw7-i5;uNmnLlC}J- zQ&e@RO==XNHsljg^DA}on0c#eW!G)wM3L?6LMG*do2g$+Y7`mGuCV2lmy#0&I1Tyc z+W8d0daZeu?qF{x6$(%p^3m7%P!UVV&FQ++m`3C0eY)#aq(zZYTI!P(!PSP>k`_g_ zX$770uO}^ve+pX0NB<_$qWGtvWnA@dAuS5f8uIa`c{LfbZbf+P-%fHAAUEVgpbH=u z;<&$y#3(>)$S36&L@d&O{~i*g0Kp9UR@KfFpBw*uq(qT%N|s~d9#W#nG$o%?|HGt2 z0ZJL1kmxN@K1cX{x;)QDnO0`F!PHBqfTBQ?h!duaFW2C}nVEMwLC|IsZE8P-MC)1s&+$A}b28 z8uFR%1+;hpKl*n_iUOoExF=GTJkOo}J@TOdpX|<|v=7?qp8lQ0C_wBh*;~Fb8Ko{d zb*hb8oeo>ix&9wyNCAc!TsH_X^!eC-OllPW6qy(1YX2D-Qh;Fwm$6jl+1}~@A|nbg z8uHCm3ux}6oYenKb`)Tj!4oGczj!F4`^3p_$c-Y?WwBYC$?Ki3zb7LKFv_lf$=4+Q zk(4MhO=;HN#Pb(YqR2QUYhv<0q(lKq8QlD49oqT_nNWa921oDVE#1yf1t|)U%HU$K z-NZedR470tgA)-P%<>P<42Kn697f53A~PIhU9j_EIXO^(!;m+p z$16+9ozm4dokk)Q86(owL_L;7C_rS$qw#@qB&?+xBNqyA8S2q8?9=+Fzb}_rRs#ULvK98V==3P66_a9i5Gkh?0x(+Qpe;NLQ2 z@HOoB>u#2$HYDAjOXw7UKI8!h_9w=J-j)8hkOT!t4Ed&w_#{fzS*PC2&p7o;i>DN8 z`d+GA$%X=KhCHc`&!+6`U|`jnzK9ekKw-#xKjKqRy+dTabV!NTCBCIy2E)Vxlm-0 zOR-k37i-R>>O9{~E)?MMz9Ek$2X5MmHT^BMyGerrG=|+>4o<^v%sxOS6j^0rs{Dt@ zgaS-5*K1B=oKTyp7xX@!kB|&S7PF;fJLv8w6N)S{sW|wyik`cCoJ=UdWXMb9gZC-y z9UVjEQ=~$X#kwM>So!i1Lq0Gyc*PfQ6!U>G~m`vr8H^Tf^vY`N* zVXs5XmrZa`^Kaxt0Zv1{LX^CJ?X0HMq|Yg8Tbk92-YMid#Y zN5KKlFUW}^+qq48**?zpGzk2HAU(|~LD zi=+iY+LSaT8PW7T?(=uumC60Qq$60;pKPEF@+ZMdkOVFTz`Z0j;Ov$~aO?HLoDcA;377(ali4m~*UR~qQL`4vh6#Hc z8m*ZbYzk;#r`1fkz>n{V!f^+|Qvm!M(wEvrd{`?l?xNeF&MOMkZy;)l6r;vPQBB

zDPYl5l<0R6G6f*tp1ykM;FIP}d|XvveJ`<60PE}0hjp^ns+XL49-kPk@q1|k^ZSXJ zBAw|wRcKB-_<*3m`axo)0M-!F*CTZl5P+igcFeQX|hH#hhv{zC^SXK%2t$0%$Sj_96Z%5mNy1>(kd> z0C5#NH)nAhq?OFyAZUtoCUXOy18<_2p2X)5RKfTcBBlW1SEnzTHDc58eV2GCfH#FB zW6ZC|%MSXzS@GFe(I|hPkSS7{#1isMZM!NGKOkNT;7#T@b)tP=a8jL@&9d&f|C8t` zfc_QfE6})rx{P7HO6s2wECs-(a8LxW7{$%#PUPoAO98Yg93ulQnu~Hl59xnNxDgn-Jj@{43E?q!4YlH}HRnmLgqfjX%xr1^hpvr2yKOr>CA7w3hepVNVBC zij+dNynee9Dg~gvFh!|qd;9hvMhaj|k!Ld0%eObNQlu+AecrwOh>-#qQ`E5ry?T!z zObWn!S$c|Qh&S(GBBcP*7pDhlz>9YnQBnY9iUzFOpA_`oJ(6%K(g`={wL6+{DF8P` zjg(GZpSLbYtQ6@guK_RJ5~8F4$`sZA5bxZhiIf6JQ#8vC_sX42uoM7$YkC^1QiJEx z#KiAZBBV%J@oYMkM(IZF@?J`m6zM9S+DB-4HCGTR1(0^qlj9nx@n)V*oD{&Bq7ia>aQYL3V=;fU$4M6@G+DL zM|*(R5Gw_+z9>bN-v{y{f}{Y*6zu`)<6OUls43Eww0@`hdV-_?$P~>@0?zbJL`eaZ zDVmZ7o#>khlL9bPG$ajio?l6%6hOK;iCyAq)oM)ruZC(}d$6C9OcPTtOq8(Iyb*U} zxDMZW>Fzu2yc7SqN55+qocXyCd&Kv=$UH`BT%J5aY?Mc2*e8DIZepMKZOKQ`bEmkb z7u+kZ^%9@^Dp-@nXJInZYJ(k#i3c zECs+Oa|^l`7f%~346NyD@s&tzR{{SWfm5V0l?xMvO1{x_W)#?m2$lk16Y>d}99?iK z3$WU8AqvHx36}zJlQ|-$Gf%cO3n~=a6!xJtifFvlQoKs(zY#h`8dJJlsEqsJ{+)0s z(h0ZT@Wb5+XOvtDz)fh+Tyo`@hq)?n9Mt`ocOhm9U{2_mNphHRxlUKhwi^Lc0Pt0b zj43qUFAk|pYci$WOkVpIdm{FQUGHzZnp$5sxd3Z-?PhcazX$-j6f*>G?@*gNdwI{ zaTKgEQ)|HQE+9XWkSS7{wkven9!;PWDNWlI6J2SWBV>w{rtM0dwo3?vVvE9hCV^4_Xfk_RlPj#{Mzdn3 zsRHfUL`wm*$sGPm4sE4XZkF=XPGKU?vpl$hkl#%Zu+JrI3cyb0C{J>*>kc=I=C|XM zGdyP^@U9|W3gAuVb4JPGBiJhml_Et@ zBSx;*5Gnh#L?Q-F8!$zJr5GMt2 zre%O1W5n4cYzn}>ED68AOx-d0pBj}1UG2|J#uYARgZV;v${DX0Vy;HX3ael0xUW3~ zO98jdU@2g~b;4dw+2fMHRf~jEM#~!!<z00M{q~XsLI;)#L{jLKkcsqSB$7*k zgh^)CKmbC&l>>iv_W*1!B#8WdDWOvU`nwh>PkS!M3;CPT zBC8Czi|{D`KO=1qK9{P%zlY!{0RElX=(%vqD~9t5|NDra0{D};(tXj}PTwuHq64^x zBq%`Q?#yIDy|g2b3z$qj_%K;eWG*YPbzz$-Pxp}o1xVbJsjRRzV2DEX0GUvLNk&># zEEJp4^a;YJ0Q`&$ie|iK_0vR80rYRpMlrfU_h+9Yb_!s>D;wAw<=T`tp8g^UP-Lg% zH)`cs?3@x6_bY@?0r(jiPc&w+<41u1I>A$9sPN2Aa5Sn2e2WAqK;YfkDE(Mb$G7FN z?5ikzhZHD4AtPfVNx`lK-y;bMkjO~)g&vqU%ZqyO?}SeQ_!${j&lai^ru+R5;-|{GY_vs+1W)8{bGGLjbCrsNGvr0}Z4OmC{)@yY zK4R?AL&<;w3{u`Y+V0mQ2%7@1Q$F^x z+^$CvH3d*7bHBi%jTnu)^%!EN0On+FP+2t0emCoJ1Wu9ul5IPdP9SUwz`i%#U8veA z(rfT_64_9IP0B|xo|E`71Wl2FBJXn!j}kZqfTw(mTF@!HoX{x%J>?^?ZfEdm1Wy6* zDepvWC-7qln*y*?K3exVf5(WMA_KT>r|&t$O_BaG-tFvtJi$`{{72K>FU526t|lQ0 z5Go|H^V{bs9h1Wxvz=P5yF~4@PUtci>^OB|Uj`!rcihdpUcn7&;Vlv`MGBL-F;l4Xat$t= z1d@4@uqgmLp+ijzPUaq^qC~h9fSb^vrUkblmA2y0MGUowxT{Z`tB8rYjZ&p^Oq;+HtZ= zOXk8Dn^eCeOun%G?#+Ir(&iG5cPNk|$+*nyND{(ocY7j7*Aq1bP$%PlS`^g!%ul(5 zJ8=c@O$1H>;K|Iz7ZrG|itiXJ=$i?h0??D$VY$fAk@~nOccy?{ej@F!BmoK#NM?7_ zViIt6%wTI1zHeN?CO?7y8sewOM4_Mb3jK8iPLYX{Gvm}N*wSsMe4Yd-Kp_3Kw(iJp zFp5GmPUsYXp3I)^#Vqu7r!ifa!FEJ}-63|0OceNft&HcoRBslFIKLy1-$3LPK%R`7dr`~F_QFhI2R{NN zz&8n=0^rj>7HgKuy1Z;BaEeTn^;Q+*8B=0zBzB5Slo(u3U$X{cPbPQ@fKTRG15ep-yQ?jD^#kGLsP zU8t>5d7FSKQe8qqM&q{;I0b;Gw>J7l;V&j+3P4U~i_c;dYX9i_rNm5;>H=+zx^E|7 z3IKlXqB!?@tta_1B--sZYLB*GMZ^@TE*Ab#_G^imBHgKMjg?+c#1ufB%x)uJUiY~p z$QQO(x$uvw-$c+90G-}3k~Nxs3jtH4x-9!g(QhYaid2`3!07odf~ElI>yy}_V3*J_ z`-d9+hA*Ea^U0)YtzL<{H9>^!xV7ED|9@`AlFqIh_;zxiOfq0(Bv{0$%0--KB+{E0 z^S!ze8OYyG2%RGS4-j`Lko(D8_qi}w_R@^VnVp{ofD{0j%-Od3abr?Q2rVtm5TlOVDC~OzmwU=vtVR)tr0nN0WnelV=|v@NC2Z+z7*HcR%?|K z@17HAFD6K$%SUxp0)U;8m$> ziI4&ali8(}48mYlx}G>GfHRp-_9TYWUxl_3C`F30++THyL`VUIiR>VgDLE$pQ}r`A zNJ-{v?+tt!sW@G#PQ@HIneZL=*T;bMUHHs>d(X|<3P(@LeB|9kL|`&944_^u2T->q zGU4z=(Q6Fl1@sT2j9w+idyp6|1yUiIkGz{0`t20+0!Bczhg2fx-bb($0Go_E(8JKj z=i>#81gpkYh5A&butO#9Jw!~AcElxo2uq~#hl!X1h?DVadr6mM8gHL=>KF$I%=Zy9 z1u!SGe6R?ZtF;~tX=>;H7m1YuSd;l6T7p>pb?YmHN&%?J3=i5xc#=pJ%}PXk0MM8z)a>dO7l+6t`d0+u~7iqEyFF53Y)Ja z9!Gc-fY(k1Jbwv1f%qs=lYG9CcM{=I0N$m^^vX^2$GSK0b$&M{lRdS1a{zyc4Bc`6 z`f&8c4V)ru@4i{-KzUQrkYq&YlfNtb15Pg7EWeL@|KinZT_ zw--3OuNFBqN0=0VnUJd{5tyFe1Gj&plnbyo5iAA3CgiF~6095^6R(4_WCHP1iI@V2 z6Pn;Air7orrxPg!kiIB2m1z`{aH{}3iy$cgG9lk*63JPyAU>B6DbkhWA!YLxBBcP* zWR{Sa47$tcHB?u@LYvP~D=lv&LW-27WfKR@ap|{(^hHEU0i>G~>E2};jj1G!>Q|qh zOid-B1~?VUai`th8y&axH+1<+xzlRz&6XZXv1Kvf$q3Q)KP0>UguF2x^1f>fR?t8h z_MWI@S;2i+6iAJPyvSZ0i2${S1R^I-Cu9mhPUc96=*+G1)vIl=*hQwTnbsFum6>`C zovi?VCV^7`crr&q787`*g^gwc_u0fv0o=)KJYF>16}p)P=yM600-%$*5Mt3lTSa6Q zQB$NpslD>ChM+0Z4|=wM4{eF^aS=gN0CYlYQC8E?Zw_Pyjc!H!t;ZzD%KM(MSAf%rK*Q_6Y)|2Z$dLoE0+@~5Mqg4l-|t*O98OS?6XX~FjSm^Zi}xZ zT8b1Wt?4+fAy|s^Cau+BTt~DN=}p>3QxAah1WS=(ux8XVPOuc|1?%-@4#83Y>=P21 z-+67&NFl}m5f`rg|k?t=3LBqo(kP@&wV!Lc#q#fx9%0v0+(5naqC);WJH+T z<@OLaeJ119wIb-{*44rMBL<~aNw6A8;8K8nGHzWRYo8uW2MYyf&*4N)T}YS|fSJtv zSjWFGn4+i`cDpuTO(y!WAYa@^CzP?I*tX zh32SQbn^I$<8*BTn*>B&Z6;O8G`Q%*OT=rs-NJsN1<)vmmuOM$FWC}p;yAj(n z_Wu`hVZ4|xRc5eNOBBE&F;k>CnJcvk+yu#wR13(HgiHa*eJ|7=QZmbv&H`?Ua4Aw; zD)7-=U*#(kGX*gB^*;|OiGjIQovf87xF0~Ibd9JffV!_&ba<%o4GaaiPQVlZ-0v2N zdE*^p52YgXcQ=PFop36(#?rb|n5a0Tm5C+dcgNlDJoHMt${+1r*Dw&frvrlFWk~cW z*T^1aBp6^x5w^K%JyIB{)|$?Et+s6h2UkaETg7u!&oJ$yRx1;^LT-aHk%NgGVG-4V z0;eJ|CVoiE?$tnL!9Up-P{#_h8ksQ5K&%gP>QJ^d2MWY5N|aF|88TMJV~Mdjt7JM1D?W zXGhg(3c4ycF<2N;YE_CKdMwx;uon7N2)@B-O1)6!lqyFsEUl*w5?RNkZ4iHw zB!1Q)FE0@z@UpzOUs`JKvzDWBtqc4Fy1|lyo5e?FP@W2PRB}#7WKyi5ev_qdA3#;k zRw1%W2V-NUd#O5!qhy#|jFhS)7_t|qRn(8NbHNvCiwMZ%yrnBg@U6CaA$JmUhcAeh zSXZ6k3rMOnqFMl7jU5AOeB?<~VOar10d;R=W55b)N`kJPD`MKUYmu~hGi~nUt6uSO zvLfZWDw6w5fitY?tci)!;%|x?3%gZk+~+cu81+JStxI(i>$ST6H1{fmRq|vSwHZ@n z@n0E_6Uu#;;TO_ycVXWW&!R5nIhJy-`00WZEPj$phf&U>~0_j~QYMLlYJAfor>;w3SlC zse>cF9*u60E^Dd3yAwP`-xj00!*)GnS0k(f1!H2qoBBGkz0{l@X*f7y#U4)_&MHk} zJE81y1%^{tBm!@2)^DulaW3zTHUoQAC`a=-9XJ;Vj1*cw7;aA1%Rww&qoA^A2?6&D z+GePn2o=O@83e=&6M%?zMPWNC65AyR)8^xFP<#wD7bk#5HP9k+#h@lUt*k*!cru9q zz!crFnX)&wBv%46{#KnOV|VXjLl@S>ME3`tNi_uRs_3GHaNkGMy&8kl``4H;*$Vio zwY2_0T92sp(S41Fy}MHu>G2Vo4IR&}kAt?m>gk%D3#-}g1B`CK8hc?(AmK$u3|cv$ zmDR!hBoV}|iRUdOYEuQ>&oa)w6>Zf*BC~3k`$a}4hCty-qH9qhx@MOug()ZBaHh<7 zIM0SPk17Q>6^_qJUw{aP#@q`gn|A~oVX%&S^JCD-=ho8P$mXtaXnRJkz!bBif}r8{ zOv$DkL2@Dps{P{^3RvR7=-?MfqTX#=>=a>rv}^hiZ!eqM;RLa>`6jn*mg8Sy^Dl&6XOiLb=qy)Sgv9 zVcY-8fV%Bzax!2du?Kot9sBwk$24orWWBw=(BwQ#BH6^nB;4;U%kEjXKeP<7)an=;H}@g;Ly8!$1l-6>5?Hya~A zdgpVza(0@JfNs#_yQmWS-K+fXwtcUO2@e}N+2nbz<IIWkb-7Y#Y-7%N ztM8&sIZRdOuE%ZlB&VL_%!@$fE*Mn{b%Zl7S!Us6R=vu|T&-1?wWon9{>qzGDL(m% z*e|phRu8G1GTa3@WjsgYvc@$~@nIZXHZPcqH=G|C$Mq{W-^1a!k`_z!E*A z6H)aTV5y0K8d$i$W|a1r;*$BZ?4Aj*jJUsJ6rnSL4fBsnwl%^T=nVqISjqh(EW)4?!PNI<0{9Td2A>FQ#Da96pK#T;kqV9 zd|n_q+G@zrsz{eluf%-)#8r0i_3JSp-NG@jFSr;|_(JBqkkX^rkTsGaG3?Mg3qqD$ zJVZX&9hY!0U0;W!f`!W?v#86!n9VrnJ@x@JjNMC_7lV-L;n>F~uh1CTi|j26#LClDnL1nycRb&Qs#tj5mXACqM^08SJVF+17=)}n2+}hcF$luOC{}%g z<~W~kK>995q;tbW-u4CZJ2*@rAe@*tLd;$au)aPGk#A@EaC`03%G3J#HGHpH?byoG zV)!<$9E4++!$2)K%!POi1glfJJODhxX3~K}eFh1X;nSD(F2i^pRfh2>=`w84 z_=@L9NEs$BU!bruEDP%<+qJ=(?~V(q925jM?VTG7o9g;QdT%k3aVKfNcOSnxRz&?=7lMt;*kZUY zPKy<#>AAI+Lc~#J9A5XWo*^Hi=UsN$5WTeLkiaHgyI*wcwBEBnz9<%UyCe2{BLWf5 zGQz%%lpG3NKX}yi59%2EIw3^*-bg@E?M$q`a$_u*T{HjaUQ8C{TM2By&Tk=QLiaQ7 z(|eQ&*?S~YCQO9Sj#VaP)C(#Ty4yf2qI#Sz$CM}&&+k7u4YcDD1E#be zMFOD-igtb5@A@48ik=UPnElhVdmmFiHuxUXwH;G964LO^{e7vdo?HHw`*}9yXkYSP zebMbRHu(#_L@uRK&XOAwtYYM{u9wF+kZ zj1K9PpRD78d93w~;)iNxOHN%JB!R}SRj|fZhg(1vuU6X}Eek#^_IjF^bH3<(!Nk!K zM(@*dy3oTjgz&*)jLPDzWs02I8%5Ko+WckQx3GTRKndx&fQ?029F+H097xb>quM1* zr5$At&rt{=-Qa1fGQRzF+osiRt+8Y3G207?sZxX2$k{Pnz&;u7fl&TWRRj)OAMv;? zo?u&weo^mGVdfPFN?wQ8i%Z|H=z&B9DOH@2*~aKdwN=3`LAtX>^fty}RR zqSfEJRW!UJh`;6Ex>c4%_d7(gz&1R3rtZUxyf)33sMPNF8F{eHJ~Lhlc#UtQ;CBlZu#z* zZO}auA#7vU`HYEk(fHJ8V+J>*Rj2X=Os#NkGcTq@`k=J;9OuRLcteE1KFE>rR;fHO zg5IE6o9Vb0E(eLnpnK9L@roXcgumhojbq=w=@$36i3oBv9*>)0a_E!Kl4cAB5*1SG z1esd;uvcsYOGFVLX=#3Yh#r3AikVJZ{+Yv{Kz4h zll|qU*9*R|NC^>EPK&$JFQm-$#olp=2xaDUS!Oo-v$n_kfvoKXOvK@y#+0_H_ooxA z#47_?(VXm&4_?0)l^OMOkQt-?%-CWMphUdodjS-@7oxL8-%O#)XKx-Im%xxG=gK@e zBTyiFzim}w!7pYdjxrj^W-n1A*b40KIm~N2Wn(5(Or};PCP#NQqw`f_eO5-N_-R;M znRUuFUh{@JjBm@$a?^)CB%`_jFASPfunUgsrq1qBV9)2 zu4fJmOzuRL-z97<+#v=D%@#UloI+>_KaAdb)N%7Gkk*GrJZ&GkMZcC?g^N8dP`7+A z{SF95A#EXTu99hUY%su*GQRYUZXP?Oad(ZF^oiIH=+a|i!k}W#qJkpE!@3O0bXO$8 zMm|frUeV0$drbt2LGCpdHa4!NF+UoIO%y zQ<&|JFoj~(0yva{6D5;i&@rL#B_1KT&B(+%HzHDwySCR$O-CH^kNXptn8RQ&^lwbJ7{T*;V2#kBI*1y}{ zpTIS63aF)SI=4g%B~w6M2tci9iudyrOa?X<+IJnBf%KmEBieVZSQ#bt5g%wj3 z>HhSnjcoSRZK26o8bqeuZLuRGOMOTQJ#Jy9q~be}BrjCAj^fFxO>1%S7CCy#9F>Sw zpE(^UR$g7~Ot$Pe#f?gvwO+(1?rhO272iuAw$si#@t^U}$Bx*WY{}9eG1+=-ctg@% zsc;1;s<_xV;#GY2$!u6;?e|r7<%;T$cFbQ(-Dl9CuYSfy=v7R@l)39ZM_cof2s$$A17XvlxRxVh#+?UXJSani9n;3?P z+^a`9Q;*!2({@C?IcuPV(G|ur{wf*|t0L|AMa`R=vr4#k(4=ozuct!Ysjvd)+)IrH^+Q~^!*)Y&+KyvcnnTC;0081$Jw}i7t~EUqn4+d< zkzIsMbWBi`90W!8ekPgZX{f1{fZph=DHUXh4#JK3Fw5K`uDX|hQDv+ ziNF|@Cy|{@(5!J-=)9p>_XkW;kH4WC**0~V_3}s<{7F|H>GkaHdUkrgT)1&AKikMV zIIvn*<8HBnJuP5uvS(M2cHnk>!A;-02>ciPt9u>9D;63r@; zB3Giyq*^5Fo8e>3YUZMq)$W5VKq9|=`5W0_1kyk@{gS!+5N&zc65EEAAMRg-4U-v> z6(fiPHtbw*|Ce_B$-gXWY!S5O)iI{KyVKqzZF_ZjU|Uu`xEcOy@?_vyS`w zGg-%x25RJEKeY64GS21nOW+k<$9tlX@u7~N1zs={U8;MUv3ekZf8bIbVci-W*?dJJ zxo0vfyp#&2NMue&#pUHRIk@L`<+Q%4u)702Gmz6_!8kOZ#gmTvf#Z?O2l;bZKC-le zk<=nN!@3|>ZP8W3NlN#%%30~TE~tf9Yo%>1XYYqe z7qCcV|d>>%E1y#N}P+Sv?3L4{w?oP{Z`a2P0yW88tyiliE?Kj z6J*lmwH7vNv=QdD4rQbBwNRG+V_~9U*j#8xDmJ!V594YWn(*Sg!-V>0=AbP zqAGCXr>P3=llXR51qe+^k>J6S?>?0VL`sGf^ezMiyZDN7={`dsU{TUZ#L{$RFc0{q zF1_-_=kUc~IX)unJ*xn_x9}~0$<=k}hE}P#4JlmLSI2saj(gmN=yCSC%mnH9egLuF z0^z+RyDs@EI-B<*W`xuGqJrU;OyRUy}AqX6o2`X#w( zo_a*1yM?Z3bSmrBMqz(Hul&iCMoXa!r0$x#Eb2lj8*O24pUu8iMDw$+Ef!9$B1&;e-~KVGUZ#C z>fK-;s~YT3L#n_FGtn)!Zu7fLcZtennD?hF_3nFE+w5Ayk}0dG7j_IK zKTwEG$#?Ieh3I0g+G@*~SH5K-e`n4-aO zKOtTXme}LFQUH8qe-|vO?q_Hrs(tOoz-CgXfXag}2n;Bf-UH-=mF7SNODsk>N_?o|oRn4*$n>SGw8T4(w<8z5<|Mm9L%+h6fv7?wXr}1(PjWjgN zM6W>7y{UIq}E`;V>+(3dMk8Cs6D&kD{K=sj4= zMwgGF-4?2jdn7lR?IU!nl}`T5>7PhTy|5EA3TYKtvFAP_EBY0YAVRNQ6X>EcLtRSI z7ZkE%`50=u#n{~g$hvv<$zFrgax@U3yC1FjYK8W#MS=4+uY1|D0(aT!SxLuz>xsyi z{g#bFi*`vZV@L(3KuUqk(PuGYMU1ZUUF^+f@ zEy3PBoXIMZz|UBnsEA|Nt35>OKB_CD^iD7u!}kfzo=p5$7P>ULoGn;jeRRty$g2az zlfWXWQ0A!gt)wlr8mBn1c3eh*EIV0dnccX>d0(%~2%z2TGIj-xWzJM4VQ_cdRJ6@s zD3^Azie=Qweqq*f<_8`7116tUV1?zV0;~2h^)Cx!%xhe`=UY0ZY4;?Su!vl@TKwJ# zq8Ctw#Zg-H7G111s*e$0Cb=tU#?BwB7WFX{$QbtwnzC{SnXQ&&W2Br{BL%xL+VVA> z`u@BSTg!1oR{8O8-*wp$2eZ}4VmZ4t^B7mYtH&MpwLA-PxOi?ne)xchel8z*&OqG5 ztsj9{kDAs4jf@oabpz?o~8q@)RY{>Vsn;3uK}D1RAvR5hm4kr`QO+8ZY?fY0+2X z^&J=?7FXm8_^htCX~I-?42y&x*X(}ixIgE7;-KXmF|Fciz#6@qq9e7rRdo7$T2Qga zPJ!eJk6FfoiroMU7|=_x@u90}fdJcGr}dIhe0wJUg+-I~zCxfsGmknYX2Wn~hqMfdMrxV#!F2tJd>d^J?xQxyVj zWqx9=3U_FcdkE>3De1Mq<)bUdM$|)YCX^35Zjt*v4;4?>$XEH4p2$)WYk_=_Qx7<3 zRu7my(HRzrLPm!Qdpk(MMvtC2(#8@+LP6hMfy0-%^j|RCqmD%z_9e+~Itlb2u=>zE zDC4v06SXni4TLYN`WF~W!xDy z?ck)Lnv&7ii!eBAfH4-n-i13TX5h8OPjOknsknlmsSQoyh-7?A-l<(-4)=?Us&xL? zmfD(m@Ys?Rj|&&fqb(`mz7UZWIb?;tc?tK~PtWC4!4ht{T&aPPN0ZyONFg_l$1*Dr z)WJzkFDn=ZX^$aGt&$U2A%4oNz-0|hZAegvZOO|DVNPTP%AmR*C|=!1Ta4G}w7xi!ei(d8{vnT>vx2pQ+zL|;gPf?=nj%0<}s)x@rFI@qj z&$e2U$W9XIcL7L({b+2*s zYh#QyXCrYx!0ZrkECBX+bfw(N)L6O_v}T-o(ZQ8*dWZi?GBe7KJ4tf;3GF5wv?CQc zPZ6NlD+Xy26d#Zjt&S}GwJ}DX3qW%3Crg3L55t}_SoW542r^#AHtW*lBz9@lswyW} z(mf!bjhJU0_gUPVcZhhnS-d#1M!$$vTk1LffWe%nMcT0%pBi?gsS$n6GkU&SA&&vizHW~vm z0GF`Uvz+(Lx4f-)Rk39ELD6v;7ZT~~GLh`5P@h+qsKcB5s^5$6mxge_vWk=|!`7>wp(5Bv9;T*!=x|xN3FPF&}a{amy&#fgw;(BVmPN@Rr)~~Z%7a|Y$N8s-9VjJ&-QZVm` z=0-)v3iDpFu@_7F6&T^?5YvWfr!s4e2B0Hwo8hFN!3)Q#Wx@d|!U3s1 zlM)9h=U;03n-`->r$aX5p}s@mLhbxU*95(}MZwb}=0O@Y%r97b)usT^zU;F`>ei#i zmC>llpE>z+K=Z}AgS!j-=2uIdHZOmA=I!ZuzY?a**Jf}tV(CWi8WjuA7HH;|BH z0aQg9jr%o@S>$LUYQ$i<)1u?i{XJVI)!)0{rft*d%O}8Xt(Wz%XLsEqMcnVvTvwld zp*IoiVNJIZYy;6n=PG4i6QMhE_Xmt4W@o)VPRz2G_9Bb!NF~W15x`*Guevh7XTvsD z4ewpV23@Ozlpuaa5Cin7>WasCA@Evi4yS$nn*{Sqf|+0MXssScmkr%5275Od`-6|70a6JMts)(A*==aCd)Y$oxjRjpi^=mwlDC7c0;kOivCCX_^kfN-Az~x z>v3YWqU>tC&4#iB?nRT`{Yxx+x?{gw&0 zY65SC;&h`RFTk^U%KOj9O!b)6Vw;yRCWDJj$M3RLP6D5XU*+RIMyV%CL5ZE%$30K8tO;y*$cgzf-s z^Gxj(6fa{OftP_rpIv9u7Y~ayu2-?|&C$GS8R0zS7+(KE41;H8qrgwskBHVmMX}Fj zTZiq?;wQeJg;6PKTx!kv{qd%J( zKULMs;tot5qXKg9YPrYL{|q07muhjdp?L+74_-@)(@t?4zkrDaGJcnUP0qfneMefxKzrEuvx{s<%Qbr;>Xno9WAJtz=91CIMt51rF)R`fM zsZaJqU*=l8j?B@w_Nr2}zbd3g-PRhNL(Cj~E@zWbx9KPbt2V+ebpLo%G)nZWE*5kqTS2L7`8HoKAn;Jf@hpm zk$4<`mm*`DU`&yH&H!azbT+1@O5-=vcy}G%5I?0Pa&#BH`T-ePnUTfrI0h&IDz~g2 z!<}JVT@$zgY^sTuZL=wC2D^m;Y$}{qf8g%0ahhJhnilsfsk-E-epl70n`kzy#ouU+ z9VQ%Srh*%@y~W&osivk!ECAm55sn6Q=o1^>I&TSgGTb_XLCZ;NM0m{0#EA=rUjysw zVIASkg74am9Tn7^z+lPof_jUx2#O9$A7^D9(f~r>N)(tc-3{J&&30e*cx{PXq7|!6 z`g&$T=Mh`DM#~AGcTcm_af)Yjh{@ir*efQH^-LD5Lg-P4i0Z&KbddX>w2e|U2xbHl zH!|@8M%7rb+;QAWe@ct)lsYL5<1qU;Gg3^mwqlT}wO*>^Q=9<|v#KVj`fj$T~#mvUxGGY;1h70m7**hM3r8vK~hHO;UcIPKJ`Lk{Q8UUKN+h4HV z<8potu=|rg7kiywC^CFA0&Syj|C|nYV#C{TqT5FIy=;q55e;N$tM{XuU(pD*dzODp z+x9hkV{#LTSjx6rF870sEWD|*Ht>eq)NPbiH$=H`KSHAsZBk#WqA~KfF4F1)!m4PI z{Ev~P)_^h`D_foJ21FYEBn?M5F@0@YZA({Dd{)>-N!G286#}>|4{afwD?tFF|2twrEmETvQc?74vg*3up$%UXpgtQB z*|m@P>c0DZ8nCNQ$`y%M^OFnpfk? zaXmw~bwGSHP6ZU}6vC{iYsxHeUKA_cmK4Qa4Gt2pkR>qkf6**8;Cq|F7*-_9v8($A zY|AhLhgcP>PH<+fjA3pCV*s`>9x&yEuwkh!me{v}P4R?GlNe12fG6uTw0K0k(AHsv zs@hH-&cjJoVoiQVm%DNFU1{8kXF{^%(7@d{Y`Umj4msSy$AfJhU2 zdqj^YV3r@MlE(myZ(BxmNch9H)?=2A4;|Vr@R$`Gc2%t27typMT}FLmuOMynH0SMk zwqf)hx0~eED6mU9!2F=FM{TXm;RQRo0h3yuz3}tZNvaNJ=!afX%ToeckNg#*qQ=sw zHUp1kBWe$j*an(L)ZHEJTHm%(eWW)sn(pS#-IsQ|8aZ`IZVyAEb>nv&W$PB+42k05 zK7vsU&~iP#SLa!(jfp0!XDcJ)J%sVbYm<78Y7wPsjAFDGGU_83^t%i)~Xh!5~QGRsuoor>TmF`e;s?G#j1!?qH8a)Jt*w_R@#3;FMIgCNcPtAt{KI_+n+f9Csm7@rg*rIPOjCkFY*U^adU$L&wn_Iej$hLe* zebkrZ3LTx?uIKx1sMTW>=0$D0Gg7EK>f4l+YN;W&U(;POS*v5rgcFGR`+q9MPrb^1 zXZ?n?o41H9+rD@7XBBaH<|-$LDAe7$BDmO!jo>*%fhGzk>r8Ou(KYiT(sWovaHqGy z!u_D?3>x-QO23TAmE*UVuxdglhOukZX;&4t?FGx}c^^l9Dj0Ur2$KM8pCpK1q_ulM zj7w2v&C;T*x`+E5nW%vy8{|@Or)?gI<{gi6`qBJTPq!o78zhg9;Pa*BQq#MJPgl6( zbrUhdy{A!Ok$So%VK7;Al}W#g^746Q_e{Cg6zu`)V^gCy9~u|=eDtQCf!gM|NJnkN ze61XbX>Z4fpR6F7;b_o z>1%(dTT@eDGl^@G?Ew-)blgK8LpR^WGRTDtVvU5>IHfIc^I1>rPo;~eXcYAwupCH6 zfshel@cAMz!aMdDDe9di@~ZP%d8U(0XHw$$$ z9kVjWo=ka}H zKF~TYV@8pFy)4qUPp;3axOqf;$4U)N6z?%<5#R6*f652qOIGY1z2q3TWY45QX^V>pIzT*aa$N0R1A4UmhHL4C~zZ>`5RU*v<9O6 ztS%olcdy{ot-5ud$38o6Q1KjzAcmGX9HxS_@zg9{I%acw13TJaU_dM@Y%KEXVa#@c zac0w_xQE zh0VQ_arLM_RwLab1|J=};<#_8{m5#9Jw}z9^da}KZmNKU{4SdGSB&%G*g=6d>F!PN zWPz5J@22H`1wU3?D6n2!ro_tvE91IH#MP%@t1mip01=%&D3)GavP8>bDI>a<5%ny) z$6M70yUwdlGr#;y)y>G?Bg@b1xclO>#qB*W7Xhfyf9LQwYQQ6-t;l!LBYX>35cFs- zyG(pz@-G?_F}dF)ZWW!3qSfB3P_0$Vg>k3c=sdY|lDpT(u*^#_eb2Ky?m_%@u>N%f ze^H2MkK!*1@#|RrDqgqKPVRB|3$LD_72@%U`j@+Top^k*QCuk%k1>jCq+-MHccDvCy-3`|mS#wJ*t!e6lHYK5>^*1z13Ndr}* zP~mT&;;&DHfja(zftFSX1Kag4w1)|8j4V23~6vPnC+-8O773;tfWjEWVkFbC`~I;x9z;Hmwj*yhHzTw@H$B8AVkp z-fa{&NX2`NLRox26}N9j6d%A}h~h(9A)>ff|8jpJG2Ukszmkgkjp9M6_?S^Bi=U+8 z@O6mdQ}_!}d{!$&6rb0>+*_rAFB-**q~gm)(UFR;8ilg>4Jx*<4tx`TA&PHng^1$2 z`j`8AY2bTCp~C+=74?lU@B{n>1OKTN!oZL9FZV;zz)y`rh5rQ=JF_kMFZ=}q|E(3m zz=QgiySvPY-x`Gq{|73*MFbDwFBtf6Sh$v3ezudiLDxF~zD*RbgTz44^jNvaBI7cglf%Eh)_e&DNDx>(S zRIE0NZ%D-jMxiWTOvMNCh+-}NLKN$?LPW7a|8k!yF>W#n6@D`nzh^pb!Cx?Nl~xD? z*XUpFof5$lj6#KfA{ARUz(5{qj`)q08Yeu2Mf0K%*T?GT*!e21( z9jy=s{#E~SkC3VKeWN%^D*oLlj**HV8ilg>BPzasJ)-zA{z4Q#(+UyAFZ3^WN*eg3 zQK<00rs9q#z`%p}3kH6t6~e$D^e^{PY2c4Wp~C-#ierf2ulNfF{#Pr6fq&>w@SssjG`zN4>t;Bad#^2WC`B`e<6y!wL(O(um0seUmDooC{*|ZsrVL02M6IV z7&ufbgn`5LFZXttlaDkC75-={&S5ov6#jyNW3@sUSfYQqOC*95j6#J!iHZZ*^PY^q zVBl1(5C%r|FZcZt!7`&z;a5^|4)f_W`~?G#)e2$YEd9&9NFq4fC{*}!srVav-t+Jm z44khO!oV8+%l({0aG_DC@N21f0;d_5;4c_huNA_;M*YiOE)iU26e|1{Dt6{{?F#$_ z16ON>FmSE@2Lrja_Y#9v6A*Jy=Eojdd|_jU5|8;#;kQt=j}c&k*r!zkV<74J5R_ejP2jN<)L z@j;{bkW_rcDDIPr2aMulQt?Tn_>@$9)+jzF6<;)pFG8rQ&#_I6*2-GK!O>;#8v;k&0zTp+KxO3Ki`cMxmlT z%P3T|k24At?RiF_qCMXzRJ0dR@!AHsUx>fJeXUjq?w9Ic?mGE+qfu;3Wek4Mxk)L(kT8P z7k3^0WwEUdoNfdGDJcN~>25@j?vjvh7`l}1Zjcfw0g;lD?vjvh1O!C7rKCM;=3eVQ z*R|h&&RU;mxYx`)-(SGq@78_H_E4vT+|C@SLL09y$CIbbDW72sFGTEGUvM!*)rR=^Iz zPQV_*Uci3B0l*=`VZbrMalk2pp8YIAPx}W!PkV`=r@cbZ(_SO!X>Snpw6_U*+Is{& z?L&f|_8)?t_8CD>`!7LH`yO8S2!jE`2pTYwpnqfxLI22j4;`Dy%n4G-%*h5}<`nDf@pKQJ`^fqk zSpS1TSU=l3HwTY@B+Li=L|6n^LRbp;g|Gs!ny?12j<6oEiLe>4jqn!#fU$$1``%5^ zo&HA9ogN_QP7e`ur$-68(-Q>U>1l%Q^c+EVdcnhk7IL8%rIHtL*&tl#RqNbeczm63 z18|#g2XLS80PvXb58xT$Ip8JX72qvl7VhsoLAM!kpY2;W7KNZ2i%!su#Ukj&;u3UY z@d>)IgaqAKVh=;R%XKA@O0FxpLAb6I*142;oQCiTAU)wzKqkUxfUJaPID2-2&df#7 zDR~Jxr2s*v6ej4DVjfESUmiY}N)A%OAROdN>+EqE4+Z@H_#w#bFg)82p$h7i~x)#i~)=%OaM$K=!mHV4V^*I&>sjII>$qw z9A{+OVboQj~A z{0TuXIXyuyIU_+YIWs{oIU7MQIj4t3z2#$^ODg#o=QRi)$S7v30Hq9ycen0JJ8w z0kk8u2XrFnh^_<;?LpAco&*i;6}re!%a9Lx7_M9dUx7p{EHNdXAu>7d#~C zEZe*&m2C5}LD=S1>)c;>e4TIuaGP)kaG&r1@R;xq;2GgL;3eS|;4R@DAi@FLW<;rE zn^6c+0Wk4}0V)!76IBR0wmLz_ z)*|TGIs_g2H9^NV^sw|tIqKso;iydv!cm)9=bqwm3&IOPE5a*48^T+FBm4(wPl!}C z%r3g}FT0q9DI4d_nz0PqdrLqJbLB0z6K51mu2EcH_ zXMmA}tboyk9DuQe+<@_fe1M4reM{eYs5e<&TU^}fG=uQkW?1Lq)cOx9E-3R5Qne~@Bv{3AU3=s)8&S9N+myk z^B9C1&S#zb8n37Tp&_6Up$VV}p*f%!p%tJwp)H^Up*`SBLMK3JLRUapLJvTBLQg!U(`ugwcRHgmHj+go%Lqgzo?i3DW?L3Eu;n5@rFK6XpV1 z66OP16Mh1;B`gNCBP;`SAglm%BCG~{>VG3X}VLD(6VJ2W2 zVK!g}VIE*6VF6$kVG&>sVF_R!VL4zvVI^Q8K`-=Y4~N&v4KJ2TZg`nNxZz){v&XAE z{5Dk9ug3bd24Ver>s$$Z&)7&P1=vg|3)o7i0N75@5xYE`StTx4Ien}qj(+XTJ8dmdu1lneb8D;^qz3w>;zTaU+22%7-U2wMR!2%7lH!*M_2 zwN&!CdS?(u{AZm#j`X{%U%5!uN0v&~M>7cPV_0X8V|#e|ldO+}_3;eC`VXyhg|NYd zgrb0t2*m+O2%4DOLo)xd`&cU3QYwQmB8_!!7Xs1}_5#uq_5(5yH1RVJ*M61}nWd5u z*$l#n9M-u?2*^dK3dlpK0mw(t#DX3k&XW;^q>>Ru4Z?`et#dc=J@^a49Y9IKeLyLK zCYJTEbdHQDCzXt-Xb?tJw$2?!KvlvqKy|`NKuv-s*7orA5*blPDjD&$K^W1%I@bi( z(1_3+(1g$m(2SsoEj`>HE+bk=B_rAzgc0qma}Drqsso`hpcA1PpbJ40yL*_kSVr`a zN=EcF2qSu1=W1h*eF^md{Rs^K0|}Zq#6wPhilI`;h!F;1#3<`r4eW6Y;VZy6LS4WF zf+kM(@Y7Nm@tssMVwyo1F~d671$&%H(Dk!D4D_G+IZ{c$j|L%NfpxAN0)8Us`o$hn z`G6%-Nx*W05U|2JR|)~E2)h1P54WaCz*?y!V1q#j*kqlniO=H}g0A20VXXhE+98z$ z>^2Aid#!WV5U`J+>koQpJyimJmr4ST7=(ah*0~Z0I6=_$r#&1UCIM%pl7RCDA>e{_ zt_oh`C4#QM;vu^K-Ri1T67aV{2)JRL>w!zWMbPzkJ+zuD0r#YmfQJSl;IVb?EROJm zpzEJ|s5M3cUPvVYuM9%K8|&N*9N`_|2f%-XIe>_V{wFbthq1F|L{zC{L=1y4B9?V- zJN6idunX`3VJ{#)K@$^t80J4qiKLPdNese>WY)Q=2>6(w>r;6+=syanrILWO1|cB5 zb*?l5G7!oEG7%~QG7~g0n}>4#J9KubWJE55Fd~n2?f?Sv5p;b)4>LwfKq09lpr}Cz z_}n@-9xvhx!X!XR!W2L$f+m*rkl24)DJPYTsAv#IRJP7Jd>*S3It1vE$yFz5L@f`Q z{g>%iQb}fAgOK^Pb?!3G-GHF$8+%AIN&=clB>~M1LO@IFTyLDJHK8A%Eny&_9YGU2 zdWi3T1Mei2jOc0*Ms&B%MXDAae?y20=t+nH=uObXejZ}_U)uXiB_jqIgb_omb9u4H zVT1yJ5ro2kQ3OpK>tXQ-88J>O88OiyjF@blYlVO*gtmZbg!X_L1Wo+G!zKSNW=SO@ z<{E?%KU(L8B47bw1mGvaXu!_|OkOez_%!XS)TWu5DcfHj0}fVG5g0P6{w zxXHr-|6OylR5D_lK^U>aI(Gpd$z23pzt=;>`w}p_dI;EW5CRTb=jP$@A;JQ{5yB$C zF~SnS34)F|?VAhb2!#Om2t@%82*m-92qgjk5K04{63PLd6Dk7!B~$^tB2)*wA=CoABh&%>NB9~L z@vvQaLqKFg6F^jgzLXdqx;>P)v=Q$ywn2DHajkP(@Hie}JK#ft1|;%O^0Xvg#mpoI zAu*YC?r%K)m~a!2l5hu*ns6WR3E>eS9pMS!Q^IpVM#4+LXM{I^EQI%fY=nq7Y7Rma zKrTXbKpsLYKt4iTKmkI0Kp{dxKoLS>KruoxKyg9}KnX%>z?X!yfYJngDdjv=J|u6c zyj1cnrIJB-OI571$JITQKPv0D;&y5og!Q$pb35?3E@3y|Yr=1U2808EMubCvCWNDa zW`q-f7KGD)R)lkaHiQcRN6>?G@UVQRoU8>_bT$Yl>uQ~AjmO;y4)6`31E43NGoUx2 z8=x=Y8$f?TFTg-TU%+6(0KibfV8C#~Fu+K{NWf^q7{FM@*OoMQtv#fKO@puj)8(h zWb0&`AK)OX48k_oSmzSp@mj)1fb|3o*yLgGElC`SnOhA);&$uY7(Cud(Di#f?7Aia z&9P#iK?pctooj{1zZ2R54ink~juJWnjuW~9P7-!Gh6+JB4FNq8BEvSk?NUUa^`x%dG5S9XJ5q<&G zCaeO~CFqFy9!mL{v$3L)L73UZIyVoGn-O$Jd`svF=tJlW7(f^Z7(y5d7(o~b7(*Bfm_V2a_>M3IFr6?1@B=}QI)|W#`;nlB zTS(Bu{Y=oqEhXsTej(`LRuS}YzY_Ft>j`?eO$0sMR)QXG2SE?F+ru3Hoo|m+@*ejY zg!g#BI(vM`!&m2J{b8&>W)Rk&u+E*t<1>V_fIkQq0DlrL1O6gh1Kc3!%-aN=a*v=> z9ujoQKLnlfjG$Bg_3(@T&Ecg~auaV1!pYuQXOANsmG#&C?*$R1lJ!vx!un{|+2fcV z^4yU1v9La_L0BKpIu{?06A}^uk`R&tJ|?69q$Z>Rq$8vUWF%w)WFce)Y{DGCkA(Svp9qTpO9)E=zYz37R}u6IePZ0D9PZRVC&k^*3E)evB{v_xH zUG*@<|DF9WspJ!P-5`A8Zd&JV;qhI zCA*47hz^KFhz(9@ zoq#=ry@36M1As$>!+>Lio1n-4fS||!kf6s;M9||WA?Wdw z6ZH5g33~iA9t!z?aQQ?k`7ES22%m)v*13#$oSBdXke!eNkeiSPke{F<3K2B4C_zJu z6Ew6WK|@P>sDE7cT}CR|cX@-b?~2yBN_bqAPz_L%Pzz9pP!~|2&;Zbw&;-z&&;rn! z&<4ql<&>7H;&>iqCp(mgZp)X(nVIW`#VJKh(VI*J-VJu(*VItr=f?nt}f?nbG z1iivp1iiw!1iixf1iiwa2zrH!33`Rg2zrGp2zrI933`QV33`Pa2zrH^33`Rw2zrG( z33`Ql2zrJ42zrGF33`QxJ?y#^l%>% z^l*s?dblJ6JzR2v9xf$850{3Zhf7D$!(|}o;Xd=Q?1;R_%u>mF%w`bYV-D+FPCU*- z$O|YyC^1#Gzhz@Y@Mru$JGfn0ACSm1L_ep zu>nCd8WS|589_5zdRXrN@v@avva7ZRVOQ;}v&S7h6xt%|J7IlSgRs84b*={<_ayWJ z^dxQ+_Atlp`K8 zY><;3l}b)_!XTXNly&Yj9-kwe2V5jv0$d?n1^i984!A|Q4Y)_R4|qg)40uX-2Kbkt z`+iN(Kk|;CJB@JCj;cG2OwgT1Bj`?J5_G3=2)fgF1l?Ey4}bW7I!q{)Txep0aG^=9 zbII^H1tBFM4dD|&dcvoGOoYz>Sqa$yISIJ{c?tOd1qr&%A_U#o=LFqY34(5{6hSvu zmY^G}K+ugv8?4*rx%-oaIa@D8q7 z=l;gyn}l0{yM%jyhlEFfCxoYf7leNSuL*Ae?+O0_BAv2rMwUvp8I2Gf5R0G(iA&I} z$0z946B2ami3z&(WCY!M3W9DuH9@zYmY`ezl%QMBM9{5g@$llgyo0P#$>DMsgm;k3 zI+q)d^AYj`3K0qeiV-yN3xZ~RNzjZk1kEV#VfAmas|r%dt|}XZT~)QtRm0<&gj#?) zgt~zGga&}dgeHLIgcg9-gf@V7g!X_=gwB9&gzkWE33`y;1l@W+f^K~vLAO4Hpj#hK z(5;Um=+?&)bn6ocy7kEf-TG95ZheM_83*JYd@q%}gINaQ9n7)L&Bf#Sgav>_gr5OR z3CjR02rB_=2)_c>6E*-g6Se@h6LtW06ZQc15%vRqC+NwJ5cDj^33`@O1U<`Hf}Z6M zf}Z6PLCOcnOG3cms$@(8M?%rpJ*Haix+G z@eRU=1lGBXHN)dXgv@}%glvGM1Wo+dL*>XaB85~kBDFyn@riYAHTIZ}uomzsVFMr| zK@&3vh#(`fNF^h(8-x)#t#jiLkee_OkeBcsAU{D93wh`jTSgR?N=6hj2qTJH=aS(X zN)S>2z9ggulqP6mIS=__%82q($%sk@VMG<{+<(|(H9{mL)*wU$)FNnN9S?s;l@WEN zk`eU{!ia{}xlMXbc!c(8Qr0`n-`5!=#cCBMric(bl=D z2pCJK0T@sC3NVqNiQjqX_FhIzkxE8PHwYuXx6buIzz>9;fZ2pTfVl)sobREbe-{g+ zk`apx!idGzxs(W4O3?McczE+l0#-;R0jmu{z^~T1VhC7A(DfTV4DuhiO;Sm~R)Y|* z-8y#+0Xqr0evgNmu_R!xR1&b?AOsw=&c($?{t!XeAN6o2o&+3|N&-$Agn-l5xta(# zOVIUyc!(KM0xn1;0e>2VfGgIy={Uk)1YLjK!=EqZ5^qQ)0k;i8z+LNH4g}mM==w(< zro51V$5KhaQ-cuj+&cFW0{$iF`qv)r{U-r$q>_O51|cBA8GAem0g(v0KB|X*{I{lP zQb|BegAfqgIu{d{7?+^y<9oOlNdi8UN&*rYgn-1>xnHn@qy%06v4?#A2UQBGBp|gx z2>8T0mkv8fN6_^dJhbz#F{4xxkl7#vWVO!yfE{Ef==xk9p8D@PxuueTdjx6UO)KudzIZ{uN||8j0C zl?1dm2mu|fb06Y0b|&chZXWvhFQ)ENNx-)TA)uFaE(>|lUY5-`{x z1Pry#6~PXM6LkG34@dk5X|z-lFwP(ZOt8+)#SSJBbo~?$8~j_CDwPDxFbDxNt#j=V zFpJO;Fo)0uFpr>#3p~t?CVN~cm5lh=AdFaIo%<63%LrEizYzWgtR!gS8V|+&kA`2R zk`e0-!ibI5xjYEiOvn$|N+<-_PSC_%9&-3^Tf3!_5x*IP5&Nxk0}ybKFc@%%Fbr^n zpozylbn%~t6H>{D(*|M0S?gSJd>YOZN&+qrN&_wtH1UduB>p$Yt5V5`zYW5O8`imx z5O9m2>+gEV=6{0SlS%>}8iaty*17TsctWTIct)rSctOy_R~~+gA|qZ)B_rM$gc1K) z=YGRIMm%fl4*(()4gsPPG%<#U9R4RjOsQl<9D^|81MA!Z1jHvS0wf?T0VE=5ViFHE zdZcEWZ* zPQorgZh|J}^H4v!jL0vQj3{IfMijBm-9kVy!d*ad!UI4Ff+m*o@bqgLQCcb)QO+QY zs9>FYTqiuPM0g6QLU;kFM$p8X9&Tok5w)a}5p@j0hd+}9x>f4`C>vA3+lbdibJ-j2I-9j2LPVMhv&kIRuO(bO4MdbOwwiXyOD9L#xY(iBidk z?+n6-sn)qB2$)W24)~tX3h)C#6X$qXSzkuXl}bj;HwYsZTIXIPU=iURU@;*=-4L*p zpozbDSXER;tdL4ZtTyl?KFmh|30H#8vBD5`1Z0BP0(nHM0C$ivNG^I-jJ((whX0zT+WIC7E?sDw*}b zAk2DXor{SV{SP4y;3**<;5k7PUwZf~fsA-1m5g|65JtSW&h@}|?Fi>=eNR9nLLWdB zf+j}y&?u9Ph#{4Xh;0x?#I?>H!8ODq90zu2m=5)2!jE+2%4DJ!~Bdg zBA-+;qM$(-QP?`S2iH)Pun+J#;UM4(f+l|H;g2jbqLfrJqO3s}QQkTi345$ahzh7o zhykcd(8L-ZN_;3IYDy&|Y8!+Rb**!)@p<{0-~bH>9RQ68n%LAs0sk|$nN%{Or9l|c z+B$c$PI%mwa0k$ia39ctpoyJ5#Hl7Dx=1A>x*LQM-&p6$*9nh%5_EkZ4_D$#KwqgO zV1Pjg7-XGmjzbP1==$LvF8gnn%W>1A3_`#d>)c8_9!FRMm_S$um_*nJ_>QmzFqN31{{45s$$m5l`(9w3JznG?T1i>oymq*#B?e*rGV5F`JpP5y z7O;}g9*Gd#viAqyK4DxlZ^X)G!Dyww86S8Xngs)CANe)CPP_ zs0V03XaHzL(3wp=G%YWixQK1GFbJDyWu3c>$889I0UY5vpgrLhpd;ZfpflkCpex}q zpgZ9y;2XjVKu^LeKySiZKwrXtfc}I?xQu~>sDQx)y^LWV`hF(2a~Z#zjWh_iGuk@$ z7aor#TnCIN+yYD_XySJsD*9hJ>f$HwG=nf=hIOt19?v8+2FxO8z+4YY%1Yu69DKe( zNL*;0+l|MI2)_Xq6Al2D5)J{D6OIB_5KaJA5l#cv5Y7SC5_FpzJQU0<`@V;}+H4T^ zz12GR5RbPL{sHVHJOk_|{0rDicn#P`cn3H@&`lij(7l%IY9u}+M-9TRj$7x(;PFYq zc))4GB*0n16u^1Hbif6|Ou!|=Y`|s0Jit}L0>CxGBEWUR62MKua=>lEO2A#h8o+(R zI>1B1M!;jj7Qhq2cEB^jF2D=IUcgJje!y$O?|`?2BY^jW+@S@ zj|+Ji>i-H`80(7}g!RR(v&SVpOwB6m0S=}dxt3TJ!hn^!)@!|_Mv z8HA7VeCymOJYGl`3s^*$09Z_z3|LB-3Rq5<0a!u!0kDcN2e5{q+g#@%x&OWA9DXcr zGzk0NY@NG+$6E=yeusw}{$D5u;J1|B1|eXtb#5>o?;{KY93YGY{7x7HI7}E1I7*lV zI8K-XI7yfeI8B%dI7^rfI8T@dxIkC{xI|b4xJ+0AxJpck>)fY!{GN~r5aEIa zWC27XWCuhcD!dr$-6#t6B?#@CDb( zI+qxa+Ypig93cguJs~xqBOxuIGvQM}SAuS$hlk}!WLJmqjiRSP*i~=q+)+I4OE>}O zPdE)2NH_-=Ot=6TO865noNyH|lJGZRG~p&-Ea47dJmEfIBH9?z+yr|z*2&~wqHD~?;!7Sg;er; z^J;_e9)GpYJ*pcXuOsOCjUL)Hkbq56Nx)Wv5U|}k7Zm|J2{8b>39$it37WXy!`kjL z;($~#;*dcYal|@Txn6jDj8F}5f>0B1ilB*SJ*4j?BhE=BBQ6+(5tpoUBM@+zFdA@` zFb;5ypoup;RB0k#(*Yc958$>yvq?)L8)eM3_=J!MkdBZ9@F_tPGkF-;RYrU! zm5j)05JqIT&gDQrPC{-#ZbCjlUV`~;{$(8RAiOzb2hYD*;}>KTL)^{sQ! zvB!plSb)ZaxPYbvO>E&|N>drpQYsnI#vqJv*13wK^U>uI#&lby^o;l4|>SjPy&9JN&=1;gn(n#xp>&Y2|@zEDZ)p9GXzaM?;%ce z8S#fyGUAd!7;)J;*BAj;3C#f42rU8E37UAz!~B*q;LjnH~ zMgX1?H1UOpqTOV~zf#GF*9Kw4TkBjQ-1K`wQ9y)C7El}ziJ*y5JuGY_Bce$qBVrna z5wWdv>9EJRgbaXqgwFsU5;QT9hZtRC#79!eh@=K#L~`rg$Jk>ELMlKi!Y6<<1Wiom z;imtonqDdykN7A&<~JVPq{VvmIh zZ2(0H?Es$>G_iz-eg12=q*OAZv_TkA);hNzdn`}*9Z->Q1W=iviPb#p_3xs(R5GHL zK^RfnI`=8|SeK9q@HHU|paDS>8+%CZe{439N=7s{2qRir=cZzhtqC&#Z3#aB+7UFd zqldbEWJD*aWJFhkFrvG4?kDW=8^U5hPr@=lZ-OTF^YFU8jOZ_wj2L7PMhvme-M}7) z5pDxU5bgm+5j1hEhskYZ#5k#B#6*KIVzPB^2?C}NmII~{Rsv=aH1P)yFa0-=SyIV} zxdvgxkJh;_aSaOyWdJ`B$^(8TXyQ^2jatcwWm3tA6$W9%D(l=B>~RfYJYX$h5@0<+ z6E}Hi(pW}pmP$r!GYBJgSm&}KU>6}LU=JY=;5ULM9`NwFf87VAk`adu!ib~Rxr+!m zPPhy>N%#wJnxKj2JS6QXBhE`DBQ6?*5r10eo+981;RWC?!Yjbv1Wml@;j|xdODY+0 z*C33zZ=HLGfQN(#c)O1YkpWK#n)uv93jZt23#nwpD}ylNjdiX7M!X{w2K+}T28j6Q z|0G87aNGZS5LGG}5yK#ih-IBihJZMP6o3y1sR8i`nwZeT;C3=1kyJ7wi9r~V%sO`h z0Ur}i15y&s0a6n*F|CIK{x^_xQpt!624O@d>s(s|WG1u+WF>S0WG851E)Q+|Uj=hZ zB_r|~gb@X-bN%o#3lRnaiV%hXiV-yN3lFn;%ZL(E$%s-0VMH10+z$vSN0XkneZ zh=5jv%YZh7zW|P)i5)zA)n7(*luAZ)F$g2NS?3NTpaf+lYB(0-JR*e;cf*kuq#?6J;OMZj+aU4OtsEFW-C zDhW7j5CV=`=PDxLI6>E+^3cs6^0ZVEaLynE{9&CNkARB=U4Pj_i-8hwMJfrnW)K3d zTjy@z({_`f>+g7|GFSrcN+kgg3_`#o>)a~@{6lyPcuM#W@SLEDFFhRfxAaOX8S&O2 zjCgOItBFHKxNPfd10oUX0iqBzF}jB`{yRkssboZKgD@hlb?yT^{*Z7En@&j3fW!p- zBgs5u8Y&}_OC=*x8iWz4t#fJcI33|bZ2D7z24o`WAIaij^dK3LRVo>g!yt^vWu5y6 zo6bYf_4z#%m@EMWq>_Nb1|guRb#61Z^f^J-m+-K1q6CzbN&-q7gn+WvxupmwPtf(1 zJnZwI$I4PkKsAF9P{TTR2S=zy(DijZeD$3K)RjsC>KlZBhSs@8c-)k509$HK(12D1 z{UdEXv=}ZUoK!NRgFzV4$vW2=kGm1FVMGst2J|H8AL-+v+awv$S1K7Xz#xnmWSv`s z#32M-KioqkzsC_$Nx*1>5HQv{Hx7>{5!p%_O$H%g zi*>FC0=5x)0(KBIV7G_SBP4N;RFb&QAS52J&J{wy?}Va&!-V31qXbPn;i1eh8F5l7 z8F9uSj5ueVOO1d(2x$Qq37-P~BxvH*0ApmtUsB14>jq)OP3v511l%S#z+FNIz)dmE zvxr8}^)Wqs@4w&0l1c*N8ias&*17H2!H0xhfP{p-fR6~8nAF2Q|Am-LDjAW&AdE<5 zoy&!QGz49r&ckT`b0fV}5|Gg#1bk+l`v?J92uT6i2ps(v}lqcx=N*>Pm?>3dCl7MOk zA)tnJZao5O5p;bW4`uxKlDbk!Kz)M{(9k;fB?1}~bbT`qlln9`(1W1sdwR&^KkvPyl7PMjA)vo??g4f%kf7^_ z1n}RyhDs#?BMd^oDC=B4>|hK**N^v5+5dc>Ae976HV6SztaFPHFpZ$=zxVLeU*b%u zBw)5d2$*Y~JAfnnNYM2Q1Nck)Nh%3gY!CvLTIc#=2g?b%ex-+&OC(^GR1)y3K?qo9 zox52-Jl;Ui^_xA+o+$xaq>_N`1|eXlbuK*ub`x~{Zyt(Hm4JOxNx(sa5OBykcLhf{ zLbwJvMz{euLD0n09vaV=5oe^55$6rUhzr)a(b(f9!Z^TX!bHGTf+qg$;la-`;<{8a z;+8=eamPA$5&`!JX8;cf=K+rhn)t-SjioZ;sZ=uJg+Unc(mMAN0j~*f0B;HJ0q+T# z81br%=rmVGM3PEIL^TK_qFd*hAs{B9B_KAT4InN-6XSarFiS>!D3y#zWDrIqw$2qs zKvF_6KytztfD{BxOzolaN*R$xDjAW^AdL9bI+wSBe=Prt1{p~O0=dr!g#lRznwj0h znO|f`4yj~FZi6r+uXQdB0`e2m0SXc_016W{v6zQ{XUmAsrIHaP48n*nt#egy5v2*$ z0c8ob0ObjqSjoflg)*YDR5GHPK^RfPI=37FwFoN#wFzqgbqShS-@|_Y9j1X)GNQ3T z7}3-^cNYQ82@e1*36BA-37Y6UB=hg0om4WSqd^$a**cdPH{F$x4A7mB0`Lt%6MK2M zHBUzLmP$tSGYBIFSm(aM9tRP60frFz0)`PZaioV|=g5drQpt$124Tc_>s(y~OeE9? zOeQn}Od)9EbPtbb$cPzI$%r2e!id?{xp)YeOGp6tk?;{<0YMWNdH8sNjQCk98L`wL zj96}+n}UE91YN({LrVV*VvST1u+AU^Y_QJdN5Ce6uHWjR;c^MsCY1#2GzbB^t#fhk zuJ;n+0rn9R01gl|@sNis{?l++Dj9LiAdEO+ookOho+5MtoFQ}toFi!B1rHad$cT$l z$%xAaVZ>GI+(rD*yY~Np^*1~$Su6oJ0e1{Sz&-2SCG6k<;R@gp;Tqr{f+jxm@Sp$L z|6D5B<4c1u;p$=? z#Q)TcCzS*wFbDyOtaHy0keHzBlX+PFy#yqeN&-?Egn-o6xnv0VgpdM|j-UY7eUwe^>A{!1oV?i0tOm{fWg+ehzJ-;(DfrcOj;oUBc+mn zF$N)EoOLcU-t`1RHozo8PQZ5rO`PVTi2q$>x>Pb^ra>4n%Q{yIdz?ck3z$c!0GLnE z#GgED`9Vf3l1fG_F$g1;S?6*i;1`0fU*#d@DhXIEl?1Fc2m$M@bD!go8wt98i-$t~ zx23I8Nx%++5U|TSHy=CLL-+~s8(}eEKS2|J_t4qD>qAn>h@%E!#BuA~JAB$s5_J6; z4=?>+r_M?x0e={TfQ#0-I|%rba364m@Cfi1K@+cgIJQVe+>lB}+%^a!?po*e;*j?V zy8e-ewbLZvu~ZW9)F1>rw@&`2^TOkQ2`>Pz2(JKd2%7lb!-5}W#D7xBh)CBI!iXr= zxq;YYG{O)-48m|gEP^J+^^nkC!v|8yhz||Ih=kU;%?S92unmxeuoIAspou9wZ1Del zpHeCrk;Wj5NNb%tf@?@m(DfNT?EX~(GD#%?SqwrzHtSp`eB^Twx&m?$dI0heG%>%2 zMw?|s0jXp}VS_NDsCDij0zM}k27Ey{1}I6;#L^z3`BRjUN=B472qP+5=UO75GNBEi zDxn>qIzba_dC0#Sg}_|Op;1QOfd)}rdj7|VvjQj zwE;5;^#HR7nmE@(nVm9Xo>Veofk7DYlXWf$0)8eW2P`3^1S}(H;tCJrf0q#}rIHbA z48n-D*0}`;SWj34*hp9c*i6vGZ62QZ5AAlTWW+9mFk+8&t~>&MBUA$HCsYL-BxvGc z5AHV^aYQN^aoiw`IBA`0h=9|CCV;bq=794AO}yw~{w5i5Nh%p}#UPCM%R09MpO?Q0 zy8$-{zX5I$H1V#7Ogm)6J*i~GLxV8lv2`vc_V|Pl2k?v#5AcGZiLX3N-YO$rOC=-T z8H5r4S?6wHj}ia2^>+c02@e2K37Qzg!<_vxBBoR_B91{A@qu-&5B3xV1FbI%{ zpovL5Y~Lj#l1e2bJ~jv=Qd;M-ARsj%JKz&SED3y%JY!F6dwa%SH zKz70zKu*GWKyHF2=JPOqwT#Fwm5eB45JnWS&Q-@v7bDaH6erXHlpttgDG!nSMU|FH zMwBxMBPv+uKEWO<5z+&y5HbR)5j3%;hZ4tSL@lXgL>+@LqMmi`F#_rno&p*YUH}>s zG_je7lm6#LbE#xRD}ykijdkvO1USMhKzqVmKu3ZmcJa`DyNu{6m5k_N5Jr4!o%;_r z-HQ+jiG2uB0sRP?IM73eeKKN@R5D_yK^QUII@cNjBMA;Ln$Q6-mY|6fJQQ9hBPL2E zBfc{TBc@vChTs&_3Bv*36Gj1kAZX$o4>vc;h`Cb9i1`L##6s)bIs_~tYy>POYym7K zXyPv(zCIu$R!AiyRvUy7zgp*p;TqNvMglev#sD@EG;ynk3TtGryfp|T-dpGLVUH26+xmilNQ5GQCH(kV-~;X%I$~w$9x|Kv}{aKzYJ_Kt+NkR`C$+u#BiGm5iui5JuFp&TT+IZNg?i zUBWiN*91*$=;5UQCzwW3$%v)~VMKH5Tv@!TmV^p`)`ZG{wggRV?;-gX8PP#18PVAw zjOc2eJB5JmgtLHe2!8;25;U=ohmIR$L|>_7!~laZVvu$2M+6KZECdWA{0taD(8SRm z&iYe~kxE94HwYspTIc>mz+}Qzz!bvYfN2Cx{NBTE|GH;NB_n1Vgb{PCbGz^|e0T&EHz$NS42Tj7`%LHBjmxt{qB;cA<5^%#H1l+RDMQs!w-yy^R z+#|#WJRoS|V-J<%%OU@fN=7_02qRut=WaI*k6#jW{TmOxPs$$ON+kjR8H9j{H|%jd z>>x5B0U#>jBS3V5CdTqG;%^xdTPhjxfk7A%-#VAFad@17kOq*5kPeWTpoz&mluRwx zkX$Mmk!6B;?jst2EP656mXkuLt4e!Yw>q#Xe8W@BTjjVIu~Hd4umb_QWY2kTrWeB?V3vH-devIDviH1Qh`U6RX)Z>5qEy$!;M zzSg->_&D_^j0FrNOaKffXyPyradXOu;Zn(nQ3hee80*|c-1IntuAk_kNlXctB$WhA zF$e+EtaH6_$QguwfSH7WfLVkgfH{QWfO&*bfcb>6fQ5t!fJKDKfW?HVfTaXI$S)qU zJojHp_#m$`2q#-(oy&vAYYF)Q>j{Mb8wo`Ln+e4MTM0UIhlk_-i*2V=a=m*D!X|#R z&ZR`aenJ|+K|(sfAwmYg5yEGHV}z`L69nDFX%FAVmY04;D%sU}gRrX$*11`@+e?JG zfXjsWfUAU`0M`hM0oMu305=IM0JjON0e1;&0rv?T01pY90gnmW08a=z0nZ3~051sp z051s#0j~*%0dEP%0PhJW0TFKUh5?ZX=K)a&7Xi@-mjN*de*t017su= z1bjv)0?0!69FUDr0+54H3XqFX7LbQf0g#VS8Bl;w4N!*!4WK-s9iSqiBcL*&3!o~YJD@t@TR=@hZ@^cCetuW3)d1rO zH31U|wE>d}^#D@{4FJ;!jR7+V%>XkAEdjF#Z2)r!?Ev!#9Rc$RT>uLS-2saT-vSmB zdIOdc`T>>`1_D+Ph5%L(h6C0RMgi6m#sbz8CIB`PCIdDTrUJGS^uw`(pdW|b9!k8B zkIx>dY5)jq_5)n265)-xnk`lH9k`s0TQV{k6QW5q8(hzc$W6Eb$V<2l$WOQjC`fn+C`|YVP?Yct@HydMz!!wq zfRcoFfKr4A`0cL@Au^yGAsV0pAts;_Ar7DlAs(O_ApxKU;UhpTLQ+6&!pDHRgj9g9 z37-HO5Yhu05%fD_QxD1gzxFhfO1@RLGzi}+TU%$3ori_~pKjV=eMf_^zO!|%3m$hT z^Z@iE^aAuH^aBhe3<3-#3L7m_zs%FpuyWFrV-au#gY||G2P-5E-zT5Dl=D5EHPR5C^b=5D&15 zkN~iT@DX4wAt_)z;bXu?LMp&!!Y6>Og!F*zgp7clgv@~5glvGlgq(nVggk%)g#3Wt z355WM2}J=%3B>`&2_*q138ew23FQE12^9h72~_|W2-N|X2()ayzg{2;037|e~3 z4WKDu9iTa3BcLT=3!pV&JD@FL7oZ(sFQ5ZqKcExgcR&}y5kNP>aX=5kDZsacvw&U% zy}!O5R{H-~te;eJp#u%Vg$}mPJ;ECqN_YYoPIwL&Nq7kuO?U$sOLz|$Pl$-0yAugf z0Fw#P0aFOE0MiI@0W%2k0W%2+0ka5+0dok+0P_eb0P_i{0SgIf0gDKq0u~c80hSW7 z0G1Q716B}n0ag+60@e@;0M-%;1J)CY0X7o80Bk0F3D`;~1K3W`563PKUtX6lzui*F zr{y<;@M+m^oy&}m+d)D$z#&3Tz!8Eb9{14ek&HMYm5exT5JsG}&i#pi^MtE_3xvM` zmk2ijmkDXN*om{Q4z zI0j+F2iCdO_&3J*gtdSKgbjd1gw24&gl&MNgq?uoggt;1gnfWigoA)Igu{Tegkym8 zgp+^_gfoClg!6#Rgo}Wzgv)^Jguehe3D*I+3AX@w33|f?JY@54wV+gT`6B8omCPJq5M~at&OO0LVhG_m zU>M;gU)0oi1ROL70f($}190ji zgu#GggkgXa1Wi2cpr%;x zTLxjo9qU|fd=t1w$Om{pCf8tNC0?C_z3Wx zpotOh%82y-zXKOZDj5;gAdHA^o!f3A#SBhx@tY8nQ?w z0oe^gKu+u2GyLT=H{oAEUczfYeu5?z@({a%j3_LXj3{OhMijTs6=)eAmmm}dd`Tz< zC{57BavrLdml5Tqk`a{*!iXx?xoiliM#u@MLC6EBMbN}L9(I?I5p|`K5%mqih=$g= z11-Yi#)LzFri7z_<^)Y_<>6gv8PQrQ8Q~1Vi1yaGh}dICLKHw}LUce^f+qIxu(z;` z_(m!j(aRu==wqF8*keCJ2fzSAXTTtWCJyz`qpXY=CY6jBX%I$?w$6QoJ&q+L1&k+r z446pJ#P2+Gt0E(&NF^ht8-x+xTj#nV;0MAtfZ2pzfVl)sobRE+7cydjR5D_bK^U>v zI=2?ru#~U?u$-_Nu!5k8t37n`|2?-gQpt#Q24Tbo>)cg*VQnJ(4cJ1s3D`!^#GM|p z7MBsbq>>SP4Z?_h*11L4;{n1F!0&|RfWrh$Jm%p|B^hyCDj9LgAdEO;ookGnK1XN< z_=C_AaFL*imp#P&Qbt^nN=95W2qUgr=l;MRZxSv6ZWFEm?*2bWC5aC_-1Zms5b%#d z81d9Pw+aEz3A+BJhfQT9;FVO8_|_lyJYwCkz6lAPfbhB52|#9tIYX z5ox885uX}_5gDy>-4XB^;afl!LT^Aef+ptl5Y2xh&Lx$M$ZHTrWJDbWH=>?)CKk?EpAZMokPr{hnBWteSr}SX zMl_d7Mzm6JBid+Zs^W}6gc^YMgxY|P1fLjeA+EiO&Qi&UPz5(4Ogj?|XACF!{XH#| zu|M*9NhJY&6VC42=K zPe=xsNbrf1EsQTLBc@0tBc?035i_+j)etb7P!lkhPzNxd;1d^FxMi5lDjBg^!HxJ;J985OTM2gn+X?ppzY%=mZVPYi zJJ24fWW+uNH{yVHW)uPr5yk+H5XJ(I5q#oF3-b!fh*MI@h%*Xq#5wIuCInm{WC2_v zWCvU!_{8fLPJbsO{*+2a+){8O?r3MqBH$jO0^k9mGT;%xCqA{%w2+K=CY6kMso+NZ zrJc!zfH#D^fWHX^0PhJt@sox9_G9@!Qpt#Dk36^$F|;#f@Xa5KP#zGQPzey1;1lCp zs8&QqB#=r*BvNoAzS7Rr#~G6n8Ud0MngUW1d}104c`M6^v{K24Km|7jp(eMDU36A zAru32C6okoBlyG~76z1+5j~}n5q%Wgh<@6cQwSJ9I0G0&@Bu?DJhsp1FsUSQq=HNQ zQ9F|jS3QQ{_m8#k(0(2nCzS+DRB!>2+L@6Em_qRTr(4)uT>@rEB>}S)T)ZHH622b%bYt4FsRK*+OVZ8L>qw z8L?Htjo7Z8nS~ePH^N-NF2Vx99)eHY=b(>_*e{igIHcf49MR51@8Fh?5n=&O5aIw% z5#j+(6TSqTB_sx%CnN=2B%}abCZq;jC8PsfC!`15AY=mEB4h#FA!G;KBjf};Amjl& zBIE}=Art~UBNPF=AQT6@B9sEWCX@xdB~$>sBUA=_AXEi>BGdo`Jhsn{ePL?@q7mu= zVh|btVi6hxViTGH;u2Z{;t|>a5)j$}5)%9a_LYTk-Q-|Nq>?8txq^G*QfgiEtJ0J>gG4Rl+Smb%K9k zYguU3#y)~l$tzt?!M)P;wKFT)x#fn0)quu?b%3UXjezEaEr6DUt$@~q9e}n3f2#Ht zs@IZZc92Sr*-612v$J+)Jbn^%Axr{vB}@TyBTNT$C(Hu$B+Lc$CM*E-B`gN?CoBaF zB>VyxOjrdNN>~dRPS^k#N!Sedkq`wKL)Z@ZiLetej<5$Xfv^uSiEt1wnQ#O!m2ey| zop1^;lW+zwn{Xa5mv9L%pKukhknks9G2s^AXTn{;GQtDEFNDW{m4s)2)r6OTwS?Dz z^@P6x8wno(n+g8_ekDZ1W4x6R6R@4&ALE@CI<=GM`ZRXzQE<=o@7n3|0Si;@{`1&> zSi$W-s+}&Mu&}a`>^~`$eBYc_aQn|{XEGt~JRu9R0Xv&SrPCZ;aflvLM}itLS8@#LIFT2!gqi&grb0Qgc5)X zgwlXYgmQrI2^9fV3Eu;%6RH7f68yE-u`sxy+>E+X$<3&*;BH1k?aWtrjT;mE{$>^y zbdiAOQb|B71sBjpJJTE|2qLrsv?sI$bR_u1U<(7=%ZScW$%s$|HzG_sa|dS(C)@}0 zAUp!}BKX9<7G5@y5&fi+5d#(6h{4*K@(378s00{Jr~(*C@QI@>6tmx6W2BN1V-?(p z@!FYZ2$)Fl`zKrIU?gCQR1z>eh&@uthXa3k_+XW}3rKOr8VAi)O|wlJlaBo>iM5{oOi z#FE;XdwA_i6a4;i77n+RfbvpFKqUni@V$0sBu-G3;P=L|E?dfJ&W z2&hjO3us7~0BB6`iOno*=q)3fOC=*(DYy}Bv@@@9kwJvN0qqGN038WFG1$W5)-s~A zR5Bt|!Ho#h&dkLb!wCxjJqU{dy$C+BuZ8BJGNPYUGGd^D8!=cr(*b83O7QzfSlDR; zMoJ|CqZM30gmxwv0b>bW0OJW^fQba3IN3tKt}i6YFBBWW-VhH)6SVrWfAORuK9ERuKjO))0K+dJC(Y%7_h8$%xGgZp5$J znHqShwi0RswiD_Bek1tA-4@>3@4G!x$%uUlZo~oY%p=@}LxiV*BZL=#V+5ag(!#^G zGUAj}GUAMa8*xrMvm0l;K=Au7Tc{o+0av7wfa?k_;D&Z)9|CR>{QkQZIyIAkds0cj zLj@P`SUb}Y0Z$1{0M7}{0WS$Y@wJ67?c2{Asbs`E1vlb@cBVf9J`n~10-kBWP(U<- zPmF0{wY?3oq>>SF6x@g}v@?eg5T9@q@Fn2{AQ8bQCb2Ng{)|m3m5fNC;6|j<&eXzd zord7|e{JF0krEInl>}r|Z~@cpM`J$kd5F2a#%P#OcHZSC5d?yTw*@$%t8bd zAS?kCA}j+GCiui+7A6gm5yhpF5v3H|h%(xlp$I5P7y+n2_z_Tv;1jD@s5M$fRFz6b z)KG9EYH4SlAfOK6IiMcl6`(%BCpNNB`X?FDSSlIOOu>z4p`A(A(Ji+kqy)4fqyYpG zd}0R+#qDd+Q7Rb`tl&n3XlG{OjG=_NfG~m&=x$-lSV`<5l_d67aEX1jGud&Z{)C)> zfrLDO!33W;%)*JOGGe$?GGdg18!=itvjG7Sgw24lgebsxf=`@e;e);Pky6QssS0ky zbnQ$a0%j620%j931LhKZ;sOhiKgx)OQpt!V3U0(w?aVFQ>E(pGfE9!XfK>#axYk0H z{oY+Cm5kV^;6`lL&KyC&uY}`(t%Os6?F65=(?Xu{GGdohGGecS8?jG2Qxdn~0HF-v z5TQKa2*D>Fw-B*NMx2mJM*N}RMx4>kbT)4J93d2NfzS zim(rmlyDG`oZu5vSqL8|BT`ExBho3j5rNv70ytv^!gqj7grb1V1fQ7A!uxqLBD+*F zBBz2Iky|@c3}?(sC<(|qSl>d7B{HIcR5GHmf*a9PJ2M!! zp*dj~pe11>pf$lK23bh5P)4+qN=9^4a3eZtXBr`(GodM<3!w#|E5Rp*TZot@Bf3i^ zBYG*g5q-2XJ8&EN5q1Fv5cUEF5q#oM3n%PV43kPmj8t$Ve$>vi!5PO8+5vtdbOeke z_{518HqVz4lcbUnQxx2YY1)|z2$(^r446gm0dp{vi3NCT6cIGYK(|#tr z2P`9e0{lYoiK{G>8zCcBOC=-LDYy|Ev@@F#u!#@_*h1J2h$8sJ?G`TBx1=3X$%tJF zZp0q#%u(Ei-w7uG`w4#l4ibFg5exN(%7~*<$%qpQZp10=%uhJuX~KBGS;8d1d4f;8 zWFgfI8F5)E8F5X)jrdbL^9P>5n}oA~+k^{%y9A&3z`|KO;-OSB;)#MA@k~2&1pzMz z*8#5xHvz8+KJjl02kaB|PAVDkQNfM)M>`V@0iV6l{V@U239$h&2|h8lg^|N$L>#GP zL_7sIB7t^hCGK=W!Wuwg!g@dwf=^6tq4HuGkwPjNky^oxNUNRciRa~OLLWeSLVrL; zf=|qBp@;pzkwq#QkzK)!$f2D%i!Go$}38^HYw1NvLtDX4{mr$PI_gAv8)BbFzER_UQRd4~-wKHQ8P?InLP@515s7sg% z_<=A3(10)-(11LhDi z0p=0102UCk0~Qf-0+tZ+0G1N+1C|r~i?Y(f^JVfX{e~TD6x^${PCH%RXd$8f1$-Kw zf-MSef0TB*yxqdm39^5ORPqw-QgHkCXlH)FOZq#ZAz(kD3E&{1Ip8p%72qhLE#Nqz zJ>Vq40RA9!2Am;;0?rY-0WJ`F04@=F1FjJI0j?1S0{$cn0o)`E2izu%0^B8x0o*5y zbs+z>f`_CD*z=eW33y7F3V2SK0eDH64fu;N5AcSt5b!r)3E(}!zxbalRJK0_{*g+a zhG;K6xThh8cIGewViElQI2I}{kbt;SNkDuB7x1NarY4@|M1(qkuLwT?k`jDk3JW*a z%ZQXx$%r%xZbUlmOr=h4Ign5VkbzJgkcr?EvsjqFQbuHzN=AIE;6~)s&b-7Ka}!vtN2bT8BtWhjVP|2DS2QO z7Gmy`5pAWC5$zS+h>qHs{0QhoC z!GL~*E`R|9pE%gU{U{kRL@F6ET)~YPshwGffFB7<0AmQt06!6Y;&=;-cFKqeQpt!& z1vg@fcIF8JrV*Y4W)NNhW)XbiTnjS~$cTAT$%ustZp32k%n!KJKNA`PmJyl&ej)h8 zRTf74CL>l$B_q};xDgw)lRxp~mNyY@0=5wD0HO#!al3`N8)U=|sbs`11vg@kcBVE0 zekare>?bq;93=R}BNlG2kP%0vk`X5q+=x@!nfrKqI8As2I7@g6I8X42mn;}3yZhPh<8%Sh>r?x#6Q}Zl?eFkmF`~yh)!4!h)M8?u`M)PB_rZUB_rY~xDg4o zGaqrM6A}WDn3xb9kc8k9lUr!AQAVVYN=Bqsa3j)cXPO}3YeI8CdO|BeMuJbwY@zmU z8IeUQ8IfJVjmV*$iH>iqT!dJFJcKxad<36Z&_et@GNO=FGNOor8&OO<6CVL32nhkD z2wwrp5PV{J3vJiPhze54h{_6XL>28!3fzWjgw%i4bcMnFOCW$HK}jGGeY&GGc*( z8?i_`GZFzy2!8)E3kU5}zg#K_SgGIwR%>UH<097*QUTTz(gHRTeBu@h-~TQnew9i_ zY*TO}c4%j^Az&vV2VgfLH()QpC+@e9cDsx?AeD?btl&l*)z0j~Z8%QY3ph#G5BP)N z6VF-*v@hm4sbs`O1vlcdb|wP?t`fchTqk4&+#vYG+ZJ-#Pf2&Ak`eb6+=z$Tndu04 zOqd0DN|+0HPVkAZEY!C@ng5bXM!Z#UBi?CeZs6PI1K~E{6Tt_3_Ln4{v2Qrhq>{v# z3NG<;?MxyZDGnhC;0uBeNMNC?{UrCLRFarj!6hcq&OAUsGJ@Zq(!vG%G^CPB0@5nD zfUmVPhY^sTa14-<-~%#SXt_%gvq&Y0*%e%34(-fa1mq&T2jn66fczGo+s`irq>{w% z6kK8v?M#0J6eA1*lpqWRlp^@VvK9{8Ux3O-xDl1LGm{Zeh2ZyBw=jIK1k{j9 z0%|L`fV$e5^!T>?f#CNyv@mU*1T>OL0-7qgfacnnLO4N7LJ>e~f)5C?@YKE#?WB^# zjtVZZlXm7G1av0&{h<~**dJb9rILVf1sBjmJ97#Fy$F7PUkkhJFJ%3sl7N8O_WLkCM&prsoI$!T*7pM z-#^Pj%hM7tTPg{dr{Dq>XlGvI1d9lN1C|gz0G1Mb;x87C+>{Y3q>>S<72Jrm+L;5L z-ST?EVZcVhF~DYmPmHqg;i8P#DwT}bq2NaB)XvmGz-~faz+OUqz&?UcJZRzabs2F; zDj9K9!HqbsotcM#lZ1tUKL|?zX9zy=yoG6h%7_b6$%xAeZp2mX%yI-=C#(eAAglr0 zBKX9+78)Fs5%;8$5f2sIh{xKQmUuCr650Ts6WRe@5`5xo3-xZuh&NKnh<6HZ#0Txn z2AuH|VKX4$wFX21q7i&zObaXS%ZOM~$%r@#Zp0VbnG_*zIX)pZ;7dX}Kq7)qOk&~f zaT$?RDjAVN!Hr0zor%J2NJH2TNJrQS2qgH#j26N#%ZN-;$%rfpZbUZiOk3QBZwc)I zISB@ko8S}kSr~OoM&y@DMif$TBMNJ0P9dNu;S8WS;XI%u!6%ln(Ds^)C@YnWsG#6R zRMO5wAmDq#I6zgxL_l?dPpoAj-gy~OTPhh*Pr;3-ubs(?fQE!`0gVZ{08I%#v4w@u zlQN>ER5GHCf*TQ}ojHaVvpwM?pd;ZlpcBC-hFBPMOh$B(N=Ae!xDnynnI#D5L0AUp zMOXpoL-2|HEo?X;BL+w%BL*wD5ks{zdl4|4upcmza0u`t!6!yoSb9}P{3Ml(7_Z<) zOw`T{!JUpI3v}_{5nOa-5P8v!s#{a~0f(`P!NDIO9UXCBS0BRlv^#pSaw@ z_`@>d7pY{#Dg`%Ujdo@L0@e`*12zzb0X7kQ;;$AG+Mjw+Qpt$z3U0)2+L;}=4Z8@t z0DA~~0lyP`;sFcgZ_9{-Qpt!T3U0(P?aXBaoFH5SoFd!+oF@3ha~7%{krC&mk`b2_ z+=wgMnNhe6*9c<(e-g$5ZW4Ur9Sa5S$%wmB$%qFEZp0()ObonLKOuY$ct(f|ctP-q ze_1GPKOVf6N=E#x;6}XH&Q!#0_(=F3@DHIH;IlXXmKejr0s9^mQz{t|TfvQptDVV* zfOv$0fCPlXfP@5}_?3l#J2E1PR5BvDf*X-iJ97sCsR{Q1X$g-2UlV*{1`D;$$%u?n z$%xDfZbVk?OgaQ)C!`1DAY=mMBKX9-79L%Z5&5K&5d{_8i0`yBy%11@&=*jQFaS`3 z;1f$*cxIodGE&Ki@(ON5MeR%iJTH|Ai2zjyNdVOdKCz~Sy+>t4EvaNgT?IGd2kp!( zJoOC-a{-MA3jj?BKC!ul^Jip43#nv8YXvu=t#&3ZZbLgld_V_6LVzLo#LgDB*(WMQ zDjCsL!Hwvqoq2|U?u3_so`lzc-UOf6&%)_LGNQj!GGdT|8!<#X6OP+3jL;J>g3t#r zir^E+Sm^LTMnp&@BgQGX5fijC8Sr9GB76gwOvnnDO7Mv@EJU7_5i_Nd5pxvWhAr>Gf!6)Xi5NLn3&nuOTD4^g* z6w=O2K|o=`bU;zUEI@IBPb_7j*IgM=S}GY)PQi_+pq+V#fJ%gqfbR(bc#o<|@QF1n zWO^tgYDy&|>L|Do^|UiN5m2At_cyX|<)Z{NmP!JeDY$?Z+L=UM+;S^|-{00kr56$q zB$WhoP;dc8J2Mm~2qyUbT`YX@S^`3)l7MasE}*-1W;FtO68!!?7NY+x0ez*CfB_0F zV32m^3<8D_{Qlt<#@L%ULMjRPQNaa_(az*Wz)u9ff4qg`FC}1tR1y%W-~y&-XC@(F z8o}?MXw z2dpFb#Elj@Kb8@jq>>T8D!36_wKJ6vu$|!d?{r}A(k`haV6TD;*r%NthkyeFzyGj> zzV=x?B9#OjS8xF*wKMVYto}jp`_EbkvQNr6sU+Z{f(y8;owE4YBW+L>%P!F__?|H#7rf8+#@rILVW3NGM``xl7ROL zF5shfW-2b>AA;W>?QaPD-e7@ zWrF{bsuqImlTuA88BtTgji{}iNso)HOYr;aTPS7kQUj?Zps|7rXsVq_ih$+>zrU4* zY|ka2wNw%iq~HSDYiGLSnmQ8v{$LAh?QQNXl>~$;xPUP2ObG;p6G{Vm5Xu315qx4_ z3;XSNbU&$N#6Sf%Vz74R3Ic`_{QeOZQrh>Fky1&(XayG#p`D3?yEK;I_fN3!g?(3> zD3t_ER&W7RwKHRIg6Ramf0l)8ZzN#0R1z>x!38YP&TL1(B7)!lvxVsPNm(kD1pK1l z0#<5g(&7?U6a4;l4x-7s+Ip!ZV3UFi*rJ^&gMcVPdB8S8CBP1XPuyi8+dDbqZmDF% z?+R|je(lVkxX6QqTY$rayMUtvpLoK;82h-MluAaNR&XQEYG-;Q;5?xp;38ol;4;A{ zUb9f?Gr3XMrIHah72Js1+L`Zg8}1T{0`3z^03H&2;u8zaKFC!(l}bjuP;et&X=nby z8DA5kA@MCCCg2^xCw{b0^QnyZB$bT#?41WUBD!{_8Aik;v;=%kXak5t@QLv(RC+5T z;!7nX5-PY6iM2C_5s-v%43La)5|D!66H{BL`In4HBbAK!TEUG-ubo+pfQ*EtfNu!D z0J0E#Vs;Ci?GLJNrIHc36x@hB+L=xW$VUhP6d-g36e9SLI`^Sp@jW_ zFoI9)ZlSaNMWlyRGNQMF8_`!gvmOEc37Y@|3BLjc6MW(@3%Bjt;BcvA#3%(fVzhSV zAp#-@PXJ>H&jI5JK5>$T7L(+O3heDhOi^$nrfFv~VtEE3Ghh}W8(G08D4-2=M{;2nhiX2wwpn z5t0F(5K;o35z+u&5d7`>%fhZVa{oRXxcIv@j{7{N>>g zcX!e#xVw{1JM#p~frRIP41`yJOoTUp%mhCon}tL9n3C{r`gjax2!W%#s;T<5H@Db315YWv%g1rdQ0euLu0R0GY00Ri| z0D}l$0)`M01BMZj0!9#007el~14a|l0U`+L0b>c70OJW+022w>0g;59fGLDLfN6yM zfEk2BfLVkhfH{QXfO&*cfCYrIfJKA~fF*>=fTe`0faQc5fE9$=fK`NgfHi~$fOUk% zfDMFZfK7y!fGvbJfG9#cz&1ihzz#w%U?-sqU^gKQu$Rysu#e#1Di2y{++5x}+jn;l z?hys|-g!(r(;3Sr2%&&egl>S-gdTvigx-MjgnodFgn@v|gdu>dgyDeegi(MSgfW0y zgt34-gb9Fqgh;>x!c@Q`!VJI@!fe1Z!a~3c!V0iKRzh?@c0w#b4niD2ESM^e1yb+0)(W1LJE_|&Ixe;XHsCLu&$WYfTDzSfZ~MofRcnvfYO94fU<<_fbxW# zfQp1XfXamYfGUJSfNF#yfEt8SfLesIfI5T?gfck_QfQE#6fX0LdfTo0IfaZjj zfR=fFXndf(hLLA%tEI`5rkQQQG~gG(S!wn2*P5(Si(}kc)}{c zM8aA?Bw+(!3Sl!~8X*cWgRmVii?9;hP!jNjPzLafP#*AtPzmsgPzCUsP#y4= zPz&&mP#5rlP#^G#&=R1XL!R22>$j1XLqj0n{K|2h<|m0n{Pf2h<}x0@Now1vDhQ05m521!zim3usPw z4`@mF1ZYk841c$@Eg=S=9pQ682SQwcA;bp+6A}VK2+07Ugp`0VLK;9g!T++@)571e z1Ghh^9IbbwlB_M*Z1~8Ve z9x$G;2{4iHDVZc1XF~9=CNx&k)X}}V~IlxlF zMZj{x6~GF@b-*gZO~4w$9l$!meZU67BfuuYQ@|F&3qTa%FTgg!Tfh#&d%#Y@C%|rk zf8u_(&^*38g3&_p(L%vJf`_y-F|mAv5F2oe@CD!mApzhNAras-Aqn6tAvxeYAr;^v zAuZrC!Jqq@g|TtuFL?&L3%Q}-F65SWCO?+%5DEeA5q!Wy3+vLzUwYv0oIg=;iO;k% zy|Mg)&=2s6Fc9#XFa+?HFdXoXFbeR2Fb436FcuK-Nsl=J5RDKCh(VYNh((wIh)tLc zh)b9Uh(}lmNI+NuNJv-)NKEkeFR6vmBjs7Ek2k~=3hsuc(#|x(avDNYKsrJTKp>$t zAOj%?kcrR%keSd4kd+Vu$WG`A$Uz7P zs83iAXh`r+OA`ylev-#$Gj=praF0(*?MxJwTNAbe+7fmG+7b2uIuP~&48hOrY$0=8 z`Abo}ZG(c!2l)_Is+mJp@1obZh&b7e}`vUn3q{z_qAQ!JNq03 zcgyE#XEtDY0bw&>5g`h&gy0jGS=bt1{?ZeNSfSuXtkTZ(!SWhHf51AzAixH~P{1a_ z2*4J?kANsb1YjG%pXxUYwe!iH=!Ji7wp+m+bFX%$FP8Ta1^^Ba1_KTeh5?QcMgooz zMgvX|egd2#_*0#+5HVSfSpk0t;Jku6=0)vHWh`GNR0Uim)Bs#3)CSxj)C1fiGyvQo z_(R;c(0G`fDiGh>j}+Xgo@i$>V)+>%GvEaw8{ico2jDd!H{dNHAK)FqAL65h0-wuY zV&g>*_{W1gRW$9)7g&x#NC1dMNCb#YNCJpUNDhccNCikhNDD|v2m~Z1WCSE3WCkQ7 zWCNriKK;X0rS;U=IO;SQh%;Xa@i;Srz?;VGaV;RT>R;V(c#!dpON!h1kd!Y4p;!e@B< zXi10xXifMW(3TJv(2n45c}EN9r^sv21mFF^3hp%s(ato-awwq{AdJu!5Kd?h=s_@m zUWCqoK7>#}KSDRa074JIAVP1z5JEq|Fv38<2*MD+D8g{SXu>E!1YrzdEMY8QJYfQ0 zA|VnGNtg0MR)}`O?U%1OLzx3PxuJ9NC@cTKG$6)LH(4v8UT_J8Us=gngLP~S_0A#+5plK+5rLy9RV2#!GKJJE`ZF0FhEv9cR+SR zFF+1LUqCLx06-qXU_d^?FhBvqNI)UNXh31YPk^F?@qprlNq~}sDS*<1>436?S%C6{ zxqym<1%S$g#egb=rGRRLUjQ`-s{pkKYXNl#8vykPn*sF+QGkYo?SRIFoq(oTKl0O17xiKeH8N*UyH z&KdmewLS{&BThf<%y}#iAY1|rB3uOwA^Zs#Mz{qSLAVPTMev6hW8un2`QX(Nf1-J; zf;-iC?MyJ1Cla~< zO9|rv%L$VJD+p5ns|eEpYY4Ld>j-lJ8wd*kn+S^mTL?=5QG{Or+X$-wI|yq5I|&;A zy9t{CdkIm1eT40R1B9J`LxeqmBZPf`V}yf%6NDpxQ-tGy(}YuivxGB%^Mvz&i-b#n z%Y>_dtAsxR*9rbHzG-2n{WbAh{MvU%!9Caav@^M|{D6=b@Q6?V@PzOk;2EJP;02)s z;1!`X;5DHf;4Psd;2q(6zz0G#z$ZdYK)`2usdWI+2tNQ~5E=qv5t;yE6Pg3!5?TS` z5!wP05ZVJ05)2?Qp)()}Arz2|&<&7+&;yW)&>N73&<~J~Fc1((7y`&Z7!Jrp7zM~o z7z4;k@Q=^87Ba?^ckkPH;&Lgt=P8eN<{p;w5gq~x5S{=E5uO7I6J7y|65arc6Z|1c zS!i2Ep7P%K^UY-y+^NcIXZm5eB4Hq)GGPdy3Sl^)8etTm24M`K7GW%)4q*bI9w8D? zpD-2BkT3(#m@pgAlrRs_oUjnklCT8Ony?JemaqcQj<6cgfv^r>2pa*xge`y&!d5^i zVFw_LunQ1Q*bC@E*bnGMI0WcJI11=TH~|;ZHyT!Yx1{!d*aN!UI52!ec;j!ZScg z!b?DD!fQZT!ry@Mgb#p&AcRm15K8bL z3cFcIyG}kO=IHBwH1<$%pAvg%XYygW51}BSAE7W{0HGLQ5TPVs2%!vM7@<611fddO z6rl=WG@&{mf=~-EmQWWko=_h!kp2!jBt2txsD2qOUN2tNWg5F!AZ2;%@-2$KO(glT|n zggJm6g!zD-ghhbegr5O>3CjWd2rB^x2x|a`2mOD z1H>kz1jHqz0mLJG4M;%907yvq29TJL6_AAREg%^o7a#>8FCZ1603Z$FJ3u-@Q9vM} z1Rw*UG$0e993V5HA|NZ_dq8$VH9!tRO+YR}9Y7w!4}g4xhJXTuCV)bO=77S4R)C^} zwt(V<_JEQE11L@C3@A$o1(YXr15_mR08}RQ22>&R15_gn1k@l50n{Q42h<^q0@Ndn z0n{gq1vDf~05m2<0-6%00-6(M09q1e16mX20ooE40@@Ll06Gws0SsXUAegWk5JFf7 z2qkO;gb}s?!U;P7JqWu1y$E{&eF*yj{Rl?^0|+Mog9v8P#mzAPztb*P!@22Pyuj=P#JK9P!({DPy=v+P#bWHP!DjL&;W3j z&=_!@&q&=PQ&&<1do&<=2&&=GKh&;@Xd5C*tI=nl9?=mmH{=nHs67yx)e7z}tu z7zTJj7zubq7!7z$_zCcqFdp!ZFbVL1Fa_|5FdYyOLqC7a0z@Os1;ijM0K_6J2E-;T z1;i!%0*FUg1xP?x3rI-V07y*O3`jzV0wg1B2c#hE1f(MD0i+@91EeDy1OyU}05TAc z12Pd#0WuTL0J0L!1F{n?0df$o0&)@l1mq#y0^}py1r#7W02CrT1{5Yd0~95^1QaK{ z29zXx0F);D11L*~Ho(0nmnXyoR3yX(R3>}@s6t2ps76Qxs6j{qs6|K)s6$8vs7FW( zs80w4G$dpMG$v#QG$mvMG$-T+v?SyMv?de;v?UY%=3A+Ki3BLpO5)J_N5e@?m5RL&35l#Y*5KaS*5zYZl5H12v5v~AE6Rrc! z5^e&{6Yc;m67B;o6CMGs5}pFC6J7vr5dH$(BD@9MA-o6NBYXlpAbd8^y(>Q=!~i@Y zd=7X_-g1LPz002Cnf1{5L;1QaF=0Td;S z0u(2V0hA<+1(YUC0F)&}0?HGn0xA+_11b~d0jdxd0;&;~0BR7H0csIe0O}A{1L_gh z0qPSr0vZyw02&jv0-6$b0Gbna0a_CF0$LOH1KJV}0ooCc0y+>*01V*|KrrDfAcSxM z5K6cV2qRnrgcEK6dJt{{dJ*mc`Vbxh`VpQ01`u8W1`*x>h7jHXh7mpjMiBfz7y8jc zfiL9`IgQ7^@fD%q{z1`L?aU-Bk0(q4Oe9PPL=t8JrV!==rV$nZW)KzwW)YSG<`8}X z%pgHW7{kwh&GM zq6lXI+X&|YI|!EmI|)|-y9s{+_7ZLZ_7Uy^4iFvy4iO#$ju4&!juBo0P7q!LP7(eF zoF;q#oF)7NI8TU%Kf-*G5EF2j5F2on@CD#HApzh9ArasfAqn6PAvxe4Ar;^OAuZq$ zArSC{kP+~VkQwlTkPYyPkOT0VkQ?xpkPq;VP!RBeP#ExuPz(?dOTW)c0-_Ph0Adiz z17Z;>0b&!X0OAs=1L6^C0TK}E0umDH0}>Pb8&FaUX;;ZVy1s`$R-Zz_y(6X4&OF3& z8p0DmI>K{6AmJ4t1K|xI6X6{oGvOm3D1*k$u z3#dj21k@m81k@sA2Gk*B1Jonr0MsYs1~eq(12iTS1T-ZS1~exW1GFTR1hgiU0kkEQ z2eczp0(2l$0T@DcKro>eAcRmC5K5>I2qQECgcF(qdJtLwdJ$R!`VfKu{RkZZ0|=b} zg9ssjA%w1gVT5qN2!emWezY(rsXTGx@W-Yj6!3XLJ2Mf>;|Y@i6A9A*k%XCmDTFzI zX@vQJ8H7cES%jYfa|p`;^9U;e3kYifiwNrhO9-0)O9{UMmJ_xCRuFyztRn0NtRegk zSVuSj*g!Z8*hDx6*g`l7h$5T@Y$Kcl>>ykO>?B+P>?T|X>?Pa;>?7O(93b2W93ngd z93eaf93#8{oFM!KI7N61I8AsDI7|2hI8XQt|GxS~LJYuV!smdigt&m~g!q6PgoJ=w zgs%X12+08V2q^&%2x$P12wwx95HbLs5xxPuAY=u+B76&YO~?g!OUMg&M<@XJK==;u ziBJ>}@VS1UmjFZ~lm^5glmo;f__u~Q7V1Wq_lgGiFPX(taPJifv@?ydoRH8AkeJXC zkc7|%kc`j{kb=+=kctotNJHoXNJsF;OmCq>pq#rBt}K&+J9lR7Ocg9=B~%AwC)5Ju zAk+oqBGd=uAv6NyBQymRAhZA!BD4k+CIkVB5;_2i6FLD(5<&o_30(nY3E_b9gr0zk zgg$`Eg#Lgkgh7C6grR^Mgb{#RgdYKQ2oZpKgmHlSgo%KLgvo%$glT}LgqeWmggJng zg!zEhghhb1gr5QJ2+IK-2rB`G;2*Hg7P`ce-@@PHU;7DFa8F#AcIFe7!wH|^SEe3> z7=T^`pV-$zKvQ|BOX1Iq4p49-25D!?VtELm0$>=SGGGLuDqs|$24FOyHXwpf4=|R{ z05G1=7%-903=m0Z37A4?1DHnempaqJ4g)q2jsZ3iP6D4D{|gx-MbgnobLSeusLNP!9^lJ+xN5~y6 zjbE)ZD7ZVENjp;x%b5uk0a*#(1F{pU0df#(0&)@R0P+z0A@W=J&HgXPR>PA~NWq<| zuy&>vmWvYV0*VuSKq(9HQp-DEW4u3s+LP=gQ* zs72@ks6z+?)Fb#~Hn5POl$^VvRQ7)YQ^B3PnRcc*mRk}0{5stM6ogAMEe1;PwyH&J4oxP{J_4NWv(<7(xVK z9AP|Q5+M>WmEaFCgW$)`Cit=Q2!8BBf*-qt;Kwc__^~T2M3#|jUn!NmT5A;CwXf68 ztjF>u!e&4eVJlz<;Wxl;!XCgr!hXOZ!ePKMf zF$ggMu?cYi@d)t&2?>b+NeD>+DF`V6X$WZnfdqf;843PsGZXyPW+V8k%|Y;2o15UT zHXp%XZ9#&++QI~XwZ#bjYD*IQ)s`Xnt1VCPS6hkTueOSX-}B2WT~#W%>opYID_u)F zU9M{(s-Wzzhy4u{-2O(|nZ{UdMraObMQ9BOBD4c^Bp5(vLI|KMAq>!+&;!t$&j?hxHxm5iZz1^0-)f<#{qeF*DtT0XQ*bZ+F70%AuZ11<2jcJ8 ze?YuI)_-pw<@YnJW!Cy4S#2!2O?3)OQ=VgY=~ zcM2}Ch<3VM+(K9h*543&*)~Mn|&q2rIJ^&r-D0G zZ|!uspM@gd$o~G=KS;stAEKQZiscc6k$};JF@Ujzae#@0Nq{MYsel=TnSeQjxqt-( zf6T=Mf3T$lf3RN&{$Q&J{$Ohf{$Lvj{$QI4{$NoAf3WQqx)+oCw?itq-@6pt{oA9R z*^A}<1i$|f!S6U~VYhvUJ%%qiso)a-(9WF3@;QRvf05vKT(R&)QAxatFZol!CEnD| z+`{r*g5Upu;CDQ>(A$2uKEanfS8$0hwKK1<{D$xr@SgAi@DCy23wIx*%m4dtBVrMJ zXdHqMjYsgIUlM$1VhdG@$hp6gN?xsG3hvw~v@@Vr6_uRRxz= zT{}|)%e4u9e?5ZV(ZIs@_B){=zNCqQOKhf{F1NIB)b4ME{cRQ8{&w1#_ED=ySR<7@SL+qrYp_u}vkA+;5~2Xx2|ED0 z2)hBl6ZQcP5)J{55{>~*5>5fm5Y7TF5d66>6Z}c95&TJS5d2AR6Z}c<5&TIX68uS@ z5d2A>6Z}bE5&TKtSQwXC?(kcwQ$OK_{!Ia_xR5APBZY2wRI z=6^HE_$=PPg~lKt#(Zuewfz_nTPpdIFBII^_}ZBSSWZOn`;!p-j^q}WW|71c_>$BL zE-|fkCLNa36a4;61ivGTg?iZ~F)P00TLqVxQ#+Fj%Xta;00jw!07VEz0VN22L}`K# zEl2R76$w7{dx8(GW?_!|peU8x+gb|l+;y}wb+KHZ&;Zbw&;-z&&;rn!P#q9N@Sz$LQA^7`|oZ#e?JNn{QW3K@b{x6!QYQE7Iu`Cr=_e^a!)HL zxTmF(cBV3xs}iaKY7%Mz>JsV!8W0)+nh=@-S`b{(dYX`1|oQ!QYSN1b;tP68!yGV_|Ggc{tWeB@f321@~}l(#~wgaui`JUxQatTU zd@LsL(gQLPz5!$&eQ_>&eP_>&eV z_>-0*_>-0;_>)#3_>)#9_>)#8_>F`?r=Tr%nw*@NN5CTN@xaX zNoWOVO9%pVAan!-6FLJz30(o<1b@t)1b?tT1b?vp1b?tW1b?uh1b?s*1b?s}3I1Ra z1b?t`7LwY3fH+<%xqp)s-2I!Zotc8==>)%j7QyeBYaww3Nt}l-S*YL=7i(vhV0jr~ zIbbDW6<{r49bhA26W~`u6kt2SA7UrLkKIG?WA_pK*ncJ_K_P9s`K1F`if@?xD|1WDNu@C*YXe%WE4**>gQXotXmTilJsxPD+8 z2A;!0Vt4xPA#K7tb_r<}9M~$fqd(1QY)HgQ2<*@*r0u^>yAA7K`n&RPtG{72Rjcmd zT{^c4@7P8T);37~64E0mteeczySUnq2@UJmxmB3lNq-hyzmN6g_PV-s>*$a9@4MFf z!*uT0E2!;%WL&{&l5XL01+9X+garM^mPgoj57u+K#uvJ)CtKR-@UdK`#d%ORu{|-;pt$XXvUD|e+!5xBvLxaNp6NQ{c*o$#h=dj8Q3{dA?T3(#UCVcD6COD!GTY$DtY${C zfPiuG|Lvb(86T0eZBXYf-C6|oYSlS3IH+3-xg#w=t%8Gkg#?AWu0`P%d2*T1_L1^U zH1ofGeXjqvug_obUjf5>fc=9K<0H!cj{)wwT67C)-#JJge)~$d=-Dy6LkqcQExOy2 z<<0l6&>{a@q4^3)XlRJL)ZzbYp+)``I`n@lG=G7Ag%1AT3N4VQMP9x9X+G5cxrP7R zlM)uxjSos*dno^;toC1T|6%s{i2wOX>D9hlUAVczYehG|0|%#zXDeN{{$4w z|F3{m|EF|o>y4X;!g(uI)uc@+P=RxsLL<4D26OE zebbI=Urw;uqe&uR17LH42v#c-Qi-iz`$E6fQ1a-Re&aMKkQ<%x|9U>;M%!m~K4j-b ze?K4ccH8G)HIi(0rf;|J3AZi^B}|pUC(Cpw97_-~HRfrvV?=(e1(DXx^sB9)(LjJB znZ8&=2^7{Z zd|qA3qJbbwiVg~1KMTjjJ7SY4uCoPT1( ziO%yE=AZj<-0AWN*p3K3Et9s}=jOqxKQ5+|MUR@n-mvZ-ij&J>DuO&00Vvrp3adkX zDVf5cVm=0Ph<7$u6Fo7J)ZVg$;ju1Zknn&Fy>&k9|;$k@8>CtDFsR=v~qbP;0CtM_6XD$b(U2 z=lz4G2T`la{QRIhUyoY*)zqoPzG#IHYufY1Rx_fzC4h0z{I=eV3l2{}W zlx%#D!mbUJDpFNMcKaCuT0PWPK(`(crR=mFd^2%6WsU$E!ib%n@zKwsD9rL38OP+dKj*2J;x6J=2@> zm@RCsy(m_++;Ebxc6%hJE^=_Aall6pt!7+-Tg!}c`3oa*gRJhtSP>NsixVF~we z7r|pmixK7pVa&P+9y?k*vaM!H=21LaR0ne>yw5Ed515rbSYX78nR^|c>(RID{2hOt z+hPQ(12ro12$LG9%*S%)4opV77`%YcIxx@CxRpEJ^PSF1k`2%47Z1$n?L~urw_Z8l zf-rXK0XUQEndfKpbqh~q9(XFu1NV>zJM?q*;diBk4=Mbta8G$C!R;ZCWp7>dOBowK zVjT|dtXmy$5FRLS%d!a4!}6O9jsx+`fZIWfK<$odl#>SooZ=7$TiQezxL7|~2l!cD zZ`oHq0o4;t!UrrRroUCG8z?`GcL#c;#|_I<8`W_zewo%A3%lGD;S?-K2Gmz90J236 z$*;%y^%l8N2TJfY9+ClKS7oX6U2A?j?zY~vI+1%|zHNZxTJy_scd0t9dmIKGXeb8* zXjD4`{Cuq6YzJiGIibJ1}pH4PdaW1eefqgJYnkUu*k0F-~)h z8Jg9BhQ}p6-dHNvmf?-th-`a?=*B@A(CAm%F&&R*Tua6<-C0@~!Z?6A#B-w+-9#;Q zgHkUyq{7AzKUCvKAS{ko;F9?*lfrcrzd9ua(WMchNml6#g;H@LC)G}A{_6>1Nfy}4 zzl>L&B6-y$TE_oD66BLUKt9<(BY$yruEPpMlXG#R$PXZjKEDxl#`McAm%DJX$O0gX zUL6&^G%7k?RCJ=K=oL}X)uE#QLPdv!iY^8fokcU0^JhU^MDGSg_W`MN1*mA!QPFs# zqLoHP%ZrM(6cueFDjGXfv|FfXhfvX|prW-vMKgek8ygk3D=KckX831Mm$>0_LpJco zrc7KC!lAiE8}ySVBAhU8+D6#fk`WHdUEDy=m5^`}xUCxrrza(9NU5(h8+~7fLj(y3 z_HNq$kFnXSm8OAT9v~#F^tLxrN#tc^iVr3pKeu?WIOZ=@LGBr^?XBT=kwx$vPC!-m G*Zv1+mV{pb literal 5547548 zcmc${37}-hRURx^`)C{OlC`)s$kL3g>9@|z8_C)%jb&MjWl5GTOLF_Z?%S{Lo8Hv7 z`@MOR1~8i~Xdpi{AqgRbKaiiW?^_5#Age^b_O9qTXnDt%fn^N6m7j8}u8^Xni!ixbj@T z_YD3u`ciy&?!stzexuV0N5czygLXT_hv#p1dZ$Oj^P;VtQR9l?`2ZS^h8L`J^wIE= zvK}NJ^+(U*v$$8~c#TUAHx4u|ZCuv4ym1Bo-<8r@?X>IB#%OrCo{jnUg^x&sUBV@u zt+3aNYGI5O4G)B8`e8ecI_-G$3g&4Ma;9Gn2K^4^FdANCu!JA0{5;seI^3=;taCFs zlkVD#+NZ0X8oJ)>03g&jtoAWvGguFs>2KOWx6=$e?a}ah=bMeF-x#cSF)R>tqcl|X z^eX+GZir3nqvv30 zq+A`u{Z31b5D!|dptplHB+a!bMh_yb!Zi|(^KpDS>UM+mW>~2Y+G?G^Rq`=*yHX4K z!6?LZ2i(ME%$xxBc%cocuE+*A5c zJF27kLg1m%!4xjgKU~xcn_&;;`mLt> z%V2?|x*&wQKr&sxwAFv*Eu57FQ20W32jjL^%1et2anuiwc7y6^?hqQdzKY(9ej@}Z z`P0`@?XqVTo76-AxpV*H?S9z1cWH6)o@M;Eg8zEq z#-JJW?m33PAIEa}2X z>G=Awlgrf#N2&~XX3Oyw81(@e5OahKXq)kZI1c;q(T!$jJy0X6qoqhDciiJAR*zK| z*H_nq)f2V)>f*_@TIh~@bh`m0$mr)2mFh4Fb;-nnXfzmJY7!9#;vKEmR3SDYWLA0R%x2&6@&cZq{ywD1w z_CnO!SfCW_wS#7JM>u+o)0QoRnA$0K+Zzw|g6;eJy#Xe3tr0z~u(b{{?DRm4m`~8` zHXzc#m;xZ?CL_x#a%d~WOTPy;KYDX`qit*tT3tv4+xDs9ZMH3HSDS-cSc%$Ezk)N; zU_X3)`>q~f8(U!Udv}VvVKoYxNvBT@@34>taaajztqz8wV8fAuC=4Juz^vR6J^k7p z2p4p^b1z`Mupaipc2)JnsTMh3AvjFEhtIE0{Rjyiv__vA`?W`DkG=_VAwVH80X9~e z0OxU?1;pN!pcz3N#?af6uY!KRR|(pfxgw?*10`Fc#lO~4v|{vLEzE;v>6G9F+*M@P;NgB@Zbl!P)PfoF^pU_{gF%ye>IIP9t$?a*gaZbVphYRpCO8#E>YFY+oJDY7iq)rw*C)Dd1$5u)_My0) zfogdE0}nh?!$HmL*HN&-bycgbrAJJ$bH%@qv1KwxgE{6+Q9J$ zo8bFhB_MAhBUg%DwMi)zmjjZr{7D{u^~sf$m9@pywG%7HR@P1|uO3^4guP?eXJFPs z!r;*QZ}R!t@(F&wyta0Hb$R*N$u)d_8$YkxqgUoX11QyCb_!1z_ZsLti;Jr(t0xy% zmQOApTUtB0nDHfb%?PS6#fS6dvE}1y`1;uKwMCApRysB&rpm*E&2zpxzI@{3@uj7e zW6R52>dl_HR(s*D;f|kNTt2pXa`pJi34Z1qPT`r9;|_NMb6i_nT{*t8bPV6!bmG|J^3vM!@#W={_{fJ(m_8uN2RnKE#L2ajOUI#66XUmgrpSW@?J{U? zgzLS)`4~7@KDoM#L$S29oHb&H2PyT@Do@es+OgxSBt;+6TR}VOLa`sC;?>2q<<&J% z)$xhWVlitm$l823}3tiY65T)`}tiT@itqqM=U zQi}rS7f)c66UWszKHT?$cCFJ&4FtR&TU%Q?cI-Ik=G*8Pn6JY0-*CTMCjFgQ#erTU z8@S#xL8#cNFEFvieA}k(i-s2*Nu37p^?wZHZourw&? zkSgw8!EQWx;@BDxxUxj_slBqFP!ELy8ND|4(bCHDiA8Y2W3Ybk(KW=m{b={GT3!Ud z1*1QHTp>K&z167=pz$Xw#{mL^hG-xs1N5s?(8q~wWqIY;8aUqKiIXeb&GedSv9@+i zfBD3TwG)dcu`8=5c6|~vTYa^NOQLoy zJX7xB6hT5Hz9Ae%=wKDIGy zw$`4h!*6gjYy7pb?{SdmUA=U$@@%xR{KO#O#vGBaHwJV7a~}+ounUk4ciK`_JH>~$S zY+#b_0N^nGYtgG8T6%nK^Th!mWsffi!X_(k_oYvL;Qh}JqW5)Ayb5Q^-I?RJS~!is zbc9o6KHd1>(y5)J;o?qb15THNRxJIDt?k$`s?p3MRm1R z=!SSu*78eZr(G1&SS`iE=}UI5$Z zl%9vI=|LdAd!ex^_}&F4s>5y$OWRSc-?;zKvEz$}N{x`d)%y=YoF5t+WW9q}P3zv$ zk{ZR*MT#W0x3|q|6vfi@R$I`7nYUVypM|Pswyu13_aDN%;PvZl-+u_MsoqYvAJ&ex z5Z4RtD|Mr4f6xn$0tx!Bx-Z=ZF$}w~EhPNz1zD~B*Lv@P1K0;Rxv>>M^MUbW`i3UX z1323{aJB;3rs8*Wxt<4uUYXnnqBhNor)ZudUV#5UJok>#=JN<%hWy9dUOqg+A4f(Z z;tSddb}Ft0U1$@Z8VoOT{qt8M_ysTd`@kF?q5Teqj$xL;#wybChMtP~r*Uw=NvuIT z-!7VOb(8(r{r4MCH@bsyneC+tqhr{I;URziVpQ$}QIR4R{#}|%$^s)HG z_WHY8i|=oKp!LKvoBiV-`RK{_zyI{Z_d}vod$8_sPH>74#0%P;_D-ua;NaIP$2Cmn z7IbMuG%Di2KKIkGu&tmu!1jR-8Y_*};dwZ;qo+SPYMf}SZSG*>@%Q0Xz%nC*AQ}@H zYvZ~O%deZZ zv#-OKbv6NCg214A3-&b*DKy^KpqVL^MeJWX$}ZAcyOuYTEpApwWJGdE6QFpohkTI#g>#pXV#hes~bWAU2>FMvW6j zprqVF6#rtd(bFm_HN3DKb$8mx3^=$sK6{)7>=0M#A;66~HCmj*O9uV= z(Y2!pUMCYgs6Bi1+yRh^-4Cz5`)(Pbf>2uZbho2o;>kW7G|>e2BgS8nE|+N+Wd({x z=QH- zYAhRA!|Q=mMW8tDEyQQEWe161hd2Q9vJ%47fp(ajS@kQF9K73#pCv!T~$*#UWhzrm{LLTEm5 zuEFAF$b(#WPxGy<;7rs)U*?4b6!nb#;g7Jrfp3!uD$$wf4iu*TK8{e(yMEz{U)MF1_tWvYi8J^GI z6;nT;dZ^5R(dHFz!$$HCetUJ&;$$P(X8oZGAvad-&zGvNgei<5R}D0opuxjv^HU@j z(eefSE`|)HN%617!%C7iw5n}ZKf&MJ~EvcTpKcRv*fPt zV)Z$Ub^W{10Ayh*7i)CH&^VI0s9-7E-uYEe9OP{>PwWRWyKaY!Kxd_xw#^C`|8W-s zf@~vt#y=Pe_Q1>a**njG8p;CMGUz%aZ$F5k$6)0@;+{^K8a-Ibcz5aOTD44^UTK0U z4Gh>g|2?P)6B#g zWx<$^l)l*C;Z05_I0TSzs(Y}}9f18PcKRx7M}2#z^R1HRoM6-*sAw4!V}$de_<(zV z_wZJyD;PR#7$~W5nIb@-dtB@E&@Mz|ZsF5woQ4?T(<=NSFw1JuR@thBCAj=x;W$0T ztW|pS=p%0&IOiM_V=jT)z-WIq+&FcndsuRWj+9rVV@3on)L ze%FH^yW{nBeWitk(j9k}S|J?ZC9sv!Hl%S_ zf<6KvQ`5i>z%{XO_uU6dcbA@3SdL4Yx7SMC(^4Jj1*M?$G{Q(8HANO^->#fFvE`NARo(`pKd!&1fquVWw)k;PN@Fv1kUNhZ7KFj%EfmS-N#fDfneX zntD6WX@YvV*|ea_pq*1ewQ-mTE8YKq`Wn>0!*Te?k^2;!vo661z=)aV#K3)Ow--u} zK!06FqAn-`uH&FY@+`@DEk!Yw3B^3Dl}jIvn$6OBSnAT>3VHwysiFIgpkLYs9(2zG zSQ%K%psD(_ONhO%tKN!&;Oxh`70JS#7J_|q(^ZoKBwx1g>T@V?z#5&|;x%%%QF((N z!9-;%v6@H7b=v)V)bwTc&!}7&_P7TN!BIkP0`|0yXc=78@6j70 zEy=G$%qg;#bZ7Duj&4}WBj6~2L@zga$fKR=qvRm!Cqn?pZo?p)kn9uxt&ZY-;-&`* zAMKR3!;-SwOW5iXhr!~KanPn&S6m`i554cyv!{+4A6ch0eD{&NjwrC;CD>8T9CP5M*eW-4oK%kNf-b8D=D`<) z5Q$8Z#Y?XwyC*AuZ)bp=&@`4bZgl$21}FkdH6{pm+GIo`@3Br_XweyyByl+DVh$1a z7{{O-Q+GLh*URm@j<}dsGzKVyT2}u!EXWs35_#Mt>GsAOC3oWTPd!x^D8EWCUtpH$ zPB_e=66oxkT2i??h#QBU&(nQ58{uh!fw*+%o$g@c^B{a@lLWe2&P&U$q(Sc@8-C0G z+x7kKB?w=Y?xhr#G;ZPQk3S4yq?XT3ak;~h(w**^R77lGalvYLv}-Ot?4CgVrP+kk zmxO@*N@(f!pH}7NxbdI(B*Vu1<|0`9;XMvT z&BOa_P`=j21qm7+TRj!@ZFgI^nV|YUw6YM!#}=@4M_aAt(JCj&8#xxJ2_X6~b%hyF zdq2`4!`&c|{0mi$NoNc#zQoYtE2Gf%v)~|z5YkCp2sVnjY@(QUH#eW64gR!ih+ktIH-p#$^m1AU z)eWW_BBSu8FmDL)r4DSmo8J4OC!Z`m{qR$#O7A}P)WeTI`Ow3UKKksb=bn3DWT$Xl z^0kg|^+Q};7+(A2!%siDZ?$+Rp$1k8t zBI8PFwkjUCMTMh=7cl{j9rXo4bMfy&_-B#Jj_aaR7onEiAjoW7O&87Mqank-G*n#}6=O@0qBoZWz8r#ySvg{4E z_0+MuDmH1Sevtf1*#Sv7L}1;Vv=|qxOB=g7sfa1qV2`(yu^$O~u1Fx!2W~0grsQ`9 z#Tg!wdv?jESGipv?m<6KoGU{+O~|nfAxg~NJ1x9Q%Amj#7wq~7H&futggB9w8c|Ojj(h-b%Tja{)hm)CFzL7JjQz9=Yi)`rux`Jy&qO_2kCqXj*|9A z+GD5gX%8=Y92e1euNFJG7CdpTJ#3frlZ1pdiN2k`wt~~}-N~6?q+I!n?BTg4#yM$* z;*LY40GAbUS0(Y2UWKC`wd)=Fr_`kso>|Qb(}H-Q}U9Q08w*5w zdelUY-oTvj8%?W9rT{J5J7k(nI7HvzmNqgD??rdtfArH2z3bx%f4^My(i$0hoR3>J zXOiY?R5Rn(R(GLVV}dQ5q8dYo08?s>>2%->u23_}4_VvEr&m@h(O8nN1$#BGFGGJw z=K$O0gH>Kdhm-wuxPxO;Q@cLA2pJ=YR&tfm-Uey7}Rjh5egFoy;;gTs-W0nq0t+v-L5#zcL%2pxT{p3 zEG%5h*1hm>J3ADe&p~#^5gKe@Rh`oaH|cYDP12xGm6vZzaLP$e=gvLT*aBw3xk%oUJ55z#zrJ8R|xK<+Mul*mQBGDH&2ax@_97 zOvaI5-tb}yn)hMDlC|EPbfTfcyaliqhL*u}l4U!{x7{Sq11hf>@cIOnT06`&rJxM2 zTo}Z?g>_tvZbZC>l6>Nz%fgj!uCm{lhUBYKG7v~r)x`i`Q@5>=4BbI^Ho-P7By0(d zCP@O!y-`0Z^1O;-GTjBy-K`zSMlDd3eW`l*LuN@k6#`?UT8m|P<*QKFcubNhSQF@= zZd3V9D$^+W?lRq`ls#r|cTl+?G1RVgn|;>WRWx9fGDs_mem&k3RjHch6gOULyl(zJ zyn+3(?23G2lUVRoD>@S*W56(A+tXxsC2FeebF+a4h!V6(c$*{7lAG_ysf2~y1j(3L{&-Me`wkk_SY%~}+Ot-Ng+0prtz1EF@v03SjyP-8eYwAa4cwe$QF!+f9$C4X+$@MT;6&Ik?I6g6szf#47DI--Nf{V5;V59aiVb zCB_#*o?wtLZ%hXh#7esCf}!@^G2nK==|4uJB%%zBKj_F4eRl%4O}T8yby=G`W*~J^2zHJ_iMBzw7%!SLYW<0-XN`k zG3)5Omgoo)n-LkiZbc~8gKP}QMqEtPeZt`f?{mi7pCz4-3EBWhZCx88%!jc>Lfz9s4W zt#**%4av#o+!7vOdk=5R=z<+l8msNe)B?kVH$MT}+s<_Jv+ytLf!zG;)W1F_^{>yx zzY>Sv=I5pV`N{M@KZSp8zR5qd(~s^_^Y`I(Nia#f8I>GNpra@lQeVKvgKZEO?(!+` zfukB;tEx~*LMKy%EA-Dh?U$?eje2Xm;d<483_2E=q9E19yS_MKZP%zSM%czXm<1Cj z&3+AUQ0?HXbaEp5+=ydm_=Bnow55uqrI8yPW`=p6<Xj?ud@~iY!Ph`BZxk7)*yYf!9}G4mxds6QnE&HsMIC06Y*6zi;#By z%)@VVJ10*}aA`WkO;`=&yHKT!K)FKUL7C?2?zAgwRFko0#c8NAnUdo-yiWB|`d|fl zN?=57UhR6~C+q-Ms~+)S9bB;wb&IthoIzwO(G01g6H{RNo%=feZ98?s*;7sNsUBJ3Yr`iE+ z&+|~$B{^bXs8T#G8AW!^xUY?%8%}=f#3CqlY?Oa(y+a{qr?mMvoz(B=A7&xf+B+if zS+Nv`q^%}5C6Y@d`qCb*x@=e%jfHcag(GNJibf)bY^(7_X_skIse|-SrwuHRGYB;d z&xda5& z63vqdL~UO9k!e8Zdg-0X|RySa3WZ9#jI!ZHZJZR?q=NPf;HF8D^z-v3TCvW z6!ey>vTy!440=0@TU>CW)x&cv)vXfk@zzu?b)C#y_@J8Z9AC&DQy`HEV@L|>qQJ~= zJl{Zy5%h3o3pD~{O*N45sEY8EHb9H*5^gIZoutHdY(+>9VX_dyzOTOy4k%Yk&YmsV zza!D7u0Bz)aAmrroYv%__mtr6fB{#khhYWyRmsG&XOA!wiDSQ%9vm)4q*OKef&Q!c;P!;hFLPmyhPRqXpZ>YLv9a*c7d}|q zT7T{755C{|%!N1_J}~|nw1oxTC0;mj^5hzdNE|QSEFZL>k}I z_+GQqo41pS4mqT>c^Ch2*!g8JSRY<4F+Nqk5PqE}&SlCYqkj4qaZSSF9$tum56j{_ z-B=l3As0i+*4up1GurQLs*g6VZCtNmU? zTE4Qmp&}d}-f8G#p~mYo$hr&{U~5Mk@NPoTW7l9oGw&MLnRwA$F1wG0kJEr#FqT!& zRP`)vu^3gTE@@PihHPV5UCUFK*ZJFM_@ED#DfZ(7W!g|L3HRVIx%+$&q*jLSdud_G zq^%{4Z_fyBLhDp?tbKtQ#4w&?C`!X+H2{4Xh`10WyjO_Vt3(|ZZYb-fviO6Q>LGPZ z7wGqq%6;l@WjZ$zFU(lBuF~V1wQeda%L{ckM#J}cmknz%DWc;8M0+ynQN~r`(eM!; zD1&Do5Ytvh{St)so6%`Z=;5iMAg(Iv(eRWH2HaK%u=?g9E#*Fn&!N6nNF5*g9ZIzd zg}Ozy7E=GLQ!Qo#=!$-ZKlR{Nqh)Hu9XN;GDlVbw+ zuPz$4fItlfZ+2LEbb6A;T_-4nP}hf#`R2;&SGq`~-=77yd82{t=aE~aq~r;GB~Q&!J$4)K^^C>wH@dwh_Q+i zZD`iz)KhSDAqOMT6CH(H>f2W9W<^-nul3}UM!HA28=(%tu#u0+l$`cWE{)Mt_ws4f z;K$WXieLpaT&vHZB~`@Gw*rV*)(J%{kvGaEg#*R{ z>U2YSfbve|e0OcJ%sN{6>V_2-zS+2#Dchdq&8_Z8D{$GzRFyhaK;1r4`!sIIo zVNZ2gB~j`O8FoZLe;>xu+}4M*bPwPS`6p*|^)?j#E3$r_zQsDPz7bOA!|7}3do*14 z&E5TO!SKP{0Zd23FzF|%2i4`#@Ri&_vJaFy7bC8b6|VvS+sJe1ppe}>7J-Up)zgqM zaHq;3@AWOhQTl!Oahl5rm$h(dU^INz2S^>2e5IFuSZ2MjXI$yjL5J|VLL>5Ob7yRy-i(s8}Iey&z$I198~K7#_Q4`!u&g&BJJiZg}08FsnT-ic)skLJeU zk-R=oLkS=tkajEa4OG;CCv0acIq@3OrX3!D4zAtcZ{1PRg8!T>3U0%a(YOC{2oe zfoWm_NOUt%-2z_ZY>}NlV~SYHd`Kn%ezjBwE?p}tDUJA*XRcJ?qdq5N6~QG%hXhvz+b@d%_BAUz&U-($eqAFA+LVnbo1`F!>EvWK}8pf z&aRK1uFvk(;tFUq!jq_vs5D2ZqL%Ni&09+rdXT~vsP~w>QGKi4`tV~Lm6v3897l1T zk8Hr7lfPWor|p|tipt#181l<-{YjkxT5!bPY;VsMYx34c`*hK}_h^l2eV5p3VjGc9{>e~Xh zogsR-Uo*UjMuGA{F>SOWbjCrxX5%ntAIubSIDN~!6o?!x#zz)?0@}mQurQodW&sUf z@_pitH6f3Me;DR&7x#pi^>RzH@r}B+oA@Lr91Rf=>rKOOx4?%8x4le9?`ZgrWEfI3 zOye5UcdH@d$9PB-MvXU+na6${R*EaY5u`ZpT@Gli z6^0Ca_%Us8^G1Wj8*r;y!nj`zRLrzhP?6VD?c#dEqu*=8-I^Z^$UAjeLLYO+QU8Ei zRJM15_H%B=mBT)*Zp7ofDD_C_sgv6a_+?SNcg2~jwFxrhb*>Sks)MPE4X7`TJY9e8 zVj+=8*EpRc@AjR+d?&bm+n|V9u1t9!ak>O$B0ND273rAU6Kri%C@W|a=j%^~&U1$` z9m`vt-Z~DZ3G#T|Y&-eJq!lN&!WCn=Yar4dQ z?&!Nd{tQp&wE1?*0R9vol%KA8LF4$d-=#vT8!={ zxj>`gy=rf!QZ7t}Vm7@dYLweYr@mO98L{%QlER|0sqVe_5 zBB2i@qBk6w_?u)?72n5IuPZ!qGVu zOX=dSx!+qd0i+n$9hm}{pA?)2H0!)7Bb*nSMZ+?(YAn=NV9zLJSiXlfT}Hz-B`(LH zFrTiV{6@S&VgN73{zIbGRP;~CGj zWc589dv)&FQx8A-)Tz<1?L(PMsSB>d#5ZlXGYVEG9vV7bxD5BVA~uoZfXW}w$vA}& zsG@W*~ILOukfBO+(7ENSbq>Q=;Php+zTvKBo{KqU&OGT z`n(|pd3}EzsfcNTx~J3TRCN_*sj?8#7H#=_|L3&SfI=~|D=xU}(?)#FyS+IRbDDW= z7Hgf=wTwGyBsl02qv467h5_A+bW_>PxMS+eY;HoU-fb0oAR~`~e9w25_`A7K$SdzS zNX(KUPI$*jePaGm<_&%Qbh|c2$2fRFu4!WWx>}-PpI&vqWm*$@FI`tu5+GBG7T$5*xWJXWnORa+eJ|> z3aurX!CUh9yrcHvVLte#@>Mlgyyec%?Oa9_pow^Juz|XFuvWb&oMgf^@WM^ssYs#F zox)`E<$YLqfjZ!ND0T|nZub4M9LVT(E{9AjiWwTB`dMA_$DMt-kw4L^^4XfmnGIBl zMF@@lEu+VdotXj$ke)MDgcl|6nQ@8($tp4?jxsqwYUcht>LVU|j_ea9lu)^to;bYE zELGx%&0IQ3pY~izNp}a2#eD~rf*o&xEZ^lDjuJ6hzq&1@N=E4rQ_{r27YgEg(qomuSEXMi|M&(H^8~b&~uWM#Ef(~ zO946L(M}QVEIy-%1=UBx7ks!*?W)`^^v%odR@OINn@jMT#a5PNv;RWIxVR)TM5$vq z_-5xcm*M#^F&y*vM{U36(`$r`f)gG}0tro1DDY?eK~VZq;Yb zAc?{-&}dU;#xh=4D&_|M786BT?>xiMFGzGLlJnYT1p$G%rS5L!pGGH=>D%HIE}g#g zO0*HwTk#RMPf9seLgtxp5vaSq&--Ro5QSuM8RlEjR5g2hC4(voFk11TB6%xRRb?|I zOaVaJ@ulQ@h6bhV#pyya8S|Pzej?uulFxgkUHb`rWT~6r5ZK^f&5g-yUPzL3TdDqv zr*bsB+F=Je{#_(MG`$?-#dvs|afL=$On4^XqYB6=M-HI;gz#Wn5h4}o8Py&4Vq|`* zlXJ*@n9pVi5z`>NE`|bRD&clx(v0b`X%)~nt8|a@tFYK-&6|NJ=)N`@=5x@=ofRza zXY+gVeL|B237gAq@s6i_d@zr0-F6-ma(diSrtT#<0AstO!}Gpv(M>3ng;0>!6Fvc_ z0B4uWqkNHcS4k3&%n^MlBP?D}8X!@gI^5^`hIEg@4510_&T&H%^sVYUZnUBBN|Is? z>gL@nsogCkU2ouCOA!g|l7Vk;-POafC;!FEYqupf%k&)Kx}44l-d; zu9%mniiA>K7U5ffOGIgY($MLp-l`bcW}vhvKj#ENs$Gh=-(#EXx_2!}GpzQF2pP=~ z%TQBibyx#Q89dKLpLa?b=bEWM+3_%56GL7Y)0yCKxXLp14a!#a^p|%<$|mL$98v~h z+-2!B!;S=*&gwp6hG_;5fjQ?x2YxnHQ&gZHpIp&Oa|SE-nVv*x55pz zj%|)hg}#y8c2giYLnkd@=b&s7j*ZvqDxkrcq(79`NTnWzk84cEoO zqzWABl){tY6$5!kI^k|8MFt>VFOX66e2X+~QfqrZNI-8>2JPF!;+u?Z#El`uE#=)2 zL;D5t=B+lB6czwgze62Lbs*KC>Tk>i?&5)0RV-|tH+yPY_41Nnn#=i6lJ0@?#TT#& zT$;)w9EbK(#kug%f{23o;zSbiE){(Nb~>L!J#KZQ6pvEsBzQA&8+#^)8kI3kfJ&`V_fyGk z%%ef|1LQ{tGtS_l>4WT>db$S~6q1wjNqgFZ-jw<_-Ww(sZ@y{TMq6+c4tG3OO=nOS znl9MWzTDPzXl@p{7Ph)9+LC|G)EUpW?9~1{eR0IwtuTP>&99R*gNlmhn%pEPZ$5e+ zDLBePJLD@Y6eV88GW*(tzUdG*2K73<7T!Y0xHeaZUxS&d>Oy>m!JX?QsnU`}IyEvc z(oV)%b)}6eluYl+3n-b|hwSyGTw`)`GZ*>_dq#1#xFJ&S01=t5=4SJ54Fgg{jN> zIx5r^B*CIa?SNNtX4M0rmMkGc;Pv?!)x*cbOdCqDc3SH=!MtMUPnO8Lo0~32Cqz@E z)O}jW`6iiSwCV1APYBmE5Pq@wtJPeYo(3`Lhkx^ToUOF>E!;NB6<8y_y%aHla54T``q8{*k3wYrT^jhuO`9p zHbwB2S`%-9;~tQAefeaP?olQU7SA!|9SY`HsDvm_wt{*M3Qss}w4g|-bXkPAQ3IJl zz5((WGEVyhyTU}VB5y%uhXc|lQ?kNz6;GCx@NRVh0%y7qZ~fImUZKX0lWxRl=j#0> zbqp~~c_z1!njlX!cr~d!Ma^x;J@hV0K^Mt)nGChITndY8nQ|%lX1Sqx-+4&wpy>#e zfL7Xu&8P654@ZaaL3Wz)I#_Ue2U+LLX7R#GpCli+bPvV%GgO}f1cq|@sQb_7ZLwsY zulZh-^kgFx@n5Hx>_bXw_tM>AEt)V>#k^_bl?Me`ujD$bM92)~eb38caIS?tR;cC; zH>R<><*J2GWFK6cSEg{__DfREbSCfYToE{39u03-S_G}S-51(gcw2y$j@RqrG6LV0 zx$R}-OtkQ>H1tp2QTEk|kYda9>Eq!YzdKAj!sxt=>UhD*D4Brh%^b^2eNqilnn~9~ zn4k8Jus#Cv`8K$VE+0BmC&2BDM;f~oh<0zDpWD#~)oo{05mx8U;9L{PTWCR2L>Tnt z&#@_X6U1cF;xL&T7iFK)>+$(%H&w=3vZaxZ`-|t5@2UL|gHIS!G%6$Yalu5^H$~INw|OcJ=E>daJrYt{i(D~ZV5X0nZ`2fG(%o6hp0%7X zlZSn0Yftlmjr91Vyjz6yA%yO3@d!%my>gGY^M3SpgRT?QB`RW?+Y3jz>$E+Q{niV% zP&Glvuf5_kjTIm8bPui5=s5p8UVg!=K@xAj+qW+sEfW5jjI-$Ozi(-7JJMejy6vr)X+j`+LU~j?8y*e6KEWGjsV^fMmwD%?#q>CwB8GPc$RHp z8TFn|cY5t8$RN=@aI2f3iinqK3m_?faIe+4>x(>8X1SSVAJlGb#AKIpTOpuEXPN zSNIn=P38q;qEa+i*AY0u)f8tHqhZ}A@>1lPmd3tKa=VXP)In{tqfGbxPNW9eA_Ne{ zG0X?%R*!~DSt(T~bxKtrk5u4>7Jd7W>luYd3v5OgWvrzX^X?)iM`a$on1vKQ=1;5t zVUcZ)YYKTnNs>9_>zziI%|*WH2t`b8>zMc%IB(VqndTcGaMNarq}6h%WqRvORhO=+ z_u;(;noDKAxw`GTzJA7Gv-+wJjBVsSaFt@=HQfwmd>~9)S!G&5sGf$Lo##7>0Zu_R zQt3+-unFh~-V!4P=o-Xo%DH%TNQZa$R_-*HLsVJCEqt%2b@$2($K|9{N{jfcvc0$N zaOUZSp5&POrNbZqi zx_cMuZiCaeTvd_G!bKV_%M+PhWM&iIs%drb_DscAvB_ttvq?2(IYn%ogonGJuJA=&DyjwC-k4ApX^7l0CBDGTF%EHj00VO!kHb@=k)= zu5MvSp#TZSWv_bIgW!s!-Tt08!||T6snP6B{wu&UjhUl00msJi`ucOz3BiL+_Lx`n zI0w;pXq{#hP-0f2*WK-~Y9AD**+A%|ts0 z`>0Q8^LVuk(cPGplC}R1A?EO8gs2??%%e}-g05(7BcG!=7Nr-iEApJav_6$Kcqj`y z3#fHZPR-&vVxdkzZrZ=AD=PU8SW;^;c?R37j^|6ZbPoiDsz@-Sof4l8w=3~Z3+8eU zqDw-Q_L1id$4Z=dHg(IJ0>b*1zPa*uX0NdbxPJfSgWl;S z8lVr1L%WuFHbW?JaUyI#NQRAJ@q24^Y{UQAs`hfk}Cpw6b)LMcev<>f`W*?Awn zOdCr=V=l8wJ;}54hM!V&<>7&DyRB0M`4M`lz~L1$CLWlC18-eNwJZ6_!RZ9_u`1!- zdje@j;M+ebVxCSs9c=x6H+I`^g-_gnUEnm0<9i+d%7z$9s#N@rA+ z5cHj!lGN&a@Hju+0wOfp(w20ja@-Sy4@k%}IiYjRC;9+5#5_uN6PER!VeZbVvt zoXYmt;~|w4!RGNPqqupmZ|y1S>YY~5YHCU6b@&w62n0j$<`%M>C3xobs1yJr?2Bpd zf*0Xf*(fh0k!-%7cUHOQ1Y>M1rJiT=N|lK@U$v(^)^62W^GKpP_7#?)&=&>0t~?_# zeO%VGl>=1M!Ars!4-F{H=1Ucq$2tj@QLaFA>`>n&HjsZKd$RmFJVqZ?8%?GIOzVWuUI&(!m!PX$UBYCqNjy}# z0O-IYsx&PMpQ*lAWd zVajy&@=k{se1M#0TlGvulf|huqj<2vo(!9;;DJbM-fn4JFJTqfMsi(ql7&RqeFWh$ z(HSieTqMn?QKSne`F2M)VT~ywtYKqQo`oOt;Q#Dw?fj3Q(LiUzVrG$y) zWu3s@H2i{OfU>U8N5_2i`LZHg3rXQatL|ZIJ***N4ZGz%PZR4R9bCYH1?Kf0?5R9D zs^dEqanfD3`?gRF*Bo+l)Jw39Tp~8gOD=hsj=MwMQhP!Q3XBnBE+a+l1n=6#S1ze^-kNCgcM-*pr{cpTOfTRHrnvi*)x&>jU1c|??nNoj4(T0yyL1? zhQlh4*Cif*#8dA4bK$rysq`2;vqXo5Zk9-RJfe&6{f8snx z<-J5YClXk3THqi*AKpt9C+^IM26lobM(Yqk)a=z_tZDnokM|Vy9}i zvNA2)Fj1Z_*CmG8IZqw#)M=C?(vVjPmHFj=pHS5PdXqLiwNhKTM|^Sz(I(ch{>a2ZYuf$h_%bAPAJjA66rc2gX(8LW`#(IRyg@s zSMWVvR+Olg-h+}fmz6;DmI$!UARh?Zh*Ik)GhqG+XQNdL6CK~ZjF$YmV4p=B4G-I| zQfN>mX`pYql})|Zr3#V4~c?*e0(z?#Ln^BAsTsw^TSS+gDaVZ0V=D z()lFb1h9!I7ak(S!l=r~N)^_tO_F7tj)p0@p_c3R(V@%qxLNW(p-~^&9Gwp}H&JT{ zRH8G0yxz*x+0SFaI*Y-pNEg@vQTNmNYhEvT0a!M)CiRpO8J#{yyt6i46gRoYKxIb$+6;Ni#hvVM9FgKE_Y&1-*QtcSzhAI zTdv!VI>nI48GL_FV}i_&9dzL#Uhmw?YsbhZoE=L3c-do)Hs&;!#UU5^_9S&M-G%0& z*X>*m`nZCRwXwKEK7Bb%H+LAPuPPJ@fe8jEVt3p_s2_J%Fs0st{-qob*6q{pk~je( z%}-J{KF-`(nvNc4C>6l`ktWlJgma;8liY(;tXD2r3Zrwm{sfZ2tYS3GzuK#qbS_?0 zukyO8p`cu2101WJXL+{*k6BIRay!kp>EV>F<{qCt;xz6tQ^6WIvT;3^ zC%hsxxKx5pMmRUuYrgBrGq2=O-n2=d1nu{B^fT+l6PYFWo?$)Nke_dJZ6hy#Z8t)e zrWK7do20ocTByoCe~{rkK4h3S77~G$ zuWxs540y3%VR4noZ(*~;(wRtZ!@h0tjn(ApPaYEXoVknp40?9d4BzaXW*U2tUET}@ zcgMY8QYx2n=H=&YJ7ednM z1>Eggc3a&Dc9GI$?q=ss+wBagA0fs{;)}y7G!NEwka%u!6@}`Pjj8NQa)m;SIApH1 zo5^P(a319)L2tHmiWDcyqtf@!P$^Og%K|}Hyg9cHn>NeslvndxY2(&E<~706=B{sF z(>=^}3{h7Eq)TE`$O)HLM#KHd1cz5zl`_h&U}+ARZ|Uw{mrcj==>RvsdiDlKzT44Z z9=W49eQ{dP^nE#otOA3U07&*!3h4$(Ip=)4Yf|N3 zm9Y(bNREc%rE)s#wL_#x`z|e+^b2?vHU_LSjFYzNQ)J0Eec0jeF!7PRS@(VB($DPq zPxNlNuM88>Cj7fVW>OzCk&+rC@w`e^;JBJnaTaSWzxgFffr1b%+F$c&11~prbwS*G zE5v0sz8!V9EbY8$K}g^^ZXmXkyVr(S(q+f97y>L+T-%-~}F zd6DYGj%Mwhm#Z~8efdI=l=8V#qN_%mR`vs)p_7+#f=a(GC0mMIz?z=$jQ406-Xkv| zo^7!(5H`emfR^1H9)HG&e#NUdzSKn5Njk5yym3?-_r#I#S2qdx5~+xCuv@ z-`(`g~^G7#O$3y-|TZHKJYB8s(UHQ)lw$neI_WQC`u6y!Xip%u7Eomjt(+5~Pp<>TTWV zHSKZq4w9{rN=sQkvXaHe5_#y|m!#Q>%gjrtj*Hg^%V|~@9g4c(vR9a<8hKMDK#UXI z5SEH4-5K{j_uLycLgPssoB0l$$=SA8LX|!olZyp)4oBK~g;Fjzh>ZoNSpUB~}HEq*U< zX4>#-ihUIAexLeQ$P~bJJ{-D3p6{(v9yH5fGZ`6!R)_bIq-`vlTqgIzS<5r%f=k6S zx=C~ea$CyWn_9G|9I6eF!ce8>NQ`I6a;`QILj%(CgI9U}H0N}?9(dZEst9I&e!#RN zRH2QE{MSLE-2t*S2FR3wi{-a>jCG5xY<1!VmJCI9Un7(v2{Hb$lvwDf<=HgvvwKta z(t4bacG5kl=@lt^>+n4vP?x$=H@R6!5*mkuo&4sKT&cm6^VoXtq0QS1N0n<Tsr zr3-KooO|<1nLKv1FCh?XT>9OkFw2o(gNVp_*a)^F_!a#*@;Z$K1kjh4u)LORdUJg{ zmF|K2U?_W!A-%+8*^Cd6ZL~Z{-<|QYgY>XIcHq+gtv}4=c=@>xIX<}LVF|&z`iVoN;!xCMFf3=@pvgp+@ojgNV zy}X){Zm_3l=c&_XrghzUZ3D|ce2BD-d~Bx?z!Fn$*GMFJJ)a~pA0A8Xkai@{{|3W2 zZCrZ~b2b%gP%vb-R#L@c^z%Rz>nkGaWBg@_0dRSar(Q=baz3ZLFU4*&U)=lgMwx6z zz}x0O`S!&&s>;~RE6k6{<%#bsWv$v7puReuhJwcxwt+Y`v&q@|5Y)WgeohXSGnWjR zS3s~(T93U{=Cu>h&yT~t$<|QmcYG1f>jBG7e2|th|3?+pPp(`fZng|%%2+wRnVB|N zD6HPAYLc>tJ8>-^ zUQ03s5bW}y)JE~r7&T>H?P}@irIacYKGH*tBq8P?uwyNrm>VxIBGecTlf%9J1*;Bk_yy44K`l5G=b&l@z{u1U- zMe1txzVJlKESMl-fGvm>y4z|!F=n;OGePiPcyD956hEQ1s@{j1)^khLFc2$`3FkW! zoWtm&8h07E=7w-Z+=t(yiR%nzCM}w_bSxP%xgGz)q3kn?}s!V%&5rh7do{Vxj)`IK6|n? zx~+7T0j~>Y&ySItHGZvVL8<5kk}px6eNbgen6D0^Ax~S!?npXSWZCj0$-IXD@btj= z)8=>hc~hCHZ!_NxnaMM+?yNv>($$&r0|Bm(%RK~cXK2XHL90!pWY)(~*L$6yR%Iq} zA4W z^!V9|*pRK@y@U?bf9+Gpk@D(X1&~Jjh6i35s8V@O)by$M5n^E$1vjB7MK4&I*KEiY zn8n=uRch$lrDs@N@RVFwtxxDddSU zx?P5k(KP#Z$FxCeL2J=&0C|XN43jwRW6@US3xb;+A@9yM9%_n5e`k0QZwuj-CWd`G z)ixfA9Gx8<9$un?lI0$B+RZmFL?Jb;XFYrB;YXi3Rc_Trn`bY;&$r0wGEd%!cY~ok z`Sf4#Q(ZtvQe5@#=O-YYkq)x^+x-VtKKvgX^m^%$R3s`#-JSOOX!Fx9LhEhPy1Q72 z>9x#W@5-9^0z!6Yc!P}{%qNFAtmY)U*P1+hV*39G7xG}{5X!%7UM7^v@aDc8cvsjr zVBSqIi#ApWvhjrnE6%-M}r@TebTuSCpAAuDp1!FWd{L=8KQ* zIkRy&XudkgaWdoh$12U>wVlcq46$G%?3s_+T+Xp9Bpk;(^xGsO+?U4rLb7-O%8Jd$ zzelc+`EiC1#(ex=ot@i_NN?JK`Sknv>4~gKXFi^4KL2vA`8xUB+M%ZLuL)aQZVZFS z;}4!U^2`U{NNDJV`ond$br_XF>1Ns$y za8t5e&C-_EOou<@*qWhn?8VCZAZoH~aAm#OK_xrAYR*`(#Nuo8h!J zAGP_Bvt7QA5?*CL`*nV%nFXgemh`gdKV2n$wVJGY>??1ojG5^7lMtPWj(xi<__l}A ze73|PmotZ4snm9$G~lf)Z~|o=R?U~+%P;ly7B12MxVq{6dE76jw-YX0Ola8jem7w| zTjliL9b7aY{UR}NoznBD8W~+r6pMdH-gC8WRCn5><$rUmPcto`U{pmctB17-MSFRq z>qD{#UV2C=i0tV8Aie(|_CBcqyNx-YDveJ7d;w=B-qQ&HSOryp{3`;<^Hl6wz%Elr zfPEjAB=2=hFe7T~Dlr>xbqJh)NjP~S;XU0aj?OM1zn;546G$giARxbzs1rX!_G zrB&vYqWwWmQJkYw!c(8o9U>F_W};CN!lnhNE`STP&zTv6j)^EBN1UJ}NK83F*Kih? zf5BauDT7*@paSlfImMYa#pb{X!2d!{lXu|uq#9*D2(X{yp3JnvI(I`6;FUz3JOD7| zc8uk*DX90)K1V6Ot)Tr8(Ki#xq+A*bW|cFXX-ibTl5EN9%!f|mE&^?fQ=5tWtRq%2B8*e+G5jY2>HtB_bkfZ88EO}Po76WGhgJ%R4pJ(RA1C%^nxVOKqQC_+GkjB( zKoIyaNktMKv-iTvYvm1c`#GsSyTsjNoNC@NDFmAJhh(}HVsl@nyGxY*Awlm;t&g-w zy^$m;FPOTROY2yL(4am~L~D~1&SRCu06QY~1@79uV0f3P{Z&p_O772yiQOXiqn!4> zq+_H+?=Nx6`?7gsBKU_1cwh3{9Z~#~6ioX<5w1x7cA{1;!OysDKGFQqeWPN1FfXL>og=b;iWAZotePJ$g*L;J`i#4x6W{SXH&7o4osv)Q2R-OLa>^*-K&5r}`rIg0T!{l3J2*liB9^!_)T zC7v8#`Q%yW6yD#8B%njW?@Y@aK5IC6m zNzUGT@5iWm-p%C8Ke)Pt`=~*CLnGpcNX_1R33Tb_QAsz94Sx^1?JDM;$JsDS$_f|CgNIEm}c+H)hr9leXc#iQcQVK0O) zJR6LAV9hRWG|0S8&bCa#TOZW%ytjZ`B)Ert+E20R;fk#Q`evRh31CixFMC&4p#27+ zNg!_;Xi&XTORcK6V3k`i1F+791MJ6nDyIk53ggB`&q&o@=FGges0v|U*LiVH=QZ5U z=}$Tz<7yZQ63<2&d}Km4GnkDu2*^2@7ZYdG6B_fQo#XUvoZIyDkII*t{(pKlYyptg z-TtrHXo7%{VyDW@3i=-*!0A~m>lWyZyohU@p7$$A&QAVVrn+W*8$KRu8_VVER*8I-#y0K3IZFyM+)vMqZoU5s5mnvx>c=#g1_FB#p!gl8Sqa>U6Ktby#@<1^~N@t9(D_ zIty0;&~!m9ne4yiWM`3rfIG&hTHO9wR0@FHtx~MbOjL1Yob&zUtVCt5UOPu4-UAujB3l0Jv%o`tKEGR8^@2&cH1%Iz%D zO{z8TK`Q@-h?!;X=@A@axtiNK3z4TG?;@A$2!9r0Ov4`|n74CJy&l+t1e1n7PBMQ< zw9mp*b_wh6a;M<-PY;<<&|UXVnHS?6ks` zekxty-a!=l4Zl3N<~+C=2DfsW-r9hVA_zqH8%C=bh37}nFvhi%@A64<{&*wY=L)YDcn)6but zstAqM@dePg6Odm?%v&-6W$er))1Pm3TNoDi*n`$G+g~Hx={Bg_BRAiJnjRr0{2F*3 zCR{~8XkVuL3*2+R1yTg0OH8c}ZtSZpv0vkPnvUu@Pxrl40eBA=?hOp&GM3%Ix&-Ep z8WjaLXjj4BO?2k{+;OiDI2Rrr<_gWS%*a^%srn6+-WWc>zb?GNKAV50H=E{ zw5kao{4v3K7ds(1oiy_i!kc-qHJ#z|5B6nt?F}OZe}-E-GxG2Zs+_yOw=dJ7>P3X=bz)BeRh7}! zk&W--?s$#rDF8P^Xj5?`s%zjsLEv5nIR)^JP9*qB5`focoC2uxYl2yNpvz#4VM<0;O32s*U z+o)=2@8nu%J-{2xT{F2~=W~<2L6`|PMMIP_&Vt4V_5+Q)kSpMBBRH=`Il(le7?D$y zn-`Gx><4*AP^L6*_~ib;LrG?t-+$v?&&pb(7@Ms{(=QR=tfYu%$z*yzxE~wL;@<-9 zB*D$9k0iCk1?XQ9=*%nbXd3)N;%`=dh)V=Zi!!@~{eq{($p=V)vvMxXPm7a(MsVKn z^aMu^;DTDsO1#?$bLL$(F!e-VARcGc3o%hu1R3?KWq1C3KcU);{NLXv1gN+Cio4Q)rU_W*UOq`W5;no#m zdUHSK*$y{wL10UZuiLrlvmQ^-r7N_5h%jeGXSWka$uvKgAZKO4c*S1u_&@1SnU#WI zyr2f6X6k>#otc$sCNlQx_k((RVKqX^1Yc)SZtD98bk?o5&khO9-=k=pRhaegu9;z% z`+>*g%GLe*K{nQJb|In7y2**#YN#dcp4{QV3UJL}oNYcTDq!22D-o7M1D@KT2F zUy&L5O*iKuLa%GyY2RHt;dY|auTMGO<-)~HJ-4dD&yvdhs^3IV^~Ec}>=*9ORBg_Q zK>df==Vy|sx}l^0z}3&bSB~Z_Q~g6u)h`+*nQE%4!o{5H?E61fZ{f@L2dQo)hOgvA zy=fe7k%?SF_0?$jQWBP*g-(K3w~*F<=WP9Pf=NK`uIq3&=jxXq69KjrAHw|snAC#! zCtSK;ZJT6 z;({cef0yhcne250JUiFhRRH5cnx?ZOAypdVo#anaF3Kcg>BqTJ%p|9Fg4;JGS*x}# z!`Bfh`HyB#JCGgcY9eXFcXh*^JR@dh?7@a}- zyj{)RnjaQ1QmVv8msp(N!tlh5DG&18d{M}OjtdvKnQLmyZL?z7$w-t;h~o#iviY6l z*rMWii^sZE#~Xu!!&{x0>2xnH9cC4`llJJoyOkJl0ZI|OCXbvl)CzV zEk}vxFv{rw4}SJ4>xkinxP%z?;G3?cQ2ALrZ?*Xi?UG`jW93Vk$&uN@;MzU@*O&*GcyC7^T~3?%+C&tmWTxlzioP za;%9ZSE=e)=+_nF^iz*xO54h+{*-KRj;reHT($d2bMqWWE4^PmuXC$+N$T1P?tX{3 ztImN(uq;cu2+9|6S@|!vPEHgYN>^@aaE#_0mV*p(xe*kH8+_j$IrJt|d03@r(Mx{)W&@NahCz|rPM>lDMd z=p`rkv*#;9kXNKd$Y*d-`L@Hf6sY2JQGF-%c*!;wH$V1t1_2J8SUH^UL4M7Kuirs5 zzLcvu>70jLUE1bGgtdXGCi_`j%U1pnNHvULtHt?)n4V=Qx3x-j5cg5@*GQ6ziAV}T zeu|^#+p*^BNk-q?(%kU>qu83y7+afqj2pR*e3l_8AGs*hnISnLgf-0ojsX1bd58@o&<$G*iL3pVO=b|o7e^%5c@1J1<3Hz0@>2vR+Z3*3&~~-E z6Wo>k*6!MF>Ap(`#$!r$|xxj?c+9Ax4e)@r08v*7cs zt%!#MMc_8V^Bb+(lv9HdqI zU*WzL&}e2_W-SUf>ae~9v)@3>7T|KT4QU+8Hx%TlGmVDK8d=+4b8Y!~O0(@A^LQ!< z*AuOsw#iCa=Fsy#A{ZKJFuL5q8$6U}=6po7=L+JhjXW*fD1`${6VeqtD)|nq*^u1; zvN3R{hupAAtHZ1X+3GLh>ictEJxhH=sJZ`ISaI`B9_L=?XJyW|^3x4widA}n4y}GU z7o4BKJL8}|JRYYEpB1h#-;q4~aCnQwFyG%MH=H*`w}R7QCEltra9v5?hd=#R?5iXI zR%|5k7IMgWivWakLMYJs>nF7D@j5HoI4W@avEvnkuLuJJO}W;)sXg1O*BAr$yvg;abpSuQ6?Lq!zfe~ z#}HTvw*D@+WWR?p!?aQ6JsIj-I8*^McA{0qtxl)ksHD*M_48Phs+imgdK;08zP~DV zgxssrxpeJz=A(i!t%Oi>j6)nSpFz4XCLJ*DR3la1r-BP@T95n3L}@;&m|@sHo`8UZ z%eWn%^o{#bJ%=Ear&KvF9h!*@-C#&Bffz{ z=4ZLhGGqrYCkp$&hW6xK*VkzdT5X(4`v~&eIAp$xHpBWl?J9C1)$7YKB1>W0q<{P_ zZJl|dwx(VK5Y%2qCNST@5~N-^@4+CfZHc`v;$Zn^>hwEUk01)uuAaZoQ<3jMn_)~i z>!9w*-u?Kz&meX9rZyZ-k(bVsP&n8?OT<6s5y;nIX27GpNBaubm7noE{ZNfC*g_#! zQ-b=J=6$*w&guTWc~eNkVVR%J1DCH0PLIiGQRx2PaaHr&GUbS=!nY^m{X;G+-@i8f z!djiJ5Tz`&vGWO1WPZ}*^uu*cef4i5BIhYrjq{^!kK4<{WxjKEmc?m*i*^WfDqEq> zfW3o=&3DeuKK1}F=$d=_Kf^)aiUnht7Ue`;3yZE@8g+%EM+0u$_qAE>Ys9r^OR40xT1ym{9DQk)I_Mp3w!0YOus}9wQCc< zf{2~xCiXksimvVRJdrt1vkv1nZ%~f{0-i zMW;*&-%T=}c`9sMj-v4l>1DoyC1ymE1e2eFuL`>5I!dJMn~L`%?$gsHm7gW@_IHR4 z)U)k6LwqKO$j>L6WEDtLL{XY*=#0|j#^k$aCm98PId)gUPvKEt%cbn|Aj{)}{9G}X zG|@^}1sUaS;w}$Qg0(NZ{+x5q;s0&^>>O4mMBt$BKaoY`XAnzygIt2vRR`ffZ+8aG zW+YqGC-(BwfF>QIuP?&>1@W}sOQ=P?sM=_n;)K7?W1pY!HQ5rJdvjI7&yN9224B0) zWfR)OQoeh@7J1CwYumFtX!n9G)RJ*(uIz9<`DTkQ)|fvQ3Pex=l1IcUc>c3B=sWq) zA1X!ylMdGm&+rpL;7{|U^m3IUw^n5Sy4=E&sMNrhQe6Nt@~89s4CXtsetdcN;16-| zc`iG1_{i5bAPoCa+~;c+`Baef ze?5mPz+aQSo`^0QAf^uPJ!&2CF!ySH3v=sCymP)owL-YDwNv?zIaI#oH!Wr0 zQg>2X=pFOjFEv)OvZM1wB1bcXcn+gSb44QaErmaQlFOPOGsK;zc0V#t&i)Pu%eU2a z?c?0jWojgMaH*CFvlZTd(l^j$bvKbj9`y;JJ#JW=OVxZt+$2j>%riInpfK;mM zl*?}+sHvv~Q0<@%pL@_3L1k zeZeisPB(@*9rR!$Z5XQIi}4kkvy2Qyc`-zk>6$~7zsZSv<4u!{g9?Je zHTD?k7*{kcuJJq>^8E!hKSiRNmi-E#in(a>5@9_z<-So~QOc0ycgQbMII-2~>7pcG zOVHB_9Ca1AA8KCo2i&B`W|$>ji$k(POB3rK5!|#=f-~!d^$_f+$Maqt^kVCF{>QVd zxq;L;=uvu-KSyhS+MUs&%j}FLP9dOgCnY{PB{~i0T8Ltv$-R?5Ax>w73DeVs`55Op zEmJY`9CYynk!C6vP&4)3YAkTr4ZtlFNDS8T9%{l}1g)Rsbf+bF_+Hd85>UT23&CqQ zjsxyTNS4#82O69e=`zDF;0&h~<{Bhlu>r$$CVC&CPOEePs&=S25SO|12dAZV`^??v z%(k~~^57G*@CZDy+=^{(#*dOmOv@LM=TU7`PH!UvShJiC7db8V<*83Rt%#cCHdOq> zT&wqawgLx^Ok3^bF458=*bhy)sa-s*vX|WYd&I)DNX14YMXiSmAV$UdL+;V3Dd%dy z8FBrkoZGY<5f2>+K5=2ts9Ed8Z{%mEwk3I4nWI-2r37BCP zILo%+p_?jRCvZT1&#co#2p>WGe$)za=NG8Y)y#LzCC;?cV$`|UT%|U5%#^D*3|rL%=1$b-BE-71A?AbE-^ z0j>$-TekL3329of4M-*mmCWsj2yt3XmJkQ6uC@Xn=4qJLSOq9obNcF8Xt>{lr?9CK z9oqU#{C6&MT2=^?A7@qRCk`w8V@`2e%|t+EOVsm-%crK~1p<7xO#N0OVOo_!fTl&^ zZxIFFmkA57*aYA%VR$VkI<1HmxE^tMWOkhH7KjhcK2?uMtP!!^S56Bf)-M##BVca^ z(*%I?#9~ZDPb+|A`%;3jOnB3>V-;DiD1%Wu<-eF)Hm#kw)e7`=@Bfg!N>hf`7ZY`_ytEX;Djeq z?Oj~C-&a!{6e|S7^&40Dzb+PTAr|}^M=|J|fzGSHXx1HS2Cenf-2Rkvn`O^&PccqG zyo3<_%5<^SGDO+pvmhz3e}`wrZ=Mtbi;RMBz4si`+LheW-g)Sn9%5umdp(+YW5tS++3L?FCr1##Nh)DH6-+ObFO>!54cb8v&H{Un! z&70ZjJ3Bke#a;t8wZ}N;Y;x1ao*8RhT90bkP;1~!_=qu<_=sgMxohM)3R<&=aLS1J zJ>U&Ui{^Oiq#4|BM2JnB=3CE;DBR?y%lx`B8Jhzf5qrOwtY?jl^ayz>MbILDFVoV#Dovqhlxn&7LDkTYNr_cvn#@ zM&k`r>p8c*VYETAdX5P5ctZ_@x=truAAsPH195ww1oR8Je-Ua zU!dXB${a8CIgD#gFOxpZ%3i}KNPMYP7c)@a0)`+DH7D-&!L%ku_8Q`osp2dR&WlU1 zsyX=BhjGGcuz8d9LX?zt6-x5R82ea#@M<(Cv>p@PpETS6Igm0niw^SRzyO z<~8C&u&g<^bJ?s+@fJMWjf5k;x^N~D{C{dIEBpWf-LzP1G6d9oxQTf za}aEYrbr(zZDYZHpl*nN%&_oqop|#&$nLw|TafeG{ZN8Oq~WwRu~(SBOFGP-=6_-%MHiJpcslQ8^DqjAzKJ@DWo3CF>qa(xQ6mkbj zNOK+2r9|4iXx|1FU;naW#KRSx`FxwJDU?d<8~USBku>`d*RFd=Kvcj`^LrBcQ>MCG zUuO9TseJvs6i;TXSAHFdeEloOX%*HEWEtwE=8}~dVgfXKBz&(hBr-f8Jj~`%%30WH zq&3KMROEL)Jkw%RG4_tR6G>o=i&4owtrBlcm+hR)~tqM%|+@&4YMJ- zaC*K}1ZFg6gh`m8H+#gsKe0DKe8jMJ>JV$~@)GF)pMV2KY^4Qv=Se`+NJHBED%Owtw< zEZ-P9onY2GWk-Bm7uRY|l|NFYInFt2O`P!*VtFm`C|bDYqueCT#pujW>&hkAjFL7I z8W$2`ej&Id>}Ym@ma|E;3eY0-5qs|~M+JP962{E$U>`#nYUa8n@+4Dc(--zmuu3>- zPJC1ZvpOCZv!hCAR(dC`*`(}Fg7rZ(UhPYa73am!sbOL+#R+-=BbqHIX(M!4h8*x8 z;KDS!g{1A!$uj0=`lpcJ$xINR8p0RW0SVH4^q9y=G*X1hX+3;q3oL1;h>yn6%xigS zPPo<1zp$fSF_X5#)dR-NE%`FcX%5ozDiTYUHC4~h_B6*Yad(s0F)B7BMN*LsCxw1hO1~q4wE~L=Xd)-A7(k@r)1toR8*26K{ zC*0wy$L|Vck&HD<|ATh}`6C;ipg3vFI0r z$}PS|gID75i~asSQY1clfg4b9%7+{%HdzN8XF?AS5POaA8c&Ege@8bYGJ2r2lNlGo z+f$sdV|gte>9f3}R~|O}oV}6(VUdBBPwhootA`WOhYpJpUpCRjh;6s#e4(5A{wUb` z&L)7Sy`nAJy=QpCB@@?C%4BeXE^;Xw#7igQgMYFVULYHIY;+2#5kP+EXk&=J`T^AC^2f>+%kJv<_A53Q$%6eP? zceND~34xu2q8}5T9k-cwh@xyF0qhdA5_wW75pC;dCCw4sL69og z5(glO0h&{i1(&IvZ(?JK_+pma+m{|Dwew93QQ{jZ=1XgVWR}#tG|{30BV+XDr8zyK z=E;&{mdPTcSu~foxe)Q8DZ6YLh=kSCj4xp;p<)%tlHyUYz>{3((-9LFXgQ(D&RQo} zD#jj`;BeGdV1T0|iM zgSZHD!oQ%!AIG+cp3i#c7!G+ps~o!p0?cRE+(mo^EW+?eb5AL&HNslOkzy)=`GmRG zstK|6Vxx7mQQRN%HV!`-Wn9T(-ZnRU1LO2z^c{0CRq{sxa*$JK8|Afwh_h(K(Os0^ z*8Id3BoGB^iWm)W_Om#7$?~}3eI&cIb`+6Ox(NT+fEe?{b0dgTjuQy-j66lt-q`^`Re0io35T%z>Z0c(-BOl*RNL%JySzMNuN!bwmWqLWW zo1k4y!{jUF;%}Zta=>V$yo5$TlrEixCet$jid7O&)JMcc#^Jn+Se;PP41uZR6;Y7<6rKcMj5FRCVadUvxFspTSsG$@CV3 z7hpcseLF#Yi`)+3cC@(0nx$w;Wk~}7cgz@YHZYpgbwq^!yx$(b13SawfDD< z!oD`UJ)7BEvsV(cKFi^*wVm_ z$7Vhu#__spixkEgb7FRflW=k5dz3ieG5-Dd@`mvu35K`Djkw``VcAd==r{NkBP5!V zp*T=Z_>}H7R{{DI$OkA8$QP&pELR1}fuCyl`5&a!fpX%<4?hvms{wQkS5y<|4)kgP z{Q^`QXgc)j06m3YU7#P~R}bg}P<^0!NM8e>D?kl_WQ{pgxce2I_#c3;~LU-%z04@EZnn7GZ}2 zJ%-;1puW%>2{aP+-UoUc(osMcfIa{k3cb-lr{VV@(7&)Z1}GPP#^R>}^gaSw4!v8XdciEp!$eoCQw)S%>sHCmcIb{9e!T| zjfCE8pqr3>1#}KM^fl1Ckj??>ju3N!D!}g>pq4=20@Xvy(&;p>xu(uHC z5&XUbIsm^#Kwly3_duHv#}7bypdW!EfffVxN7yAmy%1t4&`$U*1Nt5ImIHkOzZF1N zfPMlhgrAl8DGI+;Kwkr`20D*8eg>)wzcoNrfqns6g4liqIt#QGs0Ko;1KN&we*-!S zzx6!&I1>^&JyMeOcXAgeT;%6^@#vsH#pmwmgA7}ym4gh@ybP#9@tQ-P*3Co9pdLhIg zKr10V0yGFAjso3*^cc_|@H-B43g`ro5g|?jErZ`FpqB`78fYo}&H#M}bQb6`LYxEo z6@KS|4#MvOP&mR~1gZmc31}zuE&~+6hqS@H81ex||i5m0I9 z{SEXs{2l|PgS~%%{sejgR1tblfu7=uo&mjw5YI^u(icF-fnEZs2>UP43ZPV(#7`!K zNDXunC=F0^NYerxM%Z*DMI7mYDnpt9C<;gcYKO2Hfqp`WOh7vjA~VocNV5P{gETA9 z2}rX6^@Nq|Kn03iUYj`y%IoG;8zl8K2Ry3 zZ-7bzT}0S2K(~O(0(FG69FPHi<$LIKs|U0Q zs6J3ppawuaq1O=TZ=gm%Hz92dR2zOxfU==HngShyv>8wapyohvKrMjA1GNMyfv~NB zeg|p|G!Cc@&@ftq8-rpK<$C*19bqphHL8x^f&xE0X2k`&OjM}x&RG<-a9}8 z;MWysFhX<#DhJdZ$PaowfP#T~0_}yg7tkf3cY&TDeZ7H7K(7zbK3MJxG!cI90ey)O z{eaFu`ahuC@bd@C2*3V7)8Q8YG#h?_KvQ5P2HA4EKpvckATL&-Z-FGppSv3K>7*LBlvv^Gy+z}1Dyg=fxd%u z0?=QG*9g=QVJ8C3h4eF^OOQ?i`V4+1pirR6Kxu(K2kHzo1!xxHhzIHfdsBh_0h$K% z8_;y19}!{(&_MXj1bU9Jvw+q>`UTK&pf7>WLT@%uMWC;Mx*^2ZKq1hZ1N1rk<^oj$ z`UWU9LVOGK5LYx0=nqKe17!zV0Q45nLZDU%@f}cWSY8BF7JlCY{S3b!fZ~9D1R4wJ zVxSM;w*+Vi{FVY4VR;!)F-VsKje*|^pihB*0=ka$tpq9vzg0l*z{+Z%jzB*HHHUN! z(ATi{3(zj0Ux6k;Z!OTT&|3#|7t-H=N<+FHs1c;U1MP-%15kcQHv;_&=_a62K%0Sf zLT?LD7oe>`!+^E{jfUQKpwqaH9YE>fw-e|bEbjtZ4YV6b2k9Q5cv#sBv=)B*fNDc; zKhPma4*;!)^dQhSphG~ukRAq_2fsgnS|aQbphrl{QJ@ykI|eirddGoMqdzzSbR2po zfqsDW6i@+JISup_erJHH1DypL347;&vct-GpwHoV0jMqXE&@%5-z6YF_+19NfY`18 z4TRrSpdyIv8c-bkt^@5s*c(8rfNlc$LwXA+Cqmo?S`6tOpdRqM3-m3}J)kT=_ks2! z>;s@22=OOScc6zr%c1ud&@|{h0$K|6H_-P$kAa>*?;oI&Ku>_?K>8G@1MEEm8V~dw zs4?_j0ObaH3G@Tdzd(7Af2lHypEN+JfvzBj(g0Zvo+>+=e1R_+qx< zZ6E{UC<@dCA&LQoAw+SYu8@`h8VyvEq|hq`G#`GYf%e0%4A4IKl?B2lcMau$Vj(RL z^cd0#KsOObMW7&{NHw98UR|IvK=pv`1JwsA2E7JARp8eUC>3g0BcM;< z*BIy$P!pg+2+06bNYxpt10436vG670^RSTLb+MX>J3Q9n!WyHy~{X z6c1^8paA%F0Llu#jzH(&*9oX8!gdBK3DgDXB&6?<9{joj)r4O+pxv<29jGr*51{!# zJ%Mf^L@%IwK<@(0fwVUeJ}hJC1GED6`T{+K-g`i;;nxo+J@W5=K%c#VlYrapdmm% zBJ5D0duZDP_N{~(kDgx;=AO(KYf&PNu44_OvGl5Kq zV-`>ipf7-MK&RnLpz8=b8wdww8omO$h_GJ+6@qjQP!P~upc6pf03C+CZ-M$D#5|y? zkj@7h2ebg_OXw{Gx&ZVY&@qHq1k@Yod!S(m@dFSJ-ZT6Ngj4bii-AI*w*=@C&{Cj< z2(b*P9{iRAZABa_2qElGK&>EM3Df}6RY0NeTMbkg=x3lqKx=>w0{sFs6>I>;spy5E< zfTDr618s)h4xkvIoj`+tb^&dH-fkcq(qh;HG!@dlK;HuG1G)~q{Xl+5)d8RbKnH;q zLGKVyUHBaa>WmP705tL{-eVwt`27Qf_bv@jfXX4nQ=pPS&w#!HdJc39VP63C26_pU z9ajDY!rOX=R9VCiUb!=*26_N#8lY1Mkrt=}{L%q!0ZI?_FHi=c%RmayGsK$_XcAB+ zpbvpE1F1k+fbe#bAuCXO#E}i?Cs@f2^eIpdpnE_$ff@nj0#XnnH_$HF%L8-}(!4-v z;Fk|*0rc_%;q4AX0ieu~76d8}R0t>%dWC`d!^&GgH-L%&ErQVn8bN ziUZ|>v;JJ%BdDuP0C`pk6>-fZhcf zjy1|MLXcbTh(9b{vfJy;{0)2xJdZ3Si3_#d8WEcqa1^mK*h9U*wK+WJ60aObp z5-1Z;6i_PY4Fd83iU!Ju*kXWs1H}SWLx?z_^za)DlnWt-04;=cD9}6b8wPY7dc%Qg zLpnmBxVS*W=+voFi47daoH0?M`iP-E;^loh{v;^AeOhBdM^D;3(AN zrNqbx$Z|W%qN3v4XENq>@TS8|pkK&AUtaL5fY|2a8yXuP21^KMXDPeb*BK{1qlQo4;wlXDMLjZR7hz)cvEq%t zq1fdmE+co0ct1gGuebNj1z(ZDVh?jz2=<^46snm+1Hxkc!*qjnVe#$L8}s8e1hLCZ zzJVyB!mEVAA_wxsgo_RFgW@8^_F9pRI3YSFzF)jym`FlsTEnlx8E?!MCN`VJA)~P` zGv4qi(wCJ&`g2fWDHpcCizp)oi1#zX#HRvc^*-5NXcK(Ue#!V!j`DBzBcz2=!xjkiuOk*M?+i z#h9%s>0ZB8~#qHuGEHYC|HlFc04f*78>tIDJZ5SXCO|;uxBf<^=yL zB)daa28`vD;i`NzCBDS1lS-<1>KBI7tR&Y7gAz7Xi9K&Ri)f!!y!mZ?R z*&7jiNj4YW<(xP`EL(Lhhj3zD4|DEfyi%3SjeAfyj6kaLvUqP|7&TPoY9$>pj4-P5 zAUcQ`#uim6|4lG4j8dwSI)gtkjCZP%CR;CJ7^76>gJyxmFkYz2TQ@?9VFscqwHov% zhEYXTHioba+qmZhUd@z6*##>eC(yco&jI^pUe*s?uMlMzH`IR*>&Z^3i zaqp5Q=02)&uMejTBd@AVn$D@lsH!R*R&#uq2dT>JtDLgQ6#Jb_oD-NCsmjrGtch8G zs$^Wyg<`=@luWpOymFs`f0sA?R0U6S3JIFvN8BS%#_ zABrZnkYqjY^dlBS>_(=s#IT1(RYGTsBG!^*$EtHWk5UYEE_^^T>?Bf^8fC(W=}FeV zU=*?C6fR%uy2NUb?8xbn#8#4Q$XLFHNRm~U&f%~VNmagh9zmMtNp|4)5MtOXCa!Ni zw}2~TC4O}*$$lZ$WOpB8y(pJ1jT=NP56Sl37)>mIWG^@J)fOe0Z?3^4+eB=dp)axF z6#LutIG4Vna2p3jlI$$8bw@`Kt3d4E!QA@$la*ioh`vkGxd{+eVD^KhwPHe$NIiDEr!&K#TzcIvcN2e;^ zZe>l}i>S(l)XPbRdmi+W^N8WDO;z&EolFdOH>y&0(PCn_cT$xrUFQ-@L*Yhl7*7m$ zSgO+J+1JEymnufQ=iC~{6Pr?yZQ|}oRpyOaN}9N@RFxvvInQusrz#DeuqN)%RAs`@ zZ%7mOO{&st2d5f$R;m)-YZ=J~kZksq?}_0)S6uBi&UxIWs>;g#+)v<+QB^Lt;Bv=3 zw5k{jbM3*Mtr)cnOd>0|dsLNvgJ%%Ky`QQ)`eqR^-0O)RGj<6v+{XzkX@4SyduvtM zbMj+iX-L*-KgWPo7cmC(NP7^oF07b|kxSi1npojcl^+NFLkufPVnld;lNi>YRHe?7 z^Te=bq$)R--y?>VHC35DVh^!r#15Z1K@4kIs#5XZSz=hbQWaC=HDYZ^)@tZoV#_GL z7I}{l!wQtDY}@#dSbLIfEqI354hna9)-GaL|5KHkep`v1CH7nIqr|ZCr7CR)-zJ7N zL(xMY*-Q+pU8?fGc@K!?C!49uA0&o#JXLAbimw5yiDD+ObqC3ckZe-xQ^c^MrYZ+I z+#!Z_E>-#Nb}GtUtiY*CwQp{b46A0U^8Lf7#IQCdW~zVuOAM=LqGla?P7Ldbs?t$+ zoETR5ROQ2o*NL4b);s^-#IQanYSxo;#ITwv(z1U)vFyagHcmrn`H0x3euqegbvrSe ziFiirD%osQcpovWdaBB_g@=jVAXcHqX<}GsRFzWOZV>y5tQ7C|lGtj}j2wKD*a%`( zmvM<wKadqNWhTN}H-|-Nk*u zB8t80NUn7mCO;tu3*O3*hhp9@=i93lkAuFq8X<`LWRqht! zR)tkEQDU<%ljaLz2TJZ`M(Nyj%Sa3>iQ-=7+H7K2=~I=KfAbY#w3pH!81-k(X~RARxyW)Z_WpsMuj%C#J8kfQE>%zflf#PZDGz7A`6Vm|on3WaM% ztVtoRtw$-os*kxA;N1gN37*b5e~M%i7EPjXSpQR%O{KWDVhvSQ-fumfWF}(UqPcZo zMOMr>i%llkJ!1M6JX$;;cDmbVB-=&dTC7<}YyriWqdVvBMPfC+Oh@^GHBnW`^&5{e zSQk~5v5R?h!kVm@5BhVjk9AK~sXF@)vWZn+Rrz}2RAO65mVF8Ltyu3=mAdP=&$>*q ze@5|`il-^6vM{^?#lDu}Yj>&+F+8skJwxeY#HLcXEEg*i+e7Slni|CL^h1mRmzxs9 za|%^iezXfQJVg?9a9MU@_?V8WOdeB;7@qm4O8lA9#PFO(j54FD5=%vCiHxsC3{P5A zv2nN_k>*G1&HAZlStX@#>DW|)3YWqJn>SMU*}dQwum%a=k7`j&jD2>Z?jCq@Dxu~=5BtA zSSYa`JIWEmGc8rAe7rfaLBzi6+lm;TXo=c-p)D~y9~7hLYQCa_WaZx?l}Ofr!bLPL zOAJr4#of{ke`0tNF6KRl-y??S)2dQDeK4^Kl+N!T4A5vQW6RyCaBAAa<`=FJgFRuPRUGyh|*cSnj9&h@Gbx z`nKe>{7fu%Bc~Hjyj3MzyGYW+6K-*Rn+6g4h-6up^d|Nr*=)I8N2~y8j%pP|49~As zWyKd9LqTGDLs&B{g)@8}N1Aw^FJ=h~IUJszt4fAmF(kW1@m1&_MGQ~*Mg8>Wbe<%e zxwEm&`=pt%KHJ2u0#(^El=BQb6;x$Gnm%OZJcaA=OAlgrmai(8c5@76DO`Cqgk-_Q z+AZf&*+5qAEae=0Lb5u)aXHK&*0Ik2DBMQUJh`JMv1JrPrhA++>^l%M$5I@_1CqUU zCYCho6U#D{%MZH;ROMy}%c6))J2ZeaBZ(dB#A(5v5mo6mav8~X6D#7klo)ojs7mQ` zUlMCdG57|4PwXUF$&+R=u_L7UGWUnX#*${%PP2%$CQW0d)x=Tk*^;<(MKe1bbRASiwB3j&upNSPB+22{G6Wc&+OZ=zA zZV+1&%CVQEv}E!Bfn;Tf?YT6OSTWMfU&KT#D_vj2xH-hik!J1ikBF5g)-?@>`+zhD zn8uPUfUMl<_cbx>coHMm2a}0CBw6#NoS%WjBJ0c~**Vf&AI#-s!S3bze@hd&EX};PSgqY|(|!NcNCee5qB$uwO~c84huL@f1Vgmz+z_ zh)texf;6`iyYbg%VhbqTr+ZHmn@O@SYHuPonqp|H-X!)Rv7bvGCiVqs*3ERD*nVQO zTHGV{m^7c%d`1kr1y$wa^xKHFB-yCcTZtW`aKlC&AXbIg{ClT}4WpF#1*JZOJ1OjY zQ_J&5G&nkY*0jEZuqoG3@?Rm5ATZ62sm-u`2fLIx+116MawMMPhqNc3(YC zY#*`AhWo_ElFhO=b`o1m@$IpY!t<}qBh58;BaX!lWab*OZDy&3!-q-!e0{WLgDgfxI!#~G=rO`qEutgq^c~f zdWmG%-6+;kzI{LpdppHC%He~=uzymlC9GvD*mWfCcITBK*>j2^xZOHp*nOlb`}_)1 z4D~5ovu`*)?0FJ*FW(d-&BM%EbL_1sWuJ_hLb4!|-6&FmtoRU%-;;}EI$|%@<|TH5 z*qYX*NHY_~H+Vu(l1(C;v$y9aW+Jxl4$oBQQMlu29+PY&g?l(S3t7P)F0ta$Fb~OU z5j%ahEU}BEc`2d@X~wWDj#E~cVkrIt_n+%Xb7!f(6z*M;HTfYug~M(wRXKRF05R+e z6HiSeoC6^ zU))Q5Pnzo&x1?|_$YzUOoX#IeR-pyg!8l^``;;e5>~9f)g<LjbV`)y)=#NK(rdA6U} zyzTW#Hiy{IrX7gkEdx~^PQ>^!}~g7jk?!xVqX$FvS1;x)})y#Er-L~IjR!U>jRRVq4+v% zV$F=i=G<9Hvd<{o$*28^4J4c07sV2rNV1%rIUL@oQI$_Rn@HA~WPMu)6FW=cHbf62 zmYrg#U1bchF&w*Y60vT?-haW@keb3}@EJw2Pf7Ol5o;Es7%H8bNV0+?8#0GuA41_; zjhsL-Bgs~NZzNWN!YwI0o!DC>`?us+V#i5V{qYcDx5>)-)SMG|r%JTA-v^Sc6){8K zkBEIvR$7i6Ni2k{44gB9SSYbkZ3BsQqHwSmFPTCsv894Cwnlu^%a1*RNxU z%_3RdhB{*ZP`K>r4aA<4?Ay(8#NsI2iE*D2+efmTJ^5;XCfWRMpO9<~u~btA6Z@N3 zo3otrr74C^gJ+Pe46!_uxt=v9%^s^cml{zFLyF8I&D6vW_vV~vPAu1s&q$VzSpP`Q zmwCjFZd^+;yuG9`Sa7g=@Pinpj7&c_ssw zkuS+&KL3?ucxy~mR>bivor7Ckeq!$w`j%vqi1jHvh1gxP(s9l-VzbH0^NDSU z{Yz}aaSrz_vAJ#d`qojnGZEKGa~Iicck?E(L8Q5@#BE~bNY=N-K4J|?=DT7WvArbQ zckmFgeZ;zFc}(m((!3UPme?s`%Z<;8wIKGyb zUJ}DQr5Kt2BsPLH3txLi3~&9a%9N9*h;<~Jb?aXwww>5#XYUZJN$IRs^&YV(VtM*r zCU%LK@9>kva#IWi!!8l)Mpg!Xb%j`cwvu5Zv4+GZ75tajH40aM*nMJyN%r0RJ;c@$ zdv7)8ZZO%bKI$OJwo!$8^r#m*iTm3N-Qt2`QLGg4WQVU>UWb2Z_0{&5ZhB7#{FL`S$VeV3CV^K z`|J0e#HNsyw3G=2LuWHgN4ZLagxWhot$E!cB zXCuuO-&~;BJ5pM7vyT&7M4A;=a^3x&*o&B4WaT2U5oeE(<~RyhY)>|l^(6M!cCNeW zIKE6=&)%Z=d?#@E6(tt3>MmJ{BhAl`W+W>ah^@$?5W7k2*2vVvey13Y?aWGSBC+yI zxgGT(cIx0>vU!Wb`Tly0*jd(wSmNJA}*j5wXyWT$iqpl}&TGZC0jmk4B!Mw0uIE)>XRHHzd`RhMG8ypem9Z%A|Vnm@=&ZDMT;rX?#yDcspVxgDjW za8WAPiNmBh@rOL5IgK>a{=%g>gV?vzijnL+VpVc+Eto~@W8b1AJ5E;88ClkxVmMic zZQ{fZ@qBti0n!{tvWJVy5mSl%cACSTB%Atuxk-leN5s>zb=)3sI)~V^u#4mSiQ?3eW4Ri@Y%PURSOkSy*RUwcJjKX>Ll`-j+*@q7(Y z6fSLgjxR5zC1yk^ieUxGrWfODC`f5()uS-U-X)gjcoAZs6WcwuB(Z7~!^}Q>eSeab zId{2c6(&vJdK~-P#MXSxSJaR+dqnY*-lJq?!$aP8fm6uD^Qt!d?7At*8U#O%7Hd4Xcs`ZYgC-%qmoeyd29j&irxBi?PWf;3y)o|>7`(k7I5H;kmTY>RA2;aU^x*7+`_I-YEP5Z8^^S<167^3)*B9He>Vlix^I zkZj()S(@StqxeoutxD`MS;^3>Hii41WDRfdZqUbMCGURTPt=oGj%`p#&3Ys|u)HbB8W5Ylhvz6)h#lM6 zkz^lJxOew+`}>X9w72{yCkhaIkhd1u{DV^cv^bBVYsgB6#lKNn{ztNA72hSzQpD13 zs7kVpWMzEOV6u6e*v6(GQ0#%E+5DZiDBSyG^VFF-ws6zBX_A z2MgAP1c`)K7ZYpPBay-DUe^pYqBTU`?!i05=MyrE18 z_JD#|EE<{9`S3;>gd$V$npGkBEpm(Kb=;c;Mz^N`?*O?s4;Hx67~V)lZ0Gi-aLVm@ z@SQ6ucthPH-XwExUCizF_BcqELvA@f`iu7#^|Ai`G~aM)^5RP2nCM(p_vZOkx3|87 zZZCDb@91*R>w*50#DuT0xkVLm+n_97y z_a>@=ODUKv^WZfLA^EjnrQ5UMrQ3(-18z@2xGO1erJr%(zM-y6gWIYijTHDKjCl?O0vw zgmEyC3l%pg>a{BF6?YGMz2yAMrN*7d-Kh?6_q{{Wl*xhQSJO>00adlS$_QOdtms?$ z!MQD=-c@r%vDNamcC5o?b95!lSF&)Ny=8K81UJ`EyUi5V5!^N_P4q!Ow+;vuWF|N} z{zbo5H_~6$26G-cHAL%W5`B}bLb@;=zV1Fm&*QE3oFsu7^hhR6vj%Yub(nm;sVUvg z<5{^H9GtuV#sTUMS=F+TqlZ?@&USY4t)SWM6N?vn8z;SL>GqE8dMbq=ys zw*Mp+>@0IA>P|FgZ59=qso^Nup%#;^BQ91S79-@M5kv(0ieuS>!?+_dR?^fEM{tXS zze(HQM%zT6K0v;uuwi3y&1Beaj4{y%7!Y@1J6&wtjmGKV)Z?1yvkK5EV5b!pIbeX? z(QBfwHbAAIol2lSA|P7qKBk62xy+b2*rG)Na^lfX_+Xt`P}S!8>%k6G-Hj^a(!bWKf?IoF9D7G=r0G_u;3vdcQ1 zh$$}IKS~_5?;olQixTJIQ;ctGYekC^;~bkH(`~L!G2&o(T}YhRuPru2=>x*VGL$q` zNSd-}ghvL)h0zj|r5r7?2yvRctPbO43|U3^t}UCk=-ARHJXowswU8ImCYhO{508qB zj>W7HZHun9Su#z<>cXRNdOaDjuai;Hk&wvT!r7~+w;hrhku}Y>4a->6u9Sj@MFfQF zgZx>Ui)o;&vb|nE;=str*ckEgfGB_6&{$n`L;&aA>lcH6KwuE%V8di4G9V_F!naOl zcx&#OQ)1sp%)PIO$F7kiw^@o@v^2|!vNoF=oTVj*yBqPH0&^=e(FbNwh0M)~2L>@` z4U7~$8_jP`^aUFznXR#srIA~kZyH%I%!-z1V|0V!#7(Ja!IY)u*er5u<2BLOk`P-W zyVzoM0ntI?dn5ctMiN7&y|Q^m?{L>`r(~kjf{_OEY+PghA07~)kBSR>_00tb%dhBZ zE|^;fZAX0*eU1u=F?Wg%5k!m8J2IT|wVZ6ZcFDDxw$U_KMLSKtv9W5I=o?$MCGQY5 zmJtxKi9Xuplp@Ykc1p30tV;b0?HwS?%zo8rIp9O7CpqSs1R14d7<~LE?(m{-Lg{4<1oDyUJ9XCpwNb#5`NH zyf~=QOIoIs+T)b9)3qp?=*x>}^B$222b}F!dU#UJEaGgcXE>|aTPnJ9x-rYy#NuRq z)F3x>tH(SbpGwNA=!VPRo_J4Z?GooWTb8G#q8lzIo5SsaV+UxN){XY0Zace7j5}NE zN1l`+<(zH~nhS+I-B13K`&C(iJz_Y!?n#Nc;cOpZbhaUWC5zgfb$_+9S2e;}#ng!_ zT02#IIR)dMT%8urZDL}@YODD5$H5MAjnUU}?H8X|L9hgNEnxXU9}}w=pMa#>=Op$W zI;tn~+|NPPM4xd+O3drp4n3~eRwvG{;N=WWv)1{ft*ZIDH0Gx^Y9{({Gh$D|G}d+G zqEA8zwN*(Zb{jPlecTzbn+G~xJ~A(V**s1#$_+9J6>pS2N=KjEe@=Q=avdniRV0&{jcR*nCzlJ=Lq zQFE6sYk)377ab60dtpY`GlvEwI~xsLPKn)0w(CiFrF@L_MG~BN@?$M)u@{6k*;4gP zMx|<=%=KofH)6{QKWb^_a?Xhc5hxys+di*BMR4uf^%1;??<;l~2gJ%}E*WJFPZ4v* zl(;ezeZd~B-pQHK)FP?G7l6f|GaaMmgvi>1+s?R5^nrTkdPnnumSxpkm=r7ZBEw}q zLn{o8lutDiZ@%LD=K3&v(AqyFIv`v(BrxEuwd=JLeL9p&mU=QeR@X;^R|h25ZM-_7 zq)0btGJGgY+T32;H*ZiqCM7rI494|hdNW0hZ6o3aC83_!Tx29S&;OIC*|_Nus&?aa z5<$YnS$TS~bs$I=6C-0W85+r~a)0&t$zxKoQl`YE{?EL}Myn?kPm-m{l$lc}QP5g9 zNUt}4O_9l{ctcP2+U8q8OI{_tuO}>Em@|8R65d&RO2+-)%}nmdGEeeqO@>Jx({-9; zN|I5C5A!GC`3yJVen&$`qC*)ceI3z*_}eivo@ugrJDB60XEO|D;&+3u7oZ=Zb$%`$B7 z_Y!E`)I>v~#lnTy5A4vk-oPA2Yn)2)+lb`$N-nN3N6J!6AZN`>(^{9D#C`gJu*kpw zxtxX{@ZMl2*wN*6_KX$7w{Dja(&1BdjOU*s8<2&bA;WF>s zvCJbKUrS81-@NSBYd9p!&%9aFq5SZGBOuy8AZ&mxFq*bmIlD%wy|2hx-1h5^Yh}OX zd@{_hhGG zwWXaow8&TVT;9QbOy*B1UJkPFk2x_mx4GuJX4lSaT8{OG*nETOkYKAVlVPh|mzPh{ z?4!0C)eRLd>FDv|xEMxWZJS1OnjB+#wX<@mNtz6;Jg@5fDYNViU9&M6J!2}*>#T=+ zUcptBZQj`%x+I&AYa{Ar&nu*@o|mNOvURzkFZA=IF=3(S4ddB7uSrjp6*#flVqGmU z_t*)IoL0?*n!ZKDWVqycxiQW2nsZ^#%cYr~mrK`WE_uXkw6{!5Vr|Mg$4shCSv3=C zQx*-A;Y%l)vqjx9=}f3OTQ!}CdYF4B2Yo%Soow;EBvtjiru(fERn{_UBw1yxnh8}| zi-yT?!HKA?Z6HM(YA(;4ot*c)+pqQ4Lq-Y+?Iuu$O9|+HUd3BPhx9D>sb|CoH3_#{J+b}=dSB-;^z3%y1D!V-CX{2-5h@wS^nJETN4|HYz4Vb(#6@x%hB57yWrRH@%&e{pHqX_L00&_tf(r-CWNLxOs@n>*n|ix;g%|ZZ7|!ZjQgHjNd)2@0MHJekQq> z&0W*mlWwm2_uV|kO>t}Kw|8^PJ1t+oD$%z5)C${hA#+il;D5%1c@==h6rcm`rJjCE_ywRUUHeIl=2zQ*Wy zFpYiAIh?g6-vG1UG|%g)iH57Iwa?$WW}8@8lVOf5YIofiW_4?2X(KC3@+$g#H|O0p zx8_|cIW6;=s-E4g*|oyWGl_F+M=OZ!6#O-j?7GWchkc3kr}e$W41%s(4!gKXmf|5$NXl&&dLF z*RAj+Z>umLds~mN)XgP)%gyoMlkvM}T7Tc$>i0vpW>-x&cZczAUfp^o<9B9l?v+DR zG(XI)F=c-xU_BQWQyl}F4BNdh%?o5b^QL^B>4o_`TJ|QI2eN2XP0OeJjD9ZENoy$c z(Kw0S=~}eK0pBut-c${~@WN`aU#8hZtHEPg4dk(cNj{9Se!tgf{-9A}70yPzh6}aY z8q8$4FPDcAez8JyUlr?MrRiEZS~DdO-U`x+k`P0!aTc!&EbX9t%F|J<#zS#>DD1H%+kGH zIEw9)X?AfoJk|?a>0&P&{JMK#KKGDS>OUF%mu%0_7zvhKiuZat3esz=M5ijh& z`*~si{h1eb5I1F-J-5A<_QIO*o)^}H;$E2MQLoi68oaP(&6jER&?UJbkMB;pxKL#r zADS55^r$967P{wl(igpOig8({*+ZMsmtNQ(hk0R|*UM_)>{gnRa!t}<6>~szK(JnX zC4#?B=E6QMli|7SlAN(DHuK8#y5Tg-`m%V<-`jS`f(Y>eR(`FjlDs1K<>_IW0w)fW zZ6$kGAMJv*+g5G+IcAd~NJip@qVRDshm(GF-?by~bTa-VJ_u{yDx9g{#+eiD?UCe<5Oj^H4V}$HL?+Xn{gmQjT}hz% z+YNuNRhM-RDR7v%Io{}+44Gws655lZplF?V?pfnl!NquLh zhbi24+RAH7Ae-q4e(bO)*(dzv0Tt++Z0!kTu)|AWCc{H{g-K?d$?%s{O~AA+OowmZ z4bjKQ?5N=ZUD0ItUS6v+8}@9z4({wqnN1K^ z_V`(YnG7vtrEw{|_2VQ?U6@tf=?k+2F&Tc4d1y|dL$=%9;J#W0#@GBnCca{=A3Q9{ z-I=e(Y%;`oZOR|X9^0JfcH6=d*nVa+7yJ)u#kaCCnp5aKwPLBq_X*==pWsdVe%pF& zTkGJ3xt&9%*{OzZ{i=)8-M=-6xqUm;16hKJQA73*$*IF8LuxrcFvspay-QZv4w7@- z?s`D@xx*a9dvZICtS8=-+k3n=x4V0MuQUC%^44TnE_*G{?N=MWM!)K={^g0s=jw5X z`L_4;fLUbTdf!Ot@3k|=sa~7%?5{Vk(%kD}y&Zk^9^Cjkx9>S$t7@AJ(_}GuZfBnR zbvpCcdw>7JYxQ_0!{XN(Y2CRh^i)=h*Ibx#dKJ=Wej&&17K*ndyxL++h90j~?cJHP zd0t~SZZZ_`+Uvd|+mbikg$(rCF>ICB_B_?SHqZUMHs$-hHsy0<%Dt&qDdM$#c*)n9 zin(cH|46Ux3De4yo9nj5)X46+qV0weqcb~g?E+{PkM*`C!I(^jKV%zp<--FGdmfDD zqa6}kQ*aEU`NFNn2^kLIOor*Q8k_Ib5{uMsLy*Z(RtEK&YyCi0BCknsMQ_XDFI}ij z)P$}3o?6So`A=*ALpc%mni_FN_AkyXQP}P@%_ze;bIgq0=chlD#quBap##0G)=x}k z9+?c+W&KM=@7q~M>gglmS#K-N?A|tnk4awJcIlfCHhqF+ev;H2%qEP<(9PR&HMO_Z z+fQWu)EwaJ;8+$($a-}1JrJ??F7=eBGB&J@op zw~N1dTkC1%Z3+I|+ZsTKw>5xJnP5+!Id_s(_dmS#8tZMXrINR`mLI*Xwak(^?CGuL zA8)I=&%Lec#(7)S-6wO{nL8q}x^Mfg`_JBXt!un3!GFsHJF}8$`yza4+0M=T7wuLd z5_m@Q-@fToMyAl2wN|^=)*H(#G4KCL>{*P>Yov{2H8*cCN+3sUGQqi*NS!Get5NX| zhD?Vu*KPN1YjYXUbBi>c3q6U$>%j9o{^HVmd+vbfCsSy?=XK~*?CRgE z=bx{ap*0C*@B>%cn9W<}6=g9w)3RSZrK+RHw=`dQeV#kd)5((a z+!Vg!@ui$!rqKCLcyK3f6I{OdlI{TOJnr1dsWHR=(LY?N#MDeZA>P^h-B6%li`WHLicx@9ldRKvEADe zT+`d8Ls8zA;7cAe^yij6g4fI>yLnq{s_!vn-B6~))d9z3xaMuOWU$9%`dXQiWHd07 zAy`&+_m8?;WexE38O~gpW3Jcn?~)zT&tpm{w+l~c99BWxv+{DyW3uiCnUZ9*Q}<-u z-yYM&n`DK34WB! zW?(YR_n1!Lh{vSlr7V8;cZ`iZrmtD=F)2CZF{M-4V^Z?OV@l_l$1GJEJf?KAxmG%^ zJWX|Y!Px2H(jlD5(9vUh-$fo%Zr{6>lHBq^sO?9GU3{1-J`(C$oaW7JcF#O)o<`U| zfOY9v?KqFA5j{O7CFwk-bl!5UPkDp&q^N5tNs(3(=P~7w!DCW#(_>QdyT`QGi5`=Z zJ|2^jTOLzS?s`m~l<=68WRr`??!Wh}yf;XUv}q64C$^brGmqK3sA zlTM=fh=v4`XlqS;a7&hfo1&lLF;(C__h!T_kI9JR?yZo`Wm9xhh1?+@KDa6RaUL^Z zsqQU@lkRPfPu*J$_Ik`Cu%Bdako2&V#GA0zG0*7a$hgX5CMx-4TPT^p^dKNMz~B5C z4WqL?hfBkBPxrRQLLSpCU3G82kk@1C}3Qx;OgD?j5Rkc+3b@(Y@vHkBr`Z17wtY zYeHU+8J}0UHzNvqOwahP$E4(Qk4Z^2_jVJ1y0>l?mgV5SUg~X`0yoW?8p`}PpSW$e zYRyM4Xq_N?RMwiNzL8O}zM+vZvAW>c$jGpufS^#FZQz`c(7t9a^h~ zZl+al9;l0sp(S-TGqkMMvk&Vv=)(gB&_y_Zv8QF;n-4;_OMQrVbuuzqKU^2=AFGQH=b-zV zbII5?nbj#MGAv9N6pKsq4G0XPYSl2Awq$sdVTrs5&FtYKpzAU(J(&z06036747FTt z5^Hw0wfTZHty#WS(>8U&`O+>8m7%({IJU=tDaV$-q*z_H2ZC9 z6qaM?kG$#XWsTF4vq>})yK%)|rmwK<2GNFMe04*EbWzl!P;cU7zMBmFr8UhIa6NtH zfZw-e<4$4+oI1eP7kh*xO32~R0h1vz+6I!p= z(w34KrEEVmFh{%3GBCQ){wcA$c?DY z759;KNwYFq^T=*Qw7EMmy7DTyQzKOZaoRQPQqQ$Vz63&9hgz4CXq^Kza3N1L zMrl{7x3~nmNt`RiVL!3e9QqQ-A-j>@l_>3Jb*}U|wxhHw8RRf{YR?K1xJ=6m(T&6w zqIs0JtJ@|+aoMf53D$*2#`q4=NBLIsj}6uNi@R2RP>gSx+RgCq*St*is)GZf#c#Aw zjDQc8puJX zuj>}6x%tQF2GE@oRCms{m9e1{Ej=_uKD-SHiyR^vq(0Wawxv7EDMzcEoQeT)`e0p*PjpOd zysxtrxQ@*GtQ0uIGXw%>w&Ft|53 zw`F<0ULRM}i6$ba)78Yd>}RgjuhTc03~gl2dir=bGez?Fb@IyC*@*(ui5@yO(x05@ z0DS}|4N>|i9q!x3)RAVCe%8t39ogF6Ny4<__~Ku+wslS_ZnuWX?qe9=WYPUe3feSx zpeDnwGQl3%5aWy)^$|f~alyLac*74_Ql&C15kKSNyT+F{6r*}>s6*Aru#?#~x=}a$ z!7P}a#jK*RvxP3$U}WbX4zPeV+p)?iX5X>%l2vkZfI;k;ik+(*;2_J=(&J*oQkL~% z*)nE-u$7Fg(wsf-u*$E@GO{y*oh+=mo|zBFFoxM>W_vjJa%P{gtPZou%vLgc$(je) z31?>=C#e)`ree=#93T@rAG5QOouRC9oCD-!&v)2!9~;ZX>}{46XD2-eSjEnJ?D;dZ zFPPnBHkpH;VbA|D`-WLHb{4V|&Q48sx^eJY%gDk+t_)Z zRYtM1k+1d^JDb`0jb-WCiDhF$*vZVE-^i3P^JVsu*<^MGuxBS`SvYtXcA{C9hh?kT z^D;YWShj?n3G6wZobtv@Vu`kE%cd<+VLtm)61gPA>GS$-~nHXPs?JI~qK%_?n~E#q(@ zY^6Q39W3k2>?}JUuv3>cyE4nqng`hF!Jb8!&0wcDJG0n1%CR3~R+0m3XJ-z3o@OT- zM>Lw9?CgBRPB{*6l{K%kbAuftt9->OtJ!k|JE_@u!77_LEqB@Zmpu=%vxtLd-~b9c z{aKcgSrb-C!%jPCS~_gAJ+sWL(utj1?D-)xm7N=Gx)D1+v9pq$X6zj0aL3s6DQ0(A zHi@m6*y+HY_t<&B&MuZM;BXh&DbJpf%sypJm7QlS+rq2>SEpxbl@s5J*`Lf(v6bQMS(O89X3wqcJZDWmmMvr_8wZ%mDwmi|V^)~iOlH@a z^=9Ww_8i7m`m*O1cB-=MTXrt6lZ!Rab0QY8=Q#EZ;c%hs#IS4-J6ActO?D2lN&}YN zX3s6`G-g=^w)s1&G+`$#%K}+8mz^vuo4`(W_6%p|JO}uhoi*(I#hM>6`;j#ZuxDO& z3bK=yWkcC%%FZngmx*h^N!Gm2o>SOq&zk31HjkaMEDL651FJk?HiMmw?755sLd$wlJPngYNSypCkST>(Mx3Om`PD^%X zD_G?mJNvodK4F%ho%9@_5VH;J++e39TPed%G4{;L@s(rG^6Y%To&l^Qom_6@v7PMq` zjAd2W8OFx;uu2$v=3vi*?AevW9b&eZ**mMpPe950>TOa0QrMVa#W(C*;$rl=Ky2a z>BdfKmVL^s7zZfGYzWJY%u2BAEoR4=-DZ{F*lESi=d2RKDxvIjV%b=BDzVCsEStsb zAC^657RR!E%zkFJhMm9JDa`@Ou+x}58*zZt>@;U59Xs>bNzcyv?2KY(CkNlf&J=cb zv(ts0(X4rnveWX|A0eH(Tk(D)rg3Av@PtHkjF3c7j=RE6e6G z`;HwycKCaWhHK1zVCQcRo|l~g9Gt%&XNYB$A?!?HmABX_!OkO=&F64O*m=paMl4&; z&LQ@!%+3?`XR;kRgPuQ~xv+>M)nQdlPmjismp0(L2 z%CdAUJItQb*mDLu@3AwBo#U+1oCEL?eTH$&RCZ3XCZF48;PcZAKXJHK?Brw3p6nE2 z=PHNG%PPMxH^R;_SJDod&E~ zo>@P3PO#^X?0m(ZU$gTm$MBS$|1)e<+ejc#^i!&~~Ln|5w(DPb?3!ESBo!&c|)0*!Hv=P0*jV-*`mu(bEG(U*-^ zSiUQgkIh~Ck*f^Mt@?^(~jj{Z|>HPSaY<$g*pK?~;$+o-L zsJDYOwUoxg@o=!JA{bp7T%Kq>fyV!v$;(35$C`m341?K?iiIAwbs&7N214U(EyB-Y z{GcCgp+94xnXvA`4?4gWx_K7VyshM|hv0#>(OQlt&}Fjz2ZRRCdKEwT60p$5Ss13X z(7svdZ&~POS?D5I=nGhPA{O*atuyd*53FeVt+QY)LXgK{y#Q7;@fI2@s}vqj!UH{X z>nHr6gKD7-vw8rbjk0co^)Dc_zE%N#-op>NEY@@Q*$%!h0HNn$;Ty|BFV1=iZs=TC z_&~7mU0|UrW^DlL=kV=5rX-M}_X5s@FJh{%}4 zj$d<-yVzF1#{byB6cL5Ik8Puv;Sjcc%(iFv@f+E8Jo|0Mwv*U)3)}wTkT0-N#|EZ| zh+!y)%worh{6HZaN3iiA8_PJz8~i{wcAU?Sm?EOcy0dK%`vus@A3#1DGNrN4yJU+{k{LvF#SN;q4$lOc9as0oyP|M7C8N1Zsk8&{AadWLuDJ zgW2{F8!Pzn^Vsh_Hb$_4w~Zc;uJdz2r4jE(&{$N_9%iim<>iiiwM5s`5(`{lCH$dN5&qlg_Z zN=nAIP1*Jj+fHJmh8^dyt(YI5$3~p}da~bb?D#PoUD@wCHjZV-qiv(5aA_=F6^b?0 zHFNISx!7k!=HJTfxRqj<|+xm^`8& zOW4+vpF56?2!}k8Z5G=Wv+Xy20Fy`bcvrSz@`!8`Ib;QgMAJx)XqCu-t|enSKLGtr zHfV4%&}xz~gKanPbJZLRv^x1c!G3euhK7Y4(Y%teHHX}pZGAW-+8Od&#ExhY$cC1W zjNRBk!$&qu9+B}n+t%X;&=is*8bdPPVFPU;*$!f(jE%$C*pMIighPJD#^-FHv7zVA z;~;1$$%bZ}3^Z(H{LMiyc|nXX9ozZee308?W(mm^>nJ-)7s_>~{jkav~eE*zsF7 zzGvep_PdOqTgk?7c8sy@C=PiH8-KFjBW%Ou5z&6kwwKuNZhme&+fHS_XV{3d;|pwi zoo$#rqFAP~4Us8u;XZc;9+)rlnqQCQOI%ZcR3rS{J^OkZ{cIyOGw2X1HM4mN(` zkcYAD8V=c)9ec6SkBw~hTgJu&HooNNFnL7czQrNGW5-k2*oi}azSv;>=fCd>^O}b zk7U~g>{r4z^lT~QrR?|^J7V&P9Lv~t69;*p4NM-9-;r$V!v-dg$gw}$9$@2hHrC@< z)@Nf~b}V7O4cT!x8wavukb{h5#~;~N$;SKa_z@dN@B`Pg?MpVkW#c{Fe!P_* z_>+yt*|?1T&Scv`{J_C%oXw8Uv+*lCV)BSmJB4kpv)@QImUCp7Jfa{`b}VN{OdgTr z&iouEkI42c+n!_NP!4%5Kev!=_@bkbjqLa-8#}Ur$s_XHi-R1`4}8JKFm~LNZ2>m$ zok9;->~|>}A@-Zce)a5#$s-Dh$s;n(;UG~qFnL6d_!J`plSgE1!+smHM{s1nm)UO} zw&imWd=^s>e4CQ-E&J`o#te4+iEa3HrXW8i9og87rSo3P)J>^PEbN3(5HwmrA7m^>nJ4`omW`6Eg zHhOc&UD)W)#wYw-FAj1i+c0@VkDtpy3fU2pN92gfBQh{~M8-_^`;Lua9Lo=EY{HK} z!M2Uq_>GMQ_QT{6#c~td`f)6~vT-sSWB7p|ILH8Y9K^G|Hi2yqu-{>9 z1o?q;*}&uxg?xuYUdP5PHa=uyK0o&%Kkz);FnI)V*>QJv+=Go**{EP+A2tSYWN)%9 z#0DmhD3<*=mT7FXa!5=bkzYAGV)BS=QGV`M4sun}#zA&rBhHRbbC9pt*38B-Ha26w z-T47b9#PboJR&2&j!&?$Er%S=w!PSRlO3;N<2-gepN*rK;SV2llt`$pLfNmv+OhM9zxvW9pJCo^Q(S2!hTY5@_n_iHEBZrl}>rF<1kycA1+h?I{fF z1Y%<8t&<7X-e#Rb1_^u`871 zNsnH@#zkyg!p3E`(PUjgrgbI#kOWUsc?lAfLxLvSPVdEkJ4K`6$Fz;WU%Vn5kC6z` z$PzQ{k0`lck<*@A9jUL589Dx0mB)^tkEFrsl((x!%(&6f$ zErPqseW{coUzQ=)E^;H=e^atPLYhTLdD&_bojX`p&s${rL2cL1(%V*_XliJP#p!hW z%G31? zj#NtWiTqObGbKsWNoiFI@}gWFdZLq58%)#&E2EwrwF{LpV1@j)-4GV^hQ55tD?QfU>}`lb`!o;N-;^!{Zjf)YeFA|7K_o>7=O@lf9WqJ``2>) zE4DRpRz+pR(LpL)SJ!jAOHO$=D4(>AVIQRc1+oA|vHGyr7urxI_5Wn*GSq%LQ_!m$ zFj`5Eg?K{M@7_V@dQ|)EloH%0XTUmU6Bvr&Xvbw<*)dZo%qY1T%%jG~IYhBoNqdN# z2ZfPeAw97OlaK5?}#t3B_LAEg}^@nE!lro=JH(7b#Uot+yBSI~ji4Yk8Z81k*3ln>Jr zExq^Ihq_y4=zaES<+5m}X`hhDAT2F9ICZUcPD@^L=4KA}+5>jprsg&>h>GVnl7&*Z z+H4s{u_vcpI?lHgBXLdjk?Q4+OxU4gCX{m~B*V2O-x^6_{G{C4j2@U{ZEpYC^EulR zZ0azd<2TJmtTxT|j8Zqe0#p$j!_`gE0M$yPtQU{~n!5O)EI^M1O>{UawVr{A;aXA^ zG+k$iu#ZxNW%A2dw77P8U=d1r2ZOp!N&SYbfqE>i4K@ahX?DeA zzFWy0keSQpk`~}z!fbmozhjg5gpxm3ei3`mo;A`|0qCcoHU{hIR9~Y)ysDJqR#}Q3 zPy)e3AegEHh6pQ_BJ3#_MBe0ZB2r_%3g0SeZ1N0(>oM~UIWWQWy@8#?pP^Z)^fGVXB zb+Qn})2KsA>Hv!_jKben$-TMET{O2o9Kc7Aquw2$q+TFvpz?{hD+o>CMElMRBk9K~ z`L|eY(ua|L_xJ)UkMQRuU*zKW3OhR~k^L#!v;9-FE$kZn5<7#KG+$!9<-G4UWm%{; zSYH!P>K(JrU$4ykEmxcQ_NQQv#q`=!FD%vfFh#gWDZ(gOA@^DwH?0*vez?vV}8jKGI;?_ zW6~;)m^q8oO-YQiC4|f_h{kFXG?!v#_aG(l6gkDkbfnM{nmdh$qvrgFyQPvChjs|LoljpobukC;WF>DzPH<7Eu7Sqo6ZMV?HeX47qg>8~3mXHC z;d;7l(P-cIRx)oUC%S;THSVgtL`i&$oaCIkNTSwA?J^~4OipcKb&MvXqOn+m!F;%q z8RyFgmAW7it8Q$FHkl3h$x7l6_^LC#~w=BovkrnjG?(rf&rj%f@+*d4aj8j7qUKR>BnC;`sO75O=>Py=; zz_|1N10{Pl(fMea>w?P+6;i3>eNyHvUP`+k z>4V1A9f>Kqap0WLLYL2@@5kz3XslO7+fT_qLQZ>OEmm1jX`5ZZqm|4HGtgo+&TpyH zl%&_m)jJ2u#He2vD@l))Q=02uM{|Rc^&y!xKlv49r1oAV@3V4^%5i-oKcyr+TPDqQ zH^i?iS^t(wG!g#dcrQqc74=$&KSfg@&Ry6lGFSnqOX=PAk;FB3g%1 zA6OVnI2PYTmDD&9SD^0Rrs@LrL=4Ts8P#FAQUV;tD@c$(kyh~2$}EHT2qo{ma$y%u zNF>5>x0XLeNu4WG=g*4O)Ht*H0wr&wtYr%(M(XX0!;QSYR!O{6CN8AO{i+Ck{Ftxw zT}tL6Ijil(O;h8vs)4Flz`e@sais_s$(ptgbUYpG9BZQWmLvzQZ+0#8c||G4Lvl`( zC*QNcf^Z`i#v66uLnZ&FayHn@OWI1ptOwsH+5gEP^)u=lqBOk~SkypA`#T2H{#5dx zB=Z;1L^};zy84s_>+4#V8ad;O+WQ!0uJ=|_&yiEzb3s#O0A~>4<)d{5uEuper3}Tg z?kSoKmo1FW3+u#1xXHn|9TAnC+TtBa;A3u0rc`4WVbB77{1P;L)WV4H(S`_rK0 z@0u%Cg`QJr{yeO|{l_S&kCn4OcMh$n zG+9qqvK}q7=3#q_V=D9#CGEp9ZIAY5CSZTdIN!J%l_E^e6{}mpym+jdMt#izjQfvZl+k-*mICy`iLCA=CC~|Aw0ouW7;@gDJu)r3gbasCQE% z%K}q_5n5_d!&+{&v3ze-+QsUlRnvdPQoP(|8K6sf~`X-2Y3 zHqiC%mdMF2o{(tt)aw0}+&y#Uq)&;*V{vayvw@QSIGLV?O&TM0v>?H;W_g^FI+7=* zyl|IryppzWIp)WAR5G8KL86nNZ}cH!RJGYkYD-RZk-aiX+S>)QdAnb$d6? zq^?m?|0cg+W$oJ4o$^K{{Zq1fDQ)k)(SB94O+8r2-c?R~(Sq>4P1K-7Xy10nrLe~< zsd2lMpjUI3*3#9C2J6`->lz!Jo|q>}lNS#+goCDbzs?lLx|r-VB7G?vm$Pvt8&}&# zazy%Cve1ZhgcT+4K2d4efH|L3|?m^3r>=QuiuxB)@qAqAE zohOtc*wVQI=giJ^41u7-@H9=;xv#*l;K$*NxL%a!Fag2g@ynF{J#n@VY1#+sR5i{+_DoJ;i z(_S16F2{*h=yMp&%^6DWKKWujFGws6HUyVBzA!FT62Bl5_X=VyY@4$8YT|EF3b9De z`FuKdzc%Q&VBvlx?>chgi_`V4o>6k2A#?ZhdedA3Id3Wj*-aLtAQ-Q4e{+1IBtAYDYn8l*$-FtJ=mu$%l5|7) z1g#u z>x(jLwsZV%jFR(8S-F(AE!j#=@EULR_DcRd`3)ih-vIa6jMa+#J_*4V}Loll)r>NYsW zlW$gX?y3um)9A$&nktOBMXs7=gT%ZK8D^> z(sq|Kyp)%oda066mFx#+kmyiT9W6XHTCJayw8vyX8@AWG8nj(D(sfHdmz$1q`&?zZ zfr_qvN;nm0nUa5dnLpc^)dQ8BH)p`<9Jw2=qA8Ng0E zaKx(%5#X*JU#9?CFu`xLc6!UQdHGw=X}iZ!S%LMf-G5k<;G~usrhPs zres|qXLd24HI|4)9lgV9i+-H9W$QRpFiWT{qF`(}(4(&ugajIgY$9 zSJFNz(-xrZh}AnbxU8cj{!6ax>n1|MXt;_NILDye=tG zQqq5vL85JXgVj>9o+c-{v`wWq#Fjc(A zJNBkLs^r{5&hkR;EKsXqr1m8x^CL3z&}KTz2vCkTSjiiy z>#%i~D}R21j%{_e-aVDPAIKf2oCc>>4=72ml=HYGyo|0$MQ_cy9c`qN{BSv^yI0Z5 z{aT#fPF0P%>toFkmhnmns^wR|AXFQp^Q)Gay_RW8;#!$FH&XAs5ptoDH6fRF9%(wK zf(Qy}YhvePK?oow9A#=UIZZyU)`^_%Y9ag3`!Pmy&TR`x5!2wB(nrhOG*8VA63DXbi$juqVxZsf%~N-6G_>tuIy z@!IYka_1zLM61-M-npojfdq}NePlp@?Ai;#~qW~&_QNtP*jf0AE> z0yGiPh~rG8!B~x#-FSty+*F_>)QpLsEyH}M>Sp1l2x&kZ;wu|2+vna z)mJWqLR%_yn2h|mM#G4fzYOF^mJ6L+k-mL?OesgUTt5aS^CN=> z@@1to%VcTF>|F8IiXSNHC&=`LcJGl^kD9{;Un`lvly$>^L{kHfLbY2Z`_%om*?V(5 z{tu-nh4P}Lo^~0mrW>EXsjk=fmi%_G47BG4yKd;f(y()kyq8jj@8lxsk$f}K^<9T3 zML0zkp}74+*Kya&C?)q!^1DzFNnoPaF+97ClK2C;>v&oU3IUL{d+kJ%K7eYx_1|AHS5i>w5OE(+sOQV+G{}S2qfnv>aQ!s zxKMsCilCJ}nxc=D)D1FqS=)F`Riv3dRgG_z@0Ij1nI3CULbX{HOO|4Ny21XBl6?Y7-$>G0ro*; zp#k>2W!fHCp+b#9x^>eVQ%oI4*ZqnxL4Fs@XoGI7fjUMWXKHVyq<>4UiRIO?rg#LE zAzUAF4(m@*^1mvVz!q(zhHVQMlAUt9!$zm0(f;AA3f}QXZ6~I?-F>N@m0}($mr_Ym zEII(*u`aVhNj^<3qaN)|Wu!h7x9?3iUX-X(gd^qj=hp}8U7MDcD|s)Ft4IGD%sj=z zbOmsnwz~p`n&JuPMXg6DB`J|}pnovIXCS-2=Z&&BMJdU2xjOXrd}RzNE>KEwsa!Ja z*d>!mm-bqvFptTFQ)J8GemU<_QfJ9M$vk>9Xjse0{>PQHWpav>Emzv*8LucsxJj;u z1KQP6+c!<})o|=O`%o#$`?4q<8c|xaZg%IsQPMvzFAylK4U%f2iePr-{!}s_DJPuH z9!!oY()myk%+8Y_-o;QbM%S0=BTJJ<`}3XeLT@E)uKWs?w`YRKwy5=#{Qc!*_lene znFi_W-d2j?sJo5cR4K*-vKV&m2hH`a+bU^4mub7v`ahm^rU6~obx1Rm0<0&i!o2V@ zn)5SXyF>t{e4sR`EA1r5a?Qqry~XE%Ccu9Kr0l)NQ!d*40vodR`VUt?<7{go1I zC}(&D>0V&Q5d%a2hK50{AxYpH(4=%#9OPV;mn^MP`v7tjhw`|JxN$(JaJgBjGa zs&I9Xt~oMzZ&dP*%pj}n+D#ka%nsFkO6DKs6c>hqp;{V`t2UXRRx(%0%tbT?gx*7) zW5vW9O6vFJ>>h!I1K8Tvq0@l1hW6c&$?xqdw^CoFlGSHsE-f=oN&BNrn;Ocg3VRLZ?5GrBb6MSNoOrI0@aoUZVRZ&S-1BC72zD9F;W_P6&f67wyqdinO?CzzEw$oko^7@*TiE@xQEYq!pen8?t^9S zg1T69I7r_*MzLR~BtBct^X`qoC0NTAjnz{}#U;VrN(r8qB`A%KRY}l5(U> znH!HaZf&v_j??L{<+2K;BMswp!XK$H`<5{y(S4Nk&&ahZKN?=A&Vk}Iig>1ybZ7YuF0SOY1+IKvtmJ-4 zPH-_T{HJXgxL?U^rK*(N&&ug8Z|}7=(T7yj)SUY&`Ja>ddq-omsuDAlbWRlQnDeOV z2PmaDG=rL6>#pg?Drv8k-|uYaQD|oN`uAB6QOj}5+G9#hdsN*EA zQYG^+IhRu(|NPC*-~TiaU}V7nr67CCSy0;Ep1I0>LnV7aX7AR}L@F-bC*NjD0S=Jg z_|zIzV`Z383KNuKSaNmf*>>tW&2lDa?Gc^oYxd~oC}p@*mZ3B{Cf(QX9!mC*ToZEL z)10+R)_HRA=QX?AnIlz7&9Y2 zqNh6!Bm1S@My>!kbLcP=qb>PPNxHF|%Q>zh|657=vP|lAw?on9x(uEwE7FoF%jo-v z_IJ|SAoKj9zDn|toaXL)BpG$xJWp*Nrj%fmECF59lYWQM7$tvL<}V6X1!*A0b*=jL zO6oUdYWs~IXTH%pDQOGkH@bv2w9+@C#|pq*mE^+2)^e4*n-LU|% z4p%aHW;;a`!xkmyyBQ?3*?GD1nM%?vWYWS($twrU z=J_%u^GZ33ZB06ccHMYu(wmhMB;>SjnAD`c4mx>2Dc1n`oy$+&fM;|fo>lVRBbP|t zWP6>4LHm}Hc2_yMc{|hQtC+a}@>3=4XL9N1pd~lb`je9MWw}qqD2sO0`p&T_AtWY1O7{v^{DPvK2MI6~V<@>NRi z&1CgXhaX_(v`xht^tUVN@0XKaxWK-j&bfH-5he4^GIQ=6TDE8Qp27j)U31RMKvdfhOUh2aneJHzoN1c`INy`ck61Y@&2UZ)|CR&Q&lf zckY(DF54e+rkBmKZ$1bFqc!2mxVdVuhm!s(IrFS8hUSutf4rOSPc^sj3Qu*OE1 zC(AEEPNK2e9B>_L3S(_Zb{bqB!N$gHjAUa|+ei*Bk0A>UE?+I@hJBNk>m>0V==qMr z%YKQQWa2^`4NYBF$Bihnl*~WNO=)=|8o|13e7n#Gn|T=VZc6@(GpPTKaoSRZz7vf; zI`7?7(qAuUe2?V(9nF_wnYil>NGL@(TCVBE!NzDfn4sBnhweQ{$vq>3m9AHZJ>b)qp^8TNqe$f-o0z-N>CJdEKc_{;&4CAHyKjA zt(2mxocDAgY_zEkTPR&~%AYCOpON#RD0$zRv#t4ANxe{}&R=5h#4*R`x^AUwT~C*J ziM&F zZlM(64Y^-~fnak^agvg>SWb7JMry^|4u?y#4RD@Pj0#!1rdGClH0gUO`A?Pk^Mh4Z zj7~5$6sx7=Et3^%-}Wnj?JKw1ucS5PSgMqxn_LaL+n2Lq4vfwvsG(t5vr~1LQi9Xu z66itq+EMa(ZJNgmc#=|t9vNgpWjq$F3fUc7`v^Ys)ABr}1Ru&Opm0f?&PsLlX|Gl? zUn@5_h4dwZE2$z4M%BAR$^3_0@UDy2A60TLl1sX@ec^LF=s4KyB_(@L`K8aJd;Of( ztiP|M?JFlb+u48mO3ArOuF#ltpigD0S@9Sa>(KdibO@(89Q?adj3sg%>sM!Q@3reV zokmQb&S5%@)w#|&Z);t@?pFCV>z3@wdJmrTR0=Rw&Ivl>sD{SQaC?o{73=|}1mk20 za-ic3B{Nb<`n*h<=h3YgucW;|rtMBAYQ{nlyQ_mf|={N(+PMw;uDyxB4@uIQn;5PNJeT!U|Q>RyK(XFdJT zlw*wzQokbC$lTiH4UQq(<4tL-L&;8~)Q7WiBpXMwajb15N2!k^3yo5rF4u%Ki?7e7 z2s#c^`(@rhX3il^Yo4Zdg_86@xf0~iU0LReid&VW8_6lnuktvp?;$1cIWljW3H|4l z%+us-&WpPD?YyI;{Za1I6nM@mf375cSAKWB*2Vpzq%DwXJ(mGykJr7r$IHcAN}Uuw zL;^>o8;ZP}l6^@A)!M$984HdL=0Qs4^eeviIR4KOq&yq zSDUTkG9_sjxnOgvh`%tQ2Tn`8CT~ z;oQ7%zLK<`oD12_mZ?v!QF1Po%e$Msl{!*QR|R_;on18*+-v>_daGX}lh1@feNt*Gl@YPCm=x>(8loSfV=n<;NlGT$zz8CL~4E7rYA+B;-gx;LR=IkbpT z#!o4Uf02pvJoXH}Zqlx?(cNM43zl8wSb_Y7DU0pi4!%la)-HEy;WYWDWt}(c4m7*LZ zSM;1nRmiOAcPUBVms{sNTGZ(LaDQA$+bU-}Ej#dTDqc}?Zz(64Zk{IYrg}6~jyLT? zCHq}+DW~3Y$0Fu$l-ze`z}=qf4(>md+`VP)k_B{_XCfT1FUmAjYr%H9UfF#zc@E0j zAnmOreMzq4z3OR`FP*W5bMEnu#ju~=5Mn*05Vy&dy*M5Brb_NSc^zZgJ?+~nxtGhC z-;Zx~N@YA9lT8Okhs|0rLn%mD7Q}rl)GkWWDRQZ2$Lq}=X-LU=zMRnRRM~^+>w1Gy zg2&{yyo~29J%=gxSJJ;DPmkxIOK!a1$0$j^m(%QZw&CeY+KuGGPJcYhB}($ya_#Q$ z#o69vcJv%?R7$a_oCP`f?lX$}J|$^bF78yn$OSl%&tfsijHeV8aTduB}kAJ}0x5)CTKmXN|`c@{vmND>BIEP}otS zTa~15%cOLYesnn*L{D;UYZQUioNCJluRE84?-19~! z6VUts={S$VzgsC!o}3@qwA|h(gC~@nKgk~h-RRhDIxLi?LxS;ObueU(Ccml_;Fk;p zsEpEeZ*@WMS8kd|`kQBrR%YxctS+i;Dt9;#$+keQ2UEhV*}b+L%Kfo!yr z`XiZ|8d0idMuN9fvi6W)s$5F2V0 zT&1MmE)(jc_IBL7y|0q`Q@Mn@x4%qiFkSh6fKq~HIq`W3ngENNBh|+$Y44V4bLs3L z#~08UO4cg5YSaCs4$@1Nq>svFTo_(X^NrDn<7U*Gl*|{($t`N@mNc3}SNAKaukb+~ zGM5QIqof`uQ)g2l8!F^YC1($L@*~@+F+Wjqek!N4FdnX>^D3yjZKU=`CG*uXa}M?M z&1K11JL=puT@iAbeN)?PAeK4q|L!{GoWZ;h-pauWN-&6jpVCFw_UXS%Fi zU${?F+)PQ|C|9epwl7JK561~g`lT{G_Gz1Aa&wfVr^xlIXB|G7m*N}_oDG0u-pp^P zJ(MyGlx4_8zhetSiPS1thsdl&_;&L6glSSz|16huF)7XZrn+$4IYobnlKWEm#m@8i zQa!<>U1MXvuVx@lBta9oW|#XSQylAbveW4AnQWZR#<^^qZyU+c-wVk?qrd;ig`ZD1 zjEt=c*BF)VdV0L$(63+K?d6g$tHE6l7_Gv(FEiQqDCzH$>9eCDbDPDJO3s%u$ZA>! z6sdD;?|4ngyNS$O5J^*GW zqjPD$W!)HqwP=FwO)8ahnYK&C%wd?mO48Y~w#uQTnq#ZOl%!Y6`I|$dFed33CFxZe zkh-+;_Da%~GHEvL$v5iJPD;+hB^Xh0V%l;f9seIdVSd zCtD#Suj5MIff>BBp;*G~;U1_Y9h?Daq%LT-^DRo!COL--?348xqUP57GnK@7GI2gl z#kpGB%apud$h;*ODyFehY=Jkw8*f&U-=D#&M4Vm??gL8d<7Db=O1JSEJ*(v0Jp)d9 zjSSAWl$>A6<(ut1RN+%4=QnaXb0Z1bz-grPCnf6;nYF<4G|ny)l|34H3@`NxEsL2$ zYGq3DjWf`a)y|FJ1C^xf%UPXW6EeGS!Zyme6Sixb`fo!dbEAD#=&L6)Tqx&2UubJ(aAR$faCrvwBX;N0jVG${9|ID^hRv zWSf<&Bjq&b(|E>M8rLu?^`T1Mqvh0=kdmeag)wUS9bfq;D#L;f*^vwkEy zjne+i#;g%ksPJ{n=CX+dzxGnf!lhSalAUIAb&a<*OxpZ}p z<6S*V$$GP_I*QN_rkm1jdt?5!YbGG z<_{``*+mwnN7L%xhv$?c^p{1*p{w1^(WAGOq@TzNp+_Th5l$}*HV5fWduMa?nNoya zay`sNuf-f@|5?d;r=0K-+IkWp4d||IT_@{0YWW!qowdJu&Ox1WCHc8>Ju7Y}cYLg@ zqvS4>bG^Ua{)zp>5lTtk%E`*IP8gJxHR9mb{ac4yCljo_%{qk)>hhmPMoV8?_m~|v z+$&^g;VqPMyeZ4kKdA);NhT>JDaoKx;_JmO8fUkCo|1f~Trs-a_rvlL-_$pvuB%ZH zdnqOOPL?1i=$xjol%&IC-8V2qS3%S2noy8#2VPx&Y^hR~A7oj2)U3WKI7}(RCbDYk z!7nAQ3Z|++J5C)M>LjHIPsq8@t6e)r!}yqUeq3W1(YwwNjYhWMKw6 z`)N(~*QLARyhABVgIqyM+th@+Zak`F?VG zezHo;4py3+Unx0vl{s^vhRrvwB!|*>BMS|sf14wA&%I7=s-dSlu6OoJJ3&rv z!D2f6p@B{ZFnXVjO5z9P;!ktO-@!`e!(?W!d(noK z5;X2;wry7^xu29Pb?yvW+Gl=Y-l}AMN3PR36N3qp^dTkbbuwwXdkvM$vt(v3&GC+s z_CuN0vp#>WUefEN|xh!|GlJixW)3dKLU&&h`^STxE-b&Ja zWYV<9&n{7N56Tl&M_TS>O71r^NcWUz7#B-pfuYgKJ6y>flDX5L3wpAWyhzqyt~cs@ zPtH@jWOd2HU*_HU{bVKPdHu#Uo&sdfJ5A;lk^hffi>H1$+$!SjeO7&85 z|0>t7k}1n*0ZRn>+p!sWh?0C4ncV9`d6beiF6VdpMq?W#`O|VW^SCBzx{~!PImv0i z(HAMXn`Le<%~`3WT_)3d4?M+`#G7@hg!faj?k>Me>0jidmE@nxjboazw$qf%_sYz9 z)0*hiMRVNgVv}}_4ekcyQs^;e)adbnS-};{1I>xR6dIc{_i^23ie_C+b{glsmW}J# zxRH&UZ6i6(dn;LJoc9S?gl>yy@lQ=)M)UH(&f&xy$4B486i>$yU%vuuE7$*kJth}e z5U#OX6|6@LER8hQ+9EA-3iN_fpy3(h2=Zb=G`x(s16AQV^K#~Ql>+P~3t*=_mt`E)LA7Z;Z$2-h0>8PhThndQ&clx*Jeg|T?3HUrsqR?0R;maXTQQDeskCO}C}4%15hpmU{Cg;Iuh zWEsjvLx#3YG6%DwO8R=4zGU>MG2;WQnoaWMO7g8_@`2NvYHH|po*E2=JHF79!;yuC zvO7X4OEq0;*CX%$N&h zKW*M3LzcUgvK%2-mg2F)gbuP8<6D~nLJ zI8G;=*^OPux!C$cCH*UMW7m5ebk>4KY;y=qrW?tcunxc|hi{Zp+#%P;K4V6W8y}dw zygpb*y;%D4B7qts=4t7FD#h4a&Ws{zI!JrE%AsI}uHQN|1M2xrksJD{( zLAeH&54CIGMB4CVzXC?#uczeyO6D)5&)jfCI$dTh8Vzl{s6J9{ zCU_Sm^$#+2w^_9CpT0M0!+}bC&6@p%kWzqyWdVj6-)KhfI?ab;gHovS0`XI=$Sw=F zPTF5d-A$%0Ywt5oy;kCorf?hEGzcAheC)`Uq@s1p}ybZkXET`9rovS#YbZF4aB zh2^aZE>X&HrYy(MDfLw&8)GBMz}F3(4@W9#UZf!$jnsz&G`QhZPd6%M`dTiX-l@tF ztY038Mk?dMxT!PlQ%dovJbc`HI*nP-Xa((6rIEqpXQ!z+o>oe6r<@l(&AhOOnvCY+ z4W$fs$ujgCgO1$Pc(5*Pw_6Kn6wEy~xk@QWyn680{} zb)nQxq|J-gRuJqepeNyWJJ4gOKaT*t0=E}|s({`Dx)x7-36u}?8_*-j=iI^c(*o23 z=r_c&F3@Fob`zkPcw%dyx8XJw=n9|(K>y&0eSmr(mO7w);kyDT3+PCoPY_Eh(2EFn zAy78d@^wJhBi!9UixKV#pc~-!D$pz7SP4{sC%y%m1mC}azQz-U>(b9%aO(q905lZn ze?X&wit+4rK=;9ICeSFzvKZ(PxK#mt47YuOo84bwF<*mK8wV;Cm#{eE7BkJqNZ6fx5%(I-o%acQ;S~=n0@)#PTZ8tw1Y*_Jr@Z zK)1u~FQBvGRyc%yzJXgGppy{uP@s3=I~r(jxNQe?5!_}1jR9H=bU9EJP#w^|K$`;{ z0JH!x9}Bbv+|B^%4Y%uowuIX~K%>C%B+zc~eGO=9xP1h4KT`e+(B*K;UXOkfK;3{I zhwmVuDRA2e=rzQ$CD5<%oeUI#+kBuK5pHjw&EU2K=oYvw1B$`zaG)3P?8!hM!0mjX zf8llw&?-D}C(xZhj{z-4ie3il3AYb`f^hp9XfWLV0D1^0e<=N|K+L^>&O^8%K<@#K z0vZ9d4bVP#VmeR+Zi|3^hFc}jlRz<`?sz};0~!Ihqk$HJ<20b_@a)Av$HMIfpof6& z1$q`wJOy+%(Ca{d1APp1GoJk(Xf)jZ0U8gt;$if2KHT~N^@jxO13ikE#{xYDv;)xo zcw%Ru1Ar=k9?YSiDA1Qc%YhySIs)ikggXT&7w7_@MzCEAv=rzrpd$D_4s;RNUIBUt zZXW_|3b${7{(;+{KqmnetWQ5R@a+vW2X5;D6(i<@Gu&@n*A!uNEbqk&exvpr{etj-*e?K0E+qMt@7pn2RGZ0y9wY&PcF zMsgl^K3QlU_hFFU2>Qto={}&hbLi)3pbe0mH-J_EtpXZ~Cw>5`f!n`8@8XG)4d`bH z-1-Cc%%z_VfQ|zi2NcPppB;ftgxhQ&3vRmuErweS&~J#P5$Gwzd@xW~xE&AlHQdey znwUpF*8x@F*}H+7;r0a3_XzhYP#;vjl|a)G%eO#(0{sQ_7f|7b^z$^H=mRtZZbN}? z$fKXpK-J*b4rnL1%>;TPpMDkt&4pVP(0f4p0v!l+0MOQW_E?~u;dTa4pM3hc6zBz@ zn}8O<_kN&t;PwpA89;9W?FRG-&{;q~0=)*Avxd{p>u@UtS`V=d0D2r~L!b-byBW|s zKofvUA=Mn9gMjt`Dg&woIt-`@XhXzu2+${Z_5`5MfX)H>9Oz1*7Cdnq(0O>`VW8XK z`vTDafZhe_0`vvY-+1Czpofr-q7n4-4Nza8f8jd}=tZD0KvyE>?Sb+T%T7S~K)V9% zgK%M>0=UJ2cEl400(Avy0h$TlGlBjFy39u4y%}gHxIF+=geRT_ngjF}P0`xV)H3OXh zjzfV?1UeCD7JSbI`WEOapznch2YL$O9s#-x@x2JN66igk;qd(uCDv z&K(#;%ff5K81lkv<9_SOq@;{(2fQ|xs5l@^7v@OD21oRbruLpVr=pmpT5bk-P z5#W6X=zcu$Ina(kzW`+;T=ppXsYJMLKoc0I}>1 zbUV-zpgVw;0sVw$4+lC7ZYKj>gJ;hN>I>g%fO-Ml3DghhF`#UOdl_gM&<8*hfW8L$ z67l^3RERpBzbXB^g=c#KeFxtmK&JqW0@?}BZUgiI!c7Od1ZWY^1_)OPR0R|RdH_%C z2lPAKjs`jd=ro`Q;d?RA4T$9ipx%(>UZC&c_7u=IK(7N`h-W_rY5@8kCo1d zcr^Vy4Kx^NZ=j8VCLorrfZoCrQ-EHD@6JGn!nXow8hoQbN5XA6&;-F;MfIdeV`D~y6|lPDuI0a18oT3V}OPOoep#$d@lhC;)xr9 zM#A?#pdaD(G*Bhb8$j>FcNNe_KtBK-fmr?px*l#NW9jEhp#DJL0&M{F9nd(SAAxoR z+8i;@25Lnty950RR0H%l&bP!^>5a?i_>wwON@7+Mp13dxsD|}xC z`VKk15@-tCz6E+6;r;>|2~;?aewKr+570AsVkl4)zN3N4;kzBsi}0NZv@_yc4D=G* zs(_w_+rB{00UZEzD4snQ=vu^g2GBydT?(`a;cfzIgzx=8p8`Dtv?I`)K(B)16QI5D z#E(G7BbKbq=;sTdQlMe*9RRc^+%^OX0Br_z0OFefWFg!fpi6=F016>oEzmrKYXYi= z?;$`dA;Aei9|N5ObPk@l5-19E8_<35eHiF3#PS-@191BYXd8t44rpWe{tfgpP|@b} zGZk!ofkJQ_1~dw23{V(od!RRgb^%%Cj!NRE^B-vZhdZl3~uhHyUty^OSV*@Av{MYuAcml19t&^mA% z4wR24HV3)~Xd+M%&|IKz5pGYQy?`P>GvM0{^b_0;1$rNBCj$Kl-*atWpsRp31MlrX z_rvWGpq+tU1o{HL?*a9P+m}FFAm-nI20;7dZb?6Xz_$m`Rq$OGXfmE13v@Nyb^vMu zng#STq}mPWVmw<7bUl0%Ku6=*gMenh?Kq%Wa61dA9O!bOtMTkDKwTiqgFq#C;yIv` z5$sIu0I#4;#jfig@pdEll0R0ZM1<)Iic@j`D+~xsQfNd|J zQ-Lg?GO#TL>V|NK0i6cllYn}_?L43l5#QB7*Fu6jfc`+ZM}Zb0+)F?`5#Rejec|>M z&?-FpJJ1q5k+(Jd+=^Iw0*!@R0B9W0NTBC|#sggdG!1AS#J3P=J)j`aeu$+WC>!X1 zK(FA54eRGQ_es&>=uefEEBP1L}fshXWl2x08X^ zMJ(q7^@H0rKuZzsPM{XJJq9!c;a&zB2)7S_-hkWJKwsgBKY;E9%HM{5rULZ>IvGz4 z0jkCmqkw9GwgH-haMOVf1zH5OF`lRdx(4B5Kxe^iKcL?b?r5OD;C32N6T)2#^c>u7 z0J5G!N)npo8%2T|nzJ=q`l&2Iy{}KY@A!6>LX8_W|_=dI`_22Xq^r-4rMfZ`8Ix%i%i%C=9d<&=iCV z0i6%G2B60f-~K@Fpe7yz^gY~82igeXE&-a2XKw`B6mItcg%R#)p!x891E>$sDxed9 zegOIgPy7pXE}kga9#)|KKohX=0a^+4KlpwN^gG=C0-B9y3wNNO z$AS6)Z4Ta{Kn*~nfj$D-4yXrWnF+K2Pb>!72EJ85+X3wh^eMs}0MraOTuN`<4TOv0 zttvc=+uN;25e~PhTNlC&mz!Hx0O782Ya9@60JrRGym2qL^(owNPquY6P}Yw0^9y1w z1?mMf0H_8rZwO>xp1c`QBc7N5v=nF#&?$Ig51@fSwLn9Fnt*;rxI=(0MSLd!y$W;@ z&_4)wJ<#?DcMs5gKu-d_1mD+yHUatw=y&*j2V`GJ`8SXSU)=g=mBJTSFfue1`-50)%UVthtBm z;S_c2Ej)`e%q{yMavUFSJ&Sh`M|xW~BR-t4ZQTllv#zb)coqjuTe|?^yl1OF5DsCs zK0$mq3)$+0CvZNobtl}qPNpCG#NTqDbMeGFK!xzdIkuL47%fhcwd~_yagwWLAIFMg zRjru_hvQAH?|^XTs5J~6IPuf^0q8KGO%U@*Ku^F8hfrD@0pSEl>o*{rzi2fe9L_?t z>;ny70=fxqI4{uZ2M(O#XYC4vll82Vf%2x%<qg6X*v#5dazh-;qFrfW`xD2j6Kx zui=T^f$THAYJeudtr6$}ggY4MFredsg1Pi_Hqg01R{+^ZC*2D44xW7o=sKY1fo1`{ z1N0%#=Rorj-!HaXE}`tH^z%I2x&hhexeNlj3BDTv?GE29f%X8J4D>3{e4q-Ty@B=t zS^_jEkA9W`y$QF&fkHqh1KB4ooDZ}gIIaPj26QJ-YaabP2J~JI{k#lR4&M)e>@DqI z14R+vA3(q6(NF#~`nd{jy?}nj6GMP@0U8AqhwnB(PveQ{KwrUa5l}NwCD1aU7|>=2 zw;#~%h~;P?dza*CK=!W1i-7|0y$$FIpof9B#j`H}4TsyiKzjjw0rVz(e+9Y*2pgWP z^WcjuM%MX2*xq9ul}|s|Nn`y1gk3Gxzd+bUV$~uX_H0;VfUtAIdIt!b7_53A>?p9d z0>XNJs~gy`q~012H>_Z{wgtjsa%&Y3mU3H1ARHD}TlWHCeY4dU=tH1aAOV*9T6f?H zthlxIh8q^ZT0?=b9@TmfPhe%J^%W3SYFd@>#j;3ie>{t&iq>=>tQ@p{0KyVJ>tG

Gz1jTO;IqOtXqR?ic$?SO>{Q9;YI z>(T@p-cp`usEyPw8%1}l)YJ0qL~Bd;5be#Q!&oaCg7IJt9iCU4=3y45FdnWB$HVn> zH%}T-?8CXs8sf3KSR>t`g1Z3B6;A8TG$%99qeRkV<^^nA#Kt9TTxJ_B1$3-rI8N(a zTaRkVBMF+~k=B;!Rg_nowjHz^jBXlfUcPA+o$zXN!Zs@9ISSTx&rwP7lG3#l1?xk# zw4|R_BemAv#&f4F9g=FDO>$U+Nbsi0pmh#eP(-re$(TIym}Bf~$7ppY!?RfXr1MxO zoyU-L9>W4@IPCH&H!@`S2xB?eG>Wt1Cf{W-1g zb6ryDl!G)<&|0P^(J}H}nLDjh%Ar%z9hmLkR=P@jC(+1yX*lT~&U zX^UXEwf1@~M%o?fq--a@W#dvO#T3Pw=&<}jIcBO8?ywl*yOl|SfBFoSNv`jhUCN}Z z9mU!!>)sRM@!;}NMwU5Bd>azU-`nUa@vVGkjCTX#F7bYL1LBbgce!uwUx*CLeXQ@8 z|KH2KKOOhoNPCFF@zs`nt-kETzB4D&vR}t8`!or0mw%;yK{71=3g0oODgRFN08*U@ zZa_K_MXD>ava`)t^26jY4C<}DPDJsFa6Cr+h-hSqxv=|k-__Q$&b3VP`XmX(!}jq; zUPB>mexq#3STLiB^7t0Hq_edr)pxkijv{T&uf@JYNh;xvX5=Z~W#Vc^9`~J7p2ce2 zM)4S>(o$}#l9cRj?eU0z?hLiZgT7;SX^;EtDAr!Dp$9j(sr+)3^{*t4vdi$3?_9~W ztb2FpGNe-AF7faEOORoSf8#sm|MwE_lWJyDdFCkfVYAewK7^uJ6Q2g|H@v^2vye)K zyW|J^mm$aih^ zR4^?&di4?7r$oFu3GJSvSSq6_^5`J!)7eUs>LBc8NAX|iAmrO=c4&?xe3yl*Z*ZvZ zO!6#FD^Bqk1=3PvYYr}|B<(orC-cbNLH=noR2BRCj@hLuR@hOjy>3A%cMH5q_+}DC z*(12YcZOtI!reOb2-1}Ewf@O7Ea$6y$Nc|Z&fQa;0k5+DKwsAH`p%S0%bI5#90_oD z0p9X2K!)Z0y6>3Nly@iE?^G9n8-z|ok?I2M-r0mCy8u;dw+m1b4=0+UbaSz50(0Hj zesz;)WowzL=n1fJESu5%c=QL>A$k3El9M$k)gS0@NAX|i50rLDxuaJw(RaBd)0vvN z+`)HNc^0iTisCVfrG?v!4#K;2$hQ8;Gt?nl`;OVAL$O+kYSF}j*&ph z9zxW2wq#n`eLD0IIwZke<`MrQWLW0azGMD>FY~^sX0}77Im-PUeYv0MJ8Lp6_W_Pk zgAU1Xm;Gt}#mKPiPw^ddnzHXigP-a%aHG+QC{lffKAlZSvd?fW)^x7D35K4IYsg() zhqoy`{*;zy&1;#Z=sJ*$70FAwGhD6kMrTVQ)q!}`j>3OYtnt-PC?YfY4*l|v?;>*b zBL4K9U!J9GeL?Y}t?-SR_cqe$r%u1_l6@{&dhS^<^6 zc6CdxJpyg42;Oean$afPdufxlsY$O9$u>Wpwrn-(sK*D$c#>230kWkX#eYD58#qE(n*-*voewdFzZ>6pv9J$?-_8JxSVe?c}(V%J;C)x zr6)GiNI`ny5$rHodwr0yWZRyVY}^lTJ(zZ~@aXgTl$15m{m?9w^w;$`r?Z)#>Ux}M zN8!H&)_B*W+(^1Zg*@cDXk04fe&2cJtwOG&cuW<->m&{F-Cd4*{L^QsO78R>vrCoS z*4Zdhs)Xy2N|l_Zk%Cl7%i2{XgW5K3(bDVsL{mdUEZ!KdN-7p}H(8gtYeuu|;?)&t zp8)mhi?n;TZ!_yCEGt3UVCS{BtiuM6e>z(-DLwP29mRh@&$JhtM@Bfb&M@D_=F&Pt zC<=d_J8!Mijp8v%sU^S@sma?3Jrd*AL4*AZlc5e8=sRYY4(iw0C{j9z>zGOh{npu< z4k<_n*(aN?z3$8aa|>%$MXWljB2wSb)MzT85M}O~=-TY8P(a4cM-sG6PNQ0Td>`%8 z*@}@;K6}|w{0Edz|1_E4P&`NYE-shiIn;Nqc`Kec#bcCE3ojH;lMuJkImo{t87iIq zeaGxlIx9LGMM~*#-BKx?-8E8>(z$Hy&i(cdMPrF@f+l~PgV9J^kH;8$d6ZJLCiKl5 zg}zBj$wFp0mitg=OCqIf?zf}(59pek*-gm-sSCi^GPP=!qJ9kWY?Y~R@^QYwV&kV=IN)<{7rbi6%u!bzd&?FG_~G=VIS6yL8V5osA-;d$@k7bk9K= zDM^ufyl9SpJ|KGZjnwfgBx*&ZSHW{L^QsOmcn4>{2FO?I_mX zI@#2L9H}gGl=wCzlE1gnRpMLu&X`O~+;JdBDiQ7u?B@Q3$gteU`i}Ykz1+<3>X-+8$L!KE_jNXkl#by# zrP49yX`~<>(_`%}V(CpwSHd)t)2?c&T&wa6clO&s@~n9(9b-$`CS-;>CXeLy*AGut zsg#b%wxjqj=opU-aOjv#d>4~T$BgiuW1b~#^`m&abc{zL+&X3h|3YM_V}|;U*`;Fw zosA-;W4KPKbWD~;3eqwAuHC_qT(?eHLMia~(dAjwRL6y|R7O4Zn7*m)Y+k3dNZ5`d ztrl5}Lm&BenjMPcc;98=QXI$n&Lq#`v{q0&Mu8-k=W|gdX~(rs`yS<=HbYf$xbK)< zs^SnkinZ4bO&%BGRl;|ZDE{6yR|((YJ3}%p;f}|Jq$%fH{gY={&Numv`TxC~I~*6{ zRo0*B%X*dXOv$vYoyUcwDesm31<0_x-}fDJn)2>M`0Pnx#@W zgEdl+!ue$Ft{+1c?l7uBcMo_CpB_z#^4Br)tbZ-@){wr*{ECDlI$Ip6&yqv!DE|u} zBBgA&Ua6GLK^iGY*}S-R2T^oZn!L3^g z{ELvGZprl>vrD&h?Q9e&-NN-rrCU~ZwpJ&VXBNmGM}xDip+an@01@<=K>< zYeK6`Q}kZirGs!rrS%v~o!Qw6kWwhq>?qPIl(jgPTGlb?4rS8dyJTF-q|SFk-R8dxmr@w9 zC&kO~b0m)>_Sd~m)}mDJA={23ZSP_2H7Vsr(jBeICccZt)tZd(omZZvYxSde%-%zC z4LVn>WXUDz$F)z)Zs4CjLsc@=cg!wT66kCcDOJMtNTo`$G*ZwI$Ktg+p4zj0fmoWM z)FqT2e_bHY8mBtDwQUV!`xv75MN-?@Qb_5PupPyJK&P}75uK}&ylB^NZM;MA7zL7CAI3%HQWanLr_E4ReCj)9m#X;Kj$-X~Ig{(dyh?b`E`HxOR|yZG zDExKKGcDnc>%-ENb6@}D8J2S|-!cEcmve{pVP0iDQ(xB8d}m6gW$j!amZrQX`xhX? z@}A&3<}~HqiS|3y1>gpu6H%l_Djw;qf`Sy(1$brcZguM(q#4wDx(K@2bN=*b-<8(0 z#XeIp$L!K67j!m?luqHgq|zw|X`~>XQm}SsPJ3e~TUJH; z38}$&JhAnZDJF#&*FG#-;9rOgbxf}Bm|Z%iYiFZK=@_n4 zDjl=3vo$-}Z<(}qhb~GRX1tDkZ}S@k+1f=j zDy@e~nc3OmPpOn?b`)t<%32)9DC?MXhcapKT`n$VQs+CbygMsuV>m}mcC=IIm-N8lFHw^=qmHGeCJK3W$v7%@0bpE>7VXj zjton`)pyKkO1~2gK&lO4CDMr~Qs2IlJDZSX8}jwqomwll*9&J=R7M=C{$Di5W^>;+EG%Fm%!d2El8`_k*@PT`Vi;y;dUvNYJ2T9Y zWKj?l5Oh$473ESqITS@jP!v&6K@>z$)Svf#AR-_Lg7AM;UES5yRlQrUx_c&nK02Lb zXTSC8`@Z$+RdpSJBRHiol`i$-w#(t;C4AYM;o}7~vJ^g^Glk&c!%d>%nJ9S2 zU->{V$)LR>1(UPUY^j6EI=~Tw$xIqdMEm7{au&XP&46+y8d(Y`TPQ^Hx{W!`DqE4W zfY09xHsN}8$>;AuGo$PC`M$NnVl8CPUxv3r)AN_0kz4Nh1$>pQ$XmesUybhlFQeJf z_5Nb&{ji$I3iuM<5={ks0gW7@0E0|`ClgLLVgSL%B8Qq*gpEboo108@l!_Ll6NUUX zOSp97zfcWa&{Aryu|kzbxD!^YEW-U+H!;kyOX#H(-e^ZEEA%B?Y)jJSK z7QYGW5vdzl01&uDOX*a50^kTvX-uJk#4}xv9CPtSYetS)Xk;mJOs5dd%NnLTS%XJc zz|*IIIk>hbdHN(YDY~9^-mV5JAp847yaAg2UXDg?xxZ)g9yZM9JEHr%h9*YW=gu21 zMI~gvpNls_)9*zza){pzx_6!-I30xn1kVtjG3~BchVa(rW(ZTrN}c@nA=NPlccE3Q zlw2dqhGbai0oG}*(fOjOhiYv<~MDu!(c}^N1WG&$L0kA6K zaKu7$qw9C)UAnp+viE!Oc4&G(jYe*{_ZRVmeiQ|KAi4ssLi3}mfIR|pn8CWpDtI5> z7EKj2(8wVwFh~q|ZsBw(1`vFVGS##qY>e{t@G;5<7PsxzM*iD692)7C*o$Bd<>2ihYvAXNMdB%t+0tOSVC_^5U49HT#6>lwARAHc0QH|A z$V}B7$NbRLKRoexltP3i9-+Q5aLwMGAeTNp}1pdFH8?5aY-lH6L zRy<*5d4ypNGfU8`VlZO{~a{z@1jVVnW%(Od|4n&YQp}iqRkkipDsUyfLz!5ys zm`D>D<}6n3!QNJaP55#(!^H+PvJ@`XQHbVs8B?5uU+LpZ!4_P{F8TPKXhw8>>`Z<6 zt(QB73-P6Edis1ca?3qEgAY=a-u_~AZ{LAtMc3QTq(ra=vd3@7TcGLj+tA1%9yjR6 zc`D#^3kDE;K$0@82pf>RBYZ%T#5iO^HdAa%lS5pEY~Wd_1uixzrPf#(AsYb89K(d( zN0ARaZAv*GWBh|c>3f< zSZ?sg=1vpLAp18)n3?=6TDVHpMS2qoOPX;LlAkse6HgXyp%A-5vH%_us~_l0eu(yv z)R{br=1b{h`(D5ilLlwd5v+k6SiXn1Kr^sBghrME%eN^+^O6VOyRaa00pGt0mPJe? zUPkky>-*rluwY$e6}*VIMNyNmWpPD3uDaCm6C@>Q@j$(r0UC7}SVpr%w#*r!qLdQ91 zKSA-u^rqImFury*BUoovy$Df_MCfm{x>!{GV^`xU!>Gf`u-HawfY?=>A`VYT&|> zQfU#k^3_VNT|%Fu$N^q3rJUyg&ryib9H4m}#YC^#fjnT**;t3L2C~`fk>>*hE>}|e z)NThH!6$4dpJ%!pIOgDs)(jjo(a2KZm}UyW1BauZNP**DrYdHESKgi zsk4CDIHE|Do0HwkB5+evXPRn)$CND;Vi$-huB%3zp1J_-Dk;9a70sDCzSw{x#uw-2 zWVI)m83%h|ZYSOh%~(@MBTKQSVhX`yjiakbv1VfwD`1V>5zS3f7KjUULys}K7pfIU zxY?+hv(VfQ{kGqU&kJl&Hen*Wk<7^!C+gNwfKqC%u`a?m!yOD08#VX;{mj%4JTdqQg$PXyn%8@{PD=Co z2eO1$(N2#1eho{4pA#zBQ+z;QDAq(p~vAA zVi$-oj+;aR0wLxcw40<5vlY#lI>f9695KW==dY=}D8-mJ6oSVX zM^lkv%pp;%fEe>wb7Rcz^`bauI>Jkuk3iMp$YxHDkj+qYy|#vXRda)>Yj|37Err+x zg3jU*hzJCq`_XQbg3o=bg3w@dgU}SRXCY(=wOb~hpcCZ~NLc8sKX`i8lzSd!UZxPCQKpHrs^A%3 z^*~(N8|@h>uIvdAxHM25SEd1u7+0LF@P6y%K(af&bj?7r5REJal6e%OiQ{Bv@ur`# zfWJ=zi*Vh)sLWWUrr!w?WhEC!>*D?seaNcO!WIg6N)qE1DZ!&j;_j z^VdW6{!Y9dn%=LYkwd(1(DU=;!Ra~-Aowioi>4hIu>z8ZuQm6s_nAGJ?fHJV>%G|D zSsSoASC(?(AxZZJ)cf)t^r*N0Igi(z$8MeUA74)&O6fKBEp4|d+w<0rWjV_#r*m+* z{Ia4~b{fitbyHBb&=I+-P#Y5}7EIbbnemdg%;;^Z!3X{_R&h7bZmf z_%+*yI+t%)BdC4f#Q1I}1LRbuoOk;&F7vMFGUuFtqPlnuc_A_O7y1Ir05u`i=b0ddn7k>I z+!=kQ5Q#fu`sr4s3eI>{XFTUom9c;NDLsj z75AA&PnIgQHTUJ*WYVfPfv|F!No{ZE?FN|UZOoOjz+G6CrVbYpqwd@)bnu1P;q`SLT$z-iGoh1&u&ife2ieJK5;6WhN-6Q`VeY|Qtf0$ghf!?hv|O_$O7sHfO{ zBZgn2O<+A1j|IP=5TUUke8gaUyG+Ms;;V`@;nk6gCue;LY9vO1iCvV=ih90lJd_(T zR~p!yntc%_d{TS%cPW_qEmg{uCIXttE9w`DI)V`pc14Ox!cZ@?Em;#*DL z4E9DNGiG==-_sO=hjT|qk;3_I)QV8W8MoSLTdMAxN2f6fJ$M#M^{<&2eU?gB71O)w zq~H`8@3VrXtos~O=DGj3I$#}Lrxfcz4*?=h+WWS z5erh=t0`hZio9)gEsz+#FgnBMn?mpwcAn#;IU%!K26t-FpgGw|PqP_$B>$i@M1DQ&> zvo~K8XT}yIq$zTcAYr z(WWf%wsnLlM388MhQZsGGbS~F;8y(1bYx7dfLVDXD4xK4#svB{kLfmkZ>4eW?+=u2#-#uQ_ zm1i)%hA&og2IDJeWX1^(ns=E(@X+mOCsOFXhFTG)%BYyeZmGg}SD3YU5lX_zNLK^n zVAg_^CiT(Jn^Mdp+_R<-+|db99GZFdCB^e7nJ1JRHS;uuNSy4D%rh~nN6b7;S>mcb z!W1G%v_b6Q;mgS$3?R4_gQm@sWuBKdE%T&daoQSK=Iu@pNJ-50c;wVL*n7w2tfdcI zDCbTbq{%{XA?s1R39p(;hO4ejAq=ubgItHwJ$@bC%ODOHuZf3c`x3wrNNcorIeRCn za!+)1boQ<^h2X8_3JMW>XFq98F<;AP3iZ+g-TujU8Zbt zxqi_UB5}ey)|YGfL7DDfCPw$ft`aX&BKzm2OmVWGFog(`ZP1V(6l0~ zNBU-Sd!!kg>aegBPHX90VGY2(!&1E>wBT9&v9#dEKE6K5-RD?kMW=hcqJ@B}=!K?( zIT4f0DHNiKz0jOhJ8Q7#$bF#;-9KG?CeVCHJT%)~fFp3&mRzJO!jh? zu-TM89!F0zg-F~3^Okq^z#gCz>*Ye8?6vK5y&yQ@yu_R^zblg}f&n?#fRr15WJl~U zWsy6gW(twGBj&qJp;)So&>U_|&=YQR01HNG64#m1$UX5vQ;5Vpv1CQ20Bh?>&)~eG zhZLHwO6lB@uMKpr>g&sA^RT;L+)wq5#2m8}_Np?2QqBu}*Ps+JC}nYjq~7CRQ^yd@45jtn;T~-&3myWFpb(*yhQGr#ot4|8rvw}NAf9ftQhBnRW6&zX z5+-sgK?)REb00)l_+P*dIU_tPI?-pELh#13g+hd? z+|(nBe}CZ(Yl?kjM$P*Dg*SF?f};}pQfu>lR_E_;xJ2;BMPNZ3gCyA>vtUNgF(Fl@ z;U#ya!pH z%ZV}dEAeQn@dhuZ3OoPEpd(F6Ps5UdbS9S@^_|CEru=fPeUU;mF}jYhv-0Qh@M}K= zIASb?_0_Ob+MQZby#IJ2I+Kr^Lh$zT7=?&Ee9kxn&P$`G+qmaYh;Kn&fnwu`nKJJ) zyLLE5r@SLD6y(2T${d&R3#Jf>li#sgP5K`Bq)4CGH4@p2pxlVL{(Mu2#L1p~5;+;L z)7eufihM<4d{613J5AY!B!#|@H|2}#`xsM*#3`S)YG-yJQ|yOPZ>chv2`n?W5@UTj zyf<(PPW7>ZrEzVqDQlegv?)a5#LsnhiNUrpNR2C*YOPYw*6I~;QQKvS@jtK2*&_y< z#vm{DmoK^D5>pPj8{T0Gk+>T=*TF3{`PAv~2CYBRi8XV)M#WIHv4 zZQujvjMNw0V#+Fa%qLAD5_ilj$0eyvWh~6nPNV$OKFy!R6aVVYp?)ED>_G%(ZJ-CF7*@B!GwsZ=@e6lpbHGNeR54N(;^EXj3vk5wk;U-x$TK449tg~iMO6gLd~}}sOd)t1$x?{e zr%NWEI8@9GLc*{KRxpYlcpsD)$4rUrfhk=%r_@xHmMR6uhACfM+LxO`Bu@F<%|m6Y z6Bd5K)P4s3v~s}8ZiDt9gp@BNM*h668kC=c@?mNp%1>q8@+CKX&Xhy$hR>KnB<_Yu zCvDi$34{3@oI53Q|C7YHpWM}7uBW_0CBlDX$`&X52c{5-6Fv<#09XaM%b;8+4UyN3 zg5Y0FjP&VbCxBIey9~U7CE}kqWsMX6tSLm|#LseL{K`_XRw)%aR~Je<1o9VdODfdQ z_CkHuDLmCj3YQ!(4=jk74$n4)NZtX<>$Otq#C#vU9|m@3NQWIAm!JbOr0`szaLEBj zo3h7Sz!9bpi96s88=>vPLf7j4wBJ23Q_GO^r<{Pa0WR5r^Wx#O_(7pjWD@hq8@ejY z9@-7(z#MWIl@q4Oojr^EK`WYy)+vZA(u;)S|`kLd&|niob=+vd@=_v zr=X>i8Fp_CnPNC_ktu)N1s9k?B<_NR%L_HD;w+@=q|IcLJJl{a;^xF0v8XGc3?QkvR2}$n_2z@@423isEagrxIg*GQHcO>=r5!{&!QhIN^UWg-D$6v9K4bCNe#( zkW^Ya&N-+}&O;|dkrDII4pWFA#RhY#d|K9-+B1OQR;)A~(XeUR)0(?FSo0Ok$?=G) zvCNyS6&AKR@50jVyD+#gk{m8d_F@aOkc#b;t4wvnTlWeI(Zu=O*RNT*Qs|Nf;$hc5 z18@Yw!Va{zqO;a(3c;I7nnJ`rI}7xlDbV{KC?}3NStY&MopL<9%#<50%1cZk5~p`e z&*=gAel{_F$95IBXR|WFpEhNO6MTy)M37*E-hy{HPV6y&;8q-OS`pUaJUYhYJ)r4A z{YmTA!Y(wJQzX~v39a2)!_{V0QlwB?m5gh)l7@&{8!xw?L93c>yQD^m#O z*XhkoByg*oW(>v>k{gG4&KB|sy3i@jvI;ku;Fs);o>oi+`yytvlPE+J(~6GeaQ!um zzc!z~PH0#M#ly9|C*TN8r!f&0&66Tiwe5p)kX{y@!~IPmcr#i`A>vOm&Rn}(V0jCa z6GxIEvplA2XCWigyU~;z9;McsLL^V`Nr4<=XM*(ht5S@*DL0(niYY{pUW5FArx;Eg zGJxP#Ofano>xvdPcd5|?vNvn9RSm2(zat(AH5Pe&PR?=<0wVjdYP3WlLMoDr+fBLT zy1I=*G_hxyM#v@}u$5l*4tRQUAXBhmSM*c5`dkOwJ5?7d9K z$wTE5TxC;*rNNgBUo?C^yP5epC@zl9My5RE2E2cnQp8pJlqrNZ%f?&er_z@;?2eJ( zxMWT-Nv;o)JNB7SV8q;W8ii_m1AVn-lfd#OclUX3W5;!v za{5Ne5vQB7$ivDeQ;5VJG1E;$VD(nEq`1B4ZHf5+P9oSoL`jDQTwd7{{X?eQar(EL zLL^TAbhjP2ZV zBxeKVN}W5b&Z1@II^on3atc6Sy_lt^*@&lG{3$U9b;9wIL#bRTwZlpgLsE_*BdsX< zy(y{OFTXK`NZc<=PcH4~goZ+L8mlwdk$1u=b{05jyHya=tM*b-sp=cM21+|p&{C*H zsbJ4e&eiiQlDe6(U{=J0_I0KZiMwhKZ)}{YkR!x9*X4IYOIqzVAz|FMUt$jGnPlXcrgz__-LymqsW&C&4>A>Yh)nm5rd)BluQP>6obKrx>qWZFR6S^VAThFM zbXA;^N6N*&Vagk){$5jv#Hn8hhe^8Zug<{gw_M0L>CcHdVG(SxNV$IKqc)7>jz5@k z$=&f=Q;48D3_2IyKRGW{3?R4_H=E9GvsYxD&3#2Sbv=ypV0;cUwq!q#m7B_m`5Q(C&NQu+8Do1Sa?#Q1jmqfl08y`7Hkda+)yF) zt_4rjI4&Nd?G)gMZ_XBV^-~*CWMdSyAywu!NGZh8(OEuXWR~MRgm;N^-DmqrRt?BK zs#C}Z&ZeB&d-Iz@uU_2NwsqL~oyjoM(|rtF7DJ?eobZbl{l$z;F3N38Kj$3bo9CP} zY~KPuuv6p)UHv;+>-Hh=3qAIs^z(XxKn#Q%gX#5N9i5q4t&;Dp2iEXAmB0if^-Ytq zFc!nT_JlPW*BK8fZiJ+av#7NhRFx@FJjS1C3c;i67KgL=UX{2K+N6@u)lgcsH%vm) zi7dQq@V`1Q~DYckiVN#Oel z)un^aKnfN)6-uI691deIf3rxDze0$hLogr;PA7tY@&45vi6|!aucSVS)L^bKg$Onn z3{$M-^Q6cL=mrqnibG8+!mV&R??_h6j$#Egud&TNV_M@Ru9u-kF)aUR?B^wD;_BIg zb9O)IpYFtQ4&xFM48_8x7fosAJ;n1BA~aKrGly{c-wCJHGceoIKOi2fvGCkj__aF# zN1!ciKh8Y(V#F+WwkZT}t}`e^Xg+MZ1cN~-zgM>pUR;;Qy+LRwI&m&AB z5~q0F`fRPVZmrN+W)fxiV0mKfY*TtT!)KX71Q|ByFnFKigdqb6ZpE{v!H`V{e5tv8 z&Wts%Vm4Fl%?)bdMR3ltwS5t`4e#TyK3dHU4wNkcL zv8>^%hnJF-mrHCmkR$`dfxGB%kbem=Kx&MGK{+|e$-V{bXpDzHR>;i2*5M^RjRU+c zdE}d~$-zKyAfHtkzI3?9?7nRBi~DO9Mr;9^ry9a4T>%m;pO+`jgCrY2PcsJ)h*8cKA7VSz)#(Sj=&qMmJO5! ztz~42)2b}nQL1bs3Z(zfm9ka7J2{m6?n)ILM+fqE5cpn$OrJ*@M~IOk&6QECfb8}y z&7F80cOooi?iY9dJp)yUAs1*&4TyQvQ1VYx?szD9l0t-sk~`t&q2a^+GW-+~Iqdt$ z_uDG)@eTMB4H$a_D!r_?o-dHAdegmyQg&OF#)q!pmq7LDOf{WJ!^*5;mF~5NFMi;4 zZM(IR|9Z3{HG~8EA;%7THZf{0`IrwMmi;jNJ8k~<_ux+r*X{Nr@VCqDN8$4_`v>&T zkHP1uZT1i8Uw#CiFjx0uc-V^oh&A6gI?eYWT=Vs{)pmjvt*ttqj?`BF3e_^U0@~`` z&CLqv0#=$8Z00KQZ$mf=SdF9MYROX=NGZmjhnu>XH|9eqL}+7`O8o4*e!?nEza0DtF^Wioa#|m$?P^J)a9Q_&5N#1M z1&gd#g&jBSh8Woo=R?^sXkOumnO$(qq(zpeLiy~j7?HecMk= ziRB{u5rt@C-`25d8w>(r>001~&==z&*8U6N2)w~@1XW(7^d|H9=o~(43c;Jm(-b21 zu4@swvZIiv_s~{`$T6+tA1oLu!zyt>*9)uh^j|Xli|Kt&o)P45R&w-)YlP&Gd0>fA zHq1pm+Y};khs-#!1lwMm@KWtO13EHsFU4_*xnV{Z?4xi4Of^ONP&tb@+LSoX{Sl@R ziE}@PoI<(0Qpvy#tsB;OZV;M5CNci!((@?kgc(VqJy*z1INOv#?u4^UA%adY==XW* z;Pfp95ZsC%n1)uCI{edUXl(jQs~uK&RjZkbxc%nZcr?|R?#DxDFk=om8KBPiSKXjkyVp6S_Rmbn4{rYhz{S5$&<4^Px@c5k2)`TzbTL0oA*(O z&~(pEU|#aaP$Zw1dPP^roGOI&P^^+a%bw?Yc1 zx3H2a&n!7wlzeetb>Z&Cp=tNxQ1acB`n%roVu4F8$*-6mPey+Cjq2ipN2LOxPF48J z3xS#7_g!AO9gAFOiRz$;bcT zLz+Yu+bd=&xvl0+C9iO%l8?}xO7@fKn^68G7-*Ed@?O(vqLF&duSKx}CX|2G+yQsT zx)O{>d9dYCkym_~aONdx zyNea{EQ5{L&T6l~iy|M88?W8j3V+jHLF_n@e5{5KsmXSb>+1R|rFtQIy;IL&|J@MZho``R)wV2!T||Kk)24ee->sH zoU0X9!rl#bn>VZ_7k7{JLnY&A%nLoWipQ+M)dICq8+Fc&O(3!bvCv5kHcjRFj zz6}bFLBk5tXThcPPTA~IdfI-Zxv`r~$>aL{ghSqRSj)r~Ah3l?&N8O>^*i4^^I&}? zXH|gR)uqZHY%PH`O8%F|4=2X$f-ZMmeu-J&r0>K6iQxyMGyE-62(IvNI!=mjV~ew{ zc^*AK1ZKfJ7tk?o^(es;PbKDwdCqYm@EX(e0G)_byg&Q9DT!R^e=&s!`oW-c=lOxt z-V7kP6{EyE)7h%oYxwC$beGVUYNlU&E3l}ZRKS}foV`RYP_5I_r3N`4OfX8(xDe); zLL}~jN$_IZ+2|KMUh??Fn4e5uWAj2K!jCa!ixYmNDMaFgw{Ik4j?OJ*A>#EWM)m|) zya5HK>SejBNt?37iGGVIM388M_{2k;lM)+1a4XI>jn%{o7y^B)xic1%Vc-L=Qr)%I z{ygToc(i1&;#)}L6)yumXet)2w_ys=#K8{wrot`@MvFz{r^lE zy;|3$>>~X)dosAaq6UPds4i^@j7nFDL4*-mMl^KKU3Z~_5U@6 zNSyi!E9&_|4UYR1Dep>*@{TUD65lCNqPi1`jhO5%Hibx>>T%1nS*t4YygD(S$9H9% z;v|w+nli-oe1a)N;v~=5l-W*ZuwX>hxwe!cJ3fSNGoKjYGrOv^XnHn6ffX&0-)G7k zCqHWnkvRDi$?CdHB@esMM42}dV|@}`UFVi5(S5loSDfxkO(7Dedx7)XA%7mM)ezGb zk^Rpl#{NQfwKFjxC8jWnIjzr_GRd8Bt0_d{&X};JYIUy6RAKk0e>n7`#JKP1s#mR4 zmX;{#{s*Q!ajL&>3XwR~vz#zfqsw{=?(0`S>(3{~`fL_&0) zGPO*~EmR`>2vfGW#t$`xNSyGg?nbK}7C8t&X-*)#(PZpHge2i9!f^uQ+1o1Rq3ln2-*N>NhR#3L!aHJ-wRpJJ-?YEyl1 ziCsw{nmAS3UhC_o^a}maUGdOre-dy6)?l4TtuIBF&dRSgz8IaqJ4_*Xm;rYPkrFH9vJvMGa?`CvXYyQA z2;OLl6e9i}f8~}Fmy2{?2PMVPCcT;)#ed<>TS#0$QAuFwTH7BPNVfO(7B|d5%xz za1_^IXBDon&Wa0kk4TL4xqh9K;!~`6$q9#=GRPyyL8cJePB7jSve@0@5e&q~Z0i|ED8Rd)IpeZ%gvLGs9%rgU8W<)Jd|ygcx=Uo6C-{uy;Xzsob@t2 z)Q+5oLW-B1aJ?ymT*x0Xg-F~9v({9rb-4SQEY&#;{y?u*7PSA(#9RPb3@x07l5@Sn zB?o-nls)c%ubM&x9bhn6;NuM^o*6)JE1X=)0D@cLWXc8*+=}m-CWUO&b7*r%JssQkex-^S%A^z0n@8 z_%fQK&>j1HQ@{9Q=Tv9<6(vHwnC}~cAM+!emy%-lBOfXF2yW%?(c8YyHto+tZrbOz z`!?+_0yB)f$J?Rfy-4lw71OZB+TkXnlc|i;*r{ZlGg%GVxxzXB+n>0u14d(*%xa8! z==f+2^AuCp^6us&3K7~c3{fxA-9pZh*_}ZzTnRY6Hdt?BKF7jgpZi+!<_=axGYb3*RAh#E1pb}JeeiJLPx3? zDojM1!N$;B$?X)vAR{qO_NG8AVAr>h_wa(l4rdP2zpPlvtGzGa2;?=Ul5oI^Rrh^| zL?`pWk;#lRrSLTe;fNgPER_*k#hcM2Gu6<0r0F$MXP~*#_0trRr|o8*FmSGwea z$4vR-;(o*wB5@bY^tXa_rCgod)##rHdLc0f%o5tbAS+v<|2b3cIQ{=Jg$UAb&_VD% z#))tS5ZsDU`WVv_J~}oHWGdy(-h5zB&pvNUs$+o*SV)m6TBPLiy`WrNqR$|>%l9ya zNSy5URXa0q152Qpotzle6W|<4R-i=mDpQs?(JM?LfbmkYI!I z+0C83pSEge7N)iO-IE)|sC{8Pa?(EaUKsW%#?0rNs)P&eJPKhjW;TtAW7qfeoGC8x zy(u1A?e_tWKv|=st5huROpy;cy}mIzd)Jvl@CNch3K2TMF{ZhvXVq$v<_DmpI0iH- zn&Cd@z7+Y8Y5s;OM_i=$nnEN_^Z1peinVU7Nc5i*BbsbYuULZxxY&z4WU~KY$`mL2 zx26z5vJLtT-t{ESAqyVT~hv%1obaN)wNc zXPH7I&-CVjd@(CBeQ|WU0)WBHUKz96MaEh`W4VcR?&Y6ZWb)A!Se` zTCbT>&1Lrrg=k`;HD>MF)7J^z{$BBrYflFpfw4wNYuy9B7%@LxWD3FC$$SbCdtxBME1`ynemrR2o>u=uF+?nK#kYW5y@n}fnB32(Gu=}k3~G95f=t5-JnoanVt;MSG6lRfT~dLf??h5e<( zxSrHylj2hJQ)c=LrZjP;KW7S&IMXwimor&dA-xIi+St~)ZY?b56lwoiVzlqum7!&) zs-*1HAe=$f3ws@iIsSi=9r6=XHn~H7WD1eEL&mMl^z~Vy4_;2p2XN&HDGsiFfKQp} z7fos6Oh0c5kvP-sD+e;&{4lDfX24UI>Lp%**GQLL|=jWaqHW z)rHcI&I3i#mnTO00(RhLAC#IpkiA=T{vy+VoGEu)?nj$KBu@Xhb!Wmg1S0Rb#CV_7 zHMkRQA4t(pndyuvO`PeoO(7CzdhE)c&8Lb)zbi4K;fT{>ZCi?b$TVMU$`PmeB2$RO zX>Q*zq?l8=EitC2b(M#lSrzt_`M%kdEY9~QOd%5Id+h2$eWxhvM-n5uqpJ@}OOX$m z=7&u=;xs>K3XwR?V@_EfSUml_@8HzK6q|1!rJ8Q;AB&X!z%iO)knZhzS17KOUV$oZ^$zQtp&$`K9 z-Jf+6(_G7h*O2bJ+s1^7)n`?#BAiX^>|@?`kr)U@H`>{()|j3p7pP`yX_#HfICl#< zhyxU{Id63L?(~j9QJniQ*~drVER?IkNdHSn?P`xN21d=l1!4BX|s! zeN#{SJj!+nz8${mFntBS@DUGxxYR>_HyW9#VnQKbt)+pYK}OKKC{mm+mPhva%;l9z z23iQ`E#Ue4!5|aQ+c$aa+=pgI*XeVp)1@l79SC>**YGB2y8bI@WTwk6d;B!p=ddud zSff*4Bl!JkFfXFt|AD4P*Y69c-<8#neg8MS8JfQTGa5O>_dFrc4y+S<>xBYbhCu=d ziycl+g2%GC6fM&l&3^~!7w!ATK(Gxv`y@1~8J{UL4*F8qIxM6W%fJ$xaFwcS9B-Uf zFr$S2$;~Ki9+UQ`lx1x9xGG)O+q~ad>adO`++dIE$lXZ0Q|Cb6u@UVG);@UOu^vs5 z(wp{ifFn4hLC?tVX1-$Oa_6kYm#Y~x)}WE4pt0H%g0xa67jl#nDOT(o#R`ZOH#d18 zLa$lQ7Bbb~Megs1io_8y_M#DkT&$dC#n91*{~v}04Jv}ddre8@LE$|VB0LJ;d9F7I zxOy=iaBnAw@L%C&*vQ(lAr8e{qkrQYG5#`tWeOzup8KXz0y zJ2<9u*mw^;YrMy4$+rNOe`-p*8{xsgQB0&@a9I>9AQ)7e8w}dv#LTwzKuNrW^>I?r-_f8JWOD<4rC8w-ih^wls)VQ z5V*FX&K~{+TnR2|Orj$Y*IiQj@G9Cr4bAl7Wi+ysKD_97KE_k+}AVtpj_?mv!na_EHo{;t=gGSlByujDV&KnLDT13 z(8wV^H|WlJM&NV~1`vEI;b*3SidX>|!Gq16N@y>X`eEf`;1a?c(P~vnjish08G&b( z(Elh#4%e9qho=M|q!7D8O3>j}JCGB61MLsiI{1vjy=b14F10@cID$_alWA|^S}q5T zd+;S|293MX$WqX_lR|_}(ZxPvG|fp0T($y!ehRF?W#W>b|BmKF*U$7ely1>}+1r1? zm#^vVKcbOa?(JE;PYv<-f{P=2d@ex5k?qSZ8*Yq+_r`J^WUtS{+o0+7>1gB-uN(C0 zJTY*(2m=V77z~@rmn8{~dXKlEJtOrVLujUy&b0>sNAL>V zB|>5ew_T1Q+wo;<#*iu+S&AWL3emhgVFv4GNh72p5BU04uqR@s@F_Gay1s_HXu;RP z8pt01INkzHkKcqwZn?+j`1;u}uRjsp>yM+E(e?WLV7B1ZLiYS)cq=qL{|Fj6#PbH7 zJqU^vVY-0sIM2|i`Vq^JT!94eeGL#p!Ro9bbp_UrbXA^!G#B*K0g_6f~L<` zp^-y;ZqTRmw7}^c3?O(~@Q`VsVrfBsY*W*Mj_hE$EuF6x1B(%_KM z+tEBJeQe(VID${$99=T=?3pf)FK)vZtr(_)A~uuGPGi_Z^vHcA!)#!c|2=46mD#%RaBa}&a6Ey?R1d1H$-zKhTpXpY=JDtuK^R;w3(03dY-PK3pd2G)Y zVKaUacH>{x7zZaC)GPU6TXyyFX0GCL9| zaEY=I2J&DJE?`SxpbyQ8IA%lV7 zaZPlAT#aT%S0F1)1;VQ<$B!%V=4wjh3N&)dB{J8ONWKWiCZ+3T=#{O2MjnW+k#C@> z(bdRGLyh?BD~se_yuF$txd)Bha*<5)M8aZ-(8c^Kx;mahbE2z`;|$f|R#fU>{*E_Q zQy70iBez@_yn`ucVB2#o4JT-93j~kFmqpG%763#t0};~>##dcAcFe__t0|FLXylel zWR@2@Y9%&24+!Lx=mI$j&5LgQFilat%F6OM5pS%fJeH%8TP_cte*k0kVqd9{%NP3t z3fU1|AvH8Lx(YGPKm7HTMRG3QUQLk{(a0?q$#j1V*=}V6^7uq_d3+R2imp74HB3N2 z9#B(R7$3%4sws@?(a0?qhA(=++;2$#^26xzcoa>It~`vRhp)b}NWO=+S5qVpp^;lI zlKDJ(P|}=U#>xev$g9z1@-mtnU74&hjUqygWud%?w^&ms&!drBE)-v?N@0O8I@t$rtfo%(LL;|aCkwrRvOQDC zlliicq3@ZxatT+-7BoG&A>|~)kP@u3ES8OUn>EF<9*x{`u`E`K#d)v3mTMc(eb63N)7xG2<7@o(_%}m)wBJ7^?%o0{bDAuVwVk%$0PUT?=u`8@&=y0nY z2z$?={lVHO&!zr_=1J*N`!|3i_{2Si$JLP(x}L(9tQorgjz*S3*Iy_^^A;nx$M7(= z0)Fm%w`TGjo((Mqh&Xa)+0XvnbFNP1%w_?;d`)l9MI*P|+rHg%E@J_YuZ!;SQ_#HV zw(Q{UIkyh7*H6ORpy~A!(a0fQH|W)QV&HTU1`s?wdC)XivBcocaZO#_I%Y6m9S~k( zH_%d5>a4L+wLso?z|Lsr?@+^pE=Z9UTy82Go)%n6A$EndU>vD(AaHyR?G4s0cuMdY zG)GE@+Sdb);E%=xIufFeVx{tt%&quRHABUx(8yA#_&9}VUOF(zIjctD-(P|y5mzPt z9L@C3eWO)o!=MsB&6r|}bZ6rP^&p2(ga2M}>2eR4~7l0MOX+1szj zm#^vVHZ*dGw+;Gk-u*jWfdK^X{@-aTTh{%TnmaErp|4bFOBYI|vXBFujMl0$q%=-b zQg_?>RB(=k)%ffO0RDpMu#j9>+Y2+atZ*KKsTwGJc&+tBV|t%WBA18AC* z9=6W_9Kj`Qp1`$S4k8x5WX&Mbi$<1$NZJ&F2N6d-k%GwaQLKO+a*s9l1djGwh4$G6bPQt0?5g=k*qz@`{owgP_sFIaFsCG$SwD_Z;H`nEa34sG$MO^Z-9tnd?B~&;1r`<2ifa; z;%(6M`tE4t5U(5b?L0kjx(EXZKF0W{seIWO^rKw|9Kjonb~>?0yu=FS z^NR1p7pfT_E<__s@!@<^2p%6C%|wb1TccP3!-v1_L_fFp(ytpheZcXoRf zlmgG6@Fr>op5IgCQ2#b@)Hu_vzIW(Epx2mv1-4O2uATu9aU_|ttF;c;kX`N7Rqkx2 z;%(LR`6M*5)Y(j+5Y0;>W^i$Mr%w1!L|Os%-~zU!jpNa*=!OBUmEbCEcvY1G!ZCPb zHN|lx8hIBI2auR8m4^a>qZC~n1vD$V;?UX}uMh{TsvI}+cvCf{(T7HExisc_aRd13 zE9A>*IEJ$r(8mqY^>Hnl8eM&8ZB0|_!>g|>l56nxYKr7)G;+&DGS4rPLbX;sH{D;! z1b3!=H@Zr`gXTt8B`50a3s9?sS6G(G19*cqW%3O)a?52h$1jt?QqD@}O0_^Jc_F$; zo?U#u9q_3{`M$S|_0V0`E%yRQE5_(k6 zV!XAQ0$G4YZn;4CI0o8Tu~Z431Ggc%I@Y0C(TyJwQdLq_Id+_aH&s&_C!vvBE)5}7 zC49lI*7Jfh=jTV)$9ZUKboCJ-RrTsCi)07hUQLnI(8#-%NWzZVxGlO!Zbnnn1d(|4 zl|}LiyuF$t`6wE>dGI$f?(i=#+C4D3 zI=T~6hv^#`x2|&R*bi^3rZ|?Mky|c~X*6vrCAzve+Hm$mJ-EFDZ>Odx-hoDLxhQz1;f?eH zeaV-jE8|OOUUZdVnrV2Il{=F!;EmOk$LG+**~eu+kIxjgur7vI<}AdneXMjok51&CxuDyDB0Z_W zoXO+ZBc1WOXB8?MNrvPLtR;HFO6_qE5u%C6iRteie6#MCa_uu@~T77-e7g)2ZtPprb+2gyAyB(moz5PyvlVKE0|C4cH;}y3|sr5k(qHk zU@V~!&D)DH)j5<)?d1#@6LBNP*=S01y*z_@SukJDY0knIuj%VE(a0_L^-O*&m)hU& zjqdOFplQ+d_Z;ePsS2{sFT

    GMm_$RR#A=*@XT;B*cK5IoAXn^uHa0SUoZnwtUv)MK)61Dk2I_o}w|hI0 zTGT2DgDntJSKK*X00_t?*}=X31&Z}xniJzt#3O{k)#2{EzT!MkzRtvQ9IL6lK2^#R`bB zXN+&^3Cy zA@x^`#^!?YMpEDrcNT>RkGOMA@ggn@wJh*13j4vHVL#X#G|Ymx2z3p}x-p5@J1`zQ z7VRRIneg%0QD~x+y{Nqua0I6`oYQ}~?Q+U?IKFJnl z&*hlnuX-Scd<5+mDTdsD=1Lty-UB#-UmDZt=+AGx97V3hm#!H_u0bP9QRHe0(Y%SB zS)*lKpy~Ao(8w+K`aC{AGJ@w{ithOr z(A?;Heqmsq$6pWG`_JL+(DeSl(8wX)H|X|x=HPT41`vF*r)pXeHrbPD?l5Fbsc4A@ zKp$~6Hc%6I1a^ZMNiW7I^i`9%1ccPJ{IPrN?2p%UK-9(BL?~h^y#EJWx8z(09Sk)T5 zG?FJFUV)0l5iX9Q;llr(LwqkHy)%M-6)e)6dw9u|ZXPUNpb(+KVo5^pi+V=k#ZQC$ zs>uIS_LgW%e1KNL8nlYF9eH^BI4A=Wo`*b{&?fGKOsuVMY;maE1Dpp^;k{`BZcPlpA2_6>y zqN=Ps zhIHe?$%b*EJ6LI1Fc;#D))dV7Xyld)X0cK*)p8+U3+m;I(e-i%njl@hDE2`Ju|)XG z2z8d_ay#B;O}X5LMh=mSK@QJ{0Z#8`0Kumeom|HNf?MI_r3Mh(iswwTV`2rQYUefg z`kFB-$Z{wD!5Xik8AN}mcAN6e5;#?z@xrDb;?W8iMDqH;I43U8>U-&dfKrEczc3K1FwVo#&zO9Jt( zYw!o`onTf(ebmw9=!OHu&hw&gvWd>41j9jh+N-A&7%F&6H3d>aBez^2dj$p3TPbC7 z*-W*Tt`20%(#x_>Mpw$m&@AaHMRCCV=t>DzSdJ(k!5ge8m>bZ@Ef>tJpkT<9myrGa zD7r*`faXP4B1f2XHnfUT9Qi)pNKILM7meIfkSbG>*z^`zowE%HsNj66v+lOa?3>` zM+VTXcZ+{T!=SPQx@l=ky|bc|N9}DZ}{6>;6>sWqYLB? zG()-q8SO=)YO+gsvn-ESZpRy|DU{pL$SoI&)X6ZRkn^#GF!I~zD)|+f9$l3fbu#{% zO3~#1@V07-5VKviWrW}YRlRp?aQ|$nVWHMF7nc@Dh zsGcd~Rh1*jc)Y2aA{m25Zn;RLsWO+jdZCtANad*LQaK#Wl5RjTnkoxcSQgA7c!MX}}vdV=_)=I-FTxZ2?aEZ%sbosm=&6BQtRvXDjstO zt9&!MO1_RJMpq?9({4^38TWjr)K~FVY6|1aXyld)V_qp^-zxVX&NxuSj#2s~AA=6=}0g-#TzBoP|-5ta#pZc@|q2 z_u=Ml_-(J2`fAmDe^HobIPyc-0i?1~G)_|O=Y!+q^4sZ&ugdd=d_V5?j1$&gDHg>Y z1_tAXt4zdvQQW~4B6Pu2^OnPOxU~*s+iyWTh1HQCGxR1jO-jGoCj*Y)lE!43F1eP= z@#}Pa$(r$N6B=2HUmHvzc;s-@6De{W5XA~uQTyxWMvjiYdZEykF66g~uSu_mYT%Y> zDK*wup^6<^XGIgk9J>UKD#FHxOeyDK;{y~TG;B0+o#jNY-hsgJb+kvM!0}ZyQA(%U zw*ijel*SYqI6Twk$nj--(VCItOK4;%a(sb8G_P-%?i|YF(G~FYlVA?6?Ma^gE1DEt zPtT&B4pcz)_n+_vX!`s2Xylgrdp18(D9q>cu8r*T*#Lpdo^*XakNR9u3EA&6@J49* zeJUC`#P0^(JI@fDj=}(fk8rLs6)+oHENyOvFky2=bz<}xXu&Ggmdw$`zC(XU*@v^) zR8>58IE_Mt<_@9VO8on9+Ba|9?3_jHUvYmP+EY?@vIEVM(%E(&;E0LCVKlS|d)cLP zu;Hv)cE)nIS3zbXpLeU_P1FoL=ThWQ|28ot!JdfPcofZwZWvH3 zP14hbS5+w>d=GD|rZ^r#Bez@}(>!swm$v(*@oIEwyo}~VR~m|yCR);PD=G=&MZBq+ z!gwBy+;U;e@`M4mrz-E}+wZ!_abpQU#4$3F`xMi-;Z;`dRQACet0|AY(8w*9#~i;r zoJ&)!;Oo0HqYGpUni<{bp>@-=oL_c>K-}ue64{71S5qSE(a0^A$aKF%{#IW#f4;#h7rG$o_e z(A?uQcxyEUaw{6SF=o0xQni^e+tTdO1S6{h%`8nQRO_4l-MsB%C z<_ARL_R0a7Ou9aDmO23-lF3q6MUshIV_7KU@D^(d<@IRfmJ7uMQd&+$j*PC6 z!_d6wh7#kEj9Xb*9tY!%)s)8pXylg5W1$yEwr2`?m~ghz&{31ES%FB>7hNS;G(Ea1 zQ5@N)m9PfuEQ{qFyv>?o*@{MPxmXq}#iE=ZxjMRBu0#{0E0;Bf9gklw>~>4$6aK>G z3cS^tf_XO@IYcl9uW9+4Ugx!s0R(^3TQr>yO(A#yakLXDfczwi z6%au3&0VlEah30K0{?5S6VNhMYOImaJqm(s6@lbfFdsKQWqRU)^t@5Ym=T+kv*;8Z!gMoPd}Ye@|6!rQGWhKte2%s8Ie zUPK|9mw0rAsHR$jElAmPCKr4uc@G#EQ8;&_Y0`}yYoiN?S6m*---$O|Q#qeUBZnx* zARpl=jT6iaAh>?dFs%r;!s$yRS#fw2D9jPF{(a7JRq4X~D!D1Nnjldx%S=vXB~l6D?S!+8UcwsX^9c&X!v07%Fs1 ziag=#rfTA|EnlS&p?N~{x{*n|-hoWvk7yUMHp4T8-=T?8df9#qa0I6`rqYerGgAm2OdJJ83MOBUVg-ybrnk4X;U#P`VR+4A5Wv(8nMwv;X&4eHe9EdEY5Y6$<-koi2 zOD`Hee|U*~6*y|(F8gYDY#p|#+orf~Q|v!njrN)pV^*TMQaau~2ynz0qqROf;M(p$ zWtqAB)%Xc`b2Y=#u@pJf<4v5$oiCE$?a~W$Fl8_};vi)Z&!%z$S9ZQ)0(aDQ9dN!^ zZ@F`_@pfyfpdXDabxt`7(YzF7UQjOH#y$UZ|BYZ(M73Op=0-PEC}wT(YVoQq1&t5l z4cC;*FdDh#a@j8+mrS`_7)qDjF1B1L*%m#^Hh3E8!_gJ=Aet^+1#Ok*{m}{vXF`rZ z-wLnE2VU2pEu$8+@2(A3s9!;1((Zn?I04`_?te!X&oleq-Cum41s z)4$OS>B>oQHZodHLgi%zJ%cx1Q#k)bBez^Qa{|I~clr2xu)RMLxd+=5AaDZ%UBR3Z zL;P_oE%jf!CT>gT&^QWUL=oU0hx(bRl26+s~68a>*2AUH37#ew(mXLBc%+I1r=qG5JS|y>d zoiRVc*FaN3KR_e5TtfSd(2cn}TLV4W*qb8f(60lCWOC>;V(!UY4&+Gm8rs>qgZ5X@ z$Ss#q=Lj;AclsU_T|vtdQ_#kk6$I6n#j`)&e9aiN6ph?+@hk|42fBY{@0E@&o426Z z(e1tBn11#uE(_*Oc*8XXb2=Ki<$_rx3&xGpfxfB{T{4%W`O%e3PYjU;B;!_H7R{x2 z(=|o&PBe1MMKf0xjodSRCAwbjLQ|uw7p?8$W%nhF6GDUULqRXf4(W?{t2L!^2O7EM zQdt_1inrfBKyDz|{5iUK{(vS+S3GCM5NyJDkR#7;@%7M@)34CTA#yTUw#8R|ISV}u zAow!UqfFnha4VbzMv<&o5XA~uf3~!_i&-ZOWGcDpj(l}MSju|fN3lavWwU9VtXj(I z+r~25E*EZ{u#8EuezhAc#*KiPjQRT2{V2q)u-Is#SMNYX+>G`Mt0iB*dK#K2rEBdI z07q~NyA;PWT@GSB_@Xs~*r{k_DTtj+A)2>BXu7jm#G@5IUeh)aVmK$D{DY5%1- zUIk=-zZGwQroVThkz4L>-=#PnWdWamHoDJ0jV4Cd=fO*Hyh_M^zXflErr$q_Mh@}2 zK_Ac41gE1gfZ)l>64QzhDY{DCkKC_5W7NhFpg9?5ILrO4C@UkFPIDvxCBb+Q2P}iO7KTx0v#z)N3l}*((w*_ zshXi;JQ`UF6=Ntw^HPFIPD-Hg@3CMBuC+=2Jqpc-u790%Q7#l;baTL1$ThTIAYOHars{7ZzFL%^UXP+_^4Da|qP9Z`&{^s=#mS zZjkzg@1iMEdeZ(f;Hdh2DjilT@AtohFI6)}Jb*@)V#GI0A$W{%R1+yi+!VzM7$Ur< zxkH4pGyxET#KezdvlgYa8i$Uue>J~-sN280wL4R(WQIl!4((tbF5_iN;lW`ng$NA} zOYA$(^|q0+{iAF*=`FCE)c)){;Nu4P6WM0^%}A<*D({~be6fGHaeNeGs#YyxGpLp-HEKtsNJAoe_%Jr7~e zL)r5%_B@J=xX4NdVzpcOP0WNyjhwO zn1V*$btKSlNfJ0Qx&)S^8Hrf}q*}5Bj>DU!DS@NW$h(jPYLW!bjV^&Anvu9A0M(Ku zunljPrUVAi$Ss$^G`Azj7xS_RJ{(;H*P}Vn6~X>`U4c_ESq2}%8>T6P51^4-E(0$g zD9D|`_o9p7Av7bpBGAkSNVQ}Md>e0;rUdRsBkw{IkmJCM(IxOanvu9ApzI8u#haxm zfv3^PyN(2kaunF-laWUSdjUjCM+Kx>aunDDZ)!V_p#bhXf}sRdRwSqhKiP1BUZV`$`-OM!O})q1a#B#ir1PqyaEWX)7DL{D zBaaKF14J_80xjp$DoM_tf;URj`4iE|Eq6ZK#?3a7_;1Tt9^L)Nq505l`&w@iS*0Wa z9E~?iQvgSxky|c+iB9Ox(Va+s{}-eCe;b+(UH>oDiTzHUB=-;Ct5+A_Zrzwf6(8w*91WN|Vem5Z>cqqCK zzKv!>R|i`80Iibb{QL1nX*&NtG;+(G&(;;?Yt~>jf1WrRcs{xSo<%dFD*&yDVy{|~ z2%g3prYVAdppjcHf_A4<7!)25*$6^H-yhcNOPXEZ8CJ&;Q;Q-T6akHez)? zt&-&Y?RcX!onJ*Gx7_(`7+4+1z=0Hg@825T`=3J7q3eCEVW3kd$^9S4Tczp#o6yKD zcRvgKQp)#4bnicoW<%HeT7jQdNpk*Uc%w9({|Fkn<<4g>fU31hJ_l!k_*?($Z;hPu zwE;vjIiJ=$K(|(s1pbG1l8lsB&y#$Eqk+ zK=62ETvLO`m`d>M@;jgcxKloq+KPO3IW^DKMmt?+N#ZP?Z( z`S*WlK6L%-Kf7G*<^ST#*7Wj!(8w+KvhVD2g{M=|J^e<2h+||Ux8&g2vYb&$=C(gsw)>_2*3`!@K@I3K81%H?MyfPpcg0`rn6kgw!=O&>Sg!X}=Y41b;L- z=s3ag6f2f5b-f&4tY)0J6pbv!iFcYp@HpYu3z<<4z3qdexl0vTB9LSEb<0P1OJC`(QM1`Ej5_!5JyWOfkn#|P2n{LW zqlx$rW1ZyqY_nB_1APUTJ%e_c6j}a>rb-=Ieg!yUWI0ZLu|A4lyM>BM(dbFMshZK~ zuN2w9*|DG7IoD4?cRH;+t7+kmubuqg_7ybrt^bk@%{VBU=uE)OFCJFW=1zWoE%jrUX`Ulu>x)1yCA`g=LMfn;TP~DYLPRO1$*uL`Vy=%x zSII}vyy&WAb;Nk$R#=KAH{eay6v?${;lS0{2 zc_^Ti)1xb86Plf-#S~s`SuPv!W^2l29U8gia@k#sDGqP$a3CO=cSe`Yg=mI!CDRi% zxQJDkWph5>bWPcuhemF>Y!<6z!^Q^z)!Y$XHMgS)(pAm6cvKTQGP(_Kxu$4tMkBXe zG} zoC1#rh-6aWn1tiiT^7z5yzQF8*$s`{a^dW$ia5RjXFxiKN0-haXp(ee&S~+)9AE8a z@f?V^UQ;~XXylfQXHkfFzOQuVZ%y!6Y z;Fv5cU3113aCh>yK*V`}bmhDkO_Q#2Hbqp9s{V4!c@N%xO#xkoMsB%)_8Cz?&XS~n zguWhKLSID_r7NK=F-wRo%3^-v%kaL8uYsnBzJx{&5s|?fI=&3gS$<;x!I$g)$yveE zv}={;rF-*Li|(aMS4yQ?x-VbMS(Si#{}Wxk|3-UASG@-B!PJ$Oquw)kqcsKlPc*V5 zSVt-bYU6@+76%$YaKU~Xy_k(vgsm_C;`pX+FPpHM?Hm<%ryllM>~K`6&cQKpb(+!0PQ=^ZEIV4(eU}hOYEx`x3z5@wy%Q6z+Lt& z@UTA%yM_^W+uL7)?{6Jm(l|&_dDXglST~#BPFLN-?%M-2e+jnlR%@AJ4SwZt{a+Dw z1rIlt>Ha2L`LAytIcPOaPmpY+Gz(#eb86FO6|6z4Sla>ddbn}0W+B$jvQ^2G--9!4 z8r_<|)o&H83i$jkRM;l_TN)(u*4cChxhi&nKZ+}K|ey9g7I2x4IXlPeAC`>qPKW(V@c z{^7(jwU*CfBwMfL3;Ej6uw{SM2}eEln;{BbI^1KQ z#h!0r&#mlvHhZSo^BnffuxBrOX4x~xo)&xdv1dPf4zOpQJ#F^f#-0WC9AwWTdzRR< zOrMthO{l;rufc!z{qUzA`vLm-En2O*eMl$yw?paY^(0)cgI_c1FL)l{^cRuxfK(JK zVE@Pg&D}rJ(N`%A_SXCQEO95oC!rd+rN-(+V5O=hWpy^2`3w{GAt-j7eaw_|o+*5U zLWE`t;oC!E-!U+WS3EHKcnIwimJsptDZY(nO6gYnPQVeo(r~sUbKB)X#QpfPH3t#* zp^>FQ#MdZ96PNq1grizA(3MxZIcEWXKMywH+Mwj`XVJ{)`g=Z|D^b-#_WaX$D>Oa- z4>WR!=M7>$?>3y^VF1C0k2jcBgbg2$YVPoHQlZq}madliYJ-`b!WOneK8F>pQgMw_ zR2_$J#5Br)sv8XS>=PoDqW?G$Y&Oaqc>mE&A$EoSW3sR2fq-%b+BZ@_*^H)2>0Wy! z;0SJMOrrtCXS^IoPQw?j8Ap21$Wk0Rl|nSH2VvK@`3MVm`(iLCV)t$Zr!57ycL20~f56ic=qM zrZwKAmN|wA9g`woc*>M?o-h2JLhK6p!X#etKnF7O4y;dDBjMxCX#j!CtdwrGUjw=X zudwkZw_T1NlksJ1Mvo3OvJ^eWQ;6ne3+xVX&R4+KCxAV;_9yxJSTrlTzMkz%7I+P0 zj~|7%K-1%gqmf(g@i{zK;G6}#J{aBWHkuh-uLoxscr9el_v5Y5^n4DD9O8L{Zk}ff zPIqAd!83)wn08t$Q<&f0)ECqf$u6+Av~!S^{}{B-pf#%$T!c)4SjG$!`XoiBaI2|$ zc&6|v3b9LM3cTWhIPwFuPo&=C`)H<=ZneJ(ID%JLroe5NqsMpgWot%{@1T*T=G@7Ha){>*x_O={INgN-1kV&cZYp7xDSW%R*DOr%5?$d% z!~j~c${^D?lD>$b>zcBK3|T|7O!x~dW$X6;LwDAFvp4DrH_KEpJUi&65F=y<$t-bm zZlCa1TO`HfKt2o7`%$;=ZO(Ax$ zLJc?8#Q{g_=d84I-jzkHu)7Q|7S{@E^fts%U2y^5sc}GhtNUW{hi~cMnmDW@SJc7+ z$5?#pt})yghhf15i1Ap+Rwu@y6>;feEZ$&i4`ZpTyD%{p+4)v2o)m|7>5|4+nwPiU zF_wrTEQXB5K6j;LJkfneB~vbw<(Jk*z>*Y`9Ai%l0Dzgo>#Hw)$BRU zo*!V(YuNLH?D-+~yp}z$W6$f^^9J_3kv%`mo*!Y)o7nTC?D;YJL@&I2JNz1~TnyW* z6aN9qAsOGd!H$R{)B9;vGKf|G%B0cW0XX6;#4SKK=)u$M$@&W>w&pwc*Pea2Zfv zy^9$-fQVyqLT>mb zq9ApYMKK3&qoyckqLEuJiW&Y$VVx^!Voh{StVXk<+Zh~&4-}+|vLsgGP1Kac325Y9 zOA`H-B#G_OB~eAQlAt6=6=g}3@g{0YVi1kIi%Fs;N#f(tC2-st8!_Flw)2TT@x3fY0=e$ z!R!RBqb!OG@HT3S;;m@pmWx72GT}@RdCuzdNL74bx3=Bd$bVa1>iH`B&!P#^m4`vL z>D1OWl22cM8gHbgK5juHw_G2-ja=z;rBWTp_sRLiuaOc_DB~AsYIK!xG=3c7)l(M7 z&+v9?isL6}Od>E=MD`TpU8g z*jcJb!niNGFusPSMOPRG5rfuI7R6WaHfoCEE;Mq8C=Ax}^X&l6(jEf{z8%0>-emy6 zt#DSU8$fU?(x&TH*rtT_7>YDGge~?q0;k1X!+QRjgvx8n)>%iQ~Zp zf7(B~363rs)3c?)GOXFB7YV~^=kfqU977R9myeBn%5GzPt(2`*EHLi|IK`11#XGu1 zjd5_9F&wixY|n?X8{^@Rl{_473a9V(H1?IbSys$!&-cS=n#KNfZNN%r;nwV7See<_ zQ}JE*m|}X2ZIym)AH~+y%jhfP2S2^ z@=cZ9edOXOUh{a(F7WnI@{4G@!PPCIR)=Twjnyh7n=1YE$eqB`?zL|kIM8!)9)bBJXa{r=J zpOm8D-g>@}bK4!^JzdV1EwYCoTv_>@>AnmcV@p~qBi(9D$``YRdd}+06L&#Nw-1K4 zZy!oN4ksT+l8>Xw$Fbz&c=EBFe5@oNtH{Sm?BOmL@$7$qa6ZzOeKF%N? zZz3OOk&mt9BTYUssdxDD#<+oe zE@u^C{pe&?5B3k2H` zzIvf^BY3c0$%0P(Cl_1^Hu={sk4}ra^M8ZqNYbh+`Ciz`Q0!ke;1r&&c!eu70(&8t z;rRRtQ+D_AAl_{XaiItCE>j5R;|q*@Y_cnXI(hubB-RFwOa2_!H5KLd5a6taZN z+F4tdDZ(B(@!;y;pgqCj*myWLogVh@w2fb)8B;b^`+I;Rc&D+H&W;P7b^X{Ks2Cd& z@)rAZyj3F(SGjwipva-_ZQg4C`636fM?$$suj4Lki(_Q|11ic!LI8p5@^oE%khY7x z>bX-B+}C69=4twRH#9QijtA{m(L!VpBxpPIJBq_+2{yOlaYwXG+nzKR#@D5)m3DS; zrdeDLY*AVnU707K9i*$w14dA$vU0L6kHs6Osmr6#$dWFbt%&K_dWFnHglM50T?>O~ zQgpTO#*wrjR!dfajWy2}Fu_DlkAQq45F2icu7~T;^yup0 zkpD;Bm4L}rROF-6G(^i7d>$(=~Ai-aAW8+=jN?aZSu-sKJ79xgIV8YIrKT8lFU>VylLOM^S^nU%Cz+ z$NOcegTJ9IcU%Wu{Of`EHV}}&%CAM9-7E(a@yu@aZz2I-mvr`*;$5<2e-YYp$Jt-* zgDMU0+?R`PZ>Aq=2=CgdfFfQQT@hQ*AlU{5vEk3Wq%lf2b(NfochgcOC!;NQTqUy@ zd|78tNUC^KbXB|o4T`NQn$0f)-O^RC2k(}p3aV(!9aq5|2G`J@Jp0;g%om@Ju7l5@ zVX@W0A*19ArDM7hK8bhCQVAbJTOJ!qfDeXn1GQNR_eNL3-Dp@^r39s8x)OeYcg#`= zKSf*axDw{Fm{5eHMR1bWEQJX-MJ^)u1{3iVk*QIFg4#1(3ooDtSMK%a;0U5w4~IwB!+wEW@_!xLatQx~Pv7$Ex!8_F zFd@I5UmxWgK3w>E+j#htKkJl`ojPG3`f75| zE_}U{+v;GWYd&4!tt$I?>O1Ux`|18kRfgP#^ABz!6xG)5vf{AL-I&<}+XoXH#g5y= zcE01*zi)Bho3Zl~Y1 z906EZ{OgdALg+%Y-0=5E?G zoH%h0oVUxcgO5&*)e}m-TmAL8$_f6SV#@#a5-Th8s$vy*5V1gC!A*n?uhv%;^G@8u zj$*R851a{3FqDJ9o*Wyn^OJCXMYNuR)>Cj$&y4Je(UDz8H6cgXD+D>Mt{s+Zg`KxZ zX|C&b#zw~qy{_{-X;Rh=QgM|z#ig1EQbUMbGWdz1M=&A17^SkH7MDk?FS-1bal*+b zHkHd&HvvTk4Anor<%)9Rq)g@H>W)OU%*L<-D;IE-8_ujNvGK~-H1m?Ac+oFEkaF^= z40A43fPa9ITuu$Zf@^h0in|7r1US(uT+=e>S6^Yc@kGP38X6Wt>Zf^l@ z87Pzzg;HPOpyxkY18?>Lu%m!io0;sZx0@2}YNPhC=x9DlH6h2#Biuyj$`v)}vb&+Y zO{fX3Y`Et{iK+8$X-&PULq9hOtCn8dDSojCYg>bVHaHNm-0Y^Bh#mgfoATa`J!bTe zi4FZZ$xOZJCg2}QMNUSN!>J}>2Y>GA)kD zlY$F|c;lM-UqwYv5^yHfMC=62+ydX9oEzR51AkUB?=>6_{2QpKN#OTTO~elT z(ydOZl7ZEQ&6z!JU!qaln8v_IW20eN5^nZlZls2o8;#jlI4Rdq5tXD|MKuvSDKobX zIz^X#MD&uP5{mAKjfPptGHaN9L##Kfg`wN1s7c^&rJ9Hx_^z|ya=iq<>IEj33hEEX zhWd;oyV5V!xXep~{6Q*S67mPACSr$t_KEfD%*?n?{YG3>=Nwp!^KMdW0{$duKVs22 zo@yd?@aJ#NlzZJ=&dIxQFx6amreY&tL2}67e3RnyAS!}#1ROv$5hQ`I)*+Wm#AKRa zLVEFi>I~9bF1fwE%O#W6iK9zOFm+p_soLUZ7iW!nJ=PAYB&4d++(hW&Nb^fjvj?(U zaqRCu&ARaOa0O!RxMtlp+!yA+^?K}{I5w-UkuMuthisMI*6uB*i<>H8DaXwoCi<`? zdl5hf*Gy*L?fw29{=1tUfFIy@D`vCsPg}Bs{MQ2i&&17#TlmF?Tf}`rZ{!T%Z!qL{ z1qu^_#7KkkwNbo)HOz0e_cpt!Ys+Q0s02RUt4lmzfNr#4hf-~sQ7VpXR9Sj6tXqDT zil-c!pW-G$hh|H^EH=NmZW{lTo`xGh0;juwiiX>(4drcSKSBd#-lcg9*ilHSE%R-{ zmdy1u`l7GTeIM_O<>u?}p)Gqr$+USpH_^&f)8?elYXFsod-k0?-0zzY(El8`gd1%d z{m-C*v8CUCU!jS9*(+TL|H6A^DTF7`mOCzl`smLGum3sln~~|?A57pTC${uAAN~1Z zo%AH$7faF;Xv-ZZeW@7zaO*l;3IcD@er4|Ov-P5J9 z74M#0hk8H+*F_h>7ty%biokz9Qxk!|Q@RX3hj+?S2A@V-?zjxPJQ3cPy#j3vIdM)O%yT-^rETK+HcnI`c=M0cpvY=e^O1KMe1UCGkCI z%N-|vp&0Y<92FcTgREbyR?@qiT&6Feg1+b~aM0-3s-UOY_}9CpOXBr-*DNJ*4%%|Z zC9y=21iTa$u8I#vSH=6#0NJX-e~FJ)4|=Lld#4NIJ$Uadh4C)5<&F!Z+Y<)c1+QHu zert3o+=7P0Rtm|c0YdagC;ukAKbGX*fVSLm@)rs6>ksmkGv~WyW2X2^bRqm78Xj9A ztZ60$L*H~!{4d@&OHuq0ZMoy3@D`0SaOMT}Ny4+9fvREOZ$+Lp%mWkg%o>_58p$r{ z5}1v5$x;H{Xv-a!fEO2bx~06E<5xh!7PT}B4*@Nl7+nkN(D1Y*E*Sczi{ce{-z-J( zGPLE6i(DtKh5Nlw`R+mUArNiY%5Y{CClp|+Z2>YOf%1l~DI zSu8t2j?=zML<6`l8IH2L zed)40!0r(eD@ibYEIC8LDZ^W$>)`@4P_}wFw%L@SX)kr5oR9a?QYgF8mP3R>*o`hv znTV~=1QT+*?8m7aExl7F6WY6>ebQ-#fq~$Wy>FrQY!qY2DU+PnqOxn+u$BEAR7uFK z>^E~0V__@%Y<8u**YosHp)Z(H{)mR$)4$x&{(CfDM%J=F0XqseHUGy6uMa)J{^-Ht zw|IXngT=4WmbGAU4>!@iUF~zl{rgQ6(0yCv+HyLWXhm(QD`1r`iPROK_ej^k6ud{4 z8kmT-9HIe2w3i7(1Q>z|nJ{joirGsTm5FV=R(|rjOx`JFT=o3Z7PNScv8T4gc>ZZe zy-6i38B)fnR8h#3aWXeC7E*?{*%h|Gr|SR&mL<+Zqpl^5JQ^`0aoN{_9fh5me^ILL zzjp}A-z7a}?8Lid88ZgambIASaue;#8;g5$u9L48;UH9By5Fs^=ZU=05D>#P;90~& zQCFeyu@!@V|5M%np75^eqWBQrHA_)kinbgg3PKi;iA01Qf(e;OPNa6kOC-D7n@Fad zRC4+SI2ju?SX*3xn^@TWAZz+ux0vqB>~hx(G+It*^_XKWE1y53iettW0UFYU2l9zxx zxLJZ1@T9gEauaRQ_UbGb_xSB_=d>d16F90_-(liQmatnM#Lq8=du4mvJ#KHc0-t)> zb6#~&f{S-2dF)&a|8;G}aqN2hHIgt#SE-taI*pL_MFDe&WUnnAn#PFCH1~ufdVFP7{jGO zTZbp>7j1hmrWlN=28_PD#u}b^LXj^K9nbqhxMV_V?Kr9l83&FQh_>!JZcmi6*5(u5 z0Q7EERusAinl0~$uFyAgJ5IKB3eBDYCaL;l-Ky@0Lvn{C;bv$V(O_AUUk`28pPqE8 z+_6YvD^X3vC^iuZ_FG>qR|-RkMwY4HIH;CSpN9^#pnNjKgN4an?m;60Gy;HO)6r+B zILdMVNveq;6&R&@0Zi8ABGVB}NH5~5LKbdtSxy+W{P<05l2`;cKQkBX>W*Jg36+|- zi<@Xm-62NZg43&|M6r;|^bWI|^c%@fiSy6K2JpUc#ce4i+Gm&L%l5TQ`&4vvpQM_Q zT7O&+)VfS7Xjs&UdhBgDrucsN4D0SLlmd@iF1bCf@V7Ww2cN$b$0YCbL8D_KI1;hQ zUO+VwI~_-!2kRTwOCnl!>}NkvGf^AErVm)%>7altv6ZMjH6i~2&xBxp2ZaXFr9LaKN#ZX#60)aP`jGNAjb+MS=N*pQyW zk!DTmP#;9aNlNtqs)^X4UcnL{tgkbAWRisp zw&2GWnc2H8;wd=xr{xq}_rYAzqWNYjvXY!rs3u}3r+aNK*oUYlg0K^cR$2FoBtkGDy%;5xQ-k2rMke3nom)?Ac41)jiNUE z3(I6iuOFXJ4RJT%g+>^d`iT4pl~*Z^4^vH8lS2OPyMI$w%=OlHV`Jxl=Ik`7zrI6- zShDmjZX$Fx(ekQ*mtRg_@Y1LMjSXE19f3r^> zE*9YXb2(E^oa{Zo;D0Q1?swxVyXPba8%?L`Z$D_2$1G?+Vg){fYC=jNrsT7_5#}0; zggouA+7Q+V`!fSou|}w*p`&A?1>tG8CmgKM^)abRM5DKjwOmf&T> z?P6l4jP>`o2KMZmz>b1vZ8^MX%Unqn!IM<6l&aJn;Uy=8AUz+~q9cA0)r1^f@8Bj{ zU-)c-m1@R;IsyC&wAPAcJe`55V%^DH-+!5klN9$Cs3u~Edd4Q@gQcSQyJN$k&vub^=kZ1HTc34to|6D0>a?Wszg>nWE8&>#v zd2IabpX?RhaDG@~W?WSYoS%~PMx*GZRD9(KI)-Y(nj-RQ&@we$z;>7|nM!3Cc4)$H z!2^;`Z0x{&A4=MSx1jUP57;c``JwUhdMc=rmvgv@HkPQ%SioYZEw&Y%UN^D2n$PqP zJDD|Js5(#?3m3+Q_EH|J*jbA*^CRWCkqQk{Z;Fof8>lAa7}z7|YW2Rn#0D4cSsu#d zU0$NX>Hr);VkDgnJM;Q;1vQ(0A~sf*!$wrk5k5_T4Mf6`6x$-m9nl8CN2#dFL2wP# zMC`=O++597GVF-b8Pz=O)l(-Acg9AFwDO2c!{l=!1s+Yxv`>Z59 z3(Xr2Uzs|VikcjCM^R104*ZhMa4`YA%{!dfkbzLmvB5VX$>!BMZXbz`+lQ$pq+G8M(6@T}FnufR zxl5b@FW>}#~B5&k%pElK#_s3w9?6WEf3i?4Uy>Jh4?#@ z+WLjK+dFcW*yh5DTVTEVkpF2(#a&xr_%!StCWE_SMZ3y3Ov5+f1HqSw1^E8lL>sf; zf(^rYX9&vbW+0!|8j!Ou1v?6ewSAL)qJ4RC&jVWxm=r6$r2^YTDz)~A?CRO&F z(Fn>>(Ul=KLp2d3h!7uTh!um7U_yG4q;|v$v1=x@HNH2*0mV;PTk-W20tSGG85n zTTl5-ORyWQo>o%qp-tw7M$2!hm`YlHO*IiaEeq>orkvPNEy7K5PQ^`Z#%3*K_7ukM0(tDH{83sfW}8P8Eo1j!(*w8+I8F{O7e9Y1cbaqNFt<88emxAO8k zex*CtQ0GA{H}1d-M=lsy&F_I9yfN#4?qI%`@I}6FV6SASf1{!I z(u{m!@M$z?=GO)u20IEtwL^Rl%t;n|Lb|2pzklK#vwR-tAKY>%$*oLw%_&}P#-b+; zr_(c)bUJV`-KrmAGo!}#3NV2y&TQE}62o?*hx%M)8Qw!n+83iOd+^DKy&u(toWcn4 zMamnG3H^p`-D`a)ngw5s*H+*>=?-{$<-}5{P*S4M>j4#9#ir@<95k@Dx;!96ms*ds z0Q4%nPnJqNlUp7G0cf#CY-3~wV$ZvxbNqHZo|D-v9i_aJ8+li4B0RuTEoDZsdZszl zlH*3_^sw_^c;_t1elyy#7Ixl9H6g=}klc$a?92gmdRwK;<xI4bWaaI|BH9elJGyG zEo0=)`whcN(L+P{fN0B4Yaxf83Ngg%$=d&~h`yje#17LtCP=eJUPQ%QzG^0W-4Q=%F5pPR4s^N&AUt%UUQ}M>Qcs zkr3aDD-_KDor;Ys`t0kS07=9m=xu0JZHu6lp~=zT9WC@+hY-=`-a|{;r=cxtp=dJIgbYPOd@rt0G#PZN2cOLVM#SKA3K~z_;IlL| zBZ`h_;pQZ~E0((3z%7q~aKo1Ic<;jk%};0PnOi?(U!H4 zvXg2;h7=*N7gtD`&a_zHQJ{Rpx()z|7*@WB#?&^ftOyS)jm~JH<#Tv1koZS+eIF?ZqpvZVOuXv7j#qEW z_qluY(q+z1BFC7SU?QGMIvJ`&UvIP^(}nlPQh`&sGr zH+rdurYrGYTGD?x+Oig!MyMuaXc8iP@r9->g-YWF0=LgR<@zQ_&&NjpvuMj&XnKlj zLWU+G!WUO)Vw1D8*wfScdCr(=gZ&8~$@S{`D)3hP)x@VYdjvZT6}q@XJ~%b`t)VQ%%GU|LiUB zOoOun9u+fR-8m2&`g4+bujy2iD?9tB$Vu=Ws)-=@guE|H2a#q7CZrd4Q=_O?I&5k0 zbrEy6Rd*!3%f%C-cvO!Kf21|qs;x8L8{xIQCbMg}r&`J6%01qn^pvYR(%wI(>wYN- z(okr8m?|Qv!z;Ln_7ob;rzdlJbFNcL`*0`+<|p4lQ{#nAd9TE`(1@Ay=9j>Z!cNV< zM%RSX9=(_PjO816FD+**H=`|k5Xu36BRA2?ny0xgmh@-xeQ9TxlgY7^&`cnYfol;b zu#chvvK7cW-}j|v0%_7+T`7;?-L+K8Lukt#SIPnX`82#F;<5|OBo_1DgalyQjj^yOIiVyd_1~Ju0;c7tCCY_Dlv6iSI*UVw=I=(CE9Ywl{2TB z4`?T#lb=P`$&b;n*y`jMOPy$))K&2VypxuyxD#zTL=}WJ6}c=UCglVZa+Y=(wS4!M zWu{GR>+4@rVYM5slhny zQp+r-4`$TtF?XJMg6k}Yqe1ujD%V-opy4v|mR$;V6l!X#d|^cL*AwWG9y1QXdt@0i z4n$klV#fa5MEllMx?!#(`441~G&mD+73H;PNNnl%Z#nYOuk=SJ|J8VZEXh9$Z8?N| zLbR6&LxdKB37Ie^Qaj=$jIC`>7#jOAca)dr{W2~@rzMNBNe#pQM91*o zR1;FoPYW8tu4yLhI^<%Wbk?@S`a++pXm@37NKa1gDg(FBo(A)BXf$G_zLaVreweoo zuOD zLQdNA**?ikzFMf3VTWGD9Vj{4qQw=lk+Fd9krd6t9zEH-#=>P(2qg=ba1&#p0KGXj zK*uLDeTVBg{N2eZ)1acrl|F0wW-7YYbs_^wD(X= z1Ysv61esIB&>@(RUWlARFd@AVGf097>BXhgg40_SD7E)sz`}LaOs z<;2!Z(S=E-T9_v8YRMF!mNFa^*x|X51{cz76JWYncR`u_8deRKfLjqu*M-~!A!w5` zV&de&ZVor}HN`vcmJ*qAVu#CkC{^=Hd^w>t$Y9g_)7D;hi$QlW9C503oqKNM zr_MchB+FmQ=AW1`?`t0c&slEC9?5^@C#U{{2GID0$WVbyO>%!ztXCRu|3)|KnUK6a zO*J9M(m%P0R)*3Lg1d`OsgiMWX{Z$Xdy48ejUGSEbIv_C@Utx>`(S7ZS5e!NJu~Tf z&1#|k6!cJ|d^Ngpjq+7g6CI#@8mtQP`oE_}Zo2GvB6Wi>{`fYNb%F4h=aaHEe&?Lz!pi z`RAUi|9A_B^M9i;wWV}Uol<{4HBP^TZeJVKpKs1-8?x~9;|4Q*Zi=6!K2C|r_xrh= zdG5LXA8a9u_n}d=WpP?kc1@4T_oCa?*t?r*LPo=1P)*2~EHo4;CVz%|(FV26>dTZN zCb00Fh9y^+-YSw?aF4IJpLg!L+E2GocXOewc!lVvW}%zcer%yvkf_Ok`2cjw?pWm=jG`3HSS+ZHPHd? zC&SW3y3eUN3ghSb8J`XldGCi>$a5YIk}c0u*cS5??~^vNccNR>*d3&r2(nAa3No>X zf|FoEdLfE^f(hxxLcShBFd@BIKwTAKUclXDbJ}|W$@KNGfuxk#0k?nT2b3}M4R6du zoW#`TH9kth%7ko6`C4Z9_;@o_mU0qvBR3H`iOGKTyvE*7Z!wTfB?fO4OM3?bA6fg( zXAfmR|3hdpdl>xF>qb^@sU?hEUjzGG8QSS;apWB%p+5!RwcrMpa;CS;f9e3UE$#Cz z{BUi`2G=bnHe`0WBelZ@E0tpTxHW64`Aq+CkCR!$mUY>UFKZeW`{2jZeemNwgO#CN zGp7ngH=nLJW!RFo$%|svN`_G zL-6aV3F?$2(6XFDX ztv_*(GgQoheEe@U%=lGHzJ%3QHP~y&pR>xFhFeL!rbmlY)4&}P$1+Y$<|abpRO`2* zPXYz^z@>@`u05^6HM<1tD4^9Q^8$vor`0b9M@Mfp)r8F1tGJ0)PD%MDbXJS@lnS|= zg7Yh(u~vM^)o~VuB5zOwdJ7dLDbrJ_CSnJg>luz*DmYhS!&&H=wWq;+9u*@AbDnA< z2s0sR$h;$B62XM@Vgj`zUM2isd-G2BT6O|C!LHie4wo*fN#_f#5mRl2A?b*duW-$2 zy29I4f~TP}{wx(&sj*LS6NHRI-rX?k3@D;lPKUDAfbWl5gKzd0u%qBto1J9k8??;# z;t7PcVf+2)kbaK}DRpz$j5Es&&+Tq$D3f>89P?;waCRrFtl3nh-mHe@Bhj&Zh-yLx zpFasYTD@7lOMuQqylKOUO1|m7w>5cPm+*`_=CIQdzMtq>XF4<;u?C$&H4%iIkTPV} z5rc?eLV9s~Jj5?N!yRy876`{{_@FCS5*y(PNZ6UBCW@EGrh-MulFtPgfaOZ6zwUxI z3SUa)QznUHs3u}3ql+cz#5T6d4{Ru-(1{KI8A%Q~Uvp=zYLLI4ikF1^9IA;R<=2qvT#AE!oeulC!!y$3bsoCue9REH8p2hKFI)vMrB4p+2BR<+f9-H2bc?7MUs zjwV3sY1VqW-nvr77^=X_s8W$?yM&t{RDpz&#ka@9TVz%CU-mkAIGj=mT>bJ5H0s`< zlsEs}jE2elS>`ifN1>#)zwhQB1A#qWm-IMsBi<#;+h49nTlVmh1NS;^qLoV_&6%GM z$9ap@3f!ZdIUm-$;oDuNHzD0&F?P1nLqyl<9T=t5iWxE7}O=L$vG zwO!2zqr&>=DmVd+hph?@98Cp{Ug`WFkN3)w|Kre>JI;UCK*@FchIwri2m{6F0vJLA zVk>}yMiGFoTe7E?J4-#> zhPK>sJuDW86$`Mtmp#G~UMoHoT^CQH@v+r~|B)Wk6f(S*x;`GqdugeUzo9L6Tp#nR zMc6OtrVFr8Ut-&ks<}$=TH%$yi9Cx~4kqH6MT|D9H1$u{#8SL}mYP_Ewj81f!YZR& zs1yrW1QT+-;{(*`vA0n9rS>jVPTdY)p4N$7f&NWVy=XBTV^r9VMHoi)y@<*pm|HV8g}Ng%YJt%(0@NR=;tJdyrxsb&@{W|cc%{i z_o&E8@NcJ@um+#J31;fqgN4NQLSk)MMg7s(P@k6EJy=Lp3MtsKt)u-26)K7LL)=6g zWA*H_*}bFe&QT}d2O%WyswYXO-xpW#n4RR8jk5bkp=oy5&af3@3N()^3BAHdLOPLZ zLJD{vZldL3yNhGLu2k4vc1tSkYhr`FOTfNEw5p5v5Gq^}@dK$Qf`}7JQCZE3p+qnt zy@)AYcWtfaa)~qC^Wfg!z{bee$Hx1NWD#0TmFlf}<3wJ^e-4#3N&Ks*CSr$t&Nf)` z%<(vvsgx6^_rpaKN~XRrHsI$b%dBmkcMhEc$stGCN`>7^mW*1b(nc2z1X;FRYgKcRZD!_!iP=){Z zYulUW|2D3=dU0bV1bj#_A5!20q#g5S=Q-d=#0q;RH_^VKHJwcy5~jB@j*1OcuWSx| zFykfBVLX&-LJqDJ)r1^eg3J~SE`kZ^g;=vBn2=b!hB_N(Ucfos_q6xC)PybY{+PP? z{ruLbxyG+QT~n^WCmc9N&Ns@||D`9-TUFLl4Xe<*sk)N+x57?o|%mhrFNDsesjo@kZp<#=B#zgLZL z%b{epvY2X4<$NCiJ?V5NpQ)tNfxQfOg0r~wZ;jPE@JLSPGYxi<>|M2qB^Y?6%t%&e zb@eE$Haex(bGPB0vZVJ`v}F%58GUb|nvgj_h%8bL_#pQpRF16=EmKZ&hTReiElOY+ z_q)gvd>##`ZD3hqlA!E|7FM3cdt#}(rvzPLS67Gf*zyAua~s`njK4roIVd`#2Y?A& zg$O2Ocs&n220b{v z;`X9u#cg;kMi^-P1NFphP<&R^>b44W;?lBF{m^I52(1+ zf;Fyb^y%oZ{*!7##)f}TO~^DZ$c>c7f5E+IxeTU=Yc=3Qo5KA;_qQbD8nVGu?@A5h zI645D#nriiQh&w5j*6QjkhVjF*dZPBpY`qYCsQDQIbIKqMEPq~4(RLf#7hEq;B ziAu@Imy4O4TY80(GrkoY!u!KsN;eO0?l5;!nH0FgcVsx_l#`O~=mo?#q9cDZ)r3_0 zjZ_mdp9ucPVm?vt{`H@X_*-mx=;E)RH}1~X2Han$fXe~*e^e8a_Lvg*6t)8wX4Dn6 zVw?5*_$oHGA5FBVK|KSSjaacwqnd~v>dEUfhBE1h*pQx*?5#Jb0eu)1C8_BistFC~ z818Rp>qg%F?X~eI!{y&2wee*)*ALf{JKnYAfosRNSY9-K4s_e`t{0yqt`}cD%Jt%n z=O#zQb>iMoj~mp%&YJV8nckiJ&z0-icS0AlL-31s zHM{@Vnk8QRO77o`x*LdqJ~9J& z=&~OTer&z|_6GZ_*}k9mo@C(v$*jho59Hv?J9`O_%dhdr{myv`oYyiqKgNFf1pDPv z?3d5LFPhY3;Z!K$6!&>B=PB->j^MkcCIwf>yX=iGc5R<8QhyCxbOQ0Z*2QjkKEv&I zOYF6Jl%&2cyL?nzx-1^TsI7o?i}ITKTUL(P5hee%hpl2cUfSA{{T_J9K#~#=*deXvrpX9>%x6Lg?!>Zj{Do8Y*Lgn2z1Zwkiy{h=ioXD5Rl1;E-|wlN2uru8UJ z@v*M2hs=lnFe0jRs3znjVkS2cDsd|O%i)Mne`cUsV($+oHW&Kb1RQlvY^y*Olh_U? zd0d5zmw^{85WInm6>NE;;R)=khnH8ulN7|S-kof{3Ov!~cgIq3mGir!s3u~hW_6Z- z2OrOdh5~<@!=Lr-*}P;4e;11X{B)LM)4NMfF}RM~@6pEJ9-ez#FMxa8x&EI%cSO7* z#y8p;UlFT~Xa5zXy;E267B`FEPUpYXCg+^|K-C#=M_5>5k5Vbgn)wY|zPXo^6Id}Td3d>4F)n76+}H4!@(v)973q{J)JjS$+j z&(ePZ&*MqdbCPUE#G7vNj_?0bk&}`1f2k&d;A7%~H=^Z7BvB9(Oh_;OPA$v5NzaA} zFc8q2w#k#8$y-Z>e)gqODLs-8v_w#~C4ABud{UrTZ&Iny4O5&1xDjzsFX1NI1E??W z8r~5wBfSxgv?p45N@_hCC1V)Q9u9UCMrw=sVFpfLPo1=$hG4XOcmm!L%MI_xbIYMD zwsfM}oW;5I?gJojD2aW62;4eS1YdE%SYvbu52W#gl+LI)Ar-=?(j|@EEZ!+gb_dXw zJ?CW9?c*j|Ibm)tgXs+!?8=<4gwCtMlZf=zBgXrwviH60N{Z&obulGooz#VvxEG2Lo+H!~l2ql}W`b2gin2_=3IBG|v z7ot*$|2ws1kUMYSI z<>+j1C}KI<%}o#r8FGQYR0A3IDl*Ig@8E4ZN45s>>`JhsfC=aA>u~d@PT8~o_9%iI z-kni;&^bIh*lVa@Q`gt`6-NbN$zqqA&#+IpiE?i#Q>-YuJ~K9y_w!B;_#8-i4rqD( zjOh5DPBkIp=4pbWRzHQhLJ;BZfdwq4b$Fv=z)ir1Jt6wU$<-YSC3|9{BP2I0~RcxdzQlpWer0#-7#)qg# zN-{2`nh26XC=Xtvyg!JMN-jP<$v-oGCgdz!62_)FHRP4GhLz?8Y_H$kW~sin{KEwH5$?jz-hD!FwREId{1*}H^~F>Za!l;UO|(2@PGS26bhJ-|)^N*D#z~U_?Wz3J zdI;3(s5nWUx%1%vs>_n%q=Z1xvmM?tOD?8x^YqT}~FstGwpe#1?)yiiDN zEtE4%P);rZ`@a&Wy2Eh71#UNL$jg5ub>f4qsULI#mM7s!M9+~FIFi~a9D(YsKE$-C z_deiF#0qX4)kN&XOy9)b3Kcb+8eR^Jjf5^pWzeXom<`*g_NSsHBT15KB7VTxdO}_H zO6_o3jDWNI!s`;(Yq(8Rv?SmgsU~6vd|_W@xajhz)93EWz;bvU2vzTe*x+B3dJ{PGp+z=ZLv&D=C-fAf~TGo>9SE#s2 z=)X)g5j*s=x4`)~ehkJu1n!Lu`#H(H*K{-8-%UkMg8vJui6HodnV+0Iiirimg!JO; z)Y{scJSN+Gj&NgUPhz8!;de0dmw?pg=w|+JOG@n8O2Z0se`Zg*Uo=ZGace)}r)Mvmk zC)R4{@uthDcuB}Fp_+&t@_BHTUdd%@hnIl)iDd1q^KZlk{d{(FUdi>|A?Bx$&5xen zOvO)9a3j@3kOD$EB`Y$Kt_dcj7n7(R@hY-`_Acj7+Q3&I)EN3?Ya~@$Xeh(PQbT#v z;_GoLj#5*9<0jfze02#h+4TX{oO)rv+=p6I3G4%Q)Y1!X5akrIs{&Z7T27h;|4GC$ zb_Ugi92e8LiI!Jhi|dP)eDS6LyQRZcZjJ^AT2YJX3@m}q(cU^eU%O#WG@HO4K}Aza z`!K4B*a_+O#z5oSy#Eu*YhvSIW_=Vi+SSIv*;LFV?Axg(g0K@(jLcFZt`ST~FaAP} zu3nb<-T1cdMw_u=IPVN)dSSP6u~1U?j9=UuP1V>fGwxnDtJ zW!{hVQLv-%QaiwRnoA|HN9mKEE5D5Q$?`nc7toeHz~rF)EY*Yz9YS1@LdQi>ynv0Y zJKI~}PFo9)BiAo-^XH-`p&u=%2WrO|Y;`Ebgys^$S@)+Qdk;Wn*&8LqS%3f!!);9)EwT1c4-CUB*$Ii&0Z zb`)-Ehx$T_fyo}dYg+v=3-6p|Y?;9=6F4SpX>LyOVhx9|hYi<)&$!{IvHfy9pvJoZ zbheMhvfb#Vo>E?l_tKK~W6+khlyW3D(Y~5ue_bD$A^6r^hCNsn*Q>GurA8injHr~I zXryf8!g{n)^#1Ca8N~Z*sTmh-x#OBi=$hG;f$ef>@#g`xToqj{A3|eftCr)@YVr3} z*U6=LPc3zFG1_v+b+WR#PBxYbLjkS)Pjsz(7mbsxR@O$+3hS+|m+#=cwbaYE(3V5= zLYSM#>5V9a2qxqtYZ~uJXhv*(Rm@H+omO!A0@d(d{}(yy{Rhp7tv3C4B^j&XMwdL6 z7r`M$@&3cV@lIJv@M*zZ*adOnGo6-K!E+mwHtNDa)xN0RDx#=FPl-?+bG#P(Do(az4MFWd`32 zXFdQw@eyoBH^x5SZf3Z>s#1Tsat*)l+x}6MeZU)Bz39nQeoGifH6hu3K8n(T-S?8% zrOetmy;DzzS8s+g=d%~8{2z}FZxOYt_{Sr5Q?A=z6%Rz!|D~rOn^wL>7`_v&p%Npx zJ%pPG&068JCknRBKO&4@+vf}^aG!~W+taT6+I$8YBI97pt_3>^9knGqMHy)8;r-Am zkJIsjwtY3z}#F8oi5wU_Pp|P}$CE*hi-Vcve`AM#T_ry|iIc_;Ll!Q+zTOLcgS=Ylt$w#8I z`C&YUmZ2nkLZWm@k0e*%U9zP0GPGqal3c<~v@w@(uo}gCAea0IyoorRzmLYmb~uOU z617jd0=|d$$x;Egqb+w_0aFE9+Jxkp=-mGcjfO4v;S&;HZ?u5^1l}J@-v5ra9Kt)H z0FX6=NGk*r9h{Ir4ROXcrG_~CFOh@J8ZZ&he56?o0sYV4f7JsJ&L?wi#RjoxSh{W`oqmb`xvZ8?N@ zLIEIa2$5C@COTL{Olf?LRtky7qO0#wG$*#|TM@djDLbQy?-9H^mg0MeTOJG5#N0;z z!%B+%9*vw)=7WiN3dDm)=e5x`28QvpHQh$uLtVNL@a1-sT zDY_X}Vb#Pwe~nyCi~|$#6qe!NyOb{J{6CLosb{;fVLdMIwA4P+Cd}~f{9@5KrkV_5WB+(CZrb!QunekFJR|?W+LTW z2W4j&-}yh~EVs0Sy~?CMrS}H(05X;^wWY>eqjojgRJNEKcKq+5ic{|RuW}QirAqs9 z)#Tn{DU+`RYLsixNPELi?)kq84U&{T~ z!8!XV*in##(>!oB9dm*|jO96z0w+@339bHkHagBvQBBC?`Xo2e%8)INzrkxFDR%3B zM!j=2@wb-9+yMVH_K--5UHK19YG5ycc5$-~&x929LaK?_!Jf2rc>SPLQcu3Ej}7U` z$>MM?Z%>2y1S&=n=Hsa*tYIcsc8RkxrAif^{B-lXGNnSEy^~W;q!L>Si46s~wNt$V zp+7bPmL;Ki=19u#NGe}QL2by~(0J*kf+~4Amz!u~Oz%Fk%%b>ECZB;+*5@c;{2j4@ zJ2P2j?WSbA8k%p7j^CFCmR#bJN3JnSz-OJ6r+J9; zCN;1>MMX+V_v2I(L9hvhs;qUz03w)>UW}5g$$@Q|2ww^IbYcn8DEunkgEu9Xdt(zq zg59JJ@eAHUX!s%Cf)7nNcT=gA>i7jW(Z;|w>1?=9rLbGQ7vSmGP@SCI?X{T_ap$muN@-df!knv7U@&ZC-$9pZ^+?x^M~ zRV7cnJT{CcC99%2O~)^#A|#{0F;o*lkO=`^<_Hms2qvT#qvQy}`6yl%ERpLL3HJUb zE6w21V^e|{icJAaeQy`?hxAyX29F+xriUz*RVj=Cs)^VsS-rUcFT8DVEATd{+m|?b zxX4~HDrd@x(+UIpRU;ESABc^e1CvAGP^!;!C^gt{D3t?;niBP1D$0_mcT-JR6Gg7C z=F|sIwaB01+gNhdyA7_7jg-0mAp;9kseabB7D2D0f+z9+A~(_LI_j6PAvr#o={rhC z?q|`F`!UsoRPGN1_^qy?ObPy9u_Anoj_?yyc%(M}PBjrb!uy=P?KGu++VAgi)u`i> zyURHp-ucjA#0qr|)kN&@&N?YmIk~zcvA)pfmWxiWtIoP!78}^JlLMK`V08zqNH<#6 zqVBO&+@!LPqM8UoPbfNN-6~=~!G!c8rn+_dcK8akE|YgknE>}YW8=On$-esRs5h$7 zK1k(E((Y1C1OX>-CTSPn`3NSY7k5!VVKFb@^KG`hn>(g%a4Jq>`*1NJrjNHqOtmGA z&$oT9TTJ(5cDZZ%pviQFH>rGaG<>_gmMROWtgE?+HkNTS8<3iwzrDRRz-GS!b`A2($Mc(16LO4votp^#MoXWTNaVM|s~?3*rjS=^k%yq+7Hmo|fIrs< zezDQE7AgNk1yAbv4+6Zf#~oUa>U8+@-J2=9OwH;nZ{p)|!P&(=ezQiIk`2?leW2xt zHQqRGqK$E3K^@12HWS;O9f8-e_m2(IeH)NA^qH#g_BE9zqobRknvhXqi6E%eQ@}-A z3i*@`6`NwCVsSDLKGYRHDjgfCSjwQWo@ydU2cb5S<&_w61QXJW=cxfydLaU6Briru zVAM5f`zPGr7MnJ)Pq<%5RhAUzo2VwFEJh)OTv4ptRxPr3wqZHi$@eAB%$FPg-l#Ry z8ThATV`f#d(Kz3cSC!7B8kL{ni`^%v@Jfb0%1wmk%GTE$Yiw{&tgVPQ00MKDJ7c5Z zP%8>jj`T~*t#?Fc<2E82)UY&t8$6Ygfo)>zow8a0J{%j;T}k#n3pASQWsPbuJ{TRw z2dE}w*twr-LS`dDW~6L%YjiKf0FUIwC?S|CzWM9K`{9X3yiKgD4yZAA#XsVjhb%~X zkNU|7o7%ye*95r?e26$BSxhw{1sM|w3ncgu1NgUcHW^e|I59RB_VrD!Asn#w`Ml6T z!#XO4GTFU?Y9e+T7D85p_gCDCZ!ma?Qd#C0jE#v!ECF&Cd;zg-ye< z@YPgRNMT(`H6bazoN9sz3n+bhQd`e)&e&MZ_p&8X!*c(RTEy#e!*YMW*R17||M#h= zN^ZZ$O@vNYT7O(?*49#H$SDmc>JY1$@zK_xo4pV0C_|$*8y59=%c(lbhMf3FbVMJb znvkRAPuxW4RFN8~7QmsbB0HT7!iFh|nSkymT2mnE1nirH6I!zUW;9F(Cn8peQ>Z3l zr=fduW)CcqnBhM>Huz^IhgiGKU|&PUOvaN#s3u~EeZf|zRAE!|X7HaG8~pH1L9`F2 zi$1N=6h>Dy9|5B=n*ukH-zL1BrZW%Y<8;1X_vEe@-5^$sS zW)$2)#ZOXj6V*hJ0>VsEPDVv_OE4k5xSd+gc{7(EjBo4ArR&5DeCrrWK(Z+Z4kiDq zHNvW`fRlRVHT)WrHJM$*J>o(Wm$#et+Eq$#!>sfPsyw8^{?1LbXXeuU-O@#TSd}Vi zes(eEI=kFH_~&9ZcstF0Phx9pZ|zjxPBR}&;3{L|T_M>CU`HXTcDV0$8imZB(C+EW zSab01SzcN*6K&bUP7dWRZlaabs^+?wTL-RO-BIo>Wr~$@;JTuX;1O<5OV_~=-YrWVWYLy8u7g<$V3krJ99$b+1y`d%u~orpI~7z6SCCwZcgj)&m!mCr zTmy3l+je=M1Q9BsMd%r6;q%IRHBF4LFxN^N$j zRykeB=Y|7PIN+a=OT?96BAz+J5urJuNe6XpEXO-&sg0#*%N^Io{ER^w0a0v^E{a#8 zk+F>rsZddvdZw#k3*IwJHJpmJ+<7(R+yRIaWw#zE+&#r$*?3`eHM|LpOmsDvdZw%4 z4S3Hi)vyO`x#MbB1fNgKnH{;|bbV=|Qb^~kL&ad$_)>I9d>##ttt7%%nnJs$>*6zb z_bhesNwnns^1PF0y({*L$~j)6LXv?s-+XRujI_DqHmaiq^7G zh_zLG-Maon2w%Fc{|h{N(P&y(6*Vkf|CuTexpe(7HxasY9lAnEIh)aZi82iHng5Dh zb#{S?R#ctO0aywrwZPkylDi(Cg1j-g=mz-wa@7*}Wh&ku%YZS7TgKB#*vHeH&3Ur_ zVUPG67oFIn@jx0M@zIG5ya{I{w$U*?B^-fw%#z{5(3Z87&_gvLQ-aW0q?9l|x)&mN zMe^c7Y6$fb(_h>BO?ATVLARuy=6O5d=>Kr@@%_h*d)-L(lj65ei{Cyge)~NC&76}? z;5n(jA<@aPthA==I;Gx0*ig)Kl>Eyc_O-R~mp#HOB{bI4Rc%Vi?FXM>m%)gLe*YC9 zesqV0f@`zbrah;(!oKV}10|<8=vjO-w-_4rTDo(zdDxr8kqAtYKZj<>>+qyp25z8* z8bkp1X*6&~rn4hpN8zeAmCus}i(a_641P#7`w4urO=H>B4a*-zTlRpN0@G0V#$9oT zJZP@rmO`tQmZ!I_wWX3XEOZ}W``6$KZajL3f31PbJ!o8PiJr-c_BmfqU6Sr!;v2W5 z`)6p&9x^{|Ak%K1XRR;f;bP0YTQYJz@u|pM?*k_Mwdv^5(3b1Doa;abbiT*o9kAs4 z`Bw2QGyLf2coAaSj%qFk-!xdDP_hKxR#wXIjnp0;%0bSqo7mPJSQFvN7uQjrKG}$t ztWj^ZlT78pkdx08t2u{l>o-*l{=e_>oKrGUy=utHc(fj^PcLf7Jad9TKkV|IHr5A| zMW+KPBZKBdOBwxWl#H}y&jdRPBeiKfjCf>u?Milf@$Fhhk8{zMJ?G?beH}N^zN%n` zNUTPVF9Tm9mIarf5wYcXmai-bWBLR5)-9QSFWPd)nVv1vs*&y6qqF^OG%B`i&kGa= zVT^wh??E%hFWqb0UgOyRvNAG%9o<9-^@Oy}aAw$ja)Q)(SL3%=4D}xy& zIDAqV8kf!&N<)D~?!BMJMk=H5YU@lDf@s%N8;HN@5x>>_Qc{tjICy~yyOiK_+{9Q| zJm^;X9;gvkp;_@pikw!i028g4YRm#V3Ndh?m8}OU?&}kcW%%Zsg%e*CS&X)HV z{ICVMe{*#1--rgsmixuQ`oZ53o&RCHBbNN{LR${upOE@x^&k=m!Gx?Ho}s2OuX@5rXMU%U!CS)`bYKjz1ZiwOq+;H=Fd%tPU_M!-!OLF(Xj0DE95=|1%VCx{G<_OV* zI|j!m!7t&KB3VN;Spu%&Dr`?eGMX&pCdNWE3HCk^P1d7n(W1!-Xt<2bX4ilng&HrK z1bd*@CdcDFu#6_hp)G6C<;_$AWKek{H!%i+$~*%Afw=NXG&x#a z`4}28Bfr@Xf*pmOnwa()I-!S_kKmoK3@slC$6;u;4vJrBD`z%);hVJ#82_QNE>|f2Em&{ivmVVi z(s>)KObj0po#DgqP#gCR>kRuhScUN1gKylD=Y!FfwZzbFo_!mvOk6wBxqdww6x-1p z++Y>L_c?e6Ect#F+Hwfrge)!#0g(_0CS-KEj~bwu7f=ZNyS;_L)ZRjI*sxM@En2Nc zsnw1%RRe5Y#8d^aKZk2@ioZQ`kpjl$QM`bF@mzZY#$5P9 z5?GXQ_b3yIz5k6ZTa9uvZ@Oq2I>0smk_7mr$ki~3c!3JO3?a{P6JsER%+b0Z2qmk~ z#Au;p1(;~Xd}0>ZQMjqi=b=RFf*w+q;a#u{DT~pTwUDwO)r1TwLQj!G$}?0|do{=p z+xyjI8XMH?8?2KbRw79spxKHgiI<{_5aAJbNRg=_gg8{nWe9maH!%i6$aLB7Kt4jTh@Zc8>l8^&=3lW6g19>;sw+p zo7!B5=pRP{b;$RiL#>D&#?7BhY@t(_z@oZE9dbJrd>KT(%}tDfATmemejt`Sf+j|b zB@dzTGRKm;!HybBL>;1aK@TZ^!nm~q5Li`^-O!373_dU!%?w%r9Lrt;@T*j5@o`PgJS;0+& zhLbja8<|?~b|8$LisnTNBPXMAGKZ0)!H&X7t&5i=b>#hB72tUfc!SI18qZZUCbm4!;XJGU>ui_s?OU>4KwIuO+jHf<@esy88J+Qu zp>eTgd;w=%?}N_zNANyavi@PT0MR`B1I5P$gd^Ks2%ZED*D@d)@&NzhLSUQ-zy~z8A^i(sEEtb;C^mmER+UazMcoN#-!)5 zjA&V7Jea^$QASd;PXJyDEj96J-RHa>JodsjZW%oOLsftrw*M9iXxkQwIU>RO01L2v zM0B%rh_dVP-MYD!!$_rGyWn_7dn+T08 zZCt^e$hsVeA*;}QXfb33m}tfPWER*__^3_cF@zK4wJP^^FT=NL87vl~Eo;GIKW?IZ zNn^UG>J9v!0iNJi1T=n6N8@1}vRR#9@xfgBuBU|4@NHYNya{c&<1EjVQxOBxZ;sCN z8_}59GA-7pRsVIihw<%Ovb_s!IfQLO_Lc>JNCgBFa`N#EH6eMEkJH;b`RFRTrJ-uY z9hdIQ43(AdnYW_#Y7|>-bL2|E^HI2{WFSLDa0^vQvLd*Nn-~if!3=-b1C_x8XnwTJ zaX%U>BgNStgB^vJnz&xk@4X&P?!&ik8BOj*Th^k<-P}a`DulTr%lZ)u@IB*&$d$r0 zFwu%iQ0H5G?b7?8vpyN`gC*+|(3U&S`o1#bHevpy(V0I6jg9R{Uldrq^!Gz&|46(a zmh2ynwj9DfA^pn=LZl9Y30XnhKn-4A1#y3SD~Rd+g&}7sH!cl(v(-DX&PU7EsJYt9 zj0J>Sag0j{@aH|kCE<~hmkjm7ZmMo%y-?vMLhFV0C6O*)#{=2pYBU*IwQwaGDI=fR zi@=V;iuaw<=e!;`F2^@+88}AJmbJj~L8=KEIE02G1&;HgcmZpVZ*Fhkm|rYa^DyyH zK6nK7X8#ttgj*dkN{(=C4R_A}p~GT#_OGb~$WU?*H!%i6$vgu9fspb7nj9^pJcmZi z$Zz&9U`Gup;@TQRC-l(r4BiRL(DE;|Wi7NkK{X*mi_lc0(DKVDUO;F$w!QnW#`otk zYAy0|xQM+Kfh7884epwvRYOtoQg9bHQS*c&Bgrw`L}(;w=VuMpcO4;l|! ze*K>{%q+hP-?k;oZ%141ILp4z8V06siO%#*XiRLG4t~}!vwZ`;eM`2#g0>vOHX(b< z0zjk!f(f}OaU``P-lD`A?VVdp%Q?et3Fa2?)`#*@<5}njE-o3RRy*FbCc#=On-(Sb zU-WRFgiA`kG35WJsBp{t|0Fjt7V`ge+3`RXuw*YR8(NlF2qtiql9ABt6tJVP;++D zOs#i2kUoBm=0!^%_n>hyQk(rQ*iks~PI1>g*Mr9|@hw{hkDs9}Yr*5k+(i2d1@9Dh z9jyS*6Zei>ChP+yT2T_}Jo`^^*ZtSo9*1w=lI`bTd~Ewpan}(GF#eM0j30_e+;}EW zXFPa{yWR(#^%UL*OV$rUTMilHgzPR01d$>LCS-x|MXG$g0^w)vEfD59IoQ^~K2Nes z=S;6^l+e;OW|Z1`<7z^)tE0d*&$EVON=h=62?eT*WSNlTCPK@E_T>;pO`!jQsB$Tq z8m(Tq7!8<_-Ry;6Mq!XrqxOR-}ltLQv_>>CO@a5E~Cj$xQWnc z(#9{8Q@maWV#rfyR?| zzPF%Zu^rXo4iK#iI_Ib2U9jZ*WVGcF&Iwsv76u|Y5KPGF#t*51%A0O1ZtrwsTG(r# zA3zJ%sJ0sZdTYcxpzo!sM%DxG<|abxf%c_~>9XH}ir{)Q6)i^r%W$YAm)H!%i+$pRw;fw(enJeD9WuFM7#t*Alw0y_#n zHE}BhTZ8DgfREo&iW3e|)RF+x|7Ld+vnb$fNmtJ@o5COf5p-GgpPU9s2> zP_`nZ7?(cFu2bqA%;X15%N32k>}fcr=+zKUUP^XQEK1dWR=etGOM~g&?86-@R@5iCW=_BcDWl%ZXTL3G z9Ks_d2N~*uF7OgpGkdy`b-`3_BD5}OU()Cj1v>9|Abz|AO@@{+4n-qn?o{w zXTN>U>wzPMZ`?9)9E7&41&#x#CS>3c8j2J+CPncAmM!jS?^Ax=;zs&$>1saHA3UQ` zg1+Di9HZ9EyDCP#BwzeM!!bpyh7eMq0xv^Ij++P#A#I#m%v3uc2qTxGdC|hi#b~sQ z)MhUPI|?&3QFyBU>yhOB`1UO$NeyjTizF9u6Ya|w^S#fCPQI@&R2O`J^Y4I9xUr~l z{w*{zww#Oo`=(y#%zp##g(dShqb+xw`Gvj@jLq18EIRv-qS3Kse@Wo<#%N>z5xggs z3U~-@IYa@35Bzknhh;|Y(b-BBs6Q=0!+RZkh@K@i#qnkCdciC<7j*A}v=C z9^@v*LK!f{>vf9 zeLJbmd=EtDyAKVEE#JYN)S;X^co!@=e?8iA20pF&I4s5kTdPeaY_r1pHWyOjFlROQH;;971Xv?gd@%9!Erd7v)% zKAH|KV|)({m66fx4PZyD3&h;f@4Y^gxERqR47AT1H;83&4)TOl>Y-Wejvc4EGvbm&-6KVzhS)JcL* z!xXRAfuQkTG!t6TcsCj*BbnJ@u%l2?KiusJ$ZJ?GNxT!^uw}4#8``oKEH30G+E-uJ z4|fZ&0xW+WoWYGZjpeVQA+crIza&u~ni|(%#W!!s^?#!+cbseAl7x9wKOCL!2hp(D z@*P}~2<7|%ybG3`-;cH&!Z{(6%VIzz2Z9N?B;imy;w?#Zwf9Ae`9n@I@YIcVN^}1y z*jQy09^tVYaL)hKjnx^=BzPNfev#lNLTiNfrI2|B00N0*6Pg??k!(aGX5=?}B-l~Q z1@YL8p%eN%V?Evp%g}NH+Oif}j;ETCp+#saQfOHc#S2)lcuRXj%Y<^p>D{T!GTsF} zz*Rj)rPYk*z5UlknLdB||Gr1~rl{30-*`I}aXH`kFK!|a4ad z!hYzwUrN?7lmTneW5N@TECXK7O^k&yV2ao4Kp`-I=0i&peQ21BlxDYq9fcBa*|AQS z*RU)F9DKu;A>;LE%UZ}dhnr|$Dc~(TnpqwJXCf8@A4Ef9%d&sjF_i1~;hVSQ`aNjN z9p~D&>}cluw&;A{iiX9O@8GgyDCf7}U9jZ*CbZ=c&I$QkmINX>5KPFD;HA`#cqPHx z+FKHgXWO8ZdSKi%Y-BRZtQP$tT<)5Ze+(tT^HjWLN$@N;F&0XKiLA?kdLW7B!y6fL zXLJHgv|=jJ4R#bhyoYc(QC_RE7+8XD)iPKtL|fK^#R6`keZ_$H5UzpWt>8(-N?iqg2!Zove3chVimQO-k?l{Z7hj0x{Ul5(?^U;{tG97#f*Ua{AeEXJcSJ0M2 z*d}CeSpbMsKrkT-fTySl$twU3Xzy0&@nzTTQwo4@pk->*SnXKTf&lxXT^KTb6%c>Z z!`)Gmj3MdYOcjev`ZsbDp-I1enPDR9aUkda9!-Ha7-Y`>EgB*ti`gH79fb}r=X0LC zR%OorHNI8L_;3%}vKAkHNi`wkgHTPR_;7s`FW}?hLv7xqSU#`ny63BNgr(E5HH%SP zEqINl?wul0L&R7F9^*=2Pd+kY?8{ArMvOLoK%C>$#8HvrNz>Y#m z{S2iiCM|Hh6yLCA;5Y_tSqmITaue-K3H39S0;~Ybd2lA;d|@XV5?hx2D~I)=sc}7s zZ{Ct?7j3!YT>DlI&7=CN=zM<&4T~+`!Ii^M&M(EgV9EK#Xv-m-6SBH23`BAun2-~P zdDM=06Nmq6b74@;iwz-fAGvVkf)Q~B|2NPFTyQcftp$Za-8&@<84816QBjwL!Cl?o9Yg+ZMzEm=H;Z`d+$Jc+if1&+tLiMAI8 zW|j}?!j3(STwXZNR^L=)7zPF=cvE@5h7=&{E zO1uk}oNqx}4&j`T)n#EIk^{knEDU~54OCuX@JM?LgC&`K*)3JrgV>cq;7EhJM_FpT z3@u@!{%WU~mKvKLmKHv87ySntz&|BB8489=sIrm;!w0yD(1M|T`D9Tj41o&bW;9V+ zZn+VSo0046C&7-wQEe&TyBgXReP`qKcvmcA&UI+ZTFm(()r5>WLSK<$&U>SH0jrd? z_HJXCCXUaKOT!TtCBi%n{ba1&!7q)eCn4#bc} zGq6->F=Ssb(Te(X64+5lsfiEW(sw;*%)_^B88l|2Eo(uen`%M^4WXb&LE|y1j=e(V zn)ZJBXHOtxT!3an z3mNC5Q8Jeu8L*=;;=3Ih$nx5iUqW}|+qDcA6|`k7T%5;Ew6D(e-43mB{5kLiH{vvo zKaEDjmgC^<&?crofp6WC>5rldk^@M~jYXXrU2qxs>#Ve^D@oIt_+q-zNtgl+kWqO?o+zsiJO3pA_ z#^`hRj7#?pIxxjlCKvO&v7yVT#M)-`@W428oSa2r=ed)ktP!%S`> zv~Xx&W?9+{i9j`RESfGY(;S6{&d7Ln71&W|sx9Y>7|nX4*BCFsdoyYr65;1iv}G;) zq^Krj_z^0L6n?s*cmeAeZ)k7$*(bPuu?PIeRYyj_)s8@i7@LKQDivKBNlM(r7>Fbj zpu>THaTOYTEns{IjgXPQ>^s4Z8ZajFfWcVu8kKX8OYx0b#)XT~mbJL>eyRx>7ldXa z#f3r?FCZ@L)!w);b;udY8E&io4RoUw;o&$_cxZZCHFL=Bs_I`+p_W17E^cBB1c_;l zZU;ie^JpTpQ1L7pCv&KH1nj7xVulwg>Wpat<0*X8mI32Qv}G+|JWe$s1BTE~q=51B zC|*Foc)qN#ZogY{^S!ROHSAbu-aqRYy?LR8+N|EfP|@kFq>E0;87Mi$LC@k* z++uiC`09D%#vRD^rmfCi0uRJMUoVE=25-!M27aqesuX%FB^TWLF#Id~q0v36P0!?e zbJae#AI@o(M_xCwy0(m?!I9vnTKGTpIA!(;JX3%PV{NhVCw9PgGRG8B7nlxuRQwR?XdV z_w=%d6L`1GKLHIE-Cp)1VI9vE1_mpqfpMkYw~VwlAEt^ zkbsCS**=iNJ4Uu-UGMjP@Am=k_d)OXjQ4xi`+cYPd(QiP$ooCde|Kw>hnziq(CxvI zQ(l1o)y5Cx3Oh!&)F$;h91HlzsU>H(^rf0TA~9~lV167usoTtlM(V!U#&3+N=DA}oY zG^>P0r`2OvcCBDxZP_cC-Ut7oP~8pOMEh3Z>cS|)C`ea^i$P&L z2L4clk^M=dOONs{IhbTU88)D~Ffwx^@2X9Na->?yj6~N&qmQ~K9>M!)sfmZsmOHMA z#a^&z;FX4>zv=Rzqp4%@tjOxv4@}_lt8K(si;EbB-s(D;kN4J6Cv(u2JFb(3y@PJ= z&NOTgt`=D>>-MGl++A?PbYOt;WLZVY1icyzH`iw4J5EH9^v zg>_X|$kljPEfsPl+H%JgvWQRa{K==kn&;~mf%NmU=o3!+Ogm(ZldRjMy{_M#Z8Qb^)%RW5Zv*cMswlyPp*`_77dY+&g`jR zN1>xu-*V8{?ktzXUX5?mGEAI>wycGTZQMlrmcyorcNBDXYv4%4b+C)jaM-ddz7jWF z*Hghe@J(BC{8qH(j&s~C-%rqazBxM2H=-f2GaCD+%XEr)PT$k{C6 zinK410KtSz`!At(#7p}xw0TFsP?>!x_J25g8hU^WM@EgA-q!gm4hfF<8KwB-=K3AtOQe~}OfCS>}5jGC6b^#AkrrvH7M z{IHVzzlxTrQDZgZ)?u~_4)$o7lE3#?J0!e^bRGQ~#H^iLsFSCqRz_iT_t< z4z#pz7aAfXjoI75jzWhw+h;U+jmotDb9|$g;o&D}%UXE&Ave*!wC~OKb#}+kjhyuN z0u!w$>vVSgvwb7S|3Nd+{P{mQB>#=J+;NV5vwfZC!=m%t6C2OL*}jqMgYnH{dZOE8z9sqn^!T<`w?8Z0B5**Ak7wE{S<+4sW$r#*pAdTz>^;k|e_Eo02P zx#du*+gAxJQ!(hN7W?2LfwXtjBT)N&6TFVNB=B`Sq{cn5I`d6;C^ct3&}+ST{2JbC zOCfv}ZCOh;|4lU^lZ}vLq-66>?nS6@TOXoktIFM6=u;p3_!l@7QLIm(k+ls|O?OB& z7c1|m7OMV^chyp%e-*^e3P~hwJj<~}XS`>dTk-x>$x(@Uk;z{ICR#C%X=$Wl0lw=YfBw0KwH)#)m&~OG)A<%idkw9%-NaBph+>C!MBLv;uJJOw&CIwdR4;}^U?Qf~htSyC2CAk< zpn_HS|5JD60df@8dolNYAB2P?Kp==N_YKMs5(r7S1-X{V?j)IEcW0TI&A}xIYkhZpSK8#;(;ItiYS6yD$1|As%EO|=-KyG&GtXd_y4XStx;BtRF52RUn7f8@UD)NGxev zA4NQ9qCN^Ra?|xOHC8I=p@vLu2$#wAa9yY}IigWAsooKjgs9sk*W$4g)p8At+07=kh+i(gRuvMx{#Xdn~1!S8j| zbN;00C1CoV&-sP-CV@Z2`YHR7Mv%S&&uWB`YU22E!?eAHc zE!K{l%@+jUEAm^;6dOv$e$w$qrhB0?eg&t;>2?RRf;PhKnx-{vGIv}k9pI}NWtIDLh(xPQ z@t)DhRo#V5*}Pk{3g%Ew66#v16Rwi8>E(}RI2t3BMc^v0ZYAv^Vf#AkG(2G9Ty_eK zY|UjSa)|VWfu zR#ol~7sb7BEvTXhbPAEMEsMMHfQhoW14d4eg~u?W<{8nQJRsB++&;dE$a&^~bl=Mx zaV*d-}V} zIrasf&TOf~110}W;{m^o6>^HDadvfYf1Mm^ z^w(K(t}DK+Hy2lY+sK~_V=W5nd@|42sLvF)dV@j;UQ75r;eAVyM{EHz4XIA8^?Nu{>bs|ER9C^!~*UU(N4zf z8$)83h;dZ~ZS%!A@+DcC}hpq4E;jA0I zV8|@=M6=j#V-VPAL}ik@63^3C$}M=DM5TNUMsB)Nwz6EMTJCrn@9J z;uv|?Cw?3BWLUgTOZ2$)G&B<=vtI1XSBN~=fNzn~SmtLFY~4;i-l3&!na9I;;6(ZS1V(PUd}cf3!?#-F-8A0chs+L^OdEq}#Bgex zOx;f?*D)EDswI>E!emmvpzv=Px#=?5$|V!l%X$4A{<2fJSl&5kVp;6zFVXN4PuP;o z+wqWz&axeh+;quo>5vS2v&5%SxYL%1E?Eh{T@$hi8i$TYQ`VGFyRTt{lbBI>Bd>gA0HFL(TGbW z`wZWlv+l~mW_~Un1(EsLFmeL(9?f0N2clhgK&UC@T3-pvrTfFvUAiCIlg;#MgFzQ8 zR;RyI4t5R(?6KM$dtswfJb&M=9>;Hw)_$Ys_T;bId0<*Ia*PNWU)iV;;ZzRM3M0bs zC}qPsE`iywhJy>?8aWBgml%%5hkWp!6D5zTmgLXJk4m(Pb75r5D$e2%>5TIp@%2dr*M)uU)X~P?CPc4`u5b-EYQG7?kc>B z&WA2+Hn*w6W-TF`)+_LUh_qe?BU=ss!yF>LAzty%Z~B?v9(#y|6UhIAa8amd^8oyd zglzur#{(kre=m&ObpFT7^M7Uks#WI8$Nvl`{~vHgsN`>5@8qv$Bg?BU;QxllL*)K> z7`cVG&vl!7Bg~r{eB#ex5ZL@m<$ivB?pZeWSw9PphRFO37`f@pS6zQ)KdV*rn7;lg z?d9R*FNKRjCEs{NUz_3DV+mR3{t`SSq5>Ad$W2$k*qZON?_X(GOJ|0YzYeYkmHYwE z{IY%Km+@$byq^IhH=Xx!lJ~Cc+FYl8)_*aa_|L-yp%TAUJto^PP7o$x|#7VkgBqapJCBN(~qyjRco?AlDXaUX88dBH>8 z|KNg9iJw>RjE|DBo&G;~Fht(pfRS5=crZlX7r@9( z=Y6v5@M19T=*o5K^W90|Os8tc;*6XpkB6^vyNgEJj2tmgvpq--6G!h<5}U^tB2bRA5o z>R?S_UB~KTrf-em0{exlU~jlAR2Qhb23)G8WNTm#JS3t9c7>6fu7T=Z0RB9LeW8#G zSHLQ`D2-7-w9m0fNETV$0qn#>A}ZiC7`f>Rs9r0w&5gtws$l|Gg-hTHxGGc$EU4EC zY8lxca2XyEQ2`%@k(;i7sj?50ivk^QPu7UgEx==MxcfBB%ldXb#@tBAzxEn@p zx(cdKfv}3@%$GI(5zhbL;EGWBuX}fZXJa$}JRS{^`R8EdrZYc5o&W54DdVG0bG8b; z5}3sx2Ioqk?$ckK`Y0V)VAcO;-~kcYp9&*4o&AxL{k7Wtz@_1|FM(@8J>%!p>-uYL zz8B$<5cxh3Mo!?{+XFpCsf_d zt)n}hiRCos;IR;ucP5N%DNk_jAseMU@gjl;gi_wYz7I{xmrEw4`(E)l{??%LL(dPu z+I0#q#Sf`xip9)^+85@u_aq!IuH5GU&Ay!0?vR4H1-v#T;uqBX{ zY;*q7noOU$9R4SmS$VRl7h3)Z7tbk<{LdMVMpWg*$d!^d8(p)ZuTWl-E#*p8n%gzf z<$ooV!EU90z|$Za+V5aw%g`R@5a~6saiWwf3x#g;+t8D@4j!8)Fo;Hs&9-6=ZGd8U z(zZUv;z1MjF$zX*x<2M>r&T2ohFSAYQ3hYb54&7WGuA8gi3Q=|Q-UjMMuY#?hEAT9c3c3tNZn}cT3k9*~ zYx}dN(>xTem*Q~E;6$A~44sEQPB=wUy;Ty~oVlR>~4Qa-vce z!N^Tl%Jj|x>pWfTqd*<2v%T)i=`+LCvJS2cRV_yasl}DOt(Y<%Jy9`dz{pKk%+{U7 zZ1hAJD_tl1*~`~@zj{@nZ!4LH%0DXB>y9kKA-oO_QSP&9XOay4cblyUaA^n_q;>=;v@@s4_aT z5i*J=Zwu$Ac<@9M`VoxWbiGU#OTf`plk?(wvjxG!@c-bdP{k59;Fy`)O8E~SIZ-KZ zz{pKk$`n~IeuI{M=c2g5@Rjy(sqDZY2IsnIMUbypsoPpvh=)$p$^sa<=~|g#6)bWW zLoX+V>*WNvG*oLjy0LnR(zi8p93DPVGe^V7P1lU{7tw`WcLpvE*ULq4S*Utxguld6 zx3zKs9y(Dg=fTKL*UE%!uD8_RaLN1ut`Jo+VK*J?Rl!!!@9->$ z3VIwyZn}bInzeIkXTr9@S4d+S#Ndp*#{}7pJAYd>qwx5Nsu>O=H(fPzqpFp%d_iq8d-wW1Mx%U~6a(JPo3Tc7>6fuA$AX;yJA+7p|UFaB-;WIX2jOw3A2_ zz}8JCo&Zrdr@_cg*Uk8Dwy{!2VO2*dcc%Ho_*LOzxdN^TRV-nT$;7j^6>=FKHBliS zhLM}DkP%U>%o|G&hD+mqxD-@r)cpqZfDgy;bZt%Ci-$|p#N9A*(={=-r@!3KzO%8x z_1=l8m4Ae5r4gL7qc zV9s@A7@8O1@ipe##&2>g?}f3ys=~ z=qJOncG_3vkif6D%Fwh|?;P()zSmbe>K)1VaEMlTM{=Y{+E~6j4`xK39qMJsv*9W^ zNzI?ma5P3LVQzDR<`?{dhRrkHJ-;vOSHnZDwFI{wN*+ zk@1IN^6Q4=iA;CE$W3QDHV!!1zA~Kc%i*d} z**3?4B*s6AM?hq}0wX6d?$OKDI3U`B2ZS02Cio^I$AP~LYimpFONqwi^9gGHS?>wU z`@73Iwid+pKq#5p6#jzcf;p5^aFspzGJ)KvV#hig>+~4GXnn^q3H;o**lH5^DThd` z_`<}JH~fpy<5y-nPtUTa*dsQKdEj-J33+;`dEgbeR!%bWPcs~im&#uC)*%f_+v7>v z*BdY4K@tt-?=Z4uFn{F`=?P-Osv^6@Oi;u&+oR{ErHJ_q0-K|$ir5=bgqEc(i7oLc ziIUg?Moy4~N5fD(M;MR?gz7mz^3}HNIqyoh=L|8IqdQ?OJB3&|C~!GCic7OLN6R_Q zS2U{SoWdbmq2&x?85^DEVweldSKbeo$Vq3u$Z#||DkJ%_RYa3KsJiTYAAV4xO`HQG zTQ+efhe)q;j1lX&HoLd7K(L9f@j(Wth+IfrP8w$Cy)+WtW>7gl3^;;c`&fjkkR#$2t7aM2=U% z$W7-s*7j|luLhF%0mfNfU(Jt4U2W;)X_N}LC?Z4y@ ziLE`o4j{ii>ni#G;F3%It0mNbYW{y3Or>Q; zr@*yxo6$0cqni=BCzHW)yOFnLTPNa?6K(5w7}>I|V>v{69cx;quaCX9Q_8H$mN#^) z%5;_sMdRA^!z?6hSg^$MLAWqfv7o!`m|}6HZ(rqJf`?C3%!M#=(-kw&hPHQy%jFKZ zDpa|kn;)BU8F)+E+wjZ+`-?h8Uz+-k;J!48L0|(PRXnFfS5&|U%#7sC(bX=7t)}sKGDJ0v zfsvc8rqR*<7mkm^92hQ|cfr-5ie^c$XhhDoHulA1CTe3Z7`f@%7#nG0Wud>f%X~Gx zH(VX3!}Xx51Kr`mwv=ktwm#P2Q4{r%g^`=CkMWT{da{|`j#AltBmGn13i$+F5voEC zZ-9SP^R_i|B_20XBbUR-P1nd6zQ2;=v#Q?@7s&VEa!>_=ek9XnA^cmiwmKfbgC?ru zJ{Y;_>XTPL&e$cZ}H97b-sPDYjbSC+EY&Ra)>3uGBw462nZ z4jf2i%C<5N!$T%2V=;`}bY;vcuPabC-a0#6DjVSHP^EHwpj47-U~6YBo&!-kB^bHs z+L^GPfA4ZtuDi@05;4YN%)CatM!y4}9KV-ez7~+xF*gJZIy={N;1n+Sc5jzk>Z>A2;JKHcvXRE7Mobt<4^| zcJ-0$BdI%gX%8TbX%8N2M>2>;jJ2<`qG{YzwvAemdXP=<*KQ{yPfPVc)G$0GqG!B~ zBPTMO-tz*ptunNCuy4fW${ig>^VmI{;$851j?A%Fc8k62TRE3jh8Nk>Y{lHhyiM_r zG>U7v+5KThJT@ZN?|_l5{;<6-gz67MaY6mzEn!E~m%5E&@J(kI-E?|cRRSMmIUO#n zvtKwANirRlkYze+@Q{c?%yQ%wG@V_#YA2>)I-dxq_)5HZaW5> z%FYa8a4wtbnhHzAnq1oPP>90Yfg`t&sqC_-b^;m`%c#P1JSHNy z$HB;!sT}PKp-e?6Y|}KAU3F9WIIBkBq_Pn%XhS9ymWX94AHzc-3hyHvxrIz+*F;nK zPB^9C#_QM!Q;Fqdb9)aS6Or3HVPwlxzUd30OhqVc(=wIeY$KVqJL`_}Z&r#xM|mBt zCe=~4a1P2c3(HPk!Q&uG?j?@g0(LS<jMdwVSt$aimiNQe44+zDOSkXC;~+}z9FE)q*21Tj*czwdC^v_b zc@thlqN5~FEwO}bBl$8O5Rug{!pN49eBKvA8Hv!=re!32YS}emYWWMRNuZ-V3zwDZ zDD^~GyBN1c_%t36QG`!&=I1xLyhCc^n=Yk>}Ac zvSl_Sd?A$C2(@imW;0|_XIWd!UB>DVXfTJtrKB3nOy_D}l!A3Bv=|S9D7J$+atoNs zc$RpQk*p1;v4mHUIIPT1qOq2Z&1WAT4Ux|t7}+w9yf1_@5230}%RDA5%J!Altjm?M z(X9ky#rEs0CV@usRk*BFBXLhEW;&LsdK*_x9t{8<6C$Ii5B8sONnP=^Z6zo z4Ux}(!N`_*yygp`%tNSZ(=v~thneoNZ@BFCVi1FKZL_&^80I-x_OUx21yOFhaO4)S zj|oxcN&b-yCvqiTLZW|cl}KbQ9os-U@NkHXo(v;f2J&8C2xTBbSDTiBj6AF>+gr|+ zH)tcsXIL=;N03j!^`wpeW2Iyp$^&>vL}u@Uku5{{mM?@d6rrz8%TR_cJLcHsnwf02d$5`O53VKEOxzO* z&%rX1|KL#&<@N?gPBfAfKQTBVN+2A<1Hq_I32j^_y&dXNA(Rf@$H5>sW zC#b=r8K{0DY{mmZZ4jIK27tqt<$ALj{adFW3zy(WU_z)8bidXmv#@%~hwwOvlDm{6 zC-#)|Y-N(jJ*lbO6HexxcoB)Csr!i!BO%*JzKI7!Wc3>`vSlP+_k~bKBDA$>8Of;S zne}|zVtr$aS6DRy+u2KSL8)HizImq-vFzmUcql~S{gorPfSpXOrJv*|Tka7|=@txP zaK=>k%{x0M+f-)aF%h|)1|wUhGT9eGnTk-@rfDk1Q;f&6Y6P0fv2Z~fVk)jz&yT`G zAqsB=M{XfgiM_0CT=twFPU*RL9f@N~T~mqWWSh!acuYiY*Tcw`sr36oC{qy%+cZtZ zcrEm9R*gVYxdSd}Lrlf>X6S8rC`94i!jW6ZRATQ^8m970IHgbFb!>#G#B#Dt4$Wq|4lI|WTYiOJZIyn`p26-ii$SD1G}{?j z7eq7gn21uG%8^^ZX6D$;CS4gV2`70GUQnXn?Bra#t&^N>JO|>z5!rqhjBFXtzP=F3 zc!cH}U_2fWDhlyUDh~*?jQj`RFJnbf^smhSYG|t88Jo1YnCZ!`D-=(k*V&yZm9izx zJ1=L_+x+ zu>47kko-05-=eREy|s{kE^M>y`Hvyu$1w3@g!r+N{rOWiF05=@=kscrPWG9xOw^)E z8!HRy{J~E40%5ioedcguWve=WZcVnkkN=_V>ii*j(<^r-|C5x@zt#OS1um1ipONb+ zboF;=~d61@=|89vODMYL&8Q^hceaeMu{uF9;r1-Rz(IcWfsiPeAN@An?;cL*@69nT+t`g-rvH+@vFdXy zmqxhJ{#=!-`g_^gSYV%D+mRX5j-_ll`q{4j?{@B2*>byxsTR^e&h?CM$(3_G#UT=% zE5*kqChEx>mwBW2LK%@7|0z3b^87Rz!62~H#MxrMHa>dvvC^b4`JL z-?b;Z(Q$!uov%dHnDA*1;V~vO{&S`y*;&UPs_WJFBX|fdx-}m>2$#vpTmBmiN1qS2 z)|X}CS4r))Y-Bv@yUF+C@en=ZUXJX+X2ZvTDb@6omfQZpLd7O=i`T#5b#yMb*}T4k zz-uiryD2=62Sz0LIT+b$3eRwe^d52BqNaq-Vm4FGcC5`5bD5Rh*^)68&e=Oy5wjRX zBd!E&MeIgVgqfhNj2U=LxniljEVCh7 zJSJDn>bHL06E4bQU}mW8=k0YwX(nZLp(F9Ih*Dh6krTU6de$?`C_>G$4d;1ZILYVW z)g<>&>lV3)$LTle<_& z0;i+f;i6J)XJH*h>M2>Kb1NPcQHD2jpzUXHf$9Dv72WPN`a*)pDed?A$a z2<>fJ#xw5l47&^8yLttibJ!jB_@e50tRjJv&e?EL8!_qVDOu*T0S}5O!?hea(R@<8 zvpZ9(L2Vc?eCJEy41WPHCee55jXLh^Y{&T=9vzYD>tJNdaX!r<(!1uKr&n!&p7a=t zF7WJs6s{5V?BBaiPpY4#t&xZED2W>R35=Yek?fV5wQbfG{R2F+Cb3j|67IBVwWpy+ z^cqhsPS`hCmtz^k;0(lb>*$haVl|^tcq~Nq4d=*-%_u$JnGj{3)PnX7r*jXygv1t9 zZ#hLv%664q@t}yj?gS%SuJTS_2xTThU7MDfj6FKj+g0dsjJicukiceFfNM%^cE)Rx z+Euoek!3F3cuYhQ<~VYqxuiJh&WM*F$z`qy=l5#7mPD5^-XKZjx0amkHdo=n5sAJ6 zMz-AMG7gbmznQBkVt_IC2Q0Y2GyfsDMAS2XuR7yI-6U;=JctKLRLK1>a)LrUnu+R1 z!jL>5ns|GAn0-_GZTkhw@hzASsvPIlk)ue(>OgPe!4PHlFOHnpfzq>^i9Ge1IU7qX z?+7P!dj>H$mn+*3L})E5+fcT}qarf9HH>T-$~<2PWhg>lo0g%BaNV%ZvRVXoxRr1@ zsg`1Ff2qwr)nqJF>A=GwO7CQjoM; z^=974o~$xwGo~DJ$=POm-aM8p7Dt_Xs4%D7CYZ>FSC6oO66Rqc;DT6 z&t3hxy&9YLx|HJ$w$;A+Q*W?!afn2JOL3YWC9^i1?ZYr9@-+Qv?G5)2!ew&On%}^1 zG)gLC`NesaE~_nFf*+V@UKhg1mU*4eA<}DL6U0m5ZkF$6!C+^e#qu3+NvJGO<}7RB z+l}fr{P0AsZ-J4U&UN(uqI{X%&G&QRd_M!1h06DI&bO6<&G}P!2t>}GfRPh8_vqn_+jpT(<&<4zKRzSK z?W3ZNZ#v5C(53e1e>nE0z5s8$noYkEbaERqwqYj0Z|In*%tq z2h$CI?|pi#0!f#;B^GVqsL+R((z&W?bACt&=e3OOPSb-&Oe8-KBU_zjHHS!VlAIb> zNvT|9uf?y{zcP6pizrYdpN8u~^@T8v)bh0q;*)s9M2&nLMo!R($0(tu5n)pv5NaCP zpC^*2)W&zN%@-HhB%JN-S}Zrai{^`{jp;+h<1DT~y*>tWMAhq3*wd1ewnY0V9yU?5 z4-2j*C2Yi&;>yN0iS?*CzOm>r z=K;~gt~jkK=fl`$aqf;SGF7_6$p0L#oJMoZ-Vm*x`x572vJSX|JPGFeW z72!I#3@oRl@qgnLp=Ah00YPB zd*L!sP2}hXi6@r6t)IK`@QM1l14d5Jk4NiL-A~w>2SgLQ-;An^muJgs3SI90_pfm2 zz6LWymF}V5(lt}II^aL?poxP02S;v&4!Bi<0BU`}u(7QV2)40#3}SGu29Ii#7HZks zE;a{`o+yf0FtX)hGdM(gU2s8?dSZ>h5YUk<#K1nd94-{qOpa}sfMNx(HMA5@fT*D* zFmi&1JldG*gu>oDAez_-C)HmS{Xn>EFNV3H%Jv{!w$>7`)&1U&hf5Uc`#5qdbidga z={4s!Z0pu={%^($O1$bp-nLuagvU)3!k1xW%dNi1A=2x3b8W@MtlkjKlPtKv zUiW*rL{!sQ(E!oJQnz*U8$5KPZhi$LC+NnbMX4?)Y|I0qiCu0=wCHDE_{2AH+x);_ z$xdewgEQYRf+g!p*Xndr@PLUzoyd_}q0{m0B@N052)A*DY^^25Onx zuC+fNIZ+Jzz{r+s?a3k1>vr=U=TCdg^bO(kvG4->T@PF&YQH;bS~%~Y*U_c=URqCl_X$gR-n zW*JqedA(s)kA`#qFkVh#mpd$!`&!nvOZ^0onka%F!pN3O{U3)&ufxqT)ev6JD?CplBLE$I|IWFq?~ z!pN2-9q$XFEJjwtYUO?y zx#?P&Rx4YMEmAvm@>;k~{s|X`suO&5+L5rWk$>O;6E*TT7`f>hnNcfQ4}W0IsgkV^ z4sJH{7{uUA!1z4mOxf1S96V&APG-T#P1ni9y6xu3aDgm`YeKb=cf-?&o~x~lrFg7F zWh{Y_o34y0yt&kIk8{GsaVA_AsyOf`eXMkCeXPU7CF-LLBR5?iymBc7?PiqGSb5>@e87&$=|9v8>z`daKM;sK$S{O0(+y%|Np_L*BYEY*GH#`pK; z&gjp!b*#;F_Zy!{`U@;=r!M7IGS!YGwwK$nlr2ZQ%2?aXWy|d%q-sRkrX`N8WS;d^ zj@nA*X%3ONw3p(m*b}tejRljji-Kp^Q4FFHGwd6zVj3|Ou?d+LzU?2w@xv4SV+f3F z`9~XvNN*i?n%J>TE1ALg-YlfRC9*x>!Z=Ujyv_K`sJXN|lCXK-6%T^Q`%W-&(|O-q z?c7$6`&HrGcf!S?azC4MpOA>n|7mz2ME*~KkrVj$X!>ey5DmlwLd^|N`nEASH@ukc z+%Tk6*7v5p0hX&%Yn6in_oj{F(mIo4WVqf}G-_nHmP53{$S{m$Y_yH164w2q?Fh+D%o84DgAb~@{ z%WyfU?2eBO1x}7%#1Bp6_yrib=^Rf`9n|J|t3!f$p35K_G49)Eu^9KY@a^+?Hhy>_ z*PFx030!;hY}NKf6YzjgZT}iy(aN^}Qo3!wwp`Fz=cy*f?Bcey}Dq%|8y z??2U7IjZ-c#35Rt_g9w-MDE5Ea3RcxJV(?Na6VitC#Cs5hNBUqFBeGaF(Cv zvYE3OwJN99D*L#W3;N5s?p%3;>;8iLReKbV){z{e!YmdeHa$zRs8L}ChiHXSVHnHU z7!VGCIgt6O0bzf*L{1v>?_f9@9del)hP0-NVghV%S!xFl4b&1C{7*BkM}6S@8v zjGVx=N3T}xUNiv@2-WVV`X(aV{TD{0`c%QtQf6&d>-Ued1TZ&pO02T4XTRqGX&uJV z@E`N7vTFE`a)`u+pI%=W9%XDa{5N3|T;A^r&?TMqFLUkK$8LN!4S@o-2K?75>qrt1*HmlaAS<9VZfmo&yB=5voIu@6>e zSM_)EtAOf%w0DccYSME!!Cowsz|ntq4w2{t$qyAZ{wp8T56bmsiW?4QpII&)(pxST z`Zh%6*9`hpxcHVgoCFum?F~yAjz&<$_!zt(u{|Lx%RNrO<087paU403&6z@7vV*9z8z|ly_>v2EKXl}#wL(mOVI8a7vKRBSw9a(wtB|dz7VQs z2<-*+jH7uJi7IWp5lyUXLEmBF1gi4ea9ybuw7{uKD<8{z?!hA>%J5FXUeX7I5@~Jt z3!Ph-Rj8enhVA?{oZvs>|J*Gw zORZ}v>)uoPdp`)|h5#k z(1w|-t&WL!tVDH;gOQuAj?tM?M|ZANE*Y9QI9wA4z}2Ao#qL-ukr~=b*dLFOsDyoB zUkI+!BM)RF1!iY`if`wT_A9B^WF)r$#&PpIQFX0+dbyD}!tyaUSpSP`=NAS3bs`(j= z+ybg8X1a3O-f~B-x3kdGmnr8~c4uoF(;KQ8c6jh4`!)tKIFl@>n!0)0s(B0Mwn9|R zn=o?IRWo6AwR+KwaziA$go|XyK@&;cZ|&ID5>M0C#5?dXiJI6RMsB($=F~LN-&^YM z>njw?to?MAH}qxA1=Wslg`5l*h}wMWe%T^fA$HQXUfzobP1MVKVC1IjWplCC9$gOe zrT5+r=i+-MTq_@di$m2)-LG3%T1iOQ*2%?qz(k$AA4YDvPG&|eMqTn$t7cfPhtZpGszs^n%Ex#=pIu2)U$;%;c<*>H_K4OfP$kprQ%6IZsjLY~B< zB`W0iFmlrsGC|Z#KH+IdW6HAN3!8}yVsI{Ou$fg$)7Hc|JWQe{M#IQW*TmLZu{u^} zI#18C`+L!aa6fx{Hdiq3`yLRkll|c`Q7vSJhlNx>K<7x^*3Le7=tS-82_rXMI}3H~ ztS+(*A=$0rVt;u}9Rc-(3n&lQiYlOE0tA$lzpbLxc>F{ab-~C@SCMd_+NHDOG&DNZ zC&LBwakxxW0eLu3z0_^(Y{Ww+YUg7xa?`aV9H>^nq%+VE(Eo)C=(}*Or~>kEpaJu@ zRrDP^exi!L4I?*QMdNrMb6zmL5-ydO;DS)4vKQX0M3S~1{*DJp)Wct4_l$C@*mDeL^yi9M^Sdr*h3jQKToEdOT>NUap0a6ZGP- zoq*brK)jsp0ikvzxXkyJ)+h?LBS9hET>?ie=`O6ybn83SJqOF%sm;oc)Qt#M%OJE@ z+#UN5Jmaepwg13V9HJHWADD6QaYrA0$cke-79V}YienF1v8dzVBUUUvY>BpM;OG^> z)9(ld(TM5yHC8!|pvu1W1{ld{ds3G2{8d|!4#ndnn#*P|vSlv+6SA4Uw5@IX^EaNe zabf=QIc;rgZqHxAew@Pob9TaS^7E5^vCTX;R{kmmS($KHZ#i2m_V=-eT#jWos5MpW z8Lo=m;F>tk@w}~yT`8(Cv$NE&GaesN4ecB`(E-xiWMY<4gxZEg#q+$>zW-O!8>-dLR7=Y;pN)86L=}FFBPW_qn%f^$)32S4hV6VeoZ#=^btKwO-90Nz zf@>Mte)DZSLL$@mz{r;0+{q!*Ye*Aol33N-(VOYfKQQnTize`d|2te0>Iq->m2^uF z)%2_r|F3v}L^=E!Ms6)Rl#5wi4qF}(EQc)^#Nb?+z;fW}S#p?(2S}8|G#I(*a+q9m zhg_*c-s!q%V{|c;{}j7o$sZmrh(qD3Q2k*K%9!d%(2~R;a)BnV!TI30$zEkjBxL8hR^S3e_jTrgSQO=k=s=DL<9sH<7&-gZsYvdQkbD5KWxzDt5aw{2f0wk>$U_$W3Q?;=$FAjkuVe ze^fBjTQZ17TwB;@@)XXr9>2}@7WnarY|n&|6WI1>;%W{MJ;4J)%>keCm93luKA7$t zFd-B)yaQD?Cb~Bz^%SH(e6rq$C_xG5Y9Ws~Eu`8ZndF-K6e%cS1LD zJH${tMxq=xgOQsqhiSe2Jso|8QZCw|Ce!VD1!~W5S?mTEhUyb_-;^_D;mFl)AUor+ z66MhjBR5?hvmGUq1G%wu(G{+e3|t?oO6q=gfS?kYvMrWV@sNpPISEE?O|dvfkB^0m zeXF>3-&WXo>Ajtu2%N7uK*-fR%lnch1<+*pk?e z(L%g=*G&AXod={X#5k79{_QIlwN&;xhiHYRvf)w6#xyeTnBYs9ISir^moj4+j>d<) zQO1dqXQ8@LHVZ#0(IRHR$d*M+2mcsRLo~U`7-}sF(H_J=# zV-s0k1S2<{<=Blf2h(SUGrbP336*K{Mwy%KGJbp_+h@SY32b}xY}NKfEAW6&ZT}VD zh9ukmchkL5HX{1WfZ6%)f|cr&S>;`xoxd8B)@&Tj|8`%|sOEnwhiHZ7KT2k8^#9+% zT*wncJt*@yTqY--`R_9vjgrdP=t`o!N|!va8UY@|4@|U+M`2{kE*|C(>5Tvr#PcR@ zmPZ{MJOvDA5RI7fY?dc;mbLKhE5af8;fY+g!N^VLdWw4D#Lf2};e783mxX#(Pv?AF zDcGFvgoi-n{GBjz0_PsRT#W;wIe0**ao}cOqmtvmjFG86KRf2Y&T?)o-{fE4UaKD# ztW#~3ZTUzLJs6u^)h`~Jt^P-QCU$JC&p29t(N`d<^%ppVN9%9=#z{jCS$3SZ_VNk1 z+*1Fl>t6|1$jMm#LWZNUQJKU2!9`npl!uH&jRBYAkq~X-qZ~Pr!t|Q^c$Ro=#|~qH zdw>NQc!hr-UP0%cBsQ1Z*5$I6l1=Kj@Q{e4-UTCD-haCa$tP$+nUU z@R*3So(CgaR&us4gt8JLu1(8IMjgstJT9%vmDXsNIp1N`2=tS0!v&@K$=1mVRM}V) z$~|~IMD^Xtkz2r2rqIIt$-tlfRoAEkVRr9op^0YmXJnDKaIM2g42$d<*7^o39s zBZRhTSxb<0^MaPTuiFF)VVt(GO>(h2_6ekb&EK13mD5po_dm}tPAI} zjMtDjw$!;hq$g$D$r*T1L}GhkWXn!Y_k~b)BILDc*~!r5=4$TEtPp{2auZxjs+-ig zJH!*Q%;d{>C`8SDkt4T&nM{Z>Px6xAgtPf8yo5wAsdINo%gMHqU*ItjY5h5jY+1=q zeIb;U2yty%Rx<2JYw32%3Bg`6kwFa3bX;dL5t&$KG7gW0sJhV{xdqH*B2PWZP4*Ax zb055hL^r83ndnK`cCsfP6p`57U}VcqcJ_r(b|U1pY1zq8%T3m@LIh4GCAgLim`r#g zmYMY7p%69K!;xFSOeRE`Cwa+r;cR{yFCo!O>P#kDPPUbN5|4>U>&Iba%Stx-LMST{ z;@Y&VWLU)69@>iRaUh)`ROsbdEnM_0`mYFK7 zHU=>`lV+XCL{G}Llm8AHvHymVEjxML7ed*Ikk_VVCqs`hA5qyaTzz{Fn)>Rjneap` zGuZ|SL2}&HFp(9ZV4-4nI~Dv55n1e2rpp+tR$Y3 zP3wbrOhj7mhmkESxz`s$S&0zWre!4~T+g<>?ZjX=c?&Kl)lKFnKLJ(E#WIvP@o0$3 z`xi%U0YjNAlTY%LcZ74gJ%bpWOP#k5$Z0Jt+g7&4!y=NqHH>W8$~<2PWh+8ro0_dS zo@dLlS_BR$E8%iB!d8+VX6wMCAu8`=j@%NqVm$9+9~<_ow+jD@LHNd=IWC)mOHv)7q-ZSo6vQ zcsNAu-N%tzz*weKsjPK&!&zPqXZ1zAj6`SIVPIBkdD+(T0v;EU-oL=embE zXA}kdnD#U2?hQP)#6B0_xhC2kn0*7{qK)ToJZEG6Q*+pcgx4`rv1!XWDkXeWTkQW| z_tOCJz_iWj99so`+E;;UtH4ikh(vo^n7GGR!*_=oALqodw+CTXq`cIof%n6;auS>W zI>XU;sZ0{nQk*!eKi!KTooHlt!^oDA-N7N!V|uFCaJLTM|6mbeXQ9RS-{87X`JTb~ zwsWxC*YkJ`MAn~!k(kp9L)SI2GNMI)IQU<;LN-8u-Tu1$3bL&DvX@K zzDLhjV}ocN9uR75__(i(<=F5@x?d6+-QC~Tv5IZxTPSKn!^wtdPuiia?UarAQ^b!B z@gpOCbn+iguc@qXeN~`4*UMT~iD8nd#$yE|L%hyXQFDZio0H2;NKV#j!flfQ}o#r!=ZQr)wBNNKHpb@Ct! zBR&@mTmq-sDu*`2Xrkye%~mZYuS9ykZ^e}w?-jLA+P^l%OO#BU0Hpk=eLlZe34I?+5;|Z~`-QxLxaGv*vOF})1#Ybwi@NKU5 z!4FU5dQTWRfoqS>9kpFylA;NCKqyza+t-+6^WP`ki;baOxy)+qGUGg0rA~=e4r@sF z=izDn#?k)I_7#t6{~I_&;+D#;47NYS0ty@yE``fNWm|mr(n`VR{31LABIg&t$W7;bhPviX=Kaoa-oFW#hRXXa z91Leb-5N0q4Y?yLVnjg+^G&U+D zxOXs;p-e53VbXAMnB`gl?T(h`c1XqK~?KsYDHFBHb z1Mwph8GaXx+;oP=t1-Z0xg5^&8E{3YEQ<#djKktJEp6%F>4PeG#A5Y#gosW?%WJ)_)U+Xoc24 zg6C{>|HoiftPb%gTqGy4`3D$|Mo48e?+}72c~~_7Jd7WfXc|9(kuB5sA%{qB02n9Q zsEgqtrv=XdZ49Cj^PSDGSOJO!Z#Rek!faHCJpUU;ZaUACR3mk9y;C^X?;JF)ryA=3 z3Fr0O@c@W?ZwDhM@a@sb)i59$f(L{e2EOboTsaIpobC$1xXwavshsI8x3On*^=AnS zuwb3Nqq5vJ6!c_zbAA2YnR2es>w084{`>Z7j66iG4LRn5ZeJy-xgf_OT4632A5YyF z4=#uKk*CZ@Y8UDsg=^)cIDam~(Rh*XJjJ88yGI2-I?+u&03%y&axsTUZ%UBwJjE+! z@O>YPC~(2xTX0>de8=B;isxXneit4Ck@eeQ-$HG}yV!kPaITpKF$<~vXE zJZ$!##p58d|1^x8z`jTOR}+M29Uc&Bf>`C7h@2pPmF{xF*zQufr>&#EuPam5R~2^1 zpoZntT;%}Q0MVV00fsrluIEX`}H!;X34q^o}*glH| z6gV)fhs#1`JO0E$ECrkMemn#s=S3K~>72)&IEWR^;QhvM-fw_QL*?Ck;vklW&HeRw z7)0)`g^?4u_h|KMS`bac142y;Tlpp;r-kngP4|t(Y)*e?;W-vRW>QY2HRz4SC_1ex zIfjL2d@HVog{L?~D+~+6SjL8Zj9!T{Vhsr+7z8#?IZ4gG#_FWeA>UYxXp#r*sV!y< z#Scm}i_KtU%PjsU7@xkht!?{gGogj~%h_&1Yi`e9!G5r<0A?rsVt&#uwwadzbrnOb zj1lYhHoJRo<<} zf1R&*RQvxlhiHZNKRim==>HGFoXE37EfPEk*T_k0{u>NO<3ql&$cd6iRRh5N_)&?5 zaW9N)8OGflBE8iC`NpDy-+!`5u!-B^_aAUQsQkv?Sah@eH~iQ{mY;`_o6d6VjYS93 z^E!i>p2Hv-G0EF!viZiMo9$Wn@ri8DfRPi}_UPbh2oSBn140b}pY)Zj90FcWcLiXQ zc*mrzgFR!?Tk0#6^qU49ux6dsQaR3f(*WHnO}-DKLe;vFV>&q5S5;~{crS-&h3R0j znZ7Y8TmW-rb&~VodO7LN_c9!fo60o)NRyd?y=-tc9s$u|Ho(Z1!>r{H=}iqY#j=4} zHG}uBv#0_mh_Ax6q4F;7N4xW|+5ZwA2a)|Rz{pK!fA+zJ-g1U{WU+k!1^g~t0guD= zp(;Rp2|76!TLq8du@F`8D2$w-0*?_vO&Ox4ctEHr<2}BK$SI>O-JKDK75dpOoZ3qc zTXdnWdLK~Nq!_jDwPb|iQx34T-!4FO}lb2v*%S`^x zA<`QXRM0}V-Bn}bj z^%hQ(T?4~tZii{I8qBS5(VR@@uV*+KK^3uboxr7xqo=m~a5EkU(P?giku9hBvM+>k z8lkKpr}Wq_J&9lr9iZ{3xzyvQLE zeI>hZ)QaY{t9s2#Ad5VB`eGJvzD?3PfA*fKZnoFZebmdHM0ZbcceG(N6w_UiLk~ z_=at_z+!bO&Am5^{<%o!E7scJ&|V8sYeSB~;A_4jQiH))I7BN92BWKK8>7K5U~a6o z@pHINPI~kAGaQYRirCn*8o6yCKgEwsG>{*`$d-Y8pF^ZK9847LwOTEM=gn3Jj|cyQ zYeMB&JYB2DZ?pX${P;w+-++;u&h}K*UK1E^4`+M_2GNM2-#)X&4m@@aHtP%V7>KMd zfRPhe_vr9yNDwW;140c6H~Pv~4he6j`%LxRQfH<++tt?5RfslnD;B!?JK4Wv%51GV z+F?zb9eQ9DJ58r@l-E+Fh%^ec8fPp_tyekbhrF-8)cmlTL$t#Duw}hc7`^5)m@{jp z_%K{MC++#O8IHzNWjy^?F#=R`Uz%`1y;et_xu^ku2z&Y9SxC4)gD39A<be%2Ums4wt3qliSg_32#Ab-8b(fF z+@qVTfk3nc4+u37%=1k|4g_CJcOV$jmDQ(#Ke6~RS8|H1LHoo-(P_=cF%JCEx8iCX z_ydP%g>hgQ%h;F&M&?jPj8gQ`K`ZTLZnX7QFU z%OgC(h=1WjN0ra7n0VvAIv2lk1c5!xOoFFN~bPwMXYx&0jPD4+!NdzwY8p76L$ty)FhR@RmA$fX29l{{=u?ZJXQ@WT>KV^0TbFC`@K+=(BY$n$A1a?^Q^EhV_PzABvSE8wC~xi*&) z68OFh4}i$`hhgLdzCAj*8U{o|@PJUmz(n6f{@ za;h!ir3meHN!R0s`YV^!-Iqm}S}StQ29NlXpk{-gafnu!4aUojr+Mnei0}r?kvwhG zi0~?0D<{qQXBdvgi~QhyJbL@`;${5kL`QiMMz$Q~1rCwkq#!?dAFr6f_kwQpoV57f zia}s=GnMc72k+xK*sRaRV<56V8%AzA>#+~s$E#*Ae{?wWN5HkAGH-tHKAwlo{xUoc zBKwEI$O-Iwi~wqi5Us-lLQN4r_BAg#Ma)WfNnuE?cdfRd@G)4ePN_BM(Znb^tu;AD zhL8A4M~w_0;t;JcG7MuG8~$+{%!t)FZh=eWBsG5>!_nxFk0wSm$%FRPmJ+^(ACzbo zUxAS=v$&B%q&FbQPuSY*KE(pTW_63*C*X2W*^NJ%=;Zjf_@Rj${~AVaI>)g`6K$Ty z_XP7ihCwu9{oUhK8AoU9#kXLx{hNASn4YwH3Tf-5Unr-jFMR!gFqk5jMXZ7 z;4(SM&7aJ0G)gLC`OV2HUGl(c7|7!XCYr};7}+w9E)J32Ffc*xA|TE_gXK@NU;+n% zPr@akvMd^f7QQ|BeH=eLk?V~xa?`nbOpVdDM=llQQvQYUJp9!#1usQ!O9s-f` z@4(0joO^V3H5`cM-~pkAgGIiH$l>76>8=b6?d;C=X_LXIUeuYKGOHZonhfH56u53G z#DCw;L(}??VffaWXmk(aftMW0r_ov2fy!SkpxZx?}6(<cL12))8AdrwRNn?X4qzo?(G-9$5O&9%Bi}_VXl#&d!R4H@Bn#yvGBAu`_#++# z(PI7pBU={pI}VZF*f3jMgu5zd@IS49o}(83lNkgyN>lk4pEpm=#lF&sL~}5tOkhB;0Gp}#iw9o%Pc;@A<`Ql8-!+pykWPHDA*TfPfB-va+LUXIs5pEcBybJ%K{r+oa(Bqa5@C~ z{E~`MQ>w!^uJNtD@{OxGM51q`_?_7?wY&}ccmQU{vXA@VLOBV}e~sa2q*TP?uC>r@ z6ZsZ?XrhVS1tVJ~ayy4euQ^N-t9G?=8BD*(!oki%i|H5OqEML@Z_OGB*nIy54}i$` zvoLbg`JSfM8k0DmeMT_nn==S(e4=tLw$5=RVe>v64}!@16c{;ycaKi5h6T|mJRsDC z#8timmKPG=O?Oz>dTq9|Tqw46lnZSgrPH(P*#BB*Lhxz4r@@z$F*Mw|po*{Q=y zS3|}K5j_i@$F4%JMy~ZS$8d3iuk6%taU6$eh2diU0M#%W(YY{_RwFtKE}v5j`8>nX zsH$wk?|KZ7kZn-w@qma1)ej?E236z`=?x;=i9S9+5e-#*g#{Tnp4*Tcw7*TxR2-(&jtb+|r$373nik9Ol;=>VzO8hHc{ji`~I!N>_3@t983 zfFqif2ZS1Mj`mGN4mdldd)suZm|@yFikaTiwMk}15p_DJ3@b-AWRj5^4DcwmR_K^o zrn1PfYXPYxHMLCQ5Unt^$o+aaKSnRw2WCj-sh-f<6E2mLV z$W7;bhMF>xdEXe$`^VtYPVZ3i5 za(eh&y3@n-QeUQ6%C>dz?E~HW(?7~m!hFjqzJzDJ2il)r1SsMoZ&UxUFAHjb_z8z- zg#kixq?f?xEw8~G$@51|690s2=A=3QM~0(M65?5JCy_D=HB$TokAi41e}j=Ni+P?y zq&HH?XT4pOGx*=Sgr1`o|MM6GHgr?@k3Z|}%EfLpbMRP*DwqW$H(dp>XT4q3Gn8;- zxDuAbHKHoPeAe5QkFAEKcsxWkEP;^|)Zj5QsIfz|8V?9HcKp!S+~nBtRJvowaIsaa zwp{U1Sh!BrRrYl*R}Az@nG8s4T#l8AimzbQVDSMC(F%jbNRhN*Am4y_uv*F2;VL<) z%zuXAXpB_G@XHlRmOQQ+9=?hnmuM7Uf{`tw_yUJWZ+I9lF6Nya|AEDVjr11Bzk@46 z<##3PjTjE?GkTh_0FlJ_a6AGc<3nKN z1jao&xEcaPTkwETL%_wp(v?HNq;#M09#QHptd2g0e9^}9H=eUG|EW1`ZTZ7ttvYR` zQM=H|2(>2U7z+;dm5>?>4&e~3FcyrGyclyqFU*Y9Gfs!g5>Ol zgTWg7z(n)N!pN3+tmF{s4F=U+=tQv$mOsUU37iZ*0hffza{L9bs(DykUx^={$o1tg za?`nvy#VGutG^%4_xIqkQ291r088Zj0XzgE=l8+L37mU$b~PM`=HLOLhJ%BA6OqHg zlS5f|p0u>BZTqNMFU()gy7ijd^H;DRr)*3#uZ8*9Nq=R2(l4%Jkd>i*(O$&y$zVi3 z>P$|VCESKU-|yhzX+6j>77S$}V^gyfj~WX$;}D63Pw~}`;Ze#)w|G0uiA+%4cGwQC zk(1W^bcUnxA$OwVM9HJ7fnXc_s6@k<4J{Lbek?pf! zGC58UsoBQ+1)%OP4}9vBzP+!za(F$|JWHWukR<4J+v4)3h;d(jg&3}a9Xxvo9-AXe9+flB;BOp4;)iAQ< zC|7Za^d^Xz;zneC$+_4ncnyz*sDgjO$O$U&7zxx=AzF$DgqkYW`X(Z$idE@uCNZ*e zO`$tmI(>sSOzgW3H7=*-D$AV@E}}OkY9VTk%P~~!#lps}xul5HP_a9QXoaC-bTw_G zshkRPBa>7s5huZQa?+b$%5XGJD&zR0Pu0k6133XdGSNVegOM!*IhsSHH$+Sn&9_=D zgXa&iXaa|aOW~SOc^1ppdi*xq7vaYzvV8%J+;q05sz#f@_?_X5e-o|?mGK$ILygrO zY}UVl$3SHL>o9Tx>mD6m4GE$}ctEHjVHe*-rB#HY0)$9V9HZ`IX!@Dhh;h4Ekn&)Mi1v(}@mShK+l27%2`PGa-J8IDFsWi)pX zL6tmgPi^0YsrX@urZEXdwoGF@he&TQ7$+L5i{T|K6zsgS7+wSygvzkkUn3U0-5d_Y z4^HIyT`+Rfd7h+30vFfiaIVjQi$djEY&&WsVDsIJ2SDWebQn2-Z;wu{h5^wKJRsCC z@OR&~B!_`gx=%0+XFGJ68&%&5E7d8p%Ha)}24sL*_i>B^H~R`mjRQAvh*lT}MvA13 zdEhaa7pq%53RlTVZTrA8m{k%wYRI7Es^HX;Y`%GoZ?G(S8|{&8%2QneuV>mK5rol8M~~Ka#91t0uIp% z1BB#AFM;7PD`1Xf!fKK@9Ily@=KMYkN1r6bmW@s#WfVQNyAg-tQ4lTW5E$9An1eV( zdLxD0ve8vJga5NwWP!8AdbmDR{^MIVx^l4_O+OwBQ3XX9x#=p1ZQ1Cmo}q*r!9*>8phHGKu1T}cf3~KBUt;PdFjU8M0CL+g<=hGcKMi&dYwvJ49 zZgsD=WbqtJ1G6!w@+$9g-pv?j+eQ|Yj7jTXjs=Qme9Nuoi>Ek5;(U=_lNnP>+i;T6 zXQ5=slS9oEBNzlWhdKGozs8ECaU#F6Sqt4ZjiLCViKej`jBJ_4|9thMOhf1=$TXe^ ziGqEq_vh(83pJd5PN1j1TQiKqV2wHj)}Y&;GC)nK4)<8>Dqp6wda8a8;;mo3}rc7{4EnfXMj0 zFmeLp9vxi`1)?o@K&UH;1AG&aR}%ZBd;4=_Hn)0hrn|I88w-Y=jarjaX$^XdsurTw zh8%;z+gRAxxGY7a27|XaeXTGUjIO3_j0Ou~ZmhPk0Irjh-uzUCqj4hNqN+x2UsY^{ zADL(%b75r5KxT7@^o9fZ7FD%c2G7T_XadKBqv4uRd5*tDRgK?f`w0B_M7Ec~$W3QE z_7+vOVg}jb!YS~;=f~P_KtV*Eoko&KkgAf?iD}o<3F5&s~qfFaa^5cFK=bK zUE99NU$x7~L||Gks?GQyu0HV)4c2$bo5- zi7Dpa4cCUsyx7Xeorlf-es~;2_V|vgI9DbBOfj z1-bH2t(L*_BP<&1th0Fj8C(-8&+(OqYWz0aKgN$wWcvp&a?{z4tvpmKW-$I%IOA`^ zb)hnDt~^w8uvz~X9s`l}*I?uX);)T9)R4u1DO!XFgc=Jr_$DI9f_JC;%)+!%w%pdy zlj~*M&S!fI>|ZkMWi4$+c-Oh8TRDa2-p_@y0>MT%7MB*E)|wpS!oDnK>{3d~NsSA8 zafrkvhxB?$M3Gql!(K8lMOH&O6|R_*<@|Dnqp?$&$v1a#Bw_o@Nq7)Me>nk0w*2Kd zUkK$dLQ_HhvU^Ar?3t+T)7_eST7NHhnBHuuoLSkOWnNS0(yu|TV;N!7kW+cy{=y^d zs0JwFyRxlqv$p6TP09|V`Lr(`%4j~xAzHy`9F;JP=0TV%%V_S0E9Rs-|8<6=u_KMf zk%VnD_u@eijpl9`*)p0td?A$42u%eU&BsHcU`BIay3bimDi_*1*zl5D%RHvECex>z z%-haujL9taT<9nlWN(Wit13h!!xJneG}GM)Mb# zD9dP`g^T7knqM*;-Dt!eV0Rw&AoDaH2hnVvgpn_+AhWqQBnoCWE7M(p znaI~)l00VN`x@ghhjSb`fABzV&`z)^ahO0v5TD)&+P7&%QLs7TL+Q>5lXIoEj@;U4 zuh2qoIm13Bsz1keBP?B~?kY<>$Aw%eiY^wM)}9228$|i zjCd8U4VCx!htSPDZ1!Kq;~=vCB8;5CzDGY$Ek&4#2ZU-V*ZL+RTgoo!u6Ip}T1xey zBEC$mU4ZU+0jgc6@G8C!6){PQ;KVZWfLEcrv3Rj-D=8z@PyH(K_Fubc>T zWA&5c;c_|Y%`av+dOs0Q6&VTGhH@+(0MSs6f{`slS-~OFYbP_r)tpf@gY`>TP=Vd# zLbx8=VGoo4#`QIf3r zVhV%6#xW<)`L{6~jh>2F2ysuggB0sv=Q#&`^1lU5-ob6lZU1W*WoKi`zk>B$`Kr*1$;#i!{6nM zayJ}hJxq+{DE)A;+>X-4a5Q2n;)x%FJ9&I{1FeW3pXen87}@fYZeIxHB|=F-Ua~AC z3bv?zN4j1znLqK9{1U_+ES*NUiSMF%^oUFR6@UTPKyLG`zw(n?I7AEhNkop8z2PXo zfyuEPY`P!_gf@+@duzu;-Is;1Li#<>xT6kvPAsL%8Uv#-xeVF^^1VabiQe6piwaDI6lvKT>>>XOzs^ z@QwXoE-c^J8!nUEHx@D+jgrb(`52FokUX#&LH588Otgz#VPwlLcH$7}UC2(TJ^{mv zWw4xM!Co^91kNC<(4FVtH5Unr>439W4 zrhwaE7Oeho3tS^7k@@Qwj>bo26u(~N%8^G^Bf!`2qY^FRD=@NU5jS#(^hSWO)#r~a zexG8IU=z2+?-Ou6sQikTw^Z!*h2d}UV-s2aHH_SJmM5w!X~&s7{^DS!$1sRSOnUa2 zEbcVw@!M>V#E(y8dl-zIz_v%vR&8Ij0uKn)_Am97t!(>WP505L1^iB9X-#1r`wCWn zZ)aP_I`#pmzUZS^NxKXzhjr|e2QHtJ|NO}eM;|8^h?@)p@hc-zqedQ&h-gczVPwmex_lv&EeW*+ z+0vqrDA>))8R@Q0j^efyeG);tUHNsE1vV@>rRV+OoakiZL20^mT$X&*x7^BNzQiF~ zz+y&Mvo@^c5tt0iN`3~H$;oH_+YCpeM1D7?8o52m{1`tn(K3DjBU_g7kS~O?456MN z%lJY_6wETFrfV59;?G|ueN|)9C5 zM9?(Amo;{SX|k+kXSil=YnjJzG=3`Lg(5eTG7L4EwBunAeP#z3+47l%z7Wc1gsy^o zW@Jbd%x7k%>@$2c8DJCH63eL(gUaEaJ`*)QcnjG+Um}#v^l*q4u$k$u3K#>-RWM1G z%Ul7M%^VKqm2T8(IgwLp=Dm`8j`QHJv~4$%UJGdsBshV8ro6K2`Yt8n4m zw(|_b(QRigUxG=_#WtUp@mPrF^CFCFna>Np5XyXn!h+1_$01QL^I4y+`Hbfij{7~f zJuhvH+Z^oaHc>+)zs0s23pVh&X=e`60{#+_Qp?)1D+47JTz7Wbogo=VZq&*}G<{<~B>mj4~hr#-L`t+CVuVz^^ zVp#G0@;Q5;iM^lAg3>hVSaP|_x7=zpxq?F^T1Sd6oQ$rfZTQBwU^Xn@xC^e6+c$1x zI2tE%1-BZxJ$KxWADQSGx5CJlXWYyo(z^{PzkFV;mcjF1STxvKXYu?jToWqK@h_iO z8w(JUtghE=KJvUb@T67^!IgT%EpVS$H4-2 zs;}bxDGM1U+lz-s*-;HrYf_HE;b>oBslnk04$%sOLyax742IpThuN|kOg~&VC*k=n zhNE#*k>9dNB2-4AE=G!YBt+9Gz{r;AbaROG28(&}WzdA`89KOuMHe_|To2cXs)Mch zg=qbJ>=tw_9uH9s*TBe4SHm{y0nw_D58w=sge&4_aGj`%*p4e=;GAq#{1}gksEQxJ z$O)?Om@3p@B3h6Kgc?ki`6eO%#oybK2V0+@8OJ z{WxV~etyy~u42EhOyP^3z1iw#Z>;ZvPWm9~ZB7|h4h>lOtcFMXs@8ZGF*dp{MGyoL1VIo)P!10iMNyRZ>8hHkuA{T{tJ>|}m(NGqklkNB^?aXx>gnq0 zDw$W5E|_`cV%!ABymA4oY~+>md?jRF;qerdS4tsPP+oZ>-HDW`VueU9;TZE@Qg;R; zt@v&c$d?c>>)fi9U-o#4yMz98U5v!~cTe7)j+Hu)FL@S&irim zz^p(|!!2+melo0_Iq~?JpKYIM)W020{hP37T&WvpeztpIlK%#7g(LZ|!O98bJqCGM zC-C9ILqg7#cKUWCvV!V_{nK6CHM-bG15-Jtp7i-9bplIM)@bwoIJa$-G8kD(gg1P> zEuS?0#3T|+g!IOav8`Tf*<)rCg<*^t(?|lVq^vwkYm<(GL@e!US#D;G$#~0-8Dj#h zY-EhFz7jHH@aPH37_a%pu*euMq&o{bCOXoQO$I2>6-SUSvrQR}XE+|}3tgs+gP25O z%1H64f^r7$ww5zi!8DAV(SZGA&l%mMW6v1^m}ptfM%3_@9dkw%RyJ}*nMtHKDv0Hv z37oGZYp}b{;Cv126Iagh<)AJ5%@N{iynRR7SHa4e(~d0%ZFx+)vwsmz{8891uEh1_ zpshZb)E~xeaHReqteimIV^EiM0UshfB;=FC0lpm(b-}gi)&&!z&qRtVS9kEQ)s^C4 z$^~eevPN9f_fs=kmQ0oj!<50u@=P(2jKzv&5kRs)7{??M3xxDW4}v0lu4R&KVJODf zu?TjRm1}7M=_pv5{8O{I^=1y~#9MdFAzQ%8Mh;o%DT#PsCm?kcOm5nrU9+OCKK$svFO-HWM2;WDhV0W59 z_#W6Hu7oGYSA5$!--S2s$oYG)asp?MTrP(Lo*+CVWJy`_?T9ETyVD&GW{8C`Yglr( z_JwHBS|hHxpXczv*H)-Ywv^mtDKOvlr6323cbG)tV3A%v;fT5v2WWX^6Bv<^S2iRG ztR%NmE=?gFg-&xe%PTgD!U#EztdASvm|y0>%0_;f<0~Qa3y-Ow{PMPMWQ+WAPr5I^ zCiOJR^m}~CknOSt(l(@BIm7H$`$gHx2NeqLmGDYjW zmQl`u(HI%!OxRmix}`qSQOGo>vy7s3z8vFkx+b>@kZaQv_64mpF}BfYso10`TAdGlzW)O zFvuwEr0;m|wUqKI497?*zlYsrPbt479R*EOp7b5>ftgc&hg;y7Q(l0TjhynFuY}Ag zJeq=X%3UE=P)_+wx;bUN-deFzr}ypUvUusvc3YtAQs}AH)D4*yUNkuQ#dr5eW@=<9 zf3Mp|$);td63&)Pvk94w)%PO2WTx4WNeqKbGcVZ>TF%)Y24>`(ePGAgbI$gpqd;o% z-6NCxVrHK`aa$a-&u*}?k$radm5|woM_5qySwF-I%0Bm|`+PJpTI$1I>6z<&&ZDjj zMm6L6N{?PGN3Zm_VM^#)^2<5CewX>>OeT?-Us9Z&Cn~b*T1vSIredU&8)0ABQ_7X3 zqi_-L^y1c=N#uIGb;l%fEv#%LkuNcc^d{G)^U3EzorF;wE`AWG^^;t+ChK*K>B2&-g2k)5>6FDI#`< z!&IaaSw!r@Bod2=6h{`b|Juk>gaH{N%QDzuR>q|xNJoLwwm5m1^lbq@z%2@ zW4v+4{P9Cr*~lM1@RgAHgU3)%{qW2__$61tpj-rTgxej(VYQsm#q89-(dw zMpD_uw??V9tWtv2QlC8J>u{M$9$*rQsU*eMF5~E9Bu+!iAb*8<7#ZZxu%ql5Q8W1I&^tu^GDzVjH|G@1xymMKG$rA|1< zH-coHa3+%&4t2sLrSDp;a1+eM7(s4?on=K^x{`DhFk&J@G2hH1*W=AQ=8t>Q9`_%mb@R;?SvpMo9ZN}P`$mQI-5pTLc9!j1`%#w# zvmZecgHbPwb`F2Fq57l(*hY3Bo zdVWPm*KsH0YRmhS*C2brfosh;-utyM%UXshgOsIu*d2~ckw0YhunUt&tRB)EP$tHE zu8kx`7>Y5HEQ4KT> z2y%3~3&h7R&(&90HkrSHx)CpWrftoR?V75b_zR=Ili@Hwp`@jbC0BTOjS9^MM`FdAxu9jO~%k{1hiq|m3#FUce#AVwXT0;35 zOi6TlRJlk;3*^e8t3QREXQf^G4(X^_h0k8L?Qf-&@6r!)Za=}BUSmqRr>*=WSXnq{ zOu5)cA6nK6J;FWrGNts!5HX3__L@fh9Wn>IH$|>|rtO=zVc)m{k56K@J78je3pc{lUyPC5iZh$iNxWmAO8N+3tkNeIwimNA3$? z_#fCqB4dnO+9;Q41znUll+gp%D#?JGA(kjwXh&0Es znG69-v@7YHjkoKVGtPjOjht~RlSr>Nn8@e)tc<@)wqSRg!T5IABd(13exPyd&C%gj zymd#?x4_Dolb$N4D6O=AA5Qysuvc7Z^9?Wb9+<>mz%6hj{v52FK-^;tj|O1=c*BPU z4+&WY9P8T=Q3fnYw+xt?FBj>{4w^`+6<0+Iv}-*|NwCS~Xp*wVT+??Goya_49XC!H ziY&#!hGZ~SH;X`$#liYaVmM4CFgo$>Yh}VdFdbtE*%S7c6>w==(oxumU33h9!U9<^ z?1o$5m{fL#m5rpb1CvOvV3^H^T-|FL_Xb&&P&!<`cE?&B(LcxZmuwS%MgY`cC%Fay z|0>zuA#-f0;&wQOK^a!gJPhW^v3P(`xF$IiTqEFW*gvijz&Eu??u!`(SK+oeM!}V^ zazYe%ln1iH;A4x2gsd>;`F2E97`vwX-NwX1u~O}&jcsa$-a@XfR2RRct|a8Kgy6MC zp7*jTZd%JSW%#m`7QgXzyeut#%_N3HX)#IZyEeXzxB}&33@dAq1XhPx(U#sIk11fp zvMI%UGmrcaX4Q1eBmaSwjXd%%9tATKW}gQAlw7fFN^zM+d{H>@&LJZnUpA$5!sNaM zZiFNEg|Kqw++)k86t`*YmxQxF8g`EB-L5a2QaWPtKMFU*k^d2}asq#k!C%%7d;sx~ zkoCi_d=r?cAD&5f+0>+E)kdutEqb8!166I^_2=QxwZ>g@PtP|N!nT%a%0OkQAU^9G zL$ZSSG?N$(6~tt<^IB552PR{b5O=}evcfHWopcm3O@30MYQLFFzK6H(m`lC`D;v4w z+e{+8iHVu~IbQXd#{5rY6IRX}%wK~&yWO9!LPXmYh$j&`PD$7oi%i*zPQN7u?+xe;A+7203IJRI+%aEM#8 zQ}aAqxlvfvTc{O#3YB`UycIW++qe~NyxX~~QOVbf)k?118T~Q-!=3RT?&RGRz2pMa zN7@{mby4&%>fjoW=akd)NBYLAtXU3Y5{WfSdV|;^&^g-p_DLAOF}|&ay=jf0(hAa1 zYnp9Yh66ijCcc%pfsTo<4^}o3U$3u(Onf{RgA(7tAy&|$@iWq$fE_OqUE%l!Eg_Dd zka8z=1gqDq!RWnzA2Y0r+oc4v<I2 z`>kN*1oj?-y{s4bpy44QAC$i3o4CY-(%$J#xK3^FB3`WIYlY~6M5!81fMeGhc+Gum z4?)WdmFP<++ar(otIpOY;?g>0kh0Vcb>B#mwZrjDVmQ8{~fkJI9qg zf038a5tIMDxFL@G?}n8#=RaT86a&S;-@{|zudst$V_<<+Ss0x$728~irY>vDHIKCw74gZ^t!Uqs zI(_(8q>VmpRYv@0J7Ygf^QzoxWjwPK8(ULPu;(!mRS%H^!BOL`vbG(=c<+wz{az6WDykWEF$c@Zwcpp6YLgO-u%JA=z_`oM%)BP=GVi@ z3Cul4ds#5>!NEg977Xw8?T9ECzL@Tt+d0b%bR;v|LZ()zv6bZcMy-!t<|-w`U#M4D zy0XSzbFr<2aF~}ME2WY2|5`RGqm!jz_@gfkSuniHBoYgT^v072mCXrS{V?^jC@OI$ z$vsgfkpxy|S!tL4N3K%{HTi>TLPyMeGafg@G2e`Vm5qEe(pN&}8y;Ih`R4b&5iau0 z_;epo=H&YN3N=bOeU0AUYOPKgM?9!1`Q{MvZI=0lTiG_UZKD#+mVC3=Hzs7h*`G-y z=9?7XqzYDs7qo;^hglg3=Xls{_JngR=_rUq!b!p@43Q5o72FWVgmWCMY$Ti&Od`Dj zXMO$zkl;Km3cf_fVRx(%1z&(&v!-u|536=R^m0Woo}N5?YFtvD7cD%oiaii$m+ zm8H4b2(>kg(HNn&ggs`Bgwj0HQRp=JXPA~1re+R$FK&cm4%!S>HgeF$z7jGA@t6wA zK_fz}pjD*Tr8@~Tk4?hl%4M-|o;?)N#zBRiYHhWWimKExtje+mVDlhbDsr5MAv^if z_da?oY8k0SvnAJ*eTm3iQ)CjuAlJ-|<}Yks&=St2Ff1eCTm-w#%DZ$j=_rVr{G*+u zo|svuiCf~Bbv^|v8(HUUUkRCYcytA2on;|bP}aFW-Km(dEa8|d*B_&93`UOe-S9lR zv)tCLKjQ0fnN%KP5{XGA#o3l|?S5-%cb-gyS;^+*D%>0L?3w=-{dz~sFyZh#~2*|2iv zykpy$w_T<&UmVVSf7mgu%=PWe+nq4E?}HoR$bC;(If1*!;4bR}K2Uf_$eED`d=r+K z8R;0^(UCY(B_^?j9$Ow=F~6guIg(Z~^b{+~^T!2nv|2;0*=2kFP^Uutmy$(BE2EU< zdE`9bppvD-IZPrENQ$MyXiiGYEVsa{jM3yK*h^O2rK?CsAtLrU7ZE1fm9JrL#M^aD zCfCEtMl!jUNhIEH9=F@Z3pzSBKdt|y{)MGW>CRhmd+9Q|&@O%KJ{0?$TNyt`wqUio z!T1^2Bd(0&`8kNtcw?NKB#81x5pW;uAJ+)5Zf_pzix~y?;I=qM!CkO&LKJvZ1+uWYfZD}RxC}8v>6&N}rkDQ4& z@0dqUgO!auax#-hZzR!=RIm{L4w;1Ai3ag+!;Wz!Zaq@L&i$LX5suuy0V`+D-FBpc zh5bw6?0*Y8$CZ8JkqUPHzrhW0g$Y+)%z8w+IERT*z^{wfc z6**eINt54wO6joC)o8-9MqG1e+ly0&g_~p*H%b|tELFn-GBog!WImG^4pqb0R=2f+ zVK115F?{R}`^gHl^nTJ&m^3G_k5gKfoAVsI;4M4mj2&TRBWHYwNu*aROy=LHwY;Tq z?jvgg%YYs*{6R3L(>as52LxhKftPAG)c0|+#=cGHYFuy&QxiVKP=9ZSDqY&D2WJ;~@ zJoOCATGjw;9_m>uw5Gq>hQ{nvhAK<>@T@NtIqC2;lSnKd(i>Y^$mm=LK}Lum5}*|$5>GQc{0Qb z`r2b=y7^~hzR{zv=G+yIT5HG+;c8A{v=Yyjtg{n!B=Di-!%QME>!diC zLV*tp9uo3FQbC~LrZp9$M4VufkSC}gP% z{_X2}`84uRCNUi9g2`&)>XG7`kAn5Ps|9YaPX;^#VB#z(eywMhA+k|YMB=rsBBF9?$RVh%#@!EJGjf(}?Y z^C(y#-?chK!gk@2unp`Z*G#aH_TJUjA2S-Z#_e&8hAm;`glO=nCuB*&hZ+wFS(4o1 zo7_Z6a!>WsMl{Vab z24*Gh8~N$T<*=8mxJze}jzT2%4uoKdc4dKaDc-JQGPwv=Hj+t`Nu*a`#NL4zjDJkF z1kP#v5cY^GWBnb7jr0%j)*VTIA6CwswDu0fp#8US+JAw);!4~04#Y5k;~x*n&wURtD(}9aFTjMXdv7sjwI~z%iZd4=Wq#WFKD%nND~t1*MaPAy&}Zs}0lLAZKJ@6`hKz zCXvgi3s{|F4YTHso=HTQq(rDCcUGseffkVN`Qymd#?SHQ}dla3V%R@x7T(|!>4iYslsP)H(vKW>2|@%v!q1mYf} zyet&>u;3vf3x&OWJ0c2&_0yex92M=IT*#?g?~l6<%}mxnYaVNxFi_S?^#yFbA6cyo zOqNn%H1!0ltwmVLQehn?F&s*TF@lv=D|EuNL?7iu7_9M9H6w1P}D zEQ^JOc*BkfWfNH0NGKaJiS&wvNqhm3o$}FSOklNe6zmdL%2OF-#e8$J`3SsuN7jeJ z%9*pCwtMTfPp6&tx#7Ieg5BcEd#1L^De?Y39XG*|`6;k+0&|biUKR{|aPW|j1;g6D z9T5e?_;e2tol+=Ps=c(KM6HmcJ!mV-)vvaGLcPJ#lr`qOH{j>i#f(#iBTI$wBVYH+ z3gKQRF&rv{se1RdQsFh2j<{)LsqhEbUsk}SCrL+P)8r2!dJoKTf&YX5^x678tG~ylC2NVA<>=#$!`fiu4KA6=1joaWz z{hzRM0(Fm3UltC0i13h*g~N%y9TA1Y!gLFVF)L`nV|95g*P~PpJHzp64YuaeA*&pu z-O4a!DIIp8zF^N@BD7@b@IfXq97>0A?S5++W+_a}7*o1nM_Hkl7L$$wr8$w!c(zS9 z6U)c(rX3T@M`2|nu^h=H(kmXO@K*tCcWI6~X~b8B6K}wNaV4(LJhb{? zQm^4QI8v{|$_dmxMtxa0@FBuOLKY5x^Bt%};gCyt?PPahS*}r5>xS>Z(P|B~=1#VG z2Zt}VTQ(^JkfkX2wr|kLqTriMVmK59V??jD%<&A&!Wb)_g56}rS-PKe6eMD0WDA#Q zSgwqG0&mzcT|5RW8|mT^CXrrAAXY}&DUbSUa78eJBnG4MGbzVcMkcae3vb?$_5TKo zwMSl;Ljz9~9ujhB_=ays#L%#1%9GM;MPzqTTUfsr9IDoAGK7=T(rzVNSq6~Z;h+_1 zL=GUkFp1$XfQ)PRTN^@(Ffn5YSq3}G3cYj$=_pXdq;%VKv*yg>O*KCL;>+;y3dwl^11wqLPys! z^~=1qZ$y)nHQKz-c4k&ZMkxc4r8;=m*WI!@c!xMSf5;A4*=m|<0Z~MluNEu7hO&Mcz zwdK)q@IBfdg5Bgytgx}?j9oluq{u8`l@g(rq>=N*E|bO*CNT_>#<+I3wXAUtjKjzp zXTpB65-s(Sj>1GdQM64r)5d9d(~fE5WLViq8=vr%kZFU*Pf*%8I>ZXvG4T0xrz$pI z)~Mv8<5Oa1M0a#`7giSY(YevNN;mz<+?n)#>g8Z$m5+O7m6p}=oaC0xk;yHKmFTu) zocnxP$&7OklNbgWXEP_4XxZph7^9Jmeh>T5o{fGUX$Vj+yEO zSlP%_&-qHoOvU3aC{x`PVg+TY-=&+WMjzkERp@Xf^^4<$UmKi6G<2T`war$d+meko zp{`(010t|wHrkL$Bxa)&cR(H6>b90~_J?^H8D}5ZPxg$nJ?SV+#8Xqtax8x(`x4oYf+Vnt$_l#lCizLh(Hza5O(IO9Q8~4`7T)NZ63FEvI@aol{wYar|MNvJ@8SP& z^fUMC=-B+U{*(F_mM)#&(Xrz8(q(ixroS{V=`S`&`iqShBuHIBip_ESlNuBAw&9o; z;T|7dtkes&O0L|0ZgXUzm4yTtW&=IgW+^G()Aa~_KHi2OnDPu#D z7>p-}DWszy5h`@PA>n4W|##F@ap6^kkI3&xsVM?G{a!1aWzRVp{145~fbQCU4el|zkdNYZfhPUpRL{5g4jU@63CXrrcIh{Yh$33R;{x(^J z-Gv74Z^C|Y<;|zA%|4jazk%D}Nd0TDa^}=$%cuD@kpFEs`QO04aV5{U#+xY{56sRAr5}Aw0%S7_AIi zmSSQ)bp)%hMNr9NVlI;y4#mW1-f3-E*&SwO3@f|9Ub5mYZACf?5pj&0fF;_MFEMt+ z+jUGPAA*&QWU@VzNUwkp=e=4P_mVAvr9%(w5m(0XW89KRm+;mdNiT<$GbbH8#?4Cm z^Wn5V3wyF!IMm4I8+DIjQ(qd z!n-gZao@;;S>AyiW<^|jopcm9O@7*w(FOAXC416>^29AUsri_jY?mm zx3^lW7orct2Kr3wGjM2IiL1^c8Dgy{4@4`Zx7xFdmBb^UO`c!j^%| zJ|(Ixk469Vr6BXr-nLWLZ`_$=&?~W^2;pT z2*>;~9ac8-%M@P;nO}HJ1?88&`bM^>i2jpqewp2ytJRCSa!1$7LcXJ`UZwvPDt%Qo z#eAGx8&5IS_p`P2$MZ`czcl#e1a`3wc+Fm0icvl^>B&`!y^V4%`jUUE;>y*Xt;#1? z?u`Bz|KZN~4|j@=ME#&{w0fb0dMgn%$Iwdo0;Sb_p}+JwTGe0rs1`c|caVo)b4tG2 z)0@lJyQujbo!-;CLMR@|6cf`^iVH+$Sv{j=sMBD=!U3bov|O)7-yd*Co(wzE8Y!jY zNJnAUoXbihYhPNAZawr%+>B4)W~?z$)!WLeU}fQ`F=aa7iLY(sHa3`2diC;rJ^^C& zpcW0ckZIWcF0%23Z9m-v`^hyB_>=q^I%9^zjkqz6;cz{yEIjp)h)XOy zM}`K*!ZWawTw`HlZC1zHAu}GH!VPkahbLg=gm{oei1S!9ZfT=jrp16!qESX6T&pC* z^Dy5YjrwL(v6g<4Zb36@85Ivy!YGeO^T`w}hOGhUuwik$B*E&Jmfgyz*Q!`ba%h{& z+?p$0MRiN`xua`%l;jvTi<6m>@C9UwwaFOKYi<151?FXpKRd#1vLY|Nk8~6yV#oUy zF43^$^C7%p$K0|#tZd|#ZJ9)RHHX;o-cGrPjKS_ogK`OWi7Vy!j`xYIm*dSlvhIeJ zGiN_^lEwFkIh;Fx>fgq4ll z^9GYhueJ~?Qw+ChKw=4Ph$`qp`CjX6aLmc@pfR!`nA6uDX zxK4|KBg13hFxWw^F`%zZF*;+$!NIsOj&X1xteg-B9tDJ~LHNMpAt7s!pZg{>QG;BW z?zF|kWyLbRgrU!5mRFr*W3&%8@cA|Od`FS zV+MciptwvU{xX?_JuMi-UxXdwN}Rvzw{*hf{yc7kBll-v<;=OyiA@Z|Go8kM>aD@- zCy~Tp)SBkq&TGwtj+p$%EpOS=1P(ru%ixxaGBK zqnFNBsn*m@e-44e)|zjc9~rQ~h??#j@VyB8sZM4sH&z+8EcL`<--wd+#QscTIMfs4 zWyiJjQinMiL(B27r>v+;$C8dhr8$Ycij}sT8Kr`^?U+%HgO!bpvVuvZS4m9egRu0M z#`;TSPhc7G1=uUDtoaw3dJjzEpTjM1B>ov#IdkGO<-Kw$*KIVA&cbCORqC_H7CK$qKzR zk8~6!VpGAE>%a9BBW+OdO6S{~DgpBGO29M~_e#Px$qT7597pNZSxNc}WeIf1&zxGzfw zK16s($kJhiZ%0Jw@VRtfZcM4?j-x$2a^-4;j&?O_hzF@RSf;WDU9&WVHAK_{-T`jE zGHh8&iTiyC$x`AzCNUgJ3C1thdoAz$5$0!96tBYWvW7tESEQq$X-;PkEjm77fLyit zd)xrWr1Lvi*+@DsFp2aEi&^~1UUQm8ea>y@U29OENfKDS?Mj`0EM)D5Ip9pg&2VHt z8CK4m{kn3NV$J;b3g^E&>>gMC>uFOJT35^%*abJmF$Q*ol@nsXqhgRn2Oms4BxKQX zk8dIqMaQG*79A7H@8_>Na^>QQ>RGF2!J%u7yXHp+EI5$&9p(44mmS<(We~H}7pMD1 zm8>sLVG_fkzL*&Ax;D(*0JAcNnd@L*S#g*8Nk`!#wlI%dZ)TQj@YWqO%hj;5ky)-{ z66sYIVhi)Q$28u*B#W?z0fYB1V86KXj&ETe?}JJGQQQVc>JP)pnNyE#VIKFIMt<$v zgUP=O`^J^LzJ+WHrHu4i5=gO?=X~Bchu4XS#1cMl3DV zbIPjBUEy%G##-~R0gH%QuF_rY8F1AE|FKSHs4`4h%7>lEcavzhx?wuTFp`6PWCdJ0m~<2#%`xohgn<&R%87_2c&m=7<7imfNF7HpiS){a@%#zi z!uJxgB(O}l5cY>FU%nJZ+HMXI=i_ZVQa%?}&YbdOIpts>eRnwNJ7J%=lIHKRRQpZZ zci`!Wo6o? zs#_@t{!3lJQj#^wnz;cB0{^8D!fa(YvXlq^_N5`qgMTuKL?kKhF)^BVS}PD1dKcO<7tW+qg`)Pg`4pnQM4SA_RW-9}e zrBt}xH>_l-a4VA-Hl;$jrj-iM!nBNG!Lqe7cxA-P0Q7Sx@?vjPIi(4x*3Jo|+tufX- zW(a2#$YfO z`1`PO=7cB8NqU3w-@+;X1@?$5WnTQntv5;k5pUg*^sBIP0%?zNT$Tbn{d-8rQlRYH z5m5?knQketPOV!1pjr(q`YxJ_tRdDsb_lBhZnZK5Sqg$q>IwFwB!Ws71Y0nP;ZP8a zVtv+Xg2Q1}qKC33I0SZ*6?bVD(oujk$FgyQqY}-^vS2aZtYa$KA67O}$v#XXy|Q2e zA6#vOPa{(TD}$3^hqw}+9IFfxIDZ0f+>!GtSUGdfQ{?b!WBrYA)?b62;>wzT;G}iH zED>(N4RGXr9ju(d+hcr}B?2E1JS1d^u+X<7qC{Ao?zYtv8|_l$hXXJA3b|T-1#Ou<;QGY&Pj(8!h26^FWT_Tj^Ti^og+DNf;ZQA1Qu?k{ z4U@lzQWJNQtQsbe1XfyE!I$14k11fpW|4~dW|kR?H}9BbM#0KPmKnh$(yJcCW|4}^ zG~zpwN!WdA5dRSD7+2!)%_5afnB2F=jd0|?Ev%e5_t<8UirX~yrEvDkVduEA*Efq) zI%4wg#tm`gpM#YX_45^ttFO+VM@lJ@*wOcE9lZ4 zq@y4ar)RZriH7C$!~J-}j)~+xSlLJ<_b`d{3J7s}mYwq3WK3Y`@D}V6SIY6zvl3aq zi8t@a`VCk)bJnrbv+TS#y)&5iMkFy94+rL5t)HHi$b12Af+O?!uyO)(k5OJ03Vd+z zkdTGK7kz_Q6bj{Z-&9O2R{H8WI!fEJv2+2BS!;r6er&*c0oiDwWw6`c(o22gN>&VA zOky}x43m_;Yjwl9FfDNh$?1o)U}sr@m+GXW)(w0_QOq|VLr%w=cg!xQz{*B;`6QD_ zuX+&E4~ok);zVLFtIe|5@A+NB&R4$_e~EN&;C`@Bzd_LRJ+Y_w9(NDki1-a${sS6&3m8l-Y+3 zzK>=rYq$;RR};c)W$dy{L##(#!76bPRHwCOtWnnN8gSadee$|doPSznycqmSYAwA2}i3n)CT#) zOJ=RxTZt=tBT7~VmobUqP#KJu9oOoE@57wLjU(%W@4}w4qAuM)I%<8u#}8?{IWKuT z-nL^#xfND6GRiGXBE2d>oOmhyrLlgM?7^ybgZ1xWueh>~pLi*IU=sfwZh<557hvVg ziN{X7ls?m_&%8UB`ZSUlj0(}b!}Sv{WiL$flW{8?$xncl6UciE{jz%C!-a>0tR61* z4Pj9|{36|ng>m&-v8SW!#6qpA9(s8M9JAIm(<}_-`~ul7OjkxN%Phm8zVRh%iG!HL zu&5;>XuRWErdb73Gsc$&>?tewQa9-+RK)4o(snby)bO?)^Gg+0Hu6iENu*v&NPlUp zuOoW`Yl&-Mueh>~*AlV^Ch@Cr3ml1G1uJJxJXT9cpJ~*85l;P4*fXxw^;$yq!X*DN zZiOTH2Vvy|@*ahNtR?tx;UOVwi35B)B5H}Br8^TbsW(R-H00=G%|>NewXE(OJ>>^z zwz39Yvp9tHgs{J5zA}1QYKn=}C9EbFaVBeuaZF-3)D)A|&TCm`TbQ2cs+^-(1bfRG z0Hp<_qmXIxnNQVzGv9RL?K|e1EnsCM-z;Pj>D3l9`KAx5&ot&avMI2>SOR;-l{p`2 zY`rkaAB|h#Nd72TIdk%J*J{qte(xYD1`_Wnrfi5UUs;+8l@z*(?zLIije z3bNMV!-$83tTjgac0|+~kEB~`%qUm$QKeBU^z~LNeYOuXenvgQ@|QLI9QKkzKFnZt zx6O8Y5%N=CHnPz836n@HG}0S+I5^b-+Q9P$49+Mv{seo>%D(h0>8Qm9U$JkaD2$Nn zCtkyiaLhV?fR&A`^OCQG%sM=#g0jw!Lab;kEuE3_itQEVitVlL8JsjTlttqZzG6Fx^lH3yN75@{<;+RPR%}~oe?6S` zS7EQX($-gOClUV&Zh<55FT=_S#68A&St{^h!9zkmpls^f5%GX>Q@Wpwzo$2+PJq5n z_G4Me8f48SLplN4J>X9FulRD14M5FR)V>I5VV+vUZRyI<|+Dsz7@?czRW>Ba5VKM}}3k|v-fZgFrcVcWy zTPx%L!<%+w{C-$DbHn>P1fwjkYE=vMF z2zW@ylHf((p-7Yjho?MyP_OoObgAEaUk}HrHOL$$DFZ&^s`irA%0Oh9Jh;|3s$^a8 zB_=T(>Vi>(s_QtdGWaRX${0I-0z1iyyL3D0C_u!9_sncFm;4BC)-jjd3o9GB%z(jygdeZStIZP!9zmU2w(6GTu~z&k?woVX~oLQLapA>)my0b zH0rr}v072S`_98*Yt1js{D9L4==QYSa>a0Eh_ciS$NEN@tQn4B62qZpm~J{iD z*%<}I8L-E!_)9g?QRp;hv4>By4`wxSDsF>g);S4QHnPr%Od`E%Vm7zsDR$_bI+F?h)FhbI>giD>+}d}_y99nn9f&&{WQ zeayE%xSrki{Gf#A+hF;byko2im}M z0Sr^zYw|nd^I)f0dqou#lt78~c_b~q-aGht;TA)V$cArlghte}LH z3$cQ}?)hc9dm)WkQOK<<_7%I;ot7V_USP$NHQ<`v112Ez5a%>l`2LD4!RmN}?=NA0xblsk(_p9k3%qSd z%8$aznNyCP(_kUJ&i%op*CvUWpK=93|PGb+qhh9gUPuq%ASh_I67!A?wKIFtvY zd8f4kVL4387(lvVFIj0jy{7&2gN8)$D z$_d0h#(7yP@L|D2LY4|2_U(u$6<$lXR2b7;tQGSs$^~^DRmV@z+++>4L0@|^&5NJoJpUOu!rGuUNylG4v^!w(-VZmxk@w!Pa^}2a zFCW@2)0m$W&iq8!F|N$@mk;eunA}gmjd0{%hm{k!dyM(AY~TZhhlDH}{^>hhiLzni zbYDKqru9qw{Dpduh~0<%NayRx_CdR8>|<~KxU~f zzUv!zvbwmPNeqYTVwTkhS}uAXW@%I!&%#c#hC}Hg(oq04=d$Hg)^3>D=xN*x$87W@ ztZZbX$C*TWRmc3+?q%$DR__8W0>(cOT!D-siNUBf%?Mb)B47=jG2>t)Zj56bya!g! zJPtOHA5mFvBP|v_7#<7T!A^3`1{-Uims>kz#=|zaL5}gTHLRQv4<03ktWx-Z;~^od zlv{lhoTyShp6=wv1VO%|i@o_etN*nAllu85@~hwgwnkrbc?zWoGhP|+EEP$^H^yW| zQezUsp(2^sx@9eITt5esGYXND3?8)gjx$`vI~jaN^^~uwPtx^POzWKA6;hh}+;u{Rgme=G14K)rN)qKf=lX4fc&I zdHw~5y&oq1zujXJlVo39LHmI7lDbqRZR6M-fRj7}yo914txUaa%l)6GX< zdZMfHt;*rBx2yqB+MRS1GOZ&h75mMEa|qtPW5QVsD;o)Ce2Rq ziDLxZ04pa%fJdbuiw!=Ecu2@%V+-Goh+^a9biZGp8GXNAT)BEpAFsbbUBVKWHU65k z6<)q?t7VN!KH3mASB^eU--;Fl6>7zvLZwdsA^tr&{P8-eVPCHQ$rqKZJ6>ZFiFHSM z1JMlna$R?TmWihQ6vb%N9+OD|tJJKKP0p7m(Ng|e$&`rLv~?zu)+Rn*gLN5c^RD46Egy?!Yy%(fGc6; z%p)MScldx&@Mw4xJPdotH45~-!_D59k?{MGl}6)aZHSNT^nx}!K{q&rW5v+6?bVq=_p*pyWF_-W@gy}Z{0Do zEQFPf%(4lSNUzEe?{ecF(|9i-ivsJ5qhY_e@{YgDjrYN%eiUwlBlRO-<;`uBPpJo3rm_ZG^Y8(y2<-3?ZmBX*Sqg}s`1)TK5I=9SS@ojXHNdFvf-I4UqVCBq7$F|Y2(tgj+f@yb<#9&l~ z<{hnXqmxAZzc3fq9rykXD<=^580TfFz=s7730W$f?SMb(jlay zAZd>0pS6q75)I1|p$l)=ap3qktZbx_k1~n$N`y(`BP{MLjq;^rOkj<05$qCI%2VT? zt|zf>;>|m<{uHd7IqPY$&#tVze-O_5`>B!pfPGj?E}oX@4S|_A1yb zuC(VZ$C9}9=4z*> z@YWqO%M-A&ky##N66sY9trd>RyvIHoTsw>+iNUB3P2S21$5LYL)9I3AbD`!qU zzQQr)HSJE{KAilvuy0)NbYq2MtRE)*MYtV~^gChY1o|GOfUG9?(BUB=tBG&=CNEJ< zT$Sz$$1y#*I_>kXe=D&Pj#+EK4e5Eq(sE_+vP?hp`39FPDtej3a40Iqwfn8*nJZyt zMn!Q2>?kYt(pjXVKoML1w@o)w%Vl`ej;ZBhSlLJ|7chzR%84obokiPS8tMDVoWOaA z`(UTIl8$fr-|m3P`ySi?N8WeA%9-yNg3%FIj8Eb z_ua+hmAP`XQ52m)+|jkXmQzn6{xfwZo}wPwwxi>i{?gC*5b_z90?_cwNIVu;o0Snp5)Cp59!( z-bFjZ=g5lQ6+-b9rkGeVq&KE;WNnXVmBX~hP-LRxqsqm4p_VI)?oKA1c#$=*1Fh&w z|0TC6%*3v^8dh;Pze_*OPkoqxx4*_zGm`YU@>p0|cxX(y*jMi&FZBo?jq+6*x3p2F zb3D5uK_$Fo>KWMI!et+5ckE@)m@n23NMt^K)ntmlrTdAcaL-J5h+$9-%2XRkN*{`Ex^XP<=g{4d9cXX_{y>uB}j-fw( z`}p?X@c-2Mfg9)tnxpE~e7#nnBzG14G5Ym^!=yRBSjm?g-Gybva-pxE8forfb4}Y1 zwrz6Sf7zMq&h>Ql)eF7-&Amcp8ok}QdZE90NPtjbRkXihq3eWVeFYmK*pSlS+&Mrq z>TQ4X&_IRAkgo1RUp~6Fy1G+czUUk&k zYWoDJ_0_Ar?HK4E%&Mc%97PmsMScSo+_@ViR8zu&v`Pjkfba&>9{;^wG)jyy#ltt@Vit>sRTwlqrH zF6ii3T>3xu@6S_R{URT$zrgyEL(<*oVuk7$ z+6}q?+~!Cs3mdg!f2o^vl=LoMf3!_+O^eEG|2e#A#{%Rtu(C1Kr_Fc*a}-Zv8s$f* zH-VHNf*oS7HBHKV^M{!6Cg%t6#vM8T7*@`l^KAQYsv-YRIP!nNzHvp)*H75{VbcEx zZigfNzro6x(;pcXJ{s$VzX-m)HzA3^c$746?=kHA99FIg=gIuNA>OJZ+4W)N%*oD) zd}Jv|HP}al!#)&tj_Zv*uMOMM5%bPI2sgx${{gUa=KR;8X9tb->EWzTfgRz>dNgAl zJ@6R!^(XO09l5TCl{4o$A@)e8@x3{m@7H06xbo$7SI+Oj>EUw+qL;4eS!vdz){DpqOv6-WqS-k@c3aa^|ep{N^qn4*OWxC$6xk zv4U)%mv+bC?K{%`7_6K?+v5#e^m>d>NAlM<9uo2;-2uMS0^%jzJ?X9w7)d8ctz4w8 z3b+OiRBMzqKWv-oFXvVlYStwI{BJsiLCS2d&y& ziWM@(THLL%OZ@kvAL(!I2U|mp7HYIQuTrnF9(CoSKafTJ%>xEYjJtVTSgt2WtEG1H z`8B;O)|Fdp^eVL-7vWvl6}P2Pt``MjjtB=F{T{_@uCltnxeIJT>$hvmPgp@qeSIQK zNH83@3tGR;Ji#<}fIHD!Yg7tdg`VCz`2dH>e?2lJ7T(r{T+z=YCJ#e~M+F|CeYA#E zvj*>!CcX0~NjR)c;m%~e^`%@IO- ze7uz`3VgJ@=?c~%eUD5JYLJ=pAnIm37pZi8dFc_XZBl$&W&AJ-nyHP|muUjku2 z2fM>s^Oa246WQcq+jNuhGkDXEjGuy)GiSWsnhGxs`-EQxV;@TrgYiIVV&~@ruc+Kr8#Bk~J5xEeiU>qu>(QL9S7- zU`$?9eVE6c;6e&`)=3~uDtm=zUX1u;Cd(Cs3X@qVCBrY zP9qnoPtqFYKZjF(9d?T=WqwS8(FK$FE4T@c%wL9;GiN?SbC@NUulrp0bsQ17mz8h|VBk`SK<;;nX zkDk!@%(uq65ze{>`@@wre@>IOo0O|~+m4jWuyW>e)wAzim`BTC5_@*Q=H1#Svp~IKNvT{k^6zLa^~D;87{Lt zd7lwZ{#4jCuH@&kSyXE`O!gbQH%T19HaCecy`J|gv<9^X+8}I@H#S$vuc*>iTRnw-%W~{FWGGhY zija}Zv1c-g#O2uOeWGLA8E0o0gy^6A{Avf-MOK!jEl5XQKewixaXyH*>X;?AgO!ae zv5l{U%o03mg0jT45G!bz=i}*SiIE3X`}*h;fOwubnYw_j__M}Vb4%MIXUiuVWp08J zhL)`G31833tgwnnBxZ#HHc|EdNW;2`HSe`;r8WPX&ZWgluC}@>UnBQ)Mf*0=Cl?7H z0}QC8iTD}RM;lxB6*Pll>#eUL??&sbzbvlTvMapa`Em|vX2MRlrFltzu|d*bY)o5R z+BVHCT@h`KJJaT9?Q#BAvI)B-jEsE?>sI)R=L<+jxmB8T*h8JI7iOJz6K;iL2EP$j zHZpkHY&g@*hE>Q5l@=U|su6KTmr&UesI%r{v-gE#NU`YBjBbJjC$*-Jw{;pt%H zV@U!lU0sp$yWG}`{>J5Nb*$A9{ZooI`;KiqJ_El-G=c(}@A5e}y zo~Lua=3b~{JF0B>R$T5a&KD*L56h~R?=)+!WX!ZQlVUkZk7{@ zeI#eyBOa1lUZ@nJvrYzqWNT+tA{p*5zQ;{}^PphYmy4A`uGW<+FE1>u)7d<|PoNqsQ#y#kD4`ed1ad*M_*R6xS2Pb(OfT7S|KS^%LUyNpU?%Tu&C)Q^fUDaXn33 zPZ!rS#Pv*ZJ&Rr8$NxP28dgDz!cta+yiy3N3U?2&f~N8E=}zO(*<+QJ@27*<>U87x z^;T)DiQ#l&heeI$1 zS(uH8clk2lY1m&@yrl<7M`6?C%fR#=m{Sc;;ubhQXFd)q8_$_PXA+5zVjfRoYo1V? z%};#Sy{2&=^9*`V8r(;c1ePjYx$~ni?ENt5zX!L&k$wlPoH_k@yI1MaoNDMA+i)_T z__PSvE<6IZf&Jqe0qe6#<>bDYQLr^`i(?dQ2`eW=fk#Oos|r4(cu2^(rdxcInV4(p zOt-3-)S#`g>Qq$p^mcT07i&sQ(SW1Z8hZAvWky9%B-TDI~?GlEkAI{|z%S^2a}6N7?ho?@33^AAGx~H5|S8cf4uG z-0@df*~lG#W)kU*6H|Eo-gcKZQf&5X^zJiAZ%h({@c?3y=ARX69WZOo4R8Y-d9Md6 zXU=x$+YXo*U@25tqTyY7I5}j>1mUmSm7J0$H9cF7^!=Sr%NtB!)v-z>bU9MnB2( zc9?@PQrrrA$%?Xc4e2OEV#h@gEYYrfn79RR*D+Dt1S=bf;zlNsUO^B$F2Z2^JF*3< z#SO+Uz#egBtREL)BmErSx+CdlVCBq7YsWB5cIR;ubg( z9|bEX5ce3tWf8!K1rG^X1f1s^x}pdelkRa5yXT`RS zH|v8k-ne59DZZc3G6)vd|5N_LBm5r)(m_3c0|++ z7p1!(ej+5TXeatXrY_gOLqsdsTpcVln zONMor#BeAXI2D2tbzQ3&I$7S0<;Yj}!SUG{d$EYt02R?LoNXWurZQqWF!r|g{3x_Gy z-g>d8cw(VuopJaH^#;pY*1&7-Z~I8aamJx-q3g86k9-lx8sc6iF&t`$se1Rdapg6b zkhpPV9q|X)UslMaCrL-GBlsky-UBnQyo6iem{)!aD;s&`H%ubET0*Rx*1e{2pY!;$_(SUGe0v6a)h=d=jeBRm3jh5h3i0s6{my)R}I z?1bCm7zH1Ol@p@CqcD)Q1s_s8BxG%Iw{J2NwZ*mRu4WiWe68adaL8KY&H3DG z{$=X`OBzr04G&o^oWvy7P%aG3XZh9xbfZ4oR(nSOy>nT$C)ZQvi%{(cUa#@jW52wk zt)g4wFV_lGYL*MU@z|%F*OT+2PdRT8*RQfG{K@2JIfK-8Oqvk$rIwlRAXBia*%+H| zW4#IADCtttQEM{(J}73qnTo%KH}05FaqXbjD8Ed738efY><()_ESZ$~ zBH^~_CgbPvrX3kS3oB>Ncw#&^X_%)zAB=etNeo7zZDQsVwQ=iB(&O>g9Z8RYl@myN zR7J9|;)Ab;ge1{t&G*^{b<1XzYzK=0%Bsb_ z!6D14{h37SWz`35UZ5`9sw(==^bub1_(p;DilNOetR>mNzniZ%*k(r7s%qe0FIH9- zXje+_=Gp9ZUwnU!2Dv^e%2tZ&3F5knUE$(v1^pU*a+O+fHeNE(()qb$N#Lk`7VAuS zZFVf_sI?hCTu9n(CiBzrwjGoCDX_AU%+sb!-+;0^kKa8S=-a42fuO$yyTqDSOD5>n zH=r@|P1ZN#%{#LGI;@;I>&b$(NOcT*`BuE2Faj<2CtWI7+Sg#Qxou%d)G;Af>#pEVtU6jFL3M(5);U`QYy>!2J zZ&4Xc+5g_Ed|NWy-Dkv2dy%f!*MGt8%K5$p+QK@kSk~9s(<8PIXkJ za6)cXQ9U*5oN%&d!me;7JD%UK!fb=?X?VkqbWetr6X<%>%d+I=#h8bLd?>%(cSsQr zy(n=*==SFgu5gpPYn<397n z;3|F^Neo88XL64(Yo_PumGOR<^e5wXIMSa0D`!qWwyatAoE8DQheyCJuzy_de0^E7 z-WM|pcEoLQjDior$_Y{6Q4+|if)6Pk60)ke%Qu;cs-iF5iM-9khR}U0swZ@GEo)Tr z9bG5Xa=mmS89RC+U+C!SsdlRqPN&0BZ4JrhM{U!54sQeacEgd$%;J{8(SZ#40ykF~ z<1F)mr})O3tUo@FFw1*+@@U`bx<3#3L>!J*^J0g5ERCP4|n=QG1KS+2U^*UZOq>##@F?Tl%rQ zWe^!@!1s^8_4TdHDZgP7i8*Dcjt6 z2R`|7vA3%ySFaUUbwvl!1uCs9=S*}s0qwK8bHab{SC|0VyeO+|=W{nQ)T29#Q zd)N=`pte$XBZ{72nO-^&w7+RxjO)@bniY*sCbb?E=J5N=s*PH)P^07S^HCYu{J1Be zs5FgETy5Q7h3+nXqG(?i9gNu39UW6jW-bYpr@DjRzzGfb`f+)#zM?<@>YL^G?{`&b z`(o>XpbjXO7wXZv?ye|8S4a7&tEbRYt*!RYP?2J>UZA|PyQkkHg-WA`PJD?@$@ERV zkxH$wtUw8Yb_T2!@{L+wab-a2U6Etk9Fa-B&KB9fqZM{o|7qs3L5s_zn(2r9Jfd z4|+l=I-Qmhl<1uAP)uSKI@@$5eeMyZgnsYkdBwgWRVltDV6m@{&Q{G)a`aZ99Mnhq zzW8&dA}PP3>$nqgwdHiv`#Q9TN{C`_t(q_Nkw@r!UHeus1J?jiN;K2-A)fbEZ>>mm zl0EhNCT>DjuhY1`jE-*ZZ|>@8SxY4v)_gM%eNn`HC1!qnGj^m?Se1`H?4~j!K9}Ts z+eeD6yv8QcyaSvm1r4;3LJtl3OLNhuRlYTMOQpL|sghcb9tZqKp-3!BWKp^o>_R-< zOXEHr2``ka2Q@p4vXN2r0UUh-M_Wl1stpQm-RXZP73ozN_7UG(g{iG+%G3Ah zH?p&R>YnwRKNr769rb@&5mC@xTv?2s61?*X52oJg3I30Q^c+bx1eAXI41n0`ixhp6 zZN18>5Ee}S9V3-8JO2g;vqv`+!`p(Ueb_5=Nz3 zp^)=UJ$#~?4c6ig_Z_CWl6?r;*E4HyO?43R9ca0h97GNXvMJJ0h7sQ}iJPSjBw_wi zhmtVEw87-SAg7tb$xyyS^S!e;k@k?{oAu(`korHHuuoEAJM@hH9sd}7jJS>!*Ky)H zUR)=L>qK##B(9Uib&9x771wFvI$d06i0e#ooh7cb#dVIj&K1{n#dV&z&KKA9#C3gf zT_CO-i0g*px{!#wmnYb<#*UiQCz2drsxV}$Zw-nb-aotK>w-(n$;`)AZ z-9}uu71#e0*X_i0dvX1MxPDMvKP0Xn7S|obbw_dCNnCdp*ImSQS8?4%roBh`1gqu7`>1;o^FPxE?94A7NK` zvw{EcH$tgxHZZRJPDguZd@I?Hy>&C*8Q($@gRz+DP4bEQ&R85H+I}4+nwDQC+=Msn z_-gn@SlM_roHpaJG|RzWx@m}C2uJ)J><#;}02A>9wk)7!x%u+{8N6jj!cW1Sd0V`3N6w32<;*$H$=MecXv~*~Gw+6-vr|Ro;G}8BmlfE1FiYsaH{fNHONH|qi z;CJE{I1;}DRvsqAW9z9j;(rb&{yOXx58|;NnD_WAxCM^HUxt-4Cmwyi7hm_L0blp! z;JSP^NeoS0KAnx;S_e$tGjIbOc~6CvGv_^n)*$K26E)`hgfrh0c8u#yKAST)J7IF) z4L8D(`_8a(=G@1Km82T$MmXyl> zp|1w|nsCrp!(MR(&1*Hi2j(4p6>fne@hf5F%!yBG`zuJz&9QVVpOI&gDjae1* zP1X|$RzEz^C?6S4`7qcguD3GZVp+A{qM#q{vX2!>jxM7a*aXqY@d3=oKpVn#kp9{zT4D1V6{Jahj zpA-rQ%IEc`@OB;PJ^?FdPIp}U!$}SB*gpgpdZS2UXbL^Po~doRc?XZcn|5Tp7Ob2( z>by8dOl0(Nj)(mU=ePKV+3@<%9%&N*vN0um&h9N?r`Ec*c-0I z`8)EKKx+CdxVdcz8 z&xw3x`I=vYes?(ZJ7MRzLg(w95;|h?zXLbKk^gP5a_0QUwl-hTfWICN{1w<6uE2RN zZ&_{^D68X zKj!T&n9R$#369K*uyW?iC%0}AzCDlz{OWMvSHV7U1z*uf*GTqx77byAN(it-j?#GRBjD!1N<;>$?ENv{sN;?hu+u_jPg1zAi zomcQJ%T2;>;w?K8egjs{obW`k51EbfrmqH9?HiHA&{XYwHYRSpNqPa^x+CfNuyW?4 zrwU)SSAT2w^kLz&4~D(sdQbE9j(QJF;s@duI1=9vR?eLG4B@Z%9)lY6Q^TR31UtqR zI$ybN>4eGsMBE5R?kB*?nRA~)E{ksmsWHDPocWEgQ(T$zFI2P+n7psY4RGXrEv%e5 z?~&22of_n4!XZBed%_hmKVq8gH7cAZ*E~Fdx9UjtF<3csvQ&Tb&CxWvqh1TH%tnyJ z&{Srv`de)4W)NNrZ`qOX|Neg@EOxxr2yYuscoFXB(X_p6p;n<|AkJ-$q&Ii8<9mN8 zX$P0+Ej`<-*C5=9x9muG3s^bxdw61eM`Dd~E}Zfb*dwl4nm=L1tvAQvqw&@qNgo9( zXHI&GwrjKo`@(S8=fh5Mh0W_Otpg_Sb8!P4d7lL?|?ny3VjZn z9<}wtB!3%jg(LZI!OEGFpO?H5yT<>OaQ-jD{&D5c&y7s(ix~wk;~ZT&(v$Gk9Z8Rel`|(jzU8Y*x5jz5aLzl!{&2m& zC$ao4Z8s_JfVb^P`Gc@>=9DK#`{%P4A#DF|jdV4fbQ$)ED{20YTeaV$UBugWq`eGQ z&Ybq#$Xm8O+BNQ1g>%0W_KquezIH9CCuRg(fm`Aj0hhtbnMc6X$ZxHc4$-kL8uCgC^mmK_QI z30BUW@WjYZt&=UZ`+1{32G`^ZNMcB9@|g7|>G^o;j-=)W#;nYur-Qr4}uQ)flU@|`eH^Gs4 z9aheqIjhv-XZdKzZwyC%J?s@%vUULsP@?_bIksnB@Nl^JzMg z{|~I3Ir$B_&yvr?)S_TfcocLFSrlx-XI)t=C-=yVh%Io793x^Otekm7Oo$>v96YDN zUlI=gXxJgHnV+AD5;NZ9d=%ceBj+Pv<;*#cV)YmQqBU_7~c`j_%_%ju8jG9yNdbdef%xFc}Lba!^)Yn9xt3l2R3V< zUk(TTBJ2-W(BciLJZ##yqo2pyPN01GIvs0uME{g-m{0#2`Pf<=rO!qG?^(Es%yEwq zXKQP$r~Wy(I-f)mLsOme&GB1@f*YX6;|(W(*7=Tsl{4o%H|gke4fxLCz;}SX<9c(8 zm!o{A(7yJYKK=!JpPA4L*zB28=aL)U|E^)n;`Q(XWzR7xTym?2~d%((>vz|)Z{?l}K;?m<2 z!*QPgd&Lzuf4!~uz$9MBEpQ}$Jgl5K@p;@|4$F_P4`+WZ>>pS5`~#xozL-()CEOOr zDEI=boOu*X=bl@`667bs=|2Yh#g+an_9n#agGv1n+y+PL55dZrQ=iN|mas^5tv7;8 zxc|XEaV5?_Gg0j~Y5xar-;wseVCBqd&ywCsUZ~m`4t)!f7@E3$ZtOOXf;QF-ll?;6 z3`h2xz{;7kpTXI$X|d|j;pC5k9piet^CilbPMF+}z>RR^ekiP*Id?Ix$CrC*59;TJ zV?PV_i!1i{xE}9=N&R%(21n|rz{;6Z7k9g|;#0$ZTR8S_!H#jo9>3d_PMF+p#*J{~ z{&iS6bMCWwf*fGs>Wks%pND%`Vdc!}Z``7vywp=m0+aq4 zT;Y!=iJ>X>Hd7)Yxld+PjKOVkjEa%4a^_JniARNf0qYLo0q{ZCC9bJ}&)zELo2<9P zn|EZr4Xm6w>xnCKTXiIR0j!)k*)hA;YPr=1(jE}~XZ4@fe^NhRnR#D0 z+Ed;iE=UeU3k-ugue$XXHIzB!L>rZ*jF$ZzY)&(Pp~^&8S~Fc;-(vv zU&9-Br2Ge1Ie~JabQP_0KB<3U>7i{qI*#ct{fu88<(J3!<#Bcq5<5TES{?nH7o%F& zL*fH%iC;5`oSzkqrKRtWq*dBe_Uq`_JW34Z%P{^ z{lyg|*&Mk?VP!F|W}>bBhCVb{L#(-FcQxO))v`tv#{y7akY>XUpho5oP!A zDy^oUKc;_Sb7z|)c(0TF(V3%V#Iz`uey+c{o3DacjK@R{@Dj}^Dk9l4dcVmY_8Oymys(pizK zbe9WVebr^H80c!9mE{}e(WbI_GB01P6$pY~SVSVrdmHro`+4;%`u*s3)tv2j&-E5+ z`9h`M)#%giIX|DvT~{p@?(NmxXbq8mEAQ*A6pw~zbF}`ZUyw#t_4SsE^{!>Pe7#!h zZ|>@6lcKRlhz5;*lswCnZg%pLp*4)HRO#oFdbOS_D~a1v$4CHvy!mvG9y|McIfrYR z(c?!v-tqNxO5m54rli-E*&neM~Lf@;`$MBJxW|ZDy|9Xo{ysUw=sgQoMq;IK5 znZ1De#viyZVVyxFtYvO#C(==B*CzkcQ`&A$h+K%b?f4*dKCEm!NTp4A5_wA2sT$~e zsXu|B?}lCC3Yt$~E9RT5@5GyTWPJy$oH^?`36B#R^*@JGe;sy?EA@Hoy;VX-O#ZLn zhB)$n8CK4m|73OG*RZeqX7J5En z8CK4m@Vw+{E{*v$;mogw{o~49TZ7c&a3!fkPkf-7O=%%fnvw&yHUlUf`+8XgA^ z!ya;tgAG_>UsG?)NO%yp#xWA^hm|vrgmn`ql(jH;Cp-+^hTY>D2J5jfNbHIk18?D` zIL5%6uyW=xFqP)Vm3IId`py3yT)l5f5<^qH^G`?h9+<>8!Yyzlz5rIvocR1TysgpT z9~ln+FxWw^_x%EP->;!FW*i)h8{-%U2g1sk$H64!6`Mx>jBxU&!Y*+o&u8cq^G((# z;mtd;J`q;Vob}k&n@|n&E#a7Ng1zC2nLpdLEH???h_~!W_JF`q8j*=G6JAC$Xh>(PAr&`z7JrFN8hg$~|`KiPj5~{Q0;Q zj^xjUl`|*LPPK|Jjnk;#9ZvmD*ekBo<*8Qj9+<@Mz%6hjejBWuIq`{cUum>o52yVK z>=9Sm;>7s)5=`Mt`MJ@{cxD`Fe%uO2^7p~YnUimAr7sqbevkrnhgu$IVzUjcVNo>feqF>KByvt#as{5sn>RJ zYDp!V?RND-rEjpOhh0(;I>P+|>j=RS?iXeGk}O}AVC7rV|pbhIWcOmPxFWU8Q3RO*y8YW)P9rpr}6rUv{%B)iPLTm5*Ur~wf>BM z0DFSUSlr;s(=O>e^_YJRUMrF8w_)YP$#%;0QiJ=1KitP*XHenFFVf4r*x>s|yka8X zKfuaO_&PkJtH*rt80a9O9`kQ}p zEmv&Mw&EvU+?>d>faQUI4l@zUNo8kI5BzI!iKY+y@m*fk9<*2s5xc+$Wc$>$RXf5i zvQo@%%5)+)Y9jt~PDXs#4zHCMAGU^-jrg$0RYJuF(QCZo!werQ*wVqn<6?~u>tt7E zGlSJ^TWUqF+SiuqEvLJ4?9$0fBxan#8ilPTSbLlOX4K&-ZDC{hhh5T8ZfD5MNawZ0 zl2xueR4f_d5@R5iG+=2y(4xyXVOU0VxeRuim3RIerV{~F6EBRLur%V$CAb~Lcyl4F zY{Z-MT_se!5k1Q*-c)?72wpqHd((Kwk?hjtTy<3>ygbd?FdE^d%eKPIjyUR9jRzM$ z2R1~yrX_Yf;p$rzJ09l}O=Cx^?i%0G<_XzsTbPwU>f%?_I{$HzxpXJTnhT{gTjzKE z>q>ekvdsUX_rx;)nz9@x%kjK~m-XKj6l1&bbUfprMfJ6r<=7Z8qWVlGfu+^A6S5Auuu7*zvgIJ5miPYXn)1ozy@%u7#WN#Vr`f8zEmdVNWhw)uO7t5(PryCZ z+Rg0WVIZybZPgtzEs``?^6kf6dy&ew|Hvg)lW)hC!_5?ERP(hc@&U|74jHuw_&)3} zE8hHTOeeyoCeH5YEikiyf8rJpBg(t5vJp|<<`VHO^{&IejK`O_!`)uvzS;ZUiTpw) zF&c@y$z3eZ*xO;!|1fR`k^V-oa^m#o?NusP)45`{JW>xh#=i#~3HygS^2J@b&D&!3 zg2QlIh`r!oSh-0ra7YPMRw1So2MLu`{J}Mt$*f{tyo+>m8>{YZ?1XV8_y$#5YH*-C zU5#cJ7s375+6ili*_MnNCRkr44*#&L@ox=78+JyfGfS#bckNm#)%Y5h7z?S!FfYvu z+RXC{n3s`p{0w%R6?y(UOecbi5&Og>Sh-1`aL6cBQX(cF2MLvwoa@@TWm3`+?@p#Q^XW|F zt>NKt$F)Ww`xhA-V`qf)Bd{qlk6BWULtHzIN;MAR5=~Q$_-2~%tijrRG6Z9g<3X)s zRA3KTN#>U^od^y2Vk)2{D^(f90A49ELiEGRMuf<_N~j1S`ixhESnOj3+gor;yb)sZ zLFr;{V6c!5J~SQ)6*sbmU^$PqgVnaOJ*ikW81#n?iS$TIe7N4#%PKznm`gN`53Sl| zVEu$_xb3#B2H~G~WeT~0dd>Rr;qdQ`tWzpx((Jh7K{i0BQl*+^UtJyu_9Iw7+zjbu zR}QeVn5phuKl`Y(zr%XC!~C1c?oIAz+y10o{s79^fouR^KW_l+>)n0nfo30nhJ0Tx z1z%j=$J-=+G2Ljit#Z;}HhVH_+bGynO=p(ZYu2wXLr$u!NDrh}2A@p#@11O46>FS- zA7GaWjaKtc&X!AjEQbyO|A~dm;1KYiW%-0GpOocOvV2;W&&cvwSw1Jr=VkeVEMJu6 zOR{`fmaoY2FT8|zAN`K~S)7N8+k>dAWqITNgU+BvmbV6z7>%dIJDEEob82JDdJr0o zH17lMJm?HFG0l4)RyNYSxXDh)@Oe^WyU3qySIgK=;wu2cZjcFN@n4exILcz1@KK^?;KVjj89V({Goub9YpTUa@9zU{#pk_NZn z4>t#Uf(lp6zsPxlVk8C1IRY8JUdZ1BAeub9a9SFm#8d^`B^utxVCf4XnMuAtJD zW0$XL8*Jaet0l614OUK^?Zn0l2@UUp|9WT4^O;0zGG=jqa>H`-iD+HCW+LG^uyW#r z+k@9c8r_5Z=`MynK^?pzr{XWSjIp~fUMrF8-mr4wWIN@HI}Ps1{%}{o&Y;2-^KRpf zqrta|S4`x460Dp!--(U4sT$z#`UAci_68NOh|LYl&DeY;UNe#K<*;%S!VbH*)J8C| zImkgmZ592Y>#I(=Rdiy!8^I>*Rc4z}^i5zd!=2RH!)lw`_LEpPfn^#-L|#@~Hh{h0 z+D+63uxGhM>>I##v$>+tZri4<#?QLa?7VU>+bgoGheA2c?whe*vEQg>^(Iu(WiDa8 z-kv0pDGjVjNfq~&Wcvq#%ZS{~-~y>aZaH(P^?L!N#$;EqKi}J#M^CxbpXx3Q@NG%% zZ3$$Sv1|L;*Hdb{xEnJV?EKo(>+hvQ_iz>|bh`hxj(VNwS&tQjSuT*}hP;Hg`Ta-C;jvv% zF+t41S}OlZW<0i4UgoUoILDq$VlJC2>8Kd}aylx`pJ7DF+DR=P4 zHVyE<`~m+Rb_Er%h|uD3)nNM$UM-RBTd;ECY$vNnat-iD*6_}+Hf9p7$*;r+R<@gQ zdI4THk@9?4IdRJ4*^-Hd_i%r_hro`Yj$d(2Z?Mi|jNXIrN{L(-!^(+sof2Bh()fPP zpYN%#L#TYk_WF?VCg+p!%88s;z{-hpo~#xdHOxQq$NYWRA5_dDN-Nt<%HPH7CQ`l{ zR!*F9dkcsoAion(z; z60J$Hrt-(6Vbe{pfeN;PJF0zkepH*uwXL|U3OKdr4SZ)&T!fPfH-V9bwd=yVC$ah>C;j};D6JT#pW3(jPcspmr>ErR5iG+`V zm6Ipjcmt^sKG&b{Ij}b{!VSyKF?<$YGm-EauyW#rr-t7TYm|TKPxwyVCBRaw+GwCG`yGjreJ>;fV{@Y+Iu(_$Pna{I<4J>kISuZQa(k zw4T3T6u%e6L!x+?7ck;M6Y(7|h#C>`ZLo6Uh^L14TxzKQ?vMH%*dtWJ;z22Fy-E5l zymlh#H(=$&Nq6u~ts3Hu$9ZSc3z$S}GHJ2BLu}?X0`+{nS|ZzZVdccxPF5S1HNc1X z13n1$2XzdK7l+Dra|AEO>n2j(7gkQ3^3)~SN;TVkc$VGCP-MqA&ZwVOKee8}l+B*` zQ~f!g410vic@}@eq*-r_=oNVVMAlVUxe05BLyPL%qc{`iAfe7ZKIM8cPo8^xGv4oZ zP1+;FPU-NIkCjMoy#?;A)~;6D(smZga`Z7BvLmvC-*Wo#X4lT5PCwqnC1OAQXg%)| zYP#+8Vd%$Qz1adgzGJ;DJM?QKsr04G-IW!&N?()9zyYa3HobgRs?5z=Y(tG`m3mW^ zQctx%y|T&4AV932H_zAKqG8sn*8y89x!(R#aG1_psNo&!?fZyDOlY7m$WCC5h7xOE zu^u{w^(-4)!DZ>s$?|zwz97pNW%-gUUzX)7viyrIU*#oyD(YeOXR%&>9*jyYsrxUp z!ShVizj-sDYsjs84enz)k%%fUKj*Q;nBxD1*Gin?{|+k~Q+(WHCk;nR4e!Utd*j`d zNsPurnTc1de-E2(rtBZVt0pqu7*Luwkn;c-gNv3ua!vl`>=BIWP@B>Bm1mB*{5JnU}X6dghBStc&$XTkHN}` zlkJqxM;hEI?cO=oL?+Ri97|rkDj)0&z8!eQM84x-ynLpnXxq9ml?C! z_rQkQQoY$?wwx}su`iXf5Bp}jBkwgHhP$k_zuCW{SxB$SmaX6a7C-3<3~bmpY+ht> z&honBLD%l2UU%HjC7QnOi0^CQ9Fgt;Evoz-MkI%ix=-pI*kxAA`RAEV1W#?Qys^Z> z(TFf_;Z_hM%p0(>5n*0)l~55z^eV3ibFYsTY>|Kec&~}=+&f)OFQ~3!9~%z8+TW%F zeN?e_x7rrAH)xiZrQOVm6t^PMIW4hcOJ*7N1SC6(iXEGCiKelmRbL9XzL*+rxa}3^ z@DIDvl@#+@s$00o`d)JQmq%2RCw-)t^@!;$qEaZ}4EX zYN^RPSE5oTT}%aLHF?QNRq4xSmZy3OrQpNhOFZ0^DU>Q~D^6-CUC6OdsSCd!;vv|b z?MV+7s;Nw=f1r?E*^sopiYGRLP`d#+)d^-J`iZS3%JL(cjIc~EXJq-VVm zmZ~R!S}&(XBvQ+ARW^itOzFuLd)U}H!lQ5X3>Mk$mr^lR85|fWm08Lve9kO8YBXfo zmkJDFpC;!-lYKfYQ^=N6jczMPfX`sc6(d94ORADuRw@-5{oW^9=PG)@*xv&vQyaAb z&b0c{mA>?{LblORpBb0Qg@(4zjLVdwGp;AfaLDnI8eq4Km#SHwcCmqZmr^O;e?vU0rp_%JLN85BN~d{{Kpoe%Y3 z9hMAtMW5gqFitf(5x@P`bEaSuM04mqmPUmocAw4}6^wxQ=}l4D5cd)3Q88mZ!?{GqU`w zEI%j9(`0$NEI-dnc<ne*;qe|oAeCkt8ikZ!G49c$P@O9uv4t7Sa}onT71z|YkNCbiF7By%8ApRsjuT{ocHkO zyesS#D(AKNaMoL365k28fJl6MSUGXxQ z%88Sn*jNkKC|~MN`C`}`RLWvMOv7@M@CA6yM8fC6%83)6l2Pv|G|2b(L%s`k2oJQ>J5UJk}D<@99!#0brIng_FYhx0v$=t-1YE5SE|G)&O7bCt0D<{r& zGItW+!ljMmE&Kt0qGf=^$$e$JIf6fi*G(M3ABB|@r`*9e*lB>5`U5@=b_F$5ixDjL z1xoj+=j@~LYKd%*fRz(xyI#|sj~eeU`SboF>>eub_4(A?v?=EJ{sL|au@9UED<|Fu z<_|lL?U&KEscOC8Xa2q52G~K=Ua%nA3(Urt{op#>7-B!T7FJHYA9V0t#TxM!{fR#Z zyMjtw#Cfq9+KBT{0$po2<9Tt0%JF238&eti#79G}g=gS@*#%0a=I5 zH(6)#>WQqE!ODrVp2-erL=M7fxG(m{eF5whDsHiRNpFEk{5;$OBJr=l%83)7&ivK< zCCOd>yl;nnLgg*4HjmnG(!Le1pGf-_SUGXpvzWJ{r^B=X{fs6MeMiWft zuj3{VnZF7vC(e8-bJ*~^Bn|fllf9Gkc}$`;$+_5{7`EOdJr}Q?NP0G`oH*$j%vY;9 zNpPS)?EPV7W0Fn1zuyW$Or!jY_7lzuI+OEA_E^G()Q;MEgZe*;!dob}v@v(!0qZG=DU zPyIpIIaKQN_^Nr6hM4^C#|teiOWxnYMjUwr$bKlv}f&Y_YQ^LvwqnEX$}4I%RX z46K|u|2bi|HCvjw!JqzhuxqIF#VHhPGfei^;${%p{{U7_oc%gsr!{?ef6gEN)39%- z@Ymz1y}cbK{U>lci1Z(al@q7Gw&jK=E!Uem)jPwV#3Wji>xummmPVM|C*Vd9xsQjH z6X!lZdS%q=Ua{`v&wqQ^LDZoy_QI{EF=jv51~-P-54MDr6YmFWM_p&j_xt?$XJN-s z`HS&yX@tpr8EyoTdkR)gocnrFmo?A%FYu>-9_$_}eetB<;45I z+^FN4<^8w&_kder=TLiqc@rq_JCJ$ONc$-Wmq}!9xx?z#iy3_&zt6*_0MGzt;zbux_-!blk;r6aw6whuyW#@ zXYDO+S>8*0Qef}kc`5Q)k^TK??*qGqI>beeXKR9VtUB|y7j6WR`tGoD;?yTgmzlVS z{Bc)ce^7CYT~-m>4bB62?L^M~uyW#@XGmY|6MW3XgngAi>?>fWP+^PrHD&`0;@`kc zAQJyNteiOUY0_c)7cIOW^yhs)>=G((v8zru-=KXjZUB+?Z(!xbX-}8#I+8u1nZx@( z{YuC~Sg^A8xZ0MsZ!B59dRqzE5t)Z9>A}0M zK33_$+gzflqg(aeTkE%>LQS`QuQv4KuFPOR+fLtIuUS8i8Tw6vP-U>+UniSm_xdoM zJ#Cl)d-~HWn|z`c5y_^DqhLyoiR|Us9zn_1E0rok?JY7Ie1_8Hdgy~>^Ja(-lFgUp z`m)?WmJ4LLp)5C&<;JqyM3x`sCHx_-Y3$G9{18{C9Cunmw-Yl1i;+h9zCCY=|2Mcg zm`)^Y)+Y0}bd7)^D^|<)+u#)wr}8afWn(Ijo9_hXCKkptynU=8o_MpcFRZg@-oz_D z$0Y1F6SZY{y+pbxSUGvRVv^G6Uf@snJlGc)T{*cLWA`g~y+pb-SUGXJ<5}vUp}pN7 z?X9pQsAwnfxE$m=2G?8gN{L)=hLscN+TPEyISuTa{$O8+JwXNADZmCfs6qBsyjCLF zmtp0^$&T;O>0sy0^qy+xG6`(WmoSoT<8aGi};O5{2VR!*F2d+^YsjoAJD!R`Zl zf(llQSpKMHklhQfl}L7XSUGXB@OO2usK4s+V*Nd{G=;WDh}0aJ30UDqGoR< zNHs6&PF2h4Vr8II$@*BarI!_3j*=Byd0DYl#ESi$iKKe7?B#U2km}AA*sdUE(*gck zAxhTwP$Sar&JI-jR^%#KcF}NgDB!iTlU3d2(m-jj>e^Wf?8QBsb85RgRbHr6`-e9) zxe@9gEL3x;zHGWXm9AFV9;#f4y?ff;$(&+;rC!_B=}*h0Tq<42^|HDTbrPtsx5wG; zRClSG3ZAA0Gu2RgLa&XsV!`mt`jY(CvfM_N+sbk~S#B@O9b~zqEO(OS&a&J^mb=Pw zH(Bm3%ROYdr!4p4CH%VSBka%OeBIO@j0!D(JCWJo`7&ZDZ-)Q7ruCUlWag}i2WdWg z7zx~Qc&)?)?r2!qNZ{foJ0bAVBK=wV%d8=uY`+Bi!kR$kO}6qy6Svz;&%cP*OQib+ zSUGXJGX-6h#b{&r7yg`o2786dS?n9vTVN8u0k?oi{5n`UapHVDZ>f*xSNu7@2>XJ{ zS&e6wcNx+8IlNvX-KSyY#Od{lXxF)0g-qXR!*Gw>>!`f*FZGtm-v^PUKvHl@sSY+xEsw1O7dK;NO8gLj^AKaa$|Q`S~i`3L^O{VCBTgk7w^EHPDax zgMJux1QoQ{LKwVMHAeJrw0=4|iGtBpytCi9xgAFGE=HyQs2 zCQ&0Yeh*eoobmdrd%v$?-@+gJCt8MmLymoQtucGT$8c+iJ>jFUa+99muzOH#KolF) z93<2R#CF$LJ8}c!-{ReXIO&sxY(Lv<6Kp_=>_RNTeb+jhkncRmhU|!JsIY8BEVy1AwVll44)=(k1`$&{GN-nQLMph{np6ZwctH{0>% zZA-DYz_v+xJEjs`ci?RdQ(=zrHl`X};NWcxQ`vHKWLTRPd-j=SIUZEP%k?l#>sCew%@W&LdDtkmx18(k8#ZvXh^!1O^zE{l zY_8xR5qNa+HlAouObJ?whgPW3k z(~sT^6Y(8Xz2z+1eb4-Spl3joLMb^Yd>x(ZPxsbq`+6FctMufGIdz^CvRV(Gn|`Mj>TvSQgAgqh%P+ z?tJ4myQU@AAKahjEyMyO7xIm@{MExiVU>T^Vj(hBEv1S<^L(u;W_#H+l0$3;@Etp> zKQ-c$uTktAVNMw38|em0EBw0vORBeI$+iDXASNZ>nV_7_u`GWg%j;x$y)1t!%Nt~QqbzTd<7hgU(51#S>7SbJ7sy7Ebo@(Z)ACoEPpG@du4f_EPp4<`(^onEPpS{2W9z? zEdLXR<$w^Gxh`_8LHY)wuN> z?>Eegn8awjVg3yBM&u1nP3#{C-dz~`2fFY|iEk7)gO!apig9yoPqVd84Q$#U>jfWbTca)bhkgHue;1-7 z9lT!F5dXy=@k_8zsEFm@&-OU+~wt;wb2 zlp8#a8)T>9wGzorhLsa1+Yyk}r`$dL(e4Jj0vxr0*(Tea@oI@|cYu`>XWO1;s~p;> zE%~D@z@DI@m7_LT;4wyR4zHC+wg*;DoNPxxc1sQIW&UU{fn7mGE9ct4Y?JMUc(p{f z=flclgRLHsf9ucoZrBw#TT4W~1Fx3I_BL2Kakf($yXV-}K5g{=-JkF~utTVX#i6y3 z@#YwQ3$L8W`3+b(an92lt`fU0HPjo=_0F6ZFp1V=&a?Q6M$~?j_I$j4BJFiy<-}>P z)$o?u6RQzF#Gm*V8q`o6Go;?yTMsF(DM(@*uMeKPD1D(z_z z+HCubbfmgOUrNj}t5LQl{E4%94 zct?DKKiK18Pf$a$9I?SsD`UhSgV#zVdnBx!IN45lkW355=lH`t3w8z-uDp;-o`5s> zo`F|Pjj-ZZM$(0?GGq~=6S4!l%Ev%e4*Y@DRxCXZ14>kvTf(lmT z$o!bQLAD34l}I)ND<@92gCFA8&|cz?_CnYdRJ3xI<#!JlY|qE5C9?f0teiYsekFp& z_HKW+cfhW|*oq4w47Ru7)e_nM3RX^>?bPsf7aHPs{1LwedxVO327iGNw%(k3-@t1p zl70jHWO+W5Xic&#=3ah*iZO=Q#cL&!odYY61+pc5+s;A$WEaDp zppM-JS$3(7L3UrfRwCKGVdcchj%Qc)XhZg7f3PcHM^M3v=b+%8A%klbuawC3Bv?6d zuATDoBaQ8M{n=g(JA=wrtSC3Ge=_)9iC0YIdpWF}INxcJ%dIrZkN8u52zCjT@=Tsq zMa(zH@&kDFMArAg%89dX4{jdQ5U(-cJFofx_5>BNn0@(uX~rmiAFq{2_MfnF;$$Z_ zZiCb4cKOrYj7hX6Yo5XfaKmzQ>@LJ>CKCQIteiOE4t`6YhWB`XyvM+eR-)-@_iIlg3l@q5to?ULM;m!Hu?SUOZ#Vg}7yW80qy&1exBG(gP<;1ym zFs_TX(8ylsPxgG+6;!g~DTteGvi&MvEs^b)Vdb&GR^Ll?hdTMLBG`$#@Q4HIeaJuyW#zCl5PHAH$3NA@2+OgF1#~&fMsqmXW+SUN@2Q z9PUQS9teiOKPWe?NEn;uBz&p!c$Rt{mWs7}Sjn6qr z7phxwK8#mPGD<@8P5__~1UqjRoPu|cw z*Xm>vt;w~-isrECCgXOzY9iw`VdcabPi%aqQbW9hKjLj+Z(yUiVYx|oE4*eR;Voe0 z#0igQpAXgG_V~liz>c886*~ZeZ=Oomspq5<@k)tYm%_@4bM2I0bk*3N@6YzDursJ^ z#dA{QQ?v%(FXI&x`F;sjPMmLh@S$A|?rr{Xe+7Gj3Rk=-=AQ>P$o>Mal}PqyuyW#L zC##PiYkc4E=ldG$4=P{re57nQMX~7A?0q--FjmBzqUEJO;>~RMxlXyzfu;pRgxDvdn5T zgL)UQl}Pq&SUGXB6DlVSrpx-Leiv@+og#mjNwg+K7Nzu6Re(u-qhkFkUl}@PV*$;)KVWpM^c$AMR&iM^NF4T*~@Y z*i-OIiCkB~%87GrXD-q|9QtE_us?)7K?N&vslaM;#C{L2l}PqGuyW#LJ6J#-I9YqJ zebOK8pI}!|(TX(-ZnnwxQM_6r+lOK0vA}k)n9vvDK^+&uF>=Ekl6}SF|tv5+;f!9tX{RvpP3F&P9viWUor`8wd z@7ubqZD~D!zbJk$iibq;FfXLUZV#=|mcNw!RX#U67(fmZ+Yd|haEY{=6@$z2TX!%! zW-M-N+w`=0(2DbzU41v@&u0Z|%65mR$UeNm(#1FyaUWFF!k0^kvK0 zdTmb+m13!Qa<*Km*LL?15q4zrXA1W&$sftEo>^a#KT4KI%kmgm9?Q#Y{(SZai~r01 z$=BJxEy-WN|Nn(tW-z}s%j=fpx8eVvKUeI>{)~;wX4(6wr;ZZ@Yb}GwGb=nZh+f_h zBnh#O>HO|YCo)QF;&qMeqjI>Z#J(G^mpEypVP#{|NQAEO!I_I#Lpnc@S2H)e+ermPPkLfT^iuO z`UCzy*cnv7;z&Sa(lti#|Kb%B`Thk~PMmLtZTPPL5%2K49+SY*Rw`Ywyf3mLgY7za zwM4dS!^%zAIy`Nu2R4z)J4mPpwuP>pR6ejB7ViVw_$8%se<+?yV%^o+iZJA<3H#sq*rCjso>x1Y57F5B!3z+ z|4jDZ-~&fhv^us2j>*b+ZB{#%S>l=3zB@DszsK|%$;BU~FIgWqfMzVYffyi~60YgPBNHekKf9{##)Xp&^)$q4Kpa2G<83Nf(14=WpiJ#M}oe9&lg7x~leY8hSe#3IJJ z!FDseS|ZzpuyW#Tr-mb%hWG@3#K*%PvCf=%a{!ACNnz{Fb){qQ+KHr(gq0H~-5$(3 z8sT&N37-Xff=XB(tO}-kV+@~x*GeRNI;`A;tV7nU5^s@~IY_9)`%c%1Mkd~K<6U)V z&yXq79Y!VLcXEl?JG8{GXUkgou1KC}A0a;uXAJVxV{tRyG2~b6g_67r#@*7Az~{ zbr*VP>vNdIXk_aqV=>u>tv9EHweZ@Bq-Vg&iIbkW*YM6UEA4&#Y3~htg*u|w*0zi_ z8{2!}77&T=3M)4u?l6O^BtT3H4iYK}__b@0l1ad}?Xm6^o1E@W_qU}62fEYMY$O#p z6Yj9q-d5Ykwq!HBq1?9gGyKD@z_^BOkvYhc6@1>c2dS*!b6jF9WCc?~E!R?m@4;N; zNKvW5cVJgp(dI8;IuR^2aVvkwcyrdc3a^|PL#}|8jTrI`E)idTFiXs^A%|(SA7ut% z3*iRshheu+Y0u`(r69Odh3=|ZR( zCj0-ugla_g@4?DV*gH)4DrXRrhJ%F48BTR=h|C$*oe*ozFg@tN7M}(Q0Nk$4ncYW-_V1(P}2s8cG)`OmB3$My|-NX&Eh_<%&b~+LBS}8im1B z54*d!#B4iYR0R9eRrU$hCTn2uAYf|c+)8n-$-Y$QD#<=R767p>)wybx)5YcW+L5E> z$DrlxM$BS`eFcv#0gg^bEDf?{qtP011H32hJ1Px6iCJ~vs3=tmrCuIAN5^B8QelX> ze{`aHWr!UN8Kq_pbq678v?4(@TVz{+yMs0H(HRs%P!F;SEMSd`unpixMor!#@0j2_P=IHU9fC_yDaaJ z<(;y;OO|)b@;9=)N0z^p<-M}JPnN%v<^8gJK$gFk<%6<(NS1$)<-@XkM3#S)<)gBE zOqP$!@=vn-vn-#G<&&~}N|sOa5`OJ)1N*Z$Upq`}+MkL0+a955jR1?#KjB4jSHV{PAvyJK6eP$;2y;P;s+O zwwvSC64`znR!*Glc$SK2WS9AqO~H<^t}NtDvf}FrLH;CNr(PF+3a^yN^;lRrajxyb zlduN%EB;_>uqUWs#epfl7GRJ)8?Ti}_Dongak3K|YaANgTm0$X410r0SIoB!%gwQS z6J9fs@K0go#0igQ%R3s}SN-9>3_F4fSH$FCsmvI;FW{9DxjqXkC(gA!SOV0*&i=S} zmOP6|v?fayF*&f>Bs(3il}L69teiO6iOffQK~|%?mp|RzVQ)}}t%%7D%T2<&;58Eo z?+7a=PPl_Fk!yGd{PFg~uAt%-&p={j--ye3yjmjLURXJCw&U44u}1bA{$#%nJAz79 z%(ubfw!!rxyiy|9I;@;H*Ga>#k2JdX`qTXl><%hjv1M}Dbd&L&c-2J4zlN0)XFNf? z(bE9`!yoY9U|&!Hi|fGUn@D2>{}r#7NcaC><;3Yu3B6&}5O4Ac@5FgSCefP2S)APr z8E=l__3_GyoY#Yu6X!ftx{AN{)<7TX4|)mg5$aeLcRPfwH%T9W*G?q8AFP}>>Bfi- zHX~@DKjRPj)38IRpd%xi@1!sy_e#8SBIiL^IdRT2<(L@WA)>+lfj{hPV6RYNi#t5@ z7MLUZ+qeZp;@^Um6DQum_wHzzANR-nN7xlq%;E`IY&kMU^B?ePiEMulD<{sjJ=jX6 zp&j4loq&CaNwg*b6DyZ|1DHYfzp($Q2Uh+KD<@8N+(~7P>z4jpH*Xo&4t`w%+l*&W z{WxAHalCE{D<@91Q*JWU(5C#+ehPL5H5!X!W{usE2H#`xiiv!Wf|V2J+rjrOYIJM< zbkBxeL8U9^TCv^IV0$KBEs^c#VdcRK)@WO!E%+zTKWC^;{=~iQYCPMGt0BJGAMs7F zN2rL!vUIS8*Z}-fyiy|IpTNqA58h7ZqTpqr#`a}@wlBcWpt6<0S?=jJ_&$qQOyv6% zteiOCNyB^9HNvwt_s*E7Gl|w@%;L4fu<7O)o`P3RWIPd8PMq@@SAjw~p6Kr292kc?{6yN1imgzwxJgC+rK5t~jb?(ET-D zFOly5z{-i!of0~NrXl{DKjOc_4xu6z^KZy_bN>B5ymBJv|Amzk=e*$v=K?kM8*bs9 zVXx05T9aXK!q+ZGXpq?-*24`V_J?&~Q==W??v2eRc{f3{dn7d8*7&RRbr6aKX>@oQbeXlAo8IdYz|aeGUxlil^0EoY1D z9JFZ7Qmv1T+#1oxYBMsW{sDIPLuw#hPP1$52l}Mqaa?gVce=#(y&1`|;SwztodI){ zE$=Ag*d++;4in+Q(_s%<`$N9ObRy7dvv@$#xXK}Z68mjY|7Y>~R~vs;4lADmD@zY` z7IKwpig~GD`e+qbitn!Z+2W%1sOvQTH!z#R_i|Eue*U~+2VDm{h>CtLM{jFIV**kg z;9A@YVh8vEtSo!y_lI2+H~Dpg3%k?oBCE0%5HfBO4|oE% zgxCWfhn1W30F^&b$60OCvcW<)T6xtWk9KX*q(wpEncq9!PezZcRC}tC z{9{9A2i9|~-Ohe{cQ~=wy!l7$!oMay9$)F=hDIi^M%Iy6v1)zpM0L9YwKL?^thAos zFk^9B+onNQwlIGlOUwFh%Ae1QrR+ar%P-o4CTnqJZaDEG>6X8*l zAH58El&n>e*%hyq7(;e~m5ms(J(q}&>|{CfntV@UmSCgL;9G?KLFFqh5LLFDl$Yam z6Djw>%866vANP>Cf=T*vf6|x2KB1Bpj|QO(!8)cd#_K22z5rHkLfc_34<=&q=p&{A z2MLu9tmE1cnGXCQ-ld5N!4(ZXg>*C}c#1Uw3rg00R_h&kNg{GZtnD7sXlfAo^{!## zBh!*4P584b6_qAD#wEtWG6cU6Bw(hc3T<1W)QqX*Kd_&y;PbCDod^?o0oO1vS+hzP z-otAqhL(T8%0_7U8<&VLU6?MW+=jO_&Y$q-{4pjGUi2P0ZKiS-6G_y5Gi~@NUO$oc zCa`kiwAWJ8ZWH3i`4c}H_6wEx9Bpx-(FT+H5x5OR>W9M0O{hD}{VIJBQ-p(rN*^9^ z4OTLJ7>qZ4=6Q9K-Mk8Z1N4B0n zG}>TNpN`u=q&@{!ZbIE*@>ltTm?9h`RQ~W)*X}Fxhj+)t`Z?Tbl|rsNSL|&|t;iL- zODiH-#F22XwFVi=#)$N)Y?-hzg8y2Vw7Fq&WS+9*4u`q+EtNYQ%q7M`?l3*tcrDJX zgozn5%OLD6EA)If(}|F2?0yg(t^rThuht>Tc>Tl}Q-YO^7*pU9@#PVXZ4VKjY0SUP zZ1T(|z6E=R$~>~|A<_zScKIf51(Ez^uyW$$!`mJre$(jx!Jq!`Vee4s8`~ZtEirq* z?{G_qJ>a*na+4n5kQ}J|LQEqL5-Ptq(6u2lzql&qui;h8gT+j`n(b~&1qW5bixe}q zMgy0%-_;5&e#tT11m1$koMy>3rm|LHdAjUrD%+UECB{OwF)h+|E%a;+^OG%A%N2`Y zXIZ;IegV^ofT_*oi=q+p&3My=S5J&Lo59LPyjjR4;>$JG7ViuqF4KsonMt0h#tE=v zsKnO^?XZkA!sLEDZUmA0F|cyt+~=yd9}%}{?9cUQe-7*%D*JibE09P-O#Wx#h7kFm z0V_A*?~o*@JVQ(%4iYNQnBdwFnP>bs-uECg2THk0rBrN76$=H+8ISu}bFj!|?Rqu# zvLaL2yocp9)m-q|(_q8I=HVR@;295Tc3|~tPI-j(Ti)x+MWq+N;SysZy=YJyZoU?C z-h!za8O9s1zpUW%Pcofoh9T}OGyqBq)PlxqxCO*u^9rnN1e+JRM0`ocIwHx?y{2)W zzYRKC4eskQ2`mk#a$hf$XXx!Prpb`!-r8r2agyT-vU?vlev*SI+F)3XwWYd*uTWZVb zs>a!H&$V{DT6V-tqd#5D4Ggkvh%6HsapPwAm%F6xf$5Ps&9aP@#cpxHDkv49_%SA`2598CqktrP5~&}&G_;iyl!HAxe8V`;>#6WBEB4BrpPgr zzcki=V)kIq0tV|xVXshGi>y*_fl2&f+yWx;2Vv#JiO*JfMN{hS+j>)9lSzz5PHB#C z@tVxm3X^;rZUvG2e@2VELn5GZ2{BzbNT^)mbFK}Mxy1f4FJ9z|xoR$5$eql#a#ja3 z%h_k>!!Jrc33pvo(74kq9Ur)2QCY|PTw*L_9m8uHi}bteH-V`c>BfdkVlUv}L6dc> z_a^J(bra*uda$w)U)JFg@#PuXnufvpP-c&3g0Teligl3ZP1d$G4IA+Ta0`gU_k)!a zCvI8OFsOgVpZcd^&rqp1Thp+SUx`~mBtHl%HzDtk2&h~_OcxFkDwp`D>!c-fiD@zC z5`BZqvSrIoj9RA@4Bx ztNcMs7Y-6Cf4IRlXvzHH2k{;pnUd+tW|p%l+&_#PLFB#>teiOa(D}58+cfsa__IF}b`Ev4>*v!V4Kev2h8sfUe=w}v zgug?Qpz;hcfjCI0$C*F41~B6YM!g znjM+DEJ;P(wOgsA;%i)DEF={ZM5DF%@(Y-jF}M5-_L3EN{yR)3LZl`>Qz>D|dexiM z8}NFG;p944*$5}sa*6oTh^b=*gaJG>xWLdTbg1{M&H0qA@+f< z!^(;GfeqB;ZE>E~4<7XI2lvA+qV|K0w9Vm`=9qoqUfdjFU-%8I+@vo!WECng5tEFA zgi1^nyEa57CLfCTUCES8sW8~juGpzm)0yRwgk;)IXc)8hz1F^x<OJ3fxr zPK+~~!pcUR`3RSYFYj1O;k$>9s;D7{d)Pd9RHdK;%6WR!*Gv+G-XacA3U}KY!+*gdIa=F4in9jWD_I zi5o%Wz8kFEgu6o$pz;VYQ8-AbJmPlOfF<*YBjU{?I+nBBf4g%-k=2PW!rj%{*J?+O zoJ2rJ&XyOrsgcRavKH|L*S@4OhSRvjSjZSAh(>Dx<@+!pV-oo;>?JGY{Dn*>LPTz^ zkg#OEYW?AAyk24qxe``3V#wuOBEDQfZmzI0evH|IrSb;jM_`Xo8HYDlG$Z{GUOSQW z1F&-9q(hr4thC4N;!S%ECNUamp*f=U%@xgve*kl-5sAMKD>otTFuAMzKuik`5-LCV zjB7(=esEE|`N5>+ed%hMEi{zVrAUsj7u;X1p{14^IY;oiV^7%6&5z7dmb_tic>Ksd zrt*eexJ1*uA-;)avTC=MI`qKcjAc3r$DS0@w}S+2eKHfscy{aE{0?WmFC3-k<9SVX(?;#;l| zR51A_muMPHVmvn1DO;_Dl6zoAMku)pc9Ruz{syKK4JDKLQdR?(tXMsU+>TdFj3c+g z%0?Wyg-gUYTTBy6mUhbTGGnljXi$C|b_tcT_-tLod~?ot6R)1g`gK@2an`fcN}rwg zM!S0R-hfGr#*>ISs>Q9lMiWft^KcW0%;&<&O_)1O@+wadlY@hVdK9_Lwe!kHk=^3W z6Vw+(wu;`inT9*8HM+!d+a@zTGEG??Lr!q*Un+Aro=c2{%whPp&8_s?HopKxf1&lKWX*eg`l z;oGtrU&F8w{{e0Rk@z*Ra^l28w`D1xX^#g_`%`}c_6(J}ep{Amg*nzA$E_fe|0As2 zguFu{pmGT@T{uXnT;dqlhR9svU-9M=Gb^PY_9?Rdbh$UjHfR^v50%EY)4pugT&DLBZzQjU){#5sx#=W0e<(XdOVc$@>hd+O+x5J!j zdT~35^t)l@#Oa4Vf2w;<>j7W)?*SLV{-O2&{qv`KTg+Zi$890@g0I2KO?rVtwxALY zF{L<2sDxuJ*M`W1?14i{9l+(gh#EDzv|$iWUVTl_&Z)JF_gRm zD;uHYEiMsXIx)F%RLbDH>F(%gH28jmNnoiqm9O}ot+L&mFgC{PCQ@DiD<@8Q`d+1C zHO+!vxyv$=kMbvdIP4QD=~;XvN9{LhAA;9UqvSsPy1L*We`6 zgGuqON6fDB)d;rJY9;%kX^H(`wpb}eukpSB?zq-o*YZnjs=*3H&=S^=Mmr+&l_h^T z&$ZvF{NXEHVl3njYg;^^r4v7gSsK&Ljj+qC-64N9(~01bm)KYuVMe0saU+P4=*O_K z5s7}tCF092kxGq@?lKJX;0oOmAyU1DQ# zp4Ja$?%~}JrZI`pNIK0ZpkHERX^z{3F{h79#FvB27OMnNpJ~jmWHx!G zAD6?Pp)wcm7fwe^o^OUxc{4{iyu z2iyfKH|YTm$%4u^#5Cd{q4JIWTpJ?ujSJ$XvDI1xLQw(^Nfb= zk!j4b+%b{02g}-J=TZqq2bUNN2}Y-EwKmIa0W*_rRBuc^0lUeHJwK1>M3B_P;gAL{ zS+RO)@-e((Vp#botZampO}IpSDTO>7VyC>68RMBt90$9EN;!Nuq$%s8@#=}JkARgE zXB|2mV(0xOf8Jk&-9qK99}a2C{0q1VMCPZ#%1xL%%=s#95R-$0gi0I6xi&mc8!_mML;Y_AhOzfpV#PFcbX@z;9WbuwZ5Fd9`Yb(+JrX(UjqqL}oBcQgOE{ zF_l!@!6n8*QqkZU^?{aRybkk}gH5Fvufk5Vc8UDsOeX@Uwl05^v7?k`sD$HX+zets zdI4580@AZwBEE!UzIgh#x=!l>bN50=w9x}*GYKpgr}lsaya%kNG3N8^EZi7kKbQ_H zC*BV>R4W>kzOavfU)T$F616XEqAhG#8)Wu}-Eo76{b3haxk-O;$TC!-A|@OM36-ea z<{IE+qB1?+ogOnPrNU5_y-g|S(#76E{afv4z@6CI18b!grzpG?;YLIzKTCFUx@&(^ z*~w?QMAPgfz6pw*LtzXD)flnz%1= z-ZNOtRCA?bx)6K?ZS(BPfowS!e3^~?55al6Y-QxHqw!zsVrDn2rX6~F(UpseHP3O0 zrm-f*yLSR=k>+c`X5!u`H6z$`Fp1Gff&b2&W(ziY3(R0M4!3|9Y}SC4jbQVE=nJzK zx3z70TK&}e!u)yj+uHhW%Ae1QrS<&0W4pbl`vB_thnK3`>EGw7N-I;WSZEmmhr3bRnL-tp}{ny(0 zYRgB=H{8GHKHP#v10wUA#hxvv(Iz!9=YyZUM>~0ndRB&F{&*;iS}D- zr)&8avXu3auojteE*RIgMqBVt{!;efkl&m&4SSB0Jx$F$ALkNH=brci(WK$_YjNjD zn4b}M4ukzVRE~-szG+PTUKZB_m!Q}?nPgd~xtC&uNNo@*$huE;(j4jvUH4|gYwXm`gTYkVL z;+sFFi}&sgZ)u!gWY%D#)8PCZ>=PCt&5oX|JWW3N#@;V;^tg zQ<(&oUQvmQ?>L)nFsV<%Z6H#g04q14?lAeQ{6S0+4if4y550q zVbe{%~S91Ht}%3C~mnr$$tABEdMq<%Q8oH+G$ z)O5TW@@M;#KNI#1mAu%YWp9T`|MR#VMEakDm7CCaNDfqfA*K!o36)>0>DmyPU(Aa4 zz+`)-uT-jJBZ6n_YFDH?8vlbNhj`drJ>S^+qp#3bRxbvW`bz5 zHn03I49mzP{sKG6$~*rU(}@77P2x)rl9jAitvf)D=YN~@+_Aa3u%KS8Fhh{M|AFwk~C(Tb|!(PTGq~x zf0sEf!lx$g6&3w4+6ptVSQEE`7>L?nWg`&%NA!uzGaiki0X_+6*%y-HMw*j7Yb@%0@)GnM=gC{2}j*v${^}0dF(Yum=vK2fPV8h}r|f zcg9&8WA=mBabt-6;8j>T@qQ4xGtTNhtuJh_*t;*xV-lnB$YMqV{mwXRgUtRg7dMF5 zA7;bKP5OgFnxQfkG2u8!s7&P&*N!bSl^f$dVm7^huu#plrTR{X(SDvtY5v-{WM-bG3cy>m5rb?$R*-SM&w6$qCV4@U(0Or%tC$udxpw9 z{1KjLE6nNU8r%vZ`ESF@iIWd~geU4Zjs6q<^dE=4L#3~OgeTe(vj_YUw}jXO{s1dC z=>ZPef=W2VG~ytk5{@HX8zK{qE#qApnZeFT^zl1tyL0K@;10(~#ZeE7f0&t zFzI*Wb`a^OVdcc>hpz6@J*V}6i~M^)9rh2k2k2LK>1{E4!PjtGh`r!kSh-0ra7Z3h z{voCm2MLvb%y4ap%s;k@H~$zH+@KUmIUZ#Vz=D>wztu7$ZcX<~Ik@4GsmzjQJnTwC zr5O)$iLsDovn^Z+g&P9W<`> zJP+=u)?QZ2wm3nMrbnhEON#In*RG{fgc_F^3n{_`(P%A6xDh61Od{9AUa~^ZU&(YL zMC1WB2}{5Vqc& zJf6gBCzAdXteiOMnQE%F(w=sZH|@zxVl>i1b3}{pUg<3`iFe`_5Q(?L%1wwn%=Ic= z5YvK#gi06AcI~<{UAQ9NbYVuCeef!i<9j>Ve$Pxgy0owa?zPqcL%2@I{Qyd+1)>3w z*~*eX9N^m5RQ|9ZmlzBA!%V&TS|)K4OwgERim<<|oglxI=|tGbHyL^h%($~0w}2RT z`e0=v?qs<{d^v@Dlc9S}<9<1_$}_vT6!s03d-zR;-VT%g#kd_r`WL{;iPI0g${Qd%!)gf2ch`f0LoN#q0%l;kFQa!R@eelV0GEIH=r1Oeqc$D);!LYeQu2F)!YW zF(&n=*#?A_Z7KHs%g76jiA&JfW$kvgT#MH$g#Fz7$h>CBIXYOAu-sktF_m+S;}T;b z=a{S-uEm^Bz~p2z)xL?3!Je|h&(CE#5h^vY_^oU=W6VeKx`{Dn6Ij`ZF&lD;`0|XI z;^|-cOJjW;v&S>TI2!f}m9==H)mvZ^KLWRaNc>P(IdS5%)e1mU>RotUkPN7NLQEG95-Oiq!?htYpV%nod?H<8OBlhP#%y;apSYW~ z1B+DF4o7(Z;j@Y{Y=`O`J(p0eFv;(NTR|khBdpwnyh9?OatSeAI7p~m z;#aOgOXd=%#Cxo?gKe!HN*AIZuK@2M8o#Tlx0aIKI_`KR3dQ-mlz9) zM5k=E7Gu5*Gc#tEZ^3S|V$Xk#=|qs!CiCrh4P3HfwUy$Vc*Vr9av7{_gq2IUM0_d4 zH1RNRr~C(I43^;=lz$Jqgi2Xl@E9@QoI-wwS5IX9TUa@9*0anvw`vSog0skm)pC)Tj= zBiP6d6TPlBBU9=hNN1|4fpj_DTTT!3$@@FD=Za$?y%;7N@r;&iWMHz=0Ud>0HCtv! ziG?FigdJ(^A^C%tPK2GjMaxcEhJb_F9|<#-;%2NiJ{>izd>pJS9o1RLRjMiGtbXaL zqq$OiX^6Z`%j!X`H=M^z3nwMi;gBB~_S08jKT$hE_%bbPV;U)n>JByB7-Dxg8&;Nm z^{in}#oZ4=muXqur}c$fnW3J2;TG6Q)V`o!re$rA*&lAk4I=i3n_%T8{Xyj()WKJq zv}~|Y$W~K9poz>vxK>_u&uv^=^eX?u{3G#h3mxCLYCyY6>%YtptOr}WU+shu7eBIv zY><|$$W^ixLo?Da3fWX9sQwoQY(#unz!o8Q*fcT@g+ zRxD-z8QTTa9lXt2tl8*Ll$0DjYTns^Nnn|r6?T3q(}@77P2>+p0+p;*v6+WgON=OU zVPzwt%;pmDv7I7T3~YoCW~N|c(I9*v><}v9>7g^GO*rq5S5D--53HOx=NW3T!^Zj) zf7YvDr%+k1r7d+d;XQ;KK;&J4m7DN(nB9Y^Sv)9-3Bf@^B?y0aot9*Ra8bN_Ejsrt zr@M1(mX5w5`6b+0tv#)_c*G=Oq!kUeiXiQa%s-Zd;ODMgNF@X}a*5R}Q`~UUaH=43 zghs}24a*p69o15%TFz$c`ODaU2KmIu*=lWau9ztdc4vEXg>0qHvW{ALM5hfqWyHK{ z_&2+j<%->@%wVNj>Q6QP*HmLIsa`v#C6(rf23jROlpm;PYaOiXmUF^!OY+Y#erMK~ zPu=Jne;%gl*aybVmZA+X$|JLUeMOI zB)<*+|CchF`9Fxh5nD>Q!D@kNsp3DFah{39-+24dNY|Z^E3(zD;O4xuYVB+haj=}L z=kH}Yk)c}Kh)*u7ZI1a+`d8c>;#Bj0u(C1L#N8LhvvH&m-{dfF;u|uF(Res8iBI6f zgTXIdrydQ~$15drT@O}Ho+}Gt8rMVpxh{bnVV%4!BUx|_BCo;q0K8Hn*ZpASCR`oz zI+YrV)WAVPrH0qL1|FFjek9)1a2&gey(hB&_N#E;w05l8(h+lw&~ng-DNg8jyST}b z*~gM7e%ZA{sYLNhTw*neVr*$bd(dPphWr%fBu9)|IQj|fBP;6sH5 z8zK{fkHx!U(9xaiP51YwBe}tZBhZ*+?Pj$TTefJ>usSjwS<-{?tR+|`ExVOU4?e^t z#zK0~DO;^&2%EvQWE)k6un=~W6?lFQ(}^IF$7~w7WW_2;_%L2EF`#S&D;oi211=F? zk|2-S*eM^wjPcA9j)Yx8r5rwH)0FjLc=bfq2gAyVvko1zvGYE|pZDpoTd2JCV>V5h ze-<}^$ov#oxe0TJ*N29;s2$pgv=NBjdvlbym^l7OF?Q#wEr=wm3mFT1ysZ z9qFA$OlJ~UPHi3Q`TsIkMTp4T?IkQDSDb>^OPot4!pg>6(!nL-%N6DA_EyHbGg~}U z#a&>JP#K4Bw{J#zN4$0->Fr?UCZrvve3dnbAmJdPrj1uzLzSF1-WkXC$2B`e(X<;c zbWIy3G`25B))_tvcT{UHtEF2uaSWRs2~?J3;uP18rKXNmT%swI7>~A0Y&2V&JiZ0< zlA}khG<*~GlNEXXT&5FYQk%jzur(|EeJ(!&@5X-!p4GCy?L4KB00JE7ei^P1?W3>nGB_8&*!7_FC$gOB3S%_9y-? z*e_J#bF`B#jW(Fn|Bl;0r2Y=9+=RNrtgjLWF-15?sKjB&wIMQbc*^NCtV00fajJdq z>`*QfU2E9sC^R}*J6dhu5wnJo4!U#;<0A8rB{$ff8H_zJ$-bj zPT-w0#*TfnMSd;E8TH_tuQ=@0J4)#H^G4q*ts9Abx2x9``!ttWO7w_WMigwWCLLk#xa`3o-Kdy2{z^K{k}r`4@Q&OY-NihMmd&`&IVe{E$!nHTG{y z^8d^K|Lgp>ET?)tBm5EDcHIfWa4ko=m|5YOBVE87;(vT+i0MT7pvSd zua`JWeg#%GW=TQUVTx0;q!=&`5-M1p;Mx!wEYFR1RdxzHP*-S6vEzblvWy-JeT=mP z>!S0pNuKEx$f6G>x>DO1Bu*CNY%FfloZ z)Km69U|(6G=U-+z5iT{cd>6Lf%)b=0$0*lQZ|j~OajX?sm#SE!|d%a>2HYJL8QMvtlWgY!_=T=7ZF4pB-HHkfNM9Fv&(X)SH8}v zcqcmtoG#~1&Xyyqw>@y5wRX7LvJo>)*Vlf^?nn@`OfDJMuB9fI6S>4#m|P|ew_A%c zXT!vdD03$4C@b{*Ak&FJsZDJhIhS2cR;|+3&*N1S1Iy=NWh1bh$|d5PR%VC=&}O7> zV&-63pF#Skuv4g{#mzNZ1I&r!C%6Gb-amqs6X(6Qntq!xf5D&mv#?{R%-7M@aEBXV za(@apg2?^PuyPab4zs^XAjCxBAfXb7rLGN;3B;Gu@XovpV2 zi21`v>$r^v(t2b@vZM(cFq5$yTXrCoCd}g!t4R}Dv6{D#kYqKSK!1E+R!C=-v(Ij& zRvll=#|W zop3iQ-jZT>wm8_&-eOc)_iY7vw%*6;SlJr!fl^@=`wmaN_Nf*SD5qJ-=uc(XU1K9Z z|KXmO^1+?71iK~{0<;F04}>dl1BefVRan`0AdH*$#707_ zf&M;giYMsr!rrhxkmXI#VsB={a+C1Yc+Et@SHjAP6P_M@DA71S=Fj;N*e6uZVsB>D zev|e?c>P4$55UTa)1K0o9)3L3P>(y-dq}UrB(MbwDr#}ne8_l{^9L}E8jQ~nqbEF@GTSM##N5aa9_k?MY1uPByIsWL+f?YyIFRpQjm~XN^1FxRQ`gB-1an`ep zl|+sA&;5Dd2)l*KTU_H{G{IzkJ#GS#`Hx}c#FiTjRBWbfL=FCgT+o`F6s}$@7&jI5fVy z`SaZwb_R6}3%-pvGX~!s@QR6iw}q7x=R0Zm9g{}5;7>RQyMsztY=av%-Hg#ac-2J4 z8CW@S#xt}ReH!UY{7GL3JB3PGtbS_^FnOPk8$jg!RaiN3-i<%jF z$e3oYi;cK_8(uY$@vmUzvBS8kF@DFN@msJv+!$9)#&6(N6B)k-D<{r)nhbkl_kqTF z!SUW1_IxJMnhaa4kwnZlS+9#%Ph>p@R!*Ar1s`f#qb>NSwz@-a2l+E!47-Lpwke0+ z_Qh)_BHtTUP8vD;s%Ee+M;q2B`y*ZfyMl^Xd>dPACz9?{kIhxQS|Zz%VCBTw&M|i@ zWz$8C^>_VQUk$s4%6eV?hQrznGn8M6n?YoMIjo#G``M<`ayt4){Lw!IdxnaBZWHuu zznwAaAHc03lD`jD9)slB&OvR^ukk7GyzK+nGoIvw{f`Fu_i-zTp>@V@&HM(Z- z5##W!QT=cywFZ?|es6tZx|r!JvF~#CXX}=8XL;AIq|Tl7a*3wr&f?p!Z22(uS7AVM zq^KKDz6^WF$~b=t(}`|UUd@NGzl2vxj2&Num5tc(1y>0bJ4B!HiXGiPR*WGE&jyw_KuWbcylq z;$eaffB`=(Yk3zVdcbo!2)$r2B9Y$=-(6ehkZni z1RL|7u=@6xyNitOHmqy}k#BK{_!5iBVluYyeS%qnJqj3nABX)xMAi1Q-Ono zN(@eSZHP<^rpA0ney)-!lq%8BBkT+JRBJ#X+&SWUEoZ~($aG{$5B7#TtPCP5J=lXw zjD_@|Q?^>m5b`iBV+QGk-DCxxKZ@x@kjRfWH*m>{Rg%z+S4<2jX;|5qK2G2g@g)iJ zG<&U49ZI{C0HB6dIeX9j$dAjET%i zmNcP_H2}-2WoJ@p!hbl%v5+R%KQ{9bn2~IvdO^A|>?JGa{7j}3Au__pW)|S}5`)Nm zSlI|7>vD&SXN3;JYbTOk3@ay2dZt>ox6=Nc zKkZXtuTW{Pt-W|?M*L*l0wVDhuyPaP4zs&T5X7|LAfXb3_dFAX!{bd5#%0SrnaHb# zTj7ps?PV=|)xb@TOi7j`;TG2prILi3xx`pV654|%YYPd_!<>v1;ThORR@C_im`;R; zeAU1~$y(Ja!jpKd#31q~SlI|7k8+9l5(N3G!NPaiiQehKWF~+L8Z4xD_9wjq>=P=Y_%ajA{g0F(FI zxB*1oZ^Ft=cstDQDnSqvf`f!g5X!C%kqN?C@va;!U|)3WZcAkbE7ekeTdKF5?#}V! z6Fq~)Of^@Eo}t(-jm9f$2dtGx{2E8YkjjYPwHp4-uAnKhCBqF#4YwmQeOdB}ty$Z! z$1K?cRX(wZOEk?V;+t|dSgk9xG~+lJs%*GQGmeIRXYCjHeV9&!Q*9%@rn%bYm|^M& z+#F(YXFuyS-V^d7dW}e zk=|^HIv2WfP*LZ6F3~jV#CV9SJ!rBPU2cIn8PVlt*hf~>`D>U?goj+<KW!H zyjEfm`6;Yy1d*R`iTEZIxxi`R`zo^p8;1tpmtlWU`Gyxb?UY}@>n2iu7FJH2a%h3m zLVETxZ_=}v1eRk_N$U%ocG}bN`iZosz{*W%JIv}TF%VOMgM@m1`KoKTmCrBh#QXfR z=1@Mmym=(tORZh3MYl!-)<&ivOG-tQ{bKH`9rrksr|18em48M{om(5$7RT*@!p~aEbV4k~!i< zgyuAjdPfEwvj+8XOky-rRFk^6ztY+all>aF8ASFU{Qt*(J@sN@_58Q?=f4Pd{DfSw znq`-O73ycz+RNFV!E&x{8TIRH+cUMMn0=rNH-*>-HiMO$jDLr8L1i3bGI5YlPb=5D zc4qmsQj7O#W&FxQsdrT*&8Wa#);i0ya65*uIWmJ;l8XV?E~S!-el9T-~LUA~G}OAI7mhLw##@+B@2Um_v5W7r7a!A!wY zeuMCButTVX!`m^MaQ+ouIg#@(VCBR)hqhzbSij}Z`VH7ARMz@-j3&Ha!wn$veg#%; z!rNhXR|$fc5F8{_f{=G@h)fVRjQ2g~q&?WCi=lL|@uCt*6E^QgLzA_y)eanS=S6O4 zRaaxvM7q!w{3qK&nl0yoYc<*bkPcZGnS(4z!N-}^*u#|UMk*=TluN88DY)UJwzf@A ztDjn5m_L7hTieol{ybLn-ITwE75T>x{ZL!}GWKu5&p*Ed|M?lB_@XGz7R5QDc!vG{ z()vQeYvGU|M%<$k`rWQfwlG+)eQHDwp}&FjxqPN&@_p%YccrhKD=x3s(k-o}nlAR$ z33;unqgX1QtJZ6+a}}$glI!g+<+@whjDa#IenQJw1p3?7YuzoYppr=!vfU}cdui*c z;eKkNKKph~E4x#r)KhJYyw=gK{6Ff>JV1`3eE$n1oBJl=Mo^R>7$krfg2*jMz9PsC z%Vc+UcRI5(%j|3p5CjE8966U8Q4kabQBe^DxdcU2P!z=z6*)vjJU~!{Uv*W@RM*j& z_o>?H-e3Np6S8^gt@l&?zHe7oR|yQAyDMV-W;d3140e66Rva0umf5XW>U<+?^zyr~ z82wS?k7d!pEN`7Lwk$eCUOynOhsx_=@_M+u9wDzs%Ii_`dbGSABd^EGYmdAhC$9y0 zUCyt?=uga${aQ2;W&vrLM1V>()KBbN&C z7<=nZ> zRF$7`-#!|S_Yv41RJ>vdn6llb{4m}&k@7>Za_*F;$DWE)w840CG58i70VGa!<;g@0M+zC(N&pig-rQvwD?-*Y3siAmWvtsmic(X*d+rY}Xvz@6P zISs%);ed~Z{XxBdMT}Oq+jsC0c-utEhr-IaQ=Y;f`3=C0aKImfT|osb?qD%fVco%J z;LQ@*egsy|pDmwlG1%T3&h}>56&PDFNo2A8D&8!S?U!NY+}X}bOmrE9pA0AbIP4HA zVe#fMVZ0rme}^|tGi}A@ci^oO$-Wg<&YkQ`HM?$v=Am%D5$q2tUr{+L+il7N zc-utEeXw%wl&A2w8wTLZ!U10lyMhW>RL7T&3~dt%*|hlE)egf~kJBqzYiRv=l$C9+#q zA{Y0&2!ENG61WKAi?Bnegp-T=Q#gMCZ=A^abFgymoD+-tU95i-&ia?IQ>d)X#r-L~ ze~ueK-#qy zM5B{)xHbCQE_U>-6u9v%+qDGcs2Db4{lN-sImT4Qu!u`cgoC%s~eqbTXIp)UU^T9;< z(RL@aM|{1niin4~#9E4o&U`-D{>!+8AKHH2m-yKwg>qRO9!~f~G4b!PHiinT$2zKC zs*E+-fBfTXKie+4P%E(-yOW*htyUt+Cy>6K=&cT~VV@5&M`c#ixBoWIw=;dE{{FEJ zo=x9Z8Ym166*|eAADKk>Zr9gE{UvtKwg1S{TfST^)O&`jt2%pE^z+cs{_{ldZt(Mr z2wxuiHqbmyfbz+%ZySSahO6w$Ue}Y?N%A^bUc2RWio8yh*J<)PU0!F% z>r8o_C9kvPb&kBwmDhRlI$vHF$m{y@x=>yh$?FFE3V$g5H`eVeKa`%{EclH{sCO~* zu_rov+L1|MbF|Kf!ssdH5`EfHe2~|)+@5)OJKi#J=HV@{vNiLNHR0|8tC47gnAKWJ?u;?4{vkFM>URl4XzQ(s^o~!3B7$M6&0?%DI!B z(VAi~@O~#8@3&!hQ1Oaoh%M7?#&_XO6B&OCR?eMqcRa&m;QePf-sfOXQ1Obm%;%-7 zyZ5hnt3VGw5y+1=m!YF^NvrR87n6dv{~JWg_7XVCCEiul0@nf#I0< zhh0LwiAitl_r;qhvfc|;&Yg94Jh^P#$tQ#(UIlxCide*HJ|%9&={nvjk?irXa_(fO z$!UE9?&recUIROW3U?-d2j6@jVe!2RZ1!{PoI_5>BKxO4fN zAdBpSc&kLR--nfRCp($F%`(8Qvm&^-dIfd_6|C3R3?Id`&C`r|j~2HG>j(Vh;wf{Ipr0?*C1@7fRJ%@Wyu2v*LW?eym21q1Kb z!|~n(dxMHsyen#2ZWI0z-ZGK!4X|?Vgs1SOBL?0-gyVe-b_Er$xO>Hl7b`OV8gG`! z_7|{n?rf*YRXYaVIpyHGc_x$SOkE|OcALwMEWXq5hKYQ;VddQUI=?%9XE@!r!>+*Y z-IVVW--0(wWV<7*oIBg@c(s~w_O@r;X!`a>idxFYV+_!vXsYUi% zc&kLR--MNOCp%TFjy2dm7tZ#turH`=#eFMR^;&eF!P_O$eF|32o$id*%47rZW<$Z% z^2SV}Gu5(Kf73GEe%9RpZ<@$>eONhn#?$1&aD(vv;e_{vok6{Y#q&^eMZ0wm?}ax^ zgc^pN8=$+`*eTebR^y?F^C)nD_cS25H6A3 zc3CsUPE)a`j3n_1W=Y@&if6(8pz;;Ft}EN^0`H@E+eFHz!OFQ)o~!nha*+OJIO%V| zKB1CcVC;$IzNf#2w@;+~6<9fiwntW1g@H%~9ulfB*vYpevM|^u0_ z0m(VWI#?KpEia}QD!qf%TBR^l9CH)~FZgm$g~30$#Dpje9Pdpxt)iT)!eApNffY|q z)X`L?<0=f??@brstrCOC0$AA!B6GP!=7oWS?|Yaf*nMd6-3Rsum2a{za8uqBZ<|PY zcUU=h%8A0jL3(94=@Hl`RMKW);HEu{w@;)!1S_Y|_Q>k0Fc7K0LqZh>&-o@KSs0w3 z?J*rQ`Bwm4ax1iCf$(*BxH`vLR-3rBsS|GU9bc+W_!5_x2zA0*zB_pore>v+M_^Yu z!AJKp9lcy2e0TCN-Z(MBJOnFS5#|S6BD<<#fp{cOe5hm0Doh>@E*{op65~-E+O!w( zXHBaM_T<8=FqsCC`OC0!?#wq(lMCtGmxgoSzGK`sHs%---LTnjhnqoUzYVOM!rr4C zP!)wp8Xgj=qPW3#5X*|9KihLX){DOzO%@Wz!-LhCPddHXY?}h2;yavF0kMKhOoRf$ z@j>z!Ovx%7&Vya#1Rb5ibo9buEgvMGjWbalfk*-#5~?5=^zBG&1>3E4Fx!G)a=lh6k7^~sn~q1rk#meS4sW|3c5kg% zsF$jhwkJL`e{hMgR?9!ydxr}rb*)K zj`n0adYvFX$#rkedl23#F^DXKm8~Fh0GG(FNRVIC#hx-AG*4re1Xc*A!v3K0O)i>u zQ$87Qn@IUYSUGpfiAD1c(q9QDeIx7>Drs}kyqos*c>6@!*TKpuv^}!ADhxy_@Q_f2 z!M45~k%hqx*}l|1 zp~ZJs*dJ8B$-;o&jO?v=upGdn8 zR!*Vqk=0dUAX0&cgenZ4@=ZvxFt{w+8G}Wmm62+#UhM1Y87U476)Sc2o6#YyRJZ{i zxXw}680f&-x2E|`>$&k-l5!LcpZ6VXs%ZEumzW4eLyKV21x69^5KPcYGCzQQ<{Sjk zZA?ew)7XfAed7darJL{JRuBWwcVJ~J0DYTFWLH#dD(3WEo-_Er%q$BmGG2oHL*@UP z#8-E&zStAjFW|NiN5MZ~<=jWX7HX#7}>65hZh#^Z6qjs&kWzQc3%#~ux@ z!|frChAm*_l+oZ(QK+Isq#6$iRg`?jcUa4!%f035NKq?82H~OWj6jV- z+cLy=;X})8Ex|bokfQIvQU%CzE-?`bkm=2C8=>aoFfV!cs8&{l-*iN za+Co)5R)DwLSKfmEH)#U!v=$_YLC8}pV1rP20$xc|Y7sQbqK z2UfNM%fAKv%np^9C!We%BiyJ6-yBZ*O&udGKKnL0U_W8L5jTLCNVbNRbLYKq&uXP! zC{>EJC27o$31@yJ>=^3Zy`eF&(CUQE{V?1JBKJdJ5p}ZviV{!Fxu~v$gY_R{q3R!8NmXaKG!lk|=NYx1! z`AR7K7x+p@{NKp7e(aW~`X-CV`^O1>Ph0rD@1vyA?MB3XzAV&;xQ9zjgv!x1ae6Yd<&o3A|lmF8KqjY~_;2xI}gnOtWRlRj9B~e6Jz%d;@92eQsmOa^*NN}K zEg%wqC#;-8+@r`-b)rZM9ulfhxYIXC$wJ|lYzu{{z1870@kirYop>5NSe+xSgG*Oh zW^1X*Q9hpPJFrx-a59&e2*twmX19%0@;R87RW4iu`^kwsx`63uOyts)rsZ}}xe9NY z7*wu=m93z1IhV+;V312!n%*)v|CCvS&Hq}Qe+>JC$~n1orD?xS`$4>YBJJo`irn~3U!aHuL=i|B0MBi;c%jFM`Ypf zLbioN_xlTMA4&bgo867U`q(afs_OUR^0>G>Audnxi*uwk_H8@E&~AFECXCY(QL{K` zOsf_9i?w2&Xc{IlXsXJbgE%UhS>dip;(%*dOD`zxF0IW|k_w<SVtuS}$T%B3P#79w79Tp!vcuKV z$Vjy^R%}dR6Q#A1Ah|3WWCQAqv1L(7UL$#3A+KeAEjFgItvvdQ!}YBpKG#33I)6qhTe1qDu zznSr-oqR;B;AuW@9yQrdci>b71kRc)X_OD zhujD|#F>2@l*N8RvDG%<>+x2JfUkpZwUa<_K zWxCDyQM_p)<40iS+!;^dna|)m zS@GjSyisEOI3HHF;>S5$B0H|~^h2BO{mc;T&a>#=2fKqxH+lM@lkq)x(?rI1!pgZb zPMm&dbACRY^FLshP&u2YA39n84R4;v`Y*6@3TuxX9w%Ti;UJQLhlDBvs=ghOWx(sR zEd!=}pk8A0J!`a5V5bw&faDxyjs4n|0_~=vN2PUI#&Hw?J1~o}=N~zIQ~|JrOZd(@ zM?I|k1Lnx0e)jXnj5UgFT_j!5wp@}wx1`FaDhuVF0aoJ5#e`#pXo$DBEIOQZ^9=Uq zI{P!9<%~wz@0LX?`F~gOpK?rV9w5Av*|g>&S2v8RsK{&z%$v)3x56hk_hdTS7?m4c zxq4xjNj`kiLBU8rB1B zw7P@pK5ZjLyP#U(wrRuF5mK-6^|%VDS8|DrL+awjVQoFcJ6{D^TCFYmx*3+2)Y#j(aXYcEY|A2+^sS9@7jtQALw z+2<1-a*e<#TvL=eck#05es&|oFCf1suMf!U_vQ5m^7=!0eUM*^Xp+8-{j)6JJ@0KH2%=(oWxp@J4O7n=Dt>z(oD ziL95x%DJcMc-Mc5-$)Z)XMr1duG<#_8v(mk;91R$L#s0`8f$|_J8jC^cQSm`ki> zx-7HV_ZclpMnpLX<|KQmp6i#vj&h=oc4aym6uF+bWx5?s4#1lxhLinZWh2=bhM*spT?*`Sszr)tI4Y5B-eBs}HobyXz%kxQ(lNLcH~ah}T*7B_m^zKW4PX!}-8 z{@jvMWo5C(KK?7#hDPfJ{&^Lld_!9)7gxvsWGwMAX7N z9c6^=&6q{leP9)38}m+uzifGljZW<*Xo%08?LOF1djs4CV$@zAR<@#c*3_rTfoq`N zKOFVGurr)dGqO>Oj|rN0oOGdDq`ep3Fp=-OVdWIQ9w}92Wf7S@Bve-Zy>EVyS$WTF zv+}}1U;JV0%3@a!`*OCcXSiA|FV!FHKL!t2=V&8rx{N*8H!Y71Z`!Q|E=Tr0!*`ge z?EMigv6k$e*&}|7UBUxKu(<(dXXTa8!!C2;k1k<48lHxD9B^T@0?%i0BZz_LGqAE1 zcs|V~vU}{`L>`YM@7#3yzhH(1Ruw;k-9x3nd18k>(ir#&ZVGV>{0LUgeGI%tZMWxe zo)HDQKNLI;)?*Ub+$eP%yw=!z&(R&b(Cos^A&!Orjn`Q4s3KG$B9e@UgepW%@$HB# zL?&fhh)g@USg7?5niB+j!$a3O?#5xq=8=|tS{8E@8GFEkQ-%{&WW0+@tfk24#1sLc zLTfpp{TxBlT}wtQwZh6`xu;a=E3Qs_#!zB?^!SY7XyKa7s;oJh{YGS6$&3liup_)b z;m_@dFdc1VHpHqb&3rqO4&%)eBk2&VY-Lr!+9M3ANGk3m4+#}X-|5>C8A-3nHj+-R z_4n8H{Y<~kdVmd6cNA^Ei4^t-CoI)Qts|b^&54c2j4`#E(gPDu)Ra_*exsfRBY>!snWx9=Eh@!s9&fL#`B zhZ{h=ueX7fQ+RvibX69Jgy12e%7Pnw2d*p&CTCn0l&rGgczB>Xa|U5=NvtdomTFnZ zQ5IBu2a<|CE4ajjC<}O>jj~`2=3^y|^I#`A5l5#m9Sw*q3j`|JtSSr6#+xOEkB`I3 zR`@uROJrUaxCr0POu-6si|`$=L#Tw4WkCw(+wjJToNs}ZbLX5W3tX(94QKsl*eO)j zW?7KJ`)S+&BJU?)yMszMxo@D8 z@n`U+iHtuDE9cHQv2UQw`Dfvre*(LN%GumE(8>Boc=JToKZKQ2SbLOhs`3*_z(Ycn z0q^teh%5uXm+b~ulNjfvS{<e4l%;vDA;@uH&n|!j#6+wGd{2soWmt1LLtx{ zciE@}-Uic=_lbH*v@`4@C*Wu+rlav_h$A96DA}qi1(xEi5<|!Ku(B08w&N1nl>#%x zJ0b_)BC{m07FZ7ZgUVNIxTI{i3%(w_Z6f8PVdWIc9?@MT2oW4SBvgW!>Dv*RARfpz zLCh$u91ttQjZeL=Vg0~Hs&kkTHlD-s1hbbf1ZU=I(aDi5uJT2p9viRZ5)&a?%v2pW za>jRIQdZ8m7xt7BcJx)IqfwEYxGCH1m~uDXHZi8$0V`WEnH$;DG*U}Zj>6#>-@&8`ha$urSi;q#fS`{pAuHkSjXOu3oILO>kJ}3MCdyI$dGaYonFkLY>uE ztcRV?I`umHhMnKs^=gmkDdkwDu(D33n#8U`r?I*`KH}kYc|Aj3KPsZhKX|+ z--MN|IgG6N&e5LJ49d^3{sdC~E9?^I6hdTE77HRY^X>VnXYl5Ute=9Fb7$QhKO`H7 zH#;pD@y1MIJZ2_s#NvH5f3&ym;tlXtiDcJ@m2)RMy*V*q(A__r?!K@$s5kH|KJVPL z+`f1B!doU1emAU~JK@RfImdvzDjaSdb_5l!Jgk~MoLP77@pz*|t`%50f39q@%HVoU zIM=ISM_^pzi9?I)m3X5>u9w5gxpSRwPJ0@Ve;f|^LD(x)$l^V)*#n#S_i+n|#P5fd zb0VnPuL%0b<<{yNWb7wwNy>>KU-xLn}ORztvu*KSM zWxGxJ2E1(|<PG8LtN`=gxQo=jsN7_uIpHzXf&;^>!Au zxU(BJ`yFvJi0t1CE9cIBrdncR0Phb6-V6JK3S8u8WxGxJIJ|8l!h*8(PO)G zbsaMn{a#!i7ndi*t@ljuwxF0kwN+t}B~+b7=S z^I+xNY0o#8bQ-+(4d=ZV>=o*5E?#w+J+O(t8@GT+d^cD*cjD8VOKJ_$^>EV1!``5h z7R6c9a+`1kZ<$DV1+1Jq;n~Th%m(GF!YN+~dxT1P9#7jz>uu7P{U5M$?%bz}&nOJki_Z+M!(Y!NI#Y+w5OG|5X(%12UU<9~ZTM=Y-F4Bxvzl~UO7R*WBHfr0ukHU^}qK;NF9SurD%-OX}x0A(b zc+V-AM+DQBDYxs{X zX__ysSH^1@%u!Zs!8(Lh-g3aHvSKqXky=({mvLGUO)nU!XCD}%?6WE|_JrN$90$=- zrlTQhY{nm0Qh7>C)FaI9xFy6`v@5J^#iDokN~l;QMpsZQ+Bn1t_L2N4*`C-jsno}I z|4Bxj(^&_wTFE)u#(k@9Zm2eV9TDckzTQ_6=0jW}HNq^;F2r=lT{gnWbub+(oLme0 z$O$+aV>%iSxm7m@WrdEb@m7hU<5RG*6*{iq64{ZJTXj45KEf=)?mmm}!>~W7e3M&s zyD2|}w@sw{16VnC%5znH?;ySIS;3@Vg?&OLEmjoh_S=spFXQbKX}<(3r_lDu<*FPI zslY=*J(_&bw(`GF4|yKo5{gU8W%TWyho`XWYL`gPc- z3Ho3_R?aBEPI5Ai-p6z_APwpz`E|D5a zGJLvVpCmLpZp4%Cz@)5r@@?2tPT0{+Oh=<4k9JVD+f~V3c-zF7@-0}|iYedZ5~+!M z+%twe+ClltVEs>K4|Z2tte=CuLS>yi+ClZeCjM940wVEeVCCG2CysVdJ~OCq@$q2l zn=uKjtfEpkk9JVKu*q+XTR|kh0j!)t-Xr;|`az@%4+-@Ia+&WCmQNsW&Grdo7Q@}u zGg=w0R?EiWP(ARdbq=}4QRDm|5)aUp!CJO*)DTDejw@9|9Kj_fLJcuH*>xkvd>E!> zWtI=YzH$PODojV?(hw_dlh)g@<%4+Z#MrV1R<>fxN-mLI9kISxpOEyJ!TU?hqQFYx z2G}oD-W%{2U3MRA>YvALAX5JS6 zPhjN~`X0rAswYJ1@Q_gT#G$?&k@dtkvwgv-j+)%DPn*`d zZL2xXx8ZFQW6I93vK3R7a*6Ef2;-2z!OfIyoPaxJ@nMMce`+@#U~` z?!*)G5z1#q?RZHz^$TIoP^p{q5vmvVy?#D!1(EzYuyP7{kL0iF2azs3Bvkz{-?t;O zez+~;`hgX`;(dluKm45a1B+D70XOdTLtLoGlP84w;itYRRQ>Q{E-@kM2i0*Sy8H(w zC2t*7Kl~f^loNLJB-3%#56X5sru++Un;2964l7$Re z>PlNjB^}ZBYnbE@FDZ@mFt_$3|KC{S_|7(1;m4yIZFaJg&IZrwU?&|7_OOE-OO?J- zZ*ioDom?@>E`(d>TpUXrx%dq>#^NIvZ;{tq<@KBV3Ljzk1@_OfJi>6HV?Y^6 z?*V2K_5fm)I^X5J3O~;9YNn&bjfVKZ(a{Mz=iQ4NLCkq~!^&39%bNR!%w>*IZ=nA- z>sTQAf5EC5gTrNOOLRs!I4FEfEQ6g!4F@~%7qDOl?eTH|ZXj{I><267K3?W6 zilf%cuiLg_s<3SwoVs}6~RlPS`jhjFuJ_;-6PJBih>+8c=UkAH` z%6cxp_mieul&{4bCsMu|R!*VpF)~^%`wc<#Nh@q?J!!aRw>FX;f#p5ELqr9ZeYnH~2rLU74lv?O z6-Fm-D)kn&413H;KRSx(XmsRsm7^2(gGdQCf*5xCVPz}q^!iGuup`D)P}tcs#0oac zdULj)oXkjzHaD_zARLfxsFSuMwtx1S)G;Wxe;D|470Mr z%Y(41+~MV0Oh?1g5YIsg-JF!#kwVmuyJ?7LhXkLc`%&HnYc z8ASH4g_Tp-d(;4`j1Wn~Lqg4aT|)J*rznQ?HP&B~6{OT7hs`Xhn|tuxXz z-rKf}XuHrOVWF0x9EHPx?=Vt@Lm!t|OX1L&bsmMbei~7JXur%u{p^zErAlvgv{D~y zbgqrwYOU5=E%uK!j_z1LdaEnP8a*bZI!9j5mDls+^?Z4~Kwih>^+I{QNM0|N*GuH}QhB|MU*Q#1r?P*R z<%+85&ERc3N_>^s5%?(aW!{zWWmIdJj+T}i;{3O!<#rYMMZ9HV75N2N*{UKlC)`Y( z2I1eat^^YP4eSkP2^XaiZdz^={w3Zrk?_x9<=hERW`&CZch-5qaHlhg@pvM%;ZEi6 zzvF64x=yWbn1VM-R9Sb1X5 zEmaJ<1L1W0U|-;LSxIQ!y9K;mBHd$Q<=pAcXgw(zfXBiCp9i~x3RoPk)iT{?d^X-R zk@3f2<=h!h6%VQg;Jd>C-vRrA3RvztEFQ3}JNP!dT_W9EVCDSjib(>4?z7=^{|x&A zqbnyjEV@tQ?Goue0W0TDcbc4_G4O73esJBqA(QA#-8@sS85c847T<+C%iZ84(bgo@^8y@JOA#1H%(;xE?7Bt##6=Qqycy|9B>Wx1r@N!zrt>t zZWV8rNVg0t=T0|{(DB5uf%ocgyq|)dLB-pO(0oSQiqKc!4HNlZ3M=Q%cY1SH-T?ei zIN%?^-k<^&GtW)S?K}8;c*{h>-+`4=2zx9(Q0o`OyK4^#wSJ-CJHaZ~FRaOS_4S4W zMSbOUSI>%Kty0t%Gt9mKts9*qu2F3JLK0hn&5Td3zHXYXy-snga+txogVnHdu&GrJ zQ@KRyDu?V=&BXv6J}{!r4lqF3W3>)@3G6iI7>G7wIvSvc_;%dg4?6~Ji`zkrL5pE! zD+ayZS3<=gF|vYU(Bu#+*z4J%R}Atv#)O}5HR-@&y`X*YG0g18-rYHeT4V3F;ilc% zsiD|3ZL~VV$&jzRRXB-!B~;=W@Rg8>XYXv+->+Az=m%e4F;39m-xfNSV`4kojetvi zeXmBqMO}-Y79u+zcyQ zsp6}?5-L@QF%y(3E(o!LrHW5^r3&w(D(A6J1q>KSZcJ-`cJI_^DX$9(W%%S5EXWB3J z#^Q`HxoNRBk{xyHF}}k>1(_qcL~4-9@GHSNTHlQj^AVVr6=F_-o#hTORi>kXY0T&E zy)^Uf_;M27JTbnU04rPZWfhmmZq8$&_{>gonL+%^%p~j%wTOQab_|uc*fGt~37h*D za3hG^KL;!4&V3{Gncdph|0bOMFJb3U*>B44_LPp;{C|!cLgfEbSUH8iM^T{a3XwoO zB-F&mVZI%ab;YkIW%|Y7q*8x>U8^QGy%3F6&cQbBJ0)>LwOr*WA~s^iW2LtoMyiNd z#3d#|5z!rY*~ldCg6UY9HwxRWmpCw&p@6DsKi zMqS{(r!T)sd0nh*l6h%DRAs zBvfZx5=HP7; zv-3n;wiy|-WzovFP=L^pe26W>>WNhwNJ=J0j=D-k9x*znKRXDy893b|?Tl$5fjoTMiFcXLK2dqg02ICTb6j zj=8cP-+`p&%8up|na`EA|9U6sh_;hN$sb-)80i_Q*Ghdwwo~4Uwo^FCe~PvM|4bLsEDzLDW_iL?=KNE^a)o$LoYh?|{XJk}WOAf5gan-gdIrw+u&e^WMU^>00PS%0}ST<-Aw8MiUYxU_!}65y+g=w*kyH(Kv0l&h729x)Kx@2c&8 z*Vd}_x3e3!+(BA=x}iSE4yPMrgRxW@=xk!B7gn$k5p}RbaSNFNs#k}5SOMC}#~v0} zhk8yZ)~YP%b+Ytm-mXI(WHVYRu?o7Uw^|t~_Kwy|D?6OMS7wmCSBmVNSkZ6>o4JTr zG<;NE&y?4X$?IA2`f+(}$m=KM^=x@PM_$jB*Yo7{e0jY$R5{Cj3e;L48Q^3EU=m(KaV=y;~1P14Dg9m;llUinve z+r)Y0M`2}aUO8*Z^9yW6S8@`~U_JYiVAeC3#CW_(uvyCwdW{~~#HZpG5Q$HQm2)RP zv(TEzG+6Hv&iZYzKfwFCWxGvzXS{79<)yIl#G$;@+?8-JoN^KNhaY7&1uh+_R&FiF z+a^-(ft4o?pM;fjCp}fX zMl=|2dTDUgy%Ce>Ow}z`R?F9)R^(oUw@akE09MYO?(E*g3tWTod%_v-1A7F#j}zA0 z_wk;1>qOGK!^*jnUc@H*tQY78@s;7kM_|uTiEkt#x1$#}`C;4&BKaX$Id}3?#X<&y z^=HCae;W1$m9>cAash@F!9R(&OQd@ltUM9u#!E;Hx<3l1`$O0lC|$nv#iIKF-Y${u zcVXrH>59cW2HpRK)BO+Z3yiK@bY#)}H{LFh?!RE=-09BImQ5Lu-*{PYiM=(G=uC+% zwvp4!x3ln8c=JToTf)k@vz{i`tr?UL3#WVt>QF9LaE8%o+gnfb2Ws6KLy4U0F z66szCE9XwPJ6<4X+_}FEXZtJI6I8a-__Huy)@PA@6mOMC_7PY)cd|2D%aaYfGcFIV zuBI}H&Qw?O=-}4MYK!q?ylEoibz$Y)8BY~!!wtZ13kSS2>AQK({9mSinmLo zyFIKt5$HPRH;UnOm&3k5>AL4Pdhm9MbdQFWbEiA0^k(C}JwKf6Ij|q7WT)`F%f8{T z?%4+3CXwpLVCCGY&S-swV!*vK9PaI~JE(9))@_+?GrkpXn#lNOSUGpb)0>|F8HoQ9 zj`&ZoH>ilkk)ut^ZNg9DEfWbp4lCzQcryF^%7DAk6@FFoh3j;!(-r@U)ZTfEm{w=X zXK_eZ{PCC-rWfFi5&_SJm2(F?JNfyWL3$rg(h0zO!XBaC#$pjq(t4Zp?s)4&(!0XS zxs%?Y=_~E?Lj(CpIPziGHB{sq^UBNF4V(QCZU&Kk1S{vxes0rg;=?in`lrL8e-icy z6}s4XOSj*qeHq?9k@m%~a_+QSce?f^t^xgr;m{v|T|(n}oerfj$G;C1n~iIiXc|Bv!i=UmCo;e?msUY=U2)Qh!v zTg5XQ-L+!>XstBn*j7X=DUh27S@-bvc)LWp+ri4Y-^1(M+aDSC^73%fJ+NP>!FmIp zlI=d&_w>=Y4Mgfkz{z@7?-Y${u8L;w1pzByB zbbC16TVY?IbluB@ZpPas()}u|oI=;*WB_%zfY?^vLqZ)caD?w}R`PIx11D#C7WcwJ zUtu`jYp<)PuyUY_9adN^vkhcUA3JsIq_ODo&6qL&g~zLNur-#q-8-;cSW~QxwB62L z{MeGF<+0&SyR}`-97hkl=sV2R(F4zOiM1R(uxS6Tu5DuXEsoA-{u{hGx`17d8H+Ye z`-?5p{$i^wQlu_oij5Y#ga?dFviYZi>;Fxd#CX*I)0vKjr?DZg8C)2xw6Y;?1TpX| zgq5wpGoMRjcarxe;xufB;|%%-Fv9}39NZ6fkMrh_Z2FsX`l(&93&*{2Q;1_=4_G<( zG4L97&UgE9usVDkjKVIWj)T|oaj@3z*khrFn?oE6RaiM?EO=BAst^%L#zR6CBLDDB zb+QoIKHF1{Ce`};>ssCM4S3W#hg{>}ajrYKp;{($6dGUi9Y(6q_zIVp2!%#>++`!T z{1T=k?-RAy^5?LRoPeY6FddCYL%apzpk%A+o$gQZR*9kG$FQ;$Iv(T_*_9GAMgDd0 zo$~46+F=rt7>~-)<|}57mF;$dSO;&LNcolj|0vH@+0{XMr*P6c;NEu5AlszH8XVnz zoAwgCeIo5`Vda#2+9Q{%azLa44+&Kc+~_-OWjRpn&U9XaeXX-v%to-2r!!j3-7bTle*!+T}B9aGN5+a|`8Pr%AnOgW27WLGE57r9pX%V7O&W>4Tu!(Fgf zsI0|ix@He-;@`q8AQJy3teiXXMJnf}QhzR-`d?wsP^pWp8C|`w$v=ZzK_veateisL zBl)ZPL8J>02~|Htz8#VE!$JAK*DxxH?XN;(mUHNJ{=EjFq}Y!21$)$z!%USF+i;1A zP*T|MHFhw+`FuajPWD&LKKvi-GAI6MH>RW47AfyF7)EJ?nv8faZUiy#ya!gc0?$5N zBD*3Z?Y)LY|3l2Mz-r@zuzRTV*ZN+=H3rt;rVz)#N?1AfF|fAx8rC?tA$%Ns9(ECR z9JGC};Tj8{#mym(h0nmsDPzH-icp1!NHQK0st|dDZ%1SyvMAd^WLjUXI$RyCv-4V# z(-?ndy}&}4bKEr!ALnTdWv!Oe9J3ft`*Khv#}iy)B9t66TKzU2Y-eAMa+0@=Dl}#= z39L4AqK^K_oIGGG9Tj69~E|Fb%F;C0@wA^Ko-i4Wi-H{gQ zx4}-Kk``aQ7#*;A?~EHjMD&Ykx{_3WRvV5afyjg zIm}cYHxkMNFexjcd>8hV6Lxen)6q)@@djPlZpV~+@wSOEPy;US^whbw)Du&f`R&2~BEdVRh6YRX=CtUAL> z(K5>=G(xaWAK4Ln#ad~o zSgEuBAwJ}6oBlUt24gj{96T!hZ^R|mlK#JTeCta~`L(9}cJsRU6WE?L>vly~u;0ZW zbw0KW|C;mn;_|q-JRvSmiAz8G`D4ZwXR|aUlkaLf)<|=48T;tC(bINBfnNyMiiIA& zQ^|0(T&NevIyUPSFVPwA6~&1MwvK7Dx00Qy=*Rsrfqfj-sh6EGybirbjYoBdq+@jB zEnOU1UhL~DRR+d?RK#ERjr*r~Omyj3V_=-a#z3)Btg&#>Q!G_RMu&Qe$B!1`6gJi< zj(bb>WPIvb!S+-tmdD>urTFn}+`V7oOb;1npTw%n)gKsd*?7aM;jzY%9ntMjdTA!d zPNbKnb{wL{J9Ra+;}~_+I6FMn9<9Xtl*C>c@4BQ?EYyl4+Fd#RH%@H)SmWq%c1*3< zH`-h5Syig^RacF_(fn)L#(3ZDu`0XU$GcppRhZ~8)!IZkG$?HulvdCd*pS0c|Aa0-z%>N%Ih+D{XcnqpS&I(TOhjJzHzuRZd5oV*s~b-BFu%4;9L7Na_I z%>J*kU(qQ0-LhyU|L-d9uF+^GwpY%wXlMRkzHiZ6*gqRxp4|i>VcGim%%s4nz;k%7 z3c%B-^XWZW!gTbBUSQdJ12=*=QS>ob*_tTIpZiktbA>xuuL8N>4m&20JF5$%Yt@AR zt+)|H?l;5A6Nr1W+_AX-C7k=8V8?iJSDmoAKZzSbyTh_P{2-0Jnfhd@ihUFY61GeZpDq3HyV}T3_SEo|de5zB}GF zk@Bvv^2DKRh4GPa%EPcf{3yG!_7L7Sk#YnpPaMiSnnl{D!zq6f_J<#3Hm_pc%a`G8 z6DeN|E9XwxvB>6!;dmc_9YMvrmPIz-#TzAZy%$!V09>t&=>8MV_1~}~K(1_F$GTtt zg*Qs%`gd44cdpIv@2moA>(2%k(_1l#&J@$y_jj)PYD>InBIC_rhQ@yW0|ycoM`s}u32iHujn%K0;Htr9RMK5h(W zd_C+AjB(3!J0D+%H%(-GEv%e7gRYpf^?mlvwj3`l*sjA zSUGpD-ONQx4X{%`7hGaZW)ht#vBXZ!vDG%&b@5h-WMBRNkL<>2tCkGfJBQO=iu>KU z+pql!ax;DwKw3}i5wJaO32_8$2P@}(Z*MqI)Yh%Y)no?$<>CB$VBb)~_$HFSs~Z4)UEz{(Scvh`}>li`#v zgZ<%0+4XMXV!Ul4%LlJKj2x^s}&X?xYtwzSS~-Z}s`$a(hcA(V22vd~f0Cgw1_( z+z2A~O*q2yj3FE{b1$X$C`ZBDXJJ-4Tx9tYvrQwLT?-*inLa=VXO?x}MeIo5`VCCFtcgH&o z7>s+u86ORMf*PPj?&bRU=bIun0G4ILXS~XW2v1ZzA5B`u_HENPIzAE}s?ONb*t_jMV(m6MuEeHkiO6xv!C}7R zMpXxg_(~|~2l+}!=(lHk&c)1;-a@(9*VR)mR0cKrXBhN%*^O`8ysNmpOI+S9E_?Ee zn|@zg`USSZ^-8`&=*af%Mnd9emk85^<<7y;m{u$H7i+~zZ*eT*dzyX3pwqrnBDOT< z^;U<5S>rv!g<4^tRu~?Xil=bJiBM3^O8CP_I@iN2Ww)o4OKjWELRoh9I@o>AF%ezJ zbTncOv9K!9gJ#CLnEj|=cP-xdS~Jd-E#<3WW$B)2NBYq_gcimFt#7d&QV zR8cwU-Ga!xl*y&V+2xq-n39oJBAAoxph_zPu#cRmqeGdF#-kx;yJJwYRYj%`Z=PMKY@kB*4fT5OdT0rUazrdeXWeR6CSY6(Ux+8 zXSo<3&$+5JQglu%sJ~v)GEPfMj#A-v-{GT5g2*iTNd z(SuA!W73$#r!1S6+o9vvc+14l@e5el3LQV=64{jrbLF$Sy!Q;wb8ZYS5@s?9taPSw z7EheI{Wk4sc>6@!-LP`*wAW8OpSy{_Go1L_VZTs`Z(zQRXl4xQST%R}7Tg9R^&Mg5 z6zU$iU6ltSMR-W4^5ACQU?t}ncFlI4fxUnjsA#3ZiSST$jy+n6h18uGqSa|f5hK5_z$&SE+mkJf7j2FeN*m*A}u zL&b%#vK1=M=MveK1FhE#7T@nPO9JN$?uY$B<*UDDa8bSwZ<|Q@9#}bd%GzrNi}Z`( zq@RaL&F%b%YDZJ0d!{U)J57|Ri0UQQ9 z$%!=Dhv{fQ8sfWWfl4;3o)!+ln`fi=KsutTVX z#j@0d@ph?qD&9De^U1Js?wseTxd0dIuZ6Sz3hWdrYw^L8(E*$Hjkp0s-q*v*DZD*$ zxGDogLhz7KWxx{Oj>t0L!EDQbnS+H&rK@=?ee#ppf3l8XvB^2u8pk@Tfz`vsS}A^4 zP$+NT%g)5Dm#P)#yg=dymo$HHNo;h}W-To_>V)Tffv7s+uUujx)Csc^JvXX_MPEjF z$va3@3k#S8R#G{UN9!^j4U7E5Az{27Tjt`86JyIPSlNm#)44=;HA7;Zd%|f3@jaPQ z*d1yS-yL=hmAJXiJ<$!D{jRtfME381l~dSzBn6dML;&%SP|A5LCIFtL+7XPR*6C63Ru|+BA0TB>=KBacXsf7m{}5-H6DWfLFJpAcXm_$0p2!| z^7mln+$ksKogJiK4JZ9F>=PW0G^2HID4Svu4v?EfF~igI!o3u!ko(pj2V-HZCy{ z3WI5~*G6qnfH}!Ns%Ok&VK+HZM+Y(;4M}4rU(C|PB^y@d!BKd_#87fLtZapn4{(X> z%7X=Js?SaOY-UhkmGE)cEmYFt+j*-C_H*T#xCun&r^CuA%spbiN*^L%cu1)9v9oVS zWct`E+w?JKurM@Ksth=%EPu%Qf(=^dh-(x&kVd54)LF|1e6gr(@?9=55wgi#z4Jy= zc@Cy#C6&Lz-g1JEe$90Bq$0{x-F`dHJcGASj5ANc%2u5DBbUf7w`{Bev+g&8`(`(x zcdNyHVR4O9?9uUA+%Dqi_zbL^GCDl6kV<4C2zf}TM0T)mM`R-F&i0XMy^)gsoyVV<{n+Sr z4!y=6&K!k&=h6N%kEeZotV z4lVN2mOsvZ#vP&W}4OZU!NX@Mk*kkHY7vHtHztFo>d*k*wc*Ht~TVuJi21qR0 z^jO^~3|Dq*Ny+hOdX4W0Q#Ha>Tmq-#vB}p~Ydsldp3!-uTzCM+W+jyG!rpR{k8Wl< z8kvSzL~eAz4mJ1U1`tEd-LSG1YVPorP@zVQrJzuAWr!7{%cB=E4mHcmh29lI1@}Vo zXi@O#KO>y~M_~6*`EPDaZ5my%$G|DLDa0{w60Dpu20RJ{ zRcnZ3;vu0PYr1?pA|Go`%yu?&N~Mpzek-olo@VZ2eZYd2bHsII{b18xEq^(lV(#(f zph}B7xkPGdkzJ;lCOd89mZxD%Rz>jy>?J4Z=%-9aBO;d%HfhO*)r99C@P>(zUzGDnj~TpIF^jP5Zt6XRhd*$hO?IPa>Q9 zc0@jj9GL9_!Ks6VTAy`v=;N#tSg>-AH^Lfp-&4F=W^0MdQBeHOmxp>H`3;wt2nEIT zX19&x(tR_^%StZmF$t{jaw3oZ!JMTrkvnfUEw_V87v3^4sQk~Dy}F(MBiJuWImK<< zr#I!!+f8p7oOcZ8{AS$SQ%e?s#USn;pnIS}Tn?I45`BZrX3teiPn4k@g#5 zWh;ebO*^skcGF`9@#DgY9|QY^dS{zEZ#Vm3Q$G^7fk^!@SUH8dN7h$`gGdn`5-QUC z(l=Pi!r{Bw77o+nqQP;(*QekC>l|$zJmD*0xR$6K#lsc8gG&_;mvV`TP&~|39XEo^ zJuow?e7F<#loNY&Bh%5S$P>Pl?RIdv9dDZ$TyBMxt>AJqm&k4=LZ0xY{AIBI8?y&1 z?Jd@SfxSXyojl=7^}r_nC)@%e@h4&B+=(Yn_)VCow&iSc+quMBHtk_3yGbx-Mn*JeXv#>8LXE3w6_;W!6Vig zWC#nce5W9k-CDwOlo5yf4lPwie1J<#gfe1AtKUY9IT(NK5!2D2G{koT zEz|A5vKnui7+6MOWh=1MxI}hE#60;bpm}E+q_1b@1lADO!A_x)77KWd4%ob}#SI|x zz8Y4}o%h1Ti;NWJkA^dU1a=IS`G)3OjAkcn?hoTe5V=1DE2nVx$o{H;5Q)M=LKP72 z_w9%*AcnIoAf}hA1MKLjp=wF5AU3!KjZ)6x*1?&GgyCAYa+DD3v(8}Ew;WumgqX)A zCPE1@Q+3?PEboAs$!@B>+1?6!%85OC1Jlu{$e9RbyB%D1!rLYWmmOebE4VD-64@0I zawbCg%V0gg>6E6@nd1-+=(YSN*5&x1WfrEbnd zs9xCQ&&I7FlK(iYoI>8C3Q&cFNEaRws*srN+YwnvJf3YK!A=unYbmu^h@Y??U@^)$ z)W+d7vDh*#9XX1GANl%Q6$wA&5)+|FV5f<(J{!^F1(=6bAN&(`k`rn42d1L|X`Ln( zqms?4rPt5l%@V`KUtwh{Ts*@ivMUW*r-|8wUw12d$6188U=moZOeL(JCg$Y48QwUN z^Tx1p?wqyL#BA2@3uk>G>=Y_%`!q2p@BMKDh`jfOl~Z_olMffph3RaR^gntb? zgi1JBAf#~q1>QK3^Uq-A+&L!-1Q+X>-wb9wjY*70F=*e-W`U5xyBjxv$a_6lIfb`J zc2@<0NC+Mhsz5lyci_qb;oxkSK29F4ndibC01s4WMCo9GAZ*t1k)uG^&v!_v0%311 zF(C>B-e;pgsKBJG^sxeVk`s1xB-7D=$O1v2lFh0DVGwVY7)Xk+vK2^{bBW9g1Q+4U znJIwansDzURLJH>#@y3aq&xe(B=bR`IT&(X8XMG>+6e?@8KuFt_lQ^5IiJQfv|^fM`VGpOSUf(rq_zSrQuq&*Ek_=%57+5at^h|djfZ4NSLSP zA4fqjiJ6R*&vFQ{AI8{jM)=d9~=UEg~~d)?m+dxCVmiZ0g?DJSUGp% ziFF6cX9o4t!l|DMdxlEgTz8;)VUs@@w}MFiL|8e6yhpBA<$_2T9ulftcqOo0*fr~N zL2hzguW4@`z6}pq=Xh%z?JO6@WqWI8v6ibG6~tY>qe@i}-{KOf6-0KaWro}rx?VG) z%abrFtA2PK_LGx#^f1%Wn8n$B~rso zh8xGtH@k0yoBd#ZR=C+4_Lp-AL_0AZjZH(8ux1bJsIv!d0Ws>l3s$zG&O5n8c9~^E z9g%aNE3_^q$U)f3CFxWq&#C8ml_8;NAnw@@Nh0kIB~ zzzQxW)aW_pDvd~E1`i_=mTXtO27Lvl(;$Y7|H8^v$aqn3&uqK6*&^LK8SfCzcuB_? ziyelO*4xQpTfB85>BX>e?xg3d62VFP*l^lM!Cs->(c+Q7?14@EaNGhS@ejbtDa1W; zxhe-lTJVri<-nu9K}wbbw`E%nOdg4M^UKwS}9?(mXsW2!ezcgN|gy0 zbBWY4A-l)VDZI-@k#H9bO5QW-rRcX{A30e^H!vNIhg>QpNXceZjqpvpSz;Xd2CQtw zk+1nms5m0VO;8*e3$cPtX!d2h=5mr1MqXtd7>|dFJp&&qxMAAZbi|66eZ8$>#YRQR?eMv;)IH(#|+|c3n#ua>=){tZJtok?1N2xDQ*Li`u4DL z3U!Z!uWAO7B0MBi&2W=%u#z>yRoPA%OcyKOx_avRW)7?10qY!X9bHygZ@a9r?mMbf z)o?tQNUa*OODU~om31SwTn3}Es)mbUKRIbfXD}VTY7kpWH!*rS>pG%8~3 z%q3DIMux97CbJ$J!Qxn$g%vE0f?ebe7W*?D4M$^Y^R0#*CJx6NC5DL)z{*ybct4lO zu)1u$7%=F5oEd^;ZHw-iusf)9MRnOS-DZ3`-ZYW%hhgR18PCyP2^gGj3FrKE*d1(N95$h{Ha}CsaYsBSS|KA0QjQK zy1E+cnL9}Ro7s;ABj*SsJVN+>k`-I5WgtgE@GoBqsv!6~mqlLta3TuySt_lK?1Uw{ELGY|^Dv|}kQ`yb~Osf@# z3Z+V4QQrgNtME{Dj4j@$me345`gc4vztKUW;@H3c;l`4J$ zJIaYRx`*j#P@2<-tpO#QR^`Bt@TQ63kY7k} zP_k83EHv;|i9zIJu(B0I&fpT+6$|nU2?yUhnI(af2e-ripz=+AA>pQcE8aGd^3AYv z?vxW>NH|FUC7kr1V4qM)n_oz{X+Md#Po(`gteisIBde>zK%@c>2~`;M`*uVY1}|j% zp>?e~TG0={-uByQL~;(Y;KM70Wm>{<6ab5vwb(0m9=^FL<;Y#aRZ3FKLsnN@b<{z zstgbb!9zlo0k8G#h%5uv&$bMh!d@YidW$346v0!h4_H`ojB>rPDF_*BU`GZTE_G;P4Q6Bu!mxC$~e$ORR%Y*DP$TZn$qdu5^ zFN#UtGpatA!X&UF%1JtUfw@W}(wNEDDK%-yhE;_y32&GfN!Edttw{2U@7Ph1M2wxF zNb=hdE7-#1fowmyo-}fNP5*G}J@EK+4z5P%jw{?SZFD-~#Xi2nM#YOgxkPHb$Z#bR z+f=h=ej8PWX;{&s1pCMdG&-E=Xgr$piSY=sLPbB`Dlt^_!pc^tIF3tXmkOHmi8kL$ znI%}#w)kEI`-93?n@@C7z5s8VNcmh?Id{s*`9z!acfv`38}lCzvbsu} zvKU|v#i}3YVCzVT5oR~7)`qep#PsZd#rCqWEs0E+Z;1#q-1PA{sQX&HeQ{B zEqoR$HcX3Aj^y!AUvI1A@f??!2+5;6W?@8+jlP4@u%gEzCV|!PPN30brlav_&SJ%& zWUFezdjZ}mF;vWjm90=Qi%VpeDw?xcHs5`iCD`3&@!b>l2bHfji{+%eJKi>t@~*IQ z?v#_WST^aAaMHuDPpG7=Su7{*A-sJe?Fd#*q3w~oRr(jHz(Yc%|G)YsB$@s%$o6&k zf}vuWJzo|}1B3Oho}og$R$8q+XWj&lTIY~!^mSk=i`gzsZ(6RUCr7#PCEsDD%7q)a z#6&0;Vs?7}joRT6n4Ohd9)=y}#2?+wbTl}PMf}Ob>VjQJJcOG-3_3r6m93!jJuZ=5 zA+eG8G~aTYL4Muu23HlY!p@|9C%a?s`wCz#X~|BAD{Of(6ad0B-`R+a(wRk zTeNbc0uNee)al^aXToMJmpKZJ6~04C6&izFVj>h8Q+S_^6muR-$|^3-hMnYu9i7B< zG$75z`h0lFX4TBZ$MI%~f#ghB*$O15bBXK17T*en`-g?{;;Q<*rT^I9gRvuOmr*T?Wd1@@wSPELR~)~@k!PXEK)fK9AUnp`9UB3%fF<}TDo!+5s&-wP({S=xI}6ZkzIC~mFT#U zSf+gs#bp%{-An>2x17YI=b5`SDh=^SnlRpuEbHNo6C+C(tZYS=|M`v~63W_Yh z39*8G1$b?TzXH5)ovwAd;$Oz5$=!XWm8CvCy6k5R*Nb=On=D@{E|-hTC&lGc{NfyI zjlG@EDfFXCq-ol4Z3dAB+gP=~SSwa~i*m!Xy^W#N-fA(F8uNOqL&NNesb{!QD-6^M z!-GWfa%rUA!@M&jeN*5{*=3R0qQZCbzJl43%=*+39-Yu~ z%%!knsHo?0)Jf}`c|-xf2ydMT`~p~6j>hv_uF0D8eD!SNr2Rc+Ss?B2z+R!!7EhyQ z4{YM!#w{QczYA7QA+FLs^?qv1SUy@V7whaC@R7QfD{!qy4ZwH#_UNDdA4ZRKxP&k( zhtde!6{M`qa87#w9kb2>7hE|=)3jvNtQ;a0kGh$;$)cJ%03wxX*5eWrqDBy%Hfn_J zU?TE1Q8{B9*h@~R(S}S%BO=QK2}`!C=)3`Mml!)<2P<2#V+$^kd0pUSd<3&4FjE`~ zdxXk3Sr?>{J{WJENcw%Sa_*!Pb%B%i8R4`)0(*r@+pG)Hh@XO6KqP(=teisJBbUdC zSUlQ@wBRA3%7HH5j>vN0m26*nPN^08mi83~w0ht^)(0#yIR{!}pTL=frfpjKaTEmi z`1)KG1b1?YiBJ$slf5=7f~R37@&-{A!4t5XoLHluG93+x+>We?OE#=ZfSfTw)^B2y?W)81bf&#vhvbc09QfZ=M)WE{Bz^cybAs$gW;kC=#ybGK2V!nMqi^ zZV`VFb_|ucI3UZ>37h-(aU+P_?}wFh=bqT`Wo_(V31|Ob*f~`8=7uj?M{NEt;)W3U zKMyOX@b@SJR2?A_h=+u#BUbx%MAi{^WLrn9SMD9srWSVn0UD~DW391AVDS*!rDY~Z z$?y(lEA}KM2aPHj-pVB=Ldh_h_1H)o$H6SDv~djVA}7x1y-Y{LA&*awG08^Nbi$E% zqr@jM^$oTDuGtwPf_E#ElO{|ml8SLy$sTw)@m|7o(KXYTq_Qa zhexb4ku=^DSRusr5tkcOe8-Tg5ms=CiBKcVR2?_6#~4h;suIqFJ>`TOox*hVDnabC zqHMQg$k}+?#2E5%SlNmpXL5<`>IAvZit?Ai`fg@V;4H!&uve(8ll!cw9@xZh!z~~Z zzXev#op@rO73DL7`m^EG{|tMEO5NONMfJia|1@p|k^B>|ate8mWUuN4kuE$WRJ}0h z+YwnW{5RV}5!V|wjwyT7LuiC@4z%FK1+iUPDsoIByph?8Jv7NdqY8wrxx_>$5GJ!8 z8*$@(Fbml~^=9Ef*hNm9(L0%rhC?nch%w1V)mw%A@kWVZVqaL<3KM&AiR?-Oxwycl zdlEAwuogH0b_bPia&du^@hZG&BI7!&oIB&h;sTrV7s5Gz4t5EZv$?py$@&_+c_Qnp zVC59n9ywd3eUSt_Bvjhp%C{pj?MK{`$KeJLc^?BSr||a3;i?P}3Bf}`l>xu=O-r&2n3e6@f=T^D z)jq8XxE3C#&OsJ@mMk|+%Q=oB;A-Dtql$n}afyjg1a!w;Hfn(TVH#G3xDWP`6KM1` zrlawYXUTFA06%2uejol9g_0?4yu9ekf>mIPJ+|A75L<(oW9)=l|u zc-utEe}R>Ar<^!T)W?RPo%vOteisIBX_IxFH(Vr zgi8Nc_zqi{{twJ{AHzwk&|9jd{{lQrozWyX{d2>#bmK_>$NCN%mHv<75)&f*$6Yqk z|7kD{d0(h0fKy=~Ie|vQOh@A((?16#TUF`*WV}^ks5lW;wnD{fE|GcqckulRvm`M6 z-w6AI$~T$*-ITA#+a^-J4pz>caw7dZNdGpR^siu_P)VEV-%a~bynQ0=M_}a?+8()E zrGJqMJS0^5Kisz?GW~x(+m`^7%GCiq{crX#8jzf0EI9ph!?bkcNdFr%W3hTz4jYyJ zH{cQzBK^l*Hq!s@Fb&y3mHu~yedGihZO3#p9y0xNP_k8({@;PON(>cmg_W&Pu@jfb zJpDWP4lzpt(|-i}gUUCV{@s)Z@V1GR`(WkVDJRmugY;$Lq%VejLM3gce>d$hynQ0= z^I+u^+8()ErGJqMJS0^5U*ESQGW~xch z{(r(HCPey=yKJQYmth+6zEJ7^CD=z!pwZJzN8=&WKL;gSRq6i)yj5bT_$RDvg^K66 zMCR$=!FQXVpm&?a_YF(}D}kwelj+}0`E_{PM9N#h%DGccq<;tLL&HfQ4Euyi+D!j$ z+V8{LC(=F;R!*Vqk-Js;7pcHQLZ$y7`35JM{{N6|`d_bD>(}P~FN8;_bBG16{EzL@ zl8qzzpYJPYPqbl{^gf~hI z6JLUrtuS!|m&h*l%a#8&-6xnKSe0;0Jri%9$a)&AoWj~8XREX?l7NSVO8X7pK`Yb#>Dj*XpE_I} zDb-6W_5Fhmf=8+|oCNP5)G|)XIF15fneXsX1;7DZVj>g()0^Eks(?C7#mW=M!+vst zjgDhF8WXvHP}6d|6sX`W6GO)eSlJ34gIprJQb6t>)by6Y`6^~jU_Edp>=PSUGpviT#6`9y5qP7*72AuwSUe&HaO#eXyzDkJ~_`ejluyLfs>` ztMWjk2oDKW9_;7a5m_D_nr(S7oxS}j^!4#2Ag7O=I(CvgA5Yx!Yb~}W; z5pSCqLbisLtq`&mm&mS6Xl@_W8srA+W0*aGg~E}rSE#JD?Soo9u!$drTRelu_tzOvVPs6Psl0OwzP9g7+>s7fR(uIeFDih98ZCXll6bj$*^|>k(zRe{jLZL8C_S%Rce}S1; zRl=WOH#xCJk1`z%i9DpBiAy%DUMf6^H%ts0kHgAV*!Ufn$gV_?hZMLeZ}c$$LU?yM7s6u5cs6V7{2*ez7v<{<^C%y-94ATr+-R!(8= zk<(RKAd-WJgenW}@(on7EZ8LDeFb`}BZFE^a5_9vox?16X(2aE%RY{R;KRPdMim4f z;t~^~An1;}Y*Yi+!8HCKb!Q$RM^XLp#gGfa5eNhVfdm4CYeT{fas(2>eIp3QVKO_r zJCoU&&CKjV5D!F@W4HsN++GNRAPOjg;0dA#KM@o}L2kk!_bK|T>F$~8u2(htzE!i` zi+}v`gXp*4@tIezj;Jkwe}?11&2RWDe<-k!ki-8@wvGhD|3JK( z0^|Ay3e{YHVQHiV_((W`6(uca&PNQJ#zlr5O&jomZPaBO@UAB@654>38g47Cz_h=i zSqXk4^7Oz|A%V3^+QjB32%Shyf+L0v%jtgN6#U7|(lHrUCZ%JNClOye5F9aVL`%u@ zLBbmB*GKZaKO7Top2J5B8}`#|FTkJA%=SE3Iq__Vju=OoEj+S0_^~H35}JeYf!9g}c^u9O88aS*!=z1X{$8OINl9>KppmZN z!E&YG5&Xf-vhfhCOv=WCosGo4pWzvO?RIyZz^acYkv0B_}`#XM_C@|2oFESWu`h&79MY2CAc@iU`KUgK? zxzZzC0_P_9waE2@i{Mac)0_W_(21m_=6}N`WIUZ-T!25ESx3%=l}R0`c@pvU32XXq z`Go?eWc#5bAAV`oOsSB?_DZZ)45`{+-c7H8}51k zHyj#n-luGw8(i9{b%W;qW!wyA?q7tJ4Y{`%^kv`R4;mH{vTrEZIui5^cg6h1qG%U7 zQrRT~=|ZGynEe=9tF*w?_I2zUgn5B=k-p4yct`xv%p7kA zD<_`g(0zwA&w2Me_rM|H=2^Y(P@C&6{PE0Or(tD7t}VuFIqds`fQ5t{_MfpGih^PP z*qDcX@zP0T*uNHrR7;riuwS<;GR|m*{qNaABZvKOdlDmJ*cTov!~P%PT#$j`_i%`` z>CFFB=tR;H4Eyyo1rL?O{_pUIGRwrTVP#S#?)D^NANFZ>-xr2B4*T!G;oxRBJnU<8 z{3iZrW{zKjl@rf#XxOKD-t=+jJZ~%{+R?nzU$HvuYjZsfe>^kSQ(C_iuW|ZC~<>fWZ2KbkZLQ5^RQpHD>BY#hW$mh(8yswBJLJ*=E~jzhyf&GS?4d42*82{+H`u&>Sa#1Mn@2 zj5V5}e*xN zRq$9j{O^uGmRT-#g_TLU*vXTKZ}?xu-#XW2c!@B@u>mN;0pVuYKNA` z+zTrwp67{j&tI48E8KH^DI64TuKhC}iUTy?m*564^L-JlY{<987%tlYe?YL1kZr&^ zwvGgC!1Q?AfN{laPnvw>=pVuftS)ImbH0I~X3GwaBYVP#TBZt^7J%d_&TApUgIe!{Aftm9s zVdcbgu6fmv=6&raob$e>kZ4DnNPp#~R}HnfUmZ7tnfp~>Wkc>Q27TE#_=ARpgzOv6 zvxPY58@7!3UgK_YA4Q~JI0~j!TVkB=HTDdPj7XYB;c#1QWTSA1CovKlg)w!Pl@8%V zI2&Zl7=UA>O=!ML=tS}n+-vM5DtM}F4a)danWdrxE0a=D@Fe1E4T8@aX!84AVTof; z@GUqV-28^`HP&bOO8nW(EMEpIC!Xcdy~dhM|Jgm$55O_uW?H@1SfA}b;?HMh`}eT2 zA=?&Xw;cZcp};~y4*v(*IuZ>3o5Z`TFsdih6&d{}K8e;NEn?1R3hQ=71{=-bzpAhm zYl;JCpW?Bm z6I;T{q)g28B;p(TgEt6icGJQT$C3ZDa5%Wx4WB90=J+`L(aanl11l$<}25&k3 z`=fz{gdG3J**X%8|L?>*{>yEHbTQfp+%Fu#%99qgwrv~K?Td^+nug#$+u+NF;2uw6 zBs2ugZ3E%C(ipr3=O*~I$j0CmI8@s7<{uY2k+dk=2KBTB50?$Xa{S@UI`TZMOzOxp zo@B6#weE}RA zZr)AX2HM=u!_8pkelDzR$i2m&FZ%|6(6Eq@eZy~T3s=xL91`!li1qt!W=G#fJOjp6 z%bN2`3BF~KF-g-ZeAN~l*(#jsNsNS6VXWt~(j;6D=YtFz*TO;4rZj(v(1|1@cqze8 zRq$BZ9()gfEVEpE8&)Re;wn!fzV;w^DM6RvM};X^i%v592pkY@hQlu<81noO{%~fV zAB2??&vWRd1YNGjJmsA0Q9_~}O(6X>t1l%O^4)DR(KjMQ(D%Xmk)f)B4d)KRrs%Myk)EKp(imCT7|Km&r1220q27>3Dbo{J0={f z3!O+pg5?80Rl#HB^1%l9W0~b*Jy@BPi*-DS_}YVD`9PQ9!-Of0jlsciK(s&FJk4-; z`M{9p1Mr74^Sm#toOqr?%Llq#f5AQ1pM!(K&9%CGV9580xB<+355UTXd|Qm+vJLPD z1Pck-2E1oGECp@AR`H%bSjEe9N2)6~nCr?$)(`H4fz{GhJHYXZBhSKyfssK-(-quq z%aQB~Zu2BYLRYYA*mb2jcoNP|@Pm;D5dHzjN}J&PAB9dNFSUu@g-2oQ>6GFz{OQbE z@>f`y)RMn=67ls2ll-fL!Vy#Qy~;Drt-?w|q8-g3&A0#BJN1EPeJpMRGwUnD%86%v z9eIgRi_Guhp7|Z&*l>U8>nR^U3j0B`za4G|GyAh)WkdEY27lQ<_(O+#Jnm=9WL=w`x8nF&h@L0Kwa54T^X1TZ!Rwm`*JWnFN7NL1HBF*scg(;59 z2)}~^!p(4a8NvTal05$!e>gMGcf-nw=Q*^Dp!+qyG@WS<-S=+sAPMpj1Rn4nt@~BoCH3~WrL&OFlp18pC@!8DXC5HCKHWx z1rL_(z~T6VnPuY;SecZK13iiO+JV*l*|t8*rwL;m8-g#xA>n4(f6pyqK5hNJh(Dg0 z>yu&S#B;r-Tqn@y`)2oi-w20=n{WSs32}ku{CeC3X3npLl?^$!7}I52;13QK60$AW z%GQyfEjT0I)qx4(vk4ukYN;bt9O#QI61*-P!77v%x7vP=y@4=L*youS8H+US!K=2h zm+iqzp2SFK59*l-99KGoNzb8~34SZGLzpNeutrLo+wvtD%1`eHaT+^nywY$!-CXy$uyE0~$j!persTa5OyVep3w3klgUykI+M1r5Wj zc-IlUmm0T;bP6}Xv}#dv-cG2$QM1jE_a9tm3yy3OuJI&BLX+UV)VPf@W;_VzgNzyX z!$H!fG=GQCiS`HnmzMlg1&@{M2lwHRWtNM3U}aJ+e&b2R*BXRgYE(1)kub%vEBF8o z2sgvw?F2)f-^Cx!%=25Ya^iUoZ6|o)Qhv=_Jnx+A&4ffdx_$a7*8&7rB5U&dGhvBi2XHGK4{m8IhCa5Jr5iLB4|llb$Q+5QKtY{<67*e!>De<-k!ki-A+wvGhD|IYEgo48^jTd72b z|4m*%3zC*G=i%QoEHd0^hX0L(u~$6;P5}5?Gg{O==_+|-!m;zL-Ol#BQLtgmhQ z&M5w6(iziQeizfS5bxNHOb0l`8-wgG>$El@!luw%S!z{+B~CznYVI#S9# zMVG_4YFTqWI~dqkH!m^(X*z;$+A<_Ng0FiLBcUT`e6d0}uCxVr!R2W z++2sx4oVN`39{#L3z!*y23Afyez}9{;4;K~^vR_zci*V2{Y!L6Ef$<{U>8`HqiP4WDd>STJTV!hcI=*Qj zt&0pxnr7iswgAay;RsJ+Bs2^4F3!)2Qb|sR^FqdtrEs9Msm=Eaok&t@{>S&4rql8< zh(DTHJ}R&>DIfiwM0~BnM1L8f87?K$*9vnSJB9DTLE&cFpI#~s(0qRzH-MS%t6=5C z^SzdQ$-tEJN8EG%5F8k8&eu`iF=#qL^Zp=i1T*jV!^(!dTa59tP4EW_3klgK9BS)G z&?c-H@8N<`UD?6N*@CrRik7E0_wv5s`L_SZyZ#^V`+t1s{h{Towv(;LHgP5lr3>OpOMIoq8rXN#F^@Ii+)grVWad1ym@VrmmJrM~`j zrkd(cm(xAvbboK4xSFRp6552(A`Z&1u?w7+z}>NhTs2!3J4pU_Fm{B)rp<4DhR}(2 z3FCtM3I-c>V^i^8@gKS!{?L|nW9z2!Y*;x6%lJaBQca1_^aX+G^pxUj6N2wB(@f`t zA>jsr3wC}%Gb-J1RJchFe}}pLV-2dXOmzl-G&9x5!^(kisb*Z_&T;5F%rwsz3$q;a zd?6eXZl2Z8FKcss9{zY{uFr;*4Y`(MIrnE&TY1qyp^&Yn>IEV)GT>TyiQWWTkM8#V zhxv!%-ENpv$yUWZ$l31nK*9Te>H~MAQFuhyh2g7ZueQLdQ4r=etP_8F#zjV>=0bw3 zOb^*+K#n#K`ni~B+L4ZJtGb>Z#ebz=cppwr@C%Zo$UAVrv>DDnD|8~ssrfhLQXlAW z@+NKrv&6gxE0YrQimgQbH|=*uK2c7U<$f0{1{UQnj(1^lwRA;XfRe7}2E|v}>cdL- zD{VWy+@7McmsL?oR|3O4yCTSH>dE%PR+|Y(Ue=R2o`iA65nnSZk`i)VDJ93jNg<`= z7&un?QnEnkMDkMe868eg=OwGt2*il@rf$=%olvrYFDRoasqI0_&8xnO0wl z&}Vxh{(NS(SA~@g*|r$FRn4Gxhuo%wr&P9z;Qe|xl^rr@D+&haq*P-dC< zGptO?!~>p0d_zUBFG{mJ?p5@cMzT9vNVKC7rP&Sdi)wTH3H;H_9RKg*m*ddBD9!Ws z?s=Yr2YXzuD2_>p<0#8cuZvuq=Zkr_Fi(RG|~e zQf-GY4fR>b_a0{3v<#1S;l$1kkC1gqQX>uwlvs|nYCFQhudz!Tt z<-GG09jS7zr&lyLmEK%;HL|w)P2o{H8kxg&MJ2R&I@H=~V5x6tU}pql&0Om1w%L#s zW|=2ptS~XIwKj4Uj(}2S?u2tis?6q3PtAYDO_#>N2)Pz}8*T)%(EJ2e zCWYolovcFsyhW%1W_MeBt!_B_GZD(|a4mQu=rZ5@!7p$B(0~^ZM zTZiUg@@viA*} zO2{hWbL3P-4sx+VRFTKxJqWU1f3}y6KrQ@y#-#R^exK8SY(c7w)+8KU46D+B%grE;}icl-(vZDOXp z-ky?km{rMX7#g;-X=a3KO;0mfn2vS-0ba81O!6c~K;3DkOcx2I`0NI!j1-?;;Lz!d z&*nlWlBU{pulTggYhaCBN7)g#hFO8OgOy1Inr$l~E09l_Qw5snVuh$c_s3g-MyHEC z%2Ah-g$M2EZRY6;4X{A#TNZ&)3DHq?sAImHk7sJY=TwLf$#5WlZzDBIe@E?UK*e{M``1f!?xET(A zh`^BN-{B8u=K0sKa^iUoeTYDp>-XJr{SF)yZm!i25g79QCT;*T-><>ShJ0I$;j#_z z2LuZVxqMo&b);^EXajy6?@`#5s-?!PBeGe$(;H}I(xO(|UDpc?xz1571yhV6UxL|Q z*y%XKnBz%|gf3v^rr$~@a2%WsGEN)=2TGgJ`~sm9?F9UnC7Pzw<%^^6M>DI&;jl8P z8i#li@pS{ieZtLfDVaW9nB&+HoCXJlo9Xa1Xq-zm?<$}h>e_&!{aMG+Byl$HUxo+^PCovK_hSj6a zD}`n9n`nke+b~H;VEvUg$@x)2Cz6?(f7wUWep*u|;?HN+lvQD6Qd3s;B;xBG){dTf z@_|=!K2O+${VGY$=faWU=G^~?jm`_2`Q33Vn3>-dR!%(gQ|PfRZT6SAXTJzXhnxMW zh7(&s;SPc>@lwMB#b>qe1pz<#xN)&&qHv^$jI{`95-#&^LGiINRDd$sbQllbojX+H-%Yz z?t_&{@wvxVLKYvNFQ?*jjf)jxsq<6u7N0eSING(wTWIH`g-`z-_92%%>&78Rx>gg` zVvTt~kt{J2Jc$udVkRoiD}`lyI5DKK%z>k&&24_V(1{ine@#qrfR>Y4xB<*^vK6dM z%E{)o60)55EIE~v@h(<~aqm^oC&tusp;V2p!`UEJV;LMHZ9?;>3Y|zk8g~}g6BRsFPJ7PBpUNy1=fKLO zRGj5W#MgZ`?kuMH{f)2$`?Zn${t}J{H@}fPi?vz)1^#SimVXW_C!Xc-oy9cMue)dZ zRX8TxOp`l{wb_0Ne?BwYFTl!%Y+H=oa`^X$0t*Sbl(E>>kzgs~xp?0gS)*EizJ4o4Hsa zCKQw6-E19QzwW*_atiAL;Q`j;Xfe|-NdQ}{zGV?mH8td1+jz?DcCQLWcUdqboa+ff0&APNxh5yF z_4yu;8^Fx>7+BemZ;LTpwgLWtU?CwV7H8Ok8%!*I7VpGj!eF|PtG^0L_CybcdDX&J z+s9!~)H9B`3wnSpL9!p%*OM^z12GO6A;*;=V+ouVGGr9tNNF>hUnq2mu2KSPr_J6Vw_g267pQBBM-s3A$8%4Nwz+TKY$ z;sVY22e=8$oWBbzC!X`k^pGaa`_}Gx-$F>VW70u?nNH0xzL2(MgH*bFy=nfn>A zvLW{tgTCw={6WJ)LQXxdv4uF8dR!jwk%pCGWv{}x7P6$TQ zQ}egO8{LD*9w{bgaE*}9W)_pL!pfwWoa#x$*F3Bd9eGL8?-2H2T|7zp&)}$VbM0?n zsUFab--=tn%=nLC<-{|-HfFLlMg+q{Xe8Edu! zq+}nlktbp7BjOuZCTl~WbQA}`Ng{*GzHrR6dCu=BbfS%fKS9yDLF>$X+ze)&*$Y-C zb!HD+30Y@+uAJ)3hAvi!h0Vv}y|iw!_x4!ytBrl7uIQ^{X9}ON?nq0YezG!Tl@S(3 zKG*1(7lBwaS^1i68f20AiYGAwip<)&2q-n?1~^5e##{%7Oq=EWH-t_kJvG0T(Ro2j z%r&?b%o6h*SecZVt8FD@iSem&DlwG+rca~V_;=cYDU>g$Wr5zH;@k9(6Q@q>@7w;n9Q z*^cV6hgEe+SG;*r-KYq#n#Sb-+q}z)vacsG0xHS`>9ddtL0e<3IC&8T1EF1~w| zE)*i=<0j!vJIaUlBJUxa6VEo!G~coau9_NhgKg|(4Y|&f7y&iJPmFY4DI^cUi6MpL zK{#6aLUNbTiDahcpEy;s7Z@P7eecH&U{;g+U}aKG?y;4S)x>AXshV8lVuh$CufNq=tT0-c$2-JC{ikB;ZJ3jimhN}QYtq0B;s3qZ@kG)^Sek`f(_RszbQB# z-26t~WY=c-Gx)QaS^hMvoOqVQZ?e-&pX;9K8XOaDrpcS^+H9YJKcAWHufocPY+H=o za`^X$0t*Sbc{|?Lkzg5OM!fHxu9qof)8+a!BGcRQ+lPM=eqnV=i=O4T4?QabBaw@; z{$QI8*&f{MNf_IM_{NZR4M9*EhS%XlkpbmZIBMEl=l>yeq78%p?L&hjw1;>JH-uSl zUVxQJy?NGFLe?9fEvI_(TNf+DbmNV9>&+THL)@J4VSCDq-OU-oxX9fRLry=o7Unum zKeq5BMnHY3rzYaPQdo|FQ$q^Np>VkLg=G(+6D=(M!9&#pT2T(dEnrrZ{b6NNQ5M)r z$cp0A?(?PlAvx|s@pd$f~{sj z<6PV5%Z{byNsNSwqI$1Xlw07`kcx6M94>uDxmxH%QWM<8qk2Fq%8j@M%!+b7tV}A( zwYCznqWCm9Rg^PatPmCD-gtYINzFH53fXS4(NgKnbt_*#5e~JZrf9#)Z1E;--Oj+w z2*jHD^15vk5;I9iU_G9`#EcR;k?hnaduKoz zZ^lR;XpxzS+rTU`tHR2p$gJ#1#5WP15`Di!#!bonJYg61DwjJ?}Kh1Q}I4C2~LvXst2=pKvIBmxBcL|+Hl4=`z z-A9X@2DXGwf8e$-E6;tfGO0ZG*hLR6mj;;lUX_kHTM#{14uM`|Ef z)P9m_jgQb?N{eCb2yNl9`6N@_Qs!M`s|n+=4nCku7M}^8#0V%pQ~V?2jSo}FC@7_8 zdpKdF^vr?7rp4iDc|u#BS-2(4!m|~uObXBDwi2@N_;fiHp7AbLh{Dq! z@2c%8jYF(-!L}+q!KQ6m>}qqhr6xO=%jiG-=KW1)a0HUKSi8hF=(4aBJ&6%eSXK>t zt`w86!zm%fWEmVPZC3NA3Y};%ndtQ~Ve4rDIUj#Ivw)lfE0Y3pmaT*=AU;J-1!S>{ z6{3Jliue7Q(eD+7aVI>{!od zrE0tn=Yv#@civ%yRJ>tW3(qE1pDr)7{2}>Ge=4 z8Q%22=r4|Bcw-@f_2%3RM=ng)=Xo0baAuyT!pe!~IecNdCf7%}=lW1MDBN6=3)A)a zJ_t8}neY8!WkbF##&FpN_ydB4gj_nk-?l*2tq^U%&GF77#(S3!iE}^EbTWVwvQ1c{=JwSZJ#7YgXl`-NLI2B}!xET(UHkiL&I`9Z@3YEGP7V@4=a;`ajmU{EEqmLP6gu(7b`@;SSQ~1-A1JsMN7q7!v1#5 z8urqa3S`zG?25ptsTZ%?##+{kS3L=1y@+wnFj{0nsTGs|hvtIRib+DE9sT4ep%Y0* zZJbvt>i7f?mGgy(_(PdxVpUj~l!=u+iTDPBmHk5vG`sVJA=odCWOptc4*f_#v%9L7 z-KOa@$GhW?X6ATTSUK?=uO^Qy&^#}3&vOwD2{+GcczKSPPjkH(e>^kSy|A(&*A`>8 z9QOS|z(PXK6JD|%ih_Bt#b3{2zkzL57D1;UH;Kn!iivL=w_iF7#3rJXQ|>_v4RcmW%sfWl}Eg@g(9K z{u|4M^-w7p?&uih+5mh62ZWp9$a0}R&mZ6qXXg1`SUK@LhnEXAx!&46*INjQcC_;J z*G!fR_4(cmH-MS%8L+Y;-xg!IYy8<4XFN45dop2Wy#1L{62gT%RTK7yad0FLNBK|f&li@prDURy^KZ66p&2Xd*(C7J9{Nc_$yn5ec_O4vz*^i=tR;Jd`Uo?$G{5NIn2kcU{;vD zU}aKa_OO+Z6~?E^slsgNVujddd?V&_3F0R!-lnMLqL=fYDZId1A1!W{=MscXzDW^M zHHGABw!xN#~QNb$H14wE*U`ELlFNJ@fp2@T8X2E{e_lbHqM zJFqe-7+2d$$b#Y1<5VzCaj`-aj4AQ1O!)8hgjy2Ai&!rUx7txb4%Z!5=(2eci~k~fwdQ-DVyF@CMMWk+2aAZdqta;a z0r#IbOMC#Ov+)LUy3kqwNB?icAKn|OLE}H<$*2Qt(=SWQzMjMgC@rf;eOD^V5;!fS zq7>m^=_|@Yp%bkr{x!l;`)MIrj6a`QNP1yqQb@A460(r^Bsmq5`7Tz7?q#=lr#q`2 zm@A5Vgr}toJ=sO&bfk{lBwPvCkwfNt9}z#y|KkY%kE8rQj`sf0(iVL9)oW2Qg>0jiBJXS=iIY*7?KevB#o~Who1F3vyB(dY_WH@2tI6HNaPEQtj1^ZNX3Ob9;P#*4Kx!Gt-z9V+ zxvTB&o#z@dig%765fjk%BU=1B1qV@ms_FYjcvQ!URy12K3WiRvjS;`hfpTt{27rCt00_BEQ1}2hnu)@@uyXLb z8ehm&swwf?>I;5ZZ+S}bt;=p?LMPK(Dr75*mn!W_r#m}a3W@LpXy_`;EglOT*=hLP zXmMl}nTgxXL}wFNIpBJR_#gTuE^cNvG%`~zRn&I?juU2L?E)z_$G{=t0yEDQn7YH1 zmZNZknY0`ZD<@9NR1+;-*{V`pPIqVJG&n$9R`zmaMYu~z`7&-Ulaw#Q%88S*fsvG4 zx<^6f7I#!`h9ks9Wp7thguj%P8*zJ?tXvN(C(eqoZ|M@TD~T>s;pHiJUY>xX#O1}c zZ)x~UnRy(ynaRwfuyW$e7)PRPPAxC1t?1mfOb`;o)8@L4M8aK4%6QydCMjcJ<-|!b zjzl7K>RS+>bVp@pI6~aY;yM!5{iUqzfZNMtWm{M|aaN2Yk%--3x4`!EI(Tb3Ck^I5Wl>bgo#;mX+4!Vs~IJghRvy#&rhmIZSCe4>y=e%h|AU z;`7@nEY{_fB; z+@|DA#?5AuGYM8soSaREAg8}{0%>IScSmOd94T(SIiNl0cz#oM=HYfT*_jI~C(h1L zRi~UTE>^0}3GV1r;XrZGX;amyyG_Yif}71GrwA)2PRk?OoNNRuC(eoSxMrnL>Y=A%j&X0E zn8R_CnZz6dD<@8jv1h523WI91dzw2hUxq`(<;AsU@f@bKd=WR8Nz2Kwa^kcY_X{e6 zT}pp@vpXv{!U5v4;<{fT+@+*kkDJRRbd33pl^hl9kW#d#$1 zU8cl5ikr+N<`Gyqabh+$^|;k+u~I5`mDDr66UI8Xy5oh!@U*(FFPk)-rqqnVjb>6a z3RX^>8smzuA3$9fv$H!lJHUbB)*9Cp-;mpsoNaNlndEE(D<@8lvGWznof)Hf}MK zmos7I5zI?ALtB}<-Fdkaj!|s9cpg(;ZpSTV@^TxjoH#GWK4vhRsg}yR^D?ivL$e$X z6c-xTJ|^TgCFgnEY$iF+z{-h}v$JX56ojx^N>vtTPe@gk_Vs0}D_a$m8FB&Kmvei`mYJlKY z0RO59Tq`eM692vB6$SZuA{736=Kf_TPF7swVuiQ|=aG0X79P7GE6(GKD=SW0R==vn z4@0*I2=+$1wj9^|i?qU5od6f$^aO@QZcl04e3O?K7i4TfmiL?-?@1W%IWgW<(f&Jb zCdwkJOUxN?VuBy7yw~KbaJaO&%?}8jNNQ@cO~oF39serI?JxEoEY|BCMP^CR@^>rhX4$ zxtgjB^!Jy_)k-Q?>@U!D=3U&8*%1yGx327GfsEd3iqCeq)l7V5!^(-{GlSxjDdhTt ziMwtssK=d~E;vqHZj7fbj16k1>MjK)jho8^=CiQ!hy^CJil!|0EOQ6ud^k?S4NS;g z3d}jUxlCZrf|U~oMl%-*?qXIr`K3E2zktKTEl_<-j#ZKc)*>JG8`Q)BRg4?6VFKsM+rBQ2}c1|P8^QV z?P!f5r@JJse$SRu;=>H3F117XmOCU@!cpQvvL_Bn)L9D4Ww^0SSiS)(Ck~6IlJumj zz2xBD1MZOg5snTQ5{pXWJ4xaAJ#Hiuj^Dw`iNm4U_wnPFDynZa{l}e;_u&9>`LNjc zY5GYKc?Y+XiO8FdN)0{mAAkJ5O&m6%xZUy)k|V$GjRF zc9nv%F>WdolxeVX;-G}y)Ng>&o35ma;`SJ2W$jb$kQ@QWhg(W^!TXVhn-q{kaWk2K z90V&T4oK*rZv&8ED^PsFFjLOXEt09hn>8K*fMe(_f0rb-2AuWUhgg6GuifId1&w2KvRpP<3+r4|iT3gQLXd z#bR4vrDGmRQVw!md(KX5*$ZLFt5*69+}JZyZD~Qz}-| z;?uh7ePvzlu%zKQabdC8H&)%HzquyW$Sgf9JP&W7r<Ml|+ zeu|sO1mhN1IdL#F9ZDsWu8M1SQ{4q}rr;%aKwf}j#0A8nLkYV|L3tK8l?lpIuyW#{ zgl^q!3^esy}BhdTqc)SCLXL#}OF0~0VATPFf6StCy$7`^1;&^B_dc^Na z9AfHUs_?Pts?JlNjfKSUOnodidKzxh`Y{bRlL^RFSUGV(G$$cN+cNz z>rU@qcNToRBKMJLu8OjhQ4Gbaht+b4OsD1xBOR}c+Y1gAwvGgX#|r<9WdZYh(K9ITu;C$zd$ z`qSk~wq

    (jAw};81aKfvbzoVM@(6aD$oDTnsB4sIi!#$Vrah4p~UZsn%0)uNF8W zt?;{UCo6vCVuhG$&5ie7?r}$#)BWO$#66M8)^hk4ru});=DAF^PH0#bY3eo8t>QXn%cM;Y(w%j|yG1C6( z^OOwZp`0cet$n4WY=_&*BxN?NY#_yA7?C59Uyv*$$U1BOC$J`A@r= zS8)58FfE6b6NhPI6HMu@be|w8+phpLZK5+kQ-wr3CP!_rKuw=1G*fV!nb1szl@o_% zla|nE?}9kU9h?2(KymAi<{K2qz~y1%driSvfLqN3XCADaI5@LS;50@naa~a*Bc><8 zfpw+!oa7GC32@N35FO<bXci=#AA#$ul zA+ISoSL0SQ!MOrf9?9U8D|&GL;ttOL!GVemoTk?loIl}KGr{=-teiMFTbPEhQhznq zmpe(k9IkDER#?NiZ~iYFEiOF=yNz9{>lC36anqRyy$35Nj?iW%gj!A9JKg!&Qb-KX zyz2lrejoplU63v3JRbl|ozE8K;ivN6Fi?sSAsK>J|` zE%-;aIE2NHE7ZTn!>Qlm5IWIR8&5zRQXTSisON@mjUgq7*A=1CZT|83vYSX-We z4(JdORhEC=6gD}M@fsW%ZV}j)wm|;tEG9Ci8B#;vp8Tvyie(e zQz2v8n$BcQ6%uV}jzyduYev&c%EuJkN+utZVPyj!79FH)LjB>&LL$@(+k!5wsCW`i zR`k1AAzI<|=vdDMjXkQGE99z6Bfaoq_*bPZmbJZyI2F|LZNP!Ru*h#p(+v08@++I+ ztS4dYm5hU7`<{UUN!EaS|!)L+a(&jdQlF*5yrZ(F&5C)kHwZjeH0_$Wy zd^&C&v&^05DI0SfV?P|abti~Js96j*#6J}#JGMQy;PKQp#5CK+OA(CO4tYuPelu<- zGw(OT%4B%E-jgs^fws5AlSvWiOcx4D=ku&E$`OvI;LvbO!S-+|sC!7eo+oe%nOHmy zE00Jlit1H6YfN&+Vl^Srj)s`l3>z$pODPr;a0{7OjE9vCSXlIsvJLgeDhmnO41d{{ zZ)t_!6**b4$i)iL3|}5^GrY1mh&`AsSHzn^(PQ!p;a`=uQq~r@G{oX$Qq#Cd=cQ?i zkG17kHpNGK5+k8un(W`*pAysKV)lg8qI70)mRzs=B{)UFFITq4pNE5{&2qjVbRr3= z8CMTOITh_uxtw0Acu9-jNw}5F;&%e9Op0IClZdZX8eb2WxK2iCj&2ZUI5tPu!NK6d zu%)RviooFeMbm!`ZWlBC-+`4APyYn(*W!KOLm}WXcLM$j$Ae2iCzk;K(EZ z7PfOoVKyFW?ScwL!FZik7=@5;6oXFOHYNsJ!pezPh1DCO@@uG46w>Y_d=`!gcX*h? z86KkUQ5cTH&11rF46K|u3~M!`Wt=~p<4(j`aA3GZ>e z%a{l}0V^kt!0L4bWVKX!gtgXoo;a)_B!*|=!0HjA?$Nh)o^^vKoggFOl3>a}r&vi(Oo){MUNK@)TWoS@*hB3G`faKN-V&S!*9Bsn$B zmR&Q^onAJTYh8T*0t@BAjwQH-%u-YIl<`crecOJjCefiY58;y?R|}gR*Qc+*1FBt! zpeff}C&oy5$WxO1OL1G7$-e|vCgaRSwi0rj@eyuoD-Lk6LX38g$9uiz zihHFi(ZTLz;Q;o-(iXznF+&V?-RVrVR2DCNcBQJ>Vx?53gC6;>bS|n}8!4}vvF}CO z6v(mfIZpzwi0vQyR^O)?rz5>EMUI)SHW^J88Tcj$iFP#DABvDgGNaqF)n~Mm_(+3H>ibJ=s3#;U$IAq}HXa|El#bj>>Oq$-3 zGI2a^FO!pnuyW#@tVcNMD|LxaW|!2DPhRK_%6V{jxS%-HlZLyro}7)F%jD!tSUGV{ zCKFDIrE;G#=G^Vh$enO#xQu8%9LF7V>aJ2gZpTe!@^KrioH!rr6F$VMsNb_Iki6m! z$#OV8Tu2;7oTk5&l;?4KnWQ`eD<@9M20Bs(iru9`SGG%GWy(6v-N|GjF+5Y3`S#t3 zV5Q+PrDYOsF_V^wuyW$GtgEACFq=_8S>O)JJUBSqqOzwGD8gCF$Xwi5CL_DU$_7R( zR>wPWXRQ5h)>X{ZX962=uD<3zswi+gLz*A(l?Ia1^%`qs=X zaB_lQtlZeT84j2>zxk_$P9!})Y|9`clA|54mlX7(R}mC11TkSAfR z2yI{53t!vPC*_>R(!Xbf&B6OmD{a^i?= zsu?pn7nMutu8fGE{|21;?X8{NVc7wW6n7Ze#|{?NWs1$VxXDaxwtK!-~vT};)BjDpIA?x>sxM~I7x zW@(s%O2bu($=SH6Oia#%l@rG#bPt6Oz-8MEs?| z%*E|x0<$};oH#Hu48U|3O6jVWn5sK5OW-(hiJ50NJr=}-9Hz(=af6x2EQXa6M@Bn2 z77@&euc_%u%+>C|TmeUk3ykIDIP5OPSCN7u2%8BD*8j=P~y!^?Xmp{N^;__lY zBuRfMF!$p2GJ*LmteiM7({)2qIa?VhRK0yNWiIrgJ1+0RLE_>v*KRxtc}rn=8@HAT z%Nww=0Tzps0`jndzYl34A&)#7~ovb*+#R~Cu(}D3Gc^GqGsZvq4)c08r zokwba8MXa~IPcJW;g7!8)cmW?f^T1BUtM$PVQ*nGHgOFomWLkp^dyX1;l?e__8)qf z6n)84lcF4)qQG5w>Y*Esm^RD#ql8W*J2lNkGHO1R_jv;k0~_VJhYW5bv+5o1DI1d= zawXVULyekgo)QvvF&g0GtUc2gb<(=WCvX zu`aaz=)<;pQYuw(H)STZC|69Em!>jhQ7}{DBiH3pzj|Zo-NIl;eC~w9#;qDh(yob# zPm2K1M(TFl0VYwm!ODpfwN*=^TA}ocJ4(ypcyUoW$Q7lC=aix6am$$uJp(Hz&QR;B zROwHbE7_J+Y0CP}RcW%2z`8#!O3qbD7XV7sB-{ZeQ4?Y1#EIHcTa_5&+X8oz=E33O zl60VLQPMe137U%=&Ln7eSUGWmW@rhDRCQ%Rsp^i-5;#s=bTsc;@miyZ$CQ~OZZVUY z#jtYX%;>9*u6!%#Tzw?=vY@Bo#T|COL4=Q1YH6v8wj#k&65j){xX4ugq$TV zv~B6675>VUlNGzUSRs}r{}u1Dr1p!EFT+1H?XRSEKs(kYgD=nxebtgJ$8urvIZwj4 zR%Kj(X#c|GTG4T}@rA|k64h!`oxAx7LZThr{D&fL(UnQfCvxOK+We;A-i=EpkIq$l z8$JfrMXpVb$E{?RzA>J%G2bz+O>U^ocWA*bocW#IGrt2KQ|;m;&Aes{mznvHw}gRh zaeJ8zYy&Hk;cshC!dM;JzC5|H0hVBSj(%OTTNvoL9GQW`q#Y9S6quGhcgs@InUWsU zj_G*ZVkR;RVdW8z4Egfph3?3l2Zt$6WOQGmJR7%|iOiX>a^lFWr>`=!y4>xK%AIg{ zxTx&bYB8vFbL&B=s=R9kiJ&UOcs_dkI-X9;MW#<~TStfwS`L&@phlwAsxs5IT|E z)Xd*1400K|Fs12TV4s|uABEe;taXQb%EmOuI5!VngwY5@XsQ~Xn4czWcARH@84sv- zVonpT>4c&`UQNP7ev;IG5x10?`jcVhz&JU;EcGOeHMs3lavdY-iWgsH6XRxKnIj`N z!tvo21>?JejRLP@B=D2Yz^}*cWD;^MteiL@8`8m|Gb2up`M0DfkUZfI$>VT{xR4mH zF=z#ebd_@QC~hi~lSg3X5y?rmufMu9Rmd$SH!p4ITujCb39KUZo&} zJ0$190pdbpyzj47F=;qT895s_l*!1Mu=2=cq|~Eh~nQbuma4P`QN z8>~Dc8R^SbdV9(__1gVc+!9NFw4+mP2EY##-+HCOg1iol}9QY0}2~|a%bZYaBzm3 zjRDHWy||G~Hhv2$C(ed$-{z#Oc=um7ynN_R$a`>zxP(~k+elX_CvW4XGC6qzRyJ^A zaXv^MG4hWfSV+iy=tFEbprjT4c^4-uX1Q2VeIj4Q5qmw}G z@1nN1%Q+|UX?V}D$Wa>2F{izSvDkDo;8z}V+S8LTo_{eOZLm3B*7}&!MA@35SPU4m7VN`V%NKAc2>(`?(#rl8MJ{uyW#fgl5-``q8I> z;}v%}mczl}!lAiMZzwoCA1NBo<2EwUcm`HZ9F5RHl?ED>Y`UE3t@A-Y#k`So`Isyu zu;zaf$%VQf-u@~n5*Iu)edts=f>AiTIM|DDarm4 z+*W4xi?DKFoSZ)`_9TpbZreMd&_O;7m-|1LFE735&07wpBNCy6)7Trzzt<0axbi$I3l6Lo{=hYLT|RL zzNhqGcSt^jBgBQoyq4T(Wpy1!r>G;Is}z&>a8sF>ybUWSj)}G>DVB=$<4j5^*>Z;S zXfsntV2wMM662BJ)}u|}DTQPc+)^ea8^OwnLlWN8ZvN>P!$rh==%MM8 zW-8Wcs3M2sb}|7u1XeZxVzICxS7`iclZAwAoafq>LurLSO?R?lx{DQJh34jX&-9Hs zFugQeu0)RXeH;E+X@3)K`uw49Ut}3Tvqp23EyZ$;=5kNMICD47$lAX~qkjI7rs#KY zih>`lT%`Fm95HQ{^EV5fNOp$!{GsQJ`uRiO!@x$l5pg$eBeUw==_wnN9pf^M`uW2k zKIui7RIabT5cy@kCaiXxfxm)>RJ%??)86{?hvu}mTB%u%TgwFCd03eYd(U_h#=6k< zm6}bWH~;#TyLs8RxXpcVw)!gf)J>d$nIa_G(L_^V_MwZp@=E$bD`0~A#eJ7)H$53Q znMutgSUGWOW-+KqRm*8{rAVowPSy8!=Vt*NGVVBYXnXjP&Qp@+;l?vbnhPr@PSViz zXO3EbPH^X^3I~eIPh0BGoGwbu65M1aHAPrCacYLHKXba|Pf%F|`i?t4SHmIW^3#_3 z6Ly}GbOmlalcY;w<-|!Ey8djd)}Q}#=jTswpt$_BrT%QIsXu?fO=ePaFRYw6HAB~* zZO!%PzwZ2e2#1WzPh09w*m+ui-ouS&lJqvLJi~sp1YF}!gzbjo;H!OB` zM`s5(THKm*fNQT4@|*IrEp9iHpKV~}#QE8_B|m)wg=#LcIF2?|OVx}$U+94{_P z2f3mY@tiVrHf}kSp)+CS#2MPPB}0`=x{&Qkb(N~A{&Gq1R5ezoyWNqx6Am92sn56~ z)hZB_u-kD*n1tO1D<@9aR4rlJvq7)8GqfBI5SJm%YZ$ztDR~A~PMng> zT2Nx#i=Q&nc~&-ANDR-cY+u`&3-SHJ<{^5WFL=+=}k#Z6^WatW-QI3?!#5Py&ZT3_zP zjb@VbTUdF7lA|79QONnwot*dJPz^gds?(I5w{fGH*|<%kHdv5spz@tmx*{C*#&KSy>7zk8D=RXJ4&K}vx7T0+rr`E)|dlr!O=NR z3EBoXoJr8uuyW!A&Cn7QIYFYJlW|AqcsNd6bmrTl6Y-cbvkY#_?w)-`!?n}3~?g@n95?snS?fut4w z4Ps7KeAC4Waedse@qV{v)dRir`_s~ep6sG>I&xXn-{Ie#_D54Ye282An~RsTa)V1d z#hLJQDpN>TD%nbB^RGJn2|=o1XXL^%&2@5rv!z;IC-<-?VZ33?cx_bsuajF(8Fjss z&DCV=zi`Ha-?F?_?n5|m+N9@~3!O-kYOUY9@O)~dSG`>>;&5QHykzb@++=2LeA`nt zA`s&xbLvYt;fRFpUkiT|VCI(2v%O7(L_21C6o%F>tg~SVxlXXy2sfUI#fGpl88X-R zB#bqr?N`sW`bEhb=z2?qY-RCMrT;og*y?y`;o)$^xK-uomMuI0QsYXxAO^GrI|TQE z$)QDxdRH-O1ec2tRFT&yC!qmE%w}7c007}xyxC2a*mcq)3leBq@ z=B8Phy0YqR8aKLgbUhp_E=PyAxhM(uDMi=f<})e!9;}==Me6IO+IrNLOZO<{=y7+9 z9)+XD#psB3VQXk>)2pzwgF8#x!qG~qF4g^~9BqT!&*W%pSUGWySanInaWGw| zs4QjNSvnq$7?-7X*QG`bC{GJu3oTb^E6(teLa_+=bu~hC; zfSSCu^E7UfkQkn6+_CKksu2cC)kNG4CRMA#%864o2cW9IbOLFd=DA}v7mgaYP8~Nq zSb1@vTmpb=alTmV2jUKVG7SE~9jbfbaB-n( z_xgbs07}wtaR-)z-KhOsckkl@qU1tS($E`)1TG{CIbs7Q*4;j(P3w!o2`c zl8(h4V3Kq+teiMWtTQTu>0%dI^gi1ir8D7paZzgb85KVQl%=oX9xz$@3atDwVJVxT zt<&x9EZqjjD>0V52vC-Of_uPZ=|`|~;w-WHron8cS}N<#J3a3X)H86gp^sS1!#-wj$SUGX}Hf=>;Mt@JiTz9;7ha<%;WQVi~uZHiGpIvd=nf&Yo zD<{s+#x42L+)Ge&hi5SyCN4a!uQ>Ep-Z)q1bY}GT5%l7QGs(%q%88RRy%jlh-}h2? zZZ3g?#N}rHHWeN1{R0=_W;3a|09H<%8ucpP$ZELe-hq4FvH2|=B`!9tKXc75H+8@1 zIQ1*sZYDQ(!ODqq)3VQLykoDl(Qmu6^9CF#E<5e&a~i%=e*TTy&gAE1SUGWiTGk!S zy#gD}cAkQ5C?tkw3f8W=qrXpJecWy)H|xU6iF4Dk?lj(^SL)6o?(7^0M=I{R)9{_v zo&9jznf&YnD<{s6dZ}}y-|5MUdjryil=u34<5TDgOeed;v=j~-7pB%9K<76=+CWgU z260E2WL040#K~$obJyKSajiQ^--E-%C8=FAcf(B--^LARl5-WToH#ixXYTX`l1JRR zc?b>?mz#FY+_mqGJcygkq~?BDIdN*#Pg+DqGVP5MqvkmG&>cczczWoA+O*_jx@qDg zIKwq2J0HNxiL=x4T(BFqwYqD zh3*&~3rCAPfVJxl$guyEqoZ;AnH(JnD<{qory6N)kT}yFqp!ii;$qb1YNWq8;w!lM zOo~o{l@q6^^mMLl!rkNzWo!IdOVg_BgtC6)$mT=OQ>vTz1;k;}~vsxBxet zNzS>ja^mFd(rT;9zjX)dS8(*WKxNuhjH>CXc(*_s4>}9G3-^b~*&VQQ z;+(bI8>2Ueyy1@1zu_QpacbAznD)kymvOV1)Vv5QCr(Z4u1I@R$cEcFPr}w062mhI zYg<=jx*=p;+;k>AYs1Qk)3aHtv8{P2hBA;H=+4i6aHzPIr(IvIZ8}d!t$lFgnFQ?( zD<@7+%N>o-6&MObOWhe7goDLps9if6A@?ao72JF#Mg6dH;uN)Y;$+;X>PMn;UXM?mieLUoj&Vz8AxahR&Y>?@OkNa`Une5yLE01t? zbT@l+Z13DUe+0)Vc6JOmdVGLe&Sd9ZSUGWaTJ}AmD=d`0XKQzWwh$7-Gxus&-xG45 z_C1^7<})dp0V^j?(Qd8gUqf6^p^$Z~J6T7=0pymZ?lvti4iOSc+mX0SOxg~El?}9I z^OsHS==l7ynfXKJcXTXVmOsq@;|Twcqx?UP_WlSY=8YTGk-t>@ukvqiQ7;A-5;I0M zB;N2O(k@m!>~6)MU91>bls|5)h{nYIJ32N$Wm!Fz7l`Qe-kQHq{2@ZRw&5>k=GQm; zO@6xRFD@36wNXc8tIJMXR)3bCi0{HbKkaX)wxFw&sm$t1SJSCXAzi6tm4C>Tiq*6@ z0AHS!8(i8M{_k}*|EjYhjH|7bE{dB-#J!h&*=4=A2ITzm6OFWg%a-4Jn-W)g67fWR z#xz4}y>v{B)=@P%_rl2u!u3?s*Wbe7(&jh+6QL7HO>K6o+9)!qoc62xMw0m}+&X5N zyUSBH=6I&@r)BZWYMtZtNRB&G=|!1TuCKok`6<33Os*`lC}=X<|Hk8~y=9hWdsjHy zAumbZU&ifZ=KV!jIWSHREYEoo@d2W|FfD#4ovC1dcA%JBGLRJ)@Ti}r-EaqIR@N61 z?dZoTEAuQ^Ar8}Gu`X^f6PmSQ<;0;;=5ZQmGNplHRlRNhKzDBTgM-B#Q5HCJZR`N48qakva_!6P|upIdOP~ zt~=rz9|Kvn?tIUkoo~az;; zh>eZTL+;=_2#1Ob&L{DrBORr*+>aZ|q~$(XdAMmA5)$QDS$&iWVyA6vI(Bq!h(CgZ z#N}iUYfelJ%?G%xOjO>5l@murd7CGMioTKA+MSgxgv9Vnp7yk6#n`}Xh8xR-Wd^LA zI4tJ6qHSD`b!X*hI7q`^S4<7dk+`i)R1Slc4X9Xb8pwSIe_7B%LM{*8VY|X4t?(D1 zovgUb#R{?S@Nm5Q4r3Si7q>+gJiiP7wzNNt+5zp@dkBvH5550j%W-J`!ILnqO&eDp zZFYTHcj9YBJ8@l-?uC;S{BGr{^l#yiY4e=_iO`AeLG0XWunaP)>_aqs46KwJOTWUc zWR||WJY{3PW890_P@C`2N_}{1@C{+M>wW|tQ~iE~(1~V#Z|ls5yd@00jN8j(;6+%O z4u776u{yMU<4RfT34S=uy$P`?k;*O^NRzFJot&{*Ur4m2yC&GQd{@3@!JvNA3H-Xa z-AsJehLsb?NBKG;!KYkKFVzBcpgTbO!QtYLI4uvlG69mFQ-t=xEoUOMH>{jELOU9U zt6;ORe$1p?O;rZ^`%C3&MO+HpU!Wh`Txd##%>#qE*4YV4~FzD<_WD zHm%Xh6mtE+m&SA-w)>ttQ{RST#$~GIaadl7Qr)L8U4@&^gz0iv`C|c7=y0)e0`?(y zm>z^<7B@^G_bE*G6cC0%_N5cW*7NmA!RQH`?bR=#&6Qjdm<-{>kPP(c~0@)LD6>?(nYwrAf z1&$P#pO&Z2m}SUwnu2o*ZZs2|FTl!)gQH)=Z!XDomj=qYY&n%JW=dUZNAweSfPMr= zj0;f9Yd?4ZMV+T0{SY^v3DOT><-|c6q5}1#tG(H>GJ^ff9iV^0k>Uc>h6?06O~Ls) zZZs2|zro6hgEPcth#$jLu}fiR)m@yYV=D`Z;c24Vuo=?yo8mJLx0{L2XjnOMe70&m z59`TRQ^kS4R9CJ~JvqIrJ3%|a@#0pWmbaeqhOe;e6r$~M)0q&>ft3@7Xl84OdefCu zFU9Sw3&)BJP|FJ!c>p!srtmDn&1S-rf|V18XLf6Ng1xg;S2k15_GOFeH2xxY ziY|bI#-*s`7lC*b5&tPp=i>G=ajL<}9~Yc*MLkZxa>wZ|IA{sr)byX?bO&xf6Q`fS z%8BDN#00m2A8H%F)w{C~T%^fDYVE=z5g;76UOAiani&jjf?SUGW!hUk%Ul~jG- zY^gF$TYp#QY1+C%VtA%$ZRn92Zc}*H#?5BJvnH&ZI6Onl(nJ)+_HzelA2?pz z8q|haTG(|8(cZY}Oo;Y`l@o_())0+$eUetq4T@VmG=*r;oudjIGA>7lxgS;&9EH87 zDD~skGg0b;l@mv4h;f{Q;06dO=m*%O;|Z` zh?MI-7Wgk>HTTXMkt9pk54t0CKO8MCLM^YV=FRw};}oF#aKo7Z-2*Ep4$u&1h{Q4E zMTM+bx*p7tz1NT28TtSY7?+_o9R7&-PBD5Hx1EX6Td;EC7!6g2e2m1`$d$R-7N2yU zn{6f}hG%ZpjylwIoB}ihH=GI3bXYlYfOcx#SgWsrr2NGqbvxu}cbtxdW5+E?$GUge zrZ7;r4#VAG!gVmLoH$&{7lqU=sai@E#NjlhG=0ULrBmQgaan5lfmdFO6nIV1`2ub= z6P?e&%88>h#FC>3qS)H+SC<@rp4)=mI{iV3f z!R=+@G7DBt92e!IcTHU6wFXM5$+`ox2o4h$nECcoE^hIj=Ug~sTznk%#0=h3lxn#3Oq9-ml@mwFFxygZEKo|&UG5Cs0mq8Vki%?C zb(_NTGu&(@Jh#HiBO0F24Fw83FT2C@A{?u@;0d`+;du@>n+ea;u<}TSr}-Ya{z8Uz zcXys=tt}*mXP)Iyc~rM4JZs`+GvQesR!$tAP4t@=%_wRvVA#idam!B2Zzi-} zU5@xnvDp*1nTgGAu=0q<~}%5TwomDhmSf< z2c~;)qnY6R23AfS97BcCUZC)SJ23CU5#j>lP+?3LC%lCl%LL_hSUGV}44VthivyJ6 zve_Qa)1?_gVtA%Y4x0;2e`#Hrj@!$`Wdm3_aa?BT=SksP0u*A7bSLI8I8NN^vXA}l zLfB;r&B3_IOlS^(l@o_%njV_Q%>W88r?><21vo}rVD_>Hrr|Dy<#V{XOju5Yl@o`> zaN?%%maXXmgde(7^8+|oTxuLn+z`JhKHtafX5#Z*Sb3!5(|qAyDLQ|5$LDWwuwulg z={LpaVcc#eK7WRl6UWCe;com2wHF+W+taxx9xWt>rzdupa7Ue{;Cuo%nhDPTK7QaB zdK_`KPxl`2_U_2c!K2Uoc9TPo({Pug0yG)_^3~n+Lnoq;Zi9=&}1x7?L{K~%4*PQFlO$`nemm7yyU=*(@I%nWkGtv1f zteiMH>+2`rxk^qwc7BIDFF%9h!{udn`^k6RRSL2sxs%je zy(7`k=ZO~kKvi4l(S<;$9Vt8gr4joL` zWeUyexXDatR)Lihhh`)FFw}@3x#DDRcVza2qr|N-^XvyB=`aOmH{4(*FuTCYi34Le zl^40zLuq*X-I?iw1I1;=;Z$D4XNpZ8x0#7e53HOxHl{k$yvajh=5lvtz6nQ(%Zy8% zX*x`S`8sYe6PRVNa^k=kUYQfWxoR#W-p?h|r2E{7xd#ptml%gv=0YA*WPXEN%tYpw zuyW$a7*=B%0n|^L-gU?3EjUzMY#df&6t5{duj5uT(RmeCP8=P>9#as+O0_I5YE!R8 znz5Jj>}k4?7@paa!yZ%AX$sB;xY0~-)`OK32WLaW{7Fm9VeZ5n42OtYYvwvko_ud9 zDhJ@!GEvzVR!$rh!}rrow~r|e@fY0L`5YWGE;|n2PdB+wVLA~vp9#|dteiMZhPopz z0n%K$_5*izz7L0p%Z@|c3B0AKd>6NtiORQN<-}1jY$Ax@=`LCOn>#BH!!hEr;;@O( zaF@dJXWU#SEDylSiNj)e_drBXtdP=6)kg2_+yj3?NDNO8?C|bE(_f0q|KOz7n7I50 zR!$rj!=6+4CNZUtnd45(tYIU@Vb3Y-GKFR<++-#+o5RWmXtMdsrgn6Ee%Z|YA@e&r z7B0&l=Kpbo|Ho1OA4hwC1QPScjq1o>D*jjbyLPPqh%F>$jA}^S;Yp-jthmzMipyNA z7+91~jTOr!s~5y-UhJWJ<+qI#*i2zPBlHf+t~&`^>fme#SIIcD;%NV<)t5G+hjWFFV2ma3h&y>pXSUGW)wgFhGWS1yS?GM~h z`aT>pE=nywO@^W*e5WLR7q^{B(zjsc#7Wv!N0L|}E~J9v1AWcMFLay2?zP2f@ zQLBIPE?w?XPf`5M9jb@n@NuDP`Ee;DRID&izW$86!Q|@!SUGXNHq!D{DvIy7rUr_+ zZuQ$hqvt!f&7Tkw!_zjm+~PE26!MnR@;^AI>}?2GIdNL1>S(Fo2Go@uR0gp*?x4&X zHc&o^_RyJnGZ;8Z8QBUqlvzV^>3@ue64&g4@a@WhGcS zaZL{!^lM!R==fwIi&YI8obTMA7BoK6jw< zaM-v&wR|JNI7c!ArCky3!Ods#)CDUi&Xaa5s}yn>uR^K)@HgGz`8pgUE%b zo@KbLOj6E=l@ljLyAo3w=+ibm_qc=d8#qKnyyk#eu$-2bbMiVIqG97C>MG^rRoql2CojRuiF2|+w3G4Xp7ou`?sTD|F6>TU z;5>)gKu8SF9BMbP3yyk9DOnG4DKGot<}!Ji4=X3mi?XNK3}Cf9pca+Sxs!4t93UN4QOd{wZYYzHGORo@ z8L6Zel}ZJ5!t;H1M!pLNXm}Y39HoqW3pbR>$d#~i;*8AEjXUCfs&dsk&FCHAtPCt_ z{6n^^3_}mQgY#!NYFuy*v+7t{c~5D20Jok=(;s2wj}1-Y%A$cxb)c*cRiD_`x&Qqi z9JSbKYI;v;`VVeBlcx7!<-}>)#9W)ig;zy!(_Xrul%rYh0Bt2ChGzoR@?u6~SL~Og zro)t(&2fX7%xnrPC(g_)1~cLiu)h3!#+{x|!y)6ApMxC+vnD;#b;{AFaMPI_9RVvR z&e3!oN1@kRl)7_WA&dHN-e7KzKYBd~rMWsRs`3G(% zlaR+?+ZZPgTuw;Wq+GC zr49{soAPr$ZZ?yjb719>&yQ)<ZX}b97hvVY+0g9-WXjoeRUEeKPNf%B#BPAn?ryNZ z^VDcPAu&8tBdeVN)nUraI=I11X4Zn06K7_IuAdpGmbwKn^;hrvtGx;`2e>1%FB~Us zX=!;~v~h+M^_LPeAGeoD%wDi^;>2jHOf!PL*<4SrT4hdjM`i#H6c-u0Dx)||nJME2 zGnpyD%84_hJKfur&Gw4}Go*F-t~)H>f+NI*#p-l#(^E>xmAIu$N-l$y6Q^Wt%~&KZ ze~B!+{Mnt32jIwX=|JyY^%~o{he7D&n#&(?8<|}E9#&4Aiz#|8>bvw2HvZ?%#(&`G zaM`e0=ND{vUJ^du$L(bD@eZtaaXRpTWMUkI>33Zv$>Ek&UG#t)v-cH{Xco# z=N7n}SWS-W-qIqnX)9~>MlvDU7*!Oaptz@!sD6E_~8_~}qc;CKAbq(~3_nzx(C+TuIy|lh#=-wJhDL0SdCNsJDE3BM2H@f33-Gy|unhl+AQLtI% zK<6HKB_Uz#f%RP_^P4tS$6JWUl$x=)#Y}2egq0JgMmtKW)Tn1HcX7vNM>tf&TWyHT zl$-5vlbPJihLscNMq6!4<-W*QER<@~l&cQ8aQgarpJo2f@S4u^NnqRt8^9wjq z@ljLvm{Rj|++rp*KZTVOr)G2A{5$;1>(6Bt7qVRnIIp^c^Aa2^E;#$zEZ}r&oTlu& zfE&$Z=UG@eadvbU3wdFzPcKr1Ttz+7u--w=6RCBC#PCd{tS%Ocx=VRk3pba^%Nnrq zh~%X=UF;IyM-m@$E2J~(J4pMw^D-X}6SvA(@e*~H^0F6hE|Zr%VCBSl(Y?;tE81VN ztDp==1MZ-d;rMVtvD(BA{G^1Ga66fV6kz4V3DLbC9YoImM5MyWx7<0o5{?p=6RX#w zBi>S4F2k*5(((;hIdNKa2kM&FS16=B;7-aP;Rta_u{u!K^psNad)!hcCBK7}6Q@M? zvRX5C!M?WkOE>>d0G z!Ojz-O@+kpOpL77e2K@DnvHRbnbb^!l@q6Cre+;R#<01&tBg{ga_8mEZx?s^IHPGKBj_fI=Oir*GlRh2BDX)mHZXAk;%nhVCBTQ*h15%$eZ=Wt7+c#7P(@NQchMn#JR&A zDt*&%tu~JyN+%ZYRA>v|!ekMzCm2&b~+*Bqf$HB^p zbE12Ntx!s9BI*Z0O!x>r3}5#p4(5X#5;HGaRda_5Zm$?>I@SYL5>&CnX5%!U7BI z5@r)DAW1STnFW@#G&S8dGd0^`=r9|Q9K}HqW&ufxq9}q$5ClOoq96!H6hRP0Py|sF zMe*IP?wP8-=T^`8^{MJR^Z4WKNA~&ioL_zW+;r+zkZ1id1Z(1t;E^&JSqoOS&WLGM zldELQUW$%5`^hQU8+M3WORu@fxW$D<_37y9?Sv!SmfBM2X*n}LfbHTk(^B_}Ic>_%6L{E6 zejbIDt@E>;VSnFjq+WFXB?ssquwPt&4sK1y^_o4==xpG>LfPLcD zn3k^5)$*mp9E!)wBxVk*Y@Ha>HM*LE`ml7C9GTN$qqxYlbd9c_FlA;59x#)cg|M=9 zW=!{#1s3`*@Qsuk9iCg|@Z1bL#)YS)d&(j+rxe|UN6w_^Mp)T8MW*%lh?hDxzmj9~ z3)mtqHZ85cgH$OeKgC03a`GIkY@HL+M}hZERRY72QmQyd%AXoS7N8@yyG~TKc3~EltWtCmtq~k8NRP>vhJoPg8Vr zYRkgk;mf-Do^r41n#y_lB@B)nn3G|@xPwzm`!o@GQ-V&!<7N_c9IR}eAk&?8btn6a zp5Jmu;rWalo=?M8ap7s{=2e<9<>n$hWF|M~!^+mVF@3(i==yKOs(Q0Pe~;w5a$>#% zo5UrirO(%glclVD8xNMr${nz>byiG!!OFgJv63!ViaIKPl%w){*ds0~E$sz|a;2oa zipR<%~=&GZo^k<6N@rE^Pj+LWKQ@UWTutPU$%=f~6w zUUCNX60^6QmOWu}xFx2gUhry?l#Si+Aen6J0xMf*!*ps;a?8!SAqsL%vanHHPFgxO z&=aQ2czD1}X1ZZz>&%#L@z5>QhoWoc(0m?tiVICkw|J0@DK%H%5i_Z|99FhYjcL9c zc&PL81352Gz#egVX=%P2%9WDxC>|@5l!stt>!g_8Px9B$4eu2ELr%!wU~jmDwDe`I zT8?%5gZByE!J}ld@fNIXoekq$w%6%*OAT;rakO~lGf7D#v+`+a=f8HX8m$}?@i3Wm zYy>NhQ923>wSL|sSFWfweHCM&aHW$Ub%R?*5nbrDR_DHrr( zfUF!95B7+QN=vKgP_C4eZah{dDQQ^QIw__OxsZF+{W*Ov_w#aGu7Hi=;?h!woSrac z=5jn>CNr19%GQ~Qn86HJm(+lht++ZhPspix6t;>>O{+5)EoI8hLwLwcZXSS@t#cDG zDpl7EPFGfM*#4Uwn0H{0xWKeJDh=mKNqGy8l}XB*u(EYhOy4Y0MLMruAW}!thVP3{ znkQZ#O;i%etdCmyW>I6hl$VY0aGAVp04rPP#q`d+GO+0Ay-|nCIhh07!!0T;b zYe-R@I;XWm=bPk&+z8vlC8V_);-^XZxB(B7$;b7uvUNT-GSrYt-s{%ywfw0ZkLO@_ zxOlYGx$kF5>39Z@l1ax?u(EYJOkGZuy#LuM|I>K-a(J2J#1qyJVVAg+wAAI)kS(R< z13X$LE$_q1W0MyDTdY-B)MvuAA*WML%eG1)ndMDuw1l&zv`oRHWzw=GtZbbY(+vp= zJ$1=b#_e|0H#llnBowk_WB)`sHpjtsaf?h#Hzb(Tru-a(ht1^YC|KD#Kc?@G_(r;U zwKi}|DW~M`spwUVvUO%6D^B&kC@)8K2C)arp(O717I$IT?@6j<3hLE6buW^vxhdFkPKal@@0SICjM z95#rH4EheNo@o6+1oygJiigUigI2Q^6EkwfwpY!Md{w32A4Qcm8)LuGRE zI;?D+6YZ3`)Svar#sj8_Cx{nB8!3ro7DVVNbtp~B#|C(qOg`3yl_U6Y`>vhX(Q*3F zl)l6F>*$z2)OTdbo&3gQ#F>11UI;< zlTY^+ifZNQ4)xw$fBeBp?7>zEdUDy}@#B79qCM_6A6eE*?Nux~i|481@2Cg#d-ws> zEqiq&-&bMFjL*35Ii=I^cm@p(SmcRznsX!%_GLUuX3=@kSB`w%Q`$F^*wpAnXUgeH zr@UN$<4<#~6UB4h)s;jXb6)!74VN)6pL{4=!oVtcyi5jGgq7>T1=G&udS|#;3d+PTutnT5Vd$yi!cxzc&QWIL(K1n)1uI)eWfOB$_ z$w}#k9paK=c$FR?MI}o?N#nsXK{*9h9;=|ZUY>$-g&dU2VTalPN-bFm%B6U)Oi(U? zm92xavALq;oJCqWc~nlxL$EzuN_M9!U~V~4nNma^z$0ZMav!X09gztUh`3H(W8@t< zBX7a}a2YY|@Ut0FsZvPZ#6x95@;a<+9g?Uz;^~Y`JV`u(-AG9!v)Yl=5zm0g26&`Q zMAn6sts@dqM+}RcIdVo0fc&U)%s7y%qf|ad95>ZD=Wql#MP|iphwuj4z zppK|aDI%xhkunjlX$ThI?SVd&O(a-gslOysB zY)=~yQJK;z@)RB^6OkujIz26t$!-;w#!J%XA)JYV@y^<)@q2t6A z$Ht-Kg!$-P-}uuQJbaWxNA>n`+5b`$J$M}XE9mfXLlro-!l+{q96qk^OGF+KRYgJ(i?AFOO0qOC`VC`b00-;opa7Hk!lphM#$NM%lI(3^PVOnhF4m9675WpsQD zd(ab47LQ{aDG6*9!R6<$`1mpJNpFCM&ID*(SlK#2jQT@IusL#m4uGxV@)KkIF%Dn* z;*m4)*$Y-45BSiH$%S%!%CJ=y@G)*wo{C4##3v6cTgRu#65hN5yHSqL4X{mIbedjA z!&|~fwu)YlN6p0M8d%vnHk(J!dW`L&&&jEI26l-{&4KdyPAzFVRelN&nhDL5u<}@j z#@IUgp&XhIV3*nmO;ii%`*_eyXx@XBtwXbEbfuwfq}!&%%c?0#BAI1X(;KgNgOjnH zbW1#9CN7)9%GPn2)C3pWQhJ=6mt$a$xD}@92bh?=7+Xt^!b4^Pb2zMQ9hheIg>3ts zFX!bP*di`3anu*ncHfzJ#7ta12`gL2rAd7;Z1deA=jAroBQ7s7)ED#i-Ys~@Oklna zD_aMqNqwPhr!R+iS-Nb;G9A@_pes^>c8M2ZuejjEP-u*Os4w6VGr9RWtURWAF%y^NVCAul3*G+RMUKmC*rGO87vr|?EIeW+F4JM<2wYld z>kK+WYi(gINCa&_vsyiV4Wg(uCW@l?s3Z#2pZY?ZFU8p}>*mzu+Y7yt+i)q)dGN2y z_!EhzKh+Hd+0guGxE$x~R(THkQ_t`vB6}1gJIxaBPmOw5H^C39{u>S^TsOkD8J~CG z&#BOb?S;?a zz8d>eDFsdYQ&|**vL-w{g~!e0;YnDT43Cfd5|LFS_Wo3@C!+zJdWWXdrGFaeLlvYD zo)2KFxFw`%PX-g7Aai=q^*$as6QB2BW$XB8Jz++C(gmHLZ5=T`Qy(}l_Mc6DZL2(XY)!ZpUFW|8=5&Ai-Y#kv^ z4Jwms!dCARPoq~+5@UZFtx~4|t%!%t1ZX)}**ZX+8l+sDsZFDIkrOlS9XhpgN&wz>3#jvtvij3y(I_hP1rduSSQ5~R$v5$>vcR4CS0$<%GTkE zK9(N2?_{|A7xXLiHcE?Ea~mj$WL9%W#}8G(aI@aJcmhnA)`69+!?Y8>QWd?PUUR8B zKu*=Zuyx#0H9vl;LQc?HwHKZV6R$mBW$SnWll4WUSe4~ioeEpV#VUcxx^jTxl*cn* z;S4$v*_rpBvUfth1-@&BAJC-)0;Z6UZi^V6r;`Y=$RO83M*U3NV}=i zh>z-P1^x5<|a)!=? z&Ehf?V@rvjJ4NV|c}qbPH@17oZrY(<*a{&)4zDnfQDa zRvs7lEb7Ew0io_}f$U7rmLoI^Hj7(>VnoQ#ogy?HkDZCo_OP;bgr<*v zg67+p%9vJUX*o%!z@BkQIySzev#JD919F(|gH7YYG%vow)ZhU{>K;4? zCQ^67%GQzEZgix)Qn#1)%KFCRn{t|7hyCKxbX0sa4W~~*dJPYs3DPUDvUQLcD>qNQ z(WUPkZO|=Vxvi@t#{A07&z&N)4jwxbp*3OU@qtjDyw0|-9HG5nv$%yQ#+92_Qn^!v z_P}FjBD5>4Y#kxSDVkSOGj06@hX zw3XWRa)Pdbt>O|C;}M9;oZ@p89yt@ArLeMfd>9=?S+}I$ZS<6!pC@6jxctP}QB+Nx z0`xc@IuoErU}ft7G2RBLx@cVEzc0t=J=ifWMlrq(5*R>XdKXWC3DeuKvUQj^gIS?R z8_c%s5wFTNR}#sr%HkZ%3Oy8`P4UQ?_)LJ6t>eR3)@KVnGp1_*9VG|oaM&zv8H#aD z=I2fkIs}iMiO@l?@_0c=Zwfh6j?gDzvn(NGXbV}4$Ie7(09Lk+5NAqV=+SSfxkXOU z*I}=?1jRX}R;kk(^i@1`CO}_?m8}D`{piOWs+2pKj7yr+UXWAtbJ#F0MRVgj=NQSK zqVy9yekMvkhLx?O#CZQzS?Q&ntl_en6??@K>*bV0G85|<-+v7`Kym88GhpKM-~ZP* zFR! zXv6>t(+PM2Oqk}u%GO~5hB|uH!zFT>E`}}R(v(1LGG6s?A)Wyfr}JQC>o_sGAl2ua zy&U;?-+gkF?t$&%q7-8nWIcOYmF~i$XJT|atUN9-QVnYqqu1pay$0K51EX5@6r)%0 z=$RP31S?y|h|&3&t7OYwe|E99xxKC@Uc{}VB$8Rg#n|~coIV99K#w97n zP0Eq{DN4O~{7jTwSlK#CjKQtHQ1T2l=^8mnSHXU9Ns6&14W~~*T8f9y1nDwZ**Zv! z_L2U=LT!Tdq@1D0VXL?d#n?WgGN<@Ff=AB8=RsK6IzEggzq%M}rn(|ZL+Cv@Lhr(M zaS@7f$zRW&V)Qm1Jrkop!^+k%V(e-c-L%(VEU05Qjik-{#H+PUl|(YDwHSA`0|O{b z6YvC>Fl`7cTZf4;%`Un*$IEBP>)40OSvmwZj9ZmroMw;YPfdh*(!_H{WyUxmHm5)@-= zTQzkG(3kPhnE-teR<;fhV}+*PyVm&mxtyP$z*cejiE)LdGN<_b7>}HZ&yQeb>-ezh z5BUh~atp+h>JBB5%%nQj`ja=@fBj$hF%L2U`ZugRE&w`}d}D389H8yT1wblwT7kB~ zLuUfCHLPqMAjUiUC3R_WQ9nJKFGuJE*e&iD7UMhnwd5&8^YGxA5FHIGTZf2o;8Ch{ zm5WYV@1ea|j?sm%UtEl0Jn$G!pMrEA9zGMKvtecHATg%X^o#2E$Qil|wu;M8jMHi3 z2i0%KBWL3CO<37FK8)$KGEx7W%xiLfUV**h@)P59x|%wzKQG~-GXeTFtZW@1#+ITQ z#rl_M3;K1k;sx27N+OvBS&UnXe(n^Z)$rJv2(1h&j}L?@`Lu@69&&_sh0Wp?p;!@8 zxl@F8#$#t9v?Hu+9U;aI*yW5;0y#;&uxDJ7V!Q!6Yykzz#ZzDc)deeC2Wr#k z7qFc!{VuGlZGO2`=<&o{!6Uc?9-|%gg>T z@M8Ro=Yx32OknPZm8}D_S#x0Y1=qWBV%~;L;u3Q}Jj57QT7Sl4W+L+jtZW^bWCNAs4%GPmdR$=lzS^ae45IHah!6vn{!c=pn z$n1~D%tU4%SlK!<&1NyQCu6akm;u-$E-`V;VvNlgB|Ky%F#WKybzqv+80DTmi}|XY zm@mU7afyjz7E{fc)|fBiF*A|54pz2~OtTt852}75C+5enM_gj!s4>P9svqGYGlBUb ztZW^aW;I5+r(dGjkrz*V{|lSMB_@s=u`x7voq@ zrCzUF?+Uz24$|$gV_cA8cx#jzKwiQxeHcr(?KC)8GKbX=OYE zCQd8B%GPmWOs?sDth>rF+8MTrTa03yTpRCU-4TzRiO)<}**ZQ=whYs*r{AB^E9b_A zJ>qf`!5jigp!X9yXiKD)#lxcmr9}k%c%)PL(bzruLUR$Y~!DgyEvb0w9x8=Oe$o`0 z_3@yY(0mkDwhm2`<4;$;WvyS1*$0oAiOeTpW$VZ^nf|)P zZf$59kONbKE#d+b!}M2WOmXSQBWB`~gO$fLF68TiUzX$YMcATt;{thdTWn{Xu1#)h=&8gyr($-2MnT1je$oM%^WG3S= zGm+U0R<@2zlZ#Az`^;~C&y$mLH0%|(*u-#=NjP;1(2;oPOn?r9m8}ERWM0#qBNvjM zCkN+j*ds1DG0bbKDN|t1z(ZyNa~iB{9hfG|?4Go~1AM!jmv6!rae0YhnXNLWxO@YT zn2F2RU}fvLG&wZrDY{OXT;BhZ9GPFkHgS=O;n1L-HO1zac+^a6eg-RB$EL~sT6F`B zA6Q$hD4r6ptR#||631{kQbX<(p%w7hnFuWlD_cjX$;`&fIr^83c9xT~BkU2k?8Gp$ zsisVUnTdzY1ZEnnY#o@%(Fc`Ysat)mx2zvkx^if`V4t|q%#j~e4yR4QN#S8L!8r+5 zwhm5{tv*k^8?B!`T_&gIv#?2AYGT;8@pGog4B{~}k@*y?JhqX^JNkz}9+V?Hyn0$+NhGs+iea}#WlVATC>}8rm$hMK>$o&oGiBY9egWwIa$fd< zJ>piF7}iYHlqoQuz(ZyNvpcM89hfHXTUOmOZqk(G*!06raj}Wveaj$m3QrCXoC!}K ztZW^gW`k2f-=O)ToSN%ki@4OpF*p?r`!iSL5i@bQ5>~d3OOs`Gw$L+Ux;C5nksO#G z!X|NniD8-T=S(Zi_wksS$UFus>&Pr!uVa~x>OXytpHiJC_N_msqhspXL#Gc->AP%V zM@R47eV400<`4Bvi294oqW)s?qzI`il;Yqh?DT8w{9De>KVi4p%#NYs^Y3`fOm_YX zE9>mE9hqix;X;qz@ws(bymp$bB$8P>#W5FFDbr%J86Gkdm`z}1>%eRoeSV;7wUf!H zu34?l94)8jNZ2TDojF*3fH0CbMdvU)ZYDYh!^+mtX|{|SMn|tWXUo|+19pnbP8`dq zk;ExHr{RG!;aLPLTZgB~JtOM(=cS#j;S#@Z%IWzAY!#QD815MfWlr(=8Xh?lpRd5m z;{l(1LBDwI*K&M*30q|WAC)=9=Vy52Onjb)m968`eCYD44|#K8<%)Q+yn>QQX0ja5 z&{a>I!m}(MI1`@#jX!u8Ll?awYezXfGx3M8vX@uQs(B|nbkX37MYp?B^oIH_SKAna zt2+5~Z$bT4&K(+zap*E$ku?pEoQcnNu(I{q)1OO8$owuw7z#n4<_ z&ze@9lkljS*c=Zlk7;aFn;*sIvvO<(VVl~CO)YDR&8P6Fnb=$aD_h5=Nq=ark}Z4v z*~QxS&i!(3?uC8gauY*;=y2K;oV)R`nc&9RGy4fZ^+U41MCzR zofxLbLE;pi-{FBX;rT7BY#p8^RVVNEIAw1@?@C{PK)ky8sFFx#brnO^8BUvmvo;4BB4gVUs=tG}>Nn;l;#XXa|yA}%vAbabhVDK1yy z5i@Zaf|ae~(q#We-6lIz-LI-4^Fui@--m7DA``>@O+9Oh&0~1fOl%&8m91mbq%+6x z9?U=G%={hph|5e2ojKK%DKLM=cByWn&!Fb$E zbPj}-t)tVV>$q5`i}0A4$W&lu>&P^j+myT>{k`yS z$cgzH>=Bok80I$BlqoP@!9!*O^Cei>IxtO^-0JQLZBp|~IWIqhE#mSL!;)KNOmTT0 zkC=(ev#_#tT$gIG>+p;|bQ$g| z{)C*K-C?WRUwh2g7JnR%oQcm)u(EZ0wvWDcp#Bpac?(~Eg*+#Rs1G)b3(;Kp^#de- zT8Vn__?akWVC8XuQqZ=o?JQp{N9jt~u=b-A>2 z47Q33QGDw$bH~oZc;rlcz6UE?$EQgLa;ef)E;?!bMuNY~+4(E%6PKMBI*^Ccrgi5p zc-TyE{sb#q2dBw#XqjBAzS$D-5^NJCk<1b-hT~9`F~wzLJYps;AA^;xwoPN8dH-ztwlWe`RtD5|fu3mbk{3a3oQjA&=rTNfheR==4g;jdh~#fsVRT zdP)m-O8ZwwuYRbL_xdYY)rC;V51l_$y{@|UL?)evE+33Pmcauvg>-3J#wk0gbk-@A zTHq7_TsXRhyQq5at~2!TvcmvOR1ssVmAb@}BN7|=67BJS za??A#*H7(LHD;by?u~pz`@oN=p75(934a3i%=nc1rYW6<=QFq~-QlLsv@;@0@@#j< z<7C#qkNe7zk94hOI&9EvhqDx**Ys*Mzf;M zoAc#VzoWm{_jfrle}#?W5@Tp_<_|>aLVhG^%FSQ!pqbqK30Ahw&EyDfR9~u-&!`oB zPXE5%W}g%fNt-AMY{JjQ#;|$F$0n3BrDkJ1W+pWsgO#mQ6E%bBrZbqsDOP*`k5S- z=V6byuzE)K@_!4P*D^cNTN`!z^ks@)>h!<=DOvE4#RK5KQ7}hV{lJN2XILR)zDaKX#BmS zRc?dE-`jkN$S%;xroL7hubVgit`V%)^at`w_<_`apFzv#&tR*J&$RC`rPJ_O2B$`? z&D0YNwfR3-QW#na^f;a(b>dg&9M z#eTw}?8vkJ4;~-$S^o=GCd1c1YPdwbX3@f17R`U`8#O{v$$M(IH|3Bsq-k<4wo?*u zET1SBJMg&(5~M|7DjpycjICg0>tKY|OR8da)_qH>?<$n_9lMj{Y#a|8#2poOg4w9$ zNbxupkCBPTTv*vU9-;035FTEBz%7>aqoPmA`M3afh|9;$Fdy|KDIn+KK{5e33s$xc zh`D|YIN1u_@t5;)Cu|Ux54?WVa-?{C3y+bB$E~n(1RgD{HiHFgZKm6TM6hgry449( z5JhbrC5qw}Nfc_?{K*yCx@=x)ZlPHA@;wbp=Vi`9=kdlL#NffBES=RG3T5??F1JWu zpdICKcx9Fyv` zl}^Ls8Qg^qjO2-Snscm287!|i!J}lBzKwn5$miY0<+XM-R{eR07NX&0_F*b);p>nG zJ)pbHB)P& zIZXvAgk}+Jm2p_;qtG<{Ja07_HA0!oMQ5rpYdUkP;88QtDZ*eb4N@pxlS?N zTQ%I(-;?~BoS(12esTF}dVvj(pK$6FqA%g0Ga>o{tZW@3?E=ub!@tk^FR|*kR(yUY zhv#|NCoViqFXv;zqf(~OJd20Sgyv~j**Y{4GaU0^wd~pA!RmjoMO(ERv*A_!*`IH=%3t)e^uN*vJMLy6V)N|(I>|5DFV?ua);?XlPItx}F7Z@4mM0d+Ex)Zj`21d2)DMsJIqi14tE39lCBduf6 zwCt}=t^2bT{msJP$vOHh>=&1#qhc&a_4Fx7zrn+2g7hm`**Zwt=Y+!`88#l*K2N+b zTSG}CGofyJpv&7bGH*DpiigYuW+hnJIxt&C&x1xb+O*~T?s95A4jaWSIWZh|jO0yg z%}#jSOmudDm93+*RWv%mzM95PpPZc@*eNbMhscMkAaM#$1`nJGj{_@Phevz8Cp=JP zgKad8o-5__48c}$={Yn8dV#N{T2d5(F* z@Oya3OklnXE01Mh3>$@il>_q^*rPTAW8NVA6CN@Xm_NeG)`4l#17zM9+~j=mVrpY0 zk<4PM>AR=A#Z=^m;K%T&nb@ocE01Yxj2nRm%dt5SwuxJ6;=m?q18_e)Y9=;&!^+mN z(VFqY)8UAXzeRFxDzHynZsy46!oz9PiEt4Qn+Z+A-~m@ zfFOzw{7!696z{j%4_5WHWYTOKtp(`0EAtZ$>?!Kfn*D{<{sD@P7we zW_-qd&numV$78xBh&<8I<-6e=>rn>H_rJxXWR||)_{x#byN%8Fp$~$Fya=_Rha2zL zzCb+bUPDR5G3lmH-f&A0^T~&@B@C>J$IE13C0LmZf6Mz4k<}sghWm|;#i7&b($7hE zSAhw;qdyMY!z~fJ)9Dfy6qPBRA?<`m%0y%bSlK!v6Cw~v7j#DY5yU)*Vhs;Ej&e?a&*DlsB}1@5TuKbLaUhf!+D<=*$I8UyGqAFC zOrnOHjNT>qm>iOaVSBicNQRqChE|gA;gK>C`7W$%9g(O?lJ6nk=KHH0lE1(PaUqdZ zl4`CLlRx3HGBNohtZW^Vs98zL%WH?;n_MWKxo)f^l3C(NW+f_B3dzUtP??ad2P<2L zB&wDu=k!_0!E#Ctgbiv(Eve>8G1(7~m5IsTu(EYbqH0Om(QC;fIVBa?A1)=5TB1^= zkQDJynUEA6 zc@{RPO_&&loTu?vnV9?lR<@4G7UoU0F3&$bOF4OcLHs{CEdPOR;=;0D>-(>vjA>>0 z7alPanSa2_){)t&IWqn?qx37ax4THZ_L-_Al3Dv4D5s{DGzDiXJZL63TfoZJ!P%xc zI9a#5oGSHt-8wwS%i%c|c8gnb4DT9nH)@AVPLMbSXf7T&6QCntW$OTK-W;Gpu|EG@ z+R?F0NA;i6hx)FWsCrK>kP~z+Y!{cH$WNEML8pkhub^|7phA(7a~2*jlbq9GW$WZ@ z+nk)D*VAjRJ$K5<`4(&!mmI^JDroHqWlj;g6_1>W(9N*2b%aKlDK8qSKEp-lw{moT z1KY$!Cx)4_%9tYaD?DN*GQWV8ts@h$pO<#MthQ6L#;3&d<5iVJGV^1>eqJ?I3du@% zs7y$fhn1~E5^)qwyIMXjXJjYX9&SAm97P+OT6VxAWg;>IR<@2vR2`u`Ej@BZGO#~f zMkIAarAq6FgNMq58Bw`Bd7Q3}&&c+vumpLC(63Hxc z1XEa*DMe&GJW?hiAAyy}EFz2gHAD`SBeEZC54Vm;5Lwhu5!oA$l!?fmu(EYTB33!> zqJF)vr6Omf2>ZijM6k-Krb;0x;Gr@h$->IkA&HuiEb7nA&??E7#f8ZfAq4^uEY#o}2c}jPVyzw#h)8ggMR!Sn7<&I#U zQcaaYvIQP06Ou`=vUNxzmc%`2eJA!mSFk@^S_CtdYN`~HU*MrK zA^9n+Y#owG=Gx+wy1l$t){g^M9TZP#S5gwmOlkLSy{rtUOJP|a50?qcGO)6BSR%IH zJoR#~e%7;-oRl44gSaI{u>I!eN->#%$I8T{6ILF(nB>Wu%o#Z*4s1|cFj2WuOispQ zWnyw7tZW^Vh&~jrq?SN>f5GSEoO}j$h|7tf52cnY1?AItuuM=cf|ad<60w_-P3N?E z?Dyo9d>6KdONn4NMP*76`3@c_6OnJj%GMEySnFinl72hjpX7}E5%!16h+wT#O_f6O zdpuMoB(K8C)**>_fw1bFaTDcZmxxz8>nVw3Ry%_C27`ntFdxAKW&*PotZW^asDY=T zZ=mcaCuMKg9&S;Q3_JzH{>h$rq)bG1gO#l#60sy!A3vKhU7MX0<&YF$gSe0gmc)Lp zw31};Secl3u<}^OL~nuof*g};VT0O)iJ=Md^LVUGOs;^Htz!~3jV<)(O^{E^Dft2H z50?_jG*+cbYsnLMs7y#6g_W&CvYC0yUX@`dlTl5i+OYF4IVt~uP2!Rw__o4Gz7&_g z;qfwYc?VXuj!V?4XBZc~vTXGk@v3JFB{B9^JtGNIU?$-KGl7{1D_aL9;;IYvd-Kvx z)^I7@TsbjEz&3F!jNqz^P{tIQL-B~2$jpJ2$2v0kf_|yjS#o4fhiz&jGAd(=%o03e zCNc|QW$Va94@-WPA&vUC%89udc8N=jWHYW_R!!IG+=K_r1m;Fq**Y+z3`_I|reDd4 z`2}nfmzWraCF2cDKgAJ!>)F!b zXc;_OCMqBP|3O7{!BJFpkfSmKH-BX>uR6o?PIl;`!4->cccthJ89r1gL8X>0MWqvu zmWj%?u(I{4645f5t7OYwe|E99{o=@3IT`kdI|>O}CWq6du$+j8%Y@}PSlK!(5z}1N z9hNE=Qh728eMXMUr(u`4xCo}XLBbT6i|~M%z?=^&TL&hhy5!v+r|b>r4cXt7N1=zh2`6LxJ+2?fR(Mo5^)rub{~ulEq|2L@_X1ME-iwifRTJDF0bP8GI4ns zR<@2yL~ZFWlsrRiS?^Nug6JbkBAEq|ptcOBOJP|H50?qc>aenPSR$IA`U?xS8SdV4 zPWFWD;Z_wv^OMSyBC;DEDHD-hU}fuwMC`Aq3rA_+Om59z3!>b<^a{L1#-fRSL-!c&JQBE{Bz^LlUuAF1l&2zgSR* z&ss_OfgF`5V3)Y42o}ph!W5WC@qn4YJOnFS2PR_uQ*?8Vm(P%EH2xvy#;$I8THBUsrw zCJ}R$lGmeui1`RPC5OWPa0`lHu2M~vLNW&rl?llKu(EYXB9_PMDg^>feB^TRif1h)k<5xm z@Kug*$`qQ_@sOF&tO6@XK;!mZJF%nV^r0zzhwsw@yq`QN;sN^)W!=<1!`966%Dsk1bQb)G>W;lSlJ4oS zW5%c4msL6qPiJr^dNsHHJUfjUlBc=^kC9pR7W&GO4|_`FFRg_iTJwj!iOGu2l+%?? zdAa^wSs# zk+O}Mlu}u}E0Rw6uW029Igd0>{X)elq~@ovTijxCaEryFGez^J)28R}xS9Ms11nqS zXRD_CR0mr1&Z)LGTYgB)&N50Oj@dS?IEGKlFe^@-oqEocn-Afq%RXj+m92BL-Kg9Y za;bcwm?M>EhMb6TVnYCvMtZbd3?Kuop@?N*XNGm}n%ON@u zHjF!b9TpQr_0%av$KjzfDLMvLwoXy=5vF&=Kt5L+dzi))UH?@^S|rFO!$sU}fvPnAhay8S?Mt zth@?4#AU^B$i-tNa%TK89xIcR7hz@VoJ=;>m4IXTH1OAv39&4J%ux#yldK zXS`WCE*|U<7nhbtq{x|WHy$gKlQgUx!AT3}n!(X%?Wm#!iD0L?-0G%N5Jl~DOcce@ zk|@;C=vphZ_h|GGXR%u>H5|a)1OK#)zl*`WM>!gGibZEJJr?!=&?G#wXkNgwknvGK16T z7E$;)c9P8Mu?2_QKgDBXR=DSU<;Vxz#$(WpbQ?m)g5l7L;oXE~Tc^cbM`r4E{phs#Jyb!3*Ij=YSA$Ry)M zSlK!m<~lMfx{iG0O7VhbEhUl6f~KW95>A%Zk=5~FnY63|D~~~1GH!plccE8uQ`LDa znVIYN6Y0;CVwCsWh%cNyCtZbbYx<`^J7WxYny=gNmhs1;3;X-0~JD}-y zSZ6&)%0@RHBa@9ZtZbc)(7W69b#UD`vPtrJIUQHP{&4AlchE+%q80&B^d02N6f@vHmppB!CAgUWQ~Zug>LI8Ug~!tII3T&M_;dHRggk#JlHDZ=+H;8 znL{U0?3yuheMl{BI)&=S!)CIRhLx?eGi5Y(O8ya!wionyIXqXuUUA`Rdhg7rHD~xY zQ_Gvub2%P2lb%aqW$W~8I|@DNLjU5F37{wB06hxZ#RaJ8%@16Fg48KP58*{g-6XK=S^7IIys|NAK$}N z)?1*@eI{Kkp8HHx63MKWVyQks>Xf04@X(nIZ2&7 z*NErMAHrsF0WuuC;(La}iBo<)zyoLU^FFLR_W3FFnE2_G^RumzNM_v?4?p$9DL+&2 zz?uAP2`i6zesXT9x2NdoFWsFe=jS-sthUyl;lwFF$KZi8`8f(!w$6`s=P;Q8j{VP)$ajduD~$h)cDg8mZLx8(@k0ei(o zD3;T&dft?t+wi!V^xOg~Tc>BV^}BMhq;3DaDo5vK*eEVKv8>;#NmFiK#DivX^8&1F zotx3t?^O#;>-V*;6)(S5R}#rgpJQ3Sk7P~>S_O}sNzjV0vUP$+t32hRr|%r@CWmJi z*r>Kvo@&yRo7s5KOm1eu%Hx5XiZ)_-a&Ed|quR|)g>sX|gJyDb3ao6Mo6&kSmbk@& zKGnHG4$kGUQ(SOj>Cy1BrsQ0TN6jSX5?I+fIivMx_#T=jJCDloc?h)8bRum zp$G8LnGD?rD_dtMsvq7l_NKlg2j?x=BQ7{izwk2JDOWvTO3Rygyi8hNhn20W!>&sDiz)W5ahn21K5_NDH?pe~9IbY7q zIj~V&W<)I$;iM@yXW~IKx%nilY@M5^Enw9!U}(^~LypXCut!{EL|ef1d?_ur;PEnP z`8up@otCI|(nx!WR$^Y3^YS9>5|fFU_I^-Ab!6zVqa>`HCDjeC`Sow75jytvK zsH4?$Dm6T)6X6F{&-m44m+R=eW}<@aIM_7fv+g@U=`=i`!QGp^WIXazwHvvEJnNAL zS8^YNN6IXMNBPQ;PrZ#-a%<=4BW{H5s1D!BeZC4@c)9X9xU0rHx#{z7+TbvM{j?c`9ac1OR+^%B5$)puTwQDZ)*RNidgY+Wo8W*HvMMF@e z1r(_l@D!Lx{Tx=dj#Si;Zt$~Q(CX6aH;C)fDoO&I26AyaDsG(01&Y#&c=$||mV=e8 zqokde(ZMb4-(M(}t6$TtPMP$bfsMW-UdnBtB$8RmrQ#XbBE6uHt&8WvglrvH**avqvmvYG zN5Sj>IcEF926F3`6EkMi4GP*`cs5MX_JEbGgEs0s$}V2kL#;GcHg^ z$5x<122h;d!xLcQ^e(Jy9j8&x?bOfH%bRyGr+itw*xOP`B(vCy>D(@yK1FGBJbWff zo5IT0QR2*;Dp4#QBWLL-*fMTmif`r=ZCTtiNr6c1R<3ia}kUoh=&je{PtZW@5?d|>mBx8%*ZE|*Qfj#1~)AZ7r(N9xq z2~%9Yjt9)d<*Tr=bzCBwPey5pdr=O~3$R;UaD>e#dg>IRpW~r35&8+NY#kx(Li?cN z1U`}$xK(ZxPo-B>63I-Z=g7vaaM~1|~D>0U42({Rty`d>vC7sek+JQre>MnY`3Z^>{W)<;#?*n+0ca&RHm+P*~O z)ku-o+$4S>mia;L0zasF#=(VHvtiSW&$@3*rPJ_$nqP=D@>I1hydckdq``$)v+zin zMR2;W9QoAkU5GW}M(BE|@P$}u6}a$Pqf>BKjTd6k=il@~tWlqTC}Tpxd^~0*2`9kH z_27bmXr3<-St*jf5G#bt@V!vQo}9Btn@U}(q7;&I3G5ZOax`83GstO3oX(~$#sg>K zb0MreKJfAK8a@xm@wpH7$^t%Kp5k*49yk-9yI^JO_-Omr#_F@M*DdN7^1Ues=yljF zE8tZW?~ ztw}zB$1zQtPnA=Xhdts_)3ix`bZTk|(^|6t515HdFRVPaaUs*>>*csy1AEj)TujsB ztMGuCxGaU0t>dC~H8)fj)2Q^69GE9zm$<+*?P_M#mxuxBaXe%uGLOK@){)Wf#1D`$ zPlMl=6Z0Ny5|@~!AK4t8n8@kxyLiM*VBUt6tplUA!3V&Y3e1*Y6R(;!R}#srnwqx3 zkB&=3b=ee;mkG-RSUCcg7S0@lW6RpGb}xBR{y^1n<_FPDX+u+ zaBIXKE!T+7YN~XP=QTW3CM2)G%GM#-%nV7dQ_PeWdZk|dAmZy{Qr1-xaZIUWttlh< zQe4)-<7MKqCai27m(9(%WL;;$;#84VmVM>C>;=2Ttt^H;WbPOgBus(X0}q%9%&xGq zbzruL0H)BBDiylRv{~m=IWc+ICN43CJsvhOLB&QgRTXJ+Xx?ax8 zHLyQiRs{2wYN`~HtME{nkSv9j$0{U-A?PVNBu~Qrv;mT8suYsP@lctNJOV3Qha_UT zT=IHy1uvsbZQqx3@*Zpvmy^9(Uj)^&rKr4%N6SRzZCH8CqGFt*Y0MP*YwS|%zJU}fv5OfpYttJB&3Y(@W6&QWq!4u?JBmX*B)Wu=}jh2;=DTqZ0B z!O9V^v~YA2oc`3dgIkaY&Y&)Ab)zVVqIL)&ilRpnMfC-~725g&-|G7<>UWD?&dryd zY{NTz*TKIr;}2x;K*=GL8;-8wn8R=ib#<#G2d7Y1`VuXiO2mH*W!^-Ld|VH~kE{MO z4vwTAfc-N*@xEJ>PQ$YrG+ZcOTjGbGZ}`N~d_L8Xd_DZ&tm-~Id}fKf$5(EFir9}I zwlxluVP8TgIpK4wH&qJK(+J#O#?qI3iS`|6 zO&Oi2G~I&U;2UC`)>RU5Ox7t*^AfH(dVt%K*lBxy}p**ZyEk4_Q=X@9lv1=@bosdAk1uwz`D<|j~>0w-v7 zT7YN5q^cKIwocV{qgSV@mt`lfAJ1PeXX+Z*FD_FjCd5?L2TIgccpglmmcq)`iJCe( zQQ1O|SJq0@Q*xZ1gw5jObX)>B`6f`79>>n5S%vIAf6m^&adP7pNr0 zyub-c)w_5mOsd|7m9107s8Ice!`&@!5ijmGR}#rA?vkibz6q42P4Og{EKPuw#{)}M zlxAzA-BEIu4u{R+7N;aw@=c&D9fBvpWa%JS**Z(pMxQyA(oWXRqzu#XGv!2m61I#> z)X53VpF&npt`_5|Fu59lm92Bd*vl-@EvQ@MKz$wdiVIW{dzn=aC`n(%b6}G6WmtJ! zkmQk9K3W$FYx5hhdfU}ft}?Eo;P7JP>7s7vH%T@3ri zMJt`af^P(^x*wFV3-NrIgq;T~M-bLR6J^kcS!=jzK_ch|y{ma2O``pJ`xNp6Zn0Fo z*CX7T)zDt~gq-R};b+CAn%A$F4$=(Ga-)*3a}xCHJ%oqPg!lnpIkI1`ea%&&cD)E& zLVarCcD;Axbi9Sz%bcU}hEs@+kPU>BH}OQ6oV*SzlVbN;s}e!6tI;~Xirpr`sJ>6p z^{+6BtaMYqDPF~Hr6iJB#Tvd8U}*75*K-V)IaAt%-7WCIne0yTl_P6h8}H8v?Yf#+ z2>rCf6>hGaiX(7ynH7%L_{XFoWB}pgP&@@DA9G-3QriyjCE7PyPH$dRI=iw?dO^;~ zrxtqoOktsR(s-7NR@mWwI_w#DLd6_1d1Xd7g02si;E6D?S_ms!$12nXVXRN?VmFob z7U&+fWfL-Gf#XGs?5=E?_X#EsVg^AX4u(EZuwi*R3MH4w~THm z+(BRtcz*g6p=I#!nFxJ2{t%iy3PP29sZcDdEya@CQ+?exm2(~at6V$Ck(z-&6XvA6 zE7md3Xa_~C6HkYU*tW2;^(wU^j2QW#g(D~IWY{?F80aKSnCWX5C*s*K0Xq&>9)Ez9 zDmiT#_!&81pN5SaBY-J4Xa&0n&xQ%u`LJ>XU@h!@2HU5#jj$FZ*k?ttzs0{we<8bg zz{zUpeqWC6WAG#4qPrtj8|xWT93RFbWa9WeSefA1_Cv$aWor96WhYf$-0wzir2k#c z$6sNOxO^Bsd1=^4_rEhxO)|8TZce=ZY=Yy$zu=)W!TFP~9J!U=z75dOPLUJP&^vn1ehD#ewnNWKq9yF8M!+hm2P}f4cTNHxOFFIV* z&X(hF2JS3#D}uMX#lRtyJOSf0JbWe?i(q9^&MK`+1m&!T=lCjTp-b8J%evKVw0T}B zx~AQyToTr_dtjrvHH`0-*6XM%_<;d#R#s-K`msf-@p`UrU z#=R!T;}zUrW{u+=Swnb)Y#^Y#geSrT<=3z>sdm5gCEB+T2wheaMU<1xrn7~TermnW z?c$2FrjkfzEx^01219Dt2fEX+8lDG}sFh)5>qLc`v?7V3-woMAPSdWiSKRT7_i8Li zlk$L)v@@OqlcXJCDnVB;E_B*sMueKsovm zo&uAjAHvGkISSoF8p%<%;FMGSg@t72spC%ZEd0N)Wn7+kZ*ze>1y)e5{*9-?q=J4K+X-@#=D}WZOH(o= z6*82hqwyS=BpnGWTPG>hTO2vo71j6lwCVSSa+J=4&ElfO>n#RHxvB}2rL*xQm@J(E zD_duYu_NA7bTXc5kJE6vOODg+uwPu9lGqU+_JI=hO*{`KQQv@-trNwlPQ8o!3p!4( z$Z>iJHj9f>64l8!fwJ^#JP9UCzl4>ov&7i9^h&1Qxi#++ujp1&63I-!li0Vc+dz3* z8Bc@B(+aS%b)FctDVw1)r(NYV?F^e`vo`rAP?mPYlVGwm6IQm)5@Tl|>lXD%c&{8K z7xs#aQWERAst1&$E<6V&Nhw&_I!W7%-b0Wz9nLM4vve8k7MG>t6F8i!xjWUml5{_w1CykCVP)$iG3rv@$>)=8Q*`kJoP@2C&UbT3Yo-Rgaw+VRSl z8+j4q?7PKF%UMbynWg0%)*fn4Eyd7XWu~O- zYy_7uPRGM$g1f!1JQl9=33ZnnJPF-l6TZsl6gd*}ac`Md`5YY|5~1`794FujFyWX7 zE0d~rv@g-VD||wC-kB&Wx|vE^zr5!X6{GOFu!~`*xTE8dF+xhQ9XS_o;pQ@jN8S>W%|*xpLdctV5==r~hm}czd#zQ8 zpup8Q9bW}*<6z={P|oRzzRh#$J>ubcD7w-FhO<;JY*)alYHed zP}H_;LO|%(94=^cvrZszgx8YHW_LLKeDf z{Sard`T%|82F9Q=NVw4W6znl~n#Q|pJ?m!}DrJV03AGpCK{Kg6*H@0LWo^8TIJEGj zmV|!N;c9lboQFGcYnj!IcTY8ghfwl_jBnxLGs(CWRwniAW?!Oxll;(!P7Me-8K=MO z4Y(<1phvwKU&zkT-#`7GidR@(eha(CEib&*8xBqeBj}dKZ}3EzVEqbK9&cdH)WKT& zJ7TcbP!h?^z!L;(rs3`8Rq;faV66lzj~B4ig#&)YB4F(<2kYaoYZfb3U<9pLJK>2i z!P)^6r&6tKNBMdRvsr9k+O899HSxF zEPEK4hPlt-@iQ^{46Hm(Fq)-Ln;w&6^e}9eJ&a}?YiD_aMt`PtX-5hCgSxIoU)xv*JWj^aD}3i78IorTBG#OQQbd7NNG&c5!HWArW9 zEPEK4&c1HN<7Z-YGpsyLFd}DPzm;S38`vy+7@5w#euc-+#ON2WvUQ9?w?7$XN7bTU z$s3y**Z8h@hP|qiNM?q8Ol*5XVF&2Iwi2EJ6Q$*0W$P$~K7(LDsrHU*YN40U6c%dx ziyxP>v=i(Xwx2Q+XPzJV%%TRoK)YZ%> zIu0H=6P=S`W$WlP-z};dsP7gH$=UfF>=T!r_;!o@)G0il!9!=l^J!SwIy|8pRt{ zN6INV40o9Mimk)jK7c6+c|mwN7|({u%Ym>mseSwT6775AmIaoR=_{z?J8duF3>B*I zW!uwW!?*)zDk-q)UeFSlK#a;ckOS#L|Vl{!Y>_F+e9Bs2vfA)BC}-#whkI=t3i1>;ABf0U-!!Sx*Il(%U5Ds4RtRlR(ImLFtPd;tZW^t zT{-ou{?&<;mscOyNc9&B>Jof?4*v%^WWR&$<3g58s)!k#p~(Ff&y0!OZ(wEX$nC;G zu2&72inT&9qyBHMkaNif>PNpPUNo+)B$8P)E=USEgD(`fHSoNcxUC8+TgPoD4sKrF zD|=4XTjHk5mGlDgRoYL;VcQ+Hj$7Tlq+lbiP}Dw-XT?NqCs^4!YOGDw1;v8i*Oimg z)d#!9r7N*b)v6H`s2)5KCQunz**Z|H*;&q6;HF9gnN+@zPvzYnr+Uk;wgk9ZPS};O zeO$s4o1Gb*p~wy4nK6<39IR{|x#^tYGUuq>j72GTQNPC7_vM^D27AWkjQ1tm7Is|& zJ1ATa;^?^V>}xsS|5Xzt)sOAAFbgZt2QVeCgP~9$SmSHh5(?RYcuGvj_Jftj2W0(DvARiN-k~^64%s5uH|vl!T0$YK;3+X7 zE5gdwA!E(Hstd{Ptfx=xzb41)E3ji+yb_yz4Vyv1`VyWD6Ra=5%GSXOe|RYJ5WMW> zONF9326sGt|LbRRxSoeypH-N`S8LyZ&Ei%S=1ryyih}&=jh}k*6rfMw!7~Bc9agpuQ220~)}L&l`Z;#5R8rkr zhQX{PC#fH{j7!q-@sXstK#|JfSum06gO$fPQo}gqvsn{TUz8(t9c)?qk5g>rAoJlg$84%81}!?-{(uhL@7mKr^vIDH?_fr-;&u(EZW znh$!VLU(m5z1ZU!2fcsGf%+$G85gMd20h&ciqzlnESO0B6;_Tws)fDDV0*K+UDbkw z#qG_|_bd-}@?L*MU1;JJ@{tz}&U!?=mYl96l37dgKG2g3@wPUa; z+61gpA?^9^lch>&M{nD@M~>HBuyI_xcuh4pUX6}W$Zp3oVnX&!SlK#ctm;+Hx=yK_ zA|IrCO^(+quw`7l5~^M!UQn=J!gFDQ^=nvpT!BSCQMb;c;$d-3C6Ua8JXx?zpQ~F9 z&xHxr%CPdd0*idKZVx$FyTX=@jf!RZfZfh`E=;g?gq5v>HG?tVN*A(~TwYD)o%90j zKze~3tzOtPE?T^I6w$d>*bO=yx_CBBxVm6v>u`mdmm??h>JDSo9iQqh7ILYQduqka zr}bMRu98Ex6gH0w8Sj=G95U((h3zstD<*88g_W(t7Wx!tBy5>df7a8lhV8;xoB(AQ6yKEt^)_smZJ???P@w*d=fMQ(4On?x0HyA( zamd#VHhoOIGMu0!l35uhQ=w`;P@p!%^I!tCKCEmVsL%_pkwad$r@Cz-Zg@UK&ecJ% zYurM`yA}x@`5Nq?cIH8pelwBM*RrSg9+3RVPz&zOQ&}%(^37W_wK&SCw6qqAL^Shr=w%)*+Zuf zP3gN#{hQz~HjDa;$&(`f8&|0R{$S`Wujt8DA**xM@wj-d{$JQNE?2xBL3rp>F3>Xd zZ#)YoRsV#QnN$VL#0?XpJFTX*@mzU}2iZKEWTS^Xu`hBaaZ#cFFj6(&}b zVP)%Bai&wfrajLSy|8lna~2Wh$Beys#S-t}Z+qCR{04**aVw zXVt0t?e6t^k_)K;H?7UDmdYu+40ex8Szkhx%U}z|?X!4VOxy-xW$U+>W$S<;^-NWj^zCtJw(qzo&_3Evm5AU9MJ$*dp~s%H&;P{7v5^I-z^ zQCQhJV4)AUMh=+8LU|W`|MVa^SNp?maqHI!iHwuJ4HTz+@HCh>eF9dtj?-+$bl<=G zr`%g~OTB6}>E(O0ss4Z*trF}U7cJgL!_ZAHVhP2pA5V#iSq@gVjv1$MrmQ{=tdaF) zIayzX&Ek@kOyf+|1q#!3cos~Uu7;JZ!xZ|=VdM~4wJ~~<^e_K6I!t} zLnvZD#1mp7_I+5{I%1qzR=Loh(%*gluN)^Xxo zE~Bo+%B7aL#e#mOxXqK|72(!OBAFFoGIxLkUQnQ07~x}~AyrYmJ{K%cgsCx`27*g7s; zJ&Ei!P)}&(Is?y%3EF9}vUSinm21G%rhK~`u5ZG2ap6j)a@BmGKz#$xg9+5vVC8WF zl%Y-eB{@*PhV8Nql(|j$mv|mbpne7`M*!8r1>C_M-nAQ;Tad7Lhxf+8hVP?sf2xnaHl`E02ZixNF}0q0|W$yW+t!vDg__CY5YQU!r|CbBB6QDL-9KIo+G8nyqcV z=T(%#E4dfIUUA38Bjc$jok8|=dew_Z&t%AjmB%(iJ;g$$-^9>0a)z#gy=pf@LH3lP zrFisAhAxAZtuqu_^U*rw<<(`P>Y_&zMo-EydK|WkixKa;B%_aJ4F*t>9>Eh}lJp>~ zY@MXg`3xmVefg{Ewv(lAeZ40K>0Q_@E=auZ?T!voIDg8~+j#s;j{XcQk8zG>Msl?I z55;q%O_fA4YpvKg3gu5Znt;d8BAky!LI4DC7@ zQm%s$Y&)HU2hF7ROka5{Y&(U%CQdC0ZN7x}o$iqHa2swdbKmKxxOfO9Psq3h51&cK z*I{K+&%WwQSlM|pAk^g+^My(_>uEbrFRLhpJ5MjdUU7>`d=QPKPY1;p@bH-s{Tx=d z4$&6PMx)Lyx9n*Atp1dkpH-AZGPCnTV=F?{%qco6;*m4aSq@gVj!tOj+faWpUeQbU zW?lX354*_unGJi@{`xbLK80u&9zGMI>9DeOh$c6!KRr$^rx&1ZIY4RHCoVvT#a4j) z)G0it;Gr|&nGY*lho|`@y1(F+N(KF@^vmV=TnanI#fNuzTO55+)mcxT0(1!;JQJXc zVdV&bT3F8qTLQHuUJDWyw*)o~ir`$=DW-eXdw`L<0#C~U{sH`?xB&C&UuihW(8ho{ z@j4;F-oO)h=uCVc^_9oM-azPuKBFt46>@lc;2&}@{)W5D+#cZFXT=61WC20s9Xtsp zB5%RUq{6-FOSEs3AoO;OnWaj;=nS~ol$X!Ai?p@g7Eg=UdXtnyGHX5FXGQo#H5ft1 z&53v-OsY15l_RKXVbBZ4&06_uLBis=xnX$REJu!*C&@8B9)3pL5p!?WilO9|8^+4U zWJw7;77v#R>s((sa+GXeVGC_s&2<~>2#pQl;qd}F1?S?nGKa@Q;FhxSU##Gl9}N14g+}<)zhcb`nB=!nGCG~D@QQY!mt*M zjI}b?f`r9s{br$&vFwz+QrSy8*~sbr;c|!%fu9w3bYwytq!}I|gMZtQJSl_+;o&nO z-rrXq3!`MHzkRORm(WlV9w`^g@fg7UWsa20O^hJn(eVh`KtL(si7-Lwhm}dS%lQ)R z8!Ag26$Z47fyTvU`NzvrxDNRS?Suklj5>~cO zQ|Oa$QMIX8?Ew^eijIDb!i936&Vvo(0+qztZo~-6)Y*6}2Mhe9k2}t@*5YUALN&NMr64`PgN_)3a?iVlncAX1uBX8Q_TfRQx~2E zlcp4`Y@H_Fh}T~%=$~j_D#z(E*e)(k35|GF8z@ho#nWK&GzcqO=ZSH0cWTASm%Xfh zd-@}CpdN(%;sTY#$=$FIl&JghJeWk?3oAzu)k51!(D_npU1&kVV&_Y!C-fLauUB3i zKI$0?w>5kqC;5H&IdMtm^@OU=8&p#a9q^cvuCo!m0`?vrHWS=;edV#x?GifoGk6ke z@dzWa<&VYd!_AdMGV4QLPbdqCQ2GRpP4NVna7=)eNmbj>muO#yOXy>6CW;FEWv`HT zvZ)@ooN}{n&Ly2LN2!Q~oi2yNzHzGz@B2tRq)cAWG4l{S7baZ?!O9VIwJ_iXV`i-Y zwjiO8nJq{JQCxX*wFtE!5kxWMOE`VkPVDG7eP~MG;rn%T%pdAIvi8T^+8@W%{+Q?g zQMa=iMWw6n*cCcDBFBNqAMljE33EC+rk*`i{hz!{{ZIGa-FLbAL;Wvr7WEfbsJ|av zabI`9OS=sN{B`h8&-l9;oRcY}OVct=*-53dPO0Q-|3Q6fsO)%ow>ZrkSlk)@|5L3c z^}p)O)Z!alRox=oTPWt8oIBKeH>ti?w@UGo%P!Z^ca5^5?@C{yJ>E~A6!EnDhq7*J zpW*!HdF5WiBYFsaM0Lkr9ZB~A*fHZ%?z=_lG(4TbooJ(t{yaO48Iq@ZA08vK>fPfj zM?UN}zJ#-h$%@cKBRtP~Q$;Nt6ko?JHFp#%oyNz$SBsB5lq&(?H9T4-0I$Hx_27b1 z|B^2eS(95R$<52c=4Mj-lZ|vr6-uoeZ-eK=w5+QnVwsf_TJ~v~mLOj`O(Xk<^>RwCfj#0<((=4zBwNbLRd}>a zR+hrb5v;VZ$_*CEwdr#U62a{0u2v^tK@_zWn<$DQNfc_iURCw*dA6U!{j!;L}cxVeR)5% z89VhwZ#wJsYjdl#3RAczbP8;iaqQ@$02!{8Z2_QA@^q>-9}k|%&lh>r72&Fy$`lS67UuGG6ZgxO*2cIf`=se=!ge2nm5e zxM#=`NCLCD0TMtkBq0O>fm{T^IO(0~-R;R-HgnlzIdDJ(!MIVBMbRJ#C^ta_Q9O81 z)E}NGh#-mw4~QU&q8vPE6h+|w_GPBJtGajJx2kJ;_s{c~1(Up8@3%hn)?4=~*Ui16 zj?~L!&9F$FJJduII#2StIiCh1Q7_SbKoa!=*>d7UVKSyJF=Lwglyb&21x)A}d&QbD z+0Kg$O{Nzf$BI!lYlqG7{QtUaAy1d*we=uRM+I)Q9C zai%a?c*X2Bg)DrdI!z_ATv(c7&B9&xMUFPmi;v`}hio}&wr7m>*(c2l5{QEa^fUmGNnqnP~ej8N7XUfP8JJ`QLLGg?Yzj) zBlN-}8TuaCa^eilMnt1(FPy93AbLX`q8((lun?US=g7_RUZm)Cdg+lAy+*d2I7OH~ zt-7&pniukY+Kitm58I}L2|dHMSo<{3f03kV^ztJ~I*4pJagtE+sAgn0aPerBI!7zX zY9$koZ0|*iR?th2q-Z(Wa^e)FF}>O*qu1DM@>7zRsDpG7SuiX}A*bHtlkBP|fXGrm z-2o&^ePqjtvxLdALym^urOweEWU;Uu#hPW?&WjA)N-sQ;pGLxnk8p+ITvgO3%Py0~J zgzZ6EuTIT6vP{?xEaYMldOi(*1GZj?+?-D@Hj4ir!bUE2_;tX*|9|QZaefw)TgdS8!=mD};ScF!_(QWyB7YVwb zUUnow_mV9qPS8*pPspC4m(|gEi7XNpomeuS@V!JY&b4DE5PUPO89(uWv`>?Cb+S%aZer=9BKP{dMlUy#oIjB*Cr-|g@g`&~bowup zhg8$Rgq|T)Jn<%cZ_h#WQX{F^pKLjCYGw?v0@2vg!i~jOs)MtFEEG22tcW8iZa6NE z!@Iye1fk+9svk`;&V-RYwj8p%wRY&mgehRSck_w3xE zj?JxPov_%%lHWw`)wzXUZX`KhAX`qHoS}NE#ugQ>r+Qi)ou|k`VbO`Dr)oGZ_Eb;M z3yx&x$7IV9>`2^7$1b*WFSL>{!LHY9lReJQO5xtBrc{bw%iir~mjbTWdvt6|uh-k< zta7DT4cx1D=zmj35}|EmV0j$(>Xn@01ukm~xlr#AC^Bv2;xWuF)H~2I5qYCp0Jbh1PL?F4zfF&cHE4W$aFEa#!fN{&^*2cjui%FCjAE zo#0rGtmzisop*3ZP5Um7^Iw`*fg^5XT{9uT6$rT zsCK>pINEGwZp;u z=y%`;t$~HMj)9eN;k7dnPsT4Y>ob1X;J zeG3yPZtIXw4_|WOPooy7Q!tmVYiJrJQZVG~6N&<#*8&e|dbyE2%qCkF`pF|46OmCP z_LPb{Ngn{myOa>#I)F#oxa4X*l#>?wg($L)tQIzk47qU;$xpy}G1)qwUU(!#=aMZa z4iR_UFan|yyj;-7-|Vqfoue&e!LS?+d2*G^k?X&R(v|e`BT>4XY&mh1xYd3?N}+M+ zL3Mr}AghGsXUN4j96zqpA~g5Y3yp;4Ub5xHq2ZQLIA}uS&dciDyhIiX%S{aV4{#F| zZ(g968;Q=Z$d)6}kr-aH5xSd|OPFBu1aHZX3t1`LaiLNvo>M6W%oFsrcAjADD!9M9 zTnsFs%>N}dO$==#1E&l#MPO7aM!)!$u=9U+RNQg}Mw%g$0dt_Nv{9``FPjWF$}tf+ zAdF1wk?;s})+a`9)wSP%{H_#Hmq#J$4A5d1Yfu zCM)S>Lq@n2j^)S-ZsCak0A2>)kk>!ZzXVFGI8eKYE@$XKU##kd#H#lBC{%hsy_CpG z?;~6G3dcH>s$(Lu{l`A6KSZFTSTEG9Qn_du{7tWSLD>`uxr3|_HW-Aw<2ht7=aNgKVSNKW1weViN`#Yw$nb%{&z z3)DfGOP3#+jGQD1is!0GN}66&Bq_7WmJ^RCVsBIJsdsf1_zB_l>WHi(tAmXt+P~;rfAlB$~peV@i(D_ilg*5$U0#O zS%xBHc%MaTcF@a=q~>+9sratlbu_5bV#@ zu5a?(U(Z)UffYNJ%js%{j>*M(jvR0~t(C85pNB$?e~4a2WR3qj*|JwS7Q+9{F%jAF zV_zOPh)08+E8r5-`=MltblgkU2O9;BBSitNhm13SsDInW9f0vdXE1j@(Gu(h_6-^iz7XoAQcfb)^%L;8417{DD z^fX5pV&c>Mtq!;xn3Xcn)rRCi|B|f&mIM96F(J`Q#-9XnH#aPT;dvkIR4tbxYi{~; z)SB~JG#ji>0~53~GPLsZ6TwcPx(41a#>DVy?l793R=ML85gG`6>OpibkU?{Q$Fc+; zv3HdyX?%%?Kebu`UeKDj0LpT@#G$E`2ufBPC_Xg=WKN~~gG6RA*|JwS*2BHmG10m- zY(enER(P}P$aqH)vSy*qWoP|RU`4?C$g*K0QI|%*e3FQ{T$Sz;lCfU0<-{4APhw0& z>{fNeZXv6NMadx2g^gM3^dS{W)G>5VkVMTVTTYy) zd8jDGCLy`butyy%lPnq*teifum>^=r>ZCh_R^3`tQQunj6Sd&EkvsRlkN+Ws{bHc zPMj)Sj|fUut?pvk;)jQ?siXBLvS?VeH1>#05RtDx&>ceZ^*gfV#QDNSt=@{5#UJ!* z<$>Y;U_#HpP-E0`v=FJ}*-Xep#jn&6`yaAuSj2SBfiXqIp7Oux9w7<)IoWdJ zgq?(1$M*7%=JrcCQDiq?ZlJmQi^{`*abQBvFkqv;mF)<1MDli_dxs?NU1ZCNlZTtt zU>nRi*p5?&?HICX*wChNR)Yy5@-?6C5R$JsWXp;3H5V1xnjwwD%T&j!ldKsQFOB!4 zH1!ba%Fz8m()9td<;3a2o%n958Qx)jN*%IKkfp;yrt!o#FN?_90NpJlYabUwuZzYSwL-(a*;mY`~;qqTfwnLqh*Xat!ekmE16Q3Fa zF|X16K@#&PvSlFv{z29R3xF=SqbmUN4?$PVp)Y0Z_>J;-_((9JXFR+HJs!?_esb3i zE)H{F;CLq80VKyW9LtfBuZ6c-bGvH8gz+_Xf8aY$oshM3fsug^zmbSQh))QCl~r_C zkgTjETNYy83dcn2`crP|Hyob1(e)B@$YGIm9u=C3JU? zcwI!coH$-b2WLk@@#-uX*$qXbl-Xp#E83g58It?d0lSB+8x}D91RMo0P7o2XyXX!f z5xawIIdR0&2*k{OGgGiO@GtH?ug=!9WWlg(;m?dy*lH*tLiG&Y6C_kmlPxC>6}Ph^ zG;Z}6#Uea67aq1IyrkSOjt3KZl5+gSE(NWi9wK04>HZ)A8$-67IAGkeK?Go>h)!{# zI$g(-HNyt3^*V-p9X&=<3=ypbbZ3xg%_Un-9IZu&4snBFRn1DK)2zaFj!X_-!03au zgU|%5OP#eWSwt*r_~mv=BpXT{5x(_w?~w4VBU?@!KFoO1lQ)#MYt(7Gnyea@Ha+9X zfE*%TTj}l~@!CSRoH$;`B4S$+BHAX?>h7s!ibkzsZRSRl533{g5Lr1aV)#wBlz=8k zB4YL+-6bSu50EV9A@g(6Sgra z#F4g4owOxn-LSDt&(td?h=|xCxVh|oz4PtoAy5C>XK9kh*P^{}Af zH>gR3w4f{^ZY8=~NZdA%Ehml}w;6J1+?umR9BVhJvvvbnIxK75S`xHo6KrZCg0_wB z6B4xR$d(fa?KFI@Hq=xRN8aP==EM?@e{~-XM#IWzT8>d+ubT2-^<2S4h}iCtFS&w)f!Uo-m`t0XOq^%A?d7U_#F* z760s)L`o+pBSJTw?imugX=KZZLx)*v_cEC9DYv!isI4N)hK+4{mfC}Qh=8r6`-22* z1=(`qfN^)i4Aq6gYC$0byU?txS>*!SW$Kh&Le>sTS&z;h)GvyN+C_Aykf`;OEhml| zX6fB)yY*7FT&cmLd)4eNnk87PGK~_)+&${d-9;7=%bcF2_o37g;k$$G9TL7<$(9p` z@4fi!O@z=mr^uE^HG0*0kqdj{UsfJFj0F>V z#tyAT55y7C8$)*viC!Doa^mO_CP@0ql}@V~zRT@cb>trH{xRYch4(!D~$ zmL^+H95(JUnb4txKV9YmTUH&i^<>eokQrL~RKFS`T}v8tz@;ZRGqJls*o$sq>k5vWc9Fk=~rcpULac@ov?`m&8fdv z9%xPh6M6=kErKm{ggKe+6%w|IWXp-ehB?v_7({Vd{}Oe|7LirMhBQ4#S^{#2vFs$e zJ4n1vAX|>WOXA8PcI%LPXN-i21g~9d56&JhF=|Gp*57MJ-nw?NI@TAGYYU6@`_RLV zT*FcB-l1>-JX+Y5Yn$jUAW^P4mLo47YTXqv+yx7v!uamn@n1Z2n>r(3qzjC^cnE(^ znZ$@s3W1iJ=*}Q%xq)n12z=XQO|Zb{GCR5gUy2KSW*@BnM@GG0gGh?^9X&_Z85{M^ z#z#HJOFra@t_uYJl3sWu!M|`UkAQf`&BHAbRPnWNf3Vx_56Wol3MTZ7Ch+rcIUE{3 z5d=tfrn`ZJWGAv^A+s>OjAjTwmB& zhX>kpUEKt(ase+&1Oe#x(A_`+eY|5iGU~PPddWE`Kzz;KANz{xsO0GyBNILRQ9&{) zJ~;$vy6Fxfp~;ag3sKN;Otfwg!QFQh(egTsLLplySNV(DJ_n^$%(^~9)(jho@LPQ8 zcs2A8=THXe{vhf4B-wJ}baD4JMAB6>_{%{4OP#F$N7f5VRtBBVOOORxh*W)-?hBHt zZ<8&L9;$>@tiP&L^?zi&Mg~<@Nu=t3>AoPT`XkwL;#6^ah@xUur&Tg4)`ez;TTM9h z73Hq*5HO)Fqbs*g#BwzcHEho+wvM+>JB=Q_uXQ`ug23fC>5VdSAM5<1s z`+}ruDcN%3R3Y>CY`M1|-qhv~6a1SxS)0k4Vad{&zc=&{>8jKHLDE$rTTYy=V{mg1 z*>W8YN|nkb=oZUd@VZ?cu`iK@!y<-1pGQyR1EPqW-As21$=Qu$%ZYP_>>G1dR~LuZ z&(-nzDOoQpUOLB#wiY5)KcV}Ar0OxU<;1B%&Yb3~Zn!bt;J|vd@cgT`q!NTtj zqQ@;y4w0>Y(cM9^^$)V;#MwedEVI&;<-nSw4%Sg%LeD@^XT-9#5UH9)_XSDS;bhB+ zQ*|UR-|7JJUaPB6HfovP z@+M(s>!a#yeS|CepnwMg~>ooJiGkbYGBE{gP}sajLj&(~VYTObQcn(%txwY3L9+F6vgO3tLdL8@PE5J}pE_CJB@2cn zOJ~e-#1OgqHr*K{SKlIAPMj;`v_rwH@R|JosblrOWWBIh>6~`3wGgTLBi$DyRlg@& z9xYTA%Q=2A`jA(Z$A<@k2|eROomAOch*a%I_XSDSK4i;@Q-wR?)KM}@;(aJ*sB?81 zSut$1!rxCvpLcN85Xo9f_XbJUDP+rulZD*4TrxM;jINrnyt7#yt~yyXEL=J_E;j`c z`Kr(zLh@B6TTYxWiSU(}_g#}Azu4QW>QuP?!7bI0bBwJ3LD(*qTs3o3iuTiO5UHzGwX+QeF z&B(u_4%olQ(qRF^->*qex;R-x*8V|v3(4Bw$d*S9Yc->0WiyR)!yIcz{jc)CaTb`+ zGjP<(T2K~|wZrLdAz5oDTTYxc{7>yM~2_F=MYBZ{%Gqt=(wT|zQ;G1+qBjBzi&MdoL2=g>T0%ypVyQwQy< zWbLq^ZP0i{gcr=3x`+|&Zn|Gc+U_JY2+~1IQ?B$XRJb&ZA38^ zb_l#ocL~W@fowT(#*QY9G`m91g5RtT*^Ok~u#k1PpwA3H5`I11CnRN`C0kCMGTN#@ z<0Lefoc%-{w8zNOVL@xb-k^poVrKS3x?4!ren7UIIBT?s7Ir-RU+SR!gRC1Cv=&6P zh*RQ!qx*!U>@Q@?iBm?Kp$$JQKI{LKN1KO(2|c6D7R=B_o*8eadxaz|MYfzcX|#A2 zc69uG>YS}6>o$VoS;PtQv*|t|DLa#FIdRHp^BExr$v>$Jju3$pX2%rT!x0||%wCzmy z3rX8fWXp-uMjLI0A3%S%I%`LhmBWU$7K}C{&!Nwwdxa#egKRl*(rDv=kmKk%b<7O1 zY*@@%Fb)VmmHt7xOGw5pAX`qHv6Dz^PTVPMt_S_3I&L2)D~QEyqyE(=P93oy{TSUl zBzaenEhkPMZ7ywdq1@fi@%C+X-o8cF4a-{#)&?9+M9RKN_X$ba*U6R>r;OHzUTD_% zC%68n4%zR?vSA@>K_6;MA~N<{x=TpLUL;#ioH680vSA@?zrQFCI`;t+dIp_3Z<39O zU3<};L2@;TY&mhRkoQo91g)j&Se-)F3mdd_-a{20txl%%>4Cmk-mNJ z{>r7!h5P5YKUTXx*1A8=b$)mzmW&(Imfr?{D}TK6u)Tzd!^SjB?E9P@Me_Sb-2Xo_ ze^A8l$X@M!XmH@M%q*D|qp);yuUWB*@Dznn7`$T8eu=n{x@=6VToRa9$R#~ zZgTgohB@z5@^|0WsG-gD;v*rhJC^g4BWieNBo(nk!96t?qDx1{=*(uUVs8+S+tu;- z5?$YMRtc^yEdi=m4UDarUG<7Jn4btOX<#>_lL0t)*h->RFQ;WBwedjsHI&fY9w8Lw5m* z@_ff~WPaAV&Xk+zSQaLXFEjDy@1{B?rpNp*a&wvn&g7xB^TmCTo(v_lU{fv!EZR0BV$|( zC)~IJtSF1GiTk76k?L&B1QU8v{`2Ez!zY43$qc$1NJ^%YEemmOnq#7M1B78)S#x@+ ztBZe>=R7E@VnVf+tQa=j;HPkr;l?k7I4!b@?g$d9m1N6_L$z?YUaP5PwP59}Qg>#P zRmzn&aWlDBsPlChSv)LX_}xNOzJi*Fs9i$$35nW8WXp-8#_jD6=?;yY(Oa|n%#6|3 zo#`!?3-fXuXZNXdb`M!OENA$q>#&@K2qHpu7u_KwWOtA)k4DJm^N>BS4%xG0 z^K&9(&(Ix0LiRM-@@Rq#UgU8inE=^@zbR*Aj7ciWmGS@P@Sz~$%0`6*afi3$%Q+CsLRI8uiXJ0+3J^7C5{tF!bF zSt%?_Yhv&5Kmf6;dywt`5~2slmPZ3b!X)Xd>JYs`Rw_Y=xk`=Ac2}pwwyRn!*^}s(#Hb1h&1gWM@(MGaVSc=xho*>x@h!~aV9w0H= zK(;&@FcO2&P3jokK$a>&j6$Q)Ho6B$jIJYFP8_3|!$%_!vBc#^kE?U^C|N5kNBCXs z*mXS1mOzY0+vzSKL3)I2IdPDN-`?UJ2<$Bvj2eHC>`ir?-XJT6#VP*nEj}ScsCLjD zK|=L9*>d7g4Zn!eSdS968q9n{c?dTHOz0WH#lMKcbP$o6PWJE(^-}0AyL;53x{E9s7OHizPZs!<5Ies+=$;_4x|M7>ajb@)d#Z?&2G6SF^bA=l zEKc#yJ=qF~7(Gq*0Ey94WXp+TH2kE2Eh0Z@F#aFP8TnW+p(i7cf6~B_Km=(F-325_ zZDh-dgEVj0ZZ5b*pPPm{R-LE?WYMsZ34fIvb{Z7)@)#}J?B?~z6kPDl7 z*h2RUiQJWB%cBsv#zdij+(YWfJxCUCOYl7np41po{^?@z`{Ds z$#i#+fK4P@9({lb)Amc$0b4}YZNx;du-W^Q=w9F&iQ_f=hCna)hirF$L!GQ0 zWW}&##lIoYCxi&q>vTtuP`yUBJc^(a*Rf~3sXQv24kq-B3iUx1x|}_Y?g$d9gUFT> zhidrEHjM@vvZ}pGovM{&$*`d+{>?UiCB#^@g6;_ttL0?NiDPvPb_LS6ADqjuE>VZ; zBC>E;xU#xtN_~2Wi1pL`K_b>iwwyR(=(+gD>V~jQ{w{UG?jY-iB~05?DU(A4>{hxv zNWg9(TONIY33Kt!r~~#iS+@}bSlC?rQ*?KbfIUIBJo*3==HkcxOF69{119vO_1Ys? z*j#)Y-5n%gZ;d{{hQGGfOKI&sA!0-Q0(HdZ((45IZbkf;J%$J(c9UtkLrBPGlPxD6 z#n5wIA=~TMtHZU9tQfX~)HW>5Axnm(O53zV z#Gd;r>7F35x}0n|ajejb)0Gl`g5yDTs2(5-hJ{Mo;xysC7PO-7 zXckaL#O+bKXGq+(lPxEX8#bxv$d*g|Ll$qVQ}!lVF)U?-*?qZiW(y+1^#X4?hg{Jm1N7K2QAa$AHujo9j(jAf{hroKo1eE zOX&U}(YlCiIdQa($99b%WlyG7fj6j)?sCZ}a9!km>YUv}Ru9WrukJ3A7e|EdF1m9_ z=S)^abeJXB4U&YtO5*_AFU6ENj}QFFZ{|#Gax1ghcFVvgO1P<8Kd(%*J{k zu9=lgxsroli{+vz%$7}fM>+c+4<__v|5e?gEkqv?y|Hxvkm!veTTUFk6R=&XRkCW9 zQLrvFGqrklgD`uxP#wHu$?{?2+(zBt3F?U0Euedc#BMIxa^l#bXV5lO%KW~dE_Kqf zWW}(gX`ex}1sSYgdqCSxZT3I;+Yg3c*sA4vx@Snr){!kIPT9%W;8rv?n3-x{E>kL( zG9|McuIlXLpN+Xj9lNW^5@NBd>ke?C3W-5(E8RmRep|?v6UUD~FBh5C6%81xZqAsS zd%3~G!|KdEMAi+AtFt*(+q#u$XCI zGH8e*LiRGtlfwKE+~x%T#4=)61WXy%cBQ4?__NFw#b{*fxCgM-G~7$D2)i*Ho9v_ z;I1QEP8_(CuwAOBYG5lM*RejXj@_eV1+m!Gba$*_0*UZ#r#py*?-8=)#Np%brHULj zc-n?+nS4{7xi`qdVVNVmh~v0UJ($wr(?vvW2i-3uYOj+mCyv@eVw`L2734zP%$=0S zsWZTYo^fiqMIo-CjfmWIx^GD2rjactjvRW5*K5V%+}m1p+E$Tu!v;6)Q@l(T5ww+b zw~(N%AX^@Fpuxr)F05Uq4%#JT-9{Q{Ad3jvMRd22p!Jh2Cl1;oVkZiU4z<06mkn3#6ze{-xF&0ed8ADvyqOcbtlL+D%x|>K4+sKv^2k{gl zh{Co*4#Q*BFhKG0Y2@(R zsE%KWEa6DQFQ|}+-v+veNc?)pmJ`R1n&sJt5xWW&e<17zb?~;4#lwQvsw}UejfmWJ zbl;H3T}!r{ICAJ)CA{vWW|peu3S66GSp1ReN7b?0P8JZ0o%UNLLi7>QdxY*E620${ zEhmm1b;oh7QZHqV8eGf@ZJXS}JS zmhq0_>BjUD#?imud#ah9yn=EdUKsM9BK- zP9Y)dBU?@!GX8soZ!icclN_Pwi+bv|viNl8OKm+M9 z7uKFpr|oI7bXeN7cc1}fMBJXDdxpgA39{wHaYIj-grve8bYpi>9x;po6M9Ar+9ymx z^byf(qx*+M@2$~?-dyZPsL;DN7pT)VmtGslceuK=cc{*=NdzoScL@pDY_jEu*e3C+ zAbXh5eMU~gM1l_!rZ~>a)v8&Ie37uA&b39ZDs0z%HlAz8Oa97J(RB|Jc9~}vz3@na zvySDF@C4!P;fV0Pv*&+%@YCvSTtk-^8S~DMn+=}`0wq_|-9S>Zm26pvb6Xq}t$S>c z-@GogvW|>5r_@vLgiF*5@CUfu?fXz<#Rmr;CJTp+I)n#qa8V~j53wtKi0%&(u?NYP z6Gx1H5F#3}4TVh3>f`YGvpQa{l10PfMR;bHh?lE{h}J7~Uyx|MOtzdjTKp7lG+Kpu zVWI2bvC5(A05G9v*ttIbPSFeHo){urQ|Zni;hI9WoH$(k`Gz6jDtBjk%T~1tx1oo0 zkf*Ctwu~$vHi8i@awSHv0;h_I+Y-80NZb~YEsrAH8mN^Dg)rPUspD27%a=TEyecAY z8|hvlaVwE6CypDx!7@6!Rg2|vttS)SgMLvRwwuV}VPPXY*F}tNK}|%|ZlL>wL~R?{ za^k4rJJM>o%idg6>9#^U(kInndz>sE7B+nyDX)r%+oN=^khpCpTTUD|{;ggyvPDj1 zysZw{n`FVTfL###c!233BJ~E{4J{o#T}GA-OO+8nRl`n6TtfE-iPuGB%cB4uWb?hO*JF=WdTcu8#SV!OlK9X=8!65JhjcyL&Hrcttb z>jij>w_J+cBeql>>{G}UhK-sZKxceKpRe3bu}B#_Y}kIWlj)8inLg36JQDVcaXV$B z#PMyI^6wfetJ6}Ti;UbghTkbGL5oiifg6kN5|W!PvSlF_W*rl)+d;;iU5^IL+kDVv z!Lp_OTuQlQ6u4gZdMLZ%Rg@f1EFqRX{1FtXQ0Fzxpgtme->3VBgzsUp<;3CRcFqn9 zU(MKHa^dc8>d5_tEF2a&{CcJea<(cWXn&@Ag#_(YvgO1<ou#7 zk9B9O!*?cGMr^FZKWwA|pQw=t;pucAkq|B;TTUE8ZWb>x@)=b)q*AeRCVv;!#p=*q zNR|x?9e#J340KEr5wcBmpOBE%$d(g_jN1q~1Z356)`H2kJ~LCz8vK=icdDay8(BOo zYWQmtZX#Pw95{4Ts})S6TFcDiquMXjQTrKLHY{qIqgqoF5wa)g zJ|Q7{oNRg2K{lU4hwU`==4ZSzVpKbi z?imuewPeeQ1Bad1&6W%GV#&T9A-jQ_*!`F~Y*&$m!@{O_V%M*V2-+2NuaKZ!Mz)+d zXx#m2kt0u-RD;XDGhLN(F;g{Rnyr-OXV<=|4&2wt0%C!~KcOZw`V3P?1n)k&cS!K= zAzMxyygA6p-CVV|VAZ(T_FHw-UL;F~MGb%5iwtV69wJ=N)BQoh^(@))D1s}bLJ3lknRr> zu4BoT6Nihtt2;6u3vAKiddGq~V-{ICEMs}CJJJ^^S_ja*L4q}vY&mhTxT``V!Rj%MKC23Q$+%we zOm(_WC#!}HTzXGJH6;-dTSj*YiP#dd<-`%gW?emD)2bJ$^RP>WikZ|2VwwyRzMK zn{=0uh`m9!oH%0K4MLGgeX-nUh8+3rP$%q2FrjC}Xlk8DZ73oFHk0lV60jL$%ZUSa z6tZLNHTcYK z(|b8fs5~Ni_t4!#qIVbBa^mQ5k5NbFW({rYrI0B1qB?WWlcmElw?S)$7Su(A?OD2C zNZ6hsTTUD{YMg`UmZ_C9Zn)#(+@y)hILej#C7K(?GXY{;uFJ1XVcLVm8+QfI7-tQeNDPOW{Z zBZr7qmhKJ`t@UKfiKBHqa;n3*D!A5DF{?c=Dz!@8T=)5Db8>G>+e)@PdXTHZwJX^SyV8b3?)&P<@-8Cd~50Wj9I^>%7jc~~Q zSsl4o$?A#WXq!!IpIc@gC{AEOAi1Odd8)iJ612sdB}xb%rcek z8WOoFWXq!!IpKbm)76n%Mpkb`M!B$ST9(jVLn60`Y&mh{-isYRxJ{YAlZ5MDH>rbH zBWs8Sucmhp5iXF}$!?@Oh{Uf%wwySAC(`iq-%`S%_eFK|ZX)Z4MX$FN==sGFvAcop z91^>2WXp+Tw}gt_us69psgB>{WF4{iZEg*IqDUf!kJ6n)Vz`}bIdKfJC)d4q9zySR zd0QR4H_6Ij!P9$kJs^vS+8cDYkf`k-TONI=g&apXa!=)v>`XABXC&Jq)WT0C%%Ho4 zL~T0R@@PXX^v;*_)KObYR&GQ^wWzCKR?*!;qPCK3IdRmmi}+qo5q>Sl73!>AMwSlC zn%>PyL0!Zy^b)#XNZ2kSTTUD{Vzw4~NymNatldLa4$E3gy3nY*I_{#og+%QRvgOf; zns8;u^XjNQOIB{gp%!*?$1`-dkf=RPwwyR>N7JT4LN@zOn5;Z37!M}&3=4W%G4&CC zkH=WLQ%KClkS!;U8TLAOFC%H*UBS)rE>vgjSh9H7pr-dacwQMXTU$W)3<=y^vgO2q zBW7!%mwR-n)0QPGho!A0*;>>cAM5FEAyHdLwmkY!3z=KHMjf@Q$;yo|)WYZ1w$j}~ zqPB%>IdRmmmos>sg>do5!|IqlL{<%pncmA8nv#ee=Yw>Ykcd4%wwyR(#7wPu=LMIk zy{b;yD`fGoq_redYbqlG_cGlxByca0Ehi4#akLR=;|dIqw`<$mc51W#xp*+Y?clby z`~iC@4@akh2|dHnLMw)&4TVJRrqCTjayOZ5IdSf=4|;kXhj>@WGIi3HkY&S$IK6Kz zGEGFt7SVk|LUt0_a^jE?H@G!UkB3aN)zoR*NY)QaTT3>$`Na{jE76@pVz+^8IdSZk z()!efvP0b?a+5lLH;{$I^4H&rel=7j5yWkDFOeW#N4A_eh}at*njMOJb5iK7B9E&R z_$XOHEP;A&cnFn8L~lFYJtTUMkS!;Uo@5LRT%y4ZYTr~R@C~w%SOQxb0|P3FAnu@h zi3IU=vgO1<#9kZcHS(}aAZG5ZJgA)kCiDzy^a6d8b5x16vj%A-!C+!)sa#+$@vbDsOMMUjsx?4!po+4WwZK(ByJyA4%it^ZD zESS(Uc4!G|t}G&IW9V)nQEMYx9(|~V>|#1r9km5yx1EH*mLl6>24uWOOq`p zjvDs0NIU=K#-v$w!q$@o!xEd8zVXyTK8)`nJ4%vfb#jud+z1BBkjQIfF9VA-!lPxEX z7It$|tzs237n+rFl?!68sPpwQSvD+RdN(IAO~m;165S^xWG|2{Ck`3*<=fC1jH&x5 z4=bmD2|dF~y)WNJO_N%I%tc? z@?j%cS?fB0sEruWPNMsUgzf~g<;0=GMzqk0vW@DXmB^A|LDL)2qGrf8(EUNe)kC&C zir@;F8oNOqu5Dz=MhaZvb7I%g{XxQYE!lDeTxR}yI8$=*;LQBWrEP8N2J`2*KUTXx z*1A8=b$)mzmW&(I=AJ}3ah#prNSHWmOvA*!&y4{S`F&4sYn%05vTj@0d0*wx z!cJg9&uHN+G&CjKNp9Llblj_(@4ld=dzV%%nSkL}UipvJhLQJ0@Dk68C<$(84-8jas%RW4A_b z+Uo)+X|>a!ciS&E8|!&wy|A6r`(wt5sUY@MYw2Dfd0IubJo0(!u9WM&VLV->&eIiS zy^`XIsUY%n8QlvcPnVD_C(aW$%^=1ns|5Q1AaxEy>g(!A-A9%Ti_`~V4p9LiM5^wg zJA$O@F0$pssTwY?>?q80crpssh5VrGMRlm2Co6`9>VlY|^6MZn^(@^FBva3jEsp}G z=0`F$X{vHAH33ZM8MDRClurkdsqu6_kW7swTOI{Wxv5lGoH|jRsfA?45{pwl9Ym&% zrTc+oY601D;!JV-9mI^vI|j&xJlw#~QU|MxEE^WA^)YvVf*2xQS-LYwy4I5|j~cqz z0EnaO)9Q3xLzXRJx|kRuU02hcLDIFAY&mhdxbr}fu`4hZ;sE=;I$#fzmBRvtUwgJ^ z{YUGSj6x7!LpwdIpTT2=mDy5;m3Y4wA4bWXq$6FyF9=BkXi_ z!j_SROFD-69f%z*NWpMH-{bKx(5l{9C0zd@JNC$bS#gA%@MPQBf_^ez`t$gZgn>9 zq{}aScc6fCX-{UwxCaeu@w$a-OeP5eMLWe_{gpV8ew0`(-> za^gT8F>HM5G;0RO(ysd}v$Qjq(39@3jXgNo3Wyl(ME3xR(c7aBBW~YTNL+75 zV%AF)qt7g4tWwV0%#8@%fpROZCH{-79yStfK=-aR$h>?bpo=&*_y^rDByWEsTTYxe zZs-{v#{ziP7`PWK}5n1r#plstetE*f-s3hjOB7}H!NWy!CdZO zKCspzvp7>7=}vMzVPhx$5~ZqH6Y{s9(?VCAp%)to?gt#pk(pcTI#_Nu#cDGki7!v_ zr)-~4Ct`puEiz?WLkM!i5aDxQVB@272as%hglt&|Y9E$0!GfAg=;#V+hjKx!3@`K! zF+AN4Dk&y~kC27N2DVjrj9oYR;1=S%0P*+e#YaN?9mjHHfNSApUq=oLg|C_WqulH2 zc)Ui}7a8U7>r+)M9zGcaQ2s=B1PRI?$d-j@_dCZ#>-tRY5anvIrFB@PKC@EGzzu`N zdd;X=!e)(W2Pwy%gTREIae^6t>d8{%||mA9?EW22kjQJYFN(PTG31awCm2t0a=Pj_wtbwDZZ9M;mD+qf`_~yIP&Jtz_j!5^1g~ zB57ObULi@ll59C~(&nO)_l{1hlr7gw{8ZaR>Wn=|)(p!S{wh3rzuC}3r0W5?KS;Xn zCtDsZbY;txO15lvaTB?(sMGZ_S+kKqS3?hxu9xWkAnAI6Y&mhd_!WYP%s*T1 z*(bVch-5uN_XbJU_sEt<3t2@oXBqrV>Kp20?I0^Q63BAZ5XpL-?hTTx*T|L=Ckwge zXwMOv0$MYsDUT1Qg9$z3L;U6F^l2?m4w0>Cba#+!9YnUAI9tek%MmjqaII3OYb9AU zY~a$FZ#4xG`C37D2+7xSvgO42LgrhxoWe-)5_PyPA}fZ4OJ~02sv(lqPxl5%Rv+1N z;$-1_#okIe$IY7FrHzmIYhQ@rMrV<>lU)*#MwfwByOx5rJ7aXAH{t} z9j>RznqlG6xsuq>L!|2|x<5#|o*-LJoUV7{)~UViOpWDPE`p6sDd+WLz=WQ>KCf}z zhm%EQt&Q#$lC`(~|IS)tv6f?PfjVn*>6L;!J=p@*8nTG2rRi=VS({C^oOoR0Pl!a! z-FppKT*_Xrj@df0YS@00aE_AsjU4?jMMT2Rr+b7X>|C|V0vQN~&50@BOsoV`RAZUk`_wT|=x-6soHOL4*^Mzw3{ZXsFw6xnhFYZBL4up2SlYYZezBzPkRcMs!QSnslG z{r&;)p#O@4pQ*$BB)P7zaO3Y`th;V<^LJs+dz`RaFdnBD9|`fJj^&YX3kG*uDMT0F zl@ESA-d4xsO}f6wl?41fjA%T3G67=KD@+ryU!6hs2}#;?vgO1{J2|+95Js9e z)(;bx%jM2f2W~A{LTq;5>``QgcFm!jU8|HIC0 zZIO9NWG6B+f6(b|ZL>Z!Xn*ok@adj!bRg9bk;lCQlJ#Qg5 z#?Y2DurycBR_El5nvuyCjB3^7{==wLjQ%-RUw?=H&vZEdcLy9w^NKdGn^DU4lq)5p zXb$##!&8hUieHdrc>BA?wB@&f5c$tLCR(HXVX26^a;jwS%pzNrbFErWc;)x;`Ug21Xf5|Zs8H*)C@z4QbS{Noq z&M3m=b!IP@MjhO)49WpuB96R0Hc*h(aSy!6m!K()L@GN@& z$43XomFmS#sIc7N88C@lvug0Aa;eY{e`~jjv59%={Ac46`P=L|$R7=J=x0pM9|J!I z=FI6S7tJ}9dZ}bq=4>igHrPuF&i~x?2Om2fl`3fIO!xBZW zoEPBgyZ{)iwWDo~w~b`1npyNL6(viRf57>R`P42gT|nAvUdPfDR z+-iSRR^X2}O>B2eM23M_mk^vapT8Xh(Xx=b6_VR*}&L#_iJ9?%#{11 z<2Jp)y<0o`q9FA=S)CZs9kM30OFeECyv>kHt?dmUeXcg8$G1Bl zOv48Sq1VW&#DqRa)&ws!y_a_SRyX>%pLzq zzD|BX78b_aM;#L_?BpjbFTtL$Lcw_$J0S8s@razi0qg{n8`z^g@KK@N-leYN9kM1^ zi@DV?5r3Dzyx0p5MF&T$KZS3_kynXYk85vyPmuX1vKld5AConKmRWj}*`7;a16b

    z1_LEcjDG4mMpN~V1znT9nXEY|FL6Q?-lf--BtFaPbQ>E5@sA^(y_u}pFHfArx}U^e zPOjP}6e(h@y7eMYO!^<8>_7z+Mzco$TQ)tnua}td`~rAX`)kF9Yt}g~dm-Z|*M)v^-2eEmEbiB|equCvg=KLb)`1vT~37 zab(_3GUuZBLWx<9isXgLJ@Us<`5mF6&R>p-l+LK}u`G8~-Xm1B^d=R*&qfc4P|{YU z%of4Ya@Wy(KWVOke7<-l>Hb>R5*BhwN$bdch~$>pLbx0uEln%;=wC?%^IR-{m^+|ykEI{Kd={f&__vmDD(>Y*~u z!q1WXq_C`|BB>O#H3F7x(FQtN#yLu#CZ*-B03@yc9^;EDlw0@stLn9m>i;6uHJS3Q zoUl?(A)B&PbHqL`!fH82Dt?@+$fa2}K~kiS#@~>}IZ|+y)0ZuN;Bs1UIYNIY`f`O- zId)j=RPJHwsC-q}kur%S{Pc?=iBQ_WYwIb2uam&pEQk30Kqk8`W3uZUOW!2L&}7$@ zB#rU_vy`-CsoWEm4vzG9gmk75A=gDcc`|)$48v+z=B`ahxnpN(q2m3P@!Bc8*>o=R8qvf=*FiY&RV#S*oUqrn1ml;cq1RdkY_e<^aMRXQ@FWwkznT&j?zJAed`m!U(;Bn31IilgSMg&^(HyGIsQX zYsF@)1tv6)B?)gozgnWl_o~a(bmj@9k+oSlX`D^OTxPpU<8H!G!Fg^OcCea6hRrYt zj{^X)J>m@JjL7%``s&;h>AjXG9kY`AH(wBcm|U=TPxUspUGH{Bj*e2)e^iLCNXVy8 zg)ATtY;Ims02x&fc6C%?#gi5=;edPNk)g%VLj~T^!@z=W#Z#YKEVYMwYBI7gKHu8A zhr}+imFz&tGUGqAfPDw8{Fs$`7{YIP(qD~O&y!Nmb6}oAA1gMv-+sFU&eK!Nh=R=_ z$p#sF`6(YI=*iR!SVpN$kXmT1f*MrR7i%rpWqQhzI!aRK-jbT?u7Zx4>4mBJ=GZap z2h^IAe8q7YzdO3kVSEWYneZh)K;-Lj9dkKOL{2I~tk-)M^ z)CzwC9hJB3*jAB;kmmk2FXoiUc^OW@_7xXbvo zj=6(tmoLs~EiD<*qj>S{T3Dvu&pIZrE4{JUMrgrz#eaf~}mZh#K z>}y@~tle5BERxzd+Fh0!ekP!HCly{c!(@4zIfhc|*Uq}neec76O80EJnVh}vcIC5D zkY7?tmLL0GSEljr^|8_JcrjIIqOLsTkwg;nA^K!*zbL3W7GpM9!c+g|qonSPxd=Me zj^^W*j+n7vVoNbUVk~9oPe>>=+v5vzAdjINn`kxKW0*cVR-e%AZR89_-jy?Qakpds zl&fUdcRxrr+`*IV_;O`8cBI%gF(IpFizfO-0hK(m)|bFE+&5Tpp2=F#kL9$MVCtW6 zx(4yP_ng0?nq3^@IJ%K=s7yF&p(@!Bc>$!S$u=b>cSYbU-Wa>3TVla(Ke@5ET zqJs4AISW=bmtfybL`f&wC`{S8QAIVRxOrS&&rh0D%*9P{+&fT~32Vn`LDcOoqiUiR zRl?%x(SU*Beyvv8+M_ttptZ-M_FOq&XD3vx1by*Ec(Chi315$ zTLw~QjeH266@*EwX%~_g=?hi9P|d{AqHtNzzUa~_*3ZW=%@-N(3xaV$7fUyFM9pxH zGlel`&k^e@pnHfj$ z=hXK0zsM9pA^UxjjZP6PXgGAs?s8MtG+qJtcLMa9##=C=*^Lv%ws^~50DnlpQZ4_2 zk*RLvT;Q^;GC}(>(F)r|1$_(s5u8qKgfjR2Q^54DHTvBu`glSRg~Co!5$7D@6nBya zyY**5H235?3?r2iQ+*a{aD!A=isr*u;yFxgPXz$f;kH5&)Zq$i3vrHR5jZ9v+P_LI zS)0F|tlh~y5HO{}z1X9*6K8ZYwl~ClJxMLhs_<5_>Sn%x9np~XYD^W7pT}{5Ut_`vn1>^W(BQ}8kXi^lc} zNQKW3)O64 zZYrpS7ZqGx>aJNAtK4IMpm&2ZnMaWNa_5LtLqTszw?=E?Rh4_>kE8c!(mPkZZZK-% zM4U+jUvktQC)Cu*NUbQ?cFXHL%5@M;asH4 zUg$)>z7-obwzqOG*)cgcvXQ%(tYaKy4m+n$j46*i*mO(y{+6y+wv5l(mvxX*){wJ3 zTlza3`I*4lZ`n)Pw_~eB$#9hY@X|A^;0UKb3v~hVl}iuF!)Hq?2kN!@P%XU;S~5() z>l;s3Ubl>4QCV|-Y|NVWx5+dUF#VgSFVpqI<73<-%yRuMa?J!>zu~my8rg5W#Z?cI ziQYq=nSkfFoX$K?PBmx8c*2Ke{C#Ac2^fFt>CE_4d%pd2?hb@FD=Pm0IcEaS-+VfA zjxqQK`XDhWN%;OS`DOyX-*h_jJu}8V+A%aOZ2tk-W&*ZP>s&d5wThPKkCA64;Q6%9 zmE>8@1hb5PoQyL$-5H;6*-D6I{Ex{v6EOZ;r?Yc|@r4=LUfRWzPm*;eVEyzhELrPo zVLlDoUXm?8MXs5E>(jShk_&;KA=6C2^ywQ*vhnY879WmSrtlIF}d| zzp=Y9s4>?Zo2$2M)c!{b!309Q{j?S07^)=bglLSR(7_gESQRNn&Ns+B6EOeVX9V+^ zmi+%A`%J+8ktOYzsg0+dDyq3iSIg4WG+1#*kI{9D>mka0-7(j_4*f*$+J}CkwfimQ zpttDglK4Q53EcpJjG)h`qkTs2I90%9dXDn^x@+fqqQmzfc%Sma}rf(fMfgEL497skeHMZJx^Dny`y*1?HFo7gX(^yW+2i2gi z0q8%@n*YpQTPl#myVVyd1QQ7H@iWLAY4h0$m-VtQQ!FMBtGyKM&>U>dUAv}RpJv_C z%vzYATU?to{SHfdUWL}^1QdrE8*@$=C~;|KEu_HO0wp+FpufMAvlcRtW!j$pgL$0D z%N@0>mX6TJm_R*CGdkd*u|whFcnw;YVp>C{nSkk~=^hyg)4nY!Tu+m0Cg6H$#xzF3 zb=oKqo@dE3lhaz$LGdhHx5+gVaJ@90?W53irZ5)1kCAUC;CpF0+egH=6urXoNwUlY zEHBMmg^{p4HL@7g~{#+iWer5QdS9pk>LDX#K7vd#popT1F> z;@i5VaQy;u%>-O8%|Og36rR>3K}-i?g!vbdc_v_fX$E3O&3vYE@)EMo1ne)#KupR# zPS|nv#KPL+5>RF=dZVFwtx|@FBcnzw%!t_Bh%>+y@QQ%B@7=meE-4(9y zAlFR5^%7OWM#1&`yssJv-%lamOu+XNRSibKcXI|i3XUzza`fFsfTxjhCSZJt+7}~W zJgtX`vJa7GCa1NN%+|5&V%`?4!uL4&W&*xX-z*ta9);^ka?RwlcI~uXgvl}1wVPy| z2^e3ZhS3OI+tnLI*HdJf$?2_Yi0%8fh4B^{X9C8TsD&{KT?^yBg(0lZk##0u{WQ*% z!n!n}h3f@!%>-O8Q43=P3imCHOdvc#=9z%`C2C=enE6b7@R?+v3D{qn7KY=#HlJ3_ z3oGoeTavMh`Gs*Twp?T@BmA~w{_Y)UX|!)aOJmJJc@nfXCQl9X$^=>*XMa+xwnSCS zQ0}rrR#`>smGd^y+%ag*FoC!I&Z$vXsn$|P*pTm_B_aZxqyS7Hz`M>20eq`OB)EqX zFgasP;8#Y706#|om_UGco)IQUYy86h^TN#@feB<-qGCG}RLXWMWIoD7B3HQ<_FqEwnVdN$P|0*bu*mSslz|CkSem&o+45)v zCQuo20qIvL2NTG#G&7c$NRDh=>QD?O5aa!4My^(K1nZ;3uUXoSC~xfWKvO|lmoGm*p~Z>I!IAVF&>X1iswNKLO?`?Y7w z_WFMA(Y0+%ohO@1vr&F^%%(SC>#=k6A~{D6a_2TWwZ&6bnrH`KtL@;YEuK_&8&UZW zQbjXA=71~{@IJPrfLpK`29;*+L$_c8$i~t_j*Zn1x4AWr0G~x*CZ_~=Vj=}Tm%vN_ zJh9XgH=ds2t{^UxQ-OwATEAl0CkD$AQO#avc^)ReFAZr0C#+8 z!`H<8$yul58wkq;u+vKndvc~ejf0J{zO|DKFj;ylH>c~ERw3HHiKt9~y2Qm)bG|X% z#{Q)i`DP+B0rH`xRrs`PN$evglcm@3%tRAA%!!VlL{uhAk2=?=V~0#ZJxEk0KwaW| z)IM5I^U)oIWwP|b2F~;pqA~&M5*NU2?9wyQzyfN~^3w>+1i+8&(`6Aa5NcAJvE&|x zmVD4TaMQr~V!SmoUvJJd=A`Q(z3Q0b??Ly&3V#E;`MOux4e|Klkd!{UBJRU_MLw9^D|~p%{0sSDa&PdV{T8B+?~@NE;Nz6XGTV|slZaN%B{NL!4XxOI6JcZp8DRoOwhvlaO)ERK^p~x7J(HEzY<2R^fwM&S z*%j;t^mpx1FCFuxU*RE)-4BxWyV4Uf+?XEZ+%+0b6c-iTw`&FWz@X~$4BKhAHGjvk zE3%olQJryN_6;n|Ort%I6GODelp56=Rom!T)qyfsXYM7d_sKUEeFZAqHZ*F-5D40P zuWE1bh}k7aS7R#kM&u%p*lge+CKE{a+@YoGZY)ILtqJsrn!_K&LG73e$P^PW_2PSt zDcN0b4g(oejhQ3!N72p|<}M<0Ou*cW?tSLkvs2A^$J_nM8x!!hd(eCtnyRK3*7H^H z_b@khWr=6?Q$a|!`=Fli=@$0%N~0IE>K3LN-N*BEz1=Zuehm)u0EnENeFHm+A^CwN zU`c_HZ~v#}+ZQeYMxWdx+EEQiuF-yRk^c(Xoe89W>FL2)Fw83~UPTs}fW?=cE-d=_ z@WSKO zdvB686!U%tlAb(82->;q~{55CLo2qVTz3@@wlF4c0g*x0IO01DR zCSdR7r->57BFt*>XUHa#)5zAAO`Rhu%DkRjG69#ra+)Y}u72bQ>h#m~S*yzJWReM( zJY6EVV{&0?z8SE(i>xvMt9>_%3caRmC8~G3AXb~$l4lj?Ql=HWRS@ zs?)^{8naXN@x~Y=*2aY^CHIh7CSdk-iSl-cQ1a9*!lJqHZEbG+#?nFcX?28*sfDHS5!|*a`gOVr6KLiwr!l)*FtOPkpeeR}6&Ys& z#@~86Gv1!B&ttL-W;j}vzlNMM0q6BT&HVv#XJFe}@Vi%5ctk{RUF8ou-PlH`+EaZy z<_*tdr(5P;vU&$zskm1l*@H^bR&vNQKhiu?;o;HA^iJ zWi|avjXw j(tzv{7as75_@FI_7#h*$RIn{0-oteLAJAg)rgZbC;;k4Q-YXtU{Lcht0^nPR^vINUE&XN1 zyT8Ofe-~g+9#+b!M*Z%SV{gaM6{)9eW{fv)X8ft`;8?v*3ydFMWu5 zsa^XvD)Qo{9#PTEL%3BC6UbwyRE`u-9kmN~3t^c6_Q;5B$o%15wF~-MLNfvMZA1F1 zCtj1Ecd2iP>zD`AUDbb5ml-nDfsp)7s%T7OUR%=H}=>!~%biz)S#aS0as8 z*1&VSr2YuOnE?EbVO`f#uR+YaQYR5FGLND2(v{Ntz#O_%o^~|>{^*$B_(j$<<+uF< zkfCdu4n*n0HFv9P4qel9gvBSl1m?wzC`@RUVe?l8M5AW_l@N*vpoWem87S{}0o+Ro z$Aoqn(&0$97SO(l9;U_z^`TuWEyA_%{^;B3TJqcep$Nko$ANSV>BF_|9Fc1|!s1$9 z0@GlQX9DhrcC8GEx>f*nlu%3nHMDDGpuB4ZaCZ}q3GFhZYmsa%pnZq9mfQe!JBwiP zVY=NsGTmxUNO^02cg$B_00&#G`T!#kk|>=**U36G7+2|aCfLd&<{m^ZLB$pm5y?}Rxh>x3D=HxZBt z0Ec(N9AMyt8PK;9lnFqGc0#3GbM{v~E~pb)RKVOebYKFl*{OxLhC+MMF&}yf+;BO; z`LGlG1n8bof+`j~@dfIML%07O(`nC&yP-(t6$}+jAj!~e8%H|@^Uf%W6GfU=6Osua zhi;O0L1x`CfPF1tnE-bGutCwff;eP=@qBuucN8Fv#3d1XXHu8sMaSIqO6QVtt)TJ~ zpd)cf2dY?b$<7E}(h*Oiqp&VgncEpSn2g9!BrS#tFkYS-N^SxvUL~YA&9$b+CZ{mH zwly0aYRJE{Wqf*etf?^sKdViQZ9I+D^>gi&{J;a_2Bf>FGf|~^9qmVbS~bQ?wIT3kTJw_Q)MU8o znAhOU94yBbi}Hs220njN;!#`DvY@~)<~!7w@$R4zh${VxqR~`bvztMa2?TsvENBjg z>#XVl-%i6)$zHJ|^xjGANHW!G&5CJpQRPL)+#%(AdYvqH@6oQekIt@+Ea4RuW_`b! zHC_@fO1&YBi}7l zO|xt$Hq83xYS#Ej&Io`cmwIf)H9urNWda$;MrK?OgX8l~!oZ?+3;Aa>F?H>31A2s3 zK7O=`1>|W2mP;FhKg*{6%HWQ@&`2^`D`(m07-GZ9e?4+5XMx1Z{+8mJcQ6Yx8L5>$ zOig~eh)hw<=f%qY6=tG%f66#^r{Nr%Xx-30!(e@V=7`Q()Sn&mc+QtP*IuPR0J9@r znhpk|^kK2Ds>R}ieuMI^!(tRg>6;DAe@wvlu4w)%&o;J<2`GPs25{;D_1(j0CAVqq zGjZCB-?Ua*;I!}d5kPbdi9_$-R=vjuHA?E;v7L@aDs|IhD}o8VWeBZX* z`4_r96R=*;s43<5c@WuMISciDLNNhUK?8g-P%M#kN2M&>zY&fJ;G$zPgJ`dorTrgt zuhjkki1&z>Lg0B5!TN7ry4Bww`CS&1!5zKOx0%o5V}Of*?HFRg-_HH>VO=37k2Ew> z5f#ULlG&aKWGHAKlyQX!lx9}{zyf}XfJ^{bP+wmppm)D6(9aN*2|#aIba3-zv9ZG} z>Tnw6#bD+fm@DrTLzFL#>DhUmFf6}1=It+M`Jxx@FQgfwd`TgcI9%=mb-5v8bV^eK zT)?_n#rhT#FunNlMJU!ny602xRxcnuMD`b|V^ht$wN53MRbFh=}MoHhBjCF z_=gts69i=f(8XtePgWfeb^Fvg%mXC*`&Z}`LsUQ-C#@5ng!e5Z@V>KftD`AMZ(Drb z#*$XDaI~%JXv4%R%Pg%xE`?$9Mwa?a!0z>nj=7*$^E9_m%c2PoE$CA!Q+mkO9TQWt z*s@srBZ8RryQa=k|mt_ zq>89AnRhWfGl2|4lnD{2tb1fY-$PI)ztCB@IzCgPbgomv;vN}{o9G;&#US8~i;vus z3sX}XuJEH{KKPsPhqHOJWB-8s4a1XH%CP?JYW*R)s8Ws@9)wfj+WZGAgG|Wr;S}>uO1g|F z&J4EZLKO29+JXsmHbiGYR%bzR;22P$%+m;D&Lx08UZh zZa+7?y9H#`-5k3jiMgBxVFK=lako5-b+;_ol>}n~uwmRS4;Hvv7Vtp?WCFk;+|3f@ z!X0r5wU2qWx|_QRj3L}@y3sy*1m^-s9Qb0z1!FHf(7pMV>}-5f=YZbX5*{qoT6 z7LpZrb2n5H^GF(m3Ai7^-5k|4;HbN~+ZOE61Y-iQA>7STO~Jgoxknc8u>@oSz{R_p zBU*DmEcIU!cS~;qV~F<048~E9HG*D!z2W-xU&2Wat26i9rSIE+;^OPndH9YYB3$sb z>ViX5xbmdM4a1v?WqwR!F@Yk7XkCSrQx8#h3?Et0`>@Kz1fY%4sZV6|ZW#eSi@;0( ztQ!(7rcM+RuIWYE+fM_U*U(3;-*`tEqT{@U9qo_W$&dJ5#qW;!9*6Unxl8%Qmxk1K2QXZ9gln4qGQqxqv_Zsd5<+49@|fdE7F9ysz!87}n^ zb*UkG4;)G7PnK)5jCq_1IbL+-n$)RpNA<(hwJHR3pP)gDTPiiso|K6=?qUm1kyl+# z`;CaRPdnztUqYPN^&}8IXCL2ZuDz-hRs9w!{Di8|PTp|T^`uGn|{D;=}#n{c34fT?8V zE$Nr^q6haz6R(E_}Q089X2`{{?4;<%;# zR?=oNLJb|yo8j#QVFHj*c+pgS`mp8yog~c!q(|XJB%Npf-NaxrA{_}v-izK#5GDW_ zg%>GE;HK{<0F#j!VGhNgWU~*FG?S4T0b$Oc+aMSpAqJC?837o1Bm92^VKOo!5F{|d z9}<8G0PK>#p|WxsQmiHZi1e9&zU}!R4gI`1{)9kG0A!cjj0h-ilRqO86CjNuhNmin zVH#LTB;NIDf-nJy?J*ikoc0k^nuPLaNtp>K+pe!+Dd%nRmxN#fh*88qFyECk{+bv} zfH4Zk6^tNb{0-?d0sV*ds70mLL;c%VY*f{;`cBVERlD)@1#IBktn1KdtU~Tz!7h>i zj!M>QspUVrHWKgsao+Vk+o;2&wiS%Fa*#1Ps`&P@MxGonLRV7|1#~C zan1=3NR<=(^if%~v5rVg`k2jAsQI5gG6@+l@KdKveh*43>Y6 z8Kb`sYwg1^T*=C9>1VXom1St__ps9iY9~8avJXS7(&ahXGJdo%e)m|NL(Rg|lXyND z6YyfqKNQ(9tdOkFoE)3P8gl_SNB|}P7@qH$la}lqB+CS3tye9cZyZKGHr|?>YmCp2 zVfEp3eSW?JUgxY|`E4rn8p%(@32OsM}Dsc zO%i4T!nY2qizD^)kGO9C{sjX0u)>8S-fH_%FILrs6`+q0J064 zA%Hl--k7s8%#kz`khVkTizf{g$)N>2yStrH)dFFd0A}c{)of$B!F+vY98F;{#0gSo zG72H?MlVidYHSvJk|Q*X={e*A^Gw1p0gUb7TD-2N8f}*io=v(;KzC?ALiga<@%qWJ z^pK_c;VGx5=Msp?D6G(~PdCOU^n4#t&+|#038)Vpfb5YHLiiU*m`U2WjE+ctOH%%myCXn z3eXd^0(51ReM=nYZ3w=8WOn0|4BSLdIO&BI#o&}am4j!J9c@g_M*2GoU+kE(zJV&= zJQ@+ns%`E0iX}jKZI^sr`xdT014E5L}~$;Z>Z>Bg(QGdKS520 zW8CWDSIGzyFrrKL7ZuV_eENvrqa?U%P+5=GXC|iXl8UYl2NyZ*OC9s)??(}|4kdoF z>?Zw?#m{4h09BeOdS<%?lbixbP^HdeAZu>K!)idWQdeC zaoixU3Ii9C0VZHz;7sBm++bU_=HQ-=A8obTjWLw96RqhnYfvlyCc-lTd}E2^UqB}a zYL8jqO9{*bzysGcoMgS_o;W#EpT?0-78t!TGsn=mmfF5T7MOsAsil#9cCK-Zve(DQ z(Fnt~G2`eZLwA#yelziz0Dp4n@SClLw$p({ejt&V0NKuZD<6`|DW8KJS&LsoP$mE! zI35oSIyT>u7~GtM2f*y?AG6Xwl#DO|BTMA-l-|@&=Kc+`y&a>1kgv9#?7g2_M%`Pr!4lPiOmGqOO(ZlJ&*p^)|~9enZKg_*aoiWT{wW8U>yRJZ;ck|i4tEF7*__o_H% zA#Xu9t$i~ha0EvO?udnI*ekUfHgIFEfNrE}6nk?Vhxy=qY_BwQF^TZ^W%Zc}WPS0d zjL=<843JZENlm_ftlper*Jg~lv&kG2F!%CP%-qZv>NkxswtHO(=Zm~aeQI^MjBGLi zo3B3&*$h={Szbw&nSkYIom!R|)dF|046PwUOu*2u+^Y=5>o$^E){#jjVDjfqEt6Ur zbn9&+Sz-c~ZXYl<2h?1qtl?f)7%UMcA6KA_=1hIAX(xYohi3Z}J3Rj(;_&MjhnL^r zZbG0d`cu_!5m(=(an(+6>?({yMuPCWwV>n1CHSIc8wmh`lol zvlwKb7@KThR&*ZY&BR~=44nd81X0Uz*R8Sw`CV&GJ3HgEAF}Us%p3m+Mwy0dCFkwX z#$Lttm4eT!`LVNkN=s45p}cNppa+E3l*zW3ojGs_IY1WaBR z%@A2?HGAn~>n(P{xOoEunG4e#yulbuT)UZ9I_8{z1F!!~<*wN&A6N8acK19euA&SD zRV}GNwST0lwX6N|&eQc>pxNv*+lI%;HQMp;+G7}=lHqd8@3*L1CSbB)I6g}-+l7#Q z=D-kf+T(N0SQ$?3zbDW|O;5QPa)3P$A13vz^Ivyitk{3oe10d>2g zY4Nr=TDOx4#wkcgAECI8%)ym`s8` zK+9U=#H@3Hvxvh4I78>o*;c#VJUn&Mb+xggB3%MjsB;O%1YkM`vZtwP%C3t$JtI=T z%#J2w&*9e8X#T~HdD|Bd0v`xtCmVOV5IBD{9Coet351@ShC@ z`&vQljq&;nHsr<}E#dka`Y98r`p`g3#$sj|uP!=IbpIZ>lv5A6}Sol3hn6CP1?5tqVOj z;Jd$MN9G!hiIXUn=W#Tr2=z!pF#(j_M1C|-GMl*0=|(Bmqlv`?SU)>TCy|>KL?%Ei=<{Bj$rRBBpaug_&RHH$WF|l!X@*#so!}sSOQ!D4HQEbPtS5-H+la{o zn2(Fr^diFgs27A9rPnhQU0+~8*-D?YLknts>GO{H#-AbHy$jX+WaUnO8_Zu>hPHl> z==Pr)-3l5by0?GIP!QBo$SrnypQ<+fz%uwAHb$6$v7#c&lgi~m{~(SLjL(TS-bXMd z0JCc=yRxIFSqygUBqjjQH4h_nHs`*wg8yr#wJjl#daK36O?yF^DpUnH%F6R+nmbXqJx?g9$K( zaj_^yUZ6iF7!!aMG>%hkYbK88nPVq0=e#+d@vl#kHWSb;YN?bnOF%m>z^4epWN3@X zB+prNXtr3)hZgw^F_;W(kqAa!pwAJE3BYa`Dz}6pe4bR9fa-9eM5yMO{sPG}0r{d% zfO4izz0C%xFOo77P%dhT4oErA{Fe#A1P}!S8Yx%3^8lv+oe0(bRgz``(!<3IPdd;3 zKN5opFop}`%^8{ZpAUl865k*W6W|og?=7vSC{A9m|3g3~LkouE)X*!2#Uz*y(SV6~ ztddmar5yYYahMD(SOHF6u^$4IOuU96LbHSq?v&9a1Q55=h^=cVlV;55V1su z5$(B3tddzj`yt6Q0r~i}?$m(on*V9Pj@2LwYNu#bW1<`#AznN6&pYO_&!KjDA!^gf z%H8Q_?2Rm_o%(OJ?al8|JAK5bMXcTNxSstes09TNFw;P{HIm^r=u9}<#L7Msa8%$? z0gY@8D0qN@JK4C$&L9-hmy$G-LUVWmHUG1R%4%`xvA5k3EJcai!anSnzxWso(Sdg) z%l7C8v_ip*`+%f=2@_neCfL!R318E3bT~L?f3trbD<6cNSI}dbfRlpK&r!&#-rd#V zs|e*+lQI)fj;|50A8}_uYOhE^1tU>rxZcB00>@8pyC0U7r_w2zfQf=`UH66flQ(60JNSVPec5vaxk&{5 zSyE>L>IGG>^y{oa)7$BfW6ft+s&!Ij0;&ahH2ta{RliVJ7@i<$CLkRjB6E~$?nj|b z3k-y5Y=>KzfUifN!1))Z8da~>^l``h;&LxhY7g2I@%SIeppL?6$`R{t5n9svACccC!m|>{~cBXoola> za}Vfk;H~s8>st`+hzfUsf3$gF29pIF6V-at(pnkZNmkybk1N}DQ2aewY^n9 zbG?-PdTsu8vi3%OvEp6?or?oHh}`p-A4*cNswHz??rw74?)0?^UjvZ`#EC3m_2QB0 zY!iDxh;GggNcm^U`2j(>UEwDndwxJx-}h{-@Hdhbw-KnaTba2i_zH$zV1-Z4>$6;} z$=*!X?8v+X+>HT+#)&#>jn2Hw)9YmUPWK3(WI&t8DECC8fh9C4XyztB<+@^D0)>YK zpvR9kW~%L@t%a$HYO{(VE!v}6Z&&M8S+X?Ccx@?PRqo~Ffp>stMTu5+S3r~stJK?- zdc_lc0`-1jz>0KavfBtES;WB2E419)6U~ z4IA~%tk3J)&*9tM-j57Vc~VE$m!Hp zh)OCUsR4X9;+Io1QIVCH^ zF~lHe?usn#ZWVW{@GpeOE58PT)^|Th*56=BRPb^I0arF$eCQx}N*%&}T7|uNkdHTa z@r0-O>FA&_#vM zlZ$Q>;Na7W{S-{xvIr&`+^&KuX-;E(QnfWhn?k7S(FJS;C;GWU+3ERaa)mPHUc#gy zkgK$2td1%-fgD)8aUd2mhEWF7wJgHgrXFu3n=)oohTP|1W$)ryq1#tE9~|>%tiG(S zDj9}i?lja`tIRcf) zA=j5h6>qCVJY2ld{5A1>U0@vevO!=JoM28*+=@ob=EAxiWC`gt16v-xYaQiVEfbLyxiU7yqz4NtlY%) z5PS_;^qSHbN)*M!4|eTsf!v?#?1du6-1aRDkeF<2fGoEVGO>tFoy+q zBD1|)P49Nh>#>A2S>OF2S$~s~sNCvEQ23%^GK#0vA^%VPg~(qJKf1oH**ldSpXR=x zQ^4563arwa#Zt;z&--6c$< z-w=6{Y}n;g;9m#UW6J5lu~!W@R1>g`u}8_qT?;cZxKP>UcVGitS$9o8>JsjJ&q44E z?wWp5$p}~y5e=~_CTBM0xTPDKv-Bow+Vi8&&_qSsZD;TaeT#nk*m5exigQ5sU7aDIxAY4FYo_ia(S0GTVfe!zO$S*^iV^D zrus~^*={dLJ)BBuSC62Uxp3GvThI@L(`=_O@5^#}-6FnBuG=n0kfHrjpQ-F79P8;& z=Y!gn8=Lc}soQ#99dXaX!LkpD7pY#y*fbB@2;Uq<>^zG8&RAHe6SNaBbF+ zU}12+t}khXUk0FjTsG%xX%`E`Tlx}p0jJ_)u(^l?y94j`zQn}!dIw2~^5zmEl#Hnb zwV}XtsSG}RC`^Sg1>y4%eWh_3tK#F9dak*Wbc+II2_K0CJmvUmQZ9^${YfL=Rl;CM zvs$JfDx?{BVxjM+`>G=iY!bi-!a3k&8bJ zB@($9N+1|QiAJt8lw>29c{I6rL{TLA+H+pjGZqz9K`~0p&Wy2zS*e8E%jyD#BEF5$ zrDSDrhno${+m+j7*rBKjnx(0PPz9|+07S(b3L<>=tIhELyII}-h zvbgiXpvPm-td^5* z_9PdqU>htUxXfK9%l4n#E)PIzM>$f*nsf8mnYG%O!LQZ~>m%*zOe^hW5roV7yp>dL zS2C55Or=`c*9!Vr9$Ahf?fsf=&NNYMOw_HAYxB30wb}#bUo3AErG?JGW6mbQ9Sm1U zpPxJi&7!WxoX2UizA7u$U}3CVlOC(8GmhHo0sUS}9<;??(mkY{QKswTEl21ay-3d4TOYsW0Nu8z>6}y1!eK16Sg`Dz zYp;@XZ`0eLv%MTMmMp@Iv@Mypn=?5@U)uYn;IjOUdm@n}!t(Vfs;N>Vu9 z#>Uek<5~QfoOQ>6J(QuSZy_gxZ4r!P5|SJU>axN5?gz1iaz z-?LtS_XLLKR=4 zsr<)?5G(Ea>rx5&g3dfcbeS#S3PuV7>#M+sIJqJztK(;rcA4Unb@j`n+P@6i-4~3-38uGb z@l)}|Pld$~%ZM!QuM&5lf~BC*8F)t^FN+9YrkGzRT2T>lWnbCSz-@k$gk0P%=ynJ= zvQ43U$Tn{!nRtw@_T>hlxRMRe<{hNh6_kq_1|Wc)qT0=I?XQ>6E|(oM_qS{;1$UB_ z2N~-1F^Z6)#!{B15<+9?YhbKL!IS-Jvzx)ju?fq|>dd`lwVTp*6JG)4pDrlUa+K#= z6Rj#ci?y2#MW;x*uIqlX?qF+2tFi~LY8RRGn-}#>=TKy?Pu2oYVnB$U#&=ts4Us3w zhP~Vxl)3WBc%5CwcT=L0Ry%&Q#U6T$qgafU!JTB~9YnV?E0YFgj@AlYySUdGtPG(?+#zGfOVA{A9JVn|pIcO1KeSdi5M;_fADg#Hcs zijXcE8Of2JU6`7}=o`-3k*fM~FH6K-AQnZ&z-S4*<8ToZCu4$2I83w6EMY+SrX*hsK@iv_S0jUZTx7eMKe$ z+SVNhpOh51D(b_}DPeA5M*A_SVKgu7CZnS13*rxx3vShqbVLme2mJ`3*OpU-c!#U- z2-K?ZRJ zh-m;}z%)M*VqH7Z~LoesMW6PFf4e6HWRh3sAb1~<{tnfFI6+7^-f@$*7 zt#e@k3H=Zi%UwW5l)ofZPl{CIuZl-8JIQ30d{7@szuT(I;4mToX)WLw`h$tVJwb3d4TwUfTU4f?D$?`2&1q4Kvda#Z3VZ9j zA0+Et`AauRXSD>i=iX4#eh0`L`UK?oG^*je+}-3nZOLP(7!zWLD4uW-mvU;DqQV|vy4X^Ia0ax^8=&kTKk`=pA;HQ*= zL8mBl!c{QqRFraF?rw6P(96s^Ee$ePM`uy%1E(7_a3>dm}}BqEk6%(rcmV$t!j~skSFOj&b9Y*q~Ai)y)=7c2?$4; z8gNRjSfy4nN;PjMUTKvDt73d!bxRe-*eXI}r9FnFx(&8t)%WcxuXITm7yruRj@kNG z$OhSEIwauV$gOZd&rQ3s-+fLSM*S?mG%drBq9UJsK=a9g!AWeEiQ1@eg4wEwkNFcA zL_dt3^Nv(eC9;xL`o5P`WPUfQB>^e)dsKu}g`^M`mtcPaB16fdq>&8MNpTy%VgOt_5p+orcsopOZK5Ku0)fyF;?H}y6&UH2m--v z@T#slqdtSBaHSz>N)!{AbPHfim1tvS{oKO%JnDQ{Trcun((|3<5}F#NHD-t^xW(n< z7Q6_&U`0%6C1W&QIKn!2i?u4em84f&@B%P`X=9}^Y^6+QTiOH4#d_vK+-8zN5-U0_;XAifwW(ISB7%;QcZ4n5fqc=_gGSA7yKcvWsAdo zvC2VVX;?$Naw|h!F_tZRL_+iXL@rfO?HCLn;W}2>DC)#JD z6MV5B4R@57Zp+rQ7h_OW%W$0Weuz(N7_ zhmd-qQDY+lIl9(pl`PX+Nw&y*vF`PNsfh{;$P ziGjgj5}hx0dN9b!w;gv9PGm$tZ)i6&he;%p6-LUq<~FAr1KWM#g#3BAyV%EzJHh$w zeK*#A&h znqk=w4w;i}>DX^FUAF^{BIp$*-b}7MpyVo7v!~J1yGB|Sdo4k*d2m2B-6A;l3e)$< zGUhRoO)hA|c9ShOpoP<`%DtRiwOv=%$*KT4A&7GJ4y*FFdZOSqSW8pR2Qw~!LI-=> z&7Z6unZqBP;%E7MK-P7-UrQd4^`-h$WgiJuZghmeTeM@nhjY=4+`35?gH*ZW-N|}0 zXX{IQzmzLm%&|~lzQKEu6%ZD=XG@-A~r-x37jJ!JwXwIeu6gI)%QOCY&ATMWU2)-sJ3eY44YkOED8r zh+vM9Ba-@&lp@hy@E(pd-t>bR8n0G`w~`IpcURniM&)a-d*gRM_)=!4U>b9&5X2y9 zv&`A@J2{&nj-;YpTs=4rXF*$%t26hK)!~#sLJV4HPt@B-54Y-b=r|YuTj6hD4p#aQ zl>KU-erk|fvKHks)7jOT1i|cLovufL6VHrZ2Z1aeYwQ`v9?lE z@s%2LCke;uF|m%zxQ}9ISE<6p>l~R%jJb<&r7J174B!JnRf2vHR3-BD6LW}6l&^gF zMO1xtoV6XQ3sUc>Wa}Mfg7{^s76TyL3PVL|6~01XwSSFuqoaacqVf>y94)YZS|89^ zSFYYragp9aPZ7FQ%^=n>RDkUYe-6v~N`aXrRzegJK_Vq6IOsCSQOBUYftW-b(I+7-jTEKeLKT$Me(HQ*`cg0}#TSucT15L<<|SzOdHB}X6VmD`lLshKeCeyq zy^I92<#4pClOtVY^CxHRriQ$%%4NsA_j~N>4DKW=ci?g5Am3({A==fMC8$);ckvhC z2cJaiMA=U^r-)TOiNJEQuIqlXZinNivR4i*AXm}e#X<-inV@HaS(J?)#Xm|mdZ7L3 z2f*4IYZK?NFr+b#BXTJWraOyLS7+|Q?)nOakV)~;3Tgq_luI{2EC?4mg#6>=LI;)# zQaLCi%Md5p63OAtU`|&Nah2}=y@rA9rUwgYZ<01+uSLY!he~JRrgp#{y7&yBWpZok5LF%viIP^r zfkVBp=rLvyI`WJ*5S)Z>k06D%vAd+!S; zU&e+!JbsNoD?wReKFu;ISBAuj-WUz6c;cxvn!C+kl2SDK$A%%I^wPj+N&at=EQ<3F zjx;L*sx}^yN5|n8NvkLsOZ*C&^ynJ65F(s0U%W5=Zz4BJ>N; zvFc@jlEz&hSlwhD>+a?ogy|cB{eF0{09=FLa$a#`LLy}ld@E!o<9FX8Ug^-fx3{g! z;8yZc)qIyMEGAI)@jN%A=3}J!S3-3~#@ITbz-n%`ajH9PbMJzp`2i{R2!MUO+S9bL zPx6U#h98l5uP_&DfCZep_~p&+XGcr6`3V8~M6&1#K0TOLN5Adwjyda}P$^#KE|X$@*M}{rNHK!VmdhQWuWb$Nl@86(y|&3-p@oO&s$g9|ZN^=nPc-%8ul_ zst<-Ut6jAxK^eC86ffSpMe{qx3+!4eTzWfMYsE|NpuF{`p#*_JX=6z!4=RRlk)C-l z6rC|qw8YAMnwB#{;9(@tt>Q<;LWCvLJN^mPN04gY_!rIjSzc4EsJM?N-I&JWH3dvO zM7JmQ(sU;R(MdOR0-D^$e$noPtV^-PFxe1!l5E)FUdQ}e`#MbY;AmEGuVw%{hSZTO zc7uC-8eI*LLT5gerDT{3qa>1LGLDQ(`L%@)Kri0njItv1=2}zOyiFvQS)p<*bB4Ca z&qc6^V?9F_d8sV&7wAPJTo;G6R0){I7Fx#KM7tMQ!msuYGD|mYs7@3nf}4FLNOd|T zMr&ztDqer)R+6C-Q_T&)O{z3=d&-T~S3Gb!c5J{-FFWSl|5rLP{2f$6{RIpV@5o4B z(cn!gaML5;2A@PDN&1Di6+#g|G?Nq}2OG_n>7lo|6E@tr#=&~WzQ?r(QKK1p8@O`Qir^=DsQxFApWUjqx6xkoK$kjMrP6cqh#Z542SGYIo{5dk<1s- z(ZlrX47;2kH`zS0Femf4SP$o}OguPo{B9ntH;#I_sO$3nFD9374~R*7OLn3>Kw_Bj zLSo=9y5^;TJBrO(aP{~cCRAX>%PhK|rN32}x~TAZauIdIPsi-1mHqZpun=r6%ULQq&bS?uxW0R+PY)_ z$xS>{(&Z*|l33-ki$9a9m#fw&7vLuvwL_uTA3}>Y$T8+w1n!wPV&hQ}Ni9~lb05OA z73baJnC7{}?3)c@Q}rXbfs@mj!yI5M9N3e;`R)~JN z8J#oS^Qbu|GyIfLa$fFkvKC#^!E3_aBVrLP4r139%Rcm?g`DTbg_nnljh+2 zZib{#U)Oa%S;ti*mkcaT?~-8DS7H;xyUD6Yr146a zd>?6c`$nvzu$y3dsD-nzcMJ1D5-#?EXgdJazG-y7p>ie7S%29vzwz)ypNtHM1R%cvBdkGYLT#D5OqSh#05c_ZNVE){bjvcO<1RD1a7SyYIeyf~?FO>;OohD6m-c=s zxpcdRN;!Q=k77j4Jv@0MI#$)iiCdMBU3wq_E@tV$1EX;$>srl;>#QlTh5mJ&F87S~ z(Bv2w|MvGRy|ww<$y#y!T`2?1g|Vi!Csp%5m8$s*Mu}Wbz9!N`=Rd5G4?RcC=1B8B z63J)8*qn}lisUhtN;cs5odanf^97RZncMnE8e}WU8s1N;OC>$E$4q3BUR$L3#w8iS)n`&xKrVfrv85Xe9iy1m%hl=izgUM}tZ zQgZ1&CBkO%EtW{y8zY*Jj(8Qgv4jV7z_qyzE>_VxF4lKHNY?LWEWxHT2hx{eh(R*= z3?`H3SC(o9k31<_uNZ6ZcS~1uw*qU4_x#N*0Jvh`2c{PEH~gl?#;!dxO}I( z38ln(cOrCrP8RpFIlhbIOG&>}o{lzJx-td!j$>X8v$MIJ7+smTBt2$Mmnk&=nyZ9f zKG(+9K1B2)*)g8u)P~oPdY_CLTkIdfve}K<31GLiZbqVlDk}g>P8(k8fDoQ3SWlLu}hv|zL$4Sm}FWTvS$$7i1zKH&-Hv zeGYmTwyAS-Kn|xsHCe`X;cYoi@-N7)<{;xhB#Xvo*5~Ni z+!Tfux}bTAM6GDPijCdmsAlp^7ww-V?OwSjHoY;2AkN%H`7kNR@=6JwZ9c#;Va#a` z&U&kv6rOwJh-fQ1VP?LJVkJJv;&c>( zbqqcmVavRdgo~n7&q63Ao`#`3?bncY zK|tzR>ZhdHnsv=wKdYLt$h?8X3nNc-h%)a#H5XiRq~A=^(J<4qg`0A1V@IyKk^^}g zK}tlCa*{}(;L=|g71V9sDU!rOM$dkRR1yY;VD6A8{&z{UJ4BT8l{7l!slJa?3uYum zd-=PJnaS#TSNtH!_sI0oV<@ou!vxw7_JE%B3MVW7Au2#C{EcMAjqX*3{BP=|-!K3iiY!QwL&Q#|}}a%aR99LTsF9j4#ZiuEPT& z(^t|4T(#Xif)gdMU$$lP+QC0e9)1u!0&I%~8zb0Q3U>81X-&Q2;ULD|{$kWIfkk^I zpI659MpZZs-Ma#{Y-ZAXm>MJHX2ys=@%EjkX*c7 zH@CjgncOu2imSN}$1QB3j(fP_CLBUu^hUC2hdeBDyl4X=i_h~@XIoQEOa#U3qx6{- z{lcQh$%VJz5J3H~f-y$_A#@&XP^52&&fOLB8;|$IxfS*41~;H^TEBmP$y+xMQV z+oi3#sU|?N$$q#Wp14wpz?NztCB!Oq8+(`YC>=RMK>Ydg{x2q%?{ex)iLufh5`&gw z=iWH8wQK1wbtdz7EQGQ}MQr#x{VbioWWWChexHf5T;tBS1>yBjEV@ddG2bF1i;d3vd$Lx~$IbqHTJ3z7Obs4) zW6cP!DUGOU)JRog^OyNog7%KBu?m+5(4gt!qPrg${Rc$o6Fy@t7DuXG<0+`I0I0V7 z5$X2|lChSHC+>cc<9v8ifS(YcUl_c#r&HJ<=1UD;O#KS$_%m#fP)rIk!7N zv2Gs*A7x@0nJ5>kqJ0DymYl+5`mu#sENHbmu-JQ;Ni6p|X7`_=w!1ceJ6XG1Kd#(n zUqn2NE@O>=C{fgZs}KO+MJGB(zS|sjKv~W>QNhn;(0L24&BzK+bhIr-d%QKvgW+_h zfhE2sdoz*iv`I?x(Fuz&@~ojFdy6*D(Tn7q+vO(6#M)yyDjY_n5mJB*H(1i5Q>~J zcTknqEpaD34-BgRJ)W1gCVMkkvl|OO+zDS&)3_?CxIA$s2N%8>tkHm_zT$CxbJ$1% z2d#4lXW#bfMh%; zySpo&(J|w0eimjH+T4sMovoxCtn0d;th-HKO($51<3(4~b)%#kK=?gX+QD2aXLZ-# zl-Ug^^Iqb5t1+mygL_sS5HQ39NRsn`~hr%M_o%_6CaFpt`j!*;zS zhg?(AV=?yyg^b%o$T^DJlgILPS)aF(3TCA3Kbf93u+92grRw(RAx9>Z4X;+HuZQT+2pj-uIzB1W8M^-)8rvGyDMWbS#FmCD580ylo`A8aXB_kHb*Rs zoML0MpR~F{YOG?LC54dbPdyBysX0iBMZq)HRhcDhqoOCCi<{<7((e-=V~5XVVI=5z zkZ5Q$cM+;Y_=^qtXW=x$rG>xEVdfA4qOmS^^iPs_}QDjJ*8EjE~m%>*Gz1+v&# zKv_r|pCkgh80HU)5V)g+>l>+J;{;hK=ks2;U`wPRNSP@DmJCAul`4@1JFd#PCaJj) zIPA_iHV4j%Qp-e{{toXX#es!sgwSTA1)C>WpFk2Fzs_hhSQv`?zEWU!Ed9NYqwcpM z@&p4^L7%I5$F3IKM**kJ#Ym9#_l8|MB);Smn-< zoLt~0DI$Vwk|Nj1N)qKyr5Zhgp~wvM6V_)r7QhyzcHfKlRFBoCuz%NK(#B>+9KZzV2JaOx8- z2HJX@TLCP%m-Troxh(adTwTuRvFIj}MdJ6w%lq{MOTL{vuqT(p`MvBQBgzuL=Oqrn zgNx#qdgwr5?dZu_ZkB~DD5_kdDr5LUeM96)vf-xm^$OQ4+lfa97v%`PKgu~jx}$W1 z2HTKjFu6KadcXIRt5db7{p{iv%p~Y$4@kp#V{-)}UXrOxx}B=2AoD7gFa>cwHW4#Q zJX^OU+1Hb7SKYF2HA8b+%_&Pbb%S~~$e1^gbdMMu?T+b=msE+3vJx!KZ;@^`_V%sZ zS$;{%##W{E+oY8Xxv}lvW7@QCRI$<4j%D(0yAnoQ^KOEajHaT0V3WYUZyckRryikWFuYKJnTbR zB@^V#$4RpwsNFKCveNh@wqekT#540Jgd8YR-LjQ?q-}Lgy86^sILg-P`b-mtpU4;_ zZy+1ZNC#kjY6~yJ=UXPHnzOq413x-u?|trzJ>Ge5r(yeFTM-sq1dBiZXvPyKP0-2W)j0wP=HexXNik{9H0=}GpOlY5xn5QOI7Y{Js zr7Nl%fd1I<0--)Ijd?a>6U}MuE4Mdr@X<61p-=xen<1Hd>7{(b-kn=V&xRty9e<+k zI6is^?hdyl6kjpTGig93kgT~xuhlsn^=HT2_5=9xx%Mjk0Xg>!uV@daIPl!_{z{a1 z$0&)5&xZ1t2hd(jAjb&eo0mhN)K4>jR}hd10P7={&HH8s^eTcf0qDM=y;4cnG6-v6 zt3>16y(5KGDEQ%}>W3pJX)V_x5QC?aLWDB! zrj3|Dlo1q6c`)aSfga6!3CRSIBPb#AkfAe%uqk69A2% zO358@)f;7N;q@%r&(>{)^$%d4I07fMFdah#c;G|T14j|nodn{3sTAhvv_=S@~gfdqhfPt8d$R`5r(c3lVWg)L7Bojc6ps>x$7dT>Q zKJyU5G6C%Hg{?)cWkuUfcTD{RK%W^rD!vXc#6CViZv@17saAfIF9POaM2ED42l@oG*Y}K}aTm96=N$Wo|Iw zoWb0wQBdvxVgxP4_VM~`{e+#s>n=Lx6ZeJdEl;n5pMc#rf)Xr%RW$hEQT4%5xJE!; z-O%1pEb~T|R!ktx2%4l$Pm+0qXqW|kGeMaEv@u#0ij09vW`Tc;z)S#q>+of>C0=t< zTb&-EZ+e#j)(9FP^UWzOq4}d@)~fl#F>W zb-yg+b%bOB$Pv^9^N`*Nv#^gOEEB*EUl+8rYgvpJ&>KVV7(uc8jK*ARY_>ij9?6R; zE;{B>|Alt(^7LAN@;wf!jG$N!VHFKt`D^NxBPf-_YMF)Dwn;LQw?(SmE7jg+;hhmUY&a(>qGt9AMC90t@UM*a9iF8h<(MlWp@Z zYG0I-Dx{!}+RMZk1!7%9NJuWXH>?HTzYG>wow=7@rm!~*ZihT<#}Emo_^_IypsqTQ zB(z3|qZsBp%o0pskedfKNJx-FXjGmv3q>#=qFJ2AQWeF^8*aQ4i&DJ5r9L$^#vhG| zvF6MKPtz3p;C5ASV||g_?wIFtRBc1#iQLRlVFbG=YOzJIqu8+9C)9573fLkDOFZjV zf#R9prVW`umOEoM91yVvq`R!1?sDq3Sbs!=Qn?X5#)Dl?aIOv&N@7h}SIhTtJmG($ z;922s=x=$ICW{BV@=yu@OMO-?6%Tgh>4||-VU)VrO}j7w!_i<@jz0EuoIR=bu!KKD zBZzWRg|r6u;dJE%w$z@hpQNE1C&tE))-hF4%#pr;#fx}>IjnI4N5=4lj=74((Iq|K z2_8o>)g`_>MMLjJViZ&mmTx^v)~sigFC-=4yG&epS_#< z?Dd0NCX1_JF!evFspBR7K!U)q9z*Gy4>2Dzfv#>G*o>YW*6JezxtvTrnXl78s;pEk z@p)!_q~Q6H$iee1Av0Fz1;DIz_!QX}XSR_{wayDX?U=W$fw3+|elB>yJ&Ta0=PXL$ zJy=zSV9@WYL8lkvAwB3zm{w_H5{Wv@W0-51K)|DmFn0kytj{ORsPkyW(GbYHa-EvO ze2@NM?GfV;ER9YlX)UV2{(5HlyMK(Fd;eaqxTjqV3jwekZ_q8qqaDjA2*DN{<-gQX zo<1^1aR|L!#Vf{4Gd3`Rm{X&27SiwKE&=|J=rGngh5G-Q!L>78*WLj9?U-L+QGXVH zY6@8&vuKh^4yIf7dC^+D|DdOHIOep4X&E%PFyAr(dygL26rhP#rK5E&cuQrCciQ&j zFcOGCKOcbC{|LEjefI;omnFe~d*h*UAUE^J?gV@zkmUtLJRYda>+Lj5#iB1(C6fQK>%P4ed{0N)wTQeLVM9@2(yP^^i|9NNh6C=j zR>Fzs|fj|g>Kw#KUL=Ys%sQtSs?%Q4GoIA`nf4p;+zVGwA^*(P^on4*4EJ|~F?AUe*ha~ii zvqSA3&T|b%`rYw-?M`oZriScf50M|}Ep~;!CS1aiNC+nwNYbg2q=boa=unqizDfM6 z3z!%haGw82BzLD@a@|?P{L?m%I)%9~ZDgAze)*MdCZ4CW7=vy46S_ev%(hJ3`CxRB zN6Jt6VkG_3%x=L^s@Z}l&zir8A`}D?>3O)MCt*a7cnxx7IqTrme=<=t2;qXcE2w~# zXDbAG7*l4NF=({(>Oqg{rwpr^I_L;w%T^D!*p(JnN>z`66AYy1QDv*gIP^0^k~#+U zFisF@%2W^BxqRfV&-JT^n*ot944K4Bw+uHyF7#-mAwT~!4ny+ehW>Gb+wG>7`+L$z z7=~gr@IV|;k)w+wM+w7F%x#b{ynlo&> zgww*S_|$!;)md2`$vC9f8+sjIc|QQ9bf~|{tjQlRT?vOn1xSHGrdpDzgro0*N1Y^Z zn;@vqGCwq+9le~&6igf`Jbz8Syu~zvZYA|}CPkVmZ=8g=yTFi1cv4JnFCLA3pO?Fj ziS065{plvopE2;pa$(6S}UbU!C2tJ%Xk#W@c#+$oywm#=JJMC31#^ zfvGE*(RdS<57kK-1pIu8qF%wH@MB`T^j2RM`VY_;3B7coH7un}5gvJcvE((O!4Z@kfmyTdYvg^UUi1}qB$C`7(yr@4|8Aiu@?%2HC-rX6rdRW%eTD{uf zYNj^vnS?{UEoMdknpGLUsfK?%GoYX#alb2xn=mb!$ED6#9+n`eS2IyGEW-HgU~Uk( z?{*C8wS=OfCMtr;Z)zNadp+T302iO|%^Fx!`$pe_KQPU99R(*EaA}X{Xn@xV_g7*< zlRa`;tJh!Y;$1pC7o?AeWF60j@CvAti!7Vn|w@u-Dn*=q9Y$4mhYD97(f zoEty{7Q+0DFf@RPcc62_O(RuE=n8Qv-9=YN|rar45H`U8~_SgR*nunKjEncC#e-h=zPbJLGl=o8PY}K#v z@&yfh`p}obOG@ zil6ne>B;YVfxzU>7PY`DP6xYnZ;=5-N0-@C3-EOQ-*I-H{n4d}uieNMVi(k=71j_{%0v7GxUA})#j7{i1_8~88PyTHHyxDg7Z)Z z$cp_RAn`Nl^MYiG?jf<$L}I1tB&W^+)T6KN$bzQ<@lt(f2qEI~fsP{(4S-7NI0VXt z<%8XgU^D`FL4cyp7DY{(Q_jkrQp&>-@9K^hQBN@7JE>Qk2S9{026G%? zXaF;5+BXkOE~7E1yAg^8P|+uvXG#EGvctsV&LEp=brz*$@@-Q*smj-jWud>;8_5&Q z0@RQ#nOZ#ysyaN}XxCfjM~EzbhGPBDa$tdiye<}brDi|(s7FJS4?i6BnkOP9G$1~y zFPWpo^79liu-6fc24IuM#5uvn)D}ed1_IImF#39mS+n9a7r4LZOOTxrgeQPWhXCt^ z*6r=Y7q#TAc1C4pQ>K1$8nkyrVXNJMryulRPQKM){Wv{vL4*7j5g%G^(qJ}EJYElH z$?BNYCoe{dXaF?nP;g$Lpr;GrK0`Pfz)d<3m=|tLgCXSS2}uLU^Wr1ujEGK!A;1D< zXtd!=A+-mTk7fCTs{MS{&(83AK(o;mfLTYBsXbs0oGC&; zKN0Dn0rAuxumBV2F93TX!Ds-M+5;BA#?%)8zL=Ok0VsYohkrIZkN`ky&qXlsIiYOk@@dXQ z=wQUZdd`!O2^v65=uuN3%*l?trPS2~q5;qZLC+7AtIXy>r$t>uFdBfx4-aO>;t38f zjH@Uumvy+GaK>SM|10#WC8d|}IL|Q<)B&<${|CT?ZfgzzaSbWGLZp;j2RUU9oE~lU z93JM=fbfKg#vFu=PAMWErAC~Wz;uSn->w3{va%mSGYYq4t1xfv! zrA>nftt39cD}#7}f^q?W0}I7IHRm(7209)B!(mRO8)@e9elTT5>3#7QS< z=HSa@Z|f-p2}`NXb_teYP7 zcTqHw*2&~Y_y{OI489;=1}%OF6tAzgyEiYat*j3EavzIX#*Lp3DCCQ?lmQbI=!e(g0|}NsVM6CqCD7>a&ES0o;U< zIvFmIUJm&MLec;-esyzRL<%qW|2gW;N&*)7=vMT_I>;kx32uB0B(y}YS<+2MPzd}eFK$exAIBo|1 zzpiCxHUXpb2xxCc(|2(_<_-`XUW9hJei52}{(Hhf?d-*405V1A(AoDzXA|a9bNkgI zbL7=d9hLvLyNNUcR3) zchTuv8aLlx_fx!|aX)SVK>2=305V1AP}Qa{>t-q6PkFchIr8d56Bag1N#ZVXaH8apTdodd3zm1FdD z_?PadEQt7rqK*?qmF}mkV?8eA5vcQVY_AR2m+q$m5D}FJbs?c>09Cr53ZQaXd2ml8 z91ZhQvY(<`yw1bsUETT1?5FewcrV>g4M*lNoDqce{xjK6VH5f(S^$*prwo8NhpJ8h zfA}rkPg&yn{Ff!KUiL(^JPja9_ftNENQ#Z3TS>i=Kr{d<-B0;Ixu9~e>j*{zu(JIW zyy8QbHjMjHO*Yr%#bgc$^ke|2}Dzgm^>g)Ob+Y^1f!`!OlvDmmu&SLA|}aoX)*0=5A^I7|7YsF zJ5x+t6kCOu41hR?n9iz5OqMvs)Wo;uF0&0dkS#Ab&&< z8h}Kfl${NO-$638FVy1TI$WlU!@QeVzjgOxyoX^wE{cWYba9B|OwlRCu~1eVhA4X! zM^?RvwMPT0>EiHRi#YfWViH#`Api{k(#7Ecc;av%FDD2MK$6AL+uh9DWvhq-2yl5; zYJo5J%{M{0fJeFR0(tDOm(7209={+wgPN^#@e73vL?Q8e_UCY@`;VNl`X*bKhHPU; zA~X7KdOj~>`$|)kY2aadr`(#$g-rb`JLmoNviYw}16$|f7Y+QZk_~Jf>ITjkt9P<* zqbbqAbl3EJUZERUZ-CcDQSkQ8@+$6T=3v(v;YFUq&9p6c31-*k_K;t+>GsX{!dCi= zYs;O+On;E6cOHd`zXVFzbI2o|A6C$5iTL6YP5%OE`d*?Rw)hMYOYnSHp|!BwA3{+& zqNlL{Xb{Q9Fc`L1I<3*}Rmi{kT~C6LvbwPOXSm4I6l_3_*KO|;eBXN&reVa7vGfR1!HpUeL)A#hZ@MS?an>L|-hEow51ow=Mr?WKZ z_ePx_=E}O^KTkF^U~|PrvcUoFkj+!z^Ec!}13rTdW&}onGfH59RXzkd={|uk6k`E2|T()t!Sz2z7pjboVR+69r zi4Ck~LqbnR__rwGEz+63Wv5^8!|4L3Y8=JUocs009T5Hh3UDR4e-zOUyuzBIeC5~)BLaW-e z7LEXVtMbWX!|mV6jb?+n4cd#{PLH4DUFff@;&yI5r*rdO-ERL$ZZzOF`xLyivbI@n zoT!*)`Y%$U0hQ-(UKbn%;{mX4sRK!m2J~LOx9Dvf;3XQ1EllA?+anw|kt5AsXhPRx zO>V-&NRMVOG@+xnP7@wUjx^vn`?()m=fSb+l=GEizt;s3ROTH>ga$;e-C(^5ktxM+ zN0OrfxtH!8a_i*rI5MOG!wo#_91YqFnBa7mFzdN&tvld5eRcP7H}atYpA8(mcMb3@ z-m&3G515A7uaX!Ih{?x8W;iEQ)Nj*na3@wI>d9wao<6f`wk`L!wwGr;!)AVsSFN0f zvp)AiTzd{WM?COk&x2E7#Tm}=eD}+`nffVCrX5(=5Es@415QX?!f?F4)ZJ!+xeqf% zgE+R;MFF43=nMvHt2j~5KFL6zNN5^B&wd8ahPBRNmHk-(dUFdC^X{nCG8`U24m99! zX_oM)BF42tB?i!E!3i^D_D+)7TlQu{PdR)Xj~o{R(T*-rvc|hUwhnOH+Cm$T_VeVXxd%kI{}sId zn+A>kv3)zxt^NKoPDbjmu4Gs=2Go+|KErXrxbBxTEDl=kMo6$lLm2qeBX}KzQRx!;)@v<4dVLb zJ{=ciiJr85dB;lgr3{T`pD(;&3!jK2iYvlOjuonAO3yqfXRAil5ev+>FOAqaB;_lflM%tg;=hVJlK_b{(z zurvtvv-^0kJ)C&riQ^u|2vdizXLvOGavkdP8M^-r28Zhz8x3On^uC%p6PuoSCeahh{4eyxWC$0vnOv_3de?bFfbYf zw$Dze_3cevoQP-*`^!5!xJEfz*xp)cj|N@58%USmyBQ}9;{3wCn!sY5L4@yRgfxh7 zpFKyx2!|a#mzkK#KV_ga2=uS_?r&gkJH}<&-5~3=usPSSeWGS{bH9&|$k9OK8+bCm z+PHX`qP5gr#vLdotUqH|Gze=0&v4fkmYb04r2Pe>quH0E<224)U(yX{a`z!dM}z48 za^r@PYIDcvv`1TLA7)fEh-%{olOU+3UUR+b)c$q@8y@E(JA?MJk@&3l>qR=df}>15 z_5m1BZjTRr?K$!s0dc`23(wj(Z55cwph9*SRJO{XvVpx+gw348O3{NmX^vX}`{;vp z!|%_}tkIyYH}Dv&$Zehb+1A(5=Jx6;CceY=QfIWgwbWi1xeyOxh%^Xs1Fs5HAEHa3 zyXv7+cnIU8+1KOitZeNpF5*&^8%TA0hciAJ#P^N8+8vZEz=9%TSN?UtM=@X;1iXRM z*aAI$#4z7&Dn$<*U*(#=j_Vl4MT59Lv2Q1G)Y{5tbue$xk===r(IB!7yr^1i@AADU zGsf3tw{WAhiR~_ojRvu8;2HCJVl%f$>7?DAfzcqaeR^DwGmb6XO({2mnZ(_b@zEf@ zeR|?D=;*YCqu#w39Sx$}z+>X-WjS2iiW{YEPjVlIMT4+5@G?&IVU2e6C!B`V#djj( zq(Ph;c!{|BI4_r{-}QM7o5Tk&I2r`^!VNnoS%|G^*4@$6I!9U`*|-t8w}zSCp!~69 z=qFQ8z|G?7Z*lm(=ZME?2p2mNG5d3Z<3}5Fo*fQ($$=!f;Xv{lIgs4DjXmG2t`N-< zUJ}XfN;mf3^MnZv8h8UwZ5JrbKkq3xz{6=aqAxQd8bq`YXGsDyS^64dqCrg8Y*>F3 zwsBKdT}4hW*4dwqSy@{ib#Xli_ZJUme~(zNRNS#nM5k4TFK zv}S+8t|TpCk}A%zb--P1CO14s)H(boMt+4Do)Q1-w|BMZJEX zZhnpL;NA^=`TruQJqKMV9_D-Fga<3m(0Bj2^xbOaiu0UI>$C08Y&`%KNY_&Otn{n>b8HtV-x z$U7Qz+Z;+BG~hA&$YlXa@W6Z6HJ6}OjvyNvu$g_TQJ#%?SCQ8)N0SK+n9TeHyCH&4 zV(HqSRL!%$5kkLBVYSUSMB{#z7G8e1ZPp$o_NSTpjfbOqIRP(^+jHzicv$3k=lgi= zn|;mfZ;6gU$fS`l=y*OS9nb6+*C%`6X+ZS_dygtdhGMpVo78APZT5F3R-WyE zS~1g)AV(T-eAO>W^O;*#{4AeNnlzw!?cSp)qi!+JXOSEY$i4EHhFmez=aMB2SYG$b z!*aZ$A48%vAUgZ8WOZd@UW!`G^5aO02DJ9 z4*2Nt9ea*G+kUO{c>7~SaHqIu@q=FVe$uPnTi<}><2N0IbEmP@iTH~NV0X#E_`Piz zPV`cy9)s^L?>RtL_8f3Ack`0YF_Ax!AA{T}Lhe{cPXBq+^Qay~Ho3b8I(Pbw+mVk) zv!+e9GIa#Mc7Bju-E+`IGI){Lug~I1Jb>wM3DXlS(+TKS7xH(iN%B7EV+7P{fH&Rd zg1{4f-JSZAJ;iZ4`kPEW?;?!KFM^Wy9Qw%oZyDSJ=D-m@i17@G@i*r9+k3lAt-<6^L18*d>3O=ZD2 zgkmsnCln2!9$!hjE%&z#yW3X!U5x#@2>*l-G=O+=#Sq1C-bE~$O2g?djaJ%tQ=AUx zJ%pgCG#r5_hVy=6(EzKO{tMaZ;`l~KawEOdzQIt+IumGPY{NtvOIV(e45T_D$4_%7en|QQD`d5 z15qAg>fx{Hou;xpXz#@!zDO9F%JMMGhmKq5oTjoo(0MV0uMmZ%x)8cQOk zI4_3q4@98>%3~`TmBLZ)pXi?k{x7c5e=(5n5QwI_K!Wk^U+ABvx#2M50#$T73tHbQi)c5X> zPUz=&4q?wh=XRD?(RZ;2I$=iN^7rU|{!F@`smF{yr=ah#J46v7wg2IB5;S0S|0(^r z`KxC5*JFWA9p`y@y4zmH>!GLg;Qo&?_1=e~`TiEK$k=n(qrAUn8=AA&@yhkRNIy$y%5CuM!jW3UCq;C+3 z21u=nqAMU38}uIuNdw4>DuTqfFbDn7TCa;QEUlQ(zD*n&;5@AkoMK?N5s(IeQzw{n zWX=1j3G2H=p#jR&A;$YtnaBm5Rj}7vnIy>{5SFIGtnFxbS8!pnhn(?qCt8sIK^&S2 zvlieKv-W=oNCUvB^D?iI)@#oYaIDC$JK%P=za9Tc$Ui0n8Zel8(QOU}eSG7{wCK<1 zo~FXg(S5NYe?c4?;7pyr&k@D|?=|SJ1OoZLgrNb|5(1`%ecM0WiT-KezbYYU|HZbu3xQ|=^x!FTU_VPu zf5miY@p-Cw9ydNum3faox|G>@BNz;2ccy;Yz%=+I^euZ1e5{@+aRPkbX`M{&SpFJQ z-=E3UcWSEgKMNf0pk>BObO*iDRN~#W zjA{2Cz0*|C?x#*}_sa-F1DJ=G7?Ktja5_vE>WCg`;PISt9*ZK`Mb|VXTYRyzI@*r= z&iD<&ovuosLGLsrTfE@C7{s#(Lj#!8%e2p+zuM;~gLSJvhhAymb?RaJI^E-POg@5N4U)E(gkHd@NRN4GR^TV}f7 zHExTvf1mzoO1ARyaD=nFn(`meB~8gzrpqGTH_|r^d{4c{dYx9*zWHK4a}di90*vhJ z>dge90Z5tYCSQ!&#+yHNtGta)Y2dWXbW@xb+vShxod({^bV;}=G&rn%C;igEZ<#L1 z`7IK^fdDks5O?F(`{bH0>|wm!=xx<1@7n5rC#F0N?(+y@L}X zc+nBMtUfMWX{CRd05kxYdWmeE8r3f?4giYc`AZ_v0O`ajr>z92DgPOk#dAs13%$>$ zswSVL(z`SD=yPzA>ODA(hLcpX3B;zKq;ihsuW^!U>(_KV(|b4fXN6NDvVCi}*BMgz3zQ?co26N32w-P6GR)GL;3 z0F%M+%z$h!x-W)t6LDyOGxZLwb#QPy`D(vA9QJ!&Mm|F4G;luk>f~I`iy?fBC^SHs zS}eLnnu0Y!(^HE@PUB827TKMtr~WF6rNR3`4m?k8)B&-n#gaRgzecg_lwz5cPmp@! zF5q)AZw8?Om#L$4&LynCz$sF&fX_^~S|-|4>7Ax3@0`6j?+>AO8hD?o(b>3fU0Yh> z%{r2(-=uRIIG;MvpVc{DPGVgDHeJ)e_0%cu9IknT6sB`pV~?PJn(C(_F42zQw?qXwNyj$9f~0khHW?BqQHxZtw4E zZ5y;#akshle<}UbROFvWj=qo<=${7ur%rihYa!h68T1QFbWa2K6%+zawJvmm_URIU z1^^Xw^#JJN&_Fl+GF{Wabp^w#c8%MVjQ2jh)4==GQ!ukN{7&O`K({n-dsgY*a-}nB z8^>#OOasT$W@JLQDgT+jEl!-a2{HRlruH&l3UHDf@#yyhU^67PzDGHegG|n@F(L zRZm6=X%OF{J_4;KJbi=q7TbNT|wWfzrUUF*4 zdZwCfi0Dv%ldPFP;J9g~nsc{Y2rE#~)W3+PQu7gd)qNA$TfRCVbrxqsG@ze21M!^d zR-=NA#Kz#xB^(Xl5~l(&I8SV2kdGlG4Is};Q(W$|N%SpY6W&JgX<^vyKr#=L%qsiy%o7;hyOG6*j31TKQ4+za1TpsVdGX@LaPUST{l%?hiyqx znvSSCnmM2W&EHPS0em%cfBS=@i#u_0I_P&>czAVNPwN?L4ZW7BpF9IiyD8tGm*uDI zBh0y&dHaX}PC(GuM@eHRPF@0^dK7b81VO!#4Nn8&k4kEI=dp<;D4i{4oFB<7u%YtC z8K!A)hzm=d#nxhf)WXMt7xAISyrgt`pkaRC_w`q7L&okt^*45R9D{i^7x(AQ z>w45PMRrK_-6Yk!YHA@C+%zu2L%oJ$0u3TI-+`+-Vl70O<;+0nbtFUsLRZz;Hu+dF z1F1KV6b(pSmQ*&=K$^013$?h#3O*P_C>eEEmX}fWWZ6!bnd-wN)aAC$)fk>|aEhhonBs9*G9QR8I;OV0px^Zw&eDc_}qCAANFqvO9R;Rt5GEbZTc7wr5=q+05f6wHE(o_ zospIz{?F8ZZHEx|r5X z+kcVE=08A9IHi#aB`8qclSFkB&Zwul*ZqQyKu4pFVOD4miFvn5+35zo>qg6aJrD3s z1f&6AyP8ft0Q98ia;EM=P#Wf|8tuV((+lf~RG&x#7*$m;K={!QCqb@c>LW{>GZI{{ zdy9asXwGQ86Iu`<$t96wRUL*Oo$d{7L^?wCGA4}%QB^c&^rO<1VEV-n_>}~v0dPfg z#xdYfrg>h~bp)pYcr|lIi>>AAA$2I(Tt>jFXqd+BSz599A15++>0&=FiUmwX!?b}B z2&i*S)LGFmZG)gNT_Ec5%nl90sHn(&AdzDZ_XNVx0Is5{^Wkz4=8zW?k_M2~4Ab!4 z%>9q3I;{r)R5VP(`*y21+_v}LtsJJg5yQ0p4^R~i(-ullpt|RY>M9zht$W=$Y3e!} zbqTXVgGeeGrUNJ^Jkxw?3jt{WSkW*Y00z>tpe=&ZFkh7n)5N6sEW*`PpVLHj6^vV& z@zQ)=_Xn6>$<(n|aF}-M-Xg-QXqdL%Wtb)+B>5_lWOW@z9-Zk8y$IF2d6I($QB^cd z`%!trwB0OCtKLgs8UR-`Oj`tYKCcxO}Y9=ucTyi83C`N5w6?g z?OfEXUdq&gmqV}z$cp_Ra21`}ac}|zo&KTdw4zfx&c9ZS7n0h|T+twyii#oxlit&Z zyn>K4fUM}$P6(L`(}%s1urz?J=G2b%j(2xKDv~$#M(WY11TYoN8N0omMvAzP`ub(g z8LW6T0bx#ftYF^rX*r}|A$gybHA4L~cJ=M_Nnt|b8e69Ur!_z9JWRNOZMl+RF|Rxp*e>!5pi zi!Z*l`owyJ>$nvAbcpm&&~TgVn*IZJHx-Rcg5hWgG&K7)(QI}341(nh+Cvspbq{tr zGzf3PGdKy=I0oz_Z1))W;|Wg#_V|Lf)1H~ zS7bin_Rz90wu5E{yr|VJOfwDAyi%#sT!h{X(9eSeuD(J7G$3$UjRb;@yVwd}CkYym zz+E;A!;{KhVDck%YWExdUnzH^xm;w`jg$-#uh`t-_vl>D)O`nDkFGblveRp5gKB$p zOGBU`^`F(zqgxbT={g=Au(}^dXc~l9ZI2!R2R*t6|3Jdi0KVEDJ%Armxkuq7QlJ5a zN_%u-IE{ONKlOWby}k0bcMp;JGItv@)mwnpk1{=bzTIx}9zq2*^Xj0AO5dT8nlOR% z54yDm2?S8S{@o72R}1XtXb|mMrJb!qa+8ao65MV>WQjy*KxB8#M8;~ONTy3NG$6CB z%HH1rx$1CROgkJ1ImE?SQ5TFih?*&nUdq({7f}%h$cp_RaaVK#)xil61b-(Hd_^Zv zoqw%zFC?|XB+?+5icTqoV4`Oqa+Q!YfUIbu8bapE^e8qL zFcqCpTD9i{xsa(ltwDt*vFpenisYM}%LI=qkQu%fd$*1eWt9*w$yV=N6KspuqN z03{;y052jS4FD^eJO+Td1U=9v5tN4cs-(lD^QMRJ>(rk}0~i%`PM67f)XR94patpu z3YN41gn27Z*|A?B#6Lv$U=dwK=0-WQbi+S5m2NU!aka?G=Qz>yh#x@7i9>29-(OfeNiRK zH2#|*&gs;s(+QQ93AROoRaKM;f(degs7*`?4Z^7C zs+$QzE8U3CwwpSPa5R9cO6^`;UT^3ik0c}wAgj5sjsTl^3tmdeX*~d-s_tUvB5z-k z{!f-OwPi&Q(`FT&u2}+Xbvn1O0tXSUiU_M3roF(75Q!*g>bp!84MM7_V=4eTL3*%1 zAS?}Fs~V;Yuz@f==>H%z4WKI;rUjV-^>F$Wsjrxd@`=~b5Bmc=BCMtA)-v@jzWQNP zzQJEctQ8$`IRDab5)_iXQY2f^;bwrLJ2kgO!c=$UT#KeU{Wu8SuB;RhuG?;)k0Ue< zpewp+;2<1yE?&3Kz~7DVG=P6{C9_P2&~!@%>)DjBrzk*Hn&EubB*X+s^-zr$1# zqc*h_fvDF}l13$fsp!=7PJG4OT=J2{OzqEyF%L9rZh?_ibLlOI6f7w69iqsJ4ta6_ zElEEv^?YWE2JuuhU=`p*lmX}q2}%RdiUy7XXfDeD_{9XK0dO@p8jAa7fbu6)rWFj3 zs*+}B!A@m&>O~X+pXWHxthoh1RwYdbDOix^2dkB)0}yF?ajC00eWO7YmgZ4Vvav8%r>#z;$Tei!^CK^VJ(mbF5O=p?V)ur2*9! zR&s>7j@Dd7kNR75k-^$3+hWShWcw>DbW=xDt7O6Ay;qPB>GX>R!*zV$CAB>eW;W z4I-OxBYY`nDY7X9UP}TrATZ%Z_)-M&@|i;7^&~+967lyWr*LQrB0iD9m#}TIf;27v zFRTS4zHyaJm{_exV_f+K$uBEN{_t?4S$F)<2nvOnMRmXl}2t0%YXh0ybdyaW`1aghXer8DgCP~nM zL|XS8bKaDV#nXXxA_U}*eu20zjEsWi#8bjB_U^&|F7G>9PH;itoxZa4?~3BhOp7QgzO z4wj2E&yo6X0@5%)v3_@Myr$>Jb;?Ph=c0S-+2}lFL_*u@9v6=5A`B_tc zL{J)lMsGn+z~mPSoi5b9DL^X@pu{Ip^TG^A?H;~w(3TtC0H`-KumPvNE`=Nq3%2E} z{2LDI@t1Oyq9Mo-=&2&m_@t&3gq5iaUoh2gF^x2cEPg_$Jgk#!5&Yohr*eiygRtUL(Euub`9B3JS6%_`nS`SOT=e5cbD%Z5I637dU!6~x1!<3; zj+zYv7Xw0_VT0A$YhK2&A6m<|akb_ChMGIKgyx(h9%^NZc+lOYqPzIPNm5jzJ%=Vp z>b1-g4Wfuoq*B4028)odCnOCZ<1?C6$Uuul*y{;P1K8+Q@HtVnCIRAv$;_!1g*m2= z_)tDOU>=z12!YElWXlXDQ#W1(ksf74ns4VOE!2Dyf{!0VC6W}x6pnpne8bCiKHako}&ec>z>rqkBM3ya{US~MMcikjb zPgt_uc7V@(1+;aH(N?gFTeZA=N9+#c=bmP772luqiX;J%T_GYXoA083UuXWlOc7Vz zz@CE!p|#89+xMQQT(-K7M1ww)X`j@?^>TVMIUV*UMM!4 z0RLYC(*QVrh+P8M^&*^b`qWI+x2L9Q03LmSVSa3_XMu83)-8Mur5sbwS?TKO%7;O_ z!!EvedHwSt*!}gg`43UWKaoCDSmIp#LXW>IdVExQwt5a`8LRs+2Q*+?qRX^R;mOTG zoJa^7K*Ueg&e0&ch<3SH#B5JrY?RJq{cTpE^N2k%&PgDQit+IaKVG@J}k0JK9nyy*3$Dg3X=L1`vDp> zVf1#38M=DkE#Hl{uzibd8{K^BW@by;(C#QBLH+S|d^38XGeplXUw$fV%hd3toR1ba zk8c5y}q333SfkFB- zb2-+ofK8qT_tsYAzyimGz1B)+r9Y5w7GsATUEn-guOT}yKwgc+9vj`KH;?&ZfySRd znW0f8krN)s^DUC+ z|DNe*>qnb8ek;ukOjZY7Tu5y%FORv^M@4#f1G^)7IF098?>gldW@pqpwGsbHd}-2| zA~PuDA4MT+sYe3qv<;6KC;voPsNbbpXb|seqFN?{H1#g1W_dX-9kzt}CZ!{ZnwX2^ zQ5+M{5#Ej2TEcBgS~6xsgBvpSH&<{J54O2g{WqmX@glh3A@$#v)F+SPMaQ~R@HYyQ z`T(a|G)Qmqh~xV$oQv>x8OWOmNyGjpRocE^2boVO{oMxkBZQ>^Z0dZ)ciS{8_;QF7 ziuxXvYSrT8k$fy>@p|UHNFvon4>yUN{bK0y5c30WaVssXAjY%HHm!gP5)}D!QDo^l zGqJGq$-@&AwT+z(4frP?XXIX;Fyx>n-(lbs;b;I?TKryI<2tk%Q!9j|0pxj!-Dw_2 zu0aRz-&CO0g^@yfFVex#IvBKfw^sU#<~4Dhkqo5`Zo(k(9O&?fVYpRq@cxo|jNiIB z!(a*Do-5{5P@&09|DYT4qGYL$xxP2<$Zq3-IDSG*hqfu-uxHcxZYKgtzRETpko3+0 z8G%>dVy{I5z|`q^h}Xob8EY{^b2(H8qb*~3dwi-&gK(O8GwOC#M-VP-(D=PqGb*HW z`9f!v_ZjnD?hBnzux@8V?=;eV4W)Y=nxhfjuXnZFF3&IJTuO5>ry^`}g0Sx>T^o|k&jB$_xaC^2$Vr?yG_`6b^ zR7NxirayXTQwgd1^`R*oKVBcDI-G8Ab$P5V%tliWxA4TrQLKkxyWWK3x%}_h0Lhp2 z*{Z%X(LJ%D`-bQ~`Lce@x$9hg)Jzdky^_N*4I)atwqC>(eHkz-D~*F@?xW`ynJ8Yg{z3nwc$4YjpB%x6m2(BKA4IA4g29L9{eZF<%H z4P}sgV;3Xv!37W5IYY8jY6j>#cEw~j3X(d5S)xG{skb}%K}e z*=p$rk;c(tr`HEm8?Rw-b%gbXw>?wmJsSx;#wO6;rMGHE{#Fo6zRGGN^!!OTNfOBF z<0PxeH>OPRA0*eqmf+PFI4IK~wCGc3Gmd|hj_2J=wYSw^p2v){)no0Oe#{1cybGqi zb-6H8v|G)Pc>Ify^rM;daEIO&x+vX^TLd?C%@pC0?n@-y$rt(9d}H4IX`l{s@-(ni zfsF&(PCnQp!K$aSAEAN9qOSv-QDcE`QJCFihhzq=o=kl)!C?b2nPs{$i=}hv&+Rnm z(+L_L`;?m7tqwX1T|7q|9Hg6#M#!JwwGTbF3%1K_#Q%FnUTSXVJCja}*ii8fQE~D~ zb0(?i+!wJ9ak7X@%_+xlt%m&_nIZ*sI3-MjmMk-;^j(XB%@!+Qji#t2J*V`4&nzaN z|89Yo?y-dg5@06mQ_7bWa?36Acp{ z8h(~&xKxKY=G_gu!5#@&wWuZyehxH4WvQCQ(Kx2ECLpD;~qy=vNv(*l|EaS6lEOOTucba$QE{}Ih2lM`YA z#5GcJqogAF-aXAtQ`Q|oPFr2g=BEMS^z)&Xu+Fi$a_xa!Ll7E(oSxd1&|gy;S+}_Q zGiKE^I~=F$RL-d^c6WB|1!KJhmB%f(yz@%r_i#D&VmI1#s7(I|1d^YAFei0#0s@J= ze_ZmOeqX^@XgdG?R>4v?GetBAB>k|{ckJY5^x*F^pdTeD4M5Xp>b_$K>fO)a?>E37 zCom0wFH9Ar@3$#AWT%sBMtzJ5HNvrbfS6uq0=e4XCEbr+ZD2K1zu<-8LyShb#jdot z0?_n(YXVR~f;9h5q?vy0A#f{$gWDu1>U%tUO9TF8Yrr-d3m{OWYd-aFgrfmm`q=>& z#AGezkUu0O4Iq>6t#OD>g*m_%DM6zPD~0r71TS4)?3izl$#SMnd>)i{(9o>rONi)< zN1y@i5}MB2$Jdz;bS!~r0F-`-s}PId+xcL3 zCKwIC&Q9*Ff)9E~kbZ9_FrPjj)h^EydA0*I9-qH%xs(#3tagw#aaz6s6 zvRvJW+dI`*T+vHo&(R_Fbx*Wx@{nY<5ePgYbJeUG-xjQspN9;GaoT=~V z!4!$ot9uSIKVo{42U8D70FaqOB{Ru`spr!sB@aN|jrpJ{DQVX}`Cw`rM7NasRRYlf zsEo=2pu9H;!G4WkGypp%vGXt%L4M2+ImtHL9UOfnx`QK& zo4FXhP8ds#J-&jId`4It)Lu^9V-+xYYXqZ3H5@Jo)O^ zDYYQ&WqNZwpkZGD0a3|XroO>98*R!raJgl6BBrxaXLQbs2#qih+Ji-C$!E|5uU2V( zDC+%82o1=W885un3WlZt>_&po04(`lnemtcwFQ75ARr9@ACo>niBGM!!2PKdTquC_ zavkh$b(V4ePp{vTbLpeO?gqCsxFu6}q4Ew7H|q8L&)Cx?pL2!h+>@w~kWk?nqQdm< zq3BtZ=x>$q)H|3j8Uzyk!uJf9K7u&#iB8N}*^2x$mu*IMIupmX%p+#oC2Ml6$4e=? zgU#=Y&>Mq$BEG}hUyd5vZZ>&;Pcq5(Z^g)9nk)CdJWg_%d_p_sT&J_RLlD&hGfIPq zQtzWGx^C(Xgn7dB-h1ogr`IO|l z?52}OYUHMvOGFH7se{&Z7*7_l<`Wj`5flgw1kz9Jq9^mPQgH+dm(ke}>d91%5?t27MONv?y;6lo(f6mygA-ILLv#}qX_a4 z$s+IKJ)*GHYzQ8SNPgIMoCHoj%Kf{2No~oIE{Kowy%15*)F!5s1}RN_>@{?3(+Pb0 zND1RoJ*HBcG-$!(XDf18?`Z~oRIT^u$A7#%IP1o~{*LjTW_#@6hvY-Zi3EiTiuf6l z=^f=dcV^lPR5wAGaBr_*tJ9cw8svSkR4EtGgY=K%?xqSP2eGzJzTa2cI(QnulY-rD z?$Lj@e!@tE5boM@OvDjqddWwr5q~mqCkaU4`67XmRbZpYXSTTjf_<4HuKFU+F3}*g z)F+H0k=f*1NZXfd%;z!nliIiB*zMnv@8#WWHfbO71fm(cgFSYH@x3tVCC6^xo#dPh zkn@*I&P$HnMfcv=?eD@%!FZ1EYs@$e;wm?G`_65`%{H5FjrcO=+l<}*->_v%)_HKp zyq9miJ%5zpXg+5xife?stPTT571Vj)Pv`u)hu`k@x8pxWHc0;OS5oj}KwkEPeK?)W z=dWMH{+_0E!3W-L{`E%h2?ve&TCd=PzhXlt-)S%1j=oOd9Y1;^(7S?T`de7|chY|t zdD204$VD^HBT2@;{WSCBJw_7G!%HXdR?$K79SBp}A@BQ(3M13Lp6#JH{0=wAe| zg3#LwhyM&*y@jHf(&R6Q&V}$rn$7@^&)~}l%O{ynD(X`?v9HYdKi=&Bc(c8>g9k!z z7EeyL^9A|#LX+Mu(#h1_f1kZaY?s~I@|{yJ!@WRWh@xY8j|l3;dx3-Qd?Jl2+|)@= zh1_V+M9+)K&Cgi1>1_%tT<_AkHHtL6ZqOZ6j5mmWc!S%KUnTGM7Q1+5YHMeEc@6*Z z8(+GRbng~XVgnaB%-=NRZyNX;d%<-3t0CZ%=KVAK7lF8^k)!Zm_Dj}SnPTuLiVsOq zeC(Hu-=u<>+Ri#A^}ig+Y0&H+-PmH9#x7oHm=f@&6p{57qiYmlZ_!tosk`N6DMQ`1!luxsO{s~r9E>&=-v0N7VgTX?-v!ur=yOOC_zLn+T*1bj0sj*xv zqCN=IEKn|As=Zu%SR)N-7HJ9fR}=&dqOY-B#%M^n*v*E_r$~kdWNIuIi>j5u+Re+w z?lOcvOF}dtRA0GRP<*pB$jvRfT--)*h@YXUq-GcTJ58nR%+!zm1VyqRHf3S~9X}yf zCA7ezD*jojB7Q_(C88+^6RemFtOqMfpx0ay=IdUhz)xeHf4waUtO*S)fJV(FVLypR ze3Zm~|EOEO=92KfZ05(WE@Sd(5O>Wb;ZZPCBQFtZL?SdGQgcaoM7(K{Pi7a%(11+6 zC4mpM1^M_DsKM7_{06N`x~c6rLhoW>gjLhcp^J6o|pyDsBt{W zX$U^5<=1K-PjXPLP!p(*U%ibgpm{;Ic4D0)N`ZuwNkHX~NreU}sBuIo5XlQ9AoEU= zp#hotMihZ;2FSY~P3riZEv!$z$eLA{6F zA`L>1zk#6gEaZpeA(i)&3Js{#IKwNpM_wEuof}Dq26VR9Hk~q%j7R6+NQVY=YCH-VZsDZUHoEJPOHa2tKOiX;LjUp4G}hU8(S_9^+S!qzY&dcg+RsolKGmm!AlA zCW+91NR1P&LR*C8;acS!lA!^a`X*e$MHhxc-omP|q6B)q6E1uQTD~a>DqPOg>8~*p zF1@OUHoXKY^-j1f6`_E-SeCk|cR;nMwlH+8x)Ic!sR0^~;5Q0!(yWmmzc@3DJO1eK(C*(5785=+9uaWwI$W25`>&Au;QXjJQ;xvz@0Fhps+ zNJ{JKjf2+ZWm_g_0^Mrr`RsUU&?47vFfA#!Ddb*Aax@_Kk_{%8m){hEFD5}65WHgD z^8{7MscG44VKVs|5w8Z+wJc6o2tm5R@bS?moZ;!7_VRM8gMMIH*C5s!dM#7`$VWyt zWkn8+wj!KQXkLq zzJv3mwq4hY`gc^@nN@%Z2E_Ju5!(e-I2Em#kOV;;%Tb&L%v0YwhKA75H?hE{4r~*t zw=orLC)YUXwGSsfe7IcRC(WkUYk11`k9F<44M@HHX}Q|BUYL7SwGDnlja4Q6wY2`}az9*dMTo(mOKtCw`C2b=xO@hEG8qs>fEd$*kpNc}}{h1K>;% z4B5F^vXlIxG0oNs$er~xoHdTxj~Svt+ogAyg|>50@`ObIcpw3302seNd6vO50+>%O zyvU_B)h2?{0QB*(ImLXKP$F{XdTJ(2-9#;lL~>EY&y>yrHXL>a_}ow7jmy$?>wOKo z58b$a=W?bleJxaa=k|o%cF&m8a%D4_s1SmZKQBs-p8_b^7+Pv^4uY@l!`#y#_wiGw zRZyTHHcQiwH?Yo(I*~+ZKqP(yUI7uW3Z}No14xDjWTGdB(z!IH8SrqPQLlR~xXH-p zSSm)R?nf9^MaCeMJjGdPFKq9$mgJ5Nz0z31DfFW`tRC#v%_4qRYKr572?n%&t7tuW zisL)gL#o{%2HySik>J-PiZ0ZGkf6O$I`Z^OM?PMA!c}Q4T?yk00+W2z9<#-|E zKyJz8#)fRf%Pt2inR@Vb$jnh=+hvpg_smrCn-XJW1RELq7s*)iSQK+EnJYAbAgX`j zv$r&eD1Oa%hSHk|sz;{H#oY$_JA|eIbn?(t^c^`!D*nX4{|n)10H6Af$fD~eH{g{q zT4{Xur&X1@jbhf)D(a}5sCRZ2@ag%2sAZ!O^^;%kMD1@kWW2vGFKW-3OznvcQU9b0 zQ5T%&qV{%Viiqkl?3QRsi`w(;l;w%q+ijp9M`)VTqV{|{=zKiY%JY6=;4dINO<7TU zu8pW=ixstQ=O5>y_I^(tCBL=TMc5kcUNwiLZd*fd%hd0@36egtxY^qxe@r5eNj(s9 z-g6=X3_Tz4Pr89y75WxA+b4(&e;ufL4RcC^aGsQSxKM}&56$7dGu>WifY%wYoh3B2 zKLU$3WAfXr7S;v>oZ82GDHnEh`0|gDd{xtI$IB`8_6D|RYSRtK>oKuiZmaKz`At6S zF@cznK#q@+9H)*`dREOwbz#AnvPk&Jtq0s9Fb#lHzeF40dV2L>9zwAi z;dnwRuhi8}TgF-;0a0>Grhdp%8o5&SM!OCIdc6{*S^@$IrJh}tQmyAushYVCPko<9 z@-&qwHGnH9)dT%^g3?r?)BrT1R1f$+2~1OkQt8)Ist0pcs8qeDlu$0m^U!jMv7;9= z^@lu+JJ77T1%RBMI;j$0>}SL~WO%X2F!>~I?o#yUaaXTrr$NJ1l;^AgjN*Kl>j^^x znDm|^Z-0FVVh;c}``J)$A`}gv&P*M-HBvM1dlA)SQw`tAw_Ysu*9P6rpw+>f?95l< z&8CKI%G5i47qU8{u+?oaf5~ZP@|Ovc!G=RQ1QJ$gWrdh@1Q>`civ_QRD4cT1) zeL-rKFRk?!M%{kTUSaAi;sXae^{Y|&PSnNxY?u9|y`u*wacr)>nW>xUX8E?oJGte$=?sGPejAnS+ujYyo?t_6tn>5ymo4v? zwsG{EgiX^R(Dd%lrfE8c2$umsxX%{hzO1xx*TRSpB0tsSDMT7H%Ztj2cRE8) zzTOWf30Sjx76t4yFhgdOkD<4yF05ahWV7^8e8o(q^I14cO$R0p_gHSYpN}X_u!)D<3h18i% zHGC(Z3Kp-eo;>m@dqNc zKF>_hfPC`w+&OhKI$vIF8r^Q{ZwN*Mu;jV&I9O3+IpE(BkOqLMcSburBQ;zLweh@~ zax-G!R-mk;4i9`HhWA+OmK)+uq}EDjr9Y4_PxGl5?36D$3~{$zLw08B*}PN#xQYAq zuBcyv~cDj>%5Gjh+!$Fu_1_ z-z&*YzQ@dWDkGjj5d?J{=QA{5o_dd&#gJs>O{Ct#%&?tY<0N0uqZ52|ytUX}k<(n* zz^}wNxB+*$Gb4uu+w`jY8)oL*GG*w43m&p_lVm5oLoY^U%gv$*lDa#yM1v@j?~52~ zLV}qA#N%Ng?@34+Kqk-sqmbS(G7ft$!qNct35oM-A5}Do=ES_&DMfvV!lYaReI#GY zqoYA*se`)!2E15{`vHdCopMD6`*69y?8B1Tm#P2D$NKL)X}8`Jb4nqn&r>E76++PT z=S0)}GR5KoE;NRfcVxfdt6$?_LW3|5R z0_sW6g%vyl)I+az${RS2xOKg#e^+W8@xcTGS^ctPHF+HIo$7JKZV&{uz`W5QZ^;KW z)@NaQYd0IHB|^~vD)~yS_35DUUdiqrO05gmS~Zo!GjanL3si+mADUJig!UvJ>X~PthL96WeKIg%dP;n`kz9Vml2) zYk1NRgn_!4nWsUd(H8~GFtMEk(KI{qd2QaXIw$I%DGi&LXzM4>1T3k=&cYynH-OoS zlZ$3+roPV?U>-fb!)?O}L;GViQgZ(oB_#0B!GDSll4l`N?|}gFD0Il`WX?ip5LEm# z7jvZEId^@HOuEKsNxYCs46`t?N3FX_WP`L9(F$g>qe!Fk!#xAY!z3Y)M0$B%Ms>>4YSp4XqgQlk$kCsoP?l4(npG~XQyLqa;#fXZ#8LIWx@yiBo*H0Z%3?_>iy-z6Oy(21Ud zshgowAAX002H0}LJJjij#SW<(TNC} zuruiLy^#3Ib$W+7hOP@K*eZNfo1H2R8szyKPf5xuMr@J9Xh3X+H#k<^R(X-d$ZaDz z8j#x+o5t0V$0nKZdYP|tbv8>+i#^{1R`KgZRnfwvZ`6@jye!FbrXKhnRNX;#HD3am z_)%E(WP}82?1@ri@uQ*YaizNahEV5GAv6eocdd2h3)Mjg-~_F89i1rlc1@zSCGm{e#$rPkS8fr?)uUdz0b zbZ9`Q&e@!>L4kPKi>wbTPvF;H9&2*2LlSG4QXb~Y18YJA3m{T^c?c0;5O%flm)mxoPMK&AHb@Ti34;pn`HbZ9`Q?($e$)aBu@hps$C zmGLW)RgGZ%Wm6nj$keO<3M0qUt-4J^@n>IgJI(Zy;l|oKsiBxE)gF25y0Ex#2tp?R|Sp*`)x^uC; z)85$~cFlvYZY@(^|2T?aQ@+7p2B})>(xJ+Hid0Y=uaw%TRTBZSo>I9j(j@AM)C3J0 zq1NfX1J>s%^P>;9-4MEjglItMsydH99Izvl7meFzNNpi08j$MMSUC>2>6Q$GSFnaW z{enoXz3TSiDn3`Dn?@Ehb<@XqBx2Uw0*KT))yjzo160l%rE+RL63JnuY;;g1Q|DAm*fixola=dPAy%Hiuem(j zRmtu80%fKi{t+n;?!b|V*$g5zmxm=H3{W07Y)E-nSW_N4YTX9vE))R`Vz0S80unOy z^3$R2PAW8@Qge9(RQ&SrTIQalLjyYXmIpym9v=3)O?l`|!0*&KwsudJLG|QJJ@3y^ z7QfOxInxHfTk8iFRFuMpr4(wN-Pu@qPlt(Dy@!XKG>Es>v+EwX$lpe6oK?54m_jOiu?AtxL=`e4m)G4{TL)WjdUg$nU?%i{1nR@lppb=_4+Hk;baxdlKwi`m8H*UnQxiAM=5wgiO;&Yp6B$r!;7RT4yw4L`(sNbS@_y z8qlfrE`>2VUipNSo=HkHptM}$vASi{vog`wV1j%T+r&?>@#T)a;;sJ30cESN#rE%OA<67QEM;Z zlgJApCvra$p#hPtHP!$Sn>p(DseG+Iz}9*r!)kjl>f+nDJjtxb46~sjXPsa0DU`us z!8W(5|AsTeWyrTpm@e;y_mFU zKr8+_!OD7)96K^C^PADM*h@)`2GrJSt*e|F3QVuy!%zB>3WcP8&Qh}qcao03&936s z!p&Smd{Af9Z{d?BLGj6+#;D)Go=koAlc>Tw8upEFr`z5N+_5fe?l`4k15}yhkuD1K zkZY-U_6`+6|~3L25Lh zwjpClf!cVr2K0_5JsQy4y#Zw^;CX!pWR7E5THSjx-;j1g@4x|AI*ecp#vTs9vL{nJ z_`xVQ28TP{c6K(oyA2zI15_DWok8F*w|c&MEjy60LU(4&bDq$qWU3+D44Q zWAIYR!DeYI^-7K;G-#80$KU|nm4q3CgPn%jb)-fEYW0pK0lK5+Rcr7AL+|%Uj|TLf zQRf&OfHxs!zC#p}$A3=q>LD@+2fwAxchou89P~%ODc864621)i7bw32WX1ju6184o zcO(QJHFmbtSgn_v9jY!ZFMRbucHcAzyw)T5kb)GFPvmA2p#hOv&q0Pn^0M*Ce3WEp zKxV1NYSEZYANed+hS4OzYdyU;>@SU4qwRyva666?yS;6?GvU^Tzco|;%E$hW9^WC` z0vD{}TF>K0Nee|3)5TIuwT=x@2D-4u_6RTaB+7{fjq{Q^ySOm|Zg`M_8{2OPK7|Bn zK=2iNhhScalSn>|BxykM${LGu48O@Om|c36V%qH@R;wRNA^3J6F=c{F}V8Z@9$ z>-{8tS0NQXyp1!(CuKh!BBX>x~6OEgoNSTX2B&72b$)WO1`>@&1^D zR;}}|2-!@L94cohl~e0TAHjD;TfN2ZLg(o|%|Y;0g9qU>2)x#VEf=`1a#K#EWr&%mq?#48<-%&8qyh2K)UU>x2G9fksMankKYFBi&O*+Vz2d(q(DMOoPf$L zq(TEKwcY?-ppw^1K<6u@LjyW>KGG$i%>eriED3rm#NyQQ>hJwBPxcAVCY?-FL}dJ2mM?NjT` zXyXjr7-7q=n0Z6-O{7Qzim%%E6zXouFUtuu-%6S^pm|k|!`XO4qFl*oOQ3gM9_n4J zT~i~$Zjh{XnA@2@Q!a~{y6$rv=FFN~0FhdUxtxeFKrP<90mEDltM%izfx4MWp+W4m z4s!((QfC2`kCF-vsMI>l6{zI(6wvuN>Ck{qox_}fHUsRN^e|^O0l((*-~-aS2i$2M zpMK=uNO|Zdr&%8M5$c-D!xG698K68qzaiyeVNH4HU^N5vLyCZ={_+S&*z)kG{D@R& z>MxIgieDZcou7~nP3`4DP?U#<{W((}dK2)stv?d?`h%6>x^KVNzuLUDJzCh_;<7FZ zz1rYvrrv%N3gZxOi&@dX=Dco8om2!LWpS&N#SHg+l!%*iwY(_=Tm6)$XlW4Z498|A z;iU}5Nc@~6Xh33y6Hg^cbAjPW#)lY{TSEKn$$zN0fS z!?nzLgi(akb>eRneD%kiI@2KHil;9=n(Mr!O8i}h$U8}d21I7KSXH_$@*0Vdxq)P8 zKxX}GnWMBAKu1H5no-)&XT5v`tZ<-_2KO@MD~yfO%3(op*bR6eR#VKnU|3aP4)HR zfi;&;3F<>9~=Hrx|NUM9 z)*fc1kuFsv@#jDCWi)6hZ?b8*i;OrH)3C^1u#F78rjUc{ax4N{k&PO({U3ZT(<@ zKO38)xd+wu>_T`9A+^`to{52^^zi9sqPjcBCXVf|D7P80wxU5|Yp=UKneReq-R-Yi z5ql|u1|n*&yFHl~kvY4+XN6ozAv6$Dciru|8ve+#UM_Wab`|6ili-_+w}sZyl2+bw zG&W!24CBr9#QhKAOY5#yJ+V^4*?a2jv&opm(Su}~x3O4hkidx7C8y2VtPT&!-$8O3 zkViansY0GPb|~Oo6hH$3kFU8J7oJAQwnS&Peg(qXOL@8984mmUxmbHVHjn;CIP*4l znjJyF6Y6%eK!6g%rLR(#uDyE@aEVj96iR~4M_8~lDLku4tu=REz{e;`%&)n@$dUQG{#^e)a!BmitLPkyAjHL*#zn;BL@m4$Be`5t zCFVoy$a}!UAaV@mnGL4OAM^QnhzdNDRTWt?U&E@uBX=T(Jb!@|;muG^@V>7rBF?MXp z9d|KAVYEejf1n<@stw`xG7YyF53ebou&Q7(3ssMKAS-4XZ2sn5>_EBG z>P%CD1@Z#I_<; zC1lZ&m+?8upn;5yzr-}9ibkIE_4Ix3cObrI$pTUz3gr{v_uy_Dd`Cv=8QjM17Q zfKCbwXK;N+ug?hZ*!+fjCf=%3a*J0dfLPcWLu!?u7Z@-Z(KbzstX85xi`?DGO*$jU+HZS-FeDilBerbPnKvw!}`O?PP5~Yga zoByc3`OH$^tc}i&OE=1HRb_s2IsB0Z`B3^gYAw1j@`4_?910d+4nfK8avp#k=;#8w z#0RXXkJAgagf}d_$5qSC(b94gli_y410rW|Wd>L9)y^-&&oD3yFWU2_{WE&cqiPeN zlyHMntQJYs79SZXaxg|do+vAOJPaK=OA*#3vaJgh3X;=<{EtWGy| zHAG=LFrl+~#pbKbdK#*oHtPY`2rz%djMl6G>P6*wFlfzn+PzWfE1?VS<_WF2)>3mg zYO8jh&G2k&zQt;Ldv-yO<);Uzt{rY^AI9CxlPVQT;D5CQ)@g~{A8!I#nsA>$ zJZO+}<-bOZY+((txmh0nF5dSYmIdGT5&x+$6gY@_ge?89UflNv!?w4l6iLJFv!T25I%XtHzf<# z=|XHG4>Rn{E5pQ@)+|blrWQ9T(q*2RBb_5D4M^KH=AWdo;GH?*1rpPM_@b)*smRtt zb2Nve_$C~s{DFRC5VrSmqoj6oZ)ddF^nW82zr8iXTQmOF*gWqSs7Y_L&Ru__fXF)b z;wmMwzED*J=f1rH~|gPYAQHEIZ4A_#t;bwvMVbr z%lc7IyDo!u#bGBztUb&j!sOR-}^Q7F%ov^>kFryalsojdol5*}Z~%$UM`)nJ~_ z@T5U<%U1(9{E9MkwB*3b#k`1OXdvdQsy<$lW^ojb6SG$9z=B>(K{OCl`bBd0=hJ15 zgb8(G_^%$l%k_1{L(GYc9q+sDNA5Qeb!L@ZLQh0;1pklC?q4HJ4(6d+fS+CixB|n~ zAEvHesRQQ(vk1Lt^Cv7M8c2S4g^CM^jSTgn%zDWWz*edVx~-+%VNJzzUpt+B4Ewy{ zB|QtuxKfrC$j63+D2}tWI4bpd3)oWI1lN?ye5Hlrp+P=Y8X5)AK9IFm3GP_ZuacAo zq?P)-0kkL0YLDQqCH^{zX+T`1&l?~&c$`%XEI@M>y;IyKaFmK(IvD1?bTIT@dig)2 zasXX+NzVfEie8!{9~%+JUh3~!;=dpMUVrjzQ?E{-XES z&vQ=un2GDbB_|YuE~wJXd5%EP*pMIY+fnzeQ~{L{hz}QUD64q~i zi3SO(6i+#D?^Np3xqFuQ9wep#arqiJS410(0dnA;IIE>|_bvIoNKOOt$5n9U9Cm|e z*;I+8+Dj)EXUaKGrP*_RnuK?`1ya&1mu7HD{CI5sms_+RRk&&|G~Hj)i_fc4mrV*$ zX1MV+>c*8?rAc`4hjtuS zalrwXTerF=@U(@KRat+nA1w*a$L3>)$b^0NlkwW&rv+z7;sZ;IZDS$@NBO)^%cuMq z;Kn#o5DV?@iUOLuv42hjZI75zn_w=s26Mx`o#CPdz9)fc0Q?74fV=J1p8eQW#7n+6 zk!gTjKHiVahHihM$qyMWwf0%jGlZrAbfp|#$}-|aV$xK_46D~wd*pMhMk3_ zeg~7abY1fR!qQZR&E@LJgrxy&`TTEWfw8cbyDRukxX3+)xHNU(A}8=jUvM8vTpHk> zTGq-OSZ-sYPB1TEwNtDL%9nbSV53ds_J1R-aj=kWrQ7B@;9}k6e>XPo#kv9W4fOfe zwx90)nytp~$3~*ZVk@P1sC?d}mCu8xLXm0$Yw$$dH`ytrfv8iahgkfs`7r#EjEexHCe06eXN!uDSMY`CcW5kYAH+K6;jU$hN>WF?k3OnGOy z-1$a>ez!T_#WKzQvid3rcyWdoXK)ekq23Ek9H$H1D$7WqBtjXN?0g#ua8h;4w);6P6PDvXL7Mc zAiwJmn%#aM3tR+zL~t5_moH@740vb0+3pSz*Mhy5*fhW{p90$q_Gqxb+1@wXUUvC% zCE;mmf#18>>9)h1xr*>K%$fLb%9SajiWf3Z)|`1C+kjFxkFT!=?d;XRS$i@zKl=^F z42SviwZl$#w~&ncNBd>~u9%3O&ui>FbQ%zG>=w2OSb%d-qxl@4Owd5rsTCmQ#Rx(C zA`xkT7~NrWIpqhPt)Yx}t;(+ulLna4ovR7V+5Yl=_YQ|h{VHK;DkZ+Xv^>IFA%ggI zBGOb6Du~T)ho8+B*ncN14PfJI;J|ydq2KTD{)2clz>DtwP2}hNpug0d>n`J~5mx7S zh)Yu``NZA5GC$wOa$`yU_XtY^*y$ouYq)OL0{)PIGyr_~)LuW24c)?0`Uz2KfEwSO zD3($eJ4+)=T~YlvL20Ui_7_6XUl5e066jKUxVSLjP(@1V*94^jX!N*s!l~?QE@AZl zhQKrcp1wxu_u9=xw&o)Cw>Y4n0p|2B1x$241n}krqygacE=9o5r4A!1O(oP(KOd%t z6P2b?;_+Ec7f(kKkftgi=0GGjZ%IHJ08Z~qP`JV^06Me2m~KsA8URn<-q}y$iqzjG zA`K9yZ<_=$EcxFdEDd1e`^m-11nx9y&kfu7P#iw5U^DlQgr))XgJQc>7P;X9)?$5* zU8r2|Cc0yS6}GMBX#cVFR%O=9jI z^jmYYt>H-fRj3SEc;+Ia(*V6fMrY`wzD2&6$TUEXu4X57&$fC^%C@MN5|sw1(bY`} z>SB9#4+p6&2fT~GGysksx0e8S`$I%>6Eo_axn}4aO%l+6;QZL0%p}2Fd%m^O9pPh< zOUro6K1Z>e6f~fSu8G#C2-UX}nH4Gn0@-(cJv4PMMFC%TG6G}W@G6J*iVgrosv zh57}ESg+#3D0G*nlYj;U6@ni-*i2Mi&muHUMd)F3cOSEyq3Y)lng-AnS~t9qT2>*h z5uFC;(UWzPehKu+3hO#z(*V0dg$3-z)^M@4848@T;M8}vS4~WX=p%G!Qn%i(Ba=ec$#Wu z5W-Ie?Hfr#1Ck1zu#lwarf((%4JgW214cDcA;m-}+&~T*a8zhaq-WrqR_1YBK)js< zG$5$Z((29!2Xd-+l8B~SO7cXZTfLhEG$5!D9C?CC$9gYmXh2h;2FcSDUF$}Y(17H^ z>8q(c$%J!#h%7WX2d@LKCmwu%bN`eP)Z0YQZ}(-MTppCB>~kSo-E z7FpaUg#Q%bX#iiLNw)BCn-Ki71g8Obg)Wu_r@MscUm!XS&|@E>`yN(<`k(-FsD z%BL`ibaJ$#w^uQJD9@$lugMk+wa%u(tgIe-i?upGpMiY*$)##;d)m6y_jK$sI+Ej+=4N7>oSyr+>MYlfQ+9=%V!87*DK3=5}yY6)7C54-%j7?9+uTB_a*}k z7^W@KaZ&<%GGS=|8{hLQWQeNeCW-jErmKrjAuf82Ia#`|d;?e+j+Ugs_`*|$XbMf~W zLec>8{*h0VRZ}A;Z9hBeL5KQ*o5RZbz1pfgMf&}@9&mK+(C)UEuKa6UFq zz75|h2`{Z3{)p@kxKK9wt&#wRb&-N&K=45w5JZ`1= zA!qvz^9*9r05f`Iu^uK~QW2qN5|jp@)zUtPg-HT=79nXW>+CJC3n!rG5|pNLh7LP; z%Rw+NASO*^p}=$*dJ#csDhtI64_4^K#H6V#6qq|K=%oausRPudeiuP$02SSHOSJbTDCZTBn9X$hbAZY!}gGJv>bQ+*X_gD{v-fd%`FkI}++bYJi$v^{!=$7k1 z4D61HA1@M_2FTI#;Riwpri(M`#*ASE?#!+Z=mKj$A=Z8emqc z)w0@mL`a&-GW&c(P-N~UCJivBZYeoKGuK|&A^U3y?3IM20c`Z5oicxz>#TM-o)FZl zh)M(0O3e>e$F*ERT}@CLfL1D~_5g1giO#1JlBP1`KD;g>kk29{4InGIXnWtXtA3wD zOq$Bsxo>&tBr9}{pfpuMF}dvn^g4pl05tmfdzm{4D7Li@oa%+drm32<^Gm*2zn+*h z)iL|7@p%a`X@FVDPZwq#a27=O52bC8srO4h$ zP#S<%s;@gkxPq%%-%L~*pjL9(?(C8+sv8JN1ISACV7EPVqnfu9lLnZTx<$myIqN%# zOj9`n`p#G1O-LF*R`Mylcz@D~Hdo(EP?|bGU6XYqL1_S5t*H77uF3ikF=>Dq{Vb;} zQjz-B96prk#D0XpGytyV0}j|p{uq&IfLy8H3dtQzCE@*l8RVsu}5t^ok z{1DZ?E&nW$Y3dT4_2a)lXc|CQYR|A4MQ3Tn)j3}#EKOxtG!7Z;zYvxNu$5Y!C9LD> zEO+rnq7>cNh)V<9O0JCNp@}JHJY})S|3+k*s)~E<1^J$p#r+m>X@FZPs^P!6`u9Hx zOjA|xa(~$22e_=@{~|68a4R)z%l*9;@&|;Z0c0iL#UN}424fcX$AqN;Y^6##Xx4v5 zOd4QTa7f53C{5M8 z)oo8CcyGp+-)VqZ$+NOK#zP26Q(dN?V%$bdn#!104BYJ0Er>}2%u0RGAx8HD7pg}R zl?JGlYT4n+Zhq*>sXd0cG{CJ?P}v;otq4g|HB$lU=67yGOd4QTa(twH`AQq6w<9P` zbx=GdwV-z(C=Ea>jqyhVK6=fK@$XD*8eqq6CKU7<8^N(v`vE>^Dn0>y8$;TGkTjM`}rx!4tqQ{KjEhWx4F}`ZD;C-3i-HgXKeZdU;y9Uo3Mc(?0@1mawhVY#^Or;6%!8|Oi=bI7|gAoV0qbA6m8RX8IAn%_+-oGZu z-_Ia_zX%y!ALfdOizBgy%+5(MSIwbKR4+7e%jizl1n6J^?|JZ5IKkXbOd4QLFBF(P ztQ5sehkzbIP#SU-Fv)#^ebE$=m2lh34{Q-tbf_+=;*aM6VNMz0l)3B8{5RRvCryogl@RN--Ylr zfRFAp72)j)7YlheLef;p=ys=v-OjMTC0|~Vt&&9UJ&8>N?C7?=DA!}pt#IYA0N#$49BtiL>2ww9GQ3|vwkKtdW2HY*dBELEPQJeiaeGY z-7Y9%lOtIHeJDX`02;lxx>(3=b+x_#hWeYU3i|_0O9{ur$w32-sT)ah;Q5NHWgkII z8em2b?#gs?CGlKm$$82niAw|AsT(wE9klV9^`MP!4PdTgWiXT}B*~7mNkLO3JMhLY zzk=#ypGQm@U`}0(w%v6Li+;PmcvAGO~K^FWm1gEJ3ywl5r zKaSuu0H3-hbIRQ(C8R7LPh=V(N52BGUY@um{X^FkYP%@Cj5IW$nL2{_ZUVo_Xmk9D z#H0b{)Dgs&!`&+t7I&7oG{Bv@Z)I`0m!ou5EcQIHX@EU-C&gmxc1gJ`=@6a<@KblM z0B>J)3Uj+lXc|CAzxOraC^EGtj@Kt14e%;>#1J#EE!V&dh)Gik6Ls_upG2`Gwn9uA zU{392=w#0>Huvmp4HjI5w~x3qz@56N^zjL%q4D&#)5FBMWbKm(O#|rY_fv{R#b#xl z=J3hHrvZNS+apE%?Ddg#Se{B2nkpF&_ZVSy2llS;{mf?&mj<}ebG1eF4%c@>t|2N7 zP^Ye;`ND|gMpNHJkqT>LErrUCHuwW~U}JYg2pw-J>F zs8dhAU@iyiab5fS4nooZa{6jj-}v=2e)dyUj^kbApaI9!)fAR7u!kC!-g}5kQzbiq z+r?ywb%^&7k_M1dcSpG5LKa8l)P8`_G=QGE0no)9%dYSL_r#*$eo(f2 z^Zq>o(*Sttc0xa3CWCkPl<0@Vr2+2LWA@dh7FL={GyD_c(ExAiT32eYpl|u#1f>D! z)Lka)+yU$_2ulOl2SmP^YkjX_|F@~$!^HvNezac-;hI0DmD10s%adfHVM%_MuWhPEX+TEZB|RLLWnDnu=O?IIXuLAWcQBJLV>|-iFXL z6}9ekT5m@{nu=O?PHMdap=kgeJqRc%vZn1ZVCDz&)qHp+9&u;F(*Qnt5OW~-qF?+j z31}*0%^W_mwkVqpFgU!2+?~)gfR1h{3)<%f{biXhl-&3|BGLeH+JM7ni?CkCX77Cn zNCUv=DXW6S?r^l^n*xz}0#RvzI;~I00rRWKh&Od4QDKUpqda(ae4;N#sGyljD0NO(R{$cP4M zXh0LYn~$2~xg?>Jv zX==!acE<^R5m9Ms$OoX}%?!zh7ZaAIhI{}l`lQ^{L!e(uXc|CQ^|MY7YeX&X%ZW=< zL;hmx8;kl%qS630x>LT6pLJLKHi428uO>DPu%pLT>tJL30ooEP`p*bV1K{W((E7mH z>S2-n=R~IgdVITA9?*7eGM)qZa{Noe)6^#(on(9xQpCTB=rlk-KYDm^K=DCeODNt# z3K~#Ub#Qcwe8#+uxHQ16TIDTg9{vu((f~Gk%5NQKxxxkGy9i1H(CGR8bwG!Bw>+!( z-$P`Y8gh5o@A9o#DYf?zmj<|1o2lU{I`)G40ix2>kq@hLtVb>K-xHYz$W<#QbUcUs z0s3GT`yYr+1MI5xhhm30{c)nx0KIB_$T}CR`jf<^0dCdmbQSX_KJY$GV46CB+p}3d ze~!R3HRN;dO$_n9FA|*w=$BWl>MS~+r|xO*Z4UP@VTboYXV$)4VoTsFWTXM(8Id#c z`Jiv;sqZms6kWxhdr4l@tX2=OV8fI;DVdmk>a94>-1Keq4<5Ru^ zJPt2|-%ofNz(=mx749Iy9sdRt$K5bQS)n+Dj`GI>7B0lb|#JjqY-lij~dME$X|8N>e!tuvJ65&1K@E_PxZVsjhY;pQsnq8;ME-)affV zS^T%RwcOgr)o%j)Ap+9?xLQcylN~M(K0;8M%6W@L5XAoax97T$p=4qBRD zX-gA5#p?j1g_-X!wU)Z}89s%X53>EHfvD)o{TyZy@xw%<0b;ygx;&$!qr#(0hB7}& zP#Wf4WXF>#8#J1C=9es1Ujos^$u(WlvEaejEPa;6DaUJvoX1O>DNYBbI4I6r{HLTT zdMeTZNO5u}0A9fSy8r4t^_d;aE}G4hY7Tl9JyXF}rRMjENCU*^#SJ;cxfOhw0$mZe zyqg;&?Q701;@v7#X(IbUB%uLG^m3XUiGuQyg?um}X#g3$fUN*2I|JZLDOef{U_8EH zZnyVYhEvHv1BU3uDlrWB)RW7Y)5t*sj_A&6jzd;}NhY5`EE-@%&)gKTN^{~&BGUjl zx&wG161@R-;Jv$vP6PDmV$QuXRMg!jGR@R^Qa}z=FA|#u z*s+Z+)8C-6KD!<5Th>lS?;pgyOmsR&j>e{Y4?KUpxt^@u{5;-f!+TO}Kgt6t6k6Vs zwdIX>PA`dl6nXG$w?&~gb2_KSXrO9GWDi9|H8fF@Lh~SISC+i!`7b;Gnd>h}H$@M} z<`X~X{FgmjJM=>N1@kO={wo7jG-TQtnrYF4xeP)&EK*DGl{!8&r9krp_TOnBEV}<$ zK;_-N*L`I;lrkIQymQ?9nwu4n;fYg9U8nt2)hztRZNitRg12 z`lm>pzG@C0~OR)YY63S)_(jB{0bcCuM;5MO|F_EikUkR@Z}bBJ%%P6(hA;Q9 z*V-jJADeBrg#R2K{A9d#_(j1FpgX$59iV6%NO1VlAE_@*EtrKryRyWkpDNgVo1a>z zfxP(IB1@L!gM}S(b9gE>-z6$dRa9)4m!W>2s5C&052q5X(hCrwKO!UzAme)hWsq%t z9#1fTN=%x{GTE^Z$e$CErmD=K;}+5KsJJ7i+C+-lwz<)w?_O(duN1+cI^FZkH_YFzd)a5n>$_G_E`N9`!3O~ zQ2?xfs6qZxYmlkLG0dg&LUCq4$00P3G(8-r=>+Z%2}c9C==LH=p|q9VKA(RJ-cyK2 zQw49>;(|57dm8a*fEU~TSa}WmzeRe3v_Fr{3bedB*TwYrW2U=}Ez#`oRPUU?*FwZ; z^yR60(PIvgWBVVJmiJSmp~r@(aGQ6l+mt^TiH4Ih%G8=3^OS~4%ldy&$c+H;Z<)86 z3Bar%_oO+WwS1B6EuZ1^4T*5(4?t1gXhi8&3dKeie^|4)d{xjU0DUGq-RAD>X461# z`O~7!!pke?;((sy_eeqmlE;>gt~N`8+}5rB@cQOekm8P4{3b+%@WsgzEj z1W3lIeCB5?G8&|&T{C6qiW9{DLt+{bcWNdsy5|J>uSiY<^2b$h)C}0V?5^yJ&EU_` zd#yhOH$hyX3fz%ZfqeV$OZUY1Mj`}f{s0sesz9YsY7gqI(XYhMATbSyD^!7{#6|aG$5b83JkfW3fwW5s{&b|<|n=i41Z4NsZa&( z%&I`X_WtUxxLzR6v8ilo zb*%!!zpq#YhEQ4sk{Ql+tU6nTUSJX0SApS;u_2#%7DszDD6$GwV2E5&1%|gR@pDK_ z1L6u*V2JFAi|!d#fs*PqlGA{E`YJHwmMU;(z6unoThe=_7a0DW&NDlG-?zAhhWF(e zySK)S-&^AwhoXmgYvjo4#67)S#G~Qx+~kwL^zLUu}ikQU-%zD#TBI)5Pq`le(Ps;_%k={H0*Y; zzGDIVcwv#tUU3I|X+|$$*P@+pgrf>q{RR7%Ed1T+#i<%N#C_EvR?<^SC7919RbdXB zgL}{*?N8bwA=*lp$~l~JXdve)TO=o|FiRyJMM*S}v{V*Ap-Wcs+=k`f<@{0H*4&5D z9^3ywTE4q>l`OEN%7>_Uutr5IS?X9}N~$D< z<~tm^(jax^b#o1=lK`}S?=#nYkJL1v-jg)FfsbeOKO{X3%e8LL1`VD|IX^NDIgjv8 zGBad!u9>4c%qLjC(I6YH+HxuU*pDkME9g@cL<2!j-D*Kupg2Dfw=tikC>n@DFJpFi zzw8kho%4R7H{LJrjZ->rBd_35j3Dp5kP*{9R`S{1{G<)uT#!9TB$Vux8M`aVcOHa* zIx>IJpX;BoPZiVQt5+z7S&)VhyHrE$>8aglGOHM9xvQ$lTu4WvLB>4irje!XP?@;L zQXCD$U3=4r%L1@W;3X7D1A$LU9ELgmhCSP5-C7*XT*8=i0gyTTQtGTjCi!_l%mRM< zq3o&gB6@1_AF^k0t3)V2f^AWQEqS>6)HB8;xsn6s&2$bLq&|70niJvY9c^Kl8z_Z_ ze!5i!;ikH>XVgy4+bM^JevvqAm@%9laNG-w5$}~TgWXDP0XN;_r@*AWawlW+UmVOF z=FfveWJx!52{~ShQY{FVy&5k2w~}03#Hmpw=BFG6&>$z0_bD8=6pwU9r3dIPTS-5s zBpOIc-gY}~FA2_TL&)8-vVKWfG?2BNIE);1!yQ-+s|=^ik)b4JLBTl@K%rYO7l#HhPWoElSc)1HI*7e zwqkAm0i%M4Y9SzbR9FFHLvjSe^;;ASF5wIYpLla~7CQ}+o;(;r2^tKUki#g1211et zLntH*hD^-i6hi|sse=Kmjf{CL!N7A+KQna&37$nfXvA|E-SXH)#v&Hj_={M(dp5%4 z82&hST`z@yPtl{BLbPf`G`&`%Dftk+H0Nw+<+4fqZ(M={X7mj5)c{XLzK;}~uH&n%(VxTT^$xtCU%xf675+S*pkeGbV9Fn-btP5S; zYW4-^BVxDNTX+Z29YN4mw6IRl*iZ<<@&*mdb@@*2~9-bFU1cVD!S zkaCMt)2>41O0`lM(d1)Ooy!CLTeHebr%?`b*f)S=>Rd&&c%|y*@U(8>j|u zRd&l=%>l6rNZtmnlK>Tq3gA;(0VJi{@HU1fqUD;@F3{<9 zM%cHib7i|ZTAAI`9%#P$t226aY##Ffg!(PBpSv63H4DKoPd=HFDG7wDOa%GYG{}?J zmZd5r#3$~kHgh6fkp`Lcf}5yxeapU{$ek2P1ChyVp$QQsp*`^%o0|`yP#Oq*dg8#I z(9p=PU{Ea4V`cp-V>$>HcNZ#?cY*gTwlF|%4qAQ5M?Iav>DXNO5XA5;f-CNXzh>0- zQafZ`oGL=N{y@Vu`JgmUFL9b(QZ?p}=u$MukCntOm612}aF>*X6qNZsoyeA!E1=|S zH1-Va2Pb$iHs9pb=OJ=z|3j`MU!&nfC_nt;m+BwM*JwCm^$ec_=6ucx&>;26JFqzs zIs%gdkisw*QVI>EBwwSElah6`0y&SR92)vX>S#fMGy?8lFhJBfx2jy)zKcX1ayB-n zJpw_pJ-ZMdL)ezYtQV$o5Hs7qyLCR|*?r&ySz~_A8kGi_fzNd%U4`mPK^!GiaTxNW zP%_EKfJ?1C*zkXK4tuWlus!zzwmn;IOS8;7Gq^K@J2UPM_Aq%AT$k z(s9g5j4JVD=f25@rusb;A5{GIj7HU$AIu?;+?EUW*a=HM1j-2;8_Gdoou+}6e3+bL z*T|C3@<>@xi@A~xLj#9NzS3b*j*YE?sH-T72BMO$wVMeSAWx2WuLm80mwBUjggEuDo}JF0NiUcjRzZS~li4N}kMYMDApc5Cr{ z9H>L+U7(@2MQ#;J2;$FOR#oP~><`f(Z<0S5n#>y!7Di%0-l>#F19{hNebI@$VoVk! zo<@l@koe>+2}~!zMJLZ~jMCH0`HWEwhMeyw4^(_Snh#EchmUu)m)w(4^Tg8_sD-Qk zLhwu|d7w^;#pfuX4uRU-qClOLAP$$mtg6fhS^v{)MWE&t_*oAP)cj2=@57WwvlW4w zSK#Gkftvq;mH1Igq=Ce%5(jEtK*OG9Pekcx=5mSC{7>0NC2t^x{q8E(HVitg-U2?T zuIn4*A{X=9i(@lB9kF`M#C3Zq_@zQ(^yv}#1e_B3LXukkMvAu(ILp~}oR=yNp4 zq0}qWixTi@5)`v6P0tmnS)$)*xfTjB`2+;#{rO#XiCIqd>qpvO!>2`u`Exmx-)+eR zL?~)(s0ALiUp*@M1Vl)#o@BE~m6%`AgJ|GE$tNHt#AuE0E?Y_eM@cl0lzalhahKHc z?v|BxGj_yiAS?9*grjcYV3&HTIF8xJ*rF$U_f0-gJZksw5h6q~zOO8~q!+j$GC%Ti z`!f++N93-#Q~evp*mCN=by1}1LYzHY<1BgKv?xGgExf3T%+d5B8stjyx$BVMJGjPN zc*{yVmeOb-E%{h2 z*(Et4*=3GpdqabaN#4UNmt|wJMBH%{M+0%!Ca*<90cBAc-q#W}x1~TD2u!`vQZDlv z{!E@gTRAUgU}gc}96o)0Hfq}Eaie}yYYdIg(TrZ78TDuM`q;eoVTjUOjY@9u>I4uY zHu-ag5?&@i#UgHBr*WHnmTVmz8oecXBbjO5MK7d5RwZ9OeISW8lGhdb9tx#_(Bvy( z4kR>aYu6R~K8mG**yp5fawk3v(%ZY&6J&U*&6?U{$?MZAO}XdnVBc{X|hWf~2Q?n$l!XMvlq z)5$|8i|PDsj<~FW{ru^}5|G$XtNoq7AZt=1li76W9Hv zru+LOK~^SmY^VuAcF=!GY1JNNWu(%*D&9~f<_>fnniN4+0z>X?hbr;-UQe4cJ&^A>qO^O?f8idx-8d|kiI+K(VSozDU!hDVIY|tR> zG1FQV(=I|Zs7mGh8|BbIPVG%;p0OmL@;|US^esxFfuxB2{3>KnL-`R#zAs3>HAlfu z%6zqc$LY^=;(D;q3A%(sT*PA^UbL;%efi-HtcfaI*Gu8wCuyz78eVpd=bds=Z6NZvJGgRq-cQ)?ZN;4P@2b zB`i{6mEXKPg`qRM)=J9jjtntz>Cm<4zY#&U)arGXu{Lzn>Gw9AOAdd0LTlI@VioCJ zTh~9dhBNkbY(6LN^afYfZjt?(!Xh5Tgj`jGsTzdWOmukFMXe2n&n8u3_VQ5!4e}wP znW$Hce!Q(H=}JnXfuxA=s#Q`JWPyu_2brrViw3ebUg%ecszz&wH4N(2wz%%g=qk8x z#3HsTYKHyUj_j7v9L~0Msb33I9rof3FOJP+=dvN2xSqQtf6sV}SoT-1VAY4HJ4K@| zVySz*0&ML0T+^(OTr;!uD;nfX#Cntz!fYIt%A2P=8pw-S<&i*M7?Y(EJCsNRi5tIS zQJ+G@r`Ll(^?_g>ENx(L*Smh&HgME!w}zwUNwy8t)0va70Pq-js@lq~pc3)FPTvN4 zD(zxY4WjYvt!M*t)EbBWlIDwPu;WAn|4G{hdgek$GbjrwD)SIZqJgBeZQ!J&Am02< zn^O;?EE>p4+6H>!hRvE?@METq2Ys^dqz z$ypz{IDMF9s>Ym0Z=ykNY`lS8J$f3VLk8BqsLV6yMOt1#0YxmRs-mgiAL?GQvx__& zn=kO~)R~pvHM>VD;aRzWrwq6-Hh1E#Ye(d+xl{d{^wmf~plX7Pylg9~ zkpj6oN^nutm}OQYG$^j5(;8Y5L2*e(TKcZxEh}qCSu~Ip@%D8EHx9C-q$w|vwn}L< zke0OK4U{!h2cJE7=Qe+$6>sn}x^%>gu~l-5Z#6gP2mPhyuzkf!yEkjA;XZH7@Wzb0 zF*ZNrm&I?5j?v^jcR7#61Vn5gQ-1|*6lgS1Dye>J_w6hvsy<)kzzg$7b0R=3qA1#W8tD<@|+<sm^*0i`Eo`9$RU3_zLt}|=rZ+KzGUKpEiUCjPw?wX#u zzhT=J@eYCG+i*>b`{9Hz)q-I8hz3iW35%pz4`{);s%4N@QRB(EkRnU9u8 z`T-@;K+@8Nm3}ov*!!Y`wZl0tF(0P8imUh=kTSb*Q#qZM73o`0$jaE9as}M<=6d4( z2l-`5$(0r!`8oB-h!?%8B$XqJAi3s>1r#_93p{B;gAP(CU_=2l5Rj~H(qd-X^WJX@ z-Rz|Z8i=?&k=w6`zdOdy($B50fiz-xx%pCG;htx*&r*AV-{WmAwe6B9cL(DUxiiB% zV{`5W2!P|tZ)Vrg9n0WYb0_f|ry|G3XjPdAn19!Ri5LRcnRRrcQf;cstg!~ALB>Rk zlyp95CAn*k#BEFP79K+czQt9t(F20Z=X(00I1OZvf-Edbq;t&_d&MiJL z%)c>YeRQ~==r15M;vrcbg>CmQbW*bj=01jB-GunAqC6VNi+GM#v%IY3JU|Yf zONlg)xba5s^(ZV2Tc2q^X4LwS$Q3#?ZcWe*SC*vya~bD@7B|M`Z%3s;%X=llc^SgD zCTOj2)rg?|t?x<6ZcWfy^75c%Hb~ByKV{#I2D!2|K^qENCulQyuc15|$lIEr4dopm zXfuhgqeL1=+>)RLby?76if#r!Ti^F1_88iH&9d4b?CuPkdodjC@0DoPD>Hg!Z2pI% z!z1$--MRfU24*`&muf1-4DD;-QG?kw3awf`pr=7|e@u2tA5?l}hTEUA1#WLstZwg8ZC=cRra_96x_wBmt$@#Z^HPeSfrzATABYIu z-si^4DTIdQpU~|)J-EGReXw*4@9NLSX611RfbH3Z@EBQ< zFcLi{C8-d^!`T`S34I~QE0wXoqAJW!I0Z|C42XD!K5bp>X??F=ht&SMmGj?}LjySx z4@>KllLbmq(l02929h@3__(s7Mv?z4#!cY0X+0JBV5E$AFg80^*=ESG{SWjB+YCpq z%!rZ4CvP(xrG!V8YV$VMk~Bzh!rCfFuR#%rcn3w$Kt#fNA}0bT*}5_71Lj>6Lc{V; z)@D!#SA{v&OQp?_3*b#Spq}k7?;my+bSnvWGBz*T2lqeBp9hDKlW;)o7`3^e3WP#O zLm}aSI;6GXpxL51VLneMph4;r4yY$&xUk5H`4Yv@Kup2`^@Nx(JaU5mnSy8_DBXbC z=|Py}*cTZpnX9HQp%pAN==FQ(W%X@yfh#li%Glgz5rK2$Y(Knc&)uJK^pS7`EZmMu z`#o|tYL zB_|?_jX=obD1?UPpR8|2!bZUQEc(B?A9y2HhfN!cbDf3O(o)NMz8sIuZ$Adkzs=qn zXGf6IPFWUSib_BfyjY_ksT+D$8wf!rm>W4hr9sjo9uU@13R&af3P8%ke27wLASK~s zLg*0Mu(|Z+J!*K3Wd-Wjx=}hkE#bY_490(;v)3wV-aLYX>Z~(!%54rXC;hO|ofg z8JAercRs;pfkRFjBsbygNJy^ko=Gs2Km!R0rzS!PnX_jymMDV;GM<>s*TL7wIB%e* zi_d{HVWiJ@`*`Jexxd#w(vWj}$OY$P^T9qG|M2jVJ<~tnC_ANF=B23|1jGk4AQDaz z6*ENwBU7VF%w=>78e~Jl=LuzEY@kd?dLkv!KvKdXf0?8pa3*BUQWgzlZM==*)YVwV z+Yp8PhKu)Ob0Z^4ojG&gggvKuw@iWuV{^JZA(!K|L*zeXM#7$xqgQ5x&8IbN5{{@H zrSzO6iIQrw#^R@8@h5CJU4~~vh(N@36hQ+KDeKcvL=Y3+2h0m8gofpxt~CK+BS`+I z=>6XBQr6mo_P%8qG0gL5Y@Yi>G$J?G6Zb!o9`Qov)D?k~pycrVudDAToJf%LNwTG} z$dYdMv!_ghM5pY;xI|0z*#;tz@rRT_0~ra2^7(uS0w9p`6iT6il(}>fK*mPkgyw6E z0qcpNPS~kk7_{a(SbQrE;ZDZpj~D2N7v(mnEXqz!jq z*?+)T$y^m061EwO`$$oqfNX6O}AC+tCVhS_Tu z_IPYAz8rzD&7EdPkdkorE0CfR5DrIuU-CX-|2<%pfN-gnOfXMir-3G|FBU~;P~@dt zPAN2ylJHSPQA!pVc{wf0p@E!qk0LB*BhP&#ydvk730sNooEurl5k9iFz*a&}-2cdf zgsp^^pyUXPJ8D=YtQS0|1VxZ^^DiuT8YDVlE0GtV0TIgh8fDNxM#5GiFCzpn-^lvr0J;f$L{NE~O9}mVdG_HFY#-wEWF| z==bV=;7#cS*(!yueH8v1uF^Qvp7{gFh}Z^h+Lb z#BMQ7V*kssKbu?)3&MPcLTDglKAr!Gjz*5TK_7H}0QQ8H?^1tG7s>HpY+iXGD_=Rb z|A9VX@a24d2+1WMV+F<&e#fxQIw zgcVb-y>HZ-AK66{{%mZ1z?a Wa_NJ`i^c~0$~PzWMqULz!7^_b(;AaR+a*U z9zlZ)NH||IDa3|KLC*UrhX!&IuG^TD69h~_(g!Jt29naf2kI3y{E;o8HX|qSTF6K^ zqrsQqcH2GB?eW-LGeF>MbEnx6q$Hf_45X+8gv^SDOv2hDV3mMzsg_JIPop!?An6I` zQ;H%qSn^VyNhvgtk}z_MQnEnF%Xv2C&_GVQnNG{u$a9YvBHlkCAYoNL?DTZeH4nz- z2^VpkA;Jaudcz$ondWgY`sEC+v+~ z*&gW&qC6OzKX0)&Cdc+a&?oGTIeKM=|G!23KVfgoQHuL#sW#WJtZ9(qguSsGy*hs& z;<*$-0}%;(V>uC->jy%vr4SmHf3ntrgpGjp&GdV9Kk!CWybEo7rmfZ8aMM-$yAuZO zxfT1}K|LIsWBJzSq4vxlfPUA;ZT9r^$_s~opE`U*h)+)@t{$e>v{}3~NM}S_Q;}NT zJSSk00%#y0BHAhn$Xq-pVh=^oK*Yx1wV6&sBggn&I=FK-uwEbGV|KaqaAPNTzdQk3 zq0KdCSB4{eY}2iMZO*UsW=EaAZq>wJ%;+y>+%IO_FUIB%*bdzBz(3Oa>(X$L6487+ z@>-Lp2|#pxQlsmoH&r%s;BvsiP^ISS^h6qD+KV=?=twnr1cpq z^AmJmaf<^Md&CRG(gpi;KQ@2JZ@C=IL$%1b%hHsxrBzD!)R)z#+DX}@%JvC0 zr_(=Zkj!04`~zH#jPFYJjL?V_MpQ}_i>?xhGbPff;p4{bZ|a4 zr_P}$4-YS`9e!H&2bA#Wjbmq%5|kFj`9m$v$Jfpv5jorDmk^mk^H(fG8l>maG;A5! z|05X<$ex&nY_T<%8!iqyy*)O8ZzU%UI4@7fIcoJ5E#qI4kp_%UNW+LZpAKFVlM?(J z($S>LRM6o`%Tm8HXF30toHXf@xID=G=I=;Hla7vT53s3wKj~;d7tv~LGR7qWhqJA2 zd#)LH%?C+J1JXocKg@FU!(^jL$R?j#6&L*|*=WF)DDH>-`B5(J|B;+D;7k;S!=U*7 ziF7pSl1R2(5TR;fQ=N2A!1>DRfBVvWs7m!MO3m_J`T z>~#A(=Hhwv(kdG=@h+N)5%bR*x1aS#L%TUaw}^cpJG}*$SWV-hB&7jq4gI?k(w@&= zW!z3i8Zg$-Qco~q5~DNQ9@(}d{(i7R!!q>+J&E4%Gx(CfUjE+`O@w)Hf zF<{Kmlt2RsH8kH73APe)oX3)r2AmNKmNy+aOGxbAc4uJ`AIxsyQ{~wHN78y6d1=6# z!kv0^?cT}~X8T7jYHmwL8Zf4CCwLP`UHWcMHkw3i%l+>D)mGQ$=AFn!1Gb0<5t}Z> zK?@&pTx!l@>P1TLF65&DUyAzH@?kYVYrZwR!?NCutTbs;Il^{tlFECMk0vo6Mwr5P zZ}QQAFGc*@Tpg{>YqLUq3aM#8ox+K8 z9}2a}eJD9;zm(uK3D`!JQm|}OayB?0oB!a~ zNe&M$tsVY|>{GloP3;Hx>ZqheR?cfy*3h{uFi3Yk`_3xq%uiVZ(ZDlm=v6v2JOzQOMutzC~jbdMIgW(q*fDxk3`TooqBxZ-6C)cOxN9y7bwN zhJ@~(q@w{{q9#|jcM-OGlZ^&!HO#P-d8gaTL-=OMN0Tmf=mlfv4q-cyY&7XoXWvCv zzMbTw0bimnMets)B=G^Hqyc53aPV(Q3gO8lq)AtT`evH2okBJmutlsjo2EzMUdD0n z+h|cfl*BY3PE>8%cO4|14<{W>x?I&2=EC*}veAI8`oqv5=o`VYjlnjj7mDMf$5tO@ z+J(q6JhR7Rvx*_@+BSE(w(U$^8P6fvxwTR%6^3K4*Wp+V6MkWW=*I(DrLRQh+k7vS z1}V9q@+jI;HC#qXzM0ptq{1w#q5J3h3i`;}pN-8&x&QC>?84giGu^`Nn&x>twho_3 zi1K=?mRH1T`;F?79KH;mH(29L1?IIZNE#Gm4G*d(Mac41p?W>3Xi`zh(n_Iv1F2|0 zRsCtdPn6%X8c#EY=Ph*6yr*1LJ+8a0{q2Ezs2+~Z39p5F9%|3l4n0SHLC36Nek`L? z9(d*Z)hlawQkjA4e9l~J8LL#=&DQDyzKPQBo`j`1Oq|(mP-HYn)E4mWaJ+5u(xm0Z ztdgYH^DdH?2D~*4HH-O-$#pyr!gfJ;f+-JYC6o7%lm?_V^dgF+#WL-YjwUIc&(bSM zN0XFpr}LZ<>1aUrm|CM==3Hj+FhB}zFL`Lv@XR}&E6GCxo*G7a1?QL>^q2c9BOmWq zk&PxLn|FK$M48LHghVtTy14c#5}$A$;pvIw-OI>C1Ew1K zv4vvOmef+cf>bo1s$q_*lqzhrUqwC|@YUaFyN-#km|sgenxu5TW_~^CXp++Ts`(A1 zqXAtF^HYVwV`i@Oa{byjl8^?3_4jLg?G{$F=js&erEexL4S4IXt(inibOVWKKvcsF ze<4S8*1<2}lvsZ|8EKLvZID%8?<5foi0ZGtNaU)ocaw<*O!c?ngP!AgFL`LdQ^SmK zp|FPC4*Mnf(z=n9G)YQpIP(3I50QulMAcVzXwn+`pLO;3akw80zH4}<-0d)go2~9b zd-p&$ebGxZ_7cAP@pO#+k1AYUJL(+y%j4b8YI2+jIm(YYfunvXIa|YGvywEk57(MA zeKfR6Xs%pDY0@BJHN2X$4(IOHXm$|`#4$4AT1{rPxr)p*V6LNyn8;F@3Bke$3?zl{ zY7)|bu#TyKa>BVzYhfO90haXXB&7jq9le-!Nc)cOS>&Th%7-QJHhs?_9}W2G7(|q( zk4x^GSP9F_?f1A)TuO9}m?qycBIhQ4-rg6$MN1~J&%Kz{?%Yr9NMNxBS2swrb$YT7j0N|kj{1K2h@|{R^3#C7 zj&WakXyw|&50R1vlpF8kw&5ghjueo<)iD9+!DS$_xUw4^sV*)mm${~cf}=rN>X=H+)9t}q zxt&!@^;}ZXfU1TiD@=qfCHhnMq%c|6l8XjhbyRf)u0Eez`+_MhQZ@hTO#V2AyTJz<$%m@WR+!@yDoDj>uhGJL25nZ@B2=!s>&YkU#+ME&v%eha4}r(K3?J{3#2O2I;Dy)3*-kus_?8&U_PF6`?yI)UP2mO+8Lq zPCe?jTbQ8d;}s!&9Z6}nfRqneg!C^+O0xx|eAFVOe??N7geALs&~MGnGJ}VUt!3^q zA=Lkm)HI;3VJu!+vY0oV-9vYh-n7uZm9#XVtzj&_4sE|b#F$hF|C)p}Dbv~St}OKs zwb+}*(*6x;X+RsXDfmWxyYh7Q*@53nJ^5YOn_y;+y)za>3Q!fc)!E_b;non-Uh zk&q@SVUWS^Cm~HjLQFAWy9t}Z50a1ugf%>+EG^Ob4!SAXM5*NLhsjF=-Wnbrmh+;q z#bD5;^rK{?Ntm@9>vl23mL&co3271&uDG)NClbFQ+Bwl?=f9GSCSeiE z#O5q!%`N9Q$Vmgv6y0hzI!pc4c57e9^$Na8N*Yksu)wi2PnTOR48Kh_8nC76gSZLB z`79j2OIjMx)-cnwP9p6*rhGMvlTE8_d^Jw0gYT1{2K+Tl?j4YSr57apMz|XD2E;Wy$t}(CL4S0zt1W&>J{s`Vu-Q*3pN#nZ z)|s-_RWkX1$xQ?9RBhV`4}q*RAH*dkG@z?t!nic4q?;_%gUL*juuw<+<)-V>A4)zN z@TD62W8A;gys|y$y9#+bNohcuYP^)IBaR>;4G3#^)>2xYE4>azD@|?;+MZp}2Z-Xk zN0Xc;VQN>yPRp?*q)AE`bXtxhAq@y0U-_-TFn1f_i4D#cC+8;S##U>X8*`uEirm0x zNxstclow$(YYtV@+9Bui0`lOj`m~G<@i9O5E}fq{t9thGGf(SEuOS%fo0ttR#^;|l*(-9(?S|n9W|yz*cJx; zmF1A_2(rf~-lh*?BDaXp->lnBY5( zd^F&zVX#w3UmugK*gSo>%r-U5*4vVnCP^~YWx{N|J^5(BcTVLRSW?*#Ym4opY|^rj zuHnJ8ZbmBAupW-h`TP0c+McZ)dZBDO%NnGH2iF;$@}LU&Mr~C{2Cj7o-ks{Nbh{m; zGT-Db5;RCk4R1V5u<=uz%scaK648LDhPtXiG}jq)W*56{w1vXk!3rzN5wN2HJ$VCIL>d$VKs-gc`hOaZ00`IP27Hx>7`m>7|jY>TE zv$1*1QxHPJRH@Lhnwn;4jF={JQc~l1SwuS_#&Jm-H)nGh@zty zf1}0t$jU7WBqJ|NW!F$64*Qt)bIz~FWAlrv;QHI_t?}Bni|h^LR1I6)1e8jJ+&b(> z;(s+frV7x-xCJ)FgCBg7LIa6?%LWB7x7E;f0bQY{86;8qks0|BX$zdrkI$W8 zOvHE%18xkkN1frQgK?pD#j^9U+5dc0G=~R28Lu6FQSbvKy@qL-0AIUgq(v=rZ>?o& zSjWvJ9PF!T1MXlM%kt$VZcwkMAQ0-x=hi0bd;ra7kt^B24<&zzp+jLU|@B zY0@RJW5<-jcNY0*((x^|v8c#p>AB>i0bhcOhD|NDSY49Ok4OS9AR$e+d@MXF(VhG&gfvZ!5edptI$^I^d@ce=LivHBwpWNR3n1(ZsK2Jl>M0Bd+$9-vF( z*T>d@e95}G&>l7I&aO&pev4x!8lHn zHMu*Yw2JQf40cVNal6Z$`YM#{t;%j?SHo=uV8=4-Z2eeBl!Hg{N#)MlqjV zj)Z9!J?4RYJWYeFc;=Q$k|FW>!WtAt17XkEN?}-}Fv9DR?ZE+Z?I9FL19AH{oS~}h zKMj{nyI6p`{3fCFDDyamp!fN(gdr|{IPRD$4@bUdaf?@$h9hp32*yxA+8!X7|jG)cp;L|92UX1`JwGbd9VP0Dc0 zSc7oHMQt6OyPK7KIA(uE?_R0BUs2d%TAM~(oXPDwedHK{cno$a%wN|_;a;c|8SzYK zlO2o_kz+$mh`(oQ{O#Y8oRPM$phlILE(f19$bl>B?qL-u8!U-kxqO%GFwda#NIB(h zLQ=#+*-aLT-zQvsCK%M*@HBYKErMZ=oVZRP#6(O7R1t%9I8XrJc)t2Z#N(PObXq0* z>`->I#5#or=^fVYoSv;%0s9+P#xiBlK*ruJkP%e3MJYo{p@Eck-4Wu+8o2=n9l>13 zsGvUvE|@GHTz|&K1MBs-zdDQuT*<`XBxO9P7*&9HcxB>v2ztRTw_WP79 zfQ}Drp?ewUQ3g%QcnD-n#)FsgXiA|;7!U0Gy8*Z-enl=Ga2W!U#lucJ+_v$+jRo$# z7RCdvWbuF#h)LEys2Ej%cz9Fdc(7@gUW0W+mwxjL)`m1lZ?g6w6p)JtFXPvgK?51d z+J`{KWIT8&zo8TwNJ-T`>=BPBr{a-bkWZX>EGst}7G~Z34wskO9p_4=jQA1~(}1}4N-ZSL zJUJtO0?BDWesRrR9I!Mprgzh4#e+aqzq8I;XXU=!*IX&iibD{>g0OyPRYE0$vwl34 zv)Y8wbC?!MocS5oG1DMv^*d`osk0;*@&AyR2E_F{Yd{=0t55Z>NKOOt+MRVC&gz*y zrp~IqQ~QLu|0t2xuh}Px9>P_v+x_ivc#JehtSs1MP3Wj8WNb(eSN@8+a>N!p71*@) zb^OY0?#u?228oUMHepqI>)Ztqze^D`5K;T|l`mUA3=SN#my}SHml^ zW$BITB!$qV3jho^i)HYiVF0M#r3wH$%&-dBz5gYbSGefI zh42`;kSYLFh|(hfevvi+g3(nW>E<-{M`;oUKtP`h0GI#f42qyh7yyBYi2(3I&ZH2U zbOC_zWw8wYCky~+0eS5K;J+p)?Vvv!n>W6J0gzn?k0GS?0PsxO1tL8H;IJP{p4Z+5 z%CSio$Y0Ta?|opaB5Lmfc``2|3jlx53i%|3&_GDt zT_DfZ@JE()8%n?6ceM{#@f9vfzkK#<@u_h7gL$YHsjYp$Y6-`NWN`7{Ru`{*cEu%( z16H3nvx`kR4U$&-fHkC4ht7zbB&Gpz?E}`3ICJ8Rd^gEyKwkHN6)cU6={9s(@gPvu zUP*#yhx1l^F75!U+8C&zvkIeKO$8~qQj+Q3ao>}+Q=XxK$6@PL!XY{MMGuc;h zcRU9^cH4FDXSXIksEb5I>_E6V7jZg@WK6`^P%Hd%r~2n}wloJ>&90|Tm6^}bnP`wR zPpjFP)}wB?8@p_l;eY?dW9FCHLAUb-T+CQ@I-gp9M&>?QYCnT)9dQ&cAewPsNWLSs zzgoKuR{odWl^fx@758Cfh>v*Tb+azGp7^n$N;u%D>VOGCcs**Vz4%^4u=vVlf~Yc2 zD=mnTgl;CdvTS)B=N^}8<3oq=1L)}Z$$v~@-PJUKwP7V6T=$Yx zuIp2WMpTj`DKuBI&Z0r;>UZ6c)VeM+RH?5bH4UiicioUWaNUglYSPoNTH2WA{IZBVH%pTtn@Nl@k8Dp#B@NL*0~2TK6)+ z%4yDH6-0vs);{X>2@J+Anyr$@=Fudl0eS5!S@Yz1Cw8fS3drx0&DU9? zG)UvFy6Yt&YS`SAyfrHi&d26G*P(b154zOYN+djkp!%!J zydV{U(tfIzc0WyN2N}R7IMbl~=00qXXprREC!zy7Edxlf4f2GL6DWiRLTZ0=qfAIp zvrULOiDGCVW6(Am7nK&MT1tTuExlV-a=9}yt(4>rqK!7$96EeO{88j*5A&@Z{ z4?ah}ODQx7;{i)&kOkSxpi&gC$i;)YV6u3yYbabiaM{GSN)`{gk|9|yI7f8pHwUwSK$9{a0s;AW@G=gi44Rbj5XhK}2QOtirO+gd2dt#=@!*Ny zn2QHohJYk}hLxV~&?BuS{oh>}o8I%#M&RSV!8JK;`kz2l#5eRdH&CWmIs%GP9f*wg zXk^sBxTQ$w`%X@UDlk7_-AI$lEghflxMcC+ZdoZmrW6`TseR*$()`HBNI}leD2E1e zIyH|gLNyvE1@d<@Qs|}LYZxoF=SmMdq_^?m-r|_cUJoDhjm;A{5WiK~Eq^rxqTt%+ zi`NmX;t)cqOVz?x`MgPgb-v$cnu+yHE)$K7k{}nS0)6rF@JIJ~+b{)ER1@gLFhv`dJFiU0K{TOkK^z zO`1l)^?8=3W+~WepO6}~=T`9boW0n*xxZIRQm@SDm9gn_OOYe<7u~u2Ggbh#=lz5* zm4ed#hL(2iQvef;QtY{_s=+L?{AsQkul!#96Jt5bLUWqCXXOkjhX&$2_+l+<4N4e;nmLxxZD%-?fUx!br3VaI9T{-DQgVfdD?B__e11UKvnQQJrY8v`g?T+qB zlWWTY|ISi=FVfSnTdair#k7s*&=IZ@b)myQvtIQ2qEBv_!0o%vK=4zCDKqt-|I@W&he`UDv z$Hb{&Yf}Du)c=|UE&MTYYAJPKJ-Q^C$=&JjBZ^?*vov|LnG1X4XJQoJw&qCjxacfaIcYT|4Gr9%y2JbqJKDyRg z@~XYcH$?H7QPV{kboES{%FgU-F^kCTjJ7(;Y*53Do4yp&h)hpEy=)%K>hO)F?Dg=| z(0ycYMxo!1!H#xnUe;F4n!>wTzv(`WlJ~z)&U#{YBfOU3v*TSgFl^1qQ-9Zb>Ws>B z-e{ScB_Flq7vvhE$jlhh#hCMMnoG~**BC`)bjJFc7^9(+<_%xDEyIWmKVWKyZVtP0 z(Y%#g;-P`h$k>cC3b$dcx6!rB1a#VNS5JUy|6uxW=7ZW>^H+w>igrkE$eNHd{(*JI z2No8xtueD`B&U)sh$0Z*^7sfCGtL16W7ohKB4hDQLC#ptpvXDqxfMSqze+ zsBsX{M>iIpK5($W)X|tiWGcD>&zZ{HD=>E)<`D8FvPvV^S`hX<@hzMA3jI&wGskQXUcdg9}2>xs*3_Ck!Dn z6kR=raS0vD8@mg}5E;8?v_IiaKI8}EO(w?`bOH5LcgJFGfWU7FADlnCEE0;IPA7Tz6 zU*i304af3fFS~lm=6bwqo!7V1yaQc~l81f3xE9xPE&deZTF!_KU#>MQ%C%g;wh08+ z#2~p58GsbxTA>l=TA8VvUuXbuEl3^!rCw^LjbB zZSIU1pL_E*FIV1f0&hglxoT*T$Y< zzu{ib9k>spz$B(4lapUwEG1{tt~m=#nu7iyD>rFwx-L)D!GD3H%K8~F>cJc zVcz6VF^R}z^pu~^lxeP*H~S0BA~HMuaK3H0zYDtN&D(rSo{K|fjv`CZgMneg_Nn!E zl-&Eha>S##v?>G9g8^s21}@Kgx%Is0!GH&+I!fV_%c&9&p+^_j(1dlh%+Pl*gvd~I zDGCi`bzNrcdl*AxEOs!UP-|JpFTWvS=hHkq?L>5MP<3DV6oqf;3C6iZMjSq9xz zh0%F8e&+l@1`2SrjqZ|jG+m97um6p8G(KR6zcN&Sqd7y?gdFXYg*loF**O}-CK|~_ zWCfxK6yRu~8CRE?P2tMXvd}-_9F04L#i+jA z+SgjPBT-{)m%TAc?(o-gyQ}2xxsUGu0CB(A!GQ@sfUtJui(j$682v1A+(71%J{l&b z$wSCHM6rr~Vm{Sq;GlWa563hj(=%4LZN2M0)%2LV=FOjrc|_(P9@_}xuP%7&yyxbP zeHkaVUgf`-o!|%7oBb9mO&aanXw=%;*WhUK!PI3R!Ebj5zumpmY;Ty_l#5aF+&9rB zG}rEr%?jb&&cN@O&U+nVx8Q8d`1-G^A;atW8V6F0C6KA5J7Al zA&AWT1CW~lf{_1Hy}qcts0CKPgZo?elilXx62N=Car)y}ymB;`R%Lody;?+^o#|16 zS$X`=t;cU+!DUcxw^hb{Wa)3F5l((U4kL{rR2EM9p~-~(N6N6NgfkYKCdvJIP=Y889(zPlYNI#v$gEf<Yobk4?q7$rYoAaFwZ zIk;59tSmOSJdUMM0lJZ*{d!b_{3*AVfgPLJJK%rpR#N^5(h}n9Nnhu)tnNySLi1>jTWyD0#`> zs-PTeKlr~wnDGp#h{_{Hu*OwBZfVO$XK{|1+BA+3L_N8fyhjx21s2defNfDij7z{k zgt5SeHjk0DBO%K3K|zGFys*+>EY?E1ze722p1APL&_cmZuVoh{3&MRICBMzQ>Zh2;57C?@69%s>*>(Te%@tAJeRy)1>)rJmj7h_1CQqxSU$(l zMhQ47BFnajEO2BzX4w>!;GQK(E@L?yqGZ^@W>ND_y#|KIdRf6Y4(UrEAwqiM;s$7e z;S?z=K*6^T>tDe_gmvD+1}TBvn!P^Px~XxTWQj86oH=#h8P8#h7&#AoUyF-Ta^d?` zmX0yk?vD~Um4@1~s8BrD z7K#P-uJeX%(MXfXawOlyB@m^-0%xhFptxc(4)osuAp%<9EY%dCpva6v{QxLLP>Y+T z%9v`|rOT)1P>4bY7Re&}{n=o|4nr>edljH#2j+wSD})7(%Z)8tVlb`}^DqqUV$hL7Fc^`cGIDrtv$0Z98d=!L_iCyJu|y0 zP*!_pUplCDpb$YVuJ+8#n)gGjD?5VMnc6e^1s#zEb_a)R+Kqdy*S1f~(odr#d4~$p ziP??tT1X2V5~Mb5DFQ^L=$*C{EwEFXvug{HPaK;Z$q?^AlmHhjZcs7_;)>81&VFzZ z;Vf`QX%Z(WKx0VfgMod)Tn_y$r6=&(Ba||l5@q())G#Shb9omxN6GDZ zk^a<)`?*`@|5MhxN5HQFTuZ0&^$}aX7B~$UBtVv0OumeNVVRP*;Y)~8a?7n~@ z0vl{v?4r49o+8_L9tTQ3PjO3K+h?elwlEOiK2-Byv)*p)wJ+`I!!ACIl8^GX`w8i1 zb7_7@JGX`Nj^aS9eHEquutjMLWAQkHrVRO{u-22$;SLDyun0f(_R_(PEj9kO!}tOi zh%gpX-+Fr~MpjPzR}SUNpddoo{G`bFbEGD_=UQ(wj+lIlB7rxiF1UrU#P;p4H9DPE zcQtHy+^w|T`SP1pE>0P{o8AZt>lW6s7Xdg*AW})W!j_aRJSs23tSK+~~= zKC*=lX<;y#(@w>@4OobuVKtX)XjCF)*9Vz z>c&^*&DE2`TlP}`wS_s?XsA&Fh`jgcADNt4NHt3=!y;{8!$|L0hUA(!2qFjB!W>(4 z)J+Kropv1PIshR8+Wh#NC?2_Mx10GYd6HaNIWplB3+YO0i}cn~b6}evdp%07U?=M1 z-B+XRN{KOJKelio$M#brfUw5pl&4y!+`=-7D0{{ed`wNmlk2l^08w-|e}X!c=f0-vMMq z$j@HD@a=F2HT&hc&gHaEh4t&KQYG(`>r=v<^Un6pg|vc>ezKhTBl`CJqYBnl?azE^ z^PhumL34r5kim@-a8y=qY0Jt&20oKXLf0U7*K#DcrangGS__#+$r+t85X*hfoWfB)@|{JD&-BWFa$O9kmwwo2}KgVZGBB_FD%`GU@Ivdv}+;J4)Wi zuHC;e`GvWc4}!K}A+st|VJ(`R`uD9rx@b# zlit0Mp{33=>TYzJ{l?Hv8wQ_8$&c75f;cRfn}nFlq;`;Xa` zAnJ?gN(2zrxLn{I>jDcI$OZOX_M1eowvz|YCq)$9MGWMeb!B^K^}b|zn&ykj?)6^# z;J$`GxZ7NhlCzl~J>Gq#al5}-RCWgt*0{3!5ev-jz@Eu&A3qcEuZ)kN_r@pjqx)Ju%uBG)+a`}7YdnaZ$ z{Iz~cN3XGn>Lv$c5#)iZ)&m#P_~tAcA58C9`^mqP`G_LDx`3`pYOiLm&Lx3O>L)9B zfXf1x>I-Iz99Re{Yn${jKtctJ$CKN^ko+_4E$Ov_RkRc5JT%D0xWV zddNaXO4AaDk?q)hn?T9k@fJkMu!yJLV^&k2@yX&a&ckzDX63SGk#)$>9nEQKlwHIA zDESQM$oe`&H~e*7*9)#gER02vhdg%ib%=|8;2S;(k~iTM$YSe|VL$bU)bwM*I>aXX zLVdt)yX2~gp#~053EL6f$b7(@*R#lWWN2V4f_&hjBj5uz`k@cFBuKu74*@k?XOvvi%!+#Fus07~HTU1B7Zx%rnzLeC z4{+oc&$E89$fh+&lF&DTWJzwxxE4_YEMfvO7yryhLWGO)lgaFOlj!$ag>avD>GLRg(AU*QoE+XtKk*;%hjR)Butt^hFR?j4W9U481j*wd($-$`wvKWb zneF0nCfz#0EVZ5CcVHNi;TaROafY*j(`2mQiE%{6A3C-FJeTd7vvjU;65~b5i}7FY zO5Sk{wQMiD$0lrU#|HE>zem3Dqu6V$zqWFjBG*3 zmO_nKFAPlm5>tpwMb{;SYX&HkvCQuRb4PV$4k2G69gbkNNx0AVB?n=i?+j^@&;44hez0UNly>hG*qMOUbz3^KvNCyyYb5urc0Aavum&ZT@R zC6B@oB0~=^(oo<~sj)|643V+e6SkCYwKTJnci~MY#}#yZJ=Gi76SibPyRMEtXX+`g z<+1#ck@$Mb8L{EZqdrztJ>>$n^%S@!2FW!^eMI!}^;Bpibt-S_I+#LaD!!fyP37Fm zo4Y>d5b`Cqo{}{j%ZL3@TTgLAp+7LTh%7f(PwzMEo00B%l-&KBajYk!kZnRg{^gS1HEpOoqcwp)sG85gC364YZ2O&N5BXYsx+^6(H#-b1A&5Vr_tjPbq zZT&C0VatNH?q^PUvR0BuGYCW!hv+J3%#d@w(A*N{5Sfb}1dW*sTrV`af=NUsV-M!F z7Hjs8OTo+WJMR**5#7~k>eye~<1|+~()e;Y-LdwA|0_dh#a0%nA!|Y&_Y>=J(babv zvT?W|8p$d2l@UcCx+9f0W8Ez@_8S;OWGuRB%^S;{Ei`yd3?ecZd+3`9w-$!}V?53I zfeb{qdCmTc=~L_PDEZ6J%E^xA(y9zZ4+fk88@Sx-_$y4x#Fr2UP79a9C*P%@BSMd^ zGab6|U*}jpm6HF)5F$hIJ{-g)aH`bU4={$vSnOaxk*a0sb)0e|&Fgq)I$$5@>L8R+ zGW@b}CSA&av=C>q25jJRrfV1FOb*;QlZQ{1>8~J#I8$K4Ia6wA6+=iN&J-95oGCSy zU<@h3nGUSi(#%e-Wu3|9b@a$m;o677T#Sn?0^Z$xr^t^sdYYwXWu`48`}Zydi5s{&jonU-7*wAF_8aAC2Ul zXSeu5!k5PL>*cF9s1AjP6}w4>wCgza4&-<$tuJt+adY z>65t{C8vG^N3$RN-y$3>HDpc5(atEy(bABOqXp4O-c3V-6ya!jGuF{UWADQlQiP-B zjb)A&8vFnTkpdjegj)+kzngJ1d#A7%xdU`f#b$y|&u;!WZg-X3J@+vssB<2yBk3G9Nv~Ha@JG+^TP415qTd(pIG8^6TThRs%)`xX5N|wJ$$B&zOq+tHY zNOZ@~8?oWbM;q2hqdR^+VC$P{43b0S3?lmIj$h7*^To{6voVFpRCLELXDaZ$%-qG8 zL&%rNjvv-)h|QPe(YRQe>jk)0&puCB>GYOI$=g0m%Nnua%eB@Eb1g^D zFg1%o@&WopNHMMz81b&<6D#=;rjTM>D=-zhR%-5}m_rJ2t=_U+D-FBnT+8Nq^xVhl zlJzY89VIvZnjGtBF0BebdLqpkuz|~~9%sEOx{vC?ajFzP`7;VNBJ}8qw9tfgsm#y| zFoeiZ^l&9KlsQyp>_r$uWGr?fO`+DZkT1lWOpYt)=+WIOJMOvFjP81rT=p+=s^k5~ z>`DgXy*D#x4avctWgRTKu?iz&oXpy?c9N6G5=7C69zl+qa?X}BcvTD{G8o+>9XA*_ zUC!vK7)4|>_R*)aS#y6~IzAHzOua*9q93if@ax$_4|ivmdm!@ z9*=QE#yhcti|NKE95@H?BmfWrJTkJYm$UDk`P`hj7va<1!7_)6?gq9xja8f6x)>$* z`#jx1ZmJt-{wR9UBMfiEhA(Hm)H-W)aqs~fA2qlp2FZ=6V-V3tSK2uv)*}N`H^CHw zAH+Ih&Q#`qfw`Mw4k2G6-Hu>uLD;Xy$I@Jn?&`D#E3IzJy;Sc%jFJz0LN0bf`Z>5% zlu%9~Di593PyU9rl)Q*K0Z~k%+Z-QuYRtKwi=Z?4QcNN;8C~~J zm<(JnZ}t_KMP&AVv2N&su6gq=YVX7yGe?o7=nj5s(CXTU{N`$uT=eg9#$)XV|5t{h zpLV2%tO@zxN39P=_lMJvZJkGitc~O|R1JtCP=KqaDV4UvL7FB1f-ywKqWh}(IE7A^ z#qKf;A~G2Jw8PkwyJew&1YdK0AOi(BTDM_m?pgy~jgs4b#X1@vFvMROD!|d4A!|a8 z_JzV6&4uh74Pq0Gq)S#Hia-I57Mk&OTxRS%j3F{sfTM-RLPyIC4l#(xV7#L#Tsc}6 z`en}1xFZAcJ)nUGSMG%jbE$pXKPp!{u4O-^7sMvMarMTm6?xm`*4ql`Ecl?EyYbOl zNfH_xL~)4kVg(5n)NFyd4(1S z%M3jOLx>DTSDm4u%&{_K&%ziYW3f|w3bmGndwAyk zrpBP=kBmf*LA?k?DZ4-Yq}=QzOuIYwLpHZ^ z-`M7ouruSM1dDRKYgxyO?#$$aPu@$G8Q&c?NSnvDC!7frjWOVzbf z8HjIJtpOXjobl$?8ROek2X5L`51-tRzBEE+L>H&Pg!8-9&;v1q$WVNx5f}-LCdlYiVXDH^ZlVUKf!kr`^`pd%e}uZaYf;?pt!GV`WYs{9nZ(dJt+t#E>;1 zx4NBmtLWK|G-O-7Wzk6fhfF{U%5j%c*;5CbOeW2e|HT+0WAXJiu`tdYgHRI@oGcCfbllAOfeaMlX!dmntmuV@=l`2`G`;d*44Ic63UM@J$eNI&-K{`J zvr%w0n2$#CI&DT1=yy#W&E$Xl zNTIiCUxbjKX+iw0KO;9g#$3BUibecL!5OjP%g63-eJp;Y;OU)|vr65AP*HJrzhlzqY{0j{P)B z*8WpYc4BrTyq4i2d^$61&B^B;ZGEnYJjz1%jc6FP5lEU$Y5SJCV9w|* zFp9`%vw)7_SR8ZCm@|A!3?nl9fOwCzVdIuLD|LJ`@EI8^qE~8dq&1-XI7)8Fa;TG1 zh|@>84>BGNY>Ekes$n=AX@>NrZ=2Nzdw}$Q`dqq?{t))i0-ssxJpz=;W@6uK3%Rsl7v4?Z=Vb6o$eGyW=!BQhSl=UkA^)U#MR*EossqU5nSuXiQyJcW60 zw`VsL^{%SVqvT0n2)&nE833P(^j-&GjmmqUS+MuI@O{s~5dt`Glr2Oy*D&G>AhL3?}l-tK<`!PnfGR<4&}U;`?6U?SHYyGd*RYMFS~tS`fb-$ z;0L>O$5j08*BCFNs}LBs7Uj4vvW{CsS0M;K=eIt7$#v=EA&O5CU4?Ojd9O{)-Tyh@rm))9?@#L;*6dIFntu&z zTW)2wZBhHv`uI42QG!u9?duD!ZC&^|uO$w~Uh)L$9YkqbSYIJDnfKew@RKo&$Z%nO zh0yS%=Vrz)!Z;%1MfDXFdgi;Csn_LdTkgwd^c;1kaiG=Nujh;RV!Zu#&V_+hbT+Dn9qG&|dMNK8}*3cp83EaL0Ubzb<4bls9fI$~phT zI%jm79!!`LxAdaiG9wqU+FZbG0$lA@bH;-G@=~UEUu!!GAdlE)~t_ zI@E`YQEN+XdPPBXXc)M4(p;>P17sMYm_*m16ULl_=1pFJNkk^2>(B|4fpg}~UWi#l zW@GD6Z?)zxY`!HwGIeNrQMU<8cjp9 zeu+8x<*`382^c-=kPF>9W=fx6E4e56g(wxHJARYqoNJC5Jqx3Vj7HA_Od1WGbIkC4 zFpS9X17j;rA9hUy>AFdisK+S#jMHR}5?yJo_Xe%B()1rj$)o?7N;CZ&Tq=sum8K8Z zIw!W|oY%C@8QpIQ12?|uZ`fERS1?9J6qD#m(}!)!H_x%GXZqXDBCM< zW`60va%O*lSwv=ID@`A?PI|Qt<7`|5pUfOZmZHbU>%ILZZu&b){+LZQkLJ><3`DQw zbp~wU^1Pc_&x?L;>cR1Y6h3(qxqt}0fZ}S?CUiBIO37O>gvd|1c8no1 z7Q2#HX(hMvA>R~_GC8iGqi1(?_Q&Zu-oZGOyVjB1yythk|Cn9LV6^uJ2CX4E*y+~6 zqPr78*rsOlF)$HIhGYq%Xhe^Y#!cCJEpKo?1`!#IZsf-eW=@wkdOk)G8I7IYaUttS zLE|Jgzmn5%z|=crCb~D4zQ|}_EWF$-zBJc|jxm2^Bzp0sH=+}m6~4UguGZ_K7hn2- zt;?C0OR#1M zhxDEIpr2pq=%Wr@C+|Vo*Y2AXHw_fn=~cyCDVc_g!;cc684nm4g>7;>uxD*0@1R9N6qTtnMccPlGgi_}BudFTnP?L-OSKol>2m^GG1N7WJHni?cWmaI`CVns zRh2oxO+MGN|3(%~pH11m`B8#F<z!t&-s`5>XTIBIzuTqncJ;b8 zBfs)9W#n~ceeJ%P43x~BKK6^j93|i=n=iK6+?lV0A1)!t@EPA*>&btS^@yUlHno}D z%*|$mUo-d5b%}W{S#+-Q$T^8(w3x;T}<; znXU<31~l14VM2sCqj$A=ird(ms=D8AkhMPe+Y&sY;OFdtD6q68$mVM@6Su2a)%b?bx%rc%zAw|P5b zf+I3rD8sWkEJJcM`Hv{B?YZ)Qwuzem>f9_DeC6%(CV3xDl4el$JDx`cB+`AR1Zy1#IyulMtOL!MUEQ(+%`jss44(p1 zqnN;vY*1|@%B=M`Cz?VMxKZ$J;7Eqy<2X{9T~lF2H)khzRkQPrcH0by&GWNC*x%Q; zyY#IYP1|qN9)I({@+*U4Lwb|M|;^!GKrlizOE z2fY;@)X}}D?`!m1Y3|zZck#VzLw5P^N68bvr;NVA;eO)3ooayWpL23)6KsnnPxzko zgc)<@n^gvzSTRm(Tp1aI3jWoVQ>zBMACvf#;KD z`a<4KTNx~<5qE8P*zeLe)B0R@{E71BTGPKY_a}oR*CLX5D&8moL|J$>n}u^uG|!Gc zFqqXZl|#PzL1%sCc0j0ID~XMAt1C+Fc5h@v>( zg!_!}Ywo_LfRqd46Yj)3xgL(;b7NYX&)GFw@3U}W_V~BCR~4Kn2FzV+VD+B zvi9W`x3z9D{Vjw!12^6wRMIE3r;mhIqNR&rxEzR(mrU5RT>{m$IZ4H3+L5!&?KgSM0-)6gu1GW?HhhR;|( zwORQi8K(t*v-L*5(P`>Q%*jJfr8OACn`OGCH+ zm2U1DaC4WvsR4$We44m_=+yE5PsHb(d>RkRwrg0HKc8*=IikWg5ej3OdQ=d78`I=R zcoU-7%s2To9vSCJn9_1zlhn@EeaOqH={VjKi!lZpmic z^cRaZZ>DT=h9TQtL;k*vWb#!?9ipgA-H2ej_R<^_0IPd^awdDoMVqGi6rBFf&!%>@ zVTS#U=?7}R4Esq-)_$POJ2AV#bSP|G%zOBpnU@b(d8ixXvl7PGW5`UKwn6Mk$a(X0?4gtK*5TyC zzaN=A9ltM>vHu^Fr(;3cJiW6lD^D+q%hM@A+dLinLJ$9BFL^C_iYQ^{>wk@>OHDT> zAO2zMsWwZ;L1cN(VWZX^OpHQJwwf;{W(e-c+OTU*{m$K1eKI~vFz2vw7Mdo3?Mqb8 zv)Mf7;B8j$Cab4?Y3(L|M86GDqCa}BB0MediML*SwM<--i^+DI>{HS=DgnkvkwND3 zmFpbrvIEJVGiz{d!#_Ev;J%nTyu9CheFvLT(-8F*n|%iH66*wei#8Cr!MJ^EJNZ22 z9+4w7BOGBoc<&0__sz5FcQb86q>~rp4K^31Cia{i{Atf0CZ0RorW$)CTYi$WV%qo&Gdo@0fH`GKd zc?}tA5_K#Ir$5?lwwoP2FxuZ5OnoOR_nUn}p9=F+MnHvNfv5W=+R z1z&puHgM(8+iVV6*~Gji%!=^L(2X&K$k6oSG^e4g zU!NJf8O9J9i`}P0q1LjH--=_I99PiOhl|^Z$5PLElP*+Bc<1Ms2G{P7j7)#6V-6!W ze0kJASdW@MQk)}T>r!b9l5bGX5z$W{Db8)gI#p)sTbM#*YI+xZUQ>ZvW#+z(IfQ(f z)_c$Uq4g&tqrMZIRa9@tpZ91C^TvG#-iD?`)Ulx@bt7_uhhU!Sr5 zHGTeao{&=qbJ0kChw_am0`Zkeno`+}M3835tuThj*z|UC?l|S0%*SpQ1`!#IJehgfBjEU)t3+1R$nGQ#zu0G+&~J+ z`n(zIWr4BBU<{G5`06WXEbz3z;Nvie$Y6B!MYuJa>o)EF+g4x3o(#ly!3M3aZ6kIkldL(Ktvzk1SGM zitmDjrULiM%-sWX2>BA*1yiuv0l?>b@+*AHX1+p?ugny(>w9*e;>9rJAe z%20eA<_%dB@~=~VW)djA3+6+%byyaSd&br|-HoB7bMs@w_kKfVqdHe4O13q1^HM(G&sCTHp}{wNmlb(k|^!;0V4YNIxJ_zI#_1v6_`R~D!vX2O$F|inR_MX5b`Cq4pXo- zlh-!YZisK$%vb2~b(n&;2k2r$C#_y^l%7`{Yd`qEG8A8jc|+EO{Oi_5)nPv5)WKXd zlG7MyA&NkJ9hNtfx|lb1dyFA67GH<8`Jn1R{TGV}cDImGU>J!tto zW-q$%)}fPw|4@jh2jMaB(6pJ|kM7>q4X3Z0h=?H07}&J-l6TPtAA4a6{GKv)H@#7JKT`rcps3W(V61i3sSmf#T$pENCQK`yPX=o> zc_x{QC~niAUeA%cV}|X5wW;QxgLy>ed&MWMiT9*$yX-W%o;(i(L{#aGn0a{4 z;KOio?`wf;6;`m@O}#@uSZl51eVyC8%x&d8`}SPj`+M+Bdb6H|LJdBBqm?;)BMa76 zTHnVkP;U)gj>eu@VmisxW~0Qqt-f$on8ja!Ry{QcJPqdT2raSJ;zK7PqRlC6m1GkvAr-0`vF#9a3!HTz-AA~HLDl~|nF zNrz5Ne+<)zOvj#Co~3Z+z^S2q_^tOJ=Q4%0r~TII+O!(o-1k-bYgxm54e!C>SLxk) z5D-2cJwxP^Bna2m>cGgkpJJW6u$FzyPOe%HzSAQEmN_qx`G}%A{q5d4{4OvvquU<* z!hx&+f(YbbQ8jyDCIy)+3Bj)%ObZx9FjL=9k4u!SY#7sN?QU}9$&?cBqvPJV&!&vo z*L$hm7z~NRy)0x=AcX|IS)XjLV#L>pLyR9KtzDgsz?e7aJ|jOT_y?lLx_mbzS1Ax zf@(cp+Q2(AQ=9C#UW7VOnj;)+u@@2idX%)Usb0kS>+~Yd$U=$lMFd7{-x@>eMZD!_ zCVk_25o3Xy4t1DUuDcZe%=RM8apcYY^*xQHy-ntCP4pkD=qHFW-c4bIp>3n@6k61T z|CYe?MyYy14&_flL4MB;|EN3OJsB$r#4 z0E3j_Kfp|6)bk-iL=@Eu1{qKbt`FDbtjGDQPT^!EZRQmYKagH>Kh>M%H&Xj|)AQ8+ zop6S~shGR92lF~cKw?d(<@=;<`5seT9A|mHx1Noh$Krbn#Wz6|)2Ecl6ONWmPTUeQ zL}X7Ym8>x^6F1I7eh)50Tu&{PYpJ*Hc0F}yyFo)rM{9Q0hX?EJ)?V$AW^(g1&=8?r zRBEcN^n0E9a(i9x=r|Ox6~=+pX?E zN#?V&1{hL4SZ_51yAxnY>0q7aU~RR}sN58Qy8wm=>}jPI0Nd-ZdFn-DLIhQA zdwG7d-^*p<13*KBcD7k15ZTMCjrFc3dz1YrUom*;vG0fP*rvbL`ytm=&-VT5$R9fK z?s^_|V{_!V;_NnUoHNp?0XwUM5%q1auzlOOIf7i!v!+h6A7$+o_lO-k@Du5OWC(*O zwsEy?X6-O7X!fHiNMR4xzR9L~qDG1{or|C|u62ffPzJ>Wqzro!_S66rE5sKuY*h`!dlIvuS%L;BF@^LH4>RVu@uWkoZ%>!N>>qMsnj>A0nMLD(iEW)#x!XH&t#;%ai}svsglj2jn* zwhz-i4}Uft(QG$o;7$b&5nS9l!O&_PoY@Y|&|L#MM09bDeW7$(BWUoh4IWaVoMlHQ z19v^(kP4-p-NeV>-4HyaLXM|>G+g5S7Ia935|3Rz9NtaALn@SbdZXIW-2ytKLWw6j zZ7g6s@0Q>p)xz_6`+MLa!i!tfTUedv-&`^89-B1W4J0DSQB=3Ma7h39sNp;fPDGr~ zuNG(ail6h#+rx^8HEtrb@HFMkEt8&igb@+r3#yf#xtDhgYz(Pcd-yQukP5lof%VR5F7X}-9#S1VJ>^K7v;PYoBD{;M(LpeH_2sZ? zX+Vio#{*Y7>ELr2Iz)68saaN+e5fzCmlCXXLG+?;Q*vL_}DT-a$(|`qzY^=bzI?i9B_!>D$;*xHwRj)Wa_^sK!=E~BGU-a z*8Q>w+!t5~);fo0Lq)bT5Musa`^6^QeCTBqGR)j7zi&MXR&ndkwDw5UCKLI@B59YXL+A zSdl(|N2}{v>uqgQU<%8n5F#S1NY$t=wb|Vv&E~&?5vfipcAKkuLwTPcIlTo!M1&P- z163d9`iFlFB2t}1T<;B9K_dPQgop?$GC*1H?RVwmUBDrNt4Lj_#}23K@q+_=H-Lx$ zE7C~}2A}VP4iQ~Ns+oRsskPqkse|KE@B=U+Vys9Z?l(J)R(Cm_i2D$Th!86>j_UU| z*nY<}CLaY4sg4h7Z!N!u<`d8%qN_;#lC6&V6mUqDk}h2w^;zhU3ela{_Z|MvL5GO0 zA~SCTJ=N^{-oY2(L&R5+Uf^J3&#c<3tk2)|G&oLwlDHKo@f zK5Acwcxj=b&wL*uh|}(1cSpT#z&`S0`xI+7F-=LAG>=!(B#08^wG~GWU!gGh`Xt~H z!T)8|;g`$?y@va#a3kXWi>h;H*iQ!=5%%kUhB8I+G5Eh`ZJ+NME{zdKyMpp z!~PuD5wX9r>g-Ipt5ascp9eUy6I@2%={ClO{?DLCc0#hR+YO=(_zM6>b^I0P zdoBM2G9u)^s;-}GbO*iuP;JhjxytNYz0+i&uu1jL5Cue0c;ilr0&i2882k${Kz3LR z1}rHtF}REvAd0~gO3Z`xUi;uaoV-$1%Ix98##=!Zp5B|%PW~IXh;U1o zSxM10!<}d;{~d5d;Fpw;&eJ!gnv%l*2`D1a5-Mo7msK_&Zf}I36KVTjAS2}<2TxT3 zw+QZr@UGbXFUW|HOBjs>aGN7fr1urTBZ4nsYIb|@jdpvf-5cn^xT)`c3Oge95~h5% z$!<xMWFmm<1gBYUt>|4xlklg&jfnfz zRZsZk)@q~EX*l%X03F#0Nv`c3v=qf8`8DB2#9hLy&-Q$MB^|?G2W&*xB}_qV6WeUw ztX0)%t$uy*k)7ZzD_IxdH{nKh26xX--rpE*MBF8e*|zB}ef8E|@w^$}h`=k~jIL^J zeoNCnj{Ub`M|MJ@uN_?HRXS5A{x0B%z$@PjwFcqX;?|%eJ0Z>6_GML*=C=VH5qRYX zMeSza7tqt;M#TN9s&`r1VUOkaAxCyXig$X;zLWR|a3eb*#r0NSHvRfXkRu|m{ESPt zd0^OBF}vZI0{VY|M+9H_N|C{w_8N8d`CUOrc7mttLzdPKBxJ!8Iv%Ox6&NI{r z?kflD!zNFGT+*LO6c9zB@*S@OTF$38gpIr38*pSN_{{mup&y5y4L2h0KR@#A(Q32X z>}%0|HhJ#uOqqawAgG8?UtUqviHYZj0F4OxB~^v)H`!Ze?!r0*J-h%jG# zH(0T2RDJgp%polX5 zb+${WH}6PXHq_ee=P8b;9qv+>yRzE&A7Mx zDa=UqnbUNBBFsqjnQ!ME`zbIZVlH9L>sEYYnK!^q-{@(;A{B;R@vw)0MV>m^xMfva zm}X~Bb9uSd)dnplg`W*HQr#3@NmKY@U=hLoziQTNg4N!6CTTB$7O5_6D=TWxhZdR0VwZXRY-W;?VfUMmIMic>~mls7qK(u@!1NHI#n~ zl=>2db;x6H>7>lMuX$+Uv^paI?BYQggF=Bxz7G+H2Z9f;ZR@hG& zd=hv>@FlFboud#ew;HP}>dHDF`ZN(h6oC>}Y0VRXbg|Pv!;b72cD>T+(*5(WBVzyS z9Z`099ks4EJ8__1H+==}i$nxbM0Q3cs)*y+frfa6ZMNAOIWM?#Sd;2{<3ivkg$c`x>oyOi~eXwttS4-;I#_y)Mf0x)GicJX% zljdme>;?dJ^}t=Z_-~?sC<;5H&!Hud&H8fMZvTJ?Ad0}w7&(|T7=jr5h!`M>!CQAk z)nsEZmJvT88pw``hF0oP!{)2kpA!va#}o)Erjh z*rO4FHXraKwQIwSi1|e&)RJ3Z-rHs$a#tZ<4_-vPB`jAYu(-R;xD1im4_h=5CY zA!tj$Jyz1S1_Sl%1K0R1$dT%jd+Khx9g^P^azx~1JY(5{lMFh&-f*p+_mx|~jZ`@5CtWy@XQN5o&kyv=q?!BVfi(dnurYx`2yB|C!{Ac{c= zQ_9+STV*0W$ob_#poLHB_j z*%|EWN;J}k)#t#Dh`ofl@9p}`N=sekv8Rm>APR`0P{NaxZAU@fJF;`wH+=8yk+36TFJWA}ZKuh0?*G4#BO>1c-Tt*^V_$2aezSA<2KdO% zaGJHSky?fw*(vNnBee=UBK8s{6}Ic}t=l?(N#I6yhP#_-_a!~;claIf5#g6`K+ATM zz0=#*Y#eC$>D6`U5z&|M_WE||*Bici9{`RBdSXKQh4mNujw~_IY?9xMWuwZX6B8`MmNZg#}Ef(XJv;nVd4?sRKGX;L*Jl18FWPGC9D(KF1nd9PY+8Z@um(+@1?MBJ>?F@vlk$PMzJTeWz#y zKO+7eFwK^0#{L|3MC@;?ey?Jq+tLhYT`yM*noAq(o8rpw|05pA&d7s(;VAOOup>K# zJs3s440c59CF}~-?e#n1@*DGc%A?U&fr$vSgk=_+Vop2^eJ#LDF5o`%NY;(fySdp`La_M@>fupW;6#wk|+24a15pxMW z`7JR|B=q-zMg(0#CunQX?dAb~=qltNf{c`eJk)a4!LYTI+kstUB!4&OBi1#31~MY# zGU~PrF03Z9yCL#~i~JIJMDQidECwmN1$Z6pXb$UhzH-!K#g6O*_N89Gztn5`Ggyv> z9T9s88=Y-0-Isd)WuoK2Muc6$BbaSsZ|HPE--w?GIkHp8(>GeL0y!e`%GWPzsy%x; z0>IDNT@83-CnS6BJj$y>j_d^TPE#vX{Q}QxL5_&LgeTS8E2KK#snbl+uM0Y|6MWsE z2kCwT;E|o+F~Fx)%#9#Nc8JHY+mP!7+yrz)=#}rloVU^F4qI*iNb%;dBVsRMAf%_8 zdK=5u5-QjO`o7=m?46TJ9oS_SJw)>&0 z+#@&*XC#x|sJRY*kQK-8Xv3F{c5~MZI`_*_vT?%EM)@|ae78~v7c;?c{;+Q!eZ{R?bJx#_jq7;5uS$8;G?h?q)j)Gbq;w{A@~ zehDl@SWhW08|mbBH#&Nuw&NY_Um-(8_Js1t*0kLQhfTZm`ZuT$Q9YwPD%XhDmzzud zrrnj+Waqzwhg1Vk6Z1K|{{RmWUWt{4PrZ$G4T^lF@t?3E<@#G|V2}89{`Ox`A)+d= ze2PkgnH<^wK!%8{#Ga!g)57ebc6&^#+y8|Q5#7^DET>c+_LNNq;x1FK01gq{g=NAq z(`V|9pF)I`>t@;xNIMerwfkt=_xS~6h{&E)URrswwBh_UT!^?z?8$0YeNVf|zJBJ# zc9WS`UKbita*|oJ_1=ExWXHmVi0k4KvvO=CT(`}DZ{bgX5)oyIqdL8}sx3x*<8(4m zNa;{*jR9PKo&ppis1kc$AVWmZWgnapUs?@xb4RkeSgIL?k&t9``?a|x7<{b{PGhthkW9h z>0L$m-o?RKBbrD4pq)p4Tya6qoJsak3FngiJs0V(D$)s}*hcn*e8?v0XH9OWKeD~W z{jK4e9{ex2baVzUOzl~!w>s;Zyfr!Ub>NUH!0AME?PNA=YU6VQ_f6ms!9|Ys(geV1 z=Sn#P=LakX?{e@E;l({B%<^Y$JRgKcq=O}8wQE#eN`41aqzWn7ZglqK@xBKhQVqQR zAdmNb@DSlWr{qdyH_s(I+Eu2XXZ#_Ih!~$)Hlx-Wt=GLrIv4ygfQSIkiE8D1S+02t z>N%PMIi-0?qLQN3X{ZQIvu+oq?? z5zn2oc+IE^?GLgBB#dBB5lj%p?y)6cgl(8f@jgI^fX<9gmRcCsvCM2oMc18Jx_P(B z{&19h@Dlmcbq>m(j=N9eV6#8Kq0TIb!3Hmn`mXh;eFcR(t96}mUaO1c^%ctmQ4Hgr zumq_*!?|aWgnngG{x@Mlq8)vHCQYmDV~1k{bYp-J0mV&u!~$`&OLwr|8)$rN&~64A zQgT|co3a7=ZGe!H)9Uo)iM0A%(2$bTik+KHTHP8Tq~x@^-DFzb1~jBZwB_ddaBY8U zV0ItbmwMRgpdmtwn?#pCsh<>T)|govoDO4Jdhb=Duigp|*e=G-5_gp|*e zmcjo66C$R#Ue)~GWRGNW&U9CR5CO$aE=B+ihMjbnW2&mVLxqScZc1Q&DtlO-cC%fs zoBf+vC+ZUIOz;rl#chf+KOVE5IueMgxXjaFcHj1QikLpB0=}GY2X;2NDtwj+sTx zrRDCWwO+e9*sG@=hV&tjA|j0}`FZ>CiMpf>>oi4TFdq&kBFwlov4!XTGP`RS$a8^2 z1R3|7vUo@xZ|*4TP$Jdy&FokNlb(AZMXHzS=E!>k*#r`)UZ!)lz0349D3R)Ax;wbu zlkSBS5oyILBy%*qOVBQuNcDWP)z$0O#y8Ic5)tI6TFsDlnOA?*aSq``#2L5UNZ}Qy zJA~H0TVN7(Kd^{k<2I>U6s%Uxu%6A(o)0Zj*`(Esoc7fR2;mfV}W&U;@+1Q12w z;Zd`@xtXY%ZD`Z!Q(IJK&8$W)m9PhoZ(+9A{BV?f@f6MS-au<;wN%31Qsg6-N~8=n zc+KjbYiD&MmrA7J&YXd?zX)a?ZIo;*Z^Uw8L@|tf$~P}bI8SR*{w6RXVv2k$GdGiV zp=~A@Bpyq)TY-lN zFYYmsNwu0yycvb{KvY$mJ4$EsY9svlD7noAsyrUBUzNvI&Te#D>l=FeiD!C>_SuC} zSyQS=y0#*Tdj&I$#Nk$i=YE$}D&cLH1`k#mB#2@jH@po4k7Nrg8#@QJ&p@^i2oNvM2K<2?}8EaKAje?uXB8($?OK8h(P1I;zfdL zuO{`w-P`hpa~V#gQclSs%`PEV0Yoa5R-w)8tbTPav8OkLyWR0zhHxK* zNTsrQpmWfgoGNS>55kC4D;4cQVTSNA5F#Rso0-hz-(l88Hrb@~)`Pf7#$1OSmr`QirWR4wVTlVN-^j7X&tabK&c7vK%xMF1j|az##*40=4z z01^>o)b5gDF{p(fTxv`o@x;9`Wlss)d;n&CH%iX>vPND%d#pxY$KIC%{o>!4N&#%( z8f(4CjthUAeAggT5XBWX=DuM~39F1GsJ0C_kf-)(7)P({<1QfS)eNG^= zVAO5pXNZo52oX`#J6r~+7N-7~d&Nymx}%IXcX0c|QF7NW%ELd8hadLv2D{b&kOSjUBiHAWM#zG~2I@QdN-{wkN}eh%N3l;{w>ay)NS;hjtNYh|uDig96aP zG(H^Z*sb1; z<`wJO+}|b3^I<{6a>0>J7RO@Fl+y&ANtzdeg9s?G%t=jGra!Z{cmPHv&bvB!Rnk_X>Jwa!CSsUAB1f$pB7cds~S zv;o<^9tKqV{HLvb;?5lj<2S3+IomE{C`3?^o%GBjW;PwOGH!P#K-vQmBBaQEa14^|H^9}@Lv)jaO~??D#m)Cc zgQ0o_Ch6`498w{;v_AP0;E?LT?PD)-lXCY34iVe~qefdIZDpIhI%lGR)HTn{=xQSQs#f+MqvSlHK3l$jec#?Gj0?X1U#!@^FPTd zWp~F#wZp1+M6rw;g?USdX(jwmCSbxIipha>un=LzEh6wX=fW}*LMI-FCA*=TiR)?PDWX`$Jts-+9LDX_-!zt&v-6g8 zVyEin?ozX^x9!$?%bIgDY`2FE5!=}@t$;UM^A|HSdebEg=`l=`M-Hc7?QSTA_nB8* z28Z>&ssCe?ocaVg;fFNWcgjEE1Pc<Rk5mCRo z+SF@}{_;Tk$7*LLli;5P9TEC#s*T=mHufIWA+l+*e-3s;?60jjdvCQq=&cORFxw>j z7l22q@9CY)UA_!8Qhn;cQN9W_BI;LG+ffFs)lRRaQL%B7uLF+k0Pvi5e-m&-;IFE9 ziVJ+by`hejN%G4fM?}8qPGD&Ryp1kIe4`n(Jl}y95p6}A`0*C!dmtl1epxkLW1^+` zKFo-iUtUq>i5BLEKqJ-l3_& z{}sT9fL~N-C2+W&vx!uiFXq!>fd|d=9PeA;MZ{ao%fe*&K=c^sCH5_Q@nL% z_jC$+^FWK!y;*wZ(El2AMChCDT978rBB~$)C%v_)OPzO<^cciA!{0!Nh;Y-D4vQyL zMX57MwUf4idlzts;5OYT>I&9xAGB_vPoa@FC)>K<%j2b2%^l9C%3Scr+?{T}3af(4%yP{0rbA z!rOEe-6Cs8Q~A)RSkaEszG?X~bcpCST?BhX=(0|wOTe#!hzPONo7xMF5b=Bx{C$_)n1zUdnd&5&WRu_t?O?T9aj7^y7rK$*WZ z+~BoTlg8hH7!mQN`$#Rm0NFHdEo-OQmIe?G@_Rrcf_!0_BeBpCQb-MQ@@e{ga1r5d zy6k=NX&MZ4U3&fyKtzD04!3N227tck{}@6rOr4S|C6k=bpD*F503^75!$9_R2+c>?9Og% zjsq2`9_o0Fcp|8XP)i-cx(sIzbCcay0SpmX`OV)_zuC~Xt*w=MW6wZMpo6>`kcc2R z-57Q8KDjaMt%#5bC>`PL7_SZ^QjLU68P_;w&?n@zfJ6jY{#a(Y*<4o-GWEslLWhX1 z)Q26WkYuxqH-HNfSNUzRxae>>x4RK+h}g=nSe9EWD-P@?fFT0g^tI)Mm)YfDHumO_ zAtEbgT~N%ZYI$Q_^EK3Z=0srn3igqVOUK`V77^{HXB#a%9amb~pM2WD?^a+U)xsQa zhj)RA2($d|;fhX#&}mj#|Ip?6ZJ|V}k(lF@ejIQ+Fp+8`rgqWGJ=1iFc?T$wYEbsI z7vXYiu$O18Ys)LY?y5n}lrpEZ>jwT>?N z?gbknw(_TN9GhKD;Ryc(LPUh+cec~nI!AY3=n&DBKh96-TrVj1{P+H#B0?>{(auoS z+tR#=Zw(&=B_hgAkCa(>M=hfq?*cs(PNW)cxl-3^n8DDe;v=9#L|1;r?W)82#`>~) z=&s~E3PePRB9(AK+T?oDWA6{s>a9SB zh_2Mf9l`E$|TGl|SNd_Zq&>)dma^So!6m)6fxBCc%1eA>t~(ry#C$ z0PQQiK7@z}%kL@Z&Bol!<_2^~HRv|l!6FX-(`Byk=*8=*Lk{g%1&5`Oj9ymI%81emabZ7|VZ1HOA;O`k6o?f-HYpIfFEl z4_R-_CFygZMMPVEWt7tT#C#rji15l^@RH%xr>Ewhfr|*Y{O9@o=JLjpAFaFqG(>3S z*OmQdN7bd7@NPG|t9l!v-RiXbl-P@4MZ{YEvku3)-q(3HIn0-Wi3qd&mog%Q{YIIX`Uu z2RIRNmfw+`c=zUm;32{*fAY!V?Q1oH2WcOH5D{SoYCjz?P~USf;QKgyi1^AMp!%*% zqphd->0+mUf)Np8`438mz3?sW&%lOMBK-{8#OjBCff1=1W3cw&G8hptmS1lN>6l;n z@Fg%2VU|BQ5$5>1hkpeS5n%cCjQ};t*l!GbzTx{f_z>}x-?0w(s1tpc@ZW(%s^W}3 z5$pc^DAU*Z4=|Cc;#nW|DjFY<9@Ume&f` zc$vaEM1Bj;Vh;Ea2xk?ydflxa@DcovQSzh9w6*B_9?JnAXJjE2cfdzrjPpmVL2Wd8 z;HYCs=3?Gg88dRYjSRz|`Zcgx)TAu{gKu22d_c*PAObCB*Q>zB^mB6b1759f_Sq9P z&DWWr;Q=2eCqD!-BILg;q$GtLQ;*ZxHnQ7&kx3LbZ8O{-g&Ps~t1Hjl)%KA*^EK$7 z038u}F&lCgp5(ct{uI1Ob-kK7moSMx3o;_)LbiSmQn(geyBwWb9d3FMeOe9N209o3$POchfU|x8Jk3F)-_+9q%LHMZ{ZB3+*`y;$)jr3R87DpfFe2b$jz=omC2Vg!*Unu4G$QC~b|re6 zie2kzO2Q=ah43Qct!A|*UQOQ_*vA8l2)3Hl8n9ut_9Tdr$|kQKarsu`slXythSlk) z#uuIrEF#!yb|}wp_IuuQp9w7@+G_UL4Xt(EOYVHsm5$<{P3h;rj)=XO)we~}!}(Fs z^Wa3pSGpL zhYq$&2Q}}684+_a%gKuBwgf|izXuYjBBUP@ycbABkkzWLl#=7w{tv(+f~{6>H5dul zzRCwdMTGj`B95T-4qEdUu2VGmpzp#$W?HpjTBFXc%UgW@nErm0ocS_6fc&W9e(1!z zE0i0Xy_=N|4=5hY8q*`lf47eyi+Kqkjmu`wAhRFl=b5=rtTmK1iSY@%0V%AMWtKPT z5N1D|ffzoBG_aon77=VQO<2Yd59^;r4(yKLhWN7(BO-oH@lJNQ2Mt-&W+tyA-qY7s zYfBC7Rp+;DGVGs&9T9sm%WyKJ!cse9ANHI}e*tbp+{JVo7Qnrv0~JYf$NXiO5i!4^ zs(#`Z`|IqPb)7U@cU#{ZXZb1-Koo)3S3LqN+FMX(Yy{=>>)<28FXn;O0(>R}{wBak zm4UUV|B5e_mjjFl_{~*ykd=+@604H5Z^8Py-WS&kb0*P!Yxx}_fhZDht$ZZ(mecfT ze2-`#Rd$|M;5^?47!mL*tD5dw63!8exq9V?fFlC0Z2K?pX;u1UR~3U+|7frgVHY!bS758J z&Y?Ny-E^;xgA@^I<@&T)A3QgHI1y$<%*8C8C@^(1=5*X}6?hTx7V~VZK;E(O!qs3! z#9GW_oB~zjKypeQ2?Wx5LZafkM0B|BFcjLgt2*?zD1-L3~iJh>s??)#9GW*AMq)grQ{jV zAr&o9u55wpw2X|6`Oq@6oC>4{6tc zLnq%O3#qs_=mTR^=hmRA&%4;_vzQ^wn32Oh91DM%uSkP$T(Ufy9TgCHMKP;=0~?z? z#|?iv6Ev(`O-^16G9u(+UbYB1HhFj#{`4@&{&DFZO|Bd0OMpfM{fa``>yV^a=q1*I z8|vpnjflFKsjr1n>ri=v{X(#j9pE9$dWXnBzXWJx2YASUQ{N2r%b`YgfQN|Md&pmc zjqHHL9yWYpzZz;}2PC$rPj^1@Ig@>^&{hIjZY4VwdJ`0v-|k zr8@(@#dbQb_msR9enk9l+8O-q=E|@>SZl5LIJ})WAc{jV&qo*5dU^+9k4sap|1Io@ z*o#@wuyFQ%YjrK30e?p%5Jh5#l;8tt4!j3=MDP{wF)lTEG1K_X`=LfeUGdI&*3JD# zpphMr)V+akpFRvVBI;t+jV!E)E;mcX{}zVd8fXoNP6%-c|82+-kypI=X=$p(*W}*?8`%li-E^+yzrjX?UGYvz zYoG$^Tl*itjflJAt$ll`<6QekKqG>#_*kdi9QfJspFoX>y5i$|sB_ie&tXS)fSdGI zotyj$XhhHzuL0Y=)zfb4u&=aF*vQVn_PyC-z(#~!^+MTO^^?uVLyd^Kn0=}j*1pR} z8q3Sgbog)*=!noOK3ygB){+i$%qE<#3OurN;Ja)sXZp0K0*?s3>NUAb`E(d`4cL*L zlknLj=e2=H1Yhw{P^WRA)!Fbpmg@nI>;P~LA~NtB0*(m0;^Uu=-e_s9w{-%6DWtyz zIZ}P{ZgbV`j&I0s3OOS3inmFs6LbBmZN&860Qzo+htV?PacMC=tWp8aM=htKFdcZYs^ z&=H|md_>gmZKSIc?g;k(=kB`$B&n+PQ6w)xG7@ZDkT|o6I10GzF0il(c2_dJy*)KE zUE5*kFuSt?BA}qOqB1I?f)P;(f{2J9C>)+>mb zA_b@~HJerz5j6!+C){UP!vbMddzMclZVKQ|_?WQPSYNN^@_OR7l*lQ7JmFQ++s3zy zped4HxB*&kH&{v36hNKut_CG!e6#8y&mnAzG{D9UEeiHp!lnT1gfDK^tAOoa+&quy zDS$qn>kVUf!sX1?{0j+|0$}60o;`lB-d?3kh?W9q<2k9hMbPS2BS*Lt2`&j{3;r;{ zQY1KS%cDizZI2QzMS=^iHxPA+mLkE4Yn>1%5iUi76W1G3j1w(If)m#|5l|ysie$sp zjo1X?QUGp3N11v9x3?fONzfDkozTgM2JPGVe;IL80Cz$?Ng8*{j{jE^I|Z=Ea~nwP zowLSn){m|tW(r_V=&GZ}+`7a6wFFNA@CmP(-lEra1Wf_Z2_0}+JNmCDS_+^|=vdwx z9lwcSDH5Et-VXk^5G@7J#&g?I?9GLL=l&D{Qvh&0_wd9I*xqFO4&tQ%-h@t;?7gWs z6D|edCbX(~JM`Z}uoMXfYqr+BmtZLXHla-}_5tZVOdlXxiUb#1>-@lNgiDcJxc0e$ zj}R^e;3jnOsm*zTJBXShxg~g{WUd9cn`kM3HlZ!qXkMR3yO&@o05+lBu>T0gCkdDW zfD`J9Z+Ga4C`u z*Ev=l&_P&ZG@fsbzx zGev@ngE{E&ErO*0*o3xZ_5qLY5H3Zs;p&4O-zQuOz)fmp^A2?Uh-fK*Hla7v1rKsO zMaUF@oYeL~pFPoY&Zmi)0+x` z7W)sh>_EU20G!Z4vUTgjETW|V+JrW1Eyr$lC1wg>PG}<$JZ`f)AyWWyLg%ISF`K;z zmm;}k*g9UbFVRu}Z9>~KZ#U!q1WS?Rq&0i@4NXcIcDw~sWQLAVr2hU*<=Jd1EC05_q-qc%qv zR}eJ?P+u6w=d!HbA4AsP>bz&$&r@9!&#ktb#+_<`AJEDbBYtiWBQEpGl)KB1@%^mr zuE6)RW-YNFAZ6BW5ri^Id_k-JeDMLoyS7Ly9Y3LE@f^f)^TGt~^Qn|;gZ^(mc~9D; z*v?2XmjdbZK)M*%-`o}@=md#3iBSMLjgJurj(AyW^b~g0GrRH zl+9SKI$Rs87Rnn`7VSq;6d?6Tib=^~hNwgbkP-zbeLkg>YPdGZ8O~a)UQAXLV3pRU zp;jQo=Y$F0XIMQlYEO~g^; zL;+5pNEs)qe;p(Z3edPWWi-5gbskwzfW@a%#-gP^J%(f`K;}~^BxChB$CC;LsN9z_ zD%`_{%d13XA0iKm6qYaWz|vi*QqV2eNhCv&!b};jdX@eawf<@k)}R0GYJSU%b^M)2W<8 zIuxLjwo$Q1$KSWCB`1pXW|7^+oJTqo>7`@$G#8Q%1?Z%%r>VoQo6lNJ^d)3N0XAPs z+2B&uA2X?hqsAK9uCST!q#cOR=Z@edMR&U11fTI5e%)=R6fAXH#3|dxiYUDxzE-_v4Wv`D_YxT%$ zX?cE25_u6=NYiSYhN>Nt1Wy6*eIEL2lo7zU-?l_P_K*L-#3FZ}|UeQlS8q zK6fO&P+4Ehswyp}8|z@pFH zVJ|GkawXguGwRQg>&S%yTt3;~5m;|r%7LPFJ&90&NS}w2y%5=uE7Y87c0E2B=@hg0 z)<|Ijox88nyot;xz$`_LnPTRn@)lB|0F^#Z|9i=#60&BaQy3kqXG^(ywXjJw1XH9# z0Xp}jr}B(fijx!kAdhIx-a!%+Akk+ZMlX4yy2|$b%+2IP0Zu9EG!>^nck>>Sp#Yga z&se6BL2Y}T_mUC?C_R*(ilg#pEEnv2K0rPc;PbWA@rlp}-9~~GAo$s|67+RNA0Zgz~t_9G0}Uzzd#BUppc?5 zYimp3wQ*l2C5m*_m{v-rar+lCqDVO-uT}dR8Bu^yid-e_nzL_^3I(WqtiO%GaIT)q z)+fiEfGghU+bkq}hwv!?zt4U}12YQzmZgO6lL!Tf#PpHq=`QCCI};d923ZJYn;dwG zz$pN{&%H=Q;4NwYG$~N@pMrIWFpvS(lQy~V3@K26LZ3ZR7SL!ETJq!9Btro*eV$$R zP9|3@=8Kh@Uc~tgxln*hpZ7ISgA1-QR0H|nlLtjQd6>b-v*baM#)`7OP|j5goB5@9 zF}wOR$xx&*Q?Sp$RXm;}4+`)|U4_qA#wX>CS0YdTPA(MS(r0&4?-f2@X~5%Bu9Q*6 zDk^ifdNl}9q_L0<7e+=DkFCjr0zCRWXzx8^h6|%uR?jIa+mZ@J8nXmno5BaNMP1o} zJSf1U&)a}{&yo?dK0AvvC_tmn%gxiEQLN`opO>Euz- zr?B=S4+`+;^Bi{?#jA?himLAWk_ZKeq^_GE#Z|HetVbv=`;!Yr8Z%{Va=fC697G}% zAdlRfhG@@ksKZ0FOSe z`Sjib<8D9Cb3H&N6kw7%KT+A)RL_mn%|K-?$xwhy>Y6T28SxEl)txLL6^b<06x^V! zNA$;$2L*Wac|orCno=9j;Y`WMWVY^b6N1W`6G@38m6YUJxPVjg<)lObN~xQ$sC^(OUQ{L#aU!IEYBbv3eZVkGbghs;I}-B zlqf*y3;kUPo_48g=e}G)UKA-Vd6pORY|^0sojz}GR3?X=jk<+Pr{lD8Q!A+n1-$rp3c~FzOY4ws6Rt;{R6gN1kPk(Q3*Kg@uJ;qYk#s0P zCv`gv?0k7MiBNz@>K0C|47rg!D8M78kDg8UG{C4+cB=TujQ=AkO50{9`a21o0?_+> zSw&>%Ej!TPO%fC!(dPx<9!RKxOw}1~5hP66P3J|Y$o zcuU$pObQgB(C1z)G6mHgjEv|_CXbQ?1xWOH6y7U|TCp(Pa;e;7-u)AUlBe9;HPBpT_|IlI_{av)wLt$ze$1uBvLYp&?6x;M*ST*P^6E88Abeo z94OMq!HgpQL=F_-(C7Qjqt<7ZrAFB|;yW6Gi$tnPzu;a-v8tC*2(yPCJnk z1vvHj{8_JMFX$iGg;Xd~OU2~M3rU3{wNy+$zbC0sfJ#cnjLPZk&7Afj2a5D@FusEq zkpl%d^m#eB$BG_wAsk316kw8)sgx>F)?_?G5)|np;f)_>lLQ4wq+|@QbHW-%zLYE| zz@pDrdh}Q`T4(4-kP8L4q^mpEBNH=GKbll1QcJ~j=W|GfBDGXZcRrs~C_p78>y@g? zx0$^kOEMH7ldhh`n#7+#5)>eju146N%fE~)D8M3J!^CP?`y);!2a41cr&`^N6Bm*M z1xTdCqh+CAO!O2$-*1;tq3qRFrZMrV=-1$gxNoI`P1JX&@i zEhi%iFzWZlo#`>k4Z9VLxYR=CD)ONKpFW=|o@NfM&(-r|_()Bq;ax|xnye_ms^8uF z^l}L|TV@u4!h`a3ME3f(1BL=FTS}3J~h|Ol5kxGi>hcyNFyUQp*Kj zxm5X*B^L^C>GL<8rdiPV#m+3gufqaYDVq;ot|u`H5KCvH4Py9yr~a&%Lp~JX^LU>( za7?cPjUl7(5!^}@-@nb4D*U>bDuiR?MgeYpK6y9ILRcsl>V;epm&0f4jr<04N8Sc9 zqX4sXc1jzn6+KBPlMDsO{7Wi}U@5o3$<`)@dB=LT?2P8P8CVs7A~V?i|%jEuOuys)Y4KOMgN5GYSN+rt*@lA5Gq>j=7p~#ISP>L_ZF4u4V)A? zYkK&4a-smIKHnBN&Av);3d|ClFk3wFEd%Zfs`oHPRW}yzLk_HKqQ{939_R|du5{&ZlqYyo~rxFivqmT>D^XkQhvJv>k&Eg zL4i+`8wI$fdUjo}Hp+P%sT-yXRk;`+A~_0>OZA|#UeBtotzPkef#eZVqyWWqE|=@F zX|GIto~$UqDxJRJKojys5~2X1&!uu0*{1DyoTMmHTlU&D8c&cF1z4rCwGVGCzD{lw z;MV7xlBemK^DSV0lXNIRr{A|;RcbY-<<={qY_kpRy97=F;CJ`AIfw?lW#8EkNPz+r z`n_i+Dh1Wmj5XF{k-vzy)HvbC1{odW!BbN=u>~LX1@%VT0pa73P-zUh_jZhy3 zvno%D^Xv@yDTz>kNWYg-dnHogYQ}ZASk|MigMw?>$UC z=25Lwsno}^{xbJpCM*ZIVA2Ekon&$r@2MTbwBON`Z zuSxzR@lybQpKlh8+9dm{#a~E(0tEVfzBOVY!e#93n&AH>6N>aO32A!&K_(Pnl9KUC z+a~vUuK^E=^yElLQ~Lrkp#YOUpLi?f%7yU;Hn$fl<-q9}`%#-&$&MsJ0TO+l9ok4E zl4zNs>`Xcop!4Pab{*5AqejLf1&q4_`^R@9H40GcvyWmX)W#cioa3sLN3*$21w9$t zgWM>~1-SItn?0QhQ<$sD*LmbYkGoP!UVV^|7i`8$;vgeY$Icv?x+aOMS8;xY{sDS`_J~6?D#DMp_jACukWT z{i{if;{OCKgfEy+=UT%Qkt&VXDS$NhCAMgd}dJ}EyV zVxj)~>q(FT1XJi+RXbCBZu~cq5=F`>S&oUfkP=0zDfyiGQ=~)zN-3O>=q*t`NBBF) zi6Yh6bKxzj&MJ`~`S-Z_-^L0jF^10+TPVqZ_+@{P$TbO>-%Iv0VXLNy|-`aene6fAeF+!V7rNXic}~-C500a9L(|` zrhA%vD8MI$Tl#%%_0P$L0$fsf;4$<-;4|b!k*zb9l0K>k2~A(t!FQt;+7p=)zRz@G`50>Q+MPrwK%~#3@t$&|T}!nWxln*hpC^4iacR?F?Mo^YX`|BGZtYJh6ltT<+I$^E zDiom7=WBSYIKNye1#XOz$~L3fLkOG#!25g+Z$#iN)^kl$rp<2j~6&-y8!(39J0ELgGBLhZrrIOBp1%yul z_t>zRqE(Jv?K9wvez@pFR!+R`L{%XF2JSf1U&&_Pj$yM`XID!@!DH(m6!O~fT zPXYLSo}?O>QQ)@>nO2Yp1&H){4}5P#RNZKltGNlMm@SltolU9>Ih&j)z^TtS+w{h% z9ho&GLjf{~L5ZzmNBP)XeY?9xWATrU*$Wv3q_7YcCc^MR?} zE53LmpAC#D?;<6N6jKTeE$<;E3Q+2|qpasKnaU+^gn1v?P=HOp*CD3MCOD}16gg3V zQ=e~nnRY$$jcpzzA&L|e@(pnwCLszCN}aPt)gk{#=TS1ENO3(14tO3TCyI3Ek~LcR z5*bl|QCfT0z@XtPq(lKqeO@=iXY24qoymX$S83b$pPwXj3PA7kx>;oCEq>>JB?$_U z=<^ZK=p-uRTr0~Jv!hNu>lB@mW4wU>Mm`ka)93q*qw`TsatB)9BP|Nhx_G#fugw|G z)pOZ=F;}ZOfgdiq1d>q$>23d*AU}&2g4x~42HGHh5_|_q;8FnGjfnwgw=5#3zE7AGfcdTj!Bmwkhc5!-gK#L< zvS9s)a47)yJqd(ct>z|ufS)2@3IL90yNq2gr&~tNS|A%H>}{wu#>cTKpoX1R(8hDSMyw668c$@0oqSbI07bFbmar+34I6t`e6V*QYzn|mVB@A!yD^UWq;A}1 z5i>IkT@ybS3Bn~EC3gC_BICZRjUvN^LmCds5xepy@(MIApe|xquaf#O zf~5f11P+P-7NfXv-H9AYv=l&_z%eq=qPZyM^pJjla47&cfqmXYuGnz0q94KTG0{@Y zC1MI7PLOjm=q+48m=u8dw&YYX(GmN+gvSvm1%M`K4AI#;cp^bl0Ca-dgb=Ub%ZZjE zfoNO3fu|5HMY7Nuf12M5cq-9S0PQ=HQ_l=q%lo&4P$?1$)$;nCL8ugf`sM_ss_pGN zix??@F+rZmwqCv!#7dE@^z?c6&L&0*U`$ZQ8uaR|AxsLue0y?=W*cwbxkO3 zk*wmWeT0@*vq7X3KsuG29M?#VH**tlQUGUyM)>W#n6DyKii9O;(0h3WaZ&(hf}9g- zx=*DJ6!d<0Y(24$b!lVGq1Pw{sIM3fn zq!d89I*wi9YSn5;{jY{-FF|fCQrlI@ zy^z2ul9=4N;an+Ot2^Tg>|%nY0N9v(LMCfxoXP^Mc3g;heLCS%0B$@-#B}D#mS#qU zLYu-qv|1jGms*NfDSalPQzS8^i@DNzKiuVnOOZ^t)tVpfD#E1z+?e*v#aE7bn5zWG zLDi3WH8E2Fb4#C$oDxH?|*ojN<2ApY*zCVne3odT@im;hMz z;WCjk?@)~u{-#)xp_rR=s!<2HGVqjp?;$9QH(ZLcxa~6WJ`3Z@ znDNMHP#RB`rSWw!+wW8yRjT;QqmTVt!QQ0+^LSRQRh(VMD;<#8Wm4qO+lY|@7~^rf z#eh+bSuqfwn1_=S0_aTyN&%qpY#@yrXts`{V72i|4Ssh4`CWuek#%4P?j%wQAdSZ(A3IXh=6;-5DUyrTlz>kVD@Ag#nl|BnVx<7q zq;lqWveRfn5Jvm5cr8J;r{ct20P6u=wL=ZxaR%Yy{YaCW$Y z4^-g7%0|B4lH6Y;dnqJ}S1W1vv zv}`k?{U)JOBrGjWuk~#Lq)1p=wi&^GmryAZ1T|#j`U66x0MvLkxy`(``$w!lCPE4z zOo|&rAv7b^ez(NBqyB6%219sdO}QUGI8I!E7#^gjuZ0s!OLBr@~r(mE3T zFQTLX%6JwlXO6PN2=upvO98m?Y`dH}+;$_+{~=Ba;7rN@Kf;LfkAzJD*k{M#_m`z*R@}R5zx_DgSVm6q~6-S-*)m+5YC|P0kOH=Nzj>J;HU%|h*%Q9gvqwH}>;M^^Q zQ%1`h5#`cAJnNQzYTY)K1VRUv3Pe)ql#q$^H3Tt;~OiZyp32f*o6!z z(v$v9VRTHPe<9IRq$mA>9(!SHn!%oAKmi6RX?qG~T!^ePU?0M#0Q{7+J@{Oz0{p91*fxzc@$x1GLQYDEW-AqfhQxHmPKP%UiA;sPd94`!1E zMe4EwTNgH{^7K-Ypa6;cQD~j$(AF?$72EI|Z=cnGWo=VrA4DPajJH6zM7XwMuaUJEug&J%R8k06!(;iP{8q z{0Q(bBY27w6`qMBovXzAcYsUqxXdDNukyO2$Nzf?W$1lLQ4w zq@?>o56qk8MLjs3@F@U4CFAOeTzS}Zzh@FZMT+n{d9MyECw_|b)B)ekZ=w*bA_)qR z_+mQRB1M8HayK{|v$e@m$-x=&y!tkWsvWCIi~_`NOE$5*-%t8VBBucIm{wu7l%F(j z`A5$uYzn}R=TgZnHcj@%aTgIZ1whAh-N2Ru?fFBqL`{+WvK{b)t|xMe7;_!fev0QiJ=qP7$GeS}Q`*a;u4`<%ZYByNfn;I^H< zA0}>!PIkW(&B=Qw2~mJhE|#6&K2Pb89Ojtq)N zsY>>L;N?FQU>?&cs+l6Q_i&3G`V%oy0Aoyj%*-*W5#ahlIai&`3XeWMS6s)X3fQh{DF8dB1Jtp>Zin}8#7mLDWUh_ps=Qo-3nzhO{wHBm0Cr4=nr58L9ZJRXc_4uT zaAP{uG-J5!l64#6q)1S*b|?kg6D|ed#&eiSr0P&n{1?(yTocP+pp+{Y#vAyCD(+s0 zc$CS0Wy<}_H_?rqc{#eVS<5Y3JjS$kiy)LyqDy;;?9$@7Fvcd;?Ff@EtiOA+AE~ri zjF!fJPWB1cydH3d+|<9^yAsP&njVgYyJ3gD{=oC3h(nTu~x;FU7I zW2~URlF%stJ)RwwTNpZ09~b40=djC9r2Y9MKmh{r>~7kU1e{Id*xH2e8<()jPvF0Z z_$g9R=tsOlpCxdLRFs@?r&_|6Zad}IlK=$>B)`^H9r+DLQD_`OrvUVL_H=K_LSJ=i zW4Uo`M-!M>=daeF}R+-VhzNuBzOvdkLQwyEm7S08E#d?uO?s$0FLJ-<1GT% z9<9HQkSPE;xwR6v=mkgVuP1N{0FP(+X-lMa>*%~m+!To})Yho{1_Gu?bO~uQ8hFx5$9f~^(0@0guC4a z?a}rvL`;$BV&NZUzmJ$HlAX%dSm}dAOaa94>^Ab{b(cGWd|^A43;(G4!vswM(8(Pm zS)=KX5->%g%d&qIeJ3$fB)Vh-M$aE7XbOP7IF20(b_pG_f2h%K`{k2(KABXmR7+8} zCWx?8?%eNTN#{QBZ*H@KZ^!q^Bm+i9f<>INT*SFLmfpme@6?URK>l_@=oIl!G50Bu z`|(`&IWt)H(u~NN2MLe@0OPqGcZLAPor_r-QAzkP5mEr*$~Y>J05~LM`{EhTJ|3Jf z7_O8eE`!RzQ*QA_)Ry0F;y#{p#QX7m)XBpmqd|SSEY5vAp8ZZ0Muqa%7^zh3{|D?{ z3gmY@`*>!I%&s*ehyF;66u=nIXB%R`sFp9qHMHeQsldDE1lqq4Ed|iV^X-=S(9%+& z41cyj`oBa<0i^M4G>R8#r6gJ=ld}IHUJBriXV@1z-bT4FA{tYXz|WfmV2T75h1ytS zWQ6Wsf%FALN&%$t+(SL{q;0KQ+Yu!NP{z}J&KxBzcvWggBBTJqcy?*UgD_Z?b|y{= z;Ed;!J+a~RSE1bqlp;Y{?yov~5FrH+#cn=(bbL3m5{?9#V;%JBDB>05%?XpogK0&&LZG3RaD+a@EmNZj(yh z4*#X5SB>eAtI&#;&}YpUed*x#v8|+D#if<^GU=^0nG6%A8Y~4yh!L=_&Yec26iG#D>e^Bwr2x`+b`{5)rgr`>BUTDv zjpu`CF=F-Ct(AmI0jTi|6JvyGr|CHaN&%qf#^JUyIETz%s=aA5=&8muBB@6nhhb23 z-?12h-Gjq;&8=7C!vi3`EKV3Q0*tyIlB2H6<22rRyj33zjtn&2`*;A60&K7CDME+@e^iJ*aL_U z*T6L;Fg{3(6u@|6pOepzF<)tv>)13WU_MNk6o47eBs#97#I;Qh&XXyej}j+E;*t}$ z-!`}hQ6%SMgh>II@q9*U+R52cBELjz6u@?Ue@mpo<|~O`Av_AeYbFAozXX1j_$U&S ze7=(RB;ip2-dXYV%60U|x;OB3ew*XTo=UaegFi%uo^p4)5`FQ9Hli=yZne^Z@~XHY z$%xP=e^2(wua7%|j{UMqnm~W!OM=^x1TF>G$JD{7Si4PlJAt$NYLQbPBTNdwjLB6K z3rx@Nf!n`P$_3cF2$lk1V{+BR304k|iPyndGJ*IWBBlW1m?pTfBKFeuJ|d+6(zhh0 zG7Vx9ZWVw}5hMjb#^n2qBRNYJ#0LqHB3U`!rffb;q!d6J&k_=oL3bIQhUzL<+vao7 zO3O!ykRoAeS;s+hT>5PxeT+ycfOK^%-MdVqA(f5>ENhW0E(KB}CNHuV zM=U_?A%V!r^9Y#&kmETLB06)ce06FYEOw!3Yo_)2MrpiSL1!y~Ur68-03OegkSz(k z*1$$Hf%_8TrU34EHXd&=+$Fl11?U_>Qvh^47eZ_?&{h!{CTfc0C$(2TMhTiC`Jg9q z_|TRpA1*;t0CY@iQC8E?Z4P7w4R1yKtw)J~DF8U0Enu-1XaM#~#W?X&Bp0t!D0_Ho z#7hCZG0ilsT#ltch$VJWdM5~$0$}6WXBm58C^!Fs*fbp%TRuouQMzw_FzA**RnooCz0R6K6o z2F_v?>XQ-Yc`Edj`@aWZjyDUJ!!@^CD=l!DH6FLF1xZGPxm{*^anol!Ze1&aPHtTt z%s*mKT9pL5@{&9Xu#d;Bt7GlbgXv&x!P#>-kyE=9CIw)|Ge6ex&kUw0>Up^iD}e4r zpcDxOTE@sX(n98&*>HBy(w z;)L2*&5h$@98vcN>)=!FgFi&e`8ymVYi@t8vcabF?ATGssL*yEBiqh+uGZ8J-HW0hfS z5)gUyCt{@l*0pi;^%}yE{v)(dbX`~<$>r;nYGJc8oRuFEnA74*YY8&AK38)(_V?{y zL4DdAMfWz`3*3Ccsj$IfdvUj7+hVI1gfdDL;aA8a+;z!pMzOVy1zOC>wDZ(5(N)TP zgx4lhAYHopc0C)@$+@Vx?8PFH4rWox3-xSPLB4~KDFC_aMr_a6|6j)xW zq5$4a%oGVu=2B%CH$n0v)dKRpgiHa*T`$z`Q!>kw&I0Zy36~ ztJVX#fpVqptgloy4B+7E0Bx&y4(J%BdB7rNB9qIkP$n`kks&Oi+FjsOB!$$&DEX3!uVu){p@;W0QXQ8 z@rC!HfqJ3Nv#<*nA%S1GX63*+OI9sgxM<1Hz#8#@x{TIkqz)8c+$9QW5cyD$`EaCU z+KOnXUdd=I84HU$Myl;2pQ|EwHswIesbz5xH7gJOlAgBj0UFXOVO@lh@4AxNsS4Ab~bVMe_V(M2}`sQv_Wo#89JF7P~R=O9; zBREQi$;CjSJb)p4eoRGukev&@P-{e}CIgr}F#$4#az+LKtc5+nlHKM=v9b|Z6eMV|k)8cQ68VkEsXWZ);ON4qMyVg0niS=4tf0}z0!YX+(jhc)pwD>QG#tG%V#qgVH zxV5maiDprk@(fG4SNwFr2^K%eWr|TwqvUpI!q+=hUr#f80C)zdRUOTLoPv&K*VzLo zxdW$Cy_lT}G#QpC+??pua^2oqvBV(|SPngFHv4Nq9ih1{?txuXtDdN<@5nqQ!H%OPY z)Zg6+o}zDy(A{CX9~aN$BUvN@ zZ>-jDEaGu4?~Nt{dsQey^BEmD69|kHTHYIOPS%S-EMB9avS>B|cMIBNsEh~|#A_J@ z#M5Gch;~I`J0KL>nF!P5MR+%dnX&Zc1=upf8d!^L(rCrE?Nlp6ExkaF*vq+jTw@yfUjCh>z|_akXj$! z*Lc`lJ7tj`pP|{dfk;`1W{|^ zDKm-MR6+O4jI(P+TR4-*tQzJ%!RW*gsC|;?T9gZ~*@aSW)XCPIQ8OOSvSH1lO2JKq z&~SUEWK)hH84(24 z{uMI?Eb(A;@C=fubK4d<1=wq&s}@AJlU;Rfs%id0ELgq^>nbD0(%M&x=%V)3YiA4~ z->B6qB{5v6R`L!y;PR;AyyqhMjMHK7SyQRSEZI{dHL^1XQ>^5M#W+b8KQ)9O_}#5< zf9SUl+@N3`w5)TerU)P!T45%m%w)6~K*g4o8D`u>q1MP13pGsbSp^ifU0)ecH$6>8 z28<>4KrgFfUtZyuW~rI1H+L19jHihuo4A;S`yC6L=`by0d^h1p?}ptp9JJI9wL*px z&I{Er_yS~P0O{Q@%|c_w+2n(&8!y?EVIGSwnd91k;em}#VRWos8+iJTYrS%IjE{hB z(B!+Q68hb9{qHt?uZal{8#&qJd9P*EYZ(th)mrY zp0lZ@kgz;HW6RpdfE55_87qvc-x$7HKD2?#h+Ws`XjhtijddmTH90Eq-VoV`H!|`K zbrF(H)|5(G2eaK`;5$5(Pp(`CRCKBN;-br@i&iGUhd zxc|*4?J>of(`VT_6JQx}f6pk|&IDFWKQ7tU2xp)-2oPf>_m7M(bd+%3^yB34phLed zWB)5-k1zySI(;0b?^j*AjQH=2xLtQYgP25{>G>37W8*$=2gcN^vQuo?njT*!}pVd=VRSI4EijD0#i-1*`CcL`@)<(M;z4JBZzChEC--YGg<*Tjg=3nWKdH91-p z>GJNmn6DqU&O_I0p6w7efkP$cz_KdK7E2MlvLZ9eQU$nUdVKC?BkPHXpHPd_6DcRVwfbKO}V!m%0>3I zLeFu~IZjQuL8MB|2b2o5j|$K4mbj#8B-vV-WGD3Su3iBVBOis)zXsU4B)Fg_`(hyj zV;Vu<3}<`;o1PN3)h{9wc5$>N`z5`AN5#U<069s)))eI3&$3R zfm(2wY~wKytd4B)7=*vkWMKc8Ne6E0Gl-!KA3L{m8OHOlGK@!Ymtlj(S3C#WlwsoX z1!`A@CBit$@Ue4eR)+QaXsyG1b75up*trqP@SI-CaAA0!%Ji-IXRoC$d_hq*L}Cmw zBt{=%k|eb$%y|)<2xFfXRxsP8IDWYz!3&F-^Y!O@+$3%+K^xWD@ zA>t@A4zK%G&yWw{^Det=h+f)rNMMt$-7mUTTJP8&pB@Rj-4Xk}5rGIN7-82&N)81s z?mcSy2X%~Hoe&~@Hxp1;I}@p|Tp0;w%gjH#7n4Q#O$63s=Qoowq5B#4st#pB_8#$+ z2@~P#B9#dl^^D4d?l#bhs2-=qF(t~x8#Oz6H{({WfDYTnTY*lw#DFR7!$=@BLE)}% z`(3{SK+*GI5wm}qb{}HOM+Vyg2z%SC z5kH#hfA%;%*OzIcMth1ZUnyb6&*+d&*^w$P zn8#Y*AbzN3w%}C7K@w>ES_NxpQF{x>;zeqkqh-OT#a>VIa>f_EFPJzw!svZkP8T|O zh7dkjj8R#yyJE3SARg=Gr`xe$u=_w&S7qGD?i-Yq1iUSFHZB)C2skEc);5lkT zNH=)es*G<}-L`3UQ)}#)I?VRk#8j%lYvgPi%VD1k_dqEBrz!&bEDw3y6i=`%MZc(b zs4(;LJteQh>&2z-SM)%lf)q;5z(j3upxh{7mmu9)BGdV-iq8u0h`Y$=S5E; zGh(er3Wd)n>;&?6g6fIvI7IKq40gZB-miNXBX;e#-S6#-QEp&W#M~!n+w>8@9eUVp zj?aqKCAd%0hSwj2AC~c1P#uA2-Mtdvev8K1HvMCv18SdLm5t@m%(``W5Yp(wOVZR82KJP zfA=BP<22p;O0++v;dTvi_{_s+l`U|)hE!VrC9QXAY%hwIE?z5}(Jc}VrK;vmwz90m zx|Pk?t*rZNf|x;z8NPeKmlCbOOjAj0Rz>+O0Yz;IUluKeye5#5`I=+u%nnt>>+W>cZY0)?*0g2 z8@tG7Oq`3xr$%ezxFM}Pn$2Nqg>#!(F(uLmrM>4kFRsTMA_Vq94ynF^1`jWap)$!AG30t1N(sdcDKEq&N4 zvVqy6hz~S0zwJd2Kd^Rusww}>;7=f1YiC18U_&UtI)%VlHy0v>S~!bDbq`@i+9?|) zt<(XN2uz0r$BgFa9?9r@>@EnDocURc1WL|WuCSreq2!3?-o8kGxp_Cs%@O``)9D3Y zSfqpqE2qUR>DQ*rbj6M(dmuuYIaZdL)&8vQ@O~g`I{_1MxW_Q1ZR*|W1S|1^KvvX8 zI^=`b?}cT?t@Du?gZ|7|V-BE%yybfV6ucM0vqj%bq047y9#bxXAx}=0d2(E!Kz4rH zs>Fg{#7Z1yG?2|+qK2>)*xi$u*LKQAOsI%Vtx8Oe?jlC#tHk=Oj85@mu(mSc6f3;u z4RsjbmYd+F4}C~Rbpc)&H0KOcDdGaUN;y{?KV^TcH)P5^p7)d-z1Z08@($Kz zvAE&|N0RuW$fzhXasi0JQKPl9rzav38%od$S%TCa+lV%Bv`!~g7mRSE%c$Jt%z>WC z9j5ZTfUSj_#2}&GK*x+z2sPn{(OZvjf6Q@6>%BvsHuqkmU&}1S#U4x4Egww3-GWg_ zTS%L8W!fAZ3^2QhFMXq%$4+V7T_YxaBKF-{^q811sF<^;ponpw7K1X~6^V8upV=+1 zXy*34CIUq-_nN#!Hs&IAhfLaunU1zELAkGF_H{_b18hqo9cr?2sCxeVq!^z#ZmWA=jyB&#C~KMJ8rt&WO_0l7sFZbeBiX+5J^EwX;1X zOrcmc01l<#Fv%nsbVw+CiAM--Jv8x74vCcGu8q|~-4TcUcx{Dh#Dr4pUZWD739rN1 zQA!9)%MnGsPpJnxWT5YXyFOQs> z0I2<7m~6?a_O`9Idfrz2C)z3Z2F4Lq#gtPn0({o3Ot5abH_~{!>ZE)&5e$=pSC2BL z9=Y$J?T~tNVoxcgD~x6QT{PadibOAS-rSsZ!@ZRzeZzV^6>3d|`8elZ7~vJbrXv&z zaRbzp`xf@|JFaCAsZl?~g*$9F^rr17mZdp#e2)Mi-qmCDDDPU+Gl3~=dKTJ6*hGf} zMae->bU(`^lROPIwGz-7oi(K*F82#Pq`jCs;;v;Y?cp-vZ86ABzTJ}c z;X|Nfj7ub#{=)C3^WZ;O{&xX3TWcu{;P63U`bQm zVMTX9=%(CVPe%^zyi6&VFyNH@jrG@z{EfC|FtlN48;i7y?D?(Cp75rs?d!8e1Eaug zBbv{trux5Q!`I%Ls507`s3@=||A)2kq7!OOmS$yf2UEPKn%3X2e0*<-W|c{iD`90) zEs}N3@F8Y3bJ5Cb_cts+BENn48`@w5(m*!-lDYdVZF$)e*@l%L?q7rrlNq5EBZvbw z>|AjFMmzrGpBpx|2-@=M7}MR|YA2YIiLX{3mW5{IaoMrTMsAqH7E1W~@)aDOt5j>M zuHhNiaPSOiqn}N=$1Xvg+v|+B4~3pScJ9fvUP5sSABA*8A>%_`+!MTDCcMGuXhzpb z0lu|PPS>g`3(~4A23Fk+pH_9oYLyOQ*(w-;LJ~eV?Hq$BGh)q3L=aY2mxPtU5bHxI zGHr5S6d8997EG3#HX)F)q3uFgT&k5N0e3&z_Udxawyb<~4-~d!W&&5}7(WbGAotvZ zY0t_+*bJTTgxU1!xS)F|O-8Ka$6I5aTzN8EEUd5Qs*|dY8?f-1P7bJNQ|^x!vyLMT z)X2wvXzAf(oXqH#z$?6tcSIrMLmfX6ykI80RChFE^*{oD&!sxVx-~em`HDnxPheJf zDHTkS(3}p7%gbqUa8GW@X?;~;YX^ElAg9HGaocROWBE$FPGDD|ZEMmAhDz)-?ft0-?H&Bx3Re^43Zi_Y5YzmpcA*2z9u$ zWnj${iQQdc<*G!jHv_i9K2bTWb8^)dT{WDfbYH8Sm7eRIT6ncq+Dg2zejn+=_CH<< zf0BBFwJO2czkU`zsO*Af%4Mv`>GNeys~tN%uu`5mKP<47mfiE1a*|Yg=!dAmPN`7K z&%rm0@+z75r||EyOPg~4%vJ22S1w+?NVxYGQz?H7&!6~>!nAjLYw~^2TrX+rt9yfy z0{1`;t8xR_fK+n06slqt&ROvUn=aK8>14{)z{^tt!;$SVwD)fdUcLFZUm9Y+#f>d& zM{{F$N)XS>CcV|dY%ktwy#U%SwY87UG9A?^t=AKSW=HY)uCW1hlzA>72(+_K7do_@ z)HUT#?*HY_E?FjW9oA&esx68v6OUj;Ka&1ZQ6elY?1w>RH?5ObLtSX=nzQiJ_&Evn zB_X*_Q@UrDq<5kvt!na@-SuZW*io&jNV*+pMJk&7TQ)yLa-bY+n&cm1l@%^}ugbbP z)_+lNef3l=+IsJz=4C{}1!|rVg*MuGt=qEE`I;+A|FJMpGi**XD?NIVMcfEn3$W4k!?LlFHro22)dIGc9-=C6 zOB;p!2BdIRUmfcyrrfM>=$>tYOf`43egLuF0^z+R zyDs@EI-7eCGs5Y8QNeJtM{!}tNUns(_RQ2_NB{gT`?Pd%d1 z-9k$=I+gWmqp-h=SN`NmqovRVQg_WQ7ImSNjkd5iYqf6`(fsUci-nV`$kK~0ZK3h> zbj?}nr*UU$PkIY3B%kcQ?LsR|_SRg75=WV|+G`0G1=-WJw%5ApZvjhNrhE%iog3_f zRfFBukSg%POn8f}+x!+2o_j%92%CthI_kYXwDH;s-^WxQD zi9Mtx1;AJKcfq3Seu);s+SgVLY$kOIs66-=fdS>xdw}*qHO&@tzUnK1?$`Ndu!Vh5 z3wXY0l{oib`I^6pRn4*$n>SGw8T1{#<8z5<|MkYg_?)>}v7?wXr}f1O8fj?e%EeDL zKbSi>cL?`*VySb={S5ag?kF_MdoO-uFbN|tj0s3;KFhldO_F2N&0=)-o?%=#3 zwA(^8<(|mRi?f7oktD|VPAvZ7lN2_p2`HGwWHGt{LNT|pr` z<_)2?Ta4Z9fvlBhm+Un-Ek^?py1UStuU2T^S{OKQ^SYNU^KqB0o|WJW1IHp`c9}Z} zE!riuj3E`A0x1PDN1w%r9F??78IShVK)aJ(>71x9!sCJhotg_0b>m*wF6cNnnvw zC^J<0R?_BJjZ>6Z;krc>$g(43mf4M4l=tq>Z zt4Kzz>=$M&XMWJJ-(&Jw1y)!NE3j%GQ}?nk#Jt9}d%mSpnsyIo2@A<}tHtk}AbJ5+ zSRAB9Z_&kSqq-RJWs*CeX6*d2YEc(MfsApFqbVzQklAWUHbTmIHBzt}qAg$3sqfEg zV{0Cc$SOY`?z=8J;$XHKSQ&Ed1U-lhpt*)c2(*gmuwNC3Lq3HHZ{tJsH>wSelf66bqRjU{XyH*JZl!gx7 zeETG{I%8ovtP-E(&5ycd4eBpOkHW7RC=PCwg-w)+Hn|@@iU=at6_$YAO|Ff^bZax3f238Qa*T$rAd41`5a*_^h!34M%2hst}KzkzAvQJHy5t zoHSHZGWvQE28RwX#=_UTa0kUWyteo$E-N@1R}j>-p%EOBjBd$0wJXfwevv_y&X2CC zES?6BHF5DcZN@yBk^=4v5m}KzR_L3TaG(9yWJVP%;g-u3Y8ZLcxowLSGVAeJW(9&e zILYZ{1;ZfiF=VNfG9oL)Pni|Ctf8(A2?~)dd08RMiL5{wRQCf#tNUn+QGGQpRA0M@ zyYFDj(xHZjkE7bup&=EEEH3VQXxpxl;mv6~V?Lbkqb;i%{ynrWYG+E+zn(Ll^)GT( zty?Fu-P{c%vVPsVqwUNW^{@wvUiKTaC<5!&sru-Ch>7xlqD0#r$$Yg{51(hAGao*m z4V7xSkW=H#`E>S3&6Ilx53BAZRA-4mQ}S0v{X$jIdnQ;{IvJM6&@0`KG{t-BUgPlB zh8S(eM&f>w*&*Oq0POMT0=bo`HfI57jXTx6gDd0o4*vyYW|ULz#EBrci_ospL8qi5 z<0%3ZJH;SPg5o2RqScYLe{G17X9AGi&yuCU<%eO<87zDAI0RW=#5U`~$Ov|6Rmv(S z7tlQ*pADF2Q|=#M4%&N(hpWYl1B>;GShb~|;}00jczPs)?GTR;yNm~E@wiM2YiQf? zZ6pZ*NYt4CYWK@bnQ(}90*Pbh*$UDYV=P={7ra|SJRk6$Tg%#K3?hN{JC&CW46HN; zWB@K>7i-QyjM5b+w9MmOM;N`_SRCav22X@e}6t=fNXz7rV^Fe3sM0 z0zME~Dq7C0-`zTeZxxEHcnK0+&V0E{#*oXG4R~%X5fax^>vc*MD6@Q-<+>1o0C0^} zC%f^_kLAkv?yhl?)HqbElpQRFL*N!d?gSWk`lk0NoJTB*{6bTO^*k^&_F6EGbxsJ} z??vMo8V729GjWt;Emv?k3epHeS8NNcBIVXsFi;hH?&_1{4)g9!w=2jmT@fvG69I7{ zii0o1RWibCMwk^>o@IntlmVCpSba;-48WQs7wwi)<+tudnZ8Hio)?0IDoGFF&-$i`kQ=~iHbpF>O=#+=ds>fymi>o?x3Fz>^HIoalM(>&ot6r~JbMErOW z@$2ooQBo62^|GFz5hxGmiY%*vO4Zbr>QGautiY&OCN%&Zftw5`{S00>RxJ|_ND&T5 z^_i3?NICyf+uytxRXXjp8V~gy3a4r3H@YV1%`FO^9x?aQs9}D=+N(ANi1uaHVyRn> z8dpT4CVyt+&mPU^s}Ali@S9&Gb=tiA>6y2u=iN$}GG7_T&4`7~+%+l~?53hvY4lB{ zLMNqzf=Mq?70TmiHpFx{SH(6M9o15!UnBL{;YXF2KPeTW>ZL0yR%$hGXOg6}^D-*+ z-Y*`##BX!K1j}15F<>HzuN`1QU##%DK#^!WuhGh7R5s1;jQEWhtT9Vy#texk8E+sV z#{#H|G8*?A9J9#LMA(SIa;JsIqx*ZdOscV zWn=s0K1Z`HomC`jvK#SP`-iX=?3*m-RCxX>Yk^M5eg4kC*R~sqWL5M((#L1@Kkl}| zYP%jMQY*@?#@lQtOW=+)+1kHEvZp(ijMuTay9j%_cQL(*J(82FB4TEmt&Cu`Po}Qk z9;qhqRwzz4a`FN^tEYVSD9lt}yhv>G62@e(Q^nNP>pSfboLb~CjKbvB*PGhQf>ylY z=%!r8j=Ae1&_$%@&%&sbG|sZ-{LyHrNrFjP%%$avxIRbZ>5J5qpt_v!Qtfk@sFp^J7ka1HXWY1v1FZO>^gNpg%{D~K#EJB_M!)9deU{je_4he&o^!Zy8N8EF#Jf11R9;__IO zbC?9!-bAZivVn-oAp6JV5i`J1j`qo}migs0n)ToH({;alxUFLHH@coXQpoMh)|4% ztiim>-}7ic*m?Dk>ay2TU6O=+kx2DmU$xkq@^(uT*#?=CX!kNQhINdgOJ}6M;29-V zBp%1#rO23u8B=JV(?gjTosH>7r12|hytNLmh@MgsIl7BZ{eXI&T4YGJNWI%##jZEW%@6CQe*1{9;&N z4(kYS7JQekoKiu}2@IATFQ~UDi=gPB^l?_!Aq}7nT!{knrF+2}ui5U)4zJCYOSEFO zNng(_=)79p0Pf$8Bt5xu|wlSxO#auIc##mO6 z+iP{(hj7?HpOG(_Mz+Qbj~Xj{1E!<}lhoYn6G&BC?@w5Jk)sn={iU4o!nnh=L`8Eq z{W%s6Z}iH1un7wl`eaSmwvVbTo^D`sQv*l`%mP&Ag~}9Oh`AOC2J+cBD0a zdy>~<*gs%&PDG>HX`@VTuU$2`@5lTJbM}shPASf>tsxtgwe9!`PX26~zj}b??e-UJ zw?Btp18n`|&lz6l*A^MR8G*LZw|`EDJFMnyIMHpRdk@>~H!)ppTWw2AQhZt1MoHGKj}-#AEe~;f-1@Unrdg1X zpP<>cZAMp%sqJQZRo7;?o$GRsPyWJ&4nG?G;1s*$4U0MhhIk<9dAsz@8?Fh z{THjDls(j8kkePK#ib_tsa?zY^)o(2p*b`X3>g*1INR?c#yI*z#_iM3fG?Em)yl9Q z1qigWmfAYZPVJw-qi-JVYFX@u;^*VWD&+-(Cx``Y^jnQ_G0NHCRLfZNmnrm8HLu2( z<2r_J>VWuYoC+w`DTG;3*OXb{JUvpn&CZLx8XP2GAxmK7|Dsu{!S^Vnp{c_P z#{u_t;~fLb0O(X=*q?#{H^(#WYxayu9jtsB4NC|kGo&5$S_ z?h6@34=vX#I(43f%8+QXI<_)0-n|%av^J^Zs1{MG#wbF2A*0@pQTNu$Sm)JsY48TM zfPm)3*J{X!4rD~W7Uk(HZ(}QKt#r3Fr|L|gRggvxrqR7%h>cAkM1;buTZ4A>T}E&y zBiJ7ih=!$II7HKN?2H7_4D9+X%^yMYduaUj^Bxk$Ux%gP0bj!SL%{TTR?p_ZbA(IC z#eZt7m(|1CY@uvjc8Va}GAsVm`@(d{0URkq-!$dElNX=PULu3?KRsO>Sfys$47!wi z#H~=AQHfz@Mu&nUmzjMoQh-53%2;NrR5?{uw|n6@h@z-G z_WnoOj}NW7jEOHG_R;B3z-RsHaJ$LRv2qk)5?l1GxdE@6@;Vxk{_~f0d2>x`580G2 zsgL?{T%n_r+x2|k4YhiV+_b1|bOv%&M}3>JR4&xy_G`LJMk-Z|nQ#J8fB#RV_|fOu z?<`-jboCmsW!v|T{;VPn&z$RI5QVy1R|FSZu@O9jD9}XVWSt3)JUV|`MCuNU2=4SY zShyclok7E1O6ivoxpK%F6IM;=#4vWTI_;{$HoagOJ@4blPX)s+8etNE?UMx2i?ntR zh;b>ZtXW!=Rd-*XBNH`nV1--?o@$y$qIt)ojD9rz)YI(<_Xf%1Blvu2u~7G};nNlF z5Zy!!aPMhYSfrkANf=BPU1iemqC96>**#vY)J1#1`dHWK&4)xw_Pld|{C#(6uLxO#&@&RC+?Tv3Dpcq0J z)j!ayCYy89hM+k|VUu9omF%9PHvbEILt&b1s|6NG;I0+Dt=v@9(n7E6Ef&!qQkL>%0#zwMU9m7p9 z1%2)BSYvb)Y({WRvOPdz2z&*P_Zsehh758VgIFV>#ZF-j+*pDPcncW^yJt&uC@{K~KxBMcX6xGP|iziIisI7{Sm~_GKa%dkS3m*#Y@L*Zm(fS8w~V_WxkC?UOkN2 zF0kBqv&MoT9+qX|+eaoybN~4^7V{KXU;tPa^^h(LY%HQnA&};q6_9=L+yf%Ux9WKl zkE|4tj{pI$0)o}Kh33o}3yJwck=JEgx)ntk^Kk&%6aI zhbV0BZH%i!{jnP94l(%X*cHe9DD8(<6YMc6RiqEOgLP8{B;>nj(qA!7iDCx@+N8TT z!IK4ATE3T-yA}LMaiPF^ahVb?3#^Rmei2uff~`L7%mGAr`k+{Pamf-bi=~X{K}OWE z>>grOAM83WJN4|m6I3@Ne-F$%VanZ!*KO}`jtD@7{yT%eQ3GBSZbiO}9^u=-f}jU_ z*=6Dzl7G>dh{^pHajWQL6piMNxpJjk%&m8dwW-Ue4tIBa6wAC6WB0#q%H4y%_SC=j z<1Y&F>>&Q45Wf!QuN}_EN3UOkzwqjzS|J`ErhmCdEEA89Fp8t4;wYn-BNYQip)Ag& zV*5)F#XS6lD2~wz5yf%(m+MLcCm4ka|1v6;T?_*+$6qjTidF~%3-vE|oiwn>DDqOV z#3)9j;&h`>7SE(&FpDV8!e5ADg;t0tR_R~vgfwuDQA|q38l$*ODqd+6%HsJ{Ty!p? zxB!14ii@>EM3L3M+&!g%oKfr}6?vmj21ck@wgMJM@fR$*S|KbJ^)L61v&7@FQK;~j zQgQ!TFi^!`FwoEnVPK>F<-S20m^6wvO2w;;;>}WVxlt&KS5omsmao^~FGO*TR){EG zr+>K%B+2WHLWRGcikn^u15Nw|12<@eFz^=r%bg_++-MXk{M)Hmav==71AoE5%~~N0 zyj%Zrmq-J*7{wV<@m`}iODf)P6w2aqAa4`_vm;z9k({hiE+hm7J6Qt?@%_>)vTY81-iV^lov zB1G{8{DmmKtQ8`PujpUyN{R6aqc}$@zGf6_rQ%7WP!|7{isM!xif`dBMDZQ15K(+j z|8gId7=K_CD*TVB`1VQ|_zC`kf&b77Vc@6wm-~=3@N=V3;h&+xWn=W8_zMR9ODlwd z-{@a%SyK3&QK;~LpyDo8x@Ykh4E$Lugn_^6U+%{xg8wxN75*Po+im};V&52 zS1W{p7wKQ_l`;(uFbWm^#Z+uQ2L>|u3kGIug)nfa{^kBaA~?(_ek>J77{$L!#Zg9~ zEDlofYqpki@E4+(uN5MSWAra~e~Ixpqfp^bq@ubE28Qq#44kAD!oVr|mpdg9EHsLD zNW~(fxLGQe7=^NU1{F84G%v+ph+>&mh$vR*U+x#AfmKGK!mp-cH&ut z{(^yPwL%zpz5eAsE)8676i-OS8;#=YQgMS(D2s2U;$b#@H{vfu@pi2cQQV||x#vrg zHyg!8Qt@u1PzG+LV)=Qn_+I=4iyzPmVev!ym-}LA;KN4o5~=uzQ5-52A2SMN@h&Q! zTa760#$SlyUab&O+^2uJ|0P-9Zxky0r>WR22Llh{FBo`OD};eZ^e?w55q!=lZjg${ zjN+|Q@kOIh79XeLrZW-6SMV32_^MWjD88e^XIq zHU16$f`Q*_g)s03{mXqo8u+78sPKQGVsJSO{1tz}z~8h&82E?&<=!Fp~4?X#aG$$9)!PO;9#u~24?GDXtc%SLyba(Kb(r2Sl*AoUoddARtN)w z`j`8RL@?JVRQLr{97hAk;4c_BUMqxw6ZJ3mXVSpSj6#J!nTqE)7Ci-j!N93nAq*_m zzues3yimFsJjABA6CXHgV zR9tQpS4hQcj6$Kh#wZkyYmGwTc!NW)26bi@NjY8pgCl!yBkUBTx zFQm?Uv_hoLt@@YyUitU~M)5(Z_^?sjE)^d$iaVs@Zln0PRD8lH?vsj78N~xq@fo9d zNGcvNibtj5F{Ai`RD9Ve9+!$IjN+?O@uX3FLn^*y6yKJL?;6GTq~eE0@gu2t$|zKF zJ#7>!fqrfjDuJFc3Y9>=HVTzMzcC7xK)*K%l|auLg-W158-+@s=Zr!n(BF+hCD2xn z>6}&xw6#&F1lrapR08c_6e@vc8HGxqU5!E|(C$=xl|Aep_zUG}Z>$iAJHKeYsJnXiqT; z744};p`u+v#lSeYpN7A{eW_Lm?q}&=?lSp!rBSSsiq%H3Mk>xV3T5#Eqfj<3HVS29 zolz(oc`9a)0@X170;*B15U2|Jm+Q*MC8H=y#id43m5PQ@Oi0C~QEZlq%Z=g+sd$Z1 zTqPB+H4265I-^iHt~UyW<4s1PaJa)PZASPH%kUr73K9Me{mZ>mKK{5-+#?nD8O0~1;sK-hv{XD~6e@~G zj6xaxyiq8lUo;A3^l_t5MxUVK_Dg~LtN05%pVSJ0`qwP zKhVG2AIir+F^Z?8;%TG!sZ{*JD1IpwzcLCH#eW-xGWt8CP)7e?6w2tIj6xaxD-|DU z0QYnF3q1d>6$1A^^)Gj;FNnum<3Abx1yZq{QEV?2I~m0+so2#hc9V)djABoz*vBaL zm5Tk1;sB|5u~B5CVzyBnA{B=j#o&#r6!NP;AdK3dMGXQ7E=&8--%K#wZlqbB#i=y}&3G+l#4q?Fe%E z68wdn&S{0n>Ae2s4$H@*MlmK88;qhT6&0gU7OO^~Y&48Q+1O+h%EqgxSjzU~GW-Qp zuht5I>NWb8dzF0rTBCTKRJ`6O-XIlkGzw+$%|@YY+-MZa#@mfT*?1=v7rH=oGyVdq z_h^Mcb*uj6zE?i}fKhxc{YokzXe`6Gi?eC33v3=Gk6x%-=g<|`hQ7E>5r{X_0A*cU=zmU_< z`=U~aoZedha$kVI@OV3;*j_4jGKyJJv8z$+CKY=a#hy~Jk5TL^75f{-0aEc|qfn?` zViXF;p+=!_9Bvc}$5BS1a10uS!ZFV%6pmwzLg6@`irZ^QofGgE=)X)WMCzQRf9c1s zpkjb?$AvQdVyzJ2Pt(8jj8>v`62HczQ7t--n zS|M;>u79~#$j7fSimRmJwML-~TxS&OmFtZ{z49h1_TMZN&MEy%KYj-l zf6XKOO)~tuv_gb`kN)M}A|JocDBdp>A2N#Dq~aq+@lmO`(>35An zA^iarFMSmf^oRHh8SoRW5DEJ4`j`73^6}4%;^$KFj8XijRQ#7w{I^v6&M1B_70(*Q zAEn|iM)6mv_?uDuQ>NcPj6%VD-j_6P1?&Yzp@3~?6bjgmMxlW1Y!nLEZbqSi?O_xO z*xppU$w6}MgTIhmFVYH;TnFf1?t$`g#wZS!ibIUzP^mcFD2|YdqmAMg$$ii$RGjmS zLd9~7QK(psHwqQYkWr{uPNL%5Y&1{CUm&tjD+G~6`j>uu8WlIO;+-zTpQ#lh{4)K^ zT`nK5GK#aMVvSKK1LqordgTHtUU&tfxKO@wiB^ax*6CkvPCgzs3P&o&jG`bFMWZN5 z#kf(ZC~8Kbj7}JZGCFA#%IIZO+;ACSUXH(za#w1FfO(bvSJ8x{;wr$(C?ewe~ zHAi39cYe)zul0^mYwevU=svvzu$!<4u%B=MaF}oeaGY=gaGG!iaGr1haG7ugaGh`i zaGP)kaG&r1@R;xf@SN}h@S5-j@SgAi@R{IW`8R@p$v+AHCI2D#mmKJrer*0F2POEI z9D?9qa%h5o$>9k8B}XLqmmG!QUvhMUf61{3{w2pH_?Mi3;9qiLf`7@$2>vCfB>0z{ zhTvavdV+t+nJg^nE??u!GRfCCn}Yiq=g`gM#N|AMynq6Pf`B4~qJR>Fl7KP<-&vmE zTPhKJOI3nzsX_29wJn6P|5j5+CV7zh3hqG~>Sh|@asZ(zpar2Npf#ZlpgqA?bRziB zt^^<2gWyAZTS#pGM+bdml4JH)aK{{|n;C@5LkYtGBMGAbV+rE`{}Ft}WP%T!M)09C z2|jd=h358eL~~`5V=ho|$6TbFS&Yle2+IMh2&)0>2tIKm!DnnC_>AoqYTCaT?2t(g zv0K3%Vy|vyA1)sx90D9A90QyroC2IB_=*bzA9|VKL$48h=uHd9?Vsy!$t1_TtKg1# zUpMmrmmd?J0G<@XwNr;GZQW!9PnHf`69u7Si{X4<&<4 z^0b*1+=r4?HXP#AQ5z|^M{S~;S&qw139A6j32Ol@2^#>0uo=*Xuno|TuoKXMum{kI zupiKca0t+ia1_vka01Yaa2n8ua1PLqa1k(oa0M`ka2+s&a0@Vua2GIw@BlE1@E9 z#T|PU-22s+qFbEKZFcc7tFai*RFd7hxFb)uh@E;%^VKN{A zVHzM2VJ096VGbY}VLl)QVG$q|VJRRDVFe%^!N1Uq7UC?DH=Ic(`TaMmf_uZ+bu)kP zjm}93gv8v0pn$xD5PR1c35{#DI!~ zWPr+qlz^&)G=S=a^njX#On};itbn?N9Dw?S+<=CJe1OJ;f`9-*5kNCSaXiXXaRGY?zT$v|@KdBSA?`S=;5v`$W|H9YaYAyyNkS^X zX+m1SSwaTDc|vBuMM5^fWkOECRYD%XbwYl?O+q2SZ9-ANT|x=KeL`u#Lqa*gV?ss1 zQ$iKMbAo?=uPjuYEiZHu?s%)%v42&<5(zUE8@x|M@pdJDiY~t9wHzK;Rzra;W;1$!6&A+&~k`Wq>)J~(kr-%jJlb$ z_%lvsLIyxqLS{gAf=|q4q3AlP$Sspp1G<^qgq1n_b<0F+x|spg-jB# zTEPXZ)y55Dea9zO#+||sj}%_O-BjuvGMuNje8AxQfBLnZyVfN=OD6 zPDlwDN$`ndEF`nPdybV!Dkdnniix_J>M{Ywov$mbWXz^*A!gm4c*L4T)st^1Gqz&54cBI1b9GL3V1|V0eC`K4R}Ua2Y5l) z2zW)<0(e8%4tPh{1^7VN3;0Ah0Qf>U4ERPk2KYfZ3HU`g1NcKY5BNv81PFXuU-?x) zP{IvBaDx9(LRt9zMLwl4Ropittb+TL!s}+j<8nkoBtT?>4~S-A*KSFyfPX)Tso)Z0 z>t-tBa$G_+Kzu??Kte(tKw?6DKvF^@KypF=ASIzWAT^;CAT6N{AU&ZyAS0m@ATyyW zAS2Hk}wfq2>wCZS~#^uo-7jHRR;z4WSw*~(Qvs7Ats<3Ar7DiAwHlNArYVt zAt|6AAq8LnAvItSAst`{AtPWIAq!vxAv<6cAs1i_AunJYp#We4p)g<~p%`E?!N0$0 z7S^7Z7y1`>%v5kMbhd6LFg}sFgkXUAgph!RgfM``gz$i+gh+tpgs6a(1b?bE7V006 zW6s4f*DJVVZq&^zz~#+^#el5@AF#v1f~S($7M;5lT;g8cOb1-vPw@92vJm{U1U$zb zM-^Paaox--Ts}#73ph>q060td3^-5t2DnK03Ajx71Gq{Egdh3W2|)oj2_XQt3I0Lu zSy+Buo-74IA1b&fd#syDjmu97=>X3O838W|SpcsI*#U0}xd878c>x~@1puE3g#lj) z{@gz-JUb~5vKHTh-wN(Q{_18n;BufddjDoX5W+ST48BEn-p62db;GQvwh3c?#e zD#Cj}8p0<)I>J{#2Eq?OCW8MQvsy@SQ9jt1_~>&exDPg$ZYB;c=OM%gv1 zm&D2FETZ5Ni|J;j;c^MWOh74u4=8IP%L7TQh0Y2JF0qnsrY`2+>wChGRdDbS}C}I*1DNCxZIx50nnMy z1<;+)1JIk$2hg7|05F&^1TdU10x+5|1~8s50WgU$88D479WaaFA9XIlKimR>f4Id2 z|8UC){^3><{KKsw_=j6h@DI0%;2&-)!9Uy%f`7Q(1pjdR2>#&?S~zu8KF32c$>(@f z!F`U$b<@kIEF^m<_n*f7=M>!i7j!charp}2D&Pj;Cg2X?F5m&-A>awYcRnZhmRAJd z@|NIRJ`jA%XM%6}W+A%$o9%a*u1#x6tXPeB&O-B;UBl3ho>CR5$YsmtPWI0p1ec0X`Bw0lpHx0e%vG0sa#H z0fL;5)g(E77&3D5fFtC6%d0E6A*{spFKXoKW!p{f7+x3|FkIx{%KPa z{L`i*_@~WC@K2kC;GZ@-!9Q&-f`8h)1pl-J2>xjc6a3Q_vk=?IGXR$d6NUhW6Gi|=6UG3>6MV%)f)AZS@S)QQ zK6Dnrht9Q-_qd#Uo=kG?g$nN6i*++gaCtdl1zl^luADrMHKNP_~eprHk{0Id9 z_>l?z@uLy^k)<)c`dK zwE%Sq^#BbCjQ|0JrhpcNmVnlTHh}ho4uH;tE`aWY9)RA2K7js&0f51TA%Nk85rENz zF@W)e34loi|3aq{{41P6@UL(-!N0`@UQT+g^lm!J9$PX`A(i!aNo&` zx|vJ3e3ftwaFcKgaF=io@R0Bb@RaZj@RINf@Rsln@R9Hd@Rjfl@RRTh@R#rp5ah!D zJZf-)f4EQt|8QXm{^24J{KG{i_=k%|@DCT0;2$my!9QGlf`7O~1pjbJ3I5?y5d6cX zwh+|*`+ORiS3lMxpVS>*nM(`OWEyTBfb}J>5 zoT{vXJ5_nzOa)x7OsE2=PN)H>P4J2J2tK1B!Dlof_>5*2)_s&yHJ3?F)k?vgs%VC0VIY#g;CkejgjD~-_(b>&_(t&O{z>rv$sdA0X`qYxsQ#ou3I3!Z2>zs@3I3$v z2>zrI3I1SFEL^mIorx-wywDg5?uEwE&BVs#c!c9y&2h1YO2FxSO2P`5i1}q~i z2dpBj2CO5j2W%p225cj22kavF2iZ&TM?XODM?XyPM?XgJM?XpMM?XXGM?X*SN54ey zN54w&N54VvN55_1wf$c!xFeH%2KN=*XYf!r^9Yxp5}pBG5?%q`65atm5x68-^#T+(9(l}U~nf)ElAhTtD0Ji#A562TumD#0H;2EiXaHo+e~9>E_yA;BL# z3BeydIl&)26~P}pt%cI|e@LHBCV9Aw3hpz=teeS#%h?Gz0J#Zy0Qm_%u@J#$6eakK z5(J-7+QL@*PeNs6l2eseaHp!Mo2i7$RSDGqH3_up~SW8$3*hts}*h<(2*h$z0*h|<4 zI7m1II7&DMI7#qNc81`e%epXE8h zKg%nEf0nlv$_EM@$h?zDKBbQe?o;}#n;BchUH(d#0QgRr1o%ntiGM7d`72+9zcNWh z;L9FdMNr*LZv+G<^aF$>3 zvAKmKfu*8_Oj2PKTtyq*%mTcIc7(-%4uoZZP6VIW)k4IuQqfH&spzTTDthZ?V&aT_ z32^}Z3Go2~2|jU%g%|d-7%G!gj8JeDqjWPF5io|31u%|~9Wa656DL{7`CGnGlVy^M zX$r1lhHj=dUc)RxJ-{47L%=+OPh4nW}WI?kKo`d%Bsj zcn1#%{{F`n<^`32Co)OEa|IXhQa7^$CwNWp_rJ5SB)kN?mq`LXDY$?yx|!TK!8d}x z|EGm@f8-tfl1T#oD!70^SM+jQoFE9n-yhtsv?|Tu#tHCJAV)-~s}4Gp7*HjNtEYY2lUqiPTCa3239>0@~?jMk1gC!QbE6 zLf~L>f-W*iKz9Wf&{H?F2LZha{{DUzuGo*Uzf2M^NWldR(alsxz%YWpf24)~>=$X2 zOcF3w!3B)h&E!SEe*}O3WDB9~?~qeul7Q(7E?}l^W*P!!6J`SD66OHr6MW(#3!m)o zEsJH6ie(C}Vufxd00FBA%>io&tpMu?K5?Ukp7z_kNhYb-s^BWN>t?2u zhk)yZi-4PiD}dVspLoy0Df_3D`!Y$zBL!FSL^qQdziOWm{QWO2{0JcduVj*dw+b%c zy>8|aPVkZN6!4kw0`QgK6MtA}Wq-2#lu0W7D7cD$x|zZ_W8kZLe=$H%LP)( zA-{c!&@xFyI0aV`K{s;)XN*L+4TwUx2Z%=Si7_n%*q;rtWRi-w3a%o)Zsq_25)uvr z5)+OAk`jDk3JX=kNJUDSq#})it4ODt36Iy1fe;Chi4YZ#h2RsjTbTS+zV$g|l8W34 zt|G5)COXcTpAZXBkPsJ8nBWtOS=bg&o}#!+Qc+65Rg}@qM6c#9mm|aiR3O9!R3iAq zsunsFmx^jKNkvTsS5aFxGoyyPT$eB#P@gal(2(F0n^^doQz`;vl8WXEuA-%G=2&%i z*$_?w+7QkF+7WzWM+@JJN<}A`q@t^WtLUzq8Ct_#?nxK{=uH?6=u7a411ub`Dis4| zl8PY;u40&OW$$ka*90zqX@oTuthY5)QM+r#*#|b|1 zl!ewQrQ)rME+XI| z;R@g};X2?c!6&}3P&SHGyp%~Q-YB?=ce(oaA2LbB zZv|KJS2vRoXAE>r?@s~M(~LtEo4X|6`^F3im(c;Vz5=2W zd}0g>n<_~~Oqrx2j)JR*r<016OZ z0}2s*Vo?j_V@gFanWUnmf~zR4n>mCpPFccHKzYImKt+O2tYRTu38|JXL!>Je4|8W4P9V+)7u58Wm*NkuaSSJ6T@GYV&HMHmZcO_%^^OYn&uECj@s zijFc#MHdBE(M>mV4*@+0{{G$;p4->ZMSos9AqNxu{lhG*i6jBFQ87}% z1&r3s)W_wqghqhzgaE*Qgyw)rgjRqlgf@U_g!X_Lgie521b@uA7BVJ~bEn3aaDjq5 z_afc&@=^=SOUeDm@FrF$xcgV>W=`Vr8p0XCI>LFt2Erx4Cc;&~7Qzj{Ho|Sd4#GXa zF2X~=9>NpAKEiXr0m3W5A;Me05yA(+F~VoS3BotPDZ)>{8NwgHIYOYC?wfak5EO8U z5CU+85E^ie5DsvI5D{>T5Cw3D5FK!j5DV~t5Et->kO1(6;J*vcEqpC6UydZWetfCPj=fJB6$fFy(wfMkTxfE0vrfK-J40BH!50qF?S02v4~0htJM09gq00oe$P z067Rt0l5e(0C@N0o@4k06ho^0lf%G0DTC_0sRQ6 z00RhV0fPwsWel}Y#r|5ofcG~-!M&YPx|z$kJce)$Fph8&FoEC`Cs}x8|7vm@-;=2d zu41}w<{mE3Bs>JnCisAP7Wzk%#L4JfsNfP8>t?3m@>0S~z;ePIz)He=z-q!Gz*@pm zzJ_kxKo|i&7{HQi-h!m%Y;mTtAwn8>x3MDn}pne+k||8yM%&( z`-CEZhlJvQ$AnUVr-ZVA=Y$G?mxRiI*Mw?-w}hI2_k=otkA(Vw&xA&RuY>@=cS3W( zPeLoeZ$cZuUqX98pd0$Jbpiw-bOi(>^ZJ)*aPTD*bnGTI0WcQI11=aI05KM zI1T7cI0xuUxCrP^xB?hRxDFUhxCIzWxC6Z3I1C+$HEc&wSR=)(&j6;ukk|N%u`%mOn3oUN_Y)ePIw1cN%#m@ zP51&>OZX00PxuAcNbtwpV&SFzXTYEMZE?GTJNHiA%pY9dP4M^cv#>Fj1YE!$tqv-< zfWx|(%eZ`$a1C&ra1(Hna0hUja364%@Cb08@Dy;7@B(m|@EUNH@D6aD@DXs6@C9(2 z@EvfM@C$IC@E7oq5E#FYJSGGKJSBt#JST(!yd;DNye32fyd^{hyeGr}d?dsMd?xsh z?VE*f>E(0Gh@<~haG&FE-Aoo-{!7RX2y{~eash%6@&bYp3IIY73IjqBiUGn9N&>H*>q8Uo@Gng9|IngJ3KS^|;~S_6_1+5u7! zIs#G=x&YD;x&zV?dI2&J`T{Z$1^}`U1_QDYh5>RAMgnpX#sKmV#sl&ZCISi&rT_{N zrUQx)W&w&3<^oC(763{S76ZxAUvL}nOR}kg`vuorH?tX+TN1Vb3}Gjr4Pg(U9brG91K|*$ z6Tu&%tA)DupNG@q2YwF)cdA~xnM}CchmaM}kB|c}fRGz7h>#C3gisJLj8FtHf>0bV zicktLhENtTj!*$GflwJRkx&gVnNSljl~4yTolqYzlh6n-n-Bn)OK1+5PiO^LNN59C zOlS{SO6UYwPUs3)N$?-r8Vd`X$>+FMCi!#o1_k#yZqm&RtmQ6mA^7{ZTNu|(0(QtG z0lO7kz+T-i^RGd<96=!raArWwn5C(985FT)e z;1jP}nA=$@uE``7Hx*pPZQV?M1l%PQ0^BDQ1w179#3vT=G?t2|GD*b?1y}J(H&YyM z`VFBJ;2ohX-~+)YeztJAom700Nh-c8xQd^;nLh~lO$dZT|0M(k1iJMmU`u zWRi-I3a%owZYDAU!V>)b5iES|B>@p-l7J`*E+Cq2W&r|X5d8hIE%a$20dZuKfcOe7 zAfaw%1|BjoVKyKsVICkk!6&A&P^P<7q?So4(kZx#47!>2IAbP4CqNcLS3ov`Pt0i{ zRcoopC6iR-Rd5ygbu*`M#)5>ifWm|efT9GSSi-{RmQqntCaEZ+;3~@LX4W8}0%1L% z5@8dd3c)8~Ag=&18~_mI|)I z=w`+vpbcRnpdDcfpaa1tcDC@<{>tnklT>t9a1}juGZhign@|PNmrxzhpWqV*S=iV_ zDhA6W6~h!<#R%O@Z3K)W)B}tmGz5$z_{9G#MC&6J6J?T$DGIJ)nr>ztzLGNt8v(Nj zTL5ziK5@Q<5Iv+~flN}dSiw~+)y?!oz;Z$#z)C`Yz-od|TxVf^8>v_?lT>U{a1~p0 zGxzWswhyq~f50t2nHi366lH1b_bt3$=Pnz)6`T;EaL` zIH#Lgf``07SPr;ESOvI3@QK$glxZLpH)N8E+X}AYu5Kni&Ul}Y2=I`Q6!4hf6Q5al zY<~hhmq{vKDY%L^x|u5oct^Mn_&~S?_(brDUoE8QBo*Iel8T=SuHv_DCN*BeUqU)S zpxYXd5fFsn6N6i57a$cOWRi-|3a%ooZYBU{3{Pkdh)8G!h)nQ_(JZ8CDizUXl8RUg zt|E?ZrY!>E5jp@85IO@A5qx4&3o*J%MKYPBBBg?>NUfWxjMtEsPz{itP!o`m;1jc0 z2+>d~vdSbCITTz)F5OH@oG}j}4Im#OJ)i)=Cl+T7;c|I)puddIX=?(85Lg`R&W((bu(iTaGo#$aFH+xaGBr}uURl1rQ*6wQgKVcRov0dBt*bHLK46O zLUO<(f=_&EA&>pL!84hp;-!MCc&(e6hJd$(nSl3%Ie?D@pZLW>8zU88Ws-^?3a;Xp zZsq_!%s+&~fPaKzfWUYDCo!0XhxT{9;4(=?CIG#w)qm1L5NstT^6x^AXx9e24Vp$DKgp*Nr|!6!Db zFk`$_G?Ymynkcx6rn;G#2xv~2187N@4=@Cu*w(_ffl|>#4|5^+G^_75iGD*Nj1sAYcH**+Iy_Ikbu$^!cu#?~u_gJVtNhX%yFFY2*KZf+(PGZ5^zE$2{^6b0?z7Y#v$N5!QX$$LXg1{a9Jh^xTfF&Zs=x$ zBj6Un-+$LaPWwybo=g((P{9Q}*3C>sz*B<1|AmF~_OH(`Ws-n53NGNCZe}N5;s?SW zz$e0fz!!o~{BEJdXsP%ilT`dxa20=bGc9n&KzH?i0|-KB3kXK=i6JfI93T~;WRi-o z3a%o&ZYBaQMWRifo z3NE0&Zl(b)Hzw4@kpc)lpgF<+C#@_TwZG_$Oj6NS!Bw=^&2+%!&V=x&=t}SbJqZ3k z>1|<aG4}vl!6NwqnjCv%M%EBkvNgy1EvuC ze=^-dJ^N*uA(K?hR&W(_bu;sDc_ASqDi#xbz%qjWPgYvkHbE*@$s`qP6ccw9HL7Xc>; z2LPuDhXH2^KJkKuU-l=(MVX}Hih`@Srki<*UjsJ?ZveLl?*VrRKJmVVR70fVflN~I zSix01)y+i48J`oP0bUYf0$vk*;yVjXM@q$enWW;Af~)wVo2iU|Z-i=qAB38KUj(1{ z*Fqxu>Hd>RDuUee;3|UYX8I!_1i{}Q+QMV|8p6mV0pS%~Kt$b4Tm(cWBmhJuBnCt$ z_{3NiBKMby*fL2)JOx*gKsR$0A5|iPzdxyk<@QHvGMOYGrGg7ct(z%{6Qm`S0i-9C z2V^Ap#4Hx>*gtY+l}RdcD7cDTx|z)g$V1o$$Vb=-C_wOug)PLk6-8u{isA~cqNHwS zH3CW#{Qc!DJhnd(%gZDIl@we+72Qk#0;&=G{WTrfpNO?&l7PAjE}*_{rXT_u68!y5 zEL68Yi~?kmfaVG=prvkRF#-(1-{00kQ~UcyJDDV)qk;?QteXjqfUX38e-8_Z>?8D) zNdo#PxPX4TnVbk1K=Ahuwy@6r?m9#!2^g;60!Hd)F5=5Ln&9srXQ8wGHjkG{0wyZB zfXTXSpfZ z1gi=D{&g1O&60riGD*ND1sAYIH5f`6MW($3!hd=#bcSI;+cZ0c%hpKQ_o#~MFdbVNXCLKi?-LU%xT zf=`TOp~5n$h%A#-L{o4TF?2KM5D<%S5fF!P1rU$m6BAl!uvjV*$s`p?6}=V-#G)INi)poN)qS1YjazG+;8pCr-0)-~P0pE|XNuQg9V>bTc^-FprQ2uz-*s zu!!Ijms(i2S}K;wBo!+aT*YeLOfHc2*^O#3&=z`0LVh{iP&iu}U|S74LBk!Qa2$LgY0Put6pX z*sS0Jw(4eL;XQ6A`1^NR=xhUa%OnB&6kNao-Ap_L93mtH93dnD93%L|lNSEkKgyhv zNh;1NxQg?-nZ$U=iv)lF6$@GBNx)T^B;baE3%I452|&OdLUX`9LMy-nf=_&GA)5W+ z@LVCcFS-CHTY~7OEbVikvb@MIHrLkxw^c>buJY2yFp{2ps@L2tKj6g~c1CqJ&IR zQCh)Ol-12N#u>{KngS{kS^z2&d}1{V={873b(y51mV&FOqnjy@fO>>VfChxBfJOwL z7+~S}HmPVTlT@@&a22g|Gs_Urny?bkmaqoUp5PNZSqNt=~SvM0K0b2?20NV)(0XqpkagT)|+ofW!Oj2<`!Brg6&1}Gjd4#YT zaE!1GaDw0yPg@vzPAbmGBo*fsT*XD*%u}54GT{Z_D&aNYI>9I2vJh{xRNR(HD()$` ziU+!xt~lc(LJziFwHQ+13C;qT7 z{J2#7lu0W7D7cD$x|tCO2>eLz9}Ngf7zYSW@QI-;oH`~Ip=FYaa0;#>f^McC0wNIx z0-_Lx0HP6mVoVE(_DMx7nWQ4Ff~$zHn+c16goFry#DvIzqy(Rs!a{5N7qXNxNktk3 zSCLLPQxqR&20{ryCPHaI7J^UAZlUN2smLLdROD806?t_t6LH4;geic6gz1371fN*U zLZKZ}QCudeD5c;k%IIcx;f&=7djS;)2LP1_KC!BW=k~XxYBEVhO$Ap`TQ^e^0d)y= z0QCv=0SyU0v5AG(_KybvGD$^q1y|8hH}eJohVUNHhVTi{j^GnJTDWe1b$60UD!MAT zitf6Z{s`zv7zF4|7z*f1@QDK~Y&{?q17(tmAquWym~JLLKFkq>On^~@tbj2DpE%w^ z)4ftLK_;n~q~I#1=w<>VU>YG9U3nA&b1K!tW?aCNh%g9xQfNPnTrTmO1J`8 zPPh(ON$`nlEHpkT6>DXZiVX^`Vv}xWJ_5E776G;qmI8JVeBy2kQ%+089+{+Kzk;hc zsGHe~fWw3XfTM)Nfa3(8c*;WI^HOnICaE~5;3_WYX5J&<65$iz3gIi@8o?*tw6J`S zRNRtDD()({iu<~mZ}>_+B>V(CCj0?BCHTY_78-4mikC7;#Tx}z@lH4S|6}AXe;~92 zd?IuNd?EP6?-si3l8PTPNyTpkSMgUja{~c^9_#(L0YM1&0Ko`8F{Fj~r=%j3Oi~e6 z!BvFU&8)45Vg(D8wn{}snWUnMf~%;eo0)|7 zSc5PXP>V1FP>0|X>syFu{|M7SCaGww;3@)iGhJ}TW`yp57KC1aRs^5e#=;Hzm24}M zRCG{q6`gc5n-S23uno|SuoKXO;1hdWsC-5$`p6^|{S{orK;6u71Pmse0t_Xb1q>(n z#8DQ0+dp57mPsncDY%LWx|t(*(-R5D0h0-*082QF7XH~k+HI9dDt0Ki zie0*y**N1Kg1>*ig`V~=mj`5$fWrzd;HYk<3IdK3{Qaja{P$1-PRk?#=M-GP1>MZQ z2JZ4Dg1`T&g&{X3;F?Sla8tnr+}6#EM!;QyzyE=SICmuAp-d9+M8O3-)6J|wzzf29 zz$?Ngz#D>3d~c!teW~~$lT>_Ga1~#5Gj|d2o#5~PW#OrP$lo$az&`~S5cr8+9*=;a zgo%LQgeicK1fLkj!jx1&0-3NfNks$&R}o1!(>TCgjzVY(h(>4uh(Yj)u`P`LAx{xU zCaH+8;3^X8W;!);mlG5G{mCq(y)FUCWs-nY3N9dxZl(<$G9AI+pV7k7UlNc>CJD%@ z-~zJiW+vbSISG>hxd~GNc?mwTfQ2T%rJ|rrQc*;~RTR_B%tSy5g1^7Cg|d<4gD4}D z1e8~B0Tp#Kw;H?4l?itNRS6FO)d@bamW2kl<&3pul8Sl?uA+f%W)a?FBf?TZ6T%8W zQ-V)yVd1L%Rn<}^sc5a>D%$F1wjrQBVJDy?VGp1)!6$aJFeI70sO~aJMK1+c(MLCv z6yL{wgcN`Qgw%jR1fMw6!XNvG<6$yM#YhELFbNXP+LOvnvbO2`LTPACXiN$?M{#=<`P zGwmThpY;mv$u{a{p5XFk!gIh@!Yjab!dt*j!Uw=^g74gCp>k?@z58X7*Lz689pZ>? z^8Xv%T|P$W2slCL0ystJ4md;T1vp3O3%Ee=hq!Fv%RhNFS7ee?T~~0Yx~ZGFf*%35 z3D*I43AX_E33mYx2@e2|36B9!3C{q}2`>RJ32y+e3GV@K37-J(310yp2|oaz3BLhf z3I71!2|@7H`bh{5_)Q1}_)7>22=r9na0EaQLS#TNLNq`KLQFs?LL5LCLVQ3tg8v*N zS|}D$zHX6Zk`Fejg8N{j>t@OzASR(aAU2^AATFUQAU>f6AR(bPATgmHASt0CAUUB4 zASIz0AT^;SAT6OaAU&ZSAS0n8ATyy0AS?xD{`s$6fles0x*IQ8Ze3w4lsrg z5ipJr1u%gS9Wap)3ow}w7ciBO05F}97%-EN3^1FJ5-^vL1~8wH9)XB>`s%WdP?1nCsRRLECH2~KM zwE;H?^#HdC4FPuvO#t@^%>WMxEdh@StpQI7?EudS9RV*1T>!5M-2rb2y#VhCeE}Z{ z0|1{1g8^R&!vNn2BLP1NV*tMi;{ksO69Ivq=|?{W5QH!t5R5Pj5P~ol5Q?w>5QeZA z5RR}65P`4~5Q(q`5QVTF5RI@25QDH45R0$_5QnfE5Rb4AkbrOykce;ukc4m?kc@B& zkb-a)kcw~tkcMy>kdAN-kb!U$kcn^ykcDs`kd5#Nkc03Pkc;pFkcaRZkdN>VP=N3e zP>ApaP=xRuP>k>kP=fFmP>K*3fAB9u2nHxe2nnb_2m`1@2oI=2hy^@IM(FTc~?Oey43Bll-V`rr>^5w$M#48w;Q8Khw3w{p}Ro{T*~O z9dWq}p(~&Vp(mgZp)X(nVIW`#VJKh(Aw)xW=uw2wfH8z{fN_L~fC+>sfQf|YfXRed zfT@JIfa!z;fSH8EfZ2p(fVqT}fcb@fW3s8fc=CzfP;kkfWw4FfTM%}z;Qxz zz)3z)Qjmz-z*6z+1vRzLoz-Pj8z*oX5z<0u0z)!*kz;D84 zz+b{PK%nRP186582w@K(7-2sk1mO@M6yYc!4B-SI9N{z|0^uAW65%2s3gHSM8sR!1 z2H_SU7U3=+4&ebH9^o+{0pS@S5#c2u3E>SO8R0!31>qAQ72zu&4dDkM9l`(D&q(k; zle1W8dO?0;$SRZkMv_Cp{l<_>Hxm^9gqMd90+5do8c=``4p4{?5m1B>1yGC-9Z-T0 z3s8y>7f^7Xivxh=t#&6=uF54=t{^5=uXH3 z=t=PJuaAY*Y2=0Wl}TRc00s9#2kB;p;7>6_2*Uxx2%`Wa2x9@G2onHf2$KNg2vY$Q z2r~c^39|u{3G)C`2@3(!2}=Mo3CjVq39A5e32OoK2^#38w*@3FiP?2^Rs|30D9+3D*I;3AX@y3I5A*z`|JjKm0o= zlYCo_D7bISG2KjO{Q5mX=mt1N=m|JO@QLRw9Jc?ny9+W&#bpIoaaA|70RJR$ov;{i zldueMo3Ijam#_wKpRgYAkgy5xn6MS_l&}NvoUj}4lCTf(ns5;CmT&~{o^TxSk#Gv| znQ#{HmEd334+|6T%KQ5%lf1t_3hw>=)6E>l2N3v$-hT`blyDLdoZu5fS!jD%DniR7 z72y)B~g=Gz4TIGy!BHGy`NIv;<@$_&1!>LYoxwV>*{i^2+lnxL2NE zH&Yb9atjjt{Y5OC{U)DTQJEy5gn|nwrJJdX?^PK>13)=KV?YH$Q$Qs`3qTcu0aPRS zL)5fTD7idVEt%w0brsyH>g#4Q;jtPLvH}_tasUDdxgE&=DTHREe7L6t!M7RQM?IV+P_E&J719dZHaOlB= z@_?a)N`T>ns(_IMUopl)$jH(;Rwn73px`Smtfe>gCi@Cq=M@D?zg@BuKB@EI_h z@C`7R@Dnhf@CUGv5D0&2Sxg8DSW55@vckd}`@hz*QYLw_H45&@*6C(?;+wdE&ygcFbJ@X;45}oNNqcJ$t0b76weCCmeaC-}rj7GD08ipVlaMKlFh5kogK z4BwYngpq(agfW141fQ7D!ov{qStOE4Dv~O=isZVPqWG1TlHl)8W1(qQ2}moG1Y}Tf z0hx3&p_;nOSqNbP*$5E;IS4*6w}niZr6P|^QjuT5RTR|Cyu`PmFyRfLDB(SzIKd~D zvJkI`RFsxUD#|IiiVC`!vp8cV!UaGT!eu};f={ez;bktVs3ntB)Kzd5^>s5<5YUiN z9nhFi3lQ-CAd@6ExA456RI~sX1y|8VH?tlA?FgFy9SBifIb2Vuo%eI09x7LILIw!UE2fR%(& zfYpSufVBjlxWU4I6{TXMOj5B$!BuS2%?w1q4#E(?F2ZoY9)eHYZ{fQAb#Xu@sW`0Q zDvs)AuH*Z1oNxHv@IhQ6=jl&DhjTmnr7}rKnuc2Kr4bzY-3?^QK@JvlT>t2a21_& zGY=8ah2Zb+ZefxAPWO;W0(vXBfWEq!UkK<=_zM_F2#nV-nBWtKS%_OwDu&A>6{8ef z#Tea8LBfJ3oAiM_rBKX9=7H-=w?LV2MBFJkGt|FLjCLRJp5E24H z5t0DH5PV{I3+*#WMFg3oBC>+3h^m{pj~~_136B6V2~PpB2|h8Ng>?4M%<*NCibM*o zB8hHhDbARTumX^Ruo{qx;1knYxMF`#ODB_5WK?h!nRPSW@vYBF=mp45=nKe6@QHaW z)Gsd;d1aD{0t&98kZvXb0YwPS0mTTd03`@Mv9yIq_Lp86nWUn;f~%;go5_RMP??Y) zP?b;!P@UitYgw3{T`FqJBo*}(Ttx%jObP@vBBTa1A*2H|CHTY^7CID=ik31-MQa6D z(N;Gz8v*SJ^8g(Q3jv)8KCzpHjm4y*yG&BiOTkt2(apR^KtIAKzyN{|7;IsL{j1{; znIv(zf=e8!o2h_+(FA}0I1AV8Z(-wQl7NW{E?}~5CN@6&sRV!j3=0YDA82OEBmr|2 zT);ftOb47`0iiQs5uqDk3Be~WxA4XOwQq$?Qn6aWRjk#`q{JE56Vd=S64C=U6MW(} z3rllL#devbVwZxe*rS`NhcoUYGz1(VGyxnU_{5_Yp4O0xV=_s_Nd;GNS~v3=XFN-I z2RKjg0hcV~>nMqrWs<~e3NG=6Zl+@kclj2f3*Zi+JK!F{CqA@LzLHctl1VC_D!7X0 zx|uOJ<4eMLz-z)pz*~Y({9xg3J*oI8lT>_Ba24NlGbNk5%RdNZ0KW+30e=WSG0+>S z*wsZU0?Q;7!4zCY2;IzlyoOMOMSw7brGRh*pBT}?cl%jHl1VC}D!7X1x|!Yxh)L)N zh)wVT@ho)jDv9xBlEg#`E-{I2W+eiW5!L`w5Y_`y5qx4=3+38LMLLp*2?+@aS;m?zTL>Y^ zzKk+gVH!L=x%l{tohrwAtjPZNFwlp*-Uau#yfi?+Os zq(!iTYf)J%(+<~5RYFHVbwU?F4T4XsZQ&1l1F0h;X;DwXwP>J~*^M*(JYgT8F~J8k zweWshNo*z~No=9u5?g6y79*fF;Zr~x!ZJWxf=}#V;b4Dh(NRXyqKkrS(M>C}9Y@`R zunQ1E*b4|H_{4AvzuFJE2pLI>CnT8vh3EyieNR^UvJBdh|X6V?DG5PagB z7B+`Ti%Bw)7LyfRi?_8hlW~#1LzoJ9m+&s&J%Uf1X<2QnEX)g)7E5F#Ek09lEk4)EypDh`2;%@>65ar;BKX8L7J}^O=vo;` ziwz2{#YU}61Ohe_q5xY7eF57DK5>VIruHay%1B!5QE)BxX=O$t;5&j}f5^fR`{T!9 z8A-rV1s8B!E7KSOCkcN2j~2r1)o@xy67Z9P3;0z~%j1fXFVLRP>tgzSLwgq(nigg`(gLS8@>LJ*)Dp#b1nLLop+LJ>f1LNUN|gc5*y zgi?S8gff8V3FQEd2^9e^5Gn(j5vl=RB-8-3B-94HM5qgRna}|63c2!AsE$kn!{DAc#3T}Oy1|C8a5b1xCw|O z+yNvI?g0`B0k|-e30VQDgzSI;gq(mugh0R$LSDcyLJ%O0PyjH3PzW%JPy{fVPz*4J zPy#THPzsPvCSR0d=cssW}DY5=AZY6GSb>H?+{8USVx8Ubb!UI5G{ z__zK;3#sHl7M9jE?~JY5IzE| zBrE`|Ciuj)7J}zUi*+)R7GEp47Mrv(Va82wAw&SaAw&VbCG-XCAjAQ75&8l45Rw7= z2>k)y5e5Mc5{3c}6Vd?R6Gj4#5k><}5XJ(2Afy9+BuoUHAxr}NM3@ZtnJ^V_f$%Qi z7s3p{uY_5ED}*_K-v}Q8t`imjZW0y&ZWEROekXhexJOtH_=E5z;DO6}ajXVpC9DNJ zNZ0^)h_DHeli)9~Knw9B<%-KKBe~-8DYz>xNGmfa%1!4d3W&wf;a{!eI9|5Wo767Uf76EDy zmH=uIJ_FPtEC)b0cH|z0%jBL0Ok3M$PQRY$O%|X2m~x4bsdhKu2yi@^%|{odcB3{k7fNnByLo2>o;qq)8AP5Y_P1~CL{U2 z*`eUp@6yWT#Qk9pArP>SkQeYBAqa4gPyle4Pzdlnp$Om@!SCv%g_j4)Hh++jZ1c2& z+vZuV%o#k!ogU3T_j(wK5HH6u%Sv z`ui5@zA6EovEqR%9$Y|Ht#mrOh1)}A{X;U6hPf2n`arEr1;phcR08B9_<%<(%zi@> z^UFvQA5(CNk85S};c6>Fcogsip&;N%!sCDvgrb0_2u}i@CiqR1wJ-Rd4~_wK6qv zhv-SD1L#Gl2M8nh#0U$y-j^1UGLjb23a&+8t<2*Hh$R#S#1ozb^dtDhWD8S=NsAO2 zNs9pruEij&Of{T_A%q%$VT9U%G=fhYX(4x}v=}8LY4N&(YcW@@1!QVvVzGlMgap7;LK0va!6&|FVfk!nF+)buVwQqy@qt#RCC=lAgw}wM z2(JL<6MW)A3+2+K#UdF=izN!K#Zs-zZR~Lw;Vxh~;SazHf=^s!A@Kugv06sbVy%K} zv0f|F0ek$K&>66a&<(JK;1jo5czuwx_*O>JVyA*@v0E#19e4M=gj<09gx>)N2tM(! zg?jdOd_+dl;+TSKaY8HeBu>K*gpzq zupMxfunTaF;1h3JxMOb*w`3$OephfU?rCM7$C>_v&;;R7&KEf_Q5Wy!Fun=WGN(;(JT0E}cS`^XBbjN9Uf)E0Dk`M+c zLGX#CER?d}-A~I%T9j3AEy`(SA`wu55Df?>_<$-Fs*aV!sxp$qXBAvxO|8s61k@(@ z^>r;gVV?%;$w&ekD!70~TA5z{naH?xpwchFo$63|k?1-zt{Ifxy+OgI8~g>Vee zj^GnJS}1RSVC*C#Y0*`|wdk&u8H7FdBn$=gBBTMr2tF~wLRy-%h?J4Eh*oed`f6ob zV~??fR{-&Z_JDo_pO|c+%{Xb1A|q)rK*6;bq?P#r0YeCW{csCkO_YE%8A-rM1sCv| zR;D}-@^wNmU@V~uU_8MmPOvayrnHzSBWW>7!L`WL%2dQR(G)^uz*Istz%+tSe9yvC zdm3iQNLtKNa4kO2%ACPz_>gc8@DbqxU_QYoF0^pgef-EsS}aj;EtYC!vf?x>BV-3G zC*%aIAS{xRB(Aa$H(rinHDIlRYq4G{^DFlFHQ_2?6X7~w3&AIDv(U}H-QUVcdhS$k zEp}^V%3zOs34Z-|7H&_FfCDm;fWrzd;CrpiQwTUl@as=nh__EOKgdV|PAj;8vs#%1 z7a;$G1?Naf$UIL-1zaTf%wH{Rwhw-nWh700Q*ceLYh|9o1$C298gQHN4B&TyPrPqo zqx~uC4;e{|EWdehEwX84n&7R-PG|I zVt`hr7y|7)*-jtEF$W(AGrf6ku;G2Ic;Wl6z;Vxi0!6&|Np~X6BF;hm;;sXWO;zO;>IqdNx z!Ue#5!X?1R1fRIrLY_6!;u9H3i=_&##WJnTb_6UZ>;kMH>;q(!8HYZ0ZDIfVPDA$$*r zAsh$95qx4l3&S=@i$oboixdUdqQ6!qJN7t`kP|SN5C|Ab@QG;_IxdtJugXYTj8bqd zMr&nGVUJ@7X8_{}=K$#hpE%J%ko`!?kdd@_OTo36td+TlfVT<10^T891-wh}i8CxL z{7PE9FC%F&Tfw!Mqm|i;>t!y%ub*#W@p1`RAR`G_q~HQR(aIPEd`gG~d`3tBd`|F* zD=e5Vq{Wvqk`}8KT#GeYnPdd4BlHJsAPfR*B>2QF7OLCli>)$}7T+qk7CW>u%Mh@O z@C9HGVI^Q6!6zQDP-vO7I4C1&aYVtjII5Ltj)3EYmVlFl)__w4pLoW?Hv8d!Rz}j| zX9d^df>!1L0)8PJ2K-7m3b;b>iPtO~{Zv|9myxu%rQllJ(aKanz+FNmz5ktEhsaEZ0GGW8Jf9HAkg9-%Ry0l_CWvT)sg@;8=|v}mf}S~S?CIer#dDPtszc zjHJaU3a-VcTA4ct_>6E5@HrtM&INoy@QEuetoUA9tdfzmSfk)ttkcSLMdAiR55Pu3 zFTiGkPyEJ0<^gH3O-9mUhk|RdODmHf0ec9K0rn9J1HL2p#6uREoRJoXWh5<*D!3NM zwK7K$aFTEWaEfpWaGKx~f3nc&8)~Sff1YjAV6ks{QCw^&R;|^)D zQby9^D+SkLtyX3__PCz#KHzJ@Y``XhPuyx@%xP)yjf|wlb_LgBr&eY!_PCqy9bhlv z5MV#SCmys=`IxjgBqM3@y@G3TOe+(IfD?p%fFB6SfFB7y@vMbH+oZ)$GLjbO6lRvVmliiFS!jHE>l1=k{%Rwf%h(*g+(0rC)X0rC-i;-ePQc1nxWh5=0 zRd6k8YGp1Xpf=$*z;lEffO-U<*wDh%AEd?eGLjZe6kLm@TA2k1XiiuJXhB#4Xhrae zFI%XvS6Z}@k+f*1;97Lh${fO(?nL+=(1mau(2d{|ds>J(FD*i3BrU=eT#In6Oi5fX zk%XrKQG~JpL-2{Q7K+-Nd7O--MLz}CB1tO~fYXpd$O`CB$PO4t@QFh#9JL=wLuDi_ z(iB{a5n7p<2pC2905F;`7chq46USQ^by!-Y%Sc*GRB$cc)XLOFz*~d{fXReLfVT-g zahipNKTC^uWh5v@#>G z$4?2b0X`#)0envIi7PDRupdcZ%1BzQR&XuWXk{khl3Yia4A?-J3fM^SiCZjeJtQr* z%1By#tKeGf(8^TB9(NI*1?(Zz0_-FB!~+%rZHt34k`_l4T#KVxnX(8tPACsJNeBj< zBKX8J76R-&>a2{U#m@?^#RaX*Sp@t-_!;mk;UeG)!6#m`aM6CSUYC)yxTWA)+|kMm zK)_wXV8DICFhIbqe^E zQ5i{#f(ouhA+5{}TrY(Qw*f^7cLBu+KCy&_y7otyk}{GOPb;_{k&)>BWclC!L@in zD{~3~%?M`zFA~lHS`vI>YYS_ClNK+_NLsX2a4p(vW!}aes3XCz?_%Ni2eQgvOUXzA zdMLPn5Uot(csCtN@aw}Zl(;85h>(#4L@Brcqm_9G0Wk!>KHfr)8xoKpBMC@SZ~-Y= znJ;h%{Rw{kAP2W4V6coNV3>jnNYl!EkAM*bzy37~%`Qs7Xc95?3J=yM$+O-1=nJgR;B^=_!Ysg zUuR+MUD@M$8A-rK1sAYcE0YxgTM2&sw-%ncA_3cFBmuh=T)-Z!ObQNRAHlCbU?Jic z2{@RL^N3Icv6`1KbpjJzZPzsN`e zE-Sczt6G^(2)IV@>u*|!xGVv;WF!HkC=fVh`bQ8A(7<1s70EE7K1F z#R-1>Qx?wHlUPbd5>Q6L1w5mb>4t#v1iwDmf&Ff&BqIr^s^9{uYh`L8pa#LOuWjKS zdk*TzNCN69xPS&)nTD8dOxTCS7YII}Il;fArG;7cQfnn6Y4NgxYw?O!<~kDF5&Zg& z7Dn0|b0--|KvxA9&|NF@Fy82%1iwDi!diP@4U>@sL@2m`K3bU**g-VGuaB|N?5YIB z%18nd6kI@}R%Rpuk_n>$sf4kB0R*2o*uk&TVu*~S#c&1J;#I9o2m(eD{QA)r8eErv z*JUID;}l##x>jaB0wxgr`Zq1qw711cGLnGF3NGMnt;};c&F>KW`so&ax7X5pGLnFq z3NB!_R^}jfFo)pRe`KM=H3^s}BMJCe!38YR%Djt!PY8bfQVUuCkbuu*Bmv76T)+yg z%o8|-m4xDe)r6-2YY0AZy@e9?6LN!$q{Su$*J6uS=11)D8^T$@w}hVoI|x2;w}rL# zDE7!mTI^SFEe>d9%3zO&2;~4r2o(WG2|n?Jg)R2;nH*#Wk(WKm^<%3<2CC34&e)rD9T`cBdJ3*Z1FcM61Uyd&0yHKR0K7o(iOnsnwa?ct%1BzY zQgAI=Yh_m9G_)bC0kkEo2ec>n#7-8n+Mhx?%Sc*uQ*bSMXl33&KnNiN5K4Fp(3{{B zBOTa>$38NW7DmCfh|$X2MnD|lE+B#M2OyE)6H_b4ZqY1VS_*gWwb2vM_v}T(lhrxfW9t zT#Kn%nJ$=~M(7ThP6z?aAcO&C5+VSz2~mJKguZ~eggC%FLO;L)LNZ_>p+8_T!5`VD z7Gmv2>w8JSZG#Ej;v%qcVxR2+>!0o$~=wf{e-fB1BCK`LxfUBp?srM?gNp zSwIlsXFz_!MLTH|63~$F zG@ucoET9RYJfJBd7|@(h1<-;}9ngwU6VRGa2hfI4573s-5YV2`7|@Z>6wsOQBA_dw z6`(ueWk63tTR<;D2S6C1Ga#JM4G>A_35X(u0t_J>5JTt#h$9$40wETVNJs!A6OsU_ zgjB!)!a%?v!Vtg^!f?Pa!U#Yb;WfYr!Wh6P!g#=F!UVt=!kd6`giJs>;cdVK!Zbhz z;XS}4!c0IW;RC=F!d$>q!hFCq!a~4w!Y6Srb2?qcx2!{bH2}c2|2`2z+2&Vw+2xkBr2(I$%Fx9N+-q4ZtBn2H*(c zEx=L26u@!9JAjjf>3~y&_W`E~vjJxb9|F!1<^j$VJ_cMQECyU6dS#f zpfn*rpe*4rKsiETKn21RfM7y#KxM*HfU1Pjfa-*205u2|0JR8}0Cfme0d)z_0_qcL z0U8pX12iJk2Q(o(4`@ng0%%TX253QO0cb^d3DBC*4$y|s5zv;<1<;-l0_aEx19T=t z0lE_U0=g6W0eTXW0lf(Q0bztefN;W4KqMgz5JeaXFoe;77{XXU93kC7O4-Ttrw6$I zGYOoVh{cJ7Nq}U+WI!rmDqsNNUBDp148Rb=EWj|r96%c3Bftp40>CK3BEV?E62KV3 zXMk~p<$!d;mw*X`)qo7b2EZi3CO{@(D_{!YTfkJpPQWz69>8?Me!vXELBLGH5x{K1 zF~A(cNx)pfkAQiEvw#JJp8*RA7Xgb2zXFyJt^$@4t^<}4ZUL4Peg~`|+y|^AJTS!F zT2~XY0oD*60<0tC0&F1U18gKb3fN322-r$^9I%a06tJD}Bw#0@Bw#n;X~14WS-^fm zFyH{83g8f-I^YPQCg3Qc4&XSU9^fRQA>b6DG2k?zDc~&OMZh^iE5Lce%Yci7wt!27 z4uH#q&VZ|gZh&iqo`4&KP{1uhIN%PU58y7r0PYiF0Ri{)Q6vG7g^&cuMo0x@CkzDS zAPfQIA`Axv5=H>>5MBf1Ba8tA5yk`Z6D9x(65a$9B4h#z6W#_CB}@YpBfJMFPM8TO zNtg>LMVJpLO;`vhOZWs(j<6I^f$%vXn6Ls+nXn2_m9QRAov;y5gRliqi?9t)hp+=s zm#`a9pRf5#h;S6pgm41TlyC;noNx}%f^Z4Yif{$cns5!!hHwYamT(Wyo)9q9 z-5fg-vI062vIDvjass*&0s%b%o$L4Ytq0YEsR5FnCJ1Q10i1~7yYfEYq4KpdeQ zAc0U3kVvQuNGA9n7W-RB$ss>IF2>&w4N`DFJr2>ze2VE|gk^vV)JO*jvjL-++Smv9*{kMJ8{0pSKlS)G2t#?3E>aGQbHE|DeN-BgMj6P9Do&s zhXE@Ic>t>kj{w#X@&ncp9s_J3_$zLcg{39s%h3_;dvvRUy9BpsWlmsvJK+>yC*cfW zH{l#$FW~}UKj9MK0O1PY5aAl&2;nB+D8cXhgoRlp<$EaxfAerk!5zqHtxP zfcv`5s(>tnX93v=wE)=(&jE4}>H~5So(BXHngH?;ngQ|=S^$Cw{`?iNu-5)6Wh;DF z6jE>}w6IpD4W^3{+5w6YIs%Flx&TTNx&ulPLI9-+VSuuP2tYYP6rcj3FCdr@2dGTw z2dGL&22>~X2h<=80@NZ51=Jy=0qPP)0_qb+0~!*>0vZw00Zj-K0Zj>$0L=-L0WAnq z0j&t{0$LMh0NM~{0ooGg0NN8i0(2xS0CXn!tEHQTBYEWVDT13>PX%}R^wP={!*m#- z1R$JH3J^&s1BfD&0~mtu8Ec`^VA(|5{_dubpx`!10A@Kq{ddU;v>fU=Se` zFoX~e7)Iy=NFx})2tq7i6d?gHnvet-Lr4XTBMbzj6NUgL5QYOX2qOTK2(JM$31a|L z2;%`$3H}VfYvIMCa?0-vb*FrWf;;6iwKDfGJ)00P%&nh8$O@QC@QL#+Jby%597M)K z1=nJ+R^|w%mk^EtmJ&_^mJxmgEGL`=tRVahSV_1DSWWP|T5F;9Q?kued}eJ>aNFFd zl^KZX&4eLvxN>NWLF)r?~4je7<5CXVH z2m{<8L;!9Pq5yXYeiQdB?CC1IDwpCe)_^}exLsw@%2dR3HbP}Uc0x5k4nhq;E<$ZU zAfYZG51|1dAE6N-i0}d+KcP9GAfY9o5TP}oFu@<{6BY(ND#vbcw=J&Vj=iK-CKl7B z2nm4Fgd{*&LMosf!MCVr;dWl>8H^Q`6%)w0LBrv0n!OO022ti0U3mSfJuY{fK0++z!bt!z*NEsz%;@sz;wbHzzo7Uz)Zpg zz-+=Lz#PIAz+A#Lz&yfDzyiV@z(T@3z+yr`vb%hi5V8W660!r95pn{S69NG%2zdc3 z2|<9>gaUvyghGIIgd%_qgkpe=gc5+wgi?U5gff6_gmQrGgo=Qjgvx;3gld4jgc^YT zgxY`ugt~x3ga&{kghqg)gcktE3C#f~2`vGq2(1C939kUo650dK5jp|R6S@K}5_$kG z5qbeG6M6%#5+VWD2+@EWgc!grLOkFOArWwwkOH_*7yt+ec+lVX1_QDXh5@n>UIk<) zi~{5!ybj1k7zYR>yaC8V$N=Ocyafm%OabI4yaOmmm<}jJcpp%hFdI;m@FAcWVIH73 z;bTBa!eT%v!l!`Jgk^xTgf9T)2rB^<2wwq$3F`or310)M5;g;>6TSh|AZ!QJBJ2Xx zA?yXzC42{{PdEfdK|oJJ4nQx$!+;Q}+ z>;{Y`>;sG;_)Uzr@W4B=tJe5KzX=L%R~cHFS1>(^&>oOU=meNT=n9xh=mD5U=mnTg z=na@bhy=_eL<43MVgPdp@qoF6M8G^k3Sa?Y0AL|uFkmrZ7+?wERlrihD8Mqp>wx8i zaex(sHvlUM8GzMFdcsgsgx(gzSKPgq(mNLLeYNAupgHAqY^2PykSv zPzX?zPy|qnPz+F!~{Kq`?aAdaA6Isfp>T zggSuggnED)goc1xgvNk6grZPU2pC296)>7`6)=Wy9Wah?3y@Cu9Wa4#ACN(KAl3bFK8cVGkV$w5Folo{ zFqM!SFpZE8FrDxyUJ}12z-d0=5!50Jaf2 z1GW>o0d^940(KKZ0ecDIfc=C%fCB^rI7EmA93dnCjuMgp#|f!`lZ1hQQ-mRa(}dxG zvxE_VbA;Cb=Lur~7YXA5mk1L8mkDnIt`af<*9dO|ZV;vcZV}!C+#$>a+$DSfxKEf1 z2*{!zF7p9d2nzw(2%iA56P5yU5IzUwBCG%e5>^575Y_VQl_O~4dF z9l%sVJ-{?VL%?)GW55hTQ@~8Zi-6gLR)9H#mjQDLZ2|KL9RLdmodF98-2jUTJpoGy zp@5}?aKJJ`AHZ^g0jwY-09F!`0ILZD0c!|D0P6_D0UHP-02>Lf0X7rH0Jajw1GW(+ z0Jam}1neYa0(KML2J9tF1MDZf2RJ~O2{=Uf0C0pb7jTp?A8?$o5O9+43E&iADd05W zbHG``3cxwSD!_Td8o))udcY;ZM!;pl7Qj`)Ho!H)4!{kTT zAt#^^ArMfQkQY#t5CkYjC;%uEoyZ~rOXbxyZXbEUSXbosecm>d$&>ql& z&PU65DDl=hz4{f!~nVy;sMT z3=m0p6%a)j1u%ry0WpMefH=Y%fCNGYAd&DEAerzEAeAs3Fo5trU=U$8UMz-Yo(fH8!1fN_Mc0qKOzfC+?e02zesfJua1fK0+(z!buFfT@H- zfN6y90n-V`0W%0c0A>0+>g*3|K(;4X}`K1F)EI8?c0M7qFD@ z2VfZ?OPagmE+;$)SV71ESV?#ou$qtuu!ismU>zYpU<2VXz(zu0z-Gb|fUSh$fNg}Q z0NV+r0XqrL0Cp290QM3p0rnHB0uB(K1so#O0vsVc2RKTo4>(SE9&nP-1aOMb0&tq} z65uSM4d5K19pF5nBj6&T3*Zu=JK!=Q1aOrQ2DnCu0Nfx%0d5ic0`3sv0Cx%f0QU*W zfPifJ{Lvqfg)j(^jW86Dosb5|K^O_hMHmeTB#Z^*A*2KH5henH2$KN$36lW@2~z=u z2=4+46J`L45@rF45#|7j6FvfzBrE`wA}j)wCM*GzC42@bM_3N1K==|6Ojr%5Ojrx3 zO4tCXPS^yfLD&kYMfes_hp-b+m#_y=pKuV+kZ=Uhh;R(hgm4njl<*^t8v zE5b!UYr?O9HiWBywuI||_Jmu2j)dOTbc^3E2QW3Aq5h2)O}agnWQ- z!lQslLP0*2IxYVod_!X+R>OEFhUs9*{~11`Hrn0SqEk2Mi(9 z1Pmk80i+S?0Y(rS0!9%U14a{?0>%(t1dJoJ0;CgO223Ed1!NF9045PS12PHS08Ti$Lc(ysV!{Z(62fbM zrGznnWrXp7<%9`<6@)hdD+!r^)r7YJYY5W->j>`wHV|e4HWEGnY$nVFY$ePGY$GfL zY$tpI*hyFl*iHBxu$Qm`u%ECBaDcD|aEP!TaD=cCaFnnGaGbCWaFVbCaEh=SaGJ0W zaF%cYaE@>oaGr1!aFK8VaEWjVaG7uhaFuWlaE)*QaD#9OaEovSaEEXcaF=igaG!7w z5b&Trfdt?m$YvpA1!N;+2V^JY1mqwD0&)@Z0s;v^fINf(fP92PfFME3oKtVz& zKp{dIKw&~TKv6*%v zv?9C;XiXReXhV1%(3UU`(4O!Hpd%pz(3$WSpetbtpgZ9mKu^MSKrh1kfH1;rKsez; zKqO%vAd2uYzz`M#VhEoC;t0zC34|{IiG-DaWWrZ~RKhyI0K(URL4?hKA%t%L!w9rpqY3`+g~nP~R#X0>XkVgx5KLEae^E3+D{}zT8HB@tNra<-Ou`Ak z6v8RMRKgj+G{QN+bixI|48kSAOu`kwY{E6b9Kub&T*4i|Ji&7_L4Xy60)Ul-LV(qTB7il7Vt{po5`YbaQh<$wGJws5a)7Ob zihyl|%7E>JYJi=D8i3t|+JL=;x`6$J27m*EMu0hRVEdj>~tpO(quK-RF z+5=7#IswiSx&qD-dH~K7dI2sHdIK&IA_12P(SWOj7{E0`Jm3Z)5pau;0=PpM0JuvS z47g7i1_;Qm-{-FavJgfAvJqYfWG9RRtR^uHcTWhF0c%OxGgJ2Gk+=fO-~|mXgGY__xXp6Xib;{XhZl2(3Y?O(4Mde(2=kN(3$WVpetcHpgZA9 zKu^MIKrg~tKp0^IAe^uX5J}hyh$4IoFod0e7{VSv9AQ5ofp8FzNH_vWCL9B#5>5gJ z5Pk#&LAVMSMYs+aP4E}kSPSRN$rX1SE7BG4yr7l2i|Gu) zAAm`OEcnpPBs>V1LdXG_N_ZGBjgSX0o$v@?1|dISCgCx_Y(inc9KsWTxrE|?d4#6` z3kanF3klBv785D}mJlidmJ+H0mJyx>EGN_gtROrGSV^c4SWS2yu!hhCu#V6Suz}D5 zu#xZ*U^Af&U@M^=U>l($U^}4;U?-tFU^gKIu$K@9*iVQ693Vsi4iWkSju7GiM+yA^ z#|g=RlZ5_&Q-nc)(}babvxGFjIl@T5dBSMGMZ#FXB|hTt!-SPPZyKNMYt6$uLNic8eW ze1Yj?!b(6Y;VZxZf=?W5A?7V<@hkoZIff~?7HL|UtC$`^xDFUaxCIzZ_#H5Ya33&^ z@BsdaSvnybU;^PGKn5WfU=krWAd`>}Fop0aU@E~M>bn-6o-4;5jDPDjL%|*UOsz~6 zOwT4%2h1VV1k5GW0n8)R11umk1S}*p1}r8t1uP-F2v|yJ1z1LS8L*tt7O;Zg4|SD= zWzWj7e~R1m8U=Uk>$Eb0u<*MRMW&48VRZveXq+W~tC zy8!zM{y+{|$d@KZ_91=?`iO!%vZGp=d6+&<_!w}Kuo!TP@G0OlVHw~o;S0by!b-q- z!dHNcgmr*Rgs%aY3I0HSvrxW=99diZd#W1>?#OOwWjbK`4xuyPE}pmlqD1Zlp_=ZR3H=q1QUt@Dii!Bs##e1 zz3l2T?&38R+^%YAWq!kS9l{MjU4jp2VBvTBM-FrGeAGz6B{tE@%*S+7!a_iE!Y6-8>GVJgXP=SvgRp+6f?GdaE0c!l zk%Uoz*9l_);|b}2iG&QmTZBx&+XTOfX$0T)J%VpLli=HaK=5tn5`5eF1mAX{g&!Ko zu`iO5yjx2Y+_5j!%6x|D<%BN)D+#LrYY1xr8wg(mHWRi0wh_Js>?HVI?IHMm>?inr z93=RC93l9993%LBoFw>t{7CToIBVfh896&Y$wxiR68zCVOYlcqi{Ov;If6gh`UHQp&lCL7HX-<x3e(gX<6SM>pLm9^c{0B;Z`0Ny0{laWdAhyOOgAO19gKm7Ly z{_tlK{NaB<@P|K_;17R3!5{uYffp0dR@%E8r^OH^2>oKeF2de=K(i{#gDX_+!bEOV5r!mIn#`SaJ~ju{=!h$C8KO zkL3}9KbHIie=Ls?{IL|a@LDN(mx{3eAkJ|6gWEsgj* z;Vr-v!rOppgm(cm2=4=C6Z|$mB>0WZBlwMdOz<09Oz<1~l;AhEjNmu+1;KA@CBbj( zD+_Ph^Swq!a=zCqxbye5R%Ronw-EgLZ3Mq!hlPjgOX5zvWRHSN+^3bJac*ze6F7ZdL%xO&jMDXj+6a0!_EaYt_iI?z_D+(_0H?7PyOy4Bj0{l+6 z3;2T&@UT0NS>?a})*?H>hvp>s&_IF@%}em1K^C5ULH7NqjO5)asNnWpNGtO=ri&7u z02C*b0F)v;4Jb?SEy@#oXfVNtRw4M%>I5HJ)55VPvhP|ll6^m?;PzclD^nlS&lCLm zCIr8tnS~qnOf<(!S}M52m$WjiG5rd`uWwKAD>_+-wLhqK#!I>>xWpb>>2xm(H|-rf z6zjtk-1h66?rMgm3?UI&aLj0a30_yc*9 z;J2Ph@LPYI;I}@F;J5xB!Eb#g!EgNog5UaFg5Ualg5UZ=g5UZl7DDX3W{HgCy82AP zy$7FbWtL<5OTtRPSA;cy^@I(8O@z&WZwT7}I|w@gdkA|0-w_S~4io&oj}rV&PZ0c0 zPZ9i1&k+1h&k_7iFA)4rFA@AsuMqrBuMzxCZ(3MopDJ$2NY3!@3hoTw)5_d;)9Hb| z<6}a@Du$&bC&$NSnuq0;|1imTAn+fd*$9X+4_T;fA5L<}NM7==f@_;wE0YJ)j}ZL& z`~<(^F$+IDD~W~hk|GK&@d>R=F-(^r`1Pd-enlAz$LvFAS-hmYf=jHZl?ldl6+%_O zvxFLe+JriQdIaC1A;E_>Ciu{%1Rwe$!H2f8(7LJY`z0C4xoxB1_T5%1(+<-e37r64 z3Ecoa2_b+mf^QK)@S#xzAKI7TL*ocOw4a6I_8m-=k?cD~!R@=hR%QUE2NQ+>h7-~N zBMGAbuM>QWaReXw2Em7B5Paxc1RpxZLWz2^@3&{gs8(+OmEP)~{D^>%Z1Yr#D-; zURTy{!TN0qZvA$xbb6PC=E1UlH`eb{aO=O*${fJ-VZsr>F~V`c4}?>IGla8%p9$vy zzYs0~t`M#Qt`lwmZWHbR?h)<-9>}dnmPJN#rXM6^2jnE=0^}y-0X#zRXD2_wpO41~ z{(KZB`1A1u!Jm)f1b;rBBKY%Bn&8jJGX#G=DiHkns6_DRqbk9lk7o(~eAFWN^YI+P zpO5+ke?FeKaIL&tEsbO(=kx^yceOOr$~4DxOF}Ea%Y-(7c7*nTPK3^YZiMcD5JE3N zZ$dbr43I2SHCHV7^PVnbrBEg@J zNd$jBCKLSmm`d>H<6VM3A2SGkr?UwDe9R&E^YIbEpN|Cue?Arw{P|d7;ftDbaeOKx zxj2?7xQk=CR^|&#uOzGjtRbugY#@9M*i6_0*hcsku#>P0u$Qn8aDZ?SaD?zZ;5gv~ z;1t0h*%^XAmU9GuEEfp=SS}I#v0NeeW4T7~$8wY4kL3=*AIm+0KbC+z`X2aW$x86Y zlHI~=`+@S1jO1O)rQqJBK&?z}Oy?s!0?1D&04PLw98i?-1fV#f1fUe*X+T-RGk^+& zih#-lzwc@Uztb87zth?Tztg$|ztaW;ztctpzta~8ey7a|ey1%7ey6Q1ykmc&eOX3w zhTAH*Gu&P)(*e_+30(l)2|WP42%&&*LIfa+5DkbS!~zls{Q$`Xzs>#xzp+6CzpLaL0Z~D?goL(jEv1Xc>_HU~)uaY*OaX%(Ce@ z5~33#Vxr?BGR?fC0Qob)R`#FHr3Xf*4lEuP+PiN=TzHb7`W92U?Nnr9d|dKh=JsPQ zXJle%Y()R~#J>JDtKoUzy1O9~T-^JTxKN@8%#DJi1ZJL`*_N z;(u)Ls#}f7{<+$w;pl9uXU#6cRBYG&Uh7A}K`9NC+r2CSpKbM6#P^#EX`733Jf4%+7?2Pn(zfuPD35$g2*T7Pa}(Elo+_MZWR|2F~8 zR{Jwx=>IC9`kw)x_yGG?5gF;VaIwckgeJy?Bu7PrgoP$W_f86_Tr-5XfB6<17!ng5 zmMFKskSdk`e2*9Z|BU*}<&xo}?2jxN>1DC2{?Q5Y%^r~u8!h($x##qbkh@l5NOXKi z^(ucJ&=mht`y8E-Ugp1hsl2l4U-m!wfA-3%fA)O)fA-419O%^l*(+=O*>j#a#OpcE06QWNEA<=Q}_EhaJH<58Z$UfF(q?h_LC@L~Uo)MDb z6C-2d`^%Y+P7bO0=es??zsx?nWu%w?^JVt-7b-XEKd%^hkK&RO<3s+^bdGeza-c%9qbolzr@-v4eghg?Uy9`WuSb?2upt`JSI{;r{vT9If3-tP2&5< z#l(k(+YhfKd}5^s#V1DhiI%645PTw}Bu2}#S$fXoh*-H`Lz6>o^>AWDWQcuAiWrb= z>-_S;5t`UrJ}u(HBL;*dM%p?y?__rx;_HlgN%Y~B^-6t-jcT!SFZ+Rr^ z6A_*{HvQq)fpSBY^AQ={M~>N5389He5sAUT;8?kIGt=|D6yC;hV=Q&g2=>7@uRLJI z#>dGsSl^KNxR`;GnWIl+td1X%lO~Tv^4wrAVfXwtQPRSrlN=`vluzsdnWjp%fPnNM zdp6`5y03lAkVk8IC+!YX5@SM=dPhaz+?O?SD+*|BYPqj+Z;^2w`!xk`ZMZx(M$1!T z>-3;V`>#l-jSD;Jgg4Sqm+Uc6iKJsTAf z8ZJ+~W7G56k^ROEjq4p1pO};>PyLUmCB>xl39(O<(ky3Ga%@aUY=m57rlk#gG%`Lu zIW9gq0^fe_0W@<=dOmrm4^Ogp%@DbLrX)vXw%nSYTb|;Qq`5qhxd+^~HXx6nyk{}d zvC(oaWRIO(tUW)`kprdgph5QbFK0_)gTm!uIVwa>pxhzkZ@D63tUmHrO-cyu9r4el z;qncWY?nTYrQz`@_T7q(b3e+AP0y2(Am2CfJXiet=AjjjGZkGrd4mbf2gg`H#KI{ygJj(jShNNBX#A`JQ!Ga7viGGhzNx zwdYMf>gCYn5_7+zonFk{nkw0z$w`$eSCLzyJc!EPf};}##)W0N$5em&tMs2wsg?fv zl&UYWzn|^MAI8!BmYH<|F`E*jj_KDnqK)|V`5_y5+meOUOpn^ zQk1iE-_Qb$@xf(pT8uCj4*CiJW}7@%_DteFpn)Uh>yRFzsT0TP?j3_SGjP zTJAIM{qaAhy6+xoVq3|NDiJaIGW#oO|9n|hepumUQK8X&Q~v%k`+CN^F z9QpUx*xx-%ulD!XRF`kA)QFgPd*_x9Nx9pl+J{s9$w7B%e}T(Cl2-cXzqX`r)qlRKs{B}DzlZ<&3j1qG|NaVhfO0eY>nrT99sT>xs`Hfm{Z;l? zi~J9B|Hbho0ht)$8wSbkPa)WfmA*OUG%&fk9?PK}T#x$DSfl#&!7C$)EcVyL{` zN%~^@MEmbA{+9<@eX;#L8hz*fvvaM#9Hf03{@e9se_?Jstu7sTZMQ@YjkBn$-6qc`>H)kLEg7Et5A@Gmq7 zqE%!S+NcNr!6sh%Ta8EG+vQCgp$K{)&+5!{?e2WNDbHn&98wHsh5pKy668ZDmR&cy zF7rvuBPrqFH{Emwq{0^pv@LBaJ#2quaHPa{2IN6)O0`GX;pB?}Iyh8AEVT{;7v0ro zfMfY^p8n+(TD{B&A59T~qa!s=rbEB=mS@@M4OLD)9ceu<_?u_-QY-?ljG)AHKco71{3Hg zACGaO>LL1>#`wtW>sw;3wek)SAD)Fl|6hyO($c(HCJB9a?B7dr`%J{7(m}RlRyL_@= z`3HGrM9cjbEWtj@2iRvdVD{VDxkgox8RsHXtPfy{Ip0ieNWWZ&yO1qb0kFla4q%oB zF!AyV?g(I31TfVBn7;r_NC2i70F#9+WqTGx9laLC^Z~0(1ptP00E0JxQ5wL=3t%h- zFg5}h>;Q~g0LCEzg9?Dr0>Cf;pko8*t^m59Eq`;mM9ZZ^n)BXkH6(J!DbZfJ)o|IUqlwsc-{UsmWqDerrcamo9iC5e+fkF9-maqz! o?#@5nxLG;Hz{GLf;t+A-XXJ--7qhnO;OAm?gUlfVRe9a{2K8MlAOHXW diff --git a/ivy/.doctrees/index.doctree b/ivy/.doctrees/index.doctree index 8f34534e4949db9b35d533f0dc7ea7ceacda24ac..93d4537f54eed735af9f5284ada35fda9694b737 100644 GIT binary patch delta 96012 zcmZ^McVJXS_qIFtW_QyQ0%;Hkp|=!zC-e@X3J8Rd1jv#`5}JSku|}k5%u%ES>qd!CuQoBTd~`D63kGrgU2=FFU7)2;0`-P&&THLfRBvCCEP zOo>ZiEPVR#I?0K@c zi4`vgH>(VZY-o9<^D3*aG=1OO*s5NaB**3kCjoSkfq7ONnKMy^NyrKnCug^M+uGR+ zN-8AF6*Sh>P|i&VZYUXtRc|@(wxeY4TPogLT2?ZzpfJBIP<$`B>KV%|(R-0Y?NY0k zoE__KBR_9YJtb;`N|allSHq-5g4ItZUZL7c)XP>+Z*EEH^74ZD#gf&+ij(x$R4dgv zPxdvzNA1(p7!K(VfD800ql`3c7RkoaP zBY=gvi*t&L3W_EAE;K%Qq-{&#NIO)b=d0?~-GU`}a%wd`of z0XnWm%EU2NqAYEP{%3o+Cc4Ng{jEWgm4ngbI>BUUBc~>-2D*4DJ*ql-^5^GN6fDW- zw3+29lr`s6wv_b4Q0wOEk-XH~_5@=wEM1Uah7#Z3fg;#JH4j)GneZ&eaPL>vaH}*Y zPc}WT2HE+`N;|U+Qzh~l#K?Ra%;e}>YHrODfJGIEpScq=B0LL2)8GNLs8%r3G8@}& z$xN^tV(=1V(L_6e3jqwKLS^cy%r59?70)k}b6v=&p0-AC$;BC#wc#c7;}eI}47R=k&RT9T+kvM%jhHFs@@CaC zG`}LdcyUp7UO`d0BxeSVmC?6y{&G@`jt5^ow*jqOXmxYv7L{ffl*{{Ft=5zk&H`#? zMaVI?)lzofs#2xp7nt5Ho+RTqgcjEcgwKavA0u<#&!Bd6(zZQF~*C&S3_m{ zHRut_0Zyb;JAX+*ZVfevI&QeVHKw*!7@+O+kXu%&E3`T%+ZSO~zFO^M>?tiNT)rfy zu;vIB@qs&`!~D{PoTCDZ;KAc6!U*w={lPvC^+Janp9!J7bt(|p=OD@6f~ux80#nx| zpG-lab({zd@wgVqgqze9R|?s3ycGQa2D3H{W4yWrcs7P|lzcx=wezc2;d8-OkpR4# z%3##wM6sgqX)0RT7c|v)^P0tR7Q^iC%qh*j|{Pbhs#HwV*sEt zW^(4Fu;)9;k@M)*P0y<#3S9S64f22n9W0gG!Ijn@Qmu>#pEKX;DjVO!aBT>&dYUzk zA#N_oEzzN+E+|9R7ILss`;|^SC#25 zUtCnZuBq%8hki&OkEw(48Eh?rDzI%F`uzAnYo6hW+fSlC6S`WxYvS#CTso;S)FIuA z)OUlHf$c5lPG+VjuV8*oQBe-{w*tw0Ehx>Xn$YWlit;ORswMgXjAGP!%(=`H7!NF~ zEGmxuWdG-wR9Zsmz00`Uu*#~X*-1~VTs;edZ}kz#vd`YIVvM2<9b|;rEpf(sbD_QG zmoHpy*eE(LgWWXK#ulrTts7*Q<>wU2rXST9SF)TNZ8w(EyY%*D3a5B8IkHxD2+1$Z zFUl{jSPGFk@D5B(?y^FP^OsfR%&P$N=Ys1e9g^*E@ZwGqJ>BkP%F{FT`WD#SHJ^pC z0bA-P>%YYs9BbCkrOUDY&$hM(xr&TF+3ZX7Yj|6%n-)JoLAw%NBj+xvnclet(5Ds` zS5T((mZ()=^rbIAV`{-JzBWHI`}NnEuqZv{1h836&sC zvoNcIUx9eeJnHQx*QQ(ZWkYjtRjnW-+n68LQmkKY#N@q87Wb1-j0ei!1sK@f(HLTE zT%4^_!3C^-y$RvWD9$g3&bXrm1pcMRG5=Dp!m1p!BdE9RUW6L4W8@uWdrgk9S|PLw zikH;sr;VWdQ9rF-7iP5E`HKsnmCoUAI%*QM1hh|c^Oo{JB-UD|J5-!&o*9d*kD-!7 zqv|c&Ph+F~(F81tv$ow*F0DYvYjr&Ng55SN86fX>vK5^*4A!CQin*HAXlKP`JR32T$;;D^bD^Qg2f3y>9sA(zaFX`WV!_9nR zOm{)Kp0bbCA}J-UtR4uS0RzDhxtL*xp)*RSVE=V#vK@_~o+i=R)?|Bb4m6YXXVpZr zTiLi-wX?E|v9CRhT)-~7P`nJ6$v;4mD(#D%6*mYH*$UH9%kMe2sy6b{b6&5JCTMtX zxjx;>lBeIaVo)TOZ>*7uwNZ8=2rwDMO6KoYA8%<%L3w#eF-CneNGKU|VLhZbH{GV~ zV40;?LdBS7W}jZsz2CE9k&Pbw%&$}{PYzV*vK(h2lYs@5l@t~_bLq~be#vtXtKKf< zBw#Ps?7@tIjth1MD+t95wp6H8kl{uff5+Bbv-E>pLgSlZZ(kZ^C6P-Gmdxj{QcE}) z=E|R+K$C)^o5iK#GYaFo$F-)l>8u*&sxT_EuKKFxuw=B6=HEegpEE@@bakV8)(wL( zNL&Yk2ccOxA6q$c;t={db4O5Ld){IwOJvkFw_B+yBi-n|+=s6p3=Xk2(i#Ttq%)j7 z4lR13R&Uc=+T7U&SWPRL-P{h7pdZwTppwO4OtR@`HNsn7Qn)0)dL4ABsjxR)x*Sok zo9ZnOl#qYWa@3>|x0}$kJoEF5^UJ^wwa{4o04kGTA<4I3o$38?>7$U@doEzRtkb3C zL%z8LHkc>xK^L>@W$X`7TDn#{Lu=)i&C>!b2#mO-T=w*bZp^`>Rvk_Y!U(Gv7O@@Q zK?nWtYUl>5pN0DAjOvQ+R_JYaSy|jWc9!=&R#QnHYllD(&(N~L3xS_k0LCn}FF><` z7T;aYuC=`A=@!y=6y&nmiwv4E6$9I%0% zxfTg;8IMlU`;)U*fXnIqUftXq;Icdxn1C?|ZvG81-0={%6;m+O*wV?53&D=}+#TFh zE)2H9U7h5I;ovrUC!RdmP7T6lD^K^E;e+n-CD>e>eLx88GuVul!^S6%J&UEMN8r6{ zF;XY{fm5e%wYs3snoIK;s!34A@=};TH<2-N;mO7!SQTxrMW2uT8=aIfo6Xn&bx8}- zatJ0Pd9iUArgBT==yEmQKm9MoS`7`W)S|GamEFWt8QNH9Ik+MSJ0))Aj@)2*f^u>z zV9LTGgJ!=5Qz2$`g-wd|zaD%Q<2gbWO@T_>?+FzHPMxtBHoW4_P&+<707)3o zJ?sU`OR@QUQMDGmw7IjS=*V;x%D_*sJ6LfD>06pLwQ?RA`YF4wBrmgq3A8(kI(a7VciXN6%^Ycs&9V(_oy%hgafi%Kh& zXBQSM#8!N{GA7B9HsrnE3ffy@u0;*+ia-e;Y&K%JubgcU&h^SXY(&!MTcMb;$7Z5c zm9wl6v(}86N+R!p$kRLO0WE_YAV?c~q1+CmLDC5Qy_u+XQ(9)4VjDG^s##C@Ez*vZ z4+QPjnt$$m~e)3!``s#*D=p?jr+Wv@u)5 zF_&ARH5XyL`Sm{NKR-9K2GBe)R$h4vbGmsfx?4|3?48D#{VNpER>Hy_+5M&2 zhu$Ew9@uRj*zAi+3i33=bT28d$jMzu6HZfiQAyt7!h9_iXc14>Q$;#fgW2d!MQJxX z0}B{tt=EFuz)TSwW-KeGE1?#5u0~&RCtuSa!=MimG#47#7W{PWPbyEM&vH+}&3M+E zh+Fr$d?1u^t?9t5Jb-(Ip{7N8lXT~kkOo?pNxqusS8$fv0d{L|aY->Z7uB+F9=7$n z3o*AL<_2Kt?RY^A2+oE6!t(~BHGsMG(*g-w2|HAqShKaoR`Zvj9GIgpKlCQ+8*3B| z@ng->gGr%{S!U^yLI8Jw*7fAlrMEhK$CEKObC!Tc?VL03$N6-hJG0snz$ zHxjjGBJ@6RyFs3u+!EOBTGCk5(pZ)^&W9SHW|HC60zp76l$~?AnT)Ypa90RjGK&mV zZ+GUEk$;<$nt+}5r3X|4R|~VHIywbhq)zS0U$hveh>L1*oq<9=e+P3bGukR8w^?j< zYjtLhv>?o!+Ht7Bk#U%p+NP@+YtXBpX$uJ!TsK)X9HuNBbTrh)1-%raPO2o=xWJw! zLmr>#Zf-0E`p{xsj2+Ic2n+|CRR>D-zQ!=u_*ZYJw|ZSr0qk7MOp*FfW^)R(x#Npf zTUR?{!ObqAR2#2`xF(w2&E6TP?U-=r7QGJR80}y<_CfDojb#tfJ5p}_Sq(#`&^M$` zl|7RQRTliykpQbPOj`fMZn&kao&gDqis{klD@70D)Cfc0S}rZJyx>Kx^u}EN`b~vN zmk2AF=QUv%lKip)?%tr*RKB2Ex<<KYXzQEoH_`fLw*_gkEOl*qZqtrApwhRV>|2DkjWksbxbyzcmMZ@lFRUW)E7Sz5iW zs~o#QWmrWyrIOwT$0*d%1a zX$FK1FnDV(#MbkAOe?S~Jw31iY%j-t$IQT)7R=#2a4My3*?M1j048%;W7|FDNGLX( zN5kwG%E#f-^a|`?H2>DtgO_$d=g}-v?+4bWKpEEAgFixCGiPY^Nphe&%7voa9u{$& zjiScKlC5EKu)wmlW(4)1y<6``>UETaKdR-a-ueU#MRNF7jJrOI)Y7k{30B32U9BW{ z&T{Bv^<lm8*M}=TDK3*owKu?%hBI|UkORA^(+n-*9k1j@zU%m9IN8!z)>ErT>(a* zW1Ssnx3D>4l9Piy#@)@JfnbI7WItRkf6canvEC-qavg>xy6=PF6nW)kNW84>R!4VE zUgy00`9^St{nr~~cpc|;Y+gam{OWa)#)JSHYi?ReUU@DLJN?JluVdPhV+4_7ES6(W zAVkmL^~ng)C$pv9U<1_Vx3ey*jZ`Mv5!8T(HH?p#iQtC~?$;Pg%EfkrR77u!HW_i?_BR?Dg z)6zEKI>FN84-6to$O_Icnwy`O#~GhNA05m#Dr&biE+juMyNnYSr^x4UuR%5s zhrH2Rr&hO@owsP7OED~PWe4oN>qPOq!V=WsSPw9*zr(@JxXGcS5Nr<8xJA`Pvd3Vm zDJZXy(h3Z5=1%N|^<@mrch-g4QPi5xS+gYkl%8$+oS~Bpm0m3)l_fr1+%%W(Z-t{hJO3=?GVZOq?2s`QwJ@6aE7yCyGnJAGQNa{OXXOfxgV^= zwh1eBCa+MyIvmi$)5Le&iuCUgC}L#e&w7@%F(sw$$Be>3VQ=}a3%C_{E;iYvn0dIQ zF_=fKo$D>1ITx&8qj+O(NmMV0=l`?2@>n^=%Oz{8y4!4^vElN{xIXx)I~QL45PBFx zF;Q={Yhq!8%?h^W%bt(X1ikm>@f{@RGDm5|Zp!9vN{@t$--j)WzNX?gC`a>f>#;*H z{%C=Ly+RkQV(E@ayBg88jMj%4o71q*MZX#gthcPBqE~wLy1MhWG&waA`jtLBuI*>_ z30;t%yD+;vH>WTMmp6FKt{2+DM{)kyULWS!<@vCE`i1ZydGCH~Y_tthFP`LLY{j+0 zr}r=&UxfUFWhzCG`v|ii!lVgym6MB&tG5@M)6OO@a4zSh4c9k;Qp^Eq<6+=cIBc28 z2@q>e7SfwRjI7zKy1HT@{c#KhQ9eXZ72OX3XWk$q z`N(?ezOeV^q$$*lC(W zLD`mmlk5iQU!URJkNjlueAe7^k;B6w-}QDZ{Z*ANDVah2WcO#@Fz0Y$unhw+@3-h< zska}&ve8QFp7T&zUfYi%sUiizm;*zPo*DQa6qr7}jF^GcNtJ#rpub$b)*PNgZZC1{ z$Np`J7k2S%Z4=gN1U5bkv|eMD*X$lP&fo^3-PrZ_mY0`cH0sU;aP3Q<`)aL9?<8?I zA_lGOBo{|Pt)NL+&yC%kpnHLN$9T?Ky1~|&zeLDm| zbP_fdStlXhCl7&kd*%Uj@uCNz$MO1|KK8J1A4>Lp%o)JOH0g~g8@T8tA-$|5V?!;K zkA_&SlDZ{8r*#CkvA(Ak(2VXBnbkb|l zW5_Qu+eCAaT8Z?@Z^eNSYeZDt4Vu(~(&fc-t9|3*}Cpqq>T&2 ze6?P{>XBA6bs$c5j6}6QVn7d*;)Rb?LZCs@5~T4ctFhXiAU#J}Y3^HCi8M()soDiP zH($1ovO2mhmv=^49b8|?@1v~V?yhV`iVRq!nglX?Jzi#yw$fa8%lgq)vg=-XbhOpk z-GgO!k|tv?XhCDFXxD!vZj9AkeVQQS$5>t6Q`o$&-2SEpa_Si;`^KQ3dope3zYjth*AaiOII1z^Jry?Jx0%o=?gn4eP6|a7blM7?5cJ86f zy0vULq*B66jL(?7S3nWa3b{K}&)}OFxnI4YIWw$~U>$S-L6XrQH!PvVr%2QBmfQV4 zqi5EO4*fFBV@i2Y_KwHF9n|}1*E-^f?g!ZEBlO*uhJL$_i5$UTz11 z$ox!E(rcm>X>S054eKve6RlA9684T$9?mTMwQPZpzI(yhqBjmjq?0|ZeTY<}- z>X%sAJ=KYZ+n){WC}d}HPnwL}!#SOt+moRCY~4o$jm`@xaPJyB{OjbiN#YL3y3-*vRrH$)?3>yfbjm zupcM6W7vI@IJQFsrpst`E?%-Px2C$^VMY^70M4W%Rb$;XliiP-taJ+OI-}L91lc#u znxSqnt+7s1K8}}nr(2U;!z6MVlsexGbkE<6HPsXb6H!A~ zZxe{EdYCHK`H!HA5GJd!d3T4gd!6%g+&2kTAK>VAnl++MD!6C^qpn;#hS!^|rGFQard z*T8VADAL}Gl4U{*h*NERf&vrm){DN0%$aNTc8!-~IaWu(9pDg;rl-WoRe8u0_a;4t zas^DmxmI5l25y&Y^;6%)%AR?MvHF1Wno`%)D-~D8ot*xRWlkL>JW<#CS z^*EXjL-~OjR*4g z4(y3d&b}zzvDMbBzPQt*j^HZl15hJzIjOh$JWeuJ;6n%F%2Sm3C{E7Jwm6f2sKk=cluSr&={vPa#l-2ER69gN$pW`GZ$c}~9EJ(lF zh1NKM;vS_!5+%FP8maPd#n_FzY?(L<4AUkr(@VJEu@to+IU>iL&6|K(rn?xxv%?Ul zsgJ}v`C#8A?-rpOPh%GMXU?R=6{DgDWkPrK7zn9qeS(x0TjNwrqKW0dZXfLA7Y(7< z9jQTYCs`$s7K>!ZcGL)juIdQ#j&^D-{Y#bCNp&{99zDGjo!6^=Oq};dsN3UZM;Q(! zuw8B7I%=9p=M8DP2(|tmSLawRDD52f+RYRUN@uIu_pxN`Fdd^U(-AK0J=m(Oo!(9e z4mV$=Wl;L|=#s{}UY2uZ)=1ZW({uXh@TzjKy1t3BXbUIW!`@!5EJ6lbuHA1bT zqLC%&?IdbtkS)6(_1eh%9$8&sO?53dQwDc(d*P0~o`r!698O0}*7IxtE=Yt*`tx4f zUG2-kY6i>0MTo;MdgJVB-w$!JrahbLTuuy^+Lyg<*FIUZ#F}hjMVZ*JH^iar4`k8Z zXt)0wcDOv5fzw|2tPD_RW98UVYm|B=UN+sxA$rT(UA=<2k3dO(#~bSURSvI0`;$;s&u3^P)4FitFwD(bIax?LO{>vCY?-{XRwg;w*aq z-Y)_{O=ZsmY|d$KS4sZCYoo9c@shU6nyGNH1S@+0ulYoRJQV8rDr>e{>y!h#Tu<5i zv)8Sr=me;pbC!VpqHl~|rQ$cC*+UW7Az%v$2WhVu1eyH^KhS8EaUzcw+!Y-vnop+y-6bM%Y$o zol*YrooCn_tA&HF#!kdEC>M*sC`rau#c+oVs{mKDCJ(y~47LeJ+^GOAnKzcGYhkc% z*xBZ(a!)7KTk(2vfTHgvB&%n^;J8@*XS@wvzss>3v41{=n+qxwyG2&=s71 zLIQoI(=B)00K@syQc{db<)=1u{Y377$?6zbB2=)>t2g~ZBAp%|D$&>S8q1BiHTAll z+_=Er&2;=aEaM7fkW~et)(1WZ#pnaa+bP0HA3>%yBqV39v+tc?SdqRrT6z-(s|lt# z(rMQc-Xyi1gum&860r_(?lF0rIJ4G4;*B)S2R;wj;IG4Ed($)ygzm2SCNTMC2;y#a zNz-K8&6Ymv*!NzimjeXI25X4x(Rz8qCS>xCcSH}YH60~uBd#u<;vyI#+kjPz zy3kZPvk_HJO*FC_ms@(Or!;Se9?g5l>o{I_m_>={%)hlE=(S%#VZ)KLmZc!d%m!Q==(zXs~JSR+4m6x`$tfw@ZSGn$YM zg1V}HHFi~_=vb#EIu5VgI+H%cVPAfFjC$G;;-rM}hKuRCxAkHeEXlVnjzSTg}>m&qsHo0!otRLdG4;0l)1~zM0J5kgGM{(2x@jNL#ogT*tOoZ!6Bi~BlwLD`)cWuRVTx-gu6;>{8#r|xIGu)uSzP=6p7j4#+CT!n^vZE;!6J_^Z zFj(RSU$B$yO=g&xRTvGrrfZ|>=6J_YxU3rL&#{_Oa~5|DDR7AW>O}={frEX?`#6eC>V{ zM%lghU<1}oF0IAvWj2}3aDh(m$`%F6>?F0vEVtPSrpJ-V4#lN5XOpJ9iPVwfnL3OY z_)X2=I})Js^0uLNF}#BVRT zO0UDA@TLq`nYv1s!?eeKzb)N%`r&qJfTmUOcJ-Rvn&V#DE4X<@!+KaQju}kF&O#kpD6kcK^qD^? z?jA(Bmgo{?C9dhJ?E0bKFm$#Yd&;T2OxbNkx+A%vhOYdeHC+l$1(c_k8E=|=GD}4| zW{K+>#l&0|$nyc~GeTI5QU z3E!frpbZYe$*L*;hkEVDvjct&^{ZHE{=Bu&^}JNRV$GHxo`)2V);Kf=CpjkVb7pwy zn<6j009(@^de+a94lg45FC4MiQU0d^Op;&0{ys&;bQ;{E4VQ?QAQWEE^KDirubh~O zD_O7E^2JM7c~Al|8)t>#YPZ7-e{|N7c8h_NyGet~@2Al~op)cDbe%bZO%{`f^61+{ ze4De@L=4w==nOd}fsLNUdsh*zQFU=-|6cUzOHj0*ajG7n?;({t>~T)LsJLko>e^s> ziY`AU=O{V&rc+=R&8V{K;pX7mMEJa}i=zYXKPISAz4}PA*D$p{ zHiLE3Yv}#ma)dlZ_eH0*0j)jRR5krS)?kGbE!{8l`7v2Gl{vp6(Ub25B!VTbL!kIC zWwcO_!9?}CHCMGy>-%Kt2=hz7<%$e1GN_22%NBo|t7Zsiy39hN^8lMX{ zH4nnfxnV!p2CS6lQK(J~f>-{+4=knsmm1Q=$?{9RpM}wYS8ZQ@3o6&+j-st8P2L8j zMZBDO+nN!Q;iL(VGvEGd-KxJ|SG((_48fgT(=U^_VTGXq1%%Nvz);ueb%jMne=s=V zV8i_`ILbiTbHZPH_>?qJGjaU;0r=QM?_pd{NahD9bdw#$K< zVH{BtWd8vx%x)IoA393=gJ9P0;go7Wa@%+iJ+(Q|C*9@ZLFkfqIiYlwjqrDn&}f=1 zi(Xfgq81mImXs9wyW#u#&OH^ML)ZjZ<;Z2THR~(Ctml#NvTaG_&Uad=_UUVCT2USJY=0!dC*rsvx-zZ=tZAdWv+*0jjr&U zs*xkBf-p)HYJ8r7P8HJs3(UA3&g{?`KKunZN&%N-p5Ve^Br22krL{~Y;m+2VR<7Vq zWJC8%=2ISc8^gcRZXt`l!F*yqHAj#Q9M!+VcfbKumg9Pr`VI#OA0wylk61Bkm(v&> z$D5}bIFjW*W@>^w#G!n~W!ENfjWxtMIU4ND!Y}61@36G92mDO<(78xYUjWBNmXpPbfTxOe=2F3S2ht zdqt`@ok|_p8K_5rlkNAXpq0<1OlYnB9zqJzO$Ntx2F1z~C-0xOid=WezanTvj08#l*(yRwu?&f%8tm;NRc{elzjwod=y0+4?kBeB!K(1sg-2$RvDl#FxL z7jcsFt2Ke1G$GRLJQS~YXe89?pa0HZjB78s@+A73N2^aT82eEoLVL>i-!Lhj)S8^8 zbP`P=t$hbeO zY*()A`oqdm(=?+jRGl5=9B=)k^CgUUdsQGAXg!>%pFr-2dxVF_+MF%J0y4jV3+ zlDw^4#X97x1F?%8N-!zw8L?QpU9?ivH(IA^Wt?%Jz6hIZvv_J*n$k3F z-U!#LdxexNG5!8NrYO~25QnJ6bsv3${YvOYv!D<`JNriB_(AJhnt)r{{!uM-))MIv zMftd3>u9l=&eUN*By_K$e1AwDJltJ&p>oxg+fz=t?66Rmb9vnt>I|kXZH}_TT`SE- zMHApE9O3G2m@Y0l`i+ZVCvGEygIUFG0ag!sD#T0p@H_lkuuptU4WQ?6#Vc_mJi%fSKLvZw) z&F8O7l0;*wVL(j1hj2__q3(5DLdBC=aw5b|u%`$5UpJ^%s2!ndOsP?PO$B##V{sx& zYk_FOx1n|fXJBXB;7adkEw$M2&t zb^~<*>IP2Pbp$-A7A~0$ZMTZihZ#5#Y-smG6378e%7$=vI@%B|sMM=bCxPd*e^Hd{ zV`WfV%DP5&2+Sn(>ldd~Oy#Ji7_#@gYkxj9>B+S=2B1Frt; zslI|2VElKZo~v7rkrgHI(DYls2B78sg-sW?M)h3W%-oIgPa-`+h!deMgUM_u)`uQ4 zJna;zitDe}QN1kx0o+&h7QDVcemWj^&>IAXwk=-@OH{+0TM9Zu9S=|D`0M_tV=wjJ z4vq5P4mI`bgf8OQXkA*k3;6ldqmKQqE)dQk{>oJuGjv@T9N7G`zy1H0FhMobCcXOQ zzgL;MdzOF-$Q8ak=; zWmGH0Ord^%$If+pZ4mLwOH2cFoG z5bDcutR&B(!Ao-`I^oynypmR~L`Fw2B_b#>M)WDrlX zbWC`WG*owE3GgBXon)Lib2TT?l)x_gRtW#*_ITIQx-faPxn?uT&EbtYW0mp`&QzzP zn4^NTLRf~KtTPk1Of_(oa$F~?-Oys%fw4rju=}bGiOjv1;JK4noT%!H97x_=-~r>2 zBY6MFwNn-~$GZ`Dx+hG1sZakMCmA@zg*p|_V%EI{4vl_AzheT=jR!%}>Q2>p!Y?e+ zwZI(oX#zaUQ*i1L-Nqgj>3{RZ%-#s+WDhEG-N_H%j_`?dC%yn~sM>j*MJ7!=@{Ft?jD>+5<6r!#mv!jPAlsiv#)Wd}P%&C%yY zx*ULh==kOJIzANcE2fD1p%Rn3==9fjvcv6z{I~`<;|RyePdehe}gp96~sfM1iE0SI#Djxivo{W|D5fPeGHCA_|Ss? z2^wE?{ogo;#&KPLQ zv@TFg{xUO06CUaUwYR(B=q61UKL84bpXbiD4(h@8-Ivs@3F zw&_epbc0kn0ddb(!QH%vx>PScJr~1WR~l~5_)-4HrA&^$!^N%<##sASUfZzS;L*ZO&sy)Ry7uPxP z0Z7@{%l4|djwtq%6I2&S$Ub&A!NVSSd8s#QQ)_svj>1<#L*T$Qh#N;#zMMd$?zHb3G>+L#dPE8G#7r83EI6 z@P*-ZL%N8DYZp;N-h{?wqUd{_qTv&W7j!eRCi7iPglT!VrsB9UGnw>U-gO}hs%8!FFCEcb2qK2RYZe<4y2??C)%yh!=Y+NXxcrnes zGLS_FTyJ%Vc>Ipsi7(96ohV(XBZe=@aoD<-99FNW;w`FWSYe^bH5rQ_KyK~luzF_p z38VXtiPi%x8fFi5f6X=1U9_`hLpWQyf9EAz_zuwf5-$Y%nPKZVDIRVQa_>Q@c%woG z!xbuAr6kJf;r0;sEC%#30ofz$M(!l$>=62X7C44HNV3Tw#(6W?)Tk2!oPzP}L83dg zUXK0;pQBY+oVZ5WMfAmsas65|%3kB%%9JZvblr=Zjoi1Bx}qMnVzk}R{S-58Z=M3W zG9;j}+*30a%F!8*p=J6Y*j;95TEk!2?}=}UUd|Mwn) z>5UOmnq|kizhVq*bMb(B&G=y3TkSi=x-^ml6N4M!YaYiB=Ax4xzsW3=DZuIA!RXk= z-1I9z>GR!*9^bo6&>`?-R|CnK0HILCL~R3a1mW&9sryKE;^KXy22OrYknB7tgh#qU zA3p4p zJrnJo>I lMw=k!zg!emf$?>;P*g`SILPc3LeFYa(ye6lkga1etZp6!7sFd9GHap z_MVduJw=0^8&rQMAX1vT2D%+FVy&Kmz$pdZJvC2@k6jAAh*4l#NQ zY2Gfll{NuX|ulf%>OPWA=lj)!J~aj;p6KI=anCB`w!_U3KJIn&Ya zdzfoW{R)nwp~lLW)9|Wg)V0Ckp=J@qv6_-og`9qz4rbYsne;Z9;N^gpxC;I-%Q{wx z7<=>GetXfivSxtLG`NY zwm!OF`i5YoX^%_aP$Ifo`iAj`&XvC5MD(ZhjUb{UrEetBIHFNRhlxfLT}Cv9NbzSZ zeky%*ne>h0H+>|1Z!*zlqA5glg!D}%q6eh! zaw57u`lj)RzK*`>M09TS&8Q@#Tchs^BKk4@GK&_F#2W_O(V)C+D+lc-1|h87dqq?Hi8$U;hq8j!Y#h+c}mGNOe<^n>FVVM{i2jJa zB}8;T^erW#x1nzt5q%7O%ZVN&x{_!e(F!8E6#7;Y(S^{riijSAzN?7hnX~Tmjzp^y zEAdOeK;Ie$(-qKnH4%LPeQSy6{^z@f=xWlgC8C#~?>eGiu-JUp6Vb2FcLNb!`g}L? zXC>oR5z&3mcM}oa_I&Gz<^WatZYHFQo^L%7z4Ck;bVMfJNc0S8n~3Ox=evdI97As< zqWhh%ny4{pw-M3v&R0XUiYbKX7NXlVjiGlCeOyVnnQ$0`?6B6%%bE zqDP%?JAXc4!L>wmp!4k@8b`E~Xd%&EMD&yM-A(ifY4;FyA?@Bo&cD@!_mM~+Ip6(6 zcd)nzi0B^Ydyt6UaK49#)-d#8B09qP9wDOdn{O8p{oQ|h))uwF!(8=D~O&Z3S;OqMBj0=pCzL2n(sNHKS_I@h|X%h7l?`(`XbR8 z(q1B>W18<}B6_0v_7MFyf%9)KVKs^Si0EwQdxhwA(q1L{omF^^sGR6OL^l(?PE^g} z-XJt+F_y?{v6>?G%ItIXc6Nb(*cZkoaiiRCy08H_7&0XqE9A{ zWAI6$kD2v%M1z?4d!lfnABgra-YKG&8SgaFe$sv<>dT)q{K+EiEYVTMJ4bX6bNPv= zayf}V6Q&XULNu94ekGz)mG3;!4-EZ{Xdlt5qF;$FY5sSJ@Uq7E`IbpsMD&gFDWa{++9E1qJe#N`a|j~3i=l3!j!fYp%3?e( zQESqIiGCppA!^FBp+qALHz0N9Bb|zd$Vi%%5L|us@ zh`JF?V20g^nlMQZqTd+Wljt6zUPL2_dK10L6n%*1lh&808&N-^W6Y&L(V2MizX5~^ ztYIe6AqEd5@-Ul0MAwlvnCMZ`h7iRw#ZaPCqzxl#LE3PlRH6|?Pcd{P(Q#H`6j3YY zHyWtYcP)d*kl2Vx#u5!;#BoH!7&@Nl6(-3d`i+xo0#Q4LP9(aDp_7PWnagCN5Qa`6 zdYYkAiQXpda-u&;n^s9UoW$uwH?ZItL?cPNg6K8UW)kHS%_7=PG@EENv&kkZV~ROM z16hR}qHUzjB}ymCCA!2Ec|>is{+Ca91B2%g%_Evm^b8{|AezA93W$0#)JOCrLl+V~ z%g{oizC=Yt*^F0A^bk=A(ORY`CE7x?h^R7}!DWQetaUljO{7&2MUl3c=x28N5~6;j zEhYMt#VsTHi)cAfFQO}nZX;Sj6ic*{sDe4KBAP*TRb$S-64pi!gysgT8N8aoYlzw~ z@zq3%Xf4qSqHBnD5nW5vo9H^CPnq_5qFUyB15r0t`bMHfj8{dJ4piy8iO|d7bwq9^ zzL}^C(R!lKn9T;FpNKXR9VgmEbQR;>LX^p@ZzZ~%q18mU6WvDCoS`*DXGs&H8+40r zC;W=RcMz>$@MfavM0XPXL9~S^f>qs0^cxG_M%0?L?L?DEt0fx4{B{s6VcMNU*`(b? zG@G=$HUEnw@g5RiCh=Y(x(xX4BkDnPKhZ-(4-nBK!1o~0F&6g_(FCS_m}oN5BSaaD zw~L4u`+biR@fyExH_;Oet$d8|F=q2P(O?pvAgU#Ll4umsQ$%Mt37;lf#%!J;`j(;3 z5>+vm=ZF&7AI}s0z<4hZeZ{md5eud}- z7V;|5N~U;?$Rh1OL_d=DI#DC0eS^qm=$k}uGju;u3ej6YmA+AgZ6vfa3MBUlCgG7yq-Y5E;@jf7G#CRVPeN5U%M7v4*m?)XF{}L(EKGDmrDdDFi zTFmee(PNDG8Bu%EJ}3H(v@eLlnBq&KGo&3Rno8OcqC%phL=zc$jOY`h<3wLF^aRo4 zTL1fsumy=<6NR(mz9G7m=v$(GL??-MGn?;-CXx0%(K@F6foLGnDWaJ~r-@E5#g9a% zNjszCk#?4-vKiqy!uOcrPehwZ`*r7uJWvyf1thZr%8D2OPWXa|!-5ET$b63u65 z6j2gs(L^&zYe3Y3Rfr)PLe!AxJEBHJyBIH)=s$Y@8%OvVvxz4f%-{r~lT4CGw3M{Q zL|+g!Au3~N5>a!eZA$btQ8S{pM9D-cM9qmVav7%(b!LNGG@<@Cnc1`?u>rGgMRcC1 zHPLlU+=l2PX>Ez_Cu&D@iD}yteNWVZ=w_mhM12{r6HyImsYD}5OC#DrRGChA8w<%G zdXvP?Lwo<~N+^ z3&tBk^bTnwfhv7_nPe1+pD=hd(UU}Dh<;}1Sfc$z4+?@oai(Y zR}d{_=whO`iIx!khw+vYO(bm@Q8;s6PIM>Hl|)?_Zw1kK(pEO1{`Vb;t4K^_;;V=X ziS*!1XT;T{)ex;AdV?vhCVHCj))Ku*bPbUZT}xENc-Ikm*tqM77L#@ZQ6Hd6-;IQ? zGV3a$6+|}?oo6=dh%%V?W}+V%x}K;H(FUT!L>q~oA=*TAIngadnJn&BqDe&6L@k-~ zZA3p+vRi8i&ypxa{aM`YM7@aaAWCM2n~6Fzn>&dvFzpti7^dB-Lm6)yk>;%1iONZ< zC0atXgQyL2-l_TD_ssAv5}OmH=EfJyEniekL`i7sQj2Z)Lp??Ixk z82S)V1BO0KG>oB-5Ist?i>MRxt9(=wnPfLn713iv?TH>IYQ`i_5VaufNuqa%o+27f z^fb}^jQ0#tL(-llYDL;}MAL|#C+f+9Um!XX$NBdn;m-_yiRf7-ewoN-#63hON!v@b zfNk1G6if69(cKJvm1r($uMyo!+JA_alJ+{$c@EecL{nMXn?RMmw-|9hiKRqu5$$I1 z+e95$g?EVJna#UII~ngiqAwZm08tic2Z=foy-$?N&<}_fkoF= z@V_M9$cUd1Z6o@WXgaewL{v%i8PRB>&xxKV`hut*Q+!F(gZUjMx{TF7Le!M;juO2< zbd1QO^}pkUgPG(6(R!kdtt-5}hMDPt=et z{*7ofLK!hR_XH+rm@z+L<<=lLSzwz5?#w|!iX9Z zg%iaQMG#G4yhx(Cq(u>RVSdp>wJf*+(btR@Lo|T#8WO#sxl|*IugCh&`v}j5>=)W z))1x<-Nz*9M6H-4gXlC1=}hD%>OyoY<8>vPNm@6eD~Y-j zn`o@&e|-phu(-ZNUo*HL5pM+f`V+M#Z2-|8W|K*j!W09EW|20CD2ed~6CETPLez<9 zC{Zfo4I>I8Z8%V+?^hB>khqn^kwmu>jUsxAp`(fJVT;EQb!F&SqE@7hBf5iVJkfHd z$Ra9bya_~qF?1qP4ACT_n~5e@5;kPSDMZywJeBAoX_piI%81j5S~7Gx(Vavyh=k}0 zqWhR)CQ%>u%q*e~44qBH>o&e@qCXjL4pBxt=U)!tDH7)rm9V&6A|Dgy5%nc4pJ)VW z^N7A8Z9Wli&-fM)&0{VFM4=4z5xH5Jg+%W%w2-KXp+!WM`v{8(pCBqBT1-?*)R@IB zB3eyUM)V@HDJL3ER6(?lp^J&GAX-Ayo4G6{N@f+75q(SAa-w{qE0ZXH-(!*$B>qjb zlIR*{y^830M!bsXVbb(~ohNOzrV*_n8bfq7(M^oEmS`er*ATr+bS=?VqU(qjARg`? z5N;vy2BKG)_(q~}tV|WrA%@;WltJ1$BHlUi-Ar_nq3el)h&B*i!+0BsE+g7RbR|P? zA=*rID^Uk6QmY9sF~i%4c!9)ML$ryN5uyvs=60euCccAc4?{N-#WM6x9ZIx?s3qfV zC3={&ZA8}+Z6^xikklq!76HykxP!!FanGDuiMzLzJSnU4oGW`b=(%vWJ}s;A9Ed-l zzkWf!Ri4GGzR_P6a6(sf30};JN@;F{whs9tiO2DRpohq?NR;p zhYow=u4DS^5gJ9SJWsCqUVr|ei|Ew&Q}d-09vOW|f9=-^Keyl3Uo&*fi?@EJzg#+( zo?U*>U%%?G9o0wl7tiLZJlAyiTz?JHG4CmQLw~jArnt)ULXv4=nohXZ{;v+q(FGoU z#I%qnk5!(isc-49jykNF%k;%Q9rp6GrrNLQulZX|>%(<{;j`b=>3AYn<#8u|tG~uj zDXQ{pXk}W@qrNK7=jkVOAkWpRJn^ecoA&4evr6~tup(W=r&k}>Ut4t%U6RaKrjB{- zM-u!n9^ZfeN`UU z%1gR3WS&)?S#AE-U*rQ-p31Lk&*@JtUd;6u|I%L_bP>mW0=;MdXraSiT-55$Tq4xyIwNwC3C3qw3}lpN~Txk@pyjJ zxsbC}c^;l@surhX&V0DiL?uVU?7qgOTS$pg2%>U!KG#~FB;eX^@bdBA|LngeTx~)Xt zfSdo<-U27di8t9TLpN%Ei~!t$%()KNhWBiM7wLoz_Qc?g`k4QpX%Ij@{m%eoMwb0Q zG9&-~XBumx?-iM_5p}w>(e9MgAT^c$3wm01HvX^XitOyv(&g0~^+kq%CPi`N^#7x{ zN6;PrOoO^p0Q`FZI`^LesNjCdyun`Wp*;9!IC7+D_-6pBM=61Tf9qO`jDM!FH{x=N z47|av3~v2DnkGkXg`2^@3>Ia{KXXL&C{~<+Wcl$9J4|wJvB#i#lraCJdK5SRni(a} zzXnhUF`)VFc5)Ap-twZcr}%Gc$AxMdbfTLwWhna?pB;&VOcx z07_9O1$e;*dje>brT-e4V)b7GC}ICKfb5q6XuNhp*-70(;zUTYFgi+N6 z(eN~fgE{<4Uo}G*^;rCAO`{6_Qgg*0!)6?&;;;~Xi49?fIp|w;_%aJ$U-H72SNeAcP(WmxP``2rWPo2&O{_AygAWLLh#4A1ZRKJWc; zqm@RZ(P$)%q}>q!8FT<-$pOHGn@W&uHvlr)0LWScATtes>@xr|%mBzD10YijfNU@T zvb_Mv=mH>X3xLcl0J5(D$glz+iwb~DDFCve>H(7R1VC030GUewWG4ZTfdoL75dfJ) z0AvdRK!voA%+rMmO_nMIK#MK_n#BQV&IX|Q8Guv>fK&*8R0x13QvgyS0y2$M2v4L! z05k~#(3A&2(;EP(5P(o2KvE$9QXv4EmjGxM0-zZOfK&*8W)lEXApn{u07!)ZXa)cv z6#}5q9e~Di08$|U8m9qBg#d&K0g?&<(C`XCDg;0SCjhAs01b)&G!6pLs0TnQ1VF0? z08$|UQXv3RAplY#08$|UQXv3RApoI5fTThIq(T6sLI9*f0Hi_yq(T6sLI9*f0Hi_y zq(T6sLI9*f0Hi_yq(T6sLI9*f0Hi_yLWKZHg#bu}07!)ZNQD4Mg#bu}07!)ZNQD5P zLI>8v1Ijgia3=;rpVn$wUio8ld(%fed>bMb>@xfEtsmoK5O~E8{~BZX(vM*Rl-__m zZDpPZ)zxx*IwBO@G$2qO?81G-HxR==I)?9ZR(xVE$5TE5!dC{ukSNuMe?c*D@-MP% zGON+N^hU(|ZQ%6$6qh>AL=0TwgOwzF>ALM>065MhPKSA@VSMB!WVjp1M|_8vp&Rkt z(oKpvYLIZ-h)<&2xbIeE>n^k1-ws~B-VCZHS;5LX;7lY!;yjT!d+#D!yojRv3g-RR#BaJ*fx}t z{RRBs6f9ERc>$r7<4Zm>2j*{pv7fR7&uNm~XP?8<%npi(a3H8WcnjLI^iCB0k5SE5 zTh&T@HpT2Wm;rfjxD*vK941*f)Ibg9oj(Jum6CYFFY$5X*NC8N3xv2@R#PK*on1h| z#f{Wltv8t?;Ztyg9ZfMsMip*BF2xRiHH1I>0;SC`N?S1& zpLeBy2}0jXl&Qqr1w<%qjl%1HhQgcf1`6(whlp{@vlhX3>_%VFWJH5+Al-qFDuon(YLXX0Yi&uGG=O}cp z_Fj10a4*j@zEf(LoGNu$6g&Q1*H|u`5eu7&dq84G~Jp2{<25uduxJROd1YEr$2cE zq4p%&EhX*w?KEH0d>J)UMy(v9l`_2}qh`sdA&a$8j4>i(s1)C+{gBS5B1%D*5PDR0 z54b{EME`49WUDXLa;6h9YJiNob_iejqPYpHwWQzuD|2bnEg7|huuAgSi&z|ex7S=2 z&X(@(HHRpH<$3G|t-A8qMY?bkF2=ps<7mrf-=MVz$ucGn(Gr!Q3Vg{Se3n@t*bC(U z?1TOV9RU_TL8amHz+5=So`VPlU-*f}^!QFK>)xos8*hy4n=wemhpUhJSOV2Sb*zrk z>sN5Lt;wCAK842Ed>Fo7I?2LJCnW2Y9{G_VHW(0uqu$MH?*LdjLs9nGKr zO%eXYQV_4=sr&O*C-4pU!6SHFZ~~5+{*~NbI{`}Z2Bnl*dLVCc5*hEw)Y&JI3gaE@ z2J-VK&CQf225R95y(Dk(9Z>P=~i4sHS=^?zsDI~6! z94$R%u4}3z_36&n_}ch6CE^oaB9;2B?#I(ko1>KnMt9kI0;R1&jOn>#?DA>kuOZRn z&X`k#X=NQ0iVbfv(5(|GLPD22%6 zvYw+5SzXqjDMW^swNQjGi(CJt5Sd?Ax3H=BClkyX6ox;t!mJS#B16m?Pa*N;NPP;C zIc80z5bZ8lyHbd3GHWJ<$SkwwP>3uu>r@Jnab{gWA+pb`%PB-Anspt8$V!`P-9bUJ z)T{?6M8=x+B!$RcvtFQ(_<-YA3X#=j{ewbexLHl%_#@lR>O~hXQL>8PinnGm6 zS!+;;*3#C-6e3H`+J-_cX?0@lNkKB`tb-{;Hl1}0g~+V4&Y%!kcGg@9k#T2TNg=ZD zte;SbOgyWdLgFan5QW51*H07@ha@*CMCP9L5rxR&v%Uz&>Oh{bxR=K>8GhCZ6cVRs zaTF4VLG>sk4sTK@L^hzc3x&uGwDzZvI070$A#oBjg+gQxTIW-UOhW5B6e6q8`Voc1 zQOnd%DM-elbw7o~iPH%RiQ~Hh3W>9)TNDyUK#wUT4td-#>Iieu8bl$o7_AW$BBRk7 zPa$!TRG&iP5U>-4$au8&rO-|B%3l@*$%eE}qL4UUvQdaENoziZ#8KA=6cT5q+bAT? zO!rbq9GM=YkT^2^i9+JY^d^O98^HRALgHNW1%<@9rhCL2Z}gNWs-+N=C#sPY5+|w& z6r!zGYXb_26V)^di4)as6cQ(@11Ka;R7X-soTyHtkkQRE&%)!>HNJKYES3{z;p$D; zz~Sf2&3Kawc--7tEzj?Kse1D>=gb@V$TqN$^M5ku^RTvRxIOi}`ArihvbELKR?=90 zQGlG^PgHyH4HwL~Uuqr_PE1lu@{Eh-B|LjF2IG>K5bAWzoW?V!sKLsxNFG02O)^Dt z(@S#`e(fUeEwUjb2lKb{j+bI2!?5)=3t1iLIVCJvpR@{A>T2^^Cl288) zQxbR0-RCxN_EB=4k$Z`2?q5RG>iqmA^C&XvN8AM;WYjAKk^Ia}Fo0?gP|ksFDYdrp zLnL4OnV!y@UBpy3?uL1)={CQ9(VV~&em2in3M2W5NCRs+;AxPUtJcQS;EYXg%^y~W zp>^se1mgY-qFh)*t;$FK0;$CPghD&j#KNKCEy!ZubMWg{3&=mxMJ( zGu6t?i$$XFbjn4N8w|7G=nqGqoryfS7)oGm0yjFH($y4&ulf6 zhuk+$r6LY;tt8(%M-AtP??W~qemw+*fU&hCo4hC?8@dL}^d*$yy-#3+bgL+34*3j% zOZM=;A=%t3u<|-olydieZZ4-xs>pq-s7aI@!*g%J+2^2&e9LolB5Yj|S6D@b#{Z`a%OKOZidSY&>979Pd=uv8A)fa{};$rjXs^KPuU;oEZ8xET73%jqSdD|Hd;2t?yYKF zx`D0?&sNnkxPwt}BIGh6S~d#sEj&(BLzQ<8R=BLr>}Y;kQ|sX($)cJpak628gWiA4 zHC2d;C{eQvr8UeLCZs`Jnk2)I%u*+}S8 zB~(M>KnX2X4J!^2CmK17!cyma3!~v2qVJ$b%glz4UOpmK9l%E`>Qn`JbE{yzJ}yo5 z<&h;+3>?w2K~NDPhton1Sn7*`G$bDC{G(ZI#y2g848(Jr{CQLSkA)X{UXH-KThmE0Tnf+2guP-OS=L>-1&kO`Xx3~pL61Xp!K&ixS> zWEXp>q4ryD$S!sgXfzzM5&mx$dLVz9Qpk^64;jxrfOc46Qp@nVo}ko&oMSxo1QD$S z@^A5?{MdI8t?0fHt+*S`I%qWA`>(k>f9!)iJ6>R5U+;@NTkd1L>-o~`YwzSoe0P__ z<%8|!5U%*6TrpgVa<6^OjB4BcK?D02jNfRAacO)22#JAnaWgfCy9sbNK|bVmfM zvWLUsrmThCR0adxsel_Ez)xR%Req)p20TY*F-CNG2roKSC{9wqvZJb#0#;Y;_?}eN zjkhht7R!Jz=pBj`dbcWrY1}tl%{M*e*Fw}J1-uHiJ5Nm1R7dxP9W93fvC;E&d5A9Z zV|6gksQ{rPj`6?Tm?v+r0rX=cAo=vV(4A`=)N=Nl5hVG>Qu1P3Xkrwy2Mth@`HK-y z+GhFCnz9wuwtQQ@+Ls@%i0lnEX*&OetNwgsG#w|CZeleap9=m!h`RW; zI_TmJcL8C$k$a0Xx0t`~?NY;)jYjT|i*ozcQ+x2;9?XNM?NUAX_N{Q$yY;o<G5>-EHjR<96jA1Du1+%*e7oXLG8o%q3 ziMwW6^*MGSC--7*Jhr~-rQ{jem&oi&^%zkjUbQ-!1$%g6rYPFO!+ryJY0Cfn-CP$} zt9tSaK4_D3F^1IyXW?Wu9VnygJl_{%?>{bF{4KdqZpYA&8p!KoN>%!G@GdcIe&C z*twfo4{eu%TN+7OR&;@s>(xgCwvXkakymsD;rYl+x-~ae>K4$^)M0#!!aO})X8c*m zM8@e`z$1eSM1;*#BUUn<00vx`0@#qqdAG|I3Q=z|{^ zg|0CQT^T3!fe4U3OpcSKekDs4`@*+fN`+2jD8Cq`-Y`l{?FmhDkC$UJFvDyuC75T;F&@^6- zT%oxzFNVd71&>Sd-H@ECM&WuEXYu`AiqD9b=@*e7HH61ai9V$)@Iv0mccqdQ$ic=F>fU1#5aCrytlCS}vQCn?A8}N#j zAf*8-q5;qT6$1^~FYsTQ(aSMuz5!q8v}$>F1^AT`WW(V7k6w<32}t038^Pk_Cb)U@KH!gTE7dH-y#V4CbgYC;hyAq><<2;*NVj5Ikb(&>Zpl_8C(E7jrH(**~H z;jjmJXt1=c!XW;OQTPp)!p|gd6duHztwx`@>QeY6Q85qGH&I~pfLDOv;fC;*6Fb0_xiLx!4Qo3ORCnn0a_%2v2h2|Cs zqAluEI7z9KNNv%bpDe8gDx(YnBZ?Cc4Kkq&CbQu#1cta05DgNctThO%Do()B44%Ax zh#H7pQ70Sk6j2dvQ7%!6q6|eRa1sR_^q97)qm^rh46xYAFcd1@-URZw+trHL=@lg(_z<=_RUfyJiE>0U5E*KQpJbdU8%IiF4y7X{ zrE&G5k)j@-x)xg%4Nw^EIMjvjJ?av*-^WmqX>icj;Gi86bJbw)(XQ*xKGo&u-m^Mi zyAX`Pp)DCZ7%YO6w+#Y|odhsOgcc_NcYk6UvlSDiYo;64bW8vLc#0mX_%j^kgVX@c_pm35xbclr~1`8`?Po$$dCB24}y;vRL zKJ}7fVPongsR%Xbj+^d@jlxZsJ!cqfOp`^54T!879I9LcV}X;636g+dV=RT~*mccx zfG+eT>};G63MHTuLgg!i5x)&30^}X&FP}L^$^DX;;AW5DCWG&eQOhg87~I?-1fyr3 zslj{4LeN)boDj+-NkDK@K;b0Q9?8uY^invqNbDz#;3YG?hdT|-uIY0 zFF8UjjZtF6Y-5yA%GH#jVQ$zltT+wERANmUp91;UZqSPh)71Gmf)MzkD-b?)g)%Zu zj7U>tx#9?P^jnT~nz*h#-=v1|;2E%x#U>e0H0~dP)#mXTu!XT?jpSoyA~a^UT8&cy zeA!%Bxo0KCy_sr&a@(j0mLR=Nzqqh|qb7B&u{dUm&xJS`51;3d;9oU)>?T+}`v+qC zOqB^jj0%MvRzOX-s#J%XYRmlCL3PcKrB)#CKNwpT2`>3#i|0qrY{z?9v2Au?9z=&? z#fbQ!nfddh1F^%ia6XLDmo=pw35JF2t~zB$C&WU7#0l|-#7PXl_PcqUX)TqMq^znX z$B!qE&86tt7pmzY7fyE|oviK;|G)|JK^IPOXxCQc7 ze`1mTQ!bcv;I#M)r@Y6PNE|ZY@}FWmYTVlrMGOewNz?;pSj)g79ca@ckDW6Io6`A+ zrKkc-#T?%DF`PvA;u-ls>Rwyw*`%Lvl!*iErKks{c#;Cx;jd;ZwQyN9&8gLsr7i)% z!g~gwMSF4I&7@?>a%O)snXh?-?(Y+*Mk-yB<#gB)iL_d3mn@eaM1|&*c({C~zYju#@^EEX36Rg;C%xqre@>MH=AF zM=yYa-IKY0bLMuafg2(C@ZZL(9?C6)&d*LdLS$e>FuqhWPOp84{ztEUC{^mnabF*& zX5$qV)2EJsKC+G!TFLQhl+wD6)WcLlFlL?PIwZ6p9{4*}ig(6Cja$mpwt1KcfR}`A zAwf@cLZU~Vu)K^DI{Cd6A-!&*EHoIwv}`ralSpFvn`1BnEXG@hVST>M;AS&n8Qi>w zb8oWt{|$q2`H4&rgTi_WCz(E!6a_0pkyx22Roe;yn`5c3uR#&PEp-~~XoP}U!q1BOmcV@_! znE1Mv)tb=p+Q&RLMDyYscdK3aq!Y0GvT=j`aqKR2-2*Z!9$-?P99p!Od-focA zir?vLapS40wK7VfEKs>$7n>0p%&68{H$SBwJSOXz!$;)|&K#N7D=)e=Z}cbbvN+Y- zqVlLUTJz8a9)pMX8#=mwCcX44P^@K<$y$#7!s_u&ZL|=)m2#yG3j1=6)&wu4tv#$J zScoU=*Q2!fGFolZ9iINR5erW70+CQqdV$FFCT@^boA5G+v=mcw%ABM$smIqI(t4Q& zQ&Lln1Wru`h*VrbNG0%VN71V3^?3LNSen7#Xx^p;Md(@IXyGQ@gacyOt9Tu~ z$q~H8v$Y8QWh&4&N%RfH(ZPMZqcUJiRHmUoaftmoZ}$w_&TWrj?fa{&OW8eIGt*5$ zPq|)?UoWe*=6CmKB~3ctej0kT<^onwf7av8_G;BkW>->+3tQtHEdJT{<;5nr9F>0W8$!<_1sT|DdU16nN1 zdQp{GjHC%N>f=5Ib2`LuVsW5fD;gBxfkm54R^N=*-XU+l`m>)+0Gv0~$Zxk@GNlBPE6#%AkqdqZTqz2$9e6yB>i#h16 zHK82PX}sRH{Ummg>GigfLmL=xL|FsyzJl|0C}=b&#&A)~tUs~agAVG?zuAEI%m#=u zm3|HQ^;&uwAN+|{R(adtYkC8I;uEbZZU85~lm!js(4DtYE3JIifZp1QXMt2w8SAIA z1fgQc2CKIUG+mUs@C-H>Hi+t-|T6yKJv*?$bwFHP+ z6#Wa>BX!=rMGJ#K+x?9GiDI(0Y2|psty+M>@WBHHHbrg7x1Rx28pYvoMsig3T&uEi^@4ct_Ti*wYBYtF$2ygBM228D_RF!rYvQ5e2M zi&iEZ6ebv@q0YcJ+xruyg~PDLn+NOJ)qpr1q&D|Gj8DEq+w48^QnRN#3=uF zLzt|WR#7R}NUHaphI~vfEg37YCBI=@Ja7VgLZv92q&V>V_0~d^Mo#=Az0tqxyWnGT zb;aM%M+;Z_JMn$fwd$q}7yRA=-}JkXzv#|Ty|eU`q~=Y8wo8<(>}Vv_s&c;Ot6X(v zdMjUxFkN!NFDQ=RjiY-j{NV4f#M+nz8&=fDycXX)rQj1zy$6 zG;sUAf}8OkUMIy%rv~nk_p}6Mu7NwtiR-GG;7jxc$jLPtVip>^R8-k9cHv!G(L~~1 z+EY|c6MidNOHxiW=DxEr)ESlBPzmGIL&?XL#@xNK7Q+Lcs)<79l-~?aZW%SaR~aJl z<7;0+)WD`mLh)`Q#pcmON&~ng=llZQ%*$2Pf^nYXz^6G}NigtZn@BNNs)pw6RD_dP zO{=A}H*ne*G}D^!Mlo8tXo)wg8O}Llo3hRH1qeC{IOa&aE}H7D|MXGrXx3wF7xW zO|7z$;zTZ83&pfBkej}O>{c72?l33vTeY=@iq$|K=tOqaF|?IXJ%=9rmIML4=cLgm zS!=8;H)!M=G#tns>uBYa{Z8aB>Oc$j7|36|g1oRUn(2lUxv(xux@sU_aw0zp(CYIa z>S>V*OmZ@#Ngo^3hk`53q(>2*Zp708C z&9wUWX6v2M5s3RD}|CP~V9gWOr8 zHVJ=$q31@Kcbf4J{=)qJ)IfS-l=*uz-tH+*KFc*XW~XNS-=}K4Ql`0-bgAaD*1&V+ z4P^-4zL&f?My3e7IPC%EzWK@=s&obkVs1i9sCS3vJUkIYQ*(TQt+nB4Z(^(+W0aZM zT#hy)jWV;1GKV1#jlC06G(Tmz6Il#3`3CaRSCH4IVusn{M5e`p@`ZuC%Zcn-o3_nm zZCW)iHWlJ412N9#w!(D$hf$l~TWR%`M+UtIpf^DEFKzY0`l=GW^b|cv@0B-59i+jE z^g|@yzRw(8(i%+buM#crR~jL)a>Fe@i9EE8HayZ=UdCBV2?Y8pi@!{31maU(;%AMl z#}`$z1l6=gA zvZu>yMN2)fE?V%eth1x9?3dalKBa)g5sLQP`X!8^3m@aHf^EAnz1ATzNlNV&vd?7N zH6Ih~i%_kp(y9gDW7jI0dI%I#S5cr?`C$@h6p3D)|2eRy7h&K39N1GN_Qcn*k9>i} z%ZEkSVPB&7wGw-k6ImI@mIX{ux{6yW{w;@5bg0lHK8?}iqKo~Ssk=S zxO&mG>AbwM9iEH^IQ%6;QweP;TkZ5%e00&QrR?+7 zTk_K*vB%J494r6~oepeM0~w~JJHBZOPe22@kB2=x$eD4-c*ro*B~Rbi^Q26`xIf>S zXY&M@vvXbY%z8b~;)$BSvc;L_&O~U+MwdJvzn$igms}kFRM6+2l*%B!|RCPSYZB!J`BF z>NKckEf?(S#juY}*Zi>^>cEbC3)Su}u=9Vy>w>O?U%mx1b6OE<<_s+RCc6;EWsNRu zq|C%;PahOvqc8dMy)(5S(;Am7D~n~BGYiSz6lM8kmR8yHwF~xvV%T5J#us3}6=7GH zgUym#F4(vmRI)Q7$>^0>gM@NCC7H?!Av?P2EUC%#RhAN-A~pHcVwhs(@IZ^zGAT5R z^i>+ANCl2d;m>kmOVl^g>!ip@t9FWTcj3Rd!{L!a) z%2g-w@PE}f<&uG1@Cq`045lclvgV+?`2|dgmj?1buOQPWU`nJD`PY|f6$}XBX%KoS z0b^s%!3mA~N=qkxMUxhTb&|lxI^i{Z+7eWTIPoVaS`93d1b*g!z^A<4nYwTeJ~yqvw-15vTQr2Z8rE8ln<1^~FkzGlE7>8WdI_!hq(%^PLnFOjYyPMa#?^i} zS7?fj-64&&Qsu3!9iNN(rl-SUQcT^EnWIL*2TA?(^gQQYDP_9YSSzdcBYeK(qFPyQ zoTHHXO|)bs-6*72YdJV~Z%xN)$vnC#Op$j)i3!T;)_inRY-c*YM@9T8XL=xi(G=^= z?X7vaX6WZGNE4c&`E6&(uALdR7M(e{wbS}X(?D1vy0naTDEJa; zoD^R8G0t>)T~Y%}mT2SHJpQ-%=J6YR#4zl*h|S}dm(&`{zXl)ATFX7-J(txWQzd?I z6!gDT8(#Vf-eZd5(}$x)DzuSX#+R=^Nz(`=h8G?-n;qN6IE5kFV%r#5#a9*cuHwz! z<}yL-9XFwH65ePAD6;!OnW|+9;|IPoy9lO z2D7v~YkFTIt}cey`+`~$rvVN`+Mi{{{_J6ikMn)-rGyDiiuUOt6(R4xipv{!ztf=u z&3gD?+;gc zC}6h4p7A<%=qcD{n~JcfoWi8FL1M3a9edDeRP|I5_QBJr>IsQ`^mXjjXMl~9dqXf! z&j9iT7GbZy0OS0o#J>JI_VkO` z<8W&)4K?WG#fzwd&ezU^6veK;nZij9o!os1Mrt)Dy5D6`uk3=3uf<%@?_Jism9|dw z##gY+Xyt;QQVbmeDy58cqC+^f@MWHp8N3zfLcQNLpyxZ$zq$tWr7q~X0$mBhr0TNt zMsE~@%U@#1aSWM*2fnRvAmR`a;Up!x13nYP$z*!AR^HUniGMU325vhSe2nD=zN;WmoEXf0X)g_! z$Q+!%&2W-gkfSB??aS~dG-0wN;=so0+{|0uz}Fg+M?$67IrCwiUYTFZcjQ~+ny)_J zG75eDs1sWs4cUF;!tB>Y_^!-C^rF=c3n@E{S-6!D#_aQb@PuLFkCtQPt$0^$jL)Wu zq@_GJ#QOLy4*bIjsj1@Ak@vW#R#(b(G*)XJ<%D0Vqm)JC`)U~W$sM>G?yCt(BcxSA zUvQ#A`ssKB-+}e?fm&1PZ&1u|q6z!>`a^s;F|PiY z)aJ@32JZS-a6kSXuU4Nf!qp#R4R_MOJ@yLjFONa@aS?8xKR~z8z`gIpb(K4WC*=NA z2-MMAg5-oJR&G@~$==fNI9|G^tF*b_2s&)+q3KFA(r7Up*-2{lEgL#cY9~3|BzNKs z=V?(&O9QD{C)oy#JIOW(o{zz1xDz>hzE(jQVjvHC1-bbG?8Pi`BClP5?-qY{AR*MQjY}ESt{$gBqbMaw3-hQLTklaSF_VPX7TLQx5)In-$e_2t}|>CZrP8rKnki4OxL--)A%n>^Fpy6bKRcZIw5jsIFFI zbC(=VigLIX3_TD9|6E+3+%ckM!j=>cZKijjSFUnkVic9HOziSMZ2||#P2k)v*r9c7 z=PwB3BRb>Vke6M|9(>+ltzCv=TlgbFTTg!*@b}ubuv_DdenST4WQ`u)|Nqz4@TM-j zt`+Ysy(9Q{=pkxAHOFBp)ygrXoRkx=aN2VWZ@<&2%#wbXA&Kvv$K z(O+{{raJ2SfMN^j?|1t9gZ}=czo+!~jQ;+izZdlPMpyhP_E|205sfkRvpfI}>(n-I%EXDr5-o5l<${1#Q{D&_K(1q+)nzT_Jy zVn|onKS#M?z-!V~DsDnoe!~s#Z!{D*STC$S4AkVVvTL4lhv789i5lYpd%K@RO)rk> z;faN=&51hN6Q;#%i8`Y=YA-LWkvBO}cY9$gc7sG+R~+>nZ|vZma-u%-#-_muiF&j+ z>O~)Hu>S5uZRCs1wTBY*UUAeYKcEJ5E0VwhKcHenJ%*9cn}D%n1+7c{k1TqhZDbL0QTX!O8id6@o_rbPnqIGT@eT#CQ8(C#ZkqmGbaeA z4{M$HcY<*GfX|qS^%egC|3oRs`j8X9axi3lP~z|V5BPd%Or^g%@q3rnDqvM0=wEl@ z;|L)BTj%Ckh6m$V8r`6 z9NPwdeEU_QvjE0o)`OyoSjP90wBJA;$naI2$k^q5tu9`_qKrzN9#ZZhA81kh_$95G z(zXYm_kmV}CtcP?DP4O=S?7GHh4bf^W%8q?ct_>ohgumv@QMr0-jDDSUcyz0Q+}O> zFXpehBrEH&12^%SOzyK@i{O7>lgX}f2R|eO-uRLxUl4=@;4=*pXvM8JFh7*EZ@U47 zBu8rWlDhrw&o~mKr~Rez)aDm$y9qd^U$s62Gj3~RObVPQFIk06m5O(?H{ov$1VZ?t zJK9Txff&YLKGeMJd+*}p4>8ChVtha!-XY$-t-0G{?qd!jGQCwaLfar_<~@hv^QB<3 z?rz`o0AmLw`u>f@3?p@M_NtGyx2YT|*?#p8txi#)c<|=KOW_+W zQD~n(T?@T4jCsrQF8?LVv!lGdMU);sbD@L>Z(bPepp^BGE2Rcm@YnESIO-yuJWrP zOtr6e*Xx;Z94THBsqCqzB0S=b7GhuOshcUm=Wn!EsE;0CKk22%n-u?`T|W9mlPOOs zKK$kd@GHK0O(idwZ@;0HwI}%LDkaAR>aq5LB|*`YXW!wkPaufM874wqJy$PlKNX}8 zBh>Gr^cee)V7)z|>?=>$d5JU<`>G0^j%i_z!M&m=k zDdnLqe}w7H2=jVxxYrYD*`ryY9chh;(7_7&OoGiL^*IDlw1AzX_345peIsgrSV=F$V;JEb;C)ChK(mh1VyQ?ANE4B6B^klD}tbZs1H|xlp_C@vdbt0x_1O1xF@i0S=;Mo&d zfW2KKYHX12RRu)WG}cFmCrdkt5Xe_oV;=TyP4y)re$4^2#H1E_xV=(yy#__u(_84X zO!)LdR1i)R{dluCQNepsy_UbJTTIHmAp3_Yr0MXCP8z|79<=!I)3K}+zqA@c?4PDD z7Kv09j;b(zpgsQD#IZpBMH^r=Zmq+44d_g6qt6ooun3+&kT~byoY|45Kd}K`*h3j==^9D4{CPt&YKIQzCqch}<6C z^g1F@2tecxtCebrrEuE?ca-oDjf7sAp4cCb(ql~c)LqP_@S531i7-Z! z^J8>oq9=@afjn-TuGwFV)!j_=PA5&g@Tgge452mbNJ`193xJ-|dyP^ij0cM{a4 z;SUx+d&oo*J>oIIR<g|;421;vbLZ(LC0t~wzD`@IjA7oE?PrqaW zqEO5|2O!-C3!%8_t8~o#NJj@R5P{Ka^-+Qd#1z8!9?(5;UxDt!y;7K)J@y0rU6F_q zD)UQ=FeO?(k|l7I5N*#|r*9Wz%73g|1t!F9keRj^0(mzTv-YBO7&*>wps_`ATbX-r z)=S#gZNy|qQACShOGRC?(;WDhi$H3MJ)zst20s?bVA3s12;ce@6r+xOjxEdQf3N%T z#T_w&?L4J75b?q{1g2?CB-$&S(Njb`6=erLtgPo!<>6=7pEvsvgXnW(F8fh8nH1cO zAwCZNr4wX#^epOwx81A5cjoEgS~7=2USA&Y6UHfcttbBY;Ggu%c(AuTPqIO5rvm*c z!8RB4=ahgiBrtLyu<4TCMFi97n1$uZPe-i!s4~>=*#|}NYn4?mAL0!z1M%knEl@p%kzf!^i#saa;hTSE2o-; zZ)H4@V`TvHs*Ff-sf;J`r;I0Zri>@@q>LwWql_o=p-e!gk@sXgk>_Lpa+?f5K9iAw z946z5yd?vO%PSB|j*#uGU@1|ToTh$I)s z;EDVjLuJ11Cx9dr@9OO#2`w}iBomqnHZSl zmKgcSCo#Anhs3G=!W%KlC0E1%{p8wMax!>K{S%`kW(AH#Se2g8I(Y3{da!;RIC{z~F6lPa*gP#-sy7{LWbR(iQQ zSG-8=e4;n1oljI1dZHKVbFHO|J<*%<&NQk7J<(o0u2d@aMBDMsw6at2>O4IvfVfJm z*i%@sCz1eR(jIuO*zR^d(Z09yi8jEUPqY*6e4;IJ=hL$;@UHHBq+N376K$6}pJ?CQ z`9vG&&L@&BJ&~+)g^-<3ByH!D$3*!=GeEA@YofS&C>o6+YF{idtk_feVo&kKo)U{a zH7@qlwAfSgVoxpcG?jRh#itZY>{je)P_d^m#hzvsdzw}3X}0Ur=mnkwhi3KdGb*d! zsGLlED8D#wfqlzk{f5bhE-!?ZF3?8e6}O?8d3?T!HG)s=bdBxCiPx1UdYaNUDE}pv zH1G!wrbnFMsKu(KRnO-B>%kieJ~l8se3(LU(pmiN(81 zFZC<ysN^jgPRZ z7NK5GW%D&p^m@wpAkI|wr&6~x_xnr#UMUFTA3fLmC?5p#Uv#z({xI@2)<^k1nBV&c zYpJ%S_(3ykmPpeIPI=@oC#DrV(X;|U9`XTbTA{WxXJ-t~$yl)Ke@{X z2KmYdAV>KCbWIPe&dbSqfqf$e5w~qs^NS_!U9Y4oQz?aW9fKnf!Cj##>y3V>#J0GizaXmS^*)Cdt$KioZ8#RNI)iRm6_G~ENxbPqt&JpfJj05shL zl(eUpWZ#J`+qeL>n_*`)Hh@*IdzWKkw{%zw7RDEZVujcsl+Cp$xM=WbG;2vaa0eQ* zQ0`d^zEQ9FmhiNh-k+JvUtgreJo^=cF94Xy2id3>tZNfmck$JbaE95pOEqdN-#J zuC_1F z7OGc`LB7$G_{vO-Lc*(bTyN&4iRf{>VQ*GZ+Y|+qQj+xa-mHv_D8t|H&EjRa953jN z3fv}IlO$qDAJ7XOh+?|*Vdb@DaY$Mslf3)E5BocPu*Fu7#B>Ch+Iv*@QnK!*bXJc4 zmLWM*d3|c-b%XJjlg|9KV-ZTp=)(;L>=R#So z4TJ=eN!k3Rz{(5)_8`)!@-lmeK`7-6@x56_EE&Yg^D2EIoRfp7Ur}S7kx6cYp>DnV zL9Ln&hDto77TYb8W)Ft`5A2Ox;Ifov?u?|_vdG^DV?3JP01>#yMKqcf&0Pv#hgk6% zJ4Lj%vNEQU+-ha@0XA4!bAUoCs|!$V2x|(EGlbQmGvkebnz*!R9iK3a8E5D*fwW&d zl<6`F4!g5im7?QyKgyUrlr@s6TlusRDD?PH7DWkJe|c- zK`*95U^t*{{ub+?iMz#?ON1S7L1IXF`4$^WaM%nsP9nT75nj$<^(mpjOlFk{AIpTV zXR?MeVxx=*nT3(&2~V1ZzDHIY+>8m%@@7FBMZ{+^;^r(CPKUAjY+#aQXWb(c`p#xy zwBndK8&>vN+z7A#;C@JpR)vd$TkxcFG~FU*ryhcAQ)b#@_o3o>{w!f+%Kd}P9iMJ$;THZOw6MFQTqTZo|;2c;+%FAPy? zyTwp^k&4#^iQbmQtcHvT<=Yoww5Q`yH-~+U9Pzp6<$$(aR#zfM%beG8p|(iyT>>2w zBx7X4&?Oizkg#?MR7WIKmkIwaVbv)i@om;xCM3&*_uj^)6cVl?fne-X)}7$|r854z zrK}Y_hvZ=<5ERp<^7u>`%9HX~2(4;YFXdqn0SsTp5^$E-aT%*GmblhlMuttx zSTz}wZp5HV;KHtD%!keleezjNofaw9fm8WbD+DyQBa3h-5fB#VgC)T4^I3C=m_3!} z_Qj-BgR>wy8f?wcw1BfXs~aXR8hjgj3h?`)*+${|E9-C5K)uckT7F=vy3U~xn3`S! zVyrFu4(fxkw$3|<#^Bfuu%{R-`b=>p68csV5iwHa7fY@0Oci~4Yq8WfovG;HXQ(9f ztcL`lnV!o5A?qpxA;~uZ>x(N2yJN}ZtVSqmU{piMtADZ71ZOHl@xgM|eQFk@FdN%+ z_!ifiEyDu{tDQ@Hdzbj`F7Z8F;v2ifH*tyY=MvxFCBBOcPZb4sbxG*xlA)7Je5y-) znoE4TOMHe)d@q;y-Y)UYT;iKghImkWQR9{_32(Y&sO=J;Z|D*~*d^ZT65rY-zKu)#ID{>ZwjXa--eY)s z1wPd?SF(Wwzgx-ryUT3=YzAX5px!Fh-$O)Pqljyh`1AtIv4tyHE&g&93y{b^Q`*lw zbTvjOP#L=#JKkQ^_|L0B6)+U7@9f;a;{PC>Em}T0&&+2=Kg!d@n zy-EDchpY*2lT$+FH{NFf-Xd)^rP1FUe!Z_!*OTZc7ZuXx1DH;@G-A^SC=5{h5QWKY z3(B`2f3h&#o>YzR{E+#2$gK-X{YsSB%Ui@8rWpE@$fV2*?;8`vNP4$GHqK(hgw zK4Akqnkx|06^;qOg8Ho$Z=C8s)ec}`5;b-ir084>p&BIWVe(Klk3j zg52e%5z)cU(GE6BMm(j6r+nKEHqKjMJf{fyo5RCmI- z7UC^8p(w{VDm=fZEIZLRxo=KZM*n^pBS-bb$y}bbDsOLR!|5{9uk369!OEYr{$6t9 zit?AjpA@3Ffpy~Nct`vG=gh}Lpp+q$GGa_=%pC}Byw?}tS|F4ogmN@qlqtH$)t`#_ z;R}{U_n|fYl4ZHm_7`g3XQojW?pJf?abIE?;I*6iie&2~qBM#6N@I~cb~p1T0&{n> zw@ey$-^1p*Yv>%HV1H~TzP;E_Z~!Dx;asyzd3kYjasV;?&8Tj zh|U7EaR=E<1@7Ko9AtCcX~Pf9%`d7X$j5ugZ9wXpr6zOFuhCP0Kk;ieTd7)wmpH_x zTdHE~4*BwDN{w+`HtEIP_hW~lbW_#M!%8^T*2GF{?t8;gb#WzS_rolZXyqIR%}rJL zv%}yCaN0Le_DxlhC7tro-yA-jlzq+E5=k7{+<2+y%#(1lkFa5M1MJl!tQW!h-?H8w za$Az}Mqvl^a}*jj4r5gAw~+D`>X|RTWxBh-szg|oxX)46S4LE&h^l<@Q7m*p@4KTI z0CBTf@-a5lLVK5}@9vr0_b6+@eI6((UvmuY_wpF?^^rT9lzkcg=HzkT4J873`nNFi z1?Irx%!^2kJ&r*b*GgVF4weDyodC;n7nCx0Hdw|DnHIj7uF3rC1oL#48={2Jjks;X zo$2W(q0u6}C#Cl!<{MMG>Xtl!E_cndqL`B>*<9t#WZvaFw%kHHsHn+VsN*Bx;;LE; zpSoJ{;UAr0e*E5Z-Pgw|cUh_ZEi^Re|BD7lU#e7e!M<{el_Q!jPT?qOb~Imenyn_- z=nR|ZBR6GWv)2ng5OT0$z2Z<~yqoQ&}?;vQQZ|Iz+$Ekdj%1x0u~F3QOF{KzILSv7d_S@a6p8itIX74-^Sa}+OPttW}bN!j(qSMFuz!^>S} zkuuGP(y+hX<}w>#5!mHsp&_qd#K`yKWlXEMcd_ObR0wd}6_)KG_rQsfImS$rJ+Xuz zpLUg%aTjUxC~Y3iflcrcgiKQNud&kJB6%St)88C^Fb{QTcnv#}AU^LJo35lpanI`# z=3ZxG+*9bd#Gi8D`0555ObC;1unBbW=+hf8C;*54%!azlZFWK&L=$2YetL)M!Ovor zC&>;TKFT3jW78doLk#u>=7yUr+()DhCnEF*jgOyPqMoEw;TNxo z0mR;7Bi-djJ>~Kt6D1SzC4Yq}gKPV8e`TW?ZOuau)A_UlG&}A9^x^$(Ge38^pHKNd zAdMIB&|Y6S>Vgpnk)f)=RQ_XUQ!+RCn{0p2@6(m zXJPXvY$?HuPuN?2@*srhZN{IF+Vm%^Ju%_UPydP81(?_VWN#}UR^p@nVhb%FRuc06 zY?je=r^9&=WGaeb#^^xa{(Is!zQ}X)Zd?O$BahOp2wGyWt}oEf~fRmav4G^T>nEEX7irQ1&a9_S)t4 zVk*cOuKDvSB`lp~L@>|REckf1grz%S{#(K_QYHlORXKPYe}UPON(lvKOB;ffRZBX- z1*)Yd!8@v@g@s64pHRg>7;j(&W7qScVqrW>v*2^w_I#mc=|%9KX6Z(-g>Gp@FkiPc zBzRu82nXFE%+iP)b*CHf17_(!&rccf0Fy129t63?GJ#-8H?Vu9v8dPxHI3Ou`{C5_Vdm2{+aptLMcOC--{Zb z2`4PT(qHE9LpU$IP{z6dSw=yCrJGC}C}`Ki2gBV0EzQVV;+jB9AA+VJs1jgW5cmPy z8Dz;I7*q=42OL@obp||N$}*K;w_y2vIM~vaonNX8IY^K%XP0LxvP{N*a&@;d?p_UN@7lm4u5sVD8%q5>f zTf@K*pl7(HEx|tFmhl8HghO2bJD0ai*L*snM0|E!s0Q;t%UecM!mtXKe1d9(Wuiog z<|F=4EAg!nmcf)zIugwdI3W_E1H2q*>1QEI)_Ruc>gGf9cde*&}@Ja6)i&u zE-~PXiV*kR7Q92WC5GUPXiFr)Poga;^ojVN(cl`eWhG0h*0u+@#7WQxxcFmxC3FiU zcvVKb08XeZpMR>1_P}$+DwggR%3!TM2h0FHoNugRNs@7ODQ?7vS}@nDT9OFAQB|35 zNmaCKi5C2JRZBN-dQlo})D_qm`D*Y+ht%>sr9hgP2wQ(s1 z=A}kDNKuOP(0d>d2oM4U0)!qyNL!K+LMSTo(rYAufkir^fDq|LMCk$|9YLv46ot@1 zq+Gmy&zUoG)cg4d&z|3$Ia79bcHek*m+awnvED$>)m2gSqU0v^&=9>axgHvVX4k`z zp}p#3k3+wyuZEE}Yk)lsUDyC|pf4NXe1{His8W3zAQL>TwEJ*89;f$d#12j)<#0h! zw{8nu1MfFN%c#+%)3s?>}v= zA{pRqec^aN;qW%-5j@YgQDYT(I(eq!P}$!D*M;OjEPE*16{zC4%$LegrJUQLEtV&g z&2EcTyA^j>Op!x2t9>%Zm*I^ zziO{0lD6)kqJ8T1M$gN*pB2ZtaI^zDg96`yBdwn%P|i;%`F_x~qneDq*TRq+1wfX->GC9){jRzYSBhNMD2@NF^*gJ#Z@k zo!{7>I)pIwxK=L0J8vcLt&B(3X)H3UopwrW?A~=$}TL55`dN z9j+;ZRY)Pq8NyIvF%&G$__q9DRna{arSf{BQ))#f$7eY3EEa_moILT6p6>>qV(#21 z)ssOnaxU)X9D@5o?NQ8~u*s*mn>qyh7FCZ8!D0i&Aj`WU(KxJOV0>L(<7_1wS{3?9 zLXH1480XXTXjPn?d}DCbKnKQPSkO%|SeBqF7WWR&s8}4T(A}}PsOezi-5i7QY^2EEt*1U`Xg$&kqNl;c1u(ZsC-%? z_BixPqDt`T?GHcv|Li2({RFs}z)4A}A$X`sk=U+9f30dx_kszemnw4KI|5$=oxfIDr~%@^!9ulBo9-uHo_<~5~~6GW z#^RWV7Jd(_GPM7D*a6U0?_qkNw~YFY!!*F2G>!wG9mm5j<7NNBUR>Bwe!$Cdi;c%V zfgLfP<8L32X@i|}0?$y;1g@Vxf!jGh0n?81;uCRLLE|R!fDcZ@0P%9hjtf*}*ME|# zL54F4$0Rg!5*AD7i%IA_G-xs!hkiI2$367KWZb1d{ifh-fxa^ZXAktNDd+?=$5eD4 z+F`01=o1};X)orcPsP&E|3fThSEs7_`G{hz`E@3i&6aaP@Ak=!2b8BNpPbP_Zum4@ zgQ07tp(D^I(^P%Z>eF#GfM!m|st?UOgUfr(Ku2J&oS{?GTl7_iML4o&GkAk|ucNWHwt9J;# zg0>QUy_Tll$P*hCmEpi^%llZ1@ZpDmg{r>Wa<-~hs7|mRTXj^zQigXo4Z}~BebM;I zyl%ECNxp|><8}+`myRw#6VlaK((H6x#h_j0;1Ua6J_pD3pcd|)g$l2Oo{KdL#yfMd zi=hYSV(?Jkc{p^SgXXD5K7(4Irxo1fbTqlt$H(J-H4jHNN~?c>3nO&;2RMnLr$68* zr7~~;t`Bw-GjLA~J)VK7gkl}4?6#PX9SURoeDoKJld?Z4j+$svocSp}>oMGaEINr) zfE|!dib)wuiUCYy$G?w+#szfEl6K)4o}sF{$3CRHn_yQh!mL6E8{NGK$2)A_#dPxl zzF75CRNonkX?B15CO7^zy;!x&quKabZe%jnkCsbtcEEeq5-g6oWV(AV9qVH0rP#$N z7_?NyaFsc;+|AQblD!l+4EV+>hV17KT&C)fF=rX38hULR#!Vk!U5?3ue!Lv}2dY-! z(1IqczzG6fu>wC3{=j1F>~i-m!V%MOC5DB9)Rj1}p@&v-z}G&)?8A=v2xl5}%SS34 z*|(lmsyQTRmFfXmyh;s%yj-PvLb`vf20}J}teQe@e~g6;c|9SYsJ4nyWN}hGpXFw) zQ62L}4v9>}|Bf!{W`Bai3fg70ipsC^Xfx?TmieB0Z-c_aX=_vsPwf%(noaFqbPdif zxF@f{=%DA!4wI26$(6#GT zTt3~63)GDZ?$Wg?*!|CXmCsGiRIifD=uBMLp=UBxB)evjYnHp`Q@Bq1OckQig`aWY zXP@CPh23HU8b)%{$_?1N(BC$w{`rbhmfIbweaGFr9(Oc_H>$b?YDeHN;PI&u5gB;o z#ND_N0k~ob*Ru)twHa=gO{x`S_9hhuxxNYeAj1vZta?EfZC3I5bzbaW6!@?A+y^^U zkc$^h<;&@0xP!N-h=$jGg#H{|426%A>y zO~pZ$Zc~&4`)r$vfkbRq10Y{*S25gN1&UW;+=5%`b+`O>RXq=GD{xm+v~ER*^mMq?$|m@FaeAfrJ#j-%t0>5}(^wd^LnI~Cb~}Uh9{S-KoGZ}hXK-#XFXQ$- zi^U$vc%PgFgx)@jMxZ^<;m-=t-RE#ZK`VTR(~vW0X}2AB2cA>y-Od4di{!!sSnjRw za9M!1KaU@0&>iRTYX@5H0_)TZxCX&~d;v!ZwDI@&`wDXZ)_#wPg1-133kP)I4=SY~ zXUI}BH}Q`fxetF?9v_<1ygtb9G8U}lwt0PX;h8VD%|-MVnt2h|CuoUF__GRh(k1*_ zgg&{1Jq#Uo8TSRypD$zig`(jKZrBy9^vFD1cm?+f&>yZ~xq>#mirzw3UsVJ0>+DYt zC9`?F?!NQ5K-BqBRdKstQ>Dl!@fz1Tc?}(b-6RVmfiB7780tqXrLd!a#6&`m{mA9D zf8z4RKjE?l{_rPUP@tjLacD!=UB?9lTHt3at{Gx_&-~6d>{{QS- z-y5m~P9&;*1M>_WcY~u`yunfYf92Me{EABQ&qzDGe(_nVM(juuDPWevqKL`T5Xt(AI{L>*|(p)hs)DLJ_;H7<&d59H1$6lxM1$VD zgXqkQy8(Aq(KqO!{Wv$xhu#=HazqAhzC3>MNkgK?)J_?Znn4c$j=ZZX(F3N7@8Z`J z^vqqf0nK+0iyJif9@~@e;a3^#o%e790KH{&|3mb$;eD)tfcYQcj&JFGRho=l_u2FI zeJq!-OFiJ0T0Kw|$sY1R`H`Z<*WJwzR0%TBY#H~)164K;b=~Qa+r1x(;>r)zYgF9y zA;*e+i2HNc8Aj2Ij%1?)9Y}jU;_^w4)LUd{K2lL$ozD0f(hQLZxrq{A3B>up+F~u| zD*hJ{z%~Jt{s^!`0OdRad@jI5+)Y3-8R47k z431f#BOJGuPJM*`Ndc7i2yj{e>xklV0*wC~1az+A zo7jR!WeX6%o8i1=O@~q+QC>}eVo*Z>B|5^RmH-p74gsB|SQlIHXkdZvWFu=iPdGpm z3%m~HIif-{OLU4OKnnpTWGezX88HA`@CdX(x6#g84rMo@xV?ap3_1#+L`HaYnvCQB zUm?4Yi%vG|iY>Tww?Mbi!&*9(5yia(Q1&7~Zvm982+&u6i8z3Oenxj7w!CnOv_!WN zWi6ehh~j7gQ~@B40Hr57@eC3y&;gRHrSlZwpDe)mk07A)4O8j(gUe`3bcDC9<;>+l zyeok65#c|MKpb_!1ej=n4lvnTItvm0Qw13R83d4Li20w1O}M;o2(Jg})C{6M?-yYF4-wEgf?s0`9!D*p0AA;qHIaX)%a04_!{DR<$}&WR(*jJ$a|CqO;CI-9 z$M+WKPF}Q@&L>3iWdUAO;TjRi287FX3v`5EtfeywQT(fbENlVXBB0a!vKid9KnJ*Q zEhG_Y|A!1{{wZY;5gv;RB?4M&umz9TEYJapTFcqYV<;|Q8-tPpC>xO0|I$KC z$g%_^p$~1mVS#R=qP371sJl>E0Hp-N|1ANO5eQJ7fX?Bo!JxJUULCTIHIW&pE7TJ} zIf01KKma8G0yGj}LN+C!v;LZ43m*O!=q6fOOD6@QxU~k}DyU^Dv?Zc5`PyL%E*&h; z5rVDd#Bmow1Po=+MF3?1B0#7B6ETc{PW$VDEqHjtEzxcCv6fSqBlHtsDhwo`llmgC zg$RQ!&;f>6%UQ(%VgyirApGM5P(mPGe;gquWFi5b{Fj6+cnr5dw=u$6IxP^zBLx`$ zF$8p~-`m)N$5;z=fN|Dx&U?92r_F@bE-w>E>^ZEczSfB%(vX)K=MDZB`$OF{BKfWU( z>3nec!2%uOlC^XyAd0UDp!7e0ECQ0U2k^56I=~HU>100?|0cjoIesA7M09T5Z3g!& z&=DS3%X!GfzYCyTJOp?q;5mbr0{&$13X+q!i5%EMmD~_7lUJGK6&J-IzW~#%LIO-j zUK3zCQcQs9NJ#;vBV`2Sn2O^MJt-%|bmR>IrX!UI=+wH(*g}=67U=n@ZY`$<7uOcx z$Dp1C^Q$1aiT-oy1JU}^$QC(`*|(X1<_ua2pu|2@X(J$zL6Cs<41xtvo*$}o5zv)E zcLH8LCQA2%OD}N=XV6zbKL!H@Q1&0H3>FZ@AVvV?0K&r&U}i2+0Om>`|H(qkWQ`C& zbA%wH1ehs$TY#COu>#B#c?Fm$nkc|b(G&nL?^H8K)5XQi(JTRGie?KiQ#4nAnW78< zW{O+^W{MUGh&9LGQX)EOaT&HS-jx>UqidD5oR7J9jexZb)(gmFuu;G!23rMeW3W>L zug#Q1qr1h$^kR% zg~n1&nWKo;TmYqw0<;nkz#vdSTL$d~m^Ok1n4p~n=%Bd&4;5mfh6ylHdl8_VR3{u; z=ty4+bjSN!%N9ovpbS)J5c@}2p#7t*<;2kbN4$6;4p&GNki=lPfD{HJ1(-I*2#8^i zcLkWB;{=$X6Q;W-Se5&a%OSyYys&E<_Y+K!2$s;gGB-s zV~fuJWkQy-%SQrMF<32N4TE(8)-%{3U?YPq0=6>PAz&wiF9>+`V0SawBQ9q2`vsWs z9ui>2dqjX4?=b;pye9C{W~YbjQ4^7Gv12=%y_Q|FyqYr8F9eu~e+n=$UO`4Hx2a>` z{L3Z81o0stIl$`U<<{C1yEivKv4n37?c!1S;g=uV}aKODQAgeg1jNX z1gS(oXXRGL7J^i@KzFOUwVWDUTw8!2gL(oe6&L{;O{eouhiuHGnYc7(&{9Av25kfc zG6)ht$-;;lET9vEE&{qT=q@14%cPf(a0Yz^^kXnkfEj(H05jep0?c@01(@+V0?cp| zr_=RMPkju2qRJ4%2V@7n^*c*hDbnS3NJs~D^nu!g}p0j67@2{0Ym zB*1iJs{qrH9Re29{9`_L2{9e{Qh@2mUIC^f2MFkw*BrzaVjQ+W&(Be7Ii~nq0&~Lg z&vEuYrGXbjS2**(<=+vgL=Tdj=L$bqp#3jd%NAcHkR5=3u3-xu`pE+A|FgB6U%2=; z4ZKw0CX?IZa)-fv0S_2F7GT==Lx73;T!0DsQh*8imjDV%*T0;|q;_<2c`j@L_*kHO zp4VDB_Z-Ff1r%Wa!U9ZyA_6E~9aV}8FjYzsz^4PS{*-2yvWD>PC~qxW{3ZeY{>X~# zU&R95$*R_Js&R2m0ks&^5m1*w0|H(hvLTZu;?k5s3jzKN0tB>X&{jY@1|0-Y4m^e) zEWmWUvjB8eUw=b|n7)PyFn#SMz;v~b0Mpg}0!&vU1emT47GSy>4d6wxJf_5U5diIG0dcxLN%UR3C z>jh*o*eGBV1MgNL+nDSWFpfvROMq$gO97^ty#h=#2LzaAz7}9wIZ6N@^&1-!8juX`_Mw6SblM6Sax}6SNuudY-_kjxF@F zmIb<>ez3e;UWd!;+j6G?gT?}yFla8I1%p-s0vH4eXv?6zfDQ~g2?&|V*Z;0ULfIuu zKo17t0(vv(C!jxr2myl_L}vD_|@G zuK+Xa69t%Qo+6+DIb+967h>jlmH;!)vjv!Wo-4r2bA|vj&#r(FY@wA!0?aforTOOx zF!Q`ZT+BSL5@6nt9$X#LV;O0?a(`CeW-W{`nGH z7|mV_^ufH}TFwD3{#w9c2Hyxc#^40R%OOuPIU_D-8Jrhj8vQ|lY38y3)66virkS4v zm{xuv5FLbnZkXf$rX_kP+17GyV+$j_C*VGVM*rSs6GVvkrQm8BOVKMKl5A5DZs^r1<;cy@GmN$7=w}mN-^-hE+h|=@&ZiM zHwBoel?9lnRSD4JEKW6Sq1~Dm=zi9=mgC38^#s)SGHE2FF@t6TOh|tLCP;vQ`dlTD z06o~^v}MrV0^N&_)^dWmxHAE-uF!=^H*x9Cpr?Rd4EhK#ZS)slqDBZXK?e&kL8A$* zr`d{`#rL1_mgtTSwU(2BEzIUH0m%$T2uNixTEG|v?+T#jUJ!%knHwF?U=jmbeVBiYC*r?q_0?c5R3ebbW{pSiHW;Ck=n9-~jU`F$)05h6Q z0cJ281(?BX5nu+hT>~%e2Q!+_iSXk%*h1&Ov_S8dJ=Svea`6EH2N@g|aD>4z0pBt> zDc}?X?^z+|m|PIBi@`+!rrj$7OuJbEOuN?wn09XnFzwzXfY$)y`b+Nt#$az7!uOwd zt>rA>;`;(VWbjbH5(bY2ENAdUfNA0x0sTbJD)#u#EIR)9c_eh}Hn&0`@Q{Bw#-SUjc_06cKQQK`{Zx z7?cojfv2`Is!r-0H7!UdFN(8mCrfAp{xy4FuzDl!-#pbCQs0rb=sszeH?$skGqJ-P*t zXaV&Y#0qGrf!B!_Vs=ad0s0`LlZY(@Nwz@ms1$42;*kXO!&?5_#uy8<|2x)l0=Rgr zfWUEl{*4n7#4h6nbYw7506h?fK1~+TmBCa2-5E?5(38PT0lgWd0eHFR{g})a7c-Q( z1ms2MXg9+GJ+=kbat3pNg#w}(ED{jMV2OaC1aSRZCM1bnRtOl*;3EO43_cbxn!#!T z?=V;^;5`QG1dL~psR4by%$dYwgSbp(ut~rS23rKAG1w*`oxu(P^B8$wfpz)_0v8STJqCpZ zJY?{iSIF;7iVAqjptyh+3`z?4lR;?#rsHJ^=tlx`V0`FV1q<{@-n5pJ+soyZgydmR zMF2fihzL~$6kt$YKw$8 zGJ|FUsxoLHpaz4M0%|h|5Kz}lKpP~06p7?(F6+!U=Si8kUBBxOkv|UJM2aKmh&!AEJoJ z$1E_E7z=dBIBVf^A$p{afI$or1kl$o5MUSq`2Yq$iUm4isL6wI%|Dgg}&Yp_~CO$MI| z_?khc0LNEX*(l&BgDn<#<6MkwyEX0DJ{Mrdwp)N1+a3XCZ2JY6u^kd%hIT}N8QQV; zU+KW}?U=Eh5EnDH(*n%c&IvGMyTHKxxu&P84}V6*^{wS8)=Y1A*LUV=1@N-!3Nb0e zl2W6ShTu&Ex{N=clBQzh+rrEP-9fcHCHiU~{$vW*k3#jx_@w9*Q@=OI&QGzUh9xG) zCrA;0I3=xMY)WKu-2WDaxMym4if~^e-RxSPGQ2&|%~#t~x{_`;h+`KTjBjzE%N61x zlZN~qzN6c*wx=S0yM;fAlIEM75}z2Ef>Dl4ib{irCTLhr delta 95898 zcmZTxcVJY-*LCN;>}JzLNuz}tY6_iD5_*TwJIRs+$dX19sz^Yr5h)tE7P{?+g<@|A z*gGh8rHP`VVz6R^@0^*pA^QEZIq%NQoqp%eow<{Zx3=4OYr9p~xE@o*E?3NxB`)>B zNEtBRZXhQoxf_Ou<>eQZl&8#FRFIcnF3n@CG4k_h)lf1ws@85_nXh=iE$mbES z)k?BXt8}}{7F3{m)j2Bo449%jxARMpAbNcXL&X>%28f!oRn?GA9Epve&3I z8SuTQfxOq(%CU1xit}V+KLqGPmsVLZvhi8g;RdUXbm?YA%b<7hnK90emhD{;uk;2me z)k^k$qxwlsoE0jMzNBVu`o(g~s$|qpg2epWBnU|H=`edO6!RjBy7qC-l?qX$N{w!J7%=_I?M zT$+gT>#ob0fKptHvO{Iu&vvYA%dnH|CG+#kB<+lflc+&P4k6A5s zDTC&ghjlFgzg)s`UU%z<(HLLuPu>7^Hq+_%vRCz$W|~})za$hDJ+?nmtRpW?>>dnC!VoJ zpysXQ-5`Wle1MqakE>a(Hm2-3)9ffzble|^y7x`1o2!d#yi2v#qt41JsgSIm)&R>l zr<~KikLsK!rw+5BS6SVp=uc0GX`+*Tte$fCOXZPUE(AA}sBCmtQG3)P^DPx5U4KM3 z=-D!BjTJ$`5WDGiD_IWQfq^nE5A4vdUFC3*>clzLLdY&;zOO8=e12I$@d8d(zhrJx zDI5hclKH09Tg|O7Nwad0>cDI?%)5=P=@OL=p1M6(jZ+;%7R{+B^W|ddwU&KDta$lm zuoWifXQ@oNE5Qyo6G@N4BU`}%qAo`Ewzt~Y^U8dAMuLD%2WgxJL2-4ml`FZ;*vjWs zJK6u2^12eGf0Q@YJGZQ)xFWweubhK3OZxwgZtKzmZF2As+8f0gaartn3JZ$MOMSVr z;|a7gs~T1@zbwCeeo0|o_1aWP%eRu`;!T*CI~!nJ9hs_n%Z4MCEs3X82*hm9kyc|z zYHml>6K_y%S2KBcgw@!}E-0Za8X#M?qP*j#ga4yvf*WpHqejU1o+xCwJ`m0@~G8U4mY-D1{LO)l~&8Cnbr__=SCIoYAuaNSxrMyvlkT?%w1MnyPDak zUH3=KsAwC^S)9u`sTYs2nJD|CFC#FrDaOL8{ zLFn*DUQ)B%i_1$33n~zIo{X!+SUL173ix6P7-1DillPtiH!Vz8{iEF8Yz&NoVoKq0 z(bgd8^Dbs?=aY#1V;V#)x;Zn*ms?UkUk)vFx0X3mAWpo~FnF{K)N{4wG1S7UXN{8q z*QhpT(AC&>E6EN*Yhm8#wWF=1yx?-9Dbv}M=`!|Sl_4Ko4-o|>NwOu{4w04*qh%qd zlB8!bR)ICI2ltWWbHSm~^$`S6lt{lO5Slt~tVhj5ixw4D6cm>f75EAz^(01Z)CBO^ z5uuW`pxm^;>LwQ}lv@>-n6;9_I0z!FD9y-PJ?PKfg&IH_w2)c1V#KC2vm)izei$dZ ze#4`n6-3>P0LoFY>?=q5auIz9&5oiBmQ0tGDr;^)qhUsLkcV1eWMYlUk}EGj-01~a zPoL68=+ZR@84r_Eit`~TetH?%uBuVPO&1-kXQ#*sE~}K+R&i0e6#uFwm{x^I?j{Sz zT8UB`ZMBw%uT$QDrZRqT|3RY%OZ2CzoasFx(R#u}u{TiVS|<7De8C+>lE!r3GTqpTsS zWU(23`yWAFPA^eIxZq|=_GZ+ya;oa%>c$nenT%}-g<#ccNWp+M)5y_U5pL)pfH4$#ACLx^q5=@7fVoN5nAb2i$J!>nj0X;-4;7{0djonY4k zsZds*v~uLT6G&dON~Ox__SSfLQPen@xLXaeu(lb|pV`OiE_oSNri~S^vyA%)lJDY9 z<(8}eWKX78!(`+8XpDm|sKK)DG0>p@^>O7%vx88EI*mu;>(%GTM_7GIDo{{xY%7UJ zgKb$o2A`!~Ymmzk5YL}M4?(NI>IRJ`h@zu~oF8eo!0MTk1QF42Jv7SkCsi9)NBJiY z83awnfY)<5@oI>aYa4JuKdDtrtyi4vWA*Z&ALm!E?P8>U=61|}2-4Y9sP;XB5@=;) z`<|diE@xpV^{No*+{5Z64;)i%HbvO&r`CT!ZJNE+z_v&%e4kI$)4{kE|v`!AtESe!V5ds>Z(xP4<$i` zI+AAhl76#QZ&$JGcpKA_awDY3x3r*WQBn2UPNsd{xgC8l;b#o()VG3zP{=CkKh3#x zjh3G6tuA_>B3E%=p-W1AUlpXvkLgxNxjWiQ*UR0$t(XXUUPOJ2etPs7^pkGry|<`F z@_ zPdZ5UFf1zl8$+2ZcC<1Z;=Ec=84N4V>LdNFP%uxD=rgFsh&M2m*OaLSbyxn1JkFAV zDi^E5K@>`_uo-`-U{{PBnxtZo+-d4nEp0bOw%MAbVfbq0wRFAJ#afE}mtJ~LcE`Yb zVVde2hLYr$6%^$cS71H5tlF=91|6|+Kg8FzMNn0qKB4MCE@}nmNGCf2{CyulfT5Sh z1;%$`wem(+uZ_qn$t_PQSiCHGQAI&vIpz2O>C^y%M{5Qc)orD8hdW-jKI4YO%EJn{ zY8O<>hvs2~pz|8a)&;6%P+^G=>Wv;@SfP4LR}1r3N36_6L`<<(Qu7D2BXnCQncWp4 zPH$ATSkRhfH_%0(UB+rX zT(S>Q7U@-m8=Vdoi;q2AgFI(33N^d!g5tdVrLwKa8!yQ>c@xnrT0UT%?X3#1hH;0? z4Y-VIYmE&mFMz~w>clD^SdK;9w^-$ZF1y- z>Y^53-q!Sz?T0MeX!OuBGUW?uZk4mJhGlc-im~0sE-I~9=4f76T0PiX7v=jfoi7B( z%E8HMsC-)krCu-gH8-k`p8R>fih{-YW_D0nk>mYr4=Sa%l_QQq+W*oB-JmDnu?H{# zvEU3g{fdR6m1n-MG@lco|7;9iGVqk==VLYMX{-&0n_Bfub#mreUAdT`ptK)g-{+MP z_XUN@-(eVcoVfN}h!C@3+#8B%{miWx$s9|by!?5cspB7bF{ra%Qf2)CtmIlzZKq3}$1Dp<(+9DAA>->-=^Xqt$hOdjFqS;G4(Quf1fow%o2>W=S16 z1UeAcIgEmN#dWrADlLx#FI{#IK-KTMUxiEbU#f*`klyD9ErBqGyt+;$Xl2Mx)D~7*xLL5V5r(q$r;$|y z?77&gnWT{|Z76EjV<*^1?*t{w_S#bHvKC7Jl~xQ_WKY4|?EJ#=d^4rADpdIgMk>}Z zN6|j+onh7!9o31rs7;(|%M-8-8H4YbER3TcOym zYW*%{5(+rmhXTT?lW%m?K=X!k3o=oD{0XUBrozB7sGTFF6*N7V8(`^s3!9Gt?YPo$ z7=6|oT4cbsmf@_U1MM^vX2bjFBzG69r%bv^&6HynhAGyAep3Al+U(>zs++uW6owXU zPKpY%JIKi}Fsu9!G8`hatK9jD)g-ujEfhQoWn-Phu32t|?%_%_YisG<-XP?qrF81c zC>o6&j_ni zpet5AWewDud@aNE!g1~gjCFP1nkff=fLPPQS}$)0-^TPq_Cw6Tpum@BKS3GvZdosC z8@_~Y^2I+`gY>W&8Hb+a@*kAHaFGwXI#(z1vWxS}E6kFL?Mr7@u?dRWXmt$MCOT^N zKJF(*exT~xEwI8%W=pGCtxnm~&drBXskNPV*28Xc{v@`N8K*5O3V}h^FPM^XZlSM2 zM!ts8sI6XFc{>@0{lb`5o*!2Ym( zAEw2=Gg!eBkHTV`dLu-E-eES~54l=z7g9v6vpUPAZ4kXXyTU-8IU5>om%p%)Ix@ow zqUMiY-x=J_n25Pn*k$ZJXsFIM@v0mSBPt+zu{?PaBMrN%ezM`8;70O7K86h>KvxT< zj5^{rryYiuZcf5wu~?W}Nl+1X!jv~5r6q;S7W)dT*G`q_Y-^%D#|If*J2TvQ z`HKr6_n_nVH&RlMe%fcPyhT`Xs6J~u;PebEpqGskpXWl1!FI4ND7UPnyj&t~g7rq1 zjx#aXSMDn-^DV39@-SR7E74 zzdsN~Z=j!vu`xhm(A+vj&TGLPWy@O3bK0)l1?5oG9Q{3Y9%PKJnJ(}TaoG6QR&>)B z>=#brBiCT*7=vH>cWw=z&GSU%l3+dqgU~ zL0@6t-$%ke45oUat<C=~tU(i7(SF2@aH&2tOM4eSZt|i9S`DG)>yR<_=Ft-%AJ?3oe*vC+) zn!Sm^#^r5OjNPe@VdH5Vry_GQEa(MAC63it+W}X;h3T$W^R0_u&w1ug6&4;=yX&6o zTPVj@t3nx@f+pA1Ty-^aJraa2HO73JneT~5*Xu2+Zq`o!pd{BfU@L2@))HT-Zz&`Y zO{c--`4!m(75PO*$xhIV>ZqP}2!u{!>M@O_ z^_x)13W|L5OusD8ukg{}F>W$u*iVfDbG&p9Mh0ZTfO=78E3LGA+VZeVPv-P;Y2 zwLhUFa~G@WQVF%u6)y|N+wqRlc@ajClCrYglKi=}OtzM+K~@iW=MsiF4rZo$%Ccct zFE5cDS(tEo%_^OU2_8Bf<%Uk*iMt-NO5b2<+or=|r3)iKFRWM{+DYZ7w%ZwK>eg_hr5j&y;UW6Zkuz3>xwI`kcDncEu1hVQ`glyzc$h#5yqeDwe@A(p&;0+ zJ_>3fU0#Pd&L|Q*GtvuC>TfXHj&5b~grlRC4*{U}gPb_>?Mn0=6sw+_KEzzY!ZKWP z+S;^ZjL>R&Bu)nMeP!9c!g={~%6wXN?Jr|)vtSi0L^<>>zqAcDq%C7m_=5v6Uo#t_ zUX6Z%{C+$e>yoBHNJVl4LnU2_`B(E1_AmXew-PR|BzAelT&&eJILs|9C@n0jH9=)f zLgQjl(T8)rOQHO0#a3?%M@_>lgj^aS8E@m9+F4=`22t^$VP<;< zYO?2dHA^N(TNxJSkYu)TH{f_}!2`|S7PbAA4`2|%*5R0-OJN#v4V4|Gs&7aIN?Kk~ zfD;U}EJDt=ld`vQN`d$}97kzJL~AXn2s6nnz1TeC1PaTVdv3wf>a_`4Qw}!k4(zE~ z*yU`(YQ5xcHQrSu&F?@NOMbDUFksSo+MX_#KE?j~(iF^<=f`3ry=DwLD)RyjxldwC zl43T@$A{t|PR|6iM~czCSDk}|pFhRQkQ=*U_YR{!j2Zvne0_0#E>Ha~pR^o!6vIy+ z&$6iA;{2r*zPT`e$>BrDTklDVZ$V>>GUq6X%b`~3RbTgM`a58(H71-Vd&U2y3Uzfg zJ9`KnH0B;0^v-H)dr+q&b3{4)UFa_Nbo2BwrZ<>7aEPkadVNT-|6>eLeM+dc)6{bo zkJ`6Jc@L18^I@=-`fef*-A>;*RV-fLb|89};fCAtVLrL~(5M{q>dMfz`3NjP8i zhF!LD$dRR3BobGnBT<)G`lO7ec+FLhstebmS-6PO1nb4JRe{qav1B_DLu-DAPxvYDDXDJ<%9%$b1J zL=y`zM76dH!%I7}a>7EMT~It1!-xviWy#v_dK9he8B_}gpKT=P&p=W=2%6l7&!d;P z5nBS2c=g&M+M~0j*)a&0n;EEg54zFAzJYc4F)u{6p7Ok+f^*o*w$iNeINgO>!42NZ z2(-ZXQIOa%RFk#s4k!CvDLi@N10gt=qooB^m`tlMw}>Xnbe!4RlJz}W0t#6cHvw(2 zHR$iM8ps3VVQjj4mKx?>jGZY4hqiEPtH_3f!Q9NkNIF#StxAd^$S$99hWn_-2TtW> zmBKDdE1Yb1yQ~DqwzV4+8@F6K|9gWI0@i`c1wCpnv}8!)F$|i^HpHSDD|k~4T1^Wc zJ<*Gjt%fkH@t%rNM0^=kJGlR!-NUY@2k@q^>~y*32~@Vtdscnw0exg$3uu~8T?>P_ zR?0J{SsiIsYU(c3mnJ9)2T*B%=y7hKJb4te2d2-#vMv;}8i!2UFq0Iva8drE{Ok%C zwo4XCaw4*a!MuZ+7BEb8&XsIV}*umIPK^xg^^j$vka6_jUd zwV#(LdP-s|tl2D*oErxXl_!?+mco@OY>KcR(Ky)nN)!aAzXO8i7M5VPp}PjT%Tb>E z7##!TTsO#gt!d~6f}O3A%dvA+wt`I5C+iz<0vAO6&^e+XH3d^; z;dJWcCuV-3ck?C4sfT|deH z7W2I(!@^n^hGpvJaGaRrayOJ~hEz>AYp_L`2Ej2`@AQJG+|RFF?~*(fMLf*YM>H_m z^szhI*vFR3fqT47WjQXHskLUQ_BcA09ON;$HWOV{1U(J&H5ZN6FCF`i4+dGSn(U3c z;)=DAM!z@5?a4)X)&6^8L2hhJ6v=}vcegJY&)El<3xvsK=zIT{F_+V8tC}JAVDtoi z>?D;)pBPU<%zyV0$pxj$isw}ON5sp$gRNGsX>xoB&dzX=r-5s%{4>}}QQyQ#@(^pV zJC_VnjV%NR(a|A+v@gfX!$Yi8^<%7@7-FTV|LMO?1SixD)GM(vc&OD)t&f!z`0H+y z04^P+`D%rG0YkCa?TMGKhg!YdH^w6%*+}Sq!>l-WKjzn7&SyaBTs6!Jc6Vpe_Oki` z)hZ&8_qDaD+Sbx~FrFjpBZgbC?%T+zn_-Qcda<=JBiP7Jz^dU^Gu0qLb__>hPLgd8 zlLGd@=IZ%4X*9xWXdMpzwPK6z_|)xi}e7e-j= z>R_C79ci^y*|9Qvq?O{jM%InA5?%FW&q%AYyM&o{(pPvSXp|N0x=mt7S=|-n;Mh@C zSNBkccjaMsa&1$eikCy9(27$T*4Z3{Hymv>a-ER0(XdfIEZO{%D>sj}x;FcZwP;v- z)`yK_MLvY686X#7wi<24saA3F=V+^)cODz5jbk=U4Ao=n9nvnJYDe>`h1&!@!V>hY zwZ0{U8Lr=xtSyAjPfS)R*?H7nPt|dh?YHft8kCb=i4|rG#1xhp9_l^O2{}X+HQ)ZQt88fb=|$n<5cD!@-tcSE~nQaN7dG`k5rAfLfyZyNG9J1 zvkaPiyW@tzRFh2;X+6Pe;Lf`oldF^4V!q7`9xz|fSedsV+kY_bgBG>%rij~WlgXw8 z2d6`_t!4>ENV6GMs47Q`FgkW>*rMRP%)Y~6N?UBG>nDkvY7MW4%h`D)MJ9(J@^fkg zyPVf)h^8E7xLt%xRH3z9aCN+{2X9q*BzYD}b9Zf(2g%A=81RE+!z^pE3XW%c4U^Q_ zR)pFXkLB2!iFiy_TvnFDNiRx#Pb&#t0P$)jD z<&5cxJ%Qm(2)mScX)t2V^qVyLDLRGVUDb$eSUjC2lYO}Va*lN}4JS+13` zeF04JqYF{BnmEZWw1%rQ$eyM_Dof#7p*Lw>KwXxgSfocd7Jd^FW*Q@)T}7$P1j9m~ zw7pGzYp`jaz|kAb4#jBeS7dBMv|?tlm8?8*Qd(?{apjnp`nmwFCq$|#xUSM2<-U zSNnes)T0dA+*3N+u`a)yFSCYY7o$gEz<(sj$>axTB;-64+)M3@m9!PGWi_dQEcnZ* zh&KB^v?mzmA^#-Vk&Nsv>)uBy&{&<(7aUC>_fqZASpCpgNS4I=putW?yY#5c5Zq;m zbXWTqV!}!E6f9|%1k$JG*b(Bhp#~_$gO4JJ!p`? zg@kbMTuGh_3t%$>HA8(C&(So(b-Qf15hj4rH-fvX2AY<^dvBrYFQ~6qp}M%P79V29 znIemE$7zIR`4QrkoBy=yIhAu;Am9o zFsf96Og0<~j&it!(nN`fr%V;HP6hXKT`*G=7Yur!a@CT$!kVPAVM5u(`OwGG_XgqZ z;;%8>Q_pJdL-YilshT;hi`&kT$n+*%v)Qh%Ob)s(+N|E>7hc`)zc0yGv4}kCg{3_b zq-1f3 zZq+N^v@a+Tf&-UOseA$CKJgSP8KTLfe-FlSfFJgW)z)m>zdyO!8mCU;#&;p=tvAJm zS3`1ifwHhLK*?DSb<*_Lep5jm5qF?s9r8#=7VyRqd?gyFL9ueU6-K3w_|O{53!f7` za{~MB2o;|I2{=uSi=%LZ#NeSPu0r9`$2F*KbEgGx$iskM^{jX&uQeQA=`!+Kc)G-! zM$}AkVA|YuNn8{^ngCO0eb>G^*~07n^9_PriC_|3oxobpCU3T{}bKlQTWFih@dHQ00mdedc!I%=niatc2|qM}XtI>}Z> z5h*D~L6C1-IdcQ93@oJhaB7fpBc$P{ak7yWUVbBl#E-Dp+-Qwe;ZA;8Rj}?guR@DY zMM*1=5R^XZ3fuuM4s;(55+a@IT%|>v@jwfiQ*Qb+12UBogl=h4dJ`6$SS`36%7L38 z>?-e+QLYV#n(dBSRk-clt9tSSR>F(<7jEm=9q?{wAcLEn=6akkPLZKX*QYI%ztc;X-8RPsk>iD!Bl zvmQI)m-GzKF$bxK;xDrg!JSaU9!oZr26H;U0X05rYP@v=#_sAmf!{L_mu6P8EE}P2 zOqA{HFy0rDbsM4gzU8!@=5-tt*Xw3fYC`fYVCbzwSV2O)Iyt;?3!1c|E|Yj%|5F>C zhSC=T{kI}c7!;ohG*sYZsGu>&t1t!C1GULME^68p6Rlt)R=pwuu>SIx0h?BoSYPg#HUk0@UvulFUE_JKSzYF^2ACA7M zDJOQTKxcK5=J%l&Hrxg6ID9iAZZ^f_&6{pchwe3T*r8Fy&W%@7(_wn;gZyA$d$wqW zd*5xC^E0+UDm`QdEbgIolD%6nNn6w{1THuS3emdGKpq2cF7>Wc2whtEcSX78=r*mj z1bdxEjeyEPnWZD*igu7wiiyW*}0d;Q-g}`VR-1E3Kz=>#}2sarqMsLnAIt-W`e{lx3 zA>#_YA%|$utWV}U%A-56F-_#W8Uj!K~D*aF*xn0H5KMAA(Cb9R7nwV77yP!K@%j%~(B~Z^BuSVe{@dcdv@o+wjm-tLc4x{0oaLA#x)LziKKXs_} zE<1UeB*S8*`7=%+uMGqSP=)kAgcX`s;=Khp4ti=CIg**i-{>6ok99+^PYgQ;dicAJUEZA&;1G2}d;5ercyxMN!EO%xSnT6uEh@sx> z^q0;87m1_Q)21$AbbByy#yg{eal*9|yP>z$wVy@r`v{fbbg*Xh`ax(~f9XO+7L?}} zmXtfPz1wA0+HoXA4RErf+pl3;}qc+UuP25u4_uhY!Y zwUf5lp%_P{LmiZw??!U*;XX6A}lp;czcsmC#P^o^EJU$x@ZQfN4w z%>hbuNM}dAuBaRG#A{YOHabUMv-~jV>^Ndgq*G^<>wGN^mcQZU>3TxW{}#xAZlB&R z4!cv_@WKKHk5c%QK(}g`pe9qy=DW2c2s5Xx7 z&Wpq$IHxx)aj#^)XH5*{xxFFOn7I?UkQFBy!3w$H*Ow$ z2WtHNnu~-SMsMI&$=E*-6>e2sr1&tlpdGozes?3zqd-fMHx5Hey0zfYu~MYN5wyuM z(**Q;sIALd*y3JCCUAcbmVfZ$dX_CWGc3?NUy!vHkVw~=9`b?dH@j{>;Br8``a_p^ zmih`u?C-&6=Lb{h8Anlp$ui~-)Bc_1`J-?fdDFBzZ%2m|JCdMK4?3sQm%a}xJ^b*w zePNS^@kX6#!UcNf=StQGFkwC?vp=wwsJ431%a!yG(L|TvI`I^mNZ&@;^&!;4_sjs( zgvK9X0qW-zpOg@I-5AczrTK9yPvCbH*auIO$d9ds?z?H@U20CYzxo*4@NSYxsi_&_ z9#MTq<9k{vKe1}m^SFWesa2$=!|wK}Rp!DgEFXjKxo=cM$F6(}8a8m7ML*=w?{k!D zAgmEi!RhP~kXM^En_OOdiFExeDaWj(uFv@=PmZ{(2#4i$WQnWt&Vvj;F`ogZ~3#@7%!w&WZ#$dr0R*c#Y z4fG4EKz*o1N^27h9tsWAyEEl(hz!FlfXH|~A zT_&r(!tCB#hY}JPHjpkACdIc zhES&q+VM!H+&E!m#aay<24M~ZxG#pOE@(D#3;Pxy-JOqR{CHeRgR%4wwEzJBtoSAaA1{?aJTrhQ%beVk~ z5^ka%udQXnd25{OZLR?(G>p#=nF3shkug766|NVg*^^FaxOQSQ!B@sf>d#h*`a?I! z0tE-S)MKW+=~DEI73bQh+c&~Id|?tTG3_6|Si6`S+O3lFE0(lndes{zxIq~r&3=P! zbw4icBV&Et3XeYojFY!g6i?t~ylB^36u3^5fxp8C={Hl@z!j~4WcjsDyo1eQo=v=f zbt6=-qHyE*1I7Y83K8kL%ZNF(z(NKYBWZx!qAv; zyFH|2u^~R}jC~LXxxO|d0=Q4D-rCo!0y+a+fR9vTr0>lW7r17hw692?UrPI^?}qNOR-hx%N?1W7X+4@KQb zn?xVMrQK-z0g7WBRK)0{0zZo;s*A%64i;%HSfzMA7(oJfb z+9)tD%)^x?u=GSZCIFrOt<|cY6a86ZI@a}ot7gC?bA!N+gX7P-?=*$0E{?6DmK+NA zAZLQRjddds6qsN0jV)c1zxCK*uHj}QuN{=S1l#o$4D#4Ypr<9c-bRfy;_$|uTYGW-(qy80Ux^<^@(#fq$w+JgoUvt)OM=`ZA!rL zTbP}$is9H4Z}&D%#_PlEFxAmfdvz*!Y{skI`b;(s*RR`1uW)<1>l@wo`bCV7!ZE-f zaV&-rb|09^^Z=-dfCt!>5oq9P5R*f2{2O7nmbWA9VD(@vyVeoqxXSNy?Ac{bjgWCG znH`C_@SS6%*UbSZ+Q2fn33i~Su#D(YhQ~P~rFa-B_O(7obDAAb>LlQT-S#Gd(Fh05 zMArct-NvZ;SVyDnk?I+z_IE_v4b+Xbot7l$qLKPFGsKa*cB-nU5-(4$B-vaK*Acam z4G-#cb8VBFc^I;#_t#p(<~q%<(>MD~g*$^L75B>O+vC*ny5U_Ka4b63akvxpRT+8> zL7W%VKxeibH7C4e80p+SG~=cZ4BidxA!@W^T7p+(cO@`zMPq^&cc?X=bcQzSMsJtK z*x|S)rmbW(dsJ_Se?3zl-Q2h-9%$}2O{z%eimA!65sX`bJ_y`~4s~jH=5jl=L|BBH zUw59stu<1fSPQ$a&IlJ=11%G$Tc)@1w1Mwjl!}d)9Zdo~tsQVO@!0EB{Qm-Ph!V_sQz3thy}W^Z7f?lgD)FIt69jci9JL88Dk_pqIGaG9B*!7 z@DZzivaKl?4~%1XW1cj%Q&h5MlLgBVCg_0ZvhwUjrMNTav`?yI@YUJEMIxYCKPfn{ z#;%_aW5F-0zH5d)v@nFqL`<8nux7A6a9(KbbVH;pY;O0f-CKSQzm(?oScOM7bUhI> z$tiOt*7fG-hu@mp^;DIS6q-}5N`3{7%v#uEU4P1s7WPDS4XV@*Rf=k9_fb=H>Rx;> zDp1~sWE^ihXitidTSA7s=wu3q)lMoHCli#{0q@no`P)UuaIKT!d4hntzABDq!ULca z=@U*JjF%fDRkXR^V)DU@hb`=uG$5Lr1$@f@&jh+l?1#? z;wV$^I0KN>2zp+df$MWdn|Z8KW+dS;m+$MOuideJA7icw>GXU(!lWBaHZNiA1!sJ$8R4)GLoJIJ|`;)gQX`C#eeA)YKaMl((cZ-^ z%d2%Yhx1{IfN0xMr!&L#dkrS)9lB+P%Xi68GS2c2%*Zh9-(`aDWHXGAJ5n%(Z`WHe zXcQ+@mQ$|pobd;joxrhIxRLeRiRXb-OuXkzJLuI9fPDC_I5tv()|0 zRM1R@b;F47YYK@s;(E9qG>36I5Y8CkDpFsTfkY+4<@seL*`+>bMWgE=N;kF2sQ};GjVvxH z<`^8;yv|5%fWi1F z;fc*K7aWy&{eu4Z@_K*FnePl25RzSO%qY}>c*Cro3w}e*k%cBaFaSakp1w4N!ka!> z{wCoGXUYx4}0zZ*LG2PoZCnNxEHhXl@HK6PTyUmuQ& zCC*&hBWZ)}!QKkzGsZAxq{~M?`HV9tWN|>JPnNflMxBq7cLwvB#33la1wB-Ihw{ZR z)5`5k73qj5pAWG^+;3y%t?h1nYVqWCh%_B)yWQW?yCu_5Tj$g+(rIy0Jk%cG9*c>D z=l%3M*>J=SSDWJHhoSZ$_w_VJ^fm!_+pVEHiZLAmo~*%xSy=U00dihPpw@c_Qi^8gk8k91_Ha#o|{J4tKFSgsTC}Se&w~HyMX1o(hw>} z+6~+(jM3gad;|ZXz?#!9L0qHlW&-!`fMsfOfz<&gZ5=TRl zJ%-va@6z3TNZa2|O2%M?ZuYqT`Vy`sc9J@aM_R^Uh~kl=2w0ttkG7K)-f4&!V|R3) zXPnV4T$8U3ZK>xvO19Rq&Z^&C$3kdyPG^!s?{-2Dw3)DSj}$M=&==S1iTg6jj>I3D6=@_4(U z9g5VFc2YHr&{wFPdq<--BaCx8chTZuY*Rp*O4c@_v=0v8mC@& zq7)+v?4gwt?AESza%loG;~PEl$^@*X$0TPW35cUs#%`L3jmKFiHxnV*Mlh(YS`r6p zEFV4h$^#SaNP7nhnQ|qZ_%!XaiFT-Jh9w<*Hchf)-1S(RL{l0(ZWXDv;=1c3jPBM6 zQas6S@1D#E?aiZLF>lsR=QK85v)Z@9g3))^vK#b6(v6+=9mGiOHq*RhR zI*~?@(iMu1w=2S5C&L~LcO2tSOo60(nABF%|4DbElj>J?dy*`i>`g+d7Z{Ess%hTl zxYWE2wUX$Mf^h6O+v`R(3gTtMR6HF&3(*)5BQ^8AUIe7Z%kimpCp(ELvWmQMvf&;T zEB&S+&q-_>2p>MPj;G3F+DWL;UF!`GHNtT!%ObuiFgrI5 zvautRr5iqYW3d$q*pu0vszi(v&$=5p>d8B@dO8eHOXFn!bURI5f-~lHyL07iuv@e? zDjUvc#l9lA1XG)Li8|GloI8VwvdP}iT*O8 zi|o2`qRLi`SV2f9ME@cpx*qx$6VcPqzl4a+h5n^P^dfWI{o>tCZeC8e+>~G{QTDtbtmmwBD(VV zuOo^f?Rugr(rzH4&z}EABKqn1tBB~J=f8_9T6Sy{OgJ6 za_8SbR7~1NB0AdnZy~DBpIiAuA3J}w{$%KFM0Bn5Zz8&aKf<5Yq}@(LS33V4L|@Z| z$$uwd4g2ISBD&1^HxsR9=oX@K7G^6EJ>>k`h<+k%I}x4Y{5y!6GIS@=)kJp_(do^9 z578i|xR)rHq4yO+)i5@39%}kykYDDxTQ4!fZ zMMSqW|IT}j$&L|LT0PE<(r29b}2ev{}k(%u59^#4Nm zHi=D{_#L9gjCh#ncaDl9L@$%}F44D)_a4y(qN7Bch~6iwXK8_4Dxq7+8_mgr;B&Jz91c;68{#nA7G{6s$x zB{TFK(GSe-N1~k!ts(l0wDUxh$nPhj%Fg`#nLq9M^9z4=G0Cq)^ojESM)WpmzY{%9 zbb;tQviXCkHEDkm(c{Vg7tv=7{hR1^hW(+~z!bqm)#U6Y$|edSs$slPq9H(){xHI3B!&~+ zL=-{v6;UM7`%D}~lug#rMBzmBi0FyruTPYst4KuOBY#7pUW^w*)Q2dRs6SK05jE43 zEuQcsi3vnq$fgm|e$pBfjU>Y+M1x3cO4NZ2n-Rq`MIzBS#%oU0obg%^ts!cu<1s}m zqDzd|x)I0UJ`&rI_z6)GQ7V(PC2}!hJ0d?r+Y|jsS_d7{J%}nv>q&Hos29;MWSvfQ zfVAF3y_up9Q6~BIC3>2n{dA}ve;I_yY{E>U&zYn@(T_v}h+bmifkY1x4I*mH(7{A! z$#4kKYSM-h4Pd-sL=#CHPV^Sh2%^`CMgmp(y@aDktVcAOsDfw=(MGZ!OBBWeW)V$b z=s2SB%w#-KSE30-qZm4or~}hZBFbmzWTL@DQ-~%obZRBxZo+9q4H-P0=x?%_LG%@A zGl_DDW)UT_FtdpsW4vsl$wWCsi^LPGW)saL z>dH*!6aB%&1w@^Q{6w3H77*D3GA}S$j!FZ)atw~!*RQWE6WrTBx z%84SFaRpHmMqEUcN3@uz6VVc)t!$5_MC(XfMzn=omJ^L3x{_!*HqURa!2BMcp zyOHP_rl=x{1FH1jL^zJbwM1))ZYFwzN!Ag~C2c)X6Sm9-q7Dq*NOTX;EktdJZYAnN zR87>0DQ+Vg#lmbNI?PZZ>ZRA;+X;s;_zt29W_PC!X2iRQgrS>>mNRq<(E!r65}hV( z8_|12+lkIIbO+Jx&hTX!*z6`u=-Kj3Dtoq9&x>PxL(#|Bq+^(JrE2 z8TtTGZ=wf@b}{WkM0XKAO!N#xcM~;cE9@cKNiKVd6ysIyBRov_2vH*@d6X!R=rN+# z82UI-2x(6cJxck7zT|QKAPJ`aaQpq6Vu@)>-F=qD!rny4>BzaeTv+P6gaGTvFD8q&Ta zT0-KvHH{p50V+{U@Xf0_!6Fo~dzYu*v+OI^j8Sgiu zKN$Ku(N_$;K=cFAA4HQG`X|wwr2R!y$h3bGH75E;%fAJTc#*{C81WKOTTYlO8uOE@ zx{K&NhAN_dOl%P~XIh(R8bgDKcxBq}ChA5m9-^m73nnUMJTKAnpjG-q2&a=6N)$}i zVMMo(7EUyfvZgowXhl zOZXcT#}RdBl6ayki4urDW|Brk`x&n>(T7A$h~6b?N|Z>{jA%GhBoe(!T63au@@qk~ zm#Af9uD^2`u@#BEh*}f9N7RNWolTfT)Q+evQ5Zwp5p^N!_C(!@IuJch)RE{Q<8>lB zN0dxd$c$5nVo9q^CA@~jG@`%R+ntFb$fgU?14LbkE;30sq8CZ)PV_&f?LqWDLwgdf zVQ4R+kqk{I`h}=BQ45ClAsVXpzkLZOGI2kmw;7y4bb*D*Bzl3N{fVw*=m4TW7&?&1 z%g{kY8=1*qq9vpaA-a_*h7v7f=rE%DiG~AJ`fp{#5hT7v;z*+3NE=1;D`}&NLP;A# zbQjTBqNePUETU+}8%I>d?8Xz_M%o0T?W9d4T0z<*B3`ETPp%}qmkg&6%_EvhRKg_F zi2f#RI?;VZGl<5J%}k<)Nt;FVHB-zc>PwVOG?wvlh(;0lh+l{qWMINiG~v`A#xEd)$v&9WkfT{WjWDLm^ z)kG^AbNzjb@G27PG094z7$V&{uQGHMX}__@Rug?fhF23MFy0!XV$!Z5>PXtPM7v45 zj>tpW^+ey0-wi~Mps1Dp8wuyI)Kx^&7?n&?K-ZXxx0^bu*hi9AG=dkA|I?j_1%#C=5b zNPC3nCbE8%s6EkRM0YaY<3y8)o*;UHDV`*<8Sg2gwG4flXclSD5dFzce3odu*8iR( z9LV7PM9EC@JW(SuJV2Dn(1S!zl6Ht_2GI*dUyX&~y2unqh*lB3OSGLS z-Xn@8I!e@%=zXG_8Seu<#X`vNLlWO%@JB>G27gTSJwrdyh;{musEDDT5#=)UbE5U6 z9V6;bbe!l9q7y_Hh)xnc$2?9E?brL?F9@fQ&1s@|27gJEMA}zG9@5Sb{Y>;VQBR_8 zh`N&Xw?tns#aW_*MBfoz&Cu_Ob`bqQbO+HnqRO+3_#@$+L^VXW6P+jejuC$%3TJjd z6FtY!Ux?ly`jse>=r^M2jQ2ay??e}fjxh8Oq8!rxBw9?)e`)zwK=?O_D~SFf`jJU4 z5|t2LA_`}3U(p0V_mho_s4qhm(SxK}M3IbV6MaN}K}11}=O$`PikhUgH3V~Oq~Esp2_Y4Jp*Ld+@7eM zp&f|6BkD-hhVeQPg%VXJ6SiO`DMU|@m`e0NqBNp?M4gEml1&$)GN$NC^eJiGi1rY5 zCyHT;9z^-1^(0DWie5zL8JbRXLCe41gzZS|L-aNy_9fy4Ab&riG=^pnjU~z?+QfMM ziLPfR1Bjv+I*{lH(IBE$Y>&Z2Pm(r-XdhDy1*-J-B%5I*b|M;1RKVa7L@A_=Bt zqlgxgHk#-&#v4P_fUL(7{lm~KA}>>nBU;4J@kEahO(1%VX(v_^wque>L|+n3COXTy zPa(RCNv0CnOfrp#*KGXLiQ17igXk%yok`T0DP|FMByBd)0>;ZG+Q85pqFc25^AX<5 zh;xV*5#U(Q%@6 zL?ejS6TQw98;Bkz+DODJCH`B8ULfsOqHUEdYc*j3iMJ8WBHBchN+d){jCVWHB%(Wr z`Y^jYiB=KaMKqNuHWPIuZ3|IPrr1jK4nwyQEhTMxlPe;ywlLxj5@*Lh`TYu9B&y`e zP?hJq(IbvL8Sd6+M^&E32M^a@H9Bn3G4sW9wkpr|hf;LdUpnlD@&WqmCjIr|t0VQ- z`^d4%(|^q<{gtf0e)S~lukTQau~y8cr7>+m-wdmfTic_v*PtixLCukoLlEPCl2##fBdVYlnBdm{VmuOte^Do@IF zqxEOFjyk`K`MRLLP9+V~VLURd^4S0M)L$QJHcPThhAVYpb}a3y!#>hscPt*HzjzW^ z<@vfORe$l=tjd$|oyoz^OCeRBo3cCUzy>60nrp&1 zoiR$1eL9SDtjg2k{5<_daZ=^UnlMp+QIJ%5?!C`cg7dPI>`9mZw9%G3B8^Tnkf^FDUH4%@50ZjIZ>uSILa^6;-~@gGd^Z?zX* zWA|1=V&(bk@gLmIT#Nq*9d?u5$(1epugA6WT7s(4QKm}PI=iiRgTC~zzPhcfUTKI$VcM`hRS~|I0>Q_}=O5C7tX{O~&P<@`9{RqOv!;8gYRW{1l$ z2-5;HfFgu!2W`eb^9$c>_W)a5srPTTlRT6l40~)dF54rlF~YutgW3-K$ENQ$L+!!6 z`iqPJh|PaOASZU%BbvrJQ%V1K`V_dM%q_qpScU-{0ha8v zTdKWrvU#VSruD@2c&J#ny1rS2FRFz2LtPMms088d{MK* zAF6ctLtPGksKnt9wKx2s+J--7*87uaJisS4H2k?>{!k~w7nL#m`9IFSJ1~ly={vXF z?&{ndE?}@tug0bu(=pY?nBKvr`)CGCFNRPrbTB9+p(Q{2>^K|0OXDUkRJj-4hR5w9suNW z0FbW%Kt2WlITrxrRREAX0YH8P067o<}Qb0wfaxAQJ*069OO;0w5CtAQJ*069OO;0w5Ct zAQJ*069OO;0w5CtAQJ*069OO;0w5Ct5GDjjCImnx1VAPPKqdr0CImnx1VAPPKqdqL z6Waf|wT7h;ueT1pVZ=`Sj;Z_?)>iP7Ryu(=bZHONiX8Zt>qwDZ1mIYsdWGkQe1*Ez79G$({svWHTX7N**XtL0)u&HO^9;5Fvc`F8p|G@&-`E z$!xFfz-afF5Fg4UZ~nq_;2k#tfnUy$98b36{*Ui~;N!P|!&<9a)Y6+j+zO`8B##+4 zt%Z5^Cj5E?ZqcMKpsr3aYA9~}7DQ(yn*!UR{`Ae@J3%UGLZDiRUn0agL7}PX;vK@c zE!G668oCeW>@2G2vn}8Z??`a26{1F3_Djxo$vGrm4dqj|f(U-m^_@r-y#+En0EXY( z1Cf(ATMP2^ZTNh>5ucw=MGYUtr{z=0pzLmlR%tsJz#|g5q;fT!uL1`5@e3t9+n|=@ zVLO0mOJy#JA1Pa$(7;+5-Q>14Xt5Iv;1fk1fCOXLfT^W5(cNmN`7;?;M8db{N3*HmSEZDX|nUrkut^iL+zeJd=&>uVr(O0r$s zaCOIILR^#-KW#wuJ|YC}jHD##Bh*Nqz6*$dq>0qs2FLdoLS#$Cmm5*|gxx^=Ds^7? zd(`IFyU|XX$y^2|<4xFVdq9B;0jS}0JOTV0><-f7kRvtz1A&1mhp0UrWEBL{apznXs8XW0W#6|C$nhNhcdibF9KBG&O zPEF137jJ(R#aAA*R#t5IrJ*Z5-p~@ID(?;|Fy$BTD4EbFQ7eYmTm;n`+3)!VR}Y+(sQgl{+27-Of?p+SC!s=k z+po1?^m3F?!S6-=4?$ty9D%H_CD~M&a@HYhB_4kWHGNcaFIrj)RYHpL0|%_tEgd9o zZUS({4BQVAckx@;-QvTrh-{+?Zn~r9S85wnU8I@+xlavJ5)B+KDW=|K@I|eF(m~>s zuEIQOEB%Uczi+G&`Ere*cTqPZs3}wCG}H=mb_{uTGfd#s9`qJNfZ;{HM4^2fYeo14 zd|D>T6zM~>{5;_}5L;w<({E^geD!f_Da$rVam)`C&k2F&hp1(i_15v*-5elpO2q6O zT&i?O+QhXSWWK;CaAGw*KW}^jzo>*KKjZ|iNEt45bFG(Nm_I=T9C=}u4~OW1yzvh} zSY@vLN8mb~<%D=78DIIqS{D)s1r`1P$y=X9zxt2h9GELga(lUsH(OFuO-& z7XFhfW)F$PKk~-x#VAA$nLU<51_t9RPLSm~ckwRjhrUQk#hLQdCrXcx} z_Hh&_fn`dr8q_*T6(mfqmbAlyh$NiF|a?P z5G^;_-%yB_8ttCN-g~c$+(8UQQ0^cWr;yk|tVki6)Z6P&XeT8}q7W@9+B;H6>>&1` z5KY_d!zd(n5GPW|Xy(0t#-&M(_>cgt7|;0`7e5GJxY${1L%zaGt+{wBu59a+4QKNC zF4dQxJ!}1n`!0g>vGkmEG2gXFjZl6r#-oa9^JP#m;Ups3t*Cd7CbY? z<@4p^uEW(@_KP)zKlD?Rc%>WYk&`c4=kseftWo?Q3TZd3vE1{TbtDEPNYtF?y4^}v zaUL75HV{Jbl-tak&uym`#2q%4o7Reald9^<=;GYJrkchZw^s{b3{ANqhWpc3tO?4T z;`~N?wSwgnj?W7GT46QHvP340yaMNAadCboIfR( zbj?lZ>AS)BRlVyyuSnkd7WA}Yx!Q|+{|3bj8mwyk;}!UM_yPKC+X)Jsvr;Xj%q+oM z-oOAngCF=EmyD#=2g$78@DTKzuaKg*2lMwD4v*Xm+`2Ctf$uDY5-U6L2Viy=jyKo^HBpaud~^r&dy4 z8}u*S=&7<&=Bq`N7$Z@6GtuMuYBi-yDXEf@rG!dw1C=Ngq@+SAUqY}Nu*RRLx%O8E zmy!j#7O2*g?}#nkfp;$-KENeH14{ADkDGNQhqS< zKW^k-(;vq0H(1YwF&NojD<$pcmOrfFzLEW1Bm3KC_TVA1KVoEmm!Ed%&H0ga)-X$@ zMF&(oh0;!K#jmB{DKB~fp5K3fOOs+s3k`&oFOB;Sdi49VG)>e>^;2;S)AAnu@$1*E zt@sLWbc-2^nx)h)&EtL43cN@@b*9p+v?#q5r7zDXd8&9+PhhHJb}w?L*}Y|v%-s(< z9MBJy;CidBJRh&BpU?_`jdy818$c$k}U6t z{^Ju5HNt84p?vUi7t{G|1x>N=@Vsh+L-!>g7l%*xc!X;p&sJa=1Df zrq<=R0#W_w^l{&6Pc>LMSync|oU)<`^2T9UK3LidsgBB2c(CA9m|BNA;7+`Tm3i>y zJyb8{l}HzdXXvQ8Q?dZ5bBqJtMCZxh^gvhh)Zp@1aw!p|mgm>-77cGuK+VLwTvX+* zUDik?z8tr_uV!()kBHY?w_>EL&W99JjghVjUgD;6|KZc`(8 z=SX#?rIn;7_6q1lUsloJQ9#wP$Rn&zEb>^2NGqsG&-g|2jYUueh(HH98M?C`bnt&X!9_?d@W>BZM^bsI#JMG*#92?#pESkWQ`Da{!aGdVy$6?G<^2pJ7Y0?!b1~7Hr`2H8LlSql!|cO-bfi<3K^7V z(b5LGR6^s7HRz)a`j?f|DoWW3(rQXokXGYL;avr;+02@17JST2Rn$0MqZVolv19@Y zS&cvAqnCvX%J zJT)XZCkh@Q7hlc(JPl7PlPfM-JRVO~dB-=_f|hQQ)58|v)Hz0YLqWP&w{>rxQw$j= z5p{x+5hF+LU2kz8)&#;CGUBo|myF6Nq#=)o`ieyxF#K;em~6;p0%x#1uA4N|fAKHr zsl(vi75E5O39wX%EeeRmN5!uBVsON;io%8V>Fjh9>(&P6``0SwZQZZB}#$DMR8&xggS&}piz7B zi?yMtX#7)R4NlQ{IiZJ+l-2H`yEc4uC$*RcHnyck3v)v^4 zKuBPjF8PSg6?}w}`%2sjpN_yBI=-P=Ole^xOCkc1>{>&$hNY=YhHW?ZWTI_BYEf9s zvxOq5uwF4JEbYlCb1I2GXK@L&2FDZHHeO{ptO%QI#79`sj7qZ9ucpClHXGS*kl8P- z#OIepf!9t~^P`s#qT@-FTp3n_oI03~XJEp3#YlTGH?3%z$qr-)d!S zMk3G3a^zx_g%hJ7W8s#)rbxB29FdgDvhPQ(qU4ZVlzgh>D%#SgvMtf}lhUlR>~ArA z_EZ|*K_#svyP8!9|F$CCMnNRo%0*qb) zMn??+4jBS`2Vzq8(2vxj$}5pFS8^m2ZdAFCF}HncBz*i%!rAN4*nimp=ezDF7z|2R zkrrBlTgJiEz@kDhmS7Us!`-`VWB&YuC1~tejv40~TO#@CacJxiMCczy5o-8Mssa0Y zV!Wq)J*8h29<@>3id{`4F`9ReDtz-AtTPSSq!w3Z8oAGqxsR;ES3J@}c=Tqqm}RP4 zp6`o1$vGoFqIrXlsQ2y$Z}Q69%1-9)1-Pll5KrUmuVwS)r>DG2^Q>R25qL7m6y^IW zvKHbm;$HlFhA4NWC>N^mlNT|y{M}88n?efZIw+|Me!2wnDo|DG4>z<=frk7N)L^`n zB@AfFWosxdCaO&oufRQTTvaU0@C#YcJ~9xWNtXV23Jlifisr z<1V_vvxfLT3h~Kz<$p}Z)S+%0Okn@Ki!HEIvH&M!0ai@G8k3lM{Q9RgLdjQ6mi|4y z@&h<_BI&|=@cm!QR4?38-FjxN%x_ImGifhZw3IPxVg2>1N!ig-`r=hQ@G-iin$=|O zT>BCe**+g&n$WTusiz_jp9#%$MAlRbu;-G>0z;0uLJlHyS#b%=EW#OnkwfwqJuVms z)gm8ZNO3YwbRdt#Wi-Yyyu{QB|H>?Iqv@NW`uGlTcl?s8%dRo8y6hUk8iP=b z(xkfV6&qHUy&`fEg@Q1mP)FPf1+SdeYt|IUh%mdl&^kthZpsJMWv4hDyr@%rQ37MY zCL_c3MuwjNmQ>3sUm6*HZe+L$c%wr^`s>@#j|xn6?6`}LAa}=Ic_8zo8QTEmPb1Sm zj7&jRgfIFCYI#$gZ*8hpv%qg#N=*jKt$g{%82&Uu7_A@4M6dIkkr{dcDjRL&D=p)s zMP+nV2U(JN%jM{;660jq#&pB*ni(gpc8JVDxJs#b22$5Uc-8J|5o|~2W{urGgySsz z+%g9*C8LmIOELxa>1OFn*JHS{#EJ^JbQ_~x$+ZxlR)b!84lkM!D& z$BVo?U~2^}F>X9C7kA?UD=X?VJlky~FuOsK){7F8>wIg9KaX7-k8 z6s{^(NHNRDm~81o7&@CHtb)#JSWe5lg>&z97VAQ^I*A5sN^#tf;-`@y|JzN9N2V0l zYDkx4<|s&dUy5?qO_bZYqJWza<%ksJAGusdr$m%W@zOxCRyh=^KfTG-<&}>&tTbIM zrL>EeR@#~f5|sM!{OwEZcf{GTn2|y_qfcut8Hh3@{S{l#w{muVqUq=xB|}Q|W+y)MFJveB2uL8NBYS&e5y7`S zJeos0(SIUOVTTZ26n&OtCyM^7oN0nsyQSILNefecsmTvqg1dOGCY`vb&Uf#{O6Zi%T5;vQT72_vwe8|AS}EmqO>P;g z#oEnF!oiFk5XEkcQ`C3s=RoN)*l{`QT!i8ZQ4>+AMrvLB+OMM@XE{uZt^ zz>1mHMCmBgDD7(T`7^a-{$UH84;d%8Hc!tQ;UsMZV$&I`J(-zKz^P6ly%H{!`!ZJw}M3s5GS#7j48C6w_7 z@fedB#fx>77DaHCR!BGQ8XTmJCXZ!Mj7jc& zLoK14G_uSwiQThA6;qZN1gQ#KmV}|e-I6p;r}+ZC>$=P-5T`TT%*lgWuDh926}%z@ z1kRyhfsE{D#R=8QU!`k-7EG0I!rF_}L;=tXkTp0!o)QVd0C?jOW&~5TC zs7d{njk(mMeakvYz4kw;M-N8%@Ybnc}UbK(CK}C%x8_rrym*3&11sh)+<$>T#!!Rvg|Ck>HsW07E5F{PdqF z{9Io&yXLvn_k6W7IR7cA8~-OYos+}UGA`aF{89LUlG>h!+VaHg60ICx*i{k)uEN}w zh4DL#9f&VvVM;F6>RVO|Zpx=dVID8mqAW*bhR%AtGuJ9x4$2I_b<1#{EKL0mwMZPa z7UF?=?T1=LJd!91bL&5;=Pc2RDn9jPp8)b_OSGzrXMNcxu==7;uo#@Le}w)c)}&4P z7_`v_ZP~oERX))wDQ!&Jjh|?Zl$Hi zmxC`iXtQ%^-BtgoRQ+;Mc$ez&MZ3LpN>({jUyi|{fm)n$Qu4wJxI-Rdo9beqRz~^D z$nSc6o)n~2R~{Jo{b}U)2S4qBUZz@p^m_RlNL_*!t7?J#>-^}K1NikfsC{1o()5%+ z>XUirT6>Q8tgajtEMr|_zLl;5o!nKLH;`iLb+raCPvWRFZXoTQMpb2?k#&~_yiz?J z&$Y{3`?}@YtAXs@U+w|Jc_#hv`dSPYYlV~_{0lvu9#yuQ^xGQ1=r>9F_5VUI&dHuN z>F*~%o*yOssehrT^Q_8qlRml;hOeiR{_(%i<9KT!-$fSVc!D@p9?t!(T7rVYk7}${ zQNj|W4F@O4am`h7ad5d#F725nT5YAKK^ylDEuHMeBcd+8rJHFLmF@;@7nAmMGc65E zVJ@=Ki5OPjH^{O~GXMFo5pn$ai(J}cNigTt2JNSAv~H$>Iu;#ag3yD@GOEeGLmc3~ zM*JG^ufEYrE0+ysza$tv;XVurcq_~Yx_OYmbM|R9l-CK;gEjK|CqWv;*Zbkj;IOel z8hQZDFtVXkW1)spjV{`!2Qa$eRGmTF{adKKfk9jM9oojB$p=oFi8b&vh{-+$R0^Yqe`FF^r7mm@66IzHe$)peZ z0b|(&H~O);^s%35wf$RX;@M4e=W~^rvdKxf04v>6F3U~n-f_Xs$U2pC!kBV9u2Hgo z6+b4p#IJ>G34F&c4Az5>s?2gha$QkEW3VBb>iFer+Mt0c#w#fXhOwA}@WF-a|J+TK zr&5&1jky1hYHi=94LX=++Nj332!W|IIOX>VkCsNYV(&ASzjhl?l$5n z-(Xd~jzL^g65~fKmT)b1ZgZBt;?S2-6}TGX6Pmad<&ih^GW^m7Em#@TSoYP`e$i?w zBMpX`M(#rd%vDu&sVeH2lr=`W_|s}Ddt*NA43;3iGl=#Z z%=b1Xog^xMm~@~0h;6Rl47y+Q(ADOnep0;^uO`xf!8GS5oE)`rON`5aH44XB_VP!? zOfBFMQhbRCn6fl)aS~+5M85`65}HUg6nqLtx}M2Ysog{t>GD(Txb!k|Z{38~`A3b$ zk5A0pyNTSD&iFkp%}OGlK?T!IdUIwt#VygK+(cq(wBlDd*{z;q8|lk;Qic`Kye*%b zDV0@*TwPya4f2>tedGmJI}e+LmhWX22b%DfOVF)veF?+4XVQni!WJU7DRQ-lJql=1 z0lg@P`dTfl_%)SUN4eoDJJA!l zY^8**RZ#q!(xe-saE_9S4~uZw;@!@5XilU~@ChYc2jvkR0cI&UJ;KOeWD ze{OFkD(`{*xs9Z6nU`KvjISs9|1l>0I8QJhDd{uw(z}-p?S;x_i5Dj2>UJ8-rbfTA zQntV&4A)xlF75EkovW!BMK=nr%DQGWg)GK1R;y+C)HEz+oiVaMfH_VYvOg&abDGg| zVj|z%14GDP&G@k%7<->L<1czZFRovt0iV(nYh8eYdTI?6@Yvc@tAR~+p`t&{B4Crf zWr7xu(}h}yRx*($$b9eT*f~56gc6;|@AT4&xcC+%0vtUJo~1^n4eAwXcIPD%dDq@r zWzV{T1O31*WO1Y|M05X{9B3Z&hERYmp<4CP+F+{Z-xTGGBH(hnQAju6iporSJu2jO z&5fZlfn6)GE^U{SzIfvhEmE1AC_A=wAu#+|A{)h#DEqYWp;*`32tCp=%d$kb)vI+< zp0#fBtVxs|0w$~)9>z1vedZkoqN_S78RYy6g9`;Tf8|M@L{XN%B>jWD^zI6P(4wf* z1c|Gtmt;}thj~i*Br578%%;;)jE+eunM5{~pC8<>b_}SQgh$r&-h;4f(tB8T*X&Zs zJgc-;iPtEs4dV0ZA;NZ`uy>$;os#&b1K2A(5RPH}hXZPJzgZqb(?<48%g9V0JSf|q zn#2o4pym=pX0G}`c0$Nv0_zfTvN3!97CXsPg^&$+{SugGyzeGymXI_k)ZPTy8|Rw! zuG#(6ej1i(l9D)nXIaME-kOBVrhjdcxK~MSeAh1cKw0c-3HcTMTaSOe?cMOd*<1YC zyCXD9OXxi;y)PtB!2wFV)@vox%8Smn@g|BMf}xIm}gWr zi3|RW2~Vs+9BmS#IJxs%2qsE*Fi+{el~qW;<5UJTmrY8P&g&))IHnsc`!tt@I(`#_ z|12ZlvCVnOTkwAz2GKMl-^tBoiIm^4=e*G*&iGBOp{z5A*S^%YpD~FK{EmZ+ zCk^5plh|?}PUEWEYNYbSB=-D6t*rcI5I-=9-HVSRQ1O+XB0AUg%TKOfQJykbE5qk} zk7wu0C-X<$v~SME@q!zp3&FaK6fkNRmn`}Z9>c=(`R|3xXy zLS6>5;r(hSdh^I{)pFdPhR22RiYvotMD^_|HN+RCUYo}Xrb;WIUo9&yjY1cmsa3;C zX;J7W$<%1ll!7f}qxNXQ<7R0kETP;o*yUg5r*NDS&_Zq@_|4X$l-ef!sM#K>+u0<1EyM=F zQ8>+&@&sB6Br4|yBC~mzPlq{;|uRK+Q1AcVSLHvF^8n#ONdlO4*NjQ(0HU|1G zl_J&Ht_*}sPLcIfD}`?>10fRyjRofx#<+ZzhVa&@lb&A|dz3>=`bTB8a&!&?Jn0C8 zJH7BtPnUylnr+foDvvfXU((OXOE386kA~yoH0d*da=8e50gCqglGhhf%$ zP@Lk@&hv_JZ5x=>y(?+e=^Qdq)20yi6Z6ogR7Pq0nDk#&MrnJx(WmC6pIQYgJr0xp zZWXK&O>?84oR|JoRjg{Slk}ALP%V(xtA_C!?KoGaHF?u`SBFKMH1p_R9Tt(}MvtDs zz06JG;Q9Y$(yxuv%EJ{G{O28V(~!H-!u*8M78fdaIT{_L(TauJGOcolV!XnP=XLqw zmAG$U(^PnMLY2k%yqQ`GulXrjO|w?Ag5p~7MW3S8VBKM=OXUd^j#KKj;#h2It_(Cu z4}ON#CA%AG-&|7JfLEb*=9%q$9(#>8^c?qkQRJQO-Sw8S}Np4EB@vL zeqMF2CYC=LpP%j0ib~-)MQKf1sm*uR(tMR@Gm%ei6csS?Q-pC_u zwv=|`9qcOiX)UYK7rhi^{6Sfrze~AxI#h* zFdi!i)DQXI!w(GBn#ua!!%@&RCOt2@5QajV^9qu{XX>WpnAB_TRck}C)aK6~;p|Yw+yveKg8Np%pe<+8ilR1pj59=Sb7|K-Rx2v4z~?1)b4*hA zYWbtJFd{0sI~pp-XLU{1b&<7ocOQzdgmP(sn~yY4-eNxv-Yzy|TG-~l@aF>L z6y}RI!hI1_7e3?wjxpl=g2s~$s11|sE_Y@x5$&UY2k`G*w=Ma`k$|1XzMHKd*!8fuVoZPXyANa4RobyHjkfZe85??K;Y`Ou0sQZaVLV? zp@B~+1LF)zz&Tjja*?s}Nn3enpl)fbXP!HULtn=Y33s*SRnOz+7DpuE!M0>EI68kG zKhwGo^F3gVbsamoE18QE14xDgqal3L1vLoWnaEWf8@NSbsY1&Q5q3GFU@c1cZCl|p zF20C$&tmOloq=8YMYSU8;n6zuZ-v{*dM$nl^Q8onX4WOO5*CAr#!{Prkx@LKzX9Fh z(90n2n}@tGZ{Ex1A%5p?^iI8G^0faYA-u+9EJ11c{ZyzPwi;+#lOAm=6u>qbuW(6{FKV=Wt9|d&+kQP zC6!o%D7wAu3(K~bW6zNy7<<~A#D$B3xQ#*F(j*o-c~%s|{TP$DWihN8k2HugO=9-~ zLMowGPZ6Cv@$Du%KCunG#VBE=qd2Uw(O|bul%@q&j^PIoXN)`#wCA0VspXZE22qZY z=TY27N&{2;aSTjPOyY&d)zZpe2JwS;hzI9@IJAS*6F48vQA=azuHJswqi}KpC>*D_ zn16Nx7dXY6^cdSKVCT-HuVT`ZN0Quo_|U;AgL|1CNjEdGxo^?gjYEfA4(=+1DufEx zN);-NYVo`Gt*ylsPs(EaQjg{r2fkCAS{9nTlzAP5Irv+XlG-&lW!PcJu)2fWy5v?f z9o!^Q>h&E+rAf+#cj(13ByP3K)zXjd^tJfyL(uB0Jc*(#&)w*s=F+>D5zvs}d8jS=c%mh`& zAVEB(%lmE`Oidw zT7$GceR{hs^UpOIycmyMXSp$Oyu(0D*e9TTTg*f;Ss2i9BF&``97p@l^7&1K%6~Q! z4W5W~i!*MCPX0@xj+3C2XJ(?!lOWy`w?vryQ?4#e3ZH(?`{-8-cFwJ@oA1M?55-YC zjCuJ9nDiJvQk2>zY3LM`Bwmo>+6|X$j4Be0pHIEQ#Z=rYQ{}RjsmL0v z&C5*Fe7Nn3jLw>-;U>f@xzV*a6yT*)jO2~4YAuKX6i|pi8Ef<9yRK?k2A5iV#SG}_ zm?_fR8Co^|{F-Fs-fYqSMAuYSSYK}MzC~Pm!tFP-hL$aS$Q`Ya^TZ8JvnX3a#gBfR zcYnod2z~7Z8gOg^st9tVd9QvMf zM|(>j`~SwOX-WvQI``hiLI|NwmcZ}gJU#Rvf#=b|_zB%dw>3{^^gS#F5Jfjtmx*|n z0l2gx%&L1j*WJfVo+AC9yEyth)aDV&iQl?)&XZ7emV2x%5OENolZZ33wTChvnPc~- z?m6BW$b4mHm;aHOIg#03!RFM9|6o&RFjJkKUy+hrG6SXYH-nf>vbp!#U=#IL`&LkG zE~E!)ue%qpu+`C);!Xg3KJe&w!+ZBB<>GrL!9?9Q6z+A&Gg9SOEhXz6z z=x4tOV9wP+@J&64Wb>HbQ+!cTozQSM@kMzqdI@z$c<3s>S_o1v_ta}yaDSgz0xRRK zCn}}GM7=o|dh1q-IZ#v&ac=a{TUZda!%rV;!To}Qd{z$TZdd&Es>)3xO~n9RrReBj zy@IoEpq_{i=hh&73_&0#Q{=K4dLie@5Pcwh{7^!VcJ>d`TM@-K1tj;>XdwHA>x~Jy zsgORLCaHh&&D9KSr7Py~kYcck8sD7%!^qj|<~7VHGNKJh>q zrVwmYT%S%5xeC~>ls-wYqu+rzAC%SyP%P3r0EKM)UJ2&uj3}?yr5MOCS-9tab<3+UHpCP#Xj?`9+(JJmp{2@ZIEze|IZ|5ZwraYUg}z88=auSI*9*d&$aa+o z+>F=15P>$J3(yIubsg3oi7Mz3?@=ZH|0yb=l0S%|3CyF z;(X#qf^!JYoJi7(Fi{JE5jkXh4>J+z2epB?h(rAs;yH(GL3~3+#+;Yi>TLwKO6_&@ zBai_6%kg=YnU$}r#Jpr;ua0`Wh!n*asUs?*{}7xPbb2SUh|{|Z8SrZEJKdF8=fmi_ z1^J4uWKeEm^A(iOxx+RbL8X$$bbp6m5Pw^R`8dByg+-GhQFmyGtNHbju3~=JQ-6UU zM4$$e`S}ypLi|lH)WC3~23qyjeJu0^!zjl0S7Rle>-*>_gmS*^t8Wm2jp_RLA~3wa z#BkKBpbp}Z@yypbV4&Vn5F8$)e<}j~GxTZ}`Vj?fa^bqrrU;86r2SB2hz|@8AW;lFG+%g)< z2aQH~@P2@x|8}&V-$Gx@XJCk!Hx71E_eWcRv(Q**o$%;C%Q%6Dy!b+ehVy;%b(_;~ zf{q~qC=6!d+-s8V!!v%e`8hw&k_nwiI8G3t%Ma$-B#0CLv(4uG?0r%f62j(WLTAJj zy|+O5O-E*%rc&E`6zs&;Y!QHLXjY|VadA6p8>O^S+1}ksi_(r=*_za6{(p?7onUt~9^i4Q7GD z3AUcRZX@u%n=Lx=5HbNXPZ6o{6OGUfOkXT>=g2*Vr!;2ydB}(QJ^ZdkwCh$&Fh1aY z22laKm+1Z$`a*Lk#ox?AckA`BUXxJHW}oPnEJ!7cbI*RL`2K7dZ|X7~!#d*8Rb3E) z;Vbn_BE*n=qEI)cv?mGv?u}@R|ORD+8RK_vtgOWjgYCgu8R@?PTri?&&@W=(O98T@f7m7$|u8ec;P8#eXo~THXAy6SgZ5(Rz zbk^DBM$cEYKo<*XJe^T{sK3sW5|LPT+yhIQ_lfT1+^|=l<}O{R)4q=eH`E#``X`DK zwL0!MTOq#jTNp=0+4gb2Zz95??YI73_q5;z4=22l(H3C+p5r9Zh=aKAcTg*InSO_n zuADTg#3OnWx)N9z)#f7@%n(Dmab7&Cr&=fqT*CPWf7lB0%;QMdU$!UQ7Ti?nZ?vc2 z6S`udFS_p18S?{bjJ`x0pLs?P;B(tx1lx8}uOsl{cb^!iHBOPvqNnv{0#7+Pf$Ctv z6~v-T!xh9qyx~uJRUky!mi(mSsyI9!A})rw)fU=2`ZJ{3MD&5YZcY3K5_c8*^Ze(K zXp>09)6eOb@zjX3$$3%?Zu@V0L4QUNKPV35J$}(|Q!Ezr(Saba?vmbK1k@`!{BU5r zuj;x81YaW!ZK7^9&{_35X$WkvVH(c2-O%q4?TTMX7r?H%sZadBx)qOp(+d+(=Ue)` z|B=X>9(S?_^%1Mo$$Vc6C4?vZrZ4^<6A@?s-}RjTl_==8zU_Y_a=yKd68&#fy!st| z(f^fb(p|kY_r9xl{huhN{ZElac-=qsli~{ML`B>`4M3MqCtAhL(*ShsGyvT>4L}!8 zgM@CI2B52^0qCA-0J>xvfNq!upzEap=xS*Ix>p*>=~8KY(T&mobe%MiC9@=!ZjuI; zu8{_yJERdw7f9oaZjT0_tD}LWd!zA1cSZxyh0%%m#BI^|qN}1oLa%%P&?V78(kmbM zqU)jYMR!Bvi!O!+5U+e7J>3b7&+{^Sx(phmbQ3fHT?36cx&s4IiN(kmZ{HgPjEc+<7aC=FVgiqp=9%mv~7NQjg?>2|If4gj78g{NcmYfPh@1CuOfNAV)J}e%JWq}&sRd8 zuSR*kn&2zT%)VKk$c}lw`sMi=k>_hlp0BBSzNWc<4WH%RcfjBt-7^RG%pBSqCuQem z&vI^ftlzNs(UY>U(plOtJV!R5cQ)V8SS{Q%zU--<S{m zGq@%0)k}T5GBbo<(%E^-Pu%(p^NDC)=%rqrUMBqch2EInBlLQXwHw@-sTTZ(9`QTA~{DR=3jwHl;1Bo`UE6Zobv;-~vf+ot;oV4dEYnv4(Va z*IUM(`p_`qVmqrW-BDGLzw~6)v2%RmiN0G|8^UY-qaUIhjLLbkHOk{qKET2@;AS)R zHRj0M7oB7spj(f8tc$WUgm1O74L&rq4^|WO3 zMz8g&MQOCbVO|<-0O)-I02*z;W0o}|Eq!P#b?5=kQvzN*VF8iDXd?+F0V2m~PeUZblOBM^`@0s-U?#bwQ`6Rt~m z>CI|+)EfWZd&!xQqXw_ktmFL-@N6;qE$wx9bqju0!~`4&mxLgs1Bej;=%axeoDU zibFh?;t)Qr!(Ju}&V)m_xDMgrI)sCZ?9uid!o76}@75ulTZiy%fk&-4glFpzj;%xZ zwGQFdI)qp25Ko;rgiGrX9<4*XZi1phHxA*>I^fM>@P(uTMb4~4__7Y+$~r{f0;vU_ zdKQOpV;#bab%-9sAvzF;=sz5y`*4Wf!y(*Phv+*T!g+Owp2HzJ4u|MB9Mo-Ofhjqz z4$*5kgxd<~M3!XP4q@01Vb=~})(&CS5L5_6Hti55?GP625U#32STXb=_>c`dgq!LR zUaCVlsSe?zwsHuU!695!hwxAx!a;Qi|I{JeQ-^R)kxVcm*A!|OtjW+E!Y_3Qx70yS z-O3KEowl?R{JgEW+K2^l|BftNB6jdf9a%*g{+jpi$VzFSR0rYTl5l-T=C56=2E-jg z6!9C7ZFiuGO4$YS-Z-Ap3#-Onomj9Wd&o<5Vny|DYOm7De|}dhnQT%tK-)^19tvNxmi>1)9{271S10MdC~R({3zQhOhDq-B=mk zxHBjUbw_u$zB@wgyR#zN8>+r%G9%xfxTX2S?kvAnACDMdpcA!!7zwmy<$&lS5tdX| zSo4ViVn(ijDzBZ&3g{DR0PA5?8d0|K7v_Bn;KTCzae9D8MFQ40kijm5^CBn`h zrn1snRz*av=CM6cN7d61sg(o*N72X#1&>~7;32S4k_R5>FvyDW&1tMUkAN6FUk_G_ zZ|#Rr!yYU^%OF{2xv?4118f9#F0qN0;RXD=9y%5VpMp(m=oB{hg&C1H_XtfVdwzlp|BPP}`1U@y z%eV#cc-aS0waAb})zt0_oqkIdR!Xw$-xp>g5M}w?zO1qg<1LRgNO7$%N;;An&v8jz zupg)=P$R`v#8ls{`=QmQQpfO0BIfsFMfjnv$nQiyw4Y;SNrPmRM>>mAscC*BzZ23~ zDZM_aC%{n8v~*Z~2eJ(a8>-L7)m8RlM%-WNELh)#gM@a6fhl5V0eTVKM`SN$V3O^u zAhzM{c2*l;t(`RjcxY!e0m}Dh2>?U;vudDauBnKp~u7g-{iTIwRD#!1KVQXvuAeTUgB`4PoxgX`@H`pc63CX1Y zU{;1A_+U&`0Iv^b%?OsyU=3yd7sm5tJ(2(13>HB#n=)8^f`4boBGeed>eBbPA*?z% zVLOJfS_GdAVND6v9m*$(Q5}HO zN3(VWua0JE1nZAsoe3@JImL(JXa4c&@@XxU_dG&Faw&HvCIIzXG z>)~;%0YR_vtOdcY?VkkhJ_CJF_yiV9u`MRBmNIsTj6E?OvE?eV zD4Ws6fat*l)<_bKlteAEP-%ka7`}Ntt01>~|2$~(X3~*BqN`afiE=1EktIpm$$aGu zxbMp*qJl+Y+>}WI^_{>9@{~y!e9mJJ*W^%Wk}D-{Nij^ulh2uiCL)s0H6)(IDo{pm zCP87?q;2#*YpscA*Oo|vt?xr)h8e4(4MXHx*5eRu=6z^FxwlPlYuK1n!w7#LcNJigsl6X`rOVNBbTb(PJ8m zq*=$5X(*g{{p~v$0mX;WUTmOC@gRzrj=B>>M*N= zFoTtq2;2ih2-JB^%5~`s)?7xMr^+bL2c5MAd&xQz94|`x#nT|n()z4`n=o@7&=T#s zI?y=)`hNgDi&yJ#&FBbJY?lO9oNxF5eU-r8m8?#F0RKiHa6##KkRAU8X9wbDvOr>z zJd-8L*uN$D)|o7hBJR&*9c9D|8BzKJq@6g6g;VUZS*!|e#r-@Bbq-i)Hk@H{ne94{ z%7$CfVwoP`YOMl~8`NfFpYrF~Xe~(KI|tp7i13pUL*}p=6tR8|R4yWdDWV+5PAT%m zsUV7NITwa6V#8&!4Rcu)iHP8v=U}X$4N?!6TZ|O3^U%rx9rIXCNr)${NRn&wV77?x zpAQ=oEb)j7MGTma{sIvz=fiYF1ny3!h}ZL3Ws0b@fF;WaToFqVpDe&y5+bf5f?$P( ztP{bR3nl)Cg{(P!7s|!}AUGyvNiTj}HY-Fk+mEwZ9fFs#(TM;?En*e1mDpwxt1YIv z_O3>Pb&FVeiAgmuXcBl4X%X|IJww06tg0?vDD0cXH`*cF$TqB)%ZNZQcQHf)JhPZJ zl7tyq((S3jSqNMbra{OePu3&_^&dDIq zwgJ)ChJT3ips$Vp5NLFc9Ra(D&Z7GScP0_<=Q0sJ#o|1%war-3rZ?t^ZED7%fuE+F z(6Sy7gk^d!0fes05`-q30@fCRPoso)~WhXXki*& zLdSx%eV7dQA*wcR__l8Nt_Gf8{)mNSiDZr3qWicd>+6Q^wTY@HT_@-|7L^phr8$R9*U(*dg+zmg%g-8DOI&KklT@k>i zyW#C__)%{7(Qf#`Zuks0e0?{312_BtgyUQ_H_$DjrCWklZuqfo_;F6<6Nb|&czmMw zQr4H?4@+4uPdV|&ax-TCwU)77UIMX$5Ie^4Nf$7pK3vMG@wdxZeo6c_#eK~qmZLuc zmyyevUBNZ#zb*$?z@!!6Dpv`J@NXil%e%i&Y{4}$2Y2b-Yd{8m`kieTBzs_Z{Lylj z$eRz%r`w8(N6)c(z=yA79q6L@lPg&#AGyRp-0t8XAN&|&O3J6Kwx_YofQWni)GC(1 zTMWfhV>do!`Ta!HLrO#crf2i{1M|gu6aN~ynY8!}juI{uU-ua@1JqU_Gh=ZA3EzYI zWM+7$raa%a3h!ph^$A4S^Nr`HSFx^s0;3Uz{uvqZ(W{v!v7EM=^{4l09E1vP? zpQFP>2Ae-;y_IXFc<2`>6X5VKSQlTp3PS0sk`j1YL_W;LK4)b-YRK0W?Vv2Xmi1Gb zmEeokq9Oq;U$Q=4Vv!_>QU;CV^S2{Q*E6IlkNyfLYUeG(+1i{hnOA_Zo&wSk$|QRh z?xI@3YVe7Es>)-Q;~x@4_zJQD#F73@=hw>^vIrVKDNvX01Je8V#x_9-zU3=6Ou?fi zCD*Z`1V3KK2KdSq8e+0nFqxFB)aLO{)r+UDXZ}PsY&{#Rl#AsL4LEQE8|o?7aVXhh zzWz5{(OD=HZ_mbWWI;sQawFV1yiu`lBTFS1wTY#A%9S2Ua+1#i!bc#^5Q6^k73Wcd zCpTfSx9MgU;45N(rdawnoww|T0~+FajxRSeZ{qs(W;T-EA*r~9O|a1l5GRsIjq)`XkAOHVa(b`|IX%qG7t6D@u>zFC z$J^Lw{P;fqb~cRB!V)s7$5*an4dgRx6St%0e%;OjJ>{ws@gBo1JJaxd!3y~af{8>x|6uHvFx=ga+$;Il=rMF~TCbjI!!o;Izb@PUkhgNOLCT`4 z{97mML$J(F*2_mMR$U+t^iQf0uX->(b|eI6yg1`fBKtgUo zaFqzIQtwib6kU?<{TkJYY<~Qj4OWho;R(CgV9#S^MEScwS=EW^OU@#AK|OTm>X9T}0sq z5dGNi*fe@YF5mZTl8u%Hk#6x6X)QvkYv18;8Oq`noIWVCyLgH*+b-7+iPa45f5TO5 zklJ{sgAfP|haLoDJcsb&AOr)PcnH>RtS};-2lcKzrYEc&<%pwX9z66V8W(6Y4zq!Z zPkDazFzZUN_7T?2ODsP2qC9(z?Q5QT641M_CVv zuoJ@0#~;NU82o-XioOvKbk#V<2H0rb5{2G9h5H|6jrqsNP>8q3n7^-F(4>^B@ozfM zNQbcEHLxDXF-t-Ek;lFB!w!~Hr3z-oAXV~8( z(Be_qFuwXU?627x)!*Mv(e`9wM*mw%~zaa%L&#y z%|7s3MGMKbDKY&+V!wxOiEVuL3u^!e2Txx649jm5Xz`q2wp}jp65(8_C8FcaeqzC%B5DCe zEszSL2MRrE z7il%P^DLX7tgFDQokJ@G+;9%9P%b1>wo~xW)e29Y!$V*r&SSU&o#Q+krOYYI^IbqX zz%dutAWyl}OzB#YJJ5(nUxclnx`5)4-4;k6*1gBz!2?`vOD;qcd0Rf<7dF&SAUY6& z{vqG%yPjscS{VXToW*Ocy88fzNxd6$_VFMOF5_cGS7 z5ru{97MEEco4^#Fin_ag5nbC)moa!=ugI%jL4g1_U11qsaqK^jJt zjumz>ATGVh%3D@(ww@*NLgVsz@uIg-lVDx-78{G1?v`6@96*KN*f7s>w1%#cL>jpr zy@3z>9qtJpgrE028_sBr9fp?5Ctg4$XZ#Lj_q@#lJmpF~rNh{Jn+$>&c@x5$YS^G{ z@dpd{lk4;p<%fT+x=y)`2Sg73L3Lf6U-$!6aHcQdU@JfHOg-nx!;uwDY32U%;tK!WI-(%$h z2yL%VEa@K{!GV0p1hp04a1V27q&;yDHiuWwo8QL(4fxG{W)F~C2$ZOlOq9k~?q)T4 z^nGaKmrbzyc@NM9%8dmgD@!VAAmd*?fFX&fXo|wR$3vV@0qd-XY>t9w*L)wbB?P~G z#HM-4{RbjEK91M?i;eaan1!(6Sz&Z22D|rvp`XXQ=^mPYY0Pf>ufPgt0OH<%hdVG9Xfe8S!jkh>hj?-l+D zJxzMTTJgny!J9nwl=%?lwWn->QZAZj{=;V5%1JM7`&7ea2*ulP*S<%0Fy{qU^{;5E zhnJmb>_ds`P(JG!%)MOn;^*LTtUS+t&gKy;@q$hClp85TH;8Y3!7^bzoOJ;hcFrTED3aqx<0AP;-Z!WcyzqqIM~#H6g)DU^QRYpn6( zS)Y@yF)#pTykQ>%7`ro|4v=kbIFHR%;)%E*@9`F^#Dd~yV)fuP#)9>4Q4{OREef+u z=MxSw-Fls(gbRk}r~~=_$Jk{#{{|b#zEf0<|8ocfSipBM91%OtVhgpcqfN|fNVX`} zhOGySt*PSCf?E_@TfFybE9$jKG0sxifu5?^s#Ekn#ny^oU_RR*&7*}djZJg30(@mY zTPKQmozFIm;83frH^B>5TML3^R9h;+S*ooI!8@w0v5gqmpOEBb^FfANVOX(zpx786 ztl7eeYPM$UO7Kt3){$Ui-PWAoV%=7k;CbEFK*43Vg_x}#!Bhi&#%!(W`xyfrU=5qC zGeK^%jnP^+f!Luu`V}lX#>3W5A_Dmk4`jc>1M-6Mk%w&z!GWH(0|yC&<@^>-3uN7QVKD z1i$gM*$I~Mvo#_()X&zK;BMnPpTDgweRuM=btAaT-`2rKOzm~1L2ZyWj8_h@#Zp|~ z09zk|Cj)H52{sC}jUf0Z253oYtIAC#9(oTV&@dGh4NFW_*wIoa9a@~IU8=9K`^zD?Q@MtXI14V3)!mi zgu>7fBK8!9p#c_*uni$NC&IRfVDU&K#3L3PBOwQ%ca$xKVD~87Xo9~)!At<#6|qgy zob`lZb^BNg<4=pA5)d)4sBJMpwU}+JBq+s)EZ0i&jm2!~6j7i!Y8G%zacB(ia&cQv z8*#F~rn1alf@`vRm9RCWxUWi}wg8KjwDl)A-+*sQLd)4nymcvCG{MQGY{dzFS<2Q- zdDwwZtZMDis;#sXY1Q7N17H32_kPZE&eQh$>mT0t zd7bAz=Q-!jPx{<@^H#;?fR3%o_V-n>8DPI%P4!l^g419+l7V|UZ(}v=!f3ly4aX$3 zxgYz^_roS^66)RYQ@!$0O*5|DJ+T(f;CPS4$}Hu*r0S}$q86tIMbmF=T~i%LEK)F9ICHP9{e(;Ce4)Kmk> z9$phC9O(I)Dk=+Jh1Z}KwlLJIg^r;2YGKIG?zOSSq2JV2!$=#|!Ip+Du7fzx*L855 zLxFKZ+OrwA?{9|wVV4e4JxE6dAs+Nxkm{ZVFM6%o z9C4vDnj=5x<>qPvY3~;59iOY%nz%ctegT(&=Pi&J8p4B-D0FwQic#d?6qtd{J-me~ zB2RZA7<^SC8~mGZ9b!z%=Ow}K-YR<%-{xdH!+`JhiR zFJEiblo~p=R&7W>Xsx=EK5mUPp&de00_j&FY7%MlHnVLc4W+V?|@vOXN=|x!_>nb5{Ba! zx-Co%^BEbA*(vGedy>7B*Rmr9kA}G&RTpk3;thX>_b&a}5j~VgqK`*gw10!{Ctg7G=JCtXxs$Xns6Dx`BbrszPJml{qd z-Z1ama8;f3RXBpo4Ds4@RqaU^c7-4Gd{=B5yj8bKH&(YBE*h{8b;G8B`gK5XsTX!4=)ztq)aU0Gn4S_| z|3WxlX6cPR5e)--V;6@W?~Pp>TA>dPMQCat?8@uAdO!EUK%k}jVj$4azL-{g#%xhv z6`G5xVsHwpI1^hxA{N(Ky!R}-w>d&(_wx5sxyi3gKb%XT!~3Bh=%s!tjx?k{^CkVU z-C^JCkE=R#UaYG7k1+8O%9rr?XgoHU7NKhDK2eE-ovxyHCIYuyX!RX{O#|&b0Gkr( z4Zz7B`d|PC0c{$IO$vQ460;87XY@~_jR#^-c#+oBfhsf~74~3ILog_um+{BlfvSRc zItnFp(Mi=K6JygHcovRQkv`;!Q`>+joZ99`scsAklQX^nIS98++5@jQ8U&C$2%8wI z9v_603=|`M(+iEpZVm(E3wwjSQBq|7;m+y3-7lk65ppUp7&{NN|6mLYx@9o78B`6y z9gkjl3~h-1n6a@=}bRiopu7 zbHri}p&eo|XHcZsmQ-(nh!|C&p#R8(*un3lIi}tT=~njq994_F1~@qNKvy}~GSJJ8 zYUraKw@~+$y-u+{+4D4t9upa#7)QSh;S)X-2VP8=mo^j`K`#!)%^Fn2VIRha2>Zoh zxX{gUsxj$ooG73XBM}Vx#YhB)78u1EGYZ#q*e6Hf z+6-+m8kaEW%F*oqYBa9pu!oLOGf96R!@To5xFo~g`wp)8(3)d0nb2utIquc59H-GZ zoPfY*j$`}QIOX~T_rheOj$kG(byLTy+T`%Xc2|VhOF8dF3al%6TK^G?uXyJ+26wru?9Dm0|%ogk{@A1U6evj8reUJOO z@E&Fx?L{VGZ-T~5;sGC;gaP6;s%;nHo{5+6$cIUtEor=nt2+Mhqjrf`unVCkJ%~grB1`ipzjAbpIx1% zYUd(~)6K0}nKF4z=Yu}%l?}yE)0Gc>#-PV^T#BLVrXvyPZ__cW(5f?VU4W*~!1*7V zb0)WUpNT|Ze>hVmWxh)hBo(Veu!MJrKoZ_hD1fBIq=##2d5*v ze>G^as_iwMt7_$Y)kTl3DptbTthpCC48KV-_Tb$@8|JEFB7?zEr*sYn4Dm#W5- z-b=;x3>r2M7hCAcdDxxtt)RV&RiM{=K2B9I#?Hqkh8~)a!9xoyz^(%wut3%Gx!)R@ zmh}=-(dE+iKEB>p3$SOSwd(u0L_%l0k7E~l=6#M*JPkV_K4cc3hPzgUmG z7PIG@;c2R>cl-m~@L&bC1hWbqXmrmK?C-D(EXB+aUy6+i-Mv&r*h}huh@qe% z`9ti?(8C{cz&Ad^jKd!M5sohC){j&V)W!O)R*fO8SF5g&rK{Bd$m`Xr8>Gv}sz2nj zk5xm+{g3g}8l^X(Yg9``<*Yc6Ue5M1)~U8RBL_vsr%_$by*1dCpkZrORBm1KnogJ4 z^mn~Sn-rb~U#F`1`j60Gu^Lt6W3vM&|B`|kY-x9|9b z+lz1D_6ZxfJ!1pTTUfu@M%>Xs*KbrYxpW#ADUFNX^7X2n_n(a_mzS8XvXjf`blf9D z&!($LcFiEy3~%ozaGn0C%15n>KjpwLKEPQ2xvEeh+5=kq z0lvwN8=3r@Rn0v95fQNovB?n;X?QZk+q@Y8c*UZg?-tzE-tfYeX-VRQ-o?z#FGNSBdaE`MC;&Us^aRr8@n)c-fo``f?L0_u5q-VZV3v$t;;Z7)}5bC){@%NR9U*cE`+pBVBOT$As zUdC7WQ3j3LtEQ6P+pFFsjoqiFlRn#rodb%VM^mlok^MM`pv4d1LJysL0DnG$<~xY> z$Uew^IS%1RIqX@7kR;Uiuo^=;v8&(h8M9M$Jr2C^INr)^whU% z4e7`e>NC>HC%Jw1Nwu2n{-@M@(x<2JgB^-s5h!|nbOx8uv!_)hEdOyDJJM3G(-{>7 z*?tBm2JH|@HLsn|;v5hC;4F?6=*zP>Hkg<6dY{7y9`$l-&H+O2pF=0mZs+mi9J=Q` z4k&2Z?{FA$kt=Ps6JG!GD#Ys$l(S$~JSXMd{SKD`XvhWpG=uKEfL}V$G8b8=UBq<< z_VbI_OQ7|?$DLOdoCv=H+S%l7r9@R@G`!~C2ap?oY50o z<}8rafp3dTNEMoX36~>i(aZSN2AzBvKNF$9UB7Xv3>W6uS1R>X%#BX8KaGny>5azkq8)ji2zIv@X|Faq@}3#_OEA zhD2aD$iN_=%Q85I`Uz)I*wH^>4xz_?;&%U^xqa!+xQc;4{TbI1Xs7GgtDzgN<5~jE z^9#=i}JKx$fb0|Lg9n zx5(@Cef)NUst5Q31ZplLA0P|p$_I!Bee?j)nHTYb9;!m+=vn?4FU2PuSFw>J(r~Zk z8xWf?D0+;4(um|VdPHyJLsgL;0bTkKzmcG4AEFOvu17epLEAlId&(pH_JY0Z5w88v zyG9Q@MV56RD_#yO6Q=|ovzuu$DPnz>8W~ynj1dlSVNxTb{uw^QDo7UY$VWzwEHt|pZrX{ zO?LV-73J#k!%rvcGS4j#hd_)E${x2`%h`ti7X`3g0F^5O>=ZyXiU6MrFcJ3HF8j`)YQbS)y9UkWh(uK`??{vphtScFR^ zlwfF}BV@4_Y7%vGHUU(52!9^|RAUH`Q-Fz>i-4{o%#9^@=ok zA_R0nVNoo>ql5)ILMdxGi#UZc0*rq-0+;IIpYm8jfJzo1fQxq{SkpPp5vmBF%0sMB zO#l@e0#p}ZLe?OlD+Oy}2_AJU&`H*_mUDmuG_b&RsMZiGG_pjO83HsBU_v${pbG+n zumq1_3v?f?tmTa5h#>-~!Vvy#1yC^|K>I1!|Nj*-j9hfNUq>v#rHci+kFM6z#e`_? zF5n7>>?wfi1>wc_$LZ5{v!zJ!oOtN|KKv(5*^_kYdJ4?5aR?;VIce`5YR<`Ccq>Mbbu+=(&d2g zpC-Wg&m@3)Kg|CuEW%}uA$&eawH8VNb@O}y#y^dKF7sQ6B?MS(flgtGwVW9oV3`2p zzmkBf3;tGN5fN4sA)q6yv6e0cMDscU#(x6=UC*}>OYqoafex_6TBrxq&07TwVX%D) zo&R+NDgZ=;o#J9b?k1oM{l35wJif9(_p#4fx&#o-2Lu@Z!vu6i-w`aq<7*2jfa@H$ zCaM8-`w0Q%7@QJ7HGhb3Mt})9kd=m4v&<<#N;YXndUAN912w;EL*-J!f^5AmN0v+M7wVVVV#8CnJumt~a z2+XyGc>pIZ&;d?c3)Otu|EvHM^6B3n-w}~|JVf}x0v+M9wR9~Xny(0;`aOUQ0#bel z@QVdHz)fp812~1-0$i%s!wUC^=<2!q3?5maBRsK|^OT!^6+qQ?2=GF{O9rn6{K+5_ zs*kvf%vi!I*&r^H>`Zcsi(-&lfJrN#0F%fY0!$)>1(-yN2{4J26p(ou_CI7&MuG5gWSdUc zKix-mCOO4LF~}_-4}<&yOj-p6m_&*QFo_fwU=k@Mz%`k?Da0gFUVurYk^qxPWdizp z^i{Bg(fC=Q=f~e#j%lt*K$m{jV*k1jR};NLeQBrCP{eC2pb3L!0)iL>3uwt8M1bj| zod6TGg8&^A_y3)Qn5f|bOw{fKq|6kV^|nAK-q%{X3Kh)}1gON+8Gt2#C=0ZIw6&bU zwEfW@E5zXy;sqoy7%m`*!AJq7k1+xUv&T3ACg=nKCg^+9>F*CZQ4@6vxlj$NGnIqP zus~-%%UaHCZk{V3mB9i5?=x5=z+S{yF##rGNef&Xq>LrHwirRm2{1t_5_sGa|5U;fJStnD)2eDMry4i=3kYCP zO8^xBBS5_wbo}X%^_eshm&Od53TVclg@9lNtp$WIXeXdOgD?Rd8FUd4?lS2vqz8lE z0{SrMFTjjGQh*unAOU8)Lj;)dIs(ja<7d$IPfvguZ=$%E@s1E+#yd)Y8Sgs+%y`EO zFyo~`axdXn!o*J!;F|GH6=KFag8)@XJ2QEm6btm$o@*^9m75m`c%Q){0Um=T0+upZ z0dcvHl}tVom(>i`3RuTrg8-A(rvgkOTLhRywh1ta>=dw+<{$I1TZl>IO93X4eF97( z2MOqx(;UJQVjQ(V&(GJ^a!m8L1n711&I$HEt$_=oS2+8>?cWiY8G?T<@CrXzp#3jf z%QjynFs=jsxyJrKTcG`av6gd#n{R92(h7H&+!vPz3?2)3!r-|8)5q@uOw^YGOwiW? zOwhjsP*A%5WkDITL)GR^RxAPdSfDe{X)Q-_b8Z277~~gV0u&TrRw*LDtWul+Ug?kX zPYEod)6$0U=6KUuwz)h3{a(ik?EjVpI?2k`a;k8%pMdHNY6z&wpbi07hpfw_fw(ke z&_qBWgCGIT8MGA8ia{FzRP~N=wG&_x?;rrF>g#VOAtu*w0Vdb(0!*sC1ejF&3NWcg z2r#J*6kt+~25?axk7*c;MdTVwE(G+P4z-pO$IZh8Br+HwAeq5v0aV+Lh~or|XW$B$ zNC4O0$wH>E%X9%$U5_9$1(-Zj1enZH1(?hh2r!u~6ksx2tbt3TH>oWZ7o8ez3*P9C1ke70zF~ttmUld=8Xc<8Eh7?g@L{ZfGGW}g7l z%|QXCn|E9|c@t zkRiYXxK6;;AI{y`7 zqGm>IH)mm@W)ond<{(gkN@jCn33Hdr0-a|bYdLwjxqyH-7!(%Z7GY9cNC^g|1(-g{ z3NTSC2ryCK5@3Q>AwX6BPE{-+&*~QFJOg04++Ks*Yuk3G4ukpv8Zc-qpb3L!0)iL> z3uwt8L_iw`?FEF+;_H7$A)VMITtHU_Jp}Y*&__UD1`z@VFo+T`h`|s6F${*zqWxb_ zP#lwC;*!WyreSX`U*e4mo4P%n)McdA0yE&vONsd7dx8 z%yXImGtZuYP%NRBB?8PeFQ@tE2{7}#N?go5uNGkDd9465&z}e|^PDcg%=2aeW}3GO zaLqjL5Mt)}a{*?a_Yi1^M--edv4qj=vq1062dw2B7fU8#sW71h%x-jS_ zpgV(J0!$x$1(>K20!+|>0!+|o0{Q`y!L#}PGu9HF=um4paah7^4ik{bV1$5V2BQUx zVK7d>cm_1j-04IHlNr$YX9|<);xdE5Yyl|@QU%Oo@VS&W;CA&Fr!HqUCEzpz_neUPOfCx8&ES#%)9)1lrr!(!rr+xVOush; zn11gNz)N~@{iV0`VzBoO;rq{r)^Zkc^J4)YFnB6p8H48nRxk2Rd z8W7OWIX!2O#u~VIzDI`)l=k1by_tZQ44Mmg%^+9+Jz0e;S_#O4$3Xx>1kl4(0Br^2 zWZh(c0D5W*9?=47F&HACt_H3XE5vM=I0E#cL?<3g2$E=l-cU)_vdtq2 z=;yQoxsNdxX#cU+a)P*dynx^deEdxi(wbc+3TVqD30bLl(5YUam zECD?kqyV^_c^@Wo#l;L|J^^_RIr>erK#y&awVZ(*V6lK`21^9QFjyvFC;?pmRtQO8 zmsJ9WGx$hAGJ}r=jApP_z*q+B1-#2(gMf()(lwyt&za0*lekP{utmU323rNBFxW02 zmBCH{3mAMZfL`Q|8Qeoa-rY`r|J-Ydp40u-az5Y{4hmSt;IM#|42}x;h{4wa)-X6O zU_FBq2H^PH$mEo`&^zUk)>#7b8hL>4EYNvgw3f4#{eKX!gTZA1n;BdspuZ`xo54>h zbp0cuLtdBmFS-4O0JFkv0{Y>){p@ki0v+IiwVXrT{7Ar222TWhqk-!@6LNxGeid+< z!S4djF?b>10)tlqeqiugz>f_6E8rS~Omp-|X#8d_MYfFcZP2%zu!A!w~RbpNLl zEybjcxV*`ro`CWU8VIPwppk&e44Me2#-OPHe+EGUYMKdXA*2qwv=mUEL2Chx7_<>U z&o*K-?F0ld2o(^_AWT4O2A$?Wc>>xp=^`$n47v(1+p-4%`n;dhi9LE-pf_$`YdPWE z++RR<1_J~jfd2mvQAFfZ6Bx>13v|dBYvE%adZdnk0Sw{<(6=fOU>E`UJOx0K1v+A~ zwH$W{uP{o8!(fa6dhQYt#tKMeFkS$C0s|iUSei#OlgwZec@WT@PO+9VnwzHqxVqi0 zFq2&P@l3=^5sMy2oNF!Tx6Hb``2wC~(;!ViUk09lt_+q4xWiz%&RIWI*~Lc(StTxc zb8E0#K%M*=tQFwL;1dBy7^Dku3g}ff3;3GBRtwx14`bV5O*^*F1(>nz5n#r)SAZGY z0Rd)ghXt6S9TQ-Nc6?5zHay>s8QV#5F=IO;z>Mv@05i6W47^|bd@K9#M^3x~)qM*$ z(#!l|laxGodvw{sNy8G7qZ0< z>E-hGEm2YT+m>_7HxS>>K+0ufA`=Gv9X`}+>+f5Ezs=HwJqsiz#l}Y_VU!~iqLO2W zCD>7p;`XAH;jj_0)D#)_|GfCSCMo&iW5+}f`hTtbb(54rc<)BSpvbsk3DM+|_h0?I zY>O10}{83ZiNaCHF`40Xkzuk;^yP$vbpMsbN zH~%-k)SP*f7XRkwS}?C0>^s-Quj2i6FGqIod9ZJ76%vXQO-ZN9`(A;&K4rWPEq#an k+v`qC-`bR4=~lk;{@rr5)!*xP{CoZ8yT-KkEuQuN0E8OivH$=8 diff --git a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html index d0334f0fbd..cf4a5eeed4 100644 --- a/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html +++ b/ivy/docs/functional/ivy/ivy.functional.ivy.meta.html @@ -1389,7 +1389,7 @@

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  1. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  2. inner_learning_rate (float) – The learning rate of the inner loop.

  3. -
  4. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f76951f2e60>) – The function used for the inner loop optimization. +

  5. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f77ee536e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  6. inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  7. @@ -1443,7 +1443,7 @@

    Meta#

    variables (Container) – Variables to be optimized during the meta step

  8. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  9. inner_learning_rate (float) – The learning rate of the inner loop.

  10. -
  11. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f76951f2e60>) – The function used for the inner loop optimization. +

  12. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f77ee536e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  13. inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  14. @@ -1520,7 +1520,7 @@

    Meta#

    variables (Container) – Variables to be optimized.

  15. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  16. inner_learning_rate (float) – The learning rate of the inner loop.

  17. -
  18. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f76951f2e60>) – The function used for the inner loop optimization. It takes the learnable +

  19. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f77ee536e60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  20. diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html index 6ac1d8e0ce..8bbecfdb04 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.html @@ -1392,7 +1392,7 @@

    fomaml_stepContainer) – Variables to be optimized during the meta step

  21. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  22. inner_learning_rate (float) – The learning rate of the inner loop.

  23. -
  24. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f76951f2e60>) – The function used for the inner loop optimization. +

  25. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f77ee536e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  26. inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  27. diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html index 1c11294106..9d4caf7f9b 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.html @@ -1392,7 +1392,7 @@

    maml_stepContainer) – Variables to be optimized during the meta step

  28. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  29. inner_learning_rate (float) – The learning rate of the inner loop.

  30. -
  31. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f76951f2e60>) – The function used for the inner loop optimization. +

  32. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f77ee536e60>) – The function used for the inner loop optimization. Default is ivy.gradient_descent_update.

  33. inner_batch_fn (Optional[Callable], default: None) – Function to apply to the task sub-batch, before passing to the inner_cost_fn. Default is None.

  34. diff --git a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html index 29faae976e..e6eaac137f 100644 --- a/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html +++ b/ivy/docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.html @@ -1389,7 +1389,7 @@

    reptile_stepContainer) – Variables to be optimized.

  35. inner_grad_steps (int) – Number of gradient steps to perform during the inner loop.

  36. inner_learning_rate (float) – The learning rate of the inner loop.

  37. -
  38. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f76951f2e60>) – The function used for the inner loop optimization. It takes the learnable +

  39. inner_optimization_step (Callable, default: <function gradient_descent_update at 0x7f77ee536e60>) – The function used for the inner loop optimization. It takes the learnable weights,the derivative of the cost with respect to the weights, and the learning rate as arguments, and returns the updated variables. Default is gradient_descent_update.

  40. diff --git a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html index 54dda9bce1..4ffd4c2176 100644 --- a/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html +++ b/ivy/docs/helpers/ivy_tests.test_ivy.helpers.globals.html @@ -1378,7 +1378,7 @@

    Should not be used inside any of the test functions.

    -ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7f7688705d10>#
    +ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG: <object object at 0x7f77e1a8dcf0>#
    diff --git a/ivy/docs/stateful/ivy.stateful.layers.html b/ivy/docs/stateful/ivy.stateful.layers.html index 871b61d9b0..abafa3b0a5 100644 --- a/ivy/docs/stateful/ivy.stateful.layers.html +++ b/ivy/docs/stateful/ivy.stateful.layers.html @@ -1505,8 +1505,8 @@
  41. strides – The stride of the sliding window for each dimension of input.

  42. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  43. -
  44. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f7694dd9f00>) – Initializer for the weights. Default is GlorotUniform.

  45. -
  46. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f7694dd9ea0>) – Initializer for the bias. Default is Zeros.

  47. +
  48. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f77ee10e560>) – Initializer for the weights. Default is GlorotUniform.

  49. +
  50. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f77ee10e5c0>) – Initializer for the bias. Default is Zeros.

  51. with_bias (default: True) – Whether or not to include a bias term, default is True.

  52. data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  53. dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  54. @@ -1543,8 +1543,8 @@
  55. strides – The stride of the sliding window for each dimension of input.

  56. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  57. -
  58. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f7694dd9e40>) – Initializer for the weights. Default is GlorotUniform.

  59. -
  60. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f7694dd9de0>) – Initializer for the bias. Default is Zeros.

  61. +
  62. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f77ee10e620>) – Initializer for the weights. Default is GlorotUniform.

  63. +
  64. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f77ee10e680>) – Initializer for the bias. Default is Zeros.

  65. with_bias (default: True) – Whether or not to include a bias term, default is True.

  66. output_shape (default: None) – Shape of the output (Default value = None)

  67. data_format (default: 'NWC') – NWC” or “NCW”. Defaults to “NWC”.

  68. @@ -1582,8 +1582,8 @@
  69. strides – The stride of the sliding window for each dimension of input.

  70. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  71. -
  72. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f7694dd9d80>) – Initializer for the weights. Default is GlorotUniform.

  73. -
  74. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f7694dd9d20>) – Initializer for the bias. Default is Zeros.

  75. +
  76. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f77ee10e6e0>) – Initializer for the weights. Default is GlorotUniform.

  77. +
  78. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f77ee10e740>) – Initializer for the bias. Default is Zeros.

  79. with_bias (default: True) – Whether or not to include a bias term, default is True.

  80. data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  81. dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  82. @@ -1620,8 +1620,8 @@
  83. strides – The stride of the sliding window for each dimension of input.

  84. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  85. -
  86. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f7694dd9cc0>) – Initializer for the weights. Default is GlorotUniform.

  87. -
  88. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f7694dd9c60>) – Initializer for the bias. Default is Zeros.

  89. +
  90. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f77ee10e7a0>) – Initializer for the weights. Default is GlorotUniform.

  91. +
  92. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f77ee10e800>) – Initializer for the bias. Default is Zeros.

  93. with_bias (default: True) – Whether or not to include a bias term, default is True.

  94. output_shape (default: None) – Shape of the output (Default value = None)

  95. data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  96. @@ -1659,8 +1659,8 @@
  97. strides – The stride of the sliding window for each dimension of input.

  98. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  99. -
  100. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f7694dd9b40>) – Initializer for the weights. Default is GlorotUniform.

  101. -
  102. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f7694dd9ae0>) – Initializer for the bias. Default is Zeros.

  103. +
  104. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f77ee10e920>) – Initializer for the weights. Default is GlorotUniform.

  105. +
  106. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f77ee10e980>) – Initializer for the bias. Default is Zeros.

  107. with_bias (default: True) – Whether or not to include a bias term, default is True.

  108. data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  109. dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  110. @@ -1697,8 +1697,8 @@
  111. strides – The stride of the sliding window for each dimension of input.

  112. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  113. -
  114. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f7694dd9a80>) – Initializer for the weights. Default is GlorotUniform.

  115. -
  116. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f7694dd9a20>) – Initializer for the bias. Default is Zeros.

  117. +
  118. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f77ee10e9e0>) – Initializer for the weights. Default is GlorotUniform.

  119. +
  120. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f77ee10ea40>) – Initializer for the bias. Default is Zeros.

  121. with_bias (default: True) – Whether or not to include a bias term, default is True.

  122. output_shape (default: None) – Shape of the output (Default value = None)

  123. data_format (default: 'NDHWC') – NDHWC” or “NCDHW”. Defaults to “NDHWC”.

  124. @@ -1761,8 +1761,8 @@
  125. strides – The stride of the sliding window for each dimension of input.

  126. padding – SAME” or “VALID” indicating the algorithm, or list indicating the per-dimension paddings.

  127. -
  128. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f7694dd9c00>) – Initializer for the weights. Default is GlorotUniform.

  129. -
  130. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f7694dd9ba0>) – Initializer for the bias. Default is Zeros.

  131. +
  132. weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f77ee10e860>) – Initializer for the weights. Default is GlorotUniform.

  133. +
  134. bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f77ee10e8c0>) – Initializer for the bias. Default is Zeros.

  135. with_bias (default: True) – Whether or not to include a bias term, default is True.

  136. data_format (default: 'NHWC') – NHWC” or “NCHW”. Defaults to “NHWC”.

  137. dilations (default: 1) – The dilation factor for each dimension of input. (Default value = 1)

  138. @@ -1918,7 +1918,7 @@
    • input_channels – Number of input channels for the layer

    • output_channels – Number of output channels for the layer

    • -
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f7694dd99c0>) – Initializer for the weights. Default is GlorotUniform.

    • +
    • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f77ee10eaa0>) – Initializer for the weights. Default is GlorotUniform.

    • num_layers (default: 1) – Number of lstm cells in the lstm layer, default is 1.

    • return_sequence (default: True) – Whether or not to return the entire output sequence, or just the latest timestep. @@ -1977,8 +1977,8 @@

      • input_channels – Number of input channels for the layer.

      • output_channels – Number of output channels for the layer.

      • -
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f7694dd9fc0>) – Initializer for the weights. Default is GlorotUniform.

      • -
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f7694dd9f60>) – Initializer for the bias. Default is Zeros.

      • +
      • weight_initializer (default: <ivy.stateful.initializers.GlorotUniform object at 0x7f77ee10e4a0>) – Initializer for the weights. Default is GlorotUniform.

      • +
      • bias_initializer (default: <ivy.stateful.initializers.Zeros object at 0x7f77ee10e500>) – Initializer for the bias. Default is Zeros.

      • with_bias (default: True) – Whether or not to include a bias term, default is True.

      • device (default: None) – device on which to create the layer’s variables ‘cuda:0’, ‘cuda:1’, ‘cpu’ etc. Default is cpu.

      • diff --git a/ivy/searchindex.js b/ivy/searchindex.js index 4bb1f9d334..4b3edffbdb 100644 --- a/ivy/searchindex.js +++ b/ivy/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 568, 574, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 707, 709, 711, 712, 717, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 766, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "repo": [0, 11, 40, 803, 806, 808, 811, 813, 814, 819, 827, 829, 844], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 459, 487, 511, 512, 517, 564, 565, 621, 624, 634, 665, 745, 761, 837, 856], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 414, 422, 427, 435, 436, 438, 441, 462, 473, 481, 486, 516, 522, 525, 542, 562, 563, 579, 586, 587, 601, 604, 616, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 635, 646, 648, 649, 654, 667, 672, 673, 676, 681, 690, 694, 696, 702, 703, 704, 705, 706, 707, 716, 717, 718, 719, 725, 728, 733, 758, 760, 763, 764, 765, 766, 778, 779, 785, 788, 793, 795, 799, 800, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 861, 862], "jupyt": [0, 845, 857], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 771, 788, 792, 793, 797, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 822, 823, 825, 826, 829, 830, 834, 836, 837, 838, 839, 840, 846, 852, 853, 856, 858, 861, 862], "tab": [0, 804, 805, 813, 819, 837], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 805, 807, 808, 810, 812, 814, 815, 817, 819, 820, 821, 822, 823, 825, 832, 833, 840, 842, 845, 846, 847, 851, 862], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 420, 424, 430, 439, 443, 445, 446, 462, 464, 465, 473, 489, 490, 491, 500, 510, 520, 538, 539, 545, 559, 581, 582, 603, 605, 606, 607, 608, 610, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 649, 656, 667, 674, 675, 681, 717, 751, 753, 764, 778, 779, 780, 781, 782, 783, 784, 788, 799, 800, 801, 802, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 842, 845, 846, 847, 848, 849, 850, 851, 854, 855, 856, 858, 859, 860, 861], "web": 0, "relev": [0, 48, 71, 133, 616, 783, 799, 804, 805, 806, 809, 812, 813, 814, 816, 819, 823, 824, 827, 828, 829, 837, 841, 845, 853, 860, 861], "link": [0, 17, 26, 27, 41, 799, 804, 805, 806, 811, 813, 814, 820, 826, 849, 851, 853], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 413, 417, 422, 426, 429, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 459, 468, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 502, 510, 511, 512, 513, 522, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 585, 586, 587, 588, 600, 601, 606, 611, 616, 617, 618, 619, 621, 623, 624, 626, 628, 629, 632, 633, 637, 638, 639, 640, 641, 642, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 676, 678, 683, 684, 685, 686, 687, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 707, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 779, 785, 792, 793, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 834, 837, 838, 839, 840, 848, 855, 856, 861], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 616, 630, 726, 728, 799, 800, 801, 805, 806, 811, 814, 817, 819, 826, 827, 832, 841, 844, 845, 846, 848, 849, 853, 854, 855, 857, 858], "task": [0, 43, 627, 702, 703, 704, 799, 800, 805, 806, 826, 827, 855, 861, 862], "avil": 0, "discuss": [0, 804, 806, 811, 814, 815, 825, 826, 828, 829, 832, 835, 836, 837, 840, 846, 851, 856], "suggest": [0, 804, 805, 806, 811, 814, 820, 824, 826, 829, 830, 831, 841], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 449, 457, 458, 472, 478, 517, 533, 534, 535, 537, 540, 541, 543, 564, 565, 568, 570, 577, 579, 580, 586, 603, 606, 608, 609, 610, 616, 617, 619, 621, 622, 623, 626, 628, 629, 649, 661, 669, 689, 693, 697, 710, 722, 723, 724, 776, 779, 782, 783, 788, 793, 799, 800, 804, 805, 806, 807, 809, 810, 812, 813, 814, 816, 817, 819, 820, 823, 825, 826, 827, 828, 829, 830, 832, 833, 836, 839, 841, 842, 844, 845, 846, 848, 853, 857, 861, 862], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 426, 435, 441, 447, 472, 473, 496, 497, 510, 511, 512, 527, 545, 550, 601, 603, 606, 608, 609, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 643, 644, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 693, 709, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 744, 745, 746, 747, 748, 749, 750, 752, 753, 760, 761, 763, 765, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 843, 845, 849, 851, 852, 855, 857, 862], "comprehens": [0, 15, 806, 808, 828], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 442, 451, 452, 453, 459, 461, 463, 464, 465, 472, 487, 560, 619, 621, 623, 634, 646, 689, 690, 691, 693, 695, 696, 698, 700, 747, 749, 763, 779, 793, 796, 799, 800, 802, 804, 805, 806, 808, 811, 812, 814, 816, 817, 819, 820, 822, 824, 825, 826, 827, 829, 832, 834, 837, 840, 845, 853, 855, 861], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 420, 422, 426, 430, 432, 434, 435, 437, 438, 439, 441, 446, 463, 467, 471, 473, 481, 489, 491, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 517, 520, 538, 539, 548, 549, 560, 561, 568, 570, 571, 573, 579, 580, 592, 593, 595, 602, 603, 608, 609, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 632, 634, 647, 649, 652, 657, 659, 667, 671, 675, 678, 681, 683, 692, 693, 694, 698, 702, 703, 704, 705, 707, 708, 714, 715, 716, 718, 725, 726, 727, 728, 730, 731, 732, 733, 736, 738, 746, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 788, 792, 793, 797, 800, 803, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 842, 846, 850, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "easi": [0, 26, 27, 40, 805, 806, 809, 810, 812, 822, 824, 827, 829, 832, 845, 853, 855, 861, 862], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 446, 461, 473, 489, 491, 548, 549, 550, 579, 580, 603, 606, 608, 609, 610, 616, 617, 618, 619, 621, 622, 623, 624, 628, 632, 649, 652, 665, 671, 681, 711, 717, 736, 737, 738, 739, 779, 783, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 848, 852, 855, 858], "attract": 0, "visual": [0, 9, 44, 797, 799, 805, 819, 826, 829, 840, 855, 857, 860], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 632, 736, 737, 738, 739, 771, 799, 812, 822, 826, 828, 832, 834, 839, 840, 842, 846, 847, 848, 849, 850, 851, 855, 858], "nice": [0, 829, 846, 855], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 440, 506, 533, 613, 617, 618, 621, 623, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 746, 756, 757, 758, 775, 799, 805, 806, 807, 813, 814, 815, 816, 817, 818, 826, 828, 837, 849, 851, 853, 855, 856], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 424, 425, 427, 428, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 450, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 545, 550, 557, 564, 565, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 708, 711, 712, 714, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 765, 771, 785, 793, 797, 799, 802, 804, 806, 808, 809, 811, 812, 813, 814, 816, 817, 819, 821, 822, 824, 825, 826, 827, 829, 830, 834, 837, 840, 848, 849, 850, 856, 858], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 496, 497, 499, 500, 616, 630, 632, 725, 726, 727, 728, 736, 737, 738, 739, 763, 766, 778, 779, 780, 781, 782, 783, 784, 804, 805, 806, 808, 809, 810, 811, 812, 814, 816, 818, 821, 826, 827, 829, 830, 834, 836, 837, 840, 842, 846, 848, 853, 855, 861], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 417, 437, 481, 498, 510, 616, 617, 619, 623, 624, 626, 630, 634, 646, 672, 673, 676, 679, 701, 725, 726, 728, 729, 751, 763, 766, 771, 783, 792, 804, 805, 806, 807, 808, 809, 811, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 830, 833, 834, 836, 838, 839, 840, 842, 853, 854, 855, 856, 857, 858, 859, 860, 861], "tone": [0, 4], "feel": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848], "free": [0, 5, 40, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 803, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848, 856, 858], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 418, 421, 423, 464, 465, 467, 470, 472, 474, 477, 498, 500, 501, 509, 513, 515, 516, 518, 519, 520, 546, 600, 616, 619, 621, 624, 628, 630, 631, 634, 635, 658, 679, 681, 705, 728, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 782, 795, 799, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 845, 848, 849, 852, 853, 855, 857, 860, 861, 862], "emoji": [0, 804], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 799, 804, 805, 806, 813, 814, 815, 820, 824, 829, 832, 838, 840, 841, 846, 848], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 422, 550, 568, 582, 604, 621, 622, 623, 628, 647, 648, 713, 758, 779, 799, 801, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 819, 820, 822, 823, 824, 825, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 845, 846, 848, 849, 850, 853, 855, 857], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 441, 626, 700, 803, 804, 805, 806, 808, 811, 812, 813, 818, 825, 826, 829, 830, 832, 837, 839, 841, 849], "thing": [0, 24, 38, 40, 792, 803, 804, 805, 806, 810, 826, 829, 832, 836, 837, 844, 845, 846, 855], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 422, 799, 818, 834, 837, 838, 839, 849], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 422, 427, 440, 443, 444, 445, 447, 448, 449, 450, 460, 461, 462, 469, 471, 483, 488, 492, 493, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 519, 541, 545, 564, 565, 575, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 682, 683, 684, 685, 686, 689, 690, 691, 692, 694, 695, 699, 700, 712, 713, 722, 723, 726, 727, 728, 730, 742, 743, 744, 745, 758, 763, 764, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 784, 785, 792, 793, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 835, 836, 838, 845, 846, 852, 857, 858, 861, 862], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 418, 421, 422, 423, 445, 446, 450, 451, 452, 453, 457, 458, 459, 461, 468, 472, 473, 479, 481, 486, 487, 489, 490, 491, 494, 496, 497, 499, 502, 503, 508, 509, 510, 511, 512, 513, 514, 517, 518, 521, 526, 528, 529, 537, 540, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 565, 568, 569, 578, 582, 586, 587, 588, 601, 604, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 711, 724, 726, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 768, 771, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 801, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 861, 862], "intern": [0, 9, 69, 100, 101, 102, 628, 705, 715, 716, 778, 779, 780, 781, 782, 784, 809, 812, 815, 817, 825, 827, 829, 831], "releas": [0, 41, 804, 805, 814, 830, 832, 840, 846, 855, 861], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 799, 826, 833, 835, 840, 842, 849, 850, 851], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 419, 420, 421, 422, 424, 425, 426, 427, 429, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 471, 472, 473, 474, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 560, 561, 564, 565, 566, 568, 574, 578, 579, 580, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 606, 608, 609, 610, 611, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 785, 788, 789, 792, 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 473, 481, 804, 806, 808, 809, 811, 815, 821, 822, 826, 830, 836, 840, 842, 848, 853, 855, 862], "corner": [0, 52, 75, 368, 403, 805, 806, 819, 826], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 805, 806, 808, 814, 819, 822, 825, 826, 830, 834, 839, 848, 858, 861], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 463, 466, 474, 476, 485, 519, 616, 765, 792, 800, 804, 805, 806, 807, 813, 814, 816, 817, 819, 820, 821, 826, 829, 832, 833, 834, 836, 837, 838, 840, 848, 849, 855, 861], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 520, 624, 628, 675, 712, 713, 717, 722, 723, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 830, 833, 834, 836, 838, 839, 841, 846, 848, 849, 850, 853, 855, 857, 859, 862], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 628, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 716, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 844, 845, 848, 849, 850, 855, 856, 857, 859], "worri": [0, 26, 27, 804, 805, 820], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 617, 799, 801, 803, 804, 805, 806, 807, 808, 811, 813, 814, 815, 820, 821, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 846, 850, 856, 857, 860], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 416, 418, 419, 421, 422, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 446, 447, 448, 452, 453, 458, 459, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 492, 493, 495, 496, 497, 499, 500, 501, 503, 510, 511, 512, 513, 517, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 568, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 850, 851, 852, 853, 854, 855, 857, 861, 862], "access": [0, 23, 26, 27, 69, 799, 804, 805, 806, 813, 814, 820, 825, 826, 841, 849, 855, 857, 859], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 770, 771, 804, 805, 818, 819, 826, 833, 834, 835, 842, 847, 848, 850, 855, 861, 862], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 517, 526, 534, 535, 550, 564, 568, 582, 618, 621, 623, 624, 626, 645, 666, 667, 668, 697, 797, 799, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 860, 861, 862], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 779, 780, 781, 799, 805, 808, 809, 810, 811, 812, 813, 814, 815, 819, 821, 823, 826, 827, 829, 830, 832, 836, 837, 839, 840, 846, 848, 849, 850, 855], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 461, 517, 540, 541, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 649, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 855], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 427, 432, 434, 439, 446, 458, 489, 497, 498, 503, 510, 557, 568, 601, 604, 613, 616, 617, 618, 621, 622, 623, 624, 626, 630, 649, 657, 664, 674, 678, 693, 697, 726, 727, 728, 736, 760, 763, 764, 765, 766, 771, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 861, 862], "style": [0, 9, 40, 42, 371, 473, 631, 734, 806, 820, 855], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 413, 415, 420, 422, 424, 426, 427, 432, 434, 436, 437, 439, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 478, 479, 480, 481, 482, 483, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 569, 579, 580, 582, 584, 586, 587, 600, 601, 604, 606, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 778, 779, 781, 782, 788, 793, 799, 800, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 839, 840, 841, 844, 848, 849, 850], "anyon": [0, 799, 800, 806, 813, 840, 845, 861], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 436, 445, 456, 480, 482, 486, 509, 511, 512, 514, 546, 616, 618, 619, 623, 624, 626, 631, 632, 634, 648, 649, 664, 665, 673, 674, 676, 678, 681, 689, 696, 734, 737, 738, 739, 744, 745, 748, 750, 751, 752, 753, 763, 766, 788, 804, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 844, 845, 846, 848, 850, 851, 854, 855, 857, 858, 861], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 413, 422, 427, 462, 473, 481, 489, 490, 491, 510, 513, 516, 517, 518, 522, 532, 533, 534, 535, 536, 540, 544, 546, 548, 552, 554, 555, 573, 580, 587, 588, 595, 601, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 711, 712, 714, 715, 722, 724, 728, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 758, 761, 765, 775, 776, 778, 779, 781, 782, 783, 784, 788, 792, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 853, 854, 855, 856, 858, 861, 862], "question": [0, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846], "ping": 0, "me": [0, 806], "guillermo": 0, "commun": [0, 41, 800, 804, 805, 806, 840, 845, 854, 855, 857], "ux": 0, "team": [0, 799, 800, 804, 805, 806, 826, 841, 857], "discord": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 489, 490, 491, 494, 533, 537, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 775, 776, 778, 779, 781, 782, 783, 784, 806, 811, 819, 828], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 445, 574, 619, 621, 778, 804, 805, 808, 809, 810, 811, 814, 816, 818, 819, 820, 822, 823, 826, 827, 828, 829, 830, 837, 838, 839, 841, 848, 849], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 437, 550, 621, 758, 799, 804, 805, 806, 809, 814, 815, 816, 818, 820, 821, 823, 825, 826, 827, 828, 829, 830, 841, 855], "similar": [0, 17, 26, 27, 277, 619, 623, 649, 779, 802, 804, 805, 812, 813, 814, 815, 818, 819, 820, 822, 823, 824, 826, 827, 829, 830, 837, 840, 844, 849, 851, 852, 853, 854, 861], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 421, 422, 426, 434, 435, 437, 441, 442, 446, 447, 451, 452, 453, 463, 464, 465, 467, 473, 476, 480, 481, 489, 491, 496, 497, 498, 499, 500, 510, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 536, 542, 547, 551, 562, 563, 572, 582, 594, 604, 616, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 646, 647, 649, 652, 654, 658, 659, 660, 664, 665, 667, 670, 671, 674, 675, 679, 680, 681, 686, 687, 690, 694, 696, 706, 711, 716, 717, 718, 726, 727, 728, 731, 732, 733, 734, 736, 738, 758, 760, 763, 764, 765, 766, 771, 778, 781, 784, 785, 792, 793, 796, 797, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 855, 856, 857, 858, 859, 860, 861, 862], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 491, 494, 525, 546, 581, 618, 619, 621, 623, 628, 631, 646, 649, 711, 731, 732, 779, 804, 808, 814, 816, 818, 821, 822, 824, 829, 832, 853, 855, 860], "templat": [0, 799, 811, 817, 829], "help": [0, 15, 42, 44, 49, 523, 568, 621, 634, 752, 778, 799, 800, 801, 804, 805, 809, 810, 811, 812, 813, 814, 816, 820, 822, 823, 825, 826, 829, 830, 836, 837, 838, 841, 842, 851, 855, 857, 861], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 478, 524, 542, 563, 581, 617, 618, 621, 624, 628, 681, 707, 763, 778, 779, 792, 800, 803, 804, 805, 807, 808, 813, 814, 815, 819, 822, 823, 824, 825, 826, 827, 828, 829, 834, 835, 836, 837, 838, 842, 846, 849, 850, 855, 861], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 433, 434, 442, 443, 444, 445, 447, 448, 458, 461, 466, 474, 475, 476, 477, 479, 481, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 566, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 704, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 743, 744, 745, 748, 750, 751, 753, 754, 755, 778, 779, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 823, 825, 826, 827, 828, 829, 830, 831, 832, 834, 836, 837, 838, 847, 850, 853, 855, 856, 858, 859, 860, 861, 862], "locat": [0, 42, 136, 380, 511, 616, 628, 630, 633, 709, 725, 742, 793, 804, 806, 810, 811, 815, 826, 827, 829, 830, 841, 853], "asset": [0, 842], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 788, 799, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 841, 845, 846, 849, 853, 855, 856, 857, 858, 861, 862], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 449, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 569, 579, 586, 587, 616, 617, 618, 619, 621, 626, 628, 633, 689, 690, 691, 693, 695, 696, 698, 700, 706, 741, 743, 771, 793, 805, 806, 808, 810, 813, 814, 817, 826, 827, 834, 840, 848, 849, 850], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 809, 814, 816, 817, 818, 822, 823, 825, 832, 837, 851, 861], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 478, 550, 564, 565, 568, 569, 591, 602, 603, 606, 608, 609, 610, 621, 622, 623, 627, 628, 646, 648, 702, 703, 704, 712, 713, 717, 722, 723, 771, 776, 782, 783, 788, 793, 799, 804, 805, 806, 807, 808, 809, 812, 813, 814, 816, 821, 823, 824, 826, 827, 829, 832, 834, 836, 837, 839, 840], "file": [0, 40, 41, 42, 53, 69, 577, 599, 621, 781, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 817, 818, 819, 820, 822, 826, 827, 828, 829, 830, 834, 837, 841, 851, 854, 855, 856], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 415, 421, 483, 486, 523, 524, 619, 621, 624, 632, 658, 659, 663, 671, 672, 674, 675, 679, 736, 737, 738, 760, 764, 771, 781, 788, 789, 791, 804, 805, 806, 810, 811, 812, 813, 816, 817, 818, 821, 826, 827, 829, 830, 831, 832, 834, 837, 839, 855], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 456, 478, 482, 560, 617, 619, 621, 624, 659, 660, 665, 681, 758, 802, 804, 809, 811, 812, 816, 819, 827, 856, 861], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 823, 836, 855], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 799, 800, 802, 803, 804, 805, 808, 810, 811, 813, 817, 819, 820, 824, 826, 828, 830, 832, 837, 838, 840, 841, 845, 846, 848, 849, 855], "Then": [0, 45, 623, 649, 801, 804, 805, 806, 810, 811, 813, 819, 820, 823, 825, 829, 830, 840], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 463, 473, 478, 481, 497, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 549, 550, 564, 568, 582, 587, 591, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 799, 802, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 819, 821, 822, 826, 827, 829, 830, 832, 839, 842, 857], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 415, 486, 513, 537, 585, 613, 615, 617, 618, 619, 621, 624, 626, 628, 664, 689, 693, 694, 698, 711, 760, 793, 799, 804, 805, 809, 812, 813, 814, 815, 817, 818, 819, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 839, 840, 842, 848, 854, 855, 861], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 799, 805, 806, 808, 811, 813, 819, 822, 826, 829, 830, 831], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 617, 778, 783, 799, 804, 805, 806, 810, 814, 816, 817, 819, 820, 823, 835, 836, 837, 846, 855, 857], "edit": [0, 804, 805, 806, 820], "titl": [0, 9, 12, 14, 25, 41, 44, 799, 804, 806, 811], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 817, 824, 825], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 616, 619, 624, 631, 632, 634, 635, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 826, 834, 841], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 617, 619, 624, 627, 630, 632, 679, 702, 703, 725, 736, 758, 784, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 848, 852, 855, 857, 858, 861, 862], "render": [0, 811, 817], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 516, 517, 518, 519, 520, 624, 631, 665, 731, 804, 805, 806, 809, 812, 814, 816, 818, 820, 821, 827, 829, 832, 838, 840, 848, 849], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 517, 804, 806, 811, 815, 825, 828, 834, 837, 841], "behind": [0, 17, 26, 799, 807, 821, 829, 833, 835], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 451, 452, 458, 459, 461, 463, 464, 465, 472, 487, 532, 568, 621, 626, 687, 689, 690, 691, 693, 695, 696, 698, 700, 783, 785, 799, 804, 805, 808, 810, 815, 816, 817, 822, 823, 825, 826, 829, 832, 834, 840, 842, 844, 845, 853, 855, 858, 861], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 623, 648, 779, 813, 834], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 415, 421, 422, 426, 427, 429, 435, 441, 442, 451, 452, 453, 467, 473, 489, 490, 491, 494, 496, 497, 499, 500, 510, 518, 519, 520, 550, 564, 601, 616, 619, 621, 623, 624, 626, 628, 630, 631, 634, 635, 649, 654, 658, 659, 663, 665, 667, 669, 670, 671, 674, 675, 678, 680, 686, 688, 689, 691, 697, 701, 709, 716, 725, 726, 727, 728, 733, 734, 749, 751, 753, 754, 755, 763, 778, 782, 793, 799, 800, 802, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 846, 848, 853, 862], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 419, 420, 421, 422, 424, 426, 436, 437, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 460, 462, 463, 464, 465, 469, 472, 473, 478, 479, 481, 482, 483, 484, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 561, 564, 565, 568, 570, 571, 574, 577, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 690, 691, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 788, 792, 793, 799, 800, 801, 802, 804, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 827, 829, 830, 832, 833, 834, 837, 838, 839, 841, 842, 843, 844, 846, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 805, 806], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 459, 468, 487, 632, 736, 737, 738, 739, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 837, 838, 850, 851, 858, 861], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 804, 805, 806, 808, 813], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 413, 415, 467, 602, 603, 606, 608, 609, 610, 616, 622, 627, 702, 703, 704, 783, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 819, 824, 826, 829, 834, 837, 838, 839, 846, 855], "explan": [0, 1, 12, 14, 25, 804, 805, 806, 812, 817, 821, 826, 830, 836], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 414, 628, 716, 717, 799, 800, 802, 804, 805, 806, 807, 810, 811, 814, 816, 819, 820, 826, 827, 829, 830, 833, 837, 840, 851, 855, 856, 860, 862], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 560, 561, 564, 565, 568, 569, 574, 578, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 792, 793, 804, 805, 806, 810, 811, 814, 815, 816, 817, 818, 821, 822, 826, 829, 832, 834, 838, 842, 848, 855], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 414, 419, 422, 432, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 478, 479, 480, 481, 482, 483, 489, 491, 492, 493, 495, 496, 497, 498, 499, 500, 502, 503, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 562, 563, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 680, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 710, 711, 712, 713, 718, 720, 721, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 775, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 795, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "text": [0, 4, 7, 9, 40, 52, 53, 369, 434, 804, 806, 811, 816, 817], "paragraph": [0, 1, 12, 14, 25, 811], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 418, 495, 528, 529, 616, 619, 621, 624, 628, 665, 681, 713, 779, 799, 805, 806, 807], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 574, 588, 621, 626, 628, 632, 693, 706, 736, 737, 738, 739, 763, 766, 792, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 821, 822, 826, 829, 830, 832, 836, 837, 838, 840, 848, 852, 855, 856, 857, 861], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 760, 771, 787, 805, 811, 825, 826, 827, 841, 855], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 418, 421, 422, 423, 440, 464, 465, 489, 490, 491, 494, 511, 512, 579, 601, 617, 619, 621, 623, 624, 626, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 654, 658, 659, 665, 672, 673, 693, 694, 725, 731, 732, 736, 737, 738, 739, 744, 745, 750, 751, 752, 753, 760, 763, 765, 792, 799, 804, 806, 809, 810, 812, 813, 814, 816, 817, 818, 821, 822, 824, 826, 829, 832, 834, 848, 849, 850, 855], "toctre": [0, 811], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 427, 429, 434, 456, 463, 466, 474, 476, 478, 481, 482, 485, 501, 502, 511, 520, 523, 541, 543, 564, 565, 569, 614, 616, 618, 621, 626, 628, 631, 632, 633, 693, 697, 707, 708, 709, 712, 713, 714, 720, 722, 731, 732, 734, 736, 737, 738, 740, 742, 764, 779, 793, 795, 812, 813, 818, 822, 823, 824, 825, 827, 829, 836, 855], "rst": [0, 822], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 421, 426, 430, 437, 439, 464, 474, 515, 516, 517, 518, 519, 520, 533, 615, 619, 621, 624, 631, 633, 658, 659, 665, 674, 679, 731, 742, 763, 805, 806, 808, 811, 813, 814, 816, 819], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 532, 568, 616, 618, 619, 621, 624, 632, 633, 634, 672, 681, 736, 737, 738, 739, 740, 743, 747, 748, 749, 751, 763, 793, 803, 804, 805, 806, 808, 812, 813, 814, 818, 819, 822, 823, 824, 826, 827, 829, 832, 835, 836, 838, 846, 862], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 421, 517, 528, 529, 550, 621, 623, 624, 626, 628, 649, 658, 686, 689, 716, 764, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 836, 837, 840, 841, 846, 848, 849, 851, 855, 856, 857, 861], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 446, 478, 560, 588, 619, 621, 623, 624, 629, 634, 649, 678, 724, 752, 760, 771, 779, 782, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 825, 826, 829, 830, 832, 834, 836, 840, 841, 851, 853, 855], "grid": [0, 42, 48, 134, 310, 362, 616, 816, 829], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 530, 540, 541, 545, 579, 580, 616, 617, 618, 621, 628, 635, 710, 711, 712, 713, 717, 722, 723, 757, 799, 804, 812, 814, 834, 836, 837, 839, 848], "card": [0, 52, 75, 353, 365, 860], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 419, 441, 463, 602, 603, 616, 619, 622, 624, 626, 634, 635, 654, 656, 680, 693, 751, 753, 754, 755, 779, 799, 803, 804, 805, 806, 808, 809, 811, 813, 814, 821, 822, 823, 824, 825, 826, 827, 828, 829, 840, 841, 842, 855], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 715, 716, 717, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 788, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "look": [0, 5, 17, 26, 27, 40, 42, 45, 799, 802, 804, 805, 806, 810, 811, 812, 814, 815, 816, 818, 819, 820, 821, 822, 826, 827, 829, 830, 831, 832, 834, 836, 838, 839, 841, 844, 848, 851, 855], "document": [0, 17, 26, 59, 242, 329, 330, 365, 601, 619, 621, 697, 800, 801, 803, 806, 811, 813, 814, 816, 825, 826, 827, 829, 837, 839], "sphinx": [0, 801, 811], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 619, 799, 807, 811, 813, 814, 825, 826, 827, 828, 832, 834, 836, 840, 844, 845, 851, 853, 855, 858, 859, 860], "websit": [0, 44, 805, 808, 845], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 452, 453, 473, 508, 517, 619, 624, 661, 669, 792, 793, 799, 804, 805, 806, 810, 812, 814, 815, 821, 825, 826, 832, 840, 841, 855, 857, 862], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 801, 805, 806, 810, 811, 819, 820], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 427, 429, 434, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 474, 477, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 764, 792, 811, 822, 829], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 628, 705, 715, 716, 804, 805, 806, 814, 820, 829, 838, 841], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 368, 370, 371, 380, 413, 446, 458, 517, 520, 550, 619, 621, 628, 705, 712, 715, 716, 717, 722, 765, 793, 799, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 834, 836, 837, 838, 839, 840, 842, 846, 856, 861, 862], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 489, 491, 602, 603, 608, 622, 627, 702, 703, 704, 760, 761, 779, 780, 781, 782, 792, 799, 801, 804, 805, 807, 809, 810, 813, 815, 816, 818, 820, 821, 823, 826, 827, 834, 835, 836, 837, 838, 839, 840, 841, 848, 849, 850, 853, 855, 856, 857, 858, 860, 861, 862], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 481, 616, 619, 624, 657, 678, 753, 800, 802, 804, 805, 807, 808, 812, 813, 814, 815, 816, 818, 819, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 848, 849, 850, 851, 853, 858, 860], "mind": [1, 11, 13, 17, 23, 26, 30, 804, 805, 809, 812, 829, 841, 849], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 791, 799, 802, 805, 813, 826, 840, 841, 855, 857], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 534, 618, 621, 624, 675, 764, 799, 805, 806, 812, 813, 814, 815, 817, 818, 826, 829, 832, 840, 841, 844, 848, 849, 850, 860, 861], "click": [1, 3, 42, 804, 805, 806, 813, 817, 819, 820, 835], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 807, 822, 829, 832, 855], "restart": [1, 3, 4, 5, 7, 40, 41, 805, 819], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 802, 805, 811, 820], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 421, 520, 623, 624, 628, 649, 652, 658, 659, 671, 713, 805, 806, 807, 827, 840], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 799, 801, 803, 805, 806, 808, 811, 813, 819, 820, 829, 841], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 799, 801, 806, 819, 841], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 801, 805, 806, 808, 811, 813, 814, 817, 819, 841, 849], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 803, 806, 808, 811, 813, 814, 816, 817, 819, 820, 828, 829, 841, 844], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 808, 811, 813, 814, 819, 841], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 811, 819, 841], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 442, 619, 776, 780, 781, 799, 837, 838, 842, 848, 849, 853, 854, 855, 856, 857, 858, 859, 861, 862], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 460, 533, 545, 616, 621, 623, 641, 642, 806, 813, 837, 838, 839, 841], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 435, 436, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 771, 775, 778, 779, 780, 781, 782, 783, 784, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 824, 825, 826, 827, 829, 832, 833, 834, 836, 837, 838, 839, 840, 845, 846, 848, 849, 850], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 413, 430, 437, 442, 446, 456, 459, 468, 473, 479, 481, 482, 484, 486, 487, 496, 497, 498, 499, 500, 511, 512, 532, 540, 541, 543, 563, 574, 584, 601, 603, 604, 608, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 632, 634, 635, 637, 645, 646, 654, 657, 674, 678, 679, 680, 687, 690, 693, 696, 702, 703, 704, 706, 717, 718, 719, 725, 726, 727, 728, 732, 735, 736, 738, 744, 745, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 783, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 859, 860, 861, 862], "repositori": [1, 3, 5, 7, 801, 804, 805, 806, 807, 808, 811, 819, 828, 846], "cd": [1, 3, 5, 7, 26, 43, 799, 801, 805, 806, 819, 841], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 448, 619, 799, 802, 803, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 834, 835, 836, 837, 838, 839, 840, 848, 849, 850, 855, 856], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 489, 490, 491, 492, 493, 494, 495, 510, 513, 626, 629, 630, 687, 697, 724, 725, 727, 778, 779, 782, 799, 804, 825, 826, 832, 837, 848, 850, 853], "resnet": [2, 8, 15, 26, 848, 849], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 533, 619, 621, 623, 636, 637, 638, 639, 640, 643, 644, 645, 779, 799, 805, 819, 832, 834, 835, 837, 839, 841, 848, 849, 855], "classif": [2, 3, 7, 9, 15, 40, 799, 855], "acceler": [2, 15, 799, 814, 826, 853, 857, 858, 859, 860], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 619, 783, 799, 803, 804, 809, 814, 815, 818, 821, 822, 825, 826, 827, 832, 834, 839, 840, 842, 845, 846, 848, 849, 856, 858, 859, 861, 862], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 520, 550, 582, 601, 613, 619, 621, 632, 736, 737, 738, 739, 771, 775, 788, 799, 802, 803, 804, 805, 806, 808, 810, 814, 815, 818, 819, 821, 824, 825, 826, 827, 829, 830, 832, 834, 836, 839, 840, 845, 846, 848, 849, 850, 856, 858, 861, 862], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 451, 452, 453, 501, 566, 583, 585, 586, 587, 589, 616, 617, 618, 619, 621, 624, 628, 682, 706, 717, 718, 760, 788, 792, 799, 804, 809, 810, 823, 824, 826, 829, 831, 834, 840, 842, 846, 849, 853, 854, 861], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 436, 527, 563, 621, 763, 779, 799, 801, 804, 806, 808, 809, 810, 811, 812, 813, 814, 818, 820, 823, 825, 826, 827, 829, 831, 834, 836, 837, 838, 840, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 855, 857, 861], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 439, 624, 674, 801, 803, 811, 842, 857, 860], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 498, 544, 578, 616, 617, 621, 623, 626, 646, 693, 788, 789, 807, 810, 814, 815, 829, 834, 839, 849, 853, 854, 857, 859], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 811, 816], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 75, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 466, 468, 472, 478, 479, 487, 489, 491, 523, 543, 550, 568, 618, 619, 621, 624, 626, 630, 672, 689, 690, 691, 693, 695, 696, 698, 700, 728, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 844, 846, 848, 849, 850, 851, 853, 855, 856, 858, 861], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 483, 487, 533, 543, 582, 604, 605, 607, 612, 613, 621, 622, 624, 625, 626, 667, 683, 689, 690, 691, 693, 695, 696, 698, 700, 775, 781, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 855, 856, 860, 861], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 567, 576, 598, 621, 799, 804, 805, 806, 811, 813, 816, 820, 825, 826, 829, 831, 840, 848, 855], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 456, 481, 482, 613, 619, 775, 778, 779, 780, 781, 799, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 827, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 844, 846, 851, 855], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 462, 805, 808, 809, 817, 820, 821, 825, 826, 830, 834, 836, 839, 840, 844, 849, 853, 855, 859, 861, 862], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 800, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 841, 853], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 806, 826, 841], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 550, 552, 556, 563, 568, 585, 616, 617, 618, 621, 760, 771, 776, 788, 799, 802, 804, 814, 815, 818, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 842, 848, 849, 850, 853, 862], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 513, 617, 619, 799, 803, 805, 807, 823, 849, 853, 855, 857, 858, 859], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 453, 616, 805, 806, 812, 813, 814, 816, 826, 829, 832, 833, 834, 856, 861], "major": [3, 4, 631, 734, 814, 815, 827, 829, 840, 845, 852, 855], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 799, 800, 803, 826, 833, 834, 835, 837, 838, 839, 843, 845, 846, 849, 851, 852, 853, 854, 855, 858, 860, 862], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 531, 547, 551, 582, 585, 617, 618, 621, 628, 707, 758, 760, 764, 771, 776, 783, 788, 789, 799, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 829, 830, 832, 833, 834, 836, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 799, 801, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 818, 825, 826, 840, 845, 855, 861], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 461, 619, 781, 799, 800, 801, 804, 805, 806, 811, 813, 815, 818, 820, 822, 823, 824, 825, 829, 832, 837, 838, 839, 840, 841, 845, 849], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 414, 433, 462, 473, 550, 603, 606, 608, 609, 610, 617, 619, 621, 622, 623, 628, 629, 636, 637, 638, 639, 641, 643, 645, 646, 716, 724, 783, 788, 799, 804, 805, 806, 808, 810, 811, 813, 814, 816, 818, 821, 824, 827, 829, 833, 841, 848, 849, 855], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 420, 421, 422, 424, 428, 447, 457, 459, 463, 470, 473, 475, 476, 479, 486, 497, 499, 503, 511, 512, 513, 520, 525, 615, 616, 617, 618, 619, 621, 623, 624, 626, 627, 628, 631, 632, 633, 634, 649, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 693, 694, 697, 698, 702, 703, 704, 705, 706, 715, 716, 718, 730, 731, 732, 736, 737, 738, 741, 742, 744, 745, 760, 778, 779, 780, 781, 783, 788, 799, 801, 803, 804, 805, 806, 808, 809, 810, 811, 812, 815, 816, 820, 821, 822, 823, 825, 826, 829, 832, 834, 836, 837, 839, 841, 844, 845, 848, 849, 853, 855, 856, 860], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 781, 799], "automat": [3, 5, 7, 24, 26, 27, 32, 799, 804, 805, 806, 807, 810, 811, 813, 814, 820, 822, 825, 829, 832, 833, 835, 838, 839, 841, 842, 846, 855, 858, 862], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 804, 805, 806, 808, 813, 818, 819, 826, 827, 829, 832, 841], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 618, 799, 805, 806, 813, 815, 836, 841, 853, 855, 858, 859, 860], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 445, 568, 621, 624, 667, 781, 799, 805, 806, 809, 812, 814, 822, 823, 824, 825, 826, 829, 830, 833, 835, 837, 839, 840, 842, 845, 848, 853, 854, 855, 856, 857, 858, 861, 862], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 776, 799, 839, 846, 849, 855], "exit": [3, 5, 7, 26, 27, 815], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 801, 805, 811, 829, 848, 849], "imagenet": [3, 13, 41, 43, 799], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 421, 516, 517, 524, 533, 537, 550, 560, 582, 616, 617, 618, 619, 621, 623, 624, 625, 628, 629, 644, 648, 652, 658, 669, 673, 674, 676, 683, 699, 706, 717, 724, 739, 746, 750, 751, 760, 761, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 797, 799, 804, 810, 811, 812, 814, 815, 816, 817, 821, 823, 824, 827, 828, 829, 832, 834, 835, 837, 838, 839, 842, 848, 849, 853, 855, 856, 862], "preprocess": [3, 7, 9, 26, 27, 40, 43, 848], "wget": [3, 5, 7, 40, 41, 44, 805], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 799, 817, 849, 856], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 813, 855], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 805, 808, 811], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 604, 622, 624, 626, 671, 700, 805, 806, 807, 824, 827], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 463, 484, 626, 628, 693, 708, 712, 713, 714, 717, 722, 723, 799, 800, 806, 807, 812, 813, 818, 830, 834, 836, 837, 846, 851], "categori": [3, 7, 804, 808, 809, 812, 814, 818, 826, 830, 833], "strip": [3, 7, 19, 29, 845], "readlin": [3, 7, 41], "cat": [3, 7, 41, 827, 832, 834, 839, 848, 849], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 799, 849], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 781, 787, 837], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 433, 436, 438, 441, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 564, 565, 578, 579, 580, 584, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 766, 779, 792, 793, 799, 802, 804, 805, 808, 809, 810, 812, 813, 814, 816, 818, 819, 822, 824, 827, 829, 834, 836, 837, 838, 839, 848, 849, 862], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 510, 545, 561, 618, 621, 627, 632, 703, 704, 739, 771, 788, 789, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 820, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 845, 848, 849, 850, 851, 853, 855, 858, 859, 861], "torchvis": [3, 6, 7, 40, 846], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 430, 623, 647, 763, 766, 779, 799, 823, 829, 839, 842, 848, 849, 853, 855, 856, 857], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 799, 849], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 510, 517, 526, 550, 579, 582, 586, 616, 617, 618, 619, 621, 634, 746, 758, 760, 771, 788, 792, 793, 799, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 818, 819, 821, 825, 827, 829, 830, 832, 834, 836, 839, 841, 842, 844, 845, 848, 849, 850, 857, 862], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 416, 579, 616, 617, 619, 621, 628, 711, 760, 788, 792, 793, 799, 804, 809, 814, 815, 818, 821, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 842, 850], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 796, 805, 806, 831, 848, 849, 850], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 413, 415, 434, 441, 473, 479, 510, 603, 608, 616, 622, 623, 624, 626, 627, 631, 632, 646, 648, 664, 699, 702, 703, 704, 731, 732, 736, 737, 779, 780, 781, 804, 805, 806, 808, 810, 812, 813, 814, 816, 819, 821, 822, 823, 825, 826, 829, 830, 834, 837, 839, 840, 841, 844, 845, 846, 848, 849, 853, 855, 856, 859, 860, 861], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 422, 436, 475, 476, 480, 518, 616, 623, 624, 628, 649, 663, 716, 717, 783, 805, 811, 813, 816, 829, 840, 861], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 805, 812, 826, 829, 848, 850, 855, 862], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 832], "256": [3, 5, 7, 51, 76, 278, 279, 580, 623, 638, 640, 763], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 799, 849], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 419, 430, 442, 443, 444, 445, 446, 447, 448, 458, 463, 473, 489, 491, 497, 516, 517, 534, 604, 605, 607, 612, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 638, 640, 641, 642, 644, 645, 646, 656, 683, 684, 685, 693, 702, 703, 704, 711, 726, 727, 763, 765, 766, 778, 779, 782, 799, 805, 806, 807, 808, 810, 812, 814, 815, 816, 822, 824, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 849, 850, 852, 855], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 414, 417, 418, 419, 421, 422, 423, 426, 427, 429, 430, 431, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 456, 458, 459, 460, 463, 464, 465, 466, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 527, 528, 529, 532, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 562, 564, 565, 569, 574, 578, 579, 580, 582, 584, 586, 587, 596, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 775, 776, 778, 779, 780, 781, 782, 783, 784, 785, 788, 792, 793, 799, 802, 805, 806, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 824, 825, 826, 827, 829, 830, 834, 836, 837, 838, 839, 840, 848, 849], "485": [3, 7, 40], "456": [3, 7, 40, 829], "406": [3, 7, 40, 52, 75, 389, 528, 621], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 497, 623, 630, 634, 638, 640, 641, 642, 644, 645, 726, 727, 799, 816, 850], "229": [3, 7, 40, 274, 619], "225": [3, 7, 40, 42, 229, 619], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 799, 837, 849], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 430, 436, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 456, 457, 458, 459, 460, 463, 464, 465, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 546, 548, 549, 550, 557, 564, 565, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 652, 653, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 783, 792, 793, 799, 802, 804, 805, 810, 811, 812, 813, 814, 816, 819, 824, 827, 829, 832, 834, 836, 837, 838, 839, 846, 848, 855, 861, 862], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 805, 811, 813, 818, 829, 837], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 415, 463, 473, 475, 476, 616, 619, 793, 799, 805, 806, 810, 813, 819, 825, 830, 832, 833, 840, 853, 858], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 418, 443, 481, 613, 616, 617, 619, 624, 631, 632, 634, 635, 654, 667, 670, 673, 680, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 775, 799, 800, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 819, 820, 821, 822, 826, 827, 829, 832, 834, 836, 837, 840, 844, 851], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 417, 420, 421, 423, 424, 426, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 467, 468, 469, 472, 473, 478, 479, 480, 481, 482, 483, 487, 488, 493, 494, 495, 498, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 517, 520, 526, 527, 528, 529, 532, 533, 534, 535, 537, 540, 541, 543, 546, 548, 549, 550, 564, 565, 569, 579, 580, 581, 582, 584, 588, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 668, 669, 670, 671, 672, 674, 675, 676, 678, 679, 680, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 779, 792, 793, 799, 804, 805, 806, 808, 810, 812, 813, 814, 816, 818, 819, 821, 824, 827, 829, 836, 837, 838, 849], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 618, 815], "set_soft_device_mod": [3, 9, 213, 618, 815], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 460, 461, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 779, 780, 781, 782, 783, 785, 788, 790, 792, 793, 797, 799, 802, 805, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 526, 550, 617, 618, 621, 627, 703, 704, 788, 799, 808, 810, 814, 815, 822, 823, 824, 834, 836, 839, 848, 849, 850], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 368, 369, 371, 374, 378, 413, 418, 421, 422, 423, 424, 425, 429, 433, 435, 438, 441, 463, 464, 465, 470, 471, 483, 489, 490, 491, 494, 503, 616, 619, 623, 624, 626, 627, 631, 632, 633, 637, 638, 639, 640, 641, 642, 645, 658, 659, 665, 674, 675, 679, 681, 690, 693, 702, 703, 734, 736, 737, 738, 739, 740, 742, 743, 760, 782, 784, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 826, 827, 828, 829, 830, 831, 832, 837, 839, 840, 844, 851, 854, 855, 856, 858, 861], "quick": [3, 15, 27, 806, 807, 827, 838], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 433, 517, 568, 574, 588, 604, 605, 607, 615, 618, 621, 622, 624, 628, 672, 705, 711, 715, 716, 760, 771, 779, 780, 781, 783, 788, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 845, 848, 849, 850, 855, 856, 859], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 781, 799, 834, 839, 847], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 415, 424, 436, 456, 463, 482, 511, 512, 615, 616, 619, 623, 624, 626, 627, 649, 664, 668, 693, 704, 744, 763, 771, 778, 779, 792, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 825, 826, 827, 829, 832, 834, 836, 838, 839, 840, 841, 846, 848, 849, 852, 853, 861], "moment": [3, 52, 54, 75, 77, 369, 425, 602, 603, 608, 622, 783, 804, 810, 840, 848, 849], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 416, 418, 427, 434, 447, 451, 452, 453, 457, 463, 464, 465, 470, 472, 477, 480, 489, 490, 491, 496, 501, 511, 512, 515, 516, 517, 518, 519, 520, 522, 560, 564, 565, 567, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 634, 637, 638, 639, 640, 641, 642, 645, 661, 664, 665, 669, 671, 680, 681, 689, 690, 691, 694, 696, 700, 724, 731, 734, 736, 737, 738, 739, 744, 746, 763, 765, 782, 785, 788, 793, 796, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 832, 833, 836, 837, 839, 840, 841, 842, 845, 846, 849, 855, 856, 858, 861], "cost": [3, 54, 77, 602, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 793, 814, 832, 853], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 588, 615, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 785, 788, 792, 797, 799, 809, 814, 815, 818, 824, 825, 826, 832, 834, 838, 848, 849, 850], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 502, 503, 533, 544, 548, 549, 579, 580, 616, 621, 623, 632, 633, 637, 737, 741, 818, 823, 826, 827], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 496, 497, 499, 500, 616, 618, 624, 630, 675, 725, 726, 727, 728, 778, 779, 780, 781, 782, 783, 784, 799, 834, 840, 842, 860], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 414, 417, 420, 431, 442, 443, 444, 445, 447, 448, 451, 452, 453, 457, 459, 463, 468, 469, 472, 473, 478, 479, 481, 482, 484, 487, 488, 498, 500, 501, 508, 511, 512, 514, 515, 520, 526, 528, 529, 533, 534, 537, 548, 549, 550, 557, 564, 565, 579, 582, 602, 603, 605, 606, 607, 608, 609, 610, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 642, 644, 645, 646, 647, 652, 654, 655, 656, 657, 659, 660, 661, 664, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 683, 684, 685, 686, 689, 690, 695, 697, 698, 700, 705, 706, 713, 717, 724, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 744, 745, 746, 748, 750, 752, 753, 763, 805, 806, 810, 812, 813, 816, 822, 825, 829], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 427, 428, 431, 432, 433, 434, 436, 437, 440, 442, 443, 444, 445, 446, 447, 448, 449, 456, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 527, 528, 529, 533, 534, 535, 537, 541, 550, 557, 564, 565, 566, 589, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 778, 779, 792, 793, 799, 801, 805, 806, 807, 808, 809, 811, 812, 814, 815, 816, 817, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 834, 836, 838, 839, 840, 842, 848, 849, 856], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 443, 613, 623, 649, 652, 775, 799], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 368, 370, 371, 374, 375, 380, 413, 443, 463, 489, 491, 496, 516, 517, 550, 615, 617, 618, 619, 621, 627, 702, 703, 758, 760, 764, 771, 776, 780, 781, 783, 784, 788, 792, 797, 799, 802, 804, 806, 808, 809, 810, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 840, 848, 849, 850, 853], "argsort": [3, 7, 64, 87, 633, 742, 826], "descend": [3, 7, 64, 87, 624, 633, 674, 675, 740, 743], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 483, 533, 621, 687, 799, 805, 806, 814, 819, 826, 828, 829, 832, 837, 838, 855, 859], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 496, 499, 625, 683, 685, 775, 799, 848], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 541, 543, 621, 862], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 417, 420, 422, 424, 425, 433, 440, 442, 443, 444, 445, 446, 447, 448, 454, 456, 458, 469, 473, 478, 479, 481, 482, 483, 488, 492, 493, 495, 510, 511, 512, 513, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 560, 561, 563, 564, 565, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 792, 793, 797, 799, 805, 806, 812, 814, 816, 827, 829, 831, 834, 836, 837, 838, 848, 850], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 422, 441, 443, 451, 452, 453, 456, 459, 461, 463, 464, 465, 468, 472, 478, 479, 481, 482, 483, 486, 487, 501, 502, 503, 525, 540, 541, 543, 564, 565, 569, 601, 604, 605, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 637, 639, 640, 641, 642, 645, 649, 667, 681, 689, 690, 691, 693, 694, 695, 696, 698, 700, 705, 708, 710, 712, 713, 714, 716, 720, 721, 722, 723, 724, 725, 731, 732, 733, 734, 736, 738, 740, 742, 743, 760, 761, 763, 765, 779, 785, 792, 793, 795, 805, 813, 821, 824, 826, 839, 848], "to_list": [3, 7, 53, 76, 621], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 562, 563, 564, 565, 566, 568, 569, 575, 576, 578, 579, 580, 581, 582, 584, 585, 586, 587, 588, 589, 597, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 765, 771, 778, 779, 780, 781, 784, 788, 792, 793, 795, 799, 802, 804, 805, 806, 807, 810, 811, 812, 814, 815, 816, 817, 818, 819, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 840, 842, 849, 850, 853, 854, 855, 857, 861, 862], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 618, 805, 815, 819, 822, 836, 838], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 511, 602, 613, 619, 622, 624, 634, 661, 669, 727, 746], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 526, 536, 538, 539, 546, 552, 553, 554, 555, 556, 572, 582, 594, 600, 613, 617, 618, 621, 624, 628, 659, 660, 667, 705, 715, 716, 717, 758, 765, 792, 793, 799, 801, 803, 804, 805, 806, 808, 812, 813, 815, 816, 818, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 841, 848], "confirm": [3, 41, 804], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 414, 421, 426, 427, 435, 436, 437, 438, 439, 441, 443, 446, 456, 458, 473, 481, 482, 489, 491, 501, 503, 508, 509, 510, 511, 512, 513, 514, 520, 557, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 652, 653, 654, 655, 657, 658, 659, 660, 662, 664, 666, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 687, 690, 691, 693, 694, 696, 697, 702, 703, 718, 728, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 758, 763, 764, 765, 771, 779, 792, 799, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 844, 846, 848, 850, 852, 854, 861, 862], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 417, 420, 428, 442, 443, 444, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 468, 469, 478, 479, 482, 483, 484, 487, 488, 498, 500, 512, 515, 516, 520, 526, 527, 529, 533, 534, 537, 540, 544, 548, 549, 550, 552, 553, 556, 559, 564, 565, 569, 579, 580, 581, 582, 602, 605, 607, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 637, 641, 642, 644, 645, 646, 647, 649, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 690, 697, 698, 700, 706, 713, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 766, 779, 805, 812, 813, 816, 829, 833, 837], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 427, 508, 510, 513, 602, 603, 606, 608, 609, 610, 622, 623, 625, 627, 647, 648, 649, 652, 683, 704, 765, 778, 779, 781, 783, 799, 812, 822, 829, 834, 838, 839, 854], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 623, 649, 652, 779, 837], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 428, 442, 444, 446, 447, 451, 452, 453, 459, 463, 468, 478, 479, 480, 481, 483, 487, 498, 500, 503, 512, 529, 533, 534, 535, 537, 540, 548, 549, 552, 553, 556, 564, 565, 579, 581, 602, 603, 604, 608, 609, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 633, 634, 637, 638, 639, 645, 646, 647, 654, 655, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 686, 690, 694, 695, 697, 698, 700, 705, 706, 711, 713, 716, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 783, 812, 814, 816, 824, 829, 837, 838, 851], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 463, 616, 623, 636, 643, 644, 648, 765, 779, 799, 814, 826, 827, 832], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 413, 415, 417, 424, 425, 426, 427, 430, 432, 434, 435, 438, 440, 441, 443, 446, 447, 463, 466, 471, 474, 475, 476, 477, 480, 485, 516, 521, 564, 565, 616, 617, 619, 621, 623, 624, 625, 626, 630, 646, 648, 649, 663, 676, 683, 693, 695, 725, 779, 788, 793, 799, 809, 810, 814, 815, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 844, 848, 849, 850, 852, 853, 856, 858, 859, 862], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 461, 496, 497, 499, 500, 524, 538, 539, 616, 621, 630, 725, 726, 727, 728, 758, 760, 761, 776, 778, 779, 780, 781, 782, 783, 784, 785, 799, 806, 807, 810, 814, 818, 822, 823, 827, 829, 830, 832, 834, 839, 840, 841, 842, 845, 854, 855, 857, 858, 859, 860], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 605, 612, 622, 837], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 827, 834], "great": [3, 5, 799, 806, 829, 834, 836, 845, 846, 861], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 418, 419, 420, 422, 423, 424, 433, 436, 447, 463, 464, 465, 467, 470, 472, 473, 479, 481, 483, 486, 501, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 526, 527, 528, 529, 532, 533, 534, 535, 536, 540, 541, 544, 546, 548, 549, 550, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 671, 672, 673, 674, 675, 676, 678, 679, 680, 683, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 814, 816, 826, 829, 832, 834, 845, 846, 848, 855, 858], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 510, 765, 779, 793, 799, 804, 805, 806, 809, 811, 812, 814, 815, 816, 817, 822, 825, 826, 829, 830, 832, 836, 838, 839, 840, 842, 844, 848, 849, 854, 855, 856, 857], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 619, 626, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 817, 819, 820, 826, 827, 828, 829, 830, 831, 832, 834, 838, 840, 841, 846, 848, 858, 861], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 420, 422, 517, 526, 538, 539, 547, 550, 551, 561, 568, 582, 585, 616, 617, 618, 621, 624, 674, 758, 760, 761, 763, 764, 765, 768, 770, 771, 776, 780, 781, 783, 787, 788, 799, 802, 803, 805, 806, 807, 808, 809, 813, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 833, 835, 836, 839, 842, 844, 848, 849, 850, 855, 858, 861, 862], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 540, 541, 619, 621, 624, 634, 678, 748, 750, 751, 752, 753, 799, 804, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 846, 848, 849, 862], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 430, 437, 439, 624, 628, 653, 659, 660, 674, 713, 799, 800, 805, 806, 807, 812, 813, 820, 823, 825, 826, 827, 828, 829, 830, 832, 838, 840, 845], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 435, 441, 457, 464, 465, 479, 511, 512, 520, 540, 541, 613, 617, 619, 621, 623, 624, 626, 634, 646, 647, 661, 672, 687, 697, 744, 745, 750, 752, 753, 758, 763, 771, 780, 781, 799, 802, 803, 804, 805, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 858, 861, 862], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 799, 800, 802, 804, 805, 806, 811, 816, 819, 820, 824, 825, 837, 841, 846, 848, 849], "try": [3, 18, 28, 38, 41, 45, 69, 588, 621, 778, 788, 799, 804, 805, 806, 808, 809, 812, 813, 814, 818, 820, 825, 827, 834, 836, 840, 843, 845, 846, 850], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 414, 453, 456, 459, 463, 468, 478, 479, 487, 508, 511, 512, 515, 517, 520, 533, 534, 535, 537, 540, 541, 543, 548, 549, 557, 565, 569, 574, 579, 581, 593, 596, 608, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 646, 655, 657, 661, 662, 664, 665, 666, 669, 674, 675, 676, 678, 680, 690, 695, 696, 697, 698, 700, 711, 713, 716, 717, 724, 725, 726, 727, 728, 734, 736, 742, 744, 745, 746, 747, 749, 750, 752, 753, 763, 765, 783, 799, 802, 805, 808, 812, 813, 814, 816, 819, 824, 827, 829, 834, 836, 837, 845, 850, 860], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 776, 799, 809, 814, 815, 821, 825, 826, 829, 830, 832, 834, 839, 840, 842, 848, 849, 850, 855], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 421, 618, 624, 630, 658, 659, 660, 674, 725, 799, 804, 805, 806, 812, 813, 814, 815, 816, 819, 820, 825, 826, 829, 832, 834, 837, 840, 841, 846, 848], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 415, 419, 423, 426, 446, 447, 463, 473, 476, 483, 510, 515, 516, 517, 518, 519, 520, 522, 526, 533, 545, 550, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 582, 590, 613, 615, 616, 617, 618, 619, 621, 623, 624, 628, 630, 631, 633, 634, 646, 652, 654, 665, 667, 670, 673, 674, 705, 712, 715, 716, 717, 722, 723, 729, 731, 732, 736, 738, 739, 740, 743, 751, 753, 760, 763, 764, 765, 766, 771, 778, 779, 781, 783, 788, 793, 796, 799, 800, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 844, 847, 848, 849, 853, 854, 855, 856, 857, 859, 862], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 765, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 816, 818, 819, 820, 823, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 844, 845, 848, 860, 861], "post": [3, 5, 40, 60, 83, 629, 724, 805, 819, 824, 839, 841], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 618, 800, 805, 806, 811, 812, 813, 819, 820, 822, 824, 826, 827, 828, 829, 832, 834, 839, 845, 846, 848, 853, 854, 855, 858, 859, 861, 862], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 414, 423, 456, 457, 459, 463, 468, 470, 487, 511, 512, 527, 533, 534, 540, 549, 565, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 634, 637, 638, 646, 647, 657, 660, 661, 662, 664, 665, 669, 673, 674, 675, 676, 678, 680, 683, 685, 690, 695, 696, 698, 700, 711, 713, 723, 726, 727, 728, 735, 736, 744, 745, 746, 753, 812, 813, 814, 816, 824], "st": [3, 4, 6, 763, 808, 827, 829], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 616, 799, 822, 827, 832, 839, 849, 856], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 445, 450, 458, 459, 460, 463, 464, 465, 468, 473, 478, 479, 481, 482, 483, 486, 487, 492, 493, 495, 503, 508, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 601, 613, 616, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 645, 654, 657, 665, 678, 680, 681, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 730, 731, 732, 736, 738, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 780, 785, 812, 814, 816, 818, 821, 822, 825, 826, 829, 832, 834, 836, 839], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 464, 465, 479, 633, 743, 804, 809, 811, 826, 832, 838, 839, 851, 855, 856, 859], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 416, 417, 418, 419, 421, 422, 423, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 458, 461, 466, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 528, 529, 533, 534, 535, 537, 540, 541, 544, 550, 557, 564, 565, 575, 583, 585, 597, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 743, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 763, 765, 778, 779, 782, 792, 799, 806, 812, 814, 815, 816, 817, 818, 819, 821, 825, 826, 827, 829, 830, 831, 834, 836, 837, 838, 839, 848, 849], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 415, 436, 446, 457, 481, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 520, 537, 538, 539, 541, 550, 559, 586, 616, 617, 618, 619, 621, 623, 624, 627, 630, 631, 633, 634, 635, 639, 646, 665, 681, 703, 704, 726, 727, 728, 731, 732, 733, 742, 743, 744, 745, 750, 752, 754, 755, 758, 760, 763, 765, 766, 778, 779, 780, 781, 782, 784, 799, 802, 808, 810, 814, 815, 816, 818, 819, 822, 823, 825, 826, 827, 829, 830, 834, 836, 849], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 501, 511, 512, 513, 541, 550, 586, 616, 617, 618, 619, 621, 630, 631, 634, 726, 727, 728, 732, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 436, 446, 513, 550, 586, 616, 617, 619, 621, 623, 624, 627, 639, 641, 642, 645, 672, 674, 675, 681, 703, 704, 760, 763, 764, 799, 814, 816, 827, 829, 830, 849, 850], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 632, 736, 737, 738, 739, 799, 802, 804, 805, 806, 809, 811, 812, 813, 814, 815, 818, 819, 820, 821, 822, 825, 826, 827, 828, 829, 832, 836, 837, 838, 840, 844, 848, 849, 850, 855, 860], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 446, 524, 617, 619, 621, 625, 669, 683, 778, 779, 799, 805, 806, 808, 814, 815, 818, 820, 823, 825, 827, 829, 832, 840, 841, 846, 848, 849, 850], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 543, 569, 616, 618, 621, 624, 628, 661, 666, 718, 779, 812, 822, 823, 826, 827, 830, 832, 836, 837, 840, 842, 844, 846], "had": [3, 812, 813, 825, 830, 834, 855, 856], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 616, 617, 799, 804, 805, 806, 810, 812, 814, 815, 818, 820, 822, 825, 826, 829, 834, 836, 839, 842, 845, 847, 848, 849, 855, 861], "postprocess": 3, "routin": [3, 813, 825, 826, 832, 840, 855], "feed": [3, 208, 618, 848, 855, 856], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 457, 458, 466, 522, 523, 616, 617, 619, 621, 630, 634, 687, 697, 728, 751, 753, 765, 799, 802, 804, 805, 806, 808, 809, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 861, 862], "carefulli": [3, 273, 619, 778, 826, 853, 858], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 799, 805, 809, 813, 819, 826, 832, 837, 838, 839, 840, 845, 855, 861, 862], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 419, 420, 421, 424, 425, 427, 428, 429, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 454, 456, 457, 458, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 528, 529, 533, 534, 535, 537, 540, 541, 550, 560, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 771, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 822, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846, 848, 849, 855, 862], "quickest": 3, "particular": [3, 26, 27, 263, 619, 764, 805, 806, 808, 810, 813, 814, 816, 823, 825, 826, 829, 830, 851, 855, 861], "hardwar": [3, 40, 97, 101, 799, 805, 832, 845, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861], "again": [3, 5, 20, 21, 29, 30, 31, 32, 624, 672, 806, 809, 810, 811, 812, 816, 818, 820, 825, 826, 829, 830, 832, 837, 839, 840, 845, 846, 860, 861], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 557, 621, 829, 844, 858], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 457, 465, 545, 557, 621, 623, 646, 799, 800, 802, 804, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846, 848, 856, 861, 862], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 414, 456, 457, 459, 463, 468, 487, 500, 511, 517, 518, 519, 529, 533, 534, 565, 571, 579, 593, 619, 621, 623, 624, 626, 628, 629, 630, 631, 632, 634, 637, 641, 646, 647, 657, 659, 661, 665, 669, 673, 675, 676, 678, 680, 690, 694, 696, 698, 700, 717, 724, 726, 727, 728, 735, 736, 744, 745, 746, 750, 752, 763, 805, 810, 812, 814, 816, 824], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 462, 510, 535, 621, 626, 627, 699, 703, 704, 792, 806, 809, 810, 816, 817, 825, 829], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 75, 77, 182, 183, 184, 185, 186, 357, 367, 368, 413, 589, 591, 592, 593, 594, 596, 597, 599, 603, 608, 617, 621, 622, 778, 796, 805, 806, 808, 810, 813, 815, 821, 826, 829, 832, 839, 840, 858], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 552, 553, 556, 567, 576, 590, 598, 621, 624, 760, 771, 781, 783, 799, 808, 812, 814, 826, 831, 832, 834, 839, 840, 847, 848, 849, 856, 861], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 414, 457, 464, 465, 466, 473, 511, 512, 618, 623, 624, 626, 627, 628, 632, 634, 636, 637, 638, 639, 641, 643, 645, 648, 649, 652, 664, 681, 687, 702, 703, 717, 736, 737, 738, 739, 744, 745, 750, 752, 779, 788, 792, 804, 805, 806, 808, 809, 811, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 834, 837, 840, 848, 849, 855], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 414, 456, 457, 459, 463, 468, 487, 500, 511, 512, 528, 529, 533, 534, 549, 571, 579, 602, 613, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 634, 637, 638, 646, 647, 657, 661, 669, 673, 675, 678, 700, 704, 717, 726, 727, 728, 735, 736, 744, 745, 746, 812, 814, 816, 826], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 414, 418, 424, 425, 457, 459, 463, 468, 487, 511, 579, 602, 617, 619, 621, 622, 623, 624, 626, 628, 632, 634, 637, 638, 640, 642, 644, 646, 657, 659, 661, 669, 676, 678, 680, 700, 717, 726, 727, 728, 736, 745, 746, 812, 816, 829], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 510, 616, 809, 811], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 521, 568, 591, 619, 621, 632, 736, 737, 738, 739, 804, 811, 812, 813, 814, 825, 826, 827, 829, 832, 834, 840, 852], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 520, 535, 548, 579, 613, 616, 619, 621, 624, 628, 630, 637, 662, 669, 713, 728], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 451, 452, 459, 461, 463, 464, 465, 472, 487, 517, 563, 568, 591, 616, 618, 621, 623, 626, 648, 689, 690, 691, 693, 695, 696, 698, 700, 793, 813, 814, 815, 825, 826, 832, 834, 840, 848, 855, 857, 858, 859], "temporari": [3, 5, 577, 599, 621, 793, 814, 831], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 368, 369, 413, 441, 623, 649, 799, 802, 805, 806, 808, 814, 820, 829, 830], "until": [3, 5, 793, 806, 825, 834, 840, 845, 848, 862], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 456, 482, 613, 618, 619, 624, 634, 678, 750, 752, 775, 783, 800, 807, 812, 813, 814, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 838, 852, 862], "o": [3, 5, 39, 40, 41, 42, 44, 560, 621, 623, 649, 799, 805, 807, 813, 834, 841], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 799, 800, 806, 841, 855, 857], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 801, 803, 805, 811, 853, 857, 859], "jit": [3, 6, 8, 26, 29, 834, 840, 848, 855], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 414, 420, 459, 463, 468, 487, 511, 529, 533, 534, 537, 548, 549, 574, 579, 596, 616, 617, 619, 621, 623, 624, 626, 628, 630, 631, 632, 634, 637, 647, 657, 660, 661, 662, 669, 675, 676, 694, 700, 705, 717, 726, 727, 734, 736, 744, 745, 746, 760, 805, 813, 816, 824, 858], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 438, 441, 481, 510, 533, 602, 603, 617, 619, 621, 622, 624, 626, 628, 634, 672, 673, 675, 701, 712, 751, 806, 813, 814, 817, 825, 837], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 422, 432, 466, 474, 476, 481, 485, 511, 512, 513, 533, 601, 616, 619, 621, 632, 634, 736, 744, 745, 750, 752, 763, 765, 766, 778, 799, 804, 814, 818, 822, 829, 834, 837, 838, 839, 855, 861], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 414, 446, 463, 511, 517, 534, 537, 559, 579, 580, 612, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 634, 645, 647, 653, 657, 660, 661, 669, 671, 675, 700, 713, 726, 727, 728, 735, 745, 746, 763, 766, 799, 806, 814, 816, 837], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 445, 446, 632, 736, 738, 765, 775, 805, 806, 808, 816, 834], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 421, 426, 434, 435, 441, 463, 481, 617, 619, 623, 624, 626, 632, 634, 649, 658, 659, 671, 672, 674, 693, 697, 737, 739, 748, 779, 793, 802, 804, 805, 806, 809, 814, 816, 817, 820, 825, 826, 827, 829, 830, 832], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 619, 623, 649, 804, 805, 806, 814, 818, 820, 824, 825, 827, 829, 830, 832, 834, 848, 855, 856, 861], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 563, 564, 565, 568, 569, 572, 574, 576, 579, 580, 581, 582, 584, 586, 587, 588, 594, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 709, 711, 712, 713, 715, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 761, 763, 764, 765, 766, 771, 775, 778, 781, 788, 789, 795, 799, 802, 805, 806, 807, 808, 809, 810, 811, 813, 816, 817, 819, 825, 828, 833, 835, 836, 837, 838, 842, 844, 848, 850, 852, 853, 854, 855, 856, 861, 862], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 422, 446, 473, 489, 491, 517, 557, 619, 621, 624, 625, 634, 660, 669, 672, 683, 684, 685, 747, 748, 749, 750, 751, 752, 753, 763, 765, 778, 779, 782, 804, 817, 834, 845, 848], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 414, 463, 613, 619, 624, 630, 634, 641, 657, 664, 669, 676, 726, 727, 728, 745, 746, 750, 812, 814, 816], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 414, 420, 425, 463, 511, 619, 624, 628, 630, 633, 657, 665, 678, 716, 726, 727, 728, 743, 816], "006431100999861883": 3, "258": [3, 623, 638, 640], "104": [3, 65, 624, 634, 669, 746], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 813], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 442, 445, 448, 625, 683, 684, 685, 799, 814], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 465, 805, 829, 842, 855, 861], "itself": [3, 21, 31, 51, 92, 269, 523, 588, 619, 621, 628, 717, 793, 802, 805, 806, 808, 811, 812, 813, 814, 815, 818, 819, 820, 825, 826, 838, 840, 844, 848, 854, 855, 856, 861], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 515, 520, 601, 619, 621, 624, 659, 660, 760, 788, 789, 799, 805, 806, 811, 813, 814, 817, 825, 827, 834, 844, 845, 846, 849, 861, 862], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 770, 771, 776, 778, 779, 781, 783, 788, 789, 792, 793, 794, 795, 796, 799, 805, 806, 809, 812, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 850, 856], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 414, 456, 478, 533, 540, 541, 543, 565, 569, 579, 619, 621, 624, 630, 631, 634, 637, 638, 648, 657, 662, 665, 669, 676, 726, 734, 735, 744, 745, 746, 750, 752, 799, 813, 832, 836], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 845], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 767, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 826, 828, 844, 845, 846, 847, 849, 850, 854, 855, 856, 857, 858], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 414, 418, 456, 511, 565, 616, 617, 619, 621, 624, 625, 628, 634, 657, 669, 673, 685, 711, 726, 727, 744, 745, 746, 818, 824], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 561, 621, 635, 756, 760, 775, 776, 777, 779, 780, 782, 784, 787, 788, 799, 801, 805, 809, 810, 811, 818, 822, 825, 826, 828, 829, 834, 835, 837, 839, 840, 846, 848, 850, 855, 856, 858], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 527, 545, 615, 621, 627, 628, 703, 704, 711, 792, 799, 802, 804, 805, 808, 809, 812, 814, 815, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 761, 768, 769, 770, 775, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 794, 797, 799, 804, 809, 810, 814, 818, 826, 830, 834, 836, 837, 838, 839, 849], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 792, 799, 806, 809, 812, 818, 826, 827, 834, 836, 837, 838, 839, 849], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 799, 839, 849], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 616, 799, 837, 849], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 422, 430, 437, 438, 462, 619, 623, 627, 633, 649, 652, 703, 704, 742, 760, 779, 780, 781, 782, 783, 784, 799, 801, 805, 806, 807, 811, 819, 834, 837, 838, 839], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 566, 567, 568, 570, 571, 572, 573, 575, 576, 577, 579, 580, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 709, 710, 711, 712, 716, 717, 718, 720, 721, 722, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 787, 788, 791, 793, 799, 802, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 848, 849, 850], "_build": [3, 5, 780, 781, 799], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 473, 560, 588, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 788, 797, 799, 809, 814, 815, 818, 822, 825, 826, 832, 834, 838, 848, 849, 850], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 778, 779, 799, 804, 805, 806, 809, 810, 813, 814, 821, 830, 832, 837, 840, 849, 855, 856, 857, 861], "sequenti": [3, 5, 7, 24, 26, 27, 42, 799, 811, 812, 838, 849], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 623, 640, 779, 799], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 533, 534, 580, 608, 617, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 645, 666, 669, 679, 713, 717, 727, 746, 750, 799, 805, 814, 837, 838, 860], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 766, 775, 778, 779, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 848, 849, 850, 861, 862], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 489, 490, 491, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 763, 779, 782, 799], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779, 799], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 613, 775, 799, 827, 837, 838], "maxpool2d": [3, 5, 7, 40, 779, 799], "192": [3, 42, 763, 792], "384": [3, 77, 602, 622, 628, 705], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 779], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 414, 417, 420, 423, 424, 428, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 464, 468, 469, 472, 473, 478, 479, 481, 482, 487, 488, 498, 500, 501, 503, 508, 510, 511, 512, 513, 515, 517, 519, 520, 526, 528, 529, 532, 533, 534, 540, 541, 548, 549, 550, 565, 579, 580, 581, 582, 584, 588, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 654, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 716, 717, 723, 724, 725, 726, 727, 728, 730, 731, 732, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 763, 778, 799, 802, 805, 808, 810, 812, 813, 814, 816, 819, 824, 829, 832, 834, 836, 837, 838], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 799, 804, 848, 849], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 496, 623, 630, 646, 725, 779, 799], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 436, 473, 520, 537, 560, 613, 621, 623, 628, 649, 673, 712, 763, 765, 766, 778, 779, 799, 812, 817, 822, 823, 825, 826, 829, 832, 834, 837, 838, 839, 849, 853, 854, 855, 858], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 799, 817, 834, 837, 838], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 414, 416, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 444, 445, 446, 447, 448, 449, 450, 454, 455, 457, 458, 460, 461, 463, 466, 469, 470, 471, 472, 473, 474, 475, 476, 477, 480, 481, 483, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 607, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 779, 782, 785, 788, 792, 797, 799, 802, 804, 807, 809, 810, 812, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 418, 433, 457, 463, 601, 621, 623, 624, 626, 639, 641, 645, 665, 681, 799, 825, 826, 829, 832, 834, 836, 839], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 537, 621, 625, 683, 799, 837, 845, 849], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 421, 481, 526, 538, 547, 550, 551, 568, 582, 616, 617, 618, 619, 621, 623, 624, 647, 658, 659, 660, 663, 665, 674, 681, 758, 764, 771, 783, 788, 789, 792, 799, 801, 802, 804, 805, 806, 808, 809, 811, 815, 816, 817, 819, 821, 822, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 839, 841, 842, 844, 845, 846, 849, 852, 854, 855, 858, 860, 861, 862], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 813, 845], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 760, 763, 764, 765, 766, 770, 771, 775, 778, 779, 780, 781, 785, 788, 792, 793, 794, 797, 799, 804, 805, 806, 807, 808, 809, 812, 815, 816, 817, 818, 821, 823, 825, 827, 829, 830, 832, 834, 836, 837, 848, 849, 850, 855, 856, 859], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 618, 619, 631, 632, 634, 735, 736, 737, 738, 739, 747, 748, 749, 751, 763, 799, 804, 805, 806, 823, 829, 835, 839, 848], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 618, 619, 624, 632, 634, 659, 660, 736, 737, 738, 739, 747, 748, 749, 751, 799, 804, 805, 808, 814, 839, 840, 844, 845, 846, 848, 851, 852, 853, 855, 859, 862], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 799, 849], "save": [4, 7, 40, 52, 69, 75, 380, 517, 577, 599, 618, 621, 635, 781, 805, 813, 820, 829, 840, 846, 854], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 602, 603, 606, 608, 609, 610, 618, 619, 622, 628, 716, 779, 799, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 845, 846, 848, 849, 851, 852, 854, 855, 856, 861, 862], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 437, 635, 781, 799, 829, 840, 854, 861], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 848, 849], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 414, 437, 502, 570, 580, 592, 616, 617, 619, 621, 624, 626, 632, 634, 665, 689, 736, 737, 738, 739, 746, 761, 764, 765, 768, 769, 770, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 793, 794, 797, 799, 805, 806, 808, 812, 813, 814, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 855, 860, 862], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 781], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 433, 446, 470, 612, 619, 622, 628, 635, 715, 716, 754, 755, 780, 781, 806, 812, 814, 822, 823, 855], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 413, 415, 446, 476, 496, 497, 498, 499, 500, 616, 619, 630, 634, 725, 726, 727, 728, 751, 753, 779, 827, 829], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 557, 615, 617, 619, 621, 635, 754, 755, 758, 761, 764, 793, 799, 801, 802, 803, 807, 811, 814, 816, 818, 820, 823, 826, 828, 830, 840, 841, 846, 848, 849, 850, 855], "did": [4, 40, 804, 811, 839, 845, 861], "realli": [4, 38, 805, 812, 819, 840, 848, 860, 861], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 421, 443, 452, 453, 462, 463, 502, 503, 520, 616, 617, 619, 624, 626, 630, 633, 658, 693, 728, 741, 793, 799, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 845, 848, 849, 855, 860], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 431, 433, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 564, 565, 566, 572, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 589, 594, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 778, 779, 780, 781, 782, 792, 793, 808, 809, 810, 812, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 856, 859], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 537, 621, 623, 626, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 688, 701, 765, 779, 799], "longest": 4, "return_tensor": [4, 8, 26, 43, 848, 849], "pt": [4, 8, 26, 848], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 623, 638, 679, 799], "input_id": 4, "101": [4, 9, 41, 623, 624, 628, 647, 662, 711], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 726], "token_type_id": 4, "attention_mask": [4, 56, 79, 623, 649], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 518, 522, 525, 621, 632, 633, 634, 736, 737, 738, 739, 740, 743, 749, 760, 799, 810, 816, 818, 827, 829, 832, 837, 851, 853, 855, 861, 862], "no_grad": [4, 40, 848], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 419, 432, 436, 438, 440, 479, 483, 496, 497, 498, 499, 500, 503, 513, 525, 615, 616, 621, 623, 624, 628, 630, 631, 649, 652, 656, 664, 665, 671, 673, 674, 675, 678, 713, 726, 727, 728, 734, 799, 807, 808, 826, 827, 834, 848, 851, 855], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 824], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 624, 667, 670, 758, 760, 802, 819, 827], "005": [4, 7, 52, 75, 328, 344, 365, 442], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 624, 667, 758, 760, 802, 819, 827], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 436, 459, 468, 481, 487, 492, 493, 495, 513, 522, 525, 601, 616, 617, 619, 621, 624, 625, 626, 630, 631, 632, 633, 634, 657, 666, 667, 670, 672, 678, 683, 686, 688, 693, 695, 701, 728, 734, 736, 737, 738, 739, 740, 743, 748, 750, 751, 752, 753, 771, 778, 779, 811, 812, 814, 816, 818, 827, 829], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 368, 369, 375, 413, 426, 435, 439, 441, 497, 532, 536, 617, 619, 621, 623, 628, 630, 648, 715, 718, 726, 727, 728, 758, 792, 793, 799, 804, 805, 806, 808, 810, 814, 815, 818, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 856], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 450, 523, 538, 539, 588, 617, 618, 621, 628, 711, 712, 713, 715, 716, 717, 758, 760, 785, 788, 794, 795, 797, 815, 818, 825, 826, 834, 848], "finish": [4, 15, 26, 27, 38, 41, 799, 800, 804, 805, 807], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 617, 624, 634, 676, 727, 728, 752], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 420, 511, 619, 630, 631, 727, 728, 735], "procedur": [4, 811, 813, 816, 827], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 478, 541, 549, 565, 579, 601, 619, 621, 624, 628, 634, 669, 708, 726, 744, 746, 750, 793, 813], "big": [4, 778, 800, 840, 855], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 799, 814, 815, 818, 821, 825, 830, 834, 839, 849, 850], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 628, 718, 799, 805, 808, 811, 813, 820, 827, 837, 848, 856], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 799], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 619, 626, 697, 805, 825], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 426, 435, 441, 518, 519, 623, 634, 648, 749, 776, 779, 780, 781, 783, 784, 799, 806, 810, 814, 815, 819, 827, 829, 834, 845, 848, 849, 850, 855, 861, 862], "fast": [4, 21, 31, 52, 368, 390, 855], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 413, 415, 419, 422, 426, 430, 435, 437, 439, 441, 442, 444, 445, 446, 447, 456, 462, 467, 473, 478, 480, 481, 482, 483, 486, 489, 491, 496, 497, 499, 500, 506, 508, 511, 512, 513, 516, 517, 518, 519, 520, 526, 528, 529, 530, 532, 537, 540, 541, 543, 548, 549, 550, 557, 564, 565, 569, 570, 571, 574, 582, 587, 592, 593, 596, 599, 600, 601, 602, 603, 604, 608, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 652, 656, 659, 660, 665, 666, 667, 670, 671, 672, 673, 674, 675, 678, 681, 686, 687, 688, 692, 693, 701, 702, 703, 707, 709, 710, 711, 712, 713, 718, 722, 723, 724, 725, 726, 727, 728, 729, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 758, 760, 763, 764, 765, 766, 768, 770, 775, 778, 779, 780, 781, 782, 783, 802, 805, 806, 808, 811, 812, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 831, 832, 834, 836, 840, 848, 855, 856], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 799], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 437, 618, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 805, 811, 815, 818, 819, 822, 825, 829, 830, 834, 849, 853, 861, 862], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 437, 746, 788, 792, 799, 804, 805, 806, 808, 810, 813, 814, 815, 817, 818, 819, 820, 821, 822, 826, 827, 829, 830, 834, 836, 838, 839], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 428, 489, 490, 491, 609, 613, 618, 622, 623, 629, 646, 649, 652, 724, 763, 765, 766, 778, 779, 783, 793, 855, 857], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 423, 441, 494, 509, 533, 535, 579, 602, 603, 604, 606, 608, 609, 610, 621, 622, 623, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 711, 799, 807, 824, 834, 837, 838, 849], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 494, 533, 535, 621, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 708, 712, 714, 717, 722, 807, 811, 812, 813, 849, 851], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 414, 415, 422, 425, 435, 441, 443, 457, 459, 471, 481, 483, 490, 491, 494, 498, 503, 515, 516, 517, 518, 519, 520, 559, 564, 616, 618, 621, 623, 624, 626, 630, 631, 635, 649, 652, 654, 657, 661, 665, 669, 671, 674, 680, 689, 694, 695, 696, 725, 731, 734, 754, 755, 763, 765, 766, 779, 793, 799, 825, 827, 829, 832, 837, 848, 850], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 418, 422, 424, 425, 426, 427, 429, 432, 434, 435, 438, 439, 441, 445, 449, 450, 454, 458, 459, 462, 463, 466, 468, 471, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 490, 492, 493, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 523, 533, 534, 535, 537, 540, 541, 544, 545, 559, 562, 564, 579, 580, 581, 585, 601, 602, 603, 604, 605, 608, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 654, 656, 657, 665, 666, 671, 676, 678, 679, 680, 681, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 711, 712, 714, 716, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 734, 736, 738, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 775, 778, 779, 792, 793, 812, 814, 815, 816, 818, 821, 822, 825, 827, 829, 830, 832, 834, 839, 848], "assert": [5, 9, 41, 43, 45, 69, 526, 621, 771, 802, 807, 808, 819, 822, 825, 826, 827, 829, 830, 836, 837], "too": [5, 52, 75, 218, 235, 242, 268, 371, 481, 619, 778, 804, 805, 806, 808, 814, 818, 830, 840], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 430, 446, 489, 490, 491, 619, 624, 629, 667, 670, 672, 724, 778, 782, 799, 805, 813, 816, 822, 827, 832, 834, 838, 840, 848, 849, 856], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 451, 452, 459, 461, 463, 464, 465, 472, 476, 487, 613, 618, 689, 690, 691, 693, 695, 696, 698, 700, 765, 775, 779, 799, 800, 802, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 816, 817, 819, 821, 823, 825, 826, 827, 829, 830, 832, 833, 834, 836, 838, 839, 840, 841, 845, 848, 855, 861], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 520, 619, 832], "bicub": [5, 52, 75, 368, 403, 832], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 415, 420, 422, 433, 436, 457, 467, 472, 473, 484, 502, 511, 512, 529, 533, 540, 560, 565, 602, 603, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 655, 659, 660, 662, 663, 664, 665, 666, 667, 668, 670, 672, 678, 680, 681, 688, 689, 690, 691, 693, 694, 701, 724, 726, 727, 728, 731, 732, 733, 734, 736, 737, 738, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 783, 809, 812, 814, 815, 816, 821, 823, 824, 827, 834, 837, 838, 846, 854], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 503, 511, 512, 616, 617, 631, 633, 634, 726, 731, 732, 733, 742, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "enumer": [5, 40, 42, 768, 799], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 434, 435, 441, 451, 452, 453, 466, 474, 476, 485, 601, 621, 624, 631, 671, 674, 734, 812, 822, 829], "newaxi": [5, 614], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 416, 432, 434, 436, 509, 623, 624, 636, 638, 640, 642, 643, 644, 664, 668, 670, 676, 765, 779, 799, 819, 825, 836, 839, 849], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 619, 645, 799, 849], "car": 5, "full_img": 5, "from_numpi": [5, 837], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 715, 716, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 779, 780, 781, 783, 785, 788, 792, 793, 794, 797, 799, 802, 805, 808, 810, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "permut": [5, 7, 40, 59, 82, 97, 378, 502, 626, 691, 698, 849], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 496, 497, 499, 500, 616, 618, 624, 630, 663, 725, 726, 727, 728, 760, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 806, 811, 814, 815, 819, 826, 829, 840, 853, 855, 858, 860], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 415, 422, 426, 435, 441, 446, 489, 491, 497, 517, 520, 550, 566, 574, 580, 616, 617, 619, 621, 623, 624, 625, 626, 628, 630, 631, 634, 636, 649, 667, 672, 683, 684, 685, 693, 716, 717, 726, 727, 728, 731, 732, 734, 735, 747, 749, 751, 753, 763, 766, 778, 779, 780, 781, 782, 788, 800, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 841, 844, 845, 848, 849, 853, 855, 858, 859, 860, 861], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 776, 778, 779, 781, 783, 799, 805, 810, 817, 824, 829, 830, 832, 839, 840, 848, 855, 856], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 430, 445, 573, 595, 621, 624, 667, 799, 805, 806, 812, 822, 823, 825, 829, 831, 834, 837, 840, 849, 855, 857, 858], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 435, 478, 516, 517, 586, 616, 621, 788, 792, 804, 809, 814, 815, 818, 821, 825, 826, 827, 830, 832, 834, 836, 839, 842], "isinst": [5, 9, 24, 26, 27, 818, 826, 829, 830, 838, 839], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 424, 427, 435, 441, 520, 616, 624, 659, 679, 799, 812, 813, 818, 825, 826, 829, 836, 839, 848], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 617, 763, 764, 814, 829], "elif": [5, 6, 813, 818, 825, 826, 827], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 413, 415, 422, 426, 429, 432, 434, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 476, 479, 481, 482, 483, 487, 489, 491, 492, 493, 494, 495, 497, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 560, 564, 565, 569, 578, 579, 580, 582, 584, 586, 587, 600, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 679, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 775, 779, 782, 783, 792, 793, 797, 814, 816, 818, 825, 826, 829, 830, 832, 834, 839, 848, 849], "argmax": [5, 41, 42, 43, 62, 85, 371, 478, 631, 799, 826, 848], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 520, 623, 649, 832, 855], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 424, 426, 432, 434, 435, 441, 456, 466, 471, 473, 474, 476, 478, 481, 482, 485, 566, 567, 568, 572, 573, 575, 576, 589, 590, 594, 595, 597, 598, 618, 619, 621, 624, 671, 771, 779, 780, 781, 796, 805, 806, 807, 812, 815, 816, 819, 832, 840, 855, 858], "bilinear": [5, 52, 75, 368, 403, 832], "torch_mask": 5, "squeez": [5, 40, 59, 82, 626, 855], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 621, 799, 819, 827, 837], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 414, 617, 623, 626, 636, 637, 638, 639, 641, 643, 645, 693, 778, 799, 805, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 829, 846, 855, 859], "img_tf": 5, "math": [5, 43, 93, 285, 619, 814, 825, 826, 827, 839, 853], "ve": [5, 9, 15, 24, 26, 61, 84, 630, 725, 804, 805, 806, 819, 829, 832, 833, 836, 842], "lot": [5, 813, 814, 823, 829, 840, 845, 846, 854], "far": [5, 26, 27, 628, 705, 716, 793, 815, 816, 835, 860, 861], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 443, 533, 537, 616, 619, 621, 832, 845], "del": [5, 813], "empty_cach": 5, "permute_dim": [5, 59, 82, 626, 819], "usr": [5, 40, 41, 42, 45, 805], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 494, 545, 621, 800, 805, 808, 811, 819, 822, 827, 829], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 799, 805, 806], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 815, 826, 831], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 426, 435, 441, 449, 457, 473, 478, 496, 497, 498, 499, 500, 568, 584, 601, 612, 616, 619, 621, 622, 630, 669, 725, 726, 727, 728, 730, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 800, 805, 806, 809, 810, 811, 813, 814, 815, 818, 822, 823, 825, 826, 827, 829, 832, 834, 835, 838, 841, 842, 845, 848, 849, 850, 855, 856, 861], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 616, 626, 695, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 844, 845, 846, 851, 855, 858, 861, 862], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 616, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 805, 806, 818, 855], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 430, 568, 619, 621, 624, 671, 674, 765, 813, 814, 816, 828, 830, 840, 845, 846], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 840, 848, 858], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 435, 450, 503, 511, 512, 533, 534, 535, 548, 549, 550, 566, 576, 613, 616, 618, 619, 621, 623, 624, 627, 628, 634, 635, 646, 648, 674, 676, 681, 702, 703, 704, 712, 713, 744, 745, 754, 755, 758, 775, 779, 793, 808, 809, 810, 812, 814, 815, 816, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 846, 848, 849, 852, 855, 856, 857, 858, 859, 860, 862], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 524, 526, 547, 550, 551, 568, 569, 621, 628, 712, 713, 717, 722, 723, 770, 771, 776, 783, 807, 809, 816, 819, 821, 823, 826, 832, 836, 838], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 414, 463, 534, 549, 602, 604, 613, 616, 619, 621, 622, 623, 624, 628, 630, 637, 646, 647, 657, 661, 713, 726, 727, 728, 730, 812], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 426, 427, 435, 438, 440, 441, 494, 602, 603, 608, 609, 618, 622, 623, 624, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 653, 763, 765, 766, 778, 779, 783, 818, 845], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 533, 543, 617, 619, 621, 623, 624, 638, 640, 645, 669, 799], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 799], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 633, 654, 661, 664, 669, 673, 676, 677, 680, 735, 742, 760, 785, 799, 808, 814, 816, 818, 821, 825, 826, 849, 850], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 424, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 654, 661, 664, 669, 673, 676, 677, 680, 735, 760, 785, 808, 814, 816, 818, 821, 825, 826], "x3": [5, 49, 53, 148, 522, 617, 621], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 779, 799, 838, 849], "batchnorm2d": [5, 7, 782], "downscal": [5, 53, 76, 528, 529, 550, 621], "maxpool": [5, 7], "doubl": 5, "conv": [5, 623, 779, 832], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 832], "align_corn": [5, 52, 75, 368, 403, 832], "conv2dtranspos": [5, 779], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 433, 441, 553, 617, 621, 623, 626, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 689, 697, 754, 755, 763, 764, 779, 792, 805, 810, 814, 816, 820, 824, 827, 829, 848, 856], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 473, 626, 688, 701], "constant_pad": [5, 59, 82, 626], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 537, 618, 621, 626, 701, 827, 832, 834, 848], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 526, 550, 582, 616, 617, 618, 619, 621, 624, 627, 674, 703, 704, 760, 771, 776, 788, 799, 802, 805, 806, 808, 809, 810, 811, 813, 814, 815, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 848, 849, 850, 861], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 500, 618, 799, 800, 804, 816, 820, 830, 832, 846, 849], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 826], "checkpoint": [6, 7, 43, 840], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 437, 617, 626, 634, 686, 751, 753, 760, 763, 799, 802, 804, 806, 807, 812, 813, 814, 815, 818, 819, 821, 822, 825, 827, 829, 849], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 516, 517, 518, 519, 520, 557, 617, 619, 621, 624, 631, 664, 665, 667, 670, 731, 829, 834, 840, 844, 855], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 568, 588, 602, 603, 608, 618, 621, 622, 623, 624, 627, 634, 646, 664, 702, 703, 704, 751, 753, 771, 782, 783, 805, 812, 814, 815, 818, 822, 823, 825, 826, 827, 828, 829, 832, 840, 848, 855, 856, 861], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 619, 631, 731, 799, 804, 805, 806, 818, 823, 829], "get_scal": 6, "cfg": [6, 820], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 503, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 530, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 621, 623, 627, 628, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 708, 714, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 763, 764, 770, 776, 779, 783, 799, 811, 812, 813, 822, 825, 826, 827, 829, 837, 849, 855, 858, 862], "input_shap": [6, 13, 24, 26, 27, 799], "block": [6, 26, 27, 30, 31, 32, 33, 369, 428, 799, 806, 812, 814, 818, 822, 829, 833, 835, 839, 840, 842, 849, 860, 862], "url": [6, 8, 23, 26, 27, 40, 43, 799, 849], "cocodataset": [6, 8, 23, 26, 27, 43, 799, 849], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 817, 849], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 618, 799, 849, 859], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 799, 808, 811, 820, 822, 829, 848], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 537, 615, 616, 621, 623, 648, 649, 793, 804, 806, 808, 809, 811, 813, 814, 816, 817, 822, 824, 825, 826, 828, 832, 833, 837, 848, 849, 851, 861], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 765, 793, 799, 804, 806, 807, 812, 813, 816, 817, 820, 821, 823, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 845, 846, 851, 856, 857, 860], "improv": [6, 8, 9, 26, 29, 806, 814, 821, 822, 832, 834, 842, 846, 848, 853, 855, 857, 858], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 432, 434, 453, 473, 476, 616, 619, 624, 626, 632, 634, 672, 674, 678, 686, 697, 736, 737, 738, 739, 747, 749, 750, 752, 764, 776, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 852, 853, 856, 861, 862], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 619, 771, 799, 805, 826, 830, 834, 840, 842, 849, 851, 854, 855, 856, 859, 862], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 435, 466, 472, 474, 477, 511, 512, 516, 517, 518, 519, 520, 619, 624, 626, 634, 665, 693, 694, 745, 760, 765, 788, 789, 799, 801, 804, 805, 806, 810, 811, 813, 814, 819, 823, 825, 826, 827, 834, 846, 848, 849, 855, 856], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 457, 481, 486, 616, 619, 624, 667, 670, 673, 681, 788, 825, 826, 832, 837, 839, 841, 849], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 434, 616, 624, 634, 667, 746, 771, 779, 799, 802, 805, 806, 808, 810, 813, 814, 815, 816, 817, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 840, 845, 846, 849, 855, 856, 861], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 799, 839, 849], "rng_kei": [6, 8, 26, 799, 849], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 426, 435, 441, 446, 496, 497, 498, 499, 500, 623, 646, 725, 726, 727, 728, 729, 730, 763, 765, 778, 792, 793, 799, 804, 815, 827, 829, 830, 839, 849, 850, 855], "prngkei": [6, 8, 19, 20, 26, 27, 40, 799, 839, 849], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 602, 606, 613, 619, 622, 624, 629, 630, 634, 665, 669, 724, 725, 726, 727, 728, 729, 744, 746, 799, 834, 839, 849], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 523, 540, 541, 621, 785, 799, 839, 849], "init": [6, 8, 26, 40, 42, 52, 75, 369, 426, 435, 441, 799, 808, 839, 849], "rng": [6, 8, 26, 40, 799, 839, 849], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 617, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 669, 670, 671, 672, 674, 678, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 711, 714, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 765, 766, 775, 779, 782, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 818, 820, 821, 822, 823, 825, 826, 829, 830, 832, 836, 837, 838, 839, 840, 848, 849, 856], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 467, 473, 481, 484, 496, 510, 513, 540, 544, 546, 548, 557, 587, 611, 612, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 779, 799, 802, 804, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 832, 834, 836, 837, 838, 839, 840, 848, 849, 855, 858, 860, 861, 862], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 445, 446, 524, 610, 621, 622, 627, 702, 703, 704, 778, 793, 799, 814, 825, 832, 835, 837, 839, 846, 849, 853, 854, 855, 856, 857, 858, 859, 862], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 414, 421, 422, 427, 434, 435, 439, 441, 451, 452, 453, 457, 458, 459, 464, 465, 467, 468, 470, 472, 473, 476, 478, 486, 487, 494, 496, 503, 508, 509, 510, 511, 512, 513, 522, 525, 533, 540, 541, 557, 581, 601, 603, 604, 606, 608, 609, 610, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 653, 654, 655, 658, 659, 660, 664, 666, 667, 668, 670, 672, 673, 674, 679, 688, 692, 694, 695, 697, 699, 701, 711, 718, 725, 734, 736, 737, 739, 745, 746, 753, 763, 765, 779, 782, 783, 784, 793, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 844, 845, 846, 848, 849, 851, 852, 856, 858, 861], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 608, 613, 617, 622, 728, 758, 760, 829, 837], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 421, 426, 427, 429, 442, 453, 464, 465, 479, 496, 497, 498, 499, 500, 616, 624, 628, 630, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 713, 726, 727, 728, 799, 805, 806, 807, 813, 834], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 434, 480, 623, 637, 639, 640, 641, 642, 645, 649, 779, 806, 813, 823, 826, 837], "loop": [6, 8, 9, 19, 34, 67, 75, 90, 117, 120, 368, 413, 615, 627, 702, 703, 704, 799, 810, 840, 848], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 435, 441, 478, 541, 549, 565, 616, 619, 621, 624, 628, 662, 711, 799, 813, 814, 829, 837, 838, 839, 840, 845, 846, 848], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 446, 619, 727, 728, 753, 758, 763, 820], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 428, 451, 452, 453, 697, 804, 806, 808, 809, 812, 813, 818, 820, 822, 824, 825, 826, 830, 832, 834, 836, 845, 855], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 439, 624, 674, 813, 844, 853], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 619, 799, 805, 808, 809, 813, 815, 816, 818, 826, 829, 832, 835, 836, 837, 838, 846, 849, 858], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 473, 510, 619, 805, 806, 808, 810, 813, 814, 815, 817, 821, 822, 825, 826, 827, 832, 836, 837, 838, 839, 840, 845, 846, 861], "better": [6, 9, 29, 38, 44, 45, 804, 807, 826, 827, 830, 832, 833, 836, 837, 838, 846, 858], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 473, 513, 624, 626, 679, 688, 701, 765, 814, 818, 826, 830, 832, 844, 848, 855], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 588, 615, 618, 621, 805, 806, 811, 812, 813, 814, 815, 816, 818, 822, 823, 825, 829, 832, 834, 836, 839, 840, 842, 848, 851, 855, 856, 857, 858, 859, 861], "train2017": [6, 8, 23, 26, 27, 799, 849], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 623, 624, 649, 674], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 446, 489, 490, 491, 570, 571, 579, 592, 593, 602, 603, 608, 610, 617, 621, 622, 624, 625, 629, 674, 683, 684, 685, 724, 758, 760, 780, 782, 783, 799, 802, 812, 819, 822, 825, 827, 838, 839], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 445, 619, 792, 805, 806, 809, 829, 836, 837, 838, 856], "pretti": [6, 8, 26, 27, 40, 802, 819, 837, 861], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 778, 804, 805, 806, 809, 812, 814, 822, 825, 826, 827, 830, 831, 832, 834, 836, 837, 845, 853, 855, 861, 862], "achiev": [6, 8, 9, 26, 799, 813, 814, 822, 823, 829, 832, 837, 839, 842], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 450, 513, 619, 624, 667, 670, 682, 760, 806, 814, 822, 823, 826, 827, 829, 840], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 368, 375, 413, 496, 497, 498, 499, 500, 601, 616, 618, 619, 621, 630, 725, 726, 727, 728, 730, 788, 792, 793, 803, 805, 806, 808, 811, 812, 813, 818, 819, 826, 828, 829, 834, 836, 837, 840, 842, 843, 844, 845, 848, 852, 855, 856, 857, 861, 862], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 579, 580, 602, 603, 608, 616, 619, 621, 622, 625, 629, 630, 683, 724, 727, 728, 827], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 511, 533, 534, 549, 602, 619, 621, 622, 623, 624, 634, 647, 669, 728, 746, 792], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 537, 580, 619, 621, 624, 625, 660, 671, 683, 763, 820, 829], "resolv": [7, 40, 42, 52, 65, 242, 380, 511, 512, 619, 626, 634, 689, 744, 745, 750, 752, 806, 811, 814, 820, 834], "185": [7, 40, 68], "199": [7, 40, 221, 619], "110": [7, 40], "133": [7, 40, 56, 529, 621, 647], "111": [7, 40, 628, 723], "108": [7, 9, 21, 22, 23, 24, 40, 623, 634, 647, 746], "connect": [7, 40, 779, 799, 801, 805, 811, 828, 838, 839, 845, 853], "443": [7, 40, 280, 619], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 494, 806, 813, 814], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 541, 565, 619, 621, 792, 837], "ok": [7, 40, 805], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 413, 415, 427, 434, 473, 482, 498, 503, 601, 616, 621, 623, 624, 625, 626, 632, 649, 674, 675, 683, 693, 736, 763, 779, 829, 837], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 618, 619], "mb": [7, 40, 42, 45, 813], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 537, 579, 580, 602, 603, 608, 616, 619, 621, 622, 624, 627, 630, 660, 671, 703, 704, 727, 728, 763, 810, 839], "109": [7, 40, 57, 624, 661], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 414, 779, 785], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 449, 621, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 825, 830, 855], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 494, 510, 560, 621, 623, 629, 636, 637, 638, 639, 640, 641, 642, 643, 644, 647, 648, 649, 724, 779, 822, 829, 834, 838], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 422, 446, 489, 490, 491, 617, 624, 629, 667, 670, 724, 775, 782], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 489, 490, 491, 548, 570, 592, 602, 603, 608, 616, 619, 621, 622, 624, 629, 665, 724, 758, 763, 778, 782, 827, 829], "momentum": [7, 40, 52, 75, 374, 489, 491, 782, 845], "affin": [7, 782], "track_running_stat": [7, 782], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 414, 473, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 779], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 623, 651, 779, 799, 849], "fc": [7, 13, 40, 799, 838, 849], "in_featur": [7, 56, 79, 623, 647, 829], "out_featur": [7, 56, 79, 623, 647, 829], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 517, 533, 534, 617, 619, 621, 623, 624, 630, 647, 666, 727, 728, 815], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 619, 801, 804, 805, 806, 811, 819, 826, 837], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 527, 618, 621, 788, 820, 822, 825, 829], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 511, 529, 619, 621, 623, 624, 647, 661, 727], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 602, 616, 619, 622, 623, 624, 628, 634, 638, 640, 642, 644, 647, 669, 705, 727, 746, 816], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 435, 451, 452, 453, 464, 465, 484, 517, 550, 611, 621, 622, 626, 690, 763, 828, 829, 839, 840, 849], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 433, 459, 468, 487, 494, 503, 522, 529, 560, 602, 603, 606, 608, 609, 610, 611, 616, 619, 621, 622, 623, 624, 626, 629, 631, 634, 635, 638, 639, 640, 641, 653, 662, 664, 665, 678, 686, 689, 694, 695, 724, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 799, 804, 806, 809, 810, 812, 816, 818, 820, 822, 825, 826, 827, 829, 832, 834, 840, 846, 848, 853, 854, 855, 862], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 422, 617, 624, 667, 670, 799, 805, 808, 822, 842, 845, 853, 855, 857, 858, 859, 860, 861], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 445, 446, 510, 603, 606, 608, 609, 610, 622, 624, 626, 633, 657, 667, 670, 678, 690, 694, 740, 743, 758, 760, 806, 813, 827, 832, 855, 857], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 623, 649, 779, 799, 801, 804, 805, 806, 809, 810, 811, 829, 838, 840, 844, 845, 846, 849, 851, 853, 855, 858, 862], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 421, 619, 624, 634, 658, 659, 746, 780, 781, 808, 809, 813, 814, 820, 825, 834, 844, 856], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 489, 490, 491, 579, 580, 619, 621, 623, 624, 626, 649, 659, 660, 689, 779, 784, 799, 802, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 838, 840, 845, 848, 854, 855], "home": [7, 8, 21, 22, 23, 24, 813], "workspac": [7, 8, 21, 22, 23, 24, 805, 819], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 602, 606, 610, 613, 622, 624, 630, 661, 727, 728], "builtin": [7, 805, 836, 838], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 413, 415, 450, 473, 523, 527, 532, 534, 538, 539, 560, 588, 601, 605, 607, 612, 615, 617, 618, 621, 622, 627, 628, 702, 703, 704, 711, 712, 713, 715, 716, 717, 718, 758, 761, 771, 783, 794, 812, 818, 824, 826, 834, 847, 848, 849, 850], "track": [7, 17, 26, 27, 39, 40, 545, 621, 805, 806, 808, 824, 825, 848, 855], "properli": [7, 805, 807, 818, 820, 826, 829], "might": [7, 32, 53, 93, 174, 532, 617, 621, 802, 804, 805, 806, 813, 814, 816, 819, 820, 823, 826, 829, 830, 832, 834, 836, 837, 842], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 445, 446, 619, 624, 675, 758, 818], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 619, 804, 805, 806, 808, 811, 813, 814, 816, 818, 820, 821, 826, 827, 829, 830, 831, 834, 836, 840], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 606, 619, 622, 727], "8m": 7, "8mb": 7, "bottleneck": [7, 844], "conv3": 7, "bn3": 7, "2048": [7, 580, 621], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 368, 369, 413, 421, 437, 582, 615, 616, 617, 619, 621, 624, 631, 633, 658, 659, 671, 672, 673, 674, 735, 740, 743, 753, 799, 801, 802, 804, 805, 806, 811, 814, 815, 817, 819, 823, 825, 826, 827, 828, 829, 832, 834, 840, 841, 845, 848, 853, 855, 856], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 804, 805, 819, 840, 841, 848, 849, 850], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 512, 616, 799, 800, 803, 804, 807, 816, 817, 820, 821, 829, 834, 837, 838, 848, 849, 850], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 473, 568, 619, 621, 779, 780, 781, 792, 799, 805, 806, 807, 809, 810, 812, 813, 814, 815, 818, 823, 824, 825, 826, 829, 831, 832, 833, 834, 840, 841, 844, 845, 853, 855, 861, 862], "broken": [8, 21, 22, 23, 24, 851, 855], "permiss": [8, 21, 22, 23, 24, 805, 813], "conflict": [8, 21, 22, 23, 24, 32, 805, 806, 813, 826, 837], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 613, 619, 803, 806, 807, 808, 809, 812, 814, 815, 817, 818, 821, 822, 823, 825, 826, 829, 830, 836], "system": [8, 21, 22, 23, 24, 42, 369, 436, 624, 673, 763, 799, 805, 806, 810, 813, 814, 840, 849, 853, 855, 858, 860, 862], "manag": [8, 17, 21, 22, 23, 24, 26, 568, 591, 621, 799, 800, 810, 814, 815, 825, 828, 840, 846, 857, 859], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 443, 619, 634, 748, 751, 801, 805, 810, 811, 820, 823, 824, 848], "virtual": [8, 21, 22, 23, 24, 806, 826, 845, 858, 859], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 510, 513, 618, 619, 624, 667, 763, 804, 805, 806, 808, 811, 813, 814, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 848, 849, 850, 853, 855, 861, 862], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 805, 813], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 799], "hug": [8, 26, 848], "face": [8, 26, 800, 805, 808, 819, 820, 824, 832, 834, 848, 855, 861], "arch_nam": [8, 26], "microsoft": [8, 26, 845, 848, 849, 855, 860, 862], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 420, 428, 478, 535, 541, 548, 549, 565, 579, 619, 621, 624, 628, 631, 634, 662, 669, 680, 706, 708, 734, 746, 763, 766, 824, 836, 848, 849], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 414, 456, 511, 517, 616, 619, 623, 624, 628, 631, 642, 644, 657, 661, 665, 673, 675, 676, 706, 713, 717, 726, 727, 728, 735, 799, 813, 829, 834], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 424, 427, 433, 446, 481, 496, 497, 498, 499, 500, 511, 512, 521, 614, 616, 617, 618, 619, 623, 624, 626, 628, 630, 632, 633, 634, 649, 654, 659, 660, 664, 665, 667, 670, 673, 674, 675, 678, 681, 689, 697, 708, 712, 713, 714, 717, 722, 723, 726, 727, 728, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 779, 792, 793, 799, 800, 802, 804, 805, 806, 807, 808, 810, 812, 814, 818, 819, 824, 826, 829, 834, 837, 840, 841, 842, 845, 846, 848, 851], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 422, 582, 616, 618, 621, 758, 771, 788, 799, 802, 803, 804, 805, 806, 808, 813, 814, 815, 819, 821, 825, 826, 827, 829, 830, 832, 834, 839, 840, 842, 845, 846, 849, 850, 853, 856, 858, 859, 861, 862], "xla": [8, 826, 840, 842, 855], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 819], "9342": 8, "unabl": [8, 806, 832], "regist": [8, 781, 806, 841, 848], "cudnn": 8, "factori": [8, 52, 370, 445, 446, 793], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 805, 831, 840], "plugin": [8, 805], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 480, 533, 534, 535, 618, 619, 621, 630, 725, 792, 793, 804, 806, 808, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 829, 834, 836, 840, 841, 848, 855, 862], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 511, 617, 619, 624, 666, 763, 816], "trt": 8, "could": [8, 26, 27, 32, 63, 632, 736, 737, 738, 739, 804, 805, 806, 808, 813, 814, 816, 823, 825, 826, 827, 829, 834, 836, 837, 838, 845, 846, 855, 860, 861], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 624, 628, 632, 667, 707, 736, 737, 738, 739, 792, 793, 799, 800, 801, 803, 804, 805, 806, 808, 811, 813, 819, 824, 829, 832, 834, 837, 841, 842, 844, 848], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 421, 445, 446, 516, 517, 521, 550, 616, 619, 621, 624, 626, 658, 695, 758, 793, 802, 804, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 840, 842, 845, 848, 851, 855, 856, 862], "placement": [8, 804], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 422, 426, 435, 510, 613, 616, 619, 624, 632, 656, 667, 736, 737, 738, 739, 765, 778, 809, 813, 814, 822, 824, 830, 832, 835, 836, 837, 844, 845, 848, 852, 856, 860, 862], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 457, 481, 497, 516, 517, 532, 550, 567, 582, 588, 617, 621, 624, 626, 630, 631, 635, 670, 687, 689, 697, 726, 727, 728, 734, 754, 755, 758, 761, 765, 799, 806, 807, 808, 809, 813, 814, 815, 817, 819, 821, 825, 826, 830, 831, 832, 836, 840], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 420, 421, 473, 481, 538, 539, 542, 545, 547, 551, 562, 563, 582, 615, 617, 618, 621, 624, 628, 658, 705, 715, 716, 760, 764, 780, 781, 788, 789, 793, 796, 799, 801, 804, 805, 806, 808, 810, 812, 813, 814, 815, 818, 819, 820, 822, 825, 826, 827, 828, 829, 832, 834, 839, 840, 846, 848, 855, 861, 862], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 456, 482, 568, 616, 621, 624, 656, 812, 814, 815, 824, 825, 826, 827, 832, 836, 837, 842, 848, 855, 861], "set_inplace_mod": [8, 21, 22, 23, 24, 591, 621], "strict": [8, 21, 22, 23, 24, 568, 591, 621], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 481, 487, 497, 516, 517, 526, 550, 568, 570, 580, 582, 588, 592, 617, 619, 621, 624, 626, 630, 631, 632, 634, 635, 664, 666, 680, 689, 690, 691, 693, 695, 696, 697, 698, 700, 726, 727, 728, 734, 739, 747, 749, 754, 755, 758, 765, 783, 799, 806, 808, 810, 814, 815, 818, 825, 826, 830, 831, 834, 836, 841, 845], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 435, 441, 442, 444, 481, 517, 521, 568, 613, 619, 621, 623, 624, 634, 652, 672, 675, 747, 749, 765, 783, 796, 800, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 816, 820, 821, 826, 829, 830, 831, 836, 840, 846, 855], "whenev": [8, 21, 22, 23, 24, 779, 806, 810, 813, 814, 818, 825, 828, 829, 831, 837], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 511, 619, 624, 628, 634, 653, 669, 706, 717, 746], "122": [8, 49, 163, 233, 619], "134": [8, 56, 624, 647, 666], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 845], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 437, 845], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 437, 533, 603, 606, 608, 609, 610, 621, 622, 627, 702, 703, 704, 783, 799, 800, 803, 804, 805, 807, 808, 814, 819, 820, 822, 824, 833, 842, 844, 845, 853, 857, 858, 859, 860, 861, 862], "cryptographi": 9, "frontend": [9, 567, 621, 760, 761, 764, 768, 771, 799, 803, 806, 807, 813, 814, 818, 819, 824, 828, 829, 832, 833, 835, 842, 849, 855], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 799, 837, 848, 849], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 818, 826, 836], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 799], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 421, 472, 510, 623, 624, 649, 658, 659, 799, 803, 804, 805, 806, 808, 812, 814, 816, 817, 821, 822, 825, 826, 829, 834, 835, 837, 838, 839, 840, 842, 844, 845, 846, 849, 855, 859, 861, 862], "sole": [9, 38, 821, 830, 854, 855, 856], "verifi": [9, 23, 319, 320, 362, 804, 814, 815, 826, 829, 830], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 440, 474, 475, 533, 618, 621, 624, 626, 631, 676, 694, 733, 735, 800, 801, 804, 805, 806, 807, 808, 811, 814, 819, 824, 825, 826, 827, 828, 830, 832, 836, 839, 840, 843, 844, 845, 855], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 822], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 418, 422, 428, 433, 440, 442, 444, 445, 446, 447, 448, 458, 460, 469, 473, 481, 482, 483, 488, 492, 493, 495, 503, 509, 510, 511, 512, 513, 516, 518, 519, 520, 522, 525, 528, 529, 532, 533, 535, 536, 537, 540, 541, 542, 546, 548, 549, 550, 552, 553, 556, 557, 562, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 638, 640, 642, 644, 645, 646, 647, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 672, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 714, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 797, 799, 810, 812, 815, 816, 824, 826, 827, 829, 830, 832, 834, 836, 848], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 442, 443, 444, 445, 446, 447, 448, 618, 758, 779, 781, 787, 799, 802, 805, 807, 810, 819, 820, 827, 828, 833, 837, 838, 839, 849, 850, 851, 853, 854, 855, 858, 860, 861], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 443, 805, 806, 808, 810, 812, 813, 814, 816, 825, 827, 829, 840], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 414, 494, 511, 512, 532, 552, 560, 561, 569, 588, 613, 615, 616, 619, 621, 623, 624, 627, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 664, 669, 672, 676, 702, 703, 704, 744, 745, 750, 752, 765, 779, 780, 781, 788, 801, 804, 805, 806, 810, 811, 812, 814, 815, 816, 817, 818, 820, 822, 825, 826, 827, 828, 829, 832, 834, 837, 840, 841, 849, 855], "fit": [9, 59, 82, 626, 692, 804, 826, 834, 851, 852, 855], "consol": [9, 563, 621, 799, 806, 820, 829, 836, 841], "gpu_hist": 9, "captur": [9, 824, 829, 839, 856], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 579, 606, 616, 619, 621, 622, 628, 634, 709, 717, 727, 746], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 420, 421, 516, 517, 538, 539, 617, 618, 619, 621, 623, 624, 632, 633, 634, 649, 658, 659, 660, 669, 678, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 764, 766, 788, 799, 802, 804, 807, 808, 809, 810, 812, 814, 815, 817, 818, 819, 821, 822, 823, 825, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 852, 853, 854, 855, 858, 861, 862], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 75, 79, 81, 225, 228, 230, 265, 285, 368, 370, 413, 445, 448, 619, 623, 625, 646, 649, 683], "tabular": 9, "pulsar": 9, "emploi": [9, 861], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 624, 626, 627, 628, 657, 664, 678, 696, 702, 703, 719, 793, 796, 799, 804, 810, 811, 813, 814, 817, 822, 828, 829, 832, 839, 848, 849, 855], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 545, 618, 621, 799, 803, 805, 809, 811, 812, 820, 824, 829, 841], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 421, 427, 437, 457, 462, 464, 465, 469, 471, 503, 509, 510, 616, 624, 658, 659, 665, 671, 673, 674, 679, 763, 778], "well": [9, 26, 27, 40, 41, 42, 76, 370, 445, 546, 621, 624, 673, 765, 799, 801, 804, 806, 811, 813, 814, 818, 825, 826, 827, 829, 838, 839, 849, 854, 855, 856, 860], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 439, 481, 510, 601, 616, 617, 619, 621, 624, 626, 629, 630, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 724, 727, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 765, 778, 782, 792, 793, 799, 804, 807, 808, 809, 812, 814, 817, 821, 825, 828, 829, 830, 840, 843, 849, 851, 853, 854, 857, 858, 860], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 413, 433, 475, 476, 509, 615, 616, 617, 619, 623, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 736, 748, 751, 761, 802, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 836, 838, 839, 840, 841, 844, 845, 848, 855, 861, 862], "extra": [9, 27, 69, 98, 117, 601, 615, 621, 809, 814, 816, 823, 825, 826, 827, 832, 834, 848, 849, 852, 857], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 414, 416, 418, 421, 437, 445, 451, 452, 453, 457, 463, 474, 475, 476, 477, 479, 481, 489, 490, 491, 494, 498, 500, 503, 513, 515, 516, 517, 518, 519, 520, 533, 534, 535, 537, 544, 578, 581, 601, 613, 616, 621, 623, 624, 625, 626, 627, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 681, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 700, 702, 703, 704, 730, 731, 732, 734, 736, 737, 738, 739, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 782, 816, 818, 824, 826, 827, 829, 832, 834, 837], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 442, 444, 445, 446, 447, 448, 625, 683, 684, 685, 799, 804, 808, 826, 833, 834, 835, 839, 841, 855], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 837], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 445, 482, 778, 779, 805, 840], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 421, 422, 426, 430, 435, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 468, 473, 479, 481, 482, 483, 486, 489, 491, 492, 493, 494, 495, 497, 498, 500, 501, 502, 510, 511, 512, 513, 515, 516, 517, 518, 519, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 569, 579, 580, 581, 582, 584, 585, 586, 587, 600, 601, 602, 603, 604, 606, 608, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 658, 659, 660, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 676, 677, 678, 681, 683, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 712, 713, 714, 716, 717, 720, 721, 722, 723, 725, 726, 727, 728, 730, 733, 734, 736, 737, 738, 739, 740, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 778, 779, 781, 792, 793, 809, 814, 821, 822, 825, 827, 829, 834, 837, 838, 840, 848, 849, 850], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 623, 626, 645, 799, 826, 834, 837, 849], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 617, 623, 639, 641, 642, 645, 799, 814, 825, 826, 832, 850], "csv": [9, 42, 799], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 575, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 771, 776, 804, 805, 806, 808, 809, 810, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 829, 837, 838, 839, 842, 848, 856], "117564": 9, "variou": [9, 20, 30, 32, 38, 799, 804, 805, 806, 808, 813, 814, 817, 818, 821, 823, 824, 826, 827, 828, 829, 841, 851, 853, 854, 855, 858, 861], "structur": [9, 27, 69, 72, 98, 160, 163, 530, 621, 628, 709, 718, 799, 804, 806, 809, 812, 822, 827, 828, 829, 830, 837, 838, 854, 855], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 438, 513, 517, 560, 616, 619, 621, 633, 634, 742, 749, 763, 764, 765, 766, 780, 781, 793, 797, 799, 804, 806, 809, 810, 813, 814, 818, 820, 822, 823, 824, 825, 826, 827, 829, 832, 834, 836, 840, 842, 845, 848, 849, 850, 853, 855, 859, 860], "navig": [9, 802, 805, 806, 807, 819], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 437, 456, 634, 751, 753, 799, 805, 813, 825, 826, 837, 846, 849, 855, 862], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 421, 573, 595, 616, 621, 624, 658, 659, 796, 799, 803, 804, 805, 809, 812, 813, 814, 815, 819, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 840, 845, 855, 856, 858, 859, 861, 862], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 530, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 624, 625, 628, 631, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 674, 675, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 771, 777, 778, 779, 780, 781, 804, 806, 808, 809, 813, 814, 815, 816, 817, 821, 829, 830, 834, 835, 838, 839, 840, 848, 849, 850, 856, 862], "signific": [9, 52, 370, 446, 831, 840, 844, 845, 855], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 497, 545, 561, 604, 616, 617, 618, 621, 622, 628, 630, 708, 709, 710, 712, 713, 714, 720, 721, 722, 723, 730, 758, 760, 761, 768, 769, 770, 776, 777, 779, 780, 781, 788, 792, 799, 809, 810, 812, 813, 822, 823, 826, 827, 829, 832, 836, 839, 847, 848, 849, 850, 855, 861], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 414, 422, 423, 432, 434, 436, 441, 453, 459, 462, 466, 468, 479, 487, 489, 490, 491, 494, 496, 497, 498, 499, 500, 503, 510, 520, 616, 619, 623, 624, 626, 628, 630, 631, 634, 635, 636, 637, 638, 639, 641, 643, 645, 649, 654, 657, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 674, 675, 678, 679, 680, 681, 688, 689, 691, 697, 701, 713, 726, 727, 728, 734, 748, 750, 751, 752, 753, 754, 755, 779, 782, 792, 799, 807, 811, 813, 829, 841, 849], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 548, 602, 606, 613, 619, 621, 622, 624, 628, 634, 669, 706, 727, 746], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 799, 801, 803, 805, 808, 809, 810, 811, 813, 814, 815, 825, 826, 827, 829, 832, 836, 837, 838, 839, 840, 841, 844, 845, 850, 857, 861, 862], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 425, 435, 441, 451, 452, 453, 520, 778, 814, 825, 833, 834, 839, 840, 852, 855, 856, 859, 861, 862], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 416, 418, 435, 441, 464, 465, 511, 512, 513, 552, 553, 556, 573, 595, 616, 617, 618, 619, 621, 623, 624, 626, 630, 631, 632, 634, 652, 654, 664, 665, 666, 667, 670, 681, 686, 690, 696, 728, 734, 737, 738, 739, 744, 745, 750, 751, 752, 753, 779, 793, 802, 806, 808, 812, 813, 814, 816, 818, 819, 825, 826, 827, 829, 830, 831, 832, 834, 837, 838, 839, 840, 841, 845, 852, 853, 854, 855, 861, 862], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 515, 516, 517, 518, 519, 520, 534, 618, 621, 624, 631, 634, 635, 671, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 792, 793, 813, 818, 826, 832, 834, 836, 848, 853, 857, 858, 859], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 513, 514, 520, 616, 619, 624, 630, 653, 659, 660, 667, 728, 765, 778, 799, 806, 814, 816, 826, 829, 834, 840, 842, 851, 852, 853, 855, 856, 861, 862], "although": [9, 624, 672, 799, 801, 809, 811, 812, 826, 832, 853, 855], "experi": [9, 15, 42, 805, 818, 829, 835, 837, 840], "demonstr": [9, 23, 26, 27, 41, 814, 816, 818, 836], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 624, 674, 763, 804, 805, 806, 809, 810, 814, 817, 818, 820, 822, 825, 826, 829, 832, 838, 840, 845, 848, 849, 852, 855, 861], "substanti": [9, 806, 809, 814, 829, 845, 855], "dive": [9, 15, 17, 26, 38, 800, 801, 803, 804, 806, 808, 812, 814, 820, 827, 833, 836, 837, 840, 861], "stuff": 9, "tool": [9, 17, 26, 27, 799, 805, 806, 816, 820, 835, 839, 840, 843, 846, 849, 853, 854, 855, 856, 858, 861, 862], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 456, 478, 501, 533, 535, 540, 541, 548, 549, 565, 574, 579, 619, 621, 624, 628, 634, 662, 669, 714, 726, 727, 745, 746, 750, 765, 778, 793, 813], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 442, 445, 447, 511, 520, 548, 549, 565, 579, 616, 619, 621, 624, 625, 628, 629, 634, 637, 653, 657, 662, 679, 684, 706, 713, 717, 724, 726, 727, 728, 745, 746, 748, 753, 812, 824], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 414, 420, 456, 501, 511, 534, 565, 600, 613, 619, 623, 624, 628, 631, 634, 646, 647, 657, 662, 669, 673, 713, 723, 726, 727, 728, 735, 745, 746, 805, 812, 818], "201": [9, 74, 75, 220, 389, 619], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 414, 511, 533, 534, 619, 621, 624, 628, 634, 637, 657, 665, 669, 706, 717, 726, 727, 728, 744, 746, 760, 818, 837], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 422, 510, 573, 595, 617, 619, 621, 624, 659, 660, 665, 672, 674, 675, 681, 771, 813, 826, 831, 832, 859], "recal": 9, "f1": [9, 814], "score": [9, 56, 79, 370, 448, 623, 650, 652, 799], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 606, 618, 622, 728], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 438, 456, 511, 529, 579, 606, 619, 621, 622, 623, 624, 628, 634, 646, 647, 669, 723, 726, 746, 753, 763, 766], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 814], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 533, 534, 606, 619, 621, 622, 624, 634, 669, 728, 746], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 511, 533, 534, 579, 605, 607, 619, 621, 622, 624, 661, 728], "73": [9, 38, 51, 80, 282, 380, 511, 624, 630, 653, 727, 829], "92": [9, 38, 42, 52, 53, 84, 353, 365, 600, 610, 622, 624, 655, 727, 728], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 420, 517, 548, 602, 619, 621, 622, 623, 624, 629, 634, 638, 640, 642, 644, 645, 647, 669, 724, 726, 727, 728, 746, 750, 799], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 549, 619, 621, 624, 628, 634, 664, 669, 679, 706, 713, 727, 746, 750, 763], "852": [9, 623, 647], "449": [9, 529, 621], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 511, 533, 534, 606, 619, 621, 622, 623, 624, 630, 647, 661, 727, 728], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 511, 533, 534, 604, 608, 619, 621, 622, 624, 661, 726, 727, 728], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 511, 602, 622, 727, 728, 802, 819], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 613, 616, 619, 624, 629, 680, 724, 727, 728], "nevertheless": 9, "fall": [9, 40, 783, 804, 814, 833], "short": [9, 38, 52, 75, 415, 623, 648, 804, 806, 814, 834, 838], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 456, 511, 528, 613, 616, 619, 621, 727, 728, 837], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 420, 424, 456, 511, 533, 549, 613, 617, 619, 621, 623, 624, 630, 631, 634, 638, 640, 641, 645, 647, 664, 669, 680, 726, 727, 728, 735, 746, 763, 766, 799, 813, 814, 824, 837, 860], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 579, 580, 603, 608, 616, 619, 621, 622, 624, 625, 662, 683, 727], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 619, 629, 630, 724, 726, 728], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 425, 511, 533, 534, 580, 619, 621, 624, 628, 634, 647, 666, 669, 679, 716, 746], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 619, 623, 624, 631, 634, 647, 654, 661, 727, 735, 746], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 501, 619, 623, 624, 628, 630, 647, 666, 713, 727, 813], "surpass": 9, "remark": [9, 840], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 619, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 799, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 822, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 856, 861], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 421, 457, 458, 460, 469, 488, 567, 576, 598, 616, 621, 624, 626, 628, 655, 657, 658, 659, 660, 662, 664, 666, 667, 668, 670, 671, 672, 674, 675, 678, 705, 715, 716, 779, 799, 803, 808, 825, 834, 851, 853, 860, 861], "x_doubl": 9, "vstack": [9, 52, 75, 371, 469], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 804, 805, 806, 814, 819, 832, 835, 839, 855, 858], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 430, 501, 511, 528, 529, 613, 619, 621, 624, 634, 653, 661, 752], "315": [9, 274, 619], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 478, 533, 535, 540, 541, 565, 579, 601, 604, 619, 621, 622, 624, 628, 634, 662, 669, 714, 727, 746, 750, 799, 813], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 529, 548, 602, 619, 621, 622, 624, 634, 669, 727, 728, 746, 813], "380": 9, "seem": [9, 804, 805, 832, 838, 839, 840, 855], "observ": [9, 52, 75, 380, 509, 510, 806, 814, 818, 834, 848, 857], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 541, 813], "plot": [9, 41, 799, 855], "conduct": [9, 859], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 541, 565, 619, 621, 624, 662, 829], "400": [9, 76, 79, 368, 391, 392, 541, 565, 621, 624, 662], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 441, 541, 621], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 415, 435, 474, 475, 476, 477, 517, 538, 539, 607, 617, 618, 621, 622, 624, 663, 764, 766, 780, 781, 806, 811, 832], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 619, 624, 626, 657, 664, 689, 793, 799, 813, 829, 834, 837], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 804], "loc": 9, "best": [9, 40, 560, 621, 793, 799, 800, 802, 803, 804, 805, 806, 807, 813, 814, 818, 819, 828, 829, 830, 841, 858, 859], "xlabel": 9, "ylabel": 9, "obviou": [9, 837, 855], "trend": 9, "longer": [9, 805, 814, 825, 829, 855], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 414, 420, 424, 442, 443, 444, 445, 446, 447, 448, 473, 520, 616, 617, 619, 623, 625, 626, 628, 630, 632, 646, 669, 683, 684, 685, 689, 697, 711, 726, 737, 738, 739, 764, 771, 783, 799, 809, 810, 814, 816, 821, 822, 823, 825, 826, 827, 828, 829, 832, 833, 835, 836, 837, 839, 844, 848, 849, 851, 852, 854, 855, 856, 861], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 414, 451, 452, 453, 494, 616, 630, 728, 793, 804, 806, 809, 813, 814, 826, 827, 828, 829, 838, 840, 849, 851, 852, 856], "slightli": [9, 306, 362, 812, 826, 829, 834, 838], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 561, 564, 565, 568, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 619, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 792, 793, 795, 799, 804, 809, 817, 818, 821, 826, 827, 829, 830, 834, 836, 837, 848, 849, 850, 856], "x_train": 9, "y_train": [9, 42, 799], "train_siz": [9, 40], "random_st": [9, 369, 426], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 441, 619, 728, 763], "clear": [9, 190, 618, 804, 806, 810, 814, 815, 816, 826, 832, 834, 836, 844, 845, 846, 855], "amount": [9, 58, 81, 210, 618, 625, 683, 684, 685, 793, 805, 813, 815, 827], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 793], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 481, 489, 491, 568, 619, 621, 624, 672, 674, 788, 804, 805, 808, 809, 810, 812, 814, 815, 816, 817, 818, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 840, 845, 848, 854, 855, 861], "tend": 9, "outperform": 9, "proce": [9, 804, 805], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 541, 565, 624, 634, 669, 746, 845], "77": [9, 38, 42, 76, 580, 624, 634, 669, 746], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 533, 534, 618, 621, 727, 728], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 576, 579, 580, 581, 582, 584, 586, 587, 598, 600, 602, 603, 606, 608, 609, 610, 611, 621, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 826, 829, 834, 836, 839, 840, 842, 848, 849, 851, 855, 856, 861, 862], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 605, 607, 617, 618, 622, 624, 629, 661, 724, 728], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 617, 619, 624, 628, 634, 676, 713, 727, 746], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 511, 602, 619, 622, 763, 819], "171": [9, 57, 624, 661, 763], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 479, 511, 619, 624, 634, 669, 746, 793, 845], "86": [9, 38, 61, 75, 84, 368, 380, 399, 511, 602, 622, 727, 728], "88": [9, 38, 77, 84, 107, 380, 511, 606, 613, 622, 624, 630, 634, 669, 728, 746], "perfectli": [9, 765, 846], "align": [9, 52, 69, 75, 368, 369, 403, 419, 623, 651, 793, 805, 813, 826, 828, 834, 836, 842, 861], "gain": [9, 778, 806, 808, 833, 838, 855], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 510, 538, 539, 621, 624, 654, 664, 806, 809, 812, 813, 814, 816, 818, 822, 829, 839, 855], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 632, 736, 737, 738, 739, 779, 780, 781, 799, 800, 805, 807, 813, 814, 822, 824, 833, 835, 838, 839, 840, 842, 845, 849, 853, 855, 857, 860, 861, 862], "timm": [10, 11, 15, 26, 27, 799, 849], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 776, 799, 846, 849, 861], "seen": [11, 13, 18, 24, 26, 369, 375, 427, 498, 545, 621, 788, 813, 814, 816, 818, 826, 829, 834, 836, 837, 844, 845, 861], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 619, 624, 672, 765, 803, 804, 805, 806, 811, 812, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 835, 837, 838, 839, 840, 844, 845, 851, 852, 853, 855, 856, 857, 860, 861, 862], "guid": [11, 24, 799, 800, 804, 805, 806, 811, 820, 826, 828, 861], "focu": [11, 24, 804, 824, 853, 854, 857, 862], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 416, 418, 430, 433, 445, 451, 452, 453, 458, 479, 568, 613, 616, 617, 619, 621, 624, 626, 632, 657, 663, 664, 667, 670, 672, 674, 681, 690, 697, 736, 737, 738, 739, 765, 775, 793, 799, 801, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 849, 850, 853, 854, 855, 856, 857, 858, 861, 862], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 617, 619, 793, 800, 804, 807, 813, 814, 816, 827, 832, 839, 845, 855, 861], "develop": [11, 25, 26, 27, 799, 800, 801, 802, 803, 804, 805, 806, 808, 811, 813, 819, 828, 830, 840, 842, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857, 860, 861, 862], "usual": [11, 13, 43, 235, 268, 619, 792, 805, 808, 814, 826, 829, 832], "own": [11, 13, 17, 26, 27, 32, 799, 805, 808, 813, 814, 817, 818, 825, 826, 830, 834, 840, 842, 845, 846, 851, 854, 855, 860, 861], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 427, 628, 717, 799, 804, 805, 806, 808, 809, 812, 813, 814, 815, 817, 820, 822, 823, 825, 826, 827, 830, 831, 834, 836, 838, 839, 840, 841, 846, 848, 849, 850, 859, 860, 861], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 478, 479, 487, 489, 491, 498, 521, 538, 539, 543, 550, 564, 565, 566, 616, 617, 618, 619, 621, 624, 626, 628, 634, 672, 678, 689, 690, 691, 693, 695, 696, 698, 700, 708, 714, 747, 748, 749, 750, 751, 752, 753, 763, 764, 783, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 845, 848, 849, 850, 854, 858], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 413, 422, 427, 439, 441, 451, 452, 453, 463, 496, 497, 513, 527, 613, 616, 617, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 649, 664, 671, 674, 675, 690, 693, 705, 706, 712, 713, 715, 716, 717, 722, 723, 726, 727, 728, 731, 732, 742, 748, 751, 761, 763, 764, 766, 779, 783, 792, 799, 800, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 844, 848, 849, 854, 855, 856, 861, 862], "retriev": [11, 13, 17, 523, 545, 570, 621, 806, 826], "mlp_encod": [11, 26, 27, 799, 849], "create_model": [11, 26, 27, 799, 849], "mixer_b16_224": [11, 26, 27, 799, 849], "nois": [11, 13, 26, 27, 799, 848, 849], "randn": [11, 13, 26, 27, 799, 849], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 368, 370, 371, 413, 445, 446, 473, 626, 628, 629, 688, 711, 724, 778, 782, 799, 822, 827, 830, 838, 839, 840, 848, 850], "output_dens": [11, 26, 27, 799], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 629, 648, 649, 724, 776, 778, 780, 781, 782, 783, 784, 799, 817, 826, 830, 832, 834, 835, 838, 844, 849, 853, 855, 859, 862], "dens": [11, 24, 26, 27, 310, 362, 779, 799], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 492, 493, 613, 799, 805, 808, 814, 826, 827, 829, 840, 856, 859], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 582, 623, 649, 652, 778, 779, 799, 804, 805, 806, 814, 820, 830, 831, 838, 849, 855, 858], "mention": [11, 13, 26, 27, 32, 804, 805, 806, 809, 816, 821, 822, 825, 826, 829, 832, 845, 850, 855], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 480, 799, 800, 804, 816, 829], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 517, 779, 799, 809, 814, 821, 824, 832, 834, 835, 836, 837, 838, 839, 840, 846, 850, 853, 854, 855, 861, 862], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 776, 780, 781, 784, 799, 817, 835, 837, 838, 849, 850], "fine": [11, 13, 26, 27, 805, 806, 814, 816, 826, 836, 839, 861], "tune": [11, 13, 26, 27, 860, 861], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 438, 489, 491, 602, 603, 608, 622, 623, 646, 649, 652, 778, 779, 780, 781, 782, 799, 812, 815, 822, 837, 838, 839, 840, 846, 849, 853, 854, 859, 861, 862], "ground": [11, 13, 370, 442, 758, 760, 771, 802, 819, 826, 829, 844], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 423, 428, 431, 433, 436, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 560, 561, 562, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 776, 781, 783, 788, 793, 795, 799, 814, 815, 817, 818, 824, 825, 826, 827, 830, 834, 839, 849], "op": [11, 17, 38, 775, 788, 830, 834, 840], "eagertensor": [11, 17, 38, 788, 827], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 804, 805], "deepmind": [12, 846], "perceiverio": [12, 846], "backbon": [12, 40, 799, 834, 837], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 478, 481, 564, 565, 569, 616, 619, 621, 626, 630, 686, 725, 763, 806, 811, 812, 814, 815, 823, 826, 829, 836, 839, 840, 845, 849, 862], "efficientnet": 13, "include_top": [13, 799], "eff_encod": [13, 799], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 441, 623, 624, 628, 634, 649, 652, 678, 711, 712, 713, 717, 718, 750, 752, 799, 805, 813, 814, 815, 823, 838, 852, 853, 855, 857, 859, 861], "efficientnet_v2": [13, 799], "efficientnetv2b0": [13, 799], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 413, 419, 421, 439, 456, 478, 481, 482, 484, 496, 497, 498, 499, 500, 506, 510, 511, 512, 516, 519, 520, 537, 550, 552, 553, 556, 582, 613, 616, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 687, 690, 691, 693, 694, 696, 697, 701, 709, 726, 727, 728, 730, 731, 732, 734, 735, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 778, 779, 780, 781, 785, 793, 799, 805, 807, 808, 809, 810, 811, 812, 815, 817, 821, 822, 823, 825, 827, 830, 832, 834, 836, 842, 843, 845, 855, 856, 857, 859, 860, 861], "storag": [13, 40, 41, 837, 845], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 799], "1280": [13, 533, 621, 799], "state": [14, 25, 40, 56, 75, 79, 95, 182, 183, 184, 185, 186, 268, 368, 413, 589, 591, 594, 596, 597, 617, 619, 621, 623, 648, 761, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 811, 814, 815, 817, 818, 819, 820, 821, 826, 829, 833, 834, 835, 837, 845, 849, 861, 862], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 805, 806, 807, 809, 811, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 827, 829, 832, 833, 835, 837, 840, 842, 843, 844, 851, 853, 855, 857, 860, 862], "welcom": [15, 41, 799, 800, 805, 806, 828], "goal": [15, 40, 242, 619, 799, 804, 845, 855, 861], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 415, 420, 424, 435, 436, 440, 441, 457, 459, 468, 487, 489, 491, 520, 532, 564, 565, 615, 616, 617, 618, 619, 621, 623, 624, 626, 628, 631, 634, 635, 649, 666, 669, 680, 689, 690, 697, 709, 731, 751, 753, 754, 755, 764, 779, 783, 788, 789, 799, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 829, 830, 832, 836, 838, 840, 844, 848, 849, 850, 853, 854, 855, 856, 857, 858, 859, 862], "varieti": [15, 808, 813, 814, 815, 829, 831, 851, 853, 857, 858, 861, 862], "organ": [15, 809, 812, 822, 826, 828, 830, 842, 845], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 462, 616, 624, 656, 657, 678, 799, 804, 805, 806, 808, 811, 812, 819, 823, 825, 853, 855, 856, 861], "exactli": [15, 19, 29, 38, 39, 43, 285, 619, 804, 812, 813, 814, 815, 816, 818, 829, 832, 844, 846], "rush": [15, 846], "jump": [15, 827], "straight": [15, 799, 813, 826, 829, 836], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 855], "capabl": [15, 23, 27, 829, 832], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 421, 439, 442, 496, 497, 498, 499, 500, 510, 511, 512, 520, 614, 616, 617, 619, 624, 630, 631, 632, 633, 634, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 727, 728, 734, 736, 737, 738, 739, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 788, 789, 799, 802, 804, 805, 806, 808, 809, 811, 813, 814, 816, 817, 819, 821, 825, 826, 829, 830, 832, 834, 836, 837, 846, 848, 861], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 482, 601, 616, 617, 619, 621, 624, 626, 628, 631, 671, 674, 686, 707, 734, 804, 805, 806, 809, 812, 813, 814, 823, 825, 826, 827, 829, 832, 844, 852], "who": [15, 807, 818, 833, 840, 855, 857], "deeper": [15, 17, 27, 47, 628, 716, 717, 806, 807, 829, 833, 844], "showcas": [15, 799], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 421, 422, 613, 616, 619, 624, 631, 634, 658, 659, 660, 665, 672, 674, 675, 678, 681, 734, 747, 749, 750, 751, 752, 812, 857], "world": [15, 23, 806, 857], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 413, 415, 430, 436, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 468, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 560, 564, 565, 566, 567, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 594, 595, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 635, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 669, 671, 672, 673, 678, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 775, 776, 779, 780, 781, 782, 783, 792, 799, 800, 804, 805, 809, 812, 814, 816, 821, 825, 826, 829, 831, 832, 848, 849], "beginn": [15, 800, 855], "advanc": [15, 38, 805, 854], "got": [15, 38, 818], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 804, 808, 809, 811, 814, 816, 817, 822, 823, 829, 832, 833], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 418, 419, 427, 428, 431, 432, 433, 434, 440, 442, 443, 444, 445, 447, 448, 457, 458, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 761, 799, 803, 804, 806, 807, 808, 810, 811, 813, 814, 816, 817, 818, 822, 825, 827, 830, 834, 836, 839, 846, 855, 862], "familiar": [15, 16, 17, 799, 804, 805], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 799, 809, 814, 821, 834, 836, 839, 840, 861, 862], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 618, 807, 808, 809, 813, 814, 818, 823, 824, 826, 832, 834, 840, 843, 845, 847, 849, 851, 852, 853, 855, 859, 862], "alongsid": [15, 16, 17, 18, 28, 623, 649, 845], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 623, 646, 779, 805, 811, 812, 815, 816, 826, 829, 846], "wrapper": [15, 16, 19, 771, 809, 811, 812, 814, 818, 822, 825, 826, 836, 842, 851, 855], "unus": [15, 16, 19, 816, 825], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 422, 473, 520, 613, 616, 619, 624, 659, 660, 760, 799, 804, 805, 806, 808, 811, 814, 820, 822, 825, 826, 829, 830, 832, 834, 835, 839, 840, 848, 849, 850, 853, 855, 860, 861, 862], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 812, 840, 855], "understand": [15, 16, 17, 21, 38, 44, 802, 803, 804, 805, 806, 807, 808, 811, 816, 817, 821, 827, 828, 833, 846, 851, 861], "decor": [15, 16, 21, 23, 24, 32, 44, 527, 621, 763, 765, 771, 802, 808, 809, 812, 814, 815, 819, 822, 825, 826, 827, 832], "kornia": [15, 16, 23, 26, 27, 40, 44, 799, 849], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 414, 434, 450, 463, 478, 481, 482, 503, 513, 519, 568, 601, 615, 621, 624, 629, 630, 634, 635, 654, 665, 676, 678, 680, 681, 724, 728, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 788, 792, 799, 805, 806, 810, 816, 817, 824, 825, 827, 830, 834, 836, 840, 844, 846, 853, 855], "indep": [17, 26], "futur": [17, 24, 26, 40, 624, 659, 660, 799, 805, 806, 813, 814, 829, 830, 832, 836, 840, 844, 846, 861], "proof": [17, 26], "delv": [17, 27, 799], "theori": [17, 801, 811], "deep": [17, 24, 26, 38, 69, 533, 621, 799, 800, 801, 803, 804, 806, 808, 811, 812, 814, 820, 824, 827, 833, 836, 837, 844, 853, 855, 858, 859, 861, 862], "esenti": [17, 26], "abstract": [17, 26, 27, 778, 783, 799, 812, 814, 825, 826, 829, 832, 838, 844, 853, 855, 857, 858, 862], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 481, 500, 533, 534, 535, 561, 617, 618, 619, 621, 624, 626, 627, 630, 633, 634, 659, 660, 676, 697, 702, 703, 704, 725, 742, 747, 748, 749, 751, 758, 760, 780, 781, 788, 789, 795, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 818, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 850, 851, 853, 854, 856, 857, 858, 862], "quirk": [17, 26], "perk": [17, 26, 799, 809, 812], "under": [17, 26, 27, 52, 370, 445, 446, 792, 799, 804, 805, 807, 808, 815, 816, 817, 820, 826, 827, 829, 832, 833, 834, 837, 839, 840, 848, 849, 855, 858, 862], "hood": [17, 26, 27, 799, 807, 815, 816, 820, 826, 829, 832, 833, 834, 837, 839, 848, 849, 862], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 414, 422, 473, 484, 512, 531, 617, 618, 621, 623, 624, 636, 637, 638, 639, 641, 643, 645, 660, 758, 760, 764, 792, 793, 810, 811, 813, 814, 815, 818, 826, 834, 837], "simplest": [17, 805, 816, 829, 832], "interact": [17, 26, 41, 44, 804, 854, 855, 860], "submodul": [17, 26, 40, 42, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 804, 805, 806, 808, 811, 813, 815, 819, 822, 823, 829, 833, 834, 838, 842], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 519, 602, 616, 618, 619, 622, 623, 641, 642, 726, 727, 728, 764, 799, 804, 809, 813, 816, 821, 822, 828, 829, 836, 837, 855], "likewis": [17, 22, 26, 33, 799, 806, 812, 814, 817, 821, 822, 826, 832, 837, 848, 849, 861], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 511, 512, 513, 514, 522, 525, 526, 528, 529, 533, 534, 535, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 553, 556, 557, 559, 564, 565, 566, 569, 578, 579, 580, 581, 582, 584, 586, 587, 589, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 707, 708, 712, 713, 714, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 784, 809, 812, 816, 818, 821, 822, 823, 825, 826, 830, 831, 834, 836, 842], "alia": [17, 26, 329, 330, 365, 614, 804, 826, 847, 850], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 422, 433, 481, 482, 511, 512, 634, 744, 745, 804, 805, 806, 813, 819, 825, 829, 834, 836, 839, 840, 855, 858, 859], "lastli": [17, 26, 809], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 569, 572, 574, 579, 580, 581, 582, 584, 586, 587, 594, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 770, 771, 779, 780, 781, 783, 784, 788, 792, 793, 799, 801, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 819, 821, 822, 823, 824, 825, 827, 829, 831, 832, 833, 834, 835, 838, 840, 841, 842, 844, 848, 855, 856, 861], "subclass": [17, 26, 27, 823, 826, 832, 849], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 473, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 611, 615, 617, 618, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 760, 761, 776, 779, 781, 788, 793, 809, 812, 837, 838, 842, 848, 849, 850], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 438, 538, 539, 545, 617, 618, 621, 628, 705, 706, 709, 715, 716, 717, 758, 805, 808, 811, 812, 819, 822, 825, 838, 840], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 414, 415, 478, 480, 526, 533, 534, 535, 582, 613, 616, 617, 618, 619, 621, 623, 624, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 649, 676, 678, 750, 752, 763, 766, 779, 793, 799, 804, 805, 807, 808, 809, 812, 814, 815, 816, 817, 818, 822, 825, 826, 829, 832, 834, 837, 838, 842, 844, 848, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861, 862], "fashion": [17, 765, 829, 849], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 447, 473, 479, 483, 522, 525, 552, 553, 556, 586, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 630, 631, 634, 635, 637, 638, 645, 652, 655, 659, 660, 666, 667, 671, 675, 676, 678, 681, 683, 685, 686, 693, 725, 734, 743, 749, 752, 754, 760, 770, 788, 802, 819, 827, 829], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 533, 537, 674, 699], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 812, 818, 825, 826, 832, 834, 851, 853, 855, 856, 857, 859, 861], "level": [17, 26, 27, 29, 52, 75, 76, 369, 438, 525, 793, 799, 800, 804, 805, 806, 812, 814, 818, 822, 824, 825, 826, 828, 831, 832, 833, 834, 837, 838, 839, 840, 842, 846, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 416, 418, 420, 421, 423, 433, 451, 452, 453, 463, 481, 489, 490, 491, 494, 512, 525, 533, 534, 535, 536, 544, 548, 549, 587, 602, 603, 606, 608, 609, 610, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 631, 632, 634, 637, 638, 639, 640, 641, 642, 644, 658, 660, 662, 693, 697, 705, 708, 712, 713, 714, 716, 717, 722, 723, 734, 739, 745, 746, 751, 753, 782, 792, 793, 800, 805, 807, 810, 811, 812, 816, 822, 824, 833, 834, 835, 837, 840, 842, 843, 845, 846, 849, 851, 855, 859, 860, 862], "fundament": [17, 26, 813, 826, 832, 834, 844, 855], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 617, 619, 800, 802, 804, 805, 811, 814, 815, 816, 822, 823, 826, 830, 832, 840, 844, 852, 855, 862], "signatur": [17, 26, 371, 380, 473, 510, 814, 815, 816, 817, 821, 825, 829, 830, 832, 845, 852, 861], "matmul": [17, 26, 27, 43, 57, 80, 369, 436, 601, 621, 624, 674, 810, 829, 830, 834], "to_n": [17, 26, 27, 38, 47, 70, 834], "jaxlib": [17, 23, 41, 788, 805, 809, 814, 815, 821, 830, 834, 836], "xla_extens": [17, 23, 788, 809, 814, 815, 821, 830, 834, 836], "arrayimpl": [17, 23, 788], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 413, 421, 422, 473, 481, 510, 513, 540, 544, 546, 548, 550, 587, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 726, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 855, 860], "why": [17, 799, 806, 825, 836, 843, 845], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 446, 463, 619, 624, 626, 672, 693, 812, 825, 832, 848, 855], "disabl": [17, 26, 52, 75, 371, 481, 781, 811], "array_mod": [17, 26, 566, 589, 621, 831], "set_array_mod": [17, 26, 589, 621, 831], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 428, 538, 539, 617, 618, 619, 621, 764, 766, 804, 807, 809, 810, 812, 814, 815, 823, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 848, 856], "ultim": [17, 26, 848], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 496, 613, 775, 834, 837, 838], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 442, 444, 445, 446, 447, 448, 454, 458, 469, 509, 510, 513, 520, 525, 537, 540, 541, 548, 549, 565, 578, 579, 580, 588, 601, 616, 618, 619, 621, 624, 625, 626, 628, 630, 631, 632, 634, 654, 664, 669, 670, 674, 681, 683, 684, 685, 686, 708, 712, 714, 722, 726, 727, 728, 731, 736, 746, 747, 749, 750, 751, 778, 799, 810, 812, 815, 816, 834, 836, 848], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 443, 489, 490, 491, 494, 579, 619, 621, 626, 695, 809, 812, 816, 820, 829], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 446, 613, 619, 624, 672, 824, 826], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 573, 621, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 804, 818, 824, 826, 837, 842, 846, 851, 852, 853, 854, 855, 859, 861, 862], "network": [17, 24, 26, 27, 38, 40, 45, 623, 647, 775, 778, 779, 799, 812, 822, 834, 838, 845, 849, 851, 853, 854, 855, 859, 861, 862], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 473, 513, 546, 618, 619, 634, 635, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 804, 805, 806, 808, 809, 812, 814, 816, 818, 825, 826, 827, 829, 832, 834, 837, 838, 839, 840, 845, 846, 849, 855, 861, 862], "further": [17, 69, 98, 765, 806, 808, 809, 813, 816, 818, 821, 822, 825, 826, 828, 829, 833, 834, 837, 838, 845, 846, 860, 861], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 765, 799, 804, 805, 806, 808, 809, 811, 812, 814, 815, 816, 818, 820, 822, 824, 826, 827, 831, 834, 837, 840, 844, 848, 856, 857, 861, 862], "come": [17, 40, 804, 805, 806, 809, 813, 826, 831, 832, 838, 842, 855], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 494, 496, 619, 624, 630, 654, 673, 725, 799, 808, 814, 816, 823, 834, 839, 849, 853], "good": [17, 26, 27, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 827, 829, 830, 832, 834, 835, 838], "foundat": [17, 845, 858], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 415, 570, 580, 592, 619, 621, 624, 628, 666, 679, 711, 778, 831, 836, 837, 838, 855, 857, 861], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 420, 473, 479, 513, 548, 549, 569, 613, 616, 619, 621, 624, 634, 654, 659, 660, 673, 747, 748, 749, 751, 799, 804, 805, 809, 810, 813, 814, 817, 821, 824, 826, 827, 829, 830, 836, 838, 840, 842, 850, 852, 853, 854, 855, 856, 859, 861, 862], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 850], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 422, 459, 468, 487, 516, 517, 545, 621, 624, 626, 627, 657, 678, 695, 702, 703, 704, 804, 806, 807, 812, 818, 826, 827, 829, 836, 837, 838, 850, 851], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 445, 446, 481, 503, 510, 513, 568, 619, 621, 624, 625, 626, 634, 635, 654, 680, 683, 692, 744, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 810, 814, 816, 818, 822, 824, 825, 826, 834, 838, 839, 848], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 513, 630, 725, 726, 728, 778, 799, 828, 838, 849, 850, 862], "x_": [18, 28, 93, 279, 619, 850], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 617, 619, 624, 626, 631, 634, 635, 654, 667, 670, 673, 676, 680, 681, 693, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 805, 810, 821, 826, 827, 830, 834, 840, 845], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 434, 763, 805, 806, 830, 840, 853, 859], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 778], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 623, 624, 646, 657, 678, 778, 779, 805, 819, 833, 846, 848, 861], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 413, 424, 445, 463, 473, 475, 481, 503, 511, 512, 616, 618, 623, 624, 625, 626, 631, 633, 634, 635, 648, 649, 654, 657, 669, 678, 680, 684, 685, 687, 690, 693, 694, 695, 697, 731, 732, 740, 742, 743, 744, 745, 754, 755, 779, 788, 799, 806, 808, 810, 811, 814, 816, 825, 827, 829, 832, 834, 840, 846, 849, 855], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 616, 619, 624, 672, 806, 807, 809, 812, 813, 815, 816, 818, 821, 822, 823, 826, 828, 829, 832, 833, 836, 842, 854, 856, 859, 860, 861], "illustr": [19, 29, 810, 834], "trigger": [19, 29, 781, 804, 820], "unif": [19, 21, 22, 29, 31, 800, 836, 845, 851, 861], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 418, 458, 536, 613, 616, 619, 632, 657, 664, 670, 674, 697, 736, 737, 738, 739, 775, 799, 804, 806, 808, 810, 811, 812, 813, 820, 821, 822, 823, 826, 827, 828, 829, 830, 831, 834, 836, 837, 838, 857, 861], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 443, 451, 452, 453, 604, 616, 617, 622, 821, 822, 824, 825, 826, 829, 838, 840, 848, 850, 856, 861], "constitu": [19, 29, 69, 839], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 481, 619, 805, 808, 813, 818, 825, 826, 845, 848, 849, 855], "manner": [19, 27, 29, 39, 47, 70, 628, 717, 805, 814, 815, 817, 822, 826, 830, 837, 840, 844, 851, 853, 861, 862], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 422, 426, 430, 452, 453, 513, 516, 616, 617, 619, 624, 628, 630, 631, 634, 635, 654, 655, 665, 667, 674, 676, 680, 681, 718, 727, 731, 732, 733, 734, 747, 748, 749, 750, 751, 753, 754, 755, 763, 778, 780, 781, 783, 809, 812, 816, 834, 848, 849, 850, 855], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 804, 832], "985": 19, "000": [19, 74, 269, 763, 802, 813, 819], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 606, 619, 622, 624, 665, 666, 727, 829, 837], "slower": [19, 826], "On": [19, 26, 27, 805, 814, 815, 820, 826, 829, 832, 835, 839], "hand": [19, 51, 369, 436, 763, 799, 808, 814, 815, 820, 822, 829, 840], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 433, 497, 587, 600, 604, 619, 621, 622, 623, 630, 632, 649, 726, 727, 728, 736, 763, 779, 804, 805, 806, 808, 813, 816, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 846], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 419, 420, 421, 433, 443, 447, 452, 473, 479, 483, 510, 520, 525, 615, 616, 617, 619, 621, 624, 626, 632, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 698, 736, 737, 738, 739, 763, 765, 771, 779, 804, 805, 808, 809, 814, 815, 816, 817, 822, 826, 827, 829, 832, 833, 837, 839, 846, 852, 860], "workflow": [20, 30, 41, 804, 806, 810, 814, 824, 826, 837, 842, 846, 854, 861, 862], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 573, 595, 621, 814, 831, 861], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 443, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 489, 490, 491, 527, 543, 545, 568, 573, 595, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 766, 805, 806, 810, 811, 812, 813, 814, 818, 823, 826, 829, 830, 831, 832, 855], "conveni": [20, 30, 804, 814, 815, 821, 827, 835, 837, 838, 842, 861], "act": [20, 30, 52, 75, 356, 366, 806, 816, 831, 840, 862], "shorthand": [20, 30, 32, 829], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 414, 619, 623, 624, 636, 637, 638, 639, 641, 643, 645, 652, 654, 793], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 812], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 421, 422, 473, 619, 624, 626, 658, 659, 660, 697, 763, 771, 776, 793, 801, 804, 805, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 826, 827, 828, 829, 830, 832, 834, 836, 840, 849, 855, 861], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 422, 814, 816], "opt": [21, 22, 23, 24, 44, 805, 810, 814, 825, 829, 832], "fw": [21, 22, 23, 24, 56, 79, 380, 510, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 760, 805, 829], "mxnet": [21, 22, 23, 24, 788, 804, 805, 845, 862], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 425, 433, 548, 602, 619, 621, 622, 623, 624, 628, 629, 634, 645, 657, 669, 676, 706, 724, 726, 727, 746], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 533, 534, 535, 621, 814, 845], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 856], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 859, 860], "535": [21, 22, 23, 24, 46, 68, 113, 613, 818], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 533, 534, 606, 621, 622, 624, 634, 669, 746], "wheel": [21, 22, 23, 24, 40, 42, 45, 844], "six": [21, 22, 23, 24, 40, 45, 805, 832], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 623, 649], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 811], "prompt": [21, 22, 23, 24, 804, 806], "toolkit": [21, 22, 23, 24, 855, 856, 862], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 776, 788, 804, 805, 814, 819], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 799, 817, 821, 826, 832, 836, 839, 840, 855, 861, 862], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 799, 848, 849, 850], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 799, 848, 849, 850], "actual": [21, 31, 802, 806, 807, 813, 819, 822, 823, 825, 826, 827, 829, 832, 833, 838, 840, 856, 861], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 617, 619, 631, 632, 731, 732, 736, 737, 738, 739, 808, 813, 815, 818, 831], "becaus": [21, 29, 31, 41, 52, 368, 390, 758, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 832, 834, 838, 839, 840, 855, 858, 861], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 413, 415, 422, 473, 481, 510, 513, 517, 523, 524, 526, 527, 532, 534, 535, 540, 544, 546, 548, 550, 560, 564, 565, 582, 587, 588, 601, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 711, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 771, 776, 779, 780, 781, 788, 792, 795, 799, 804, 807, 808, 809, 810, 811, 812, 816, 817, 820, 822, 827, 829, 830, 832, 834, 836, 837, 842, 844, 848, 849, 850, 855], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 799, 804, 805, 811, 825, 837, 858], "dummi": [21, 22, 31, 32, 33, 39, 806], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 426, 435, 441, 496, 497, 498, 499, 500, 623, 630, 632, 646, 725, 726, 727, 728, 730, 736, 771, 776, 778, 793, 823, 827, 829], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 434, 436, 473, 481, 510, 513, 540, 544, 546, 548, 557, 587, 611, 616, 617, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 792, 799, 805, 808, 810, 813, 814, 817, 827, 829, 832, 836, 837, 840], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 426, 435, 440, 441, 618, 805, 815, 819, 829, 839, 844, 853, 854, 855, 856, 860, 862], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 799, 804, 805, 808, 818, 820, 827, 829, 841, 853, 856, 859, 861], "critic": [21, 22, 24, 26, 27, 855, 861], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 443, 510, 618, 623, 649, 760, 771, 782, 806, 814, 815, 825, 826, 827, 829, 848, 849], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 418, 422, 492, 493, 495, 528, 529, 550, 621, 624, 665, 681, 724, 779, 783, 830], "slow": [21, 31, 801, 805, 811], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 446, 510, 559, 616, 617, 621, 624, 630, 659, 660, 665, 681, 727, 728, 745, 760, 763, 764, 814, 827, 829], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 632, 736, 737, 738, 739, 801, 804, 806, 815, 823, 827, 829, 832, 846, 850, 856], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 592, 602, 603, 605, 606, 607, 608, 619, 621, 622, 625, 684, 685, 727, 780, 783, 838], "981554": 22, "happen": [22, 26, 27, 287, 619, 799, 805, 806, 815, 825, 829, 837, 846, 848, 849], "wherea": [22, 33, 75, 368, 413, 806, 809, 812, 814, 815, 816, 821, 822, 829, 839, 852], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 473, 616, 619, 809, 812, 816], "begin": [22, 52, 75, 279, 371, 457, 473, 474, 475, 476, 477, 619, 628, 705, 716, 763, 805, 808, 813, 827], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 805, 806, 817, 819, 820, 829, 852, 855, 862], "sympi": [23, 845], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 814, 824], "often": [23, 803, 808, 818, 821, 822, 826, 829, 840, 846, 856, 859, 862], "fortun": [23, 24, 808], "everyth": [23, 41, 792, 799, 804, 805, 806, 807, 813, 816, 825, 826, 827, 829, 835, 840, 841, 846], "practic": [23, 806, 810, 813, 826, 828, 858], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 414, 422, 432, 434, 439, 445, 446, 447, 449, 463, 466, 475, 476, 478, 479, 481, 497, 508, 510, 511, 512, 515, 516, 520, 523, 540, 541, 543, 545, 546, 559, 561, 569, 601, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 649, 652, 654, 656, 657, 659, 660, 665, 673, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 694, 696, 697, 700, 701, 709, 710, 712, 713, 720, 721, 722, 723, 726, 727, 728, 730, 731, 732, 734, 737, 738, 739, 740, 744, 745, 746, 750, 752, 754, 755, 763, 766, 775, 779, 780, 781, 793, 805, 807, 811, 814, 815, 821, 822, 823, 825, 826, 827, 829, 834, 837, 838, 848, 849, 850, 861], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 413, 486, 522, 616, 621, 804, 806, 808, 810, 811, 813, 814, 816, 820, 821, 822, 823, 825, 826, 827, 829, 834, 836, 838, 848, 849, 850, 855], "jax_kornia": [23, 26, 27, 799, 849], "though": [23, 803, 804, 806, 814, 815, 817, 822, 825, 826, 832, 837, 840], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 415, 416, 418, 420, 421, 422, 423, 425, 426, 428, 431, 433, 435, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 467, 470, 483, 489, 491, 502, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 529, 573, 595, 602, 604, 605, 607, 611, 612, 618, 619, 621, 622, 623, 624, 625, 626, 628, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 653, 654, 658, 659, 660, 663, 664, 665, 667, 669, 671, 673, 674, 676, 678, 680, 681, 683, 684, 685, 689, 711, 736, 737, 738, 739, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 760, 765, 779, 782, 793, 799, 805, 812, 813, 814, 822, 824, 826, 829, 831, 832, 834, 837, 840, 842, 845, 846, 848, 849, 851, 853, 855, 856, 858, 859, 861], "000000000034": [23, 26, 27, 799, 849], "raw_img": [23, 26, 27, 799, 849], "enhanc": [23, 26, 27, 799, 828, 849], "sharp": [23, 26, 27, 799], "prefer": [23, 26, 27, 242, 619, 799, 805, 812, 818, 819, 823, 826, 841, 855], "leverag": [23, 26, 27, 799, 805, 825, 849, 853, 855], "whole": [24, 52, 75, 371, 374, 480, 492, 493, 495, 806, 811, 820], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 439, 440, 445, 446, 474, 477, 567, 576, 590, 598, 616, 617, 619, 621, 623, 624, 638, 640, 641, 642, 644, 667, 671, 673, 674, 764, 771, 799, 805, 806, 811, 814, 817, 818, 821, 822, 826, 829, 832, 834, 840, 845, 846, 853, 855, 861], "advantag": [24, 26, 27, 799, 805, 806, 814, 825, 826, 841, 849, 855], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 416, 421, 422, 423, 432, 434, 518, 519, 579, 580, 613, 616, 617, 619, 621, 624, 631, 634, 658, 659, 660, 665, 672, 674, 676, 678, 681, 734, 749, 750, 752, 764, 775, 793, 804, 811, 814, 816, 823, 826, 829, 830, 832, 837, 838, 839, 840, 842, 849, 851, 853, 855, 857, 861, 862], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 849, 853, 855], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 419, 462, 472, 476, 481, 482, 486, 508, 515, 516, 517, 518, 519, 520, 533, 537, 621, 624, 626, 631, 632, 661, 669, 681, 687, 692, 694, 731, 732, 736, 737, 738, 739, 758, 760, 799, 825, 832], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 415, 473, 510, 524, 527, 560, 588, 616, 619, 621, 624, 628, 634, 675, 711, 752, 758, 760, 764, 780, 781, 792, 804, 809, 812, 814, 815, 823, 825, 826, 827, 829, 830, 832, 837, 848, 849, 850], "input_arrai": [24, 26, 27, 825], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 613, 623, 647], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 781, 783, 808, 812, 822, 827, 829, 836, 837, 838, 861], "_transpil": 24, "thank": [24, 837, 845], "fledg": [24, 805, 834, 835], "rand": [24, 26, 27, 42, 792, 793, 799, 848], "output_arrai": [24, 26, 27, 52, 443], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 619, 799, 801, 803, 804, 805, 806, 811, 818, 826, 829, 830, 831, 832, 849, 858], "interest": [24, 26, 38, 235, 268, 619, 804, 806], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 615, 619, 799, 803, 804, 805, 807, 808, 819, 825, 828, 829, 840, 845, 846, 855], "regress": [25, 855, 862], "checkout": [26, 41, 806, 808, 829], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 800, 824, 837, 855], "switch": [26, 38, 771, 810, 818, 822, 823, 862], "easiest": [26, 799, 801, 805, 841], "defer": [26, 27, 804, 809, 814, 815, 822, 825, 826, 829, 861], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 616, 619, 810, 814, 826, 832, 836, 861], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 623, 649, 765, 826, 848], "essenc": [26, 856, 861], "becom": [26, 52, 75, 92, 339, 365, 371, 453, 626, 686, 788, 806, 812, 814, 816, 818, 825, 840, 844, 846, 848], "regardless": [26, 27, 38, 69, 800, 814, 818, 836, 839, 846], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 430, 457, 473, 574, 616, 621, 624, 660, 760, 766, 778, 799, 805, 806, 808, 809, 810, 812, 814, 815, 816, 819, 821, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 845, 846, 851, 853, 854, 855, 856, 861, 862], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 414, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 413, 415, 422, 433, 436, 443, 447, 458, 461, 479, 483, 484, 489, 490, 491, 492, 496, 497, 498, 499, 500, 508, 517, 520, 525, 527, 536, 545, 548, 549, 579, 580, 581, 584, 612, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 634, 635, 646, 649, 657, 659, 662, 663, 668, 669, 673, 674, 686, 689, 691, 695, 697, 705, 708, 710, 712, 713, 714, 715, 716, 720, 721, 722, 723, 725, 726, 727, 728, 730, 736, 746, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 778, 793, 797, 799, 803, 804, 805, 807, 812, 814, 815, 818, 821, 822, 826, 827, 829, 834, 837, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 855, 856], "regressor": [26, 27, 799], "input_dim": [26, 27, 41, 799], "output_dim": [26, 27, 41, 799], "linear0": [26, 27, 38, 799, 837, 838], "linear1": [26, 27, 38, 799, 837, 838], "instanti": [26, 27, 771, 817], "adam": [26, 27, 38, 42, 54, 77, 524, 602, 603, 608, 621, 622, 783, 799, 837, 838, 839, 855], "n_training_exampl": [26, 27, 799], "2000": [26, 27, 75, 308, 362, 799], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 533, 621, 623, 624, 630, 638, 640, 641, 642, 644, 645, 648, 674, 799], "linspac": [26, 27, 48, 71, 121, 616, 799, 821, 832, 834, 862], "loss_fn": [26, 27, 38, 40, 42, 799, 837, 838, 839], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 442, 445, 625, 683, 684, 685, 799, 812, 822, 825], "epoch": [26, 27, 40, 42, 799], "loss": [26, 27, 40, 42, 52, 75, 92, 442, 443, 444, 445, 446, 447, 448, 573, 595, 621, 683, 684, 685, 799, 813, 814, 822, 826, 830, 831, 837, 838, 839, 855, 862], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 618, 627, 702, 703, 704, 760, 771, 783, 799, 807, 830, 837, 838, 840, 855], "grad": [26, 27, 38, 42, 602, 622, 783, 799, 824, 837, 838, 839], "execute_with_gradi": [26, 27, 38, 42, 622, 799, 837, 838, 839, 840], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 532, 604, 605, 607, 612, 615, 621, 622, 624, 628, 659, 712, 713, 717, 799, 804, 822, 823, 824, 827, 832, 834, 837], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 432, 439, 452, 462, 510, 779, 799, 826, 832], "5f": [26, 27, 799], "nonetheless": [26, 27], "slight": [26, 27, 814, 829, 838], "introduc": [26, 27, 242, 619, 626, 632, 694, 736, 804, 812, 813, 814, 823, 827, 829, 832, 837, 844], "address": [26, 27, 52, 53, 75, 371, 481, 586, 621, 804, 806, 808, 809, 821, 828, 834, 846, 851, 853, 855, 861], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 456, 482, 826, 828, 830, 851, 855, 856, 861], "gc": [26, 27, 545, 621], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 430, 435, 438, 441, 826, 839], "said": [26, 27, 765, 830, 846, 848], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 424, 437, 439, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 509, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 604, 606, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 627, 628, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 674, 678, 680, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 718, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 764, 779, 781, 782, 788, 799, 806, 809, 812, 814, 815, 816, 822, 823, 825, 829, 834, 841, 848, 849], "x0": [26, 27, 45, 76, 525, 621, 816], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 634, 672, 673, 701, 751, 799, 817, 845], "fname": [26, 27, 43, 45, 781, 837], "anticip": [26, 27], "addition": [26, 27, 812, 825, 826, 861], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 804, 805], "built": [26, 27, 32, 40, 42, 45, 121, 616, 779, 780, 781, 799, 805, 806, 811, 812, 829, 835, 841, 848, 854, 855, 859], "summar": [26, 27, 92, 829], "eager_graph": [26, 27, 799, 848, 849], "lazy_graph": [26, 27, 799, 848, 849], "codebas": [26, 27, 206, 207, 618, 800, 807, 814, 820, 825, 826, 828, 829, 830, 833, 846], "thought": [26, 27, 805, 806, 821, 845, 853], "research": [26, 27, 40, 799, 844, 849, 855, 862], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 606, 611, 619, 621, 628, 634, 635, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 799, 801, 806, 808, 810, 811, 813, 816, 822, 824, 826, 834, 836, 845, 848, 849, 854, 855, 857], "No": [26, 27, 40, 52, 58, 75, 81, 370, 443, 444, 445, 447, 448, 625, 683, 806, 813, 814, 855], "matter": [26, 27, 32, 816, 844], "job": [26, 27, 799, 811, 813, 849], "haven": [26, 27, 32, 841, 855], "jax_out": [26, 27], "ideal": [26, 27, 813, 814, 826, 832, 837], "But": [26, 27, 765, 812, 813, 817, 820, 823, 832, 839], "bring": [26, 27, 808, 828, 829, 834, 835, 842, 845], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 420, 427, 460, 467, 469, 470, 488, 613, 619, 626, 654, 686, 783, 832], "vision": [26, 27, 45, 851, 861], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 855], "chosen": [26, 27, 45, 95, 121, 223, 616, 619, 631, 735, 804, 813, 826], "plai": [26, 27, 370, 445, 799, 805, 809, 815, 819, 826, 829, 839, 855, 858], "role": [26, 27, 799, 806, 815, 826, 835, 856, 858, 862], "dl": [26, 27], "cnn": [26, 27, 855], "effortlessli": [26, 27], "previous": [26, 27, 590, 621, 788, 805, 810, 822, 824, 829, 834], "pre": [26, 27, 799, 802, 804, 828, 829, 839, 840, 841, 855], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 618, 815, 818, 819], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 617, 618, 814], "certainli": [26, 27, 799, 845, 861], "upon": [26, 27, 44, 806, 816, 825, 829, 832, 840, 854, 855], "unnecessari": [26, 27, 826], "extend": [26, 27, 52, 75, 371, 380, 473, 513, 810, 811, 814, 817, 818, 821, 826, 830, 840, 852, 855, 861], "infrastructur": [26, 27, 799, 851, 857, 858], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 451, 452, 453, 462, 464, 510, 619, 624, 631, 664, 734, 799, 806, 809, 813, 814, 815, 816, 822, 825, 829, 849], "coco": 26, "seamlessli": [27, 829], "benefit": [27, 799, 805, 809, 812, 825, 832, 836, 837, 840, 845, 846, 853, 857, 860], "through": [27, 32, 40, 52, 75, 95, 223, 380, 516, 517, 619, 628, 708, 714, 781, 792, 799, 800, 802, 803, 804, 806, 807, 810, 811, 812, 813, 815, 816, 818, 819, 820, 822, 823, 825, 826, 827, 829, 831, 832, 833, 834, 837, 838, 839, 848, 853, 855, 856, 857], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 466, 473, 474, 476, 481, 485, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 808, 809, 812, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 840, 844, 852, 855, 861], "wide": [27, 799, 806, 829, 853, 855], "prepar": [27, 40, 42, 45, 799, 813], "plenti": 27, "resourc": [27, 800, 804, 805, 813], "visit": [27, 804, 805, 806, 813], "page": [27, 799, 804, 805, 806, 811, 813, 819, 835, 836, 839, 841, 850], "newli": [28, 29, 41, 43, 49, 72, 147, 527, 617, 621, 806, 813, 825, 829], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 619, 628, 705, 716, 804, 805, 810, 812, 813, 820, 829, 837, 838], "inspect": [28, 32, 523, 621], "__": [28, 29, 30, 31, 32, 33, 69, 816, 837], "exhibit": [29, 861], "via": [29, 32, 242, 369, 371, 435, 438, 441, 481, 619, 628, 715, 716, 806, 808, 812, 814, 815, 825, 830, 832, 834, 836, 837, 855], "script": [29, 799, 805, 806, 808, 813, 816, 834, 840, 855], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 627, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 707, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 784, 809, 812, 824, 826, 838, 839, 840, 855], "un": [29, 165, 617, 814, 834], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 463, 626, 693], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 785, 793, 817, 826, 834, 839, 855, 856], "fastest": [29, 52, 59, 75, 82, 369, 371, 433, 463, 626, 693], "maxim": [29, 822, 825, 834, 852, 853, 857, 858, 859], "conclud": [30, 830], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 613, 618, 621, 622, 623, 625, 628, 629, 630, 718, 775, 779, 780, 781, 782, 783, 805, 813, 818, 819, 823, 824, 827, 829, 853, 855, 858], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 570, 571, 574, 579, 580, 592, 593, 596, 617, 618, 621, 771, 782, 788, 805, 809, 810, 813, 814, 815, 818, 822, 826, 834, 855], "approach": [31, 802, 804, 805, 806, 809, 812, 814, 815, 819, 822, 826, 829, 830, 832, 836, 837, 840, 852, 859, 861], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 417, 420, 422, 424, 428, 433, 436, 441, 442, 444, 445, 446, 447, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 479, 481, 482, 483, 484, 487, 488, 493, 495, 497, 498, 500, 501, 503, 510, 511, 512, 513, 515, 517, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 586, 587, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 792, 793, 799, 800, 802, 806, 807, 808, 810, 812, 813, 816, 819, 822, 824, 827, 833, 834, 835, 837, 838, 839, 843, 846, 848, 851], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 569, 579, 580, 582, 584, 586, 587, 588, 600, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 711, 712, 716, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 776, 778, 779, 781, 783, 784, 792, 797, 804, 805, 806, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 832, 834, 839, 840, 848, 849, 850, 855, 861], "prioriti": [32, 69, 788, 804, 806, 815, 825], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 422, 442, 481, 510, 522, 525, 546, 547, 551, 552, 553, 554, 555, 556, 582, 600, 616, 617, 618, 619, 621, 624, 626, 627, 632, 635, 653, 654, 655, 657, 661, 662, 664, 666, 667, 669, 670, 672, 673, 678, 680, 681, 687, 702, 703, 704, 736, 737, 738, 739, 740, 754, 755, 765, 771, 778, 782, 812, 814, 815, 817, 822, 826, 829, 831, 832, 844], "think": [32, 804, 806, 813, 816, 832, 856], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 415, 436, 472, 473, 486, 557, 621, 627, 628, 632, 702, 703, 704, 707, 711, 736, 737, 738, 739, 765, 799, 804, 808, 812, 822, 826, 827, 828, 832, 840, 844, 858], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 461, 510, 617, 619, 624, 626, 653, 654, 661, 666, 669, 673, 687, 765, 792, 808, 809, 812, 813, 814, 816, 820, 821, 822, 824, 829, 832, 856], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 434, 442, 443, 444, 445, 447, 448, 454, 458, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 516, 517, 518, 519, 520, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 792, 812, 814, 816, 817, 818, 829, 830, 834], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 624, 629, 679, 724, 822, 830, 834], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 416, 418, 419, 421, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 447, 448, 451, 452, 453, 458, 459, 461, 463, 464, 465, 466, 468, 472, 474, 475, 476, 477, 479, 481, 482, 483, 485, 487, 492, 493, 495, 496, 497, 499, 500, 503, 510, 511, 512, 513, 520, 528, 529, 533, 534, 535, 540, 541, 543, 550, 564, 565, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 778, 779, 783, 785, 803, 804, 805, 806, 808, 809, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 829, 830, 831, 832, 834, 838, 839, 844, 846, 849, 850, 856, 862], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 624, 657, 678, 804, 813, 826, 830, 839, 856], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 463, 619, 626, 693, 778, 792, 805, 813, 817, 826, 830, 848], "rather": [32, 53, 69, 76, 121, 208, 552, 553, 556, 616, 618, 621, 802, 806, 808, 812, 814, 817, 819, 826, 827, 829, 830, 839, 840, 845, 851, 854, 855], "fact": [32, 92, 806, 808, 813, 826, 829, 834, 837], "consum": [32, 760, 812, 813, 821, 827, 829], "thrown": [32, 550, 621, 805, 809, 815, 818, 820, 840], "doesn": [32, 550, 568, 621, 758, 779, 804, 805, 810, 812, 813, 814, 815, 816, 819, 820, 822, 824, 829, 832, 834, 840, 848, 853], "consider": [32, 804, 816, 821, 832, 844, 852, 853], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 445, 602, 610, 616, 622, 623, 634, 649, 751, 753, 763, 766, 804, 809, 812, 813, 817, 821, 825, 827, 832, 840, 845], "explain": [32, 52, 75, 368, 401, 412, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 829, 830, 832, 834, 835, 836, 837, 838, 839, 851, 858, 861], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 451, 452, 453, 459, 461, 462, 463, 464, 465, 472, 487, 573, 595, 619, 621, 689, 690, 691, 693, 695, 696, 698, 700, 799, 804, 805, 809, 810, 812, 814, 816, 825, 826, 829, 831, 832, 848, 849], "standalon": [33, 804, 809, 829, 842, 851, 856, 861, 862], "dynam": [33, 626, 693, 781, 788, 807, 813, 814, 815, 825, 826, 831, 834, 848, 855, 859], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 415, 435, 441, 479, 490, 582, 616, 623, 649, 669, 776, 781, 826, 831, 840, 854, 855, 856], "flow": [34, 812, 848, 855, 856], "statement": [34, 39, 813, 825, 829, 832, 840, 848, 849], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 511, 512, 616, 630, 728, 744, 763, 766, 788, 816, 834, 848], "todo": [35, 36, 37, 42, 45, 75, 512, 804, 814, 826], "aim": [38, 802, 806, 808, 819, 823, 826, 829, 833, 853, 855, 858], "interfac": [38, 71, 129, 616, 836, 839, 840, 842, 845, 851, 852, 853, 854, 855, 859, 862], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 619, 623, 624, 628, 631, 634, 646, 669, 713, 726, 727, 735, 746], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 511, 517, 602, 608, 619, 622, 624, 626, 634, 669, 695, 727, 728, 746, 763], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 616, 619, 628, 706, 726, 727], "underneath": [38, 813, 853], "sai": [38, 804, 805, 819, 823, 836, 846], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 456, 481, 482, 528, 529, 619, 621, 626, 812, 822, 824, 825, 837, 839], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 839], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 839], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 422, 478, 518, 534, 564, 565, 579, 616, 617, 619, 621, 624, 634, 665, 671, 674, 675, 681, 799], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 422, 478, 480, 481, 528, 529, 534, 550, 564, 565, 617, 619, 621, 624, 634, 665, 667, 670, 763, 779, 783, 813, 826], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 433, 511, 619, 634, 679, 727, 746], "devicearrai": [38, 809, 826, 834, 836], "concaten": [38, 52, 53, 59, 75, 80, 371, 458, 533, 537, 621, 623, 626, 649, 669, 687, 763, 827, 832, 834, 837], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 836, 842, 853], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 511, 579, 606, 613, 619, 621, 622, 623, 630, 647, 726, 727, 728], "mymodel": [38, 837], "x_in": [38, 837, 838, 839], "reduce_mean": [38, 799, 837, 838, 839], "91": [38, 52, 79, 84, 353, 365, 410, 623, 624, 630, 634, 647, 669, 727, 746], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 511, 619, 623, 624, 634, 647, 666, 669, 726, 727, 728, 746, 813, 816], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 511, 548, 619, 621, 624, 630, 634, 662, 669, 727, 728, 746, 808], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 528, 619, 621], "4678264260292053": 38, "59": [38, 51, 230, 380, 511], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 602, 619, 622, 623, 624, 625, 645, 661, 683, 685, 728, 819], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 619], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 606, 619, 622, 624, 634, 669, 727, 746], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 619, 624, 666], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 608, 619, 622, 624, 630, 634, 669, 727, 746], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 528, 529, 619, 621, 728], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 433, 511, 624, 628, 634, 669, 716, 746, 845], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 511, 617, 619, 624, 628, 630, 634, 661, 666, 679, 713, 728, 746, 829], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 617, 618, 624, 629, 634, 647, 669, 724, 727, 728, 746], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 606, 613, 622, 624, 628, 631, 634, 669, 706, 717, 726, 728, 735, 746], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 840, 845, 861], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 415, 623, 652, 763, 793, 804, 814, 819, 820, 825, 827, 829, 830, 848, 856, 858], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 443, 497, 510, 570, 571, 579, 580, 592, 593, 616, 617, 619, 621, 624, 630, 631, 634, 654, 661, 664, 669, 672, 674, 676, 678, 680, 726, 727, 728, 730, 731, 732, 734, 735, 740, 747, 750, 752, 763, 764, 765, 766, 778, 802, 814, 819, 824, 826, 827, 829, 830, 831, 832, 834, 838, 852, 855, 861], "anyth": [39, 52, 75, 380, 516, 517, 806, 818, 829, 830, 855, 856], "affect": [39, 45, 52, 370, 446, 813, 826], "intermedi": [39, 853, 854, 855, 856, 861], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 368, 369, 375, 380, 413, 437, 498, 509, 510, 526, 550, 551, 552, 553, 556, 582, 603, 604, 606, 608, 609, 610, 615, 621, 622, 624, 627, 629, 673, 702, 703, 704, 724, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 806, 810, 814, 817, 821, 824, 825, 829, 830, 834, 837, 838, 839, 840, 841, 848, 856], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 615, 627, 634, 702, 703, 785, 805, 816, 834], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 803, 814, 834, 845], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 809, 834], "tan": [39, 51, 74, 524, 619, 621, 817, 821, 822, 825, 826, 834], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 813, 814, 816], "opeat": 39, "_layer": [39, 834], "net": [39, 44, 45, 834, 839, 845, 846], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 413, 481, 510, 617, 619, 624, 626, 634, 672, 673, 701, 751, 779, 799, 804, 805, 806, 808, 810, 813, 817, 819, 830, 840, 841, 849, 860], "pypi": [40, 42, 45, 804, 805, 830, 840], "pkg": [40, 42, 45], "public": [40, 42, 45, 530, 621, 813, 824, 836, 858], "revis": [40, 42, 806], "tmp": [40, 42, 577, 599, 621], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 799, 801, 805, 808, 811, 813, 819, 820, 841], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 799, 810, 813], "quiet": [40, 42], "commit": [40, 42, 802, 804, 808, 816, 828, 829], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 825], "setup": [40, 42, 45, 805, 806, 811, 813, 819], "done": [40, 42, 45, 624, 660, 803, 804, 805, 806, 808, 811, 813, 815, 816, 819, 820, 825, 826, 829, 837, 848, 849, 855], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 805], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 805], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 420, 424, 436, 440, 537, 621, 624, 626, 678, 695, 760, 761, 779, 780, 781, 801, 806, 809, 810, 812, 817, 823, 825, 826, 827, 834, 836, 837, 838, 842, 848], "directori": [40, 41, 42, 45, 577, 599, 618, 621, 801, 804, 805, 806, 811, 813, 819, 826, 829, 841], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 781, 805, 809], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 458, 511, 618, 628, 657, 664, 697, 716, 736, 793, 804, 805, 806, 809, 810, 811, 812, 814, 815, 817, 820, 823, 825, 826, 841, 857], "cannot": [40, 41, 42, 45, 52, 285, 451, 452, 453, 619, 806, 808, 810, 814, 826, 834, 839, 861], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 805, 819, 837], "psst": 40, "cv2": [40, 42, 44, 837], "pickl": [40, 41, 69, 781, 812, 837], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 618, 815, 855, 858], "back": [40, 52, 59, 75, 82, 371, 463, 484, 566, 589, 621, 623, 626, 649, 693, 778, 783, 793, 805, 809, 814, 815, 818, 823, 824, 831, 833, 840, 841, 845, 853, 857], "tf_cpp_min_log_level": 40, "info": [40, 796, 799, 811, 817, 820], "mkdir": [40, 41, 42, 805, 813], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 570, 602, 603, 608, 613, 616, 617, 619, 621, 622, 763, 805, 829], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 421, 426, 432, 434, 439, 473, 475, 477, 494, 498, 510, 529, 533, 550, 601, 616, 621, 623, 624, 647, 649, 654, 658, 659, 661, 664, 669, 674, 675, 679, 680, 681, 682, 763, 779, 855], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 760, 779, 780, 781, 799, 849], "is_train": 40, "po": [40, 793], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 543, 569, 618, 621, 623, 649, 652, 779, 812, 814, 819, 836, 855], "decod": [40, 837], "cross": [40, 42, 57, 58, 80, 81, 93, 624, 625, 683, 684, 685, 799, 813, 814], "attend": [40, 623, 649], "encoder_queri": 40, "latent": [40, 627, 703, 704], "imagepreprocessor": 40, "deal": [40, 781, 802, 815, 822, 824, 826, 840], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 415, 537, 621], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 537, 621], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 799], "perceiverencod": 40, "At": [40, 804, 805, 806, 808, 819, 829, 830, 845, 855], "almost": [40, 803, 812, 827, 835, 837, 844], "publish": [40, 799, 840, 846, 849], "thankfulli": [40, 829], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 463, 616, 626, 693, 804, 805, 811, 813, 819, 829, 831, 832, 855], "09": [40, 46, 51, 77, 84, 113, 273, 283, 602, 613, 619, 622, 727], "173": [40, 57, 624, 661], "194": 40, "217": [40, 818], "125": [40, 52, 57, 80, 229, 339, 365, 370, 442, 619, 624, 679], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 778], "image_height": [40, 42, 799], "image_width": [40, 799], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 473, 508, 512, 518, 570, 571, 579, 580, 592, 593, 619, 621, 626, 631, 634, 686, 732, 747, 749, 763, 765, 766, 771, 814, 831, 852, 858, 862], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 840], "dummy_input": [40, 799], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 799, 849], "perceiverioclassifi": [40, 799], "max_pool": [40, 799], "huggingfac": [40, 848, 849], "Of": [40, 809, 825, 826, 837, 860, 861], "cours": [40, 805, 806, 808, 809, 816, 825, 826, 832, 837, 840, 860, 861], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 621, 837, 840], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 647], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 799], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 574, 596, 621, 831], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 814], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 628, 705], "2022": [40, 41], "pytz": 40, "2020": [40, 808, 855], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 799, 834, 844], "load_dataset": [40, 848, 849], "n_sampl": [40, 52, 75, 369, 371, 417, 425, 476], "10000": [40, 42, 48, 71, 133, 616], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 459, 468, 487, 533, 560, 613, 618, 619, 621, 623, 626, 636, 643, 644, 698, 760, 775, 779, 799, 800, 806, 813, 833, 834, 840, 862], "wiki_art": 40, "gib": 40, "unknown": [40, 763], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 616, 618, 631, 634, 734, 751, 753, 793, 799, 800, 805, 806, 814, 815, 816, 829, 832, 837, 838, 840, 846], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 788, 805, 809, 813, 814, 816, 821, 822, 825, 829, 838, 856], "reus": [40, 48, 71, 75, 82, 123, 451, 452, 459, 461, 463, 464, 465, 472, 487, 689, 690, 691, 693, 695, 696, 698, 700, 818, 829, 860], "curl": [40, 805], "server": [40, 799, 805, 806, 811, 819, 841, 855], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 427, 437, 465, 471, 488, 503, 509, 510, 616, 624, 630, 631, 665, 673, 674, 679, 725, 734, 778], "2fwikiart": 40, "receiv": [40, 44, 92, 524, 560, 621, 627, 702, 703, 704, 779, 805, 806, 814, 815, 829, 832], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 443, 444, 445, 446, 447, 448, 494, 510, 602, 603, 608, 622, 623, 625, 627, 649, 683, 702, 703, 778, 779], "dload": 40, "upload": [40, 829], "spent": [40, 846], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 415, 418, 421, 425, 426, 427, 435, 439, 441, 451, 452, 453, 473, 474, 475, 476, 477, 479, 481, 483, 486, 489, 490, 491, 508, 510, 511, 512, 513, 519, 537, 544, 562, 579, 580, 587, 600, 601, 614, 616, 617, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 634, 635, 636, 643, 644, 646, 649, 654, 658, 659, 660, 667, 672, 674, 678, 679, 680, 683, 686, 688, 689, 691, 692, 694, 695, 697, 699, 701, 702, 703, 704, 725, 729, 734, 736, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 771, 778, 779, 782, 793, 799, 805, 806, 812, 813, 814, 815, 816, 823, 824, 825, 829, 830, 831, 832, 834, 837, 843, 844, 848], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 817, 825, 827, 832, 834, 848, 853, 861], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 792, 804, 805, 855, 856], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 763, 792, 801, 807, 813, 818, 823, 827, 829, 832, 838, 845, 855, 859, 860, 861], "hugginfac": 40, "customdataset": 40, "__len__": [40, 812], "__getitem__": [40, 69, 812], "idx": [40, 41, 42, 523, 621, 799, 815, 836], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 448, 623, 630, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 725, 799, 837], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 413, 443, 489, 490, 491, 494, 537, 540, 541, 601, 618, 621, 623, 624, 627, 629, 647, 648, 649, 663, 681, 702, 703, 704, 724, 763, 779, 782, 799, 812, 822, 827, 837, 853], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 368, 369, 371, 413, 426, 435, 441, 457, 473, 522, 560, 615, 618, 621, 626, 628, 688, 692, 699, 701, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 720, 721, 723, 792, 793, 808, 810, 812, 834, 837, 846, 848], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 780], "sgd": [40, 783, 855], "lr": [40, 54, 77, 524, 603, 606, 608, 609, 610, 621, 622, 783, 837, 838], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 603, 617, 619, 622, 629, 724, 763, 837, 838], "train_step": 40, "running_loss": [40, 42, 799], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 804, 829], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 619, 624, 635, 654, 680, 754, 755, 779, 830, 840], "adjust": [40, 65, 88, 369, 437, 634, 751, 753, 788], "999": [40, 54, 74, 77, 286, 602, 603, 608, 610, 619, 622, 783, 838], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 780, 781], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 630, 726, 814], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 420, 442, 443, 444, 445, 446, 447, 448, 478, 494, 516, 517, 534, 564, 565, 618, 619, 621, 623, 624, 625, 634, 646, 652, 665, 674, 678, 681, 683, 745, 746, 778, 780, 792, 799, 812, 814, 822, 824, 825, 826, 834, 848, 849, 850], "augment": 40, "mayb": [40, 41, 47, 799, 805, 813, 834, 836], "meta": [40, 702, 703, 704, 809, 830, 855], "finetun": 40, "deploi": [40, 799, 813, 842, 849, 853, 854, 855, 857, 861], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 489, 490, 491, 634, 749, 804, 805, 806, 812, 814, 815, 821, 825, 834, 844, 852, 853, 862], "percieverio": 41, "ai": [41, 813, 853, 857], "contribut": [41, 52, 75, 380, 513, 803, 805, 806, 811, 819, 820, 826, 827, 834, 841, 848, 859], "highli": [41, 799, 804, 855], "invit": [41, 804, 826, 832], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 617, 763, 764, 799, 810, 812, 816, 822, 824, 826, 827, 829, 832, 834, 845, 853, 854, 861], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 813, 854, 861], "tee": [41, 805], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 441, 481, 496, 497, 498, 499, 500, 511, 512, 617, 618, 619, 624, 628, 630, 632, 634, 659, 660, 665, 672, 674, 675, 681, 708, 712, 714, 717, 722, 726, 727, 728, 736, 737, 738, 739, 744, 745, 747, 749, 750, 752, 778, 800, 804, 805, 807, 808, 810, 811, 812, 824, 826, 829, 834, 840, 842, 846, 851], "uuid": 41, "anywai": [41, 809, 823, 826], "bin": [41, 52, 75, 380, 508, 513, 805, 806, 808, 812], "bash": [41, 805, 806, 808], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 443, 510, 616, 813, 856], "sudo": [41, 805], "apt": [41, 805], "yf": 41, "step3": 41, "delet": [41, 806, 813], "xvzf": 41, "rm": [41, 43, 801, 806], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 421, 623, 624, 649, 653, 658, 659, 660, 664, 678, 806, 807], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 413, 419, 433, 453, 459, 461, 464, 468, 482, 484, 487, 494, 496, 502, 525, 536, 613, 616, 617, 619, 623, 624, 626, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 656, 657, 661, 665, 669, 678, 679, 695, 708, 712, 713, 714, 717, 722, 723, 764, 793, 799, 800, 805, 807, 810, 811, 812, 819, 824, 829, 832, 837, 845, 846, 851], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 433, 514, 624, 663, 805, 826, 855], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 490, 537, 621, 623, 649, 805, 806, 809, 812, 813, 816, 827, 828, 829, 834, 836, 837, 856, 860], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 853, 860], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 805], "helper": [41, 758, 760, 761, 767, 769, 770, 799, 802, 811, 814, 818, 819, 828, 837, 842], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 545, 621, 805, 806, 808, 813], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 617, 624, 661], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 436, 472, 473, 479, 492, 515, 516, 517, 518, 519, 520, 533, 601, 618, 621, 624, 626, 631, 634, 635, 654, 665, 673, 676, 677, 681, 688, 690, 691, 694, 696, 698, 701, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 779, 814, 816, 829, 830, 834, 836], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 430, 436, 437, 439, 464, 533, 615, 619, 621, 624, 633, 674, 679, 742, 763, 800, 804, 805, 806, 807, 808, 816, 819, 832, 837, 848], "bottom": [41, 533, 621, 804, 805, 813, 819, 861], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 435, 445, 458, 459, 460, 462, 464, 465, 473, 478, 481, 483, 492, 493, 494, 495, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 615, 616, 618, 619, 621, 624, 625, 626, 627, 630, 631, 633, 634, 635, 654, 669, 678, 680, 681, 683, 684, 685, 687, 690, 691, 692, 694, 695, 697, 699, 700, 702, 703, 704, 730, 731, 732, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 779, 799, 804, 807, 816, 825, 828, 830, 832, 834, 855], "figur": [41, 831], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 457, 458, 626, 687, 697, 799], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 798], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 798, 804, 805, 806], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 616, 623, 624, 630, 648, 652, 682, 725, 779, 832, 834, 836], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 836], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 481, 510, 619, 624, 672, 801, 805, 806, 811, 813, 819, 837, 848, 855], "action": [41, 803, 813, 816, 820, 829], "fail": [41, 758, 802, 805, 806, 808, 813, 814, 816, 820, 823, 825, 826, 827], "placehold": [41, 628, 712, 717, 722, 779, 806, 809, 821, 842], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 630, 815, 818, 829, 834, 838], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 840], "declar": [41, 806, 828], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 460, 486, 624, 632, 674, 736, 811, 814, 825, 840, 854, 855, 861], "parti": [42, 811, 814, 840, 845, 854, 855, 861], "mount": [42, 801, 806], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 451, 452, 453, 456, 473, 482, 534, 621, 626, 630, 693, 726, 809, 812, 814, 816, 822, 827, 829, 834, 836, 837], "kaggl": 42, "medium": 42, "articl": [42, 799, 820], "insert": [42, 52, 62, 75, 85, 371, 448, 458, 626, 628, 631, 633, 689, 709, 710, 731, 742, 813, 820], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 834], "readabl": [42, 809, 812, 818, 820, 821, 829, 830, 836, 837], "chmod": [42, 805, 813], "recent": [42, 796, 805, 806, 829, 844, 845], "modifi": [42, 52, 69, 75, 92, 371, 380, 470, 473, 478, 517, 763, 793, 804, 805, 806, 808, 810, 811, 814, 815, 817, 819, 820, 822, 825, 827, 829, 830, 834], "forc": [42, 811, 813, 815], "archiv": [42, 805], "inflat": [42, 814], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 415, 845, 855], "later": [42, 69, 527, 621, 804, 820, 825, 829, 830, 855], "my": [42, 813], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 422, 435, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 463, 479, 481, 482, 483, 484, 489, 490, 491, 492, 493, 495, 497, 499, 510, 511, 512, 513, 520, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 567, 568, 577, 579, 580, 582, 584, 586, 587, 600, 604, 611, 615, 616, 617, 618, 621, 622, 623, 624, 625, 626, 627, 628, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 675, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 711, 712, 717, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 740, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 761, 763, 764, 769, 771, 779, 781, 782, 792, 793, 814, 815, 818, 822, 825, 826, 830, 834, 839, 848, 849, 850], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 799, 804, 834, 844], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 616, 617, 726, 763, 764, 814, 829], "new_img": [42, 44], "builder": [42, 801], "batchwis": 42, "subset": [42, 765, 809, 813, 817, 821, 824, 826, 829, 834, 855], "goe": [42, 371, 456, 807, 820, 825, 832], "seed_valu": [42, 69, 630, 729], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 498, 630], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 760], "dir": [42, 837], "img_path": 42, "imread": [42, 44, 837], "imread_grayscal": 42, "generate_batch": [42, 799], "dataset_s": [42, 799], "ivyerror": [42, 794, 799, 818], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 510, 511, 512, 533, 621, 626, 634, 686, 694, 744, 745, 750, 752, 799, 806, 818, 834], "yield": [42, 62, 314, 315, 362, 371, 473, 631, 735, 799, 813], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 421, 430, 460, 469, 473, 488, 523, 583, 585, 616, 621, 623, 624, 628, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 706, 717, 763, 778, 800, 804, 805, 822, 829, 832, 838, 839, 845, 855, 856, 861], "intialis": 42, "num_epoch": [42, 799], "inherit": [42, 809, 812, 818, 836, 840, 842], "creation": [42, 52, 69, 75, 98, 811, 814, 815, 821, 823, 826, 827, 829, 830, 834, 848, 855, 857, 861], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 523, 611, 617, 621, 622, 627, 704, 799, 803, 804, 805, 806, 808, 812, 813, 818, 822, 823, 825, 827, 829, 858], "insid": [42, 57, 80, 98, 371, 483, 624, 667, 761, 805, 806, 809, 812, 814, 815, 819, 822, 823, 829, 830, 848, 861], "ivynet": [42, 799], "h_w": [42, 799], "input_channel": [42, 779, 799, 834, 838], "output_channel": [42, 779, 799, 838], "gelu": [42, 43, 46, 68, 613, 775, 799], "image_widht": 42, "start_dim": [42, 52, 75, 371, 463, 799], "end_dim": [42, 52, 75, 371, 463, 799], "gpu_is_avail": [42, 618, 799], "120": [42, 65, 88, 98, 624, 669, 744, 799], "model_nam": [42, 799], "__name__": [42, 43, 45, 588, 621, 799, 818], "heavi": [42, 765, 805, 826, 827, 832, 856], "lift": [42, 827, 856], "num_correct": [42, 799], "y_pred": [42, 799], "cross_entropi": [42, 58, 81, 625, 685, 799, 812, 822, 825], "epoch_loss": [42, 799], "field": [42, 57, 63, 80, 86, 369, 371, 421, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738, 799, 813, 853, 861], "training_accuraci": [42, 799], "train_loss": [42, 799], "train_correct": [42, 799], "train_loop": [42, 799], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 419, 437, 447, 472, 481, 527, 537, 601, 614, 616, 617, 619, 621, 624, 625, 626, 630, 631, 635, 653, 656, 678, 683, 689, 694, 729, 734, 754, 755, 760, 763, 771, 776, 780, 781, 793, 799, 804, 806, 808, 812, 826, 829, 830, 837, 848, 857], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 457, 458, 463, 475, 476, 477, 492, 493, 495, 511, 512, 517, 537, 584, 626, 628, 642, 652, 657, 674, 688, 692, 697, 699, 700, 705, 706, 715, 716, 717, 718, 744, 745, 792, 799, 804, 812, 813, 814, 816, 817, 821, 822, 825, 826, 829, 837, 838], "xbatch": [42, 799], "ybatch": [42, 799], "to_devic": [42, 50, 73, 191, 618, 781, 799], "entropi": [42, 58, 81, 625, 683, 684, 685, 799], "hot": [42, 48, 71, 136, 616, 799], "ybatch_encod": [42, 799], "one_hot": [42, 48, 71, 616, 799, 839], "loss_prob": [42, 799], "ret_grad_idx": [42, 604, 622, 760, 824], "xs_grad_idx": [42, 604, 622, 760, 824], "batch_loss": [42, 799], "set_descript": [42, 799], "set_postfix": [42, 799], "accuracy_percentag": [42, 799], "naverag": [42, 799], "6f": [42, 799], "_train_summari": [42, 799], "writer": [42, 799], "writerow": [42, 799], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 623, 642, 644], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 528, 621, 628, 705], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 619], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 837], "close": [42, 57, 240, 258, 278, 306, 362, 619, 624, 626, 674, 689, 802, 804, 805, 806, 814, 817, 819, 826, 832, 855], "save_weight": [42, 781], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 781, 837], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 623, 649, 779, 799, 803, 805, 813, 826], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 623, 646, 763, 764, 765, 766, 771, 779], "henc": [43, 63, 218, 332, 365, 619, 626, 632, 689, 736, 737, 738, 739, 788, 805, 812, 813, 814, 825, 829], "reproduc": [43, 56, 79, 623, 646, 763, 764, 765, 766, 771, 802, 808, 819], "image_processor": [43, 848, 849], "facebook": 43, "distil": [43, 856], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 848], "architectur": [43, 799, 805, 839, 840, 853, 854, 855, 858, 859, 860], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 619, 792, 804], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 443, 496, 510, 513, 517, 623, 625, 630, 646, 649, 652, 683, 725, 765, 778, 779, 799, 829, 841, 846], "ptarmigan": 43, "rf": [43, 806], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 619, 804, 805, 806, 808, 813, 820, 840, 848, 855], "moduleconvert": [43, 776, 781], "mc": 43, "from_keras_modul": [43, 776], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 443, 619], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 511, 512, 617, 619, 624, 634, 681, 744, 745, 750, 752, 764, 822, 827, 834], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 624, 793, 814], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 781], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 545, 616, 621, 848, 849, 850], "combo": [44, 837], "permit": [44, 809, 821, 826, 829, 832], "usabl": [44, 821, 830], "neither": [44, 218, 235, 242, 268, 619, 624, 676, 813, 826, 832], "nor": [44, 218, 235, 242, 268, 619, 813, 826, 859], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 523, 584, 614, 617, 618, 619, 621, 763, 765, 766, 779, 814, 853, 854, 856, 860, 861], "externally_link": 44, "logo": 44, "patch": [44, 286, 619, 814, 855], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 473, 513, 626, 686, 688, 701, 766, 808, 829, 849, 855, 857, 861], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 481, 486, 508, 513, 616, 618, 624, 626, 632, 635, 654, 680, 687, 690, 736, 737, 754, 755, 811, 812, 816, 837], "odsc": 44, "talk": [44, 860], "228": 45, "352": [45, 79, 623, 647, 818], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 624, 673], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 781], "to_ivy_modul": [45, 776, 839], "image_dim": 45, "v0": [45, 838], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 426, 435, 441, 443, 445, 446, 448, 496, 497, 498, 499, 500, 625, 630, 683, 684, 685, 725, 726, 727, 728, 730, 778, 779, 804, 805, 813, 815, 840, 855, 858], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 538, 539, 617, 618, 621, 761, 810, 811, 812, 817, 818, 822, 823, 825, 826, 832, 835, 836, 837, 838], "definit": [45, 51, 57, 74, 80, 287, 619, 624, 653, 799, 802, 806, 809, 814, 819, 822, 836, 849], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 536, 621, 628, 723, 778, 783, 792, 793, 836], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 445, 446, 613, 619, 624, 667, 670, 775, 817, 826], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 670, 671, 672, 674, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 809, 816, 817, 832], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 624, 626, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 804, 807, 811, 820, 821, 822, 823, 826, 828, 830], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 426, 430, 435, 438, 441, 473, 494, 613, 619, 624, 633, 665, 681, 742, 775, 832], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 613, 619, 624, 674, 675, 775, 814], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 414, 420, 421, 422, 451, 452, 453, 463, 464, 465, 467, 470, 480, 481, 483, 486, 508, 509, 511, 512, 513, 514, 515, 516, 518, 519, 521, 525, 528, 529, 540, 541, 557, 559, 579, 580, 582, 586, 587, 613, 616, 619, 621, 623, 624, 626, 628, 630, 631, 632, 633, 634, 635, 646, 654, 656, 658, 659, 664, 669, 671, 672, 674, 678, 686, 689, 690, 691, 692, 693, 694, 695, 696, 705, 708, 714, 725, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 779, 793, 817, 827, 829, 832, 834, 859], "138": [46, 105, 613], "165": [46, 105, 613, 623, 647], "hardswish": [46, 68, 613, 775], "leaky_relu": [46, 68, 75, 290, 613, 764], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 422, 494, 497, 498, 499, 613, 619, 775, 821, 826, 827], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 418, 421, 422, 424, 435, 439, 441, 442, 446, 447, 462, 480, 489, 490, 491, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 518, 519, 520, 527, 528, 529, 537, 546, 570, 571, 574, 579, 580, 600, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 634, 646, 649, 652, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 683, 684, 685, 702, 703, 704, 711, 724, 727, 728, 734, 736, 737, 738, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 760, 763, 764, 766, 775, 778, 779, 782, 783, 802, 808, 812, 814, 817, 818, 819, 821, 822, 824, 825, 827, 829, 830, 832, 834, 836, 838], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 613, 775], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 419, 426, 430, 446, 481, 500, 613, 616, 619, 624, 626, 630, 635, 654, 656, 674, 678, 680, 681, 687, 689, 690, 694, 727, 754, 755, 763, 765, 775, 812, 825], "leaki": [46, 68, 107, 613, 775], "log_softmax": [46, 68, 613, 775], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 613, 775], "30340147": [46, 109, 613], "86509842": [46, 68, 109, 613], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 619], "422": [46, 112, 613], "155": [46, 79, 112, 613, 623, 647], "softplu": [46, 68, 613, 775, 832], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 422, 447, 494, 498, 499, 613, 629, 724, 775, 832], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 442, 447, 480, 613, 619, 775, 832], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 556, 557, 559, 560, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 778, 783, 784, 809, 812, 814, 815, 816, 818, 821, 822, 825, 830, 832, 834, 839, 848, 849, 850], "3461": [46, 68, 113, 613], "6491": [46, 68, 113, 613], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 628, 716, 717], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 628, 706, 717, 760], "nest": [47, 69, 70, 98, 101, 238, 555, 584, 601, 604, 619, 621, 622, 627, 702, 703, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 783, 809, 811, 812, 822, 824, 830, 837, 838, 840, 842, 855], "unchang": [47, 51, 368, 371, 412, 463, 623, 646], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 602, 603, 606, 607, 608, 609, 610, 616, 622, 627, 628, 704, 706, 717, 781, 783, 784, 814, 815, 836, 838], "word": [47, 121, 371, 466, 616, 630, 728, 776, 779, 812, 825, 826, 842], "args_to_n": [47, 825], "cont_inplac": 47, "decid": [47, 69, 628, 716, 717, 799, 804, 805, 814, 832], "args_to_new_backend": 47, "shallow": [47, 628, 712, 713, 717, 722, 723], "nativevari": 47, "mutabl": [47, 628, 706, 712, 713, 717, 722, 723, 810], "to_ivi": [47, 70, 628, 718, 825], "leaf": [47, 69, 76, 88, 98, 536, 628, 715, 716, 718, 745, 812, 822, 837], "travers": [47, 70, 628, 709, 717, 812, 814, 818, 834], "lowest": [47, 52, 61, 70, 75, 84, 380, 513, 628, 630, 717, 726, 793, 822, 840, 842, 852, 856, 860], "search": [47, 52, 70, 75, 731, 732, 771, 803, 805, 812, 816, 819, 829, 830, 844], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 426, 435, 441, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 481, 487, 522, 525, 536, 543, 546, 547, 551, 552, 553, 554, 555, 556, 557, 566, 569, 572, 573, 575, 576, 600, 615, 616, 617, 618, 619, 621, 623, 626, 627, 628, 631, 634, 649, 689, 690, 691, 693, 695, 696, 698, 700, 702, 703, 715, 733, 734, 735, 747, 749, 763, 764, 765, 766, 771, 782, 812, 814, 822, 826, 829, 832], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 437, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 550, 613, 617, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 799, 804, 805, 806, 809, 810, 812, 814, 817, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 840, 848], "never": [48, 52, 59, 71, 75, 82, 123, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 806, 814, 825, 826, 829], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 487, 626, 689, 690, 691, 693, 695, 696, 698, 700, 739, 765, 794, 818], "buffer": [48, 71, 75, 82, 123, 129, 451, 452, 459, 461, 463, 464, 465, 472, 487, 616, 689, 690, 691, 693, 695, 696, 698, 700, 780, 781, 825, 840], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 616, 617, 623, 624, 630, 631, 633, 634, 646, 681, 726, 727, 728, 731, 732, 742, 744, 745, 750, 752, 778, 814, 815, 821, 830, 834], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 415, 616, 617, 758, 830, 848], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 496, 497, 499, 500, 616, 618, 630, 725, 726, 727, 728, 778, 783, 784, 814, 815, 818, 821, 830], "39999998": [48, 122, 123, 616, 632, 737], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 417, 616, 623, 646, 652], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 616, 748], "10000038": [48, 122, 123, 616], "90786433e": [48, 122, 123, 616], "310": [48, 122, 123, 616], "copy_arrai": [48, 71, 616], "to_ivy_arrai": [48, 71, 124, 616], "empty_lik": [48, 52, 71, 75, 259, 369, 420, 616, 619], "uniniti": [48, 125, 126, 616, 820], "from_dlpack": [48, 71, 616], "full_lik": [48, 71, 616, 830], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 481, 500, 616, 619, 631, 734, 814, 827, 830], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 415, 422, 451, 452, 453, 462, 467, 587, 600, 616, 619, 621, 624, 681, 814, 824, 826, 840, 855], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 426, 430, 435, 441, 462, 481, 482, 497, 499, 500, 616, 619, 630, 631, 726, 734, 778, 804, 827], "000123": [48, 131, 616], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 435, 441, 566, 603, 606, 608, 609, 610, 611, 616, 618, 621, 622, 627, 628, 702, 703, 704, 716, 783, 821, 824, 832, 834, 840, 855], "num": [48, 71, 132, 133, 616, 763, 806, 821, 834], "endpoint": [48, 71, 132, 133, 616, 778, 821], "logspac": [48, 71, 616, 834], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 443, 445, 446, 496, 613, 616, 619, 672, 763, 765, 766, 775, 806, 812, 813, 816, 822, 825, 826, 827, 829, 831, 832, 834, 837], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 414, 417, 425, 426, 427, 429, 433, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 458, 459, 460, 466, 468, 469, 471, 472, 474, 477, 479, 481, 482, 483, 487, 488, 489, 491, 492, 493, 495, 497, 498, 510, 511, 512, 513, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 604, 605, 606, 611, 616, 619, 621, 622, 623, 624, 626, 628, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 705, 712, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 784, 806, 813, 814, 815, 816, 818, 829, 830, 832, 834, 839, 858], "on_valu": [48, 71, 133, 136, 616], "off_valu": [48, 71, 133, 136, 616], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 414, 616, 619, 623, 626, 636, 637, 638, 639, 641, 643, 645, 695], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 809, 817, 819, 821, 822, 825, 826, 830], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 817, 832, 838], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 807, 816, 817, 825, 829, 842], "464": [48, 51, 84, 133, 222, 223, 619], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 616], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 426, 435, 441, 616, 625, 685], "xy": [48, 71, 134, 616], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 419, 451, 452, 453, 457, 462, 463, 508, 520, 616, 619, 624, 626, 631, 634, 635, 654, 655, 661, 664, 667, 669, 670, 680, 681, 695, 731, 732, 734, 747, 748, 749, 750, 751, 752, 753, 754, 755, 822, 824, 829, 832, 834, 852, 855, 862], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 414, 428, 440, 446, 473, 484, 489, 490, 491, 496, 502, 509, 545, 615, 616, 617, 619, 621, 623, 624, 646, 647, 661, 669, 672, 673, 765, 778, 782, 793, 805, 809, 814, 832, 836, 852, 853, 856], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 501, 616, 619, 631, 734], "conserv": [48, 134, 616], "cartesian": [48, 134, 616], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 418, 421, 422, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 471, 510, 522, 528, 616, 621, 623, 624, 647, 653, 655, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 682, 763, 765, 778, 779, 793, 804, 814, 826, 853, 855], "ij": [48, 65, 134, 616, 634, 746, 793], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 424, 439, 450, 489, 491, 545, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 616, 619, 621, 622, 623, 624, 627, 636, 643, 644, 649, 654, 671, 674, 702, 703, 704, 760, 763, 778, 793, 803, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 821, 822, 824, 825, 826, 829, 830, 831, 851, 861], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 426, 427, 435, 438, 441, 473, 481, 520, 616, 624, 626, 631, 635, 654, 656, 665, 667, 671, 673, 678, 680, 681, 688, 689, 697, 700, 701, 734, 754, 755], "ni": [48, 134, 616], "xi": [48, 134, 616], "scatter": [48, 53, 71, 76, 136, 564, 565, 616, 621, 811, 825, 832, 862], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 416, 421, 423, 432, 438, 520, 525, 615, 616, 619, 621, 624, 634, 658, 678, 746, 793, 806, 807, 811, 848, 851], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 616, 619, 624, 667, 810, 815, 825, 840, 849, 850], "ones_lik": [48, 71, 616, 810, 839], "tril": [48, 71, 616], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 421, 440, 472, 481, 486, 527, 582, 616, 619, 621, 624, 626, 632, 634, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 681, 690, 694, 736, 737, 738, 745, 746, 765, 817, 829], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 421, 616, 624, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 616, 624, 657, 665, 667, 668, 670, 671, 675, 678], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 421, 426, 427, 429, 433, 434, 439, 462, 616, 623, 624, 647, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 679, 765, 802, 819, 855], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 422, 430, 436, 462, 616, 624, 656, 678], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 436, 616, 624, 653, 659, 660, 667, 671], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 616, 617, 804, 806, 840], "triu": [48, 71, 616], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 436, 513, 616, 624, 630, 653, 659, 660, 671, 728, 814, 825, 829], "zeros_lik": [48, 52, 71, 147, 264, 371, 481, 602, 603, 606, 608, 609, 610, 616, 617, 619, 622, 624, 626, 671, 686, 826, 832], "data_typ": [49, 52, 72, 75, 177, 617, 811, 814, 829, 830], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 617, 624, 674, 812, 825, 836, 862], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 510, 573, 595, 617, 619, 621, 624, 626, 634, 653, 654, 661, 662, 664, 665, 666, 667, 669, 670, 672, 673, 680, 681, 687, 697, 740, 748, 751, 763, 764, 808, 817, 818, 822, 831], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 481, 508, 509, 516, 517, 518, 519, 546, 600, 614, 617, 619, 621, 632, 634, 635, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 754, 755, 763, 766, 808, 814, 817, 824, 830, 831], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 546, 614, 617, 619, 621, 624, 634, 635, 672, 681, 747, 749, 754, 755, 808, 817], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 471, 516, 519, 520, 617, 618, 624, 631, 676, 733, 778, 779, 806, 810, 813, 814, 815, 826, 834, 844, 848, 855], "broadcast_arrai": [49, 72, 617], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 447, 517, 536, 538, 539, 540, 541, 550, 584, 587, 617, 618, 619, 621, 623, 624, 625, 626, 629, 634, 637, 639, 642, 644, 645, 647, 652, 653, 676, 683, 685, 686, 724, 746, 748, 751, 764, 766, 804, 807, 814, 815, 816, 825, 832, 834, 842, 855, 859, 861], "broadcast_to": [49, 72, 617, 814], "can_cast": [49, 72, 617, 814, 822, 826], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 473, 540, 543, 564, 565, 617, 619, 621, 624, 626, 634, 680, 688, 701, 751, 753, 758, 765, 785, 792, 804, 805, 808, 814, 820, 822, 826, 829], "finfo": [49, 72, 617, 829], "resolut": [49, 72, 160, 617, 806], "4028235e": [49, 160, 617], "iinfo": [49, 72, 617], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 415, 459, 468, 473, 481, 487, 496, 497, 498, 499, 500, 502, 503, 508, 510, 511, 512, 517, 520, 543, 559, 569, 601, 616, 617, 619, 621, 623, 624, 626, 630, 633, 634, 635, 636, 637, 638, 639, 641, 643, 645, 654, 656, 666, 680, 681, 695, 725, 726, 727, 728, 729, 730, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 771, 779, 793, 806, 812, 814, 824, 827, 829, 834, 836], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 511, 512, 617, 634, 726, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "32768": [49, 72, 163, 580, 621], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 617], "is_float_dtyp": [49, 72, 617, 830], "is_int_dtyp": [49, 72, 617, 827, 830], "is_uint_dtyp": [49, 72, 617, 827, 830], "result_typ": [49, 72, 617, 814], "arrays_and_dtyp": [49, 72, 175, 617], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 472, 616, 618, 781, 799, 806, 815, 830], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 494, 509, 514, 533, 534, 535, 601, 615, 618, 619, 621, 623, 627, 629, 649, 704, 724, 779, 793, 804, 805, 806, 810, 814, 816, 817, 820, 822, 824, 825, 826, 829, 830, 832, 836, 837, 839, 848, 855, 856, 857, 861], "__dlpack__": [50, 73, 128, 209, 616, 618], "caveat": [50, 73, 209, 370, 445, 618], "portabl": [50, 73, 209, 618, 799, 853], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 480, 619, 624, 628, 665, 675, 681, 713, 716, 760, 792, 793, 802, 809, 814, 819, 823, 826, 829], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 422, 437, 442, 444, 619, 624, 665, 666, 667, 672, 758, 760, 763, 765, 766, 800, 805], "aco": [51, 74, 619], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 502, 619, 624, 662, 666, 670, 785, 814], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 619, 779], "acosh": [51, 74, 161, 162, 617, 619, 802, 819], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 414, 619, 825, 832, 845, 851], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 619], "sector": [51, 74, 217, 221, 224, 619, 845], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 420, 421, 422, 424, 428, 447, 479, 486, 497, 499, 503, 510, 513, 525, 574, 596, 602, 603, 608, 615, 616, 617, 619, 621, 622, 624, 626, 627, 628, 632, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 697, 698, 703, 706, 736, 737, 738, 783, 805, 808, 811, 814, 816, 820, 825, 826, 829, 831, 836, 846, 860], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 432, 433, 511, 512, 619, 623, 634, 646, 744, 750, 806, 809, 810, 812, 816], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 619], "deg": [51, 74, 219, 619], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 817], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 479, 619, 634, 751, 753, 854], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 579, 619, 621], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 580, 619, 621], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 619], "35619449": [51, 219, 619], "78539816": [51, 219, 619], "135": [51, 219, 528, 619, 621], "asin": [51, 74, 619], "sine": [51, 74, 220, 221, 280, 281, 619], "927": [51, 74, 220], "asinh": [51, 74, 220, 619], "atan": [51, 74, 619], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 619, 817], "785": [51, 74, 222, 223, 619], "atan2": [51, 74, 619], "quotient": [51, 74, 223, 235, 242, 619], "245": [51, 79, 223, 623, 646, 647], "588": [51, 223, 619], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 418, 513, 546, 600, 614, 619, 621, 623, 624, 650, 665, 681, 763, 766, 802, 814, 819, 824], "719": [51, 223, 619], "197": [51, 223, 619], "atanh": [51, 74, 619], "549": [51, 74, 79, 224, 619, 623, 647], "bitwise_and": [51, 74, 619], "bitwise_invert": [51, 74, 619], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 619], "bitwise_or": [51, 74, 619], "bitwise_right_shift": [51, 74, 97, 619], "bitwise_xor": [51, 74, 97, 619], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 616, 619, 779, 825], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 619, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "416": [51, 232, 619], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 619], "deg2rad": [51, 74, 619], "convers": [51, 52, 75, 234, 274, 566, 576, 621, 780, 781, 804, 833, 835, 839, 840, 842, 846, 854, 861], "180": [51, 74, 234, 274, 619], "270": [51, 74, 234, 274, 619], "360": [51, 74, 234, 274, 619, 813], "dividend": [51, 74, 235, 242, 277, 289, 619], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 459, 468, 487, 602, 603, 608, 619, 622, 634, 751, 753, 779, 783], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 619], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 431, 619], "gauss": [51, 74, 237, 619], "328": [51, 237, 285, 619], "677": [51, 237], "842": [51, 237, 285, 619], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 619], "exp2": [51, 74, 619], "expm1": [51, 74, 619, 814], "244": [51, 240, 799], "918": [51, 240], "147": [51, 240, 619], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 619, 779, 825], "floor_divid": [51, 74, 619, 771, 814], "fmin": [51, 74, 619, 814], "gcd": [51, 74, 619, 814], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 616, 619, 623, 624, 626, 630, 652, 654, 666, 696, 728, 765, 779, 806, 827], "greater_equ": [51, 74, 97, 98, 260, 619], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 422, 613, 616, 619, 631, 734, 816], "4j": [51, 74, 248, 368, 411, 580, 619, 621], "6j": [51, 52, 74, 248, 252, 332, 619], "isfinit": [51, 74, 619, 826], "out_i": [51, 74, 249, 250, 251, 252, 275, 619], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 619], "isinf": [51, 74, 619], "detect_posit": [51, 74, 250, 619], "detect_neg": [51, 74, 250, 619], "isnan": [51, 74, 619], "isreal": [51, 74, 619], "5j": [51, 74, 75, 252, 275, 332, 365, 619], "lcm": [51, 74, 619, 814], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 435, 441, 510, 513, 619, 624, 630, 634, 665, 666, 667, 670, 681, 728, 751, 753, 779, 805, 806, 812, 814, 816, 818, 821, 826, 829, 832, 833, 834, 845, 855, 857], "less_equ": [51, 74, 97, 98, 619, 818], "log10": [51, 52, 74, 313, 362, 619], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 619, 624, 672], "602": [51, 257, 619], "699": [51, 257, 619], "log1p": [51, 74, 619, 824], "693": [51, 74, 112, 221, 258, 613, 619, 625, 685], "0953": [51, 74, 256, 258, 619], "log2": [51, 74, 261, 619], "logaddexp": [51, 74, 619], "logaddexp2": [51, 74, 619, 802, 819], "169925": [51, 74, 261, 619], "logical_and": [51, 74, 619, 826, 832, 862], "logical_not": [51, 74, 619, 814], "logical_or": [51, 74, 619, 862], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 817, 820], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 481, 617, 619, 626, 634, 701, 751, 817], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 481, 617, 619, 624, 626, 634, 672, 673, 701, 751, 817], "logical_xor": [51, 74, 619], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 435, 438, 441, 473, 511, 513, 518, 528, 529, 537, 545, 608, 618, 619, 621, 622, 624, 626, 631, 634, 665, 686, 731, 732, 747, 749, 763, 765, 766, 771, 793, 806, 814, 816, 825, 837, 862], "use_wher": [51, 74, 266, 267, 619], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 489, 491, 619], "exce": [51, 52, 75, 267, 371, 483, 619], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 417, 420, 424, 427, 428, 429, 432, 433, 434, 511, 512, 519, 619, 623, 624, 634, 649, 652, 654, 661, 664, 669, 676, 680, 744, 745, 746, 750, 751, 793, 804, 834, 855, 857], "nan_to_num": [51, 74, 619], "posinf": [51, 74, 269, 619], "neginf": [51, 74, 269, 619], "5e": [51, 54, 74, 75, 269, 350, 608, 619, 622], "not_equ": [51, 74, 97, 98, 619], "pow": [51, 74, 97, 98, 619, 808], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 494, 580, 619, 621, 624, 666], "rad2deg": [51, 74, 619], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 619], "reciproc": [51, 74, 619], "333": [51, 74, 235, 276, 529, 619, 621], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 619, 626, 695, 808, 825], "modulu": [51, 74, 277, 619, 825], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 437, 480, 481, 511, 512, 616, 619, 624, 632, 634, 672, 736, 737, 738, 739, 744, 745, 750, 752, 799, 805, 814, 834, 839, 845], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "decim": [51, 74, 278, 619, 831], "0001": [51, 52, 75, 278, 279, 369, 435, 441, 763, 766, 783], "678": [51, 278, 279], "np_variant": [51, 74, 279, 619], "841": [51, 68, 74, 105, 280, 613, 619], "909": [51, 74, 76, 280, 619], "141": [51, 74, 147, 280, 617, 619], "sinh": [51, 74, 280, 619], "232": [51, 74, 281, 619], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 619, 778, 779, 799], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 421, 431, 442, 494, 510, 604, 605, 607, 612, 619, 622, 624, 628, 653, 655, 656, 658, 659, 660, 662, 666, 672, 673, 674, 679, 711, 799], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 619, 775, 834], "762": [51, 74, 286, 619], "964": [51, 74, 286, 619], "trapz": [51, 74, 619], "dx": [51, 74, 287, 619], "apart": [51, 74, 287, 619], "trapezoid": [51, 74, 287, 619], "trunc": [51, 74, 619], "025": [51, 288, 370, 447, 619, 627, 704], "trunc_divid": [51, 74, 619], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 775], "elu": [52, 75, 293, 360, 775], "scaler": [52, 75, 291, 360, 763, 766, 829], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 805], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 775], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 624, 672], "01104775": [52, 295], "prelu": [52, 75, 360, 775], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 775], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 613], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 775], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 775], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 456, 481, 482, 763, 814, 818, 826, 829, 834, 861], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 418, 615, 628, 631, 715, 716, 735, 765, 808, 814, 816, 818, 822, 823, 825, 829, 848], "met": [52, 75, 304, 818], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 619, 806], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 414, 415, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 801, 806, 811, 819, 860], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 421, 473, 624, 653, 658, 659, 660, 682, 812], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 624, 671, 802, 819], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 616, 631, 735, 805], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 537, 621, 624, 673], "frequenc": [52, 53, 75, 76, 313, 362, 380, 510, 537, 621, 806], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 445, 446, 623, 648, 779, 793, 799, 806, 812, 834, 842, 844, 855], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 541], "band": [52, 53, 75, 76, 313, 362, 537, 621], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 415, 779, 854, 855], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 604, 616, 622, 824, 828, 842], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 785], "num_seg": [52, 75, 324, 325, 326, 362, 785], "identifi": [52, 75, 324, 325, 326, 362, 804, 808, 813, 814, 829, 832], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 419, 426, 520], "distinct": [52, 63, 75, 324, 325, 326, 362, 632, 736, 737, 738, 739, 805, 812, 817, 824, 825, 826, 833, 845, 855], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 436, 624, 673, 783], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 792, 793, 818, 826, 834, 835, 838, 845, 848, 851, 853, 854, 855, 858, 861, 862], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 422, 435, 441, 624, 667, 670, 758, 760, 808, 827, 855], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 478, 515, 516, 517, 518, 519, 520, 624, 626, 631, 634, 635, 665, 681, 700, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 818, 826, 834], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 624, 626, 631, 634, 635, 681, 689, 696, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 834], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 606, 611, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 712, 713, 717, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 793, 809, 812, 814, 821, 822, 826, 829, 830, 837, 840, 842, 849, 856], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 619], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 416, 422, 432, 434, 436, 498, 624, 664, 668, 676], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 481, 511, 512, 634, 744, 745, 750, 752, 764, 814, 834], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 816, 825], "prepend": [52, 75, 335, 365, 624, 626, 664, 689, 805], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 498, 624, 676, 818, 830], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 537, 621, 626, 689, 812, 828], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 625, 684, 779], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 853, 861], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 479, 513, 619, 626, 694, 799, 802, 804, 805, 819, 834, 851, 855], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 619], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 459, 571, 579, 593, 602, 603, 608, 619, 621, 622, 623, 636, 643, 644, 783, 822, 831], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 510], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 630, 728, 855], "33333333": [52, 75, 276, 342, 365, 619], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 808], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 520, 623, 646], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 478], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 608, 622], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 418, 433, 465, 560, 601, 616, 621, 624, 627, 634, 665, 681, 703, 704, 746, 799, 814, 825, 862], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 431, 467], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 442, 443, 444, 445, 446, 447, 448, 478, 534, 564, 565, 621, 625, 635, 683, 684, 685, 754, 755, 780, 814, 822, 825, 829, 836], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 432, 451, 456, 478, 482, 510, 763, 779], "adapt": [52, 75, 77, 368, 382, 383, 384, 609, 622, 779, 783, 845], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 779, 805], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 479, 619], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 414, 489, 490, 491, 494, 623, 636, 637, 638, 639, 641, 643, 645, 782], "Will": [52, 75, 368, 382, 383, 384, 788, 840], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779], "3d": [52, 57, 75, 368, 383, 391, 392, 453, 624, 661, 779, 832], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 440, 494], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 623, 648, 834, 840, 855, 858, 859], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 623, 636, 637, 638, 643, 644, 779], "count_include_pad": [52, 75, 368, 386, 387, 388, 779], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 435, 437, 441, 624, 637, 639, 640, 641, 642, 645, 672, 775, 779, 793, 814, 826, 832, 840, 855, 857, 859], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 623, 636, 637, 638, 643, 644, 779], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 779], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 623, 641, 642], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "dct": [52, 75, 368, 779, 837], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 439, 567, 621, 779, 818, 837], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 617, 626, 634, 686, 694, 751, 753, 779, 829, 832, 862], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 779], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 415, 779, 804, 855], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 799, 820, 848, 849], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 623, 649, 765, 779, 855], "max_norm": [52, 53, 75, 76, 368, 394, 528, 529, 621, 779], "ifft": [52, 75, 368, 395, 401, 779], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 446, 614, 619], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 533, 619, 621, 624, 632, 671, 737, 738, 739, 793, 812, 816, 826, 829, 836], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 832], "antialia": [52, 75, 368, 403, 832], "height": [52, 53, 56, 75, 76, 79, 368, 403, 533, 621, 623, 639, 640, 641, 642, 645, 837], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 422, 473, 494, 513, 533, 621, 623, 637, 638, 639, 640, 641, 642, 645, 649], "trilinear": [52, 75, 368, 403, 832], "nearest_exact": [52, 75, 368, 403, 832], "tf_area": [52, 75, 368, 403, 832], "mitchellcub": [52, 75, 368, 403, 832], "lanczos3": [52, 75, 368, 403, 832], "lanczos5": [52, 75, 368, 403, 832], "gaussian": [52, 75, 105, 368, 403, 613, 832], "overwrit": [52, 69, 75, 208, 368, 403, 618, 806, 825, 826, 834], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 421, 619, 624, 658, 659, 804, 813, 818, 823, 826, 830], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 484], "orthonorm": [52, 57, 75, 80, 368, 411, 624, 671, 674], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 414], "frame_length": [52, 75, 368, 415], "frame_step": [52, 75, 368, 415], "fft_length": [52, 75, 368, 415], "window_fn": [52, 75, 368, 415], "pad_end": [52, 75, 368, 415], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 415, 483, 617, 619, 624, 665, 763, 765, 766], "enclos": [52, 75, 368, 415, 856], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 415], "li": [52, 75, 368, 369, 380, 415, 422, 520, 844], "past": [52, 75, 368, 415, 806, 808, 827, 829, 841, 855], "fft_unique_bin": [52, 75, 368, 415], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 415, 617, 619, 624, 672, 674, 675, 764, 814, 819], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 415, 559, 617, 621, 624, 659, 660, 665, 681, 763, 764, 802, 814, 819], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 415, 426, 435, 494, 616, 619, 631, 734, 799, 828, 834, 845, 851, 856, 858], "linear_algebra": [52, 57, 75, 80, 624, 830], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 436, 624, 662, 673, 674, 763], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 417], "jn": [52, 75, 369, 417], "k1": [52, 75, 369, 417], "km": [52, 75, 369, 417], "outer": [52, 57, 75, 80, 92, 369, 417, 624, 627, 702, 703, 704, 793, 804], "30000001": [52, 75, 369, 417, 533, 621, 632, 737], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 417, 613, 623, 632, 652, 737], "60000002": [52, 75, 88, 98, 369, 374, 417, 493, 495, 748], "80000001": [52, 75, 369, 374, 417, 493, 495], "60000001": [52, 75, 369, 417], "90000004": [52, 75, 369, 417, 634, 748], "20000002": [52, 75, 369, 417], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 417, 602], "00000012": [52, 75, 369, 417], "49999994": [52, 75, 369, 417], "00000006": [52, 75, 369, 417], "60000014": [52, 75, 369, 417], "19999993": [52, 75, 369, 417], "80000007": [52, 75, 369, 417], "20000017": [52, 75, 369, 417], "89999992": [52, 75, 369, 417], "60000008": [52, 75, 369, 417], "80000019": [52, 75, 346, 365, 369, 417], "4000001": [52, 75, 79, 369, 417, 623, 646, 652], "cond": [52, 75, 118, 369, 615, 840], "933034373659268": [52, 418], "diagflat": [52, 75, 369, 428, 431], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 419, 489, 490, 491, 616, 624, 629, 657, 678, 724, 770], "padding_valu": [52, 75, 369, 419], "right_left": [52, 75, 369, 419], "num_row": [52, 75, 369, 419], "num_col": [52, 75, 369, 419], "dot": [52, 56, 75, 79, 92, 369, 433, 623, 624, 649, 652, 680, 793, 799, 805, 813], "eig": [52, 57, 75, 369, 624, 659, 660], "37228132": [52, 75, 369, 421, 423, 658], "82456484": [52, 421, 658], "41597356": [52, 421, 658], "56576746": [52, 421, 658], "90937671": [52, 421, 658], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 422], "select_rang": [52, 75, 369, 422], "tol": [52, 75, 96, 369, 422, 435, 441], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 421, 422, 423, 624, 658, 659, 660, 667], "eigenvector": [52, 75, 369, 421, 422, 624, 658, 659], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 422, 513, 616, 624, 626, 630, 635, 654, 680, 686, 689, 697, 726, 728, 754, 755], "togeth": [52, 69, 75, 328, 344, 365, 369, 422, 784, 799, 809, 812, 814, 825, 826, 829, 830, 832, 838, 839, 840, 845, 853, 855, 856, 861], "cluster": [52, 75, 369, 422, 840, 855], "converg": [52, 75, 369, 422, 846], "_2": [52, 75, 369, 422], "eig_val": [52, 75, 369, 422], "decreas": [52, 75, 369, 422, 765], "eig_vector": [52, 75, 369, 422], "38196": [52, 422], "61803": [52, 422], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 424], "tradit": [52, 80, 369, 424], "inner": [52, 57, 71, 80, 101, 136, 369, 421, 424, 616, 624, 627, 658, 659, 664, 702, 703, 704, 793, 804, 825], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 425], "d1": [52, 75, 369, 425], "dn": [52, 75, 369, 425], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 426, 430, 435, 437, 438, 439, 441, 624, 675], "truncated_svd": [52, 75, 369, 426, 435, 438, 441], "non_neg": [52, 75, 321, 362, 369, 426], "mask": [52, 56, 75, 79, 92, 368, 369, 371, 413, 426, 427, 435, 441, 480, 543, 621, 623, 646, 649, 652, 832], "svd_mask_repeat": [52, 75, 369, 426, 435, 441], "tuckertensor": [52, 75, 96, 321, 362, 369, 426, 435, 441], "scheme": [52, 75, 369, 426, 435, 808, 838, 855], "tucker": [52, 75, 321, 362, 369, 426, 435], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 426, 435, 438, 440, 441, 624, 653, 659, 663, 671, 674, 804, 862], "miss": [52, 75, 369, 371, 426, 435, 441, 480, 783, 804, 805, 809, 812, 813, 816, 826, 829, 832], "everywher": [52, 75, 369, 426, 435, 441], "imput": [52, 75, 369, 426, 435, 441], "kron": [52, 75, 369, 431, 862], "make_svd_non_neg": [52, 75, 369, 439], "nntype": [52, 75, 369, 430], "nndsvd": [52, 75, 369, 430], "singular": [52, 57, 75, 80, 369, 426, 430, 437, 439, 624, 665, 667, 670, 674, 675, 763, 765, 814], "nndsvda": [52, 75, 369, 430], "boutsidi": [52, 75, 369, 430], "gallopoulo": [52, 75, 369, 430], "pattern": [52, 53, 75, 76, 369, 430, 533, 534, 535, 621, 814, 817, 828, 846], "recognit": [52, 75, 369, 430], "1350": [52, 75, 369, 430], "1362": [52, 75, 369, 430], "2008": [52, 75, 369, 430, 855], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 431], "3891": [52, 75, 369, 431], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 432], "i_1": [52, 75, 92, 93, 369, 432], "i_k": [52, 75, 92, 369, 432], "i_n": [52, 75, 92, 369, 432], "i_": [52, 75, 92, 369, 380, 432, 513], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 433], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 434], "times_0": [52, 369, 434], "vec": [52, 369, 434], "times_1": [52, 369, 434], "cdot": [52, 268, 369, 434, 619], "times_n": [52, 369, 434], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 435, 441], "verbos": [52, 75, 369, 435, 438, 441, 829, 834], "return_error": [52, 75, 369, 435, 441], "variat": [52, 75, 369, 435, 441, 816, 826, 829], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 435, 441, 486, 624, 632, 674, 736, 738, 827], "return_erro": [52, 369, 435, 441], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 437], "basi": [52, 75, 369, 437, 806, 808, 837], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 437, 464, 465, 619, 626, 825, 836, 837, 839], "decis": [52, 75, 369, 437, 799, 808, 814, 832, 834, 836, 855], "u_adjust": [52, 75, 369, 437], "v_adjust": [52, 75, 369, 437], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 438, 440], "kth": [52, 369, 438], "tttensor": [52, 95, 320, 362, 369, 438], "compute_uv": [52, 57, 75, 80, 369, 439, 624, 674], "n_eigenvec": [52, 75, 369, 439], "returnedv": [52, 439], "vh": [52, 57, 75, 80, 369, 439, 624, 674], "eigen": [52, 75, 369, 439], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 421, 439, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 438, 440, 619, 778, 808, 813, 814, 826, 829], "rank_k": [52, 75, 369, 440], "left_dim_k": [52, 75, 369, 440], "right_dim_k": [52, 75, 369, 440], "rank_": [52, 75, 369, 440], "49671414": [52, 75, 369, 440, 630, 727], "1382643": [52, 75, 369, 440, 630, 727], "64768857": [52, 75, 369, 440, 630, 727], "5230298": [52, 75, 369, 440, 630, 727], "23415337": [52, 75, 369, 440, 630, 727], "23413695": [52, 75, 369, 440, 630, 727], "57921278": [52, 75, 369, 440], "76743472": [52, 75, 369, 440], "1163073": [52, 75, 369, 440], "11629914": [52, 75, 369, 440], "03237505": [52, 75, 369, 440], "03237278": [52, 75, 369, 440], "78441733": [52, 75, 369, 440], "38119566": [52, 75, 369, 440], "21834874": [52, 75, 369, 440], "10610882": [52, 75, 369, 440], "15165846": [52, 75, 369, 440], "15164782": [52, 75, 369, 440], "35662258": [52, 75, 369, 440], "35659757": [52, 75, 369, 440], "02283812": [52, 75, 369, 440], "49705869": [52, 75, 369, 440], "40518808": [52, 75, 369, 440], "16882598": [52, 75, 369, 440], "fixed_factor": [52, 75, 369, 441], "tl": [52, 75, 369, 441], "kolda": [52, 75, 369, 441], "bader": [52, 75, 369, 441], "siam": [52, 75, 369, 438, 441], "review": [52, 75, 369, 441, 801, 804, 806, 811, 813, 816, 826, 830], "vol": [52, 75, 369, 441], "pp": [52, 75, 369, 441], "455": [52, 75, 369, 441], "2009": [52, 75, 369, 441], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 442, 602, 622], "transit": [52, 75, 370, 442, 855], "huber": [52, 75, 370, 442], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 443], "contai": [52, 443], "batchmean": [52, 370, 443], "kullback": [52, 75, 370, 443], "leibler": [52, 75, 370, 443], "0916": [52, 443], "l1_loss": [52, 75, 370, 445], "l1": [52, 57, 75, 80, 370, 374, 442, 444, 445, 447, 492, 624, 681, 812, 837], "targetict": [52, 75, 370, 444, 445, 447, 448], "20000000000000004": [52, 444], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 445, 780], "favor": [52, 75, 370, 445], "likelihood": [52, 75, 370, 445, 446], "28402555": [52, 370, 445], "03402555": [52, 370, 445], "1573164": [52, 370, 445], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 446], "poisson": [52, 75, 370, 375, 445, 446], "assumpt": [52, 370, 445, 446], "minu": [52, 370, 445, 446], "omiss": [52, 370, 446], "stirl": [52, 75, 370, 445, 446], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 446, 500, 503, 619, 623, 634, 649, 746, 750, 752, 801, 804, 805, 806, 811, 813, 825, 826, 829, 834, 839, 855], "prevent": [52, 54, 75, 77, 370, 446, 545, 602, 603, 608, 621, 622, 623, 634, 646, 752, 778, 783, 804, 806, 813, 814, 818, 825, 826, 830], "input_tensor": [52, 75, 369, 370, 438, 446, 826], "target_tensor": [52, 370, 446], "1978": [52, 446], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 442, 447, 625, 683, 684, 685, 824], "8125": [52, 447], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 448, 480, 815], "margin": [52, 75, 370, 448, 826], "35667497": [52, 448, 625, 684], "22314353": [52, 448], "60943791": [52, 448], "manipul": [52, 75, 825, 826, 830, 832, 834, 839, 844, 855], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 449, 461, 466, 474, 477, 496, 497, 498, 499, 500, 565, 578, 583, 585, 616, 621, 623, 626, 630, 636, 638, 640, 642, 644, 693, 726, 727, 728, 821, 823], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 449, 559, 616, 621, 860, 861], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 368, 369, 371, 380, 413, 429, 450, 464, 465, 511, 512, 532, 621, 624, 626, 634, 679, 690, 744, 745, 804, 812, 813, 814, 816, 817, 825, 826, 832, 839, 840], "scan": [52, 75, 371, 450, 840], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 451, 452, 453, 459, 468, 487], "a1": [52, 76, 371, 451, 452, 453, 457, 525], "a2": [52, 76, 371, 451, 452, 453, 457, 525], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 458], "new_axi": [52, 75, 371, 458, 839], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 459, 468, 487], "3rd": [52, 75, 371, 459], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 462], "fortran": [52, 59, 75, 82, 371, 463, 626, 693, 855, 859], "layout": [52, 59, 75, 82, 371, 463, 626, 693, 810, 825, 826, 832], "fliplr": [52, 75, 371, 825], "diag": [52, 57, 75, 80, 93, 371, 464, 465, 624, 659, 834], "flipud": [52, 75, 371, 825], "fold": [52, 75, 371, 474, 475, 813], "unfold": [52, 75, 92, 93, 95, 369, 371, 426, 466, 474, 476], "folded_tensor": [52, 371, 466], "heavisid": [52, 75, 371], "5000": [52, 371, 467, 624, 662, 793], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 457, 468, 533, 621], "hstack": [52, 75, 371, 457], "i0": [52, 75, 371, 380, 513], "bessel": [52, 65, 75, 88, 311, 362, 371, 470, 634, 751, 753], "kind": [52, 65, 75, 160, 163, 164, 380, 470, 511, 512, 517, 617, 634, 744, 745, 750, 752, 763, 764, 803, 826, 829, 832, 834, 840], "26606588": [52, 75, 371, 470], "2795853": [52, 75, 371, 470], "88079259": [52, 75, 371, 470], "row_mod": [52, 75, 371, 471], "column_mod": [52, 75, 371, 471], "ascend": [52, 64, 75, 87, 371, 378, 471, 503, 633, 740, 742], "prod": [52, 53, 65, 76, 88, 369, 371, 427, 429, 471, 519, 534, 621, 634, 763, 793, 814, 816, 834], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 472], "unstack": [52, 59, 69, 82, 472, 626, 812, 834, 837, 862], "reorder": [52, 59, 75, 82, 371, 472, 533, 621, 626, 690, 828], "stat_length": [52, 75, 371, 473], "constant_valu": [52, 75, 371, 473], "end_valu": [52, 75, 371, 473], "reflect_typ": [52, 75, 371, 473], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 474, 475, 476, 477], "untouch": [52, 75, 371, 474, 475, 476, 477], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 475, 476], "vectoris": [52, 75, 92, 371, 475, 477], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 476], "n_1": [52, 75, 371, 476], "n_2": [52, 75, 371, 476], "n_i": [52, 75, 369, 371, 427, 476], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 825], "rotat": [52, 75, 371, 479], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 421, 481, 624, 658, 808, 818, 823, 825, 826, 827, 836, 856], "invalid": [52, 66, 75, 89, 371, 481, 624, 626, 635, 680, 689, 754, 755, 763, 805, 814], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 456, 478, 481, 482, 540, 541, 543, 569, 616, 621, 628, 634, 714, 749, 855], "inexact": [52, 75, 339, 365, 371, 481], "largest": [52, 69, 75, 160, 163, 369, 371, 437, 481, 483, 617, 624, 665, 674], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 456, 478, 482, 565, 617, 814, 815], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 421, 483, 503, 517, 619, 624, 632, 658, 659, 674, 675, 736, 740, 741, 742, 765, 799, 803, 813, 828, 830], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 484], "front": [52, 75, 371, 484, 826, 833, 834, 837, 844, 853, 855], "unfolded_tensor": [52, 371, 485], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 487, 488, 533, 621, 806], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 489, 491, 634, 753, 778, 782], "nsc": [52, 75, 374, 489, 490, 491, 782], "braodcast": [52, 75, 374, 489], "running_mean": [52, 75, 374, 489, 491, 782], "running_var": [52, 75, 374, 489, 491, 782], "nc": [52, 75, 374, 489, 490, 491, 782], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 490], "group": [52, 75, 371, 374, 486, 490, 623, 628, 636, 643, 644, 707, 808, 812, 814, 822, 826, 827, 851, 854, 860], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 492, 495, 604, 622, 623, 624, 645, 681], "33333337": [52, 132, 374, 492, 604, 616, 622], "28571439": [52, 374, 492], "l2_normal": [52, 75, 374, 495], "l2": [52, 57, 80, 91, 92, 374, 493, 495, 624, 681, 779, 812], "44721359": [52, 75, 374, 493, 495], "89442718": [52, 75, 374, 493, 495], "lp_normal": [52, 75, 374], "lp": [52, 374, 495], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 496, 829], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 436, 462, 464, 465, 496, 616, 626, 628, 695, 718, 736, 805, 813, 829, 855], "parameter": [52, 61, 75, 84, 375, 496, 497, 499, 500, 630, 725, 727, 728], "odd": [52, 75, 273, 371, 375, 473, 496, 619, 793, 803, 808], "drawn": [52, 61, 75, 84, 375, 496, 497, 498, 499, 500, 630, 725, 726, 727, 728, 763, 764, 765, 778, 829], "dirichlet": [52, 75, 375], "10598304": [52, 375, 498], "21537054": [52, 375, 498], "67864642": [52, 375, 498], "48006698": [52, 375, 498], "07472073": [52, 375, 498], "44521229": [52, 375, 498], "55479872": [52, 375, 498], "05426367": [52, 375, 498], "39093761": [52, 375, 498], "19531053": [52, 375, 498], "51675832": [52, 375, 498], "28793114": [52, 375, 498], "12315625": [52, 375, 498], "29823365": [52, 375, 498], "5786101": [52, 375, 498], "15564976": [52, 375, 498], "50542368": [52, 375, 498], "33892656": [52, 375, 498], "1325352": [52, 375, 498], "44439589": [52, 375, 498], "42306891": [52, 375, 498], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 514, 629, 724], "rate": [52, 54, 75, 77, 368, 375, 409, 500, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 783, 813], "lam": [52, 75, 375, 500], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 501], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 503], "statist": [52, 75, 90, 371, 473, 782, 797, 804, 814, 829, 830, 855], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 508], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 509, 510], "relationship": [52, 75, 509, 778, 828], "cov": [52, 75, 380], "ddof": [52, 75, 380, 510], "fweight": [52, 75, 380, 510], "aweight": [52, 75, 380, 510], "overridden": [52, 75, 380, 510, 783, 809], "unbias": [52, 65, 75, 88, 380, 510, 634, 753], "typic": [52, 75, 328, 344, 365, 380, 510, 633, 742, 779, 808, 822, 854, 862], "assign": [52, 75, 92, 380, 510, 804, 806, 810, 814, 825, 828, 836], "covari": [52, 75, 380, 510], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 435, 511, 512, 552, 553, 556, 616, 621, 630, 634, 726, 744, 745, 812, 814, 822, 839, 859, 861], "cumul": [52, 65, 75, 88, 380, 511, 512, 634, 744, 745], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 511, 512, 617, 619, 634, 744, 745, 750, 752, 799, 803, 804, 805, 812, 813, 814, 816, 822, 834, 836, 861], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 513], "extend_upper_interv": [52, 75, 380, 513], "densiti": [52, 75, 380, 513], "monoton": [52, 75, 380, 513], "rightmost": [52, 75, 380, 513], "c1": [52, 75, 380, 513, 812], "ff": [52, 75, 380, 513], "c_": [52, 75, 93, 380, 513], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 514, 806], "3614": [52, 75, 380, 514], "2085": [52, 75, 380, 514], "median": [52, 75, 371, 380, 473, 517], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 516], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 517], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 482, 494, 517, 519, 619, 760, 824, 829, 835, 839], "undefin": [52, 75, 371, 380, 381, 473, 517, 521, 814, 818, 824], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 423, 519, 614, 810, 818, 827, 837, 838, 840], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 520, 616, 630, 726, 800, 810, 825, 832], "midpoint": [52, 75, 380, 520], "surround": [52, 75, 380, 520, 832], "whichev": [52, 75, 380, 520], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 473, 521, 528, 565, 616, 621, 624, 628, 634, 635, 678, 681, 719, 749, 750, 752, 754, 755, 804, 805, 809, 811, 814, 815, 825], "_arraywithgener": [53, 97], "all_equ": [53, 76, 621], "equality_matrix": [53, 76, 522, 621], "array_equ": [53, 76, 621], "assert_supports_inplac": [53, 76, 621], "ivybackendexcept": [53, 76, 526, 550, 621, 794, 809, 815, 818, 819], "clip_matrix_norm": [53, 76, 621], "894": [53, 76, 528, 529, 621, 629, 724], "clip_vector_norm": [53, 76, 621], "default_v": [53, 532, 621], "catch_except": [53, 532, 621], "rev": [53, 532, 621], "with_cal": [53, 532, 621], "catch": [53, 532, 621, 823, 829], "einops_rearrang": [53, 76, 621], "axes_length": [53, 76, 533, 534, 535, 621], "arrang": [53, 533, 621], "rearrang": [53, 76, 533, 535, 621, 828], "einops_reduc": [53, 76, 621, 814], "einops_repeat": [53, 76, 621], "fourier_encod": [53, 76, 621], "max_freq": [53, 76, 537, 621], "oppos": [53, 76, 537, 621, 814], "geometr": [53, 76, 537, 621, 624, 679], "0000000e": [53, 76, 537, 621], "2246468e": [53, 76, 537, 621], "4492936e": [53, 537, 621], "6739404e": [53, 76, 537, 621], "batch_dim": [53, 76, 540, 541, 621, 785], "gather_nd": [53, 76, 621], "get_num_dim": [53, 76, 621], "as_arrai": [53, 76, 544, 578, 621, 785], "has_nan": [53, 76, 621], "include_inf": [53, 76, 546, 600, 621], "inplace_decr": [53, 76, 621], "val": [53, 69, 74, 76, 248, 371, 462, 548, 549, 550, 569, 570, 571, 619, 621, 814, 825, 836], "decrement": [53, 76, 548, 621], "inplace_incr": [53, 76, 621], "increment": [53, 76, 549, 621, 806, 855], "inplace_upd": [53, 76, 568, 621, 776, 825], "ensure_in_backend": [53, 76, 550, 621, 825], "keep_input_dtyp": [53, 76, 550, 621, 825], "is_arrai": [53, 76, 621, 825, 826], "is_ivy_arrai": [53, 76, 621, 825, 836], "is_ivy_contain": [53, 621], "is_native_arrai": [53, 76, 171, 553, 617, 621, 836], "isin": [53, 76, 621], "test_el": [53, 76, 557, 621], "assume_uniqu": [53, 76, 557, 621], "invert": [53, 76, 226, 557, 619, 621, 624, 666], "scatter_flat": [53, 76, 621], "occupi": [53, 160, 163, 564, 565, 617, 621], "scatter_nd": [53, 76, 621, 832, 836], "stable_divid": [53, 76, 621, 822], "denomin": [53, 60, 76, 83, 571, 579, 593, 621, 629, 724, 782, 822, 831, 840, 852], "min_denomin": [53, 76, 571, 579, 593, 621, 831], "_min_denomin": [53, 579, 621], "stable_pow": [53, 76, 621], "min_bas": [53, 76, 570, 580, 592, 621, 782, 831], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 503, 570, 571, 579, 580, 592, 593, 616, 621, 633, 740, 743, 765, 805, 810, 814, 826, 831, 834, 840], "00004": [53, 76, 580, 621], "00008": [53, 76, 580, 621], "00004000e": [53, 580], "56002560e": [53, 580], "60001200e": [53, 580], "09602048e": [53, 580], "supports_inplace_upd": [53, 76, 621], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 818, 826], "to_scalar": [53, 76, 621], "value_is_nan": [53, 76, 621], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 622], "mw": [54, 77, 602, 603, 622, 838], "vw": [54, 77, 602, 603, 622, 838], "beta1": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "beta2": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "epsilon": [54, 57, 58, 77, 80, 81, 524, 602, 603, 608, 621, 622, 624, 625, 667, 670, 683, 684, 685, 775, 780, 782, 783, 812, 822, 825, 838], "dc": [54, 77, 602, 603, 606, 608, 609, 610, 622], "dw": [54, 77, 602, 603, 606, 608, 609, 610, 622], "forget": [54, 77, 602, 603, 608, 622, 783, 799, 814], "dcdw": [54, 77, 602, 603, 606, 608, 609, 622], "adam_step_delta": [54, 77, 602, 622], "2020105": [54, 602, 622], "22187898": [54, 602, 622], "24144873": [54, 602, 622], "10000002": [54, 88, 291, 360, 602, 748], "00300002": [54, 602], "00800002": [54, 602], "adam_upd": [54, 77, 622, 838], "mw_tm1": [54, 77, 603, 608, 622], "vw_tm1": [54, 77, 603, 608, 622], "stop_gradi": [54, 77, 208, 524, 603, 606, 608, 609, 610, 618, 621, 622, 627, 702, 703, 704, 783, 838], "ws_new": [54, 77, 603, 608, 609, 610, 622], "updated_weight": [54, 77, 603, 622], "92558753": [54, 603], "92558873": [54, 603, 622], "92558718": [54, 603, 622], "00000063e": [54, 77, 603, 622], "00000016e": [54, 77, 603, 622], "00000086e": [54, 77, 603, 622], "gradient_descent_upd": [54, 77, 622, 627, 702, 703, 704], "descent": [54, 77, 606, 622, 783, 838, 855], "new_weight": [54, 77, 606, 608, 609, 622, 837], "lamb_upd": [54, 77, 622], "max_trust_ratio": [54, 77, 608, 622, 783], "decay_lambda": [54, 77, 608, 609, 622, 783], "trust": [54, 77, 608, 622, 783], "ratio": [54, 77, 608, 622, 783], "decai": [54, 77, 608, 609, 622, 783], "lamb": [54, 77, 608, 622, 783, 838], "784": [54, 608, 622], "lars_upd": [54, 77, 622], "lar": [54, 77, 609, 622, 783, 838], "34077978": [54, 609, 622], "78025991": [54, 609, 622], "56051969": [54, 609, 622], "78026009": [54, 609, 622], "56051981": [54, 609, 622], "12103939": [54, 609, 622], "optimizer_upd": [54, 77, 622], "effective_grad": [54, 77, 610, 622], "3e": [54, 77, 610, 622], "preserve_typ": [54, 77, 611, 622], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 623, 779], "filter_format": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_last": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 763], "x_dilat": [56, 79, 623, 636, 637, 639, 640, 641, 643], "d_out": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_first": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "wio": [56, 623, 636, 637, 638, 643], "conv1d_transpos": [56, 79, 623], "output_shap": [56, 79, 623, 636, 638, 640, 642, 644, 779], "iow": [56, 79, 623, 638], "woi": [56, 79, 623, 638], "fh": [56, 79, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 717], "hwio": [56, 623, 636, 637, 639, 643], "conv2d_transpos": [56, 79, 623], "iohw": [56, 79, 623, 640], "hwoi": [56, 79, 623, 640], "conv3d": [56, 79, 623, 642, 779], "fd": [56, 79, 623, 636, 641, 642, 643, 644], "conv3d_transpos": [56, 79, 623, 644], "iodhw": [56, 79, 623, 642, 644], "dhwoi": [56, 79, 623, 642, 644], "depthwise_conv2d": [56, 79, 623], "randint": [56, 61, 63, 79, 84, 630, 632, 645, 648, 736, 814, 848], "noise_shap": [56, 79, 623, 646], "42857146": [56, 623, 646], "85714293": [56, 623, 646], "28571415": [56, 79, 623, 646], "71428585": [56, 79, 623, 646], "14285755": [56, 79, 623, 646], "5714283": [56, 623, 646], "4285717": [56, 79, 623, 646], "8571434": [56, 79, 623, 646], "2857151": [56, 623, 646], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 623, 647], "inner_batch_shap": [56, 79, 623, 647], "lstm_updat": [56, 79, 623, 834], "init_h": [56, 79, 623, 648, 834], "init_c": [56, 79, 623, 648, 834], "recurrent_kernel": [56, 79, 623, 648, 834], "recurrent_bia": [56, 79, 623, 648, 834], "hidden": [56, 79, 623, 648, 779, 811, 818, 834, 838], "recurr": [56, 75, 79, 368, 413, 623, 648, 834, 855, 859], "timestep": [56, 75, 79, 368, 413, 623, 648, 649, 779, 834], "h_i": [56, 79, 648], "c_i": [56, 79, 648], "rc": [56, 79, 648], "multi_head_attent": [56, 79, 623, 825], "num_head": [56, 79, 623, 649, 779], "in_proj_weight": [56, 79, 623, 649], "q_proj_weight": [56, 79, 623, 649], "k_proj_weight": [56, 79, 623, 649], "v_proj_weight": [56, 79, 623, 649], "out_proj_weight": [56, 79, 623, 649], "in_proj_bia": [56, 79, 623, 649], "out_proj_bia": [56, 79, 623, 649], "is_caus": [56, 79, 623, 649, 652], "key_padding_mask": [56, 79, 623, 649], "bias_k": [56, 79, 623, 649], "bias_v": [56, 79, 623, 649], "static_k": [56, 79, 623, 649], "static_v": [56, 79, 623, 649], "add_zero_attn": [56, 79, 623, 649], "return_attention_weight": [56, 79, 623, 649], "average_attention_weight": [56, 79, 623, 649], "scaled_dot_product_attent": [56, 79, 623], "dropout_p": [56, 79, 623, 652], "num_queri": [56, 79, 623, 652], "feat_dim": [56, 79, 623, 652], "num_kei": [56, 79, 623, 652], "causal": [56, 79, 623, 649, 652], "attent": [56, 79, 623, 649, 652, 779, 806, 809, 845], "29999995": [56, 291, 292, 301, 360, 623, 632, 652, 737], "19994521": [56, 623, 652], "09994531": [56, 623, 652], "30000019": [56, 371, 457, 623, 652], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 624, 825], "625": [57, 75, 341, 624, 653], "vif": [57, 80, 654], "det": [57, 80, 624, 672, 813], "axis1": [57, 59, 80, 82, 624, 626, 657, 678, 698], "axis2": [57, 80, 624, 657, 678], "eigh": [57, 80, 369, 421, 624, 658], "uplo": [57, 80, 624, 659, 660], "eigvalsh": [57, 80, 624], "array_lik": [57, 80, 368, 370, 371, 412, 442, 443, 447, 448, 478, 624, 661, 669, 793], "105": [57, 79, 623, 624, 625, 646, 647, 661, 669, 683], "149": [57, 624, 661], "143": [57, 74, 98, 285, 619, 624, 661, 816], "203": [57, 74, 224, 624, 629, 661, 724], "233": [57, 624, 661], "inv": [57, 80, 624], "transpose_a": [57, 80, 624, 664], "transpose_b": [57, 80, 624, 664], "adjoint_a": [57, 80, 624, 664], "adjoint_b": [57, 80, 624, 664], "matrix_norm": [57, 80, 624], "ord": [57, 80, 624, 665, 681], "fro": [57, 80, 370, 442, 624, 665], "nuc": [57, 80, 624, 665], "matrix_pow": [57, 80, 624], "matrix_rank": [57, 80, 624], "hermitian": [57, 80, 369, 421, 422, 624, 658, 659, 660, 667, 674], "largest_singular_valu": [57, 80, 624, 667, 670], "defici": [57, 624, 667], "matrix_transpos": [57, 80, 624, 836], "pinv": [57, 80, 624], "pseudo": [57, 80, 624, 670, 824], "99999988": [57, 80, 624, 670], "qr": [57, 80, 624, 827], "complet": [57, 69, 80, 624, 671, 764, 804, 805, 806, 808, 809, 812, 813, 816, 818, 822, 826, 827, 829, 832, 836, 837, 845, 853], "12309149": [57, 624, 671], "90453403": [57, 624, 671], "40824829": [57, 624, 671], "49236596": [57, 624, 671], "30151134": [57, 624, 671], "81649658": [57, 624, 671], "86164044": [57, 624, 671], "12403841e": [57, 624, 671], "60113630e": [57, 624, 671], "10782342e": [57, 624, 671], "04534034e": [57, 624, 671], "80906807e": [57, 624, 671], "88178420e": [57, 80, 624, 660, 671], "slogdet": [57, 80, 624], "logabsdet": [57, 80, 624, 672], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 619, 624, 672, 809, 816, 818, 827, 845], "098611": [57, 624, 672], "solv": [57, 80, 369, 430, 624, 763, 799, 805, 808, 819, 826, 835, 857], "full_matric": [57, 80, 624, 674], "svf": [57, 674], "reconstructed_x": [57, 624, 674], "svdval": [57, 80, 624], "tensorsolv": [57, 80, 624], "vander": [57, 80, 624], "vandermond": [57, 80, 624, 679], "vecdot": [57, 80, 624], "vector_norm": [57, 80, 624], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 614, 619, 624, 665, 681, 814, 826, 832, 855, 861], "manhattan": [57, 80, 624, 681], "euclidean": [57, 80, 92, 93, 624, 681], "7416575": [57, 80, 624, 681], "vector_to_skew_symmetric_matrix": [57, 80, 624], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 625, 813], "from_logit": [58, 81, 625, 683, 780], "pos_weight": [58, 81, 625, 683], "crossentropi": [58, 81, 625, 683], "357": [58, 81, 625, 683, 685], "223": [58, 81, 625, 683, 685], "3862944": [58, 625, 684], "sparse_cross_entropi": [58, 81, 625], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 626, 686, 839], "x_max": [59, 82, 626, 686, 839], "before_1": [59, 82, 371, 473, 626, 688, 701], "after_1": [59, 82, 371, 473, 626, 688, 701], "before_n": [59, 82, 371, 473, 626, 688, 701], "after_n": [59, 82, 371, 473, 626, 688, 701], "repetit": [59, 82, 626, 692, 699, 832], "flat": [59, 69, 82, 376, 501, 564, 621, 626, 692], "allowzero": [59, 82, 626, 693], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 619, 626, 628, 631, 693, 711, 734, 793, 805, 806, 813, 816, 818, 822, 830, 832, 840], "roll": [59, 82, 626, 821], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 616, 619, 626, 694, 805, 806, 815, 816, 821, 828], "restor": [59, 82, 626, 694, 820], "num_or_size_split": [59, 69, 82, 626, 695, 834], "with_remaind": [59, 69, 82, 626, 695], "squeezabl": [59, 626, 696], "swapax": [59, 82, 626], "axis0": [59, 82, 626, 698], "swap_ax": [59, 698], "swap": [59, 82, 626, 698, 788, 849], "tile": [59, 76, 82, 535, 626], "unpack": [59, 82, 626, 700, 827, 829], "zero_pad": [59, 82, 626], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 629], "normalized_idx": [60, 83, 629, 724], "new_std": [60, 83, 629, 724, 782], "learnabl": [60, 83, 627, 629, 704, 724, 779, 782, 839], "deviat": [60, 61, 65, 83, 84, 88, 629, 630, 634, 724, 727, 751, 765, 778, 782, 808, 846], "0976": [60, 629, 724], "3452": [60, 629, 724], "2740": [60, 629, 724], "1047": [60, 629, 724], "5886": [60, 629, 724], "2732": [60, 629, 724], "7696": [60, 629, 724, 763], "7024": [60, 629, 724], "2518": [60, 629, 724], "826": [60, 629, 724], "178": [60, 629, 724], "981": [60, 629, 724], "831": [60, 629, 724], "421": [60, 629, 724], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 498, 630], "population_s": [61, 84, 630, 725], "num_sampl": [61, 84, 630, 725], "unnorm": [61, 84, 630, 725, 829], "popul": [61, 65, 69, 84, 88, 630, 634, 725, 751, 753, 814, 815, 825, 829, 834, 861], "draw": [61, 84, 375, 496, 498, 500, 630, 725, 727, 728, 763, 764, 765, 766, 771, 778, 804, 808, 827, 829], "half": [61, 84, 121, 282, 616, 619, 630, 726, 728, 802, 819, 832], "235": [61, 727], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 616, 617, 624, 681, 727, 728, 763, 764, 802, 814, 819, 826, 829], "807": [61, 727], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 631, 731, 732], "occurr": [62, 371, 380, 486, 508, 631, 632, 731, 732, 736], "argmin": [62, 85, 631], "output_dtyp": [62, 85, 631, 732], "argwher": [62, 85, 631], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 619, 631], "as_tupl": [62, 85, 631, 734], "fewer": [62, 85, 631, 734], "_arraywithset": [63, 97], "unique_al": [63, 86, 632], "by_valu": [63, 86, 632, 736], "inverse_indic": [63, 86, 371, 486, 632, 736, 738], "unique_count": [63, 86, 632], "unique_invers": [63, 86, 632], "unique_valu": [63, 86, 632], "admonit": [63, 739], "dask": [63, 632, 736, 737, 738, 739, 845], "difficult": [63, 632, 736, 737, 738, 739, 806, 808, 814, 829, 840], "omit": [63, 278, 619, 632, 736, 737, 738, 739, 821, 825, 826], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 619, 632, 634, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 778, 817], "x_j": [63, 632, 736, 737, 738, 739], "impli": [63, 632, 736, 737, 738, 739, 829], "typeerror": [63, 86, 632, 739, 836], "_arraywithsort": [64, 97], "stabil": [64, 87, 579, 580, 621, 633, 740, 743, 814, 824, 830, 832], "maintain": [64, 87, 633, 740, 743, 805, 806, 808, 820, 825, 827, 828, 829, 844, 854], "msort": [64, 87, 633], "searchsort": [64, 87, 633, 764], "side": [64, 87, 343, 365, 369, 436, 633, 742, 763, 779, 792, 793, 805, 806, 811], "sorter": [64, 87, 633, 742], "ret_dtyp": [64, 87, 633, 742], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 634, 826, 839], "cumsum": [65, 88, 634, 814], "einsum": [65, 88, 634], "equat": [65, 75, 88, 308, 362, 369, 436, 624, 634, 673, 746, 763, 792, 813, 855], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 619, 624, 634, 672, 678, 746, 747, 749, 750, 752, 792, 793, 809, 812, 817, 826], "contract": [65, 624, 634, 676, 746, 793], "seq": [65, 634, 746, 763], "ii": [65, 88, 634, 746, 806], "jk": [65, 634, 746, 793], "ik": [65, 634, 746, 793], "126": [65, 105, 274, 613, 619, 624, 634, 666, 746], "510": [65, 634, 746], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 619, 624, 634, 672, 678, 747, 748, 749, 750, 751, 752, 753, 763, 764, 765, 766, 771, 778, 804, 808, 809, 811, 813, 816, 817, 818, 821, 825, 827, 828, 829, 830, 832, 855, 856, 857], "arithmet": [65, 88, 229, 235, 268, 619, 634, 748, 826], "propag": [65, 229, 329, 330, 365, 619, 634, 747, 748, 749, 751, 752, 753, 824], "04999995": [65, 748], "freedom": [65, 88, 634, 751, 753, 810], "constitut": [65, 88, 634, 751, 753, 822, 834, 856], "commonli": [65, 88, 634, 751, 753, 818, 822, 824], "81649661": [65, 634, 751], "6666665": [65, 753, 837], "667": [65, 76, 235, 529, 579, 619, 621, 753], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 618, 619, 635, 754, 755, 804, 809, 813, 814, 815, 818, 822, 823, 824, 825, 826, 828, 829, 832, 836, 849], "AND": [66, 89, 225, 236, 262, 619, 635, 754], "OR": [66, 89, 228, 264, 271, 619, 635, 755, 805, 806, 824], "_wrap_funct": [67, 90, 811, 822, 823], "function_nam": [67, 90, 804, 830], "new_funct": [67, 90, 811], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 848, 849, 850], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831, 837], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 780, 781, 810, 831], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 812], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 719, 720, 721, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 761, 764, 813], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 613], "28903052": [68, 109, 613], "10714479": [68, 109, 613], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 613], "7310586": [68, 111, 112, 613], "88079703": [68, 111, 613], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 613], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 628, 705], "166": [68, 105, 613], "dictionari": [69, 86, 98, 207, 588, 604, 618, 621, 622, 739, 758, 760, 793, 809, 813, 814, 822, 826, 827, 837, 840], "asynchron": [69, 98, 855], "wait": [69, 98, 574, 621, 799, 804, 806, 813, 826], "arriv": [69, 98, 574, 621, 832], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 528, 529, 545, 617, 621, 626, 686, 763, 765, 766, 778, 785, 793, 799, 805, 806, 811, 813, 816, 818, 826, 829, 832, 837, 840, 854, 855, 856], "whitespac": [69, 98], "indent": [69, 98, 837], "newlin": [69, 98, 817], "termin": [69, 98, 805, 806, 812, 819, 820, 834, 837], "constructor": [69, 98, 524, 621, 760, 776, 784, 814, 815, 817, 836], "kept": [69, 98, 627, 702, 703, 806, 825, 830], "encount": [69, 98, 779, 802, 804, 814, 818, 819, 829], "node": [69, 76, 98, 526, 536, 582, 628, 715, 716, 778, 787, 811, 812, 826, 845, 848, 849, 856], "alphabet": [69, 98], "__setitem__": [69, 371, 481, 809, 812, 836], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 812, 837], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 804, 805, 837], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 785], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 837], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 478, 545, 621, 628, 707, 810, 817, 823, 824, 827, 838, 861], "configur": [69, 207, 618, 628, 718, 805, 806, 811, 813, 814, 819, 820], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 837], "cont_create_if_abs": 69, "noth": [69, 832, 861], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 530, 617, 621, 805, 806, 829], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 837, 848], "cont_dev": 69, "belong": [69, 804, 808, 838], "cont_dev_str": 69, "cont_diff": [69, 837], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 812, 813, 829, 832, 846, 855], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 837], "above_height": [69, 837], "below_depth": [69, 837], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 837], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 781, 837, 854], "h5py": 69, "filepath": [69, 635, 756, 757, 806, 808], "cont_from_disk_as_json": [69, 837], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 837], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 804, 828, 837, 851, 861], "cont_handle_inplac": 69, "prime": [69, 814], "overwritten": [69, 809, 810], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 813], "cont_has_key_chain": 69, "cont_ident": [69, 837], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 837], "cont_load": 69, "cont_map": [69, 812, 837], "func": [69, 92, 208, 357, 358, 359, 367, 527, 601, 604, 605, 607, 612, 618, 621, 622, 628, 718, 760, 804, 808, 809, 816, 818, 824], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 584, 621, 763, 829, 840], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 628, 718], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 799, 838], "key2": [69, 799], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 443, 616, 805, 806, 808, 814, 822, 828, 829, 832, 840, 848, 849, 850, 859], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 805, 810, 825], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 623, 641], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 451, 452, 453, 482], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 837], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 837], "cont_to_disk_as_pickl": [69, 837], "cont_to_flat_list": 69, "cont_to_iter": [69, 812], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 618], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 827], "cont_with_key_length_limit": [69, 837], "cont_with_print_ind": [69, 837], "cont_with_print_limit": [69, 837], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 429, 616], "n_col": [71, 75, 127, 142, 322, 362, 616], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 616], "234": [71, 74, 131, 154, 237, 288, 616, 617, 619, 623, 647, 763], "123": [71, 72, 131, 163, 536, 616, 621, 793, 829], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 616], "expos": [71, 129, 530, 616, 621, 799, 813, 834, 838, 844], "x00": [71, 129, 616], "xf0": [71, 129, 616], "x01": [71, 129, 616], "x02": [71, 129, 616], "x03": [71, 129, 616], "x04": [71, 129, 616], "x05": [71, 129], "5443469": [71, 133, 616], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 616], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 617], "618": [72, 74, 147, 264, 617], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 617], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 617], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 617], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 617], "7976931348623157e": [72, 160, 617], "308": [72, 160, 617, 763, 829], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 617], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 481, 617], "2147483647": [72, 163, 617], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 617], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 617, 830], "roughli": [72, 805, 808, 858], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 619], "412": [74, 79, 220, 619, 628, 705], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 619], "983": [74, 223, 619], "978": [74, 223, 619], "696": [74, 84, 223, 619, 727], "993": [74, 223, 619], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 619], "873": [74, 234, 274, 619], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 619], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 619], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 619], "38905621": [74, 238, 619], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 619], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 616, 619, 624, 672], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 478], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 619], "0414": [74, 257, 619], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 619], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 619], "static_round": 74, "301": [74, 278, 619], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 619], "959": [74, 240, 280, 619], "279": [74, 280, 368, 389, 399, 528, 619, 621], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 619], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 619], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 619, 838], "305": [74, 79, 220, 619], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 619], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 806, 836, 855], "shrinkag": [75, 292, 301, 371, 480], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 602, 622], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 633, 742, 765, 805, 806, 812, 830, 855], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 855, 856], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 493, 495], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 624, 659], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 624, 662, 763, 766], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 814], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 478], "10240": [75, 345], "60000038": [75, 346, 365, 624, 680], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 619], "515": [75, 630, 727], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_rnn": 75, "step_funct": [75, 368, 413], "initial_st": [75, 368, 413], "go_backward": [75, 368, 413], "unrol": [75, 368, 413, 623, 648, 834, 837], "input_length": [75, 368, 413], "time_major": [75, 368, 413, 623, 648], "zero_output_for_mask": [75, 368, 413], "return_all_output": [75, 368, 413], "rnn": [75, 368, 855], "tempor": [75, 368, 413], "state_s": [75, 368, 413], "while_loop": [75, 368, 413, 615], "otput": [75, 368, 413], "funciton": [75, 368, 413], "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 418], "eigenvealu": [75, 421, 658], "xx": [75, 421, 423, 658], "37228107": [75, 421, 658], "3722816": [75, 421, 658], "8245648": [75, 421, 658], "41597357": [75, 421, 658], "56576747": [75, 421, 658], "9093767": [75, 421, 658], "56155": [75, 422], "82842": [75, 422], "450": [75, 428], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 427, 428], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 440], "output_tensor": [75, 95, 369, 440], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 442], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 446], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 446], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 457, 481], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 451, 452, 453], "ary2": [75, 371, 451, 452, 453], "broadcast_shap": [75, 101, 371, 763, 765], "static_concat_from_sequ": [75, 458], "30192195": [75, 470], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 493, 495], "50709254": [75, 493, 495], "84515423": [75, 493, 495], "44183609": [75, 493, 495], "56807494": [75, 493, 495], "69431382": [75, 493, 495], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 498], "32325703": [75, 498], "24031169": [75, 498], "34251311": [75, 498], "31692529": [75, 498], "3405616": [75, 498], "5319725": [75, 498], "22458365": [75, 498], "24344385": [75, 498], "26588406": [75, 498], "61075421": [75, 498], "12336174": [75, 498], "51142915": [75, 498], "25041268": [75, 498], "23815817": [75, 498], "64042903": [75, 498], "25763214": [75, 498], "10193883": [75, 498], "31624692": [75, 498], "46567987": [75, 498], "21807321": [75, 498], "37677699": [75, 498], "39914594": [75, 498], "22407707": [75, 498], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 513, 804, 816, 817, 822, 826], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 510], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 457], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 528, 529, 621], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 534, 621], "53000069": [76, 534, 621], "39666676": [76, 534, 621], "20666695": [76, 534, 621], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 626, 632, 695, 737], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 579, 621], "444": 76, "_static_stable_pow": 76, "00012": [76, 580, 621], "00016": [76, 77, 580, 608, 621, 622], "00001": [76, 580, 621, 763], "00032": [76, 580], "00256": [76, 580], "1679638": [76, 580], "395": [76, 580], "16777383": [76, 580], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 529], "items": [76, 97, 621], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 600], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 602, 619, 622], "49e": [77, 602, 622], "74e": [77, 602, 622], "95e": [77, 602, 622], "024": [77, 602, 622], "096": [77, 602, 622], "216": [77, 80, 602, 622, 679], "626": [77, 602, 622], "en": [77, 602, 603, 622, 813], "wikipedia": [77, 602, 603, 622], "wiki": [77, 602, 603, 622], "stochastic_gradient_desc": [77, 602, 603, 622], "01099": [77, 603], "01003": [77, 603, 622], "01015": [77, 603, 622], "99936122": [77, 603, 622], "99936116": [77, 603, 622], "99936128": [77, 603, 622], "99936104": [77, 603, 622], "w_new": [77, 606, 622], "708": [77, 608, 622], "445": [77, 608, 622], "6e": [77, 608, 622], "00036": [77, 608, 622], "00049": [77, 608, 622], "layerwis": [77, 609, 622], "01132035": [77, 609, 622], "22264051": [77, 609, 622], "2056601": [77, 609, 622], "1324538": [77, 609, 622], "56490755": [77, 609, 622], "96622658": [77, 609, 622], "90848625": [77, 609, 622], "93616199": [77, 609, 622], "77232409": [77, 609, 622], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 624, 634, 638, 669, 746], "_static_conv2d": 79, "ey": [79, 616, 623, 639, 645, 832, 839], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 641], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 623, 645], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 623, 646, 647], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 623, 646, 647], "19999695": [79, 647], "11600018": [79, 647], "88399887": [79, 647], "196": [79, 623, 647], "306": [79, 623, 647], "19999981": [79, 292, 304, 360, 623, 646, 652], "59249449": [79, 623, 652], "68226194": [79, 623, 652], "19603825": [79, 623, 652], "9960382": [79, 623, 652], "26894283": [79, 623, 652], "40236187": [79, 623, 652], "39999437": [79, 623, 652], "59999037": [79, 623, 652], "35046196": [79, 623, 652], "54282808": [79, 623, 652], "39989519": [79, 623, 652], "5998764": [79, 623, 652], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 624, 653], "707": [80, 624, 653], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 624, 660], "17091519": [80, 624, 660], "3448143": [80, 624, 660], "35898387e": [80, 624, 660], "46410179e": [80, 624, 660], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 616], "n2": [80, 134, 616], "static_out": [80, 669], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 624, 671], "9486833": [80, 624, 671], "4472136": [80, 624, 671], "89442719": [80, 624, 671], "16227766": [80, 624, 671], "42718872": [80, 624, 671], "63245553": [80, 624, 671], "47213595": [80, 624, 671], "81377674": [80, 624, 671], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 845], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 619, 679], "729": [80, 679, 838], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 681], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 624, 672], "static_general_inner_product": 80, "3475602": [80, 674], "93765765": [80, 674], "58776021": [80, 674], "10416126": [80, 674], "80644298": [80, 674], "87024701": [80, 674], "48127627": [80, 674], "79101127": [80, 674], "98288572": [80, 674], "68917423": [80, 674], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 625, 683, 685], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 624, 672], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 684], "609438": [81, 684], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 626, 689], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 692], "_containerwithnorm": [83, 98], "34198591": [83, 629, 724], "04274819": [83, 629, 724], "29923761": [83, 629, 724], "24053511": [83, 629, 724], "62221265": [83, 724], "20277636": [83, 724], "41943574": [83, 724], "83710337": [83, 724], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 727], "274": [84, 727], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 750], "23100001": [88, 750], "30800003": [88, 634, 750], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 634, 753], "11555555": [88, 634, 753], "rtype": [88, 746, 792], "respectv": [88, 751], "81649649": [88, 751], "94280904": [88, 751], "509902": [88, 634, 751], "2472192": [88, 751], "44948983": [88, 751], "41421354": [88, 751], "6666667": [88, 753], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 427], "khatri": [92, 369, 427], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 466, 477], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 858], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 832], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 844, 855], "b_i": 93, "ijk": [93, 793], "sum_r": 93, "a_": 93, "ir": [93, 853, 856, 861], "jr": 93, "kr": 93, "coupl": [93, 805, 809, 836, 838, 855], "factoris": 93, "i1": [93, 380, 513], "classmethod": [93, 100, 101, 768], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 421, 435, 441, 624, 658, 659], "sum_": 93, "ijr": 93, "constraint": [93, 793, 813, 814, 824], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 626, 699, 779, 782, 783, 784, 828, 834, 838, 839, 853, 855, 862], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 806], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 440], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 778], "realiz": [95, 855], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 862], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 601, 621, 628, 716, 813], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 809, 812, 816, 817, 821, 826, 827, 836], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 832], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 836], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 816, 817, 826], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 809, 812, 816, 821, 836], "__truediv__": [97, 98, 809, 812, 816], "__xor__": [97, 98], "referenc": [97, 818, 825], "resid": [97, 101, 626, 689, 826, 834, 838], "mt": [97, 836], "hopefulli": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "overview": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 811, 813, 827, 829, 833], "reach": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846, 854, 855], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 495, 604, 622], "nested_arrai": [100, 101, 102, 811], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 613, 619, 821, 825], "24000001": [107, 613], "703": [108, 613], "683": [108, 613], "408": [108, 613], "313": [108, 613], "437": [108, 613], "40337825": [109, 613], "56114835": [109, 613], "20788449": [109, 613], "0768": [112, 613], "231": [112, 613], "\u03b2": [113, 613], "66666667": [114, 380, 510, 613], "body_fn": [117, 118, 120, 615], "bodi": [117, 120, 615, 808, 829], "lst": [117, 615], "orelse_fn": [118, 615], "body1": [119, 615], "body2": [119, 615], "test_fn": [120, 615, 761, 799, 849, 850], "repeatedli": [120, 615, 628, 714, 813, 829], "ml_framework": [121, 616], "distanc": [121, 616], "adjac": [121, 616], "nestedsequ": [122, 123, 616], "typevar": [122, 123, 616], "supportsbufferprotocol": [122, 123, 616], "static_copy_arrai": [124, 616], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 616, 617], "pycapsul": [128, 139, 616], "interchang": [128, 139, 616, 626, 698], "plu": [129, 616], "x00b": [129, 616], "x00d": [129, 616], "x00e": [129, 616], "66666663": [132, 616], "41588834": [133, 616], "7827941": [133, 616], "6227766": [133, 616], "23413252": [133, 616], "n3": [134, 616], "xv": [134, 616], "yv": [134, 616], "x_nativ": [135, 616, 825], "y_nativ": [135, 616], "z_nativ": [135, 616], "d_type": [137, 616], "col": [142, 322, 362, 616], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 503, 538, 539, 616, 617, 618, 621, 764, 766, 804, 807, 810, 814, 823, 825, 826, 828, 829, 832, 840, 842], "upward": [142, 322, 362, 616], "downward": [142, 322, 362, 616], "2xn": [142, 322, 362, 616], "subarrai": [142, 322, 362, 616], "incompat": [149, 617], "closest": [152, 231, 241, 242, 278, 288, 617, 619, 829, 832], "xtype": [152, 617], "ytype": [152, 617], "native_uint16": [152, 617], "complexdtyp": [153, 167, 176, 617], "set_default_complex_dtyp": [153, 182, 617], "4294": [153, 155, 617], "967346": [153, 155, 617], "set_default_dtyp": [154, 183, 617, 814, 822], "floatdtyp": [155, 178, 617], "set_default_float_dtyp": [155, 164, 176, 184, 617, 814], "int_dtyp": [156, 179, 617], "set_default_int_dtyp": [156, 164, 185, 617, 814], "4294967346": [156, 157, 617], "uint_dtyp": [157, 180, 617], "uint": [157, 172, 180, 186, 617, 814, 827], "uintdtyp": [157, 172, 180, 186, 617], "set_default_uint_dtyp": [157, 164, 186, 617], "native_bool": [159, 617], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "smallest_norm": [160, 617], "bfloat16": [161, 617, 763, 764, 814, 826, 829, 830], "unsupport": [162, 195, 539, 617, 618, 621, 758, 761, 802, 805, 819, 826], "encapsul": [163, 617, 813], "314": [163, 275, 332, 365, 617, 619], "9223372036854775808": [163, 617], "9223372036854775807": [163, 617], "65535": [163, 617], "4294967295": [163, 617], "native_uint8": [165, 617], "hashabl": [169, 617], "type1": [173, 617], "type2": [173, 617], "array_api_promot": [173, 174, 617, 763, 764], "unexpect": [174, 242, 617, 619, 814], "default_complex_dtyp": [176, 617], "default_dtype_stack": [177, 183, 617], "unset_default_dtyp": [177, 617], "native_uint64": [177, 617], "default_float_dtyp": [178, 617, 814], "default_int_dtyp": [179, 185, 617, 814], "default_uint_dtyp": [180, 186, 617], "ret1": [181, 617], "ret2": [181, 617], "reset": [182, 183, 184, 185, 186, 212, 213, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 617, 618, 621, 815], "default_complex_dtype_stack": [182, 617], "default_float_dtype_stack": [184, 617], "native_float16": [187, 617], "unmodifi": [189, 618, 810, 814], "aliv": [196, 201, 203, 542, 562, 563, 618, 621, 815], "139740789224448": [196, 618], "physic": [199, 618], "process_specif": [202, 214, 618], "percentag": [202, 618], "ram": [202, 210, 214, 618], "alon": [202, 214, 618, 799, 820, 829], "036902561555": [202, 618], "7024003467681645": [202, 618], "as_native_dev": [202, 618], "7095597456708771": [202, 618], "attr_onli": [203, 618], "soft_device_mod": [205, 213, 618], "chunk": [206, 207, 208, 618], "split_factor": [206, 618, 818], "max_chunk_s": [208, 618], "chunk_siz": [208, 618], "input_ax": [208, 618], "output_ax": [208, 618], "usag": [208, 618, 814, 822, 825, 829, 834, 840, 845, 858], "fed": [208, 618, 838], "fist": [208, 618], "gb": [210, 214, 618, 805, 819], "66700032": [210, 618], "589934592": [210, 618], "219563008": [214, 618], "902400346": [214, 618], "525205504": [214, 618], "na": [215, 619, 829], "noqa": [215, 282, 619, 779, 788, 827], "princip": [216, 220, 222, 352, 365, 619], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817, 853, 855], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817], "\u03c0": [216, 220, 222, 223, 614, 619], "3\u03c0": [216, 223, 619], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 421, 619, 624, 626, 658, 659, 697, 825], "\u03c0j": [217, 221, 224, 256, 258, 619], "3\u03c0j": [217, 256, 258, 619], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "2019": [218, 235, 240, 258, 268, 619, 855, 858], "overflow": [218, 235, 242, 619, 624, 634, 672, 752, 803, 814], "commut": [218, 619], "tabl": [218, 235, 268, 573, 595, 619, 621, 763, 764, 779, 826, 831, 855], "dj": [218, 235, 268, 619], "bj": [218, 235, 268, 332, 365, 619], "z1": [218, 619], "z2": [218, 619], "yj": [219, 619], "nanj": [221, 619], "809": [221, 619], "569": [221, 619], "733": [221, 619], "notat": [223, 619, 634, 746, 813], "denot": [223, 619, 781], "quadrant": [223, 619], "rai": [223, 619, 845], "bitwis": [225, 228, 230, 265, 619], "170": [229, 619], "243": [229, 619], "xor": [230, 265, 619], "654": [232, 619], "ci": [233, 238, 240, 281, 619, 808, 814, 820, 827, 829, 840], "368": [233, 619], "670": [233, 619], "202": [233, 619, 808], "548": [233, 619], "1490": [233, 619], "57079633": [234, 619], "14159265": [234, 619], "71238898": [234, 619], "28318531": [234, 619], "02617994": [234, 619], "87266463": [234, 619], "01919862": [234, 619], "03839725": [234, 619], "05759586": [234, 619], "07679449": [234, 619], "09599311": [234, 619], "11519173": [234, 619], "35081118": [234, 619], "88139129": [234, 619], "underflow": [235, 242, 619, 624, 672, 814], "textbook": [235, 268, 619], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 489, 491, 619], "ac": [235, 268, 619, 792, 793], "bd": [235, 268, 619], "bc": [235, 268, 619, 792, 793], "versu": [235, 268, 619], "riemann": [235, 268, 619], "sphere": [235, 268, 619], "c99": [235, 268, 619], "infinit": [235, 268, 282, 619], "unlik": [235, 268, 619, 808, 813, 816, 845, 860, 862], "698": [235, 619], "truth": [236, 246, 247, 254, 255, 271, 370, 442, 619, 758, 760, 771, 802, 819, 826, 829], "32862675": [237, 619], "67780113": [237, 619], "11246294": [237, 619], "42839241": [237, 619], "52050018": [237, 619], "16799599": [237, 619], "30787992": [237, 619], "43796915": [237, 619], "98667163": [237, 619], "79690808": [237, 619], "88020504": [237, 619], "91031402": [237, 619], "95228523": [237, 619], "96610528": [237, 619], "cut": [238, 240, 280, 281, 282, 285, 619, 804, 844, 861], "08553692": [238, 619], "567": [238, 619], "00344786": [238, 619], "76297021": [238, 619], "197948": [238, 619], "53253174": [238, 619], "accur": [240, 258, 619, 624, 672, 823], "fdlibm": [240, 258, 619], "compliant": [240, 258, 263, 264, 329, 330, 365, 619, 634, 747, 748, 749, 751], "potenti": [240, 258, 619, 799, 804, 805, 813, 814, 826, 833, 858], "632": [240, 619], "20e": [240, 619], "72e": [240, 619, 763], "greatest": [241, 242, 245, 619], "pep": [242, 619, 821], "disambigu": [242, 619, 824], "former": [242, 619, 805, 814, 817, 826], "latter": [242, 619, 805, 808, 810, 814, 817, 826], "overload": [242, 619, 829], "led": [242, 619, 808, 857], "subtl": [242, 619, 814, 861], "bug": [242, 619, 799, 804, 806, 811, 819, 820, 826, 829, 841], "ambigu": [242, 619], "semant": [242, 277, 371, 481, 619, 814, 834, 839, 844, 856], "ill": [242, 619, 765], "surpris": [242, 619, 840], "arrau": [248, 619], "log_": [257, 259, 619], "742": [258, 619], "negat": [270, 332, 365, 619], "52095687": [273, 619], "92457771": [273, 619], "49372482": [273, 619], "22738838": [273, 619], "156": [273, 619, 763], "5877228": [273, 619], "189": [274, 619, 628, 705], "252": [274, 619], "378": [274, 619], "1150": [274, 619], "2890": [274, 619], "172": [274, 619], "487": [274, 619, 623, 647], "344": [274, 619], "355j": [275, 332, 365, 619], "55j": [275, 332, 365, 619], "primarili": [277, 619, 804, 812, 855], "reason": [277, 286, 619, 804, 806, 808, 809, 812, 813, 814, 816, 822, 825, 826, 829, 830, 832, 834, 836, 845, 861], "counterpart": [278, 619, 812, 823], "deliber": [278, 619, 832], "imprecis": [278, 619], "5654": [278, 619], "034": [278, 619], "433": [278, 605, 607, 619, 622], "signum": [279, 619], "operatornam": [279, 281, 619, 624, 659], "textrm": [279, 619], "932": [280, 619], "746": [280, 619], "657": [280, 529, 619, 621], "indistinguish": [282, 619], "convent": [282, 619, 624, 634, 664, 746, 806, 810, 821, 830, 844, 861], "infti": [282, 619], "32455532": [282, 619], "89897949": [282, 619], "169": [282, 619], "analyt": [285, 619, 855, 857, 861], "pole": [285, 619], "546": [285, 619, 623, 647], "916": [285, 619, 625, 683], "996": [285, 619], "histor": [286, 619], "stem": [286, 619, 825], "older": [286, 619], "advis": [286, 619, 826], "462": [286, 619], "604": [286, 619], "984": [286, 619], "997": [286, 619], "0375": [288, 619], "032": [288, 619], "57258511": [291, 360], "69999999": [291, 360, 612, 622], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 808, 829, 855], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 634, 746, 792, 793], "leakag": [306, 362], "wors": [306, 362, 845], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 855], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 561, 621, 804, 805, 806, 810, 814, 815, 816], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 805], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 634, 747, 749], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 534, 621], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 473, 792, 809, 811, 829], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 804, 824, 854, 855], "upstream": [357, 367, 805, 806, 808, 819, 824], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 607, 622, 840, 855], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 824], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 621], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 763], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 459, 805, 811, 813, 829, 839, 857], "5d": [368, 393, 779], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 626, 689, 794, 818], "interp": [368, 832], "xp": [368, 402, 808], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 832], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 813], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 419, 624, 656], "subdiagon": [369, 419, 624, 656], "eigendecomposit": [369, 421, 624, 658, 659], "qlq\u1d40": [369, 421, 624, 658, 659], "tridiagon": [369, 422], "38196602": [369, 422], "61803389": [369, 422], "35048741": [369, 422], "56710052": [369, 422], "06693714": [369, 422], "74234426": [369, 422], "56155282": [369, 422], "56155276": [369, 422], "82842714": [369, 422], "82842731": [369, 422, 624, 659], "necessarili": [369, 423, 809, 812], "generalis": [369, 424], "skip_matrix": [369, 427, 429], "khatri_rao_product": [369, 427], "kronecker_product": [369, 429], "n_column": [369, 429], "nnmf": [369, 430], "hoi": [369, 435, 441], "solve_triangular": 369, "unit_diagon": [369, 436], "solut": [369, 436, 624, 673, 763, 799, 802, 804, 805, 806, 812, 814, 819, 827, 829, 832, 853, 857], "determinist": [369, 437], "borrow": [369, 437, 807], "extmath": [369, 437], "ivan": [369, 438], "oseledet": [369, 438], "scientif": [369, 438, 855], "2295": [369, 438], "2317": [369, 438], "2011": [369, 438], "convention": [370, 443, 858], "issu": [370, 443, 778, 800, 801, 802, 803, 805, 808, 810, 811, 813, 814, 815, 816, 818, 819, 826, 829, 830, 832, 834, 838, 840, 846, 848], "explicit": [370, 371, 443, 481, 805, 812, 814, 824, 825, 826, 834, 840, 855], "555969": [370, 443], "223876": [370, 443], "111938": [370, 443], "42649534": [370, 443], "68651628": [370, 443], "51119184": [370, 443], "59967244": [370, 443], "mae": [370, 444], "91097307": [370, 446], "3467": [370, 447], "0133": [370, 447], "0250": [370, 447], "0056": [370, 447], "0025": [370, 447], "0675": [370, 447], "hing": [370, 448], "6987": [370, 448], "1606": [370, 448], "3711": [370, 448], "4032": [370, 448], "6931": [370, 448], "whilst": [371, 451, 452, 453, 839, 842, 855], "ary3": [371, 453], "check_scalar": 371, "force_integ": [371, 455], "force_posit": [371, 455], "mod": [371, 456, 808], "tall": [371, 462], "appear": [371, 464, 465, 601, 621, 805, 806, 808, 826, 832, 848], "horizot": [371, 469], "shortcut": [371, 473, 805], "linear_ramp": [371, 473], "reflect": [371, 473, 806, 809, 825, 829], "ramp": [371, 473], "mirror": [371, 473, 804, 855], "padding_func": [371, 473], "iaxis_pad_width": [371, 473], "iaxi": [371, 473], "unalt": [371, 473], "put": [371, 478, 799, 804, 829, 840, 861], "mul": [371, 478, 825, 836], "conceptu": [371, 481, 851, 856], "concern": [371, 481, 806, 807, 812, 814, 816, 825, 832, 833, 861], "regard": [371, 481, 803, 812, 826, 827, 832, 845], "mutat": [371, 481], "elimin": [371, 486, 805], "consecut": [371, 486], "batch_mean": [374, 489, 491], "batch_var": [374, 489, 491], "running_vari": [374, 489, 491], "local_response_norm": 374, "neighbour": [374, 494], "42857143": [374, 495], "5714286": [374, 495], "multivari": [375, 498], "bayesian": [375, 498], "supposedli": [378, 502], "indirect": [378, 503], "secondari": [378, 503], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 506], "crow_indic": [379, 506], "col_indic": [379, 506], "ccol_indic": [379, 506], "row_indic": [379, 506], "dense_shap": [379, 506], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 510, 624, 672, 673, 804, 825, 827], "aw": [380, 510, 845], "48447205": [380, 510], "c0": [380, 513], "ck": [380, 513], "c2": [380, 513], "nearest_jax": [380, 520], "trace_on_next_step": [524, 621, 783, 838], "recalcul": [527, 621], "my_sum": [527, 621], "val1": [527, 621], "val2": [527, 621], "cached_sum": [527, 621], "line_eq": [527, 621], "slp": [527, 621], "itc": [527, 621], "cached_line_eq": [527, 621], "0353": [528, 621], "424": [528, 621], "176": [528, 621], "339": [528, 621], "271": [528, 621], "391": [528, 621], "417": [529, 621], "583": [529, 621], "0667": [529, 621], "267": [529, 621], "131": [529, 621], "263": [529, 621], "394": [529, 621, 630, 730], "526": [529, 621], "788": [529, 621], "default_str": [532, 621], "46999979": [533, 621], "66000009": [533, 621], "93000001": [533, 621], "29000092": [533, 621], "33999991": [533, 621], "6400001": [533, 621], "96000004": [533, 621], "36000013": [533, 621], "51999998": [533, 621], "67000008": [533, 621], "suppos": [533, 621, 814, 829], "960": [533, 621], "3600": [533, 621], "h1": [533, 621], "w1": [533, 621], "40499985": [534, 621], "61000061": [534, 621], "max_depth": [545, 621], "seen_set": [545, 621], "local_set": [545, 621], "referr": [545, 621], "redund": [545, 621, 799, 814, 818, 826, 848], "example_funct": [545, 621], "ref_id_1": [545, 621], "ref_id_2": [545, 621], "ref_id_3": [545, 621], "ivyexcept": [550, 582, 621, 794, 815, 818, 823, 825, 826, 830], "allow_dupl": [560, 621], "fork": [561, 621, 800, 804, 808, 813, 819], "forkserv": [561, 621], "spawn": [561, 621], "mp_default": [561, 621], "defaultcontext": [561, 621], "0x7f4e3193e520": [561, 621], "mp_fork": [561, 621], "forkcontext": [561, 621], "0x7f4e3193e580": [561, 621], "mp_spawn": [561, 621], "spawncontext": [561, 621], "0x7f4e3193e5e0": [561, 621], "mp_forkserv": [561, 621], "forkservercontext": [561, 621], "0x7f4e3193e640": [561, 621], "garbag": [563, 621], "collector": [563, 621], "get_all_arrays_in_memori": [563, 621], "exception_trace_mod": [567, 590, 621, 831], "lenient": [568, 591, 621], "inplace_mod": [568, 591, 621], "break": [568, 621, 799, 810, 814, 821, 830, 840], "infus": [569, 621], "nestable_mod": [572, 594, 621, 831], "precise_mod": [573, 595, 621, 831], "shape_array_mod": [575, 597, 621, 831], "show_func_wrapper_trace_mod": [576, 598, 621, 831], "tmp_dr": [577, 621], "tmp_dir": [577, 599, 621, 831], "my_tmp": [577, 621], "49999999999975": [579, 621], "5015015015010504": [579, 621], "000444502911705e": [579, 621], "9999999999995j": [579, 621], "00000262": [580, 621], "15605032": [580, 621], "01208451j": [580, 621], "00048": [580, 621], "1296": [580, 621], "00864": [580, 621], "isn": [582, 621, 806, 823, 825, 837, 840, 857], "100000023841858": [584, 621], "200000047683716": [584, 621], "299999952316284": [584, 621], "400000095367432": [584, 621], "599999904632568": [584, 621], "hemant": [588, 621], "unset_shape_array_mod": [589, 621], "set_exception_trace_mod": [590, 621, 818], "set_min_bas": [592, 621], "set_min_denomin": [593, 621], "set_nestable_mod": [594, 621], "set_precise_mod": [595, 621], "set_queue_timeout": [596, 621], "set_shape_array_mod": [597, 621], "set_show_func_wrapper_trace_mod": [598, 621, 818], "set_tmp_dir": [599, 621], "my_dir": [599, 621], "451": [600, 621], "in_ax": [601, 621], "out_ax": [601, 621], "thereof": [601, 621], "summaris": [601, 621], "99999998": [602, 622], "19999998": [602, 622], "00000001": [602, 622], "00300001": [602, 622], "00800001": [602, 622], "0125": [602, 622], "17294501": [602, 622], "15770318": [602, 622], "20863818": [602, 622], "90000075": [603, 622], "90000164": [603, 622], "9000032": [603, 622], "50000012e": [603, 622], "92558754": [603, 622], "92558694": [603, 622], "92558682": [603, 622], "92558861": [603, 622], "60000025e": [603, 622], "01024": [603, 622], "retain_grad": [604, 622], "func_ret": [604, 622, 824], "666666": [604, 622], "333332": [604, 622], "66666675": [604, 612, 622], "argnum": [605, 622], "933": [605, 607, 622], "jac_fn": [607, 622], "639": [608, 622], "361": [608, 622], "52565837": [609, 622], "8418861": [609, 622], "68377209": [609, 622], "value_grad": [612, 622], "42333412": [612, 622], "5333333": [612, 622], "93333334": [612, 622], "43333334": [612, 622], "0666666": [612, 622], "softsign": 613, "718281828459045": 614, "euler": 614, "141592653589793": 614, "cmp_i": 615, "cmp_isnot": 615, "for_loop": 615, "if_els": 615, "try_except": 615, "to_dlpack": 616, "as_ivy_dtyp": [617, 826], "as_native_dtyp": 617, "check_float": 617, "closest_valid_dtyp": 617, "default_dtyp": [617, 814, 822], "dtype_bit": 617, "function_supported_dtyp": [617, 814, 829], "function_unsupported_dtyp": [617, 814], "infer_default_dtyp": 617, "invalid_dtyp": [617, 814], "is_hashable_dtyp": 617, "is_native_dtyp": 617, "promote_typ": [617, 814], "promote_types_of_input": [617, 814, 825], "type_promote_arrai": [617, 814], "unset_default_complex_dtyp": 617, "unset_default_float_dtyp": 617, "unset_default_int_dtyp": 617, "unset_default_uint_dtyp": 617, "valid_dtyp": 617, "defaultcomplexdtyp": 617, "defaultdtyp": 617, "defaultfloatdtyp": 617, "defaultintdtyp": 617, "defaultuintdtyp": 617, "as_ivy_dev": [618, 836], "clear_cached_mem_on_dev": 618, "dev_util": [618, 815], "function_supported_devic": 618, "function_unsupported_devic": 618, "get_all_ivy_arrays_on_dev": [618, 815], "handle_soft_device_vari": [618, 815], "num_cpu_cor": [618, 815], "num_gpu": [618, 815, 829], "num_ivy_arrays_on_dev": 618, "percent_used_mem_on_dev": 618, "print_all_ivy_arrays_on_dev": 618, "set_split_factor": [618, 818], "split_func_cal": 618, "total_mem_on_dev": [618, 815], "tpu_is_avail": 618, "unset_default_devic": [618, 815], "unset_soft_device_mod": [618, 815], "used_mem_on_dev": 618, "defaultdevic": [618, 815], "profil": 618, "save_dir": 618, "arg_info": 621, "arg_nam": 621, "cache_fn": [621, 822], "current_backend_str": [621, 829, 834, 836], "function_supported_devices_and_dtyp": 621, "function_unsupported_devices_and_dtyp": 621, "get_item": [621, 825], "get_referrers_recurs": 621, "inplace_arrays_support": 621, "inplace_variables_support": 621, "is_ivy_nested_arrai": 621, "isscalar": 621, "match_kwarg": 621, "num_arrays_in_memori": 621, "print_all_arrays_in_memori": 621, "set_item": 621, "to_ivy_shap": 621, "to_native_shap": 621, "try_else_non": 621, "unset_array_mod": [621, 831], "unset_exception_trace_mod": 621, "unset_inplace_mod": 621, "unset_min_bas": 621, "unset_min_denomin": 621, "unset_nestable_mod": 621, "unset_precise_mod": 621, "unset_queue_timeout": 621, "unset_show_func_wrapper_trace_mod": 621, "unset_tmp_dir": 621, "vmap": [621, 840, 855], "arraymod": 621, "precisemod": [621, 814], "jac": 622, "value_and_grad": [622, 824], "neural": [623, 775, 779, 799, 849, 851, 853, 854, 855, 859, 861, 862], "feature_group_count": [623, 636, 643, 644], "oiw": [623, 636, 637, 643], "oihw": [623, 636, 639, 643], "oidhw": [623, 636, 641, 643], "dhwio": [623, 636, 637, 641, 643], "conv_general_dil": [623, 826], "conv_general_transpos": 623, "depthwis": [623, 645, 765, 779], "overfit": [623, 646], "overal": [623, 646, 793, 812, 814, 815, 817, 839, 848, 851, 853, 854, 855], "1428566": [623, 646], "49000001": [623, 646], "55599999": [623, 646], "21000004": [623, 646], "incom": [623, 647], "666": [623, 624, 647, 665], "4269": [623, 647], "911": [623, 647, 818], "157": [623, 647], "753": [623, 647], "545": [623, 630, 647, 728], "547": [623, 647, 815], "124": [623, 647], "963": [623, 647], "98495483": [623, 647], "0293808": [623, 647], "0159359": [623, 647], "74752808": [623, 647], "20942307": [623, 647], "3205719": [623, 647], "long": [623, 648, 805, 806, 813, 814, 816, 818, 819, 826, 834, 855], "lstm": [623, 648, 779, 834, 855], "batch_first": [623, 649], "multi": [623, 624, 649, 654, 765, 779, 816, 833, 840, 851, 853, 855, 859], "paper": [623, 649, 799, 846], "vaswani": [623, 649], "al": [623, 649], "num_attention_head": [623, 649], "key_dim": [623, 649, 779], "value_dim": [623, 649, 779], "measur": [623, 649, 779], "attention_weight": [623, 649], "unbatch": [623, 649], "nm": 623, "box": [623, 650, 651, 805], "iou_threshold": [623, 650], "max_output_s": [623, 650], "score_threshold": [623, 650], "roi_align": 623, "spatial_scal": [623, 651], "sampling_ratio": [623, 651], "23333359": [623, 652], "03946018": [623, 652], "0280633": [623, 652], "29981947": [623, 652], "29981089": [623, 652], "06345534": [623, 652], "9634552": [623, 652], "19336844": [623, 652], "09336829": [623, 652], "axisa": [624, 654], "axisb": [624, 654], "axisc": [624, 654], "293": [624, 655], "46997": [624, 655], "explicitli": [624, 659, 660, 676, 760, 779, 780, 781, 802, 808, 809, 810, 812, 814, 817, 818, 819, 822, 823, 824, 825, 827, 829, 834, 840, 849, 855], "17157288": [624, 659], "9238795": [624, 659], "78930789": [624, 659], "59803128": [624, 659], "19127655": [624, 659], "31213903": [624, 659], "63418275": [624, 659], "84632206": [624, 659], "70548367": [624, 659], "70223427": [624, 659], "09570674": [624, 659], "63116378": [624, 659], "56109613": [624, 659], "53554028": [624, 659], "32237405": [624, 659], "43822157": [624, 659], "83906901": [624, 659], "50766778": [624, 659], "71475857": [624, 659], "48103389": [624, 659], "3676433": [624, 659], "68466955": [624, 659], "62933773": [624, 659], "77917379": [624, 659], "14264561": [624, 659], "61036086": [624, 659], "45033181e": [624, 660], "02829754e": [624, 660], "54220343e": [624, 660], "12647155e": [624, 660], "38447177e": [624, 660], "56155300e": [624, 660], "26794919": [624, 660], "7320509": [624, 660], "0012": [624, 662], "00342": [624, 662], "000565": [624, 662], "0104": [624, 662], "000981": [624, 662], "00282": [624, 662], "000766": [624, 662], "0322": [624, 662], "00237": [624, 662], "000151": [624, 662], "00101": [624, 662], "00019": [624, 662], "0214": [624, 662], "00171": [624, 662], "0107": [624, 662], "0167": [624, 662], "0472": [624, 662], "0536": [624, 662], "0177": [624, 662], "000429": [624, 662], "00762": [624, 662], "lu_factor": 624, "pivot": [624, 663], "lu": [624, 663], "frobeniu": [624, 665], "nuclear": [624, 665], "induc": [624, 665], "ranl": [624, 665], "47722558": [624, 665], "776": [624, 665], "6000004": [624, 665], "118": [624, 666], "moor": [624, 670], "penros": [624, 670], "31622776": [624, 671], "94868332": [624, 671], "1622777": [624, 671], "42718887": [624, 671], "deteremin": [624, 672], "logsabsdet": [624, 672], "subject": [624, 672], "ordin": [624, 673], "b2": [624, 673], "usvh": [624, 674], "cetera": [624, 674], "driver": [624, 675, 840], "cusolv": [624, 675], "gesvd": [624, 675], "gesvdj": [624, 675], "gesvda": [624, 675], "86217213": [624, 675], "31816804": [624, 675], "615": [624, 675], "ss": [624, 675], "25994301": [624, 675], "16403675": [624, 675], "61529762": [624, 675], "51231241": [624, 675], "39777088": [624, 675], "15413129": [624, 675], "1029852": [624, 675], "01383495": [624, 675], "86647356": [624, 675], "7786541": [624, 675], "55970621": [624, 675], "16857576": [624, 675], "86412698": [624, 675], "37566757": [624, 675], "88477993": [624, 675], "95925522": [624, 675], "6444726": [624, 675], "54687881": [624, 675], "16134834": [624, 675], "35037804": [624, 675], "31025076": [624, 675], "35769391": [624, 675], "transposit": [624, 676], "success": [624, 634, 678, 750, 752, 805, 813, 845], "0x": [624, 679], "Such": [624, 679, 822, 829], "progress": [624, 679, 805, 806, 839], "alexandr": [624, 679], "theophil": [624, 679], "dot_product": [624, 680], "9000001": [624, 681], "64158917": [624, 681], "skew": [624, 682], "6666193": [625, 683], "67164493e": [625, 683], "05471958e": [625, 683], "32684899e": [625, 683], "30496836e": [625, 683], "05393649": [625, 683], "49992943": [625, 683], "83330965": [625, 683], "35667494": [625, 685], "79329094": [625, 685], "512926": [625, 685], "outsid": [626, 686, 697, 814, 815, 822, 836, 860], "honor": [626, 693], "beyond": [626, 694, 817, 826, 861], "famili": [626, 697], "intxx": [626, 697], "floatxx": [626, 697], "rep": [626, 699], "fomaml_step": 627, "inner_cost_fn": [627, 702, 703, 704], "outer_cost_fn": [627, 702, 703], "inner_grad_step": [627, 702, 703, 704], "inner_learning_r": [627, 702, 703, 704], "inner_optimization_step": [627, 702, 703, 704], "inner_batch_fn": [627, 702, 703], "outer_batch_fn": [627, 702, 703], "average_across_step": [627, 702, 703], "inner_v": [627, 702, 703], "keep_inner_v": [627, 702, 703], "outer_v": [627, 702, 703], "keep_outer_v": [627, 702, 703], "return_inner_v": [627, 702, 703, 704], "num_task": [627, 702, 703, 704], "maml": [627, 702, 703], "0x7f76951f2e60": [627, 702, 703, 704], "maml_step": 627, "vanilla": [627, 703, 838, 855], "_variabl": [627, 703, 704], "sub_batch": [627, 703], "40069818": [627, 703], "13723135": [627, 703], "reptile_step": 627, "cost_fn": [627, 704], "reptil": [627, 704], "batch_in": [627, 704], "4485182": [627, 704], "139": [627, 704], "9569855": [627, 704], "9880483": [627, 704], "01766968": [627, 704], "02197957": [627, 704], "02197981": [627, 704], "all_nested_indic": 628, "include_nest": [628, 705], "_index": [628, 705, 716], "_base": [628, 705, 715, 716, 825], "themselv": [628, 705, 804, 812, 814, 815, 817, 822, 826, 838, 852, 861], "863": [628, 705, 815], "672": [628, 705], "482": [628, 705], "674": [628, 705], "341": [628, 705], "copy_nest": 628, "to_mut": [628, 706, 717], "deepli": [628, 706, 840, 855], "copied_nest": [628, 706], "1337": [628, 706, 717], "duplicate_array_index_chain": 628, "index_nest": [628, 822], "insert_into_nest_at_index": 628, "insert_into_nest_at_indic": 628, "onto": [628, 711, 717, 843, 844, 855], "special_squar": [628, 711], "6666666666666667": [628, 711], "special_pow": [628, 711], "linear_model": [628, 711], "map_nest_at_index": 628, "_result": [628, 712, 722], "hh": [628, 712, 717], "map_nest_at_indic": 628, "ub": [628, 713], "tb": [628, 713], "multi_index_nest": 628, "nested_ani": 628, "check_nest": [628, 715, 716], "nested_argwher": 628, "stop_after_n_found": [628, 716], "nested_indic": [628, 716], "nested_map": [628, 815, 822], "_tuple_check_fn": [628, 717], "_list_check_fn": [628, 717], "_dict_check_fn": [628, 717], "wherebi": [628, 717, 804, 852], "ah": [628, 717], "bh": [628, 717], "ch": [628, 717], "dh": [628, 717, 808], "eh": [628, 717], "gh": [628, 717, 805, 819], "ih": [628, 717], "1338": [628, 717], "nested_multi_map": 628, "index_chain": [628, 718], "nest0": [628, 718], "ivy_arrai": [628, 718, 809, 826], "unappli": [628, 718], "prune_empti": 628, "prune_nest_at_index": 628, "prune_nest_at_indic": 628, "set_nest_at_index": 628, "set_nest_at_indic": 628, "xyz": [628, 723], "pqr": [628, 723], "mini": [629, 724, 779, 782], "uniformli": [630, 726, 728], "22346112": [630, 727], "0922": [630, 727], "9213753": [630, 727], "12818667": [630, 727], "799": [630, 727], "469": [630, 727], "287": [630, 727], "0366": [630, 727], "26431865": [630, 728], "475": [630, 728], "878": [630, 728], "861": [630, 728], "929": [630, 728], "789": [630, 728], "519": [630, 728], "0435": [630, 728], "381": [630, 728], "4608004": [630, 728], "8458502": [630, 728], "67270088": [630, 728], "31128597": [630, 728], "zeroel": [631, 734], "guarante": [632, 736, 738, 809, 814, 825, 840, 846], "aggreg": [632, 736, 813], "fourth": [632, 736], "1141": [632, 736], "8101": [632, 736], "9298": [632, 736], "8460": [632, 736], "2119": [632, 736], "3519": [632, 736], "6252": [632, 736], "4033": [632, 736], "7443": [632, 736], "2577": [632, 736], "3707": [632, 736], "0545": [632, 736], "3238": [632, 736], "5944": [632, 736], "0775": [632, 736], "4327": [632, 736], "62519997": [632, 736], "40329999": [632, 736], "59439999": [632, 736], "74430001": [632, 736], "81010002": [632, 736], "84600002": [632, 736], "92979997": [632, 736], "einstein": [634, 746, 792], "117": [634, 746], "intend": [634, 752, 761, 778, 808, 821, 824, 853, 855, 859, 860], "07472222": [634, 753], "00666667": [634, 753], "08966666": [634, 753], "simplicit": [635, 754, 755], "ivy_test": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 808, 811, 813, 819, 827], "test_ivi": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 811, 813, 819, 827, 829], "assert_all_clos": [758, 827], "ret_np": [758, 760, 827], "ret_from_gt_np": [758, 827], "ground_truth_backend": [758, 760, 761, 770, 771, 802, 819, 827], "mark": [758, 804, 806, 808, 829, 834], "assert_same_typ": 758, "ret_from_target": 758, "ret_from_gt": 758, "backend_to_test": [758, 760, 802, 819, 827], "gt_backend": 758, "with_backend": [758, 788], "assert_same_type_and_shap": 758, "this_key_chain": 758, "check_unsupported_devic": 758, "input_devic": 758, "all_as_kwargs_np": [758, 760], "presenc": [758, 812, 825], "check_unsupported_device_and_dtyp": 758, "input_dtyp": [758, 760, 770, 802, 819, 827, 829], "check_unsupported_dtyp": 758, "test_unsupported_funct": 758, "value_test": 758, "ret_np_flat": 758, "ret_np_from_gt_flat": 758, "specific_tolerance_dict": 758, "ret_from_np_gt_flat": 758, "function_test": 760, "args_to_contain": 760, "array_arg": [760, 822], "args_to_frontend": 760, "frontend_array_fn": 760, "arrays_to_frontend": 760, "as_list": 760, "convtru": 760, "nativeclass": 760, "counter": [760, 838], "create_args_kwarg": 760, "args_np": 760, "arg_np_val": 760, "args_idx": 760, "kwargs_np": 760, "kwarg_np_val": 760, "kwargs_idx": 760, "test_flag": [760, 802, 819, 827, 829], "on_devic": [760, 770, 802, 819, 827], "flatten_and_to_np": 760, "flatten_frontend": 760, "flatten_frontend_fw_to_np": 760, "frontend_ret": [760, 827], "isscalar_func": 760, "is_native_array_func": 760, "to_numpy_func": 760, "flatten_frontend_to_np": 760, "get_frontend_ret": 760, "frontend_fn": 760, "frontend_array_funct": 760, "precision_mod": [760, 770, 771, 819], "test_trac": [760, 770, 771, 802, 808, 819], "get_ret_and_flattened_np_arrai": 760, "gradient_incompatible_funct": 760, "gradient_test": [760, 829], "rtol_": [760, 802, 819], "atol_": [760, 802, 819, 827], "tolerance_dict": 760, "gradient_unsupported_dtyp": 760, "kwargs_to_args_n_kwarg": 760, "num_positional_arg": [760, 770, 771, 802, 819, 827, 829], "port": [760, 846], "test_frontend_funct": [760, 827], "fn_tree": [760, 761, 771, 802, 819, 826, 827, 829], "gt_fn_tree": [760, 771], "test_valu": [760, 827, 829], "frontend_function_flag": [760, 770], "functiontestflag": [760, 770, 802, 819], "with_out": [760, 770, 802, 819, 827, 829], "instance_method": [760, 770, 802, 819, 829], "as_vari": [760, 770, 802, 819, 827, 829], "namespac": [760, 804, 814, 823, 826, 827, 830, 834, 839], "test_frontend_method": [760, 827], "init_input_dtyp": [760, 827], "method_input_dtyp": [760, 827], "init_flag": [760, 827, 829], "method_flag": [760, 770, 827, 829], "init_all_as_kwargs_np": [760, 827], "method_all_as_kwargs_np": [760, 827], "frontend_method_data": [760, 827], "init_as_variable_flag": [760, 771], "dictat": [760, 809, 816, 821, 825], "init_num_positional_arg": [760, 771], "init_native_array_flag": 760, "with_v": 760, "ret_gt": 760, "test_funct": [760, 802, 805, 806, 813, 819, 827, 829], "fn_name": [760, 761, 771, 802, 810, 819, 827, 829], "return_flat_np_arrai": 760, "as_variable_flag": [760, 771, 829], "native_array_flag": [760, 771, 829], "container_flag": [760, 770, 771, 829], "test_function_backend_comput": 760, "test_function_ground_truth_comput": 760, "arg_np_arrai": 760, "arrays_args_indic": 760, "arrays_kwargs_indic": 760, "kwarg_np_arrai": 760, "test_gradient_backend_comput": 760, "test_gradient_ground_truth_comput": 760, "test_method": 760, "method_nam": [760, 769, 771, 827], "init_with_v": 760, "method_with_v": 760, "test_gradi": [760, 770, 771, 802, 819, 829], "method_as_variable_flag": [760, 771], "method_num_positional_arg": [760, 771], "method_native_array_flag": 760, "method_container_flag": [760, 771], "test_method_backend_comput": 760, "test_method_ground_truth_comput": 760, "org_con_data": 760, "args_np_method": 760, "met_arg_np_v": 760, "met_args_idx": 760, "kwargs_np_method": 760, "met_kwarg_np_v": 760, "met_kwargs_idx": 760, "v_np": 760, "traced_if_requir": 760, "wrap_frontend_function_arg": 760, "holder": 761, "current_frontend_config": 761, "0x7f7688705d10": 761, "interruptedtest": 761, "test_interrupt": 761, "baseexcept": 761, "tri": [761, 814], "testdata": 761, "supported_device_dtyp": 761, "is_method": 761, "setup_api_test": 761, "test_data": 761, "setup_frontend_test": 761, "teardown_api_test": 761, "teardown_frontend_test": 761, "hypothesis_help": [763, 764, 765, 766], "array_help": 763, "array_and_broadcastable_shap": 763, "searchstrategi": [763, 764, 765, 766, 770, 771, 829], "array_bool": [763, 829], "min_valu": [763, 764, 765, 766, 802, 819, 827, 829], "max_valu": [763, 764, 765, 766, 827, 829], "ex": [763, 764, 765, 766, 771, 813, 849], "strategi": [763, 764, 765, 766, 770, 771, 804, 827], "array_helpers_dtype_info_help": 763, "kind_dtyp": [763, 765], "array_indices_axi": 763, "array_dtyp": [763, 764, 829], "indices_dtyp": 763, "get_dtyp": [763, 764, 802, 819, 827, 829], "disable_random_axi": 763, "axis_zero": 763, "allow_inf": [763, 766, 827, 829], "min_num_dim": [763, 765, 827, 829], "max_num_dim": [763, 765, 827, 829], "min_dim_s": [763, 765, 827, 829], "max_dim_s": [763, 765, 827], "first_dimension_onli": 763, "indices_same_dim": 763, "valid_bound": 763, "hypothesi": [763, 765, 771, 804, 806, 808, 813, 823], "65536": 763, "44758124e": [763, 829], "array_indices_put_along_axi": 763, "values_dtyp": 763, "array_valu": [763, 829], "abs_smallest_v": [763, 765, 766], "allow_nan": [763, 766, 829], "allow_subnorm": [763, 766, 829], "exclude_min": [763, 766, 829], "exclude_max": [763, 766], "large_abs_safety_factor": [763, 765, 766, 802, 819, 827, 829], "small_abs_safety_factor": [763, 765, 766, 802, 819, 827], "safety_factor_scal": [763, 765, 766, 827, 829], "subnorm": [763, 766], "safeti": [763, 765, 766, 855], "0002": [763, 766], "get_shap": [763, 765, 827, 829], "1806": 763, "36912": 763, "6955": 763, "59576": 763, "1025": 763, "arrays_and_ax": 763, "available_dtyp": [763, 764, 802, 819, 827, 829], "allow_non": [763, 765, 827, 829], "return_dtyp": 763, "force_int_axi": 763, "26e": 763, "10e": 763, "24322108": 763, "26446279e": 763, "96046448e": 763, "008": 763, "17549435e": 763, "038": 763, "06541027e": 763, "13725760e": 763, "07143888": 763, "arrays_for_pool": 763, "min_dim": 763, "max_dim": 763, "min_sid": 763, "max_sid": 763, "explicit_or_str_pad": 763, "only_explicit_pad": 763, "return_dil": 763, "mixed_fn_compo": [763, 764, 765, 766, 829], "return_data_format": 763, "cond_data_gen_help": 763, "create_concatenable_arrays_dtyp": 763, "min_num_arrai": 763, "max_num_arrai": 763, "concat_dim": 763, "common_shap": [763, 829], "stackabl": 763, "given_common_shap": 763, "create_nested_input": 763, "leaf_valu": 763, "dtype_and_valu": [763, 802, 819, 827, 829], "num_arrai": [763, 764, 827, 829], "shared_dtyp": [763, 764, 827], "ret_shap": 763, "array_api_dtyp": [763, 764], "shape_kei": 763, "37915": 763, "6322": 763, "26765": 763, "12413": 763, "26986": 763, "34665": 763, "000e": 763, "711e": 763, "100e": 763, "955e": [763, 829], "40817": 763, "56193": 763, "29200": 763, "5851": 763, "9746": 763, "9604645e": 763, "103": 763, "41795": 763, "1170789994": 763, "44251": 763, "44209": 763, "433075925": 763, "24791": 763, "24691": 763, "24892": 763, "16711": 763, "972": 763, "15357": 763, "72057594037927936": 763, "dtype_array_queri": 763, "allow_mask": 763, "allow_neg_step": 763, "dtype_array_query_v": 763, "dtype_values_axi": [763, 829], "min_axi": 763, "max_axi": 763, "valid_axi": 763, "allow_neg_ax": 763, "min_axes_s": 763, "max_axes_s": 763, "force_tuple_axi": 763, "29788": 763, "62222885e": 763, "68281172e": 763, "257j": 763, "40129846e": 763, "90000000e": 763, "63426649e": 763, "91931887e": 763, "29488e": 763, "14361019e": 763, "12445": 763, "einsum_help": 763, "get_first_solve_batch_matrix": 763, "choose_adjoint": 763, "get_second_solve_batch_matrix": 763, "get_first_solve_matrix": 763, "allow_simplifi": 763, "choose_sid": 763, "xa": 763, "get_second_solve_matrix": 763, "list_of_s": 763, "sampled_from": [763, 827, 829], "min_siz": [763, 765, 771, 829], "max_siz": [763, 765, 771, 829], "size_bound": [763, 829], "999999999999999": 763, "9394938006792373": 763, "mutually_broadcastable_shap": 763, "num_shap": 763, "base_shap": 763, "dtype_help": 764, "univers": [764, 826, 844], "cast_filt": 764, "cast_filter_help": 764, "current_backend": [764, 788, 804, 810, 818, 822, 827, 830, 834], "get_castable_dtyp": 764, "castabl": 764, "prune_funct": 764, "intersect": [764, 813, 829], "signed_integ": 764, "real_and_complex": 764, "float_and_complex": 764, "general_help": 765, "broadcasterror": 765, "apply_safety_factor": 765, "embedding_help": 765, "general_helpers_dtype_info_help": 765, "get_axi": [765, 829], "allow_neg": 765, "sort_valu": 765, "force_tupl": 765, "force_int": 765, "assertionerror": [765, 802, 808, 818, 819, 827, 829], "get_bound": [765, 829], "get_mean_std": 765, "matrix_is_st": 765, "cond_limit": 765, "instabl": [765, 802, 814, 819], "computation": [765, 805], "prone": [765, 814], "thumb": 765, "gradual": 765, "strong": [765, 840, 845, 855], "collinear": 765, "reshape_shap": [765, 829], "two_broadcastable_shap": 765, "x_and_filt": 765, "number_help": 766, "arbitrarili": [766, 837], "safety_factor": 766, "backend_proc": 767, "input_queu": 767, "output_queu": 767, "frontend_proc": 767, "pipeline_help": 768, "backendhandl": 768, "update_backend": [768, 827], "backendhandlermod": 768, "enum": 768, "setbackend": 768, "withbackend": 768, "withbackendcontext": 768, "get_frontend_config": 768, "frontendmethoddata": 769, "ivy_init_modul": 769, "framework_init_modul": 769, "init_nam": 769, "test_parameter_flag": 770, "dynamicflag": [770, 771], "frontendfunctiontestflag": [770, 819], "with_copi": 770, "generate_frontend_arrai": [770, 771, 819], "testflag": 770, "apply_flag": 770, "args_to_iter": 770, "frontendinittestflag": 770, "frontendmethodtestflag": 770, "initmethodtestflag": 770, "methodtestflag": 770, "build_flag": 770, "frontend_init_flag": 770, "frontend_method_flag": 770, "function_flag": 770, "init_method_flag": 770, "testing_help": 771, "handle_frontend_method": [771, 827, 829], "class_tre": [771, 827], "init_tre": [771, 827], "init_native_arrai": 771, "_as_varaible_strategi": 771, "method_native_arrai": 771, "test_inplac": [771, 829], "_given_kwarg": 771, "test_compil": 771, "handle_frontend_test": [771, 827, 829], "alias": [771, 804, 826, 827], "number_positional_arg": [771, 827], "test_with_out": [771, 827, 829], "test_with_copi": 771, "handle_method": [771, 829], "method_tre": [771, 827, 829], "_gradient_strategi": 771, "handle_test": [771, 802, 819, 829], "test_instance_method": [771, 829], "num_positional_args_help": 771, "num_positional_args_method": 771, "geglu": 775, "leakyrelu": 775, "logsoftmax": 775, "from_flax_modul": 776, "native_modul": 776, "params_fx": 776, "rng_seed": 776, "constructor_arg": 776, "constructor_kwarg": 776, "instance_arg": 776, "instance_kwarg": 776, "flax": [776, 839, 840, 846, 855], "from_haiku_modul": 776, "params_hk": 776, "from_paddle_modul": 776, "from_torch_modul": 776, "dedic": [776, 821, 832, 836, 838], "to_keras_modul": 776, "native_module_class": 776, "modulehelp": [777, 781], "create_vari": [778, 838], "var_shap": [778, 838], "fan_out": [778, 838], "fan_in": [778, 838], "rectangular": 778, "firstlayersiren": 778, "siren": 778, "glorotuniform": [778, 779, 838], "glorot": 778, "xavier": 778, "neuron": 778, "w_1x_1": 778, "w_2x_2": 778, "w_nx_n": 778, "w_i": 778, "vanish": 778, "explod": [778, 843, 844], "kaimingnorm": 778, "fan_mod": [778, 838], "kaim": 778, "he": 778, "negative_slop": 778, "fan": 778, "propog": 778, "fan_sum": [778, 838], "Ones": 778, "randomnorm": 778, "stddev": 778, "w0": 778, "wlim": 778, "predefin": 778, "fan_avg": 778, "adaptiveavgpool1d": 779, "avgpool1d": 779, "implicit": [779, 812, 817, 826, 829, 834, 855], "avgpool2d": 779, "avgpool3d": 779, "e501": 779, "filter_s": 779, "weight_initi": [779, 838], "bias_initi": [779, 838], "0x7f7694dd9f00": 779, "0x7f7694dd9ea0": 779, "conv1dtranspos": 779, "0x7f7694dd9e40": 779, "0x7f7694dd9de0": 779, "filter_shap": 779, "0x7f7694dd9d80": 779, "0x7f7694dd9d20": 779, "0x7f7694dd9cc0": 779, "0x7f7694dd9c60": 779, "0x7f7694dd9b40": 779, "0x7f7694dd9ae0": 779, "conv3dtranspos": 779, "0x7f7694dd9a80": 779, "0x7f7694dd9a20": 779, "depthwiseconv2d": 779, "num_channel": 779, "0x7f7694dd9c00": 779, "0x7f7694dd9ba0": 779, "bernoul": 779, "num_embed": 779, "embedding_dim": 779, "padding_idx": 779, "lookup": 779, "num_embeddingss": 779, "renorm": 779, "insensit": 779, "num_lay": 779, "return_sequ": 779, "return_st": 779, "0x7f7694dd99c0": 779, "get_initial_st": 779, "0x7f7694dd9fc0": 779, "0x7f7694dd9f60": 779, "maxpool1d": 779, "maxpool3d": 779, "multiheadattent": 779, "embed_dim": 779, "head_dim": 779, "dropout_r": 779, "use_proj_bia": 779, "attention_ax": 779, "build_mod": [779, 780, 781], "on_init": [779, 781], "parallel": [779, 811, 855, 859, 860], "binarycrossentropyloss": 780, "store_var": [780, 781], "with_partial_v": [780, 781], "logpoissonloss": 780, "modulemeta": 781, "temporarili": [781, 802, 808, 819], "from_cal": 781, "module_dict": 781, "register_buff": 781, "register_paramet": 781, "weights_path": 781, "randomness_factor": 781, "with_edge_label": 781, "with_arg_label": 781, "with_output_label": 781, "output_connected_onli": 781, "highlight_subgraph": 781, "trace_kwarg": 781, "_unified_ivy_graph": 781, "_call": 781, "num_featur": 782, "trail": 782, "layernorm": 782, "normalized_shap": 782, "elementwise_affin": 782, "set_stat": [783, 838], "adamw": 783, "weight_decai": 783, "init_on_first_step": 783, "fallback_to_non_trac": 783, "ignore_miss": 783, "privat": [783, 826, 829], "_step": [783, 838], "stochast": [783, 855], "sub_modul": 784, "check_al": 785, "messag": [785, 794, 798, 805, 806, 813, 816, 818, 820, 826, 834, 836, 845], "check_all_or_any_fn": 785, "check_ani": 785, "check_dev_correct_format": 785, "check_dimens": 785, "check_elem_in_list": [785, 822, 825, 826], "elem": 785, "check_equ": [785, 826], "check_exist": 785, "check_fals": 785, "check_gather_input_valid": 785, "check_gather_nd_input_valid": 785, "check_great": 785, "allow_equ": [785, 818], "check_inplace_sizes_valid": [785, 825], "check_isinst": 785, "allowed_typ": 785, "check_kernel_padding_s": 785, "padding_s": 785, "check_less": [785, 818], "check_one_way_broadcast": 785, "check_same_dtyp": 785, "check_shapes_broadcast": 785, "check_tru": 785, "check_unsorted_segment_valid_param": 785, "ast_help": 787, "importtransform": 787, "nodetransform": 787, "impersonate_import": 787, "tree": [787, 814], "local_ivy_id": 787, "visit_import": 787, "visit_importfrom": 787, "ivyload": 787, "loader": [787, 837, 840], "exec_modul": 787, "ivypathfind": 787, "metapathfind": 787, "find_spec": 787, "fullnam": 787, "contextmanag": 788, "choose_random_backend": 788, "global_backend": 788, "dynamic_backend_convert": 788, "backend_stack": [788, 834], "prevent_access_loc": 788, "previous_backend": [788, 810], "unset": [788, 810, 834], "Or": [788, 799, 801, 825, 837], "set_backend_to_specific_vers": 788, "set_jax_backend": 788, "set_mxnet_backend": 788, "mx": 788, "set_numpy_backend": 788, "set_paddle_backend": 788, "set_tensorflow_backend": 788, "set_torch_backend": 788, "unset_backend": [788, 810], "sub_backend_handl": 789, "clear_sub_backend": 789, "find_available_sub_backend": 789, "sub_backends_loc": 789, "fn_name_from_version_specific_fn_nam": 789, "fn_name_from_version_specific_fn_name_sub_backend": 789, "sub_backend_vers": 789, "backend_vers": [789, 802, 814, 819], "set_sub_backend": 789, "sub_backend_str": 789, "set_sub_backend_to_specific_vers": 789, "sub_backend": 789, "unset_sub_backend": 789, "check_for_binari": 790, "cleanup_and_fetch_binari": [790, 805], "clean": [790, 806, 830, 834, 835, 837], "dynamic_import": 791, "import_modul": [791, 834], "einsum_pars": 792, "convert_interleaved_input": 792, "interleav": 792, "convert_subscript": 792, "old_sub": 792, "symbol_map": 792, "subscript": [792, 793], "oe": 792, "ellipsi": [792, 793], "find_output_shap": 792, "find_output_str": 792, "canon": 792, "gen_unused_symbol": 792, "abd": [792, 793], "get_symbol": 792, "letter": 792, "resort": 792, "unicod": 792, "charact": [792, 826, 845], "chr": 792, "surrog": 792, "\u0155": 792, "20000": 792, "\u4eac": 792, "has_valid_einsum_chars_onli": 792, "einsum_str": 792, "abaz": 792, "\u00f6ver": 792, "is_valid_einsum_char": 792, "\u01f5": 792, "legalise_einsum_expr": 792, "reproduct": [792, 793], "pars": [792, 793, 811, 816, 840], "intak": 792, "contract_path": 792, "parse_einsum_input": [792, 793], "einsum_eqn": 792, "legalis": 792, "legalise_einsum_eqn": 792, "za": [792, 793], "xza": [792, 793], "xz": [792, 793], "possibly_convert_to_numpi": 792, "myshap": 792, "__main__": 792, "0x10f850710": 792, "einsum_path_help": 793, "can_dot": 793, "idx_remov": 793, "bla": 793, "benefici": 793, "movement": 793, "costli": 793, "gemm": 793, "ijj": 793, "ddot": 793, "ikj": 793, "compute_size_by_dict": 793, "idx_dict": 793, "abbc": 793, "find_contract": 793, "input_set": 793, "output_set": 793, "lh": 793, "rh": 793, "new_result": 793, "idx_contract": 793, "iset": 793, "oset": 793, "bdc": 793, "flop_count": 793, "num_term": 793, "size_dictionari": 793, "flop": 793, "greedy_path": 793, "memory_limit": 793, "exhaust": [793, 825, 829, 852, 861], "indices_remov": 793, "priorit": [793, 804, 828, 832], "hadamard": 793, "cubic": 793, "greedi": 793, "idx_siz": 793, "optimal_path": 793, "siev": 793, "input_str": 793, "output_str": 793, "parse_possible_contract": 793, "path_cost": 793, "naive_cost": 793, "propos": [793, 806, 826, 832, 855], "intermediari": [793, 810], "unoptim": 793, "new_input_set": 793, "update_other_result": 793, "provision": 793, "_parse_possible_contract": 793, "mod_result": 793, "inplaceupdateexcept": 794, "include_backend": [794, 818], "ivyattributeerror": [794, 818], "attributeerror": [794, 818, 836], "ivybroadcastshapeerror": [794, 818], "ivydeviceerror": 794, "ivydtypepromotionerror": [794, 818], "ivyindexerror": [794, 818], "ivyinvalidbackendexcept": 794, "ivynotimplementedexcept": [794, 818], "notimplementederror": 794, "ivyvalueerror": [794, 818], "handle_except": [794, 821, 823], "add_array_spec": 795, "fn_array_spec": 795, "set_logging_mod": 796, "debug": [796, 805, 806, 812, 813, 824, 829, 832, 837, 855], "unset_logging_mod": 796, "print_stat": 797, "viz": 797, "snakeviz": 797, "bonu": 797, "cprofil": 797, "cprint": [798, 834], "grant": 799, "autotun": [799, 859], "grow": [799, 855], "peopl": [799, 803, 805, 806, 807, 855, 857], "wip": [799, 848], "docker": [799, 802, 803, 819], "pull": [799, 800, 804, 805, 808, 816, 820, 830, 832, 840, 841, 846], "sweat_smil": 799, "setting_up": 799, "awai": [799, 853, 855], "jax_fn": 799, "jax_x": 799, "torch_x": 799, "torch_fn": 799, "motiv": [799, 836, 845], "contextu": 799, "problem": [799, 804, 806, 808, 809, 815, 826, 836, 845, 851, 857, 861], "explos": [799, 843, 845], "adher": [799, 808, 814, 817, 821, 832, 834, 839, 844, 845, 851, 852, 861], "focus": [799, 814, 830, 853, 854, 855, 861, 862], "orient": 799, "contributor": [799, 800, 802, 804, 805, 806, 819, 826, 833, 855], "shorter": [799, 836], "ensp": 799, "customiz": [799, 811], "deepmind_perceiver_io": 799, "sm_framework": 799, "segmentation_model": 799, "sm": 799, "torch_sm": 799, "metric": [799, 840], "iou_scor": 799, "rax": 799, "torch_rax": 799, "poly1_softmax_loss": 799, "madmom": 799, "madmon": 799, "torch_madmom": 799, "freq": 799, "audio": 799, "hz2midi": 799, "torch_loss": 799, "maxpooling1d": 799, "pool_siz": 799, "tf_kornia": 799, "tf_rax": 799, "tf_madmom": 799, "tf_loss": 799, "_forward_classifi": [799, 849], "forward_classifi": [799, 849], "hk_eff_encod": 799, "dummy_x": 799, "jax_sm": 799, "jax_madmom": 799, "jax_loss": 799, "np_kornia": 799, "np_sm": 799, "np_rax": 799, "np_loss": 799, "yourself": [799, 804, 806, 820, 829, 832], "favourit": [799, 805], "pipelin": [799, 801, 807, 808, 809, 827, 830, 839, 842, 844, 849, 855, 856, 861], "hyperparam": 799, "idea": [799, 804, 828, 830, 835, 846, 854], "instantli": [799, 849], "essenti": [799, 804, 810, 812, 815, 816, 822, 825, 826, 827, 844, 845, 861], "mainli": [799, 804, 807, 824, 826, 829, 835, 837, 842, 855], "handler": [799, 833, 835, 839, 842], "scene": [799, 807, 833, 835, 843, 844, 855], "facilit": 799, "mse_loss": 799, "jax_ms": 799, "tf_mse": 799, "np_mse": 799, "torch_ms": 799, "someth": [799, 802, 806, 810, 819, 820, 830, 837, 838, 840, 841, 861], "favorit": 799, "flexibl": [799, 812, 814, 821, 824, 830, 832, 855], "everyon": [799, 800, 804, 805, 806, 840, 846], "plan": [799, 841], "interoper": [799, 845, 852, 853, 855, 858], "believ": [799, 806, 845], "feedback": [799, 804, 813], "appreci": 799, "amaz": 799, "journei": [799, 800], "ambiti": 799, "season": 799, "perfect": 799, "ask": [799, 804, 805, 816, 834, 836, 840, 841, 846], "fellow": 799, "twitter": 799, "sneak": 799, "peek": 799, "stai": [799, 813], "proper": [799, 804, 826, 849], "credit": 799, "accompani": 799, "lenton2021ivi": 799, "inter": 799, "author": [799, 804, 806, 853, 857], "lenton": 799, "daniel": 799, "pardo": 799, "fabio": 799, "falck": 799, "fabian": 799, "jame": 799, "stephen": 799, "clark": 799, "ronald": 799, "journal": 799, "arxiv": 799, "preprint": 799, "2102": 799, "02886": 799, "year": [799, 808, 840, 844, 846, 855], "strongli": [800, 805, 826, 861, 862], "engag": [800, 806, 845], "skill": [800, 857], "veteran": 800, "effort": [800, 804, 840, 845, 851, 855, 861], "board": [800, 811], "stage": [800, 806, 807, 808, 811, 829, 845, 855], "excit": [800, 807, 845], "Be": [801, 811], "awar": [801, 811, 818, 820], "linux": [801, 805, 806, 811, 858, 860], "regularli": [801, 811, 813], "internet": [801, 811], "codespac": [801, 811, 819], "make_doc": 801, "sh": [801, 805, 806, 808, 813], "host": [801, 813, 840, 845, 860], "pwd": 801, "ssh": [801, 813], "make_docs_without_dock": [801, 811], "assist": [802, 819], "runtimeerror": [802, 819], "logaddexp2_cpu": [802, 819], "falsifi": [802, 808, 819, 829], "test_logaddexp2": [802, 819], "backend_fw": [802, 819, 827], "dtype_and_x": [802, 819, 827, 829], "reproduce_failur": [802, 808, 819, 823, 829], "axicy2bkaamobaar2waaaacvaai": [802, 819], "decoartor": [802, 819], "with_unsupported_dtyp": [802, 814, 819, 826], "25830078125": [802, 819], "258544921875": [802, 819], "test_acosh": [802, 819], "axicy2baabyqwqgiaabdaai": [802, 819], "quit": [802, 806, 809, 816, 817, 819, 822, 823, 829, 832, 855, 861], "41421356": [802, 819], "41421356e": [802, 819], "34078079e": [802, 819], "154": [802, 819], "test_ab": [802, 805, 819, 829], "000j": [802, 819], "154j": [802, 819], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [802, 819], "experiment": [802, 806, 814, 826, 830, 834, 855], "thread": [802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 837, 855], "pycharm": [802, 827, 829], "few": [803, 804, 806, 812, 814, 815, 821, 822, 824, 825, 827, 829, 832, 834, 835, 836, 837, 838, 846, 855, 857], "climb": 803, "steep": 803, "curv": 803, "realpython": 803, "pyn": 803, "exchang": [803, 845, 851, 853], "pilot": [803, 841], "stuck": [803, 804], "spell": 803, "sound": [803, 813, 833], "frequent": [804, 806, 810, 855], "outlin": [804, 805, 806, 807, 812, 814, 817, 822, 825, 826, 829], "broad": [804, 857], "individu": [804, 806, 808, 810, 814, 822, 826, 855, 858, 861, 862], "clearli": [804, 806, 816, 827, 829, 845, 859], "qualiti": [804, 806], "lie": 804, "craft": [804, 828, 829], "fault": [804, 816, 855], "situat": [804, 806, 813, 839], "opportun": 804, "tackl": [804, 826], "challeng": [804, 810, 861], "categoris": [804, 808, 826], "encourag": [804, 820, 840, 845], "comfort": [804, 805, 818], "valuabl": [804, 806], "linkag": 804, "confid": 804, "submit": [804, 820], "merg": [804, 806, 808, 813, 826, 855], "meet": [804, 826], "scipi": [804, 845, 857, 862], "mindspor": 804, "simpler": [804, 806, 820, 848, 856, 862], "member": [804, 806, 826, 841, 845], "comment": [804, 805, 806, 808, 814, 820, 826, 828, 832], "pr": [804, 806, 808, 820, 826, 827, 829], "composition": 804, "feasibl": [804, 813, 845, 848], "pend": 804, "helpfulli": [804, 832, 853], "problemat": [804, 805], "unimpl": 804, "issue_link": 804, "alias_nam": 804, "notic": [804, 809, 813, 819, 820, 829, 832, 848], "push": [804, 806, 808, 827, 829, 861], "liner": 804, "meanwhil": [804, 813], "reselect": 804, "faithfulli": 804, "creation_routin": [804, 827], "indexing_routin": 804, "ma": 804, "manipulation_routin": 804, "mathematical_funct": [804, 826], "sorting_searching_count": 804, "ufunc": [804, 826], "matrix_and_vector_product": 804, "matrix_eigenvalu": 804, "norms_and_other_numb": 804, "solving_equations_and_inverting_matric": 804, "gleam": 804, "uncom": 804, "test_numpy_inn": 804, "test_frontend": [804, 813, 819, 827], "unsur": [804, 829], "statu": [804, 813, 820, 846], "refrain": 804, "checkbox": [804, 805], "aforement": 804, "parent": [804, 813, 836], "arraywithelementwis": [804, 809, 836], "containerwithmanipul": 804, "thorough": [804, 817, 821, 829], "add_reformatting_checklist_": 804, "category_nam": [804, 814, 815, 817, 821, 822], "autom": [804, 813, 820, 829, 842, 857], "bot": [804, 820], "markdown": [804, 811], "patient": [804, 805], "elabor": 804, "struggl": 804, "assigne": 804, "status": 804, "central": [804, 820, 832, 845, 861], "analyz": [804, 842], "relevant_submodul": 804, "roadmap": [804, 813], "soon": [804, 806, 813, 814, 840, 848], "deem": [804, 826], "subtask": 804, "clearer": [804, 818, 827, 837], "backend_nam": [804, 810, 814, 815, 817, 821, 822, 823], "sometim": [804, 805, 806, 808, 814, 822, 826, 829, 832], "rare": [804, 815, 840, 860], "button": [804, 805, 806, 819], "centr": 804, "predetermin": 804, "superset": [804, 807, 822, 825, 840], "reserv": 804, "happi": [805, 819, 840, 846], "your_usernam": [805, 819], "your_fold": [805, 819], "enter": [805, 806, 809, 814, 815, 819, 821, 823], "sync": [805, 808, 819], "remot": [805, 808, 819, 820], "nutshel": [805, 821], "hook": [805, 820, 828], "lint": [805, 807], "succe": [805, 848], "whatev": [805, 812, 840], "elig": 805, "student": 805, "licens": [805, 858], "remind": 805, "expir": 805, "won": [805, 806, 812, 814, 839, 841, 845, 846, 848, 849, 850], "profession": 805, "trial": 805, "jetbrain": 805, "month": [805, 844], "bui": [805, 861], "paid": 805, "rapid": [805, 844, 845, 855], "pace": 805, "person": [805, 806], "abil": [805, 832, 835, 840, 855], "perhap": [805, 836, 837, 838, 840, 861], "conda": [805, 845, 857], "ivy_dev": [805, 806], "icon": [805, 806, 819], "panel": 805, "vscode": [805, 819], "palett": 805, "ctrl": [805, 806], "mac": [805, 806], "intel": [805, 845, 853, 860], "m1": 805, "optional_apple_silicon_1": 805, "optional_apple_silicon_2": 805, "array_api_test": [805, 806, 808, 819], "test_array_api": [805, 806, 808, 819, 829], "suit": [805, 807, 808, 813, 819, 828, 829, 837, 845, 855, 861], "cmd": 805, "bat": [805, 806], "virtualenv": 805, "tick": [805, 806, 813], "nz2": 805, "openssl": 805, "libssl1": 805, "1_1": 805, "1f": 805, "1ubuntu2": 805, "19_amd64": 805, "deb": 805, "dpkg": 805, "mitig": [805, 861], "desktop": [805, 819], "powershel": 805, "admin": 805, "deploy": [805, 849, 854, 857, 858, 861, 862], "menu": [805, 819], "introspect": 805, "dialog": 805, "persist": 805, "earlier": [805, 806, 814, 830], "virtualis": 805, "bio": [805, 845], "dropdown": [805, 813], "dockerfil": 805, "ca": 805, "certif": 805, "gnupg": 805, "lsb": 805, "keyr": 805, "fssl": 805, "gpg": 805, "dearmor": 805, "echo": [805, 813, 841], "arch": 805, "lsb_releas": 805, "null": [805, 819], "ce": 805, "cli": 805, "containerd": 805, "systemctl": 805, "softwar": [805, 806, 844, 845, 853, 858, 859, 860], "press": [805, 806, 837], "4a": 805, "socket": 805, "rwx": 805, "sock": 805, "pid": 805, "editor": 805, "pytest": [805, 806, 808, 813, 819, 823, 829], "keyboard": 805, "screenshot": 805, "pop": [805, 819, 845], "test_elementwis": 805, "bar": [805, 819], "shell": [805, 806, 808, 813], "setup_test": 805, "run_ivy_core_test": 805, "run_ivy_nn_test": 805, "run_ivy_stateful_test": 805, "run_test": [805, 813], "test_depend": 805, "test_ivy_cor": 805, "test_ivy_nn": 805, "test_ivy_st": 805, "unix": 805, "test_": [805, 827], "test_cor": [805, 806, 827], "offici": [805, 814, 834], "wish": [805, 826], "ivy_nn": 805, "ivy_st": 805, "header": [805, 806, 828], "arrow": 805, "test_stat": 805, "test_submodule_nam": 805, "test_function_nam": 805, "debugg": 805, "studio": [805, 819, 829], "especi": [805, 810, 820, 844, 855], "afterward": [805, 837], "background": [805, 811, 819, 855, 857], "overlap": [805, 813, 819, 830, 832, 856], "test_file_path": [805, 819], "test_fn_nam": [805, 819], "engin": [805, 855, 857, 858], "devcontain": 805, "comma": 805, "postcreatecommand": 805, "post_create_command": 805, "poststartcommand": 805, "safe": [805, 826], "containerworkspacefold": 805, "reopen": 805, "test_fle_path": 805, "slash": 805, "isol": [805, 806, 856, 861], "container": 805, "intens": 805, "headach": 805, "arm": [805, 806], "vm": [805, 813], "azur": 805, "cloud": [805, 813, 857], "theme": [805, 811], "ipad": 805, "browser": [805, 811], "quota": 805, "requisit": 805, "pane": [805, 806, 813], "dockerfilegpu": 805, "ivv": 805, "multiv": 805, "multivers": [805, 830], "dockerfilemultivers": 805, "dockerhub": 805, "upto": [805, 806], "minut": [805, 813], "launch": 805, "quickli": [805, 806, 813, 837, 838, 844, 846, 855, 862], "kindli": [805, 828], "guidelin": 805, "colour": 805, "chanc": 805, "troubleshoot": 805, "ever": 805, "flask": [805, 819], "toolbar": [805, 806, 819], "_array_modul": [805, 808, 819], "refresh": [805, 819], "pytestarg": [805, 819], "unittesten": [805, 819], "pytesten": [805, 819], "autotestdiscoveronsaveen": [805, 819], "conftest": 805, "serv": [805, 806, 809, 812, 821, 822, 826, 827, 829, 832, 833, 842, 853], "aren": [805, 814], "record": [805, 840, 856], "available_config": 805, "cp310": 805, "x86": [805, 860], "newer": [805, 829], "_compil": 805, "meantim": 805, "suffici": [805, 816, 826, 829], "bear": [805, 809, 812, 814, 826], "tendenc": 806, "land": 806, "unrel": [806, 845], "fly": [806, 855], "internship": 806, "suspect": 806, "iii": 806, "issue_numb": 806, "12345": 806, "rememb": 806, "respond": 806, "dai": [806, 820], "freed": 806, "obvious": [806, 813], "hypothet": 806, "frustrat": 806, "delai": [806, 848], "busi": 806, "inact": 806, "unfairli": 806, "investig": 806, "name_of_your_branch": 806, "date": [806, 808], "complic": [806, 827, 834], "merge_with_upstream": 806, "abort": 806, "tediou": [806, 816, 832], "stash": [806, 820], "reinstat": 806, "uncommit": 806, "unstag": [806, 820], "untrack": 806, "atlassian": 806, "wrote": 806, "piec": [806, 809, 822, 823, 834, 848, 851, 853], "blame": 806, "eg": 806, "week": [806, 846], "grep": 806, "commit_id": 806, "handi": 806, "histori": 806, "toggl": 806, "highlight": [806, 813, 816, 826, 828], "approv": 806, "someon": [806, 840], "hash": [806, 837], "cancel": 806, "speedup": 806, "unavail": 806, "tickbox": 806, "span": [806, 853, 861], "intent": [806, 825], "discourag": 806, "adopt": [806, 809, 821, 832, 845, 854, 855, 860], "philosophi": 806, "infrequ": 806, "earli": [806, 855], "wast": [806, 813], "spot": [806, 816, 822], "mistak": 806, "mountain": 806, "advoc": [806, 840], "session": [806, 855], "beauti": 806, "particularli": [806, 837, 840, 848, 853], "care": [806, 815, 826, 832, 839, 845], "undo": 806, "stress": 806, "nifti": 806, "reassur": 806, "local_path_to_ivi": 806, "subfold": [806, 827, 829, 830], "dep": 806, "fresh": 806, "arsen": 806, "exec": 806, "ivy_contain": 806, "test_imag": 806, "test_random_crop": 806, "test_creation_funct": 806, "test_arang": 806, "cursor": 806, "alt": 806, "blog": 806, "breakpoint": 806, "gutter": 806, "caret": 806, "f8": 806, "f9": 806, "Into": 806, "f7": 806, "smart": 806, "fragment": [806, 851, 853, 857], "wherein": [806, 822, 829], "failur": [806, 813, 827, 829], "weed": [807, 833], "tour": 807, "formatt": [807, 820], "conjunct": 808, "establish": [808, 857], "popular": [808, 855], "sens": [808, 814, 816, 826, 828, 836], "unconnect": 808, "initialis": [808, 826, 829], "strang": [808, 836], "thoroughli": 808, "test_linalg": [808, 827], "test_set_funct": 808, "test_signatur": 808, "excess": [808, 810, 816], "array_modul": 808, "vv": 808, "test_manipulation_funct": 808, "test_concat": [808, 829], "nb": 808, "liber": 808, "______________________": 808, "test_remaind": 808, "_______________________": 808, "test_operators_and_elementwise_funct": 808, "1264": 808, "1277": 808, "binary_param_assert_against_refimpl": 808, "ctx": 808, "620": 808, "binary_assert_against_refimpl": 808, "324": 808, "scalar_o": 808, "17304064": 808, "binaryparamcontext": 808, "axic42baaowcnp": 808, "rumwmabaear0": 808, "make_binary_param": 808, "numeric_dtyp": 808, "left_strat": 808, "left_sym": 808, "right_strat": 808, "right_sym": 808, "right_is_scalar": 808, "binary_param_assert_dtyp": 808, "binary_param_assert_shap": 808, "recreat": 808, "unexpectedli": 808, "discrep": [808, 827], "test_asarray_arrai": 808, "test_floor_divid": 808, "health": 808, "test_iop": 808, "__imod__": 808, "isequ": 808, "test_matrix_norm": 808, "alter": 808, "tweak": 808, "array_api_methods_to_test": 808, "test_special_cas": 808, "__ipow__": 808, "is_integ": 808, "easier": [808, 809, 810, 814, 827, 830, 842, 855, 857], "revisit": [808, 821], "_data": [809, 825, 826, 836], "organiz": [809, 812, 826], "underpin": [809, 812, 834], "programmat": [809, 812, 856], "backup": [809, 811, 812], "accident": [809, 812, 826], "absent": [809, 812], "auto": [809, 811, 812, 820, 837], "__mul__": [809, 812, 816, 821, 832, 836], "throw": [809, 814, 815, 818, 819, 836, 855], "imposs": 809, "inputs_to_native_arrai": [809, 822, 823], "outputs_to_ivy_arrai": [809, 814, 815, 821, 822, 823], "secondli": [809, 814], "__ivy_array_function__": 809, "inspir": 809, "__torch_function__": 809, "myarrai": 809, "handled_funct": 809, "notimpl": 809, "issubclass": 809, "four": [809, 814, 816, 821, 822, 829, 832, 837], "enough": [809, 813, 814, 815, 829, 836, 837, 838], "ivy_funct": 809, "my_ab": 809, "my_arrai": 809, "implicit_backend": [810, 834], "__dict__": [810, 825, 834], "ivy_original_dict": [810, 834], "fallback": 810, "live": [810, 811, 814, 845, 846, 851, 853], "scope": [810, 856, 860], "dlpack": 810, "set_dynamic_backend": 810, "unset_dynamic_backend": 810, "dynamic_backend_a": 810, "set_": 810, "unset_": 810, "backend_handl": 810, "requires_grad": 810, "memory_format": 810, "preserve_format": 810, "weren": 810, "vast": [810, 814, 855], "minor": [810, 832, 840], "fn_name_v_1p12_and_abov": 810, "fn_name_v_1p01_to_1p1": 810, "heavili": [811, 823, 840], "characterist": 811, "conf": 811, "cleanup": 811, "readm": [811, 840], "maxdepth": 811, "caption": 811, "related_work": 811, "deep_div": 811, "faq": 811, "glossari": 811, "autosummari": 811, "top_functional_toc": 811, "restructuredtext": 811, "discov": [811, 814], "ivy_toctree_caption_map": 811, "stub": 811, "unfortun": [811, 820], "linker": 811, "foo": 811, "discussion_channel_map": 811, "1000043690254946374": 811, "1000043749088436315": 811, "forum": [811, 841], "seri": [811, 814, 826, 829, 855, 857], "discussion_paragraph": 811, "discord_link": 811, "channel_link": 811, "gg": 811, "zvqdvbznqj": 811, "799879767196958751": 811, "channel_id": 811, "autoskippablemethod": 811, "skippable_method_attribut": 811, "__qualname__": 811, "autodoc": 811, "__doc__": 811, "autoivydata": 811, "mutual": [812, 822], "containerwithelementwis": 812, "__repr__": 812, "__getattr__": [812, 848], "__setattr__": [812, 848], "__contains__": 812, "__getstate__": 812, "__setstate__": 812, "unpickl": 812, "num_dim": [812, 839], "restrict": [812, 813, 826, 834, 848, 852], "enforc": [812, 836], "extern": [812, 821, 826, 829, 830], "lefthand": 812, "righthand": 812, "handle_nest": [812, 821, 822, 823, 834], "absenc": [812, 821, 855], "implicitli": [812, 824, 829, 834], "log_pr": [812, 822, 825], "intuit": [812, 829, 837, 838, 851], "chronolog": 812, "concurr": [812, 813, 822, 855], "despit": [812, 814, 815, 827, 834, 845, 852, 855], "__list__": 812, "whatsoev": [812, 822, 842, 861], "children": 812, "shallowest": 812, "deepest": 812, "rollback": 813, "incorpor": [813, 827, 837, 855], "techniqu": 813, "triplet": 813, "test_torch": [813, 827], "test_tensor": [813, 827], "test_torch_instance_arctan_": 813, "12500": 813, "daili": 813, "huge": [813, 837, 843, 845, 855, 861], "shoot": 813, "impact": [813, 829, 838, 857], "_reduce_loss": [813, 822, 825], "test_nn": 813, "test_loss": 813, "test_binary_cross_entropy_with_logit": 813, "test_cross_entropi": 813, "test_binary_cross_entropi": 813, "test_sparse_cross_entropi": 813, "test_loss_funct": 813, "test_torch_binary_cross_entropi": 813, "test_torch_cross_entropi": 813, "binary_cross_entropy_with_logit": 813, "torch_binary_cross_entropi": 813, "torch_cross_entropi": 813, "magic": 813, "readthedoc": 813, "pedagog": 813, "f_1": 813, "t_1": 813, "t_3": 813, "t_7": 813, "t_": 813, "f_m": 813, "cyclic": 813, "intellig": [813, 829, 857], "tests_fil": 813, "file_nam": [813, 829, 830], "tests_lin": 813, "correspondingli": 813, "tests_to_run": 813, "determine_tests_lin": 813, "mongodb": 813, "databas": [813, 829], "mechan": [813, 840], "secret": 813, "db": 813, "ssh_deploy_kei": 813, "suffic": [813, 823, 829], "massiv": 813, "yml": 813, "felicit": 813, "clone_map": 813, "deploy_kei": 813, "user_email": 813, "user_nam": 813, "target_branch": 813, "github_serv": 813, "deploy_key_fil": 813, "ssh_known_hosts_fil": 813, "known_host": 813, "keyscan": 813, "git_ssh_command": 813, "userknownhostsfil": 813, "email": [813, 845], "methodologi": 813, "master1": 813, "restructur": 813, "_map": 813, "t_2": 813, "t_n": 813, "index_map": 813, "test_map": 813, "snowbal": 813, "recalibr": 813, "workflow_dispatch": 813, "schedul": [813, 840, 855, 862], "cron": 813, "saturdai": 813, "night": 813, "pm": 813, "gut": 813, "lesser": [813, 818], "lol": 813, "hour": [813, 846], "cater": [813, 828], "master2": 813, "master32": 813, "synchron": 813, "runner2": 813, "corrupt": 813, "decoupl": [813, 838], "150": 813, "cycl": [813, 829], "yellow": 813, "queu": 813, "redirect": 813, "book": 813, "onrend": 813, "jo": 813, "ran": 813, "badg": 813, "clickabl": 813, "all_dtyp": 814, "all_numeric_dtyp": 814, "all_int_dtyp": 814, "all_float_dtyp": 814, "replic": [814, 824, 825, 826], "thirdli": 814, "native_float32": 814, "importantli": [814, 836, 839], "arguabl": [814, 815, 826], "jaxarrai": [814, 815, 818, 821, 825, 830, 834], "_handle_0_dim_output": 814, "subtli": [814, 825], "promote_types_frontend_nam": 814, "promote_types_of_frontend_name_input": 814, "frontend_nam": 814, "upcast": 814, "nearli": [814, 821, 823, 855], "downcast": 814, "footprint": 814, "concret": 814, "aris": [814, 820, 840, 845], "utterli": 814, "meant": [814, 816, 825], "twice": 814, "disadvantag": 814, "relax": 814, "f64": 814, "unwant": 814, "primaci": 814, "resembl": 814, "compound": 814, "infer_dtyp": [814, 815, 821, 823], "settabl": [814, 815], "handle_out_argu": [814, 815, 821, 822, 823, 825, 834], "infer_devic": [814, 815, 821, 823], "deleg": [814, 862], "shape_to_tupl": 814, "with_supported_dtyp": 814, "unment": 814, "_cast_for_unary_op": [814, 822, 825], "target_typ": 814, "syntax": [814, 844, 845, 855], "unsupported_dtyp": 814, "supported_dtypes_and_devic": 814, "with_unsupported_device_and_dtyp": 814, "globals_getter_func": 814, "f2": 814, "lack": [814, 825, 855, 862], "mandat": [814, 825, 829, 830, 845], "confus": [814, 818, 825, 832, 842, 846], "inconsist": [814, 818, 824], "is_nan": 814, "supported_dtyp": 814, "anytim": 814, "84530": 814, "unwarr": 814, "risk": [814, 861], "needlessli": 814, "bloat": 814, "undergo": [814, 840], "unsupported_devic": 814, "supported_devic": 814, "downsid": 814, "coverag": [814, 829], "undesir": 814, "accomplish": 814, "upcast_data_typ": 814, "downcast_data_typ": 814, "crosscast_data_typ": 814, "cast_data_typ": 814, "downcast_data_dtyp": 814, "vice": 814, "versa": 814, "till": 814, "crosscast": 814, "exmp1": 814, "watch": [814, 826], "handle_numpy_arrays_in_specific_backend": [814, 821], "cate": 814, "understood": 814, "consumpt": [814, 859], "dual": 815, "categor": [815, 822, 826], "210": 815, "_handle_except": [815, 818], "1013": 815, "_handle_nest": [815, 818], "905": 815, "_handle_out_argu": [815, 818], "441": 815, "_inputs_to_native_arrai": [815, 818], "new_arg": [815, 818], "new_kwarg": [815, 818], "_outputs_to_ivy_arrai": [815, 818], "358": 815, "_handle_array_funct": [815, 818], "_handle_device_shift": 815, "handle_device_shift": [815, 823], "crucial": [815, 824], "device_shifting_dev": 815, "__enter__": 815, "__exit__": 815, "mostli": [815, 825, 829], "soft_devic": 815, "eight": [816, 833], "op_nam": 816, "__r": 816, "unsurprisingli": [816, 844], "recap": [816, 838], "combinatori": 816, "okai": [816, 832, 834], "spec": [816, 817], "my_func": [816, 830], "some_flag": 816, "another_flag": 816, "jointli": 816, "5574077": 816, "1850398": 816, "5463025": 816, "8422884": 816, "91601413": 816, "9647598": 816, "3738229": 816, "1597457": 816, "0963247": 816, "9955841": 816, "3278579": 816, "asid": 816, "increasingli": [816, 848], "14254655": 816, "1578213": 816, "380515": 816, "trivial": [816, 825], "failing_fn_nam": 816, "onlin": [816, 817], "minutest": 816, "contrast": [817, 821, 826, 861], "preview": 817, "incorrectli": [817, 848], "needless": [817, 827], "renam": [817, 826], "judgment": 817, "operator_nam": 817, "succinct": 817, "docst": 817, "native_error": 818, "_combine_messag": 818, "truli": [818, 836], "wrong": [818, 820, 823, 826, 832], "198": 818, "392": 818, "_handle_array_like_without_promot": 818, "805": 818, "432": 818, "349": 818, "other_test": 818, "523": 818, "_handle_numpy_out": 818, "396": [818, 838], "_outputs_to_numpy_arrai": 818, "_inputs_to_ivy_arrays_np": 818, "ivy_arg": 818, "ivy_kwarg": 818, "453": 818, "_from_zero_dim_arrays_to_scalar": 818, "truth_value_test": 818, "visibl": 818, "unwieldi": 818, "squash": 818, "hide": [818, 848], "cleaner": [818, 837], "caught": [818, 820], "rethrow": 818, "_print_traceback_histori": 818, "error_stack": 818, "axiserror": 818, "polici": [818, 823, 829, 831], "moreov": 818, "submoodul": 819, "test_jax_transpos": 819, "manipulaiton": 819, "test_jax": [819, 827], "test_numpi": [819, 827], "test_manipul": [819, 827, 829], "preconditionnotmet": 819, "densetensor": 819, "holder_": 819, "phi": 819, "dense_tensor_impl": 819, "array_and_ax": 819, "aaegbaegaqaaaaaaaaaaaaab": 819, "black": 820, "flake8": 820, "linter": 820, "autoflak": 820, "docformatt": 820, "pydocstyl": 820, "yaml": 820, "patch1687898304": 820, "8072": 820, "3516aed563": 820, "reformat": 820, "akshai": 820, "jain": 820, "gui": 820, "cryptic": 820, "garden": 820, "utc": 820, "didn": 820, "human": 820, "intervent": 820, "typo": 820, "ui": 820, "handle_array_like_without_promot": [821, 823], "to_native_arrays_and_back": [821, 823, 834], "handle_array_funct": [821, 823], "inputs_to_native_shap": [821, 823], "rational": [821, 825, 832], "__div__": [821, 832], "484": 821, "annot": 821, "brittl": 821, "freeli": 821, "inde": [821, 832, 840, 853], "technic": [821, 825, 840, 855, 857], "original_typ": 821, "cumbersom": 821, "hinder": [821, 844], "venn": 822, "diagram": [822, 861], "light": [822, 830, 840, 842, 856, 861], "maximis": 822, "encompass": 822, "partial_mixed_handl": [822, 823, 832], "handle_partial_mixed_funct": [822, 823, 832], "fn_decor": 822, "mixed_backend_wrapp": [822, 825], "to_add": 822, "to_skip": 822, "inputs_to_ivy_arrai": [822, 823], "modif": [822, 855], "briefli": [822, 829, 837], "get_all_arrays_on_dev": 822, "outputs_to_ivy_shap": 823, "outputs_to_native_arrai": 823, "handle_view_index": [823, 825], "handle_view": [823, 825], "handle_rag": 823, "handle_backend_invalid": 823, "handle_nan": 823, "to_native_shapes_and_back": 823, "modern": [824, 844, 845, 860], "inter_func": 824, "custom_grad_fn": 824, "args1": 824, "eas": [824, 855], "program": [825, 852, 853, 855, 858, 859, 862], "speak": 825, "val_n": 825, "base_idx": 825, "_manipulation_stack": 825, "base_flat": 825, "_view_ref": 825, "_update_view": 825, "contigu": 825, "c_contigu": 825, "ascontiguousarrai": 825, "copyto": 825, "_is_vari": 825, "tensor_scatter_nd_upd": 825, "is_vari": 825, "_update_torch_view": 825, "predominantli": [825, 830], "support_native_out": [825, 834], "_scalar_output_to_0d_arrai": 825, "_wrap_fn": 825, "dim0": 825, "dim1": 825, "res_floor": 825, "extent": [825, 826], "to_out_fn": 825, "add_wrapp": 825, "paradigm": [825, 840, 855], "expans": 825, "brief": [825, 829], "weak": 825, "_torch_bas": 825, "_torch_view_ref": 825, "_torch_manipul": 825, "weakli": 825, "adequ": 825, "tf_frontend": 826, "lax": [826, 827, 832, 839, 840], "torch_frontend": [826, 827], "numpy_frontend": 826, "jax_frontend": 826, "to_ivy_arrays_and_back": [826, 827], "fidel": 826, "algebra": [826, 853, 854, 855, 858, 862], "dynamic": 826, "mimic": 826, "arithmetic_oper": 826, "handle_numpy_out": 826, "handle_numpy_dtyp": 826, "handle_numpy_cast": 826, "from_zero_dim_arrays_to_scalar": 826, "_add": 826, "same_kind": 826, "subok": [826, 827, 832], "promote_types_of_numpy_input": 826, "underscor": 826, "unhandl": 826, "trigonometric_funct": 826, "_tan": 826, "check_tensorflow_cast": 826, "raw_op": [826, 827], "map_raw_ops_alia": 826, "output_typ": 826, "kwargs_to_upd": 826, "pointwise_op": 826, "sensibl": 826, "ahead": [826, 830, 855], "reduce_logsumexp": 826, "logsumexp": 826, "trick": 826, "max_input_tensor": 826, "preferred_element_typ": 826, "languag": [826, 834, 842, 844, 846, 853, 856, 858, 859, 860, 861], "offer": [826, 838, 846, 855, 861, 862], "finer": 826, "logicaland": 826, "np_frontend": 826, "_ivy_arrai": 826, "radd": 826, "_init_data": 826, "_process_str_data": 826, "_dtype": [826, 827, 836], "_shape": [826, 836], "govern": 826, "promote_types_of_": 826, "_input": 826, "promote_types_of_torch_input": [826, 827], "handle_numpy_casting_speci": 826, "new_fn": 826, "equiv": 826, "unsaf": 826, "array_type_test": 826, "_isfinit": 826, "organis": 826, "grasp": 826, "youtub": 826, "knowledg": 827, "np_frontend_help": 827, "open_task": 827, "test_lax": 827, "test_oper": 827, "test_jax_tan": 827, "test_mathematical_funct": 827, "test_trigonometric_funct": 827, "dtypes_values_cast": 827, "dtypes_values_casting_dtyp": 827, "arr_func": 827, "get_num_positional_args_ufunc": 827, "test_numpy_tan": 827, "handle_where_and_array_bool": 827, "test_tensorflow": 827, "test_math": 827, "test_tensorflow_tan": 827, "test_pointwise_op": 827, "test_torch_tan": 827, "_fill_valu": 827, "test_glob": 827, "test_jax_ful": 827, "test_from_shape_or_valu": 827, "_input_fill_and_dtyp": 827, "dtype_and_input": 827, "dtype_to_cast": 827, "input_fill_dtyp": 827, "test_numpy_ful": 827, "test_raw_op": 827, "test_tensorflow_fil": 827, "test_creation_op": 827, "with_arrai": 827, "test_torch_ful": 827, "add_nois": 827, "all_clos": 827, "_get_dtype_and_matrix": 827, "test_torch_qr": 827, "frontend_q": 827, "frontend_r": 827, "walkthrough": 827, "comparison_op": 827, "test_comparison_op": 827, "test_torch_great": 827, "all_alias": 827, "test_ndarrai": 827, "test_numpy_instance_add__": 827, "test_tensorflow_instance_add": 827, "1e04": 827, "allow_infin": 827, "test_torch_instance_add": 827, "_arrays_idx_n_dtyp": 827, "surprisingli": 827, "closest_relevant_group": 827, "strive": [827, 829, 832, 840, 857], "tailor": 828, "clariti": [828, 829, 832, 855], "weav": 828, "thrill": 828, "brim": 828, "stand": [828, 829], "testament": 828, "landscap": 828, "forese": 828, "refin": 828, "inquiri": 828, "fixtur": 829, "hit": [829, 834, 848], "eleg": [829, 855], "unexplor": 829, "artifact": 829, "bespok": 829, "_array_or_typ": 829, "rigor": [829, 844], "test_default_int_dtyp": 829, "print_hypothesis_exampl": 829, "custom_strategi": 829, "randomis": 829, "simplist": 829, "intricaci": 829, "glanc": 829, "one_of": 829, "datum": 829, "pipe": 829, "array_or_scal": 829, "len_of_arrai": 829, "test_add": 829, "test_gpu_is_avail": 829, "pretest": 829, "snippet": [829, 849], "criterion": 829, "valid_ax": 829, "hoc": 829, "11228": 829, "268": 829, "wherev": 829, "9622": 829, "28136": 829, "6375": 829, "12720": 829, "21354": 829, "900e": 829, "57384": 829, "25687": 829, "248": 829, "test_devic": 829, "array_shap": 829, "test_lay": 829, "some_sequ": 829, "arrays_valu": 829, "36418": 829, "213": 829, "21716926": 829, "none_or_list_of_float": 829, "get_prob": 829, "103515625e": 829, "099609375": 829, "probabilist": 829, "number_positional_argu": 829, "unreproduc": 829, "x_and_linear": 829, "is_torch_backend": 829, "x_shape": [829, 834], "weight_shap": 829, "bias_shap": 829, "ivy_np": 829, "valid_float_dtyp": 829, "test_demo": 829, "failing_test": 829, "traceback": 829, "shrink": 829, "prescrib": 829, "scratch": 829, "therebi": 829, "test_gelu": 829, "test_fil": 829, "phase": [829, 840, 855], "notabl": [829, 855], "max_exampl": 829, "deadlin": 829, "weird": 829, "systemat": 829, "safeguard": 829, "inabl": 829, "test_result_typ": 829, "9090909090909091": 829, "judgement": 830, "some_namespac": 830, "some_backend": 830, "another_backend": 830, "refactor": 830, "ongo": 830, "check_fill_value_and_dtype_are_compat": 830, "_to_devic": 830, "shouldn": [830, 848], "pin": 830, "unpinn": 830, "culmin": 830, "unsett": 831, "array_significant_figur": 831, "array_decimal_valu": 831, "warning_level": 831, "nan_polici": 831, "stablest": 831, "constantli": [832, 844], "answer": [832, 836, 840], "contradict": 832, "entail": 832, "sacrif": 832, "jacfwd": 832, "jacrev": 832, "banner": 832, "expens": 832, "incredibli": [832, 837, 840, 858], "price": 832, "pai": 832, "intrus": 832, "x_beta": 832, "equip": 832, "simplif": 832, "allevi": 832, "ineffici": [832, 840, 855], "fuse": 832, "hybrid": 832, "workaround": 832, "slip": 832, "radar": 832, "stumbl": 832, "gone": [833, 845], "fulfil": 833, "syntact": [834, 839], "power_seq": 834, "_determine_backend_from_arg": 834, "importlib": 834, "_backend_dict": 834, "x_flat": 834, "wi": 834, "wi_x": 834, "wii_x": 834, "wif_x": 834, "wig_x": 834, "wio_x": 834, "wh": 834, "ht": 834, "ct": 834, "hts_list": 834, "wii_xt": 834, "wif_xt": 834, "wig_xt": 834, "wio_xt": 834, "htm1": 834, "ctm1": 834, "wh_htm1": 834, "whi_htm1": 834, "whf_htm1": 834, "whg_htm1": 834, "who_htm1": 834, "ft": 834, "ot": 834, "reliabl": 834, "scalabl": [834, 844, 860, 861], "sacrific": 834, "hear": 834, "virtu": [834, 852], "pure_ivi": 834, "pure_torch": 834, "unclean": 834, "wx": 834, "temp": 834, "ivy_func": 834, "emphas": 834, "torchscript": [834, 842, 862], "example_input": 834, "static_argnum": [834, 848], "static_argnam": [834, 848], "primit": [835, 840, 853, 855], "upcom": 835, "hierarch": [835, 837, 838, 855], "arraywithactiv": 836, "arraywithcr": 836, "arraywithdatatyp": 836, "arraywithdevic": 836, "arraywithgener": 836, "arraywithgradi": 836, "arraywithimag": 836, "arraywithlay": 836, "arraywithlinearalgebra": 836, "arraywithloss": 836, "arraywithmanipul": 836, "arraywithnorm": 836, "arraywithrandom": 836, "arraywithsearch": 836, "arraywithset": 836, "arraywithsort": 836, "arraywithstatist": 836, "arraywithutil": 836, "_init": 836, "_size": 836, "_devic": 836, "_dev_str": 836, "_pre_repr": 836, "_post_repr": 836, "framework_str": 836, "pypep8nam": 836, "immut": 836, "claim": 836, "_native_wrapp": 836, "genuin": 836, "some_method": 836, "rewritten": 836, "littl": [836, 844, 857], "wonder": [836, 844, 846], "compartment": 836, "newshap": 836, "new_shap": 836, "tidi": 836, "crystal": 836, "ton": 837, "ado": [837, 838], "soup": 837, "walk": [837, 838], "cnt": 837, "3333335": 837, "autocomplet": 837, "midwai": 837, "agent": 837, "total_spe": 837, "total_height": 837, "total_width": 837, "ag": 837, "tot": 837, "total_": 837, "total_h": 837, "cnt0": 837, "cnt1": 837, "diff_0": 837, "diff_1": 837, "config0": 837, "config1": 837, "l0": 837, "decoder__l0": 837, "decoder__l1": 837, "encoder__l0": 837, "encoder__l1": 837, "l0__b": 837, "l0__w": 837, "l1__b": 837, "l1__w": 837, "printabl": 837, "foresight": 837, "untidili": 837, "update_ag": 837, "normalize_img": 837, "img_max": 837, "reduce_max": 837, "img_min": 837, "reduce_min": 837, "img_rang": 837, "agent_posit": 837, "agent_veloc": 837, "agent_cam_front_rgb": 837, "agent_cam_front_depth": 837, "agent_cam_rear_rgb": 837, "agent_cam_rear_depth": 837, "agent_cam_lidar": 837, "camera": 837, "front_rgb": 837, "front_depth": 837, "rear_rgb": 837, "rear_depth": 837, "lidar": 837, "rgb": 837, "rear": 837, "veloc": 837, "cam": 837, "cam_max": 837, "cam_min": 837, "cam_rang": 837, "five": 837, "allud": [837, 845], "perman": 837, "straightforward": 837, "dataload": 837, "_cnt": 837, "img_": 837, "_dataset_s": 837, "_batch_siz": 837, "_count": [837, 838], "__next__": 837, "img_fnam": 837, "loaded_img": 837, "batch_slic": 837, "0145": 837, "addbackward0": 837, "_create_vari": 838, "_input_channel": 838, "_output_channel": 838, "_w_shape": 838, "_b_shape": 838, "_with_bia": 838, "764": 838, "872": 838, "211": 838, "439": 838, "nightmar": 838, "overcom": 838, "v1": 838, "key0": 838, "linear3": 838, "v2": 838, "preced": [838, 845], "_w_init": 838, "_b_init": 838, "misnom": 838, "saw": 838, "_beta1": 838, "_beta2": 838, "_epsilon": 838, "_mw": 838, "_vw": 838, "_first_pass": 838, "_should_trac": 838, "new_v": 838, "_lr": 838, "_inplac": 838, "_stop_gradi": 838, "sparse_funct": 839, "vital": [839, 844], "_linear": 839, "jax_graph": 839, "to_backend": 839, "thinli": 839, "to_haiku_modul": 839, "loss_fn_t": 839, "without_apply_rng": 839, "update_rul": 839, "tree_multimap": 839, "trax": [839, 846], "objax": [839, 846], "matur": [840, 845, 855], "doubt": 840, "grate": 840, "probe": 840, "lock": 840, "gold": 840, "dex": 840, "tricki": [840, 842], "predictor": 840, "tight": 840, "dispatch": [840, 855, 858], "ast": 840, "autodiff": 840, "shine": 840, "merci": 840, "compet": [840, 855], "parallelis": 840, "spmd": 840, "mixtur": 840, "expert": 840, "sophist": 840, "depart": 840, "hundr": 840, "thousand": 840, "broadli": [840, 861], "supplementari": 840, "reusabl": [840, 853, 855], "fanci": [840, 855], "fusion": [840, 859], "lose": 840, "pmap": 840, "eventu": 840, "supplement": 840, "backdoor": 840, "callback": 840, "door": 840, "somewhat": [840, 855], "outsourc": 840, "ivy_root": 841, "pem": 841, "api_kei": 841, "asap": 841, "nail": 842, "scientist": 842, "correl": 842, "collabor": [843, 844, 845], "consortium": [843, 845], "grown": 844, "rapidli": 844, "shareabl": 844, "outdat": 844, "newest": 844, "prototyp": [844, 855], "obsolet": [844, 846], "invent": 844, "simultan": [844, 846], "runner": 844, "principl": [844, 853, 855, 858], "2006": 844, "cloth": 844, "forgiven": 845, "eyebrow": 845, "somehow": 845, "industri": [845, 855, 857], "funni": 845, "comic": 845, "charger": 845, "instant": 845, "contrari": 845, "bumpi": 845, "road": 845, "technologi": [845, 853, 857], "pcie": 845, "motherboard": 845, "raid": 845, "bluetooth": 845, "wireless": 845, "btx": 845, "sata": 845, "tcp": 845, "ip": 845, "smtp": 845, "send": [845, 860], "gmail": 845, "outlook": 845, "innov": 845, "growth": [845, 858], "necess": 845, "2015": [845, 855], "aros": 845, "mission": [845, 857], "ourselv": [845, 861], "quansight": [845, 861], "compani": [845, 851], "apach": [845, 857, 861], "onnx": [845, 853, 861], "cupi": [845, 855, 862], "modin": 845, "spyder": 845, "octoml": [845, 861], "sponsor": 845, "lg": 845, "electron": 845, "shaw": 845, "pursuit": 845, "complianc": 845, "convinc": 845, "celebr": 845, "abund": 846, "streamlin": [846, 858], "awesom": 846, "love": 846, "slew": 846, "inevit": [846, 856], "erron": 846, "poor": 846, "spin": 846, "sake": 846, "wouldn": 846, "frantic": 846, "lucid": 846, "honk": 846, "hasn": 846, "spend": [846, 855], "sonnet": 846, "trainer": [846, 862], "quo": 846, "dopamin": 846, "ignit": 846, "catalyst": 846, "lightn": 846, "fastai": 846, "publicli": [848, 849, 850], "logger": 848, "arg_stateful_idx": 848, "kwarg_stateful_idx": 848, "include_gener": 848, "array_cach": 848, "return_backend_traced_fn": 848, "lazygraph": [848, 849, 850], "sum_j": 848, "traced_fn": 848, "impos": 848, "comp_func": 848, "trade": 848, "bake": 848, "cont": 848, "new_attribut": 848, "resnet50": 848, "breed": 848, "autoimageprocessor": [848, 849], "resnetforimageclassif": [848, 849], "traced_graph": 848, "predicted_label": 848, "debug_mod": 849, "rough": 849, "transformed_with_st": 849, "bigger": 849, "hf": 849, "tf_model": 849, "tf_input": 849, "transpile_kwarg": 850, "transpiled_func": 850, "unified_func": 850, "rwork": 851, "vendor": [851, 857], "complimentari": [851, 861], "acycl": [851, 856], "insert_numb": 852, "insert_t": 852, "scaffold": [853, 861], "heart": 853, "toolchain": [853, 858], "assembli": [853, 860, 861], "idl": 853, "middl": 853, "emit": 853, "gnu": [853, 858], "broader": 853, "heterogen": 853, "aid": 853, "coprocessor": 853, "programm": [853, 860], "gate": 853, "onednn": 853, "sit": [853, 856, 861], "tandem": 853, "possess": 853, "khrono": [854, 860], "appl": 854, "coremltool": 854, "albeit": 854, "promin": 855, "abbrevi": 855, "laboratori": 855, "proprietari": [855, 859, 860], "mathwork": 855, "commerci": 855, "1984": 855, "toolbox": 855, "mupad": 855, "simulink": 855, "graphic": [855, 859, 860], "simul": 855, "million": [855, 858], "worldwid": 855, "scienc": [855, 857], "econom": 855, "2001": 855, "od": 855, "solver": 855, "cython": 855, "friendli": 855, "2002": 855, "lua": 855, "luajit": 855, "idiap": 855, "epfl": 855, "2005": 855, "numarrai": 855, "cpython": 855, "partli": 855, "2007": 855, "forest": 855, "boost": 855, "dbscan": 855, "inbuilt": 855, "esqu": 855, "aesara": 855, "datafram": 855, "2012": 855, "Its": 855, "polymorph": 855, "mpi": 855, "openmp": 855, "glue": 855, "jaot": 855, "nasa": 855, "cern": 855, "climat": 855, "allianc": 855, "influenti": 855, "2014": 855, "scala": 855, "ship": 855, "forgiv": 855, "decemb": 855, "announc": 855, "mainten": 855, "v7": 855, "meaning": 855, "2016": 855, "imper": 855, "amazon": 855, "traction": 855, "cognit": [855, 862], "grade": 855, "dnn": 855, "backpropag": 855, "succumb": 855, "came": 855, "monitor": 855, "practition": [855, 859, 860, 861], "hobbyist": 855, "tremend": 855, "ecosystem": 855, "gear": 855, "batteri": 855, "zygot": 855, "jl": 855, "workload": 855, "daggerflux": 855, "frontier": 855, "hessian": 855, "2018": 855, "lightweight": [855, 862], "shortcom": 855, "barrier": 855, "inexperienc": 855, "underdevelop": 855, "fanat": 855, "ounc": 855, "infanc": 855, "emerg": 855, "nich": 855, "mobil": 855, "lite": 855, "enterpris": 855, "reinvent": [855, 857], "inertia": 855, "creator": [855, 857], "paszk": 855, "hi": 855, "bulk": 855, "haskel": 855, "dataflow": 856, "trace_modul": 856, "scriptfunct": 856, "scriptmodul": 856, "fake": 856, "proxi": 856, "graphmodul": 856, "travi": 857, "oliph": 857, "leader": 857, "cornerston": 857, "numba": 857, "numfocu": 857, "pydata": 857, "confer": 857, "consult": 857, "servic": 857, "expertis": 857, "devop": 857, "mlop": 857, "dashboard": 857, "startup": 857, "mlir": [857, 858, 861], "Their": 857, "held": 857, "privileg": 857, "presum": 857, "llvm": [857, 860], "founder": 857, "tvm": [857, 861], "sustain": 857, "empow": 857, "har": 857, "burden": 857, "benchmark": 857, "precompil": 858, "executor": 858, "julia": [858, 861], "fsf": 858, "gpl": 858, "biggest": [858, 861], "throughput": 859, "gpgpu": 859, "classic": 860, "sycl": 860, "dpc": 860, "processor": 860, "maco": 860, "oneapi": 860, "ia": 860, "aka": 860, "xeon": 860, "gen9": 860, "xe": 860, "arria": 860, "gx": 860, "fpga": 860, "lofti": 861, "ambit": 861, "realm": 861, "bedrock": 861, "flux": 861, "bite": 861, "chew": 861, "eagerpi": 861, "tensorli": 861, "thinc": 861, "neuropod": 861, "fx": 861, "retrain": 861, "closer": 861, "greatli": 861, "modular": 861, "anywher": 861, "theano": 862, "plaidml": 862, "partial_svd": 862, "excel": 862, "subsystem": 862}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [532, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [554, 0, 1, "", "is_ivy_container"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [578, 0, 1, "", "shape"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[621, 1, 1, "", "ArrayMode"], [617, 1, 1, "", "DefaultComplexDtype"], [618, 1, 1, "", "DefaultDevice"], [617, 1, 1, "", "DefaultDtype"], [617, 1, 1, "", "DefaultFloatDtype"], [617, 1, 1, "", "DefaultIntDtype"], [617, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [616, 1, 1, "", "NestedSequence"], [621, 1, 1, "", "PreciseMode"], [618, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [622, 2, 1, "", "adam_step"], [622, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [635, 2, 1, "", "all"], [621, 2, 1, "", "all_equal"], [628, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [635, 2, 1, "", "any"], [616, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [621, 2, 1, "", "arg_info"], [621, 2, 1, "", "arg_names"], [631, 2, 1, "", "argmax"], [631, 2, 1, "", "argmin"], [633, 2, 1, "", "argsort"], [631, 2, 1, "", "argwhere"], [616, 2, 1, "", "array"], [621, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [617, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [617, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [616, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [621, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [617, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [625, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [617, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [617, 2, 1, "", "broadcast_to"], [621, 2, 1, "", "cache_fn"], [617, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [617, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [624, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [626, 2, 1, "", "clip"], [621, 2, 1, "", "clip_matrix_norm"], [621, 2, 1, "", "clip_vector_norm"], [617, 2, 1, "", "closest_valid_dtype"], [615, 2, 1, "", "cmp_is"], [615, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [626, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [626, 2, 1, "", "constant_pad"], [621, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [637, 2, 1, "", "conv1d"], [638, 2, 1, "", "conv1d_transpose"], [639, 2, 1, "", "conv2d"], [640, 2, 1, "", "conv2d_transpose"], [641, 2, 1, "", "conv3d"], [642, 2, 1, "", "conv3d_transpose"], [643, 2, 1, "", "conv_general_dilated"], [623, 2, 1, "", "conv_general_transpose"], [616, 2, 1, "", "copy_array"], [628, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [624, 2, 1, "", "cross"], [625, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [634, 2, 1, "", "cumprod"], [634, 2, 1, "", "cumsum"], [621, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [621, 2, 1, "", "default"], [617, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [617, 2, 1, "", "default_dtype"], [617, 2, 1, "", "default_float_dtype"], [617, 2, 1, "", "default_int_dtype"], [617, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [623, 2, 1, "", "depthwise_conv2d"], [624, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [624, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [624, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [623, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [617, 2, 1, "", "dtype"], [617, 2, 1, "", "dtype_bits"], [628, 2, 1, "", "duplicate_array_index_chains"], [614, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [624, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [624, 2, 1, "", "eigvalsh"], [621, 2, 1, "", "einops_rearrange"], [621, 2, 1, "", "einops_reduce"], [621, 2, 1, "", "einops_repeat"], [634, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [616, 2, 1, "", "empty"], [616, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [622, 2, 1, "", "execute_with_gradients"], [621, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [626, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [616, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [617, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [626, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [627, 2, 1, "", "fomaml_step"], [615, 2, 1, "", "for_loop"], [621, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [616, 2, 1, "", "from_dlpack"], [616, 2, 1, "", "frombuffer"], [616, 2, 1, "", "full"], [616, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [621, 2, 1, "", "function_supported_devices_and_dtypes"], [617, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [621, 2, 1, "", "function_unsupported_devices_and_dtypes"], [617, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [621, 2, 1, "", "gather"], [621, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [613, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [621, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [621, 2, 1, "", "get_item"], [621, 2, 1, "", "get_num_dims"], [621, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [622, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [622, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [613, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [621, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [615, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [617, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [628, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [614, 6, 1, "", "inf"], [617, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [624, 2, 1, "", "inner"], [621, 2, 1, "", "inplace_arrays_supported"], [621, 2, 1, "", "inplace_decrement"], [621, 2, 1, "", "inplace_increment"], [621, 2, 1, "", "inplace_update"], [621, 2, 1, "", "inplace_variables_supported"], [628, 2, 1, "", "insert_into_nest_at_index"], [628, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [624, 2, 1, "", "inv"], [617, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [621, 2, 1, "", "is_array"], [617, 2, 1, "", "is_bool_dtype"], [617, 2, 1, "", "is_complex_dtype"], [617, 2, 1, "", "is_float_dtype"], [617, 2, 1, "", "is_hashable_dtype"], [617, 2, 1, "", "is_int_dtype"], [621, 2, 1, "", "is_ivy_array"], [621, 2, 1, "", "is_ivy_container"], [621, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [621, 2, 1, "", "is_native_array"], [617, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [617, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [621, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [621, 2, 1, "", "isscalar"], [621, 2, 1, "", "itemsize"], [622, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [622, 2, 1, "", "lamb_update"], [622, 2, 1, "", "lars_update"], [629, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [613, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [623, 2, 1, "", "linear"], [616, 2, 1, "", "linspace"], [635, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [613, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [616, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [623, 2, 1, "", "lstm_update"], [624, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [627, 2, 1, "", "maml_step"], [628, 2, 1, "", "map"], [628, 2, 1, "", "map_nest_at_index"], [628, 2, 1, "", "map_nest_at_indices"], [621, 2, 1, "", "match_kwargs"], [624, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [624, 2, 1, "", "matrix_norm"], [624, 2, 1, "", "matrix_power"], [624, 2, 1, "", "matrix_rank"], [624, 2, 1, "", "matrix_transpose"], [634, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [634, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [616, 2, 1, "", "meshgrid"], [634, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [613, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [633, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [623, 2, 1, "", "multi_head_attention"], [628, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [630, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [621, 2, 1, "", "multiprocessing"], [614, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [616, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [628, 2, 1, "", "nested_any"], [628, 2, 1, "", "nested_argwhere"], [628, 2, 1, "", "nested_map"], [628, 2, 1, "", "nested_multi_map"], [614, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [623, 2, 1, "", "nms"], [631, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [621, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [616, 2, 1, "", "one_hot"], [616, 2, 1, "", "ones"], [616, 2, 1, "", "ones_like"], [622, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [624, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [626, 2, 1, "", "permute_dims"], [614, 6, 1, "", "pi"], [624, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [621, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [634, 2, 1, "", "prod"], [617, 2, 1, "", "promote_types"], [617, 2, 1, "", "promote_types_of_inputs"], [628, 2, 1, "", "prune_empty"], [628, 2, 1, "", "prune_nest_at_index"], [628, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [624, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [630, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [630, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [630, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [613, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [626, 2, 1, "", "repeat"], [627, 2, 1, "", "reptile_step"], [626, 2, 1, "", "reshape"], [617, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [413, 2, 1, "", "rnn"], [623, 2, 1, "", "roi_align"], [626, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [635, 2, 1, "", "save"], [623, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [621, 2, 1, "", "scatter_flat"], [621, 2, 1, "", "scatter_nd"], [633, 2, 1, "", "searchsorted"], [630, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [621, 2, 1, "", "set_array_mode"], [617, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [617, 2, 1, "", "set_default_dtype"], [617, 2, 1, "", "set_default_float_dtype"], [617, 2, 1, "", "set_default_int_dtype"], [617, 2, 1, "", "set_default_uint_dtype"], [621, 2, 1, "", "set_exception_trace_mode"], [621, 2, 1, "", "set_inplace_mode"], [621, 2, 1, "", "set_item"], [621, 2, 1, "", "set_min_base"], [621, 2, 1, "", "set_min_denominator"], [628, 2, 1, "", "set_nest_at_index"], [628, 2, 1, "", "set_nest_at_indices"], [621, 2, 1, "", "set_nestable_mode"], [621, 2, 1, "", "set_precise_mode"], [621, 2, 1, "", "set_queue_timeout"], [621, 2, 1, "", "set_shape_array_mode"], [621, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [621, 2, 1, "", "set_tmp_dir"], [621, 2, 1, "", "shape"], [630, 2, 1, "", "shuffle"], [613, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [368, 2, 1, "", "sliding_window"], [624, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [613, 2, 1, "", "softmax"], [613, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [613, 2, 1, "", "softsign"], [624, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [633, 2, 1, "", "sort"], [625, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [626, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [626, 2, 1, "", "squeeze"], [621, 2, 1, "", "stable_divide"], [621, 2, 1, "", "stable_pow"], [626, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [634, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [622, 2, 1, "", "stop_gradient"], [621, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [634, 2, 1, "", "sum"], [621, 2, 1, "", "supports_inplace_updates"], [624, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [624, 2, 1, "", "svdvals"], [626, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [624, 2, 1, "", "tensordot"], [624, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [626, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [616, 2, 1, "", "to_dlpack"], [621, 2, 1, "", "to_ivy_shape"], [621, 2, 1, "", "to_list"], [621, 2, 1, "", "to_native_shape"], [621, 2, 1, "", "to_numpy"], [621, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [624, 2, 1, "", "trace"], [848, 2, 1, "", "trace_graph"], [849, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [616, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [616, 2, 1, "", "triu"], [616, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [621, 2, 1, "", "try_else_none"], [615, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [617, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [850, 2, 1, "", "unify"], [632, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [632, 2, 1, "", "unique_counts"], [632, 2, 1, "", "unique_inverse"], [632, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [621, 2, 1, "", "unset_array_mode"], [617, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [617, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [621, 2, 1, "", "unset_exception_trace_mode"], [621, 2, 1, "", "unset_inplace_mode"], [621, 2, 1, "", "unset_min_base"], [621, 2, 1, "", "unset_min_denominator"], [621, 2, 1, "", "unset_nestable_mode"], [621, 2, 1, "", "unset_precise_mode"], [621, 2, 1, "", "unset_queue_timeout"], [621, 2, 1, "", "unset_shape_array_mode"], [621, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [621, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [626, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [622, 2, 1, "", "value_and_grad"], [621, 2, 1, "", "value_is_nan"], [624, 2, 1, "", "vander"], [634, 2, 1, "", "var"], [624, 2, 1, "", "vecdot"], [624, 2, 1, "", "vector_norm"], [624, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [621, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [631, 2, 1, "", "where"], [615, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [626, 2, 1, "", "zero_pad"], [616, 2, 1, "", "zeros"], [616, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [454, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [502, 0, 1, "", "invert_permutation"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_rnn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[613, 3, 0, "-", "activations"], [614, 3, 0, "-", "constants"], [615, 3, 0, "-", "control_flow_ops"], [616, 3, 0, "-", "creation"], [617, 3, 0, "-", "data_type"], [618, 3, 0, "-", "device"], [619, 3, 0, "-", "elementwise"], [620, 3, 0, "-", "experimental"], [621, 3, 0, "-", "general"], [622, 3, 0, "-", "gradients"], [623, 3, 0, "-", "layers"], [624, 3, 0, "-", "linear_algebra"], [625, 3, 0, "-", "losses"], [626, 3, 0, "-", "manipulation"], [627, 3, 0, "-", "meta"], [628, 3, 0, "-", "nest"], [629, 3, 0, "-", "norms"], [630, 3, 0, "-", "random"], [631, 3, 0, "-", "searching"], [632, 3, 0, "-", "set"], [633, 3, 0, "-", "sorting"], [634, 3, 0, "-", "statistical"], [635, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[775, 3, 0, "-", "activations"], [776, 3, 0, "-", "converters"], [777, 3, 0, "-", "helpers"], [778, 3, 0, "-", "initializers"], [779, 3, 0, "-", "layers"], [780, 3, 0, "-", "losses"], [781, 3, 0, "-", "module"], [782, 3, 0, "-", "norms"], [783, 3, 0, "-", "optimizers"], [784, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[775, 1, 1, "", "ELU"], [775, 1, 1, "", "GEGLU"], [775, 1, 1, "", "GELU"], [775, 1, 1, "", "Hardswish"], [775, 1, 1, "", "LeakyReLU"], [775, 1, 1, "", "LogSigmoid"], [775, 1, 1, "", "LogSoftmax"], [775, 1, 1, "", "Logit"], [775, 1, 1, "", "Mish"], [775, 1, 1, "", "PReLU"], [775, 1, 1, "", "ReLU"], [775, 1, 1, "", "ReLU6"], [775, 1, 1, "", "SeLU"], [775, 1, 1, "", "SiLU"], [775, 1, 1, "", "Sigmoid"], [775, 1, 1, "", "Softmax"], [775, 1, 1, "", "Softplus"], [775, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[775, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[776, 1, 1, "", "ModuleConverters"], [776, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[776, 0, 1, "", "from_flax_module"], [776, 0, 1, "", "from_haiku_module"], [776, 0, 1, "", "from_keras_module"], [776, 0, 1, "", "from_paddle_module"], [776, 0, 1, "", "from_torch_module"], [776, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[777, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[778, 1, 1, "", "Constant"], [778, 1, 1, "", "FirstLayerSiren"], [778, 1, 1, "", "GlorotUniform"], [778, 1, 1, "", "Initializer"], [778, 1, 1, "", "KaimingNormal"], [778, 1, 1, "", "Ones"], [778, 1, 1, "", "RandomNormal"], [778, 1, 1, "", "Siren"], [778, 1, 1, "", "Uniform"], [778, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[779, 1, 1, "", "AdaptiveAvgPool1d"], [779, 1, 1, "", "AdaptiveAvgPool2d"], [779, 1, 1, "", "AvgPool1D"], [779, 1, 1, "", "AvgPool2D"], [779, 1, 1, "", "AvgPool3D"], [779, 1, 1, "", "Conv1D"], [779, 1, 1, "", "Conv1DTranspose"], [779, 1, 1, "", "Conv2D"], [779, 1, 1, "", "Conv2DTranspose"], [779, 1, 1, "", "Conv3D"], [779, 1, 1, "", "Conv3DTranspose"], [779, 1, 1, "", "Dct"], [779, 1, 1, "", "DepthwiseConv2D"], [779, 1, 1, "", "Dropout"], [779, 1, 1, "", "Embedding"], [779, 1, 1, "", "FFT"], [779, 1, 1, "", "IFFT"], [779, 1, 1, "", "Identity"], [779, 1, 1, "", "LSTM"], [779, 1, 1, "", "Linear"], [779, 1, 1, "", "MaxPool1D"], [779, 1, 1, "", "MaxPool2D"], [779, 1, 1, "", "MaxPool3D"], [779, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[780, 1, 1, "", "BinaryCrossEntropyLoss"], [780, 1, 1, "", "CrossEntropyLoss"], [780, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.module": [[781, 1, 1, "", "Module"], [781, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[781, 0, 1, "", "__call__"], [781, 0, 1, "", "__init__"], [781, 5, 1, "", "buffers"], [781, 0, 1, "", "build"], [781, 5, 1, "", "build_mode"], [781, 5, 1, "", "built"], [781, 5, 1, "", "device"], [781, 5, 1, "", "dtype"], [781, 0, 1, "", "eval"], [781, 0, 1, "", "load"], [781, 5, 1, "", "module_dict"], [781, 0, 1, "", "register_buffer"], [781, 0, 1, "", "register_parameter"], [781, 0, 1, "", "save"], [781, 0, 1, "", "save_weights"], [781, 0, 1, "", "show_graph"], [781, 5, 1, "", "state_dict"], [781, 0, 1, "", "to_device"], [781, 0, 1, "", "trace_graph"], [781, 0, 1, "", "train"], [781, 5, 1, "", "training"], [781, 5, 1, "", "v"]], "ivy.stateful.norms": [[782, 1, 1, "", "BatchNorm2D"], [782, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[782, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[783, 1, 1, "", "Adam"], [783, 1, 1, "", "AdamW"], [783, 1, 1, "", "LAMB"], [783, 1, 1, "", "LARS"], [783, 1, 1, "", "Optimizer"], [783, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[783, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.sequential": [[784, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[784, 0, 1, "", "__init__"]], "ivy.utils": [[785, 3, 0, "-", "assertions"], [786, 3, 0, "-", "backend"], [790, 3, 0, "-", "binaries"], [791, 3, 0, "-", "dynamic_import"], [792, 3, 0, "-", "einsum_parser"], [793, 3, 0, "-", "einsum_path_helpers"], [794, 3, 0, "-", "exceptions"], [795, 3, 0, "-", "inspection"], [796, 3, 0, "-", "logging"], [797, 3, 0, "-", "profiler"], [798, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[785, 2, 1, "", "check_all"], [785, 2, 1, "", "check_all_or_any_fn"], [785, 2, 1, "", "check_any"], [785, 2, 1, "", "check_dev_correct_formatting"], [785, 2, 1, "", "check_dimensions"], [785, 2, 1, "", "check_elem_in_list"], [785, 2, 1, "", "check_equal"], [785, 2, 1, "", "check_exists"], [785, 2, 1, "", "check_false"], [785, 2, 1, "", "check_gather_input_valid"], [785, 2, 1, "", "check_gather_nd_input_valid"], [785, 2, 1, "", "check_greater"], [785, 2, 1, "", "check_inplace_sizes_valid"], [785, 2, 1, "", "check_isinstance"], [785, 2, 1, "", "check_kernel_padding_size"], [785, 2, 1, "", "check_less"], [785, 2, 1, "", "check_one_way_broadcastable"], [785, 2, 1, "", "check_same_dtype"], [785, 2, 1, "", "check_shape"], [785, 2, 1, "", "check_shapes_broadcastable"], [785, 2, 1, "", "check_true"], [785, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[787, 3, 0, "-", "ast_helpers"], [788, 3, 0, "-", "handler"], [789, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[787, 1, 1, "", "ImportTransformer"], [787, 1, 1, "", "IvyLoader"], [787, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "impersonate_import"], [787, 0, 1, "", "visit_Import"], [787, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[787, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[788, 1, 1, "", "ContextManager"], [788, 2, 1, "", "choose_random_backend"], [788, 2, 1, "", "current_backend"], [788, 2, 1, "", "dynamic_backend_converter"], [788, 2, 1, "", "prevent_access_locally"], [788, 2, 1, "", "previous_backend"], [788, 2, 1, "", "set_backend"], [788, 2, 1, "", "set_backend_to_specific_version"], [788, 2, 1, "", "set_jax_backend"], [788, 2, 1, "", "set_mxnet_backend"], [788, 2, 1, "", "set_numpy_backend"], [788, 2, 1, "", "set_paddle_backend"], [788, 2, 1, "", "set_tensorflow_backend"], [788, 2, 1, "", "set_torch_backend"], [788, 2, 1, "", "unset_backend"], [788, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[788, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[789, 2, 1, "", "clear_sub_backends"], [789, 2, 1, "", "find_available_sub_backends"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [789, 2, 1, "", "set_sub_backend"], [789, 2, 1, "", "set_sub_backend_to_specific_version"], [789, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[790, 2, 1, "", "check_for_binaries"], [790, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[791, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[792, 2, 1, "", "convert_interleaved_input"], [792, 2, 1, "", "convert_subscripts"], [792, 2, 1, "", "find_output_shape"], [792, 2, 1, "", "find_output_str"], [792, 2, 1, "", "gen_unused_symbols"], [792, 2, 1, "", "get_symbol"], [792, 2, 1, "", "has_valid_einsum_chars_only"], [792, 2, 1, "", "is_valid_einsum_char"], [792, 2, 1, "", "legalise_einsum_expr"], [792, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[793, 2, 1, "", "can_dot"], [793, 2, 1, "", "compute_size_by_dict"], [793, 2, 1, "", "find_contraction"], [793, 2, 1, "", "flop_count"], [793, 2, 1, "", "greedy_path"], [793, 2, 1, "", "optimal_path"], [793, 2, 1, "", "parse_einsum_input"], [793, 2, 1, "", "parse_possible_contraction"], [793, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[794, 7, 1, "", "InplaceUpdateException"], [794, 7, 1, "", "IvyAttributeError"], [794, 7, 1, "", "IvyBackendException"], [794, 7, 1, "", "IvyBroadcastShapeError"], [794, 7, 1, "", "IvyDeviceError"], [794, 7, 1, "", "IvyDtypePromotionError"], [794, 7, 1, "", "IvyError"], [794, 7, 1, "", "IvyException"], [794, 7, 1, "", "IvyIndexError"], [794, 7, 1, "", "IvyInvalidBackendException"], [794, 7, 1, "", "IvyNotImplementedException"], [794, 7, 1, "", "IvyValueError"], [794, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[794, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[795, 2, 1, "", "add_array_specs"], [795, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[796, 2, 1, "", "set_logging_mode"], [796, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[797, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[797, 0, 1, "", "__init__"], [797, 4, 1, "", "print_stats"], [797, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[798, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[758, 3, 0, "-", "assertions"], [759, 3, 0, "-", "available_frameworks"], [760, 3, 0, "-", "function_testing"], [761, 3, 0, "-", "globals"], [762, 3, 0, "-", "hypothesis_helpers"], [767, 3, 0, "-", "multiprocessing"], [768, 3, 0, "-", "pipeline_helper"], [769, 3, 0, "-", "structs"], [770, 3, 0, "-", "test_parameter_flags"], [771, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[758, 2, 1, "", "assert_all_close"], [758, 2, 1, "", "assert_same_type"], [758, 2, 1, "", "assert_same_type_and_shape"], [758, 2, 1, "", "check_unsupported_device"], [758, 2, 1, "", "check_unsupported_device_and_dtype"], [758, 2, 1, "", "check_unsupported_dtype"], [758, 2, 1, "", "test_unsupported_function"], [758, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, 2, 1, "", "args_to_container"], [760, 2, 1, "", "args_to_frontend"], [760, 2, 1, "", "arrays_to_frontend"], [760, 2, 1, "", "as_lists"], [760, 2, 1, "", "convtrue"], [760, 2, 1, "", "create_args_kwargs"], [760, 2, 1, "", "flatten"], [760, 2, 1, "", "flatten_and_to_np"], [760, 2, 1, "", "flatten_frontend"], [760, 2, 1, "", "flatten_frontend_fw_to_np"], [760, 2, 1, "", "flatten_frontend_to_np"], [760, 2, 1, "", "get_frontend_ret"], [760, 2, 1, "", "get_ret_and_flattened_np_array"], [760, 2, 1, "", "gradient_incompatible_function"], [760, 2, 1, "", "gradient_test"], [760, 2, 1, "", "gradient_unsupported_dtypes"], [760, 2, 1, "", "kwargs_to_args_n_kwargs"], [760, 2, 1, "", "test_frontend_function"], [760, 2, 1, "", "test_frontend_method"], [760, 2, 1, "", "test_function"], [760, 2, 1, "", "test_function_backend_computation"], [760, 2, 1, "", "test_function_ground_truth_computation"], [760, 2, 1, "", "test_gradient_backend_computation"], [760, 2, 1, "", "test_gradient_ground_truth_computation"], [760, 2, 1, "", "test_method"], [760, 2, 1, "", "test_method_backend_computation"], [760, 2, 1, "", "test_method_ground_truth_computation"], [760, 2, 1, "", "traced_if_required"], [760, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[761, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [761, 7, 1, "", "InterruptedTest"], [761, 1, 1, "", "TestData"], [761, 2, 1, "", "setup_api_test"], [761, 2, 1, "", "setup_frontend_test"], [761, 2, 1, "", "teardown_api_test"], [761, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[761, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[761, 0, 1, "", "__init__"], [761, 4, 1, "", "fn_name"], [761, 4, 1, "", "fn_tree"], [761, 4, 1, "", "is_method"], [761, 4, 1, "", "supported_device_dtypes"], [761, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[763, 3, 0, "-", "array_helpers"], [764, 3, 0, "-", "dtype_helpers"], [765, 3, 0, "-", "general_helpers"], [766, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, 2, 1, "", "array_and_broadcastable_shape"], [763, 2, 1, "", "array_bools"], [763, 2, 1, "", "array_helpers_dtype_info_helper"], [763, 2, 1, "", "array_indices_axis"], [763, 2, 1, "", "array_indices_put_along_axis"], [763, 2, 1, "", "array_values"], [763, 2, 1, "", "arrays_and_axes"], [763, 2, 1, "", "arrays_for_pooling"], [763, 2, 1, "", "broadcast_shapes"], [763, 2, 1, "", "cond_data_gen_helper"], [763, 2, 1, "", "create_concatenable_arrays_dtypes"], [763, 2, 1, "", "create_nested_input"], [763, 2, 1, "", "dtype_and_values"], [763, 2, 1, "", "dtype_array_query"], [763, 2, 1, "", "dtype_array_query_val"], [763, 2, 1, "", "dtype_values_axis"], [763, 2, 1, "", "einsum_helper"], [763, 2, 1, "", "get_first_solve_batch_matrix"], [763, 2, 1, "", "get_first_solve_matrix"], [763, 2, 1, "", "get_second_solve_batch_matrix"], [763, 2, 1, "", "get_second_solve_matrix"], [763, 2, 1, "", "list_of_size"], [763, 2, 1, "", "lists"], [763, 2, 1, "", "mutually_broadcastable_shapes"], [763, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, 2, 1, "", "array_dtypes"], [764, 2, 1, "", "cast_filter"], [764, 2, 1, "", "cast_filter_helper"], [764, 2, 1, "", "get_castable_dtype"], [764, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, 7, 1, "", "BroadcastError"], [765, 2, 1, "", "apply_safety_factor"], [765, 2, 1, "", "broadcast_shapes"], [765, 2, 1, "", "embedding_helper"], [765, 2, 1, "", "general_helpers_dtype_info_helper"], [765, 2, 1, "", "get_axis"], [765, 2, 1, "", "get_bounds"], [765, 2, 1, "", "get_mean_std"], [765, 2, 1, "", "get_shape"], [765, 2, 1, "", "matrix_is_stable"], [765, 2, 1, "", "reshape_shapes"], [765, 2, 1, "", "subsets"], [765, 2, 1, "", "two_broadcastable_shapes"], [765, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, 2, 1, "", "floats"], [766, 2, 1, "", "ints"], [766, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, 2, 1, "", "backend_proc"], [767, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, 1, 1, "", "BackendHandler"], [768, 1, 1, "", "BackendHandlerMode"], [768, 1, 1, "", "WithBackendContext"], [768, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[768, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[768, 4, 1, "", "SetBackend"], [768, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[768, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[769, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "framework_init_module"], [769, 4, 1, "", "init_name"], [769, 4, 1, "", "ivy_init_module"], [769, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, 1, 1, "", "DynamicFlag"], [770, 1, 1, "", "FrontendFunctionTestFlags"], [770, 1, 1, "", "FrontendInitTestFlags"], [770, 1, 1, "", "FrontendMethodTestFlags"], [770, 1, 1, "", "FunctionTestFlags"], [770, 1, 1, "", "InitMethodTestFlags"], [770, 1, 1, "", "MethodTestFlags"], [770, 1, 1, "", "TestFlags"], [770, 2, 1, "", "build_flag"], [770, 2, 1, "", "frontend_function_flags"], [770, 2, 1, "", "frontend_init_flags"], [770, 2, 1, "", "frontend_method_flags"], [770, 2, 1, "", "function_flags"], [770, 2, 1, "", "init_method_flags"], [770, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, 2, 1, "", "handle_frontend_method"], [771, 2, 1, "", "handle_frontend_test"], [771, 2, 1, "", "handle_method"], [771, 2, 1, "", "handle_test"], [771, 2, 1, "", "num_positional_args"], [771, 2, 1, "", "num_positional_args_helper"], [771, 2, 1, "", "num_positional_args_method"], [771, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 804], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 799, 816, 821, 824, 827, 832, 848, 849, 850], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 799, 804, 806, 809, 811, 813, 816, 818, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 838, 839, 841, 848, 849, 850, 861], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 799, 841], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 617, 632, 736, 737, 738, 739, 814, 826, 829, 837, 840], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 823], "torch": [3, 4, 5, 7, 34, 41, 855, 856], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 855], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 855], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 820, 828, 830], "implement": [3, 5, 813, 824, 826, 846], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 791], "modul": [4, 781, 814, 815, 838, 849], "sequenc": [4, 821], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 839, 840], "imag": [5, 7, 55, 78, 248, 801, 811], "segment": 5, "unet": 5, "custom": [5, 809, 811, 824, 828, 837, 840], "preprocess": 5, "load": [5, 7, 9, 756, 837], "visualis": [5, 7], "initi": [5, 7, 778, 838], "nativ": [5, 7, 809, 832], "pretrain": [5, 7], "weight": [5, 7, 837], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 760, 804, 812, 814, 815, 818, 821, 822, 823, 824, 826, 827, 829, 830, 831, 832, 834, 839, 840, 849], "us": [5, 7, 14, 22, 25, 42, 44, 799, 801, 804, 805, 808, 824, 827, 837, 841, 848, 849], "your": [5, 7, 806, 829], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 786, 789, 804, 810, 814, 824, 830, 834, 840], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 632, 805, 810, 819, 831, 841], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 855], "xgboost": 9, "test": [9, 40, 760, 770, 771, 774, 804, 805, 806, 808, 813, 819, 827, 829], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 805, 832, 846], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 820, 840, 845, 848], "number": [9, 766, 821], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 828], "fraction": 9, "comparison": [9, 837], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 799, 839, 841, 849], "build": [11, 12, 13, 42, 801, 811, 834], "top": [11, 12, 13, 813], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 805, 819, 828, 841], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 837, 839], "tutori": [15, 42], "And": 15, "learn": [15, 16, 855], "basic": [15, 16, 38, 39, 806, 826], "write": [17, 25, 826, 829], "content": [17, 40], "handler": [17, 26, 788, 789, 834], "structur": [17, 26, 811, 824, 840], "api": [17, 26, 27, 804, 808, 812, 813, 824, 830, 834, 836, 838, 839, 841, 845, 848, 849, 850, 852, 859, 861], "state": [17, 26, 27, 838, 840, 848], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 799, 836, 846, 850, 857, 861], "trace": [19, 21, 22, 27, 678, 818], "lazi": [21, 31, 848], "eager": [21, 31, 848], "how": [22, 804, 811, 819, 828, 829], "decor": [22, 33, 818, 823, 829], "ani": [23, 24, 26, 27, 755], "librari": [23, 26, 27, 42, 44, 849], "odsc": 26, "framework": [26, 32, 38, 759, 772, 824, 827, 835, 855, 858, 861, 862], "graph": [26, 43, 856, 861], "tracer": [26, 834, 839, 841, 848, 856, 861], "quickstart": 27, "get": [27, 799, 806, 841], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 855], "compil": [29, 31, 32, 33, 39, 848, 853, 858, 860, 861], "2": [30, 33, 35, 44, 855], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 791, 810, 840], "static": 34, "todo": [34, 806], "explain": 34, "via": 34, "why": [34, 829, 846], "mode": [34, 814, 818, 831], "i": [34, 799, 811, 832], "true": 34, "default": [34, 532], "when": [34, 799], "from": [34, 41, 841], "numpi": [34, 41, 826, 855], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 821, 831, 836, 840], "ml": [38, 844, 857, 861], "chang": 38, "one": 38, "line": [38, 806], "No": [38, 805, 846], "need": [38, 829], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 617, 814, 822, 826, 840], "differ": 38, "them": 38, "all": [38, 754], "standalon": [38, 822], "defin": [38, 39, 40, 42], "optim": [38, 783, 838], "input": [38, 39, 821], "target": 38, "loss": [38, 58, 81, 370, 625, 780], "loop": [38, 42], "sampl": 39, "check": [39, 820, 840], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 804, 811, 828, 841], "perceiverio": [40, 41], "tabl": [40, 811, 814], "construct": [40, 837], "some": 40, "helper": [40, 762, 763, 764, 765, 766, 768, 771, 777, 787, 793, 827, 829, 830], "pipelin": [40, 42, 768, 811, 813, 829, 840], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 840], "introduct": [41, 44, 826, 827], "python3": 41, "8": 41, "setup": [41, 820], "kernel": 41, "clone": [41, 805, 813], "repo": [41, 805], "ivy_model": 41, "run": [41, 806, 808, 811, 819, 829], "end": 42, "let": 42, "we": [42, 829], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 635, 773], "plot": 42, "save": [42, 757, 837], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 806], "To": [44, 806], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 613, 775], "convers": [47, 70, 823], "creation": [48, 71, 362, 616], "devic": [50, 73, 364, 618, 815, 821, 826], "elementwis": [51, 74, 102, 365, 619], "experiment": [52, 75, 620, 804], "gener": [53, 76, 366, 621, 765, 824, 829, 832, 848], "gradient": [54, 77, 342, 367, 622, 824], "layer": [56, 79, 368, 623, 779], "linear": [57, 80, 369, 624, 647], "algebra": [57, 80, 369, 624], "manipul": [59, 82, 371, 626], "norm": [60, 83, 374, 629, 782], "random": [61, 84, 375, 630], "search": [62, 85, 376, 631], "sort": [64, 87, 378, 633, 743], "statist": [65, 88, 380, 634], "wrap": [67, 90, 823], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 441], "arrai": [97, 100, 122, 379, 763, 808, 809, 813, 821, 836, 845, 848, 852], "contain": [98, 806, 812, 837], "factor": 99, "nest": [100, 373, 628], "class": [103, 772, 809, 818, 826, 836], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 616], "frombuff": 129, "full": [130, 827], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 764, 821], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 566, 567, 572, 573, 575, 576, 618, 621, 770, 775, 831], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 816, 827, 861], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 796, 805], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 821], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 816, 827], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 804, 819], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 614], "meta": [372, 627], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "rnn": 413, "sliding_window": 414, "stft": 415, "adjoint": 416, "batched_out": 417, "cond": 418, "diagflat": 419, "dot": 420, "eig": [421, 658], "eigh_tridiagon": 422, "eigval": 423, "general_inner_product": 424, "higher_order_mo": 425, "initialize_tuck": 426, "khatri_rao": 427, "kron": 428, "kroneck": 429, "make_svd_non_neg": 430, "matrix_exp": 431, "mode_dot": 432, "multi_dot": 433, "multi_mode_dot": 434, "partial_tuck": 435, "solve_triangular": 436, "svd_flip": 437, "tensor_train": 438, "truncated_svd": 439, "tt_matrix_to_tensor": 440, "huber_loss": 442, "kl_div": 443, "l1_loss": 444, "log_poisson_loss": 445, "poisson_nll_loss": 446, "smooth_l1_loss": 447, "soft_margin_loss": 448, "as_strid": 449, "associative_scan": 450, "atleast_1d": 451, "atleast_2d": 452, "atleast_3d": 453, "broadcast_shap": 454, "check_scalar": 455, "choos": 456, "column_stack": 457, "concat_from_sequ": 458, "dsplit": 459, "dstack": 460, "expand": 461, "fill_diagon": 462, "flatten": 463, "fliplr": 464, "flipud": 465, "fold": 466, "heavisid": 467, "hsplit": 468, "hstack": 469, "i0": 470, "matric": 471, "moveaxi": 472, "pad": 473, "partial_fold": 474, "partial_tensor_to_vec": 475, "partial_unfold": 476, "partial_vec_to_tensor": 477, "put_along_axi": 478, "rot90": 479, "soft_threshold": 480, "take": 481, "take_along_axi": 482, "top_k": 483, "trim_zero": 484, "unfold": 485, "unique_consecut": 486, "vsplit": 487, "vstack": 488, "batch_norm": 489, "group_norm": 490, "instance_norm": 491, "l1_normal": 492, "l2_normal": 493, "local_response_norm": 494, "lp_normal": 495, "bernoulli": 496, "beta": 497, "dirichlet": 498, "gamma": 499, "poisson": 500, "unravel_index": 501, "invert_permut": 502, "lexsort": 503, "is_ivy_sparse_arrai": 504, "is_native_sparse_arrai": 505, "native_sparse_arrai": 506, "native_sparse_array_to_indices_values_and_shap": 507, "bincount": 508, "corrcoef": 509, "cov": 510, "cummax": 511, "cummin": 512, "histogram": 513, "igamma": 514, "median": 515, "nanmean": 516, "nanmedian": 517, "nanmin": 518, "nanprod": 519, "quantil": 520, "optional_get_el": 521, "all_equ": 522, "arg_info": 523, "arg_nam": 524, "array_equ": 525, "assert_supports_inplac": 526, "cache_fn": 527, "clip_matrix_norm": 528, "clip_vector_norm": 529, "container_typ": 530, "current_backend_str": 531, "einops_rearrang": 533, "einops_reduc": 534, "einops_repeat": 535, "exist": [536, 801, 828], "fourier_encod": 537, "function_supported_devices_and_dtyp": 538, "function_unsupported_devices_and_dtyp": 539, "gather": 540, "gather_nd": 541, "get_all_arrays_in_memori": 542, "get_item": 543, "get_num_dim": 544, "get_referrers_recurs": 545, "has_nan": 546, "inplace_arrays_support": 547, "inplace_decr": 548, "inplace_incr": 549, "inplace_upd": 550, "inplace_variables_support": 551, "is_arrai": 552, "is_ivy_arrai": 553, "is_ivy_contain": 554, "is_ivy_nested_arrai": 555, "is_native_arrai": 556, "isin": 557, "isscalar": 558, "items": 559, "match_kwarg": 560, "multiprocess": [561, 767], "num_arrays_in_memori": 562, "print_all_arrays_in_memori": 563, "scatter_flat": 564, "scatter_nd": 565, "set_array_mod": 566, "set_exception_trace_mod": 567, "set_inplace_mod": 568, "set_item": 569, "set_min_bas": 570, "set_min_denomin": 571, "set_nestable_mod": 572, "set_precise_mod": 573, "set_queue_timeout": 574, "set_shape_array_mod": 575, "set_show_func_wrapper_trace_mod": 576, "set_tmp_dir": 577, "shape": [578, 632, 736, 737, 738, 739, 823, 840], "stable_divid": 579, "stable_pow": 580, "stride": 581, "supports_inplace_upd": 582, "to_ivy_shap": 583, "to_list": 584, "to_native_shap": 585, "to_numpi": 586, "to_scalar": 587, "try_else_non": 588, "unset_array_mod": 589, "unset_exception_trace_mod": 590, "unset_inplace_mod": 591, "unset_min_bas": 592, "unset_min_denomin": 593, "unset_nestable_mod": 594, "unset_precise_mod": 595, "unset_queue_timeout": 596, "unset_shape_array_mod": 597, "unset_show_func_wrapper_trace_mod": 598, "unset_tmp_dir": 599, "value_is_nan": 600, "vmap": 601, "adam_step": 602, "adam_upd": 603, "execute_with_gradi": [604, 824], "grad": 605, "gradient_descent_upd": 606, "jac": 607, "lamb_upd": 608, "lars_upd": 609, "optimizer_upd": 610, "stop_gradi": 611, "value_and_grad": 612, "control": [615, 840], "flow": [615, 840], "op": 615, "depend": [632, 736, 737, 738, 739], "output": [632, 736, 737, 738, 739], "conv": 636, "conv1d": 637, "conv1d_transpos": 638, "conv2d": 639, "conv2d_transpos": 640, "conv3d": 641, "conv3d_transpos": 642, "conv_general_dil": 643, "conv_general_transpos": 644, "depthwise_conv2d": 645, "dropout": 646, "lstm_updat": 648, "multi_head_attent": 649, "nm": 650, "roi_align": 651, "scaled_dot_product_attent": 652, "choleski": 653, "cross": 654, "det": 655, "diag": 656, "diagon": 657, "eigh": 659, "eigvalsh": 660, "inner": 661, "inv": 662, "lu_factor": 663, "matmul": 664, "matrix_norm": 665, "matrix_pow": 666, "matrix_rank": 667, "matrix_transpos": 668, "outer": 669, "pinv": 670, "qr": 671, "slogdet": 672, "solv": 673, "svd": 674, "svdval": 675, "tensordot": 676, "tensorsolv": 677, "vander": 679, "vecdot": 680, "vector_norm": 681, "vector_to_skew_symmetric_matrix": 682, "binary_cross_entropi": 683, "cross_entropi": 684, "sparse_cross_entropi": 685, "clip": 686, "concat": 687, "constant_pad": 688, "expand_dim": 689, "flip": 690, "permute_dim": 691, "repeat": 692, "reshap": 693, "roll": [694, 816], "split": 695, "squeez": 696, "stack": [697, 818], "swapax": 698, "tile": 699, "unstack": 700, "zero_pad": 701, "fomaml_step": 702, "maml_step": 703, "reptile_step": 704, "all_nested_indic": 705, "copy_nest": 706, "duplicate_array_index_chain": 707, "index_nest": 708, "insert_into_nest_at_index": 709, "insert_into_nest_at_indic": 710, "map": [711, 813], "map_nest_at_index": 712, "map_nest_at_indic": 713, "multi_index_nest": 714, "nested_ani": 715, "nested_argwher": 716, "nested_map": 717, "nested_multi_map": 718, "prune_empti": 719, "prune_nest_at_index": 720, "prune_nest_at_indic": 721, "set_nest_at_index": 722, "set_nest_at_indic": 723, "layer_norm": 724, "multinomi": 725, "randint": 726, "random_norm": 727, "random_uniform": 728, "seed": 729, "shuffl": 730, "argmax": 731, "argmin": 732, "argwher": 733, "nonzero": 734, "where": [735, 804, 819], "unique_al": 736, "unique_count": 737, "unique_invers": 738, "unique_valu": 739, "argsort": 740, "msort": 741, "searchsort": 742, "cumprod": 744, "cumsum": 745, "einsum": [746, 792, 793], "max": 747, "mean": 748, "min": 749, "prod": 750, "std": 751, "sum": 752, "var": 753, "assert": [758, 785, 818], "avail": 759, "global": [761, 831], "hypothesi": [762, 805, 827, 829], "struct": 769, "flag": 770, "convert": [776, 839], "sequenti": 784, "ast": 787, "sub": 789, "binari": [790, 805], "parser": 792, "path": 793, "except": [794, 818, 823], "inspect": 795, "profil": 797, "verbos": 798, "statu": 799, "ai": 799, "start": [799, 841], "pip": [799, 841], "document": 799, "dive": [799, 807], "deeper": 799, "should": 799, "contribut": [799, 800, 804, 828], "commun": 799, "citat": 799, "doc": [801, 811], "docker": [801, 805, 806, 811, 841], "conveni": [801, 811, 822], "script": [801, 811], "hub": 801, "local": [801, 806, 820], "without": [801, 827], "error": [802, 818, 819], "handl": [802, 809, 815, 818, 823, 840], "help": [803, 806, 819], "resourc": 803, "open": 804, "task": 804, "fail": [804, 819, 829], "frontend": [804, 810, 826, 827, 839], "place": 804, "checklist": 804, "format": [804, 820, 854, 861], "extend": [804, 829, 832], "an": [804, 824], "issu": [804, 806, 820, 841], "github": [804, 805], "templat": 804, "fork": [805, 806], "pre": [805, 820], "commit": [805, 806, 813, 820], "pycharm": [805, 806, 820], "virtual": 805, "environ": 805, "miniconda": 805, "venv": 805, "interpret": 805, "window": 805, "maco": 805, "ubuntu": 805, "detail": 805, "free": 805, "wsl": 805, "codespac": 805, "The": [805, 806, 811, 824, 826, 836, 840, 845], "list": 806, "manag": 806, "who": 806, "ask": [806, 819], "With": 806, "command": 806, "pull": [806, 813], "request": [806, 813], "small": 806, "often": 806, "interact": 806, "most": 806, "out": [806, 821, 823, 825], "id": [806, 808], "deep": 807, "termin": 808, "regener": 808, "failur": 808, "skip": 808, "integr": [809, 813, 820, 828, 829], "version": [810, 830, 840], "support": [810, 814, 823, 826, 840], "builder": 811, "being": 811, "option": 811, "index": 811, "rst": 811, "partial_conf": 811, "py": 811, "prebuild": 811, "sh": 811, "extens": 811, "custom_autosummari": 811, "hide": 811, "discussion_link": 811, "skippable_funct": 811, "ivy_data": 811, "instanc": [812, 826, 827, 836], "method": [812, 826, 827, 836, 837], "special": [812, 814, 826], "nestabl": [812, 821, 822, 823], "continu": [813, 820], "push": 813, "pr": 813, "trigger": 813, "A": [813, 832], "down": 813, "view": [813, 823, 825], "store": 813, "retriev": 813, "repositori": 813, "nitti": 813, "gritti": 813, "storag": 813, "space": 813, "unifyai": 813, "determin": 813, "coverag": 813, "workflow": 813, "multipl": 813, "runner": 813, "race": 813, "condit": 813, "period": 813, "manual": 813, "dispatch": 813, "ci": 813, "dashboard": 813, "promot": [814, 826], "precis": 814, "non": [814, 832], "argument": [814, 815, 821, 823, 825, 826], "other": [814, 815], "unsupport": 814, "attribut": [814, 831], "case": [814, 837], "bug": 814, "cast": [814, 826], "superset": [814, 832], "docstr": [816, 817], "configur": [818, 827, 837], "func_wrapp": 818, "prune": 818, "handle_except": 818, "consist": [818, 829], "prerequir": 819, "common": [819, 820], "lint": [820, 828], "keyword": 821, "integ": 821, "primari": 822, "composit": 822, "mix": [822, 823, 829], "partial": [822, 823, 829], "order": 823, "wrapper": [823, 861, 862], "miscellan": 823, "overview": [824, 828], "usag": [824, 828, 832, 850], "signatur": 824, "design": [824, 830, 833], "our": 824, "polici": [824, 826], "specif": [824, 859, 860, 861], "consider": 824, "inplac": 825, "updat": 825, "copi": 825, "short": 826, "unus": 826, "rule": 826, "duplic": [826, 832], "valu": 827, "alia": 827, "formatt": 828, "functionorderingformatt": 828, "work": [828, 845, 851], "own": 829, "strategi": 829, "do": [829, 845], "effect": 829, "bonu": 829, "featur": 829, "self": 829, "explicit": 829, "test_array_funct": 829, "re": [829, 846], "navig": 830, "categor": 830, "submodul": 830, "unpin": 830, "properti": 831, "getter": 831, "setter": 831, "set_": 831, "unset_": 831, "behaviour": 832, "standard": [832, 845, 852, 861], "what": [832, 861], "balanc": 832, "effici": 832, "maxim": 832, "block": 834, "monkei": 836, "patch": 836, "represent": 837, "recurs": 837, "built": 837, "ins": 837, "access": 837, "compartment": 837, "role": 839, "faq": 840, "maintain": 840, "size": 840, "deploy": 840, "auto": 840, "differenti": 840, "replica": 840, "parallel": 840, "altern": 840, "sourc": 841, "folder": 841, "kei": 841, "question": 841, "glossari": 842, "motiv": 843, "explos": 844, "skeptic": 845, "complimentari": 845, "competit": 845, "infinit": 846, "shelf": 846, "life": 846, "One": 847, "liner": 847, "trace_graph": 848, "cach": 848, "sharp": [848, 849, 850], "bit": [848, 849, 850], "relat": 851, "infrastructur": [853, 861], "llvm": 853, "mlir": 853, "oneapi": 853, "exchang": [854, 861], "onnx": 854, "nnef": 854, "coreml": 854, "matlab": 855, "scipi": 855, "scikit": 855, "theano": 855, "panda": 855, "julia": 855, "apach": [855, 858], "spark": 855, "mllib": 855, "caff": 855, "chainer": 855, "mxnet": 855, "cntk": 855, "flux": 855, "dex": 855, "languag": 855, "tf": 856, "jaxpr": 856, "jit": 856, "fx": 856, "compani": [857, 861], "quansight": 857, "modular": 857, "octoml": 857, "multi": [858, 861], "vendor": [858, 859, 860, 861], "tvm": 858, "xla": 858, "gcc": 858, "tensorrt": 859, "cuda": 859, "icc": 860, "icx": 860, "nvcc": 860, "doe": 861, "eagerpi": 862, "kera": 862, "thinc": 862, "tensorli": 862, "neuropod": 862}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"promote_types": [[173, "promote-types"]], "is_native_dtype": [[171, "is-native-dtype"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "zeros_like": [[144, "zeros-like"]], "finfo": [[160, "finfo"]], "result_type": [[175, "result-type"]], "set_default_dtype": [[177, "set-default-dtype"]], "zeros": [[143, "zeros"]], "default_dtype": [[154, "default-dtype"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "check_float": [[151, "check-float"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "default_float_dtype": [[155, "default-float-dtype"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "dtype": [[158, "dtype"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "broadcast_to": [[149, "broadcast-to"]], "invalid_dtype": [[165, "invalid-dtype"]], "default_int_dtype": [[156, "default-int-dtype"]], "iinfo": [[163, "iinfo"]], "as_native_dtype": [[146, "as-native-dtype"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "triu_indices": [[142, "triu-indices"]], "dtype_bits": [[159, "dtype-bits"]], "is_float_dtype": [[168, "is-float-dtype"]], "ones_like": [[138, "ones-like"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "astype": [[147, "astype"]], "can_cast": [[150, "can-cast"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "tril": [[140, "tril"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [616, null], [616, null]], "default_complex_dtype": [[153, "default-complex-dtype"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "triu": [[141, "triu"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "is_int_dtype": [[170, "is-int-dtype"]], "Navigating the Code": [[830, "navigating-the-code"]], "Categorization": [[830, "categorization"]], "Submodule Design": [[830, "submodule-design"]], "Ivy API": [[830, "ivy-api"]], "Backend API": [[830, "backend-api"]], "Submodule Helper Functions": [[830, "submodule-helper-functions"]], "Version Unpinning": [[830, "version-unpinning"]], "Ivy Array": [[836, "ivy-array"], [809, "ivy-array"]], "The Array Class": [[836, "the-array-class"]], "Unifying Operators": [[836, "unifying-operators"]], "API Monkey Patching": [[836, "api-monkey-patching"]], "Instance Methods": [[836, "instance-methods"]], "API Standards": [[852, "api-standards"], [861, "api-standards"]], "Array API Standard": [[852, "id1"]], "ivy.trace_graph()": [[848, "ivy-trace-graph"]], "Tracer API": [[848, "tracer-api"]], "Using the tracer": [[848, "using-the-tracer"]], "Eager vs lazy Compilation": [[848, "eager-vs-lazy-compilation"]], "Array caching": [[848, "array-caching"]], "Generators": [[848, "generators"]], "Stateful": [[848, "stateful"]], "Sharp bits": [[848, "sharp-bits"], [850, "sharp-bits"], [849, "sharp-bits"]], "Examples": [[848, "examples"], [850, "examples"], [849, "examples"], [799, "examples"], [821, "examples"]], "ivy.unify()": [[850, "ivy-unify"]], "Unify API": [[850, "unify-api"]], "Usage": [[850, "usage"]], "Ivy Stateful API": [[838, "ivy-stateful-api"], [26, "Ivy-Stateful-API"], [17, "Ivy-Stateful-API"]], "Modules": [[838, "modules"]], "Initializers": [[838, "initializers"], [778, "module-ivy.stateful.initializers"]], "Optimizers": [[838, "optimizers"], [783, "module-ivy.stateful.optimizers"]], "Superset Behaviour": [[832, "superset-behaviour"]], "Extending the Standard": [[832, "extending-the-standard"]], "What is the Superset?": [[832, "what-is-the-superset"]], "A Non-Duplicate Superset": [[832, "a-non-duplicate-superset"]], "What is not the Superset?": [[832, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[832, "balancing-generalization-with-efficiency"]], "More Examples": [[832, "more-examples"]], "Maximizing Usage of Native Functionality": [[832, "maximizing-usage-of-native-functionality"]], "Why Unify?": [[846, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[846, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[846, "infinite-shelf-life"]], "What does Ivy Add?": [[861, "what-does-ivy-add"]], "Wrapper Frameworks": [[861, "wrapper-frameworks"], [862, "wrapper-frameworks"]], "Frameworks": [[861, "frameworks"], [855, "frameworks"]], "Graph Tracers": [[861, "graph-tracers"], [856, "graph-tracers"]], "Exchange Formats": [[861, "exchange-formats"], [854, "exchange-formats"]], "Compiler Infrastructure": [[861, "compiler-infrastructure"], [853, "compiler-infrastructure"]], "Multi-Vendor Compiler Frameworks": [[861, "multi-vendor-compiler-frameworks"], [858, "multi-vendor-compiler-frameworks"]], "Vendor-Specific APIs": [[861, "vendor-specific-apis"], [859, "vendor-specific-apis"]], "Vendor-Specific Compilers": [[861, "vendor-specific-compilers"], [860, "vendor-specific-compilers"]], "ML-Unifying Companies": [[861, "ml-unifying-companies"], [857, "ml-unifying-companies"]], "FAQ": [[840, "faq"]], "Maintaining Backend Versions": [[840, "maintaining-backend-versions"]], "Dynamic Sizes": [[840, "dynamic-sizes"]], "Type and Shape Checking": [[840, "type-and-shape-checking"]], "GPU handling": [[840, "gpu-handling"]], "Model Deployment": [[840, "model-deployment"]], "Dynamic Control Flow": [[840, "dynamic-control-flow"]], "Auto-Differentiation": [[840, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[840, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[840, "support-for-functions"]], "Alternative Data Structures": [[840, "alternative-data-structures"]], "Custom Operations": [[840, "custom-operations"]], "The Pipeline": [[840, "the-pipeline"]], "State": [[840, "state"]], "ICC": [[860, "id1"]], "ICX": [[860, "icx"]], "NVCC": [[860, "nvcc"]], "ML Explosion": [[844, "ml-explosion"]], "Apache TVM": [[858, "apache-tvm"]], "XLA": [[858, "xla"]], "GCC": [[858, "gcc"]], "Ivy Tests": [[829, "ivy-tests"], [813, "ivy-tests"]], "Testing Pipeline": [[829, "testing-pipeline"]], "Hypothesis": [[829, "id1"]], "Data Generation": [[829, "id2"]], "Writing your own strategy": [[829, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[829, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[829, "ivy-test-decorators"]], "Writing Ivy Tests": [[829, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[829, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[829, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[829, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[829, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[829, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[829, "self-consistent-and-explicit-testing"]], "test_array_function": [[829, "id4"]], "Running Ivy Tests": [[829, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[829, "re-running-failed-ivy-tests"]], "Operating Modes": [[831, "operating-modes"]], "Global Parameter Properties": [[831, "global-parameter-properties"]], "Getter: ivy. attribute": [[831, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[831, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "Quansight": [[857, "id1"]], "Modular": [[857, "id2"]], "OctoML": [[857, "id3"]], "Ivy as a Framework": [[835, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Design": [[833, "design"]], "Ivy as a Transpiler": [[839, "ivy-as-a-transpiler"], [26, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[839, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[839, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[839, "converting-network-models"]], "Standardization": [[845, "standardization"]], "Skepticism": [[845, "skepticism"]], "Complimentary vs Competitive": [[845, "complimentary-vs-competitive"]], "Do Standards Work?": [[845, "do-standards-work"]], "The Array API Standard": [[845, "the-array-api-standard"]], "Glossary": [[842, "glossary"]], "Related Work": [[851, "related-work"]], "Motivation": [[843, "motivation"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[828, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[828, "overview"], [824, "overview"]], "Existing Formatters": [[828, "existing-formatters"]], "FunctionOrderingFormatter": [[828, "functionorderingformatter"]], "How the Formatter Works:": [[828, "how-the-formatter-works"]], "Integration and Usage": [[828, "integration-and-usage"]], "Contribution": [[828, "contribution"]], "Round Up": [[828, "round-up"], [31, "Round-Up"], [13, "Round-Up"], [11, "Round-Up"], [33, "Round-Up"], [30, "Round-Up"], [29, "Round-Up"], [40, "Round-Up"], [17, "Round-Up"], [19, "Round-Up"], [27, "Round-Up"], [28, "Round-Up"], [18, "Round-Up"], [20, "Round-Up"], [23, "Round-Up"], [22, "Round-Up"], [32, "Round-Up"], [21, "Round-Up"]], "Ivy Container": [[837, "ivy-container"]], "Construction": [[837, "construction"]], "Representation": [[837, "representation"]], "Recursive Methods": [[837, "recursive-methods"]], "Built-ins": [[837, "built-ins"]], "Access": [[837, "access"]], "Saving and Loading": [[837, "saving-and-loading"]], "Comparisons": [[837, "comparisons"]], "Customized Representations": [[837, "customized-representations"]], "Use Cases": [[837, "use-cases"]], "Compartmentalization": [[837, "compartmentalization"]], "Configuration": [[837, "configuration"]], "Data loading": [[837, "data-loading"]], "Network weights": [[837, "network-weights"]], "tf.Graph": [[856, "tf-graph"]], "Jaxpr": [[856, "jaxpr"]], "torch.jit": [[856, "torch-jit"]], "torch.fx": [[856, "torch-fx"]], "TensorRT tensorrt": [[859, "tensorrt-tensorrt"]], "CUDA cuda": [[859, "cuda-cuda"]], "Get Started": [[841, "get-started"]], "Installing using pip": [[841, "installing-using-pip"], [799, "installing-using-pip"]], "Docker": [[841, "docker"]], "Installing from source": [[841, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[841, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[841, "ivy-folder"]], "Setting Up the API key": [[841, "setting-up-the-api-key"]], "Issues and Questions": [[841, "issues-and-questions"]], "One liners": [[847, "one-liners"]], "Building Blocks": [[834, "building-blocks"]], "Backend Functional APIs \u2705": [[834, "backend-functional-apis"]], "Ivy Functional API \u2705": [[834, "ivy-functional-api"]], "Backend Handler \u2705": [[834, "backend-handler"]], "Tracer \ud83d\udea7": [[834, "tracer"]], "ivy.transpile()": [[849, "ivy-transpile"]], "Transpiler API": [[849, "transpiler-api"]], "Using the transpiler": [[849, "using-the-transpiler"]], "Transpiling functions": [[849, "transpiling-functions"]], "Transpiling Libraries": [[849, "transpiling-libraries"]], "Transpiling Modules": [[849, "transpiling-modules"]], "ONNX onnx": [[854, "onnx-onnx"]], "NNEF nnef": [[854, "nnef-nnef"]], "CoreML coreml": [[854, "coreml-coreml"]], "EagerPy eagerpy": [[862, "eagerpy-eagerpy"]], "Keras keras": [[862, "keras-keras"]], "Thinc thinc": [[862, "thinc-thinc"]], "TensorLy tensorly": [[862, "tensorly-tensorly"]], "NeuroPod": [[862, "id1"]], "LLVM": [[853, "id1"]], "MLIR": [[853, "id2"]], "OneAPI": [[853, "id3"]], "MATLAB matlab": [[855, "matlab-matlab"]], "SciPy scipy": [[855, "scipy-scipy"]], "Torch torch": [[855, "torch-torch"]], "NumPy numpy": [[855, "numpy-numpy"]], "SciKit Learn scikit-learn": [[855, "scikit-learn-scikit-learn"]], "Theano theano": [[855, "theano-theano"]], "Pandas pandas": [[855, "pandas-pandas"]], "Julia julia": [[855, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[855, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[855, "caffe-caffe"]], "Chainer chainer": [[855, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[855, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[855, "mxnet-mxnet"]], "CNTK cntk": [[855, "cntk-cntk"]], "PyTorch pytorch": [[855, "pytorch-pytorch"]], "Flux flux": [[855, "flux-flux"]], "JAX jax": [[855, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[855, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[855, "dex-language-dex-language"]], "from_dlpack": [[128, "from-dlpack"]], "arange": [[121, "arange"]], "Data classes": [[103, "data-classes"]], "one_hot": [[136, "one-hot"]], "logspace": [[133, "logspace"]], "leaky_relu": [[107, "leaky-relu"]], "meshgrid": [[134, "meshgrid"]], "sigmoid": [[111, "sigmoid"]], "cmp_isnot": [[116, "cmp-isnot"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "linspace": [[132, "linspace"]], "mish": [[109, "mish"]], "for_loop": [[117, "for-loop"]], "softplus": [[113, "softplus"]], "eye": [[127, "eye"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "asarray": [[123, "asarray"]], "Factorized tensor": [[99, "factorized-tensor"]], "try_except": [[119, "try-except"]], "native_array": [[135, "native-array"]], "ones": [[137, "ones"]], "empty": [[125, "empty"]], "Nested array": [[100, "nested-array"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [91, "module-ivy.data_classes.factorized_tensor.base"], [69, "module-ivy.data_classes.container.base"]], "softsign": [[114, "softsign"]], "full_like": [[131, "full-like"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "if_else": [[118, "if-else"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [619, "elementwise"], [365, "elementwise"], [74, "module-ivy.data_classes.container.elementwise"], [51, "module-ivy.data_classes.array.elementwise"]], "softmax": [[112, "softmax"]], "while_loop": [[120, "while-loop"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "hardswish": [[106, "hardswish"]], "gelu": [[105, "gelu"]], "full": [[130, "full"]], "Array": [[97, "array"]], "cmp_is": [[115, "cmp-is"]], "relu": [[110, "relu"]], "array": [[122, "array"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "Functions": [[104, "functions"]], "frombuffer": [[129, "frombuffer"]], "log_softmax": [[108, "log-softmax"]], "empty_like": [[126, "empty-like"]], "copy_array": [[124, "copy-array"]], "Container": [[98, "container"]], "Deep Dive": [[807, "deep-dive"]], "Helpful Resources": [[803, "helpful-resources"]], "Handler": [[788, "module-ivy.utils.backend.handler"]], "Open Tasks": [[804, "open-tasks"]], "Fixing Failing Tests": [[804, "fixing-failing-tests"]], "How to Contribute": [[804, "how-to-contribute"]], "Frontend APIs": [[804, "frontend-apis"]], "Where to place a frontend function": [[804, "where-to-place-a-frontend-function"]], "Frontend checklist": [[804, "frontend-checklist"]], "Function Formatting": [[804, "function-formatting"]], "Formatting checklist": [[804, "formatting-checklist"]], "Ivy Experimental API": [[804, "ivy-experimental-api"]], "Extending the Ivy API": [[804, "extending-the-ivy-api"]], "Where to place a backend function": [[804, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[804, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Function Wrapping": [[823, "function-wrapping"]], "Decorator order": [[823, "decorator-order"]], "Conversion Wrappers": [[823, "conversion-wrappers"]], "Inference Wrappers": [[823, "inference-wrappers"]], "Out Argument Support": [[823, "out-argument-support"]], "Nestable Support": [[823, "nestable-support"]], "Partial Mixed Function Support": [[823, "partial-mixed-function-support"]], "Shape Conversion": [[823, "shape-conversion"]], "View Handling": [[823, "view-handling"]], "Exception Handling": [[823, "exception-handling"], [818, "exception-handling"]], "Miscellaneous Wrappers": [[823, "miscellaneous-wrappers"]], "Backend": [[786, "backend"]], "Assertions": [[785, "module-ivy.utils.assertions"], [758, "module-ivy_tests.test_ivy.helpers.assertions"]], "Logging": [[796, "module-ivy.utils.logging"]], "Binaries": [[790, "module-ivy.utils.binaries"]], "Gradients": [[824, "gradients"], [622, "gradients"], [367, "gradients"], [77, "module-ivy.data_classes.container.gradients"], [54, "module-ivy.data_classes.array.gradients"]], "Example Usage of the Gradient API": [[824, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[824, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[824, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[824, "custom-gradient-functions"]], "Design of the Gradient API": [[824, "design-of-the-gradient-api"]], "Our policy on gradients": [[824, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[824, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[824, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[824, "framework-specific-considerations"]], "Ivy Frontend Tests": [[827, "ivy-frontend-tests"]], "Introduction": [[827, "introduction"], [826, "introduction"], [41, "Introduction"]], "Frontend Test Examples": [[827, "frontend-test-examples"]], "ivy.tan()": [[827, "ivy-tan"]], "ivy.full()": [[827, "ivy-full"]], "Testing Without Using Tests Values": [[827, "testing-without-using-tests-values"]], "Alias functions": [[827, "alias-functions"]], "Frontend Instance Method Tests": [[827, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[827, "frontend-instance-method-test-examples"]], "ivy.add()": [[827, "ivy-add"]], "Hypothesis Helpers": [[827, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[827, "frontend-framework-testing-configuration"]], "Continuous Integration": [[813, "continuous-integration"], [820, "continuous-integration"]], "Commit (Push/PR) Triggered Testing": [[813, "commit-push-pr-triggered-testing"]], "Implementation": [[813, "implementation"]], "A Top-Down View": [[813, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[813, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[813, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[813, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[813, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[813, "determine-test-coverage-workflow"]], "Multiple Runners": [[813, "multiple-runners"]], "Race Condition": [[813, "race-condition"]], "Array API Tests": [[813, "array-api-tests"], [808, "array-api-tests"]], "Periodic Testing": [[813, "periodic-testing"]], "Manually Dispatched Workflows": [[813, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[813, "ci-pipeline"]], "Push": [[813, "push"]], "Pull Request": [[813, "pull-request"]], "Dashboard": [[813, "dashboard"]], "Backend Setting": [[810, "backend-setting"]], "Dynamic Backend Setting": [[810, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[810, "backend-and-frontend-version-support"]], "Ivy Frontends": [[826, "ivy-frontends"]], "The Frontend Basics": [[826, "the-frontend-basics"]], "Writing Frontend Functions": [[826, "writing-frontend-functions"]], "Short Frontend Implementations": [[826, "short-frontend-implementations"]], "Unused Arguments": [[826, "unused-arguments"]], "Supported Data Types and Devices": [[826, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[826, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[826, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[826, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[826, "frontends-duplicate-policy"]], "Inplace Updates": [[825, "inplace-updates"]], "out argument": [[825, "out-argument"]], "copy argument": [[825, "copy-argument"]], "Views": [[825, "views"]], "Exceptions": [[794, "module-ivy.utils.exceptions"]], "Containers": [[812, "containers"]], "Container Instance Methods": [[812, "container-instance-methods"]], "API Instance Methods": [[812, "api-instance-methods"]], "API Special Methods": [[812, "api-special-methods"]], "Nestable Functions": [[812, "nestable-functions"], [821, "nestable-functions"], [822, "nestable-functions"]], "Sub backend handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "Inspection": [[795, "module-ivy.utils.inspection"]], "Formatting": [[820, "formatting"]], "Lint Checks": [[820, "lint-checks"], [820, "id2"]], "Setup Formatting Locally": [[820, "setup-formatting-locally"]], "Pre-commit": [[820, "pre-commit"]], "VS Code": [[820, "vs-code"]], "PyCharm": [[820, "pycharm"], [805, "pycharm"]], "Common Issues with Pre-Commit": [[820, "common-issues-with-pre-commit"]], "Lint Formatting": [[820, "lint-formatting"]], "Building the Docs Pipeline": [[811, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[811, "how-the-doc-builder-is-being-run"]], "The convenience script": [[811, "the-convenience-script"]], "Options": [[811, "options"]], "The Docker image": [[811, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[811, "how-ivy-s-docs-is-structured"]], "index.rst": [[811, "index-rst"]], "partial_conf.py": [[811, "partial-conf-py"]], "prebuild.sh": [[811, "prebuild-sh"]], "Custom Extensions": [[811, "custom-extensions"]], "custom_autosummary": [[811, "custom-autosummary"]], ":hide-table:": [[811, "hide-table"]], "discussion_linker": [[811, "discussion-linker"]], "skippable_function": [[811, "skippable-function"]], "ivy_data": [[811, "ivy-data"]], "Contributing": [[800, "contributing"], [799, "contributing"]], "Docstring Examples": [[816, "docstring-examples"]], "ivy.tan": [[816, "ivy-tan"]], "ivy.roll": [[816, "ivy-roll"]], "ivy.add": [[816, "ivy-add"]], "Running the Tests": [[808, "running-the-tests"]], "Using Terminal": [[808, "using-terminal"]], "Using the IDE": [[808, "using-the-ide"]], "Regenerating Test Failures": [[808, "regenerating-test-failures"]], "Test Skipping": [[808, "test-skipping"]], "Einsum path helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "The Basics": [[806, "the-basics"]], "Getting Help": [[806, "getting-help"]], "ToDo List Issues": [[806, "todo-list-issues"]], "Managing Your Fork": [[806, "managing-your-fork"]], "Who To Ask": [[806, "who-to-ask"]], "With Command Line:": [[806, "with-command-line"]], "With Browser:": [[806, "with-browser"]], "Pull Requests": [[806, "pull-requests"]], "Small Commits Often": [[806, "small-commits-often"]], "Interactive Ivy Docker Container": [[806, "interactive-ivy-docker-container"]], "Running Tests Locally": [[806, "running-tests-locally"]], "With Docker": [[806, "with-docker"]], "Getting the most out of IDE": [[806, "getting-the-most-out-of-ide"]], "with PyCharm": [[806, "with-pycharm"]], "Norms": [[782, "module-ivy.stateful.norms"], [629, "norms"], [374, "norms"], [83, "module-ivy.data_classes.container.norms"], [60, "module-ivy.data_classes.array.norms"]], "Status": [[799, "status"]], "Unified AI": [[799, "unified-ai"]], "Getting started": [[799, "getting-started"]], "Installing ivy": [[799, "installing-ivy"]], "Using Ivy": [[799, "using-ivy"]], "Documentation": [[799, "documentation"]], "Diving deeper": [[799, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[799, "when-should-i-use-ivy-as-a-transpiler"]], "Community": [[799, "community"]], "Citation": [[799, "citation"]], "Ivy Exception Class": [[818, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[818, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[818, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[818, "handle-exceptions-decorator"]], "Consistency in Errors": [[818, "consistency-in-errors"]], "Assertion Function": [[818, "assertion-function"]], "Profiler": [[797, "module-ivy.utils.profiler"]], "Building the Docs": [[801, "building-the-docs"]], "Building the Docs using Docker": [[801, "building-the-docs-using-docker"]], "Using convenience script": [[801, "using-convenience-script"]], "Using existing image on Docker Hub": [[801, "using-existing-image-on-docker-hub"]], "Building the image locally": [[801, "building-the-image-locally"]], "Building the Docs without Docker": [[801, "building-the-docs-without-docker"]], "Arrays": [[809, "arrays"]], "Native Array": [[809, "native-array"]], "Array Handling": [[809, "array-handling"]], "Integrating custom classes with Ivy": [[809, "integrating-custom-classes-with-ivy"]], "Function Arguments": [[821, "function-arguments"]], "Positional and Keyword Arguments": [[821, "positional-and-keyword-arguments"]], "Input Arrays": [[821, "input-arrays"]], "out Argument": [[821, "out-argument"]], "dtype and device arguments": [[821, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[821, "numbers-in-operator-functions"]], "Integer Sequences": [[821, "integer-sequences"]], "Fix Failing Tests:": [[819, "fix-failing-tests"]], "Prerequirement:": [[819, "prerequirement"]], "Setting Up": [[819, "setting-up"], [805, "setting-up"]], "How to run tests": [[819, "how-to-run-tests"]], "Common Errors": [[819, "common-errors"]], "Where to ask for Help": [[819, "where-to-ask-for-help"]], "Devices": [[815, "devices"]], "Device Module": [[815, "device-module"]], "Arguments in other Functions": [[815, "arguments-in-other-functions"], [814, "arguments-in-other-functions"]], "Device handling": [[815, "device-handling"]], "Dynamic import": [[791, "module-ivy.utils.dynamic_import"]], "Ast helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "Error Handling": [[802, "error-handling"]], "Verbosity": [[798, "module-ivy.utils.verbosity"]], "Forking and cloning the repo": [[805, "forking-and-cloning-the-repo"]], "Pre-Commit": [[805, "pre-commit"]], "Virtual environments - No Docker": [[805, "virtual-environments-no-docker"]], "Using miniconda": [[805, "using-miniconda"]], "Using venv": [[805, "using-venv"]], "Docker Interpreter with PyCharm": [[805, "docker-interpreter-with-pycharm"]], "Windows": [[805, "windows"], [805, "id6"]], "MacOS": [[805, "macos"]], "Ubuntu": [[805, "ubuntu"], [805, "id8"]], "Setting Up Testing in PyCharm": [[805, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[805, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[805, "setting-up-for-free"]], "WSL": [[805, "wsl"]], "GitHub Codespaces": [[805, "github-codespaces"]], "The Binaries": [[805, "the-binaries"]], "Data Types": [[814, "data-types"]], "Data Type Module": [[814, "data-type-module"]], "Data Type Promotion": [[814, "data-type-promotion"]], "Precise Mode": [[814, "precise-mode"]], "Precise Promotion Table": [[814, "precise-promotion-table"]], "Non-Precise Promotion Table": [[814, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[814, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[814, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[814, "special-case"]], "Backend Data Type Bugs": [[814, "backend-data-type-bugs"]], "Data Type Casting Modes": [[814, "data-type-casting-modes"]], "Superset Data Type Support": [[814, "superset-data-type-support"]], "Docstrings": [[817, "docstrings"]], "Function Types": [[822, "function-types"]], "Primary Functions": [[822, "primary-functions"]], "Compositional Functions": [[822, "compositional-functions"]], "Mixed Functions": [[822, "mixed-functions"]], "Partial Mixed Functions": [[822, "partial-mixed-functions"]], "Standalone Functions": [[822, "standalone-functions"]], "Convenience Functions": [[822, "convenience-functions"]], "Einsum parser": [[792, "module-ivy.utils.einsum_parser"]], "Sequential": [[784, "module-ivy.stateful.sequential"]], "where": [[735, "where"]], "repeat": [[692, "repeat"]], "random_normal": [[727, "random-normal"]], "nested_multi_map": [[718, "nested-multi-map"]], "multi_index_nest": [[714, "multi-index-nest"]], "set_nest_at_indices": [[723, "set-nest-at-indices"]], "split": [[695, "split"]], "copy_nest": [[706, "copy-nest"]], "map_nest_at_index": [[712, "map-nest-at-index"]], "nested_any": [[715, "nested-any"]], "set_nest_at_index": [[722, "set-nest-at-index"]], "zero_pad": [[701, "zero-pad"]], "multinomial": [[725, "multinomial"]], "insert_into_nest_at_indices": [[710, "insert-into-nest-at-indices"]], "roll": [[694, "roll"]], "permute_dims": [[691, "permute-dims"]], "fomaml_step": [[702, "fomaml-step"]], "prune_nest_at_index": [[720, "prune-nest-at-index"]], "flip": [[690, "flip"]], "layer_norm": [[724, "layer-norm"]], "swapaxes": [[698, "swapaxes"]], "all_nested_indices": [[705, "all-nested-indices"]], "reshape": [[693, "reshape"]], "index_nest": [[708, "index-nest"]], "prune_nest_at_indices": [[721, "prune-nest-at-indices"]], "argwhere": [[733, "argwhere"]], "prune_empty": [[719, "prune-empty"]], "random_uniform": [[728, "random-uniform"]], "argmin": [[732, "argmin"]], "shuffle": [[730, "shuffle"]], "reptile_step": [[704, "reptile-step"]], "nested_argwhere": [[716, "nested-argwhere"]], "randint": [[726, "randint"]], "map_nest_at_indices": [[713, "map-nest-at-indices"]], "stack": [[697, "stack"]], "nonzero": [[734, "nonzero"]], "tile": [[699, "tile"]], "seed": [[729, "seed"]], "squeeze": [[696, "squeeze"]], "unstack": [[700, "unstack"]], "insert_into_nest_at_index": [[709, "insert-into-nest-at-index"]], "nested_map": [[717, "nested-map"]], "argmax": [[731, "argmax"]], "duplicate_array_index_chains": [[707, "duplicate-array-index-chains"]], "map": [[711, "map"]], "maml_step": [[703, "maml-step"]], "Utils": [[773, "utils"]], "max": [[747, "max"]], "msort": [[741, "msort"]], "any": [[755, "any"]], "Pipeline helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "Dtype helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "var": [[753, "var"]], "Hypothesis helpers": [[762, "hypothesis-helpers"]], "Number helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "Testing": [[774, "testing"], [40, "Testing"]], "load": [[756, "load"]], "Converters": [[776, "module-ivy.stateful.converters"]], "Structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "unique_all": [[736, "unique-all"]], "Data-dependent output shape": [[736, null], [738, null], [739, null], [737, null], [632, null], [632, null], [632, null], [632, null]], "mean": [[748, "mean"]], "Available frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "Module": [[781, "module-ivy.stateful.module"]], "Array helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "cumsum": [[745, "cumsum"]], "einsum": [[746, "einsum"]], "Multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "sum": [[752, "sum"]], "min": [[749, "min"]], "Helpers": [[777, "module-ivy.stateful.helpers"]], "General helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "Layers": [[779, "module-ivy.stateful.layers"], [623, "layers"], [368, "layers"], [79, "module-ivy.data_classes.container.layers"], [56, "module-ivy.data_classes.array.layers"]], "Framework classes": [[772, "framework-classes"]], "unique_inverse": [[738, "unique-inverse"]], "cumprod": [[744, "cumprod"]], "Test parameter flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "unique_values": [[739, "unique-values"]], "std": [[751, "std"]], "unique_counts": [[737, "unique-counts"]], "all": [[754, "all"]], "save": [[757, "save"]], "Losses": [[780, "module-ivy.stateful.losses"], [625, "losses"], [370, "losses"], [58, "module-ivy.data_classes.array.losses"], [81, "module-ivy.data_classes.container.losses"]], "Function testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "Globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "prod": [[750, "prod"]], "Testing helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "sort": [[743, "sort"]], "argsort": [[740, "argsort"]], "Activations": [[775, "module-ivy.stateful.activations"], [613, "activations"], [360, "activations"], [68, "module-ivy.data_classes.container.activations"], [46, "module-ivy.data_classes.array.activations"]], "Parameter": [[775, "parameter"], [775, "id1"], [566, "parameter"], [567, "parameter"], [573, "parameter"], [576, "parameter"], [575, "parameter"], [572, "parameter"], [621, "parameter"], [621, "id1"], [621, "id2"], [621, "id3"], [621, "id4"], [621, "id5"], [618, "parameter"], [205, "parameter"]], "searchsorted": [[742, "searchsorted"]], "lu_factor": [[663, "lu-factor"]], "svd": [[674, "svd"]], "diag": [[656, "diag"]], "matrix_norm": [[665, "matrix-norm"]], "qr": [[671, "qr"]], "trace": [[678, "trace"]], "constant_pad": [[688, "constant-pad"]], "lstm_update": [[648, "lstm-update"]], "eig": [[658, "eig"], [421, "eig"]], "eigh": [[659, "eigh"]], "matrix_transpose": [[668, "matrix-transpose"]], "outer": [[669, "outer"]], "tensorsolve": [[677, "tensorsolve"]], "conv_general_transpose": [[644, "conv-general-transpose"]], "vander": [[679, "vander"]], "diagonal": [[657, "diagonal"]], "scaled_dot_product_attention": [[652, "scaled-dot-product-attention"]], "concat": [[687, "concat"]], "det": [[655, "det"]], "solve": [[673, "solve"]], "cross_entropy": [[684, "cross-entropy"]], "cross": [[654, "cross"]], "matrix_power": [[666, "matrix-power"]], "inv": [[662, "inv"]], "svdvals": [[675, "svdvals"]], "clip": [[686, "clip"]], "multi_head_attention": [[649, "multi-head-attention"]], "dropout": [[646, "dropout"]], "nms": [[650, "nms"]], "tensordot": [[676, "tensordot"]], "vector_to_skew_symmetric_matrix": [[682, "vector-to-skew-symmetric-matrix"]], "matrix_rank": [[667, "matrix-rank"]], "sparse_cross_entropy": [[685, "sparse-cross-entropy"]], "linear": [[647, "linear"]], "slogdet": [[672, "slogdet"]], "pinv": [[670, "pinv"]], "expand_dims": [[689, "expand-dims"]], "depthwise_conv2d": [[645, "depthwise-conv2d"]], "cholesky": [[653, "cholesky"]], "inner": [[661, "inner"]], "vecdot": [[680, "vecdot"]], "vector_norm": [[681, "vector-norm"]], "binary_cross_entropy": [[683, "binary-cross-entropy"]], "roi_align": [[651, "roi-align"]], "matmul": [[664, "matmul"]], "eigvalsh": [[660, "eigvalsh"]], "scatter_flat": [[564, "scatter-flat"]], "itemsize": [[559, "itemsize"]], "set_min_denominator": [[571, "set-min-denominator"]], "unset_nestable_mode": [[594, "unset-nestable-mode"]], "to_native_shape": [[585, "to-native-shape"]], "unset_precise_mode": [[595, "unset-precise-mode"]], "unset_shape_array_mode": [[597, "unset-shape-array-mode"]], "set_array_mode": [[566, "set-array-mode"]], "set_exception_trace_mode": [[567, "set-exception-trace-mode"]], "stable_pow": [[580, "stable-pow"]], "is_ivy_container": [[554, "is-ivy-container"]], "is_native_array": [[556, "is-native-array"]], "num_arrays_in_memory": [[562, "num-arrays-in-memory"]], "unset_min_base": [[592, "unset-min-base"]], "set_precise_mode": [[573, "set-precise-mode"]], "strides": [[581, "strides"]], "to_list": [[584, "to-list"]], "isin": [[557, "isin"]], "set_show_func_wrapper_trace_mode": [[576, "set-show-func-wrapper-trace-mode"]], "set_item": [[569, "set-item"]], "unset_min_denominator": [[593, "unset-min-denominator"]], "set_shape_array_mode": [[575, "set-shape-array-mode"]], "unset_exception_trace_mode": [[590, "unset-exception-trace-mode"]], "set_min_base": [[570, "set-min-base"]], "to_numpy": [[586, "to-numpy"]], "supports_inplace_updates": [[582, "supports-inplace-updates"]], "set_nestable_mode": [[572, "set-nestable-mode"]], "set_queue_timeout": [[574, "set-queue-timeout"]], "unset_array_mode": [[589, "unset-array-mode"]], "scatter_nd": [[565, "scatter-nd"]], "isscalar": [[558, "isscalar"]], "is_array": [[552, "is-array"]], "to_ivy_shape": [[583, "to-ivy-shape"]], "shape": [[578, "shape"]], "unset_queue_timeout": [[596, "unset-queue-timeout"]], "multiprocessing": [[561, "multiprocessing"]], "set_inplace_mode": [[568, "set-inplace-mode"]], "print_all_arrays_in_memory": [[563, "print-all-arrays-in-memory"]], "is_ivy_array": [[553, "is-ivy-array"]], "unset_inplace_mode": [[591, "unset-inplace-mode"]], "set_tmp_dir": [[577, "set-tmp-dir"]], "try_else_none": [[588, "try-else-none"]], "is_ivy_nested_array": [[555, "is-ivy-nested-array"]], "to_scalar": [[587, "to-scalar"]], "stable_divide": [[579, "stable-divide"]], "match_kwargs": [[560, "match-kwargs"]], "gather_nd": [[541, "gather-nd"]], "gather": [[540, "gather"]], "clip_matrix_norm": [[528, "clip-matrix-norm"]], "einops_repeat": [[535, "einops-repeat"]], "fourier_encode": [[537, "fourier-encode"]], "native_sparse_array_to_indices_values_and_shape": [[507, "native-sparse-array-to-indices-values-and-shape"]], "array_equal": [[525, "array-equal"]], "inplace_increment": [[549, "inplace-increment"]], "nanprod": [[519, "nanprod"]], "get_referrers_recursive": [[545, "get-referrers-recursive"]], "assert_supports_inplace": [[526, "assert-supports-inplace"]], "native_sparse_array": [[506, "native-sparse-array"]], "get_all_arrays_in_memory": [[542, "get-all-arrays-in-memory"]], "all_equal": [[522, "all-equal"]], "nanmin": [[518, "nanmin"]], "clip_vector_norm": [[529, "clip-vector-norm"]], "inplace_arrays_supported": [[547, "inplace-arrays-supported"]], "einops_reduce": [[534, "einops-reduce"]], "has_nans": [[546, "has-nans"]], "inplace_variables_supported": [[551, "inplace-variables-supported"]], "cummin": [[512, "cummin"]], "inplace_update": [[550, "inplace-update"]], "optional_get_element": [[521, "optional-get-element"]], "cummax": [[511, "cummax"]], "container_types": [[530, "container-types"]], "exists": [[536, "exists"]], "igamma": [[514, "igamma"]], "nanmean": [[516, "nanmean"]], "einops_rearrange": [[533, "einops-rearrange"]], "corrcoef": [[509, "corrcoef"]], "histogram": [[513, "histogram"]], "bincount": [[508, "bincount"]], "default": [[532, "default"]], "nanmedian": [[517, "nanmedian"]], "cache_fn": [[527, "cache-fn"]], "arg_names": [[524, "arg-names"]], "function_supported_devices_and_dtypes": [[538, "function-supported-devices-and-dtypes"]], "quantile": [[520, "quantile"]], "cov": [[510, "cov"]], "arg_info": [[523, "arg-info"]], "get_item": [[543, "get-item"]], "get_num_dims": [[544, "get-num-dims"]], "median": [[515, "median"]], "inplace_decrement": [[548, "inplace-decrement"]], "function_unsupported_devices_and_dtypes": [[539, "function-unsupported-devices-and-dtypes"]], "current_backend_str": [[531, "current-backend-str"]], "partial_vec_to_tensor": [[477, "partial-vec-to-tensor"]], "flatten": [[463, "flatten"]], "soft_thresholding": [[480, "soft-thresholding"]], "fill_diagonal": [[462, "fill-diagonal"]], "group_norm": [[490, "group-norm"]], "moveaxis": [[472, "moveaxis"]], "take_along_axis": [[482, "take-along-axis"]], "l2_normalize": [[493, "l2-normalize"]], "beta": [[497, "beta"]], "flipud": [[465, "flipud"]], "fliplr": [[464, "fliplr"]], "i0": [[470, "i0"]], "rot90": [[479, "rot90"]], "unravel_index": [[501, "unravel-index"]], "lexsort": [[503, "lexsort"]], "instance_norm": [[491, "instance-norm"]], "dstack": [[460, "dstack"]], "take": [[481, "take"]], "batch_norm": [[489, "batch-norm"]], "trim_zeros": [[484, "trim-zeros"]], "partial_unfold": [[476, "partial-unfold"]], "local_response_norm": [[494, "local-response-norm"]], "hstack": [[469, "hstack"]], "pad": [[473, "pad"]], "top_k": [[483, "top-k"]], "invert_permutation": [[502, "invert-permutation"]], "bernoulli": [[496, "bernoulli"]], "hsplit": [[468, "hsplit"]], "is_native_sparse_array": [[505, "is-native-sparse-array"]], "heaviside": [[467, "heaviside"]], "fold": [[466, "fold"]], "expand": [[461, "expand"]], "dirichlet": [[498, "dirichlet"]], "partial_tensor_to_vec": [[475, "partial-tensor-to-vec"]], "partial_fold": [[474, "partial-fold"]], "put_along_axis": [[478, "put-along-axis"]], "is_ivy_sparse_array": [[504, "is-ivy-sparse-array"]], "unique_consecutive": [[486, "unique-consecutive"]], "l1_normalize": [[492, "l1-normalize"]], "gamma": [[499, "gamma"]], "vsplit": [[487, "vsplit"]], "poisson": [[500, "poisson"]], "unfold": [[485, "unfold"]], "lp_normalize": [[495, "lp-normalize"]], "matricize": [[471, "matricize"]], "vstack": [[488, "vstack"]], "value_and_grad": [[612, "value-and-grad"]], "conv1d": [[637, "conv1d"]], "Nest": [[628, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "grad": [[605, "grad"]], "Experimental": [[620, "experimental"], [52, "module-ivy.data_classes.array.experimental"], [75, "module-ivy.data_classes.container.experimental"]], "conv2d_transpose": [[640, "conv2d-transpose"]], "unset_tmp_dir": [[599, "unset-tmp-dir"]], "adam_step": [[602, "adam-step"]], "conv3d": [[641, "conv3d"]], "lars_update": [[609, "lars-update"]], "value_is_nan": [[600, "value-is-nan"]], "optimizer_update": [[610, "optimizer-update"]], "Meta": [[627, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "Set": [[632, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [86, "module-ivy.data_classes.container.set"], [63, "module-ivy.data_classes.array.set"]], "vmap": [[601, "vmap"]], "Constants": [[614, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "conv1d_transpose": [[638, "conv1d-transpose"]], "unset_show_func_wrapper_trace_mode": [[598, "unset-show-func-wrapper-trace-mode"]], "General": [[621, "general"], [366, "general"], [53, "module-ivy.data_classes.array.general"], [76, "module-ivy.data_classes.container.general"]], "Device": [[618, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [50, "module-ivy.data_classes.array.device"], [73, "module-ivy.data_classes.container.device"]], "Random": [[630, "random"], [375, "random"], [84, "module-ivy.data_classes.container.random"], [61, "module-ivy.data_classes.array.random"]], "conv": [[636, "conv"]], "execute_with_gradients": [[604, "execute-with-gradients"]], "Utility": [[635, "utility"], [381, "utility"], [66, "module-ivy.data_classes.array.utility"], [89, "module-ivy.data_classes.container.utility"]], "conv3d_transpose": [[642, "conv3d-transpose"]], "gradient_descent_update": [[606, "gradient-descent-update"]], "jac": [[607, "jac"]], "Manipulation": [[626, "manipulation"], [371, "manipulation"], [59, "module-ivy.data_classes.array.manipulation"], [82, "module-ivy.data_classes.container.manipulation"]], "Creation": [[616, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "conv_general_dilated": [[643, "conv-general-dilated"]], "Data type": [[617, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [49, "module-ivy.data_classes.array.data_type"], [72, "module-ivy.data_classes.container.data_type"]], "lamb_update": [[608, "lamb-update"]], "Statistical": [[634, "statistical"], [380, "statistical"], [65, "module-ivy.data_classes.array.statistical"], [88, "module-ivy.data_classes.container.statistical"]], "stop_gradient": [[611, "stop-gradient"]], "Searching": [[631, "searching"], [376, "searching"], [62, "module-ivy.data_classes.array.searching"], [85, "module-ivy.data_classes.container.searching"]], "Sorting": [[633, "sorting"], [378, "sorting"], [64, "module-ivy.data_classes.array.sorting"], [87, "module-ivy.data_classes.container.sorting"]], "conv2d": [[639, "conv2d"]], "adam_update": [[603, "adam-update"]], "Control flow ops": [[615, "control-flow-ops"]], "Linear algebra": [[624, "linear-algebra"], [369, "linear-algebra"], [57, "module-ivy.data_classes.array.linear_algebra"], [80, "module-ivy.data_classes.container.linear_algebra"]], "smooth_l1_loss": [[447, "smooth-l1-loss"]], "stft": [[415, "stft"]], "diagflat": [[419, "diagflat"]], "mode_dot": [[432, "mode-dot"]], "sliding_window": [[414, "sliding-window"]], "truncated_svd": [[439, "truncated-svd"]], "poisson_nll_loss": [[446, "poisson-nll-loss"]], "atleast_2d": [[452, "atleast-2d"]], "initialize_tucker": [[426, "initialize-tucker"]], "atleast_1d": [[451, "atleast-1d"]], "huber_loss": [[442, "huber-loss"]], "check_scalar": [[455, "check-scalar"]], "batched_outer": [[417, "batched-outer"]], "dsplit": [[459, "dsplit"]], "higher_order_moment": [[425, "higher-order-moment"]], "column_stack": [[457, "column-stack"]], "multi_dot": [[433, "multi-dot"]], "kl_div": [[443, "kl-div"]], "khatri_rao": [[427, "khatri-rao"]], "l1_loss": [[444, "l1-loss"]], "atleast_3d": [[453, "atleast-3d"]], "soft_margin_loss": [[448, "soft-margin-loss"]], "cond": [[418, "cond"]], "tt_matrix_to_tensor": [[440, "tt-matrix-to-tensor"]], "partial_tucker": [[435, "partial-tucker"]], "adjoint": [[416, "adjoint"]], "general_inner_product": [[424, "general-inner-product"]], "solve_triangular": [[436, "solve-triangular"]], "log_poisson_loss": [[445, "log-poisson-loss"]], "broadcast_shapes": [[454, "broadcast-shapes"]], "kronecker": [[429, "kronecker"]], "svd_flip": [[437, "svd-flip"]], "tensor_train": [[438, "tensor-train"]], "choose": [[456, "choose"]], "dot": [[420, "dot"]], "concat_from_sequence": [[458, "concat-from-sequence"]], "make_svd_non_negative": [[430, "make-svd-non-negative"]], "multi_mode_dot": [[434, "multi-mode-dot"]], "eigh_tridiagonal": [[422, "eigh-tridiagonal"]], "kron": [[428, "kron"]], "tucker": [[441, "tucker"]], "associative_scan": [[450, "associative-scan"]], "matrix_exp": [[431, "matrix-exp"]], "as_strided": [[449, "as-strided"]], "eigvals": [[423, "eigvals"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "hypot": [[343, "hypot"]], "modf": [[348, "modf"]], "sinc": [[352, "sinc"]], "digamma": [[336, "digamma"]], "lgamma": [[347, "lgamma"]], "gradient": [[342, "gradient"]], "tril_indices": [[322, "tril-indices"]], "binarizer": [[331, "binarizer"]], "jvp": [[358, "jvp"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "diff": [[335, "diff"]], "isclose": [[344, "isclose"]], "reduce": [[356, "reduce"]], "erfc": [[337, "erfc"]], "frexp": [[341, "frexp"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "zeta": [[355, "zeta"]], "vjp": [[359, "vjp"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "xlogy": [[354, "xlogy"]], "ldexp": [[345, "ldexp"]], "count_nonzero": [[334, "count-nonzero"]], "amax": [[329, "amax"]], "lerp": [[346, "lerp"]], "float_power": [[339, "float-power"]], "fix": [[338, "fix"]], "trilu": [[323, "trilu"]], "vorbis_window": [[327, "vorbis-window"]], "signbit": [[351, "signbit"]], "fmax": [[340, "fmax"]], "amin": [[330, "amin"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "allclose": [[328, "allclose"]], "conj": [[332, "conj"]], "nextafter": [[350, "nextafter"]], "nansum": [[349, "nansum"]], "copysign": [[333, "copysign"]], "dft": [[390, "dft"]], "dropout1d": [[391, "dropout1d"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "rfftn": [[412, "rfftn"]], "ifftn": [[401, "ifftn"]], "fft": [[395, "fft"]], "fft2": [[396, "fft2"]], "avg_pool1d": [[386, "avg-pool1d"]], "dropout2d": [[392, "dropout2d"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "idct": [[399, "idct"]], "interp": [[402, "interp"]], "max_pool2d": [[405, "max-pool2d"]], "max_unpool1d": [[407, "max-unpool1d"]], "avg_pool3d": [[388, "avg-pool3d"]], "max_pool3d": [[406, "max-pool3d"]], "Sparse array": [[379, "sparse-array"]], "pool": [[409, "pool"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "interpolate": [[403, "interpolate"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "rnn": [[413, "rnn"]], "area_interpolate": [[385, "area-interpolate"]], "reduce_window": [[410, "reduce-window"]], "ifft": [[400, "ifft"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "rfft": [[411, "rfft"]], "max_pool1d": [[404, "max-pool1d"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "dropout3d": [[393, "dropout3d"]], "avg_pool2d": [[387, "avg-pool2d"]], "dct": [[389, "dct"]], "embedding": [[394, "embedding"]], "scaled_tanh": [[298, "scaled-tanh"]], "silu": [[300, "silu"]], "softshrink": [[301, "softshrink"]], "subtract": [[284, "subtract"]], "sign": [[279, "sign"]], "trapz": [[287, "trapz"]], "hann_window": [[309, "hann-window"]], "celu": [[290, "celu"]], "polyval": [[316, "polyval"]], "hamming_window": [[308, "hamming-window"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "sin": [[280, "sin"]], "random_parafac2": [[318, "random-parafac2"]], "blackman_window": [[306, "blackman-window"]], "ndindex": [[315, "ndindex"]], "trunc_divide": [[289, "trunc-divide"]], "hardtanh": [[293, "hardtanh"]], "tanhshrink": [[303, "tanhshrink"]], "threshold": [[304, "threshold"]], "logsigmoid": [[295, "logsigmoid"]], "trunc": [[288, "trunc"]], "logit": [[294, "logit"]], "prelu": [[296, "prelu"]], "reciprocal": [[276, "reciprocal"]], "random_tr": [[319, "random-tr"]], "thresholded_relu": [[305, "thresholded-relu"]], "square": [[283, "square"]], "stanh": [[302, "stanh"]], "tanh": [[286, "tanh"]], "eye_like": [[307, "eye-like"]], "random_tt": [[320, "random-tt"]], "random_cp": [[317, "random-cp"]], "tan": [[285, "tan"]], "elu": [[291, "elu"]], "remainder": [[277, "remainder"]], "selu": [[299, "selu"]], "round": [[278, "round"]], "indices": [[310, "indices"]], "sqrt": [[282, "sqrt"]], "random_tucker": [[321, "random-tucker"]], "kaiser_window": [[312, "kaiser-window"]], "sinh": [[281, "sinh"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "relu6": [[297, "relu6"]], "hardshrink": [[292, "hardshrink"]], "ndenumerate": [[314, "ndenumerate"]], "divide": [[235, "divide"]], "isreal": [[252, "isreal"]], "rad2deg": [[274, "rad2deg"]], "greater_equal": [[247, "greater-equal"]], "lcm": [[253, "lcm"]], "maximum": [[266, "maximum"]], "isfinite": [[249, "isfinite"]], "less_equal": [[255, "less-equal"]], "pow": [[273, "pow"]], "expm1": [[240, "expm1"]], "fmod": [[244, "fmod"]], "exp2": [[239, "exp2"]], "log2": [[259, "log2"]], "real": [[275, "real"]], "erf": [[237, "erf"]], "positive": [[272, "positive"]], "logaddexp2": [[261, "logaddexp2"]], "greater": [[246, "greater"]], "cosh": [[233, "cosh"]], "imag": [[248, "imag"]], "multiply": [[268, "multiply"]], "minimum": [[267, "minimum"]], "logical_not": [[263, "logical-not"]], "not_equal": [[271, "not-equal"]], "log": [[256, "log"]], "cos": [[232, "cos"]], "exp": [[238, "exp"]], "isnan": [[251, "isnan"]], "negative": [[270, "negative"]], "logical_xor": [[265, "logical-xor"]], "fmin": [[243, "fmin"]], "gcd": [[245, "gcd"]], "logical_and": [[262, "logical-and"]], "log1p": [[258, "log1p"]], "bitwise_xor": [[230, "bitwise-xor"]], "floor": [[241, "floor"]], "floor_divide": [[242, "floor-divide"]], "isinf": [[250, "isinf"]], "deg2rad": [[234, "deg2rad"]], "nan_to_num": [[269, "nan-to-num"]], "log10": [[257, "log10"]], "ceil": [[231, "ceil"]], "less": [[254, "less"]], "equal": [[236, "equal"]], "logical_or": [[264, "logical-or"]], "logaddexp": [[260, "logaddexp"]], "dev": [[192, "dev"]], "set_default_device": [[204, "set-default-device"]], "as_native_dev": [[189, "as-native-dev"]], "asin": [[220, "asin"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "add": [[218, "add"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "angle": [[219, "angle"]], "to_device": [[209, "to-device"]], "bitwise_invert": [[226, "bitwise-invert"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "atan": [[222, "atan"]], "tpu_is_available": [[211, "tpu-is-available"]], "asinh": [[221, "asinh"]], "valid_dtype": [[187, "valid-dtype"]], "bitwise_and": [[225, "bitwise-and"]], "bitwise_or": [[228, "bitwise-or"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "split_func_call": [[208, "split-func-call"]], "acos": [[216, "acos"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "gpu_is_available": [[197, "gpu-is-available"]], "set_split_factor": [[206, "set-split-factor"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "function_supported_devices": [[194, "function-supported-devices"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "split_factor": [[207, "split-factor"]], "atanh": [[224, "atanh"]], "num_gpus": [[200, "num-gpus"]], "abs": [[215, "abs"]], "acosh": [[217, "acosh"]], "atan2": [[223, "atan2"]], "unset_default_device": [[212, "unset-default-device"]], "dev_util": [[193, "dev-util"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "default_device": [[191, "default-device"]], "Wrapping": [[67, "module-ivy.data_classes.array.wrapping"], [90, "module-ivy.data_classes.container.wrapping"]], "Conversions": [[47, "module-ivy.data_classes.array.conversions"], [70, "module-ivy.data_classes.container.conversions"]], "Image": [[78, "module-ivy.data_classes.container.image"], [55, "module-ivy.data_classes.array.image"]], "Guides": [[10, "guides"], [15, "guides"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "Unify": [[31, "Unify"], [33, "Unify"], [22, "Unify"], [32, "Unify"], [21, "Unify"]], "Compile": [[31, "Compile"], [33, "Compile"], [32, "Compile"]], "Transpile": [[31, "Transpile"], [33, "Transpile"], [22, "Transpile"], [32, "Transpile"], [21, "Transpile"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Installation": [[7, "Installation"], [3, "Installation"]], "Imports": [[7, "Imports"], [5, "Imports"], [9, "Imports"]], "Data Preparation": [[7, "Data-Preparation"], [5, "Data-Preparation"], [3, "Data-Preparation"], [4, "Data-Preparation"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Load the image example \ud83d\uddbc\ufe0f": [[7, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [5, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[7, "Visualise-image"], [5, "Visualise-image"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Installs \ud83d\udcbe": [[39, "Installs-\ud83d\udcbe"], [38, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[39, "Imports-\ud83d\udec3"], [38, "Imports-\ud83d\udec3"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Define Model": [[39, "Define-Model"], [38, "Define-Model"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Ivy Backend Handler": [[26, "Ivy-Backend-Handler"], [17, "Ivy-Backend-Handler"]], "Data Structures": [[26, "Data-Structures"], [17, "Data-Structures"]], "Ivy Functional API": [[26, "Ivy-Functional-API"], [17, "Ivy-Functional-API"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Any function": [[26, "Any-function"], [27, "Any-function"]], "Any library": [[26, "Any-library"], [27, "Any-library"]], "Any model": [[26, "Any-model"], [27, "Any-model"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "0.1: Compile": [[29, "0.1:-Compile"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Learn the basics": [[15, "learn-the-basics"], [16, "learn-the-basics"]], "Examples and Demos": [[15, "examples-and-demos"], [2, "examples-and-demos"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Trace code": [[19, "Trace-code"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "Resnet 18": [[45, "Resnet-18"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "0.0: Unify": [[28, "0.0:-Unify"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "Unify code": [[18, "Unify-code"]], "Transpile code": [[20, "Transpile-code"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "Transpile any library": [[23, "Transpile-any-library"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Trace": [[22, "Trace"], [21, "Trace"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [613, "module-ivy.functional.ivy.activations"], [614, "module-ivy.functional.ivy.constants"], [615, "module-ivy.functional.ivy.control_flow_ops"], [616, "module-ivy.functional.ivy.creation"], [617, "module-ivy.functional.ivy.data_type"], [618, "module-ivy.functional.ivy.device"], [619, "module-ivy.functional.ivy.elementwise"], [620, "module-ivy.functional.ivy.experimental"], [621, "module-ivy.functional.ivy.general"], [622, "module-ivy.functional.ivy.gradients"], [623, "module-ivy.functional.ivy.layers"], [624, "module-ivy.functional.ivy.linear_algebra"], [625, "module-ivy.functional.ivy.losses"], [626, "module-ivy.functional.ivy.manipulation"], [627, "module-ivy.functional.ivy.meta"], [628, "module-ivy.functional.ivy.nest"], [629, "module-ivy.functional.ivy.norms"], [630, "module-ivy.functional.ivy.random"], [631, "module-ivy.functional.ivy.searching"], [632, "module-ivy.functional.ivy.set"], [633, "module-ivy.functional.ivy.sorting"], [634, "module-ivy.functional.ivy.statistical"], [635, "module-ivy.functional.ivy.utility"], [758, "module-ivy_tests.test_ivy.helpers.assertions"], [759, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [760, "module-ivy_tests.test_ivy.helpers.function_testing"], [761, "module-ivy_tests.test_ivy.helpers.globals"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [767, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [769, "module-ivy_tests.test_ivy.helpers.structs"], [770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [771, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [775, "module-ivy.stateful.activations"], [776, "module-ivy.stateful.converters"], [777, "module-ivy.stateful.helpers"], [778, "module-ivy.stateful.initializers"], [779, "module-ivy.stateful.layers"], [780, "module-ivy.stateful.losses"], [781, "module-ivy.stateful.module"], [782, "module-ivy.stateful.norms"], [783, "module-ivy.stateful.optimizers"], [784, "module-ivy.stateful.sequential"], [785, "module-ivy.utils.assertions"], [786, "module-ivy.utils.backend"], [787, "module-ivy.utils.backend.ast_helpers"], [788, "module-ivy.utils.backend.handler"], [789, "module-ivy.utils.backend.sub_backend_handler"], [790, "module-ivy.utils.binaries"], [791, "module-ivy.utils.dynamic_import"], [792, "module-ivy.utils.einsum_parser"], [793, "module-ivy.utils.einsum_path_helpers"], [794, "module-ivy.utils.exceptions"], [795, "module-ivy.utils.inspection"], [796, "module-ivy.utils.logging"], [797, "module-ivy.utils.profiler"], [798, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [613, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [613, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [613, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [613, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [613, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [613, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [613, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [613, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [613, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [613, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [615, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [615, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [615, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [615, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [615, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [615, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [616, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [616, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [616, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [616, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [616, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [616, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [616, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [616, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [616, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [616, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [616, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [616, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [616, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [616, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [616, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [616, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [616, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [616, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [616, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [616, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [616, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [616, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [616, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [616, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [617, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [617, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [617, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [617, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [617, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [617, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [617, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [617, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [617, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [617, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [617, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [617, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [617, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [617, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [617, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [617, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [617, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [617, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [617, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [617, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [617, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [617, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [617, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [617, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [617, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [617, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [617, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [617, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [617, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [617, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [617, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [617, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [617, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [617, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [617, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [617, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [617, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [617, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [617, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [617, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [617, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [617, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [617, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [618, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [618, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [618, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [618, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [618, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [618, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [618, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [618, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [618, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [618, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [618, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [618, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [618, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [618, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [618, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [618, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [618, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [618, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [618, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [618, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [618, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [618, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [618, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [618, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [618, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [618, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [618, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [619, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [619, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [619, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [619, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [619, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [619, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [619, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [619, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [619, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [619, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [619, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [619, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [619, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [619, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [619, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [619, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [619, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [619, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [619, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [619, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [619, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [619, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [619, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [619, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [619, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [619, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [619, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [619, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [619, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [619, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [619, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [619, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [619, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [619, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [619, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [619, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [619, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [619, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [619, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [619, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [619, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [619, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [619, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [619, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [619, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [619, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [619, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [619, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [619, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [619, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [619, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [619, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [619, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [619, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [619, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [619, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [619, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [619, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [619, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [619, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [619, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [619, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [619, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [619, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [619, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [619, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [619, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [619, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [619, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [619, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [619, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [619, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [619, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [619, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [619, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "rnn() (in module ivy)": [[368, "ivy.rnn"], [413, "ivy.rnn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [414, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [415, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [416, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [417, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [418, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [419, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [420, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [421, "ivy.eig"], [624, "ivy.eig"], [658, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [422, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [423, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [424, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [425, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [426, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [427, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [428, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [429, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [430, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [431, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [432, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [433, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [434, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [435, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [436, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [437, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [438, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [439, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [440, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [441, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [442, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [443, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [444, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [445, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [446, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [447, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [448, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [449, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [450, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [451, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [452, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [453, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [454, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [455, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [456, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [457, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [458, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [459, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [460, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [461, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [462, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [463, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [464, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [465, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [466, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [467, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [468, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [469, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [470, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [471, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [472, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [473, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [474, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [475, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [476, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [477, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [478, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [479, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [480, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [481, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [482, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [483, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [484, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [485, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [486, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [487, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [488, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [489, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [490, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [491, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [492, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [493, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [494, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [495, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [496, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [497, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [498, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [499, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [500, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [501, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [502, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [503, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [504, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [505, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [506, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [507, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [508, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [509, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [510, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [511, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [512, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [513, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [514, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [515, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [516, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [517, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [518, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [519, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [520, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [521, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[414, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[414, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[415, "ivy.Array.stft"]], "stft() (ivy.container method)": [[415, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[416, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[416, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[417, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[417, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[418, "ivy.Array.cond"]], "cond() (ivy.container method)": [[418, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[419, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[419, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[420, "ivy.Array.dot"]], "dot() (ivy.container method)": [[420, "ivy.Container.dot"]], "eig() (ivy.array method)": [[421, "ivy.Array.eig"], [658, "ivy.Array.eig"]], "eig() (ivy.container method)": [[421, "ivy.Container.eig"], [658, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[422, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[422, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[423, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[423, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[424, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[424, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[425, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[425, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[426, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[426, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[428, "ivy.Array.kron"]], "kron() (ivy.container method)": [[428, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[430, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[430, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[431, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[431, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[432, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[432, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[433, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[433, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[434, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[434, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[435, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[435, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[437, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[437, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[438, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[438, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[439, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[439, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[440, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[440, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[441, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[441, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[442, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[442, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[443, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[443, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[444, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[444, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[445, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[445, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[446, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[446, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[447, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[447, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[448, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[448, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[449, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[449, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[450, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[450, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[451, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[451, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[452, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[452, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[453, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[453, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[454, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[457, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[457, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[458, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[458, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[459, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[459, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[460, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[460, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[461, "ivy.Array.expand"]], "expand() (ivy.container method)": [[461, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[462, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[462, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[463, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[463, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[464, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[464, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[465, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[465, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[466, "ivy.Array.fold"]], "fold() (ivy.container method)": [[466, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[467, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[467, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[468, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[468, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[469, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[469, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[470, "ivy.Array.i0"]], "i0() (ivy.container method)": [[470, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[471, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[471, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[472, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[472, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[473, "ivy.Array.pad"]], "pad() (ivy.container method)": [[473, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[474, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[474, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[475, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[475, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[476, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[476, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[477, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[477, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[478, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[478, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[479, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[479, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[480, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[480, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[481, "ivy.Array.take"]], "take() (ivy.container method)": [[481, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[482, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[482, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[483, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[483, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[484, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[484, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[485, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[485, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[486, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[486, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[487, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[487, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[488, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[488, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[489, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[489, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[490, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[490, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[491, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[491, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[492, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[492, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[493, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[493, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[495, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[495, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[496, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[496, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[497, "ivy.Array.beta"]], "beta() (ivy.container method)": [[497, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[498, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[498, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[499, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[499, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[500, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[500, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[501, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[501, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[502, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[503, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[503, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[508, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[508, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[509, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[509, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[510, "ivy.Array.cov"]], "cov() (ivy.container method)": [[510, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[511, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[511, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[512, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[512, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[513, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[513, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[514, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[514, "ivy.Container.igamma"]], "median() (ivy.array method)": [[515, "ivy.Array.median"]], "median() (ivy.container method)": [[515, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[516, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[516, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[517, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[517, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[518, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[518, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[519, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[519, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[520, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[520, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[521, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[521, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[522, "ivy.all_equal"], [621, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[522, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[522, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[523, "ivy.arg_info"], [621, "ivy.arg_info"]], "arg_names() (in module ivy)": [[524, "ivy.arg_names"], [621, "ivy.arg_names"]], "array_equal() (in module ivy)": [[525, "ivy.array_equal"], [621, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[525, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[525, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[526, "ivy.assert_supports_inplace"], [621, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[526, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[526, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[527, "ivy.cache_fn"], [621, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[528, "ivy.clip_matrix_norm"], [621, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[528, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[528, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[529, "ivy.clip_vector_norm"], [621, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[529, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[529, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[530, "ivy.container_types"], [621, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[531, "ivy.current_backend_str"], [621, "ivy.current_backend_str"]], "default() (in module ivy)": [[532, "ivy.default"], [621, "ivy.default"]], "default() (ivy.array method)": [[532, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[533, "ivy.einops_rearrange"], [621, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[533, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[533, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[534, "ivy.einops_reduce"], [621, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[534, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[534, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[535, "ivy.einops_repeat"], [621, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[535, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[535, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[536, "ivy.exists"], [621, "ivy.exists"]], "exists() (ivy.array method)": [[536, "ivy.Array.exists"]], "exists() (ivy.container method)": [[536, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[537, "ivy.fourier_encode"], [621, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[537, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[537, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_supported_devices_and_dtypes"], [621, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[539, "ivy.function_unsupported_devices_and_dtypes"], [621, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[540, "ivy.gather"], [621, "ivy.gather"]], "gather() (ivy.array method)": [[540, "ivy.Array.gather"]], "gather() (ivy.container method)": [[540, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[541, "ivy.gather_nd"], [621, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[541, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[541, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[542, "ivy.get_all_arrays_in_memory"], [621, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[543, "ivy.get_item"], [621, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[544, "ivy.get_num_dims"], [621, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[544, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[544, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[545, "ivy.get_referrers_recursive"], [621, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[546, "ivy.has_nans"], [621, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[546, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[546, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[547, "ivy.inplace_arrays_supported"], [621, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[548, "ivy.inplace_decrement"], [621, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[548, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[548, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[549, "ivy.inplace_increment"], [621, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[549, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[549, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[550, "ivy.inplace_update"], [621, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[550, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[550, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[551, "ivy.inplace_variables_supported"], [621, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[552, "ivy.is_array"], [621, "ivy.is_array"]], "is_array() (ivy.array method)": [[552, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[552, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[553, "ivy.is_ivy_array"], [621, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[553, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[553, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[554, "ivy.is_ivy_container"], [621, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[554, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[555, "ivy.is_ivy_nested_array"], [621, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[556, "ivy.is_native_array"], [621, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[556, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[556, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[557, "ivy.isin"], [621, "ivy.isin"]], "isin() (ivy.array method)": [[557, "ivy.Array.isin"]], "isin() (ivy.container method)": [[557, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[558, "ivy.isscalar"], [621, "ivy.isscalar"]], "itemsize() (in module ivy)": [[559, "ivy.itemsize"], [621, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[559, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[559, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[560, "ivy.match_kwargs"], [621, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[561, "ivy.multiprocessing"], [621, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[562, "ivy.num_arrays_in_memory"], [621, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[563, "ivy.print_all_arrays_in_memory"], [621, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[564, "ivy.scatter_flat"], [621, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[564, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[564, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[565, "ivy.scatter_nd"], [621, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[565, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[565, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[566, "ivy.set_array_mode"], [621, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[567, "ivy.set_exception_trace_mode"], [621, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[568, "ivy.set_inplace_mode"], [621, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[569, "ivy.set_item"], [621, "ivy.set_item"]], "set_min_base() (in module ivy)": [[570, "ivy.set_min_base"], [621, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[571, "ivy.set_min_denominator"], [621, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[572, "ivy.set_nestable_mode"], [621, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[573, "ivy.set_precise_mode"], [621, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[574, "ivy.set_queue_timeout"], [621, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[575, "ivy.set_shape_array_mode"], [621, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[576, "ivy.set_show_func_wrapper_trace_mode"], [621, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[577, "ivy.set_tmp_dir"], [621, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[578, "ivy.shape"], [621, "ivy.shape"]], "shape() (ivy.array method)": [[578, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[579, "ivy.stable_divide"], [621, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[579, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[579, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[580, "ivy.stable_pow"], [621, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[580, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[580, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[581, "ivy.strides"], [621, "ivy.strides"]], "strides() (ivy.array method)": [[581, "ivy.Array.strides"]], "strides() (ivy.container method)": [[581, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[582, "ivy.supports_inplace_updates"], [621, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[582, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[582, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[583, "ivy.to_ivy_shape"], [621, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[584, "ivy.to_list"], [621, "ivy.to_list"]], "to_list() (ivy.array method)": [[584, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[584, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[585, "ivy.to_native_shape"], [621, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[586, "ivy.to_numpy"], [621, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[586, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[586, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[587, "ivy.to_scalar"], [621, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[587, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[587, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[588, "ivy.try_else_none"], [621, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[589, "ivy.unset_array_mode"], [621, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[590, "ivy.unset_exception_trace_mode"], [621, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[591, "ivy.unset_inplace_mode"], [621, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[592, "ivy.unset_min_base"], [621, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[593, "ivy.unset_min_denominator"], [621, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[594, "ivy.unset_nestable_mode"], [621, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[595, "ivy.unset_precise_mode"], [621, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[596, "ivy.unset_queue_timeout"], [621, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[597, "ivy.unset_shape_array_mode"], [621, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[598, "ivy.unset_show_func_wrapper_trace_mode"], [621, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[599, "ivy.unset_tmp_dir"], [621, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[600, "ivy.value_is_nan"], [621, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[600, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[600, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[601, "ivy.vmap"], [621, "ivy.vmap"]], "adam_step() (in module ivy)": [[602, "ivy.adam_step"], [622, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[602, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[602, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[603, "ivy.adam_update"], [622, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[603, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[603, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[604, "ivy.execute_with_gradients"], [622, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[605, "ivy.grad"], [622, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[606, "ivy.gradient_descent_update"], [622, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[606, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[606, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[607, "ivy.jac"], [622, "ivy.jac"]], "lamb_update() (in module ivy)": [[608, "ivy.lamb_update"], [622, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[608, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[608, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[609, "ivy.lars_update"], [622, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[609, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[609, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[610, "ivy.optimizer_update"], [622, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[610, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[610, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[611, "ivy.stop_gradient"], [622, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[611, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[611, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[612, "ivy.value_and_grad"], [622, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[613, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[614, "ivy.e"]], "inf (in module ivy)": [[614, "ivy.inf"]], "ivy.functional.ivy.constants": [[614, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[614, "ivy.nan"]], "newaxis (in module ivy)": [[614, "ivy.newaxis"]], "pi (in module ivy)": [[614, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[615, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[616, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[616, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[617, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[617, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[617, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[617, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[617, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[617, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[618, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[618, "ivy.Profiler"]], "ivy.functional.ivy.device": [[618, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[619, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[620, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[621, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[621, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[621, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[622, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[623, "ivy.conv"], [636, "ivy.conv"]], "conv1d() (in module ivy)": [[623, "ivy.conv1d"], [637, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[623, "ivy.conv1d_transpose"], [638, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[623, "ivy.conv2d"], [639, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[623, "ivy.conv2d_transpose"], [640, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[623, "ivy.conv3d"], [641, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[623, "ivy.conv3d_transpose"], [642, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[623, "ivy.conv_general_dilated"], [643, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[623, "ivy.conv_general_transpose"], [644, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[623, "ivy.depthwise_conv2d"], [645, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[623, "ivy.dropout"], [646, "ivy.dropout"]], "ivy.functional.ivy.layers": [[623, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[623, "ivy.linear"], [647, "ivy.linear"]], "lstm_update() (in module ivy)": [[623, "ivy.lstm_update"], [648, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[623, "ivy.multi_head_attention"], [649, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[623, "ivy.nms"], [650, "ivy.nms"]], "roi_align() (in module ivy)": [[623, "ivy.roi_align"], [651, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[623, "ivy.scaled_dot_product_attention"], [652, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[624, "ivy.cholesky"], [653, "ivy.cholesky"]], "cross() (in module ivy)": [[624, "ivy.cross"], [654, "ivy.cross"]], "det() (in module ivy)": [[624, "ivy.det"], [655, "ivy.det"]], "diag() (in module ivy)": [[624, "ivy.diag"], [656, "ivy.diag"]], "diagonal() (in module ivy)": [[624, "ivy.diagonal"], [657, "ivy.diagonal"]], "eigh() (in module ivy)": [[624, "ivy.eigh"], [659, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[624, "ivy.eigvalsh"], [660, "ivy.eigvalsh"]], "inner() (in module ivy)": [[624, "ivy.inner"], [661, "ivy.inner"]], "inv() (in module ivy)": [[624, "ivy.inv"], [662, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[624, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[624, "ivy.lu_factor"], [663, "ivy.lu_factor"]], "matmul() (in module ivy)": [[624, "ivy.matmul"], [664, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[624, "ivy.matrix_norm"], [665, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[624, "ivy.matrix_power"], [666, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[624, "ivy.matrix_rank"], [667, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[624, "ivy.matrix_transpose"], [668, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[624, "ivy.outer"], [669, "ivy.outer"]], "pinv() (in module ivy)": [[624, "ivy.pinv"], [670, "ivy.pinv"]], "qr() (in module ivy)": [[624, "ivy.qr"], [671, "ivy.qr"]], "slogdet() (in module ivy)": [[624, "ivy.slogdet"], [672, "ivy.slogdet"]], "solve() (in module ivy)": [[624, "ivy.solve"], [673, "ivy.solve"]], "svd() (in module ivy)": [[624, "ivy.svd"], [674, "ivy.svd"]], "svdvals() (in module ivy)": [[624, "ivy.svdvals"], [675, "ivy.svdvals"]], "tensordot() (in module ivy)": [[624, "ivy.tensordot"], [676, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[624, "ivy.tensorsolve"], [677, "ivy.tensorsolve"]], "trace() (in module ivy)": [[624, "ivy.trace"], [678, "ivy.trace"]], "vander() (in module ivy)": [[624, "ivy.vander"], [679, "ivy.vander"]], "vecdot() (in module ivy)": [[624, "ivy.vecdot"], [680, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[624, "ivy.vector_norm"], [681, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[624, "ivy.vector_to_skew_symmetric_matrix"], [682, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[625, "ivy.binary_cross_entropy"], [683, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[625, "ivy.cross_entropy"], [684, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[625, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[625, "ivy.sparse_cross_entropy"], [685, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[626, "ivy.clip"], [686, "ivy.clip"]], "concat() (in module ivy)": [[626, "ivy.concat"], [687, "ivy.concat"]], "constant_pad() (in module ivy)": [[626, "ivy.constant_pad"], [688, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[626, "ivy.expand_dims"], [689, "ivy.expand_dims"]], "flip() (in module ivy)": [[626, "ivy.flip"], [690, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[626, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[626, "ivy.permute_dims"], [691, "ivy.permute_dims"]], "repeat() (in module ivy)": [[626, "ivy.repeat"], [692, "ivy.repeat"]], "reshape() (in module ivy)": [[626, "ivy.reshape"], [693, "ivy.reshape"]], "roll() (in module ivy)": [[626, "ivy.roll"], [694, "ivy.roll"]], "split() (in module ivy)": [[626, "ivy.split"], [695, "ivy.split"]], "squeeze() (in module ivy)": [[626, "ivy.squeeze"], [696, "ivy.squeeze"]], "stack() (in module ivy)": [[626, "ivy.stack"], [697, "ivy.stack"]], "swapaxes() (in module ivy)": [[626, "ivy.swapaxes"], [698, "ivy.swapaxes"]], "tile() (in module ivy)": [[626, "ivy.tile"], [699, "ivy.tile"]], "unstack() (in module ivy)": [[626, "ivy.unstack"], [700, "ivy.unstack"]], "zero_pad() (in module ivy)": [[626, "ivy.zero_pad"], [701, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[627, "ivy.fomaml_step"], [702, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[627, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[627, "ivy.maml_step"], [703, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[627, "ivy.reptile_step"], [704, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[628, "ivy.all_nested_indices"], [705, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[628, "ivy.copy_nest"], [706, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[628, "ivy.duplicate_array_index_chains"], [707, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[628, "ivy.index_nest"], [708, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[628, "ivy.insert_into_nest_at_index"], [709, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[628, "ivy.insert_into_nest_at_indices"], [710, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[628, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[628, "ivy.map"], [711, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[628, "ivy.map_nest_at_index"], [712, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[628, "ivy.map_nest_at_indices"], [713, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[628, "ivy.multi_index_nest"], [714, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[628, "ivy.nested_any"], [715, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[628, "ivy.nested_argwhere"], [716, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[628, "ivy.nested_map"], [717, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[628, "ivy.nested_multi_map"], [718, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[628, "ivy.prune_empty"], [719, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[628, "ivy.prune_nest_at_index"], [720, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[628, "ivy.prune_nest_at_indices"], [721, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[628, "ivy.set_nest_at_index"], [722, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[628, "ivy.set_nest_at_indices"], [723, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[629, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[629, "ivy.layer_norm"], [724, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[630, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[630, "ivy.multinomial"], [725, "ivy.multinomial"]], "randint() (in module ivy)": [[630, "ivy.randint"], [726, "ivy.randint"]], "random_normal() (in module ivy)": [[630, "ivy.random_normal"], [727, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[630, "ivy.random_uniform"], [728, "ivy.random_uniform"]], "seed() (in module ivy)": [[630, "ivy.seed"], [729, "ivy.seed"]], "shuffle() (in module ivy)": [[630, "ivy.shuffle"], [730, "ivy.shuffle"]], "argmax() (in module ivy)": [[631, "ivy.argmax"], [731, "ivy.argmax"]], "argmin() (in module ivy)": [[631, "ivy.argmin"], [732, "ivy.argmin"]], "argwhere() (in module ivy)": [[631, "ivy.argwhere"], [733, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[631, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[631, "ivy.nonzero"], [734, "ivy.nonzero"]], "where() (in module ivy)": [[631, "ivy.where"], [735, "ivy.where"]], "ivy.functional.ivy.set": [[632, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[632, "ivy.unique_all"], [736, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[632, "ivy.unique_counts"], [737, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[632, "ivy.unique_inverse"], [738, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[632, "ivy.unique_values"], [739, "ivy.unique_values"]], "argsort() (in module ivy)": [[633, "ivy.argsort"], [740, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[633, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[633, "ivy.msort"], [741, "ivy.msort"]], "searchsorted() (in module ivy)": [[633, "ivy.searchsorted"], [742, "ivy.searchsorted"]], "sort() (in module ivy)": [[633, "ivy.sort"], [743, "ivy.sort"]], "cumprod() (in module ivy)": [[634, "ivy.cumprod"], [744, "ivy.cumprod"]], "cumsum() (in module ivy)": [[634, "ivy.cumsum"], [745, "ivy.cumsum"]], "einsum() (in module ivy)": [[634, "ivy.einsum"], [746, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[634, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[634, "ivy.max"], [747, "ivy.max"]], "mean() (in module ivy)": [[634, "ivy.mean"], [748, "ivy.mean"]], "min() (in module ivy)": [[634, "ivy.min"], [749, "ivy.min"]], "prod() (in module ivy)": [[634, "ivy.prod"], [750, "ivy.prod"]], "std() (in module ivy)": [[634, "ivy.std"], [751, "ivy.std"]], "sum() (in module ivy)": [[634, "ivy.sum"], [752, "ivy.sum"]], "var() (in module ivy)": [[634, "ivy.var"], [753, "ivy.var"]], "all() (in module ivy)": [[635, "ivy.all"], [754, "ivy.all"]], "any() (in module ivy)": [[635, "ivy.any"], [755, "ivy.any"]], "ivy.functional.ivy.utility": [[635, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[635, "ivy.load"], [756, "ivy.load"]], "save() (in module ivy)": [[635, "ivy.save"], [757, "ivy.save"]], "conv1d() (ivy.array method)": [[637, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[637, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[638, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[638, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[639, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[639, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[640, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[640, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[641, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[641, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[642, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[642, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[645, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[645, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[646, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[646, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[647, "ivy.Array.linear"]], "linear() (ivy.container method)": [[647, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[648, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[648, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[649, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[649, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[652, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[652, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[653, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[653, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[654, "ivy.Array.cross"]], "cross() (ivy.container method)": [[654, "ivy.Container.cross"]], "det() (ivy.array method)": [[655, "ivy.Array.det"]], "det() (ivy.container method)": [[655, "ivy.Container.det"]], "diag() (ivy.array method)": [[656, "ivy.Array.diag"]], "diag() (ivy.container method)": [[656, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[657, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[657, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[659, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[659, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[660, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[660, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[661, "ivy.Array.inner"]], "inner() (ivy.container method)": [[661, "ivy.Container.inner"]], "inv() (ivy.array method)": [[662, "ivy.Array.inv"]], "inv() (ivy.container method)": [[662, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[664, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[664, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[665, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[665, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[666, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[666, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[667, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[667, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[668, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[668, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[669, "ivy.Array.outer"]], "outer() (ivy.container method)": [[669, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[670, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[670, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[671, "ivy.Array.qr"]], "qr() (ivy.container method)": [[671, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[672, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[672, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[673, "ivy.Array.solve"]], "solve() (ivy.container method)": [[673, "ivy.Container.solve"]], "svd() (ivy.array method)": [[674, "ivy.Array.svd"]], "svd() (ivy.container method)": [[674, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[675, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[675, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[676, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[676, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[677, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[677, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[678, "ivy.Array.trace"]], "trace() (ivy.container method)": [[678, "ivy.Container.trace"]], "vander() (ivy.array method)": [[679, "ivy.Array.vander"]], "vander() (ivy.container method)": [[679, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[680, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[680, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[681, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[681, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[682, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[682, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[683, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[683, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[684, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[684, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[685, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[685, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[686, "ivy.Array.clip"]], "clip() (ivy.container method)": [[686, "ivy.Container.clip"]], "concat() (ivy.array method)": [[687, "ivy.Array.concat"]], "concat() (ivy.container method)": [[687, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[688, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[688, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[689, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[689, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[690, "ivy.Array.flip"]], "flip() (ivy.container method)": [[690, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[691, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[691, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[692, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[692, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[693, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[693, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[694, "ivy.Array.roll"]], "roll() (ivy.container method)": [[694, "ivy.Container.roll"]], "split() (ivy.array method)": [[695, "ivy.Array.split"]], "split() (ivy.container method)": [[695, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[696, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[696, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[697, "ivy.Array.stack"]], "stack() (ivy.container method)": [[697, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[698, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[698, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[699, "ivy.Array.tile"]], "tile() (ivy.container method)": [[699, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[700, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[700, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[701, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[701, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[724, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[724, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[725, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[725, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[726, "ivy.Array.randint"]], "randint() (ivy.container method)": [[726, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[727, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[727, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[728, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[728, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[730, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[730, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[731, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[731, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[732, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[732, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[733, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[733, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[734, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[734, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[735, "ivy.Array.where"]], "where() (ivy.container method)": [[735, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[736, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[736, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[737, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[737, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[738, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[738, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[739, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[739, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[740, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[740, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[741, "ivy.Array.msort"]], "msort() (ivy.container method)": [[741, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[742, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[742, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[743, "ivy.Array.sort"]], "sort() (ivy.container method)": [[743, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[744, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[744, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[745, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[745, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[746, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[746, "ivy.Container.einsum"]], "max() (ivy.array method)": [[747, "ivy.Array.max"]], "max() (ivy.container method)": [[747, "ivy.Container.max"]], "mean() (ivy.array method)": [[748, "ivy.Array.mean"]], "mean() (ivy.container method)": [[748, "ivy.Container.mean"]], "min() (ivy.array method)": [[749, "ivy.Array.min"]], "min() (ivy.container method)": [[749, "ivy.Container.min"]], "prod() (ivy.array method)": [[750, "ivy.Array.prod"]], "prod() (ivy.container method)": [[750, "ivy.Container.prod"]], "std() (ivy.array method)": [[751, "ivy.Array.std"]], "std() (ivy.container method)": [[751, "ivy.Container.std"]], "sum() (ivy.array method)": [[752, "ivy.Array.sum"]], "sum() (ivy.container method)": [[752, "ivy.Container.sum"]], "var() (ivy.array method)": [[753, "ivy.Array.var"]], "var() (ivy.container method)": [[753, "ivy.Container.var"]], "all() (ivy.array method)": [[754, "ivy.Array.all"]], "all() (ivy.container method)": [[754, "ivy.Container.all"]], "any() (ivy.array method)": [[755, "ivy.Array.any"]], "any() (ivy.container method)": [[755, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[758, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[775, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[775, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[775, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[775, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[775, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[775, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[775, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[775, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[775, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[775, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[775, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[775, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[775, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[775, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[775, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[775, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[775, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[775, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[775, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[776, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[776, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[776, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[776, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[777, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[777, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[778, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[778, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[778, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[778, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[778, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[778, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[778, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[779, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[779, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[779, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[779, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[779, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[779, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[779, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[779, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[779, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[779, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[779, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[779, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[779, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[779, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[779, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[779, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[779, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[779, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[779, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[779, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[779, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[779, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[780, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[780, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[780, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[781, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[781, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[781, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[781, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[782, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[782, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[782, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[783, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[783, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[783, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[783, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[783, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[783, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[784, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[784, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[784, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[785, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[786, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[788, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[788, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[790, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[791, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[791, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[792, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[794, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[794, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[794, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[794, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[794, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[794, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[794, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[794, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[794, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[794, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[794, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[794, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[794, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[794, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[794, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[794, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[794, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[794, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[794, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[794, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[794, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[794, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[794, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[794, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[795, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[796, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[797, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[797, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[797, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[798, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[798, "module-ivy.utils.verbosity"]], "automatic code conversions": [[842, "term-Automatic-Code-Conversions"]], "backend handler": [[842, "term-Backend-Handler"]], "compositional functions": [[842, "term-Compositional-Functions"]], "convenience functions": [[842, "term-Convenience-Functions"]], "framework": [[842, "term-Framework"]], "framework handler": [[842, "term-Framework-Handler"]], "graph compiler": [[842, "term-Graph-Compiler"]], "ivy array": [[842, "term-Ivy-Array"]], "ivy backends": [[842, "term-Ivy-Backends"]], "ivy compiler": [[842, "term-Ivy-Compiler"]], "ivy container": [[842, "term-Ivy-Container"]], "ivy frontends": [[842, "term-Ivy-Frontends"]], "ivy functional api": [[842, "term-Ivy-Functional-API"]], "ivy tracer": [[842, "term-Ivy-Tracer"]], "ivy transpiler": [[842, "term-Ivy-Transpiler"]], "mixed functions": [[842, "term-Mixed-Functions"]], "native array": [[842, "term-Native-Array"]], "nestable functions": [[842, "term-Nestable-Functions"]], "pipeline": [[842, "term-Pipeline"]], "primary functions": [[842, "term-Primary-Functions"]], "standalone functions": [[842, "term-Standalone-Functions"]], "submodule helper functions": [[842, "term-Submodule-Helper-Functions"]], "built-in function": [[848, "ivy.trace_graph"], [849, "ivy.transpile"], [850, "ivy.unify"]], "ivy.trace_graph()": [[848, "ivy.trace_graph"]], "ivy.transpile()": [[849, "ivy.transpile"]], "ivy.unify()": [[850, "ivy.unify"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["demos/README", "demos/assets/01_template", "demos/examples_and_demos", "demos/examples_and_demos/alexnet_demo", "demos/examples_and_demos/bert_demo", "demos/examples_and_demos/image_segmentation_with_ivy_unet", "demos/examples_and_demos/mmpretrain_to_jax", "demos/examples_and_demos/resnet_demo", "demos/examples_and_demos/torch_to_jax", "demos/examples_and_demos/xgboost_demo", "demos/guides", "demos/guides/01_transpiling_a_torch_model", "demos/guides/02_transpiling_a_haiku_model", "demos/guides/03_transpiling_a_tf_model", "demos/guides/04_developing_a_convnet_with_ivy", "demos/index", "demos/learn_the_basics", "demos/learn_the_basics/01_write_ivy_code", "demos/learn_the_basics/02_unify_code", "demos/learn_the_basics/03_trace_code", "demos/learn_the_basics/04_transpile_code", "demos/learn_the_basics/05_lazy_vs_eager", "demos/learn_the_basics/06_how_to_use_decorators", "demos/learn_the_basics/07_transpile_any_library", "demos/learn_the_basics/08_transpile_any_model", "demos/learn_the_basics/09_write_a_model_using_ivy", "demos/misc/odsc", "demos/quickstart", "demos/wip/0_building_blocks/0_0_unify", "demos/wip/0_building_blocks/0_1_compile", "demos/wip/0_building_blocks/0_2_transpile", "demos/wip/1_the_basics/1_0_lazy_vs_eager", "demos/wip/1_the_basics/1_1_framework_selection", "demos/wip/1_the_basics/1_2_as_a_decorator", "demos/wip/1_the_basics/1_3_dynamic_vs_static", "demos/wip/2_libraries/2_0_kornia", "demos/wip/3_models/3_0_perceiver", "demos/wip/3_models/3_1_stable_diffusion", "demos/wip/basic_operations_with_ivy", "demos/wip/compilation_of_a_basic_function", "demos/wip/deepmind_perceiver_io", "demos/wip/deepmind_perceiverio", "demos/wip/end_to_end_training_pipeline_in_ivy", "demos/wip/hf_tensorflow_deit", "demos/wip/ivy_as_a_transpiler_intro", "demos/wip/resnet_18", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type", "docs/data_classes/data_classes/array/ivy.data_classes.array.device", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental", "docs/data_classes/data_classes/array/ivy.data_classes.array.general", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients", "docs/data_classes/data_classes/array/ivy.data_classes.array.image", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms", "docs/data_classes/data_classes/array/ivy.data_classes.array.random", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching", "docs/data_classes/data_classes/array/ivy.data_classes.array.set", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations", "docs/data_classes/data_classes/container/ivy.data_classes.container.base", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type", "docs/data_classes/data_classes/container/ivy.data_classes.container.device", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental", "docs/data_classes/data_classes/container/ivy.data_classes.container.general", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients", "docs/data_classes/data_classes/container/ivy.data_classes.container.image", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms", "docs/data_classes/data_classes/container/ivy.data_classes.container.random", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching", "docs/data_classes/data_classes/container/ivy.data_classes.container.set", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor", "docs/data_classes/data_classes/ivy.data_classes.array", "docs/data_classes/data_classes/ivy.data_classes.container", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor", "docs/data_classes/data_classes/ivy.data_classes.nested_array", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise", "docs/data_classes/ivy.data_classes", "docs/functional/ivy.functional.ivy", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.dev", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str", "docs/functional/ivy/general/ivy.functional.ivy.general.default", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat", "docs/functional/ivy/general/ivy.functional.ivy.general.exists", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes", "docs/functional/ivy/general/ivy.functional.ivy.general.gather", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array", "docs/functional/ivy/general/ivy.functional.ivy.general.isin", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.shape", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow", "docs/functional/ivy/general/ivy.functional.ivy.general.strides", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad", "docs/functional/ivy/ivy.functional.ivy.activations", "docs/functional/ivy/ivy.functional.ivy.constants", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops", "docs/functional/ivy/ivy.functional.ivy.creation", "docs/functional/ivy/ivy.functional.ivy.data_type", "docs/functional/ivy/ivy.functional.ivy.device", "docs/functional/ivy/ivy.functional.ivy.elementwise", "docs/functional/ivy/ivy.functional.ivy.experimental", "docs/functional/ivy/ivy.functional.ivy.general", "docs/functional/ivy/ivy.functional.ivy.gradients", "docs/functional/ivy/ivy.functional.ivy.layers", "docs/functional/ivy/ivy.functional.ivy.linear_algebra", "docs/functional/ivy/ivy.functional.ivy.losses", "docs/functional/ivy/ivy.functional.ivy.manipulation", "docs/functional/ivy/ivy.functional.ivy.meta", "docs/functional/ivy/ivy.functional.ivy.nest", "docs/functional/ivy/ivy.functional.ivy.norms", "docs/functional/ivy/ivy.functional.ivy.random", "docs/functional/ivy/ivy.functional.ivy.searching", "docs/functional/ivy/ivy.functional.ivy.set", "docs/functional/ivy/ivy.functional.ivy.sorting", "docs/functional/ivy/ivy.functional.ivy.statistical", "docs/functional/ivy/ivy.functional.ivy.utility", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial", "docs/functional/ivy/random/ivy.functional.ivy.random.randint", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform", "docs/functional/ivy/random/ivy.functional.ivy.random.seed", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save", "docs/helpers/ivy_tests.test_ivy.helpers.assertions", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing", "docs/helpers/ivy_tests.test_ivy.helpers.globals", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper", "docs/helpers/ivy_tests.test_ivy.helpers.structs", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers", "docs/ivy.stateful", "docs/ivy.utils", "docs/ivy_tests.test_ivy.helpers", "docs/stateful/ivy.stateful.activations", "docs/stateful/ivy.stateful.converters", "docs/stateful/ivy.stateful.helpers", "docs/stateful/ivy.stateful.initializers", "docs/stateful/ivy.stateful.layers", "docs/stateful/ivy.stateful.losses", "docs/stateful/ivy.stateful.module", "docs/stateful/ivy.stateful.norms", "docs/stateful/ivy.stateful.optimizers", "docs/stateful/ivy.stateful.sequential", "docs/utils/ivy.utils.assertions", "docs/utils/ivy.utils.backend", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler", "docs/utils/ivy.utils.binaries", "docs/utils/ivy.utils.dynamic_import", "docs/utils/ivy.utils.einsum_parser", "docs/utils/ivy.utils.einsum_path_helpers", "docs/utils/ivy.utils.exceptions", "docs/utils/ivy.utils.inspection", "docs/utils/ivy.utils.logging", "docs/utils/ivy.utils.profiler", "docs/utils/ivy.utils.verbosity", "index", "overview/contributing", "overview/contributing/building_the_docs", "overview/contributing/error_handling", "overview/contributing/helpful_resources", "overview/contributing/open_tasks", "overview/contributing/setting_up", "overview/contributing/the_basics", "overview/deep_dive", "overview/deep_dive/array_api_tests", "overview/deep_dive/arrays", "overview/deep_dive/backend_setting", "overview/deep_dive/building_the_docs_pipeline", "overview/deep_dive/containers", "overview/deep_dive/continuous_integration", "overview/deep_dive/data_types", "overview/deep_dive/devices", "overview/deep_dive/docstring_examples", "overview/deep_dive/docstrings", "overview/deep_dive/exception_handling", "overview/deep_dive/fix_failing_tests", "overview/deep_dive/formatting", "overview/deep_dive/function_arguments", "overview/deep_dive/function_types", "overview/deep_dive/function_wrapping", "overview/deep_dive/gradients", "overview/deep_dive/inplace_updates", "overview/deep_dive/ivy_frontends", "overview/deep_dive/ivy_frontends_tests", "overview/deep_dive/ivy_lint", "overview/deep_dive/ivy_tests", "overview/deep_dive/navigating_the_code", "overview/deep_dive/operating_modes", "overview/deep_dive/superset_behaviour", "overview/design", "overview/design/building_blocks", "overview/design/ivy_as_a_framework", "overview/design/ivy_as_a_framework/ivy_array", "overview/design/ivy_as_a_framework/ivy_container", "overview/design/ivy_as_a_framework/ivy_stateful_api", "overview/design/ivy_as_a_transpiler", "overview/faq", "overview/get_started", "overview/glossary", "overview/motivation", "overview/motivation/ml_explosion", "overview/motivation/standardization", "overview/motivation/why_unify", "overview/one_liners", "overview/one_liners/trace", "overview/one_liners/transpile", "overview/one_liners/unify", "overview/related_work", "overview/related_work/api_standards", "overview/related_work/compiler_infrastructure", "overview/related_work/exchange_formats", "overview/related_work/frameworks", "overview/related_work/graph_tracers", "overview/related_work/ml_unifying_companies", "overview/related_work/multi_vendor_compiler_frameworks", "overview/related_work/vendor_specific_apis", "overview/related_work/vendor_specific_compilers", "overview/related_work/what_does_ivy_add", "overview/related_work/wrapper_frameworks"], "filenames": ["demos/README.md", "demos/assets/01_template.ipynb", "demos/examples_and_demos.rst", "demos/examples_and_demos/alexnet_demo.ipynb", "demos/examples_and_demos/bert_demo.ipynb", "demos/examples_and_demos/image_segmentation_with_ivy_unet.ipynb", "demos/examples_and_demos/mmpretrain_to_jax.ipynb", "demos/examples_and_demos/resnet_demo.ipynb", "demos/examples_and_demos/torch_to_jax.ipynb", "demos/examples_and_demos/xgboost_demo.ipynb", "demos/guides.rst", "demos/guides/01_transpiling_a_torch_model.ipynb", "demos/guides/02_transpiling_a_haiku_model.ipynb", "demos/guides/03_transpiling_a_tf_model.ipynb", "demos/guides/04_developing_a_convnet_with_ivy.ipynb", "demos/index.rst", "demos/learn_the_basics.rst", "demos/learn_the_basics/01_write_ivy_code.ipynb", "demos/learn_the_basics/02_unify_code.ipynb", "demos/learn_the_basics/03_trace_code.ipynb", "demos/learn_the_basics/04_transpile_code.ipynb", "demos/learn_the_basics/05_lazy_vs_eager.ipynb", "demos/learn_the_basics/06_how_to_use_decorators.ipynb", "demos/learn_the_basics/07_transpile_any_library.ipynb", "demos/learn_the_basics/08_transpile_any_model.ipynb", "demos/learn_the_basics/09_write_a_model_using_ivy.ipynb", "demos/misc/odsc.ipynb", "demos/quickstart.ipynb", "demos/wip/0_building_blocks/0_0_unify.ipynb", "demos/wip/0_building_blocks/0_1_compile.ipynb", "demos/wip/0_building_blocks/0_2_transpile.ipynb", "demos/wip/1_the_basics/1_0_lazy_vs_eager.ipynb", "demos/wip/1_the_basics/1_1_framework_selection.ipynb", "demos/wip/1_the_basics/1_2_as_a_decorator.ipynb", "demos/wip/1_the_basics/1_3_dynamic_vs_static.ipynb", "demos/wip/2_libraries/2_0_kornia.ipynb", "demos/wip/3_models/3_0_perceiver.ipynb", "demos/wip/3_models/3_1_stable_diffusion.ipynb", "demos/wip/basic_operations_with_ivy.ipynb", "demos/wip/compilation_of_a_basic_function.ipynb", "demos/wip/deepmind_perceiver_io.ipynb", "demos/wip/deepmind_perceiverio.ipynb", "demos/wip/end_to_end_training_pipeline_in_ivy.ipynb", "demos/wip/hf_tensorflow_deit.ipynb", "demos/wip/ivy_as_a_transpiler_intro.ipynb", "demos/wip/resnet_18.ipynb", "docs/data_classes/data_classes/array/ivy.data_classes.array.activations.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.conversions.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.creation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.data_type.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.device.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.elementwise.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.experimental.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.general.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.gradients.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.image.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.layers.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.linear_algebra.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.losses.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.manipulation.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.norms.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.random.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.searching.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.set.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.sorting.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.statistical.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.utility.rst", "docs/data_classes/data_classes/array/ivy.data_classes.array.wrapping.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.activations.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.base.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.conversions.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.creation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.data_type.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.device.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.elementwise.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.experimental.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.general.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.gradients.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.image.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.layers.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.linear_algebra.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.losses.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.manipulation.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.norms.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.random.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.searching.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.set.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.sorting.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.statistical.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.utility.rst", "docs/data_classes/data_classes/container/ivy.data_classes.container.wrapping.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.base.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.cp_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.parafac2_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tr_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tt_tensor.rst", "docs/data_classes/data_classes/factorized_tensor/ivy.data_classes.factorized_tensor.tucker_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.array.rst", "docs/data_classes/data_classes/ivy.data_classes.container.rst", "docs/data_classes/data_classes/ivy.data_classes.factorized_tensor.rst", "docs/data_classes/data_classes/ivy.data_classes.nested_array.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.base.rst", "docs/data_classes/data_classes/nested_array/ivy.data_classes.nested_array.elementwise.rst", "docs/data_classes/ivy.data_classes.rst", "docs/functional/ivy.functional.ivy.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.gelu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.hardswish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.leaky_relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.log_softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.mish.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.relu.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.sigmoid.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softmax.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softplus.rst", "docs/functional/ivy/activations/ivy.functional.ivy.activations.softsign.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_is.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.cmp_isnot.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.for_loop.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.if_else.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.try_except.rst", "docs/functional/ivy/control_flow_ops/ivy.functional.ivy.control_flow_ops.while_loop.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.arange.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.asarray.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.copy_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.empty_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.eye.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.from_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.frombuffer.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.full_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.linspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.logspace.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.meshgrid.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.native_array.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.one_hot.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.ones_like.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.to_dlpack.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.tril.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.triu_indices.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros.rst", "docs/functional/ivy/creation/ivy.functional.ivy.creation.zeros_like.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_ivy_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.as_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.astype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.broadcast_to.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.can_cast.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.check_float.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.closest_valid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.dtype_bits.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.finfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_supported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.function_unsupported_dtypes.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.iinfo.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.infer_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.invalid_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_bool_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_hashable_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_native_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.is_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.promote_types_of_inputs.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.result_type.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.set_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.type_promote_arrays.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_complex_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_float_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_int_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.unset_default_uint_dtype.rst", "docs/functional/ivy/data_type/ivy.functional.ivy.data_type.valid_dtype.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_ivy_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.as_native_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.clear_cached_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.dev_util.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_supported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.function_unsupported_devices.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.get_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.gpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.handle_soft_device_variable.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_cpu_cores.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_gpus.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.num_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.percent_used_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.print_all_ivy_arrays_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.set_split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_factor.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.split_func_call.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.to_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.total_mem_on_dev.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.tpu_is_available.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_default_device.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.unset_soft_device_mode.rst", "docs/functional/ivy/device/ivy.functional.ivy.device.used_mem_on_dev.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.abs.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.acosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.add.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.angle.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.asinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atan2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.atanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_invert.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_left_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_right_shift.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.bitwise_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.ceil.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cos.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.cosh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.deg2rad.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.erf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.exp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.expm1.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.floor_divide.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.fmod.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.gcd.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.greater_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.imag.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isfinite.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isinf.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isnan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.isreal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.lcm.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.less_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log10.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log1p.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.log2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logaddexp2.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_and.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_not.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_or.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.logical_xor.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.maximum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.minimum.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.multiply.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.nan_to_num.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.negative.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.not_equal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.positive.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.pow.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.rad2deg.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.real.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.reciprocal.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.remainder.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.round.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sign.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sin.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sinh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.sqrt.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.square.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.subtract.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tan.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.tanh.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trapz.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc.rst", "docs/functional/ivy/elementwise/ivy.functional.ivy.elementwise.trunc_divide.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.celu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.elu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.hardtanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logit.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.logsigmoid.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.prelu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.relu6.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.scaled_tanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.selu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.silu.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.softshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.stanh.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.tanhshrink.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.threshold.rst", "docs/functional/ivy/experimental/activations/ivy.functional.ivy.experimental.activations.thresholded_relu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.blackman_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.eye_like.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hamming_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.hann_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_bessel_derived_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.kaiser_window.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.mel_weight_matrix.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndenumerate.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.ndindex.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.polyval.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_cp.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_parafac2.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tr.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tt.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.random_tucker.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.tril_indices.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.trilu.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_mean.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_min.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.unsorted_segment_sum.rst", "docs/functional/ivy/experimental/creation/ivy.functional.ivy.experimental.creation.vorbis_window.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.allclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.amin.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.binarizer.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.conj.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.copysign.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.count_nonzero.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.diff.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.digamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.erfc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fix.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.float_power.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.fmax.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.frexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.gradient.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.hypot.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.isclose.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.ldexp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lerp.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.lgamma.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.modf.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nansum.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.nextafter.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.signbit.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sinc.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.sparsify_tensor.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.xlogy.rst", "docs/functional/ivy/experimental/elementwise/ivy.functional.ivy.experimental.elementwise.zeta.rst", "docs/functional/ivy/experimental/general/ivy.functional.ivy.experimental.general.reduce.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.bind_custom_gradient_function.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.jvp.rst", "docs/functional/ivy/experimental/gradients/ivy.functional.ivy.experimental.gradients.vjp.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.activations.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.constants.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.creation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.data_type.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.device.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.elementwise.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.general.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.gradients.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.layers.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.linear_algebra.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.losses.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.manipulation.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.meta.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.nest.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.norms.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.random.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.searching.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.set.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sorting.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.sparse_array.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.statistical.rst", "docs/functional/ivy/experimental/ivy.functional.ivy.experimental.utility.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.adaptive_max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.area_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.avg_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.dropout3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.embedding.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.fft2.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.generate_einsum_equation.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.get_interpolate_kernel.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.idct.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.ifftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interp.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool2d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_pool3d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.max_unpool1d.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.nearest_interpolate.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.pool.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.reduce_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfft.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rfftn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.rnn.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.sliding_window.rst", "docs/functional/ivy/experimental/layers/ivy.functional.ivy.experimental.layers.stft.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.adjoint.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.batched_outer.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.cond.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.diagflat.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eig.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigh_tridiagonal.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.eigvals.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.general_inner_product.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.higher_order_moment.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.initialize_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.khatri_rao.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kron.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.kronecker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.make_svd_non_negative.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.matrix_exp.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.multi_mode_dot.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.partial_tucker.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.solve_triangular.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.svd_flip.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tensor_train.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.truncated_svd.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tt_matrix_to_tensor.rst", "docs/functional/ivy/experimental/linear_algebra/ivy.functional.ivy.experimental.linear_algebra.tucker.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.huber_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.kl_div.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.log_poisson_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.poisson_nll_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.smooth_l1_loss.rst", "docs/functional/ivy/experimental/losses/ivy.functional.ivy.experimental.losses.soft_margin_loss.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.as_strided.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.associative_scan.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_1d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_2d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.atleast_3d.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.broadcast_shapes.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.check_scalar.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.choose.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.column_stack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.concat_from_sequence.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.dstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.expand.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fill_diagonal.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flatten.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fliplr.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.flipud.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.heaviside.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.hstack.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.i0.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.matricize.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.moveaxis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.pad.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_fold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_tensor_to_vec.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.partial_vec_to_tensor.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.put_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.rot90.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.soft_thresholding.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.take_along_axis.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.top_k.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.trim_zeros.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unfold.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.unique_consecutive.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vsplit.rst", "docs/functional/ivy/experimental/manipulation/ivy.functional.ivy.experimental.manipulation.vstack.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.batch_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.group_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.instance_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l1_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.l2_normalize.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.local_response_norm.rst", "docs/functional/ivy/experimental/norms/ivy.functional.ivy.experimental.norms.lp_normalize.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.bernoulli.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.beta.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.dirichlet.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.gamma.rst", "docs/functional/ivy/experimental/random/ivy.functional.ivy.experimental.random.poisson.rst", "docs/functional/ivy/experimental/searching/ivy.functional.ivy.experimental.searching.unravel_index.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.invert_permutation.rst", "docs/functional/ivy/experimental/sorting/ivy.functional.ivy.experimental.sorting.lexsort.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_ivy_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.is_native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array.rst", "docs/functional/ivy/experimental/sparse_array/ivy.functional.ivy.experimental.sparse_array.native_sparse_array_to_indices_values_and_shape.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.bincount.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.corrcoef.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cov.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummax.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.cummin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.histogram.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.igamma.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.median.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmean.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmedian.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanmin.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.nanprod.rst", "docs/functional/ivy/experimental/statistical/ivy.functional.ivy.experimental.statistical.quantile.rst", "docs/functional/ivy/experimental/utility/ivy.functional.ivy.experimental.utility.optional_get_element.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.all_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_info.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.arg_names.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.array_equal.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.assert_supports_inplace.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.cache_fn.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_matrix_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.clip_vector_norm.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.container_types.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.current_backend_str.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.default.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_rearrange.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_reduce.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.einops_repeat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.exists.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.fourier_encode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_supported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.function_unsupported_devices_and_dtypes.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.gather_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_num_dims.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.get_referrers_recursive.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.has_nans.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_arrays_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_decrement.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_increment.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_update.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.inplace_variables_supported.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_container.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_ivy_nested_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.is_native_array.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isin.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.isscalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.itemsize.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.match_kwargs.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.multiprocessing.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.num_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.print_all_arrays_in_memory.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_flat.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.scatter_nd.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_item.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.set_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_divide.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.stable_pow.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.strides.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.supports_inplace_updates.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_ivy_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_list.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_native_shape.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_numpy.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.to_scalar.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.try_else_none.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_exception_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_inplace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_base.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_min_denominator.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_nestable_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_precise_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_queue_timeout.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_shape_array_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_show_func_wrapper_trace_mode.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.unset_tmp_dir.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.value_is_nan.rst", "docs/functional/ivy/general/ivy.functional.ivy.general.vmap.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_step.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.adam_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.execute_with_gradients.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.grad.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.gradient_descent_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.jac.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lamb_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.lars_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.optimizer_update.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.stop_gradient.rst", "docs/functional/ivy/gradients/ivy.functional.ivy.gradients.value_and_grad.rst", "docs/functional/ivy/ivy.functional.ivy.activations.rst", "docs/functional/ivy/ivy.functional.ivy.constants.rst", "docs/functional/ivy/ivy.functional.ivy.control_flow_ops.rst", "docs/functional/ivy/ivy.functional.ivy.creation.rst", "docs/functional/ivy/ivy.functional.ivy.data_type.rst", "docs/functional/ivy/ivy.functional.ivy.device.rst", "docs/functional/ivy/ivy.functional.ivy.elementwise.rst", "docs/functional/ivy/ivy.functional.ivy.experimental.rst", "docs/functional/ivy/ivy.functional.ivy.general.rst", "docs/functional/ivy/ivy.functional.ivy.gradients.rst", "docs/functional/ivy/ivy.functional.ivy.layers.rst", "docs/functional/ivy/ivy.functional.ivy.linear_algebra.rst", "docs/functional/ivy/ivy.functional.ivy.losses.rst", "docs/functional/ivy/ivy.functional.ivy.manipulation.rst", "docs/functional/ivy/ivy.functional.ivy.meta.rst", "docs/functional/ivy/ivy.functional.ivy.nest.rst", "docs/functional/ivy/ivy.functional.ivy.norms.rst", "docs/functional/ivy/ivy.functional.ivy.random.rst", "docs/functional/ivy/ivy.functional.ivy.searching.rst", "docs/functional/ivy/ivy.functional.ivy.set.rst", "docs/functional/ivy/ivy.functional.ivy.sorting.rst", "docs/functional/ivy/ivy.functional.ivy.statistical.rst", "docs/functional/ivy/ivy.functional.ivy.utility.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv1d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv2d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv3d_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_dilated.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.conv_general_transpose.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.depthwise_conv2d.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.dropout.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.linear.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.lstm_update.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.multi_head_attention.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.nms.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.roi_align.rst", "docs/functional/ivy/layers/ivy.functional.ivy.layers.scaled_dot_product_attention.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cholesky.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.cross.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.det.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diag.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.diagonal.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eig.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.eigvalsh.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inner.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.inv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.lu_factor.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matmul.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_power.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_rank.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.matrix_transpose.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.outer.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.pinv.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.qr.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.slogdet.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.solve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svd.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.svdvals.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensordot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.tensorsolve.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.trace.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vander.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vecdot.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_norm.rst", "docs/functional/ivy/linear_algebra/ivy.functional.ivy.linear_algebra.vector_to_skew_symmetric_matrix.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.binary_cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.cross_entropy.rst", "docs/functional/ivy/losses/ivy.functional.ivy.losses.sparse_cross_entropy.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.clip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.concat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.constant_pad.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.expand_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.flip.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.permute_dims.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.repeat.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.reshape.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.roll.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.split.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.squeeze.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.stack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.swapaxes.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.tile.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.unstack.rst", "docs/functional/ivy/manipulation/ivy.functional.ivy.manipulation.zero_pad.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.fomaml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.maml_step.rst", "docs/functional/ivy/meta/ivy.functional.ivy.meta.reptile_step.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.all_nested_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.copy_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.duplicate_array_index_chains.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.insert_into_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.map_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.multi_index_nest.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_any.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_argwhere.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.nested_multi_map.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_empty.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.prune_nest_at_indices.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_index.rst", "docs/functional/ivy/nest/ivy.functional.ivy.nest.set_nest_at_indices.rst", "docs/functional/ivy/norms/ivy.functional.ivy.norms.layer_norm.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.multinomial.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.randint.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_normal.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.random_uniform.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.seed.rst", "docs/functional/ivy/random/ivy.functional.ivy.random.shuffle.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmax.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argmin.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.argwhere.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.nonzero.rst", "docs/functional/ivy/searching/ivy.functional.ivy.searching.where.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_all.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_counts.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_inverse.rst", "docs/functional/ivy/set/ivy.functional.ivy.set.unique_values.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.argsort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.msort.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.searchsorted.rst", "docs/functional/ivy/sorting/ivy.functional.ivy.sorting.sort.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumprod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.cumsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.einsum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.max.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.mean.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.min.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.prod.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.std.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.sum.rst", "docs/functional/ivy/statistical/ivy.functional.ivy.statistical.var.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.all.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.any.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.load.rst", "docs/functional/ivy/utility/ivy.functional.ivy.utility.save.rst", "docs/helpers/ivy_tests.test_ivy.helpers.assertions.rst", "docs/helpers/ivy_tests.test_ivy.helpers.available_frameworks.rst", "docs/helpers/ivy_tests.test_ivy.helpers.function_testing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.globals.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers/ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.rst", "docs/helpers/ivy_tests.test_ivy.helpers.multiprocessing.rst", "docs/helpers/ivy_tests.test_ivy.helpers.pipeline_helper.rst", "docs/helpers/ivy_tests.test_ivy.helpers.structs.rst", "docs/helpers/ivy_tests.test_ivy.helpers.test_parameter_flags.rst", "docs/helpers/ivy_tests.test_ivy.helpers.testing_helpers.rst", "docs/ivy.stateful.rst", "docs/ivy.utils.rst", "docs/ivy_tests.test_ivy.helpers.rst", "docs/stateful/ivy.stateful.activations.rst", "docs/stateful/ivy.stateful.converters.rst", "docs/stateful/ivy.stateful.helpers.rst", "docs/stateful/ivy.stateful.initializers.rst", "docs/stateful/ivy.stateful.layers.rst", "docs/stateful/ivy.stateful.losses.rst", "docs/stateful/ivy.stateful.module.rst", "docs/stateful/ivy.stateful.norms.rst", "docs/stateful/ivy.stateful.optimizers.rst", "docs/stateful/ivy.stateful.sequential.rst", "docs/utils/ivy.utils.assertions.rst", "docs/utils/ivy.utils.backend.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.ast_helpers.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.handler.rst", "docs/utils/ivy.utils.backend/ivy.utils.backend.sub_backend_handler.rst", "docs/utils/ivy.utils.binaries.rst", "docs/utils/ivy.utils.dynamic_import.rst", "docs/utils/ivy.utils.einsum_parser.rst", "docs/utils/ivy.utils.einsum_path_helpers.rst", "docs/utils/ivy.utils.exceptions.rst", "docs/utils/ivy.utils.inspection.rst", "docs/utils/ivy.utils.logging.rst", "docs/utils/ivy.utils.profiler.rst", "docs/utils/ivy.utils.verbosity.rst", "index.rst", "overview/contributing.rst", "overview/contributing/building_the_docs.rst", "overview/contributing/error_handling.rst", "overview/contributing/helpful_resources.rst", "overview/contributing/open_tasks.rst", "overview/contributing/setting_up.rst", "overview/contributing/the_basics.rst", "overview/deep_dive.rst", "overview/deep_dive/array_api_tests.rst", "overview/deep_dive/arrays.rst", "overview/deep_dive/backend_setting.rst", "overview/deep_dive/building_the_docs_pipeline.rst", "overview/deep_dive/containers.rst", "overview/deep_dive/continuous_integration.rst", "overview/deep_dive/data_types.rst", "overview/deep_dive/devices.rst", "overview/deep_dive/docstring_examples.rst", "overview/deep_dive/docstrings.rst", "overview/deep_dive/exception_handling.rst", "overview/deep_dive/fix_failing_tests.rst", "overview/deep_dive/formatting.rst", "overview/deep_dive/function_arguments.rst", "overview/deep_dive/function_types.rst", "overview/deep_dive/function_wrapping.rst", "overview/deep_dive/gradients.rst", "overview/deep_dive/inplace_updates.rst", "overview/deep_dive/ivy_frontends.rst", "overview/deep_dive/ivy_frontends_tests.rst", "overview/deep_dive/ivy_lint.rst", "overview/deep_dive/ivy_tests.rst", "overview/deep_dive/navigating_the_code.rst", "overview/deep_dive/operating_modes.rst", "overview/deep_dive/superset_behaviour.rst", "overview/design.rst", "overview/design/building_blocks.rst", "overview/design/ivy_as_a_framework.rst", "overview/design/ivy_as_a_framework/ivy_array.rst", "overview/design/ivy_as_a_framework/ivy_container.rst", "overview/design/ivy_as_a_framework/ivy_stateful_api.rst", "overview/design/ivy_as_a_transpiler.rst", "overview/faq.rst", "overview/get_started.rst", "overview/glossary.rst", "overview/motivation.rst", "overview/motivation/ml_explosion.rst", "overview/motivation/standardization.rst", "overview/motivation/why_unify.rst", "overview/one_liners.rst", "overview/one_liners/trace.rst", "overview/one_liners/transpile.rst", "overview/one_liners/unify.rst", "overview/related_work.rst", "overview/related_work/api_standards.rst", "overview/related_work/compiler_infrastructure.rst", "overview/related_work/exchange_formats.rst", "overview/related_work/frameworks.rst", "overview/related_work/graph_tracers.rst", "overview/related_work/ml_unifying_companies.rst", "overview/related_work/multi_vendor_compiler_frameworks.rst", "overview/related_work/vendor_specific_apis.rst", "overview/related_work/vendor_specific_compilers.rst", "overview/related_work/what_does_ivy_add.rst", "overview/related_work/wrapper_frameworks.rst"], "titles": ["Demos", "TO REPLACE: Title", "Examples and Demos", "Ivy AlexNet demo", "# Ivy Bert Demo", "Image Segmentation with Ivy UNet", "Accelerating MMPreTrain models with JAX", "Using Ivy ResNet", "Accelerating PyTorch models with JAX", "Accelerating XGBoost with JAX", "Guides", "Transpiling a PyTorch model to build on top", "Transpiling a haiku model to build on top", "Transpiling a Tensorflow model to build on top", "Developing a convolutional network using Ivy", "Tutorials And Examples", "Learn the basics", "Write Ivy code", "Unify code", "Trace code", "Transpile code", "Lazy vs Eager", "How to use decorators", "Transpile any library", "Transpile any model", "Write a model using Ivy", "ODSC Ivy Demo", "Quickstart", "0.0: Unify", "0.1: Compile", "0.2: Transpile", "1.0: Lazy vs Eager", "1.1: Framework Selection", "1.2: As a Decorator", "1.3: Dynamic vs Static", "2.0: Kornia", "3.0: Perceiver", "3.1: Stable Diffusion", "Basic Operations with Ivy", "Compilation of a Basic Function", "Demo: Transpiling DeepMind\u2019s PerceiverIO", "Deepmind PerceiverIO on GPU", "End-to-End Training Pipeline in Ivy", "HuggingFace Tensorflow DeiT", "Ivy as a Transpiler Introduction", "Resnet 18", "Activations", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Activations", "Base", "Conversions", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Image", "Layers", "Linear algebra", "Losses", "Manipulation", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "Wrapping", "Base", "Cp tensor", "Parafac2 tensor", "Tr tensor", "Tt tensor", "Tucker tensor", "Array", "Container", "Factorized tensor", "Nested array", "Base", "Elementwise", "Data classes", "Functions", "gelu", "hardswish", "leaky_relu", "log_softmax", "mish", "relu", "sigmoid", "softmax", "softplus", "softsign", "cmp_is", "cmp_isnot", "for_loop", "if_else", "try_except", "while_loop", "arange", "array", "asarray", "copy_array", "empty", "empty_like", "eye", "from_dlpack", "frombuffer", "full", "full_like", "linspace", "logspace", "meshgrid", "native_array", "one_hot", "ones", "ones_like", "to_dlpack", "tril", "triu", "triu_indices", "zeros", "zeros_like", "as_ivy_dtype", "as_native_dtype", "astype", "broadcast_arrays", "broadcast_to", "can_cast", "check_float", "closest_valid_dtype", "default_complex_dtype", "default_dtype", "default_float_dtype", "default_int_dtype", "default_uint_dtype", "dtype", "dtype_bits", "finfo", "function_supported_dtypes", "function_unsupported_dtypes", "iinfo", "infer_default_dtype", "invalid_dtype", "is_bool_dtype", "is_complex_dtype", "is_float_dtype", "is_hashable_dtype", "is_int_dtype", "is_native_dtype", "is_uint_dtype", "promote_types", "promote_types_of_inputs", "result_type", "set_default_complex_dtype", "set_default_dtype", "set_default_float_dtype", "set_default_int_dtype", "set_default_uint_dtype", "type_promote_arrays", "unset_default_complex_dtype", "unset_default_dtype", "unset_default_float_dtype", "unset_default_int_dtype", "unset_default_uint_dtype", "valid_dtype", "as_ivy_dev", "as_native_dev", "clear_cached_mem_on_dev", "default_device", "dev", "dev_util", "function_supported_devices", "function_unsupported_devices", "get_all_ivy_arrays_on_dev", "gpu_is_available", "handle_soft_device_variable", "num_cpu_cores", "num_gpus", "num_ivy_arrays_on_dev", "percent_used_mem_on_dev", "print_all_ivy_arrays_on_dev", "set_default_device", "set_soft_device_mode", "set_split_factor", "split_factor", "split_func_call", "to_device", "total_mem_on_dev", "tpu_is_available", "unset_default_device", "unset_soft_device_mode", "used_mem_on_dev", "abs", "acos", "acosh", "add", "angle", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_invert", "bitwise_left_shift", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "deg2rad", "divide", "equal", "erf", "exp", "exp2", "expm1", "floor", "floor_divide", "fmin", "fmod", "gcd", "greater", "greater_equal", "imag", "isfinite", "isinf", "isnan", "isreal", "lcm", "less", "less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2", "logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum", "multiply", "nan_to_num", "negative", "not_equal", "positive", "pow", "rad2deg", "real", "reciprocal", "remainder", "round", "sign", "sin", "sinh", "sqrt", "square", "subtract", "tan", "tanh", "trapz", "trunc", "trunc_divide", "celu", "elu", "hardshrink", "hardtanh", "logit", "logsigmoid", "prelu", "relu6", "scaled_tanh", "selu", "silu", "softshrink", "stanh", "tanhshrink", "threshold", "thresholded_relu", "blackman_window", "eye_like", "hamming_window", "hann_window", "indices", "kaiser_bessel_derived_window", "kaiser_window", "mel_weight_matrix", "ndenumerate", "ndindex", "polyval", "random_cp", "random_parafac2", "random_tr", "random_tt", "random_tucker", "tril_indices", "trilu", "unsorted_segment_mean", "unsorted_segment_min", "unsorted_segment_sum", "vorbis_window", "allclose", "amax", "amin", "binarizer", "conj", "copysign", "count_nonzero", "diff", "digamma", "erfc", "fix", "float_power", "fmax", "frexp", "gradient", "hypot", "isclose", "ldexp", "lerp", "lgamma", "modf", "nansum", "nextafter", "signbit", "sinc", "sparsify_tensor", "xlogy", "zeta", "reduce", "bind_custom_gradient_function", "jvp", "vjp", "Activations", "Constants", "Creation", "Data type", "Device", "Elementwise", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Sparse array", "Statistical", "Utility", "adaptive_avg_pool1d", "adaptive_avg_pool2d", "adaptive_max_pool2d", "area_interpolate", "avg_pool1d", "avg_pool2d", "avg_pool3d", "dct", "dft", "dropout1d", "dropout2d", "dropout3d", "embedding", "fft", "fft2", "generate_einsum_equation", "get_interpolate_kernel", "idct", "ifft", "ifftn", "interp", "interpolate", "max_pool1d", "max_pool2d", "max_pool3d", "max_unpool1d", "nearest_interpolate", "pool", "reduce_window", "rfft", "rfftn", "rnn", "sliding_window", "stft", "adjoint", "batched_outer", "cond", "diagflat", "dot", "eig", "eigh_tridiagonal", "eigvals", "general_inner_product", "higher_order_moment", "initialize_tucker", "khatri_rao", "kron", "kronecker", "make_svd_non_negative", "matrix_exp", "mode_dot", "multi_dot", "multi_mode_dot", "partial_tucker", "solve_triangular", "svd_flip", "tensor_train", "truncated_svd", "tt_matrix_to_tensor", "tucker", "huber_loss", "kl_div", "l1_loss", "log_poisson_loss", "poisson_nll_loss", "smooth_l1_loss", "soft_margin_loss", "as_strided", "associative_scan", "atleast_1d", "atleast_2d", "atleast_3d", "broadcast_shapes", "check_scalar", "choose", "column_stack", "concat_from_sequence", "dsplit", "dstack", "expand", "fill_diagonal", "flatten", "fliplr", "flipud", "fold", "heaviside", "hsplit", "hstack", "i0", "matricize", "moveaxis", "pad", "partial_fold", "partial_tensor_to_vec", "partial_unfold", "partial_vec_to_tensor", "put_along_axis", "rot90", "soft_thresholding", "take", "take_along_axis", "top_k", "trim_zeros", "unfold", "unique_consecutive", "vsplit", "vstack", "batch_norm", "group_norm", "instance_norm", "l1_normalize", "l2_normalize", "local_response_norm", "lp_normalize", "bernoulli", "beta", "dirichlet", "gamma", "poisson", "unravel_index", "invert_permutation", "lexsort", "is_ivy_sparse_array", "is_native_sparse_array", "native_sparse_array", "native_sparse_array_to_indices_values_and_shape", "bincount", "corrcoef", "cov", "cummax", "cummin", "histogram", "igamma", "median", "nanmean", "nanmedian", "nanmin", "nanprod", "quantile", "optional_get_element", "all_equal", "arg_info", "arg_names", "array_equal", "assert_supports_inplace", "cache_fn", "clip_matrix_norm", "clip_vector_norm", "container_types", "current_backend_str", "default", "einops_rearrange", "einops_reduce", "einops_repeat", "exists", "fourier_encode", "function_supported_devices_and_dtypes", "function_unsupported_devices_and_dtypes", "gather", "gather_nd", "get_all_arrays_in_memory", "get_item", "get_num_dims", "get_referrers_recursive", "has_nans", "inplace_arrays_supported", "inplace_decrement", "inplace_increment", "inplace_update", "inplace_variables_supported", "is_array", "is_ivy_array", "is_ivy_container", "is_ivy_nested_array", "is_native_array", "isin", "isscalar", "itemsize", "match_kwargs", "multiprocessing", "num_arrays_in_memory", "print_all_arrays_in_memory", "scatter_flat", "scatter_nd", "set_array_mode", "set_exception_trace_mode", "set_inplace_mode", "set_item", "set_min_base", "set_min_denominator", "set_nestable_mode", "set_precise_mode", "set_queue_timeout", "set_shape_array_mode", "set_show_func_wrapper_trace_mode", "set_tmp_dir", "shape", "stable_divide", "stable_pow", "strides", "supports_inplace_updates", "to_ivy_shape", "to_list", "to_native_shape", "to_numpy", "to_scalar", "try_else_none", "unset_array_mode", "unset_exception_trace_mode", "unset_inplace_mode", "unset_min_base", "unset_min_denominator", "unset_nestable_mode", "unset_precise_mode", "unset_queue_timeout", "unset_shape_array_mode", "unset_show_func_wrapper_trace_mode", "unset_tmp_dir", "value_is_nan", "vmap", "adam_step", "adam_update", "execute_with_gradients", "grad", "gradient_descent_update", "jac", "lamb_update", "lars_update", "optimizer_update", "stop_gradient", "value_and_grad", "Activations", "Constants", "Control flow ops", "Creation", "Data type", "Device", "Elementwise", "Experimental", "General", "Gradients", "Layers", "Linear algebra", "Losses", "Manipulation", "Meta", "Nest", "Norms", "Random", "Searching", "Set", "Sorting", "Statistical", "Utility", "conv", "conv1d", "conv1d_transpose", "conv2d", "conv2d_transpose", "conv3d", "conv3d_transpose", "conv_general_dilated", "conv_general_transpose", "depthwise_conv2d", "dropout", "linear", "lstm_update", "multi_head_attention", "nms", "roi_align", "scaled_dot_product_attention", "cholesky", "cross", "det", "diag", "diagonal", "eig", "eigh", "eigvalsh", "inner", "inv", "lu_factor", "matmul", "matrix_norm", "matrix_power", "matrix_rank", "matrix_transpose", "outer", "pinv", "qr", "slogdet", "solve", "svd", "svdvals", "tensordot", "tensorsolve", "trace", "vander", "vecdot", "vector_norm", "vector_to_skew_symmetric_matrix", "binary_cross_entropy", "cross_entropy", "sparse_cross_entropy", "clip", "concat", "constant_pad", "expand_dims", "flip", "permute_dims", "repeat", "reshape", "roll", "split", "squeeze", "stack", "swapaxes", "tile", "unstack", "zero_pad", "fomaml_step", "maml_step", "reptile_step", "all_nested_indices", "copy_nest", "duplicate_array_index_chains", "index_nest", "insert_into_nest_at_index", "insert_into_nest_at_indices", "map", "map_nest_at_index", "map_nest_at_indices", "multi_index_nest", "nested_any", "nested_argwhere", "nested_map", "nested_multi_map", "prune_empty", "prune_nest_at_index", "prune_nest_at_indices", "set_nest_at_index", "set_nest_at_indices", "layer_norm", "multinomial", "randint", "random_normal", "random_uniform", "seed", "shuffle", "argmax", "argmin", "argwhere", "nonzero", "where", "unique_all", "unique_counts", "unique_inverse", "unique_values", "argsort", "msort", "searchsorted", "sort", "cumprod", "cumsum", "einsum", "max", "mean", "min", "prod", "std", "sum", "var", "all", "any", "load", "save", "Assertions", "Available frameworks", "Function testing", "Globals", "Hypothesis helpers", "Array helpers", "Dtype helpers", "General helpers", "Number helpers", "Multiprocessing", "Pipeline helper", "Structs", "Test parameter flags", "Testing helpers", "Framework classes", "Utils", "Testing", "Activations", "Converters", "Helpers", "Initializers", "Layers", "Losses", "Module", "Norms", "Optimizers", "Sequential", "Assertions", "Backend", "Ast helpers", "Handler", "Sub backend handler", "Binaries", "Dynamic import", "Einsum parser", "Einsum path helpers", "Exceptions", "Inspection", "Logging", "Profiler", "Verbosity", "Home", "Contributing", "Building the Docs", "Error Handling", "Helpful Resources", "Open Tasks", "Setting Up", "The Basics", "Deep Dive", "Array API Tests", "Arrays", "Backend Setting", "Building the Docs Pipeline", "Containers", "Continuous Integration", "Data Types", "Devices", "Docstring Examples", "Docstrings", "Exception Handling", "Fix Failing Tests:", "Formatting", "Function Arguments", "Function Types", "Function Wrapping", "Gradients", "Inplace Updates", "Ivy Frontends", "Ivy Frontend Tests", "Ivy-Lint: Ivy\u2019s Custom Code Formatters", "Ivy Tests", "Navigating the Code", "Operating Modes", "Superset Behaviour", "Design", "Building Blocks", "Ivy as a Framework", "Ivy Array", "Ivy Container", "Ivy Stateful API", "Ivy as a Transpiler", "FAQ", "Get Started", "Glossary", "Motivation", "ML Explosion", "Standardization", "Why Unify?", "One liners", "ivy.trace_graph()", "ivy.transpile()", "ivy.unify()", "Related Work", "API Standards", "Compiler Infrastructure", "Exchange Formats", "Frameworks", "Graph Tracers", "ML-Unifying Companies", "Multi-Vendor Compiler Frameworks", "Vendor-Specific APIs", "Vendor-Specific Compilers", "What does Ivy Add?", "Wrapper Frameworks"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 163, 166, 167, 168, 170, 174, 175, 189, 192, 202, 208, 209, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 568, 574, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 707, 709, 711, 712, 717, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 766, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "repo": [0, 11, 40, 803, 806, 808, 811, 813, 814, 819, 827, 829, 844], "hold": [0, 52, 53, 57, 65, 75, 80, 88, 92, 93, 328, 344, 349, 365, 380, 459, 487, 511, 512, 517, 564, 565, 621, 624, 634, 665, 745, 761, 837, 856], "all": [0, 1, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 39, 40, 42, 43, 45, 47, 48, 52, 53, 56, 57, 59, 61, 66, 67, 69, 70, 71, 74, 75, 76, 79, 80, 82, 84, 89, 90, 92, 93, 121, 129, 136, 140, 141, 142, 196, 203, 235, 239, 267, 268, 322, 323, 335, 353, 362, 365, 368, 369, 371, 380, 401, 410, 412, 413, 414, 422, 427, 435, 436, 438, 441, 462, 473, 481, 486, 516, 522, 525, 542, 562, 563, 579, 586, 587, 601, 604, 616, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 635, 646, 648, 649, 654, 667, 672, 673, 676, 681, 690, 694, 696, 702, 703, 704, 705, 706, 707, 716, 717, 718, 719, 725, 728, 733, 758, 760, 763, 764, 765, 766, 778, 779, 785, 788, 793, 795, 799, 800, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 861, 862], "jupyt": [0, 845, 857], "exampl": [0, 6, 8, 17, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 167, 168, 170, 171, 172, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 771, 788, 792, 793, 797, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 822, 823, 825, 826, 829, 830, 834, 836, 837, 838, 839, 840, 846, 852, 853, 856, 858, 861, 862], "tab": [0, 804, 805, 813, 819, 837], "ivi": [0, 1, 2, 6, 8, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 40, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 800, 801, 802, 803, 805, 807, 808, 810, 812, 814, 815, 817, 819, 820, 821, 822, 823, 825, 832, 833, 840, 842, 845, 846, 847, 851, 862], "": [0, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 38, 41, 43, 44, 45, 48, 52, 53, 54, 57, 65, 75, 77, 80, 88, 117, 134, 140, 141, 161, 162, 191, 194, 195, 207, 242, 277, 323, 328, 329, 330, 332, 342, 344, 350, 354, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 384, 390, 396, 401, 412, 420, 424, 430, 439, 443, 445, 446, 462, 464, 465, 473, 489, 490, 491, 500, 510, 520, 538, 539, 545, 559, 581, 582, 603, 605, 606, 607, 608, 610, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 649, 656, 667, 674, 675, 681, 717, 751, 753, 764, 778, 779, 780, 781, 782, 783, 784, 788, 799, 800, 801, 802, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 842, 845, 846, 847, 848, 849, 850, 851, 854, 855, 856, 858, 859, 860, 861], "web": 0, "relev": [0, 48, 71, 133, 616, 783, 799, 804, 805, 806, 809, 812, 813, 814, 816, 819, 823, 824, 827, 828, 829, 837, 841, 845, 853, 860, 861], "link": [0, 17, 26, 27, 41, 799, 804, 805, 806, 811, 813, 814, 820, 826, 849, 851, 853], "list": [0, 4, 5, 6, 7, 9, 42, 47, 48, 49, 51, 52, 53, 56, 59, 60, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 129, 131, 134, 135, 136, 138, 144, 148, 150, 163, 167, 168, 175, 191, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 342, 343, 344, 350, 351, 352, 354, 355, 356, 365, 368, 369, 371, 378, 386, 387, 388, 390, 391, 392, 393, 404, 405, 406, 407, 411, 413, 417, 422, 426, 429, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 459, 468, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 502, 510, 511, 512, 513, 522, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 585, 586, 587, 588, 600, 601, 606, 611, 616, 617, 618, 619, 621, 623, 624, 626, 628, 629, 632, 633, 637, 638, 639, 640, 641, 642, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 676, 678, 683, 684, 685, 686, 687, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 707, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 779, 785, 792, 793, 803, 804, 805, 808, 809, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 834, 837, 838, 839, 840, 848, 855, 856, 861], "open": [0, 3, 5, 6, 7, 8, 23, 26, 27, 40, 41, 42, 43, 53, 61, 84, 121, 616, 630, 726, 728, 799, 800, 801, 805, 806, 811, 814, 817, 819, 826, 827, 832, 841, 844, 845, 846, 848, 849, 853, 854, 855, 857, 858], "task": [0, 43, 627, 702, 703, 704, 799, 800, 805, 806, 826, 827, 855, 861, 862], "avil": 0, "discuss": [0, 804, 806, 811, 814, 815, 825, 826, 828, 829, 832, 835, 836, 837, 840, 846, 851, 856], "suggest": [0, 804, 805, 806, 811, 814, 820, 824, 826, 829, 830, 831, 841], "new": [0, 6, 8, 10, 11, 13, 15, 18, 21, 22, 23, 24, 26, 27, 28, 42, 44, 47, 52, 53, 54, 59, 60, 69, 71, 75, 76, 77, 80, 82, 83, 125, 128, 130, 131, 136, 137, 138, 143, 144, 181, 224, 270, 272, 276, 328, 333, 344, 349, 365, 368, 371, 380, 403, 449, 457, 458, 472, 478, 517, 533, 534, 535, 537, 540, 541, 543, 564, 565, 568, 570, 577, 579, 580, 586, 603, 606, 608, 609, 610, 616, 617, 619, 621, 622, 623, 626, 628, 629, 649, 661, 669, 689, 693, 697, 710, 722, 723, 724, 776, 779, 782, 783, 788, 793, 799, 800, 804, 805, 806, 807, 809, 810, 812, 813, 814, 816, 817, 819, 820, 823, 825, 826, 827, 828, 829, 830, 832, 833, 836, 839, 841, 842, 844, 845, 846, 848, 853, 857, 861, 862], "should": [0, 4, 8, 9, 21, 22, 23, 24, 43, 46, 48, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 74, 75, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 95, 97, 98, 108, 112, 120, 134, 136, 140, 141, 149, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 296, 307, 323, 329, 330, 341, 345, 346, 347, 348, 352, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 375, 380, 383, 391, 392, 393, 395, 400, 411, 426, 435, 441, 447, 472, 473, 496, 497, 510, 511, 512, 527, 545, 550, 601, 603, 606, 608, 609, 610, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 643, 644, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 676, 678, 680, 681, 693, 709, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 744, 745, 746, 747, 748, 749, 750, 752, 753, 760, 761, 763, 765, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 843, 845, 849, 851, 852, 855, 857, 862], "comprehens": [0, 15, 806, 808, 828], "possibl": [0, 3, 32, 48, 52, 71, 75, 82, 92, 123, 242, 285, 306, 329, 330, 362, 365, 368, 370, 371, 390, 442, 451, 452, 453, 459, 461, 463, 464, 465, 472, 487, 560, 619, 621, 623, 634, 646, 689, 690, 691, 693, 695, 696, 698, 700, 747, 749, 763, 779, 793, 796, 799, 800, 802, 804, 805, 806, 808, 811, 812, 814, 816, 817, 819, 820, 822, 824, 825, 826, 827, 829, 832, 834, 837, 840, 845, 853, 855, 861], "us": [0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 84, 85, 90, 92, 93, 95, 98, 105, 133, 136, 147, 159, 161, 162, 173, 174, 194, 195, 197, 202, 206, 207, 208, 209, 211, 214, 220, 228, 256, 257, 259, 260, 262, 263, 264, 266, 267, 269, 278, 282, 287, 306, 308, 309, 311, 312, 313, 321, 342, 345, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 394, 396, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 420, 422, 426, 430, 432, 434, 435, 437, 438, 439, 441, 446, 463, 467, 471, 473, 481, 489, 491, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 517, 520, 538, 539, 548, 549, 560, 561, 568, 570, 571, 573, 579, 580, 592, 593, 595, 602, 603, 608, 609, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 632, 634, 647, 649, 652, 657, 659, 667, 671, 675, 678, 681, 683, 692, 693, 694, 698, 702, 703, 704, 705, 707, 708, 714, 715, 716, 718, 725, 726, 727, 728, 730, 731, 732, 733, 736, 738, 746, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 788, 792, 793, 797, 800, 803, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 842, 846, 850, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "easi": [0, 26, 27, 40, 805, 806, 809, 810, 812, 822, 824, 827, 829, 832, 845, 853, 855, 861, 862], "follow": [0, 9, 20, 21, 22, 24, 26, 27, 30, 31, 32, 38, 41, 42, 52, 53, 54, 56, 57, 63, 69, 75, 76, 77, 79, 80, 129, 160, 163, 208, 218, 235, 242, 268, 270, 277, 278, 313, 362, 368, 370, 371, 374, 390, 403, 411, 446, 461, 473, 489, 491, 548, 549, 550, 579, 580, 603, 606, 608, 609, 610, 616, 617, 618, 619, 621, 622, 623, 624, 628, 632, 649, 652, 665, 671, 681, 711, 717, 736, 737, 738, 739, 779, 783, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 848, 852, 855, 858], "attract": 0, "visual": [0, 9, 44, 797, 799, 805, 819, 826, 829, 840, 855, 857, 860], "graph": [0, 3, 5, 7, 9, 15, 16, 19, 21, 23, 24, 27, 33, 34, 39, 44, 45, 63, 632, 736, 737, 738, 739, 771, 799, 812, 822, 826, 828, 832, 834, 839, 840, 842, 846, 847, 848, 849, 850, 851, 855, 858], "nice": [0, 829, 846, 855], "format": [0, 23, 24, 26, 27, 38, 40, 41, 42, 50, 53, 56, 65, 68, 69, 70, 73, 79, 95, 113, 158, 192, 368, 369, 379, 409, 440, 506, 533, 613, 617, 618, 621, 623, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 746, 756, 757, 758, 775, 799, 805, 806, 807, 813, 814, 815, 816, 817, 818, 826, 828, 837, 849, 851, 853, 855, 856], "result": [0, 3, 5, 6, 7, 8, 9, 11, 13, 21, 22, 23, 24, 26, 27, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 175, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 424, 425, 427, 428, 430, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 450, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 545, 550, 557, 564, 565, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 708, 711, 712, 714, 718, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 765, 771, 785, 793, 797, 799, 802, 804, 806, 808, 809, 811, 812, 813, 814, 816, 817, 819, 821, 822, 824, 825, 826, 827, 829, 830, 834, 837, 840, 848, 849, 850, 856, 858], "etc": [0, 29, 34, 41, 48, 52, 61, 63, 67, 71, 75, 84, 90, 124, 132, 133, 136, 368, 375, 396, 401, 412, 496, 497, 499, 500, 616, 630, 632, 725, 726, 727, 728, 736, 737, 738, 739, 763, 766, 778, 779, 780, 781, 782, 783, 784, 804, 805, 806, 808, 809, 810, 811, 812, 814, 816, 818, 821, 826, 827, 829, 830, 834, 836, 837, 840, 842, 846, 848, 853, 855, 861], "gener": [0, 5, 15, 19, 24, 26, 27, 29, 32, 40, 42, 44, 45, 48, 51, 52, 56, 61, 67, 71, 74, 75, 79, 84, 90, 93, 121, 132, 133, 142, 150, 235, 238, 248, 249, 264, 268, 277, 306, 309, 313, 314, 315, 317, 318, 319, 320, 321, 322, 329, 330, 362, 365, 368, 369, 371, 375, 380, 411, 417, 437, 481, 498, 510, 616, 617, 619, 623, 624, 626, 630, 634, 646, 672, 673, 676, 679, 701, 725, 726, 728, 729, 751, 763, 766, 771, 783, 792, 804, 805, 806, 807, 808, 809, 811, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 830, 833, 834, 836, 838, 839, 840, 842, 853, 854, 855, 856, 857, 858, 859, 860, 861], "tone": [0, 4], "feel": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848], "free": [0, 5, 40, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 801, 802, 803, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 841, 848, 856, 858], "includ": [0, 9, 15, 19, 29, 34, 48, 51, 52, 53, 57, 62, 65, 66, 69, 71, 74, 75, 76, 80, 85, 88, 89, 121, 122, 123, 132, 133, 135, 142, 215, 239, 243, 244, 245, 248, 250, 253, 261, 269, 282, 287, 308, 311, 312, 313, 316, 322, 325, 327, 329, 330, 334, 335, 336, 338, 339, 340, 341, 343, 345, 346, 348, 349, 350, 351, 354, 355, 362, 365, 368, 371, 380, 386, 387, 388, 418, 421, 423, 464, 465, 467, 470, 472, 474, 477, 498, 500, 501, 509, 513, 515, 516, 518, 519, 520, 546, 600, 616, 619, 621, 624, 628, 630, 631, 634, 635, 658, 679, 681, 705, 728, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 782, 795, 799, 804, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 845, 848, 849, 852, 853, 855, 857, 860, 861, 862], "emoji": [0, 804], "don": [0, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 67, 90, 799, 804, 805, 806, 813, 814, 815, 820, 824, 829, 832, 838, 840, 841, 846, 848], "t": [0, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 42, 52, 56, 67, 75, 79, 90, 92, 93, 97, 342, 357, 365, 367, 369, 422, 550, 568, 582, 604, 621, 622, 623, 628, 647, 648, 713, 758, 779, 799, 801, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 819, 820, 822, 823, 824, 825, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 845, 846, 848, 849, 850, 853, 855, 857], "keep": [0, 1, 11, 13, 17, 23, 24, 26, 52, 59, 69, 75, 82, 92, 95, 353, 369, 441, 626, 700, 803, 804, 805, 806, 808, 811, 812, 813, 818, 825, 826, 829, 830, 832, 837, 839, 841, 849], "thing": [0, 24, 38, 40, 792, 803, 804, 805, 806, 810, 826, 829, 832, 836, 837, 844, 845, 846, 855], "super": [0, 3, 5, 11, 13, 26, 27, 40, 52, 75, 369, 422, 799, 818, 834, 837, 838, 839, 849], "seriou": 0, "given": [0, 3, 17, 26, 39, 52, 53, 58, 59, 61, 69, 75, 76, 77, 81, 82, 84, 92, 93, 95, 97, 98, 121, 125, 132, 133, 153, 154, 155, 156, 157, 169, 174, 193, 202, 204, 206, 207, 208, 210, 214, 287, 316, 325, 328, 334, 335, 342, 343, 344, 346, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 389, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 412, 422, 427, 440, 443, 444, 445, 447, 448, 449, 450, 460, 461, 462, 469, 471, 483, 488, 492, 493, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 519, 541, 545, 564, 565, 575, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 682, 683, 684, 685, 686, 689, 690, 691, 692, 694, 695, 699, 700, 712, 713, 722, 723, 726, 727, 728, 730, 742, 743, 744, 745, 758, 763, 764, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 784, 785, 792, 793, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 835, 836, 838, 845, 846, 852, 857, 858, 861, 862], "an": [0, 2, 3, 8, 9, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 32, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 170, 174, 175, 205, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 310, 311, 312, 314, 315, 322, 323, 324, 325, 326, 327, 329, 330, 332, 335, 338, 343, 347, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 399, 401, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 415, 416, 418, 421, 422, 423, 445, 446, 450, 451, 452, 453, 457, 458, 459, 461, 468, 472, 473, 479, 481, 486, 487, 489, 490, 491, 494, 496, 497, 499, 502, 503, 508, 509, 510, 511, 512, 513, 514, 517, 518, 521, 526, 528, 529, 537, 540, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 565, 568, 569, 578, 582, 586, 587, 588, 601, 604, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 711, 724, 726, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 768, 771, 775, 776, 778, 779, 781, 782, 783, 784, 793, 799, 801, 802, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 861, 862], "intern": [0, 9, 69, 100, 101, 102, 628, 705, 715, 716, 778, 779, 780, 781, 782, 784, 809, 812, 815, 817, 825, 827, 829, 831], "releas": [0, 41, 804, 805, 814, 830, 832, 840, 846, 855, 861], "tracer": [0, 3, 5, 7, 8, 21, 22, 23, 24, 27, 43, 45, 799, 826, 833, 835, 840, 842, 849, 850, 851], "i": [0, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 175, 187, 189, 191, 192, 194, 195, 197, 199, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 302, 303, 304, 305, 306, 307, 309, 310, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 381, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 419, 420, 421, 422, 424, 425, 426, 427, 429, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 471, 472, 473, 474, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 560, 561, 564, 565, 566, 568, 574, 578, 579, 580, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 606, 608, 609, 610, 611, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 785, 788, 789, 792, 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "around": [0, 10, 11, 13, 15, 52, 69, 75, 98, 371, 473, 481, 804, 806, 808, 809, 811, 815, 821, 822, 826, 830, 836, 840, 842, 848, 853, 855, 862], "corner": [0, 52, 75, 368, 403, 805, 806, 819, 826], "anybodi": 0, "abl": [0, 3, 5, 28, 32, 43, 45, 69, 92, 805, 806, 808, 814, 819, 822, 825, 826, 830, 834, 839, 848, 858, 861], "start": [0, 1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 41, 42, 48, 52, 69, 71, 75, 79, 121, 129, 132, 133, 346, 356, 365, 366, 368, 371, 380, 410, 463, 466, 474, 476, 485, 519, 616, 765, 792, 800, 804, 805, 806, 807, 813, 814, 816, 817, 819, 820, 821, 826, 829, 832, 833, 834, 836, 837, 838, 840, 848, 849, 855, 861], "work": [0, 24, 26, 27, 38, 39, 41, 45, 47, 52, 75, 92, 380, 520, 624, 628, 675, 712, 713, 717, 722, 723, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 830, 833, 834, 836, 838, 839, 841, 846, 848, 849, 850, 853, 855, 857, 859, 862], "shortli": 0, "so": [0, 1, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 368, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 628, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 716, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 844, 845, 848, 849, 850, 855, 856, 857, 859], "worri": [0, 26, 27, 804, 805, 820], "about": [0, 15, 16, 17, 20, 22, 24, 26, 27, 30, 41, 42, 49, 72, 160, 163, 617, 799, 801, 803, 804, 805, 806, 807, 808, 811, 813, 814, 815, 820, 821, 825, 827, 828, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 846, 850, 856, 857, 860], "have": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 160, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 416, 418, 419, 421, 422, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 446, 447, 448, 452, 453, 458, 459, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 492, 493, 495, 496, 497, 499, 500, 501, 503, 510, 511, 512, 513, 517, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 568, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 775, 776, 778, 779, 781, 782, 783, 784, 792, 793, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 850, 851, 852, 853, 854, 855, 857, 861, 862], "access": [0, 23, 26, 27, 69, 799, 804, 805, 806, 813, 814, 820, 825, 826, 841, 849, 855, 857, 859], "transpil": [0, 6, 7, 8, 10, 15, 16, 19, 29, 770, 771, 804, 805, 818, 819, 826, 833, 834, 835, 842, 847, 848, 850, 855, 861, 862], "code": [0, 4, 6, 7, 8, 15, 16, 23, 24, 26, 28, 29, 30, 31, 32, 33, 40, 41, 50, 51, 69, 73, 74, 98, 209, 255, 380, 517, 526, 534, 535, 550, 564, 568, 582, 618, 621, 623, 624, 626, 645, 666, 667, 668, 697, 797, 799, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 832, 833, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 858, 859, 860, 861, 862], "now": [0, 4, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 42, 779, 780, 781, 799, 805, 808, 809, 810, 811, 812, 813, 814, 815, 819, 821, 823, 826, 827, 829, 830, 832, 836, 837, 839, 840, 846, 848, 849, 850, 855], "you": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 52, 53, 75, 76, 92, 97, 98, 371, 380, 461, 517, 540, 541, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 649, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 855], "can": [0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 41, 42, 45, 48, 49, 52, 53, 57, 59, 61, 63, 71, 72, 75, 76, 80, 82, 84, 86, 92, 93, 107, 110, 122, 123, 133, 135, 150, 189, 206, 207, 208, 296, 313, 360, 362, 368, 369, 370, 374, 375, 378, 380, 390, 403, 427, 432, 434, 439, 446, 458, 489, 497, 498, 503, 510, 557, 568, 601, 604, 613, 616, 617, 618, 621, 622, 623, 624, 626, 630, 649, 657, 664, 674, 678, 693, 697, 726, 727, 728, 736, 760, 763, 764, 765, 766, 771, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 856, 858, 859, 861, 862], "style": [0, 9, 40, 42, 371, 473, 631, 734, 806, 820, 855], "stori": 0, "If": [0, 1, 3, 4, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 41, 44, 45, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 175, 191, 207, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 322, 323, 325, 328, 329, 330, 331, 332, 334, 335, 336, 339, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 396, 399, 401, 403, 404, 405, 406, 411, 412, 413, 415, 420, 422, 424, 426, 427, 432, 434, 436, 437, 439, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 478, 479, 480, 481, 482, 483, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 569, 579, 580, 582, 584, 586, 587, 600, 601, 604, 606, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 778, 779, 781, 782, 788, 793, 799, 800, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 839, 840, 841, 844, 848, 849, 850], "anyon": [0, 799, 800, 806, 813, 840, 845, 861], "ha": [0, 3, 5, 7, 8, 9, 11, 13, 17, 19, 23, 26, 27, 29, 32, 34, 38, 45, 48, 52, 57, 59, 63, 65, 69, 72, 75, 76, 80, 82, 86, 88, 92, 134, 191, 215, 235, 238, 240, 242, 252, 268, 270, 275, 278, 280, 281, 285, 324, 325, 326, 362, 369, 370, 371, 380, 403, 436, 445, 456, 480, 482, 486, 509, 511, 512, 514, 546, 616, 618, 619, 623, 624, 626, 631, 632, 634, 648, 649, 664, 665, 673, 674, 676, 678, 681, 689, 696, 734, 737, 738, 739, 744, 745, 748, 750, 751, 752, 753, 763, 766, 788, 804, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 844, 845, 846, 848, 850, 851, 854, 855, 857, 858, 861], "ani": [0, 5, 7, 11, 13, 15, 16, 17, 18, 19, 28, 29, 32, 38, 39, 40, 41, 42, 44, 45, 47, 48, 50, 51, 52, 53, 57, 66, 67, 71, 73, 74, 75, 76, 89, 90, 92, 97, 98, 117, 118, 120, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 151, 166, 170, 174, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 412, 413, 422, 427, 462, 473, 481, 489, 490, 491, 510, 513, 516, 517, 518, 522, 532, 533, 534, 535, 536, 540, 544, 546, 548, 552, 554, 555, 573, 580, 587, 588, 595, 601, 611, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 708, 711, 712, 714, 715, 722, 724, 728, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 758, 761, 765, 775, 776, 778, 779, 781, 782, 783, 784, 788, 792, 793, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 853, 854, 855, 856, 858, 861, 862], "question": [0, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846], "ping": 0, "me": [0, 806], "guillermo": 0, "commun": [0, 41, 800, 804, 805, 806, 840, 845, 854, 855, 857], "ux": 0, "team": [0, 799, 800, 804, 805, 806, 826, 841, 857], "discord": [0, 41, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "channel": [0, 24, 42, 52, 53, 56, 75, 76, 79, 97, 98, 368, 374, 391, 392, 393, 403, 489, 490, 491, 494, 533, 537, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 775, 776, 778, 779, 781, 782, 783, 784, 806, 811, 819, 828], "To": [0, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 26, 27, 38, 41, 42, 43, 93, 242, 370, 445, 574, 619, 621, 778, 804, 805, 808, 809, 810, 811, 814, 816, 818, 819, 820, 822, 823, 826, 827, 828, 829, 830, 837, 838, 839, 841, 848, 849], "ensur": [0, 7, 8, 11, 13, 21, 22, 23, 24, 52, 53, 75, 76, 368, 369, 404, 405, 406, 437, 550, 621, 758, 799, 804, 805, 806, 809, 814, 815, 816, 818, 820, 821, 823, 825, 826, 827, 828, 829, 830, 841, 855], "similar": [0, 17, 26, 27, 277, 619, 623, 649, 779, 802, 804, 805, 812, 813, 814, 815, 818, 819, 820, 822, 823, 824, 826, 827, 829, 830, 837, 840, 844, 849, 851, 852, 853, 854, 861], "ar": [0, 1, 3, 4, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 92, 93, 97, 98, 121, 131, 133, 136, 142, 196, 201, 203, 208, 232, 234, 235, 238, 242, 263, 264, 268, 273, 274, 278, 280, 285, 286, 287, 322, 324, 325, 326, 328, 331, 333, 334, 335, 338, 339, 344, 349, 352, 356, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 373, 374, 375, 377, 380, 384, 390, 391, 392, 393, 396, 401, 403, 411, 412, 421, 422, 426, 434, 435, 437, 441, 442, 446, 447, 451, 452, 453, 463, 464, 465, 467, 473, 476, 480, 481, 489, 491, 496, 497, 498, 499, 500, 510, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 536, 542, 547, 551, 562, 563, 572, 582, 594, 604, 616, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 646, 647, 649, 652, 654, 658, 659, 660, 664, 665, 667, 670, 671, 674, 675, 679, 680, 681, 686, 687, 690, 694, 696, 706, 711, 716, 717, 718, 726, 727, 728, 731, 732, 733, 734, 736, 738, 758, 760, 763, 764, 765, 766, 771, 778, 781, 784, 785, 792, 793, 796, 797, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 850, 851, 852, 855, 856, 857, 858, 859, 860, 861, 862], "across": [0, 7, 8, 9, 21, 22, 23, 24, 38, 62, 69, 76, 85, 97, 206, 207, 235, 242, 268, 286, 374, 491, 494, 525, 546, 581, 618, 619, 621, 623, 628, 631, 646, 649, 711, 731, 732, 779, 804, 808, 814, 816, 818, 821, 822, 824, 829, 832, 853, 855, 860], "templat": [0, 799, 811, 817, 829], "help": [0, 15, 42, 44, 49, 523, 568, 621, 634, 752, 778, 799, 800, 801, 804, 805, 809, 810, 811, 812, 813, 814, 816, 820, 822, 823, 825, 826, 829, 830, 836, 837, 838, 841, 842, 851, 855, 857, 861], "get": [0, 3, 4, 6, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 40, 41, 43, 49, 50, 57, 69, 73, 80, 97, 158, 159, 160, 163, 191, 192, 193, 196, 202, 207, 210, 214, 371, 478, 524, 542, 563, 581, 617, 618, 621, 624, 628, 681, 707, 763, 778, 779, 792, 800, 803, 804, 805, 807, 808, 813, 814, 815, 819, 822, 823, 824, 825, 826, 827, 828, 829, 834, 835, 836, 837, 838, 842, 846, 849, 850, 855, 861], "It": [0, 3, 8, 9, 18, 21, 22, 23, 24, 26, 27, 28, 29, 38, 39, 40, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 337, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 381, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 433, 434, 442, 443, 444, 445, 447, 448, 458, 461, 466, 474, 475, 476, 477, 479, 481, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 566, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 704, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 743, 744, 745, 748, 750, 751, 753, 754, 755, 778, 779, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 817, 823, 825, 826, 827, 828, 829, 830, 831, 832, 834, 836, 837, 838, 847, 850, 853, 855, 856, 858, 859, 860, 861, 862], "locat": [0, 42, 136, 380, 511, 616, 628, 630, 633, 709, 725, 742, 793, 804, 806, 810, 811, 815, 826, 827, 829, 830, 841, 853], "asset": [0, 842], "01_templat": 0, "ipynb": 0, "pleas": [0, 32, 41, 45, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846], "make": [0, 3, 5, 6, 7, 8, 9, 18, 26, 27, 28, 40, 44, 52, 75, 368, 411, 788, 799, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 841, 845, 846, 849, 853, 855, 856, 857, 858, 861, 862], "copi": [0, 42, 45, 48, 49, 50, 51, 52, 53, 59, 69, 71, 72, 73, 74, 75, 76, 82, 92, 96, 122, 123, 124, 128, 139, 147, 209, 269, 371, 449, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 569, 579, 586, 587, 616, 617, 618, 619, 621, 626, 628, 633, 689, 690, 691, 693, 695, 696, 698, 700, 706, 741, 743, 771, 793, 805, 806, 808, 810, 813, 814, 817, 826, 827, 834, 840, 848, 849, 850], "firstli": [0, 18, 19, 22, 28, 29, 33, 38, 809, 814, 816, 817, 818, 822, 823, 825, 832, 837, 851, 861], "updat": [0, 4, 5, 6, 8, 9, 20, 21, 22, 23, 24, 26, 27, 40, 42, 47, 53, 54, 69, 76, 77, 92, 371, 478, 550, 564, 565, 568, 569, 591, 602, 603, 606, 608, 609, 610, 621, 622, 623, 627, 628, 646, 648, 702, 703, 704, 712, 713, 717, 722, 723, 771, 776, 782, 783, 788, 793, 799, 804, 805, 806, 807, 808, 809, 812, 813, 814, 816, 821, 823, 824, 826, 827, 829, 832, 834, 836, 837, 839, 840], "file": [0, 40, 41, 42, 53, 69, 577, 599, 621, 781, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 817, 818, 819, 820, 822, 826, 827, 828, 829, 830, 834, 837, 841, 851, 854, 855, 856], "name": [0, 6, 26, 27, 38, 40, 41, 42, 52, 57, 63, 67, 75, 80, 86, 90, 242, 368, 369, 371, 415, 421, 483, 486, 523, 524, 619, 621, 624, 632, 658, 659, 663, 671, 672, 674, 675, 679, 736, 737, 738, 760, 764, 771, 781, 788, 789, 791, 804, 805, 806, 810, 811, 812, 813, 816, 817, 818, 821, 826, 827, 829, 830, 831, 832, 834, 837, 839, 855], "match": [0, 49, 52, 69, 72, 75, 147, 242, 277, 333, 335, 365, 368, 371, 412, 456, 478, 482, 560, 617, 619, 621, 624, 659, 660, 665, 681, 758, 802, 804, 809, 811, 812, 816, 819, 827, 856, 861], "topic": [0, 15, 18, 19, 20, 28, 29, 30, 31, 32, 33, 823, 836, 855], "your": [0, 2, 3, 4, 6, 8, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 30, 38, 40, 42, 44, 799, 800, 802, 803, 804, 805, 808, 810, 811, 813, 817, 819, 820, 824, 826, 828, 830, 832, 837, 838, 840, 841, 845, 846, 848, 849, 855], "Then": [0, 45, 623, 649, 801, 804, 805, 806, 810, 811, 813, 819, 820, 823, 825, 829, 830, 840], "place": [0, 7, 8, 21, 22, 23, 24, 40, 47, 48, 51, 52, 53, 57, 59, 69, 71, 73, 74, 75, 76, 80, 82, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 269, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 306, 307, 310, 322, 323, 328, 329, 330, 332, 335, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 463, 473, 478, 481, 497, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 549, 550, 564, 568, 582, 587, 591, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 799, 802, 803, 806, 807, 808, 811, 812, 813, 815, 816, 817, 819, 821, 822, 826, 827, 829, 830, 832, 839, 842, 857], "its": [0, 8, 17, 19, 26, 27, 29, 32, 39, 40, 42, 47, 49, 52, 59, 69, 72, 75, 76, 82, 95, 107, 110, 113, 118, 148, 153, 154, 155, 156, 157, 208, 235, 268, 287, 296, 360, 368, 371, 380, 407, 415, 486, 513, 537, 585, 613, 615, 617, 618, 619, 621, 624, 626, 628, 664, 689, 693, 694, 698, 711, 760, 793, 799, 804, 805, 809, 812, 813, 814, 815, 817, 818, 819, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 839, 840, 842, 848, 854, 855, 861], "folder": [0, 7, 8, 21, 22, 23, 24, 42, 799, 805, 806, 808, 811, 813, 819, 822, 826, 829, 830, 831], "next": [0, 5, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 40, 42, 52, 75, 160, 341, 345, 350, 354, 365, 617, 778, 783, 799, 804, 805, 806, 810, 814, 816, 817, 819, 820, 823, 835, 836, 837, 846, 855, 857], "edit": [0, 804, 805, 806, 820], "titl": [0, 9, 12, 14, 25, 41, 44, 799, 804, 806, 811], "descript": [0, 1, 35, 36, 37, 42, 45, 48, 51, 52, 57, 74, 75, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 817, 824, 825], "accordingli": [0, 52, 57, 62, 63, 65, 66, 75, 80, 85, 88, 89, 134, 235, 240, 242, 258, 268, 282, 329, 330, 365, 616, 619, 624, 631, 632, 634, 635, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 826, 834, 841], "thei": [0, 9, 33, 38, 43, 52, 57, 61, 63, 69, 80, 84, 86, 173, 287, 339, 365, 617, 619, 624, 627, 630, 632, 679, 702, 703, 725, 736, 758, 784, 799, 803, 804, 805, 807, 808, 810, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 848, 852, 855, 857, 858, 861, 862], "render": [0, 811, 817], "correctli": [0, 23, 26, 27, 40, 52, 57, 62, 75, 80, 85, 334, 365, 380, 516, 517, 518, 519, 520, 624, 631, 665, 731, 804, 805, 806, 809, 812, 814, 816, 818, 820, 821, 827, 829, 832, 838, 840, 848, 849], "webpag": [0, 15], "content": [0, 1, 12, 14, 25, 26, 41, 42, 52, 69, 75, 380, 517, 804, 806, 811, 815, 825, 828, 834, 837, 841], "behind": [0, 17, 26, 799, 807, 821, 829, 833, 835], "exist": [0, 17, 26, 27, 40, 41, 42, 45, 48, 52, 53, 69, 71, 75, 76, 82, 123, 371, 451, 452, 458, 459, 461, 463, 464, 465, 472, 487, 532, 568, 621, 626, 687, 689, 690, 691, 693, 695, 696, 698, 700, 783, 785, 799, 804, 805, 808, 810, 815, 816, 817, 822, 823, 825, 826, 829, 832, 834, 840, 842, 844, 845, 853, 855, 858, 861], "cell": [0, 1, 3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 56, 79, 623, 648, 779, 813, 834], "where": [0, 6, 19, 23, 29, 30, 34, 42, 48, 51, 52, 53, 57, 59, 61, 62, 65, 66, 69, 71, 74, 75, 76, 80, 82, 84, 85, 88, 89, 92, 93, 130, 131, 134, 136, 142, 223, 233, 235, 238, 240, 242, 243, 252, 257, 258, 259, 266, 267, 268, 273, 275, 279, 281, 285, 294, 296, 322, 324, 325, 326, 340, 344, 351, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 382, 383, 384, 390, 395, 396, 400, 415, 421, 422, 426, 427, 429, 435, 441, 442, 451, 452, 453, 467, 473, 489, 490, 491, 494, 496, 497, 499, 500, 510, 518, 519, 520, 550, 564, 601, 616, 619, 621, 623, 624, 626, 628, 630, 631, 634, 635, 649, 654, 658, 659, 663, 665, 667, 669, 670, 671, 674, 675, 678, 680, 686, 688, 689, 691, 697, 701, 709, 716, 725, 726, 727, 728, 733, 734, 749, 751, 753, 754, 755, 763, 778, 782, 793, 799, 800, 802, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 846, 848, 853, 862], "The": [0, 3, 5, 6, 7, 8, 9, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 39, 40, 42, 43, 44, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 128, 129, 131, 133, 136, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163, 165, 167, 168, 169, 172, 173, 175, 176, 178, 179, 180, 181, 187, 188, 189, 190, 191, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 341, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 419, 420, 421, 422, 424, 426, 436, 437, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 460, 462, 463, 464, 465, 469, 472, 473, 478, 479, 481, 482, 483, 484, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 501, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 559, 561, 564, 565, 568, 570, 571, 574, 577, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 690, 691, 692, 693, 694, 695, 696, 697, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 766, 771, 775, 776, 778, 779, 781, 782, 783, 788, 792, 793, 799, 800, 801, 802, 804, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 827, 829, 830, 832, 833, 834, 837, 838, 839, 841, 842, 843, 844, 846, 848, 849, 850, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862], "h2": [0, 1, 12, 14, 25], "tag": [0, 1, 12, 14, 25, 805, 806], "section": [0, 1, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 32, 33, 46, 52, 63, 75, 107, 368, 371, 401, 412, 459, 468, 487, 632, 736, 737, 738, 739, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 833, 837, 838, 850, 851, 858, 861], "h3": [0, 1, 12, 14, 25], "subsect": [0, 1, 12, 14, 25, 804, 805, 806, 808, 813], "step": [0, 1, 12, 13, 14, 25, 26, 27, 38, 40, 41, 42, 52, 54, 71, 75, 77, 121, 132, 368, 371, 413, 415, 467, 602, 603, 606, 608, 609, 610, 616, 622, 627, 702, 703, 704, 783, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 819, 824, 826, 829, 834, 837, 838, 839, 846, 855], "explan": [0, 1, 12, 14, 25, 804, 805, 806, 812, 817, 821, 826, 830, 836], "go": [0, 4, 11, 13, 17, 24, 27, 32, 47, 52, 75, 79, 368, 410, 414, 628, 716, 717, 799, 800, 802, 804, 805, 806, 807, 810, 811, 814, 816, 819, 820, 826, 827, 829, 830, 833, 837, 840, 851, 855, 856, 860, 862], "default": [0, 3, 5, 26, 27, 40, 41, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 173, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 191, 192, 194, 195, 199, 202, 203, 204, 206, 207, 208, 209, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 383, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 560, 561, 564, 565, 568, 569, 574, 578, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 792, 793, 804, 805, 806, 810, 811, 814, 815, 816, 817, 818, 821, 822, 826, 829, 832, 834, 838, 842, 848, 855], "which": [0, 3, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 95, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 148, 150, 152, 158, 160, 163, 165, 168, 175, 187, 192, 196, 201, 203, 206, 207, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 316, 319, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 339, 341, 343, 344, 345, 346, 348, 349, 350, 352, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 410, 411, 412, 414, 419, 422, 432, 435, 436, 437, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 478, 479, 480, 481, 482, 483, 489, 491, 492, 493, 495, 496, 497, 498, 499, 500, 502, 503, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 557, 562, 563, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 680, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 710, 711, 712, 713, 718, 720, 721, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 775, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 795, 799, 801, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 836, 837, 838, 839, 840, 841, 842, 844, 845, 846, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "text": [0, 4, 7, 9, 40, 52, 53, 369, 434, 804, 806, 811, 816, 817], "paragraph": [0, 1, 12, 14, 25, 811], "p": [0, 1, 12, 14, 25, 38, 52, 53, 57, 75, 76, 80, 93, 134, 239, 369, 374, 418, 495, 528, 529, 616, 619, 621, 624, 628, 665, 681, 713, 779, 799, 805, 806, 807], "without": [0, 3, 9, 29, 38, 42, 45, 63, 69, 95, 574, 588, 621, 626, 628, 632, 693, 706, 736, 737, 738, 739, 763, 766, 792, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 821, 822, 826, 829, 830, 832, 836, 837, 838, 840, 848, 852, 855, 856, 857, 861], "path": [0, 7, 8, 9, 21, 22, 23, 24, 41, 42, 760, 771, 787, 805, 811, 825, 826, 827, 841, 855], "correspond": [0, 3, 6, 8, 13, 26, 27, 41, 49, 51, 52, 53, 56, 59, 62, 63, 65, 69, 72, 74, 75, 79, 82, 88, 92, 95, 98, 148, 160, 163, 223, 273, 287, 325, 338, 339, 362, 365, 368, 369, 371, 374, 380, 390, 396, 407, 412, 418, 421, 422, 423, 440, 464, 465, 489, 490, 491, 494, 511, 512, 579, 601, 617, 619, 621, 623, 624, 626, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 654, 658, 659, 665, 672, 673, 693, 694, 725, 731, 732, 736, 737, 738, 739, 744, 745, 750, 751, 752, 753, 760, 763, 765, 792, 799, 804, 806, 809, 810, 812, 813, 814, 816, 817, 818, 821, 822, 824, 826, 829, 832, 834, 848, 849, 850, 855], "toctre": [0, 811], "index": [0, 40, 41, 42, 45, 48, 52, 53, 59, 62, 63, 64, 69, 71, 75, 76, 82, 85, 86, 87, 127, 134, 204, 307, 314, 315, 324, 325, 326, 362, 368, 369, 371, 376, 378, 380, 390, 396, 427, 429, 434, 456, 463, 466, 474, 476, 478, 481, 482, 485, 501, 502, 511, 520, 523, 541, 543, 564, 565, 569, 614, 616, 618, 621, 626, 628, 631, 632, 633, 693, 697, 707, 708, 709, 712, 713, 714, 720, 722, 731, 732, 734, 736, 737, 738, 740, 742, 764, 779, 793, 795, 812, 813, 818, 822, 823, 824, 825, 827, 829, 836, 855], "rst": [0, 822], "left": [0, 19, 29, 40, 41, 52, 57, 62, 64, 75, 80, 85, 87, 115, 116, 227, 242, 334, 349, 356, 365, 366, 368, 369, 371, 380, 402, 421, 426, 430, 437, 439, 464, 474, 515, 516, 517, 518, 519, 520, 533, 615, 619, 621, 624, 631, 633, 658, 659, 665, 674, 679, 731, 742, 763, 805, 806, 808, 811, 813, 814, 816, 819], "mai": [0, 50, 51, 52, 57, 63, 64, 73, 74, 80, 87, 97, 98, 121, 128, 139, 209, 235, 236, 242, 247, 255, 263, 264, 268, 269, 271, 286, 329, 330, 365, 396, 532, 568, 616, 618, 619, 621, 624, 632, 633, 634, 672, 681, 736, 737, 738, 739, 740, 743, 747, 748, 749, 751, 763, 793, 803, 804, 805, 806, 808, 812, 813, 814, 818, 819, 822, 823, 824, 826, 827, 829, 832, 835, 836, 838, 846, 862], "need": [0, 3, 6, 8, 15, 17, 23, 24, 26, 27, 40, 41, 42, 52, 53, 59, 75, 76, 82, 368, 369, 380, 390, 395, 396, 400, 421, 517, 528, 529, 550, 621, 623, 624, 626, 628, 649, 658, 686, 689, 716, 764, 799, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 836, 837, 840, 841, 846, 848, 849, 851, 855, 856, 857, 861], "add": [0, 19, 29, 42, 44, 51, 52, 60, 67, 69, 74, 75, 83, 90, 97, 98, 356, 366, 368, 370, 371, 410, 446, 478, 560, 588, 619, 621, 623, 624, 629, 634, 649, 678, 724, 752, 760, 771, 779, 782, 799, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 819, 820, 821, 822, 823, 825, 826, 829, 830, 832, 834, 836, 840, 841, 851, 853, 855], "grid": [0, 42, 48, 134, 310, 362, 616, 816, 829], "item": [0, 4, 26, 27, 38, 40, 42, 47, 53, 67, 69, 71, 74, 75, 76, 129, 154, 191, 245, 261, 269, 335, 338, 351, 530, 540, 541, 545, 579, 580, 616, 617, 618, 621, 628, 635, 710, 711, 712, 713, 717, 722, 723, 757, 799, 804, 812, 814, 834, 836, 837, 839, 848], "card": [0, 52, 75, 353, 365, 860], "refer": [0, 5, 52, 59, 65, 66, 75, 77, 82, 88, 89, 127, 142, 240, 258, 307, 322, 351, 362, 365, 368, 369, 371, 396, 401, 412, 419, 441, 463, 602, 603, 616, 619, 622, 624, 626, 634, 635, 654, 656, 680, 693, 751, 753, 754, 755, 779, 799, 803, 804, 805, 806, 808, 809, 811, 813, 814, 821, 822, 823, 824, 825, 826, 827, 828, 829, 840, 841, 842, 855], "also": [0, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21, 22, 24, 26, 27, 29, 31, 32, 33, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 163, 166, 167, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 371, 378, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 715, 716, 717, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 788, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 841, 844, 845, 848, 849, 851, 852, 853, 854, 855, 856, 858, 860, 861, 862], "look": [0, 5, 17, 26, 27, 40, 42, 45, 799, 802, 804, 805, 806, 810, 811, 812, 814, 815, 816, 818, 819, 820, 821, 822, 826, 827, 829, 830, 831, 832, 834, 836, 838, 839, 841, 844, 848, 851, 855], "document": [0, 17, 26, 59, 242, 329, 330, 365, 601, 619, 621, 697, 800, 801, 803, 806, 811, 813, 814, 816, 825, 826, 827, 829, 837, 839], "sphinx": [0, 801, 811], "design": [0, 9, 17, 26, 75, 242, 306, 311, 312, 362, 619, 799, 807, 811, 813, 814, 825, 826, 827, 828, 832, 834, 836, 840, 844, 845, 851, 853, 855, 858, 859, 860], "websit": [0, 44, 805, 808, 845], "alreadi": [1, 8, 18, 21, 22, 23, 24, 26, 27, 32, 40, 42, 45, 52, 57, 69, 75, 80, 231, 241, 268, 278, 288, 371, 380, 452, 453, 473, 508, 517, 619, 624, 661, 669, 792, 793, 799, 804, 805, 806, 810, 812, 814, 815, 821, 825, 826, 832, 840, 841, 855, 857, 862], "instal": [1, 5, 6, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 40, 42, 43, 44, 45, 801, 805, 806, 810, 811, 819, 820], "skip": [1, 4, 42, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 369, 371, 391, 392, 393, 411, 427, 429, 434, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 474, 477, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 764, 792, 811, 822, 829], "colab": [1, 4, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 40, 42, 44, 45], "manual": [1, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 628, 705, 715, 716, 804, 805, 806, 814, 820, 829, 838, 841], "do": [1, 3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 38, 40, 42, 52, 53, 69, 75, 76, 235, 268, 277, 368, 370, 371, 380, 413, 446, 458, 517, 520, 550, 619, 621, 628, 705, 712, 715, 716, 717, 722, 765, 793, 799, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 834, 836, 837, 838, 839, 840, 842, 846, 856, 861, 862], "run": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 40, 42, 43, 44, 52, 54, 75, 77, 374, 489, 491, 602, 603, 608, 622, 627, 702, 703, 704, 760, 761, 779, 780, 781, 782, 792, 799, 801, 804, 805, 807, 809, 810, 813, 815, 816, 818, 820, 821, 823, 826, 827, 834, 835, 836, 837, 838, 839, 840, 841, 848, 849, 850, 853, 855, 856, 857, 858, 860, 861, 862], "below": [1, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 38, 41, 42, 43, 48, 52, 57, 75, 80, 88, 140, 141, 142, 242, 252, 275, 322, 323, 332, 362, 365, 371, 481, 616, 619, 624, 657, 678, 753, 800, 802, 804, 805, 807, 808, 812, 813, 814, 815, 816, 818, 819, 822, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 848, 849, 850, 851, 853, 858, 860], "mind": [1, 11, 13, 17, 23, 26, 30, 804, 805, 809, 812, 829, 841, 849], "packag": [1, 3, 5, 7, 8, 11, 21, 22, 23, 24, 27, 40, 41, 42, 45, 791, 799, 802, 805, 813, 826, 840, 841, 855, 857], "avail": [1, 3, 5, 7, 21, 22, 24, 26, 27, 42, 53, 76, 191, 197, 199, 200, 211, 534, 618, 621, 624, 675, 764, 799, 805, 806, 812, 813, 814, 815, 817, 818, 826, 829, 832, 840, 841, 844, 848, 849, 850, 860, 861], "click": [1, 3, 42, 804, 805, 806, 813, 817, 819, 820, 835], "runtim": [1, 3, 4, 5, 6, 7, 8, 19, 26, 29, 40, 41, 807, 822, 829, 832, 855], "restart": [1, 3, 4, 5, 7, 40, 41, 805, 819], "pip": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 44, 45, 802, 805, 811, 820], "q": [1, 3, 4, 5, 6, 7, 8, 9, 40, 41, 42, 52, 56, 57, 75, 79, 80, 355, 365, 369, 380, 421, 520, 623, 624, 628, 649, 652, 658, 659, 671, 713, 805, 806, 807, 827, 840], "git": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 799, 801, 803, 805, 806, 808, 811, 813, 819, 820, 829, 841], "clone": [1, 3, 5, 7, 26, 40, 42, 43, 799, 801, 806, 819, 841], "http": [1, 3, 4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 801, 805, 806, 808, 811, 813, 814, 817, 819, 841, 849], "github": [1, 3, 4, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 803, 806, 808, 811, 813, 814, 816, 817, 819, 820, 828, 829, 841, 844], "com": [1, 3, 4, 5, 7, 13, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 808, 811, 813, 814, 819, 841], "unifyai": [1, 3, 5, 7, 26, 40, 41, 42, 43, 44, 799, 801, 805, 806, 811, 819, 841], "model": [1, 2, 3, 9, 10, 15, 16, 17, 43, 45, 235, 268, 370, 442, 619, 776, 780, 781, 799, 837, 838, 842, 848, 849, 853, 854, 855, 856, 857, 858, 859, 861, 862], "depth": [1, 3, 5, 7, 41, 48, 52, 56, 71, 75, 79, 136, 368, 371, 403, 460, 533, 545, 616, 621, 623, 641, 642, 806, 813, 837, 838, 839, 841], "1": [1, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 142, 144, 147, 148, 149, 150, 154, 158, 159, 160, 163, 168, 170, 175, 191, 192, 196, 200, 201, 203, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 316, 319, 320, 322, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 435, 436, 438, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 586, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 771, 775, 778, 779, 780, 781, 782, 783, 784, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 818, 819, 820, 821, 822, 824, 825, 826, 827, 829, 832, 833, 834, 836, 837, 838, 839, 840, 845, 846, 848, 849, 850], "from": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 85, 88, 89, 90, 92, 93, 95, 98, 121, 123, 126, 128, 129, 130, 131, 134, 135, 138, 142, 144, 150, 168, 174, 175, 191, 196, 201, 207, 208, 234, 242, 243, 270, 274, 275, 282, 286, 306, 307, 313, 316, 322, 324, 325, 326, 333, 336, 339, 340, 342, 343, 355, 359, 362, 365, 367, 368, 369, 370, 371, 375, 380, 391, 392, 393, 407, 412, 413, 430, 437, 442, 446, 456, 459, 468, 473, 479, 481, 482, 484, 486, 487, 496, 497, 498, 499, 500, 511, 512, 532, 540, 541, 543, 563, 574, 584, 601, 603, 604, 608, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 631, 632, 634, 635, 637, 645, 646, 654, 657, 674, 678, 679, 680, 687, 690, 693, 696, 702, 703, 704, 706, 717, 718, 719, 725, 726, 727, 728, 732, 735, 736, 738, 744, 745, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 783, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 842, 844, 845, 846, 847, 848, 849, 850, 851, 853, 854, 855, 856, 857, 859, 860, 861, 862], "repositori": [1, 3, 5, 7, 801, 804, 805, 806, 807, 808, 811, 819, 828, 846], "cd": [1, 3, 5, 7, 26, 43, 799, 801, 805, 806, 819, 841], "here": [1, 3, 9, 12, 14, 17, 22, 25, 26, 27, 38, 40, 41, 42, 43, 45, 75, 278, 448, 619, 799, 802, 803, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 819, 820, 821, 823, 824, 825, 826, 827, 829, 830, 834, 835, 836, 837, 838, 839, 840, 848, 849, 850, 855, 856], "normal": [1, 3, 7, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 52, 60, 61, 75, 83, 84, 92, 93, 352, 365, 368, 374, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 489, 490, 491, 492, 493, 494, 495, 510, 513, 626, 629, 630, 687, 697, 724, 725, 727, 778, 779, 782, 799, 804, 825, 826, 832, 837, 848, 850, 853], "resnet": [2, 8, 15, 26, 848, 849], "imag": [2, 3, 6, 8, 11, 15, 23, 26, 27, 40, 41, 42, 43, 44, 45, 51, 52, 56, 74, 75, 79, 97, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 278, 279, 281, 282, 286, 368, 386, 387, 403, 404, 405, 407, 533, 619, 621, 623, 636, 637, 638, 639, 640, 643, 644, 645, 779, 799, 805, 819, 832, 834, 835, 837, 839, 841, 848, 849, 855], "classif": [2, 3, 7, 9, 15, 40, 799, 855], "acceler": [2, 15, 799, 814, 826, 853, 857, 858, 859, 860], "pytorch": [2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 24, 26, 27, 38, 45, 278, 329, 330, 365, 619, 783, 799, 803, 804, 809, 814, 815, 818, 821, 822, 825, 826, 827, 832, 834, 839, 840, 842, 845, 846, 848, 849, 856, 858, 859, 861, 862], "jax": [2, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 38, 40, 44, 46, 51, 52, 53, 63, 68, 74, 75, 76, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 342, 360, 365, 380, 520, 550, 582, 601, 613, 619, 621, 632, 736, 737, 738, 739, 771, 775, 788, 799, 802, 803, 804, 805, 806, 808, 810, 814, 815, 818, 819, 821, 824, 825, 826, 827, 829, 830, 832, 834, 836, 839, 840, 845, 846, 848, 849, 850, 856, 858, 861, 862], "convert": [2, 5, 6, 8, 9, 11, 13, 15, 16, 18, 20, 23, 24, 26, 27, 28, 30, 32, 40, 43, 45, 47, 48, 51, 69, 70, 71, 74, 92, 122, 123, 135, 145, 146, 188, 189, 190, 191, 202, 210, 214, 234, 274, 371, 376, 451, 452, 453, 501, 566, 583, 585, 586, 587, 589, 616, 617, 618, 619, 621, 624, 628, 682, 706, 717, 718, 760, 788, 792, 799, 804, 809, 810, 823, 824, 826, 829, 831, 834, 840, 842, 846, 849, 853, 854, 861], "them": [2, 3, 6, 8, 11, 13, 15, 26, 27, 32, 369, 436, 527, 563, 621, 763, 779, 799, 801, 804, 806, 808, 809, 810, 811, 812, 813, 814, 818, 820, 823, 825, 826, 827, 829, 831, 834, 836, 837, 838, 840, 842, 843, 844, 845, 846, 847, 848, 849, 850, 852, 853, 855, 857, 861], "faster": [2, 3, 6, 8, 9, 15, 26, 27, 43, 45, 52, 57, 75, 80, 369, 439, 624, 674, 801, 803, 811, 842, 857, 860], "infer": [2, 6, 8, 9, 15, 19, 29, 31, 32, 41, 43, 45, 48, 52, 53, 56, 59, 71, 75, 76, 79, 82, 121, 123, 126, 130, 131, 135, 138, 144, 153, 154, 155, 156, 157, 306, 307, 368, 375, 403, 498, 544, 578, 616, 617, 621, 623, 626, 646, 693, 788, 789, 807, 810, 814, 815, 829, 834, 839, 849, 853, 854, 857, 859], "mmpretrain": [2, 15], "segment": [2, 15, 52, 75, 324, 325, 326, 362, 811, 816], "unet": [2, 15], "alexnet": [2, 15], "In": [2, 3, 4, 11, 13, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 45, 50, 52, 53, 59, 73, 75, 76, 82, 92, 93, 202, 209, 210, 214, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 371, 374, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 466, 468, 472, 478, 479, 487, 489, 491, 523, 543, 550, 568, 618, 619, 621, 624, 626, 630, 672, 689, 690, 691, 693, 695, 696, 698, 700, 728, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 839, 840, 844, 846, 848, 849, 850, 851, 853, 855, 856, 858, 861], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 39, 40, 43, 44, 45, 52, 57, 58, 59, 67, 75, 80, 81, 90, 92, 93, 113, 357, 367, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 483, 487, 533, 543, 582, 604, 605, 607, 612, 613, 621, 622, 624, 625, 626, 667, 683, 689, 690, 691, 693, 695, 696, 698, 700, 775, 781, 788, 793, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 851, 855, 856, 860, 861], "show": [2, 3, 4, 7, 15, 21, 26, 27, 28, 29, 31, 38, 40, 42, 43, 567, 576, 598, 621, 799, 804, 805, 806, 811, 813, 816, 820, 825, 826, 829, 831, 840, 848, 855], "how": [2, 3, 4, 5, 6, 8, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 38, 41, 44, 45, 46, 51, 52, 68, 74, 75, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 235, 268, 286, 290, 294, 295, 297, 360, 371, 456, 481, 482, 613, 619, 775, 778, 779, 780, 781, 799, 800, 801, 802, 803, 805, 806, 807, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 823, 824, 825, 826, 827, 830, 831, 832, 833, 835, 836, 837, 838, 839, 840, 844, 846, 851, 855], "written": [2, 3, 4, 15, 17, 26, 27, 40, 53, 371, 462, 805, 808, 809, 817, 820, 821, 825, 826, 830, 834, 836, 839, 840, 844, 849, 853, 855, 859, 861, 862], "xgboost": [2, 15], "video": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 800, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 841, 853], "tutori": [3, 5, 6, 7, 8, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 799, 806, 826, 841], "nativ": [3, 4, 8, 17, 21, 22, 23, 24, 26, 27, 47, 48, 49, 50, 53, 70, 73, 76, 97, 101, 135, 145, 146, 152, 153, 154, 155, 156, 157, 171, 174, 189, 190, 191, 192, 202, 210, 214, 550, 552, 556, 563, 568, 585, 616, 617, 618, 621, 760, 771, 776, 788, 799, 802, 804, 814, 815, 818, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 842, 848, 849, 850, 853, 862], "integr": [3, 4, 11, 13, 20, 27, 30, 49, 51, 52, 72, 74, 75, 147, 287, 348, 365, 380, 513, 617, 619, 799, 803, 805, 807, 823, 849, 853, 855, 857, 858, 859], "three": [3, 4, 15, 21, 31, 32, 42, 52, 134, 306, 362, 371, 453, 616, 805, 806, 812, 813, 814, 816, 826, 829, 832, 833, 834, 856, 861], "major": [3, 4, 631, 734, 814, 815, 827, 829, 840, 845, 852, 855], "ml": [3, 4, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 45, 799, 800, 803, 826, 833, 834, 835, 837, 838, 839, 843, 845, 846, 849, 851, 852, 853, 854, 855, 858, 860, 862], "framework": [3, 4, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 40, 42, 44, 47, 53, 165, 187, 197, 200, 211, 531, 547, 551, 582, 585, 617, 618, 621, 628, 707, 758, 760, 764, 771, 776, 783, 788, 789, 799, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 829, 830, 832, 833, 834, 836, 839, 840, 841, 842, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 856, 859], "sinc": [3, 5, 7, 23, 24, 26, 27, 40, 42, 52, 75, 93, 365, 799, 801, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 818, 825, 826, 840, 845, 855, 861], "want": [3, 5, 7, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 39, 40, 42, 52, 67, 75, 90, 235, 268, 371, 461, 619, 781, 799, 800, 801, 804, 805, 806, 811, 813, 815, 818, 820, 822, 823, 824, 825, 829, 832, 837, 838, 839, 840, 841, 845, 849], "after": [3, 4, 5, 6, 7, 8, 26, 27, 41, 52, 53, 54, 56, 60, 69, 75, 76, 77, 79, 83, 181, 282, 298, 302, 350, 360, 365, 368, 369, 371, 390, 391, 392, 393, 410, 414, 433, 462, 473, 550, 603, 606, 608, 609, 610, 617, 619, 621, 622, 623, 628, 629, 636, 637, 638, 639, 641, 643, 645, 646, 716, 724, 783, 788, 799, 804, 805, 806, 808, 810, 811, 813, 814, 816, 818, 821, 824, 827, 829, 833, 841, 848, 849, 855], "first": [3, 4, 5, 7, 11, 17, 19, 20, 21, 23, 26, 27, 29, 30, 31, 40, 43, 44, 45, 48, 51, 52, 57, 59, 61, 62, 63, 65, 71, 74, 75, 76, 80, 82, 84, 86, 88, 92, 93, 97, 98, 117, 118, 132, 133, 142, 173, 181, 191, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 285, 296, 306, 307, 322, 324, 325, 326, 328, 340, 342, 343, 344, 350, 354, 355, 360, 362, 365, 368, 369, 370, 371, 378, 380, 390, 420, 421, 422, 424, 428, 447, 457, 459, 463, 470, 473, 475, 476, 479, 486, 497, 499, 503, 511, 512, 513, 520, 525, 615, 616, 617, 618, 619, 621, 623, 624, 626, 627, 628, 631, 632, 633, 634, 649, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 693, 694, 697, 698, 702, 703, 704, 705, 706, 715, 716, 718, 730, 731, 732, 736, 737, 738, 741, 742, 744, 745, 760, 778, 779, 780, 781, 783, 788, 799, 801, 803, 804, 805, 806, 808, 809, 810, 811, 812, 815, 816, 820, 821, 822, 823, 825, 826, 829, 832, 834, 836, 837, 839, 841, 844, 845, 848, 849, 853, 855, 856, 860], "notebook": [3, 4, 5, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 41, 781, 799], "automat": [3, 5, 7, 24, 26, 27, 32, 799, 804, 805, 806, 807, 810, 811, 813, 814, 820, 822, 825, 829, 832, 833, 835, 838, 839, 841, 842, 846, 855, 858, 862], "sure": [3, 5, 6, 7, 8, 9, 26, 40, 804, 805, 806, 808, 813, 818, 819, 826, 827, 829, 832, 841], "gpu": [3, 4, 5, 6, 7, 8, 9, 40, 42, 44, 45, 191, 193, 194, 197, 200, 202, 204, 206, 207, 210, 212, 214, 618, 799, 805, 806, 813, 815, 836, 841, 853, 855, 858, 859, 860], "enabl": [3, 4, 5, 6, 7, 8, 9, 21, 22, 24, 41, 52, 57, 69, 80, 98, 368, 370, 390, 445, 568, 621, 624, 667, 781, 799, 805, 806, 809, 812, 814, 822, 823, 824, 825, 826, 829, 830, 833, 835, 837, 839, 840, 842, 845, 848, 853, 854, 855, 856, 857, 858, 861, 862], "dm": [3, 4, 5, 6, 8, 26, 27, 38, 40], "haiku": [3, 4, 5, 6, 8, 24, 26, 27, 38, 40, 44, 776, 799, 839, 846, 849, 855], "exit": [3, 5, 7, 26, 27, 815], "download": [3, 7, 11, 13, 26, 27, 41, 42, 45, 801, 805, 811, 829, 848, 849], "imagenet": [3, 13, 41, 43, 799], "class": [3, 5, 7, 9, 11, 13, 17, 26, 27, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 129, 138, 144, 160, 163, 176, 178, 179, 238, 275, 332, 353, 365, 379, 380, 387, 388, 421, 516, 517, 524, 533, 537, 550, 560, 582, 616, 617, 618, 619, 621, 623, 624, 625, 628, 629, 644, 648, 652, 658, 669, 673, 674, 676, 683, 699, 706, 717, 724, 739, 746, 750, 751, 760, 761, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 797, 799, 804, 810, 811, 812, 814, 815, 816, 817, 821, 823, 824, 827, 828, 829, 832, 834, 835, 837, 838, 839, 842, 848, 849, 853, 855, 856, 862], "preprocess": [3, 7, 9, 26, 27, 40, 43, 848], "wget": [3, 5, 7, 40, 41, 44, 805], "raw": [3, 5, 6, 7, 8, 23, 26, 27, 40, 43, 44, 69, 799, 817, 849, 856], "githubusercont": [3, 5, 7, 40, 44], "hub": [3, 5, 7, 40, 43, 45], "master": [3, 5, 7, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 43, 44, 813, 855], "imagenet_class": [3, 7], "txt": [3, 7, 41, 53, 805, 808, 811], "r": [3, 7, 40, 41, 52, 57, 69, 75, 80, 92, 93, 342, 357, 365, 367, 604, 622, 624, 626, 671, 700, 805, 806, 807, 824, 827], "f": [3, 4, 6, 7, 26, 27, 39, 40, 42, 52, 59, 75, 82, 296, 313, 360, 362, 371, 463, 484, 626, 628, 693, 708, 712, 713, 714, 717, 722, 723, 799, 800, 806, 807, 812, 813, 818, 830, 834, 836, 837, 846, 851], "categori": [3, 7, 804, 808, 809, 812, 814, 818, 826, 830, 833], "strip": [3, 7, 19, 29, 845], "readlin": [3, 7, 41], "cat": [3, 7, 41, 827, 832, 834, 839, 848, 849], "jpg": [3, 5, 6, 7, 8, 23, 26, 27, 42, 43, 799, 849], "filenam": [3, 5, 7, 26, 27, 40, 42, 45, 53, 781, 787, 837], "3": [3, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 131, 132, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 189, 191, 192, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 433, 436, 438, 441, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 484, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 564, 565, 578, 579, 580, 584, 587, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 766, 779, 792, 793, 799, 802, 804, 805, 808, 809, 810, 812, 813, 814, 816, 818, 819, 822, 824, 827, 829, 834, 836, 837, 838, 839, 848, 849, 862], "import": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 41, 43, 44, 45, 52, 63, 67, 71, 75, 90, 189, 190, 194, 204, 206, 292, 301, 380, 510, 545, 561, 618, 621, 627, 632, 703, 704, 739, 771, 788, 789, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 820, 823, 824, 825, 826, 827, 828, 829, 830, 834, 836, 837, 839, 840, 841, 845, 848, 849, 850, 851, 853, 855, 858, 859, 861], "torchvis": [3, 6, 7, 40, 846], "transform": [3, 4, 6, 7, 8, 23, 26, 27, 40, 41, 43, 52, 56, 75, 79, 368, 369, 389, 390, 395, 396, 399, 400, 401, 411, 412, 415, 430, 623, 647, 763, 766, 779, 799, 823, 829, 839, 842, 848, 849, 853, 855, 856, 857], "pil": [3, 5, 6, 7, 8, 23, 26, 27, 41, 42, 43, 799, 849], "numpi": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 42, 43, 44, 45, 51, 52, 53, 65, 74, 75, 76, 142, 171, 189, 219, 279, 292, 301, 322, 362, 380, 510, 517, 526, 550, 579, 582, 586, 616, 617, 618, 619, 621, 634, 746, 758, 760, 771, 788, 792, 793, 799, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 818, 819, 821, 825, 827, 829, 830, 832, 834, 836, 839, 841, 842, 844, 845, 848, 849, 850, 857, 862], "np": [3, 4, 5, 6, 8, 11, 13, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 45, 48, 51, 52, 74, 75, 76, 122, 123, 124, 135, 171, 248, 252, 292, 301, 368, 369, 395, 400, 416, 579, 616, 617, 619, 621, 628, 711, 760, 788, 792, 793, 799, 804, 809, 814, 815, 818, 821, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 842, 850], "warn": [3, 4, 5, 7, 8, 9, 21, 22, 23, 24, 40, 41, 42, 45, 796, 805, 806, 831, 848, 849, 850], "time": [3, 4, 6, 8, 24, 26, 27, 32, 40, 42, 43, 44, 52, 54, 57, 63, 75, 77, 86, 92, 93, 129, 335, 365, 368, 369, 371, 380, 396, 401, 413, 415, 434, 441, 473, 479, 510, 603, 608, 616, 622, 623, 624, 626, 627, 631, 632, 646, 648, 664, 699, 702, 703, 704, 731, 732, 736, 737, 779, 780, 781, 804, 805, 806, 808, 810, 812, 813, 814, 816, 819, 821, 822, 823, 825, 826, 829, 830, 834, 837, 839, 840, 841, 844, 845, 846, 848, 849, 853, 855, 856, 859, 860, 861], "filterwarn": [3, 4], "ignor": [3, 4, 39, 47, 48, 52, 69, 75, 134, 368, 369, 371, 380, 391, 392, 393, 422, 436, 475, 476, 480, 518, 616, 623, 624, 628, 649, 663, 716, 717, 783, 805, 811, 813, 816, 829, 840, 861], "compos": [3, 6, 7, 26, 27, 40, 52, 75, 368, 382, 383, 384, 805, 812, 826, 829, 848, 850, 855, 862], "resiz": [3, 5, 6, 7, 40, 41, 52, 75, 368, 403, 832], "256": [3, 5, 7, 51, 76, 278, 279, 580, 623, 638, 640, 763], "centercrop": [3, 7], "224": [3, 7, 11, 13, 26, 27, 40, 41, 43, 799, 849], "totensor": [3, 6, 7, 40], "mean": [3, 6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 38, 40, 41, 42, 52, 53, 56, 58, 59, 61, 65, 67, 69, 71, 75, 76, 79, 81, 82, 84, 88, 90, 92, 129, 208, 324, 334, 362, 365, 368, 369, 370, 371, 374, 375, 380, 396, 401, 419, 430, 442, 443, 444, 445, 446, 447, 448, 458, 463, 473, 489, 491, 497, 516, 517, 534, 604, 605, 607, 612, 616, 618, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 638, 640, 641, 642, 644, 645, 646, 656, 683, 684, 685, 693, 702, 703, 704, 711, 726, 727, 763, 765, 766, 778, 779, 782, 799, 805, 806, 807, 808, 810, 812, 814, 815, 816, 822, 824, 825, 826, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 849, 850, 852, 855], "0": [3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 136, 138, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 163, 164, 168, 170, 175, 188, 191, 193, 196, 201, 202, 203, 204, 206, 207, 208, 210, 212, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 227, 229, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 319, 320, 322, 323, 324, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 386, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 410, 411, 412, 414, 417, 418, 419, 421, 422, 423, 426, 427, 429, 430, 431, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 456, 458, 459, 460, 463, 464, 465, 466, 467, 468, 469, 470, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 527, 528, 529, 532, 533, 534, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 562, 564, 565, 569, 574, 578, 579, 580, 582, 584, 586, 587, 596, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 768, 775, 776, 778, 779, 780, 781, 782, 783, 784, 785, 788, 792, 793, 799, 802, 805, 806, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 824, 825, 826, 827, 829, 830, 834, 836, 837, 838, 839, 840, 848, 849], "485": [3, 7, 40], "456": [3, 7, 40, 829], "406": [3, 7, 40, 52, 75, 389, 528, 621], "std": [3, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 41, 56, 61, 65, 79, 84, 88, 375, 497, 623, 630, 634, 638, 640, 641, 642, 644, 645, 726, 727, 799, 816, 850], "229": [3, 7, 40, 274, 619], "225": [3, 7, 40, 42, 229, 619], "torch_img": [3, 5, 7], "unsqueez": [3, 5, 6, 7], "img": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 799, 837, 849], "4": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 112, 113, 121, 122, 123, 124, 127, 129, 131, 132, 133, 134, 135, 136, 138, 142, 144, 148, 149, 150, 158, 160, 163, 168, 170, 175, 192, 193, 201, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 253, 254, 255, 256, 257, 258, 259, 260, 261, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 314, 315, 322, 324, 329, 330, 332, 334, 335, 337, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 430, 436, 442, 443, 444, 445, 446, 447, 449, 451, 452, 453, 456, 457, 458, 459, 460, 463, 464, 465, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 494, 495, 498, 500, 501, 503, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 546, 548, 549, 550, 557, 564, 565, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 644, 645, 646, 647, 648, 652, 653, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 766, 778, 779, 783, 792, 793, 799, 802, 804, 805, 810, 811, 812, 813, 814, 816, 819, 824, 827, 829, 832, 834, 836, 837, 838, 839, 846, 848, 855, 861, 862], "ipython": [3, 5, 7, 21, 22, 23, 24, 26, 27, 45], "displai": [3, 5, 7, 23, 26, 27, 40, 41, 42, 44, 45, 805, 811, 813, 818, 829, 837], "end": [3, 5, 40, 41, 52, 75, 121, 223, 279, 346, 365, 368, 371, 415, 463, 473, 475, 476, 616, 619, 793, 799, 805, 806, 810, 813, 819, 825, 830, 832, 833, 840, 853, 858], "see": [3, 4, 6, 8, 9, 18, 19, 24, 26, 27, 28, 29, 33, 38, 39, 45, 46, 49, 51, 52, 57, 62, 63, 65, 66, 68, 74, 75, 80, 85, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 128, 132, 139, 142, 149, 168, 175, 218, 223, 225, 227, 228, 229, 230, 235, 236, 240, 242, 246, 247, 254, 255, 258, 260, 262, 264, 265, 268, 271, 273, 277, 284, 286, 289, 290, 294, 295, 297, 322, 329, 330, 360, 362, 365, 369, 370, 371, 418, 443, 481, 613, 616, 617, 619, 624, 631, 632, 634, 635, 654, 667, 670, 673, 680, 681, 732, 736, 737, 738, 739, 747, 748, 749, 750, 751, 752, 753, 754, 755, 775, 799, 800, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 819, 820, 821, 822, 826, 827, 829, 832, 834, 836, 837, 840, 844, 851], "5": [3, 4, 5, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 121, 122, 123, 129, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 148, 149, 150, 154, 158, 160, 168, 170, 175, 192, 201, 206, 209, 215, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 288, 289, 291, 292, 293, 295, 297, 298, 299, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 324, 327, 329, 330, 332, 334, 336, 339, 340, 341, 342, 343, 345, 346, 347, 348, 349, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 389, 391, 392, 394, 395, 396, 399, 400, 404, 405, 406, 409, 410, 411, 412, 414, 417, 420, 421, 423, 424, 426, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 467, 468, 469, 472, 473, 478, 479, 480, 481, 482, 483, 487, 488, 493, 494, 495, 498, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 517, 520, 526, 527, 528, 529, 532, 533, 534, 535, 537, 540, 541, 543, 546, 548, 549, 550, 564, 565, 569, 579, 580, 581, 582, 584, 588, 601, 602, 603, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 639, 641, 642, 643, 644, 645, 646, 647, 648, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 668, 669, 670, 671, 672, 674, 675, 676, 678, 679, 680, 683, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 779, 792, 793, 799, 804, 805, 806, 808, 810, 812, 813, 814, 816, 818, 819, 821, 824, 827, 829, 836, 837, 838, 849], "set_default_devic": [3, 4, 5, 6, 7, 8, 212, 618, 815], "set_soft_device_mod": [3, 9, 213, 618, 815], "true": [3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 20, 21, 23, 24, 26, 27, 31, 32, 33, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 158, 160, 161, 162, 163, 166, 167, 168, 169, 170, 171, 172, 175, 187, 191, 192, 194, 195, 199, 202, 203, 204, 205, 209, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 460, 461, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 779, 780, 781, 782, 783, 785, 788, 790, 792, 793, 797, 799, 802, 805, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "set_backend": [3, 4, 5, 7, 9, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 39, 41, 42, 43, 51, 53, 67, 74, 76, 162, 171, 189, 190, 204, 206, 211, 219, 526, 550, 617, 618, 621, 627, 703, 704, 788, 799, 808, 810, 814, 815, 822, 823, 824, 834, 836, 839, 848, 849, 850], "ivy_model": [3, 4, 5, 7, 43], "ivy_alexnet": 3, "order": [3, 20, 30, 32, 40, 43, 45, 48, 52, 53, 56, 57, 59, 63, 64, 69, 75, 79, 80, 82, 86, 87, 92, 97, 98, 122, 123, 134, 142, 223, 242, 285, 322, 342, 362, 365, 368, 369, 371, 374, 378, 413, 418, 421, 422, 423, 424, 425, 429, 433, 435, 438, 441, 463, 464, 465, 470, 471, 483, 489, 490, 491, 494, 503, 616, 619, 623, 624, 626, 627, 631, 632, 633, 637, 638, 639, 640, 641, 642, 645, 658, 659, 665, 674, 675, 679, 681, 690, 693, 702, 703, 734, 736, 737, 738, 739, 740, 742, 743, 760, 782, 784, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 826, 827, 828, 829, 830, 831, 832, 837, 839, 840, 844, 851, 854, 855, 856, 858, 861], "quick": [3, 15, 27, 806, 807, 827, 838], "call": [3, 6, 11, 13, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 40, 44, 52, 67, 72, 75, 90, 92, 98, 117, 167, 168, 208, 369, 380, 433, 517, 568, 574, 588, 604, 605, 607, 615, 618, 621, 622, 624, 628, 672, 705, 711, 715, 716, 760, 771, 779, 780, 781, 783, 788, 793, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 845, 848, 849, 850, 855, 856, 859], "trace_graph": [3, 4, 5, 7, 19, 20, 21, 22, 26, 27, 29, 30, 31, 32, 33, 34, 43, 781, 799, 834, 839, 847], "take": [3, 7, 17, 24, 26, 27, 32, 38, 40, 43, 52, 57, 59, 65, 75, 82, 92, 117, 118, 120, 136, 275, 282, 296, 360, 368, 369, 371, 387, 395, 400, 405, 415, 424, 436, 456, 463, 482, 511, 512, 615, 616, 619, 623, 624, 626, 627, 649, 664, 668, 693, 704, 744, 763, 771, 778, 779, 792, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 825, 826, 827, 829, 832, 834, 836, 838, 839, 840, 841, 846, 848, 849, 852, 853, 861], "moment": [3, 52, 54, 75, 77, 369, 425, 602, 603, 608, 622, 783, 804, 810, 840, 848, 849], "one": [3, 6, 8, 11, 13, 15, 16, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 44, 48, 52, 53, 56, 57, 59, 62, 63, 65, 69, 71, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 87, 88, 92, 121, 124, 134, 136, 137, 138, 148, 150, 208, 229, 235, 242, 243, 260, 266, 267, 268, 287, 296, 306, 309, 310, 328, 334, 337, 340, 341, 344, 345, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 389, 391, 395, 396, 399, 400, 403, 411, 416, 418, 427, 434, 447, 451, 452, 453, 457, 463, 464, 465, 470, 472, 477, 480, 489, 490, 491, 496, 501, 511, 512, 515, 516, 517, 518, 519, 520, 522, 560, 564, 565, 567, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 629, 631, 632, 634, 637, 638, 639, 640, 641, 642, 645, 661, 664, 665, 669, 671, 680, 681, 689, 690, 691, 694, 696, 700, 724, 731, 734, 736, 737, 738, 739, 744, 746, 763, 765, 782, 785, 788, 793, 796, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 831, 832, 833, 836, 837, 839, 840, 841, 842, 845, 846, 849, 855, 856, 858, 861], "cost": [3, 54, 77, 602, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 793, 814, 832, 853], "arg": [3, 5, 6, 7, 11, 13, 21, 22, 24, 26, 27, 31, 32, 33, 44, 47, 69, 91, 101, 117, 198, 208, 588, 615, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 785, 788, 792, 797, 799, 809, 814, 815, 818, 824, 825, 826, 832, 834, 838, 848, 849, 850], "asarrai": [3, 4, 5, 6, 7, 41, 48, 52, 53, 64, 71, 75, 76, 87, 122, 378, 502, 503, 533, 544, 548, 549, 579, 580, 616, 621, 623, 632, 633, 637, 737, 741, 818, 823, 826, 827], "cuda": [3, 4, 5, 6, 7, 8, 9, 17, 26, 41, 42, 45, 48, 52, 61, 71, 75, 84, 132, 133, 136, 188, 189, 190, 204, 206, 375, 496, 497, 499, 500, 616, 618, 624, 630, 675, 725, 726, 727, 728, 778, 779, 780, 781, 782, 783, 784, 799, 834, 840, 842, 860], "7": [3, 5, 6, 7, 8, 9, 11, 13, 18, 19, 21, 22, 23, 24, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 107, 108, 109, 110, 121, 122, 123, 132, 135, 136, 154, 160, 163, 193, 215, 218, 221, 225, 226, 228, 229, 230, 231, 233, 235, 236, 237, 238, 239, 241, 242, 245, 246, 247, 252, 253, 254, 255, 256, 257, 258, 259, 260, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 278, 279, 280, 282, 285, 286, 288, 289, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 312, 313, 324, 328, 332, 334, 335, 342, 343, 344, 346, 348, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 409, 410, 411, 412, 414, 417, 420, 431, 442, 443, 444, 445, 447, 448, 451, 452, 453, 457, 459, 463, 468, 469, 472, 473, 478, 479, 481, 482, 484, 487, 488, 498, 500, 501, 508, 511, 512, 514, 515, 520, 526, 528, 529, 533, 534, 537, 548, 549, 550, 557, 564, 565, 579, 582, 602, 603, 605, 606, 607, 608, 609, 610, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 642, 644, 645, 646, 647, 652, 654, 655, 656, 657, 659, 660, 661, 664, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 683, 684, 685, 686, 689, 690, 695, 697, 698, 700, 705, 706, 713, 717, 724, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 744, 745, 746, 748, 750, 752, 753, 763, 805, 806, 810, 812, 813, 816, 822, 825, 829], "output": [3, 4, 5, 7, 17, 23, 24, 26, 27, 39, 40, 41, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 174, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 357, 358, 359, 360, 362, 365, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 427, 428, 431, 432, 433, 434, 436, 437, 440, 442, 443, 444, 445, 446, 447, 448, 449, 456, 457, 458, 461, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 527, 528, 529, 533, 534, 535, 537, 541, 550, 557, 564, 565, 566, 589, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 778, 779, 792, 793, 799, 801, 805, 806, 807, 808, 809, 811, 812, 814, 815, 816, 817, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 834, 836, 838, 839, 840, 842, 848, 849, 856], "softmax": [3, 7, 11, 24, 26, 27, 42, 46, 56, 67, 68, 79, 370, 443, 613, 623, 649, 652, 775, 799], "pass": [3, 5, 6, 7, 8, 9, 11, 13, 17, 24, 26, 27, 33, 39, 40, 42, 44, 45, 51, 52, 67, 69, 74, 75, 90, 98, 117, 118, 120, 152, 174, 189, 208, 223, 269, 368, 370, 371, 374, 375, 380, 413, 443, 463, 489, 491, 496, 516, 517, 550, 615, 617, 618, 619, 621, 627, 702, 703, 758, 760, 764, 771, 776, 780, 781, 783, 784, 788, 792, 797, 799, 802, 804, 806, 808, 809, 810, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 840, 848, 849, 850, 853], "argsort": [3, 7, 64, 87, 633, 742, 826], "descend": [3, 7, 64, 87, 624, 633, 674, 675, 740, 743], "top": [3, 7, 10, 15, 24, 26, 27, 40, 41, 52, 59, 75, 313, 362, 371, 483, 533, 621, 687, 799, 805, 806, 814, 819, 826, 828, 829, 832, 837, 838, 855, 859], "logit": [3, 4, 5, 7, 40, 41, 42, 43, 52, 58, 75, 81, 360, 375, 496, 499, 625, 683, 685, 775, 799, 848], "gather": [3, 7, 40, 52, 53, 75, 76, 324, 325, 326, 362, 541, 543, 621, 862], "print": [3, 4, 6, 7, 9, 11, 13, 17, 18, 20, 24, 26, 27, 28, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 161, 162, 165, 167, 168, 170, 175, 187, 188, 192, 194, 195, 196, 197, 199, 200, 201, 202, 203, 206, 207, 209, 210, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 295, 297, 299, 300, 301, 303, 304, 305, 307, 314, 315, 322, 324, 328, 329, 330, 332, 346, 347, 352, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 394, 396, 399, 401, 404, 405, 406, 409, 411, 412, 417, 420, 422, 424, 425, 433, 440, 442, 443, 444, 445, 446, 447, 448, 454, 456, 458, 469, 473, 478, 479, 481, 482, 483, 488, 492, 493, 495, 510, 511, 512, 513, 520, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 560, 561, 563, 564, 565, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 792, 793, 797, 799, 805, 806, 812, 814, 816, 827, 829, 831, 834, 836, 837, 838, 848, 850], "indic": [3, 7, 48, 52, 53, 56, 57, 59, 60, 62, 63, 64, 69, 71, 72, 75, 76, 79, 80, 82, 83, 85, 86, 87, 92, 95, 122, 123, 136, 140, 142, 163, 167, 168, 279, 322, 323, 324, 342, 362, 365, 368, 369, 370, 371, 376, 378, 386, 387, 388, 390, 394, 395, 396, 400, 401, 404, 405, 406, 407, 411, 412, 422, 441, 443, 451, 452, 453, 456, 459, 461, 463, 464, 465, 468, 472, 478, 479, 481, 482, 483, 486, 487, 501, 502, 503, 525, 540, 541, 543, 564, 565, 569, 601, 604, 605, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 637, 639, 640, 641, 642, 645, 649, 667, 681, 689, 690, 691, 693, 694, 695, 696, 698, 700, 705, 708, 710, 712, 713, 714, 716, 720, 721, 722, 723, 724, 725, 731, 732, 733, 734, 736, 738, 740, 742, 743, 760, 761, 763, 765, 779, 785, 792, 793, 795, 805, 813, 821, 824, 826, 839, 848], "to_list": [3, 7, 53, 76, 621], "arrai": [3, 4, 7, 8, 9, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 164, 166, 167, 168, 170, 172, 173, 174, 175, 181, 191, 192, 196, 201, 203, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 547, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 562, 563, 564, 565, 566, 568, 569, 575, 576, 578, 579, 580, 581, 582, 584, 585, 586, 587, 588, 589, 597, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 711, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 765, 771, 778, 779, 780, 781, 784, 788, 792, 793, 795, 799, 802, 804, 805, 806, 807, 810, 811, 812, 814, 815, 816, 817, 818, 819, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 833, 834, 835, 837, 838, 839, 840, 842, 849, 850, 853, 854, 855, 857, 861, 862], "282": [3, 7], "281": [3, 7, 40, 42], "285": [3, 7, 75], "dev": [3, 6, 7, 8, 9, 19, 40, 42, 45, 50, 69, 73, 196, 203, 618, 805, 815, 819, 822, 836, 838], "64773697": 3, "29496649": 3, "04526037": 3, "39": [3, 4, 6, 7, 8, 9, 11, 13, 17, 21, 22, 23, 24, 38, 40, 41, 42, 43, 45, 46, 51, 52, 57, 61, 68, 74, 75, 77, 80, 84, 107, 221, 256, 258, 260, 290, 291, 293, 360, 368, 380, 387, 389, 406, 409, 511, 602, 613, 619, 622, 624, 634, 661, 669, 727, 746], "tiger": [3, 7], "tabbi": [3, 7], "egyptian": [3, 7], "check": [3, 4, 6, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 43, 45, 47, 49, 53, 57, 69, 72, 76, 80, 113, 151, 152, 161, 162, 165, 167, 168, 169, 172, 187, 194, 195, 202, 214, 526, 536, 538, 539, 546, 552, 553, 554, 555, 556, 572, 582, 594, 600, 613, 617, 618, 621, 624, 628, 659, 660, 667, 705, 715, 716, 717, 758, 765, 792, 793, 799, 801, 803, 804, 805, 806, 808, 812, 813, 815, 816, 818, 823, 825, 826, 827, 828, 829, 830, 831, 833, 834, 836, 837, 838, 841, 848], "confirm": [3, 41, 804], "same": [3, 4, 5, 6, 7, 8, 13, 19, 21, 22, 23, 24, 26, 29, 31, 33, 38, 39, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 88, 92, 93, 94, 95, 96, 97, 111, 121, 126, 131, 133, 134, 136, 138, 140, 141, 142, 144, 147, 148, 149, 160, 163, 208, 215, 216, 217, 218, 220, 222, 226, 228, 231, 235, 241, 242, 248, 268, 270, 272, 275, 277, 278, 279, 288, 295, 307, 321, 322, 323, 324, 325, 326, 329, 330, 332, 339, 355, 360, 362, 365, 368, 369, 370, 371, 374, 376, 378, 380, 386, 387, 388, 404, 405, 406, 407, 409, 410, 411, 412, 414, 421, 426, 427, 435, 436, 437, 438, 439, 441, 443, 446, 456, 458, 473, 481, 482, 489, 491, 501, 503, 508, 509, 510, 511, 512, 513, 514, 520, 557, 611, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 630, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 652, 653, 654, 655, 657, 658, 659, 660, 662, 664, 666, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 687, 690, 691, 693, 694, 696, 697, 702, 703, 718, 728, 736, 737, 738, 739, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 758, 763, 764, 765, 771, 779, 792, 799, 805, 806, 809, 810, 812, 813, 814, 815, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 844, 846, 848, 850, 852, 854, 861, 862], "8": [3, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 97, 98, 105, 120, 130, 131, 135, 138, 144, 153, 155, 156, 157, 160, 168, 193, 210, 218, 220, 221, 225, 226, 229, 230, 231, 233, 239, 242, 246, 247, 253, 254, 255, 259, 260, 263, 264, 266, 267, 268, 273, 274, 277, 278, 279, 282, 283, 286, 287, 288, 292, 297, 299, 300, 301, 303, 304, 306, 307, 324, 328, 339, 342, 344, 345, 346, 349, 356, 360, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 417, 420, 428, 442, 443, 444, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 468, 469, 478, 479, 482, 483, 484, 487, 488, 498, 500, 512, 515, 516, 520, 526, 527, 529, 533, 534, 537, 540, 544, 548, 549, 550, 552, 553, 556, 559, 564, 565, 569, 579, 580, 581, 582, 602, 605, 607, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 637, 641, 642, 644, 645, 646, 647, 649, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 690, 697, 698, 700, 706, 713, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 766, 779, 805, 812, 813, 816, 829, 833, 837], "torch_alexnet": 3, "alexnet_weight": 3, "weight": [3, 9, 11, 13, 26, 27, 40, 41, 52, 54, 56, 58, 75, 77, 79, 81, 92, 93, 309, 313, 346, 362, 365, 368, 369, 380, 394, 427, 508, 510, 513, 602, 603, 606, 608, 609, 610, 622, 623, 625, 627, 647, 648, 649, 652, 683, 704, 765, 778, 779, 781, 783, 799, 812, 822, 829, 834, 838, 839, 854], "imagenet1k_v1": [3, 7], "dropout": [3, 56, 79, 368, 391, 392, 393, 623, 649, 652, 779, 837], "9": [3, 4, 5, 6, 7, 8, 9, 18, 19, 21, 22, 23, 24, 38, 40, 42, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 65, 68, 72, 74, 75, 76, 77, 79, 80, 82, 84, 86, 87, 88, 97, 98, 105, 121, 122, 123, 135, 153, 154, 155, 156, 157, 160, 163, 216, 218, 220, 221, 224, 225, 226, 229, 230, 235, 236, 237, 242, 249, 255, 256, 257, 259, 263, 264, 266, 267, 268, 271, 273, 274, 278, 279, 282, 283, 284, 289, 294, 297, 298, 299, 336, 338, 342, 348, 349, 356, 360, 365, 366, 368, 370, 371, 378, 380, 386, 387, 388, 389, 394, 395, 399, 400, 404, 405, 409, 410, 414, 428, 442, 444, 446, 447, 451, 452, 453, 459, 463, 468, 478, 479, 480, 481, 483, 487, 498, 500, 503, 512, 529, 533, 534, 535, 537, 540, 548, 549, 552, 553, 556, 564, 565, 579, 581, 602, 603, 604, 608, 609, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 633, 634, 637, 638, 639, 645, 646, 647, 654, 655, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 674, 675, 676, 678, 679, 680, 686, 690, 694, 695, 697, 698, 700, 705, 706, 711, 713, 716, 717, 725, 726, 727, 728, 730, 735, 736, 738, 740, 741, 743, 745, 746, 748, 750, 752, 753, 763, 783, 812, 814, 816, 824, 829, 837, 838, 851], "torch_output": [3, 5, 7], "dim": [3, 7, 42, 52, 69, 71, 75, 136, 307, 362, 368, 371, 385, 395, 396, 397, 400, 408, 463, 616, 623, 636, 643, 644, 648, 765, 779, 799, 814, 826, 827, 832], "torch_class": [3, 7], "torch_logit": [3, 7], "tensor": [3, 4, 6, 7, 8, 11, 13, 17, 18, 21, 22, 24, 26, 27, 28, 32, 38, 40, 48, 51, 52, 53, 56, 58, 59, 61, 69, 71, 74, 75, 76, 79, 80, 81, 82, 84, 91, 124, 132, 133, 136, 142, 158, 174, 266, 267, 296, 313, 317, 318, 319, 320, 321, 322, 331, 353, 360, 362, 365, 368, 369, 370, 371, 380, 381, 386, 387, 390, 394, 403, 404, 405, 406, 413, 415, 417, 424, 425, 426, 427, 430, 432, 434, 435, 438, 440, 441, 443, 446, 447, 463, 466, 471, 474, 475, 476, 477, 480, 485, 516, 521, 564, 565, 616, 617, 619, 621, 623, 624, 625, 626, 630, 646, 648, 649, 663, 676, 683, 693, 695, 725, 779, 788, 793, 799, 809, 810, 814, 815, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 844, 848, 849, 850, 852, 853, 856, 858, 859, 862], "devic": [3, 5, 6, 7, 41, 42, 45, 48, 52, 61, 69, 71, 75, 84, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 212, 214, 306, 307, 322, 323, 362, 375, 461, 496, 497, 499, 500, 524, 538, 539, 616, 621, 630, 725, 726, 727, 728, 758, 760, 761, 776, 778, 779, 780, 781, 782, 783, 784, 785, 799, 806, 807, 810, 814, 818, 822, 823, 827, 829, 830, 832, 834, 839, 840, 841, 842, 845, 854, 855, 857, 858, 859, 860], "6477": 3, "2950": 3, "0453": 3, "grad_fn": [3, 7, 24, 38, 605, 612, 622, 837], "lt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 98], "takebackward0": [3, 7], "gt": [3, 7, 11, 13, 17, 21, 22, 23, 24, 38, 40, 42, 45, 98, 827, 834], "great": [3, 5, 799, 806, 829, 834, 836, 845, 846, 861], "With": [3, 19, 29, 38, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 143, 144, 147, 148, 149, 150, 152, 158, 159, 160, 163, 170, 175, 176, 177, 178, 179, 189, 192, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 329, 330, 332, 334, 337, 341, 344, 345, 346, 348, 349, 352, 360, 362, 365, 368, 369, 370, 371, 380, 389, 391, 392, 399, 411, 418, 419, 420, 422, 423, 424, 433, 436, 447, 463, 464, 465, 467, 470, 472, 473, 479, 481, 483, 486, 501, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 526, 527, 528, 529, 532, 533, 534, 535, 536, 540, 541, 544, 546, 548, 549, 550, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 602, 603, 604, 606, 607, 608, 609, 610, 611, 612, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 652, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 671, 672, 673, 674, 675, 676, 678, 679, 680, 683, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 814, 816, 826, 829, 832, 834, 845, 846, 848, 855, 858], "simpl": [3, 11, 15, 16, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 38, 40, 42, 45, 52, 75, 380, 510, 765, 779, 793, 799, 804, 805, 806, 809, 811, 812, 814, 815, 816, 817, 822, 825, 826, 829, 830, 832, 836, 838, 839, 840, 842, 844, 848, 849, 854, 855, 856, 857], "chang": [3, 4, 9, 17, 27, 40, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 95, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 619, 626, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 706, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 804, 805, 806, 808, 810, 811, 812, 813, 814, 816, 817, 819, 820, 826, 827, 828, 829, 830, 831, 832, 834, 838, 840, 841, 846, 848, 858, 861], "backend": [3, 8, 18, 19, 20, 21, 22, 23, 24, 27, 29, 30, 32, 47, 48, 52, 53, 57, 69, 75, 76, 80, 97, 124, 161, 162, 165, 187, 194, 195, 197, 200, 211, 329, 330, 365, 369, 420, 422, 517, 526, 538, 539, 547, 550, 551, 561, 568, 582, 585, 616, 617, 618, 621, 624, 674, 758, 760, 761, 763, 764, 765, 768, 770, 771, 776, 780, 781, 783, 787, 788, 799, 802, 803, 805, 806, 807, 808, 809, 813, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 829, 831, 832, 833, 835, 836, 839, 842, 844, 848, 849, 850, 855, 858, 861, 862], "let": [3, 4, 5, 6, 8, 9, 11, 13, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 43, 45, 53, 65, 76, 215, 216, 217, 218, 221, 224, 233, 236, 238, 240, 249, 250, 251, 256, 258, 271, 279, 281, 282, 286, 540, 541, 619, 621, 624, 634, 678, 748, 750, 751, 752, 753, 799, 804, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 846, 848, 849, 862], "u": [3, 6, 40, 42, 44, 45, 52, 57, 71, 75, 80, 92, 93, 133, 369, 430, 437, 439, 624, 628, 653, 659, 660, 674, 713, 799, 800, 805, 806, 807, 812, 813, 820, 823, 825, 826, 827, 828, 829, 830, 832, 838, 840, 845], "differ": [3, 4, 6, 8, 9, 11, 15, 16, 20, 21, 22, 26, 27, 30, 31, 32, 33, 51, 52, 53, 57, 65, 69, 75, 76, 88, 97, 98, 107, 110, 160, 218, 235, 242, 243, 268, 284, 328, 335, 339, 340, 344, 365, 368, 369, 371, 380, 401, 412, 435, 441, 457, 464, 465, 479, 511, 512, 520, 540, 541, 613, 617, 619, 621, 623, 624, 626, 634, 646, 647, 661, 672, 687, 697, 744, 745, 750, 752, 753, 758, 763, 771, 780, 781, 799, 802, 803, 804, 805, 806, 807, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 849, 850, 852, 853, 854, 855, 858, 861, 862], "ll": [3, 5, 6, 8, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 41, 799, 800, 802, 804, 805, 806, 811, 816, 819, 820, 824, 825, 837, 841, 846, 848, 849], "try": [3, 18, 28, 38, 41, 45, 69, 588, 621, 778, 788, 799, 804, 805, 806, 808, 809, 812, 813, 814, 818, 820, 825, 827, 834, 836, 840, 843, 845, 846, 850], "10": [3, 5, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 40, 42, 44, 45, 48, 51, 52, 53, 54, 56, 57, 61, 63, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 121, 131, 132, 133, 217, 225, 226, 229, 230, 233, 240, 245, 247, 253, 255, 257, 268, 274, 281, 282, 287, 295, 328, 329, 330, 333, 337, 339, 341, 342, 344, 345, 346, 348, 349, 353, 356, 365, 368, 371, 380, 386, 387, 388, 389, 399, 404, 405, 409, 410, 411, 412, 414, 453, 456, 459, 463, 468, 478, 479, 487, 508, 511, 512, 515, 517, 520, 533, 534, 535, 537, 540, 541, 543, 548, 549, 557, 565, 569, 574, 579, 581, 593, 596, 608, 616, 619, 621, 622, 623, 624, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 640, 646, 655, 657, 661, 662, 664, 665, 666, 669, 674, 675, 676, 678, 680, 690, 695, 696, 697, 698, 700, 711, 713, 716, 717, 724, 725, 726, 727, 728, 734, 736, 742, 744, 745, 746, 747, 749, 750, 752, 753, 763, 765, 783, 799, 802, 805, 808, 812, 813, 814, 816, 819, 824, 827, 829, 834, 836, 837, 845, 850, 860], "tf": [3, 5, 8, 11, 13, 18, 21, 22, 24, 26, 27, 28, 29, 31, 33, 38, 43, 44, 776, 799, 809, 814, 815, 821, 825, 826, 829, 830, 832, 834, 839, 840, 842, 848, 849, 850, 855], "onc": [3, 5, 26, 27, 38, 40, 57, 61, 80, 84, 208, 369, 421, 618, 624, 630, 658, 659, 660, 674, 725, 799, 804, 805, 806, 812, 813, 814, 815, 816, 819, 820, 825, 826, 829, 832, 834, 837, 840, 841, 846, 848], "set": [3, 11, 13, 19, 26, 27, 29, 32, 40, 41, 42, 43, 44, 47, 52, 53, 56, 57, 62, 64, 65, 69, 75, 76, 79, 80, 85, 87, 88, 110, 113, 120, 140, 142, 176, 177, 178, 179, 180, 191, 204, 205, 206, 207, 208, 223, 322, 334, 349, 351, 356, 362, 365, 366, 368, 369, 370, 371, 380, 390, 411, 415, 419, 423, 426, 446, 447, 463, 473, 476, 483, 510, 515, 516, 517, 518, 519, 520, 522, 526, 533, 545, 550, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 582, 590, 613, 615, 616, 617, 618, 619, 621, 623, 624, 628, 630, 631, 633, 634, 646, 652, 654, 665, 667, 670, 673, 674, 705, 712, 715, 716, 717, 722, 723, 729, 731, 732, 736, 738, 739, 740, 743, 751, 753, 760, 763, 764, 765, 766, 771, 778, 779, 781, 783, 788, 793, 796, 799, 800, 806, 807, 808, 809, 811, 812, 813, 814, 815, 816, 818, 820, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 837, 844, 847, 848, 849, 853, 854, 855, 856, 857, 859, 862], "our": [3, 6, 8, 9, 11, 13, 15, 18, 19, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 38, 40, 41, 44, 67, 90, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 765, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 801, 803, 804, 805, 806, 807, 808, 809, 811, 812, 813, 814, 816, 818, 819, 820, 823, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 844, 845, 848, 860, 861], "post": [3, 5, 40, 60, 83, 629, 724, 805, 819, 824, 839, 841], "process": [3, 5, 21, 26, 27, 31, 40, 202, 214, 618, 800, 805, 806, 811, 812, 813, 819, 820, 822, 824, 826, 827, 828, 829, 832, 834, 839, 845, 846, 848, 853, 854, 855, 858, 859, 861, 862], "11": [3, 5, 7, 8, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 53, 56, 57, 61, 65, 74, 75, 76, 79, 80, 82, 84, 88, 98, 218, 222, 225, 230, 240, 277, 278, 284, 346, 365, 368, 369, 371, 386, 387, 399, 404, 405, 409, 410, 414, 423, 456, 457, 459, 463, 468, 470, 487, 511, 512, 527, 533, 534, 540, 549, 565, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 634, 637, 638, 646, 647, 657, 660, 661, 662, 664, 665, 669, 673, 674, 675, 676, 678, 680, 683, 685, 690, 695, 696, 698, 700, 711, 713, 723, 726, 727, 728, 735, 736, 744, 745, 746, 753, 812, 813, 814, 816, 824], "st": [3, 4, 6, 763, 808, 827, 829], "perf_count": [3, 6], "raw_logit": 3, "latenc": [3, 6], "nn": [3, 5, 13, 24, 26, 27, 40, 44, 134, 616, 799, 822, 827, 832, 839, 849, 856], "axi": [3, 5, 9, 41, 42, 43, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 108, 112, 132, 133, 136, 208, 282, 287, 329, 330, 334, 335, 342, 349, 365, 368, 370, 371, 374, 378, 380, 389, 390, 396, 399, 401, 411, 412, 445, 450, 458, 459, 460, 463, 464, 465, 468, 473, 478, 479, 481, 482, 483, 486, 487, 492, 493, 495, 503, 508, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 601, 613, 616, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 633, 634, 635, 645, 654, 657, 665, 678, 680, 681, 683, 684, 685, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 730, 731, 732, 736, 738, 740, 741, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 780, 785, 812, 814, 816, 818, 821, 822, 825, 826, 829, 832, 834, 836, 839], "direct": [3, 52, 75, 335, 341, 345, 350, 354, 365, 368, 371, 401, 412, 464, 465, 479, 633, 743, 804, 809, 811, 826, 832, 838, 839, 851, 855, 856, 859], "tolist": 3, "652289830999962": 3, "shape": [3, 4, 5, 9, 11, 13, 19, 20, 21, 22, 26, 27, 32, 38, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 96, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 203, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 310, 311, 312, 313, 315, 317, 318, 319, 320, 321, 322, 323, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 353, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 412, 413, 416, 417, 418, 419, 421, 422, 423, 426, 427, 428, 429, 431, 432, 433, 434, 435, 436, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 453, 454, 456, 458, 461, 466, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 528, 529, 533, 534, 535, 537, 540, 541, 544, 550, 557, 564, 565, 575, 583, 585, 597, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 740, 741, 743, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 763, 765, 778, 779, 782, 792, 799, 806, 812, 814, 815, 816, 817, 818, 819, 821, 825, 826, 827, 829, 830, 831, 834, 836, 837, 838, 839, 848, 849], "dtype": [3, 5, 7, 9, 13, 19, 21, 22, 23, 24, 38, 41, 48, 49, 52, 53, 56, 57, 61, 62, 65, 69, 71, 72, 74, 75, 76, 79, 80, 84, 85, 88, 97, 100, 101, 102, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 182, 183, 184, 185, 186, 187, 203, 230, 269, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 327, 332, 334, 349, 362, 365, 368, 369, 370, 371, 375, 380, 389, 399, 411, 412, 415, 436, 446, 457, 481, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 520, 537, 538, 539, 541, 550, 559, 586, 616, 617, 618, 619, 621, 623, 624, 627, 630, 631, 633, 634, 635, 639, 646, 665, 681, 703, 704, 726, 727, 728, 731, 732, 733, 742, 743, 744, 745, 750, 752, 754, 755, 758, 760, 763, 765, 766, 778, 779, 780, 781, 782, 784, 799, 802, 808, 810, 814, 815, 816, 818, 819, 822, 823, 825, 826, 827, 829, 830, 834, 836, 849], "int32": [3, 38, 40, 49, 52, 53, 61, 62, 65, 72, 75, 76, 84, 85, 127, 132, 138, 144, 147, 150, 152, 154, 156, 158, 161, 163, 164, 168, 171, 175, 179, 183, 185, 203, 230, 376, 380, 501, 511, 512, 513, 541, 550, 586, 616, 617, 618, 619, 621, 630, 631, 634, 726, 727, 728, 732, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "6477362": 3, "29496726": 3, "04526032": 3, "float32": [3, 5, 7, 9, 11, 13, 18, 19, 38, 40, 41, 42, 48, 49, 53, 56, 71, 72, 75, 76, 79, 88, 133, 136, 138, 144, 145, 146, 150, 154, 155, 158, 159, 160, 161, 164, 167, 168, 170, 175, 178, 184, 248, 275, 327, 339, 362, 365, 368, 369, 380, 389, 399, 412, 436, 446, 513, 550, 586, 616, 617, 619, 621, 623, 624, 627, 639, 641, 642, 645, 672, 674, 675, 681, 703, 704, 760, 763, 764, 799, 814, 816, 827, 829, 830, 849, 850], "As": [3, 5, 6, 8, 9, 11, 13, 19, 23, 24, 26, 27, 29, 32, 38, 39, 63, 67, 90, 632, 736, 737, 738, 739, 799, 802, 804, 805, 806, 809, 811, 812, 813, 814, 815, 818, 819, 820, 821, 822, 825, 826, 827, 828, 829, 832, 836, 837, 838, 840, 844, 848, 849, 850, 855, 860], "expect": [3, 5, 6, 8, 19, 23, 26, 27, 29, 42, 43, 45, 52, 57, 58, 75, 81, 174, 242, 286, 368, 370, 390, 412, 446, 524, 617, 619, 621, 625, 669, 683, 778, 779, 799, 805, 806, 808, 814, 815, 818, 820, 823, 825, 827, 829, 832, 840, 841, 846, 848, 849, 850], "ident": [3, 9, 24, 41, 43, 57, 69, 127, 196, 543, 569, 616, 618, 621, 624, 628, 661, 666, 718, 779, 812, 822, 823, 826, 827, 830, 832, 836, 837, 840, 842, 844, 846], "had": [3, 812, 813, 825, 830, 834, 855, 856], "anoth": [3, 17, 19, 20, 23, 24, 26, 27, 29, 30, 42, 43, 128, 148, 150, 616, 617, 799, 804, 805, 806, 810, 812, 814, 815, 818, 820, 822, 825, 826, 829, 834, 836, 839, 842, 845, 847, 848, 849, 855, 861], "postprocess": 3, "routin": [3, 813, 825, 826, 832, 840, 855], "feed": [3, 208, 618, 848, 855, 856], "other": [3, 6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 49, 51, 52, 53, 59, 65, 69, 72, 74, 75, 76, 82, 88, 92, 97, 98, 121, 136, 148, 174, 235, 240, 242, 258, 267, 268, 331, 335, 365, 371, 457, 458, 466, 522, 523, 616, 617, 619, 621, 630, 634, 687, 697, 728, 751, 753, 765, 799, 802, 804, 805, 806, 808, 809, 812, 813, 816, 817, 818, 819, 820, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 841, 842, 845, 848, 849, 851, 853, 854, 855, 861, 862], "carefulli": [3, 273, 619, 778, 826, 853, 858], "rewrit": 3, "easili": [3, 23, 26, 27, 38, 799, 805, 809, 813, 819, 826, 832, 837, 838, 839, 840, 845, 855, 861, 862], "out": [3, 5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 41, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 158, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 417, 418, 419, 420, 421, 424, 425, 427, 428, 429, 431, 432, 433, 434, 436, 440, 442, 443, 444, 445, 447, 448, 454, 456, 457, 458, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 528, 529, 533, 534, 535, 537, 540, 541, 550, 560, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 771, 775, 776, 778, 779, 781, 782, 783, 784, 799, 800, 802, 803, 804, 805, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 822, 824, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 839, 841, 844, 845, 846, 848, 849, 855, 862], "quickest": 3, "particular": [3, 26, 27, 263, 619, 764, 805, 806, 808, 810, 813, 814, 816, 823, 825, 826, 829, 830, 851, 855, 861], "hardwar": [3, 40, 97, 101, 799, 805, 832, 845, 851, 853, 854, 855, 856, 857, 858, 859, 860, 861], "again": [3, 5, 20, 21, 29, 30, 31, 32, 624, 672, 806, 809, 810, 811, 812, 816, 818, 820, 825, 826, 829, 830, 832, 837, 839, 840, 845, 846, 860, 861], "speed": [3, 6, 8, 9, 26, 27, 40, 45, 53, 76, 557, 621, 829, 844, 858], "up": [3, 5, 6, 8, 9, 26, 52, 53, 75, 76, 368, 371, 390, 403, 457, 465, 545, 557, 621, 623, 646, 799, 800, 802, 804, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 840, 844, 845, 846, 848, 856, 861, 862], "12": [3, 5, 6, 7, 9, 17, 19, 21, 22, 23, 24, 38, 40, 41, 42, 49, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 83, 84, 88, 97, 98, 163, 218, 220, 225, 229, 230, 233, 235, 236, 237, 255, 268, 271, 278, 281, 288, 289, 311, 312, 342, 345, 346, 362, 365, 368, 371, 380, 386, 387, 388, 389, 391, 395, 396, 404, 405, 409, 410, 411, 412, 414, 456, 457, 459, 463, 468, 487, 500, 511, 517, 518, 519, 529, 533, 534, 565, 571, 579, 593, 619, 621, 623, 624, 626, 628, 629, 630, 631, 632, 634, 637, 641, 646, 647, 657, 659, 661, 665, 669, 673, 675, 676, 678, 680, 690, 694, 696, 698, 700, 717, 724, 726, 727, 728, 735, 736, 744, 745, 746, 750, 752, 763, 805, 810, 812, 814, 816, 824], "repeat": [3, 4, 20, 30, 52, 53, 59, 75, 76, 82, 368, 371, 380, 396, 401, 462, 510, 535, 621, 626, 627, 699, 703, 704, 792, 806, 809, 810, 816, 817, 825, 829], "previou": [3, 9, 19, 20, 21, 23, 29, 30, 31, 33, 54, 75, 77, 182, 183, 184, 185, 186, 357, 367, 368, 413, 589, 591, 592, 593, 594, 596, 597, 599, 603, 608, 617, 621, 622, 778, 796, 805, 806, 808, 810, 813, 815, 821, 826, 829, 832, 839, 840, 858], "trace": [3, 4, 5, 6, 7, 8, 15, 16, 20, 23, 26, 29, 31, 32, 44, 53, 57, 69, 76, 80, 552, 553, 556, 567, 576, 590, 598, 621, 624, 760, 771, 781, 783, 799, 808, 812, 814, 826, 831, 832, 834, 839, 840, 847, 848, 849, 856, 861], "befor": [3, 4, 5, 18, 19, 20, 21, 22, 28, 29, 30, 31, 32, 33, 40, 52, 56, 57, 59, 63, 65, 69, 75, 79, 80, 205, 208, 213, 368, 371, 380, 395, 400, 410, 414, 457, 464, 465, 466, 473, 511, 512, 618, 623, 624, 626, 627, 628, 632, 634, 636, 637, 638, 639, 641, 643, 645, 648, 649, 652, 664, 681, 687, 702, 703, 717, 736, 737, 738, 739, 744, 745, 750, 752, 779, 788, 792, 804, 805, 806, 808, 809, 811, 814, 815, 817, 818, 819, 820, 821, 823, 824, 825, 826, 827, 829, 834, 837, 840, 848, 849, 855], "13": [3, 5, 6, 7, 17, 21, 22, 23, 24, 38, 40, 42, 46, 51, 52, 56, 57, 61, 65, 74, 75, 76, 77, 79, 82, 84, 88, 97, 113, 163, 193, 218, 233, 242, 253, 273, 282, 342, 349, 356, 365, 368, 371, 388, 389, 399, 404, 410, 414, 456, 457, 459, 463, 468, 487, 500, 511, 512, 528, 529, 533, 534, 549, 571, 579, 602, 613, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 634, 637, 638, 646, 647, 657, 661, 669, 673, 675, 678, 700, 704, 717, 726, 727, 728, 735, 736, 744, 745, 746, 812, 814, 816, 826], "026875037000081647": 3, "14": [3, 5, 6, 7, 22, 38, 40, 41, 42, 49, 51, 52, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 147, 160, 163, 216, 221, 223, 230, 234, 260, 264, 268, 274, 281, 289, 338, 368, 369, 371, 380, 386, 387, 388, 389, 399, 406, 409, 410, 411, 414, 418, 424, 425, 457, 459, 463, 468, 487, 511, 579, 602, 617, 619, 621, 622, 623, 624, 626, 628, 632, 634, 637, 638, 640, 642, 644, 646, 657, 659, 661, 669, 676, 678, 680, 700, 717, 726, 727, 728, 736, 745, 746, 812, 816, 829], "overrid": [3, 5, 32, 41, 48, 52, 71, 75, 136, 380, 510, 616, 809, 811], "behavior": [3, 5, 52, 63, 235, 242, 268, 277, 381, 521, 568, 591, 619, 621, 632, 736, 737, 738, 739, 804, 811, 812, 813, 814, 825, 826, 827, 829, 832, 834, 840, 852], "prealloc": [3, 5], "75": [3, 5, 38, 51, 52, 74, 75, 76, 79, 84, 114, 132, 221, 223, 235, 237, 248, 309, 341, 342, 362, 365, 410, 520, 535, 548, 579, 613, 616, 619, 621, 624, 628, 630, 637, 662, 669, 713, 728], "memori": [3, 5, 8, 21, 22, 23, 24, 48, 52, 59, 71, 75, 82, 123, 134, 190, 202, 208, 210, 214, 371, 380, 451, 452, 459, 461, 463, 464, 465, 472, 487, 517, 563, 568, 591, 616, 618, 621, 623, 626, 648, 689, 690, 691, 693, 695, 696, 698, 700, 793, 813, 814, 815, 825, 826, 832, 834, 840, 848, 855, 857, 858, 859], "temporari": [3, 5, 577, 599, 621, 793, 814, 831], "fix": [3, 5, 42, 52, 75, 92, 93, 365, 368, 369, 413, 441, 623, 649, 799, 802, 805, 806, 808, 814, 820, 829, 830], "until": [3, 5, 793, 806, 825, 834, 840, 845, 848, 862], "handl": [3, 5, 38, 40, 46, 50, 51, 52, 68, 69, 73, 74, 75, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 188, 189, 190, 191, 192, 196, 201, 202, 210, 214, 220, 232, 257, 259, 273, 279, 280, 285, 286, 290, 294, 295, 297, 360, 371, 456, 482, 613, 618, 619, 624, 634, 678, 750, 752, 775, 783, 800, 807, 812, 813, 814, 820, 821, 822, 824, 825, 826, 827, 828, 829, 831, 832, 838, 852, 862], "o": [3, 5, 39, 40, 41, 42, 44, 560, 621, 623, 649, 799, 805, 807, 813, 834, 841], "environ": [3, 5, 8, 21, 22, 23, 24, 41, 44, 799, 800, 806, 841, 855, 857], "xla_python_client_alloc": [3, 5], "platform": [3, 5, 9, 21, 22, 24, 801, 803, 805, 811, 853, 857, 859], "jit": [3, 6, 8, 26, 29, 834, 840, 848, 855], "img_jax": [3, 5], "device_put": [3, 6], "15": [3, 5, 7, 8, 9, 22, 38, 40, 41, 42, 45, 51, 52, 53, 57, 61, 65, 71, 72, 74, 75, 76, 79, 80, 82, 84, 88, 98, 131, 160, 218, 225, 229, 235, 237, 246, 253, 254, 259, 260, 268, 277, 278, 279, 342, 356, 365, 366, 368, 369, 371, 380, 386, 387, 404, 406, 409, 410, 414, 420, 459, 463, 468, 487, 511, 529, 533, 534, 537, 548, 549, 574, 579, 596, 616, 617, 619, 621, 623, 624, 626, 628, 630, 631, 632, 634, 637, 647, 657, 660, 661, 662, 669, 675, 676, 694, 700, 705, 717, 726, 727, 734, 736, 744, 745, 746, 760, 805, 813, 816, 824, 858], "warm": 3, "_": [3, 6, 8, 9, 26, 39, 40, 51, 52, 69, 74, 75, 77, 93, 150, 238, 240, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 438, 441, 481, 510, 533, 602, 603, 617, 619, 621, 622, 624, 626, 628, 634, 672, 673, 675, 701, 712, 751, 806, 813, 814, 817, 825, 837], "rang": [3, 9, 26, 27, 38, 39, 40, 42, 48, 52, 65, 71, 75, 121, 132, 133, 282, 293, 301, 313, 360, 362, 369, 371, 380, 422, 432, 466, 474, 476, 481, 485, 511, 512, 513, 533, 601, 616, 619, 621, 632, 634, 736, 744, 745, 750, 752, 763, 765, 766, 778, 799, 804, 814, 818, 822, 829, 834, 837, 838, 839, 855, 861], "16": [3, 5, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 53, 56, 57, 61, 65, 72, 74, 75, 76, 79, 80, 82, 84, 97, 98, 163, 229, 258, 278, 285, 339, 342, 346, 365, 368, 371, 380, 386, 387, 389, 395, 399, 400, 404, 405, 410, 414, 446, 463, 511, 517, 534, 537, 559, 579, 580, 612, 617, 619, 621, 622, 623, 624, 626, 628, 630, 631, 634, 645, 647, 653, 657, 660, 661, 669, 671, 675, 700, 713, 726, 727, 728, 735, 745, 746, 763, 766, 799, 806, 814, 816, 837], "0022192720000475674": 3, "64773613": 3, "29496723": 3, "exact": [3, 52, 68, 69, 105, 368, 370, 403, 408, 445, 446, 632, 736, 738, 765, 775, 805, 806, 808, 816, 834], "note": [3, 5, 9, 22, 26, 27, 32, 41, 42, 43, 52, 53, 57, 59, 63, 75, 80, 82, 92, 129, 142, 174, 242, 277, 278, 285, 322, 323, 342, 362, 365, 368, 369, 371, 390, 421, 426, 434, 435, 441, 463, 481, 617, 619, 623, 624, 626, 632, 634, 649, 658, 659, 671, 672, 674, 693, 697, 737, 739, 748, 779, 793, 802, 804, 805, 806, 809, 814, 816, 817, 820, 825, 826, 827, 829, 830, 832], "were": [3, 5, 43, 69, 72, 163, 167, 168, 242, 619, 623, 649, 804, 805, 806, 814, 818, 820, 824, 825, 827, 829, 830, 832, 834, 848, 855, 856, 861], "function": [3, 9, 11, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 148, 149, 150, 160, 161, 162, 163, 166, 167, 168, 170, 174, 175, 192, 194, 195, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 377, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 413, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 563, 564, 565, 568, 569, 572, 574, 576, 579, 580, 581, 582, 584, 586, 587, 588, 594, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 707, 709, 711, 712, 713, 715, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 761, 763, 764, 765, 766, 771, 775, 778, 781, 788, 789, 795, 799, 802, 805, 806, 807, 808, 809, 810, 811, 813, 816, 817, 819, 825, 828, 833, 835, 836, 837, 838, 842, 844, 848, 850, 852, 853, 854, 855, 856, 861, 862], "calcul": [3, 9, 40, 51, 52, 53, 58, 65, 69, 74, 75, 76, 80, 81, 88, 98, 215, 216, 217, 218, 219, 220, 221, 222, 223, 232, 233, 235, 238, 239, 240, 256, 257, 258, 259, 260, 261, 266, 267, 268, 273, 280, 281, 282, 284, 285, 286, 292, 301, 329, 330, 342, 352, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 422, 446, 473, 489, 491, 517, 557, 619, 621, 624, 625, 634, 660, 669, 672, 683, 684, 685, 747, 748, 749, 750, 751, 752, 753, 763, 765, 778, 779, 782, 804, 817, 834, 845, 848], "dog": 3, "18": [3, 8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 61, 74, 75, 79, 80, 84, 88, 108, 230, 235, 277, 281, 290, 291, 342, 360, 365, 368, 371, 389, 395, 399, 400, 404, 410, 414, 463, 613, 619, 624, 630, 634, 641, 657, 664, 669, 676, 726, 727, 728, 745, 746, 750, 812, 814, 816], "19": [3, 8, 21, 22, 23, 24, 38, 40, 41, 42, 45, 51, 52, 61, 74, 75, 79, 80, 84, 221, 230, 258, 268, 285, 368, 369, 371, 380, 388, 389, 400, 404, 410, 414, 420, 425, 463, 511, 619, 624, 628, 630, 633, 657, 665, 678, 716, 726, 727, 728, 743, 816], "006431100999861883": 3, "258": [3, 623, 638, 640], "104": [3, 65, 624, 634, 669, 746], "259": 3, "72447652": 3, "13937832": 3, "05874982": 3, "samoi": 3, "wallabi": 3, "pomeranian": 3, "incorrect": [3, 813], "predict": [3, 5, 7, 9, 40, 41, 42, 43, 52, 58, 75, 81, 370, 442, 445, 448, 625, 683, 684, 685, 799, 814], "down": [3, 19, 29, 43, 52, 75, 368, 371, 403, 465, 805, 829, 842, 855, 861], "itself": [3, 21, 31, 51, 92, 269, 523, 588, 619, 621, 628, 717, 793, 802, 805, 806, 808, 811, 812, 813, 814, 815, 818, 819, 820, 825, 826, 838, 840, 844, 848, 854, 855, 856, 861], "version": [3, 9, 23, 24, 29, 40, 41, 42, 45, 46, 52, 75, 92, 105, 286, 334, 336, 365, 380, 515, 520, 601, 619, 621, 624, 659, 660, 760, 788, 789, 799, 805, 806, 811, 813, 814, 817, 825, 827, 834, 844, 845, 846, 849, 861, 862], "return": [3, 5, 6, 7, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 770, 771, 776, 778, 779, 781, 783, 788, 789, 792, 793, 794, 795, 796, 799, 805, 806, 809, 812, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 850, 856], "20": [3, 9, 13, 38, 40, 41, 42, 45, 51, 52, 53, 56, 61, 65, 74, 75, 76, 79, 80, 84, 88, 230, 234, 238, 274, 278, 282, 298, 342, 344, 346, 365, 368, 371, 386, 388, 404, 410, 414, 456, 478, 533, 540, 541, 543, 565, 569, 579, 619, 621, 624, 630, 631, 634, 637, 638, 648, 657, 662, 665, 669, 676, 726, 734, 735, 744, 745, 746, 750, 752, 799, 813, 832, 836], "004749261999904775": 3, "7245": 3, "1394": 3, "0587": 3, "promis": [3, 845], "sourc": [3, 7, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 33, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 767, 768, 769, 770, 771, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 804, 805, 806, 808, 809, 811, 812, 813, 826, 828, 844, 845, 846, 847, 849, 850, 854, 855, 856, 857, 858], "21": [3, 9, 38, 40, 42, 45, 51, 52, 53, 61, 71, 74, 75, 79, 80, 84, 88, 97, 133, 163, 218, 221, 223, 229, 253, 268, 298, 349, 368, 369, 371, 380, 386, 389, 399, 404, 410, 412, 414, 418, 456, 511, 565, 616, 617, 619, 621, 624, 625, 628, 634, 657, 669, 673, 685, 711, 726, 727, 744, 745, 746, 818, 824], "modul": [3, 5, 6, 8, 11, 13, 15, 16, 17, 21, 22, 23, 24, 26, 27, 28, 32, 38, 39, 40, 42, 43, 44, 67, 69, 90, 98, 361, 363, 364, 372, 373, 377, 561, 621, 635, 756, 760, 775, 776, 777, 779, 780, 782, 784, 787, 788, 799, 801, 805, 809, 810, 811, 818, 822, 825, 826, 828, 829, 834, 835, 837, 839, 840, 846, 848, 850, 855, 856, 858], "def": [3, 5, 6, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 44, 51, 74, 117, 219, 527, 545, 615, 621, 627, 628, 703, 704, 711, 792, 799, 802, 804, 805, 808, 809, 812, 814, 815, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "__init__": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 69, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 761, 768, 769, 770, 775, 778, 779, 780, 781, 782, 783, 784, 787, 788, 792, 794, 797, 799, 804, 809, 810, 814, 818, 826, 830, 834, 836, 837, 838, 839, 849], "self": [3, 5, 11, 13, 26, 27, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 623, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 783, 792, 799, 806, 809, 812, 818, 826, 827, 834, 836, 837, 838, 839, 849], "num_class": [3, 11, 13, 26, 27, 40, 42, 44, 799, 839, 849], "1000": [3, 6, 7, 11, 26, 27, 40, 41, 42, 43, 45, 48, 71, 133, 616, 799, 837, 849], "v": [3, 4, 5, 15, 16, 19, 26, 27, 29, 32, 33, 38, 41, 42, 52, 56, 64, 71, 75, 79, 87, 133, 233, 238, 240, 281, 369, 371, 422, 430, 437, 438, 462, 619, 623, 627, 633, 649, 652, 703, 704, 742, 760, 779, 780, 781, 782, 783, 784, 799, 801, 805, 806, 807, 811, 819, 834, 837, 838, 839], "none": [3, 5, 6, 8, 9, 26, 38, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 96, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 165, 166, 167, 168, 170, 172, 175, 187, 190, 191, 203, 204, 205, 206, 207, 208, 209, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 379, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 506, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 566, 567, 568, 570, 571, 572, 573, 575, 576, 577, 579, 580, 582, 584, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 709, 710, 711, 712, 716, 717, 718, 720, 721, 722, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 778, 779, 780, 781, 782, 783, 784, 787, 788, 791, 793, 799, 802, 805, 808, 809, 810, 812, 813, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 848, 849, 850], "_build": [3, 5, 780, 781, 799], "kwarg": [3, 4, 5, 8, 9, 26, 40, 44, 47, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 98, 101, 198, 371, 473, 560, 588, 616, 618, 621, 758, 760, 775, 776, 779, 780, 781, 788, 797, 799, 809, 814, 815, 818, 822, 825, 826, 832, 834, 838, 848, 849, 850], "featur": [3, 8, 9, 11, 13, 15, 17, 26, 27, 40, 44, 52, 75, 368, 382, 384, 391, 392, 393, 778, 779, 799, 804, 805, 806, 809, 810, 813, 814, 821, 830, 832, 837, 840, 849, 855, 856, 857, 861], "sequenti": [3, 5, 7, 24, 26, 27, 42, 799, 811, 812, 838, 849], "conv2d": [3, 5, 7, 24, 26, 27, 42, 45, 56, 79, 623, 640, 779, 799], "64": [3, 5, 7, 38, 40, 41, 42, 45, 51, 52, 56, 74, 75, 76, 79, 80, 84, 88, 98, 159, 229, 239, 273, 282, 283, 339, 365, 368, 389, 399, 533, 534, 580, 608, 617, 619, 621, 622, 623, 624, 628, 634, 638, 640, 642, 644, 645, 666, 669, 679, 713, 717, 727, 746, 750, 799, 805, 814, 837, 838, 860], "2": [3, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 21, 22, 23, 24, 26, 27, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 98, 105, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 142, 144, 147, 148, 149, 150, 154, 158, 160, 168, 170, 175, 191, 192, 193, 196, 199, 201, 203, 206, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 256, 258, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 310, 313, 314, 315, 322, 324, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 384, 386, 387, 388, 389, 390, 391, 392, 394, 395, 396, 399, 400, 401, 404, 405, 406, 409, 410, 411, 412, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 428, 431, 433, 436, 440, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 454, 456, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 478, 479, 480, 481, 482, 483, 486, 487, 488, 492, 493, 495, 498, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 560, 562, 564, 565, 569, 578, 579, 580, 581, 582, 584, 588, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 706, 708, 709, 711, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 766, 775, 778, 779, 788, 792, 793, 799, 802, 805, 806, 808, 810, 811, 812, 813, 814, 816, 818, 819, 821, 822, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 848, 849, 850, 861, 862], "data_format": [3, 42, 52, 56, 75, 79, 368, 374, 383, 386, 387, 388, 391, 392, 393, 404, 405, 406, 407, 409, 489, 490, 491, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 763, 779, 782, 799], "nchw": [3, 42, 52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779, 799], "relu": [3, 5, 7, 24, 26, 27, 38, 45, 46, 52, 67, 68, 75, 107, 296, 297, 305, 360, 613, 775, 799, 827, 837, 838], "maxpool2d": [3, 5, 7, 40, 779, 799], "192": [3, 42, 763, 792], "384": [3, 77, 602, 622, 628, 705], "avgpool": [3, 7], "adaptiveavgpool2d": [3, 7, 779], "6": [3, 6, 7, 8, 9, 11, 19, 21, 22, 23, 24, 26, 27, 38, 40, 41, 42, 45, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 62, 64, 65, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 93, 97, 98, 105, 107, 112, 117, 122, 123, 130, 131, 134, 135, 138, 144, 148, 149, 150, 158, 160, 168, 214, 215, 217, 218, 220, 221, 222, 223, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 245, 246, 247, 248, 250, 251, 252, 253, 254, 255, 258, 259, 260, 261, 263, 265, 266, 267, 268, 270, 271, 272, 274, 275, 277, 278, 279, 280, 282, 283, 284, 285, 286, 287, 289, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 306, 307, 313, 324, 329, 330, 332, 334, 342, 343, 345, 346, 347, 349, 356, 360, 362, 365, 366, 368, 369, 370, 371, 376, 378, 380, 389, 391, 394, 395, 399, 400, 404, 410, 411, 412, 414, 417, 420, 423, 424, 428, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 459, 463, 464, 468, 469, 472, 473, 478, 479, 481, 482, 487, 488, 498, 500, 501, 503, 508, 510, 511, 512, 513, 515, 517, 519, 520, 526, 528, 529, 532, 533, 534, 540, 541, 548, 549, 550, 565, 579, 580, 581, 582, 584, 588, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 654, 655, 656, 657, 659, 660, 661, 664, 665, 666, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 716, 717, 723, 724, 725, 726, 727, 728, 730, 731, 732, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 763, 778, 799, 802, 805, 808, 810, 812, 813, 814, 816, 819, 824, 829, 832, 834, 836, 837, 838], "classifi": [3, 9, 11, 13, 26, 27, 40, 42, 43, 799, 804, 848, 849], "prob": [3, 42, 52, 56, 75, 79, 84, 368, 375, 391, 392, 393, 496, 623, 630, 646, 725, 779, 799], "linear": [3, 7, 13, 25, 26, 27, 38, 39, 40, 42, 45, 52, 53, 56, 68, 75, 76, 79, 105, 107, 109, 110, 113, 290, 293, 297, 299, 300, 301, 305, 346, 360, 365, 368, 371, 380, 403, 436, 473, 520, 537, 560, 613, 621, 623, 628, 649, 673, 712, 763, 765, 766, 778, 779, 799, 812, 817, 822, 823, 825, 826, 829, 832, 834, 837, 838, 839, 849, 853, 854, 855, 858], "4096": 3, "_forward": [3, 5, 6, 8, 26, 27, 38, 39, 42, 799, 817, 834, 837, 838], "x": [3, 5, 9, 11, 13, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 38, 39, 40, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 163, 164, 167, 168, 170, 175, 191, 192, 196, 201, 202, 203, 207, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 269, 270, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 322, 323, 327, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 343, 344, 345, 346, 347, 348, 349, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 378, 379, 380, 381, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 414, 416, 418, 419, 421, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 444, 445, 446, 447, 448, 449, 450, 454, 455, 457, 458, 460, 461, 463, 466, 469, 470, 471, 472, 473, 474, 475, 476, 477, 480, 481, 483, 485, 486, 488, 489, 490, 491, 492, 493, 494, 495, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 584, 586, 587, 588, 600, 601, 603, 604, 605, 607, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 703, 704, 705, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 779, 782, 785, 788, 792, 797, 799, 802, 804, 807, 809, 810, 812, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 838, 839, 848, 849, 850], "reshap": [3, 26, 27, 42, 43, 52, 56, 57, 59, 69, 75, 79, 80, 82, 353, 365, 368, 369, 371, 386, 387, 388, 391, 404, 405, 406, 409, 418, 433, 457, 463, 601, 621, 623, 624, 626, 639, 641, 645, 665, 681, 799, 825, 826, 829, 832, 834, 836, 839], "bidirect": 4, "encod": [4, 11, 13, 26, 27, 40, 42, 53, 58, 76, 81, 537, 621, 625, 683, 799, 837, 845, 849], "mlm": 4, "support": [4, 8, 9, 17, 21, 22, 23, 24, 26, 29, 41, 50, 52, 53, 57, 73, 75, 76, 80, 142, 161, 165, 187, 194, 209, 218, 235, 242, 263, 264, 268, 278, 296, 322, 342, 360, 362, 365, 369, 371, 403, 421, 481, 526, 538, 547, 550, 551, 568, 582, 616, 617, 618, 619, 621, 623, 624, 647, 658, 659, 660, 663, 665, 674, 681, 758, 764, 771, 783, 788, 789, 792, 799, 801, 802, 804, 805, 806, 808, 809, 811, 815, 816, 817, 819, 821, 822, 824, 825, 827, 829, 830, 832, 833, 834, 836, 837, 839, 841, 842, 844, 845, 846, 849, 852, 854, 855, 858, 860, 861, 862], "googl": [4, 21, 22, 23, 24, 40, 41, 42, 44, 813, 845], "type": [4, 6, 11, 13, 17, 23, 26, 27, 32, 40, 41, 42, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 562, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 760, 763, 764, 765, 766, 770, 771, 775, 778, 779, 780, 781, 785, 788, 792, 793, 794, 797, 799, 804, 805, 806, 807, 808, 809, 812, 815, 816, 817, 818, 821, 823, 825, 827, 829, 830, 832, 834, 836, 837, 848, 849, 850, 855, 856, 859], "choos": [4, 40, 42, 50, 62, 63, 73, 209, 235, 242, 263, 264, 268, 329, 330, 365, 371, 618, 619, 631, 632, 634, 735, 736, 737, 738, 739, 747, 748, 749, 751, 763, 799, 804, 805, 806, 823, 829, 835, 839, 848], "librari": [4, 6, 8, 15, 16, 22, 24, 38, 40, 50, 63, 73, 209, 240, 242, 258, 263, 264, 286, 329, 330, 365, 618, 619, 624, 632, 634, 659, 660, 736, 737, 738, 739, 747, 748, 749, 751, 799, 804, 805, 808, 814, 839, 840, 844, 845, 846, 848, 851, 852, 853, 855, 859, 862], "pretrain": [4, 6, 11, 12, 13, 26, 27, 45, 799, 849], "save": [4, 7, 40, 52, 69, 75, 380, 517, 577, 599, 618, 621, 635, 781, 805, 813, 820, 829, 840, 846, 854], "some": [4, 5, 8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 31, 32, 38, 42, 43, 69, 77, 240, 242, 258, 368, 391, 392, 393, 602, 603, 606, 608, 609, 610, 618, 619, 622, 628, 716, 779, 799, 802, 804, 805, 806, 808, 809, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 836, 837, 838, 840, 841, 842, 845, 846, 848, 849, 851, 852, 854, 855, 856, 861, 862], "mohame54": 4, "automodel": [4, 8, 26], "autotoken": 4, "load": [4, 6, 8, 23, 26, 40, 41, 42, 43, 44, 45, 69, 369, 437, 635, 781, 799, 829, 840, 854, 861], "token": [4, 42], "bert_bas": 4, "from_pretrain": [4, 8, 26, 43, 848, 849], "base": [4, 9, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 100, 102, 133, 142, 174, 238, 239, 256, 257, 258, 259, 273, 313, 322, 324, 331, 334, 339, 346, 362, 365, 368, 369, 378, 410, 414, 437, 502, 570, 580, 592, 616, 617, 619, 621, 624, 626, 632, 634, 665, 689, 736, 737, 738, 739, 746, 761, 764, 765, 768, 769, 770, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 787, 788, 793, 794, 797, 799, 805, 806, 808, 812, 813, 814, 818, 821, 823, 824, 825, 827, 828, 829, 830, 831, 832, 834, 855, 860, 862], "uncas": 4, "eval": [4, 5, 7, 21, 22, 23, 24, 781], "evalu": [4, 51, 52, 69, 74, 75, 238, 240, 256, 257, 258, 259, 263, 270, 272, 279, 283, 316, 347, 358, 359, 362, 367, 369, 370, 371, 433, 446, 470, 612, 619, 622, 628, 635, 715, 716, 754, 755, 780, 781, 806, 812, 814, 822, 823, 855], "bert_token": 4, "sampl": [4, 6, 8, 11, 13, 23, 26, 27, 41, 48, 51, 52, 61, 65, 71, 74, 75, 84, 88, 132, 133, 287, 313, 362, 368, 370, 371, 375, 391, 392, 393, 403, 413, 415, 446, 476, 496, 497, 498, 499, 500, 616, 619, 630, 634, 725, 726, 727, 728, 751, 753, 779, 827, 829], "test": [4, 18, 19, 21, 22, 28, 29, 31, 32, 33, 41, 42, 51, 53, 66, 74, 76, 89, 120, 166, 170, 249, 250, 251, 252, 275, 368, 391, 392, 393, 557, 615, 617, 619, 621, 635, 754, 755, 758, 761, 764, 793, 799, 801, 802, 803, 807, 811, 814, 816, 818, 820, 823, 826, 828, 830, 840, 841, 846, 848, 849, 850, 855], "did": [4, 40, 804, 811, 839, 845, 861], "realli": [4, 38, 805, 812, 819, 840, 848, 860, 861], "like": [4, 6, 8, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 43, 45, 48, 51, 52, 59, 71, 74, 75, 79, 82, 87, 133, 151, 174, 219, 239, 245, 248, 261, 279, 335, 339, 351, 365, 368, 369, 370, 371, 378, 380, 410, 412, 421, 443, 452, 453, 462, 463, 502, 503, 520, 616, 617, 619, 624, 626, 630, 633, 658, 693, 728, 741, 793, 799, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 836, 837, 838, 839, 840, 845, 848, 849, 855, 860], "input": [4, 5, 8, 11, 13, 23, 24, 26, 31, 32, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 93, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 150, 151, 152, 153, 155, 156, 157, 158, 159, 160, 163, 166, 167, 168, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 189, 191, 192, 205, 208, 209, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 316, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 354, 355, 356, 357, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 424, 426, 427, 428, 431, 433, 434, 435, 436, 437, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 564, 565, 566, 572, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 589, 594, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 778, 779, 780, 781, 782, 792, 793, 808, 809, 810, 812, 814, 815, 816, 817, 822, 823, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 848, 849, 856, 859], "pad": [4, 7, 40, 42, 52, 56, 59, 75, 79, 82, 93, 95, 368, 371, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 537, 621, 623, 626, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 688, 701, 765, 779, 799], "longest": 4, "return_tensor": [4, 8, 26, 43, 848, 849], "pt": [4, 8, 26, 848], "max_length": [4, 69], "512": [4, 5, 7, 40, 42, 80, 623, 638, 679, 799], "input_id": 4, "101": [4, 9, 41, 623, 624, 628, 647, 662, 711], "1045": 4, "2106": 4, "1005": 4, "1056": 4, "2428": 4, "2066": 4, "2115": 4, "4309": 4, "1012": 4, "102": [4, 9, 52, 75, 84, 389, 726], "token_type_id": 4, "attention_mask": [4, 56, 79, 623, 649], "pooler": 4, "compar": [4, 6, 8, 26, 39, 43, 45, 52, 53, 63, 64, 65, 69, 75, 76, 87, 88, 328, 344, 365, 380, 518, 522, 525, 621, 632, 633, 634, 736, 737, 738, 739, 740, 743, 749, 760, 799, 810, 816, 818, 827, 829, 832, 837, 851, 853, 855, 861, 862], "no_grad": [4, 40, 848], "bert_output": 4, "pooler_output": 4, "ivy_bert": 4, "bert_base_uncas": 4, "ivy_input": 4, "k": [4, 6, 39, 42, 48, 52, 53, 56, 57, 61, 71, 74, 75, 79, 80, 84, 92, 93, 117, 127, 140, 141, 142, 262, 307, 322, 323, 362, 369, 371, 375, 378, 380, 419, 432, 436, 438, 440, 479, 483, 496, 497, 498, 499, 500, 503, 513, 525, 615, 616, 621, 623, 624, 628, 630, 631, 649, 652, 656, 664, 665, 671, 673, 674, 675, 678, 713, 726, 727, 728, 734, 799, 807, 808, 826, 827, 834, 848, 851, 855], "ivy_output": [4, 43], "logits_clos": 4, "allclos": [4, 6, 8, 11, 13, 26, 43, 45, 52, 75, 365], "detach": [4, 6, 8, 11, 13, 26, 824], "rtol": [4, 11, 13, 52, 57, 75, 80, 328, 344, 365, 624, 667, 670, 758, 760, 802, 819, 827], "005": [4, 7, 52, 75, 328, 344, 365, 442], "atol": [4, 6, 8, 26, 52, 57, 75, 80, 328, 344, 365, 624, 667, 758, 760, 802, 819, 827], "equal": [4, 48, 49, 51, 52, 53, 57, 58, 59, 61, 63, 64, 65, 69, 72, 74, 75, 76, 80, 81, 82, 84, 87, 93, 97, 98, 127, 129, 130, 131, 137, 138, 147, 227, 229, 233, 238, 240, 249, 250, 271, 273, 278, 281, 282, 286, 324, 325, 326, 328, 344, 362, 365, 368, 369, 371, 374, 380, 390, 411, 436, 459, 468, 481, 487, 492, 493, 495, 513, 522, 525, 601, 616, 617, 619, 621, 624, 625, 626, 630, 631, 632, 633, 634, 657, 666, 667, 670, 672, 678, 683, 686, 688, 693, 695, 701, 728, 734, 736, 737, 738, 739, 740, 743, 748, 750, 751, 752, 753, 771, 778, 779, 811, 812, 814, 816, 818, 827, 829], "els": [4, 5, 6, 9, 41, 42, 44, 45, 52, 53, 61, 74, 75, 84, 153, 154, 155, 156, 157, 169, 275, 279, 368, 369, 375, 413, 426, 435, 439, 441, 497, 532, 536, 617, 619, 621, 623, 628, 630, 648, 715, 718, 726, 727, 728, 758, 792, 793, 799, 804, 805, 806, 808, 810, 814, 815, 818, 822, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 856], "768": 4, "fn": [4, 43, 45, 52, 69, 72, 75, 101, 161, 162, 194, 195, 198, 371, 450, 523, 538, 539, 588, 617, 618, 621, 628, 711, 712, 713, 715, 716, 717, 758, 760, 785, 788, 794, 795, 797, 815, 818, 825, 826, 834, 848], "finish": [4, 15, 26, 27, 38, 41, 799, 800, 804, 805, 807], "2f": [4, 6], "sec": 4, "89": [4, 9, 38, 51, 61, 72, 74, 75, 84, 98, 163, 230, 617, 624, 634, 676, 727, 728, 752], "43": [4, 9, 38, 40, 42, 52, 75, 84, 98, 229, 368, 369, 380, 388, 420, 511, 619, 630, 631, 727, 728, 735], "procedur": [4, 811, 813, 816, 827], "60": [4, 38, 42, 51, 65, 74, 76, 84, 88, 219, 253, 371, 478, 541, 549, 565, 579, 601, 619, 621, 624, 628, 634, 669, 708, 726, 744, 746, 750, 793, 813], "big": [4, 778, 800, 840, 855], "jnp": [4, 18, 23, 26, 27, 28, 29, 32, 38, 40, 44, 799, 814, 815, 818, 821, 825, 830, 834, 839, 849, 850], "config": [4, 5, 6, 8, 9, 20, 23, 26, 27, 40, 41, 43, 69, 628, 718, 799, 805, 808, 811, 813, 820, 827, 837, 848, 856], "jax_enable_x64": [4, 5, 6, 8, 9, 20, 23, 26, 27, 799], "ref": [4, 5, 76, 80, 254, 268, 271, 277, 284, 619, 626, 697, 805, 825], "initi": [4, 26, 27, 43, 52, 56, 65, 69, 75, 79, 88, 98, 369, 380, 426, 435, 441, 518, 519, 623, 634, 648, 749, 776, 779, 780, 781, 783, 784, 799, 806, 810, 814, 815, 819, 827, 829, 834, 845, 848, 849, 850, 855, 861, 862], "fast": [4, 21, 31, 52, 368, 390, 855], "valu": [4, 9, 38, 39, 41, 42, 48, 49, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 95, 97, 98, 100, 113, 117, 118, 120, 121, 127, 130, 131, 132, 133, 136, 142, 147, 164, 168, 174, 207, 208, 215, 216, 217, 218, 220, 222, 223, 224, 231, 235, 236, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 282, 283, 284, 285, 286, 287, 288, 289, 290, 292, 293, 296, 301, 304, 305, 307, 314, 316, 322, 324, 325, 326, 328, 329, 330, 331, 332, 334, 335, 336, 337, 338, 341, 342, 344, 345, 347, 350, 352, 353, 354, 355, 356, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 379, 380, 390, 403, 410, 411, 413, 415, 419, 422, 426, 430, 435, 437, 439, 441, 442, 444, 445, 446, 447, 456, 462, 467, 473, 478, 480, 481, 482, 483, 486, 489, 491, 496, 497, 499, 500, 506, 508, 511, 512, 513, 516, 517, 518, 519, 520, 526, 528, 529, 530, 532, 537, 540, 541, 543, 548, 549, 550, 557, 564, 565, 569, 570, 571, 574, 582, 587, 592, 593, 596, 599, 600, 601, 602, 603, 604, 608, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 629, 630, 631, 632, 633, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 652, 656, 659, 660, 665, 666, 667, 670, 671, 672, 673, 674, 675, 678, 681, 686, 687, 688, 692, 693, 701, 702, 703, 707, 709, 710, 711, 712, 713, 718, 722, 723, 724, 725, 726, 727, 728, 729, 731, 732, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 758, 760, 763, 764, 765, 766, 768, 770, 775, 778, 779, 780, 781, 782, 783, 802, 805, 806, 808, 811, 812, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 831, 832, 834, 836, 840, 848, 855, 856], "demo": [5, 6, 7, 8, 9, 27, 34, 38, 42, 799], "milesi": 5, "blob": [5, 40, 42], "2f62e6b1c8e98022a6418d31a76f6abd800e5ae7": 5, "util": [5, 8, 21, 22, 23, 24, 40, 43, 52, 75, 193, 369, 437, 618, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 805, 811, 815, 818, 819, 822, 825, 829, 830, 834, 849, 853, 861, 862], "data_load": 5, "py": [5, 7, 8, 21, 22, 23, 24, 40, 42, 45, 88, 369, 437, 746, 788, 792, 799, 804, 805, 806, 808, 810, 813, 814, 815, 817, 818, 819, 820, 821, 822, 826, 827, 829, 830, 834, 836, 838, 839], "l65": 5, "mask_valu": 5, "pil_img": 5, "scale": [5, 6, 40, 52, 56, 60, 75, 77, 79, 83, 107, 206, 207, 298, 299, 302, 313, 342, 360, 362, 365, 368, 369, 374, 385, 391, 392, 393, 401, 403, 408, 412, 428, 489, 490, 491, 609, 613, 618, 622, 623, 629, 646, 649, 652, 724, 763, 765, 766, 778, 779, 783, 793, 855, 857], "is_mask": 5, "w": [5, 8, 41, 42, 52, 53, 54, 56, 69, 74, 75, 76, 77, 79, 92, 262, 342, 357, 365, 367, 368, 369, 374, 386, 387, 388, 390, 404, 405, 406, 407, 423, 441, 494, 509, 533, 535, 579, 602, 603, 604, 606, 608, 609, 610, 621, 622, 623, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 711, 799, 807, 824, 834, 837, 838, 849], "h": [5, 52, 53, 56, 75, 76, 79, 368, 374, 387, 388, 405, 406, 494, 533, 535, 621, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 708, 712, 714, 717, 722, 807, 811, 812, 813, 849, 851], "size": [5, 9, 11, 13, 18, 21, 22, 28, 29, 31, 32, 33, 40, 42, 45, 52, 53, 56, 57, 59, 61, 62, 69, 75, 76, 79, 80, 82, 84, 85, 92, 93, 97, 98, 129, 132, 206, 207, 208, 306, 309, 313, 324, 325, 326, 327, 334, 349, 356, 362, 365, 366, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 385, 386, 387, 403, 404, 405, 407, 408, 414, 415, 422, 425, 435, 441, 443, 457, 459, 471, 481, 483, 490, 491, 494, 498, 503, 515, 516, 517, 518, 519, 520, 559, 564, 616, 618, 621, 623, 624, 626, 630, 631, 635, 649, 652, 654, 657, 661, 665, 669, 671, 674, 680, 689, 694, 695, 696, 725, 731, 734, 754, 755, 763, 765, 766, 779, 793, 799, 825, 827, 829, 832, 837, 848, 850], "neww": 5, "newh": 5, "int": [5, 40, 43, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 95, 97, 101, 108, 112, 113, 122, 123, 127, 129, 130, 131, 132, 133, 136, 140, 141, 142, 149, 156, 159, 160, 163, 170, 185, 199, 200, 201, 208, 209, 218, 225, 226, 227, 228, 229, 230, 242, 245, 269, 273, 278, 284, 287, 294, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 329, 330, 334, 335, 338, 342, 349, 351, 353, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 418, 422, 424, 425, 426, 427, 429, 432, 434, 435, 438, 439, 441, 445, 449, 450, 454, 458, 459, 462, 463, 466, 468, 471, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 486, 487, 490, 492, 493, 495, 496, 497, 498, 499, 500, 501, 503, 508, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 523, 533, 534, 535, 537, 540, 541, 544, 545, 559, 562, 564, 579, 580, 581, 585, 601, 602, 603, 604, 605, 608, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 654, 656, 657, 665, 666, 671, 676, 678, 679, 680, 681, 683, 684, 685, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 711, 712, 714, 716, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 734, 736, 738, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 775, 778, 779, 792, 793, 812, 814, 815, 816, 818, 821, 822, 825, 827, 829, 830, 832, 834, 839, 848], "assert": [5, 9, 41, 43, 45, 69, 526, 621, 771, 802, 807, 808, 819, 822, 825, 826, 827, 829, 830, 836, 837], "too": [5, 52, 75, 218, 235, 242, 268, 371, 481, 619, 778, 804, 805, 806, 808, 814, 818, 830, 840], "small": [5, 9, 42, 51, 52, 57, 60, 74, 75, 80, 83, 235, 242, 268, 269, 328, 344, 365, 369, 370, 374, 430, 446, 489, 490, 491, 619, 624, 629, 667, 670, 672, 724, 778, 782, 799, 805, 813, 816, 822, 827, 832, 834, 838, 840, 848, 849, 856], "would": [5, 8, 9, 20, 21, 22, 23, 24, 26, 27, 30, 32, 34, 42, 48, 50, 52, 71, 73, 75, 82, 108, 112, 123, 209, 368, 371, 395, 400, 451, 452, 459, 461, 463, 464, 465, 472, 476, 487, 613, 618, 689, 690, 691, 693, 695, 696, 698, 700, 765, 775, 779, 799, 800, 802, 804, 805, 806, 807, 808, 809, 810, 812, 813, 814, 816, 817, 819, 821, 823, 825, 826, 827, 829, 830, 832, 833, 834, 836, 838, 839, 840, 841, 845, 848, 855, 861], "pixel": [5, 40, 52, 75, 368, 403], "resampl": 5, "nearest": [5, 52, 75, 218, 235, 268, 278, 338, 365, 368, 380, 403, 520, 619, 832], "bicub": [5, 52, 75, 368, 403, 832], "zero": [5, 40, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 66, 71, 72, 74, 75, 77, 79, 80, 84, 85, 88, 89, 93, 107, 109, 110, 111, 113, 124, 125, 127, 129, 134, 136, 137, 138, 140, 141, 144, 147, 148, 216, 217, 218, 220, 221, 222, 223, 224, 227, 229, 230, 232, 233, 234, 235, 237, 240, 241, 242, 249, 250, 251, 252, 258, 263, 264, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 277, 278, 280, 281, 282, 283, 285, 286, 288, 289, 291, 293, 297, 299, 305, 307, 316, 323, 329, 330, 333, 334, 335, 338, 346, 349, 351, 352, 353, 354, 360, 362, 365, 368, 369, 371, 378, 380, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 410, 411, 412, 413, 414, 415, 420, 422, 433, 436, 457, 467, 472, 473, 484, 502, 511, 512, 529, 533, 540, 560, 565, 602, 603, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 655, 659, 660, 662, 663, 664, 665, 666, 667, 668, 670, 672, 678, 680, 681, 688, 689, 690, 691, 693, 694, 701, 724, 726, 727, 728, 731, 732, 733, 734, 736, 737, 738, 739, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 778, 779, 783, 809, 812, 814, 815, 816, 821, 823, 824, 827, 834, 837, 838, 846, 854], "int64": [5, 52, 61, 62, 64, 65, 72, 84, 85, 87, 88, 137, 150, 156, 159, 161, 163, 167, 168, 172, 179, 310, 362, 378, 380, 503, 511, 512, 616, 617, 631, 633, 634, 726, 731, 732, 733, 742, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "enumer": [5, 40, 42, 768, 799], "ndim": [5, 52, 57, 62, 75, 80, 85, 97, 101, 369, 371, 434, 435, 441, 451, 452, 453, 466, 474, 476, 485, 601, 621, 624, 631, 671, 674, 734, 812, 822, 829], "newaxi": [5, 614], "transpos": [5, 23, 26, 27, 44, 52, 56, 57, 69, 75, 79, 80, 97, 369, 416, 432, 434, 436, 509, 623, 624, 636, 638, 640, 642, 643, 644, 664, 668, 670, 676, 765, 779, 799, 819, 825, 836, 839, 849], "255": [5, 23, 26, 27, 40, 41, 42, 44, 56, 75, 79, 229, 619, 645, 799, 849], "car": 5, "full_img": 5, "from_numpi": [5, 837], "fals": [5, 6, 7, 8, 13, 17, 26, 29, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 160, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 191, 192, 197, 199, 202, 203, 205, 208, 209, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 409, 410, 411, 413, 414, 415, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 460, 461, 462, 463, 464, 465, 468, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 502, 503, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 560, 564, 565, 566, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 589, 594, 595, 597, 598, 600, 603, 604, 606, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 711, 715, 716, 717, 718, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 776, 779, 780, 781, 783, 785, 788, 792, 793, 794, 797, 799, 802, 805, 808, 810, 813, 814, 815, 816, 818, 819, 825, 826, 827, 829, 831, 832, 834, 837, 838, 839, 848, 849], "permut": [5, 7, 40, 59, 82, 97, 378, 502, 626, 691, 698, 849], "img_numpi": 5, "cpu": [5, 6, 8, 21, 22, 23, 24, 26, 40, 41, 42, 44, 45, 48, 50, 52, 61, 71, 73, 75, 84, 121, 127, 130, 132, 133, 136, 137, 138, 144, 188, 189, 191, 192, 193, 194, 199, 202, 204, 206, 209, 210, 212, 214, 375, 496, 497, 499, 500, 616, 618, 624, 630, 663, 725, 726, 727, 728, 760, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 806, 811, 814, 815, 819, 826, 829, 840, 853, 855, 858, 860], "torch_unet": 5, "unet_carvana": 5, "when": [5, 7, 8, 9, 17, 19, 21, 22, 23, 24, 26, 27, 29, 31, 32, 33, 41, 43, 47, 48, 49, 51, 52, 57, 58, 61, 62, 65, 69, 71, 72, 74, 75, 80, 81, 84, 85, 88, 98, 136, 147, 218, 235, 240, 242, 258, 268, 286, 287, 294, 329, 330, 360, 365, 368, 369, 370, 374, 375, 380, 390, 403, 415, 422, 426, 435, 441, 446, 489, 491, 497, 517, 520, 550, 566, 574, 580, 616, 617, 619, 621, 623, 624, 625, 626, 628, 630, 631, 634, 636, 649, 667, 672, 683, 684, 685, 693, 716, 717, 726, 727, 728, 731, 732, 734, 735, 747, 749, 751, 753, 763, 766, 778, 779, 780, 781, 782, 788, 800, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 841, 844, 845, 848, 849, 853, 855, 858, 859, 860, 861], "ivy_unet": 5, "n_channel": 5, "n_class": 5, "forward": [5, 7, 13, 26, 27, 40, 42, 52, 75, 358, 367, 368, 390, 395, 396, 400, 401, 411, 412, 776, 778, 779, 781, 783, 799, 805, 810, 817, 824, 829, 830, 832, 839, 840, 848, 855, 856], "effici": [5, 6, 7, 8, 15, 16, 18, 19, 26, 27, 28, 29, 52, 57, 75, 80, 369, 370, 430, 445, 573, 595, 621, 624, 667, 799, 805, 806, 812, 822, 823, 825, 829, 831, 834, 837, 840, 849, 855, 857, 858], "l62": 5, "mask_to_imag": 5, "ndarrai": [5, 48, 52, 53, 71, 75, 93, 122, 123, 135, 368, 369, 371, 380, 412, 435, 478, 516, 517, 586, 616, 621, 788, 792, 804, 809, 814, 815, 818, 821, 825, 826, 827, 830, 832, 834, 836, 839, 842], "isinst": [5, 9, 24, 26, 27, 818, 826, 829, 830, 838, 839], "len": [5, 9, 40, 42, 48, 52, 57, 75, 80, 134, 310, 319, 320, 362, 368, 369, 380, 401, 412, 424, 427, 435, 441, 520, 616, 624, 659, 679, 799, 812, 813, 818, 825, 826, 829, 836, 839, 848], "uint8": [5, 23, 26, 27, 42, 150, 157, 161, 172, 175, 180, 186, 617, 763, 764, 814, 829], "elif": [5, 6, 813, 818, 825, 826, 827], "bool": [5, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 122, 123, 124, 129, 130, 131, 132, 133, 134, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 158, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 177, 183, 187, 191, 192, 194, 195, 197, 199, 202, 203, 208, 209, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 317, 318, 319, 320, 321, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 349, 350, 352, 354, 355, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 386, 387, 388, 390, 391, 392, 393, 403, 404, 405, 406, 409, 411, 413, 415, 422, 426, 429, 432, 434, 435, 436, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 462, 463, 464, 465, 468, 472, 476, 479, 481, 482, 483, 487, 489, 491, 492, 493, 494, 495, 497, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 560, 564, 565, 569, 578, 579, 580, 582, 584, 586, 587, 600, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 671, 672, 673, 674, 678, 679, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 722, 723, 725, 726, 727, 728, 730, 731, 732, 733, 734, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 761, 763, 764, 765, 775, 779, 782, 783, 792, 793, 797, 814, 816, 818, 825, 826, 829, 830, 832, 834, 839, 848, 849], "argmax": [5, 41, 42, 43, 62, 85, 371, 478, 631, 799, 826, 848], "fromarrai": [5, 23, 26, 27, 42], "interpol": [5, 40, 52, 75, 346, 365, 368, 380, 520, 623, 649, 832, 855], "mode": [5, 32, 44, 52, 57, 69, 75, 80, 91, 92, 93, 94, 95, 96, 205, 208, 213, 218, 235, 268, 321, 358, 359, 362, 367, 368, 369, 371, 398, 403, 411, 412, 424, 426, 432, 434, 435, 441, 456, 466, 471, 473, 474, 476, 478, 481, 482, 485, 566, 567, 568, 572, 573, 575, 576, 589, 590, 594, 595, 597, 598, 618, 619, 621, 624, 671, 771, 779, 780, 781, 796, 805, 806, 807, 812, 815, 816, 819, 832, 840, 855, 858], "bilinear": [5, 52, 75, 368, 403, 832], "torch_mask": 5, "squeez": [5, 40, 59, 82, 626, 855], "torch_result": 5, "to_numpi": [5, 9, 26, 27, 38, 41, 42, 45, 53, 76, 621, 799, 819, 827, 837], "give": [5, 18, 28, 38, 52, 56, 75, 79, 174, 358, 367, 368, 410, 414, 617, 623, 626, 636, 637, 638, 639, 641, 643, 645, 693, 778, 799, 805, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 829, 846, 855, 859], "img_tf": 5, "math": [5, 43, 93, 285, 619, 814, 825, 826, 827, 839, 853], "ve": [5, 9, 15, 24, 26, 61, 84, 630, 725, 804, 805, 806, 819, 829, 832, 833, 836, 842], "lot": [5, 813, 814, 823, 829, 840, 845, 846, 854], "far": [5, 26, 27, 628, 705, 716, 793, 815, 816, 835, 860, 861], "space": [5, 48, 51, 52, 53, 71, 74, 75, 76, 121, 132, 133, 287, 342, 365, 370, 443, 533, 537, 616, 619, 621, 832, 845], "del": [5, 813], "empty_cach": 5, "permute_dim": [5, 59, 82, 626, 819], "usr": [5, 40, 41, 42, 45, 805], "local": [5, 8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 31, 32, 33, 40, 41, 42, 45, 374, 494, 545, 621, 800, 805, 808, 811, 819, 822, 827, 829], "lib": [5, 9, 21, 22, 23, 24, 40, 41, 42, 45], "python3": [5, 7, 21, 22, 23, 24, 26, 40, 42, 45, 799, 805, 806], "dist": [5, 40, 41, 42, 45], "func_wrapp": [5, 46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 815, 826, 831], "242": [5, 75], "userwarn": [5, 7, 8, 21, 22, 23, 24, 45], "creat": [5, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 44, 45, 48, 51, 52, 61, 69, 71, 74, 75, 80, 84, 93, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 269, 306, 307, 317, 319, 321, 322, 362, 368, 369, 371, 375, 386, 387, 388, 409, 426, 435, 441, 449, 457, 473, 478, 496, 497, 498, 499, 500, 568, 584, 601, 612, 616, 619, 621, 622, 630, 669, 725, 726, 727, 728, 730, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 800, 805, 806, 809, 810, 811, 813, 814, 815, 818, 822, 823, 825, 826, 827, 829, 832, 834, 835, 838, 841, 842, 845, 848, 849, 850, 855, 856, 861], "mani": [5, 26, 27, 30, 59, 69, 82, 142, 322, 362, 616, 626, 695, 799, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 817, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 844, 845, 846, 851, 855, 858, 861, 862], "view": [5, 8, 21, 22, 23, 24, 52, 59, 75, 97, 128, 139, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 616, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 805, 806, 818, 855], "lead": [5, 8, 21, 22, 23, 24, 57, 69, 80, 98, 242, 369, 430, 568, 619, 621, 624, 671, 674, 765, 813, 814, 816, 828, 830, 840, 845, 846], "overhead": [5, 8, 19, 21, 22, 23, 24, 26, 27, 29, 840, 848, 858], "perform": [5, 9, 19, 21, 22, 23, 24, 26, 27, 29, 31, 38, 40, 48, 52, 56, 57, 65, 66, 71, 75, 76, 79, 80, 88, 89, 108, 112, 132, 133, 205, 213, 235, 268, 289, 335, 356, 365, 366, 368, 369, 371, 378, 380, 390, 391, 392, 393, 395, 396, 400, 401, 409, 411, 435, 450, 503, 511, 512, 533, 534, 535, 548, 549, 550, 566, 576, 613, 616, 618, 619, 621, 623, 624, 627, 628, 634, 635, 646, 648, 674, 676, 681, 702, 703, 704, 712, 713, 744, 745, 754, 755, 758, 775, 779, 793, 808, 809, 810, 812, 814, 815, 816, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 846, 848, 849, 852, 855, 856, 857, 858, 859, 860, 862], "inplac": [5, 7, 8, 9, 21, 22, 23, 24, 47, 53, 69, 76, 92, 95, 524, 526, 547, 550, 551, 568, 569, 621, 628, 712, 713, 717, 722, 723, 770, 771, 776, 783, 807, 809, 816, 819, 821, 823, 826, 832, 836, 838], "17": [5, 8, 9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 52, 57, 68, 74, 75, 76, 77, 79, 80, 84, 98, 107, 108, 133, 218, 235, 260, 268, 298, 306, 356, 362, 368, 371, 386, 387, 395, 396, 399, 400, 404, 405, 410, 414, 463, 534, 549, 602, 604, 613, 616, 619, 621, 622, 623, 624, 628, 630, 637, 646, 647, 657, 661, 713, 726, 727, 728, 730, 812], "factor": [5, 9, 52, 54, 56, 57, 75, 77, 79, 80, 91, 92, 93, 94, 95, 206, 207, 208, 368, 369, 374, 401, 412, 426, 427, 435, 438, 440, 441, 494, 602, 603, 608, 609, 618, 622, 623, 624, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 653, 763, 765, 766, 778, 779, 783, 818, 845], "inc": 5, "unetdoubleconv": 5, "down1": 5, "unetdown": 5, "128": [5, 7, 26, 27, 40, 49, 51, 56, 72, 74, 79, 98, 163, 239, 368, 389, 399, 533, 543, 617, 619, 621, 623, 624, 638, 640, 645, 669, 799], "down2": 5, "down3": 5, "down4": 5, "1024": [5, 7, 40, 41, 799], "up1": 5, "unetup": 5, "up2": 5, "up3": 5, "up4": 5, "outc": 5, "unetoutconv": 5, "x1": [5, 17, 26, 27, 45, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 87, 97, 98, 102, 148, 158, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 307, 328, 333, 339, 340, 341, 343, 345, 350, 354, 362, 365, 369, 371, 380, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 633, 654, 661, 664, 669, 673, 676, 677, 680, 735, 742, 760, 785, 799, 808, 814, 816, 818, 821, 825, 826, 849, 850], "x2": [5, 17, 26, 27, 49, 51, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 97, 98, 102, 148, 174, 181, 201, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 266, 267, 268, 271, 273, 277, 284, 289, 328, 333, 339, 340, 341, 343, 345, 350, 354, 365, 369, 371, 380, 424, 436, 467, 510, 522, 525, 617, 618, 619, 621, 624, 631, 654, 661, 664, 669, 673, 676, 677, 680, 735, 760, 785, 808, 814, 816, 818, 821, 825, 826], "x3": [5, 49, 53, 148, 522, 617, 621], "x4": 5, "x5": 5, "in_channel": 5, "out_channel": 5, "mid_channel": 5, "double_conv": 5, "with_bia": [5, 779, 799, 838, 849], "batchnorm2d": [5, 7, 782], "downscal": [5, 53, 76, 528, 529, 550, 621], "maxpool": [5, 7], "doubl": 5, "conv": [5, 623, 779, 832], "maxpool_conv": 5, "upscal": 5, "scale_factor": [5, 52, 75, 368, 403, 832], "align_corn": [5, 52, 75, 368, 403, 832], "conv2dtranspos": [5, 779], "valid": [5, 40, 42, 52, 56, 66, 75, 79, 89, 92, 93, 152, 368, 369, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 433, 441, 553, 617, 621, 623, 626, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 689, 697, 754, 755, 763, 764, 779, 792, 805, 810, 814, 816, 820, 824, 827, 829, 848, 856], "bhwc": 5, "diff_h": 5, "diff_w": 5, "pad_width": [5, 52, 59, 75, 82, 371, 473, 626, 688, 701], "constant_pad": [5, 59, 82, 626], "concat": [5, 38, 43, 53, 59, 69, 82, 208, 537, 618, 621, 626, 701, 827, 832, 834, 848], "openmim": 6, "mim": 6, "0rc8": 6, "torch": [6, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 43, 44, 45, 48, 53, 57, 67, 76, 80, 124, 162, 189, 190, 204, 206, 211, 278, 329, 330, 365, 526, 550, 582, 616, 617, 618, 619, 621, 624, 627, 674, 703, 704, 760, 771, 776, 788, 799, 802, 805, 806, 808, 809, 810, 811, 813, 814, 815, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 836, 837, 839, 840, 842, 848, 849, 850, 861], "request": [6, 7, 8, 21, 22, 23, 24, 26, 27, 40, 43, 52, 199, 375, 500, 618, 799, 800, 804, 816, 820, 830, 832, 846, 849], "get_model": 6, "list_model": 6, "mmengin": 6, "configdict": 6, "saniti": [6, 8, 9, 26, 826], "checkpoint": [6, 7, 43, 840], "correct": [6, 11, 13, 22, 32, 38, 40, 42, 65, 88, 181, 369, 437, 617, 626, 634, 686, 751, 753, 760, 763, 799, 802, 804, 806, 807, 812, 813, 814, 815, 818, 819, 821, 822, 825, 827, 829, 849], "against": [6, 49, 52, 53, 57, 62, 72, 74, 75, 76, 80, 85, 148, 267, 286, 328, 331, 334, 344, 365, 380, 516, 517, 518, 519, 520, 557, 617, 619, 621, 624, 631, 664, 665, 667, 670, 731, 829, 834, 840, 844, 855], "zoo": 6, "checkpoint_nam": [6, 8, 26], "convnext": 6, "tiny_32xb128": 6, "noema_in1k": 6, "openmmlab": 6, "dure": [6, 8, 19, 21, 26, 29, 31, 32, 50, 54, 65, 69, 73, 77, 88, 209, 368, 391, 392, 393, 568, 588, 602, 603, 608, 618, 621, 622, 623, 624, 627, 634, 646, 664, 702, 703, 704, 751, 753, 771, 782, 783, 805, 812, 814, 815, 818, 822, 823, 825, 826, 827, 828, 829, 832, 840, 848, 855, 856, 861], "appropri": [6, 17, 21, 22, 24, 26, 27, 53, 62, 67, 85, 90, 218, 235, 242, 268, 328, 344, 365, 619, 631, 731, 799, 804, 805, 806, 818, 823, 829], "get_scal": 6, "cfg": [6, 820], "kei": [6, 19, 20, 26, 27, 42, 44, 47, 52, 56, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 378, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 503, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 530, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 621, 623, 627, 628, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 708, 714, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 763, 764, 770, 776, 779, 783, 799, 811, 812, 813, 822, 825, 826, 827, 829, 837, 849, 855, 858, 862], "input_shap": [6, 13, 24, 26, 27, 799], "block": [6, 26, 27, 30, 31, 32, 33, 369, 428, 799, 806, 812, 814, 818, 822, 829, 833, 835, 839, 840, 842, 849, 860, 862], "url": [6, 8, 23, 26, 27, 40, 43, 799, 849], "cocodataset": [6, 8, 23, 26, 27, 43, 799, 849], "org": [6, 7, 8, 23, 26, 27, 40, 42, 43, 45, 51, 52, 74, 75, 77, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 602, 603, 616, 617, 619, 622, 624, 626, 634, 672, 673, 701, 751, 799, 817, 849], "val2017": [6, 8, 26, 43], "000000039769": [6, 8, 26, 43], "stream": [6, 8, 23, 26, 27, 40, 43, 50, 73, 209, 618, 799, 849, 859], "_config": 6, "train_pipelin": 6, "tensor_imag": 6, "And": [6, 8, 9, 11, 13, 18, 21, 26, 27, 28, 41, 72, 358, 359, 367, 799, 808, 811, 820, 822, 829, 848], "final": [6, 8, 11, 13, 15, 23, 26, 27, 32, 38, 39, 48, 52, 53, 75, 76, 92, 120, 132, 133, 316, 362, 368, 412, 537, 615, 616, 621, 623, 648, 649, 793, 804, 806, 808, 809, 811, 813, 814, 816, 817, 822, 824, 825, 826, 828, 832, 833, 837, 848, 849, 851, 861], "transpiled_graph": [6, 8, 26], "what": [6, 8, 15, 20, 26, 27, 30, 31, 34, 39, 40, 368, 401, 412, 765, 793, 799, 804, 806, 807, 812, 813, 816, 817, 820, 821, 823, 824, 825, 826, 827, 829, 833, 834, 836, 837, 838, 839, 840, 845, 846, 851, 856, 857, 860], "improv": [6, 8, 9, 26, 29, 806, 814, 821, 822, 832, 834, 842, 846, 848, 853, 855, 857, 858], "For": [6, 7, 8, 9, 17, 19, 26, 27, 29, 32, 34, 48, 52, 57, 63, 75, 80, 121, 134, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 270, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 324, 325, 326, 329, 330, 332, 352, 362, 365, 369, 371, 432, 434, 453, 473, 476, 616, 619, 624, 626, 632, 634, 672, 674, 678, 686, 697, 736, 737, 738, 739, 747, 749, 750, 752, 764, 776, 804, 805, 806, 807, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 825, 826, 827, 828, 829, 830, 832, 834, 836, 837, 838, 839, 840, 841, 844, 845, 846, 848, 852, 853, 856, 861, 862], "compil": [6, 7, 8, 9, 21, 22, 24, 26, 27, 30, 43, 45, 286, 619, 771, 799, 805, 826, 830, 834, 840, 842, 849, 851, 854, 855, 856, 859, 862], "origin": [6, 8, 9, 24, 26, 27, 28, 29, 30, 32, 39, 40, 41, 45, 52, 57, 59, 65, 69, 75, 80, 82, 88, 92, 95, 97, 98, 223, 248, 275, 313, 362, 368, 369, 371, 380, 411, 435, 466, 472, 474, 477, 511, 512, 516, 517, 518, 519, 520, 619, 624, 626, 634, 665, 693, 694, 745, 760, 765, 788, 789, 799, 801, 804, 805, 806, 810, 811, 813, 814, 819, 823, 825, 826, 827, 834, 846, 848, 849, 855, 856], "_f": [6, 8, 26], "comp_model": [6, 8, 26], "equival": [6, 8, 26, 57, 80, 92, 93, 121, 229, 242, 263, 264, 277, 278, 371, 457, 481, 486, 616, 619, 624, 667, 670, 673, 681, 788, 825, 826, 832, 837, 839, 841, 849], "just": [6, 8, 9, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 38, 40, 42, 52, 57, 65, 80, 92, 95, 142, 322, 362, 369, 434, 616, 624, 634, 667, 746, 771, 779, 799, 802, 805, 806, 808, 810, 813, 814, 815, 816, 817, 819, 822, 823, 825, 826, 827, 829, 834, 836, 837, 840, 845, 846, 849, 855, 856, 861], "np_imag": [6, 23, 26, 27], "jax_imag": 6, "hk": [6, 8, 26, 40, 44, 799, 839, 849], "rng_kei": [6, 8, 26, 799, 849], "random": [6, 8, 11, 13, 18, 19, 20, 21, 22, 24, 26, 27, 28, 29, 31, 32, 33, 40, 42, 43, 52, 56, 69, 75, 79, 317, 318, 319, 320, 321, 362, 369, 370, 426, 435, 441, 446, 496, 497, 498, 499, 500, 623, 646, 725, 726, 727, 728, 729, 730, 763, 765, 778, 792, 793, 799, 804, 815, 827, 829, 830, 839, 849, 850, 855], "prngkei": [6, 8, 19, 20, 26, 27, 40, 799, 839, 849], "42": [6, 8, 9, 19, 20, 24, 26, 27, 38, 40, 41, 46, 61, 68, 77, 84, 113, 229, 368, 389, 399, 602, 606, 613, 619, 622, 624, 629, 630, 634, 665, 669, 724, 725, 726, 727, 728, 729, 744, 746, 799, 834, 839, 849], "jax_mlp_forward": 6, "param": [6, 8, 9, 26, 40, 41, 42, 44, 69, 75, 76, 98, 523, 540, 541, 621, 785, 799, 839, 849], "init": [6, 8, 26, 40, 42, 52, 75, 369, 426, 435, 441, 799, 808, 839, 849], "rng": [6, 8, 26, 40, 799, 839, 849], "appli": [6, 8, 21, 22, 23, 24, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 365, 366, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 403, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 613, 617, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 645, 646, 647, 648, 649, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 669, 670, 671, 672, 674, 678, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 711, 714, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 765, 766, 775, 779, 782, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 818, 820, 821, 822, 823, 825, 826, 829, 830, 832, 836, 837, 838, 839, 840, 848, 849, 856], "both": [6, 7, 8, 9, 11, 13, 21, 23, 26, 27, 31, 32, 39, 41, 48, 51, 52, 53, 56, 57, 71, 74, 75, 76, 79, 80, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 173, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 333, 335, 339, 344, 362, 365, 368, 369, 371, 375, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 467, 473, 481, 484, 496, 510, 513, 540, 544, 546, 548, 557, 587, 611, 612, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 779, 799, 802, 804, 806, 810, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 825, 826, 829, 832, 834, 836, 837, 838, 839, 840, 848, 849, 855, 858, 860, 861, 862], "optim": [6, 8, 9, 17, 21, 22, 24, 26, 27, 40, 42, 43, 45, 52, 54, 75, 77, 306, 362, 370, 445, 446, 524, 610, 621, 622, 627, 702, 703, 704, 778, 793, 799, 814, 825, 832, 835, 837, 839, 846, 849, 853, 854, 855, 856, 857, 858, 859, 862], "each": [6, 8, 9, 19, 20, 21, 26, 27, 29, 30, 31, 33, 40, 46, 48, 49, 51, 52, 53, 54, 56, 57, 59, 62, 63, 65, 69, 72, 74, 75, 76, 77, 79, 80, 82, 85, 86, 88, 92, 93, 95, 97, 98, 106, 107, 109, 110, 111, 113, 117, 134, 148, 160, 163, 208, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 290, 292, 297, 299, 300, 301, 303, 304, 305, 310, 321, 324, 325, 326, 332, 339, 343, 347, 352, 355, 360, 362, 365, 368, 369, 371, 374, 375, 378, 380, 386, 387, 388, 391, 392, 393, 396, 404, 405, 406, 407, 410, 412, 413, 414, 421, 422, 427, 434, 435, 439, 441, 451, 452, 453, 457, 458, 459, 464, 465, 467, 468, 470, 472, 473, 476, 478, 486, 487, 494, 496, 503, 508, 509, 510, 511, 512, 513, 522, 525, 533, 540, 541, 557, 581, 601, 603, 604, 606, 608, 609, 610, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 649, 653, 654, 655, 658, 659, 660, 664, 666, 667, 668, 670, 672, 673, 674, 679, 688, 692, 694, 695, 697, 699, 701, 711, 718, 725, 734, 736, 737, 739, 745, 746, 753, 763, 765, 779, 782, 783, 784, 793, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 839, 840, 844, 845, 846, 848, 849, 851, 852, 856, 858, 861], "timeit": [6, 8, 9, 19, 26, 27, 43, 45], "06": [6, 9, 21, 42, 49, 61, 74, 77, 96, 105, 160, 217, 233, 368, 389, 399, 608, 613, 617, 622, 728, 758, 760, 829, 837], "m": [6, 7, 8, 9, 26, 39, 41, 43, 45, 48, 52, 57, 61, 74, 75, 80, 84, 97, 134, 140, 141, 142, 262, 322, 323, 362, 368, 369, 370, 371, 375, 390, 421, 426, 427, 429, 442, 453, 464, 465, 479, 496, 497, 498, 499, 500, 616, 624, 628, 630, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 713, 726, 727, 728, 799, 805, 806, 807, 813, 834], "per": [6, 8, 9, 19, 40, 42, 52, 56, 75, 79, 313, 362, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 434, 480, 623, 637, 639, 640, 641, 642, 645, 649, 779, 806, 813, 823, 826, 837], "loop": [6, 8, 9, 19, 34, 67, 75, 90, 117, 120, 368, 413, 615, 627, 702, 703, 704, 799, 810, 840, 848], "100": [6, 7, 8, 9, 38, 40, 42, 48, 51, 52, 71, 74, 75, 76, 79, 96, 133, 142, 229, 269, 282, 322, 344, 353, 362, 365, 368, 369, 371, 391, 392, 435, 441, 478, 541, 549, 565, 616, 619, 621, 624, 628, 662, 711, 799, 813, 814, 829, 837, 838, 839, 840, 845, 846, 848], "block_until_readi": 6, "08": [6, 52, 65, 75, 84, 221, 328, 344, 365, 368, 370, 389, 399, 446, 619, 727, 728, 753, 758, 763, 820], "\u00b5": [6, 8, 9, 19], "made": [6, 8, 26, 52, 59, 75, 369, 371, 428, 451, 452, 453, 697, 804, 806, 808, 809, 812, 813, 818, 820, 822, 824, 825, 826, 830, 832, 834, 836, 845, 855], "significantli": [6, 8, 26, 52, 57, 75, 80, 369, 439, 624, 674, 813, 844, 853], "line": [6, 8, 9, 15, 16, 19, 20, 23, 26, 27, 29, 30, 41, 42, 285, 619, 799, 805, 808, 809, 813, 815, 816, 818, 826, 829, 832, 835, 836, 837, 838, 846, 849, 858], "even": [6, 23, 26, 27, 52, 75, 92, 235, 268, 273, 278, 371, 380, 473, 510, 619, 805, 806, 808, 810, 813, 814, 815, 817, 821, 822, 825, 826, 827, 832, 836, 837, 838, 839, 840, 845, 846, 861], "better": [6, 9, 29, 38, 44, 45, 804, 807, 826, 827, 830, 832, 833, 836, 837, 838, 846, 858], "v100": 6, "3x": 6, "increas": [6, 8, 9, 19, 26, 29, 52, 57, 59, 75, 80, 82, 95, 371, 380, 473, 513, 624, 626, 679, 688, 701, 765, 814, 818, 826, 830, 832, 844, 848, 855], "execut": [6, 8, 17, 18, 19, 21, 22, 23, 24, 26, 27, 29, 31, 34, 41, 43, 45, 118, 120, 588, 615, 618, 621, 805, 806, 811, 812, 813, 814, 815, 816, 818, 822, 823, 825, 829, 832, 834, 836, 839, 840, 842, 848, 851, 855, 856, 857, 858, 859, 861], "train2017": [6, 8, 23, 26, 27, 799, 849], "000000283921": [6, 8, 26], "out_torch": [6, 8, 26], "et": [6, 623, 624, 649, 674], "took": [6, 74, 275], "out_jax": [6, 8, 26], "1e": [6, 7, 8, 11, 13, 26, 38, 42, 49, 52, 54, 57, 58, 60, 72, 75, 77, 80, 81, 83, 96, 160, 328, 344, 365, 370, 374, 446, 489, 490, 491, 570, 571, 579, 592, 593, 602, 603, 608, 610, 617, 621, 622, 624, 625, 629, 674, 683, 684, 685, 724, 758, 760, 780, 782, 783, 799, 802, 812, 819, 822, 825, 827, 838, 839], "66m": 6, "53m": 6, "That": [6, 8, 11, 13, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 40, 277, 370, 445, 619, 792, 805, 806, 809, 829, 836, 837, 838, 856], "pretti": [6, 8, 26, 27, 40, 802, 819, 837, 861], "much": [6, 8, 9, 17, 18, 24, 26, 27, 28, 29, 40, 95, 328, 344, 365, 778, 804, 805, 806, 809, 812, 814, 822, 825, 826, 827, 830, 831, 832, 834, 836, 837, 845, 853, 855, 861, 862], "achiev": [6, 8, 9, 26, 799, 813, 814, 822, 823, 829, 832, 837, 839, 842], "solid": [6, 8, 26], "associ": [7, 52, 57, 75, 80, 218, 268, 371, 380, 450, 513, 619, 624, 667, 670, 682, 760, 806, 814, 822, 823, 826, 827, 829, 840], "python": [7, 11, 17, 29, 34, 38, 40, 41, 42, 44, 45, 52, 61, 75, 84, 121, 202, 214, 242, 277, 368, 375, 413, 496, 497, 498, 499, 500, 601, 616, 618, 619, 621, 630, 725, 726, 727, 728, 730, 788, 792, 793, 803, 805, 806, 808, 811, 812, 813, 818, 819, 826, 828, 829, 834, 836, 837, 840, 842, 843, 844, 845, 848, 852, 855, 856, 857, 861, 862], "2023": [7, 8, 21, 22, 23, 24, 40], "02": [7, 8, 40, 48, 53, 54, 60, 61, 74, 77, 84, 133, 220, 221, 260, 368, 389, 399, 400, 579, 580, 602, 603, 608, 616, 619, 621, 622, 625, 629, 630, 683, 724, 727, 728, 827], "52": [7, 9, 38, 51, 74, 76, 77, 84, 223, 233, 235, 380, 511, 533, 534, 549, 602, 619, 621, 622, 623, 624, 634, 647, 669, 728, 746, 792], "00": [7, 9, 40, 42, 45, 52, 53, 57, 75, 76, 80, 240, 306, 337, 362, 368, 389, 395, 399, 400, 537, 580, 619, 621, 624, 625, 660, 671, 683, 763, 820, 829], "resolv": [7, 40, 42, 52, 65, 242, 380, 511, 512, 619, 626, 634, 689, 744, 745, 750, 752, 806, 811, 814, 820, 834], "185": [7, 40, 68], "199": [7, 40, 221, 619], "110": [7, 40], "133": [7, 40, 56, 529, 621, 647], "111": [7, 40, 628, 723], "108": [7, 9, 21, 22, 23, 24, 40, 623, 634, 647, 746], "connect": [7, 40, 779, 799, 801, 805, 811, 828, 838, 839, 845, 853], "443": [7, 40, 280, 619], "sent": [7, 40], "await": [7, 40], "respons": [7, 40, 374, 494, 806, 813, 814], "200": [7, 9, 40, 76, 79, 229, 368, 391, 392, 541, 565, 619, 621, 792, 837], "ok": [7, 40, 805], "length": [7, 40, 41, 48, 52, 58, 59, 69, 75, 81, 82, 92, 93, 98, 121, 129, 134, 308, 311, 312, 327, 335, 362, 365, 368, 369, 371, 375, 378, 389, 390, 395, 396, 399, 400, 401, 411, 412, 413, 415, 427, 434, 473, 482, 498, 503, 601, 616, 621, 623, 624, 625, 626, 632, 649, 674, 675, 683, 693, 736, 763, 779, 829, 837], "10472": 7, "10k": 7, "plain": [7, 40], "tx": 7, "23k": 7, "kb": [7, 40, 42, 45], "57": [7, 9, 38, 40, 51, 52, 74, 75, 193, 216, 217, 220, 221, 223, 233, 234, 274, 290, 291, 360, 618, 619], "mb": [7, 40, 42, 45, 813], "01": [7, 21, 22, 24, 42, 48, 52, 53, 54, 57, 75, 76, 77, 80, 84, 133, 260, 278, 279, 306, 312, 337, 344, 362, 368, 389, 399, 400, 537, 579, 580, 602, 603, 608, 616, 619, 621, 622, 624, 627, 630, 660, 671, 703, 704, 727, 728, 763, 810, 839], "109": [7, 40, 57, 624, 661], "634575": 7, "620k": 7, "jpeg": [7, 41, 42], "619": 7, "70k": 7, "113": 7, "resnet34_weight": 7, "torch_resnet_34": 7, "conv1": 7, "kernel_s": [7, 24, 26, 27, 42, 52, 75, 368, 386, 387, 388, 407, 414, 779, 785], "stride": [7, 52, 56, 75, 76, 79, 97, 368, 371, 386, 387, 388, 404, 405, 406, 407, 409, 410, 414, 449, 621, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 825, 830, 855], "bia": [7, 52, 56, 75, 79, 83, 374, 380, 494, 510, 560, 621, 623, 629, 636, 637, 638, 639, 640, 641, 642, 643, 644, 647, 648, 649, 724, 779, 822, 829, 834, 838], "bn1": 7, "ep": [7, 52, 57, 60, 75, 80, 83, 160, 294, 360, 369, 370, 374, 422, 446, 489, 490, 491, 617, 624, 629, 667, 670, 724, 775, 782], "05": [7, 9, 42, 48, 51, 52, 54, 60, 74, 75, 77, 83, 133, 260, 312, 328, 337, 344, 362, 365, 374, 489, 490, 491, 548, 570, 592, 602, 603, 608, 616, 619, 621, 622, 624, 629, 665, 724, 758, 763, 778, 782, 827, 829], "momentum": [7, 40, 52, 75, 374, 489, 491, 782, 845], "affin": [7, 782], "track_running_stat": [7, 782], "dilat": [7, 44, 52, 56, 75, 79, 368, 371, 404, 405, 406, 409, 410, 414, 473, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "ceil_mod": [7, 52, 75, 368, 386, 387, 388, 404, 405, 406, 409, 779], "layer1": 7, "basicblock": 7, "conv2": 7, "bn2": 7, "layer2": 7, "downsampl": [7, 52, 75, 403], "layer3": 7, "layer4": 7, "output_s": [7, 52, 75, 368, 382, 383, 384, 623, 651, 779, 799, 849], "fc": [7, 13, 40, 799, 838, 849], "in_featur": [7, 56, 79, 623, 647, 829], "out_featur": [7, 56, 79, 623, 647, 829], "resnet_34": 7, "ivy_resnet_34": 7, "34": [7, 9, 38, 40, 74, 75, 76, 84, 163, 233, 260, 281, 368, 380, 410, 517, 533, 534, 617, 619, 621, 623, 624, 630, 647, 666, 727, 728, 815], "333f7ec4": 7, "pth": 7, "root": [7, 8, 21, 22, 23, 24, 40, 41, 42, 45, 51, 74, 282, 619, 801, 804, 805, 806, 811, 819, 826, 837], "cach": [7, 8, 21, 22, 23, 24, 40, 42, 45, 190, 527, 618, 621, 788, 820, 822, 825, 829], "83": [7, 9, 38, 57, 79, 84, 282, 368, 380, 389, 399, 410, 511, 529, 619, 621, 623, 624, 647, 661, 727], "3m": 7, "56": [7, 9, 38, 40, 51, 52, 56, 61, 74, 75, 79, 133, 268, 282, 285, 288, 368, 389, 399, 602, 616, 619, 622, 623, 624, 628, 634, 638, 640, 642, 644, 647, 669, 705, 727, 746, 816], "4mb": 7, "preserv": [7, 8, 21, 22, 23, 24, 52, 53, 54, 69, 75, 76, 77, 98, 368, 369, 371, 380, 403, 435, 451, 452, 453, 464, 465, 484, 517, 550, 611, 621, 622, 626, 690, 763, 828, 829, 839, 840, 849], "multipl": [7, 8, 17, 21, 22, 23, 24, 26, 51, 52, 57, 60, 65, 66, 69, 74, 75, 76, 77, 80, 82, 83, 88, 89, 129, 229, 253, 260, 266, 267, 268, 270, 329, 330, 365, 368, 369, 371, 374, 378, 389, 396, 399, 401, 433, 459, 468, 487, 494, 503, 522, 529, 560, 602, 603, 606, 608, 609, 610, 611, 616, 619, 621, 622, 623, 624, 626, 629, 631, 634, 635, 638, 639, 640, 641, 653, 662, 664, 665, 678, 686, 689, 694, 695, 724, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 799, 804, 806, 809, 810, 812, 816, 818, 820, 822, 825, 826, 827, 829, 832, 834, 840, 846, 848, 853, 854, 855, 862], "machin": [7, 8, 21, 22, 23, 24, 29, 30, 38, 44, 52, 57, 75, 80, 160, 163, 369, 422, 617, 624, 667, 670, 799, 805, 808, 822, 842, 845, 853, 855, 857, 858, 859, 860, 861], "rel": [7, 8, 21, 22, 23, 24, 52, 54, 57, 59, 64, 71, 75, 77, 80, 82, 87, 97, 131, 328, 344, 365, 370, 380, 445, 446, 510, 603, 606, 608, 609, 610, 622, 624, 626, 633, 657, 667, 670, 678, 690, 694, 740, 743, 758, 760, 806, 813, 827, 832, 855, 857], "project": [7, 8, 15, 20, 21, 22, 23, 24, 26, 27, 30, 93, 623, 649, 779, 799, 801, 804, 805, 806, 809, 810, 811, 829, 838, 840, 844, 845, 846, 849, 851, 853, 855, 858, 862], "consist": [7, 8, 9, 21, 22, 23, 24, 26, 27, 65, 69, 235, 242, 268, 368, 369, 411, 421, 619, 624, 634, 658, 659, 746, 780, 781, 808, 809, 813, 814, 820, 825, 834, 844, 856], "ad": [7, 8, 9, 21, 22, 23, 24, 52, 59, 75, 82, 90, 235, 268, 328, 344, 365, 374, 489, 490, 491, 579, 580, 619, 621, 623, 624, 626, 649, 659, 660, 689, 779, 784, 799, 802, 803, 804, 805, 806, 808, 809, 811, 812, 813, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 838, 840, 845, 848, 854, 855], "home": [7, 8, 21, 22, 23, 24, 813], "workspac": [7, 8, 21, 22, 23, 24, 805, 819], "95": [7, 9, 38, 52, 54, 57, 61, 68, 77, 79, 84, 105, 353, 365, 410, 602, 606, 610, 613, 622, 624, 630, 661, 727, 728], "builtin": [7, 805, 836, 838], "callabl": [7, 44, 52, 53, 67, 75, 76, 79, 90, 117, 118, 120, 161, 162, 194, 195, 208, 356, 358, 359, 366, 367, 368, 371, 410, 413, 415, 450, 473, 523, 527, 532, 534, 538, 539, 560, 588, 601, 605, 607, 612, 615, 617, 618, 621, 622, 627, 628, 702, 703, 704, 711, 712, 713, 715, 716, 717, 718, 758, 761, 771, 783, 794, 812, 818, 824, 826, 834, 847, 848, 849, 850], "track": [7, 17, 26, 27, 39, 40, 545, 621, 805, 806, 808, 824, 825, 848, 855], "properli": [7, 805, 807, 818, 820, 826, 829], "might": [7, 32, 53, 93, 174, 532, 617, 621, 802, 804, 805, 806, 813, 814, 816, 819, 820, 823, 826, 829, 830, 832, 834, 836, 837, 842], "_trace_graph": 7, "comparison": [7, 52, 75, 236, 271, 331, 365, 370, 445, 446, 619, 624, 675, 758, 818], "shown": [7, 24, 26, 67, 69, 90, 252, 275, 332, 365, 619, 804, 805, 806, 808, 811, 813, 814, 816, 818, 820, 821, 826, 827, 829, 830, 831, 834, 836, 840], "8507": 7, "1351": 7, "0069": 7, "85072625": 7, "13506091": 7, "00688289": 7, "resnet50_weight": 7, "torch_resnet_50": 7, "imagenet1k_v2": 7, "11ad3fa6": 7, "97": [7, 9, 38, 52, 54, 74, 77, 84, 221, 353, 365, 606, 619, 622, 727], "8m": 7, "8mb": 7, "bottleneck": [7, 844], "conv3": 7, "bn3": 7, "2048": [7, 580, 621], "resnet_50": 7, "ivy_resnet_50": 7, "3429": 7, "0408": 7, "0121": 7, "34288204": 7, "04077014": 7, "01212029": 7, "depend": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 31, 48, 49, 52, 53, 57, 63, 64, 72, 75, 80, 87, 88, 118, 124, 147, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 256, 257, 258, 259, 268, 270, 273, 280, 281, 285, 286, 352, 365, 368, 369, 413, 421, 437, 582, 615, 616, 617, 619, 621, 624, 631, 633, 658, 659, 671, 672, 673, 674, 735, 740, 743, 753, 799, 801, 802, 804, 805, 806, 811, 814, 815, 817, 819, 823, 825, 826, 827, 828, 829, 832, 834, 840, 841, 845, 848, 853, 855, 856], "yet": [8, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 42, 361, 363, 364, 372, 373, 377, 804, 805, 819, 840, 841, 848, 849, 850], "doc": [8, 9, 11, 13, 15, 17, 18, 19, 20, 21, 22, 23, 24, 27, 41, 42, 75, 142, 322, 329, 330, 362, 365, 512, 616, 799, 800, 803, 804, 807, 816, 817, 820, 821, 829, 834, 837, 838, 848, 849, 850], "user": [8, 15, 21, 22, 23, 24, 26, 41, 42, 44, 269, 286, 371, 473, 568, 619, 621, 779, 780, 781, 792, 799, 805, 806, 807, 809, 810, 812, 813, 814, 815, 818, 823, 824, 825, 826, 829, 831, 832, 833, 834, 840, 841, 844, 845, 853, 855, 861, 862], "broken": [8, 21, 22, 23, 24, 851, 855], "permiss": [8, 21, 22, 23, 24, 805, 813], "conflict": [8, 21, 22, 23, 24, 32, 805, 806, 813, 826, 837], "behaviour": [8, 21, 22, 23, 24, 107, 110, 269, 613, 619, 803, 806, 807, 808, 809, 812, 814, 815, 817, 818, 821, 822, 823, 825, 826, 829, 830, 836], "system": [8, 21, 22, 23, 24, 42, 369, 436, 624, 673, 763, 799, 805, 806, 810, 813, 814, 840, 849, 853, 855, 858, 860, 862], "manag": [8, 17, 21, 22, 23, 24, 26, 568, 591, 621, 799, 800, 810, 814, 815, 825, 828, 840, 846, 857, 859], "recommend": [8, 21, 22, 23, 24, 263, 264, 277, 370, 443, 619, 634, 748, 751, 801, 805, 810, 811, 820, 823, 824, 848], "virtual": [8, 21, 22, 23, 24, 806, 826, 845, 858, 859], "instead": [8, 11, 13, 17, 21, 22, 23, 24, 26, 33, 40, 45, 51, 52, 57, 74, 75, 80, 93, 189, 277, 310, 362, 368, 380, 404, 405, 406, 510, 513, 618, 619, 624, 667, 763, 804, 805, 806, 808, 811, 813, 814, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 832, 834, 836, 837, 840, 848, 849, 850, 853, 855, 861, 862], "pypa": [8, 21, 22, 23, 24], "io": [8, 21, 22, 23, 24, 41, 44, 805, 813], "venv": [8, 21, 22, 23, 24], "autofeatureextractor": [8, 26], "extractor": [8, 11, 13, 26, 42, 799], "hug": [8, 26, 848], "face": [8, 26, 800, 805, 808, 819, 820, 824, 832, 834, 848, 855, 861], "arch_nam": [8, 26], "microsoft": [8, 26, 845, 848, 849, 855, 860, 862], "50": [8, 9, 26, 27, 38, 42, 52, 65, 74, 75, 76, 234, 274, 350, 365, 368, 369, 371, 396, 420, 428, 478, 535, 541, 548, 549, 565, 579, 619, 621, 624, 628, 631, 634, 662, 669, 680, 706, 708, 734, 746, 763, 766, 824, 836, 848, 849], "feature_extractor": [8, 26], "23": [8, 9, 21, 22, 23, 24, 38, 40, 42, 51, 52, 57, 61, 71, 74, 75, 76, 79, 84, 131, 230, 233, 250, 251, 252, 275, 277, 278, 279, 281, 288, 332, 333, 365, 368, 371, 380, 386, 387, 389, 399, 404, 405, 406, 410, 414, 456, 511, 517, 616, 619, 623, 624, 628, 631, 642, 644, 657, 661, 665, 673, 675, 676, 706, 713, 717, 726, 727, 728, 735, 799, 813, 829, 834], "980130": 8, "e": [8, 26, 43, 44, 48, 52, 57, 61, 63, 64, 65, 67, 74, 75, 80, 84, 87, 88, 90, 92, 93, 97, 124, 133, 134, 137, 138, 142, 146, 175, 188, 215, 216, 217, 221, 223, 224, 227, 229, 231, 235, 236, 238, 241, 242, 248, 249, 256, 257, 258, 259, 266, 267, 268, 269, 271, 275, 277, 278, 281, 282, 286, 295, 322, 329, 330, 362, 365, 368, 369, 370, 371, 375, 380, 381, 386, 387, 390, 404, 405, 406, 407, 411, 424, 427, 433, 446, 481, 496, 497, 498, 499, 500, 511, 512, 521, 614, 616, 617, 618, 619, 623, 624, 626, 628, 630, 632, 633, 634, 649, 654, 659, 660, 664, 665, 667, 670, 673, 674, 675, 678, 681, 689, 697, 708, 712, 713, 714, 717, 722, 723, 726, 727, 728, 736, 737, 738, 739, 740, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 779, 792, 793, 799, 800, 802, 804, 805, 806, 807, 808, 810, 812, 814, 818, 819, 824, 826, 829, 834, 837, 840, 841, 842, 845, 846, 848, 851], "tensorflow": [8, 10, 11, 15, 17, 18, 21, 22, 23, 24, 26, 27, 28, 31, 32, 33, 38, 44, 51, 52, 53, 74, 75, 142, 189, 219, 322, 362, 369, 422, 582, 616, 618, 621, 758, 771, 788, 799, 802, 803, 804, 805, 806, 808, 813, 814, 815, 819, 821, 825, 826, 827, 829, 830, 832, 834, 839, 840, 842, 845, 846, 849, 850, 853, 856, 858, 859, 861, 862], "xla": [8, 826, 840, 842, 855], "stream_executor": 8, "cuda_dnn": 8, "cc": [8, 21, 22, 24, 41, 819], "9342": 8, "unabl": [8, 806, 832], "regist": [8, 781, 806, 841, 848], "cudnn": 8, "factori": [8, 52, 370, 445, 446, 793], "attempt": [8, 21, 22, 23, 24, 40, 42, 45, 805, 831, 840], "plugin": [8, 805], "been": [8, 11, 13, 21, 23, 26, 27, 52, 53, 61, 75, 76, 84, 191, 278, 371, 480, 533, 534, 535, 618, 619, 621, 630, 725, 792, 793, 804, 806, 808, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 829, 834, 836, 840, 841, 848, 855, 862], "980177": 8, "cuda_fft": 8, "609": 8, "cufft": 8, "980207": 8, "cuda_bla": 8, "1518": 8, "cubla": 8, "351203": 8, "tf2tensorrt": 8, "py_util": 8, "38": [8, 9, 22, 38, 40, 42, 45, 49, 52, 74, 75, 84, 160, 285, 350, 365, 368, 380, 387, 406, 409, 410, 511, 617, 619, 624, 666, 763, 816], "trt": 8, "could": [8, 26, 27, 32, 63, 632, 736, 737, 738, 739, 804, 805, 806, 808, 813, 814, 816, 823, 825, 826, 827, 829, 834, 836, 837, 838, 845, 846, 855, 860, 861], "find": [8, 15, 41, 42, 45, 57, 63, 69, 80, 624, 628, 632, 667, 707, 736, 737, 738, 739, 792, 793, 799, 800, 801, 803, 804, 805, 806, 808, 811, 813, 819, 824, 829, 832, 834, 837, 841, 842, 844, 848], "tensorrt": 8, "doe": [8, 9, 17, 21, 22, 23, 24, 26, 39, 41, 51, 52, 53, 59, 69, 74, 75, 82, 92, 142, 269, 271, 279, 322, 362, 369, 370, 380, 381, 421, 445, 446, 516, 517, 521, 550, 616, 619, 621, 624, 626, 658, 695, 758, 793, 802, 804, 806, 807, 810, 813, 814, 816, 817, 819, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 840, 842, 845, 848, 851, 855, 856, 862], "placement": [8, 804], "consid": [8, 9, 21, 22, 23, 24, 31, 32, 52, 57, 63, 75, 80, 113, 142, 263, 264, 322, 328, 333, 344, 362, 365, 369, 380, 422, 426, 435, 510, 613, 616, 619, 624, 632, 656, 667, 736, 737, 738, 739, 765, 778, 809, 813, 814, 822, 824, 830, 832, 835, 836, 837, 844, 845, 848, 852, 856, 860, 862], "except": [8, 21, 22, 23, 24, 41, 42, 45, 52, 53, 59, 61, 66, 69, 75, 76, 80, 84, 89, 149, 329, 330, 335, 353, 365, 371, 375, 380, 457, 481, 497, 516, 517, 532, 550, 567, 582, 588, 617, 621, 624, 626, 630, 631, 635, 670, 687, 689, 697, 726, 727, 728, 734, 754, 755, 758, 761, 765, 799, 806, 807, 808, 809, 813, 814, 815, 817, 819, 821, 825, 826, 830, 831, 832, 836, 840], "390": [8, 21, 22, 23, 24], "current": [8, 17, 21, 22, 23, 24, 26, 27, 40, 41, 47, 52, 53, 69, 75, 98, 117, 161, 162, 165, 182, 183, 184, 185, 186, 187, 193, 194, 195, 196, 201, 203, 369, 371, 420, 421, 473, 481, 538, 539, 542, 545, 547, 551, 562, 563, 582, 615, 617, 618, 621, 624, 628, 658, 705, 715, 716, 760, 764, 780, 781, 788, 789, 793, 796, 799, 801, 804, 805, 806, 808, 810, 812, 813, 814, 815, 818, 819, 820, 822, 825, 826, 827, 828, 829, 832, 834, 839, 840, 846, 848, 855, 861, 862], "quietli": [8, 21, 22, 23, 24], "control": [8, 21, 22, 23, 24, 34, 52, 75, 142, 291, 322, 360, 362, 368, 371, 391, 392, 393, 456, 482, 568, 616, 621, 624, 656, 812, 814, 815, 824, 825, 826, 827, 832, 836, 837, 842, 848, 855, 861], "set_inplace_mod": [8, 21, 22, 23, 24, 591, 621], "strict": [8, 21, 22, 23, 24, 568, 591, 621], "rais": [8, 21, 22, 23, 24, 41, 42, 48, 52, 53, 61, 63, 66, 69, 71, 75, 76, 82, 84, 86, 89, 123, 149, 238, 273, 329, 330, 339, 365, 368, 370, 371, 375, 380, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 481, 487, 497, 516, 517, 526, 550, 568, 570, 580, 582, 588, 592, 617, 619, 621, 624, 626, 630, 631, 632, 634, 635, 664, 666, 680, 689, 690, 691, 693, 695, 696, 697, 698, 700, 726, 727, 728, 734, 739, 747, 749, 754, 755, 758, 765, 783, 799, 806, 808, 810, 814, 815, 818, 825, 826, 830, 831, 834, 836, 841, 845], "error": [8, 9, 21, 22, 23, 24, 32, 43, 45, 51, 52, 56, 69, 74, 75, 79, 105, 237, 285, 329, 330, 337, 365, 369, 370, 371, 380, 381, 435, 441, 442, 444, 481, 517, 521, 568, 613, 619, 621, 623, 624, 634, 652, 672, 675, 747, 749, 765, 783, 796, 800, 803, 804, 805, 806, 808, 809, 810, 813, 814, 815, 816, 820, 821, 826, 829, 830, 831, 836, 840, 846, 855], "whenev": [8, 21, 22, 23, 24, 779, 806, 810, 813, 814, 818, 825, 828, 829, 831, 837], "inputs_jax": [8, 26], "last_hidden_st": [8, 26], "jax_forward": [8, 26], "jit_appli": 8, "63": [8, 9, 38, 42, 51, 68, 74, 79, 80, 113, 274, 281, 282, 368, 380, 389, 399, 410, 511, 619, 624, 628, 634, 653, 669, 706, 717, 746], "122": [8, 49, 163, 233, 619], "134": [8, 56, 624, 647, 666], "2x": [8, 26], "ipytest": 9, "panda": [9, 40, 42, 845], "matplotlib": [9, 21, 22, 23, 24, 40, 41, 42, 45], "scikit": [9, 369, 437, 845], "learn": [9, 11, 13, 17, 18, 19, 20, 22, 24, 26, 27, 28, 29, 30, 31, 38, 40, 54, 77, 369, 437, 533, 603, 606, 608, 609, 610, 621, 622, 627, 702, 703, 704, 783, 799, 800, 803, 804, 805, 807, 808, 814, 819, 820, 822, 824, 833, 842, 844, 845, 853, 857, 858, 859, 860, 861, 862], "cryptographi": 9, "frontend": [9, 567, 621, 760, 761, 764, 768, 771, 799, 803, 806, 807, 813, 814, 818, 819, 824, 828, 829, 832, 833, 835, 842, 849, 855], "sklearn": 9, "classification_report": 9, "model_select": 9, "train_test_split": 9, "dataset": [9, 26, 69, 799, 837, 848, 849], "load_breast_canc": 9, "pyplot": [9, 40, 41, 42, 45], "plt": [9, 40, 41, 42, 45], "pd": [9, 42], "functool": [9, 40, 818, 826, 836], "autoconfig": 9, "tqdm": [9, 21, 22, 23, 24, 40, 42, 799], "tqdm_notebook": 9, "These": [9, 33, 52, 75, 369, 371, 380, 421, 472, 510, 623, 624, 649, 658, 659, 799, 803, 804, 805, 806, 808, 812, 814, 816, 817, 821, 822, 825, 826, 829, 834, 835, 837, 838, 839, 840, 842, 844, 845, 846, 849, 855, 859, 861, 862], "sole": [9, 38, 821, 830, 854, 855, 856], "verifi": [9, 23, 319, 320, 362, 804, 814, 815, 826, 829, 830], "re": [9, 15, 18, 19, 20, 26, 27, 28, 29, 30, 31, 32, 33, 40, 42, 43, 45, 52, 53, 62, 75, 85, 95, 208, 313, 362, 369, 371, 440, 474, 475, 533, 618, 621, 624, 626, 631, 676, 694, 733, 735, 800, 801, 804, 805, 806, 807, 808, 811, 814, 819, 824, 825, 826, 827, 828, 830, 832, 836, 839, 840, 843, 844, 845, 855], "test_jax_gpu": 9, "xla_bridg": [9, 40], "get_backend": [9, 822], "test_torch_gpu": 9, "is_avail": 9, "test_xgboost_gpu": 9, "capsi": 9, "load_diabet": 9, "y": [9, 26, 27, 38, 39, 41, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 124, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 158, 160, 163, 175, 188, 192, 196, 201, 202, 203, 207, 209, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 328, 329, 330, 336, 343, 344, 345, 346, 347, 352, 354, 356, 360, 362, 365, 368, 369, 370, 371, 374, 380, 387, 389, 391, 392, 396, 399, 401, 405, 411, 418, 422, 428, 433, 440, 442, 444, 445, 446, 447, 448, 458, 460, 469, 473, 481, 482, 483, 488, 492, 493, 495, 503, 509, 510, 511, 512, 513, 516, 518, 519, 520, 522, 525, 528, 529, 532, 533, 535, 536, 537, 540, 541, 542, 546, 548, 549, 550, 552, 553, 556, 557, 562, 569, 570, 571, 574, 577, 578, 579, 580, 582, 584, 586, 587, 588, 592, 593, 596, 599, 600, 601, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 638, 640, 642, 644, 645, 646, 647, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 672, 674, 675, 676, 678, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 714, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 797, 799, 810, 812, 815, 816, 824, 826, 827, 829, 830, 832, 834, 836, 848], "target": [9, 11, 13, 19, 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 42, 52, 75, 190, 370, 442, 443, 444, 445, 446, 447, 448, 618, 758, 779, 781, 787, 799, 802, 805, 807, 810, 819, 820, 827, 828, 833, 837, 838, 839, 849, 850, 851, 853, 854, 855, 858, 860, 861], "xgb_model": 9, "xgbregressor": 9, "tree_method": 9, "caus": [9, 370, 443, 805, 806, 808, 810, 812, 813, 814, 816, 825, 827, 829, 840], "either": [9, 21, 22, 31, 32, 33, 34, 38, 44, 51, 52, 53, 56, 65, 69, 74, 75, 76, 79, 80, 107, 110, 113, 118, 128, 129, 139, 215, 216, 217, 218, 223, 233, 235, 236, 238, 240, 242, 249, 250, 256, 257, 258, 259, 260, 268, 277, 279, 280, 282, 285, 286, 331, 352, 365, 368, 374, 380, 389, 399, 409, 410, 414, 494, 511, 512, 532, 552, 560, 561, 569, 588, 613, 615, 616, 619, 621, 623, 624, 627, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 664, 669, 672, 676, 702, 703, 704, 744, 745, 750, 752, 765, 779, 780, 781, 788, 801, 804, 805, 806, 810, 811, 812, 814, 815, 816, 817, 818, 820, 822, 825, 826, 827, 828, 829, 832, 834, 837, 840, 841, 849, 855], "fit": [9, 59, 82, 626, 692, 804, 826, 834, 851, 852, 855], "consol": [9, 563, 621, 799, 806, 820, 829, 836, 841], "gpu_hist": 9, "captur": [9, 824, 829, 839, 856], "readouterr": 9, "err": 9, "99": [9, 38, 51, 52, 54, 72, 74, 84, 130, 217, 232, 353, 365, 579, 606, 616, 619, 621, 622, 628, 634, 709, 717, 727, 746], "implement": [9, 17, 18, 26, 28, 32, 40, 43, 49, 50, 52, 63, 64, 72, 73, 75, 80, 87, 92, 147, 161, 162, 175, 194, 195, 209, 215, 216, 217, 220, 221, 222, 223, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 268, 270, 273, 277, 280, 281, 285, 286, 329, 330, 352, 365, 369, 380, 420, 421, 516, 517, 538, 539, 617, 618, 619, 621, 623, 624, 632, 633, 634, 649, 658, 659, 660, 669, 678, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 764, 766, 788, 799, 802, 804, 807, 808, 809, 810, 812, 814, 815, 817, 818, 819, 821, 822, 823, 825, 827, 829, 830, 832, 834, 836, 837, 838, 839, 840, 842, 852, 853, 854, 855, 858, 861, 862], "binari": [9, 21, 22, 24, 52, 53, 56, 58, 75, 79, 81, 225, 228, 230, 265, 285, 368, 370, 413, 445, 448, 619, 623, 625, 646, 649, 683], "tabular": 9, "pulsar": 9, "emploi": [9, 861], "remov": [9, 15, 16, 19, 24, 26, 27, 29, 57, 69, 80, 624, 626, 627, 628, 657, 664, 678, 696, 702, 703, 719, 793, 796, 799, 804, 810, 811, 813, 814, 817, 822, 828, 829, 832, 839, 848, 849, 855], "id": [9, 41, 52, 75, 191, 324, 325, 326, 362, 545, 618, 621, 799, 803, 805, 809, 811, 812, 820, 824, 829, 841], "column": [9, 42, 52, 57, 75, 80, 92, 93, 127, 142, 322, 362, 369, 371, 378, 380, 421, 427, 437, 457, 462, 464, 465, 469, 471, 503, 509, 510, 616, 624, 658, 659, 665, 671, 673, 674, 679, 763, 778], "well": [9, 26, 27, 40, 41, 42, 76, 370, 445, 546, 621, 624, 673, 765, 799, 801, 804, 806, 811, 813, 814, 818, 825, 826, 827, 829, 838, 839, 849, 854, 855, 856, 860], "standard": [9, 51, 57, 60, 61, 65, 74, 83, 84, 88, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 369, 371, 380, 411, 439, 481, 510, 601, 616, 617, 619, 621, 624, 626, 629, 630, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 724, 727, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 765, 778, 782, 792, 793, 799, 804, 807, 808, 809, 812, 814, 817, 821, 825, 828, 829, 830, 840, 843, 849, 851, 853, 854, 857, 858, 860], "while": [9, 26, 27, 34, 52, 56, 69, 75, 79, 92, 93, 98, 120, 136, 174, 242, 243, 263, 264, 340, 365, 368, 369, 371, 412, 413, 433, 475, 476, 509, 615, 616, 617, 619, 623, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 736, 748, 751, 761, 802, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 819, 820, 821, 822, 824, 825, 826, 827, 828, 829, 830, 832, 836, 838, 839, 840, 841, 844, 845, 848, 855, 861, 862], "extra": [9, 27, 69, 98, 117, 601, 615, 621, 809, 814, 816, 823, 825, 826, 827, 832, 834, 848, 849, 852, 857], "dimens": [9, 48, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 95, 97, 98, 101, 108, 112, 136, 140, 141, 310, 321, 323, 324, 325, 326, 329, 330, 334, 335, 342, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 410, 411, 413, 414, 416, 418, 421, 437, 445, 451, 452, 453, 457, 463, 474, 475, 476, 477, 479, 481, 489, 490, 491, 494, 498, 500, 503, 513, 515, 516, 517, 518, 519, 520, 533, 534, 535, 537, 544, 578, 581, 601, 613, 616, 621, 623, 624, 625, 626, 627, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 648, 649, 653, 654, 655, 657, 658, 659, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 681, 684, 685, 687, 689, 690, 691, 692, 693, 694, 695, 696, 697, 700, 702, 703, 704, 730, 731, 732, 734, 736, 737, 738, 739, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 775, 779, 782, 816, 818, 824, 826, 827, 829, 832, 834, 837], "label": [9, 40, 41, 42, 52, 58, 75, 81, 370, 442, 444, 445, 446, 447, 448, 625, 683, 684, 685, 799, 804, 808, 826, 833, 834, 835, 839, 841, 855], "load_data": 9, "standardscal": 9, "df": [9, 42], "read_csv": [9, 42], "delimit": [9, 837], "drop": [9, 42, 52, 75, 325, 362, 370, 371, 445, 482, 778, 779, 805, 840], "sc": 9, "fit_transform": 9, "prepare_data": 9, "tupl": [9, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 117, 122, 123, 129, 131, 135, 136, 138, 142, 144, 148, 149, 150, 161, 162, 163, 167, 168, 174, 175, 181, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 245, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 315, 319, 322, 328, 329, 330, 331, 332, 334, 335, 336, 338, 339, 341, 342, 343, 344, 348, 349, 350, 351, 352, 354, 355, 356, 357, 362, 365, 367, 368, 369, 371, 374, 375, 376, 378, 380, 386, 387, 388, 390, 391, 392, 393, 395, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 421, 422, 426, 430, 435, 437, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 454, 457, 458, 468, 473, 479, 481, 482, 483, 486, 489, 491, 492, 493, 494, 495, 497, 498, 500, 501, 502, 510, 511, 512, 513, 515, 516, 517, 518, 519, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 569, 579, 580, 581, 582, 584, 585, 586, 587, 600, 601, 602, 603, 604, 606, 608, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 627, 628, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 652, 653, 654, 658, 659, 660, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 676, 677, 678, 681, 683, 684, 685, 686, 687, 688, 690, 691, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 712, 713, 714, 716, 717, 720, 721, 722, 723, 725, 726, 727, 728, 730, 733, 734, 736, 737, 738, 739, 740, 741, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 778, 779, 781, 792, 793, 809, 814, 821, 822, 825, 827, 829, 834, 837, 838, 840, 848, 849, 850], "expand_dim": [9, 23, 26, 27, 42, 44, 59, 82, 623, 626, 645, 799, 826, 834, 837, 849], "astyp": [9, 11, 13, 18, 40, 41, 42, 49, 56, 72, 79, 617, 623, 639, 641, 642, 645, 799, 814, 825, 826, 832, 850], "csv": [9, 42, 799], "instanc": [9, 17, 23, 26, 27, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 160, 163, 166, 167, 168, 170, 175, 192, 204, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 365, 368, 369, 370, 371, 374, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 404, 405, 406, 410, 411, 413, 414, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 575, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 771, 776, 804, 805, 806, 808, 809, 810, 814, 816, 817, 818, 819, 821, 822, 823, 824, 825, 829, 837, 838, 839, 842, 848, 856], "117564": 9, "variou": [9, 20, 30, 32, 38, 799, 804, 805, 806, 808, 813, 814, 817, 818, 821, 823, 824, 826, 827, 828, 829, 841, 851, 853, 854, 855, 858, 861], "structur": [9, 27, 69, 72, 98, 160, 163, 530, 621, 628, 709, 718, 799, 804, 806, 809, 812, 822, 827, 828, 829, 830, 837, 838, 854, 855], "allow": [9, 24, 26, 27, 38, 52, 65, 75, 88, 132, 273, 369, 380, 438, 513, 517, 560, 616, 619, 621, 633, 634, 742, 749, 763, 764, 765, 766, 780, 781, 793, 797, 799, 804, 806, 809, 810, 813, 814, 818, 820, 822, 823, 824, 825, 826, 827, 829, 832, 834, 836, 840, 842, 845, 848, 849, 850, 853, 855, 859, 860], "navig": [9, 802, 805, 806, 807, 819], "choic": [9, 27, 44, 52, 65, 75, 88, 369, 371, 437, 456, 634, 751, 753, 799, 805, 813, 825, 826, 837, 846, 849, 855, 862], "rerun": [9, 40], "most": [9, 17, 26, 27, 69, 71, 92, 95, 136, 369, 421, 573, 595, 616, 621, 624, 658, 659, 796, 799, 803, 804, 805, 809, 812, 813, 814, 815, 819, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 840, 845, 855, 856, 858, 859, 861, 862], "method": [9, 17, 26, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 369, 370, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 530, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 622, 624, 625, 628, 631, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 672, 674, 675, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 716, 717, 718, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 771, 777, 778, 779, 780, 781, 804, 806, 808, 809, 813, 814, 815, 816, 817, 821, 829, 830, 834, 835, 838, 839, 840, 848, 849, 850, 856, 862], "signific": [9, 52, 370, 446, 831, 840, 844, 845, 855], "object": [9, 17, 22, 24, 26, 40, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 98, 101, 102, 124, 128, 129, 139, 151, 160, 163, 171, 174, 209, 267, 497, 545, 561, 604, 616, 617, 618, 621, 622, 628, 630, 708, 709, 710, 712, 713, 714, 720, 721, 722, 723, 730, 758, 760, 761, 768, 769, 770, 776, 777, 779, 780, 781, 788, 792, 799, 809, 810, 812, 813, 822, 823, 826, 827, 829, 832, 836, 839, 847, 848, 849, 850, 855, 861], "logist": 9, "booster": 9, "gblinear": 9, "n_estim": 9, "learning_r": 9, "reg_lambda": 9, "reg_alpha": 9, "base_margin": 9, "xgb_cl": 9, "ivy_cl": 9, "n": [9, 38, 41, 42, 43, 45, 48, 51, 52, 56, 57, 59, 61, 62, 65, 66, 74, 75, 79, 80, 82, 84, 85, 88, 89, 92, 97, 134, 140, 141, 142, 215, 285, 287, 322, 323, 335, 362, 365, 368, 369, 371, 374, 375, 378, 380, 382, 383, 384, 389, 390, 395, 396, 399, 400, 401, 409, 410, 411, 412, 414, 422, 423, 432, 434, 436, 441, 453, 459, 462, 466, 468, 479, 487, 489, 490, 491, 494, 496, 497, 498, 499, 500, 503, 510, 520, 616, 619, 623, 624, 626, 628, 630, 631, 634, 635, 636, 637, 638, 639, 641, 643, 645, 649, 654, 657, 661, 663, 664, 665, 666, 667, 668, 669, 670, 671, 674, 675, 678, 679, 680, 681, 688, 689, 691, 697, 701, 713, 726, 727, 728, 734, 748, 750, 751, 752, 753, 754, 755, 779, 782, 792, 799, 807, 811, 813, 829, 841, 849], "436": 9, "48": [9, 38, 42, 51, 52, 74, 75, 76, 77, 84, 107, 217, 240, 282, 368, 387, 388, 389, 399, 405, 406, 409, 548, 602, 606, 613, 619, 621, 622, 624, 628, 634, 669, 706, 727, 746], "wai": [9, 15, 16, 17, 20, 22, 26, 30, 32, 38, 92, 95, 799, 801, 803, 805, 808, 809, 810, 811, 813, 814, 815, 825, 826, 827, 829, 832, 836, 837, 838, 839, 840, 841, 844, 845, 850, 857, 861, 862], "t4": 9, "higher": [9, 52, 75, 369, 371, 380, 425, 435, 441, 451, 452, 453, 520, 778, 814, 825, 833, 834, 839, 840, 852, 855, 856, 859, 861, 862], "tier": 9, "than": [9, 26, 27, 29, 32, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 69, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 97, 98, 121, 129, 160, 208, 216, 217, 220, 221, 223, 224, 227, 229, 231, 235, 241, 242, 256, 257, 258, 259, 266, 268, 273, 277, 279, 281, 282, 286, 287, 288, 296, 306, 328, 331, 344, 351, 362, 365, 368, 369, 371, 380, 389, 390, 395, 396, 399, 400, 401, 411, 412, 416, 418, 435, 441, 464, 465, 511, 512, 513, 552, 553, 556, 573, 595, 616, 617, 618, 619, 621, 623, 624, 626, 630, 631, 632, 634, 652, 654, 664, 665, 666, 667, 670, 681, 686, 690, 696, 728, 734, 737, 738, 739, 744, 745, 750, 751, 752, 753, 779, 793, 802, 806, 808, 812, 813, 814, 816, 818, 819, 825, 826, 827, 829, 830, 831, 832, 834, 837, 838, 839, 840, 841, 845, 852, 853, 854, 855, 861, 862], "reduc": [9, 52, 53, 57, 62, 65, 66, 69, 75, 76, 80, 85, 88, 89, 208, 329, 330, 349, 365, 366, 380, 515, 516, 517, 518, 519, 520, 534, 618, 621, 624, 631, 634, 635, 671, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 792, 793, 813, 818, 826, 832, 834, 836, 848, 853, 857, 858, 859], "lower": [9, 42, 48, 51, 52, 57, 61, 74, 75, 80, 84, 127, 140, 266, 301, 307, 313, 322, 323, 360, 362, 380, 513, 514, 520, 616, 619, 624, 630, 653, 659, 660, 667, 728, 765, 778, 799, 806, 814, 816, 826, 829, 834, 840, 842, 851, 852, 853, 855, 856, 861, 862], "although": [9, 624, 672, 799, 801, 809, 811, 812, 826, 832, 853, 855], "experi": [9, 15, 42, 805, 818, 829, 835, 837, 840], "demonstr": [9, 23, 26, 27, 41, 814, 816, 818, 836], "still": [9, 20, 22, 23, 26, 27, 29, 30, 33, 57, 69, 80, 624, 674, 763, 804, 805, 806, 809, 810, 814, 817, 818, 820, 822, 825, 826, 829, 832, 838, 840, 845, 848, 849, 852, 855, 861], "substanti": [9, 806, 809, 814, 829, 845, 855], "dive": [9, 15, 17, 26, 38, 800, 801, 803, 804, 806, 808, 812, 814, 820, 827, 833, 836, 837, 840, 861], "stuff": 9, "tool": [9, 17, 26, 27, 799, 805, 806, 816, 820, 835, 839, 840, 843, 846, 849, 853, 854, 855, 856, 858, 861, 862], "30": [9, 21, 22, 23, 24, 38, 40, 51, 52, 53, 75, 76, 84, 88, 98, 268, 298, 342, 350, 365, 368, 371, 389, 399, 410, 456, 478, 501, 533, 535, 540, 541, 548, 549, 565, 574, 579, 619, 621, 624, 628, 634, 662, 669, 714, 726, 727, 745, 746, 750, 765, 778, 793, 813], "25": [9, 38, 40, 41, 42, 51, 52, 53, 57, 58, 61, 65, 68, 74, 75, 76, 79, 80, 83, 84, 88, 97, 98, 113, 132, 218, 219, 229, 235, 237, 248, 253, 268, 273, 276, 278, 281, 282, 283, 288, 309, 362, 370, 380, 410, 442, 445, 447, 511, 520, 548, 549, 565, 579, 616, 619, 621, 624, 625, 628, 629, 634, 637, 653, 657, 662, 679, 684, 706, 713, 717, 724, 726, 727, 728, 745, 746, 748, 753, 812, 824], "22": [9, 21, 22, 23, 24, 38, 40, 42, 45, 46, 51, 52, 53, 61, 65, 68, 75, 76, 79, 84, 108, 113, 230, 238, 298, 302, 360, 368, 369, 371, 376, 380, 386, 387, 389, 404, 405, 406, 410, 414, 420, 456, 501, 511, 534, 565, 600, 613, 619, 623, 624, 628, 631, 634, 646, 647, 657, 662, 669, 673, 713, 723, 726, 727, 728, 735, 745, 746, 805, 812, 818], "201": [9, 74, 75, 220, 389, 619], "20x": 9, "24": [9, 19, 38, 40, 51, 52, 57, 65, 74, 75, 76, 79, 80, 84, 97, 230, 238, 253, 255, 268, 278, 279, 282, 342, 345, 365, 368, 380, 386, 388, 389, 399, 404, 405, 406, 410, 414, 511, 533, 534, 619, 621, 624, 628, 634, 637, 657, 665, 669, 706, 717, 726, 727, 728, 744, 746, 760, 818, 837], "ivy_pr": 9, "xgb_pred": 9, "ivyclassifi": 9, "nxgbclassifi": 9, "precis": [9, 52, 57, 75, 80, 160, 248, 268, 275, 282, 339, 365, 369, 380, 422, 510, 573, 595, 617, 619, 621, 624, 659, 660, 665, 672, 674, 675, 681, 771, 813, 826, 831, 832, 859], "recal": 9, "f1": [9, 814], "score": [9, 56, 79, 370, 448, 623, 650, 652, 799], "94": [9, 38, 51, 52, 54, 61, 74, 75, 77, 84, 202, 278, 279, 353, 365, 399, 606, 618, 622, 728], "106597": 9, "33": [9, 38, 40, 41, 51, 61, 65, 74, 75, 76, 77, 79, 221, 222, 229, 278, 368, 369, 371, 380, 387, 409, 410, 438, 456, 511, 529, 579, 606, 619, 621, 622, 623, 624, 628, 634, 646, 647, 669, 723, 726, 746, 753, 763, 766], "10967": 9, "accuraci": [9, 40, 42, 45, 368, 411, 814], "macro": 9, "avg": [9, 368, 386, 388, 409], "96": [9, 38, 52, 54, 74, 75, 76, 84, 232, 253, 285, 353, 365, 368, 389, 533, 534, 606, 619, 621, 622, 624, 634, 669, 728, 746], "67": [9, 38, 51, 52, 53, 57, 74, 75, 76, 79, 84, 97, 233, 238, 278, 279, 281, 288, 298, 302, 360, 380, 410, 511, 533, 534, 579, 605, 607, 619, 621, 622, 624, 661, 728], "73": [9, 38, 51, 80, 282, 380, 511, 624, 630, 653, 727, 829], "92": [9, 38, 42, 52, 53, 84, 353, 365, 600, 610, 622, 624, 655, 727, 728], "28": [9, 24, 26, 27, 38, 40, 42, 45, 51, 52, 56, 60, 74, 75, 76, 79, 80, 84, 88, 234, 237, 258, 274, 368, 369, 389, 399, 420, 517, 548, 602, 619, 621, 622, 623, 624, 629, 634, 638, 640, 642, 644, 645, 647, 669, 724, 726, 727, 728, 746, 750, 799], "27": [9, 38, 40, 45, 51, 52, 57, 61, 74, 75, 79, 80, 84, 88, 229, 230, 233, 273, 281, 282, 339, 365, 368, 389, 399, 549, 619, 621, 624, 628, 634, 664, 669, 679, 706, 713, 727, 746, 750, 763], "852": [9, 623, 647], "449": [9, 529, 621], "47": [9, 38, 42, 51, 52, 57, 61, 74, 75, 76, 77, 79, 84, 224, 282, 368, 380, 387, 405, 406, 511, 533, 534, 606, 619, 621, 622, 623, 624, 630, 647, 661, 727, 728], "29": [9, 38, 40, 42, 45, 57, 74, 76, 77, 79, 84, 223, 380, 410, 511, 533, 534, 604, 608, 619, 621, 622, 624, 661, 726, 727, 728], "82": [9, 38, 40, 45, 46, 51, 77, 84, 108, 221, 380, 511, 602, 622, 727, 728, 802, 819], "68": [9, 38, 42, 45, 51, 84, 108, 130, 223, 368, 389, 399, 613, 616, 619, 624, 629, 680, 724, 727, 728], "nevertheless": 9, "fall": [9, 40, 783, 804, 814, 833], "short": [9, 38, 52, 75, 415, 623, 648, 804, 806, 814, 834, 838], "blaze": 9, "31": [9, 21, 22, 23, 24, 38, 40, 41, 45, 46, 51, 52, 74, 75, 76, 79, 84, 108, 113, 133, 229, 260, 268, 368, 371, 380, 388, 389, 456, 511, 528, 613, 616, 619, 621, 727, 728, 837], "32": [9, 24, 26, 27, 38, 40, 41, 42, 51, 52, 61, 74, 75, 79, 80, 84, 97, 98, 107, 159, 217, 229, 230, 239, 253, 259, 275, 278, 279, 332, 365, 368, 369, 371, 380, 387, 388, 389, 399, 409, 410, 420, 424, 456, 511, 533, 549, 613, 617, 619, 621, 623, 624, 630, 631, 634, 638, 640, 641, 645, 647, 664, 669, 680, 726, 727, 728, 735, 746, 763, 766, 799, 813, 814, 824, 837, 860], "03": [9, 22, 41, 48, 51, 53, 54, 74, 75, 77, 84, 133, 233, 258, 337, 579, 580, 603, 608, 616, 619, 621, 622, 624, 625, 662, 683, 727], "62": [9, 38, 40, 46, 68, 74, 84, 108, 253, 281, 619, 629, 630, 724, 726, 728], "36": [9, 38, 42, 51, 52, 56, 65, 75, 76, 80, 223, 278, 279, 342, 365, 368, 369, 380, 389, 399, 425, 511, 533, 534, 580, 619, 621, 624, 628, 634, 647, 666, 669, 679, 716, 746], "35": [9, 38, 46, 56, 57, 68, 74, 75, 79, 80, 84, 108, 223, 282, 368, 389, 399, 619, 623, 624, 631, 634, 647, 654, 661, 727, 735, 746], "37": [9, 21, 22, 23, 24, 38, 46, 51, 52, 68, 74, 75, 79, 97, 108, 221, 229, 278, 281, 285, 376, 410, 501, 619, 623, 624, 628, 630, 647, 666, 713, 727, 813], "surpass": 9, "remark": [9, 840], "artifici": 9, "simpli": [9, 17, 26, 27, 29, 38, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 619, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 799, 804, 805, 806, 809, 810, 811, 813, 814, 815, 816, 817, 819, 821, 822, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 856, 861], "stack": [9, 19, 21, 22, 23, 24, 29, 38, 42, 52, 57, 59, 69, 75, 80, 82, 97, 140, 141, 323, 362, 369, 371, 421, 457, 458, 460, 469, 488, 567, 576, 598, 616, 621, 624, 626, 628, 655, 657, 658, 659, 660, 662, 664, 666, 667, 668, 670, 671, 672, 674, 675, 678, 705, 715, 716, 779, 799, 803, 808, 825, 834, 851, 853, 860, 861], "x_doubl": 9, "vstack": [9, 52, 75, 371, 469], "y_doubl": 9, "explor": [9, 11, 13, 17, 21, 22, 23, 26, 27, 32, 33, 34, 804, 805, 806, 814, 819, 832, 835, 839, 855, 858], "235128": 9, "41": [9, 21, 22, 23, 24, 38, 40, 45, 51, 52, 57, 74, 75, 76, 79, 80, 108, 222, 230, 237, 268, 282, 368, 369, 376, 380, 387, 405, 410, 430, 501, 511, 528, 529, 613, 619, 621, 624, 634, 653, 661, 752], "315": [9, 274, 619], "40": [9, 38, 40, 42, 52, 53, 74, 75, 76, 84, 88, 98, 229, 233, 253, 282, 342, 365, 368, 371, 387, 389, 399, 405, 478, 533, 535, 540, 541, 565, 579, 601, 604, 619, 621, 622, 624, 628, 634, 662, 669, 714, 727, 746, 750, 799, 813], "879": 9, "65": [9, 38, 40, 42, 45, 74, 77, 84, 229, 268, 529, 548, 602, 619, 621, 622, 624, 634, 669, 727, 728, 746, 813], "380": 9, "seem": [9, 804, 805, 832, 838, 839, 840, 855], "observ": [9, 52, 75, 380, 509, 510, 806, 814, 818, 834, 848, 857], "examin": 9, "600": [9, 42, 76, 79, 368, 391, 392, 541, 813], "plot": [9, 41, 799, 855], "conduct": [9, 859], "num_boosting_round": 9, "300": [9, 74, 76, 79, 278, 368, 391, 392, 541, 565, 619, 621, 624, 662, 829], "400": [9, 76, 79, 368, 391, 392, 541, 565, 621, 624, 662], "500": [9, 52, 75, 76, 79, 368, 369, 391, 392, 441, 541, 621], "ivy_elapsed_tim": 9, "xgb_elapsed_tim": 9, "ivy_tim": 9, "partial": [9, 52, 69, 75, 161, 162, 194, 195, 342, 365, 368, 369, 371, 380, 415, 435, 474, 475, 476, 477, 517, 538, 539, 607, 617, 618, 621, 622, 624, 663, 764, 766, 780, 781, 806, 811, 832], "append": [9, 41, 42, 52, 57, 69, 75, 227, 335, 365, 619, 624, 626, 657, 664, 689, 793, 799, 813, 829, 834, 837], "xgb_time": 9, "fivethirtyeight": 9, "legend": [9, 42, 804], "loc": 9, "best": [9, 40, 560, 621, 793, 799, 800, 802, 803, 804, 805, 806, 807, 813, 814, 818, 819, 828, 829, 830, 841, 858, 859], "xlabel": 9, "ylabel": 9, "obviou": [9, 837, 855], "trend": 9, "longer": [9, 805, 814, 825, 829, 855], "gap": 9, "between": [9, 15, 16, 21, 31, 32, 33, 38, 51, 52, 53, 56, 57, 58, 59, 63, 69, 74, 75, 79, 80, 81, 82, 98, 121, 160, 223, 236, 271, 287, 328, 344, 346, 365, 368, 369, 370, 371, 380, 391, 392, 393, 404, 405, 406, 414, 420, 424, 442, 443, 444, 445, 446, 447, 448, 473, 520, 616, 617, 619, 623, 625, 626, 628, 630, 632, 646, 669, 683, 684, 685, 689, 697, 711, 726, 737, 738, 739, 764, 771, 783, 799, 809, 810, 814, 816, 821, 822, 823, 825, 826, 827, 828, 829, 832, 833, 835, 836, 837, 839, 844, 848, 849, 851, 852, 854, 855, 856, 861], "within": [9, 11, 13, 17, 26, 27, 47, 52, 75, 121, 328, 344, 365, 368, 374, 404, 405, 406, 411, 414, 451, 452, 453, 494, 616, 630, 728, 793, 804, 806, 809, 813, 814, 826, 827, 828, 829, 838, 840, 849, 851, 852, 856], "slightli": [9, 306, 362, 812, 826, 829, 834, 838], "paramet": [9, 13, 24, 26, 27, 40, 42, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 554, 555, 556, 557, 559, 560, 561, 564, 565, 568, 569, 570, 571, 574, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 619, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 765, 766, 771, 776, 778, 779, 780, 781, 782, 783, 784, 788, 789, 792, 793, 795, 799, 804, 809, 817, 818, 821, 826, 827, 829, 830, 834, 836, 837, 848, 849, 850, 856], "x_train": 9, "y_train": [9, 42, 799], "train_siz": [9, 40], "random_st": [9, 369, 426], "51": [9, 38, 42, 51, 52, 74, 75, 76, 84, 230, 268, 281, 369, 389, 441, 619, 728, 763], "clear": [9, 190, 618, 804, 806, 810, 814, 815, 816, 826, 832, 834, 836, 844, 845, 846, 855], "amount": [9, 58, 81, 210, 618, 625, 683, 684, 685, 793, 805, 813, 815, 827], "widen": 9, "impress": 9, "outcom": [9, 52, 75, 331, 342, 365, 793], "howev": [9, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 57, 80, 242, 285, 286, 371, 374, 481, 489, 491, 568, 619, 621, 624, 672, 674, 788, 804, 805, 808, 809, 810, 812, 814, 815, 816, 817, 818, 820, 821, 822, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 840, 845, 848, 854, 855, 861], "tend": 9, "outperform": 9, "proce": [9, 804, 805], "95933": 9, "9874": 9, "105807": 9, "70": [9, 38, 40, 52, 75, 76, 368, 389, 399, 541, 565, 624, 634, 669, 746, 845], "77": [9, 38, 42, 76, 580, 624, 634, 669, 746], "93": [9, 38, 52, 74, 76, 84, 193, 282, 353, 365, 533, 534, 618, 621, 727, 728], "wrap": [9, 17, 19, 26, 27, 29, 40, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 527, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 576, 579, 580, 581, 582, 584, 586, 587, 598, 600, 602, 603, 606, 608, 609, 610, 611, 621, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 760, 799, 807, 808, 809, 810, 812, 813, 814, 815, 817, 818, 821, 822, 825, 826, 829, 834, 836, 839, 840, 842, 848, 849, 851, 855, 856, 861, 862], "balanc": 9, "breast": 9, "cancer": 9, "53": [9, 21, 38, 57, 61, 74, 79, 154, 210, 240, 410, 605, 607, 617, 618, 622, 624, 629, 661, 724, 728], "return_x_i": 9, "x_test": 9, "y_test": 9, "test_siz": [9, 40], "76": [9, 19, 38, 51, 52, 65, 72, 74, 75, 84, 163, 217, 233, 281, 316, 362, 399, 617, 619, 624, 628, 634, 676, 713, 727, 746], "87": [9, 38, 77, 79, 229, 258, 368, 380, 410, 411, 511, 602, 619, 622, 763, 819], "171": [9, 57, 624, 661, 763], "90": [9, 38, 40, 42, 51, 52, 74, 75, 234, 274, 278, 353, 365, 371, 380, 479, 511, 619, 624, 634, 669, 746, 793, 845], "86": [9, 38, 61, 75, 84, 368, 380, 399, 511, 602, 622, 727, 728], "88": [9, 38, 77, 84, 107, 380, 511, 606, 613, 622, 624, 630, 634, 669, 728, 746], "perfectli": [9, 765, 846], "align": [9, 52, 69, 75, 368, 369, 403, 419, 623, 651, 793, 805, 813, 826, 828, 834, 836, 842, 861], "gain": [9, 778, 806, 808, 833, 838, 855], "combin": [9, 32, 52, 69, 75, 98, 368, 380, 401, 412, 510, 538, 539, 621, 624, 654, 664, 806, 809, 812, 813, 814, 816, 818, 822, 829, 839, 855], "build": [10, 14, 15, 17, 24, 26, 27, 30, 31, 32, 33, 38, 40, 45, 63, 69, 98, 632, 736, 737, 738, 739, 779, 780, 781, 799, 800, 805, 807, 813, 814, 822, 824, 833, 835, 838, 839, 840, 842, 845, 849, 853, 855, 857, 860, 861, 862], "timm": [10, 11, 15, 26, 27, 799, 849], "kera": [10, 11, 13, 15, 16, 24, 26, 27, 43, 44, 776, 799, 846, 849, 861], "seen": [11, 13, 18, 24, 26, 369, 375, 427, 498, 545, 621, 788, 813, 814, 816, 818, 826, 829, 834, 836, 837, 844, 845, 861], "veri": [11, 19, 26, 27, 29, 51, 74, 269, 328, 344, 365, 619, 624, 672, 765, 803, 804, 805, 806, 811, 812, 814, 815, 816, 818, 819, 821, 822, 825, 826, 827, 829, 830, 832, 835, 837, 838, 839, 840, 844, 845, 851, 852, 853, 855, 856, 857, 860, 861, 862], "guid": [11, 24, 799, 800, 804, 805, 806, 811, 820, 826, 828, 861], "focu": [11, 24, 804, 824, 853, 854, 857, 862], "more": [11, 14, 15, 17, 18, 19, 22, 24, 26, 27, 28, 29, 38, 40, 41, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 148, 240, 242, 258, 273, 286, 290, 294, 295, 297, 356, 360, 366, 369, 370, 371, 416, 418, 430, 433, 445, 451, 452, 453, 458, 479, 568, 613, 616, 617, 619, 621, 624, 626, 632, 657, 663, 664, 667, 670, 672, 674, 681, 690, 697, 736, 737, 738, 739, 765, 775, 793, 799, 801, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 816, 818, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833, 834, 835, 836, 837, 838, 839, 840, 841, 849, 850, 853, 854, 855, 856, 857, 858, 861, 862], "involv": [11, 14, 15, 22, 24, 49, 72, 175, 218, 235, 242, 268, 273, 617, 619, 793, 800, 804, 807, 813, 814, 816, 827, 832, 839, 845, 855, 861], "develop": [11, 25, 26, 27, 799, 800, 801, 802, 803, 804, 805, 806, 808, 811, 813, 819, 828, 830, 840, 842, 844, 845, 846, 848, 849, 853, 854, 855, 856, 857, 860, 861, 862], "usual": [11, 13, 43, 235, 268, 619, 792, 805, 808, 814, 826, 829, 832], "own": [11, 13, 17, 26, 27, 32, 799, 805, 808, 813, 814, 817, 818, 825, 826, 830, 834, 840, 842, 845, 846, 851, 854, 855, 860, 861], "directli": [11, 13, 17, 20, 24, 26, 27, 30, 368, 369, 403, 427, 628, 717, 799, 804, 805, 806, 808, 809, 812, 813, 814, 815, 817, 820, 822, 823, 825, 826, 827, 830, 831, 834, 836, 838, 839, 840, 841, 846, 848, 849, 850, 859, 860, 861], "case": [11, 13, 19, 21, 26, 27, 29, 30, 31, 32, 40, 47, 48, 52, 53, 59, 65, 69, 71, 75, 76, 82, 92, 93, 98, 123, 134, 161, 162, 189, 194, 195, 202, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 243, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 340, 342, 352, 365, 368, 371, 374, 375, 381, 391, 392, 393, 413, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 478, 479, 487, 489, 491, 498, 521, 538, 539, 543, 550, 564, 565, 566, 616, 617, 618, 619, 621, 624, 626, 628, 634, 672, 678, 689, 690, 691, 693, 695, 696, 698, 700, 708, 714, 747, 748, 749, 750, 751, 752, 753, 763, 764, 783, 793, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 839, 840, 845, 848, 849, 850, 854, 858], "mlp": 11, "mixer": 11, "onli": [11, 13, 26, 27, 32, 38, 40, 42, 44, 47, 48, 51, 52, 57, 59, 61, 69, 71, 74, 75, 80, 82, 84, 92, 95, 97, 113, 133, 173, 174, 203, 263, 264, 269, 275, 306, 336, 342, 362, 365, 368, 369, 371, 375, 380, 390, 403, 413, 422, 427, 439, 441, 451, 452, 453, 463, 496, 497, 513, 527, 613, 616, 617, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 649, 664, 671, 674, 675, 690, 693, 705, 706, 712, 713, 715, 716, 717, 722, 723, 726, 727, 728, 731, 732, 742, 748, 751, 761, 763, 764, 766, 779, 783, 792, 799, 800, 801, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 818, 821, 822, 824, 825, 826, 827, 829, 830, 831, 832, 834, 836, 837, 838, 839, 840, 844, 848, 849, 854, 855, 856, 861, 862], "retriev": [11, 13, 17, 523, 545, 570, 621, 806, 826], "mlp_encod": [11, 26, 27, 799, 849], "create_model": [11, 26, 27, 799, 849], "mixer_b16_224": [11, 26, 27, 799, 849], "nois": [11, 13, 26, 27, 799, 848, 849], "randn": [11, 13, 26, 27, 799, 849], "tf_mlp_encod": [11, 26, 27], "output_torch": [11, 13], "output_tf": [11, 13], "constant": [11, 13, 18, 21, 22, 28, 31, 33, 38, 52, 59, 60, 75, 82, 83, 92, 93, 316, 362, 368, 370, 371, 413, 445, 446, 473, 626, 628, 629, 688, 711, 724, 778, 782, 799, 822, 827, 830, 838, 839, 840, 848, 850], "output_dens": [11, 26, 27, 799], "layer": [11, 13, 17, 23, 24, 26, 27, 38, 43, 52, 60, 75, 83, 629, 648, 649, 724, 776, 778, 780, 781, 782, 783, 784, 799, 817, 826, 830, 832, 834, 835, 838, 844, 849, 853, 855, 859, 862], "dens": [11, 24, 26, 27, 310, 362, 779, 799], "unit": [11, 26, 27, 52, 68, 75, 92, 93, 105, 107, 108, 109, 110, 111, 112, 113, 290, 291, 293, 297, 299, 300, 303, 304, 305, 360, 492, 493, 613, 799, 805, 808, 814, 826, 827, 829, 840, 856, 859], "activ": [11, 24, 26, 27, 52, 53, 56, 67, 75, 79, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 582, 623, 649, 652, 778, 779, 799, 804, 805, 806, 814, 820, 830, 831, 838, 849, 855, 858], "mention": [11, 13, 26, 27, 32, 804, 805, 806, 809, 816, 821, 822, 825, 826, 829, 832, 845, 850, 855], "basic": [11, 13, 17, 20, 24, 26, 27, 30, 33, 371, 480, 799, 800, 804, 816, 829], "fulli": [11, 13, 15, 16, 19, 24, 26, 27, 40, 52, 75, 380, 517, 779, 799, 809, 814, 821, 824, 832, 834, 835, 836, 837, 838, 839, 840, 846, 850, 853, 854, 855, 861, 862], "trainabl": [11, 13, 17, 23, 24, 26, 27, 44, 776, 780, 781, 784, 799, 817, 835, 837, 838, 849, 850], "fine": [11, 13, 26, 27, 805, 806, 814, 816, 826, 836, 839, 861], "tune": [11, 13, 26, 27, 860, 861], "train": [11, 13, 24, 26, 27, 43, 52, 54, 56, 75, 77, 79, 95, 368, 369, 374, 391, 392, 393, 438, 489, 491, 602, 603, 608, 622, 623, 646, 649, 652, 778, 779, 780, 781, 782, 799, 812, 815, 822, 837, 838, 839, 840, 846, 849, 853, 854, 859, 861, 862], "ground": [11, 13, 370, 442, 758, 760, 771, 802, 819, 826, 829, 844], "ret": [11, 13, 26, 27, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 158, 159, 160, 161, 162, 163, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 199, 200, 201, 202, 207, 208, 209, 210, 211, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 413, 414, 415, 416, 418, 419, 420, 421, 423, 428, 431, 433, 436, 439, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 481, 482, 483, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 559, 560, 561, 562, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 711, 712, 713, 714, 715, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 766, 776, 781, 783, 788, 793, 795, 799, 814, 815, 817, 818, 824, 825, 826, 827, 830, 834, 839, 849], "op": [11, 17, 38, 775, 788, 830, 834, 840], "eagertensor": [11, 17, 38, 788, 827], "readi": [11, 13, 18, 19, 20, 28, 29, 30, 31, 32, 33, 40, 42, 804, 805], "deepmind": [12, 846], "perceiverio": [12, 846], "backbon": [12, 40, 799, 834, 837], "TO": [12, 14, 25], "replac": [12, 14, 25, 41, 51, 52, 53, 59, 61, 69, 74, 75, 76, 82, 84, 127, 269, 304, 307, 360, 362, 371, 478, 481, 564, 565, 569, 616, 619, 621, 626, 630, 686, 725, 763, 806, 811, 812, 814, 815, 823, 826, 829, 836, 839, 840, 845, 849, 862], "efficientnet": 13, "include_top": [13, 799], "eff_encod": [13, 799], "applic": [13, 15, 40, 42, 45, 52, 56, 75, 79, 95, 369, 441, 623, 624, 628, 634, 649, 652, 678, 711, 712, 713, 717, 718, 750, 752, 799, 805, 813, 814, 815, 823, 838, 852, 853, 855, 857, 859, 861], "efficientnet_v2": [13, 799], "efficientnetv2b0": [13, 799], "data": [13, 21, 22, 23, 24, 27, 32, 40, 42, 45, 46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 64, 65, 66, 68, 69, 71, 74, 75, 76, 79, 80, 82, 84, 85, 86, 87, 88, 89, 97, 98, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 145, 146, 147, 149, 150, 152, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 187, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 294, 295, 296, 297, 306, 307, 308, 309, 310, 311, 312, 323, 324, 325, 326, 327, 329, 330, 331, 347, 352, 360, 362, 365, 368, 369, 371, 375, 379, 380, 383, 391, 392, 393, 409, 411, 413, 419, 421, 439, 456, 478, 481, 482, 484, 496, 497, 498, 499, 500, 506, 510, 511, 512, 516, 519, 520, 537, 550, 552, 553, 556, 582, 613, 616, 618, 619, 621, 623, 624, 626, 628, 630, 631, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 646, 647, 653, 654, 655, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 687, 690, 691, 693, 694, 696, 697, 701, 709, 726, 727, 728, 730, 731, 732, 734, 735, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 775, 778, 779, 780, 781, 785, 793, 799, 805, 807, 808, 809, 810, 811, 812, 815, 817, 821, 822, 823, 825, 827, 830, 832, 834, 836, 842, 843, 845, 855, 856, 857, 859, 860, 861], "storag": [13, 40, 41, 837, 845], "googleapi": [13, 40, 41], "efficientnetv2": 13, "b0_notop": 13, "h5": [13, 69], "24274472": 13, "0u": 13, "torch_eff_encod": [13, 799], "1280": [13, 533, 621, 799], "state": [14, 25, 40, 56, 75, 79, 95, 182, 183, 184, 185, 186, 268, 368, 413, 589, 591, 594, 596, 597, 617, 619, 621, 623, 648, 761, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 799, 802, 805, 811, 814, 815, 817, 818, 819, 820, 821, 826, 829, 833, 834, 835, 837, 845, 849, 861, 862], "api": [14, 19, 24, 25, 29, 42, 44, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 173, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 805, 806, 807, 809, 811, 814, 815, 816, 817, 818, 819, 821, 823, 825, 826, 827, 829, 832, 833, 835, 837, 840, 842, 843, 844, 851, 853, 855, 857, 860, 862], "welcom": [15, 41, 799, 800, 805, 806, 828], "goal": [15, 40, 242, 619, 799, 804, 845, 855, 861], "provid": [15, 17, 21, 24, 26, 27, 31, 32, 38, 44, 48, 52, 53, 57, 59, 62, 65, 66, 69, 71, 75, 76, 80, 82, 85, 88, 89, 117, 134, 136, 153, 154, 155, 156, 157, 165, 175, 187, 191, 287, 368, 369, 371, 374, 380, 403, 411, 415, 420, 424, 435, 436, 440, 441, 457, 459, 468, 487, 489, 491, 520, 532, 564, 565, 615, 616, 617, 618, 619, 621, 623, 624, 626, 628, 631, 634, 635, 649, 666, 669, 680, 689, 690, 697, 709, 731, 751, 753, 754, 755, 764, 779, 783, 788, 789, 799, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 824, 825, 826, 827, 829, 830, 832, 836, 838, 840, 844, 848, 849, 850, 853, 854, 855, 856, 857, 858, 859, 862], "varieti": [15, 808, 813, 814, 815, 829, 831, 851, 853, 857, 858, 861, 862], "organ": [15, 809, 812, 822, 826, 828, 830, 842, 845], "main": [15, 27, 48, 52, 57, 75, 80, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 462, 616, 624, 656, 657, 678, 799, 804, 805, 806, 808, 811, 812, 819, 823, 825, 853, 855, 856, 861], "exactli": [15, 19, 29, 38, 39, 43, 285, 619, 804, 812, 813, 814, 815, 816, 818, 829, 832, 844, 846], "rush": [15, 846], "jump": [15, 827], "straight": [15, 799, 813, 826, 829, 836], "quickstart": 15, "introduct": [15, 17, 24, 26, 27, 855], "capabl": [15, 23, 27, 829, 832], "point": [15, 24, 49, 51, 52, 57, 61, 63, 65, 72, 74, 75, 80, 84, 88, 121, 122, 123, 125, 127, 130, 137, 138, 143, 147, 160, 164, 168, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 251, 256, 257, 258, 259, 260, 268, 270, 271, 273, 275, 277, 278, 279, 280, 281, 282, 283, 285, 286, 287, 288, 289, 306, 307, 309, 329, 330, 346, 347, 350, 352, 362, 365, 368, 369, 370, 375, 380, 383, 391, 392, 393, 411, 421, 439, 442, 496, 497, 498, 499, 500, 510, 511, 512, 520, 614, 616, 617, 619, 624, 630, 631, 632, 633, 634, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 727, 728, 734, 736, 737, 738, 739, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 788, 789, 799, 802, 804, 805, 806, 808, 809, 811, 813, 814, 816, 817, 819, 821, 825, 826, 829, 830, 832, 834, 836, 837, 846, 848, 861], "those": [15, 39, 40, 57, 59, 69, 75, 80, 82, 121, 174, 235, 268, 482, 601, 616, 617, 619, 621, 624, 626, 628, 631, 671, 674, 686, 707, 734, 804, 805, 806, 809, 812, 813, 814, 823, 825, 826, 827, 829, 832, 844, 852], "who": [15, 807, 818, 833, 840, 855, 857], "deeper": [15, 17, 27, 47, 628, 716, 717, 806, 807, 829, 833, 844], "showcas": [15, 799], "real": [15, 23, 51, 52, 65, 74, 75, 88, 97, 107, 110, 113, 137, 138, 215, 216, 217, 218, 220, 221, 222, 223, 224, 233, 235, 236, 238, 240, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 265, 268, 270, 271, 273, 277, 278, 279, 281, 282, 283, 284, 285, 286, 288, 289, 329, 330, 336, 337, 347, 365, 368, 369, 390, 411, 412, 421, 422, 613, 616, 619, 624, 631, 634, 658, 659, 660, 665, 672, 674, 675, 678, 681, 734, 747, 749, 750, 751, 752, 812, 857], "world": [15, 23, 806, 857], "whether": [15, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 93, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 120, 122, 123, 129, 131, 136, 138, 144, 147, 148, 150, 153, 154, 155, 156, 157, 158, 161, 162, 163, 165, 166, 167, 168, 170, 171, 172, 173, 175, 187, 191, 192, 194, 195, 197, 199, 202, 203, 205, 208, 209, 211, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 323, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 365, 368, 369, 370, 371, 380, 386, 387, 388, 390, 391, 392, 393, 409, 411, 413, 415, 430, 436, 441, 442, 443, 444, 445, 446, 447, 448, 450, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 468, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 543, 544, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 560, 564, 565, 566, 567, 569, 572, 573, 575, 576, 578, 579, 580, 582, 584, 586, 587, 594, 595, 598, 600, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 630, 634, 635, 637, 638, 639, 640, 646, 647, 648, 649, 652, 653, 654, 659, 660, 661, 662, 663, 664, 665, 667, 669, 671, 672, 673, 678, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 704, 705, 706, 711, 712, 713, 715, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 758, 760, 763, 775, 776, 779, 780, 781, 782, 783, 792, 799, 800, 804, 805, 809, 812, 814, 816, 821, 825, 826, 829, 831, 832, 848, 849], "beginn": [15, 800, 855], "advanc": [15, 38, 805, 854], "got": [15, 38, 818], "cover": [15, 26, 52, 75, 368, 404, 405, 406, 804, 808, 809, 811, 814, 816, 817, 822, 823, 829, 832, 833], "write": [15, 16, 26, 27, 38, 42, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 149, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 323, 327, 329, 330, 331, 332, 333, 334, 335, 337, 338, 339, 340, 341, 343, 345, 346, 347, 348, 351, 352, 353, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 415, 416, 418, 419, 427, 428, 431, 432, 433, 434, 440, 442, 443, 444, 445, 447, 448, 457, 458, 461, 462, 463, 464, 465, 466, 467, 470, 471, 472, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 732, 733, 735, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 761, 799, 803, 804, 806, 807, 808, 810, 811, 813, 814, 816, 817, 818, 822, 825, 827, 830, 834, 836, 839, 846, 855, 862], "familiar": [15, 16, 17, 799, 804, 805], "concept": [15, 16, 17], "agnost": [15, 16, 17, 18, 26, 27, 28, 32, 38, 799, 809, 814, 821, 834, 836, 839, 840, 861, 862], "unifi": [15, 16, 17, 19, 20, 26, 29, 30, 34, 41, 69, 208, 618, 807, 808, 809, 813, 814, 818, 823, 824, 826, 832, 834, 840, 843, 845, 847, 849, 851, 852, 853, 855, 859, 862], "alongsid": [15, 16, 17, 18, 28, 623, 649, 845], "turn": [15, 16, 19, 29, 56, 79, 92, 93, 391, 392, 393, 623, 646, 779, 805, 811, 812, 815, 816, 826, 829, 846], "wrapper": [15, 16, 19, 771, 809, 811, 812, 814, 818, 822, 825, 826, 836, 842, 851, 855], "unus": [15, 16, 19, 816, 825], "part": [15, 16, 19, 48, 51, 52, 74, 75, 80, 97, 107, 110, 113, 140, 141, 142, 248, 252, 275, 322, 323, 348, 362, 365, 368, 369, 371, 380, 411, 422, 473, 520, 613, 616, 619, 624, 659, 660, 760, 799, 804, 805, 806, 808, 811, 814, 820, 822, 825, 826, 829, 830, 832, 834, 835, 839, 840, 848, 849, 850, 853, 855, 860, 861, 862], "lazi": [15, 16, 19, 22, 29, 32, 33, 44], "eager": [15, 16, 19, 22, 24, 29, 32, 33, 44, 812, 840, 855], "understand": [15, 16, 17, 21, 38, 44, 802, 803, 804, 805, 806, 807, 808, 811, 816, 817, 821, 827, 828, 833, 846, 851, 861], "decor": [15, 16, 21, 23, 24, 32, 44, 527, 621, 763, 765, 771, 802, 808, 809, 812, 814, 815, 819, 822, 825, 826, 827, 832], "kornia": [15, 16, 23, 26, 27, 40, 44, 799, 849], "roundup": 17, "over": [17, 24, 27, 29, 40, 52, 57, 65, 66, 67, 72, 75, 79, 80, 88, 89, 90, 92, 117, 314, 315, 329, 330, 342, 349, 362, 365, 368, 369, 371, 378, 380, 382, 383, 384, 387, 396, 401, 405, 409, 410, 411, 412, 413, 414, 434, 450, 463, 478, 481, 482, 503, 513, 519, 568, 601, 615, 621, 624, 629, 630, 634, 635, 654, 665, 676, 678, 680, 681, 724, 728, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 788, 792, 799, 805, 806, 810, 816, 817, 824, 825, 827, 830, 834, 836, 840, 844, 846, 853, 855], "indep": [17, 26], "futur": [17, 24, 26, 40, 624, 659, 660, 799, 805, 806, 813, 814, 829, 830, 832, 836, 840, 844, 846, 861], "proof": [17, 26], "delv": [17, 27, 799], "theori": [17, 801, 811], "deep": [17, 24, 26, 38, 69, 533, 621, 799, 800, 801, 803, 804, 806, 808, 811, 812, 814, 820, 824, 827, 833, 836, 837, 844, 853, 855, 858, 859, 861, 862], "esenti": [17, 26], "abstract": [17, 26, 27, 778, 783, 799, 812, 814, 825, 826, 829, 832, 838, 844, 853, 855, 857, 858, 862], "specif": [17, 18, 23, 24, 26, 27, 28, 30, 32, 40, 50, 52, 53, 73, 75, 76, 175, 206, 209, 242, 263, 264, 273, 316, 329, 330, 362, 365, 371, 375, 481, 500, 533, 534, 535, 561, 617, 618, 619, 621, 624, 626, 627, 630, 633, 634, 659, 660, 676, 697, 702, 703, 704, 725, 742, 747, 748, 749, 751, 758, 760, 780, 781, 788, 789, 795, 799, 802, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 818, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 835, 836, 838, 839, 840, 841, 842, 844, 848, 849, 850, 851, 853, 854, 856, 857, 858, 862], "quirk": [17, 26], "perk": [17, 26, 799, 809, 812], "under": [17, 26, 27, 52, 370, 445, 446, 792, 799, 804, 805, 807, 808, 815, 816, 817, 820, 826, 827, 829, 832, 833, 834, 837, 839, 840, 848, 849, 855, 858, 862], "hood": [17, 26, 27, 799, 807, 815, 816, 820, 826, 829, 832, 833, 834, 837, 839, 848, 849, 862], "appropi": 17, "string": [17, 26, 27, 42, 52, 53, 56, 69, 75, 79, 145, 146, 158, 165, 187, 188, 189, 190, 191, 193, 202, 209, 210, 214, 368, 369, 371, 410, 414, 422, 473, 484, 512, 531, 617, 618, 621, 623, 624, 636, 637, 638, 639, 641, 643, 645, 660, 758, 760, 764, 792, 793, 810, 811, 813, 814, 815, 818, 826, 834, 837], "simplest": [17, 805, 816, 829, 832], "interact": [17, 26, 41, 44, 804, 854, 855, 860], "submodul": [17, 26, 40, 42, 97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 804, 805, 806, 808, 811, 813, 815, 819, 822, 823, 829, 833, 834, 838, 842], "ones": [17, 24, 26, 38, 44, 48, 52, 54, 56, 61, 69, 71, 75, 79, 84, 127, 131, 136, 138, 144, 194, 195, 231, 307, 362, 380, 519, 602, 616, 618, 619, 622, 623, 641, 642, 726, 727, 728, 764, 799, 804, 809, 813, 816, 821, 822, 828, 829, 836, 837, 855], "likewis": [17, 22, 26, 33, 799, 806, 812, 814, 817, 821, 822, 826, 832, 837, 848, 849, 861], "nativearrai": [17, 26, 27, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 65, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 122, 123, 124, 126, 131, 132, 133, 134, 135, 136, 138, 140, 141, 144, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 163, 166, 167, 168, 170, 172, 174, 175, 181, 191, 192, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 307, 308, 311, 312, 316, 323, 324, 325, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 456, 457, 458, 459, 461, 462, 463, 464, 465, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 510, 511, 512, 513, 514, 522, 525, 526, 528, 529, 533, 534, 535, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 553, 556, 557, 559, 564, 565, 566, 569, 578, 579, 580, 581, 582, 584, 586, 587, 589, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 706, 707, 708, 712, 713, 714, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 784, 809, 812, 816, 818, 821, 822, 823, 825, 826, 830, 831, 834, 836, 842], "alia": [17, 26, 329, 330, 365, 614, 804, 826, 847, 850], "select": [17, 26, 31, 44, 52, 65, 75, 88, 369, 371, 380, 422, 433, 481, 482, 511, 512, 634, 744, 745, 804, 805, 806, 813, 819, 825, 829, 834, 836, 839, 840, 855, 858, 859], "lastli": [17, 26, 809], "contain": [17, 26, 27, 41, 46, 47, 48, 49, 51, 52, 53, 56, 57, 58, 59, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 158, 160, 161, 162, 163, 166, 167, 168, 170, 172, 175, 192, 194, 195, 196, 201, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 360, 362, 365, 367, 368, 369, 370, 371, 374, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 545, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 569, 572, 574, 579, 580, 581, 582, 584, 586, 587, 594, 600, 601, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 708, 712, 713, 714, 717, 718, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 770, 771, 779, 780, 781, 783, 784, 788, 792, 793, 799, 801, 802, 804, 805, 807, 808, 809, 810, 811, 813, 814, 816, 817, 819, 821, 822, 823, 824, 825, 827, 829, 831, 832, 833, 834, 835, 838, 840, 841, 842, 844, 848, 855, 856, 861], "subclass": [17, 26, 27, 823, 826, 832, 849], "dict": [17, 26, 27, 40, 44, 47, 53, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 136, 138, 144, 148, 150, 161, 162, 163, 167, 168, 175, 191, 194, 195, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 319, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 362, 371, 390, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 473, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 523, 525, 526, 528, 529, 533, 534, 535, 536, 537, 538, 539, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 611, 615, 617, 618, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 705, 706, 708, 711, 712, 713, 714, 716, 717, 718, 722, 723, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 760, 761, 776, 779, 781, 788, 793, 809, 812, 837, 838, 842, 848, 849, 850], "recurs": [17, 26, 27, 40, 42, 47, 69, 70, 161, 162, 194, 195, 369, 438, 538, 539, 545, 617, 618, 621, 628, 705, 706, 709, 715, 716, 717, 758, 805, 808, 811, 812, 819, 822, 825, 838, 840], "oper": [17, 18, 21, 22, 23, 24, 26, 27, 28, 32, 39, 42, 48, 49, 51, 52, 53, 56, 69, 71, 72, 74, 75, 76, 79, 98, 113, 132, 133, 175, 205, 213, 218, 220, 229, 232, 235, 242, 257, 259, 268, 269, 273, 277, 280, 285, 296, 304, 324, 325, 326, 357, 360, 362, 367, 368, 371, 382, 383, 384, 386, 387, 388, 394, 395, 396, 400, 404, 405, 406, 407, 409, 410, 412, 414, 415, 478, 480, 526, 533, 534, 535, 582, 613, 616, 617, 618, 619, 621, 623, 624, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 649, 676, 678, 750, 752, 763, 766, 779, 793, 799, 804, 805, 807, 808, 809, 812, 814, 815, 816, 817, 818, 822, 825, 826, 829, 832, 834, 837, 838, 842, 844, 848, 851, 852, 853, 854, 855, 856, 858, 859, 860, 861, 862], "fashion": [17, 765, 829, 849], "native_arrai": [17, 26, 27, 48, 49, 51, 71, 73, 74, 75, 76, 80, 87, 105, 108, 131, 134, 136, 138, 144, 147, 148, 149, 150, 158, 163, 170, 192, 201, 209, 225, 229, 234, 235, 236, 238, 242, 246, 254, 255, 263, 268, 271, 274, 277, 282, 329, 330, 356, 365, 370, 371, 447, 473, 479, 483, 522, 525, 552, 553, 556, 586, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 630, 631, 634, 635, 637, 638, 645, 652, 655, 659, 660, 666, 667, 671, 675, 676, 678, 681, 683, 685, 686, 693, 725, 734, 743, 749, 752, 754, 760, 770, 788, 802, 819, 827, 829], "data_class": [17, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 387, 388, 533, 537, 674, 699], "low": [17, 26, 29, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 812, 818, 825, 826, 832, 834, 851, 853, 855, 856, 857, 859, 861], "level": [17, 26, 27, 29, 52, 75, 76, 369, 438, 525, 793, 799, 800, 804, 805, 806, 812, 814, 818, 822, 824, 825, 826, 828, 831, 832, 833, 834, 837, 838, 839, 840, 842, 846, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862], "c": [17, 26, 32, 41, 42, 48, 52, 53, 54, 56, 59, 65, 71, 72, 74, 75, 76, 77, 79, 80, 82, 86, 88, 92, 93, 111, 122, 123, 133, 136, 160, 163, 218, 229, 235, 236, 256, 257, 259, 268, 271, 279, 286, 368, 369, 371, 374, 380, 382, 383, 384, 395, 400, 416, 418, 420, 421, 423, 433, 451, 452, 453, 463, 481, 489, 490, 491, 494, 512, 525, 533, 534, 535, 536, 544, 548, 549, 587, 602, 603, 606, 608, 609, 610, 613, 616, 617, 619, 621, 622, 623, 624, 626, 628, 631, 632, 634, 637, 638, 639, 640, 641, 642, 644, 658, 660, 662, 693, 697, 705, 708, 712, 713, 714, 716, 717, 722, 723, 734, 739, 745, 746, 751, 753, 782, 792, 793, 800, 805, 807, 810, 811, 812, 816, 822, 824, 833, 834, 835, 837, 840, 842, 843, 845, 846, 849, 851, 855, 859, 860, 862], "fundament": [17, 26, 813, 826, 832, 834, 844, 855], "common": [17, 20, 26, 30, 51, 52, 69, 74, 174, 245, 253, 333, 339, 365, 617, 619, 800, 802, 804, 805, 811, 814, 815, 816, 822, 823, 826, 830, 832, 840, 844, 852, 855, 862], "signatur": [17, 26, 371, 380, 473, 510, 814, 815, 816, 817, 821, 825, 829, 830, 832, 845, 852, 861], "matmul": [17, 26, 27, 43, 57, 80, 369, 436, 601, 621, 624, 674, 810, 829, 830, 834], "to_n": [17, 26, 27, 38, 47, 70, 834], "jaxlib": [17, 23, 41, 788, 805, 809, 814, 815, 821, 830, 834, 836], "xla_extens": [17, 23, 788, 809, 814, 815, 821, 830, 834, 836], "arrayimpl": [17, 23, 788], "abov": [17, 22, 26, 27, 32, 33, 48, 51, 52, 57, 61, 68, 74, 75, 80, 84, 93, 113, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 305, 307, 322, 323, 329, 330, 332, 335, 360, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 401, 404, 405, 406, 411, 412, 413, 421, 422, 473, 481, 510, 513, 540, 544, 546, 548, 550, 587, 611, 613, 616, 617, 619, 621, 622, 623, 624, 626, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 726, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 802, 804, 805, 806, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 821, 822, 824, 825, 826, 827, 829, 832, 834, 836, 837, 838, 839, 855, 860], "why": [17, 799, 806, 825, 836, 843, 845], "underli": [17, 26, 27, 38, 52, 59, 75, 82, 95, 225, 228, 230, 265, 370, 371, 446, 463, 619, 624, 626, 672, 693, 812, 825, 832, 848, 855], "disabl": [17, 26, 52, 75, 371, 481, 781, 811], "array_mod": [17, 26, 566, 589, 621, 831], "set_array_mod": [17, 26, 589, 621, 831], "composit": [17, 26, 161, 162, 194, 195, 287, 369, 428, 538, 539, 617, 618, 619, 621, 764, 766, 804, 807, 809, 810, 812, 814, 815, 823, 825, 826, 827, 829, 832, 834, 838, 839, 840, 842, 848, 856], "ultim": [17, 26, 848], "sigmoid": [17, 26, 27, 38, 46, 52, 68, 75, 295, 360, 375, 496, 613, 775, 834, 837, 838], "z": [17, 26, 27, 39, 40, 48, 51, 52, 53, 57, 58, 61, 63, 65, 71, 74, 75, 76, 80, 81, 82, 84, 88, 97, 98, 132, 133, 135, 136, 196, 218, 219, 223, 225, 228, 230, 235, 246, 247, 250, 251, 252, 254, 255, 260, 262, 264, 265, 266, 267, 275, 284, 294, 295, 329, 330, 332, 360, 365, 370, 380, 442, 444, 445, 446, 447, 448, 454, 458, 469, 509, 510, 513, 520, 525, 537, 540, 541, 548, 549, 565, 578, 579, 580, 588, 601, 616, 618, 619, 621, 624, 625, 626, 628, 630, 631, 632, 634, 654, 664, 669, 670, 674, 681, 683, 684, 685, 686, 708, 712, 714, 722, 726, 727, 728, 731, 736, 746, 747, 749, 750, 751, 778, 799, 810, 812, 815, 816, 834, 836, 848], "divid": [17, 22, 26, 27, 43, 51, 52, 53, 59, 69, 74, 75, 82, 97, 98, 242, 374, 443, 489, 490, 491, 494, 579, 619, 621, 626, 695, 809, 812, 816, 820, 829], "exp": [17, 26, 27, 51, 52, 74, 75, 111, 113, 240, 260, 273, 295, 360, 368, 370, 395, 400, 446, 613, 619, 624, 672, 824, 826], "high": [17, 26, 27, 45, 52, 56, 61, 75, 79, 84, 368, 410, 414, 573, 621, 623, 630, 636, 637, 638, 639, 641, 643, 645, 726, 728, 765, 804, 818, 824, 826, 837, 842, 846, 851, 852, 853, 854, 855, 859, 861, 862], "network": [17, 24, 26, 27, 38, 40, 45, 623, 647, 775, 778, 779, 799, 812, 822, 834, 838, 845, 849, 851, 853, 854, 855, 859, 861, 862], "entir": [17, 26, 27, 29, 42, 52, 65, 66, 69, 75, 76, 88, 89, 208, 238, 240, 280, 281, 329, 330, 365, 368, 371, 380, 391, 392, 393, 473, 513, 546, 618, 619, 634, 635, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 793, 804, 805, 806, 808, 809, 812, 814, 816, 818, 825, 826, 827, 829, 832, 834, 837, 838, 839, 840, 845, 846, 849, 855, 861, 862], "further": [17, 69, 98, 765, 806, 808, 809, 813, 816, 818, 821, 822, 825, 826, 828, 829, 833, 834, 837, 838, 845, 846, 860, 861], "congratul": [17, 23], "There": [17, 24, 27, 32, 92, 361, 363, 364, 372, 373, 377, 765, 799, 804, 805, 806, 808, 809, 811, 812, 814, 815, 816, 818, 820, 822, 824, 826, 827, 831, 834, 837, 840, 844, 848, 856, 857, 861, 862], "come": [17, 40, 804, 805, 806, 809, 813, 826, 831, 832, 838, 842, 855], "independ": [17, 27, 52, 61, 75, 84, 218, 235, 268, 278, 374, 375, 494, 496, 619, 624, 630, 654, 673, 725, 799, 808, 814, 816, 823, 834, 839, 849, 853], "good": [17, 26, 27, 799, 803, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 827, 829, 830, 832, 834, 835, 838], "foundat": [17, 845, 858], "power": [17, 26, 27, 51, 52, 53, 57, 74, 75, 76, 80, 97, 98, 229, 238, 239, 273, 327, 339, 362, 365, 368, 415, 570, 580, 592, 619, 621, 624, 628, 666, 679, 711, 778, 831, 836, 837, 838, 855, 857, 861], "defin": [18, 24, 26, 27, 28, 48, 52, 53, 57, 71, 75, 76, 80, 95, 111, 136, 140, 141, 142, 218, 235, 242, 268, 269, 277, 279, 282, 294, 298, 302, 308, 311, 312, 313, 322, 323, 324, 325, 326, 329, 330, 332, 360, 362, 365, 368, 369, 371, 380, 403, 420, 473, 479, 513, 548, 549, 569, 613, 616, 619, 621, 624, 634, 654, 659, 660, 673, 747, 748, 749, 751, 799, 804, 805, 809, 810, 813, 814, 817, 821, 824, 826, 827, 829, 830, 836, 838, 840, 842, 850, 852, 853, 854, 855, 856, 859, 861, 862], "div": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 850], "sub": [18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, 33, 52, 57, 59, 69, 70, 74, 75, 76, 80, 82, 98, 267, 369, 371, 380, 422, 459, 468, 487, 516, 517, 545, 621, 624, 626, 627, 657, 678, 695, 702, 703, 704, 804, 806, 807, 812, 818, 826, 827, 829, 836, 837, 838, 850, 851], "By": [18, 38, 45, 52, 58, 59, 65, 66, 75, 81, 82, 88, 89, 282, 327, 329, 330, 342, 349, 362, 365, 368, 370, 371, 378, 380, 390, 445, 446, 481, 503, 510, 513, 568, 619, 621, 624, 625, 626, 634, 635, 654, 680, 683, 692, 744, 747, 748, 749, 750, 751, 752, 753, 754, 755, 805, 810, 814, 816, 818, 822, 824, 825, 826, 834, 838, 839, 848], "uniform": [18, 19, 20, 21, 22, 26, 27, 28, 29, 31, 32, 33, 40, 52, 61, 75, 84, 380, 513, 630, 725, 726, 728, 778, 799, 828, 838, 849, 850, 862], "x_": [18, 28, 93, 279, 619, 850], "82997245": 18, "44733784": 18, "32163444": 18, "93330479": 18, "52438271": 18, "20438017": 18, "252316": 18, "0827222": 18, "26017165": 18, "88881904": 18, "compat": [18, 24, 28, 32, 38, 45, 51, 52, 57, 59, 62, 65, 66, 74, 75, 80, 82, 85, 88, 89, 97, 98, 149, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 289, 329, 330, 365, 617, 619, 624, 626, 631, 634, 635, 654, 667, 670, 673, 676, 680, 681, 693, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 805, 810, 821, 826, 827, 830, 834, 840, 845], "sever": [18, 19, 28, 29, 31, 32, 33, 52, 75, 92, 368, 369, 382, 383, 384, 434, 763, 805, 806, 830, 840, 853, 859], "pro": [18, 19, 20, 28, 29, 30, 31, 32, 33], "pick": [19, 29, 778], "off": [19, 29, 56, 57, 79, 80, 391, 392, 393, 623, 624, 646, 657, 678, 778, 779, 805, 819, 833, 846, 848, 861], "last": [19, 24, 26, 29, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 71, 75, 79, 80, 81, 82, 87, 88, 89, 93, 97, 132, 133, 136, 191, 307, 335, 362, 365, 368, 369, 370, 371, 378, 380, 396, 401, 411, 412, 413, 424, 445, 463, 473, 475, 481, 503, 511, 512, 616, 618, 623, 624, 625, 626, 631, 633, 634, 635, 648, 649, 654, 657, 669, 678, 680, 684, 685, 687, 690, 693, 694, 695, 697, 731, 732, 740, 742, 743, 744, 745, 754, 755, 779, 788, 799, 806, 808, 810, 811, 814, 816, 825, 827, 829, 832, 834, 840, 846, 849, 855], "purpos": [19, 26, 27, 29, 40, 42, 142, 240, 258, 322, 362, 616, 619, 624, 672, 806, 807, 809, 812, 813, 815, 816, 818, 821, 822, 823, 826, 828, 829, 832, 833, 836, 842, 854, 856, 859, 860, 861], "illustr": [19, 29, 810, 834], "trigger": [19, 29, 781, 804, 820], "unif": [19, 21, 22, 29, 31, 800, 836, 845, 851, 861], "detail": [19, 29, 42, 46, 51, 52, 57, 59, 63, 68, 74, 75, 76, 80, 82, 86, 105, 106, 107, 108, 109, 110, 111, 112, 113, 128, 139, 286, 290, 294, 295, 297, 360, 369, 418, 458, 536, 613, 616, 619, 632, 657, 664, 670, 674, 697, 736, 737, 738, 739, 775, 799, 804, 806, 808, 810, 811, 812, 813, 820, 821, 822, 823, 826, 827, 828, 829, 830, 831, 834, 836, 837, 838, 857, 861], "55563945": 19, "65538704": 19, "14150524": 19, "46951997": 19, "30220294": 19, "14739668": 19, "57017946": 19, "91962677": 19, "51029003": 19, "59644395": 19, "arbitrari": [19, 29, 48, 49, 52, 69, 72, 75, 134, 148, 175, 316, 370, 443, 451, 452, 453, 604, 616, 617, 622, 821, 822, 824, 825, 826, 829, 838, 840, 848, 850, 856, 861], "constitu": [19, 29, 69, 839], "due": [19, 26, 27, 29, 43, 45, 268, 278, 371, 481, 619, 805, 808, 813, 818, 825, 826, 845, 848, 849, 855], "manner": [19, 27, 29, 39, 47, 70, 628, 717, 805, 814, 815, 817, 822, 826, 830, 837, 840, 844, 851, 853, 861, 862], "non": [19, 29, 49, 51, 52, 57, 61, 62, 65, 66, 72, 74, 75, 80, 84, 85, 88, 89, 129, 147, 165, 174, 243, 263, 264, 269, 329, 330, 334, 340, 353, 365, 368, 369, 371, 380, 411, 422, 426, 430, 452, 453, 513, 516, 616, 617, 619, 624, 628, 630, 631, 634, 635, 654, 655, 665, 667, 674, 676, 680, 681, 718, 727, 731, 732, 733, 734, 747, 748, 749, 750, 751, 753, 754, 755, 763, 778, 780, 781, 783, 809, 812, 816, 834, 848, 849, 850, 855], "5556394": 19, "655387": 19, "1415051": 19, "4695197": 19, "3022028": 19, "1473966": 19, "5701794": 19, "91962665": 19, "51028997": 19, "5964439": 19, "assess": [19, 29, 804, 832], "985": 19, "000": [19, 74, 269, 763, 802, 813, 819], "69": [19, 38, 45, 51, 77, 84, 216, 258, 368, 389, 399, 606, 619, 622, 624, 665, 666, 727, 829, 837], "slower": [19, 826], "On": [19, 26, 27, 805, 814, 815, 820, 826, 829, 832, 835, 839], "hand": [19, 51, 369, 436, 763, 799, 808, 814, 815, 820, 822, 829, 840], "singl": [19, 29, 38, 43, 51, 61, 69, 74, 84, 93, 287, 344, 365, 369, 375, 433, 497, 587, 600, 604, 619, 621, 622, 623, 630, 632, 649, 726, 727, 728, 736, 763, 779, 804, 805, 806, 808, 813, 816, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 837, 838, 839, 840, 846], "learnt": [20, 30], "two": [20, 30, 32, 38, 48, 52, 57, 63, 75, 76, 80, 97, 98, 118, 121, 127, 134, 140, 141, 142, 173, 181, 229, 243, 244, 278, 322, 323, 328, 340, 341, 343, 344, 346, 348, 355, 362, 365, 368, 369, 370, 371, 380, 396, 419, 420, 421, 433, 443, 447, 452, 473, 479, 483, 510, 520, 525, 615, 616, 617, 619, 621, 624, 626, 632, 653, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 680, 698, 736, 737, 738, 739, 763, 765, 771, 779, 804, 805, 808, 809, 814, 815, 816, 817, 822, 826, 827, 829, 832, 833, 837, 839, 846, 852, 860], "workflow": [20, 30, 41, 804, 806, 810, 814, 824, 826, 837, 842, 846, 854, 861, 862], "ivy_norm": 20, "jax_norm": [20, 26, 27], "wider": [20, 30, 573, 595, 621, 814, 831, 861], "avoid": [20, 30, 32, 52, 59, 75, 235, 240, 242, 258, 268, 370, 371, 374, 443, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 489, 490, 491, 527, 543, 545, 568, 573, 595, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 766, 805, 806, 810, 811, 812, 813, 814, 818, 823, 826, 829, 830, 831, 832, 855], "conveni": [20, 30, 804, 814, 815, 821, 827, 835, 837, 838, 842, 861], "act": [20, 30, 52, 75, 356, 366, 806, 816, 831, 840, 862], "shorthand": [20, 30, 32, 829], "pair": [20, 30, 40, 52, 56, 75, 79, 223, 242, 314, 355, 362, 365, 368, 401, 410, 412, 414, 619, 623, 624, 636, 637, 638, 639, 641, 643, 645, 652, 654, 793], "93968587": 20, "26075466": 20, "22723222": 20, "06276492": 20, "47426987": 20, "72835908": 20, "71737559": 20, "50411096": 20, "65419174": 20, "15576624": 20, "implic": [20, 30, 31, 34, 812], "requir": [21, 22, 23, 24, 31, 40, 41, 42, 45, 51, 52, 69, 74, 75, 269, 282, 286, 369, 371, 421, 422, 473, 619, 624, 626, 658, 659, 660, 697, 763, 771, 776, 793, 801, 804, 805, 809, 811, 813, 814, 815, 816, 817, 818, 820, 821, 823, 826, 827, 828, 829, 830, 832, 834, 836, 840, 849, 855, 861], "satisfi": [21, 22, 23, 24, 40, 42, 45, 52, 368, 369, 390, 422, 814, 816], "opt": [21, 22, 23, 24, 44, 805, 810, 814, 825, 829, 832], "fw": [21, 22, 23, 24, 56, 79, 380, 510, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 760, 805, 829], "mxnet": [21, 22, 23, 24, 788, 804, 805, 845, 862], "26": [21, 22, 23, 24, 38, 40, 42, 45, 51, 52, 60, 61, 75, 76, 77, 84, 230, 235, 281, 368, 369, 389, 425, 433, 548, 602, 619, 621, 622, 623, 624, 628, 629, 634, 645, 657, 669, 676, 706, 724, 726, 727, 746], "einop": [21, 22, 23, 24, 40, 42, 45, 53, 76, 533, 534, 535, 621, 814, 845], "miniconda": [21, 22, 23, 24], "env": [21, 22, 23, 24], "multienv": [21, 22, 23, 24], "site": [21, 22, 23, 24, 856], "psutil": [21, 22, 23, 24, 40, 42, 45], "termcolor": [21, 22, 23, 24, 40, 42, 45, 69, 98], "colorama": [21, 22, 23, 24, 40, 42], "nvidia": [21, 22, 23, 24, 40, 42, 45, 859, 860], "535": [21, 22, 23, 24, 46, 68, 113, 613, 818], "diskcach": [21, 22, 23, 24, 40], "auth": [21, 22, 23, 24], "urllib3": [21, 22, 23, 24, 40], "pyvi": [21, 22, 23, 24, 26, 27], "dill": [21, 22, 23, 24, 40], "astunpars": [21, 22, 23, 24], "cloudpickl": [21, 22, 23, 24], "gast": [21, 22, 23, 24], "66": [21, 22, 23, 24, 38, 40, 42, 65, 75, 76, 77, 368, 399, 533, 534, 606, 621, 622, 624, 634, 669, 746], "wheel": [21, 22, 23, 24, 40, 42, 45, 844], "six": [21, 22, 23, 24, 40, 45, 805, 832], "cachetool": [21, 22, 23, 24], "pyasn1": [21, 22, 23, 24], "rsa": [21, 22, 23, 24], "jinja2": [21, 22, 23, 24], "jsonpickl": [21, 22, 23, 24], "networkx": [21, 22, 23, 24, 45], "charset": [21, 22, 23, 24, 40], "idna": [21, 22, 23, 24, 40], "certifi": [21, 22, 23, 24, 40], "2017": [21, 22, 23, 24, 40, 623, 649], "jedi": [21, 22, 23, 24], "inlin": [21, 22, 23, 24, 811], "prompt": [21, 22, 23, 24, 804, 806], "toolkit": [21, 22, 23, 24, 855, 856, 862], "pygment": [21, 22, 23, 24], "traitlet": [21, 22, 23, 24], "exceptiongroup": [21, 22, 23, 24], "paddl": [21, 22, 23, 24, 329, 330, 365, 776, 788, 804, 805, 814, 819], "pexpect": [21, 22, 23, 24], "markupsaf": [21, 22, 23, 24], "parso": [21, 22, 23, 24], "ptyprocess": [21, 22, 23, 24], "wcwidth": [21, 22, 23, 24], "asttoken": [21, 22, 23, 24], "pure": [21, 22, 23, 24, 32, 42, 799, 817, 821, 826, 832, 836, 839, 840, 855, 861, 862], "eagerli": [21, 22, 26, 27, 31, 32, 33, 40, 799, 848, 849, 850], "lazili": [21, 22, 23, 26, 27, 31, 33, 44, 799, 848, 849, 850], "actual": [21, 31, 802, 806, 807, 813, 819, 822, 823, 825, 826, 827, 829, 832, 833, 838, 840, 856, 861], "occur": [21, 26, 27, 31, 44, 49, 51, 63, 72, 74, 86, 150, 269, 285, 617, 619, 631, 632, 731, 732, 736, 737, 738, 739, 808, 813, 815, 818, 831], "becaus": [21, 29, 31, 41, 52, 368, 390, 758, 805, 806, 808, 809, 810, 811, 812, 814, 815, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 832, 834, 838, 839, 840, 855, 858, 861], "argument": [21, 23, 24, 26, 27, 29, 31, 32, 33, 38, 40, 42, 44, 47, 48, 51, 52, 53, 57, 69, 70, 74, 75, 76, 92, 93, 98, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 337, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 399, 400, 401, 404, 405, 406, 411, 413, 415, 422, 473, 481, 510, 513, 517, 523, 524, 526, 527, 532, 534, 535, 540, 544, 546, 548, 550, 560, 564, 565, 582, 587, 588, 601, 611, 616, 617, 619, 621, 622, 623, 624, 626, 627, 628, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 704, 711, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 764, 771, 776, 779, 780, 781, 788, 792, 795, 799, 804, 807, 808, 809, 810, 811, 812, 816, 817, 820, 822, 827, 829, 830, 832, 834, 836, 837, 842, 844, 848, 849, 850, 855], "altern": [21, 31, 41, 52, 75, 80, 92, 93, 328, 336, 337, 341, 343, 344, 345, 346, 348, 349, 350, 354, 355, 365, 799, 804, 805, 811, 825, 837, 858], "dummi": [21, 22, 31, 32, 33, 39, 806], "seed": [21, 22, 42, 43, 52, 56, 61, 63, 69, 75, 79, 84, 317, 318, 319, 320, 321, 362, 369, 375, 426, 435, 441, 496, 497, 498, 499, 500, 623, 630, 632, 646, 725, 726, 727, 728, 730, 736, 771, 776, 778, 793, 823, 827, 829], "assum": [21, 22, 31, 32, 33, 48, 51, 52, 53, 56, 57, 58, 74, 75, 76, 79, 80, 81, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 307, 323, 329, 330, 332, 335, 352, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 434, 436, 473, 481, 510, 513, 540, 544, 546, 548, 557, 587, 611, 616, 617, 619, 621, 622, 623, 624, 625, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 683, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 792, 799, 805, 808, 810, 813, 814, 817, 827, 829, 832, 836, 837, 840], "201733": 21, "core": [21, 22, 24, 40, 41, 42, 44, 45, 52, 75, 92, 95, 199, 369, 426, 435, 440, 441, 618, 805, 815, 819, 829, 839, 844, 853, 854, 855, 856, 860, 862], "cpu_feature_guard": [21, 22, 24], "182": [21, 22, 24, 75], "instruct": [21, 22, 24, 69, 98, 799, 804, 805, 808, 818, 820, 827, 829, 841, 853, 856, 859, 861], "critic": [21, 22, 24, 26, 27, 855, 861], "avx2": [21, 22, 24], "fma": [21, 22, 24], "rebuild": [21, 22, 24, 69, 98], "flag": [21, 22, 24, 69, 191, 370, 380, 443, 510, 618, 623, 649, 760, 771, 782, 806, 814, 815, 825, 826, 827, 829, 848, 849], "slowli": [21, 31], "norm": [21, 31, 32, 52, 53, 57, 75, 76, 80, 91, 92, 368, 369, 389, 390, 394, 395, 396, 399, 400, 401, 411, 412, 418, 422, 492, 493, 495, 528, 529, 550, 621, 624, 665, 681, 724, 779, 783, 830], "slow": [21, 31, 801, 805, 811], "34431235": [21, 22], "51129461": [21, 22], "06686894": [21, 22], "36452447": [21, 22], "98795534": [21, 22], "15493582": [21, 22], "91630631": [21, 22], "41939619": [21, 22], "78909753": [21, 22], "19475674": [21, 22], "norm_trac": 21, "float64": [21, 22, 49, 52, 61, 65, 71, 72, 74, 75, 76, 84, 88, 121, 129, 130, 147, 150, 154, 155, 160, 161, 164, 165, 170, 171, 175, 177, 178, 184, 187, 269, 339, 365, 370, 380, 446, 510, 559, 616, 617, 621, 624, 630, 659, 660, 665, 681, 727, 728, 745, 760, 763, 764, 814, 827, 829], "norm_tran": [21, 31], "know": [21, 22, 31, 32, 33, 63, 632, 736, 737, 738, 739, 801, 804, 806, 815, 823, 827, 829, 832, 846, 850, 856], "07": [22, 40, 42, 54, 58, 74, 77, 81, 84, 223, 256, 259, 260, 279, 368, 399, 592, 602, 603, 605, 606, 607, 608, 619, 621, 622, 625, 684, 685, 727, 780, 783, 838], "981554": 22, "happen": [22, 26, 27, 287, 619, 799, 805, 806, 815, 825, 829, 837, 846, 848, 849], "wherea": [22, 33, 75, 368, 413, 806, 809, 812, 814, 815, 816, 821, 822, 829, 839, 852], "subtract": [22, 26, 27, 51, 74, 97, 98, 129, 371, 473, 616, 619, 809, 812, 816], "begin": [22, 52, 75, 279, 371, 457, 473, 474, 475, 476, 477, 619, 628, 705, 716, 763, 805, 808, 813, 827], "filelock": [23, 40], "extens": [23, 40, 51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 805, 806, 817, 819, 820, 829, 852, 855, 862], "sympi": [23, 845], "fsspec": [23, 40], "mpmath": 23, "scenario": [23, 814, 824], "often": [23, 803, 808, 818, 821, 822, 826, 829, 840, 846, 856, 859, 862], "fortun": [23, 24, 808], "everyth": [23, 41, 792, 799, 804, 805, 806, 807, 813, 816, 825, 826, 827, 829, 835, 840, 841, 846], "practic": [23, 806, 810, 813, 826, 828, 858], "specifi": [23, 24, 26, 27, 31, 32, 33, 44, 46, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 125, 130, 132, 137, 140, 141, 143, 147, 149, 196, 201, 203, 207, 208, 209, 277, 286, 290, 294, 295, 297, 323, 328, 344, 349, 360, 362, 365, 368, 369, 370, 371, 375, 380, 386, 387, 388, 390, 396, 401, 411, 412, 413, 414, 422, 432, 434, 439, 445, 446, 447, 449, 463, 466, 475, 476, 478, 479, 481, 497, 508, 510, 511, 512, 515, 516, 520, 523, 540, 541, 543, 545, 546, 559, 561, 569, 601, 613, 616, 617, 618, 619, 621, 623, 624, 625, 626, 628, 630, 631, 632, 633, 634, 635, 649, 652, 654, 656, 657, 659, 660, 665, 673, 676, 678, 679, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 694, 696, 697, 700, 701, 709, 710, 712, 713, 720, 721, 722, 723, 726, 727, 728, 730, 731, 732, 734, 737, 738, 739, 740, 744, 745, 746, 750, 752, 754, 755, 763, 766, 775, 779, 780, 781, 793, 805, 807, 811, 814, 815, 821, 822, 823, 825, 826, 827, 829, 834, 837, 838, 848, 849, 850, 861], "everi": [23, 26, 27, 32, 40, 48, 52, 53, 75, 76, 130, 131, 295, 329, 330, 342, 360, 365, 368, 371, 404, 405, 406, 413, 486, 522, 616, 621, 804, 806, 808, 810, 811, 813, 814, 816, 820, 821, 822, 823, 825, 826, 827, 829, 834, 836, 838, 848, 849, 850, 855], "jax_kornia": [23, 26, 27, 799, 849], "though": [23, 803, 804, 806, 814, 815, 817, 822, 825, 826, 832, 837, 840], "comput": [23, 24, 26, 27, 33, 34, 39, 40, 42, 46, 51, 52, 53, 54, 56, 57, 58, 63, 65, 68, 69, 74, 75, 76, 77, 79, 80, 81, 88, 92, 93, 95, 108, 112, 208, 218, 225, 228, 230, 235, 236, 237, 242, 243, 244, 246, 247, 253, 254, 255, 262, 263, 264, 265, 267, 268, 271, 276, 277, 294, 298, 302, 308, 311, 312, 324, 325, 326, 329, 330, 332, 336, 340, 342, 343, 347, 349, 354, 355, 356, 357, 358, 359, 360, 362, 365, 366, 367, 368, 369, 370, 371, 374, 378, 380, 386, 387, 388, 389, 390, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 410, 411, 412, 415, 416, 418, 420, 421, 422, 423, 425, 426, 428, 431, 433, 435, 438, 439, 441, 442, 443, 444, 445, 446, 447, 448, 467, 470, 483, 489, 491, 502, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 527, 528, 529, 573, 595, 602, 604, 605, 607, 611, 612, 618, 619, 621, 622, 623, 624, 625, 626, 628, 632, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 647, 653, 654, 658, 659, 660, 663, 664, 665, 667, 669, 671, 673, 674, 676, 678, 680, 681, 683, 684, 685, 689, 711, 736, 737, 738, 739, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 760, 765, 779, 782, 793, 799, 805, 812, 813, 814, 822, 824, 826, 829, 831, 832, 834, 837, 840, 842, 845, 846, 848, 849, 851, 853, 855, 856, 858, 859, 861], "000000000034": [23, 26, 27, 799, 849], "raw_img": [23, 26, 27, 799, 849], "enhanc": [23, 26, 27, 799, 828, 849], "sharp": [23, 26, 27, 799], "prefer": [23, 26, 27, 242, 619, 799, 805, 812, 818, 819, 823, 826, 841, 855], "leverag": [23, 26, 27, 799, 805, 825, 849, 853, 855], "whole": [24, 52, 75, 371, 374, 480, 492, 493, 495, 806, 811, 820], "full": [24, 52, 57, 75, 79, 80, 92, 93, 95, 160, 247, 255, 317, 318, 319, 320, 321, 362, 369, 370, 371, 439, 440, 445, 446, 474, 477, 567, 576, 590, 598, 616, 617, 619, 621, 623, 624, 638, 640, 641, 642, 644, 667, 671, 673, 674, 764, 771, 799, 805, 806, 811, 814, 817, 818, 821, 822, 826, 829, 832, 834, 840, 845, 846, 853, 855, 861], "advantag": [24, 26, 27, 799, 805, 806, 814, 825, 826, 841, 849, 855], "complex": [24, 26, 27, 40, 46, 51, 52, 57, 65, 68, 72, 74, 75, 80, 88, 105, 106, 107, 108, 109, 110, 111, 112, 113, 137, 138, 153, 167, 176, 182, 215, 216, 217, 218, 219, 220, 221, 224, 232, 233, 235, 236, 238, 240, 248, 249, 250, 251, 252, 256, 257, 258, 259, 268, 270, 271, 273, 275, 278, 279, 280, 281, 282, 285, 286, 290, 294, 295, 297, 332, 337, 360, 365, 368, 369, 380, 390, 401, 411, 412, 416, 421, 422, 423, 432, 434, 518, 519, 579, 580, 613, 616, 617, 619, 621, 624, 631, 634, 658, 659, 660, 665, 672, 674, 676, 678, 681, 734, 749, 750, 752, 764, 775, 793, 804, 811, 814, 816, 823, 826, 829, 830, 832, 837, 838, 839, 840, 842, 849, 851, 853, 855, 857, 861, 862], "neccessari": 24, "set_random_se": [24, 43], "manual_se": 24, "301436": 24, "_c": 24, "0x7f252c392390": 24, "convolut": [24, 52, 56, 75, 79, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 849, 853, 855], "flatten": [24, 26, 27, 40, 42, 45, 52, 53, 57, 59, 62, 63, 75, 76, 80, 82, 85, 86, 334, 349, 365, 369, 371, 380, 419, 462, 472, 476, 481, 482, 486, 508, 515, 516, 517, 518, 519, 520, 533, 537, 621, 624, 626, 631, 632, 661, 669, 681, 687, 692, 694, 731, 732, 736, 737, 738, 739, 758, 760, 799, 825, 832], "keyword": [24, 26, 27, 42, 44, 47, 48, 52, 69, 75, 98, 134, 269, 368, 371, 380, 415, 473, 510, 524, 527, 560, 588, 616, 619, 621, 624, 628, 634, 675, 711, 752, 758, 760, 764, 780, 781, 792, 804, 809, 812, 814, 815, 823, 825, 826, 827, 829, 830, 832, 837, 848, 849, 850], "input_arrai": [24, 26, 27, 825], "torch_model": [24, 26, 27, 44], "159": [24, 68, 105, 613, 623, 647], "state_upd": 24, "properti": [24, 69, 92, 93, 94, 95, 96, 97, 101, 781, 783, 808, 812, 822, 827, 829, 836, 837, 838, 861], "_transpil": 24, "thank": [24, 837, 845], "fledg": [24, 805, 834, 835], "rand": [24, 26, 27, 42, 792, 793, 799, 848], "output_arrai": [24, 26, 27, 52, 443], "0893": 24, "1504": 24, "1372": 24, "0991": 24, "0867": 24, "0851": 24, "0911": 24, "0804": 24, "0926": 24, "0881": 24, "softmaxbackward0": 24, "furthermor": 24, "relat": [24, 242, 619, 799, 801, 803, 804, 805, 806, 811, 818, 826, 829, 830, 831, 832, 849, 858], "interest": [24, 26, 38, 235, 268, 619, 804, 806], "continu": [24, 26, 27, 42, 120, 282, 290, 360, 615, 619, 799, 803, 804, 805, 807, 808, 819, 825, 828, 829, 840, 845, 846, 855], "regress": [25, 855, 862], "checkout": [26, 41, 806, 808, 829], "f705efe7cb5d18df17ce6c1e20f04d0eb4933f48": 26, "theoret": 26, "aspect": [26, 27, 800, 824, 837, 855], "switch": [26, 38, 771, 810, 818, 822, 823, 862], "easiest": [26, 799, 801, 805, 841], "defer": [26, 27, 804, 809, 814, 815, 822, 825, 826, 829, 861], "similarli": [26, 39, 134, 142, 218, 322, 329, 330, 362, 365, 616, 619, 810, 814, 826, 832, 836, 861], "obtain": [26, 27, 45, 52, 75, 313, 362, 368, 407, 623, 649, 765, 826, 848], "essenc": [26, 856, 861], "becom": [26, 52, 75, 92, 339, 365, 371, 453, 626, 686, 788, 806, 812, 814, 816, 818, 825, 840, 844, 846, 848], "regardless": [26, 27, 38, 69, 800, 814, 818, 836, 839, 846], "being": [26, 27, 38, 52, 69, 75, 90, 97, 101, 121, 369, 371, 430, 457, 473, 574, 616, 621, 624, 660, 760, 766, 778, 799, 805, 806, 808, 809, 810, 812, 814, 815, 816, 819, 821, 823, 825, 826, 827, 829, 830, 832, 834, 837, 840, 845, 846, 851, 853, 854, 855, 856, 861, 862], "slide": [26, 52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 410, 414, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779], "A": [26, 27, 41, 48, 49, 52, 53, 59, 61, 65, 66, 69, 72, 74, 75, 76, 79, 80, 82, 84, 86, 89, 92, 93, 98, 117, 118, 120, 127, 135, 142, 148, 189, 208, 270, 272, 276, 307, 318, 322, 324, 325, 326, 328, 341, 344, 348, 349, 362, 365, 368, 369, 370, 371, 374, 375, 380, 383, 396, 410, 413, 415, 422, 433, 436, 443, 447, 458, 461, 479, 483, 484, 489, 490, 491, 492, 496, 497, 498, 499, 500, 508, 517, 520, 525, 527, 536, 545, 548, 549, 579, 580, 581, 584, 612, 615, 616, 617, 618, 619, 621, 622, 623, 624, 626, 628, 630, 634, 635, 646, 649, 657, 659, 662, 663, 668, 669, 673, 674, 686, 689, 691, 695, 697, 705, 708, 710, 712, 713, 714, 715, 716, 720, 721, 722, 723, 725, 726, 727, 728, 730, 736, 746, 754, 755, 758, 760, 761, 763, 764, 765, 766, 771, 778, 793, 797, 799, 803, 804, 805, 807, 812, 814, 815, 818, 821, 822, 826, 827, 829, 834, 837, 840, 841, 842, 843, 844, 845, 846, 848, 849, 850, 855, 856], "regressor": [26, 27, 799], "input_dim": [26, 27, 41, 799], "output_dim": [26, 27, 41, 799], "linear0": [26, 27, 38, 799, 837, 838], "linear1": [26, 27, 38, 799, 837, 838], "instanti": [26, 27, 771, 817], "adam": [26, 27, 38, 42, 54, 77, 524, 602, 603, 608, 621, 622, 783, 799, 837, 838, 839, 855], "n_training_exampl": [26, 27, 799], "2000": [26, 27, 75, 308, 362, 799], "random_norm": [26, 27, 56, 57, 61, 79, 80, 84, 533, 621, 623, 624, 630, 638, 640, 641, 642, 644, 645, 648, 674, 799], "linspac": [26, 27, 48, 71, 121, 616, 799, 821, 832, 834, 862], "loss_fn": [26, 27, 38, 40, 42, 799, 837, 838, 839], "pred": [26, 27, 41, 42, 52, 58, 75, 81, 370, 442, 445, 625, 683, 684, 685, 799, 812, 822, 825], "epoch": [26, 27, 40, 42, 799], "loss": [26, 27, 40, 42, 52, 75, 92, 442, 443, 444, 445, 446, 447, 448, 573, 595, 621, 683, 684, 685, 799, 813, 814, 822, 826, 830, 831, 837, 838, 839, 855, 862], "gradient": [26, 27, 40, 42, 52, 75, 92, 208, 357, 365, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 618, 627, 702, 703, 704, 760, 771, 783, 799, 807, 830, 837, 838, 840, 855], "grad": [26, 27, 38, 42, 602, 622, 783, 799, 824, 837, 838, 839], "execute_with_gradi": [26, 27, 38, 42, 622, 799, 837, 838, 839, 840], "lambda": [26, 27, 43, 45, 75, 118, 120, 292, 301, 532, 604, 605, 607, 612, 615, 621, 622, 624, 628, 659, 712, 713, 717, 799, 804, 822, 823, 824, 827, 832, 834, 837], "2d": [26, 27, 42, 52, 75, 92, 307, 362, 368, 369, 371, 380, 383, 384, 391, 392, 432, 439, 452, 462, 510, 779, 799, 826, 832], "5f": [26, 27, 799], "nonetheless": [26, 27], "slight": [26, 27, 814, 829, 838], "introduc": [26, 27, 242, 619, 626, 632, 694, 736, 804, 812, 813, 814, 823, 827, 829, 832, 837, 844], "address": [26, 27, 52, 53, 75, 371, 481, 586, 621, 804, 806, 808, 809, 821, 828, 834, 846, 851, 853, 855, 861], "extract": [26, 27, 34, 41, 52, 75, 93, 371, 456, 482, 826, 828, 830, 851, 855, 856, 861], "gc": [26, 27, 545, 621], "decompos": [26, 27, 52, 75, 92, 95, 317, 318, 319, 320, 321, 341, 348, 362, 365, 369, 430, 435, 438, 441, 826, 839], "said": [26, 27, 765, 830, 846, 848], "otherwis": [26, 27, 44, 47, 48, 49, 51, 52, 53, 56, 57, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 121, 123, 124, 129, 131, 132, 133, 136, 138, 144, 147, 148, 150, 151, 153, 154, 155, 156, 157, 166, 170, 174, 175, 191, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 294, 297, 298, 299, 300, 301, 303, 304, 305, 307, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 335, 336, 343, 344, 350, 352, 354, 355, 356, 360, 362, 365, 368, 369, 374, 386, 387, 388, 391, 392, 393, 411, 424, 437, 439, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 459, 461, 463, 464, 465, 472, 479, 481, 482, 483, 487, 489, 491, 492, 493, 495, 497, 509, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 604, 606, 611, 615, 616, 617, 618, 619, 621, 622, 623, 624, 627, 628, 631, 632, 633, 634, 635, 637, 638, 639, 640, 646, 647, 649, 652, 653, 654, 655, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 674, 678, 680, 681, 683, 684, 685, 686, 689, 690, 691, 693, 694, 695, 696, 697, 698, 700, 701, 702, 703, 718, 725, 726, 727, 728, 730, 731, 732, 733, 735, 736, 737, 738, 739, 740, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 763, 764, 779, 781, 782, 788, 799, 806, 809, 812, 814, 815, 816, 822, 823, 825, 829, 834, 841, 848, 849], "x0": [26, 27, 45, 76, 525, 621, 816], "normalize_trac": [26, 27], "html": [26, 27, 41, 51, 52, 74, 75, 142, 150, 238, 248, 249, 264, 322, 329, 330, 362, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 634, 672, 673, 701, 751, 799, 817, 845], "fname": [26, 27, 43, 45, 781, 837], "anticip": [26, 27], "addition": [26, 27, 812, 825, 826, 861], "backend_compil": [26, 27], "normalize_native_comp": [26, 27], "return_backend_compiled_fn": 26, "immedi": [26, 27, 804, 805], "built": [26, 27, 32, 40, 42, 45, 121, 616, 779, 780, 781, 799, 805, 806, 811, 812, 829, 835, 841, 848, 854, 855, 859], "summar": [26, 27, 92, 829], "eager_graph": [26, 27, 799, 848, 849], "lazy_graph": [26, 27, 799, 848, 849], "codebas": [26, 27, 206, 207, 618, 800, 807, 814, 820, 825, 826, 828, 829, 830, 833, 846], "thought": [26, 27, 805, 806, 821, 845, 853], "research": [26, 27, 40, 799, 844, 849, 855, 862], "wa": [26, 27, 32, 41, 52, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 95, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 351, 352, 354, 355, 356, 362, 365, 369, 391, 392, 393, 411, 440, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 588, 600, 606, 611, 619, 621, 628, 634, 635, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 788, 799, 801, 806, 808, 810, 811, 813, 816, 822, 824, 826, 834, 836, 845, 848, 849, 854, 855, 857], "No": [26, 27, 40, 52, 58, 75, 81, 370, 443, 444, 445, 447, 448, 625, 683, 806, 813, 814, 855], "matter": [26, 27, 32, 816, 844], "job": [26, 27, 799, 811, 813, 849], "haven": [26, 27, 32, 841, 855], "jax_out": [26, 27], "ideal": [26, 27, 813, 814, 826, 832, 837], "But": [26, 27, 765, 812, 813, 817, 820, 823, 832, 839], "bring": [26, 27, 808, 828, 829, 834, 835, 842, 845], "wise": [26, 46, 51, 52, 57, 68, 74, 75, 80, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 234, 235, 236, 237, 239, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 263, 264, 265, 266, 267, 268, 271, 273, 274, 276, 277, 284, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 328, 331, 336, 338, 339, 340, 343, 344, 345, 346, 350, 351, 354, 355, 360, 365, 368, 369, 371, 391, 392, 393, 420, 427, 460, 467, 469, 470, 488, 613, 619, 626, 654, 686, 783, 832], "vision": [26, 27, 45, 851, 861], "worth": [26, 27], "differenti": [26, 27, 290, 358, 359, 360, 367, 855], "chosen": [26, 27, 45, 95, 121, 223, 616, 619, 631, 735, 804, 813, 826], "plai": [26, 27, 370, 445, 799, 805, 809, 815, 819, 826, 829, 839, 855, 858], "role": [26, 27, 799, 806, 815, 826, 835, 856, 858, 862], "dl": [26, 27], "cnn": [26, 27, 855], "effortlessli": [26, 27], "previous": [26, 27, 590, 621, 788, 805, 810, 822, 824, 829, 834], "pre": [26, 27, 799, 802, 804, 828, 829, 839, 840, 841, 855], "default_devic": [26, 27, 201, 204, 205, 206, 212, 213, 618, 815, 818, 819], "as_n": [26, 27, 49, 50, 69, 72, 73, 153, 154, 155, 156, 157, 158, 164, 191, 192, 204, 617, 618, 814], "certainli": [26, 27, 799, 845, 861], "upon": [26, 27, 44, 806, 816, 825, 829, 832, 840, 854, 855], "unnecessari": [26, 27, 826], "extend": [26, 27, 52, 75, 371, 380, 473, 513, 810, 811, 814, 817, 818, 821, 826, 830, 840, 852, 855, 861], "infrastructur": [26, 27, 799, 851, 857, 858], "least": [26, 51, 52, 57, 74, 75, 235, 253, 268, 368, 371, 380, 395, 400, 451, 452, 453, 462, 464, 510, 619, 624, 631, 664, 734, 799, 806, 809, 813, 814, 815, 816, 822, 825, 829, 849], "coco": 26, "seamlessli": [27, 829], "benefit": [27, 799, 805, 809, 812, 825, 832, 836, 837, 840, 845, 846, 853, 857, 860], "through": [27, 32, 40, 52, 75, 95, 223, 380, 516, 517, 619, 628, 708, 714, 781, 792, 799, 800, 802, 803, 804, 806, 807, 810, 811, 812, 813, 815, 816, 818, 819, 820, 822, 823, 825, 826, 827, 829, 831, 832, 833, 834, 837, 838, 839, 848, 853, 855, 856, 857], "therefor": [27, 32, 48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 174, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 466, 473, 474, 476, 481, 485, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 806, 808, 809, 812, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 827, 829, 830, 832, 834, 836, 838, 840, 844, 852, 855, 861], "wide": [27, 799, 806, 829, 853, 855], "prepar": [27, 40, 42, 45, 799, 813], "plenti": 27, "resourc": [27, 800, 804, 805, 813], "visit": [27, 804, 805, 806, 813], "page": [27, 799, 804, 805, 806, 811, 813, 819, 835, 836, 839, 841, 850], "newli": [28, 29, 41, 43, 49, 72, 147, 527, 617, 621, 806, 813, 825, 829], "randon": [28, 29, 31, 32, 33], "mean_": 28, "std_": 28, "detect": [28, 32, 51, 69, 74, 250, 619, 628, 705, 716, 804, 805, 810, 812, 813, 820, 829, 837, 838], "inspect": [28, 32, 523, 621], "__": [28, 29, 30, 31, 32, 33, 69, 816, 837], "exhibit": [29, 861], "via": [29, 32, 242, 369, 371, 435, 438, 441, 481, 619, 628, 715, 716, 806, 808, 812, 814, 815, 825, 830, 832, 834, 836, 837, 855], "script": [29, 799, 805, 806, 808, 813, 816, 834, 840, 855], "comp": 29, "low_level": 29, "chain": [29, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 92, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 457, 458, 479, 481, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 627, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 707, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 784, 809, 812, 824, 826, 838, 839, 840, 855], "un": [29, 165, 617, 814, 834], "partial_comp": 29, "time_funct": 29, "slowest": [29, 52, 59, 75, 82, 371, 463, 626, 693], "express": [29, 51, 52, 74, 75, 93, 216, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 785, 793, 817, 826, 834, 839, 855, 856], "fastest": [29, 52, 59, 75, 82, 369, 371, 433, 463, 626, 693], "maxim": [29, 822, 825, 834, 852, 853, 857, 858, 859], "conclud": [30, 830], "collect": [30, 40, 42, 44, 45, 47, 69, 70, 613, 618, 621, 622, 623, 625, 628, 629, 630, 718, 775, 779, 780, 781, 782, 783, 805, 813, 818, 819, 823, 824, 827, 829, 853, 855, 858], "norm_comp": [31, 32], "global": [31, 32, 42, 53, 69, 76, 98, 153, 154, 155, 156, 157, 206, 207, 208, 570, 571, 574, 579, 580, 592, 593, 596, 617, 618, 621, 771, 782, 788, 805, 809, 810, 813, 814, 815, 818, 822, 826, 834, 855], "approach": [31, 802, 804, 805, 806, 809, 812, 814, 815, 819, 822, 826, 829, 830, 832, 836, 837, 840, 852, 859, 861], "b": [32, 46, 51, 52, 53, 56, 57, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 96, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 122, 123, 124, 129, 130, 131, 133, 136, 138, 144, 147, 148, 149, 150, 158, 168, 170, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 324, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 349, 350, 351, 352, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 375, 378, 380, 386, 387, 388, 389, 391, 392, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 417, 420, 422, 424, 428, 433, 436, 441, 442, 444, 445, 446, 447, 451, 452, 453, 454, 457, 458, 459, 460, 463, 464, 465, 467, 468, 469, 470, 472, 473, 479, 481, 482, 483, 484, 487, 488, 493, 495, 497, 498, 500, 501, 503, 510, 511, 512, 513, 515, 517, 520, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 557, 564, 565, 579, 580, 582, 586, 587, 600, 602, 603, 604, 606, 608, 609, 610, 611, 613, 616, 617, 619, 621, 622, 623, 624, 625, 626, 628, 629, 630, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 644, 645, 646, 647, 648, 652, 653, 654, 655, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 683, 684, 685, 686, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 705, 708, 711, 712, 713, 714, 716, 717, 722, 723, 724, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 792, 793, 799, 800, 802, 806, 807, 808, 810, 812, 813, 816, 819, 822, 824, 827, 833, 834, 835, 837, 838, 839, 843, 846, 848, 851], "option": [32, 41, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 163, 165, 175, 187, 191, 203, 206, 207, 208, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 317, 318, 319, 320, 321, 322, 323, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 368, 369, 370, 371, 374, 375, 376, 378, 380, 381, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 411, 412, 413, 415, 416, 418, 419, 420, 422, 424, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 459, 461, 463, 464, 465, 466, 467, 468, 470, 471, 472, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 543, 544, 545, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 569, 579, 580, 582, 584, 586, 587, 588, 600, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 663, 664, 665, 667, 668, 669, 670, 671, 672, 673, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 711, 712, 716, 717, 722, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 764, 771, 775, 776, 778, 779, 781, 783, 784, 792, 797, 804, 805, 806, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 825, 826, 827, 829, 830, 832, 834, 839, 840, 848, 849, 850, 855, 861], "prioriti": [32, 69, 788, 804, 806, 815, 825], "normalize_via_oper": 32, "determin": [32, 51, 52, 57, 59, 63, 66, 69, 74, 75, 76, 80, 87, 89, 92, 95, 97, 98, 127, 150, 152, 159, 165, 166, 167, 168, 170, 171, 172, 187, 197, 199, 200, 211, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 248, 249, 250, 251, 252, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 298, 302, 347, 352, 360, 365, 368, 369, 370, 371, 380, 403, 411, 422, 442, 481, 510, 522, 525, 546, 547, 551, 552, 553, 554, 555, 556, 582, 600, 616, 617, 618, 619, 621, 624, 626, 627, 632, 635, 653, 654, 655, 657, 661, 662, 664, 666, 667, 669, 670, 672, 673, 678, 680, 681, 687, 702, 703, 704, 736, 737, 738, 739, 740, 754, 755, 765, 771, 778, 782, 812, 814, 815, 817, 822, 826, 829, 831, 832, 844], "think": [32, 804, 806, 813, 816, 832, 856], "uniqu": [32, 42, 52, 53, 63, 75, 76, 86, 368, 369, 371, 415, 436, 472, 473, 486, 557, 621, 627, 628, 632, 702, 703, 704, 707, 711, 736, 737, 738, 739, 765, 799, 804, 808, 812, 822, 826, 827, 828, 832, 840, 844, 858], "rule": [32, 49, 51, 52, 57, 72, 74, 75, 80, 147, 150, 173, 174, 175, 224, 235, 268, 270, 277, 279, 287, 289, 368, 371, 380, 411, 461, 510, 617, 619, 624, 626, 653, 654, 661, 666, 669, 673, 687, 765, 792, 808, 809, 812, 813, 814, 816, 820, 821, 822, 824, 829, 832, 856], "broadcast": [32, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 92, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 323, 329, 330, 331, 332, 333, 334, 337, 339, 341, 343, 345, 346, 347, 348, 352, 360, 362, 365, 368, 369, 370, 371, 374, 375, 380, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 400, 401, 403, 404, 405, 406, 409, 411, 416, 418, 419, 427, 428, 431, 432, 434, 442, 443, 444, 445, 447, 448, 454, 458, 461, 466, 474, 475, 476, 477, 479, 481, 483, 485, 489, 492, 493, 495, 496, 497, 499, 500, 510, 511, 512, 513, 516, 517, 518, 519, 520, 528, 529, 533, 534, 535, 540, 541, 550, 564, 565, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 667, 668, 669, 670, 671, 673, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 696, 697, 698, 699, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 735, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 792, 812, 814, 816, 817, 818, 829, 830, 834], "elementwis": [32, 52, 60, 75, 83, 294, 296, 355, 360, 624, 629, 679, 724, 822, 830, 834], "must": [32, 40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 93, 95, 97, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 143, 144, 147, 148, 149, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 309, 319, 320, 323, 324, 325, 326, 329, 330, 331, 332, 333, 335, 337, 339, 341, 343, 345, 346, 347, 348, 352, 355, 360, 362, 365, 368, 369, 370, 371, 374, 375, 378, 380, 382, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 409, 411, 412, 414, 416, 418, 419, 421, 427, 428, 431, 432, 433, 434, 439, 442, 443, 444, 445, 447, 448, 451, 452, 453, 458, 459, 461, 463, 464, 465, 466, 468, 472, 474, 475, 476, 477, 479, 481, 482, 483, 485, 487, 492, 493, 495, 496, 497, 499, 500, 503, 510, 511, 512, 513, 520, 528, 529, 533, 534, 535, 540, 541, 543, 550, 564, 565, 601, 602, 603, 606, 608, 609, 610, 611, 613, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 742, 743, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 778, 779, 783, 785, 803, 804, 805, 806, 808, 809, 813, 814, 815, 816, 817, 818, 821, 822, 823, 825, 826, 829, 830, 831, 832, 834, 838, 839, 844, 846, 849, 850, 856, 862], "taken": [32, 52, 57, 75, 80, 335, 365, 368, 412, 624, 657, 678, 804, 813, 826, 830, 839, 856], "account": [32, 42, 44, 52, 59, 75, 82, 282, 371, 463, 619, 626, 693, 778, 792, 805, 813, 817, 826, 830, 848], "rather": [32, 53, 69, 76, 121, 208, 552, 553, 556, 616, 618, 621, 802, 806, 808, 812, 814, 817, 819, 826, 827, 829, 830, 839, 840, 845, 851, 854, 855], "fact": [32, 92, 806, 808, 813, 826, 829, 834, 837], "consum": [32, 760, 812, 813, 821, 827, 829], "thrown": [32, 550, 621, 805, 809, 815, 818, 820, 840], "doesn": [32, 550, 568, 621, 758, 779, 804, 805, 810, 812, 813, 814, 815, 816, 819, 820, 822, 824, 829, 832, 834, 840, 848, 853], "consider": [32, 804, 816, 821, 832, 844, 852, 853], "effect": [32, 48, 52, 54, 65, 75, 77, 88, 134, 370, 403, 445, 602, 610, 616, 622, 623, 634, 649, 751, 753, 763, 766, 804, 809, 812, 813, 817, 821, 825, 827, 832, 840, 845], "explain": [32, 52, 75, 368, 401, 412, 799, 804, 805, 806, 808, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 824, 825, 826, 829, 830, 832, 834, 835, 836, 837, 838, 839, 851, 858, 861], "necessari": [32, 48, 52, 71, 75, 82, 123, 235, 268, 371, 451, 452, 453, 459, 461, 462, 463, 464, 465, 472, 487, 573, 595, 619, 621, 689, 690, 691, 693, 695, 696, 698, 700, 799, 804, 805, 809, 810, 812, 814, 816, 825, 826, 829, 831, 832, 848, 849], "standalon": [33, 804, 809, 829, 842, 851, 856, 861, 862], "dynam": [33, 626, 693, 781, 788, 807, 813, 814, 815, 825, 826, 831, 834, 848, 855, 859], "static": [33, 52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 101, 102, 124, 313, 368, 388, 401, 406, 415, 435, 441, 479, 490, 582, 616, 623, 649, 669, 776, 781, 826, 831, 840, 854, 855, 856], "flow": [34, 812, 848, 855, 856], "statement": [34, 39, 813, 825, 829, 832, 840, 848, 849], "opposit": 34, "exclud": [34, 65, 75, 88, 121, 142, 322, 362, 511, 512, 616, 630, 728, 744, 763, 766, 788, 816, 834, 848], "todo": [35, 36, 37, 42, 45, 75, 512, 804, 814, 826], "aim": [38, 802, 806, 808, 819, 823, 826, 829, 833, 853, 855, 858], "interfac": [38, 71, 129, 616, 836, 839, 840, 842, 845, 851, 852, 853, 854, 855, 859, 862], "set_framework": [38, 45], "44": [38, 42, 51, 52, 61, 74, 75, 84, 221, 268, 278, 282, 283, 333, 365, 368, 388, 389, 619, 623, 624, 628, 631, 634, 646, 669, 713, 726, 727, 735, 746], "45": [38, 40, 42, 51, 52, 65, 74, 75, 77, 79, 84, 98, 219, 223, 235, 278, 279, 337, 350, 365, 368, 380, 389, 399, 410, 511, 517, 602, 608, 619, 622, 624, 626, 634, 669, 695, 727, 728, 746, 763], "46": [38, 40, 42, 52, 61, 75, 79, 84, 133, 258, 279, 308, 362, 368, 387, 405, 406, 616, 619, 628, 706, 726, 727], "underneath": [38, 813, 853], "sai": [38, 804, 805, 819, 823, 836, 846], "clip": [38, 51, 52, 59, 74, 75, 76, 82, 266, 267, 371, 456, 481, 482, 528, 529, 619, 621, 626, 812, 822, 824, 825, 837, 839], "a_min": 38, "a_max": 38, "tensforflow": 38, "clip_by_valu": [38, 839], "clip_value_min": 38, "clip_value_max": 38, "clamp": [38, 52, 75, 294, 360, 839], "min": [38, 42, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 140, 142, 160, 163, 267, 322, 325, 330, 362, 365, 369, 371, 422, 478, 518, 534, 564, 565, 579, 616, 617, 619, 621, 624, 634, 665, 671, 674, 675, 681, 799], "max": [38, 40, 49, 52, 53, 57, 65, 72, 75, 76, 80, 88, 160, 163, 266, 329, 365, 368, 369, 371, 386, 387, 388, 404, 405, 406, 407, 409, 411, 422, 478, 480, 481, 528, 529, 534, 550, 564, 565, 617, 619, 621, 624, 634, 665, 667, 670, 763, 779, 783, 813, 826], "49": [38, 42, 52, 61, 75, 79, 80, 282, 368, 369, 380, 389, 399, 410, 433, 511, 619, 634, 679, 727, 746], "devicearrai": [38, 809, 826, 834, 836], "concaten": [38, 52, 53, 59, 75, 80, 371, 458, 533, 537, 621, 623, 626, 649, 669, 687, 763, 827, 832, 834, 837], "accept": [38, 47, 48, 51, 52, 57, 70, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 336, 357, 362, 365, 367, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 799, 804, 805, 806, 809, 812, 814, 815, 816, 817, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 836, 842, 853], "jax_concat": 38, "tf_concat": 38, "np_concat": 38, "torch_concat": 38, "85": [38, 46, 52, 61, 68, 74, 75, 77, 79, 84, 98, 107, 220, 229, 230, 274, 290, 291, 293, 360, 380, 511, 579, 606, 613, 619, 621, 622, 623, 630, 647, 726, 727, 728], "mymodel": [38, 837], "x_in": [38, 837, 838, 839], "reduce_mean": [38, 799, 837, 838, 839], "91": [38, 52, 79, 84, 353, 365, 410, 623, 624, 630, 634, 647, 669, 727, 746], "49040043354034424": 38, "48975786566734314": 38, "4892795979976654": 38, "48886892199516296": 38, "4884953498840332": 38, "4881443977355957": 38, "4878086447715759": 38, "48748287558555603": 38, "48716384172439575": 38, "48684927821159363": 38, "48653748631477356": 38, "48622724413871765": 38, "4859171509742737": 38, "48560672998428345": 38, "48529526591300964": 38, "4849821627140045": 38, "48466697335243225": 38, "4843493402004242": 38, "4840289056301117": 38, "4837053418159485": 38, "4833785891532898": 38, "4830484390258789": 38, "48271444439888": 38, "48237672448158264": 38, "48203518986701965": 38, "48168954253196716": 38, "4813397228717804": 38, "4809857904911041": 38, "48062753677368164": 38, "48026490211486816": 38, "479898065328598": 38, "47952669858932495": 38, "4791509211063385": 38, "4787706732749939": 38, "47838595509529114": 38, "4779967665672302": 38, "47760307788848877": 38, "4772048890590668": 38, "47680220007896423": 38, "47639501094818115": 38, "47598329186439514": 38, "4755673110485077": 38, "4751465618610382": 38, "4747215211391449": 38, "4742920398712158": 38, "47385817766189575": 38, "47341999411582947": 38, "47297725081443787": 38, "4725303053855896": 38, "47207894921302795": 38, "47162333130836487": 38, "47116345167160034": 38, "470699280500412": 38, "47023090720176697": 38, "54": [38, 49, 51, 56, 74, 75, 79, 84, 163, 232, 233, 238, 253, 282, 288, 308, 362, 368, 380, 389, 399, 511, 619, 623, 624, 634, 647, 666, 669, 726, 727, 728, 746, 813, 816], "4697583019733429": 38, "55": [38, 46, 75, 84, 113, 229, 288, 380, 511, 548, 619, 621, 624, 630, 634, 662, 669, 727, 728, 746, 808], "46928152441978455": 38, "46880054473876953": 38, "4683155119419098": 38, "58": [38, 259, 528, 619, 621], "4678264260292053": 38, "59": [38, 51, 230, 380, 511], "46733325719833374": 38, "46683603525161743": 38, "61": [38, 40, 51, 52, 57, 74, 75, 77, 81, 84, 221, 256, 258, 283, 389, 602, 619, 622, 623, 624, 625, 645, 661, 683, 685, 728, 819], "4663347601890564": 38, "4658295214176178": 38, "465320348739624": 38, "4648073613643646": 38, "46429020166397095": 38, "4637692868709564": 38, "46324464678764343": 38, "4627160429954529": 38, "4621836841106415": 38, "4616474211215973": 38, "71": [38, 51, 74, 79, 234, 274, 410, 619], "46110764145851135": 38, "72": [38, 52, 61, 75, 77, 240, 342, 365, 368, 389, 399, 606, 619, 622, 624, 634, 669, 727, 746], "460563987493515": 38, "4600166976451874": 38, "74": [38, 40, 51, 84, 230, 260, 619, 624, 666], "45946577191352844": 38, "45891112089157104": 38, "45835286378860474": 38, "4577910006046295": 38, "78": [38, 54, 279, 608, 619, 622, 624, 630, 634, 669, 727, 746], "45722562074661255": 38, "79": [38, 40, 52, 53, 75, 76, 79, 84, 97, 235, 368, 389, 399, 410, 528, 529, 619, 621, 728], "45665669441223145": 38, "80": [38, 52, 75, 342, 365, 369, 380, 433, 511, 624, 628, 634, 669, 716, 746, 845], "4560841917991638": 38, "81": [38, 42, 51, 57, 72, 74, 80, 84, 163, 233, 258, 259, 283, 380, 511, 617, 619, 624, 628, 630, 634, 661, 666, 679, 713, 728, 746, 829], "4555082619190216": 38, "45492875576019287": 38, "45434585213661194": 38, "84": [38, 56, 65, 74, 84, 163, 193, 258, 617, 618, 624, 629, 634, 647, 669, 724, 727, 728, 746], "45375964045524597": 38, "4531698524951935": 38, "4525766670703888": 38, "45198020339012146": 38, "4513803720474243": 38, "4507772624492645": 38, "4501707851886749": 38, "4495610296726227": 38, "4489481747150421": 38, "44833192229270935": 38, "4477125108242035": 38, "44708991050720215": 38, "44646409153938293": 38, "44583529233932495": 38, "98": [38, 46, 52, 54, 61, 68, 74, 77, 84, 108, 233, 281, 353, 365, 606, 613, 622, 624, 628, 631, 634, 669, 706, 717, 726, 728, 735, 746], "4452032148838043": 38, "44456806778907776": 38, "4439": 38, "selectbackward0": 38, "hope": [38, 840, 845, 861], "ivy_compil": 39, "ic": 39, "produc": [39, 52, 53, 56, 75, 79, 296, 306, 309, 360, 362, 368, 415, 623, 652, 763, 793, 804, 814, 819, 820, 825, 827, 829, 830, 848, 856, 858], "numer": [39, 48, 49, 51, 52, 53, 57, 61, 62, 65, 72, 74, 75, 76, 80, 84, 85, 87, 97, 98, 134, 147, 215, 218, 231, 235, 240, 241, 242, 249, 250, 251, 254, 263, 264, 268, 270, 271, 272, 273, 277, 278, 279, 283, 284, 288, 289, 368, 370, 375, 380, 411, 443, 497, 510, 570, 571, 579, 580, 592, 593, 616, 617, 619, 621, 624, 630, 631, 634, 654, 661, 664, 669, 672, 674, 676, 678, 680, 726, 727, 728, 730, 731, 732, 734, 735, 740, 747, 750, 752, 763, 764, 765, 766, 778, 802, 814, 819, 824, 826, 827, 829, 830, 831, 832, 834, 838, 852, 855, 861], "anyth": [39, 52, 75, 380, 516, 517, 806, 818, 829, 830, 855, 856], "affect": [39, 45, 52, 370, 446, 813, 826], "intermedi": [39, 853, 854, 855, 856, 861], "variabl": [39, 41, 42, 44, 52, 53, 54, 60, 69, 75, 76, 77, 83, 117, 118, 120, 316, 362, 368, 369, 375, 380, 413, 437, 498, 509, 510, 526, 550, 551, 552, 553, 556, 582, 603, 604, 606, 608, 609, 610, 615, 621, 622, 624, 627, 629, 673, 702, 703, 704, 724, 760, 771, 776, 778, 779, 780, 781, 782, 783, 784, 806, 810, 814, 817, 821, 824, 825, 829, 830, 834, 837, 838, 839, 840, 841, 848, 856], "original_fn": 39, "100000": 39, "var": [39, 65, 88, 90, 117, 118, 119, 120, 615, 627, 634, 702, 703, 785, 805, 816, 834], "co": [39, 40, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 803, 814, 834, 845], "sin": [39, 51, 53, 74, 233, 238, 240, 281, 537, 619, 621, 809, 834], "tan": [39, 51, 74, 524, 619, 621, 817, 821, 822, 825, 826, 834], "comp_fn": 39, "compile_graph": [39, 45], "expected_result": 39, "compiled_result": 39, "irrelev": [39, 813, 814, 816], "opeat": 39, "_layer": [39, 834], "net": [39, 44, 45, 834, 839, 845, 846], "compiled_net": 39, "proceed": 40, "latest": [40, 42, 51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 380, 411, 413, 481, 510, 617, 619, 624, 626, 634, 672, 673, 701, 751, 779, 799, 804, 805, 806, 808, 810, 813, 817, 819, 830, 840, 841, 849, 860], "pypi": [40, 42, 45, 804, 805, 830, 840], "pkg": [40, 42, 45], "public": [40, 42, 45, 530, 621, 813, 824, 836, 858], "revis": [40, 42, 806], "tmp": [40, 42, 577, 599, 621], "req": [40, 42], "tabqrujw": 40, "command": [40, 42, 799, 801, 805, 808, 811, 813, 819, 820, 841], "filter": [40, 42, 44, 52, 56, 75, 79, 311, 312, 362, 368, 388, 406, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 765, 779, 799, 810, 813], "quiet": [40, 42], "commit": [40, 42, 802, 804, 808, 816, 828, 829], "f3be3702c9fab1c9fa97c743813a4bdb39525705": 40, "metadata": [40, 42, 45, 825], "setup": [40, 42, 45, 805, 806, 811, 813, 819], "done": [40, 42, 45, 624, 660, 803, 804, 805, 806, 808, 811, 813, 815, 816, 819, 820, 825, 826, 829, 837, 848, 849, 855], "py3": [40, 42, 45], "whl": [40, 41, 42, 45], "cp39": [40, 42], "manylinux_2_12_x86_64": [40, 42], "manylinux2010_x86_64": [40, 42], "manylinux_2_17_x86_64": [40, 42, 805], "manylinux2014_x86_64": [40, 41, 42], "eta": [40, 42, 45], "tar": [40, 41, 42, 45], "gz": [40, 41, 42, 45], "py2": [40, 42], "495": [40, 42], "nvidia_ml_pi": [40, 42], "pypars": [40, 42, 45], "ivy_cor": [40, 42, 45, 805], "1338326": 40, "sha256": [40, 42, 45], "e5c4205c80116b781373daf4502d61881235c5e3eb0d55096ab07dcc6eb66bec": 40, "store": [40, 42, 45, 49, 52, 53, 57, 59, 69, 72, 75, 76, 80, 82, 149, 368, 369, 412, 420, 424, 436, 440, 537, 621, 624, 626, 678, 695, 760, 761, 779, 780, 781, 801, 806, 809, 810, 812, 817, 823, 825, 826, 827, 834, 836, 837, 838, 842, 848], "directori": [40, 41, 42, 45, 577, 599, 618, 621, 801, 804, 805, 806, 811, 813, 819, 826, 829, 841], "ephem": [40, 42], "njrc_e6b": 40, "2e": [40, 42], "ae2d7c5ce8708e605368a33e08d57d1de8e107e3db157c3063": [40, 42], "4845": [40, 42], "a8cde63eca203d3bd7f900fa32f44dbd038476606a3836de14caf2b0a5ff7460": 40, "b6": [40, 42], "0d": [40, 42], "0d1bbd99855f99cb2f6c2e5ff96f8023fad8ec367695f7d72d": [40, 42], "successfulli": [40, 42, 45, 781, 805, 809], "uninstal": [40, 42, 45], "found": [40, 42, 43, 45, 57, 59, 63, 69, 75, 80, 82, 86, 98, 196, 380, 458, 511, 618, 628, 657, 664, 697, 716, 736, 793, 804, 805, 806, 809, 810, 811, 812, 814, 815, 817, 820, 823, 825, 826, 841, 857], "cannot": [40, 41, 42, 45, 52, 285, 451, 452, 453, 619, 806, 808, 810, 814, 826, 834, 839, 861], "vnd": [40, 42, 45], "json": [40, 42, 45, 69, 805, 819, 837], "psst": 40, "cv2": [40, 42, 44, 837], "pickl": [40, 41, 69, 781, 812, 837], "imageio": 40, "urllib": [40, 45], "_src": 40, "tpu": [40, 189, 195, 206, 211, 618, 815, 855, 858], "back": [40, 52, 59, 75, 82, 371, 463, 484, 566, 589, 621, 623, 626, 649, 693, 778, 783, 793, 805, 809, 814, 815, 818, 823, 824, 831, 833, 840, 841, 845, 853, 857], "tf_cpp_min_log_level": 40, "info": [40, 796, 799, 811, 817, 820], "mkdir": [40, 41, 42, 805, 813], "perceiv": [40, 41], "touch": 40, "io_processor": 40, "position_encod": 40, "absl": 40, "jmp": 40, "tabul": 40, "04": [40, 41, 48, 54, 68, 72, 75, 77, 107, 108, 133, 160, 240, 570, 602, 603, 608, 613, 616, 617, 619, 621, 622, 763, 805, 829], "29359": 40, "29k": 40, "67k": 40, "002": 40, "30179": 40, "47k": 40, "8107": 40, "9k": 40, "92k": 40, "itertool": 40, "preprocessor": 40, "vector": [40, 48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 134, 358, 359, 367, 368, 369, 371, 374, 375, 380, 390, 421, 426, 432, 434, 439, 473, 475, 477, 494, 498, 510, 529, 533, 550, 601, 616, 621, 623, 624, 647, 649, 654, 658, 659, 661, 664, 669, 674, 675, 679, 680, 681, 682, 763, 779, 855], "perceiverbackbon": 40, "input_preprocessor": 40, "_input_preprocessor": 40, "_encod": 40, "__call__": [40, 760, 779, 780, 781, 799, 849], "is_train": 40, "po": [40, 793], "input_mask": 40, "network_input_is_1d": 40, "_input_is_1d": 40, "queri": [40, 41, 56, 69, 79, 193, 207, 543, 569, 618, 621, 623, 649, 652, 779, 812, 814, 819, 836, 855], "decod": [40, 837], "cross": [40, 42, 57, 58, 80, 81, 93, 624, 625, 683, 684, 685, 799, 813, 814], "attend": [40, 623, 649], "encoder_queri": 40, "latent": [40, 627, 703, 704], "imagepreprocessor": 40, "deal": [40, 781, 802, 815, 822, 824, 826, 840], "image_s": 40, "fourier_pos_config": 40, "position_encoding_typ": 40, "fourier": [40, 52, 75, 368, 390, 395, 396, 400, 401, 411, 412, 415, 537, 621], "fourier_position_encoding_kwarg": 40, "concat_po": 40, "max_resolut": 40, "num_band": [40, 53, 76, 537, 621], "sine_onli": 40, "prep_typ": 40, "spatial_downsampl": 40, "cross_attend_widening_factor": 40, "cross_attention_shape_for_attn": 40, "kv": 40, "dropout_prob": 40, "num_block": 40, "num_cross_attend_head": 40, "num_self_attend_head": 40, "num_self_attends_per_block": 40, "num_z_channel": 40, "self_attend_widening_factor": 40, "use_query_residu": 40, "z_index_dim": 40, "z_pos_enc_init_scal": 40, "perceiver_backbon": [40, 799], "perceiverencod": 40, "At": [40, 804, 805, 806, 808, 819, 829, 830, 845, 855], "almost": [40, 803, 812, 827, 835, 837, 844], "publish": [40, 799, 840, 846, 849], "thankfulli": [40, 829], "perceiver_io": [40, 41], "imagenet_fourier_position_encod": 40, "pystat": 40, "imagenet_checkpoint": 40, "rb": 40, "ckpt": 40, "read": [40, 42, 52, 59, 69, 71, 75, 82, 129, 371, 463, 616, 626, 693, 804, 805, 811, 813, 819, 829, 831, 832, 855], "09": [40, 46, 51, 77, 84, 113, 273, 283, 602, 613, 619, 622, 727], "173": [40, 57, 624, 661], "194": 40, "217": [40, 818], "125": [40, 52, 57, 80, 229, 339, 365, 370, 442, 619, 624, 679], "177": [40, 42], "193776248": 40, "185m": 40, "octet": 40, "184": 40, "80m": 40, "144mb": 40, "144": 40, "mean_rgb": 40, "stddev_rgb": 40, "im": 40, "denorm": 40, "resize_and_center_crop": 40, "crop": [40, 52, 75, 368, 396, 401, 412], "center": [40, 778], "image_height": [40, 42, 799], "image_width": [40, 799], "padded_center_crop_s": 40, "minimum": [40, 51, 52, 53, 59, 62, 65, 74, 75, 76, 82, 85, 88, 215, 243, 270, 293, 325, 329, 330, 339, 360, 362, 365, 371, 380, 473, 508, 512, 518, 570, 571, 579, 580, 592, 593, 619, 621, 626, 631, 634, 686, 732, 747, 749, 763, 765, 766, 771, 814, 831, 852, 858, 862], "offset_height": 40, "offset_width": 40, "crop_window": 40, "inter_cub": 40, "ye": [40, 840], "dummy_input": [40, 799], "transpili": 40, "torch_perceiver_backbon": 40, "quicker": 40, "params_v": [40, 799, 849], "perceiverioclassifi": [40, 799], "max_pool": [40, 799], "huggingfac": [40, 848, 849], "Of": [40, 809, 825, 826, 837, 860, 861], "cours": [40, 805, 806, 808, 809, 816, 825, 826, 832, 837, 840, 860, 861], "468": 40, "huggingface_hub": 40, "multiprocess": [40, 69, 98, 621, 837, 840], "py39": 40, "132": [40, 75], "pyarrow": 40, "xxhash": 40, "212": [40, 52, 56, 75, 352, 365, 647], "pyyaml": 40, "2021": [40, 52, 75, 355, 365, 799], "aiohttp": 40, "async": 40, "timeout": [40, 69, 98, 574, 596, 621, 831], "0a3": 40, "async_timeout": 40, "frozenlist": 40, "manylinux_2_5_x86_64": [40, 45], "manylinux1_x86_64": [40, 45], "158": 40, "attr": [40, 814], "aiosign": 40, "multidict": 40, "114": [40, 368, 389, 399], "yarl": 40, "264": [40, 628, 705], "2022": [40, 41], "pytz": 40, "2020": [40, 808, 855], "dateutil": [40, 45], "wikiart": 40, "paint": [40, 799, 834, 844], "load_dataset": [40, 848, 849], "n_sampl": [40, 52, 75, 369, 371, 417, 425, 476], "10000": [40, 42, 48, 71, 133, 616], "huggan": 40, "split": [40, 41, 42, 46, 51, 52, 59, 68, 69, 74, 75, 82, 105, 106, 107, 108, 109, 110, 111, 112, 113, 206, 207, 208, 286, 290, 294, 295, 297, 341, 348, 360, 371, 459, 468, 487, 533, 560, 613, 618, 619, 621, 623, 626, 636, 643, 644, 698, 760, 775, 779, 799, 800, 806, 813, 833, 834, 840, 862], "wiki_art": 40, "gib": 40, "unknown": [40, 763], "total": [40, 42, 52, 65, 69, 75, 88, 98, 129, 210, 324, 325, 326, 334, 362, 365, 616, 618, 631, 634, 734, 751, 753, 793, 799, 800, 805, 806, 814, 815, 816, 829, 832, 837, 838, 840, 846], "huggan___parquet": 40, "36ee951979f9b56c": 40, "2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec": 40, "parquet": 40, "subsequ": [40, 788, 805, 809, 813, 814, 816, 821, 822, 825, 829, 838, 856], "reus": [40, 48, 71, 75, 82, 123, 451, 452, 459, 461, 463, 464, 465, 472, 487, 689, 690, 691, 693, 695, 696, 698, 700, 818, 829, 860], "curl": [40, 805], "server": [40, 799, 805, 806, 811, 819, 841, 855], "row": [40, 52, 75, 93, 127, 142, 322, 362, 369, 371, 378, 380, 427, 437, 465, 471, 488, 503, 509, 510, 616, 624, 630, 631, 665, 673, 674, 679, 725, 734, 778], "2fwikiart": 40, "receiv": [40, 44, 92, 524, 560, 621, 627, 702, 703, 704, 779, 805, 806, 814, 815, 829, 832], "xferd": 40, "averag": [40, 42, 52, 54, 58, 75, 77, 81, 368, 370, 374, 380, 382, 383, 386, 387, 388, 443, 444, 445, 446, 447, 448, 494, 510, 602, 603, 608, 622, 623, 625, 627, 649, 683, 702, 703, 778, 779], "dload": 40, "upload": [40, 829], "spent": [40, 846], "25936": 40, "278k": 40, "number": [40, 42, 43, 44, 45, 48, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 63, 65, 66, 69, 71, 72, 74, 75, 76, 79, 80, 81, 82, 84, 85, 86, 88, 89, 92, 93, 95, 97, 98, 101, 121, 127, 129, 131, 132, 133, 134, 135, 136, 137, 138, 142, 148, 153, 154, 155, 156, 157, 159, 160, 163, 166, 167, 168, 170, 172, 175, 199, 200, 201, 215, 216, 217, 218, 219, 221, 223, 224, 231, 233, 235, 236, 238, 240, 241, 242, 248, 249, 250, 252, 256, 258, 266, 267, 268, 269, 270, 271, 273, 275, 277, 278, 279, 281, 282, 286, 288, 313, 317, 318, 319, 320, 321, 322, 324, 325, 326, 328, 329, 330, 332, 333, 334, 335, 344, 349, 353, 362, 365, 368, 369, 371, 374, 380, 401, 412, 415, 418, 421, 425, 426, 427, 435, 439, 441, 451, 452, 453, 473, 474, 475, 476, 477, 479, 481, 483, 486, 489, 490, 491, 508, 510, 511, 512, 513, 519, 537, 544, 562, 579, 580, 587, 600, 601, 614, 616, 617, 618, 619, 621, 623, 624, 625, 626, 627, 630, 631, 632, 634, 635, 636, 643, 644, 646, 649, 654, 658, 659, 660, 667, 672, 674, 678, 679, 680, 683, 686, 688, 689, 691, 692, 694, 695, 697, 699, 701, 702, 703, 704, 725, 729, 734, 736, 737, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 764, 765, 771, 778, 779, 782, 793, 799, 805, 806, 812, 813, 814, 815, 816, 823, 824, 825, 829, 830, 831, 832, 834, 837, 843, 844, 848], "abstract_expression": 40, "action_paint": 40, "analytical_cub": 40, "art_nouveau": 40, "baroqu": 40, "color_field_paint": 40, "contemporary_r": 40, "cubism": 40, "early_renaiss": 40, "expression": 40, "fauvism": 40, "high_renaiss": 40, "impression": 40, "mannerism_late_renaiss": 40, "minim": [40, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 362, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 670, 671, 672, 674, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 793, 817, 825, 827, 832, 834, 848, 853, 861], "naive_art_primitiv": 40, "new_real": 40, "northern_renaiss": 40, "pointil": 40, "pop_art": 40, "post_impression": 40, "realism": 40, "rococo": 40, "romantic": 40, "symbol": [40, 792, 804, 805, 855, 856], "synthetic_cub": 40, "ukiyo_": 40, "custom": [40, 52, 75, 293, 305, 357, 360, 367, 763, 792, 801, 807, 813, 818, 823, 827, 829, 832, 838, 845, 855, 859, 860, 861], "hugginfac": 40, "customdataset": 40, "__len__": [40, 812], "__getitem__": [40, 69, 812], "idx": [40, 41, 42, 523, 621, 799, 815, 836], "random_split": 40, "224x224": 40, "val_siz": 40, "dataset_train": 40, "dataset_v": 40, "dataset_test": 40, "dataloader_train": 40, "batch_siz": [40, 42, 45, 52, 56, 61, 75, 79, 84, 368, 370, 386, 387, 388, 404, 405, 406, 407, 448, 623, 630, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 649, 725, 799, 837], "dataloader_v": 40, "dataloader_test": 40, "batch": [40, 41, 42, 52, 53, 57, 69, 75, 76, 80, 206, 207, 368, 374, 382, 384, 390, 403, 413, 443, 489, 490, 491, 494, 537, 540, 541, 601, 618, 621, 623, 624, 627, 629, 647, 648, 649, 663, 681, 702, 703, 704, 724, 763, 779, 782, 799, 812, 822, 827, 837, 853], "iter": [40, 42, 47, 52, 53, 59, 67, 69, 75, 76, 82, 90, 95, 98, 117, 208, 314, 315, 362, 368, 369, 371, 413, 426, 435, 441, 457, 473, 522, 560, 615, 618, 621, 626, 628, 688, 692, 699, 701, 706, 707, 708, 709, 710, 711, 713, 714, 715, 716, 717, 720, 721, 723, 792, 793, 808, 810, 812, 834, 837, 846, 848], "train_featur": 40, "train_label": 40, "imshow": [40, 41], "crossentropyloss": [40, 780], "sgd": [40, 783, 855], "lr": [40, 54, 77, 524, 603, 606, 608, 609, 610, 621, 622, 783, 837, 838], "001": [40, 51, 52, 60, 72, 75, 77, 160, 258, 275, 332, 344, 365, 603, 617, 619, 622, 629, 724, 763, 837, 838], "train_step": 40, "running_loss": [40, 42, 799], "last_loss": 40, "training_load": 40, "intra": 40, "report": [40, 804, 829], "zero_grad": 40, "backward": [40, 52, 66, 75, 89, 277, 368, 390, 395, 396, 400, 401, 411, 412, 619, 624, 635, 654, 680, 754, 755, 779, 830, 840], "adjust": [40, 65, 88, 369, 437, 634, 751, 753, 788], "999": [40, 54, 74, 77, 286, 602, 603, 608, 610, 619, 622, 783, 838], "epoch_numb": 40, "best_vloss": 40, "1_000_000": 40, "avg_loss": 40, "running_vloss": 40, "vdata": 40, "vinput": 40, "vlabel": 40, "voutput": 40, "vloss": 40, "avg_vloss": 40, "model_path": 40, "model_": 40, "state_dict": [40, 780, 781], "highest": [40, 52, 61, 75, 84, 313, 316, 362, 630, 726, 814], "energi": 40, "sum": [40, 42, 51, 52, 53, 56, 57, 58, 65, 69, 74, 75, 76, 79, 80, 81, 88, 92, 97, 98, 208, 218, 260, 284, 326, 349, 362, 365, 369, 370, 371, 374, 380, 410, 420, 442, 443, 444, 445, 446, 447, 448, 478, 494, 516, 517, 534, 564, 565, 618, 619, 621, 623, 624, 625, 634, 646, 652, 665, 674, 678, 681, 683, 745, 746, 778, 780, 792, 799, 812, 814, 822, 824, 825, 826, 834, 848, 849, 850], "augment": 40, "mayb": [40, 41, 47, 799, 805, 813, 834, 836], "meta": [40, 702, 703, 704, 809, 830, 855], "finetun": 40, "deploi": [40, 799, 813, 842, 849, 853, 854, 855, 857, 861], "present": [41, 52, 65, 69, 75, 88, 332, 365, 374, 489, 490, 491, 634, 749, 804, 805, 806, 812, 814, 815, 821, 825, 834, 844, 852, 853, 862], "percieverio": 41, "ai": [41, 813, 853, 857], "contribut": [41, 52, 75, 380, 513, 803, 805, 806, 811, 819, 820, 826, 827, 834, 841, 848, 859], "highli": [41, 799, 804, 855], "invit": [41, 804, 826, 832], "g4ar9q7dtn": 41, "step1": 41, "printf": 41, "8packag": 41, "share": [41, 69, 181, 617, 763, 764, 799, 810, 812, 816, 822, 824, 826, 827, 829, 832, 834, 845, 853, 854, 861], "googledr": 41, "10_wfp1u4rmzc20eignrdqa9v2s9byjwv": 41, "file_id": 41, "drive": [41, 42], "uc": 41, "export": [41, 813, 854, 861], "tee": [41, 805], "file_id_wget_cmd": 41, "perl": 41, "pe": 41, "g": [41, 43, 44, 52, 61, 63, 65, 67, 75, 84, 90, 92, 146, 175, 188, 235, 248, 268, 275, 278, 329, 330, 365, 368, 369, 371, 375, 380, 404, 406, 441, 481, 496, 497, 498, 499, 500, 511, 512, 617, 618, 619, 624, 628, 630, 632, 634, 659, 660, 665, 672, 674, 675, 681, 708, 712, 714, 717, 722, 726, 727, 728, 736, 737, 738, 739, 744, 745, 747, 749, 750, 752, 778, 800, 804, 805, 807, 808, 810, 811, 812, 824, 826, 829, 834, 840, 842, 846, 851], "uuid": 41, "anywai": [41, 809, 823, 826], "bin": [41, 52, 75, 380, 508, 513, 805, 806, 808, 812], "bash": [41, 805, 806, 808], "step2": 41, "interpret": [41, 48, 52, 71, 75, 122, 123, 129, 135, 370, 380, 443, 510, 616, 813, 856], "sudo": [41, 805], "apt": [41, 805], "yf": 41, "step3": 41, "delet": [41, 806, 813], "xvzf": 41, "rm": [41, 43, 801, 806], "step4": 41, "symlink": 41, "unzip": [41, 42], "fr": 41, "l": [41, 57, 74, 80, 262, 369, 421, 623, 624, 649, 653, 658, 659, 660, 664, 678, 806, 807], "d": [41, 52, 53, 56, 57, 59, 71, 75, 76, 79, 80, 82, 95, 111, 133, 142, 175, 218, 235, 236, 268, 271, 322, 362, 368, 369, 371, 374, 375, 378, 386, 387, 388, 395, 400, 404, 405, 406, 407, 409, 413, 419, 433, 453, 459, 461, 464, 468, 482, 484, 487, 494, 496, 502, 525, 536, 613, 616, 617, 619, 623, 624, 626, 628, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 656, 657, 661, 665, 669, 678, 679, 695, 708, 712, 713, 714, 717, 722, 723, 764, 793, 799, 800, 805, 807, 810, 811, 812, 819, 824, 829, 832, 837, 845, 846, 851], "ln": 41, "sf": 41, "la": 41, "step5": 41, "regular": [41, 75, 369, 380, 433, 514, 624, 663, 805, 826, 855], "step6": 41, "ipkykernel": 41, "step7": 41, "engbjapanpython3": 41, "separ": [41, 52, 53, 75, 374, 490, 537, 621, 623, 649, 805, 806, 809, 812, 813, 816, 827, 828, 829, 834, 836, 837, 856, 860], "ipykernel": 41, "reconnect": 41, "sy": 41, "oct": 41, "gcc": [41, 853, 860], "lf": 41, "upgrad": 41, "cuda11": 41, "cudnn805": 41, "cp38": [41, 45, 805], "helper": [41, 758, 760, 761, 767, 769, 770, 799, 802, 811, 814, 818, 819, 828, 837, 842], "feedforward": 41, "prenorm": 41, "perceiveriospec": 41, "fetch": [41, 545, 621, 805, 806, 808, 813], "ogbanugot": 41, "xmartlab": 41, "caffeflow": 41, "fetch_class": 41, "class_label": 41, "ground_truth": 41, "127": [41, 49, 52, 57, 72, 75, 163, 352, 365, 617, 624, 661], "path_to_imag": 41, "get_imag": 41, "ax": [41, 46, 52, 57, 59, 62, 65, 66, 68, 75, 80, 82, 85, 88, 89, 97, 101, 108, 112, 208, 329, 330, 334, 335, 349, 356, 365, 366, 368, 369, 371, 374, 380, 396, 401, 412, 436, 472, 473, 479, 492, 515, 516, 517, 518, 519, 520, 533, 601, 618, 621, 624, 626, 631, 634, 635, 654, 665, 673, 676, 677, 681, 688, 690, 691, 694, 696, 698, 701, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 765, 779, 814, 816, 829, 830, 834, 836], "fig": [41, 42], "subplot": [41, 42], "spine": 41, "set_vis": 41, "right": [41, 52, 57, 69, 75, 80, 98, 115, 116, 227, 229, 282, 343, 365, 368, 369, 371, 402, 430, 436, 437, 439, 464, 533, 615, 619, 621, 624, 633, 674, 679, 742, 763, 800, 804, 805, 806, 807, 808, 816, 819, 832, 837, 848], "bottom": [41, 533, 621, 804, 805, 813, 819, 861], "tick_param": 41, "set_xticklabel": 41, "set_yticklabel": 41, "show_result": 41, "along": [41, 46, 48, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 74, 75, 76, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 95, 108, 112, 117, 132, 133, 208, 282, 285, 287, 324, 325, 326, 329, 330, 334, 335, 349, 356, 362, 365, 366, 368, 369, 370, 371, 374, 380, 389, 395, 396, 399, 400, 401, 411, 412, 435, 445, 458, 459, 460, 462, 464, 465, 473, 478, 481, 483, 492, 493, 494, 495, 511, 512, 513, 515, 516, 517, 518, 519, 520, 533, 540, 615, 616, 618, 619, 621, 624, 625, 626, 627, 630, 631, 633, 634, 635, 654, 669, 678, 680, 681, 683, 684, 685, 687, 690, 691, 692, 694, 695, 697, 699, 700, 702, 703, 704, 730, 731, 732, 740, 741, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 779, 799, 804, 807, 816, 825, 828, 830, 832, 834, 855], "figur": [41, 831], "figsiz": [41, 42], "listdir": [41, 42], "endswith": 41, "this_dir": 41, "dirnam": 41, "join": [41, 42, 59, 69, 75, 82, 457, 458, 626, 687, 697, 799], "add_subplot": 41, "xtick": 41, "ytick": 41, "set_titl": [41, 42], "color": [41, 69, 98, 798], "green": [41, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 798, 804, 805, 806], "red": 41, "perceiver_io_img_classif": 41, "normalize_imag": 41, "batch_shap": [41, 56, 61, 71, 79, 84, 127, 136, 616, 623, 624, 630, 648, 652, 682, 725, 779, 832, 834, 836], "img_dim": 41, "queries_dim": 41, "learn_queri": 41, "load_weight": 41, "num_input_ax": 41, "network_depth": 41, "num_lat_att_per_lay": 41, "query_shap": 41, "num_fourier_freq_band": 41, "weight_fpath": 41, "pretrained_weight": 41, "isfil": 41, "noinspect": [41, 836], "pybroadexcept": 41, "from_disk_as_pickl": 41, "larg": [41, 51, 52, 74, 75, 218, 235, 242, 268, 269, 371, 380, 481, 510, 619, 624, 672, 801, 805, 806, 811, 813, 819, 837, 848, 855], "action": [41, 803, 813, 816, 820, 829], "fail": [41, 758, 802, 805, 806, 808, 813, 814, 816, 820, 823, 825, 826, 827], "placehold": [41, 628, 712, 717, 722, 779, 806, 809, 821, 842], "pyunboundlocalvari": 41, "max_fourier_freq": 41, "random_uniform": [41, 45, 61, 84, 630, 815, 818, 829, 834, 838], "817437": 41, "common_runtim": 41, "gpu_bfc_alloc": 41, "orig_valu": 41, "tf_force_gpu_allow_growth": 41, "autograd": [41, 840], "declar": [41, 806, 828], "_3r2_73j": 42, "0edf8c1e8ea835f4c456bdf89737d89032f50b5a": 42, "1297564": 42, "05fcafac1e19fec835a9ac61270b3ac6039a5095f6b0f9fde20bacc2a5abba45": 42, "le3bu3_v": 42, "cc6508f5d7e25538c5df5fdae52a41d2bf17b9a517aedd125cfca913bb5b259b": 42, "third": [42, 92, 93, 371, 460, 486, 624, 632, 674, 736, 811, 814, 825, 840, 854, 855, 861], "parti": [42, 811, 814, 840, 845, 854, 855, 861], "mount": [42, 801, 806], "mydriv": 42, "chdir": 42, "One": [42, 52, 53, 59, 61, 75, 76, 82, 84, 95, 371, 451, 452, 453, 456, 473, 482, 534, 621, 626, 630, 693, 726, 809, 812, 814, 816, 822, 827, 829, 834, 836, 837], "kaggl": 42, "medium": 42, "articl": [42, 799, 820], "insert": [42, 52, 62, 75, 85, 371, 448, 458, 626, 628, 631, 633, 689, 709, 710, 731, 742, 813, 820], "www": [42, 329, 330, 365], "your_kaggle_usernam": 42, "competit": 42, "digit": 42, "recogn": 42, "zip": [42, 834], "readabl": [42, 809, 812, 818, 820, 821, 829, 830, 836, 837], "chmod": [42, 805, 813], "recent": [42, 796, 805, 806, 829, 844, 845], "modifi": [42, 52, 69, 75, 92, 371, 380, 470, 473, 478, 517, 763, 793, 804, 805, 806, 808, 810, 811, 814, 815, 817, 819, 820, 822, 825, 827, 829, 830, 834], "forc": [42, 811, 813, 815], "archiv": [42, 805], "inflat": [42, 814], "sample_submiss": 42, "frame": [42, 52, 75, 313, 362, 368, 415, 845, 855], "later": [42, 69, 527, 621, 804, 820, 825, 829, 830, 855], "my": [42, 813], "label_df": 42, "mod_train": 42, "data_valu": 42, "test_data_valu": 42, "correct_label": 42, "train_path": 42, "str": [42, 44, 47, 48, 52, 53, 56, 57, 58, 59, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 118, 120, 129, 131, 134, 136, 138, 144, 145, 148, 150, 152, 153, 154, 155, 159, 160, 163, 164, 165, 166, 167, 168, 170, 172, 175, 176, 177, 178, 179, 180, 187, 188, 208, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 368, 369, 370, 371, 374, 380, 383, 386, 387, 388, 390, 391, 392, 393, 395, 396, 400, 401, 404, 405, 406, 407, 409, 410, 411, 412, 414, 415, 418, 422, 435, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 456, 457, 458, 463, 479, 481, 482, 483, 484, 489, 490, 491, 492, 493, 495, 497, 499, 510, 511, 512, 513, 520, 522, 523, 525, 526, 528, 529, 531, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 561, 564, 565, 567, 568, 577, 579, 580, 582, 584, 586, 587, 600, 604, 611, 615, 616, 617, 618, 621, 622, 623, 624, 625, 626, 627, 628, 634, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 675, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 702, 703, 704, 711, 712, 717, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 740, 744, 745, 746, 748, 750, 751, 753, 754, 755, 760, 761, 763, 764, 769, 771, 779, 781, 782, 792, 793, 814, 815, 818, 822, 825, 826, 830, 834, 839, 848, 849, 850], "makedir": 42, "valid_path": 42, "28x28": 42, "pic": 42, "pictur": [42, 799, 804, 834, 844], "int8": [42, 49, 61, 71, 72, 84, 129, 156, 161, 163, 164, 168, 616, 617, 726, 763, 764, 814, 829], "new_img": [42, 44], "builder": [42, 801], "batchwis": 42, "subset": [42, 765, 809, 813, 817, 821, 824, 826, 829, 834, 855], "goe": [42, 371, 456, 807, 820, 825, 832], "seed_valu": [42, 69, 630, 729], "randomize_dataset": 42, "shuffl": [42, 52, 61, 69, 75, 84, 498, 630], "create_dataset": 42, "num_examples_per_class": 42, "img_arrai": 42, "class_nam": [42, 760], "dir": [42, 837], "img_path": 42, "imread": [42, 44, 837], "imread_grayscal": 42, "generate_batch": [42, 799], "dataset_s": [42, 799], "ivyerror": [42, 794, 799, 818], "smaller": [42, 52, 59, 65, 75, 82, 296, 328, 344, 360, 365, 368, 380, 396, 401, 412, 510, 511, 512, 533, 621, 626, 634, 686, 694, 744, 745, 750, 752, 799, 806, 818, 834], "yield": [42, 62, 314, 315, 362, 371, 473, 631, 735, 799, 813], "x_batch_inst": 42, "form": [42, 44, 47, 48, 52, 57, 69, 71, 80, 91, 92, 93, 122, 123, 135, 140, 141, 306, 309, 323, 332, 362, 365, 369, 371, 421, 430, 460, 469, 473, 488, 523, 583, 585, 616, 621, 623, 624, 628, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 706, 717, 763, 778, 800, 804, 805, 822, 829, 832, 838, 839, 845, 855, 856, 861], "intialis": 42, "num_epoch": [42, 799], "inherit": [42, 809, 812, 818, 836, 840, 842], "creation": [42, 52, 69, 75, 98, 811, 814, 815, 821, 823, 826, 827, 829, 830, 834, 848, 855, 857, 861], "inform": [42, 44, 49, 52, 54, 72, 77, 160, 163, 313, 362, 523, 611, 617, 621, 622, 627, 704, 799, 803, 804, 805, 806, 808, 812, 813, 818, 822, 823, 825, 827, 829, 858], "insid": [42, 57, 80, 98, 371, 483, 624, 667, 761, 805, 806, 809, 812, 814, 815, 819, 822, 823, 829, 830, 848, 861], "ivynet": [42, 799], "h_w": [42, 799], "input_channel": [42, 779, 799, 834, 838], "output_channel": [42, 779, 799, 838], "gelu": [42, 43, 46, 68, 613, 775, 799], "image_widht": 42, "start_dim": [42, 52, 75, 371, 463, 799], "end_dim": [42, 52, 75, 371, 463, 799], "gpu_is_avail": [42, 618, 799], "120": [42, 65, 88, 98, 624, 669, 744, 799], "model_nam": [42, 799], "__name__": [42, 43, 45, 588, 621, 799, 818], "heavi": [42, 765, 805, 826, 827, 832, 856], "lift": [42, 827, 856], "num_correct": [42, 799], "y_pred": [42, 799], "cross_entropi": [42, 58, 81, 625, 685, 799, 812, 822, 825], "epoch_loss": [42, 799], "field": [42, 57, 63, 80, 86, 369, 371, 421, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738, 799, 813, 853, 861], "training_accuraci": [42, 799], "train_loss": [42, 799], "train_correct": [42, 799], "train_loop": [42, 799], "posit": [42, 44, 47, 51, 52, 53, 57, 58, 59, 74, 75, 76, 80, 81, 82, 92, 127, 129, 142, 160, 215, 216, 217, 221, 224, 235, 242, 249, 250, 256, 258, 268, 269, 276, 277, 281, 282, 286, 307, 322, 328, 333, 344, 362, 365, 369, 371, 419, 437, 447, 472, 481, 527, 537, 601, 614, 616, 617, 619, 621, 624, 625, 626, 630, 631, 635, 653, 656, 678, 683, 689, 694, 729, 734, 754, 755, 760, 763, 771, 776, 780, 781, 793, 799, 804, 806, 808, 812, 826, 829, 830, 837, 848, 857], "leav": [42, 47, 52, 70, 72, 74, 75, 76, 79, 80, 82, 88, 98, 160, 163, 235, 292, 294, 295, 301, 371, 457, 458, 463, 475, 476, 477, 492, 493, 495, 511, 512, 517, 537, 584, 626, 628, 642, 652, 657, 674, 688, 692, 697, 699, 700, 705, 706, 715, 716, 717, 718, 744, 745, 792, 799, 804, 812, 813, 814, 816, 817, 821, 822, 825, 826, 829, 837, 838], "xbatch": [42, 799], "ybatch": [42, 799], "to_devic": [42, 50, 73, 191, 618, 781, 799], "entropi": [42, 58, 81, 625, 683, 684, 685, 799], "hot": [42, 48, 71, 136, 616, 799], "ybatch_encod": [42, 799], "one_hot": [42, 48, 71, 616, 799, 839], "loss_prob": [42, 799], "ret_grad_idx": [42, 604, 622, 760, 824], "xs_grad_idx": [42, 604, 622, 760, 824], "batch_loss": [42, 799], "set_descript": [42, 799], "set_postfix": [42, 799], "accuracy_percentag": [42, 799], "naverag": [42, 799], "6f": [42, 799], "_train_summari": [42, 799], "writer": [42, 799], "writerow": [42, 799], "157it": 42, "06it": 42, "475401": 42, "11it": 42, "081436": 42, "13it": 42, "0187": 42, "029279": 42, "0324": 42, "008382": 42, "07it": 42, "00456": 42, "003816": 42, "82it": 42, "00277": 42, "002179": 42, "05it": 42, "00175": 42, "001569": 42, "00147": 42, "001235": 42, "09it": 42, "00128": 42, "001005": 42, "106": 42, "10it": 42, "00112": 42, "000837": 42, "129": [42, 623, 642, 644], "12it": 42, "000989": 42, "000709": 42, "145": 42, "000873": 42, "000606": 42, "168": [42, 528, 621, 628, 705], "08it": 42, "000774": 42, "000524": 42, "000688": 42, "000455": 42, "000613": 42, "000398": 42, "000547": 42, "000350": 42, "205": 42, "000488": 42, "000308": 42, "218": 42, "000437": 42, "000273": 42, "000391": 42, "000243": 42, "238": [42, 242, 619], "98it": 42, "000351": 42, "000216": 42, "260": 42, "plot_summari": 42, "seaborn": 42, "whitegrid": 42, "ax1": 42, "ax2": 42, "nrow": 42, "ncol": 42, "fontweight": 42, "bold": 42, "set_xlabel": 42, "set_ylabel": 42, "tight_layout": 42, "savefig": 42, "summary_plot": 42, "png": [42, 44, 45, 837], "close": [42, 57, 240, 258, 278, 306, 362, 619, 624, 626, 674, 689, 802, 804, 805, 806, 814, 817, 819, 826, 832, 855], "save_weight": [42, 781], "model_param": 42, "ivynet_weight": 42, "hdf5": [42, 69, 781, 837], "deitimageprocessor": 43, "tfdeitforimageclassif": 43, "tfdeitforimageclassificationwithteach": 43, "head": [43, 44, 623, 649, 779, 799, 803, 805, 813, 826], "distillation_classifi": 43, "cls_classifi": 43, "randomli": [43, 368, 391, 392, 393, 623, 646, 763, 764, 765, 766, 771, 779], "henc": [43, 63, 218, 332, 365, 619, 626, 632, 689, 736, 737, 738, 739, 788, 805, 812, 813, 814, 825, 829], "reproduc": [43, 56, 79, 623, 646, 763, 764, 765, 766, 771, 802, 808, 819], "image_processor": [43, 848, 849], "facebook": 43, "distil": [43, 856], "patch16": 43, "outputs_from_original_model": 43, "predicted_class_idx": 43, "id2label": [43, 848], "architectur": [43, 799, 805, 839, 840, 853, 854, 855, 858, 859, 860], "bertforsequenceclassif": 43, "bertforpretrain": 43, "NOT": [43, 263, 619, 792, 804], "probabl": [43, 52, 56, 58, 61, 75, 79, 81, 84, 368, 370, 375, 380, 391, 392, 393, 443, 496, 510, 513, 517, 623, 625, 630, 646, 649, 652, 683, 725, 765, 778, 779, 799, 829, 841, 846], "ptarmigan": 43, "rf": [43, 806], "branch": [43, 223, 235, 238, 240, 268, 280, 281, 282, 285, 619, 804, 805, 806, 808, 813, 820, 840, 848, 855], "moduleconvert": [43, 776, 781], "mc": 43, "from_keras_modul": [43, 776], "compiled_func": 43, "return_graph": [43, 45], "compiled_output": 43, "diverg": [43, 52, 75, 242, 370, 443, 619], "_all_funct": [43, 45], "convert_to_tensor_v2_with_dispatch": 43, "transpose_v2": 43, "convolution_v2": 43, "bias_add": 43, "binary_op_wrapp": 43, "cast": [43, 49, 51, 52, 57, 65, 72, 74, 80, 147, 150, 175, 269, 380, 511, 512, 617, 619, 624, 634, 681, 744, 745, 750, 752, 764, 822, 827, 834], "moments_v2": 43, "batch_norm": [43, 45, 52, 75, 374], "tensordot": [43, 57, 80, 624, 793, 814], "softmax_v2": 43, "_slice_help": 43, "save_to_disk": [43, 45, 781], "12265048989200113": 43, "11038777417100028": 43, "1167045795539998": 43, "ivy_api_kei": 44, "obj": [44, 122, 123, 545, 616, 621, 848, 849, 850], "combo": [44, 837], "permit": [44, 809, 821, 826, 829, 832], "usabl": [44, 821, 830], "neither": [44, 218, 235, 242, 268, 619, 624, 676, 813, 826, 832], "nor": [44, 218, 235, 242, 268, 619, 813, 826, 859], "specifc": 44, "invoc": 44, "represent": [44, 52, 53, 69, 75, 76, 98, 145, 146, 160, 163, 188, 189, 215, 218, 225, 228, 230, 235, 242, 265, 268, 270, 285, 310, 341, 345, 350, 354, 362, 365, 523, 584, 614, 617, 618, 619, 621, 763, 765, 766, 779, 814, 853, 854, 856, 860, 861], "externally_link": 44, "logo": 44, "patch": [44, 286, 619, 814, 855], "cv2_imshow": 44, "envrion": 44, "canni": 44, "original_img": 44, "fn_arg": 44, "dilate_edg": 44, "edg": [44, 52, 59, 75, 82, 313, 362, 368, 371, 380, 403, 473, 513, 626, 686, 688, 701, 766, 808, 829, 849, 855, 857, 861], "morphologi": 44, "hk_model": 44, "resnet18": [44, 45], "keras_model": 44, "count": [44, 52, 59, 63, 66, 71, 75, 82, 86, 89, 129, 201, 334, 365, 371, 380, 481, 486, 508, 513, 616, 618, 624, 626, 632, 635, 654, 680, 687, 690, 736, 737, 754, 755, 811, 812, 816, 837], "odsc": 44, "talk": [44, 860], "228": 45, "352": [45, 79, 623, 647, 818], "nvidia_ml_py3": 45, "19190": 45, "241af6b4a51197474b0da3ee7bfa32d847756c8f0d93b51448655d6458312714": 45, "b9": 45, "b1": [45, 624, 673], "cb4feab29709d4155310d29a421389665dcab9eb3b679b527b": 45, "cycler": 45, "fonttool": 45, "965": 45, "pillow": 45, "kiwisolv": 45, "show_graph": [45, 781], "to_ivy_modul": [45, 776, 839], "image_dim": 45, "v0": [45, 838], "urlerror": 45, "dev_str": 45, "comp_network": 45, "time_chronolog": 45, "ret0_nc": 45, "ret1_nc": 45, "ret0_c": 45, "ret1_c": 45, "pytorch_vision_v0": 45, "distribut": [45, 52, 58, 61, 75, 81, 84, 368, 369, 370, 375, 391, 392, 393, 426, 435, 441, 443, 445, 446, 448, 496, 497, 498, 499, 500, 625, 630, 683, 684, 685, 725, 726, 727, 728, 730, 778, 779, 804, 805, 813, 815, 840, 855, 858], "distributed_c10d": 45, "262": 45, "reduce_op": 45, "deprec": 45, "reduceop": 45, "004645566477999864": 45, "0044566806820000695": 45, "attribut": [45, 69, 160, 161, 162, 163, 194, 195, 203, 538, 539, 617, 618, 621, 761, 810, 811, 812, 817, 818, 822, 823, 825, 826, 832, 835, 836, 837, 838], "definit": [45, 51, 57, 74, 80, 287, 619, 624, 653, 799, 802, 806, 809, 814, 819, 822, 836, 849], "max_pool2d": [45, 52, 75, 368, 387], "__iadd__": 45, "adaptive_avg_pool2d": [45, 52, 75, 368], "_arraywithactiv": [46, 97], "abc": [46, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 101, 536, 621, 628, 723, 778, 783, 792, 793, 836], "_abc_impl": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "_abc_data": [46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 101, 102], "approxim": [46, 51, 52, 57, 68, 74, 75, 80, 92, 95, 105, 216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 242, 256, 257, 258, 259, 273, 280, 281, 285, 286, 287, 342, 352, 365, 370, 445, 446, 613, 619, 624, 667, 670, 775, 817, 826], "complex_mod": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "variant": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 133, 134, 135, 136, 138, 140, 141, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 602, 603, 606, 608, 609, 610, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 656, 657, 658, 659, 660, 661, 662, 664, 665, 667, 670, 671, 672, 674, 678, 679, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 753, 754, 755, 809, 816, 817, 832], "docstr": [46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 105, 106, 107, 108, 109, 110, 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144, 148, 149, 150, 160, 163, 167, 168, 175, 192, 209, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 297, 298, 299, 300, 301, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 316, 323, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 365, 368, 371, 380, 386, 387, 388, 389, 391, 392, 393, 395, 399, 400, 401, 404, 405, 406, 410, 411, 414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 457, 458, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 525, 526, 528, 529, 532, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 554, 556, 557, 559, 564, 565, 579, 580, 581, 582, 584, 586, 587, 600, 601, 602, 603, 606, 608, 609, 610, 611, 616, 617, 619, 621, 624, 626, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 803, 804, 807, 811, 820, 821, 822, 823, 826, 828, 830], "liter": [46, 51, 52, 57, 68, 74, 75, 80, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 368, 369, 371, 374, 389, 399, 403, 411, 426, 430, 435, 438, 441, 473, 494, 613, 619, 624, 633, 665, 681, 742, 775, 832], "magnitud": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 215, 218, 235, 242, 268, 286, 290, 294, 295, 297, 360, 613, 619, 624, 674, 675, 775, 814], "handle_complex_input": [46, 51, 52, 68, 74, 75, 105, 106, 107, 108, 109, 110, 111, 112, 113, 286, 290, 294, 295, 297, 360, 613, 619, 775, 823], "element": [46, 48, 51, 52, 53, 56, 57, 59, 61, 62, 63, 65, 68, 69, 71, 72, 74, 75, 76, 79, 80, 82, 84, 85, 86, 88, 93, 97, 98, 101, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 121, 124, 130, 131, 140, 141, 142, 158, 160, 163, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 295, 297, 299, 300, 301, 303, 304, 305, 322, 323, 324, 325, 326, 328, 329, 330, 331, 332, 336, 338, 339, 340, 341, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 360, 362, 365, 368, 369, 371, 380, 381, 391, 392, 393, 396, 401, 404, 405, 406, 410, 412, 413, 414, 420, 421, 422, 451, 452, 453, 463, 464, 465, 467, 470, 480, 481, 483, 486, 508, 509, 511, 512, 513, 514, 515, 516, 518, 519, 521, 525, 528, 529, 540, 541, 557, 559, 579, 580, 582, 586, 587, 613, 616, 619, 621, 623, 624, 626, 628, 630, 631, 632, 633, 634, 635, 646, 654, 656, 658, 659, 664, 669, 671, 672, 674, 678, 686, 689, 690, 691, 692, 693, 694, 695, 696, 705, 708, 714, 725, 733, 734, 735, 736, 737, 738, 739, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 758, 760, 763, 765, 779, 793, 817, 827, 829, 832, 834, 859], "138": [46, 105, 613], "165": [46, 105, 613, 623, 647], "hardswish": [46, 68, 613, 775], "leaky_relu": [46, 68, 75, 290, 613, 764], "alpha": [46, 51, 52, 68, 74, 75, 102, 107, 218, 284, 290, 291, 298, 302, 308, 360, 362, 369, 374, 375, 422, 494, 497, 498, 499, 613, 619, 775, 821, 826, 827], "float": [46, 48, 49, 51, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 68, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 88, 92, 95, 97, 107, 113, 121, 122, 123, 125, 127, 129, 130, 131, 132, 133, 137, 138, 143, 147, 151, 155, 160, 164, 168, 174, 175, 178, 184, 193, 202, 206, 207, 210, 214, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 239, 240, 241, 242, 246, 248, 249, 250, 251, 252, 254, 256, 257, 258, 259, 260, 261, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 296, 298, 301, 302, 304, 305, 306, 307, 308, 309, 311, 312, 313, 328, 329, 330, 331, 338, 339, 344, 346, 347, 350, 351, 352, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 380, 383, 391, 392, 393, 410, 411, 418, 421, 422, 424, 435, 439, 441, 442, 446, 447, 462, 480, 489, 490, 491, 494, 495, 496, 497, 498, 499, 500, 510, 511, 512, 513, 518, 519, 520, 527, 528, 529, 537, 546, 570, 571, 574, 579, 580, 600, 602, 603, 606, 608, 609, 610, 613, 614, 616, 617, 618, 619, 621, 622, 623, 624, 625, 627, 628, 629, 630, 631, 632, 634, 646, 649, 652, 653, 655, 658, 659, 660, 662, 665, 666, 667, 670, 671, 672, 673, 674, 675, 676, 678, 681, 683, 684, 685, 702, 703, 704, 711, 724, 727, 728, 734, 736, 737, 738, 739, 744, 745, 747, 748, 749, 750, 751, 752, 753, 760, 763, 764, 766, 775, 778, 779, 782, 783, 802, 808, 812, 814, 817, 818, 819, 821, 822, 824, 825, 827, 829, 830, 832, 834, 836, 838], "slope": [46, 52, 68, 75, 107, 290, 291, 296, 298, 302, 360, 613, 775], "neg": [46, 51, 52, 57, 59, 61, 66, 68, 74, 75, 80, 82, 84, 89, 92, 107, 110, 113, 121, 127, 129, 142, 235, 242, 249, 250, 268, 269, 277, 282, 290, 307, 322, 325, 360, 362, 369, 370, 371, 375, 419, 426, 430, 446, 481, 500, 613, 616, 619, 624, 626, 630, 635, 654, 656, 674, 678, 680, 681, 687, 689, 690, 694, 727, 754, 755, 763, 765, 775, 812, 825], "leaki": [46, 68, 107, 613, 775], "log_softmax": [46, 68, 613, 775], "0719": [46, 68, 108], "221": [46, 108], "mish": [46, 68, 613, 775], "30340147": [46, 109, 613], "86509842": [46, 68, 109, 613], "269": [46, 111], "731": [46, 111], "881": [46, 51, 74, 111, 221, 234, 274, 619], "422": [46, 112, 613], "155": [46, 79, 112, 613, 623, 647], "softplu": [46, 68, 613, 775, 832], "beta": [46, 52, 60, 68, 75, 83, 113, 298, 302, 308, 311, 312, 360, 362, 369, 370, 374, 375, 422, 447, 494, 498, 499, 613, 629, 724, 775, 832], "threshold": [46, 51, 52, 68, 74, 75, 113, 266, 267, 305, 331, 360, 365, 370, 371, 442, 447, 480, 613, 619, 775, 832], "union": [46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 175, 176, 177, 178, 179, 180, 181, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 360, 362, 365, 366, 368, 369, 370, 371, 374, 375, 376, 378, 380, 382, 383, 384, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 399, 400, 401, 403, 404, 405, 406, 407, 409, 410, 411, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 456, 457, 458, 459, 461, 462, 463, 464, 465, 466, 467, 468, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 485, 486, 487, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 542, 543, 544, 546, 548, 549, 550, 552, 553, 556, 557, 559, 560, 564, 565, 569, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 600, 601, 602, 603, 604, 605, 606, 608, 609, 610, 611, 613, 615, 616, 617, 618, 619, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 712, 713, 714, 716, 717, 722, 723, 724, 725, 726, 727, 728, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 760, 763, 778, 783, 784, 809, 812, 814, 815, 816, 818, 821, 822, 825, 830, 832, 834, 839, 848, 849, 850], "3461": [46, 68, 113, 613], "6491": [46, 68, 113, 613], "_array_to_new_backend": 47, "_to_ivi": 47, "_to_n": 47, "to_ignor": [47, 67, 90, 628, 716, 717], "_to_new_backend": 47, "args_to_ivi": 47, "include_deriv": [47, 70, 628, 706, 717, 760], "nest": [47, 69, 70, 98, 101, 238, 555, 584, 601, 604, 619, 621, 622, 627, 702, 703, 705, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 783, 809, 811, 812, 822, 824, 830, 837, 838, 840, 842, 855], "unchang": [47, 51, 368, 371, 412, 463, 623, 646], "deriv": [47, 48, 52, 54, 70, 71, 75, 77, 126, 131, 138, 144, 307, 311, 336, 362, 365, 602, 603, 606, 607, 608, 609, 610, 616, 622, 627, 628, 704, 706, 717, 781, 783, 784, 814, 815, 836, 838], "word": [47, 121, 371, 466, 616, 630, 728, 776, 779, 812, 825, 826, 842], "args_to_n": [47, 825], "cont_inplac": 47, "decid": [47, 69, 628, 716, 717, 799, 804, 805, 814, 832], "args_to_new_backend": 47, "shallow": [47, 628, 712, 713, 717, 722, 723], "nativevari": 47, "mutabl": [47, 628, 706, 712, 713, 717, 722, 723, 810], "to_ivi": [47, 70, 628, 718, 825], "leaf": [47, 69, 76, 88, 98, 536, 628, 715, 716, 718, 745, 812, 822, 837], "travers": [47, 70, 628, 709, 717, 812, 814, 818, 834], "lowest": [47, 52, 61, 70, 75, 84, 380, 513, 628, 630, 717, 726, 793, 822, 840, 842, 852, 856, 860], "search": [47, 52, 70, 75, 731, 732, 771, 803, 805, 812, 816, 819, 829, 830, 844], "to_new_backend": 47, "_arraywithcr": [48, 97], "boolean": [48, 49, 51, 52, 53, 59, 62, 65, 69, 71, 72, 74, 75, 76, 82, 85, 88, 97, 98, 118, 120, 122, 123, 124, 130, 147, 163, 165, 167, 168, 171, 187, 197, 205, 211, 225, 226, 227, 228, 229, 230, 262, 263, 264, 265, 329, 330, 344, 365, 369, 371, 426, 435, 441, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 481, 487, 522, 525, 536, 543, 546, 547, 551, 552, 553, 554, 555, 556, 557, 566, 569, 572, 573, 575, 576, 600, 615, 616, 617, 618, 619, 621, 623, 626, 627, 628, 631, 634, 649, 689, 690, 691, 693, 695, 696, 698, 700, 702, 703, 715, 733, 734, 735, 747, 749, 763, 764, 765, 766, 771, 782, 812, 814, 822, 826, 829, 832], "alwai": [48, 49, 52, 53, 59, 71, 72, 75, 82, 105, 123, 147, 218, 268, 339, 365, 369, 371, 437, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 550, 613, 617, 619, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 765, 799, 804, 805, 806, 809, 810, 812, 814, 817, 820, 821, 822, 825, 826, 827, 828, 829, 830, 832, 834, 840, 848], "never": [48, 52, 59, 71, 75, 82, 123, 371, 451, 452, 453, 459, 461, 463, 464, 465, 468, 472, 479, 487, 543, 621, 626, 689, 690, 691, 693, 695, 696, 698, 700, 806, 814, 825, 826, 829], "valueerror": [48, 52, 59, 71, 75, 82, 86, 123, 368, 370, 401, 412, 446, 451, 452, 459, 461, 463, 464, 465, 472, 487, 626, 689, 690, 691, 693, 695, 696, 698, 700, 739, 765, 794, 818], "buffer": [48, 71, 75, 82, 123, 129, 451, 452, 459, 461, 463, 464, 465, 472, 487, 616, 689, 690, 691, 693, 695, 696, 698, 700, 780, 781, 825, 840], "nativedtyp": [48, 49, 52, 56, 57, 61, 62, 65, 71, 75, 80, 84, 85, 88, 121, 122, 123, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 137, 138, 143, 144, 146, 147, 152, 153, 154, 155, 156, 157, 158, 159, 164, 165, 169, 171, 173, 177, 187, 306, 307, 308, 309, 310, 311, 312, 327, 334, 349, 362, 365, 375, 380, 496, 497, 498, 499, 500, 510, 511, 512, 513, 516, 519, 616, 617, 623, 624, 630, 631, 633, 634, 646, 681, 726, 727, 728, 731, 732, 742, 744, 745, 750, 752, 778, 814, 815, 821, 830, 834], "datatyp": [48, 52, 69, 71, 75, 123, 131, 135, 152, 173, 177, 368, 415, 616, 617, 758, 830, 848], "nativedevic": [48, 50, 52, 61, 71, 73, 75, 84, 121, 122, 123, 125, 126, 127, 130, 131, 132, 133, 135, 136, 137, 138, 142, 143, 144, 189, 190, 191, 192, 193, 196, 201, 202, 203, 204, 206, 207, 208, 209, 210, 214, 306, 307, 322, 362, 375, 496, 497, 499, 500, 616, 618, 630, 725, 726, 727, 728, 778, 783, 784, 814, 815, 818, 821, 830], "39999998": [48, 122, 123, 616, 632, 737], "5999999": [48, 52, 75, 79, 122, 123, 292, 360, 369, 417, 616, 623, 646, 652], "0999999": [48, 65, 122, 123, 292, 301, 304, 346, 360, 365, 616, 748], "10000038": [48, 122, 123, 616], "90786433e": [48, 122, 123, 616], "310": [48, 122, 123, 616], "copy_arrai": [48, 71, 616], "to_ivy_arrai": [48, 71, 124, 616], "empty_lik": [48, 52, 71, 75, 259, 369, 420, 616, 619], "uniniti": [48, 125, 126, 616, 820], "from_dlpack": [48, 71, 616], "full_lik": [48, 71, 616, 830], "fill_valu": [48, 52, 62, 71, 75, 85, 130, 131, 247, 255, 371, 375, 481, 500, 616, 619, 631, 734, 814, 827, 830], "scalar": [48, 51, 52, 53, 57, 68, 71, 74, 75, 76, 80, 92, 107, 131, 136, 218, 239, 284, 290, 332, 333, 335, 339, 342, 344, 346, 351, 365, 368, 369, 371, 415, 422, 451, 452, 453, 462, 467, 587, 600, 616, 619, 621, 624, 681, 814, 824, 826, 840, 855], "fill": [48, 51, 52, 61, 62, 69, 71, 74, 75, 84, 85, 125, 130, 131, 133, 136, 137, 138, 143, 144, 269, 307, 362, 369, 371, 375, 426, 430, 435, 441, 462, 481, 482, 497, 499, 500, 616, 619, 630, 631, 726, 734, 778, 804, 827], "000123": [48, 131, 616], "stop": [48, 52, 54, 71, 75, 77, 121, 132, 133, 208, 369, 435, 441, 566, 603, 606, 608, 609, 610, 611, 616, 618, 621, 622, 627, 628, 702, 703, 704, 716, 783, 821, 824, 832, 834, 840, 855], "num": [48, 71, 132, 133, 616, 763, 806, 821, 834], "endpoint": [48, 71, 132, 133, 616, 778, 821], "logspac": [48, 71, 616, 834], "log": [48, 51, 52, 57, 71, 74, 75, 80, 113, 133, 258, 260, 273, 294, 295, 347, 354, 360, 365, 370, 375, 443, 445, 446, 496, 613, 616, 619, 672, 763, 765, 766, 775, 806, 812, 813, 816, 822, 825, 826, 827, 829, 831, 832, 834, 837], "sequenc": [48, 52, 56, 57, 59, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 127, 129, 131, 133, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 310, 317, 318, 319, 320, 321, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 358, 359, 362, 365, 366, 367, 368, 369, 371, 375, 380, 381, 383, 384, 391, 392, 393, 395, 396, 400, 401, 403, 410, 411, 412, 413, 414, 417, 425, 426, 427, 429, 433, 434, 435, 438, 441, 442, 443, 444, 445, 446, 447, 448, 449, 451, 452, 453, 457, 458, 459, 460, 466, 468, 469, 471, 472, 474, 477, 479, 481, 482, 483, 487, 488, 489, 491, 492, 493, 495, 497, 498, 510, 511, 512, 513, 520, 521, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 560, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 604, 605, 606, 611, 616, 619, 621, 622, 623, 624, 626, 628, 634, 635, 636, 637, 638, 639, 640, 641, 643, 645, 646, 647, 649, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 681, 683, 684, 685, 686, 687, 689, 690, 692, 693, 694, 695, 696, 697, 700, 701, 705, 712, 722, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 779, 782, 784, 806, 813, 814, 815, 816, 818, 829, 830, 832, 834, 839, 858], "on_valu": [48, 71, 133, 136, 616], "off_valu": [48, 71, 133, 136, 616], "evenli": [48, 51, 52, 56, 59, 69, 71, 74, 75, 79, 82, 121, 132, 133, 287, 368, 410, 414, 616, 619, 623, 626, 636, 637, 638, 639, 641, 643, 645, 695], "hint": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 809, 817, 819, 821, 822, 825, 826, 830], "simplic": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 252, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 275, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 540, 544, 546, 548, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 817, 832, 838], "nestabl": [48, 51, 52, 57, 74, 75, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140, 141, 142, 143, 144, 150, 166, 170, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 307, 322, 323, 329, 330, 332, 335, 362, 365, 368, 369, 371, 380, 386, 387, 388, 389, 391, 392, 393, 399, 404, 405, 406, 411, 413, 422, 473, 481, 510, 513, 517, 526, 534, 535, 540, 544, 546, 548, 550, 564, 582, 587, 611, 616, 617, 619, 621, 622, 623, 624, 626, 629, 631, 632, 633, 634, 635, 637, 638, 639, 640, 641, 645, 646, 647, 649, 652, 653, 654, 655, 656, 657, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 682, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 724, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 804, 807, 816, 817, 825, 829, 842], "464": [48, 51, 84, 133, 222, 223, 619], "15888336": [48, 133], "2154": [48, 133], "43469003": [48, 133], "meshgrid": [48, 71, 616], "spars": [48, 52, 58, 71, 75, 81, 134, 310, 362, 369, 426, 435, 441, 616, 625, 685], "xy": [48, 71, 134, 616], "dimension": [48, 51, 52, 57, 59, 62, 65, 66, 69, 71, 74, 75, 80, 82, 88, 89, 97, 121, 127, 129, 134, 142, 287, 322, 329, 330, 362, 365, 368, 369, 371, 380, 395, 396, 400, 401, 411, 412, 419, 451, 452, 453, 457, 462, 463, 508, 520, 616, 619, 624, 626, 631, 634, 635, 654, 655, 661, 664, 667, 669, 670, 680, 681, 695, 731, 732, 734, 747, 748, 749, 750, 751, 752, 753, 754, 755, 822, 824, 829, 832, 834, 852, 855, 862], "repres": [48, 51, 52, 56, 57, 74, 75, 79, 80, 95, 120, 134, 136, 159, 217, 218, 221, 224, 233, 235, 242, 268, 281, 285, 286, 310, 324, 325, 326, 342, 359, 362, 365, 367, 368, 369, 370, 371, 374, 375, 378, 410, 414, 428, 440, 446, 473, 484, 489, 490, 491, 496, 502, 509, 545, 615, 616, 617, 619, 621, 623, 624, 646, 647, 661, 669, 672, 673, 765, 778, 782, 793, 805, 809, 814, 832, 836, 852, 853, 856], "coordin": [48, 51, 62, 74, 75, 85, 134, 142, 223, 285, 314, 315, 322, 342, 362, 376, 501, 616, 619, 631, 734], "conserv": [48, 134, 616], "cartesian": [48, 134, 616], "matrix": [48, 52, 53, 56, 57, 75, 76, 79, 80, 92, 93, 95, 97, 134, 140, 141, 142, 322, 323, 362, 369, 371, 380, 418, 421, 422, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 440, 441, 471, 510, 522, 528, 616, 621, 623, 624, 647, 653, 655, 657, 658, 659, 660, 662, 664, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 676, 678, 679, 682, 763, 765, 778, 779, 793, 804, 814, 826, 853, 855], "ij": [48, 65, 134, 616, 634, 746, 793], "respect": [48, 51, 52, 54, 57, 74, 75, 77, 80, 92, 134, 215, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 277, 281, 284, 285, 294, 342, 357, 360, 365, 367, 369, 371, 374, 424, 439, 450, 489, 491, 545, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 616, 619, 621, 622, 623, 624, 627, 636, 643, 644, 649, 654, 671, 674, 702, 703, 704, 760, 763, 778, 793, 803, 804, 805, 806, 809, 810, 812, 813, 814, 815, 816, 821, 822, 824, 825, 826, 829, 830, 831, 851, 861], "rank": [48, 52, 57, 59, 66, 75, 80, 82, 89, 92, 93, 94, 95, 96, 101, 134, 317, 318, 319, 320, 321, 362, 369, 371, 380, 426, 427, 435, 438, 441, 473, 481, 520, 616, 624, 626, 631, 635, 654, 656, 665, 667, 671, 673, 678, 680, 681, 688, 689, 697, 700, 701, 734, 754, 755], "ni": [48, 134, 616], "xi": [48, 134, 616], "scatter": [48, 53, 71, 76, 136, 564, 565, 616, 621, 811, 825, 832, 862], "j": [48, 51, 52, 53, 57, 65, 71, 74, 75, 80, 92, 120, 136, 216, 217, 218, 219, 221, 224, 233, 235, 238, 240, 248, 256, 258, 262, 268, 279, 281, 282, 285, 286, 332, 365, 368, 369, 380, 395, 396, 400, 411, 412, 416, 421, 423, 432, 438, 520, 525, 615, 616, 619, 621, 624, 634, 658, 678, 746, 793, 806, 807, 811, 848, 851], "unless": [48, 52, 57, 71, 75, 136, 268, 328, 344, 349, 365, 616, 619, 624, 667, 810, 815, 825, 840, 849, 850], "ones_lik": [48, 71, 616, 810, 839], "tril": [48, 71, 616], "whose": [48, 51, 52, 53, 57, 59, 63, 65, 71, 74, 75, 76, 80, 82, 86, 88, 93, 95, 97, 131, 140, 141, 217, 221, 224, 232, 233, 234, 273, 274, 280, 281, 285, 286, 287, 323, 337, 341, 345, 346, 348, 352, 362, 369, 371, 421, 440, 472, 481, 486, 527, 582, 616, 619, 621, 624, 626, 632, 634, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 678, 681, 690, 694, 736, 737, 738, 745, 746, 765, 817, 829], "innermost": [48, 52, 57, 80, 140, 141, 323, 362, 369, 421, 616, 624, 653, 655, 657, 658, 659, 660, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678], "mxn": [48, 52, 57, 80, 140, 141, 323, 362, 616, 624, 657, 665, 667, 668, 670, 671, 675, 678], "matric": [48, 52, 57, 75, 80, 92, 93, 97, 134, 140, 141, 323, 362, 369, 371, 421, 426, 427, 429, 433, 434, 439, 462, 616, 623, 624, 647, 653, 655, 657, 658, 659, 660, 661, 662, 665, 666, 667, 668, 670, 671, 672, 673, 674, 675, 678, 679, 765, 802, 819, 855], "diagon": [48, 52, 57, 75, 80, 93, 127, 140, 141, 142, 307, 322, 323, 362, 369, 371, 419, 422, 430, 436, 462, 616, 624, 656, 678], "triangular": [48, 52, 57, 80, 140, 141, 142, 322, 323, 362, 369, 436, 616, 624, 653, 659, 660, 667, 671], "alloc": [48, 49, 52, 72, 140, 141, 147, 323, 362, 616, 617, 804, 806, 840], "triu": [48, 71, 616], "upper": [48, 52, 57, 61, 75, 80, 84, 127, 141, 142, 307, 323, 362, 369, 380, 436, 513, 616, 624, 630, 653, 659, 660, 671, 728, 814, 825, 829], "zeros_lik": [48, 52, 71, 147, 264, 371, 481, 602, 603, 606, 608, 609, 610, 616, 617, 619, 622, 624, 626, 671, 686, 826, 832], "data_typ": [49, 52, 72, 75, 177, 617, 811, 814, 829, 830], "_arraywithdatatyp": [49, 97], "irrespect": [49, 57, 72, 80, 147, 617, 624, 674, 812, 825, 836, 862], "promot": [49, 51, 52, 57, 72, 74, 75, 80, 87, 97, 98, 147, 150, 173, 174, 175, 181, 216, 217, 218, 220, 221, 222, 223, 224, 225, 227, 228, 229, 230, 232, 233, 235, 238, 240, 242, 256, 257, 258, 259, 260, 265, 268, 273, 277, 280, 281, 282, 283, 284, 285, 286, 289, 339, 347, 352, 365, 368, 380, 411, 510, 573, 595, 617, 619, 621, 624, 626, 634, 653, 654, 661, 662, 664, 665, 666, 667, 669, 670, 672, 673, 680, 681, 687, 697, 740, 748, 751, 763, 764, 808, 817, 818, 822, 831], "nan": [49, 51, 52, 53, 63, 65, 72, 74, 75, 76, 147, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 234, 235, 236, 238, 240, 241, 242, 243, 244, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 274, 277, 278, 279, 280, 281, 282, 285, 286, 288, 294, 328, 329, 330, 340, 344, 349, 352, 360, 365, 371, 380, 481, 508, 509, 516, 517, 518, 519, 546, 600, 614, 617, 619, 621, 632, 634, 635, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 754, 755, 763, 766, 808, 814, 817, 824, 830, 831], "infin": [49, 51, 53, 57, 72, 74, 80, 147, 215, 216, 217, 218, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 256, 257, 258, 259, 260, 263, 268, 269, 271, 273, 277, 278, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 546, 614, 617, 619, 621, 624, 634, 635, 672, 681, 747, 749, 754, 755, 808, 817], "desir": [49, 50, 52, 62, 69, 72, 73, 75, 85, 92, 147, 149, 150, 209, 313, 353, 362, 365, 371, 380, 471, 516, 519, 520, 617, 618, 624, 631, 676, 733, 778, 779, 806, 810, 813, 814, 815, 826, 834, 844, 848, 855], "broadcast_arrai": [49, 72, 617], "mix": [49, 51, 72, 74, 75, 76, 81, 84, 97, 98, 148, 161, 162, 175, 194, 195, 225, 228, 229, 230, 235, 236, 242, 246, 254, 255, 265, 268, 271, 277, 370, 380, 447, 517, 536, 538, 539, 540, 541, 550, 584, 587, 617, 618, 619, 621, 623, 624, 625, 626, 629, 634, 637, 639, 642, 644, 645, 647, 652, 653, 676, 683, 685, 686, 724, 746, 748, 751, 764, 766, 804, 807, 814, 815, 816, 825, 832, 834, 842, 855, 859, 861], "broadcast_to": [49, 72, 617, 814], "can_cast": [49, 72, 617, 814, 822, 826], "accord": [49, 52, 53, 59, 65, 72, 82, 88, 150, 160, 218, 229, 235, 242, 268, 279, 313, 362, 368, 371, 412, 473, 540, 543, 564, 565, 617, 619, 621, 624, 626, 634, 680, 688, 701, 751, 753, 758, 765, 785, 792, 804, 805, 808, 814, 820, 822, 826, 829], "finfo": [49, 72, 617, 829], "resolut": [49, 72, 160, 617, 806], "4028235e": [49, 160, 617], "iinfo": [49, 72, 617], "integ": [49, 51, 52, 56, 57, 59, 61, 65, 66, 69, 74, 75, 76, 79, 80, 82, 84, 88, 89, 97, 98, 121, 130, 163, 164, 170, 174, 175, 179, 215, 225, 226, 227, 228, 229, 230, 231, 241, 242, 253, 265, 270, 273, 277, 278, 288, 289, 324, 325, 326, 329, 330, 334, 338, 339, 362, 365, 368, 371, 375, 378, 380, 395, 400, 410, 413, 414, 415, 459, 468, 473, 481, 487, 496, 497, 498, 499, 500, 502, 503, 508, 510, 511, 512, 517, 520, 543, 559, 569, 601, 616, 617, 619, 621, 623, 624, 626, 630, 633, 634, 635, 636, 637, 638, 639, 641, 643, 645, 654, 656, 666, 680, 681, 695, 725, 726, 727, 728, 729, 730, 742, 744, 745, 747, 748, 749, 750, 751, 752, 753, 754, 755, 763, 764, 765, 766, 771, 779, 793, 806, 812, 814, 824, 827, 829, 834, 836], "119": [49, 163], "1220": [49, 163], "int16": [49, 52, 61, 65, 72, 84, 150, 154, 156, 161, 163, 170, 185, 380, 511, 512, 617, 634, 726, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "32768": [49, 72, 163, 580, 621], "32767": [49, 72, 163], "is_bool_dtyp": [49, 72, 617], "is_float_dtyp": [49, 72, 617, 830], "is_int_dtyp": [49, 72, 617, 827, 830], "is_uint_dtyp": [49, 72, 617, 827, 830], "result_typ": [49, 72, 617, 814], "arrays_and_dtyp": [49, 72, 175, 617], "_arraywithdevic": [50, 97], "move": [50, 52, 73, 75, 142, 205, 209, 213, 322, 362, 371, 472, 616, 618, 781, 799, 806, 815, 830], "addit": [50, 52, 53, 60, 73, 75, 76, 83, 118, 120, 209, 218, 278, 374, 380, 494, 509, 514, 533, 534, 535, 601, 615, 618, 619, 621, 623, 627, 629, 649, 704, 724, 779, 793, 804, 805, 806, 810, 814, 816, 817, 820, 822, 824, 825, 826, 829, 830, 832, 836, 837, 839, 848, 855, 856, 857, 861], "__dlpack__": [50, 73, 128, 209, 616, 618], "caveat": [50, 73, 209, 370, 445, 618], "portabl": [50, 73, 209, 618, 799, 853], "_arraywithelementwis": [51, 97], "ab": [51, 57, 67, 74, 90, 97, 98, 273, 328, 344, 365, 371, 480, 619, 624, 628, 665, 675, 681, 713, 716, 760, 792, 793, 802, 809, 814, 819, 823, 826, 829], "absolut": [51, 52, 57, 67, 69, 74, 75, 80, 97, 215, 279, 328, 344, 347, 353, 365, 369, 370, 422, 437, 442, 444, 619, 624, 665, 666, 667, 672, 758, 760, 763, 765, 766, 800, 805], "aco": [51, 74, 619], "invers": [51, 52, 57, 74, 75, 80, 216, 217, 220, 221, 222, 223, 224, 368, 378, 390, 399, 401, 411, 502, 619, 624, 662, 666, 670, 785, 814], "cosin": [51, 74, 216, 217, 232, 233, 306, 309, 362, 368, 389, 399, 619, 779], "acosh": [51, 74, 161, 162, 617, 619, 802, 819], "area": [51, 52, 74, 75, 79, 217, 221, 224, 368, 403, 410, 414, 619, 825, 832, 845, 851], "hyperbol": [51, 74, 217, 221, 224, 233, 281, 285, 286, 298, 302, 360, 619], "sector": [51, 74, 217, 221, 224, 619, 845], "second": [51, 52, 54, 57, 59, 63, 74, 75, 76, 77, 80, 82, 86, 93, 97, 98, 118, 142, 173, 181, 218, 223, 225, 227, 228, 229, 230, 236, 242, 243, 244, 245, 246, 247, 253, 254, 255, 260, 261, 262, 264, 265, 268, 271, 273, 284, 313, 322, 328, 340, 342, 343, 344, 350, 354, 355, 362, 365, 369, 370, 371, 378, 380, 420, 421, 422, 424, 428, 447, 479, 486, 497, 499, 503, 510, 513, 525, 574, 596, 602, 603, 608, 615, 616, 617, 619, 621, 622, 624, 626, 627, 628, 632, 654, 657, 658, 659, 661, 664, 669, 671, 672, 674, 676, 678, 680, 697, 698, 703, 706, 736, 737, 738, 783, 805, 808, 811, 814, 816, 820, 825, 826, 829, 831, 836, 846, 860], "multipli": [51, 52, 56, 65, 74, 75, 79, 92, 218, 284, 345, 368, 369, 403, 432, 433, 511, 512, 619, 623, 634, 646, 744, 750, 806, 809, 810, 812, 816], "angl": [51, 74, 223, 233, 281, 286, 343, 365, 619], "deg": [51, 74, 219, 619], "radian": [51, 52, 74, 75, 216, 219, 220, 222, 223, 232, 234, 274, 280, 285, 352, 365, 619, 817], "degre": [51, 52, 65, 74, 75, 88, 219, 234, 274, 316, 362, 371, 479, 619, 634, 751, 753, 854], "1j": [51, 74, 75, 219, 220, 232, 233, 238, 240, 252, 275, 280, 281, 285, 332, 579, 619, 621], "2j": [51, 52, 74, 75, 219, 248, 332, 368, 395, 400, 580, 619, 621], "3j": [51, 52, 74, 75, 219, 252, 275, 332, 365, 619], "35619449": [51, 219, 619], "78539816": [51, 219, 619], "135": [51, 219, 528, 619, 621], "asin": [51, 74, 619], "sine": [51, 74, 220, 221, 280, 281, 619], "927": [51, 74, 220], "asinh": [51, 74, 220, 619], "atan": [51, 74, 619], "tangent": [51, 74, 222, 223, 224, 285, 286, 298, 302, 358, 360, 367, 619, 817], "785": [51, 74, 222, 223, 619], "atan2": [51, 74, 619], "quotient": [51, 74, 223, 235, 242, 619], "245": [51, 79, 223, 623, 646, 647], "588": [51, 223, 619], "inf": [51, 52, 53, 57, 74, 75, 76, 80, 223, 240, 249, 250, 251, 252, 256, 257, 259, 269, 294, 347, 360, 365, 369, 380, 418, 513, 546, 600, 614, 619, 621, 623, 624, 650, 665, 681, 763, 766, 802, 814, 819, 824], "719": [51, 223, 619], "197": [51, 223, 619], "atanh": [51, 74, 619], "549": [51, 74, 79, 224, 619, 623, 647], "bitwise_and": [51, 74, 619], "bitwise_invert": [51, 74, 619], "bitiwse_invert": [51, 226], "bitwise_left_shift": [51, 74, 619], "bitwise_or": [51, 74, 619], "bitwise_right_shift": [51, 74, 97, 619], "bitwise_xor": [51, 74, 97, 619], "ceil": [51, 52, 74, 75, 92, 95, 121, 368, 386, 387, 388, 404, 405, 406, 409, 616, 619, 779, 825], "round": [51, 52, 74, 75, 92, 94, 95, 96, 218, 231, 235, 241, 242, 268, 282, 288, 289, 338, 365, 619, 802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "416": [51, 232, 619], "540": [51, 232], "990": [51, 232], "cosh": [51, 74, 232, 619], "deg2rad": [51, 74, 619], "convers": [51, 52, 75, 234, 274, 566, 576, 621, 780, 781, 804, 833, 835, 839, 840, 842, 846, 854, 861], "180": [51, 74, 234, 274, 619], "270": [51, 74, 234, 274, 619], "360": [51, 74, 234, 274, 619, 813], "dividend": [51, 74, 235, 242, 277, 289, 619], "divisor": [51, 52, 54, 65, 74, 75, 77, 88, 235, 242, 245, 246, 277, 289, 368, 371, 386, 387, 388, 459, 468, 487, 602, 603, 608, 619, 622, 634, 751, 753, 779, 783], "375": [51, 236, 271], "erf": [51, 74, 337, 365, 619], "exponenti": [51, 52, 74, 75, 237, 238, 240, 260, 273, 290, 299, 360, 369, 431, 619], "gauss": [51, 74, 237, 619], "328": [51, 237, 285, 619], "677": [51, 237], "842": [51, 237, 285, 619], "71828198": [51, 74, 238], "38905573": [51, 74, 238], "08553696": [51, 74, 238, 619], "exp2": [51, 74, 619], "expm1": [51, 74, 619, 814], "244": [51, 240, 799], "918": [51, 240], "147": [51, 240, 619], "floor": [51, 52, 74, 75, 92, 95, 229, 242, 368, 386, 387, 388, 390, 404, 405, 406, 409, 619, 779, 825], "floor_divid": [51, 74, 619, 771, 814], "fmin": [51, 74, 619, 814], "gcd": [51, 74, 619, 814], "greater": [51, 52, 56, 59, 61, 74, 75, 79, 84, 97, 98, 129, 216, 217, 220, 221, 223, 224, 227, 229, 235, 241, 242, 256, 258, 273, 277, 279, 281, 282, 286, 287, 288, 331, 365, 368, 390, 395, 400, 411, 616, 619, 623, 624, 626, 630, 652, 654, 666, 696, 728, 765, 779, 806, 827], "greater_equ": [51, 74, 97, 98, 260, 619], "imaginari": [51, 74, 97, 107, 110, 113, 137, 138, 216, 217, 218, 233, 235, 236, 238, 240, 248, 268, 270, 271, 278, 281, 282, 286, 332, 365, 368, 369, 411, 422, 613, 616, 619, 631, 734, 816], "4j": [51, 74, 248, 368, 411, 580, 619, 621], "6j": [51, 52, 74, 248, 252, 332, 619], "isfinit": [51, 74, 619, 826], "out_i": [51, 74, 249, 250, 251, 252, 275, 619], "self_i": [51, 74, 249, 250, 251, 252, 275], "finit": [51, 74, 215, 216, 217, 218, 221, 223, 224, 233, 235, 236, 238, 240, 242, 249, 250, 256, 258, 268, 269, 271, 273, 277, 281, 282, 286, 619], "isinf": [51, 74, 619], "detect_posit": [51, 74, 250, 619], "detect_neg": [51, 74, 250, 619], "isnan": [51, 74, 619], "isreal": [51, 74, 619], "5j": [51, 74, 75, 252, 275, 332, 365, 619], "lcm": [51, 74, 619, 814], "less": [51, 52, 57, 61, 65, 74, 75, 80, 84, 97, 98, 216, 217, 220, 223, 224, 231, 235, 242, 256, 257, 258, 259, 273, 277, 279, 282, 351, 365, 368, 369, 380, 389, 390, 399, 411, 435, 441, 510, 513, 619, 624, 630, 634, 665, 666, 667, 670, 681, 728, 751, 753, 779, 805, 806, 812, 814, 816, 818, 821, 826, 829, 832, 833, 834, 845, 855, 857], "less_equ": [51, 74, 97, 98, 619, 818], "log10": [51, 52, 74, 313, 362, 619], "logarithm": [51, 74, 238, 256, 257, 258, 259, 260, 336, 347, 365, 619, 624, 672], "602": [51, 257, 619], "699": [51, 257, 619], "log1p": [51, 74, 619, 824], "693": [51, 74, 112, 221, 258, 613, 619, 625, 685], "0953": [51, 74, 256, 258, 619], "log2": [51, 74, 261, 619], "logaddexp": [51, 74, 619], "logaddexp2": [51, 74, 619, 802, 819], "169925": [51, 74, 261, 619], "logical_and": [51, 74, 619, 826, 832, 862], "logical_not": [51, 74, 619, 814], "logical_or": [51, 74, 619, 862], "conform": [51, 57, 74, 121, 122, 123, 125, 126, 127, 128, 130, 131, 132, 134, 137, 138, 139, 140, 141, 143, 144, 150, 160, 163, 175, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 238, 240, 241, 242, 246, 247, 248, 249, 250, 251, 255, 257, 258, 259, 260, 262, 263, 264, 265, 268, 270, 271, 272, 273, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 329, 330, 332, 365, 368, 371, 380, 411, 481, 510, 616, 617, 619, 624, 626, 631, 632, 633, 634, 635, 653, 654, 655, 656, 657, 659, 660, 662, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 680, 681, 687, 689, 690, 691, 693, 694, 696, 697, 701, 731, 732, 734, 735, 736, 737, 738, 739, 740, 743, 747, 748, 749, 750, 751, 752, 753, 754, 755, 817, 820], "api_specif": [51, 52, 74, 75, 150, 238, 248, 249, 264, 329, 330, 365, 368, 371, 411, 481, 617, 619, 626, 634, 701, 751, 817], "array_api": [51, 74, 150, 238, 248, 249, 264, 368, 371, 411, 481, 617, 619, 624, 626, 634, 672, 673, 701, 751, 817], "logical_xor": [51, 74, 619], "maximum": [51, 52, 53, 54, 59, 62, 65, 69, 74, 75, 76, 77, 82, 85, 88, 98, 208, 293, 329, 330, 340, 353, 360, 365, 368, 369, 371, 380, 384, 394, 435, 438, 441, 473, 511, 513, 518, 528, 529, 537, 545, 608, 618, 619, 621, 622, 624, 626, 631, 634, 665, 686, 731, 732, 747, 749, 763, 765, 766, 771, 793, 806, 814, 816, 825, 837, 862], "use_wher": [51, 74, 266, 267, 619], "formula": [51, 52, 74, 235, 257, 259, 266, 267, 268, 313, 346, 362, 365, 374, 489, 491, 619], "exce": [51, 52, 75, 267, 371, 483, 619], "product": [51, 52, 56, 57, 65, 74, 75, 79, 80, 88, 92, 93, 95, 268, 358, 359, 367, 369, 380, 417, 420, 424, 427, 428, 429, 432, 433, 434, 511, 512, 519, 619, 623, 624, 634, 649, 652, 654, 661, 664, 669, 676, 680, 744, 745, 746, 750, 751, 793, 804, 834, 855, 857], "nan_to_num": [51, 74, 619], "posinf": [51, 74, 269, 619], "neginf": [51, 74, 269, 619], "5e": [51, 54, 74, 75, 269, 350, 608, 619, 622], "not_equ": [51, 74, 97, 98, 619], "pow": [51, 74, 97, 98, 619, 808], "expon": [51, 52, 53, 75, 76, 273, 339, 341, 345, 365, 374, 494, 580, 619, 621, 624, 666], "rad2deg": [51, 74, 619], "286": [51, 75, 274], "458": [51, 274], "573": [51, 274, 619], "reciproc": [51, 74, 619], "333": [51, 74, 235, 276, 529, 619, 621], "remaind": [51, 52, 59, 69, 74, 75, 82, 244, 619, 626, 695, 808, 825], "modulu": [51, 74, 277, 619, 825], "sign": [51, 52, 57, 63, 65, 74, 75, 80, 92, 121, 215, 216, 217, 218, 221, 223, 224, 229, 233, 235, 238, 240, 242, 268, 270, 277, 281, 282, 286, 333, 365, 369, 371, 380, 437, 480, 481, 511, 512, 616, 619, 624, 632, 634, 672, 736, 737, 738, 739, 744, 745, 750, 752, 799, 805, 814, 834, 839, 845], "x2_i": [51, 74, 218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "decim": [51, 74, 278, 619, 831], "0001": [51, 52, 75, 278, 279, 369, 435, 441, 763, 766, 783], "678": [51, 278, 279], "np_variant": [51, 74, 279, 619], "841": [51, 68, 74, 105, 280, 613, 619], "909": [51, 74, 76, 280, 619], "141": [51, 74, 147, 280, 617, 619], "sinh": [51, 74, 280, 619], "232": [51, 74, 281, 619], "sqrt": [51, 52, 74, 75, 368, 390, 395, 396, 400, 401, 411, 619, 778, 779, 799], "squar": [51, 52, 57, 74, 75, 80, 282, 369, 370, 374, 380, 421, 431, 442, 494, 510, 604, 605, 607, 612, 619, 622, 624, 628, 653, 655, 656, 658, 659, 660, 662, 666, 672, 673, 674, 679, 711, 799], "tanh": [51, 52, 74, 75, 285, 298, 302, 360, 619, 775, 834], "762": [51, 74, 286, 619], "964": [51, 74, 286, 619], "trapz": [51, 74, 619], "dx": [51, 74, 287, 619], "apart": [51, 74, 287, 619], "trapezoid": [51, 74, 287, 619], "trunc": [51, 74, 619], "025": [51, 288, 370, 447, 619, 627, 704], "trunc_divid": [51, 74, 619], "_arraywithactivationsexperiment": [52, 97], "celu": [52, 75, 360], "formul": [52, 68, 75, 93, 105, 290, 292, 360, 775], "elu": [52, 75, 293, 360, 775], "scaler": [52, 75, 291, 360, 763, 766, 829], "hardshrink": [52, 75, 360], "lambd": [52, 75, 292, 301, 360], "hardtanh": [52, 75, 360], "max_val": [52, 75, 293, 360], "min_val": [52, 75, 293, 360], "region": [52, 75, 293, 301, 360, 805], "19722438": [52, 75, 294, 360], "38629448": [52, 75, 294, 360], "38629436": [52, 75, 294, 360], "logsigmoid": [52, 75, 360, 775], "31326175": [52, 68, 295, 360], "126928": [52, 75, 295], "01814993": [52, 295], "00004578": [52, 295], "57888985": [52, 295], "31326169": [52, 75, 295, 360], "69314718": [52, 57, 68, 75, 80, 295, 347, 360, 365, 624, 672], "01104775": [52, 295], "prelu": [52, 75, 360, 775], "unidirect": [52, 296, 360], "relu6": [52, 75, 360, 775], "rectifi": [52, 68, 75, 107, 109, 110, 297, 300, 305, 360, 613], "scaled_tanh": [52, 75, 302, 360], "7159": [52, 75, 298, 302, 360], "amplitud": [52, 75, 298, 302, 360], "65537548": [52, 75, 298], "49570239": [52, 75, 298], "77637792": [52, 298], "selu": [52, 75, 360, 775], "11133075": [52, 299, 360], "05070102": [52, 75, 299, 360], "10140204": [52, 299, 360], "15210295": [52, 299, 360], "20280409": [52, 299, 360], "25350523": [52, 299, 360], "30420589": [52, 299, 360], "35490704": [52, 299, 360], "silu": [52, 75, 360, 775], "26894143": [52, 300], "73105854": [52, 75, 300], "softshrink": [52, 75, 360], "bound": [52, 75, 301, 313, 360, 362, 371, 456, 481, 482, 763, 814, 818, 826, 829, 834, 861], "tanhshrink": [52, 75, 360], "23840582": [52, 75, 303, 360], "condit": [52, 62, 75, 85, 118, 304, 319, 320, 362, 369, 418, 615, 628, 631, 715, 716, 735, 765, 808, 814, 816, 818, 822, 823, 825, 829, 848], "met": [52, 75, 304, 818], "hreshold": [52, 304], "thresholded_relu": [52, 75, 360], "_arraywithconversionsexperiment": [52, 97], "_arraywithcreationexperiment": [52, 97], "blackman_window": [52, 75, 362], "period": [52, 75, 281, 285, 306, 308, 309, 311, 312, 362, 368, 402, 619, 806], "window": [52, 56, 75, 79, 306, 308, 309, 311, 312, 327, 362, 368, 374, 386, 387, 388, 390, 404, 405, 406, 407, 409, 410, 414, 415, 494, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 779, 801, 806, 811, 819, 860], "symmetr": [52, 57, 75, 80, 92, 93, 306, 308, 309, 311, 312, 362, 369, 371, 421, 473, 624, 653, 658, 659, 660, 682, 812], "38777878e": [52, 75, 306, 362], "40000000e": [52, 306, 362], "00000000e": [52, 57, 75, 76, 306, 337, 362, 368, 389, 395, 399, 400, 624, 671, 802, 819], "30000000e": [52, 75, 306, 362], "eye_lik": [52, 75, 362], "elsewher": [52, 75, 127, 307, 362, 616, 631, 735, 805], "mel_weight_matrix": [52, 75, 362], "num_mel_bin": [52, 75, 313, 362], "dft_length": [52, 75, 313, 362, 368, 390], "sample_r": [52, 75, 313, 362], "lower_edge_hertz": [52, 75, 313, 362], "upper_edge_hertz": [52, 75, 313, 362], "3000": [52, 75, 313, 362], "melweightmatrix": [52, 75, 313, 362], "linearli": [52, 53, 76, 313, 362, 537, 621, 624, 673], "frequenc": [52, 53, 75, 76, 313, 362, 380, 510, 537, 621, 806], "spectra": [52, 313, 362], "dft": [52, 75, 313, 362, 368], "stft": [52, 75, 313, 362, 368], "mel": [52, 75, 313, 362], "term": [52, 75, 306, 313, 316, 362, 370, 445, 446, 623, 648, 779, 793, 799, 806, 812, 834, 842, 844, 855], "hertz": [52, 313, 362], "2595": [52, 313, 362], "700": [52, 76, 313, 362, 541], "band": [52, 53, 75, 76, 313, 362, 537, 621], "spectrum": [52, 75, 313, 362], "n_fft": [52, 75, 313, 362, 368, 390], "signal": [52, 75, 313, 362, 368, 382, 383, 384, 389, 390, 399, 415, 779, 854, 855], "8000": [52, 75, 308, 313, 362], "75694758": [52, 313, 362], "trilu": [52, 75, 362], "retain": [52, 142, 322, 323, 362, 604, 616, 622, 824, 828, 842], "unsorted_segment_mean": [52, 75, 362], "segment_id": [52, 75, 324, 325, 326, 362, 785], "num_seg": [52, 75, 324, 325, 326, 362, 785], "identifi": [52, 75, 324, 325, 326, 362, 804, 808, 813, 814, 829, 832], "th": [52, 75, 93, 324, 325, 326, 335, 362, 365, 369, 380, 419, 426, 520], "distinct": [52, 63, 75, 324, 325, 326, 362, 632, 736, 737, 738, 739, 805, 812, 817, 824, 825, 826, 833, 845, 855], "unsorted_segment_min": [52, 75, 362], "unsorted_segment_sum": [52, 75, 362], "polyv": [52, 75, 362], "coeff": [52, 75, 316, 362], "polynomi": [52, 75, 316, 362], "coeffici": [52, 75, 308, 316, 362, 369, 436, 624, 673, 783], "indetermin": [52, 75, 316, 362], "simplifi": [52, 75, 316, 362, 792, 793, 818, 826, 834, 835, 838, 845, 848, 851, 853, 854, 855, 858, 861, 862], "substitut": [52, 75, 316, 362], "_arraywithdata_typeexperiment": [52, 97], "_arraywithdeviceexperiment": [52, 97], "_arraywithelementwiseexperiment": [52, 97], "equal_nan": [52, 75, 328, 344, 365], "toler": [52, 57, 75, 80, 328, 344, 365, 369, 422, 435, 441, 624, 667, 670, 758, 760, 808, 827, 855], "1e10": [52, 328, 344, 365], "00001e10": [52, 328, 344, 365], "00001e": [52, 328, 365], "amax": [52, 75, 365], "keepdim": [52, 57, 59, 62, 65, 66, 69, 75, 80, 82, 85, 88, 89, 329, 330, 334, 349, 356, 365, 366, 371, 380, 478, 515, 516, 517, 518, 519, 520, 624, 626, 631, 634, 635, 665, 681, 700, 731, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 818, 826, 834], "singleton": [52, 57, 62, 65, 66, 75, 80, 85, 88, 89, 329, 330, 365, 624, 626, 631, 634, 635, 681, 689, 696, 732, 747, 748, 749, 750, 751, 752, 753, 754, 755, 834], "amin": [52, 75, 365], "binar": [52, 75, 365], "map": [52, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 365, 368, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 601, 606, 611, 621, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 712, 713, 717, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 793, 809, 812, 814, 821, 822, 826, 829, 830, 837, 840, 842, 849, 856], "conj": [52, 75, 233, 238, 240, 281, 282, 286, 365, 619], "conjug": [52, 57, 75, 80, 332, 365, 368, 369, 375, 390, 416, 422, 432, 434, 436, 498, 624, 664, 668, 676], "copysign": [52, 75, 365], "unsign": [52, 65, 75, 333, 365, 371, 380, 481, 511, 512, 634, 744, 745, 750, 752, 764, 814, 834], "count_nonzero": [52, 75, 365], "diff": [52, 69, 75, 365, 816, 825], "prepend": [52, 75, 335, 365, 624, 626, 664, 689, 805], "differenc": [52, 75, 335, 365], "prior": [52, 75, 335, 365, 375, 498, 624, 676, 818, 830], "expand": [52, 53, 59, 75, 76, 335, 365, 371, 537, 621, 626, 689, 812, 828], "discret": [52, 75, 335, 365, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 625, 684, 779], "digamma": [52, 75, 365], "7549271": [52, 336, 365], "92278427": [52, 75, 336, 365], "9988394": [52, 336, 365], "erfc": [52, 75, 365], "complementari": [52, 75, 327, 337, 362, 365, 853, 861], "84270084e": [52, 337], "80259693e": [52, 337], "toward": [52, 59, 75, 82, 242, 289, 338, 350, 365, 371, 380, 479, 513, 619, 626, 694, 799, 802, 804, 805, 819, 834, 851, 855], "float_pow": [52, 75, 365], "fmax": [52, 75, 365], "fmod": [52, 75, 619], "divis": [52, 53, 54, 75, 76, 77, 229, 235, 242, 244, 277, 279, 289, 371, 459, 571, 579, 593, 602, 603, 608, 619, 621, 622, 623, 636, 643, 644, 783, 822, 831], "frexp": [52, 75, 365], "edge_ord": [52, 75, 342, 365], "estim": [52, 75, 342, 365, 380, 510], "boundari": [52, 61, 75, 84, 95, 319, 320, 342, 362, 365, 368, 403, 630, 728, 855], "33333333": [52, 75, 276, 342, 365, 619], "hypot": [52, 75, 365], "hypotenus": [52, 343, 365], "4031": [52, 343, 365], "8102": [52, 343, 365], "isclos": [52, 75, 365, 808], "ldexp": [52, 75, 365], "lerp": [52, 75, 365], "lgamma": [52, 365], "45373654": [52, 347, 365], "6477685": [52, 347, 365], "modf": [52, 75, 365], "fraction": [52, 75, 348, 365, 380, 520, 623, 646], "nansum": [52, 75, 365], "accumul": [52, 75, 349, 365, 371, 478], "nextaft": [52, 75, 365], "0e": [52, 54, 75, 77, 350, 365, 608, 622], "4013e": [52, 75, 350, 365], "4028e": [52, 75, 350, 365], "signbit": [52, 75, 365], "637": [52, 75, 352, 365], "0909": [52, 75, 352, 365], "sparsify_tensor": [52, 75, 365], "sparsifi": [52, 75, 353, 365], "arang": [52, 57, 65, 75, 80, 132, 353, 365, 368, 369, 386, 387, 388, 395, 400, 404, 405, 406, 409, 418, 433, 465, 560, 601, 616, 621, 624, 627, 634, 665, 681, 703, 704, 746, 799, 814, 825, 862], "xlogi": [52, 75, 365], "0986": [52, 75, 354, 365], "3863": [52, 75, 354, 365], "0000": [52, 75, 308, 309, 312, 354, 362, 365, 369, 371, 431, 467], "zeta": [52, 75, 365], "0369": [52, 75, 355, 365], "_arraywithgeneralexperiment": [52, 97], "init_valu": [52, 75, 79, 356, 366, 368, 410], "reduct": [52, 53, 58, 66, 69, 75, 76, 79, 81, 89, 356, 366, 368, 370, 371, 410, 442, 443, 444, 445, 446, 447, 448, 478, 534, 564, 565, 621, 625, 635, 683, 684, 685, 754, 755, 780, 814, 822, 825, 829, 836], "_arraywithgradientsexperiment": [52, 97], "_arraywithimageexperiment": [52, 97], "_arraywithlayersexperiment": [52, 97], "adaptive_avg_pool1d": [52, 75, 368], "1d": [52, 75, 92, 93, 368, 369, 371, 380, 382, 389, 391, 393, 399, 432, 451, 456, 478, 482, 510, 763, 779], "adapt": [52, 75, 77, 368, 382, 383, 384, 609, 622, 779, 783, 845], "pool": [52, 75, 79, 368, 382, 383, 384, 386, 387, 388, 404, 405, 406, 407, 410, 779, 805], "plane": [52, 75, 235, 238, 240, 268, 280, 281, 282, 285, 368, 371, 382, 383, 384, 479, 619], "l_in": [52, 75, 368, 382], "spatial": [52, 56, 75, 79, 368, 374, 382, 383, 384, 403, 410, 414, 489, 490, 491, 494, 623, 636, 637, 638, 639, 641, 643, 645, 782], "Will": [52, 75, 368, 382, 383, 384, 788, 840], "l_out": [52, 75, 368, 382], "nhwc": [52, 56, 75, 79, 368, 374, 383, 387, 392, 405, 409, 494, 623, 636, 639, 640, 643, 644, 645, 779], "3d": [52, 57, 75, 368, 383, 391, 392, 453, 624, 661, 779, 832], "4d": [52, 75, 368, 369, 374, 383, 392, 393, 440, 494], "s_0": [52, 75, 368, 383, 384], "s_1": [52, 75, 368, 383, 384], "adaptive_max_pool2d": [52, 75, 368], "h_in": [52, 75, 368, 384], "w_in": [52, 75, 368, 384], "avg_pool1d": [52, 75, 368], "kernel": [52, 56, 75, 79, 368, 386, 387, 388, 404, 405, 406, 407, 623, 648, 834, 840, 855, 858, 859], "nwc": [52, 56, 75, 79, 368, 386, 391, 404, 407, 623, 636, 637, 638, 643, 644, 779], "count_include_pad": [52, 75, 368, 386, 387, 388, 779], "d_in": [52, 56, 75, 79, 368, 386, 387, 388, 390, 395, 396, 400, 404, 405, 406, 407, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645], "algorithm": [52, 56, 68, 75, 79, 105, 368, 369, 386, 387, 388, 403, 404, 405, 406, 407, 435, 437, 441, 624, 637, 639, 640, 641, 642, 645, 672, 775, 779, 793, 814, 826, 832, 840, 855, 857, 859], "ncw": [52, 56, 75, 79, 368, 386, 391, 392, 404, 407, 623, 636, 637, 638, 643, 644, 779], "avg_pool2d": [52, 75, 368], "divisor_overrid": [52, 75, 368, 386, 387, 388, 779], "avg_pool3d": [52, 75, 368], "ndhwc": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "volum": [52, 56, 75, 79, 368, 388, 390, 395, 396, 400, 406, 623, 641, 642], "ncdhw": [52, 56, 75, 79, 368, 388, 393, 406, 623, 636, 641, 642, 643, 644, 779], "dct": [52, 75, 368, 779, 837], "truncat": [52, 75, 368, 369, 389, 395, 399, 400, 401, 412, 439, 567, 621, 779, 818, 837], "larger": [52, 59, 65, 75, 82, 88, 160, 368, 389, 396, 399, 401, 412, 617, 626, 634, 686, 694, 751, 753, 779, 829, 832, 862], "ortho": [52, 75, 368, 389, 390, 395, 396, 399, 400, 401, 411, 412, 779], "onesid": [52, 75, 368, 390], "fft": [52, 75, 368, 390, 396, 411, 412, 415, 779, 804, 855], "symmetri": [52, 368, 390], "rfft": [52, 75, 368, 390, 412], "invok": [52, 368, 390, 799, 820, 848, 849], "batch_idx": [52, 368, 390], "signal_dim1": [52, 368, 390], "signal_dim2": [52, 368, 390], "signal_dimn": [52, 368, 390], "signal_dim": [52, 368, 390], "embed": [52, 75, 368, 623, 649, 765, 779, 855], "max_norm": [52, 53, 75, 76, 368, 394, 528, 529, 621, 779], "ifft": [52, 75, 368, 395, 401, 779], "pi": [52, 75, 281, 285, 368, 370, 395, 400, 446, 614, 619], "44509285e": [52, 75, 368, 395], "14423775e": [52, 75, 368, 395], "17j": [52, 75, 368, 395, 400], "11483250e": [52, 75, 368, 395], "16j": [52, 75, 368, 395, 400], "33486982e": [52, 75, 368, 395], "22464680e": [52, 75, 368, 395], "95799250e": [52, 75, 368, 395], "66951701e": [52, 75, 368, 395], "fft2": [52, 368], "vari": [52, 63, 92, 93, 286, 396, 533, 619, 621, 624, 632, 671, 737, 738, 739, 793, 812, 816, 826, 829, 836], "20477401j": [52, 368, 396], "0614962j": [52, 368, 396], "idct": [52, 75, 368], "49862671": [52, 75, 368, 389, 399], "37691498": [52, 75, 368, 389, 399], "00390816": [52, 75, 368, 389, 399], "58938599": [52, 75, 368, 389, 399], "92713165": [52, 75, 368, 389, 399], "078475": [52, 75, 368, 389, 399], "19664812": [52, 75, 368, 389, 399], "95411837": [52, 75, 368, 389, 399], "30636606e": [52, 75, 368, 400], "43029718e": [52, 75, 368, 400], "18j": [52, 75, 368, 395, 400], "53080850e": [52, 75, 368, 400], "58689626e": [52, 75, 368, 400], "24474906e": [52, 75, 368, 400], "91858728e": [52, 75, 368, 400], "01435406e": [52, 75, 368, 400], "ifftn": [52, 75, 368], "24730653": [52, 75, 368, 401], "90832391j": [52, 75, 368, 401], "49495562": [52, 75, 368, 401], "9039565j": [52, 75, 368, 401], "98193269": [52, 75, 368, 401], "49560517j": [52, 75, 368, 401], "93280757": [52, 75, 368, 401], "48075343j": [52, 75, 368, 401], "28526384": [52, 75, 368, 401], "3351205j": [52, 75, 368, 401], "2343787": [52, 75, 368, 401], "83528011j": [52, 75, 368, 401], "18791352": [52, 75, 368, 401], "30690572j": [52, 75, 368, 401], "82115787": [52, 75, 368, 401], "96195183j": [52, 75, 368, 401], "44719226": [52, 75, 368, 401], "72654048j": [52, 75, 368, 401], "51476765": [52, 368, 401], "66160417j": [52, 368, 401], "04319742": [52, 368, 401], "05411636j": [52, 368, 401], "015561": [52, 368, 401], "04216015j": [52, 368, 401], "06310689": [52, 368, 401], "05347854j": [52, 368, 401], "13392983": [52, 368, 401], "16052352j": [52, 368, 401], "08371392": [52, 368, 401], "17252843j": [52, 368, 401], "0031429": [52, 368, 401], "05421245j": [52, 368, 401], "10446617": [52, 368, 401], "17747098j": [52, 368, 401], "05344324": [52, 368, 401], "07972424j": [52, 368, 401], "8344667": [52, 75, 368, 401], "98222595j": [52, 75, 368, 401], "48472244": [52, 75, 368, 401], "30233797j": [52, 75, 368, 401], "recompute_scale_factor": [52, 75, 368, 403, 832], "antialia": [52, 75, 368, 403, 832], "height": [52, 53, 56, 75, 76, 79, 368, 403, 533, 621, 623, 639, 640, 641, 642, 645, 837], "width": [52, 53, 56, 75, 76, 79, 368, 369, 371, 374, 380, 403, 422, 473, 494, 513, 533, 621, 623, 637, 638, 639, 640, 641, 642, 645, 649], "trilinear": [52, 75, 368, 403, 832], "nearest_exact": [52, 75, 368, 403, 832], "tf_area": [52, 75, 368, 403, 832], "mitchellcub": [52, 75, 368, 403, 832], "lanczos3": [52, 75, 368, 403, 832], "lanczos5": [52, 75, 368, 403, 832], "gaussian": [52, 75, 105, 368, 403, 613, 832], "overwrit": [52, 69, 75, 208, 368, 403, 618, 806, 825, 826, 834], "thu": [52, 75, 229, 242, 277, 285, 286, 368, 369, 403, 421, 619, 624, 658, 659, 804, 813, 818, 823, 826, 830], "antialias": [52, 75, 403], "max_pool1d": [52, 75, 368], "dilaton": [52, 75, 404, 405, 406], "max_pool3d": [52, 75, 368], "max_unpool1d": [52, 75, 368], "unpool": [52, 75, 368, 407], "reduce_window": [52, 79, 368], "window_dimens": [52, 79, 368, 410], "window_strid": [52, 79, 368, 410], "base_dil": [52, 79, 368, 410], "window_dil": [52, 79, 368, 410], "trim": [52, 69, 75, 368, 371, 411, 484], "orthonorm": [52, 57, 75, 80, 368, 411, 624, 671, 674], "8660254j": [52, 75, 368, 411], "rfftn": [52, 75, 368], "sliding_window": [52, 75, 368], "window_s": [52, 75, 368, 414], "frame_length": [52, 75, 368, 415], "frame_step": [52, 75, 368, 415], "fft_length": [52, 75, 368, 415], "window_fn": [52, 75, 368, 415], "pad_end": [52, 75, 368, 415], "smallest": [52, 69, 75, 160, 163, 231, 368, 371, 415, 483, 617, 619, 624, 665, 763, 765, 766], "enclos": [52, 75, 368, 415, 856], "window_length": [52, 75, 306, 308, 311, 312, 327, 362, 368, 415], "li": [52, 75, 368, 369, 380, 415, 422, 520, 844], "past": [52, 75, 368, 415, 806, 808, 827, 829, 841, 855], "fft_unique_bin": [52, 75, 368, 415], "complex64": [52, 72, 75, 153, 167, 176, 182, 248, 275, 368, 411, 415, 617, 619, 624, 672, 674, 675, 764, 814, 819], "complex128": [52, 75, 76, 153, 154, 167, 176, 182, 368, 415, 559, 617, 621, 624, 659, 660, 665, 681, 763, 764, 802, 814, 819], "compon": [52, 75, 137, 138, 216, 217, 218, 221, 224, 233, 235, 236, 238, 240, 268, 270, 271, 278, 281, 282, 285, 286, 317, 321, 332, 362, 365, 368, 369, 374, 415, 426, 435, 494, 616, 619, 631, 734, 799, 828, 834, 845, 851, 856, 858], "linear_algebra": [52, 57, 75, 80, 624, 830], "_arraywithlinearalgebraexperiment": [52, 97], "adjoint": [52, 57, 75, 80, 369, 436, 624, 662, 673, 674, 763], "batched_out": [52, 75, 369], "j1": [52, 75, 369, 417], "jn": [52, 75, 369, 417], "k1": [52, 75, 369, 417], "km": [52, 75, 369, 417], "outer": [52, 57, 75, 80, 92, 369, 417, 624, 627, 702, 703, 704, 793, 804], "30000001": [52, 75, 369, 417, 533, 621, 632, 737], "40000001": [52, 56, 68, 75, 97, 98, 107, 110, 291, 360, 369, 417, 613, 623, 632, 652, 737], "60000002": [52, 75, 88, 98, 369, 374, 417, 493, 495, 748], "80000001": [52, 75, 369, 374, 417, 493, 495], "60000001": [52, 75, 369, 417], "90000004": [52, 75, 369, 417, 634, 748], "20000002": [52, 75, 369, 417], "20000005": [52, 54, 75, 291, 298, 301, 302, 360, 369, 417, 602], "00000012": [52, 75, 369, 417], "49999994": [52, 75, 369, 417], "00000006": [52, 75, 369, 417], "60000014": [52, 75, 369, 417], "19999993": [52, 75, 369, 417], "80000007": [52, 75, 369, 417], "20000017": [52, 75, 369, 417], "89999992": [52, 75, 369, 417], "60000008": [52, 75, 369, 417], "80000019": [52, 75, 346, 365, 369, 417], "4000001": [52, 75, 79, 369, 417, 623, 646, 652], "cond": [52, 75, 118, 369, 615, 840], "933034373659268": [52, 418], "diagflat": [52, 75, 369, 428, 431], "offset": [52, 57, 60, 71, 75, 80, 83, 129, 369, 374, 419, 489, 490, 491, 616, 624, 629, 657, 678, 724, 770], "padding_valu": [52, 75, 369, 419], "right_left": [52, 75, 369, 419], "num_row": [52, 75, 369, 419], "num_col": [52, 75, 369, 419], "dot": [52, 56, 75, 79, 92, 369, 433, 623, 624, 649, 652, 680, 793, 799, 805, 813], "eig": [52, 57, 75, 369, 624, 659, 660], "37228132": [52, 75, 369, 421, 423, 658], "82456484": [52, 421, 658], "41597356": [52, 421, 658], "56576746": [52, 421, 658], "90937671": [52, 421, 658], "eigh_tridiagon": [52, 75, 369], "eigvals_onli": [52, 75, 369, 422], "select_rang": [52, 75, 369, 422], "tol": [52, 75, 96, 369, 422, 435, 441], "eigenvalu": [52, 57, 75, 80, 92, 93, 369, 421, 422, 423, 624, 658, 659, 660, 667], "eigenvector": [52, 75, 369, 421, 422, 624, 658, 659], "interv": [52, 61, 66, 75, 84, 89, 121, 132, 133, 140, 369, 380, 422, 513, 616, 624, 626, 630, 635, 654, 680, 686, 689, 697, 726, 728, 754, 755], "togeth": [52, 69, 75, 328, 344, 365, 369, 422, 784, 799, 809, 812, 814, 825, 826, 829, 830, 832, 838, 839, 840, 845, 853, 855, 856, 861], "cluster": [52, 75, 369, 422, 840, 855], "converg": [52, 75, 369, 422, 846], "_2": [52, 75, 369, 422], "eig_val": [52, 75, 369, 422], "decreas": [52, 75, 369, 422, 765], "eig_vector": [52, 75, 369, 422], "38196": [52, 422], "61803": [52, 422], "eigval": [52, 75, 369], "general_inner_product": [52, 80, 369], "n_mode": [52, 80, 369, 424], "tradit": [52, 80, 369, 424], "inner": [52, 57, 71, 80, 101, 136, 369, 421, 424, 616, 624, 627, 658, 659, 664, 702, 703, 704, 793, 804, 825], "higher_order_mo": [52, 75, 369], "n_featur": [52, 75, 369, 425], "d1": [52, 75, 369, 425], "dn": [52, 75, 369, 425], "initialize_tuck": [52, 75, 369], "svd": [52, 57, 75, 80, 95, 369, 426, 430, 435, 437, 438, 439, 441, 624, 675], "truncated_svd": [52, 75, 369, 426, 435, 438, 441], "non_neg": [52, 75, 321, 362, 369, 426], "mask": [52, 56, 75, 79, 92, 368, 369, 371, 413, 426, 427, 435, 441, 480, 543, 621, 623, 646, 649, 652, 832], "svd_mask_repeat": [52, 75, 369, 426, 435, 441], "tuckertensor": [52, 75, 96, 321, 362, 369, 426, 435, 441], "scheme": [52, 75, 369, 426, 435, 808, 838, 855], "tucker": [52, 75, 321, 362, 369, 426, 435], "decomposit": [52, 57, 75, 80, 92, 93, 95, 317, 318, 319, 320, 321, 362, 369, 426, 435, 438, 440, 441, 624, 653, 659, 663, 671, 674, 804, 862], "miss": [52, 75, 369, 371, 426, 435, 441, 480, 783, 804, 805, 809, 812, 813, 816, 826, 829, 832], "everywher": [52, 75, 369, 426, 435, 441], "imput": [52, 75, 369, 426, 435, 441], "kron": [52, 75, 369, 431, 862], "make_svd_non_neg": [52, 75, 369, 439], "nntype": [52, 75, 369, 430], "nndsvd": [52, 75, 369, 430], "singular": [52, 57, 75, 80, 369, 426, 430, 437, 439, 624, 665, 667, 670, 674, 675, 763, 765, 814], "nndsvda": [52, 75, 369, 430], "boutsidi": [52, 75, 369, 430], "gallopoulo": [52, 75, 369, 430], "pattern": [52, 53, 75, 76, 369, 430, 533, 534, 535, 621, 814, 817, 828, 846], "recognit": [52, 75, 369, 430], "1350": [52, 75, 369, 430], "1362": [52, 75, 369, 430], "2008": [52, 75, 369, 430, 855], "matrix_exp": [52, 75, 369], "7183": [52, 75, 369, 431], "3891": [52, 75, 369, 431], "mode_dot": [52, 75, 91, 92, 96, 369], "matrix_or_vector": [52, 75, 92, 96, 369, 432], "i_1": [52, 75, 92, 93, 369, 432], "i_k": [52, 75, 92, 369, 432], "i_n": [52, 75, 92, 369, 432], "i_": [52, 75, 92, 369, 380, 432, 513], "multi_dot": [52, 75, 369], "148": [52, 74, 75, 238, 369, 433], "multi_mode_dot": [52, 75, 369], "mat_or_vec_list": [52, 75, 369, 434], "times_0": [52, 369, 434], "vec": [52, 369, 434], "times_1": [52, 369, 434], "cdot": [52, 268, 369, 434, 619], "times_n": [52, 369, 434], "partial_tuck": [52, 75, 369], "n_iter_max": [52, 75, 369, 435, 441], "verbos": [52, 75, 369, 435, 438, 441, 829, 834], "return_error": [52, 75, 369, 435, 441], "variat": [52, 75, 369, 435, 441, 816, 826, 829], "reconstruct": [52, 57, 63, 75, 86, 95, 369, 371, 435, 441, 486, 624, 632, 674, 736, 738, 827], "return_erro": [52, 369, 435, 441], "svd_flip": [52, 75, 369], "u_based_decis": [52, 75, 369, 437], "basi": [52, 75, 369, 437, 806, 808, 837], "flip": [52, 59, 75, 82, 92, 226, 369, 371, 437, 464, 465, 619, 626, 825, 836, 837, 839], "decis": [52, 75, 369, 437, 799, 808, 814, 832, 834, 836, 855], "u_adjust": [52, 75, 369, 437], "v_adjust": [52, 75, 369, 437], "tensor_train": [52, 75, 369], "tt": [52, 75, 320, 362, 369, 438, 440], "kth": [52, 369, 438], "tttensor": [52, 95, 320, 362, 369, 438], "compute_uv": [52, 57, 75, 80, 369, 439, 624, 674], "n_eigenvec": [52, 75, 369, 439], "returnedv": [52, 439], "vh": [52, 57, 75, 80, 369, 439, 624, 674], "eigen": [52, 75, 369, 439], "namedtupl": [52, 57, 63, 75, 80, 86, 369, 371, 421, 439, 486, 624, 632, 658, 659, 671, 672, 674, 736, 737, 738], "tt_matrix_to_tensor": [52, 75, 369], "known": [52, 75, 279, 369, 438, 440, 619, 778, 808, 813, 814, 826, 829], "rank_k": [52, 75, 369, 440], "left_dim_k": [52, 75, 369, 440], "right_dim_k": [52, 75, 369, 440], "rank_": [52, 75, 369, 440], "49671414": [52, 75, 369, 440, 630, 727], "1382643": [52, 75, 369, 440, 630, 727], "64768857": [52, 75, 369, 440, 630, 727], "5230298": [52, 75, 369, 440, 630, 727], "23415337": [52, 75, 369, 440, 630, 727], "23413695": [52, 75, 369, 440, 630, 727], "57921278": [52, 75, 369, 440], "76743472": [52, 75, 369, 440], "1163073": [52, 75, 369, 440], "11629914": [52, 75, 369, 440], "03237505": [52, 75, 369, 440], "03237278": [52, 75, 369, 440], "78441733": [52, 75, 369, 440], "38119566": [52, 75, 369, 440], "21834874": [52, 75, 369, 440], "10610882": [52, 75, 369, 440], "15165846": [52, 75, 369, 440], "15164782": [52, 75, 369, 440], "35662258": [52, 75, 369, 440], "35659757": [52, 75, 369, 440], "02283812": [52, 75, 369, 440], "49705869": [52, 75, 369, 440], "40518808": [52, 75, 369, 440], "16882598": [52, 75, 369, 440], "fixed_factor": [52, 75, 369, 441], "tl": [52, 75, 369, 441], "kolda": [52, 75, 369, 441], "bader": [52, 75, 369, 441], "siam": [52, 75, 369, 438, 441], "review": [52, 75, 369, 441, 801, 804, 806, 811, 813, 816, 826, 830], "vol": [52, 75, 369, 441], "pp": [52, 75, 369, 441], "455": [52, 75, 369, 441], "2009": [52, 75, 369, 441], "_arraywithlossesexperiment": [52, 97], "huber_loss": [52, 75, 370], "delta": [52, 54, 75, 77, 370, 442, 602, 622], "transit": [52, 75, 370, 442, 855], "huber": [52, 75, 370, 442], "kl_div": [52, 75, 370], "log_target": [52, 75, 370, 443], "contai": [52, 443], "batchmean": [52, 370, 443], "kullback": [52, 75, 370, 443], "leibler": [52, 75, 370, 443], "0916": [52, 443], "l1_loss": [52, 75, 370, 445], "l1": [52, 57, 75, 80, 370, 374, 442, 444, 445, 447, 492, 624, 681, 812, 837], "targetict": [52, 75, 370, 444, 445, 447, 448], "20000000000000004": [52, 444], "log_poisson_loss": [52, 75, 370], "compute_full_loss": [52, 75, 370, 445, 780], "favor": [52, 75, 370, 445], "likelihood": [52, 75, 370, 445, 446], "28402555": [52, 370, 445], "03402555": [52, 370, 445], "1573164": [52, 370, 445], "poisson_nll_loss": [52, 75, 370], "log_input": [52, 75, 370, 446], "poisson": [52, 75, 370, 375, 445, 446], "assumpt": [52, 370, 445, 446], "minu": [52, 370, 445, 446], "omiss": [52, 370, 446], "stirl": [52, 75, 370, 445, 446], "describ": [52, 65, 75, 93, 218, 235, 236, 268, 271, 273, 370, 375, 378, 446, 500, 503, 619, 623, 634, 649, 746, 750, 752, 801, 804, 805, 806, 811, 813, 825, 826, 829, 834, 839, 855], "prevent": [52, 54, 75, 77, 370, 446, 545, 602, 603, 608, 621, 622, 623, 634, 646, 752, 778, 783, 804, 806, 813, 814, 818, 825, 826, 830], "input_tensor": [52, 75, 369, 370, 438, 446, 826], "target_tensor": [52, 370, 446], "1978": [52, 446], "smooth_l1_loss": [52, 75, 370], "smooth": [52, 58, 75, 81, 370, 442, 447, 625, 683, 684, 685, 824], "8125": [52, 447], "soft_margin_loss": [52, 75, 370], "soft": [52, 75, 301, 370, 371, 448, 480, 815], "margin": [52, 75, 370, 448, 826], "35667497": [52, 448, 625, 684], "22314353": [52, 448], "60943791": [52, 448], "manipul": [52, 75, 825, 826, 830, 832, 834, 839, 844, 855], "_arraywithmanipulationexperiment": [52, 97], "as_strid": [52, 75, 371], "nativeshap": [52, 56, 59, 61, 75, 82, 84, 122, 123, 125, 130, 137, 143, 371, 375, 449, 461, 466, 474, 477, 496, 497, 498, 499, 500, 565, 578, 583, 585, 616, 621, 623, 626, 630, 636, 638, 640, 642, 644, 693, 726, 727, 728, 821, 823], "byte": [52, 53, 71, 75, 76, 97, 129, 371, 449, 559, 616, 621, 860, 861], "associative_scan": [52, 75, 371], "revers": [52, 53, 57, 65, 75, 80, 88, 97, 98, 359, 367, 368, 369, 371, 380, 413, 429, 450, 464, 465, 511, 512, 532, 621, 624, 626, 634, 679, 690, 744, 745, 804, 812, 813, 814, 816, 817, 825, 826, 832, 839, 840], "scan": [52, 75, 371, 450, 840], "atleast_1d": [52, 75, 371], "ari": [52, 75, 371, 451, 452, 453, 459, 468, 487], "a1": [52, 76, 371, 451, 452, 453, 457, 525], "a2": [52, 76, 371, 451, 452, 453, 457, 525], "atleast_2d": [52, 75, 371], "atleast_3d": [52, 75, 371], "column_stack": [52, 75, 371], "concat_from_sequ": [52, 75, 371], "input_sequ": [52, 75, 371, 458], "new_axi": [52, 75, 371, 458, 839], "dsplit": [52, 75, 371], "indices_or_sect": [52, 75, 371, 459, 468, 487], "3rd": [52, 75, 371, 459], "dstack": [52, 75, 371], "fill_diagon": [52, 75, 371], "fill_diag": [52, 462], "fortran": [52, 59, 75, 82, 371, 463, 626, 693, 855, 859], "layout": [52, 59, 75, 82, 371, 463, 626, 693, 810, 825, 826, 832], "fliplr": [52, 75, 371, 825], "diag": [52, 57, 75, 80, 93, 371, 464, 465, 624, 659, 834], "flipud": [52, 75, 371, 825], "fold": [52, 75, 371, 474, 475, 813], "unfold": [52, 75, 92, 93, 95, 369, 371, 426, 466, 474, 476], "folded_tensor": [52, 371, 466], "heavisid": [52, 75, 371], "5000": [52, 371, 467, 624, 662, 793], "hsplit": [52, 75, 371], "horizont": [52, 75, 371, 457, 468, 533, 621], "hstack": [52, 75, 371, 457], "i0": [52, 75, 371, 380, 513], "bessel": [52, 65, 75, 88, 311, 362, 371, 470, 634, 751, 753], "kind": [52, 65, 75, 160, 163, 164, 380, 470, 511, 512, 517, 617, 634, 744, 745, 750, 752, 763, 764, 803, 826, 829, 832, 834, 840], "26606588": [52, 75, 371, 470], "2795853": [52, 75, 371, 470], "88079259": [52, 75, 371, 470], "row_mod": [52, 75, 371, 471], "column_mod": [52, 75, 371, 471], "ascend": [52, 64, 75, 87, 371, 378, 471, 503, 633, 740, 742], "prod": [52, 53, 65, 76, 88, 369, 371, 427, 429, 471, 519, 534, 621, 634, 763, 793, 814, 816, 834], "moveaxi": [52, 75, 371], "destin": [52, 75, 371, 472], "unstack": [52, 59, 69, 82, 472, 626, 812, 834, 837, 862], "reorder": [52, 59, 75, 82, 371, 472, 533, 621, 626, 690, 828], "stat_length": [52, 75, 371, 473], "constant_valu": [52, 75, 371, 473], "end_valu": [52, 75, 371, 473], "reflect_typ": [52, 75, 371, 473], "partial_fold": [52, 75, 371], "skip_begin": [52, 75, 371, 474, 475, 476, 477], "untouch": [52, 75, 371, 474, 475, 476, 477], "partial_tensor_to_vec": [52, 75, 371], "skip_end": [52, 75, 371, 475, 476], "vectoris": [52, 75, 92, 371, 475, 477], "partial_unfold": [52, 75, 371], "ravel_tensor": [52, 75, 371, 476], "n_1": [52, 75, 371, 476], "n_2": [52, 75, 371, 476], "n_i": [52, 75, 369, 371, 427, 476], "partial_vec_to_tensor": [52, 75, 371], "put_along_axi": [52, 75, 371], "rot90": [52, 75, 371, 825], "rotat": [52, 75, 371, 479], "soft_threshold": [52, 75, 371], "behav": [52, 75, 329, 330, 365, 369, 371, 421, 481, 624, 658, 808, 818, 823, 825, 826, 827, 836, 856], "invalid": [52, 66, 75, 89, 371, 481, 624, 626, 635, 680, 689, 754, 755, 763, 805, 814], "slice": [52, 65, 69, 75, 76, 88, 93, 142, 322, 362, 371, 456, 478, 481, 482, 540, 541, 543, 569, 616, 621, 628, 634, 714, 749, 855], "inexact": [52, 75, 339, 365, 371, 481], "largest": [52, 69, 75, 160, 163, 369, 371, 437, 481, 483, 617, 624, 665, 674], "take_along_axi": [52, 75, 371], "arr": [52, 53, 72, 75, 168, 371, 456, 478, 482, 565, 617, 814, 815], "top_k": [52, 75, 371], "sort": [52, 63, 69, 75, 86, 98, 287, 369, 371, 380, 421, 483, 503, 517, 619, 624, 632, 658, 659, 674, 675, 736, 740, 741, 742, 765, 799, 803, 813, 828, 830], "trim_zero": [52, 75, 371], "fb": [52, 75, 371, 484], "front": [52, 75, 371, 484, 826, 833, 834, 837, 844, 853, 855], "unfolded_tensor": [52, 371, 485], "unique_consecut": [52, 75, 371], "vsplit": [52, 75, 371], "vertic": [52, 75, 371, 487, 488, 533, 621, 806], "_arraywithnormsexperiment": [52, 97], "varianc": [52, 65, 75, 88, 374, 489, 491, 634, 753, 778, 782], "nsc": [52, 75, 374, 489, 490, 491, 782], "braodcast": [52, 75, 374, 489], "running_mean": [52, 75, 374, 489, 491, 782], "running_var": [52, 75, 374, 489, 491, 782], "nc": [52, 75, 374, 489, 490, 491, 782], "group_norm": [52, 75, 374], "num_group": [52, 75, 374, 490], "group": [52, 75, 371, 374, 486, 490, 623, 628, 636, 643, 644, 707, 808, 812, 814, 822, 826, 827, 851, 854, 860], "instance_norm": [52, 75, 374], "l1_normal": [52, 75, 374], "33333334": [52, 374, 492, 495, 604, 622, 623, 624, 645, 681], "33333337": [52, 132, 374, 492, 604, 616, 622], "28571439": [52, 374, 492], "l2_normal": [52, 75, 374, 495], "l2": [52, 57, 80, 91, 92, 374, 493, 495, 624, 681, 779, 812], "44721359": [52, 75, 374, 493, 495], "89442718": [52, 75, 374, 493, 495], "lp_normal": [52, 75, 374], "lp": [52, 374, 495], "_arraywithrandomexperiment": [52, 97], "bernoulli": [52, 75, 368, 375, 391, 392, 393], "event": [52, 75, 375, 496, 829], "entri": [52, 59, 69, 75, 82, 86, 93, 132, 369, 371, 375, 436, 462, 464, 465, 496, 616, 626, 628, 695, 718, 736, 805, 813, 829, 855], "parameter": [52, 61, 75, 84, 375, 496, 497, 499, 500, 630, 725, 727, 728], "odd": [52, 75, 273, 371, 375, 473, 496, 619, 793, 803, 808], "drawn": [52, 61, 75, 84, 375, 496, 497, 498, 499, 500, 630, 725, 726, 727, 728, 763, 764, 765, 778, 829], "dirichlet": [52, 75, 375], "10598304": [52, 375, 498], "21537054": [52, 375, 498], "67864642": [52, 375, 498], "48006698": [52, 375, 498], "07472073": [52, 375, 498], "44521229": [52, 375, 498], "55479872": [52, 375, 498], "05426367": [52, 375, 498], "39093761": [52, 375, 498], "19531053": [52, 375, 498], "51675832": [52, 375, 498], "28793114": [52, 375, 498], "12315625": [52, 375, 498], "29823365": [52, 375, 498], "5786101": [52, 375, 498], "15564976": [52, 375, 498], "50542368": [52, 375, 498], "33892656": [52, 375, 498], "1325352": [52, 375, 498], "44439589": [52, 375, 498], "42306891": [52, 375, 498], "gamma": [52, 60, 75, 83, 336, 347, 365, 375, 380, 514, 629, 724], "rate": [52, 54, 75, 77, 368, 375, 409, 500, 603, 606, 608, 609, 610, 622, 627, 702, 703, 704, 783, 813], "lam": [52, 75, 375, 500], "_arraywithsearchingexperiment": [52, 97], "unravel_index": [52, 75, 376], "unravel": [52, 75, 376, 501], "_arraywithsetexperiment": [52, 97], "_arraywithsortingexperiment": [52, 97], "lexsort": [52, 75, 378], "indirectli": [52, 75, 378, 503], "statist": [52, 75, 90, 371, 473, 782, 797, 804, 814, 829, 830, 855], "_arraywithstatisticalexperiment": [52, 97], "bincount": [52, 75, 380], "minlength": [52, 75, 380, 508], "corrcoef": [52, 75, 380], "rowvar": [52, 75, 380, 509, 510], "relationship": [52, 75, 509, 778, 828], "cov": [52, 75, 380], "ddof": [52, 75, 380, 510], "fweight": [52, 75, 380, 510], "aweight": [52, 75, 380, 510], "overridden": [52, 75, 380, 510, 783, 809], "unbias": [52, 65, 75, 88, 380, 510, 634, 753], "typic": [52, 75, 328, 344, 365, 380, 510, 633, 742, 779, 808, 822, 854, 862], "assign": [52, 75, 92, 380, 510, 804, 806, 810, 814, 825, 828, 836], "covari": [52, 75, 380, 510], "cummax": [52, 75, 380], "exclus": [52, 53, 65, 69, 75, 76, 88, 121, 369, 380, 435, 511, 512, 552, 553, 556, 616, 621, 630, 634, 726, 744, 745, 812, 814, 822, 839, 859, 861], "cumul": [52, 65, 75, 88, 380, 511, 512, 634, 744, 745], "uint64": [52, 65, 157, 162, 164, 165, 175, 177, 180, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "uint16": [52, 65, 152, 157, 162, 163, 172, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 826, 829, 834], "bit": [52, 65, 159, 160, 163, 226, 227, 229, 380, 511, 512, 617, 619, 634, 744, 745, 750, 752, 799, 803, 804, 805, 812, 813, 814, 816, 822, 834, 836, 861], "uint32": [52, 65, 157, 162, 163, 164, 186, 380, 511, 512, 617, 634, 744, 745, 750, 752, 763, 764, 814, 829, 834], "cummin": [52, 75, 380], "histogram": [52, 75, 380], "extend_lower_interv": [52, 75, 380, 513], "extend_upper_interv": [52, 75, 380, 513], "densiti": [52, 75, 380, 513], "monoton": [52, 75, 380, 513], "rightmost": [52, 75, 380, 513], "c1": [52, 75, 380, 513, 812], "ff": [52, 75, 380, 513], "c_": [52, 75, 93, 380, 513], "igamma": [52, 75, 380], "incomplet": [52, 75, 380, 514, 806], "3614": [52, 75, 380, 514], "2085": [52, 75, 380, 514], "median": [52, 75, 371, 380, 473, 517], "nanmean": [52, 75, 380], "6666666666666665": [52, 75, 380, 516], "nanmedian": [52, 75, 380], "overwrite_input": [52, 75, 380, 517], "treat": [52, 69, 75, 98, 273, 349, 365, 371, 374, 380, 482, 494, 517, 519, 619, 760, 824, 829, 835, 839], "undefin": [52, 75, 371, 380, 381, 473, 517, 521, 814, 818, 824], "nanmin": [52, 75, 380], "nanprod": [52, 75, 380], "Not": [52, 75, 349, 365, 369, 380, 423, 519, 614, 810, 818, 827, 837, 838, 840], "quantil": [52, 75, 380], "inclus": [52, 75, 121, 380, 520, 616, 630, 726, 800, 810, 825, 832], "midpoint": [52, 75, 380, 520], "surround": [52, 75, 380, 520, 832], "whichev": [52, 75, 380, 520], "_arraywithutilityexperiment": [52, 97], "optional_get_el": [52, 75, 381], "empti": [52, 53, 65, 69, 76, 88, 121, 371, 381, 473, 521, 528, 565, 616, 621, 624, 628, 634, 635, 678, 681, 719, 749, 750, 752, 754, 755, 804, 805, 809, 811, 814, 815, 825], "_arraywithgener": [53, 97], "all_equ": [53, 76, 621], "equality_matrix": [53, 76, 522, 621], "array_equ": [53, 76, 621], "assert_supports_inplac": [53, 76, 621], "ivybackendexcept": [53, 76, 526, 550, 621, 794, 809, 815, 818, 819], "clip_matrix_norm": [53, 76, 621], "894": [53, 76, 528, 529, 621, 629, 724], "clip_vector_norm": [53, 76, 621], "default_v": [53, 532, 621], "catch_except": [53, 532, 621], "rev": [53, 532, 621], "with_cal": [53, 532, 621], "catch": [53, 532, 621, 823, 829], "einops_rearrang": [53, 76, 621], "axes_length": [53, 76, 533, 534, 535, 621], "arrang": [53, 533, 621], "rearrang": [53, 76, 533, 535, 621, 828], "einops_reduc": [53, 76, 621, 814], "einops_repeat": [53, 76, 621], "fourier_encod": [53, 76, 621], "max_freq": [53, 76, 537, 621], "oppos": [53, 76, 537, 621, 814], "geometr": [53, 76, 537, 621, 624, 679], "0000000e": [53, 76, 537, 621], "2246468e": [53, 76, 537, 621], "4492936e": [53, 537, 621], "6739404e": [53, 76, 537, 621], "batch_dim": [53, 76, 540, 541, 621, 785], "gather_nd": [53, 76, 621], "get_num_dim": [53, 76, 621], "as_arrai": [53, 76, 544, 578, 621, 785], "has_nan": [53, 76, 621], "include_inf": [53, 76, 546, 600, 621], "inplace_decr": [53, 76, 621], "val": [53, 69, 74, 76, 248, 371, 462, 548, 549, 550, 569, 570, 571, 619, 621, 814, 825, 836], "decrement": [53, 76, 548, 621], "inplace_incr": [53, 76, 621], "increment": [53, 76, 549, 621, 806, 855], "inplace_upd": [53, 76, 568, 621, 776, 825], "ensure_in_backend": [53, 76, 550, 621, 825], "keep_input_dtyp": [53, 76, 550, 621, 825], "is_arrai": [53, 76, 621, 825, 826], "is_ivy_arrai": [53, 76, 621, 825, 836], "is_ivy_contain": [53, 621], "is_native_arrai": [53, 76, 171, 553, 617, 621, 836], "isin": [53, 76, 621], "test_el": [53, 76, 557, 621], "assume_uniqu": [53, 76, 557, 621], "invert": [53, 76, 226, 557, 619, 621, 624, 666], "scatter_flat": [53, 76, 621], "occupi": [53, 160, 163, 564, 565, 617, 621], "scatter_nd": [53, 76, 621, 832, 836], "stable_divid": [53, 76, 621, 822], "denomin": [53, 60, 76, 83, 571, 579, 593, 621, 629, 724, 782, 822, 831, 840, 852], "min_denomin": [53, 76, 571, 579, 593, 621, 831], "_min_denomin": [53, 579, 621], "stable_pow": [53, 76, 621], "min_bas": [53, 76, 570, 580, 592, 621, 782, 831], "stabl": [53, 64, 76, 87, 142, 322, 329, 330, 362, 365, 378, 503, 570, 571, 579, 580, 592, 593, 616, 621, 633, 740, 743, 765, 805, 810, 814, 826, 831, 834, 840], "00004": [53, 76, 580, 621], "00008": [53, 76, 580, 621], "00004000e": [53, 580], "56002560e": [53, 580], "60001200e": [53, 580], "09602048e": [53, 580], "supports_inplace_upd": [53, 76, 621], "to_fil": 53, "fid": 53, "sep": 53, "format_": 53, "recov": [53, 818, 826], "to_scalar": [53, 76, 621], "value_is_nan": [53, 76, 621], "_arraywithgradi": [54, 97], "adam_step": [54, 77, 622], "mw": [54, 77, 602, 603, 622, 838], "vw": [54, 77, 602, 603, 622, 838], "beta1": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "beta2": [54, 77, 524, 602, 603, 608, 621, 622, 783, 838], "epsilon": [54, 57, 58, 77, 80, 81, 524, 602, 603, 608, 621, 622, 624, 625, 667, 670, 683, 684, 685, 775, 780, 782, 783, 812, 822, 825, 838], "dc": [54, 77, 602, 603, 606, 608, 609, 610, 622], "dw": [54, 77, 602, 603, 606, 608, 609, 610, 622], "forget": [54, 77, 602, 603, 608, 622, 783, 799, 814], "dcdw": [54, 77, 602, 603, 606, 608, 609, 622], "adam_step_delta": [54, 77, 602, 622], "2020105": [54, 602, 622], "22187898": [54, 602, 622], "24144873": [54, 602, 622], "10000002": [54, 88, 291, 360, 602, 748], "00300002": [54, 602], "00800002": [54, 602], "adam_upd": [54, 77, 622, 838], "mw_tm1": [54, 77, 603, 608, 622], "vw_tm1": [54, 77, 603, 608, 622], "stop_gradi": [54, 77, 208, 524, 603, 606, 608, 609, 610, 618, 621, 622, 627, 702, 703, 704, 783, 838], "ws_new": [54, 77, 603, 608, 609, 610, 622], "updated_weight": [54, 77, 603, 622], "92558753": [54, 603], "92558873": [54, 603, 622], "92558718": [54, 603, 622], "00000063e": [54, 77, 603, 622], "00000016e": [54, 77, 603, 622], "00000086e": [54, 77, 603, 622], "gradient_descent_upd": [54, 77, 622, 627, 702, 703, 704], "descent": [54, 77, 606, 622, 783, 838, 855], "new_weight": [54, 77, 606, 608, 609, 622, 837], "lamb_upd": [54, 77, 622], "max_trust_ratio": [54, 77, 608, 622, 783], "decay_lambda": [54, 77, 608, 609, 622, 783], "trust": [54, 77, 608, 622, 783], "ratio": [54, 77, 608, 622, 783], "decai": [54, 77, 608, 609, 622, 783], "lamb": [54, 77, 608, 622, 783, 838], "784": [54, 608, 622], "lars_upd": [54, 77, 622], "lar": [54, 77, 609, 622, 783, 838], "34077978": [54, 609, 622], "78025991": [54, 609, 622], "56051969": [54, 609, 622], "78026009": [54, 609, 622], "56051981": [54, 609, 622], "12103939": [54, 609, 622], "optimizer_upd": [54, 77, 622], "effective_grad": [54, 77, 610, 622], "3e": [54, 77, 610, 622], "preserve_typ": [54, 77, 611, 622], "_arraywithimag": [55, 97], "_arraywithlay": [56, 97], "conv1d": [56, 79, 623, 779], "filter_format": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_last": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644, 763], "x_dilat": [56, 79, 623, 636, 637, 639, 640, 641, 643], "d_out": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "channel_first": [56, 79, 623, 636, 637, 638, 639, 640, 641, 642, 643, 644], "wio": [56, 623, 636, 637, 638, 643], "conv1d_transpos": [56, 79, 623], "output_shap": [56, 79, 623, 636, 638, 640, 642, 644, 779], "iow": [56, 79, 623, 638], "woi": [56, 79, 623, 638], "fh": [56, 79, 623, 628, 636, 639, 640, 641, 642, 643, 644, 645, 717], "hwio": [56, 623, 636, 637, 639, 643], "conv2d_transpos": [56, 79, 623], "iohw": [56, 79, 623, 640], "hwoi": [56, 79, 623, 640], "conv3d": [56, 79, 623, 642, 779], "fd": [56, 79, 623, 636, 641, 642, 643, 644], "conv3d_transpos": [56, 79, 623, 644], "iodhw": [56, 79, 623, 642, 644], "dhwoi": [56, 79, 623, 642, 644], "depthwise_conv2d": [56, 79, 623], "randint": [56, 61, 63, 79, 84, 630, 632, 645, 648, 736, 814, 848], "noise_shap": [56, 79, 623, 646], "42857146": [56, 623, 646], "85714293": [56, 623, 646], "28571415": [56, 79, 623, 646], "71428585": [56, 79, 623, 646], "14285755": [56, 79, 623, 646], "5714283": [56, 623, 646], "4285717": [56, 79, 623, 646], "8571434": [56, 79, 623, 646], "2857151": [56, 623, 646], "dropout1d": [56, 79, 368], "droput1d": [56, 391, 392], "dropout2d": [56, 79, 368], "dropout3d": [56, 79, 368], "droput3d": [56, 393], "outer_batch_shap": [56, 79, 623, 647], "inner_batch_shap": [56, 79, 623, 647], "lstm_updat": [56, 79, 623, 834], "init_h": [56, 79, 623, 648, 834], "init_c": [56, 79, 623, 648, 834], "recurrent_kernel": [56, 79, 623, 648, 834], "recurrent_bia": [56, 79, 623, 648, 834], "hidden": [56, 79, 623, 648, 779, 811, 818, 834, 838], "recurr": [56, 75, 79, 368, 413, 623, 648, 834, 855, 859], "timestep": [56, 75, 79, 368, 413, 623, 648, 649, 779, 834], "h_i": [56, 79, 648], "c_i": [56, 79, 648], "rc": [56, 79, 648], "multi_head_attent": [56, 79, 623, 825], "num_head": [56, 79, 623, 649, 779], "in_proj_weight": [56, 79, 623, 649], "q_proj_weight": [56, 79, 623, 649], "k_proj_weight": [56, 79, 623, 649], "v_proj_weight": [56, 79, 623, 649], "out_proj_weight": [56, 79, 623, 649], "in_proj_bia": [56, 79, 623, 649], "out_proj_bia": [56, 79, 623, 649], "is_caus": [56, 79, 623, 649, 652], "key_padding_mask": [56, 79, 623, 649], "bias_k": [56, 79, 623, 649], "bias_v": [56, 79, 623, 649], "static_k": [56, 79, 623, 649], "static_v": [56, 79, 623, 649], "add_zero_attn": [56, 79, 623, 649], "return_attention_weight": [56, 79, 623, 649], "average_attention_weight": [56, 79, 623, 649], "scaled_dot_product_attent": [56, 79, 623], "dropout_p": [56, 79, 623, 652], "num_queri": [56, 79, 623, 652], "feat_dim": [56, 79, 623, 652], "num_kei": [56, 79, 623, 652], "causal": [56, 79, 623, 649, 652], "attent": [56, 79, 623, 649, 652, 779, 806, 809, 845], "29999995": [56, 291, 292, 301, 360, 623, 632, 652, 737], "19994521": [56, 623, 652], "09994531": [56, 623, 652], "30000019": [56, 371, 457, 623, 652], "_arraywithlinearalgebra": [57, 97], "choleski": [57, 80, 624, 825], "625": [57, 75, 341, 624, 653], "vif": [57, 80, 654], "det": [57, 80, 624, 672, 813], "axis1": [57, 59, 80, 82, 624, 626, 657, 678, 698], "axis2": [57, 80, 624, 657, 678], "eigh": [57, 80, 369, 421, 624, 658], "uplo": [57, 80, 624, 659, 660], "eigvalsh": [57, 80, 624], "array_lik": [57, 80, 368, 370, 371, 412, 442, 443, 447, 448, 478, 624, 661, 669, 793], "105": [57, 79, 623, 624, 625, 646, 647, 661, 669, 683], "149": [57, 624, 661], "143": [57, 74, 98, 285, 619, 624, 661, 816], "203": [57, 74, 224, 624, 629, 661, 724], "233": [57, 624, 661], "inv": [57, 80, 624], "transpose_a": [57, 80, 624, 664], "transpose_b": [57, 80, 624, 664], "adjoint_a": [57, 80, 624, 664], "adjoint_b": [57, 80, 624, 664], "matrix_norm": [57, 80, 624], "ord": [57, 80, 624, 665, 681], "fro": [57, 80, 370, 442, 624, 665], "nuc": [57, 80, 624, 665], "matrix_pow": [57, 80, 624], "matrix_rank": [57, 80, 624], "hermitian": [57, 80, 369, 421, 422, 624, 658, 659, 660, 667, 674], "largest_singular_valu": [57, 80, 624, 667, 670], "defici": [57, 624, 667], "matrix_transpos": [57, 80, 624, 836], "pinv": [57, 80, 624], "pseudo": [57, 80, 624, 670, 824], "99999988": [57, 80, 624, 670], "qr": [57, 80, 624, 827], "complet": [57, 69, 80, 624, 671, 764, 804, 805, 806, 808, 809, 812, 813, 816, 818, 822, 826, 827, 829, 832, 836, 837, 845, 853], "12309149": [57, 624, 671], "90453403": [57, 624, 671], "40824829": [57, 624, 671], "49236596": [57, 624, 671], "30151134": [57, 624, 671], "81649658": [57, 624, 671], "86164044": [57, 624, 671], "12403841e": [57, 624, 671], "60113630e": [57, 624, 671], "10782342e": [57, 624, 671], "04534034e": [57, 624, 671], "80906807e": [57, 624, 671], "88178420e": [57, 80, 624, 660, 671], "slogdet": [57, 80, 624], "logabsdet": [57, 80, 624, 672], "natur": [57, 80, 238, 256, 257, 258, 259, 278, 347, 365, 619, 624, 672, 809, 816, 818, 827, 845], "098611": [57, 624, 672], "solv": [57, 80, 369, 430, 624, 763, 799, 805, 808, 819, 826, 835, 857], "full_matric": [57, 80, 624, 674], "svf": [57, 674], "reconstructed_x": [57, 624, 674], "svdval": [57, 80, 624], "tensorsolv": [57, 80, 624], "vander": [57, 80, 624], "vandermond": [57, 80, 624, 679], "vecdot": [57, 80, 624], "vector_norm": [57, 80, 624], "mathemat": [57, 80, 218, 223, 235, 240, 242, 258, 268, 614, 619, 624, 665, 681, 814, 826, 832, 855, 861], "manhattan": [57, 80, 624, 681], "euclidean": [57, 80, 92, 93, 624, 681], "7416575": [57, 80, 624, 681], "vector_to_skew_symmetric_matrix": [57, 80, 624], "_arraywithloss": [58, 97], "binary_cross_entropi": [58, 81, 625, 813], "from_logit": [58, 81, 625, 683, 780], "pos_weight": [58, 81, 625, 683], "crossentropi": [58, 81, 625, 683], "357": [58, 81, 625, 683, 685], "223": [58, 81, 625, 683, 685], "3862944": [58, 625, 684], "sparse_cross_entropi": [58, 81, 625], "_arraywithmanipul": [59, 97], "x_min": [59, 82, 626, 686, 839], "x_max": [59, 82, 626, 686, 839], "before_1": [59, 82, 371, 473, 626, 688, 701], "after_1": [59, 82, 371, 473, 626, 688, 701], "before_n": [59, 82, 371, 473, 626, 688, 701], "after_n": [59, 82, 371, 473, 626, 688, 701], "repetit": [59, 82, 626, 692, 699, 832], "flat": [59, 69, 82, 376, 501, 564, 621, 626, 692], "allowzero": [59, 82, 626, 693], "remain": [59, 62, 75, 82, 85, 218, 235, 236, 242, 250, 251, 268, 271, 277, 279, 368, 391, 392, 393, 412, 619, 626, 628, 631, 693, 711, 734, 793, 805, 806, 813, 816, 818, 822, 830, 832, 840], "roll": [59, 82, 626, 821], "shift": [59, 71, 82, 98, 131, 142, 227, 229, 322, 362, 616, 619, 626, 694, 805, 806, 815, 816, 821, 828], "restor": [59, 82, 626, 694, 820], "num_or_size_split": [59, 69, 82, 626, 695, 834], "with_remaind": [59, 69, 82, 626, 695], "squeezabl": [59, 626, 696], "swapax": [59, 82, 626], "axis0": [59, 82, 626, 698], "swap_ax": [59, 698], "swap": [59, 82, 626, 698, 788, 849], "tile": [59, 76, 82, 535, 626], "unpack": [59, 82, 626, 700, 827, 829], "zero_pad": [59, 82, 626], "_arraywithnorm": [60, 97], "layer_norm": [60, 83, 629], "normalized_idx": [60, 83, 629, 724], "new_std": [60, 83, 629, 724, 782], "learnabl": [60, 83, 627, 629, 704, 724, 779, 782, 839], "deviat": [60, 61, 65, 83, 84, 88, 629, 630, 634, 724, 727, 751, 765, 778, 782, 808, 846], "0976": [60, 629, 724], "3452": [60, 629, 724], "2740": [60, 629, 724], "1047": [60, 629, 724], "5886": [60, 629, 724], "2732": [60, 629, 724], "7696": [60, 629, 724, 763], "7024": [60, 629, 724], "2518": [60, 629, 724], "826": [60, 629, 724], "178": [60, 629, 724], "981": [60, 629, 724], "831": [60, 629, 724], "421": [60, 629, 724], "_arraywithrandom": [61, 97], "multinomi": [61, 84, 375, 498, 630], "population_s": [61, 84, 630, 725], "num_sampl": [61, 84, 630, 725], "unnorm": [61, 84, 630, 725, 829], "popul": [61, 65, 69, 84, 88, 630, 634, 725, 751, 753, 814, 815, 825, 829, 834, 861], "draw": [61, 84, 375, 496, 498, 500, 630, 725, 727, 728, 763, 764, 765, 766, 771, 778, 804, 808, 827, 829], "half": [61, 84, 121, 282, 616, 619, 630, 726, 728, 802, 819, 832], "235": [61, 727], "float16": [61, 72, 84, 129, 152, 154, 155, 160, 162, 339, 365, 616, 617, 624, 681, 727, 728, 763, 764, 802, 814, 819, 826, 829], "807": [61, 727], "_arraywithsearch": [62, 97], "select_last_index": [62, 85, 631, 731, 732], "occurr": [62, 371, 380, 486, 508, 631, 632, 731, 732, 736], "argmin": [62, 85, 631], "output_dtyp": [62, 85, 631, 732], "argwher": [62, 85, 631], "nonzero": [62, 85, 93, 216, 217, 218, 221, 224, 233, 235, 238, 240, 242, 268, 281, 286, 619, 631], "as_tupl": [62, 85, 631, 734], "fewer": [62, 85, 631, 734], "_arraywithset": [63, 97], "unique_al": [63, 86, 632], "by_valu": [63, 86, 632, 736], "inverse_indic": [63, 86, 371, 486, 632, 736, 738], "unique_count": [63, 86, 632], "unique_invers": [63, 86, 632], "unique_valu": [63, 86, 632], "admonit": [63, 739], "dask": [63, 632, 736, 737, 738, 739, 845], "difficult": [63, 632, 736, 737, 738, 739, 806, 808, 814, 829, 840], "omit": [63, 278, 619, 632, 736, 737, 738, 739, 821, 825, 826], "x_i": [63, 65, 74, 93, 215, 216, 217, 220, 221, 222, 224, 226, 231, 232, 233, 238, 240, 241, 248, 249, 250, 251, 252, 256, 257, 258, 259, 263, 270, 275, 278, 279, 280, 281, 282, 283, 285, 286, 288, 329, 330, 332, 352, 365, 619, 632, 634, 736, 737, 738, 739, 747, 748, 749, 751, 752, 753, 778, 817], "x_j": [63, 632, 736, 737, 738, 739], "impli": [63, 632, 736, 737, 738, 739, 829], "typeerror": [63, 86, 632, 739, 836], "_arraywithsort": [64, 97], "stabil": [64, 87, 579, 580, 621, 633, 740, 743, 814, 824, 830, 832], "maintain": [64, 87, 633, 740, 743, 805, 806, 808, 820, 825, 827, 828, 829, 844, 854], "msort": [64, 87, 633], "searchsort": [64, 87, 633, 764], "side": [64, 87, 343, 365, 369, 436, 633, 742, 763, 779, 792, 793, 805, 806, 811], "sorter": [64, 87, 633, 742], "ret_dtyp": [64, 87, 633, 742], "_arraywithstatist": [65, 97], "cumprod": [65, 88, 634, 826, 839], "cumsum": [65, 88, 634, 814], "einsum": [65, 88, 634], "equat": [65, 75, 88, 308, 362, 369, 436, 624, 634, 673, 746, 763, 792, 813, 855], "operand": [65, 75, 79, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 356, 365, 366, 368, 410, 619, 624, 634, 672, 678, 746, 747, 749, 750, 752, 792, 793, 809, 812, 817, 826], "contract": [65, 624, 634, 676, 746, 793], "seq": [65, 634, 746, 763], "ii": [65, 88, 634, 746, 806], "jk": [65, 634, 746, 793], "ik": [65, 634, 746, 793], "126": [65, 105, 274, 613, 619, 624, 634, 666, 746], "510": [65, 634, 746], "special": [65, 80, 92, 93, 97, 98, 215, 216, 217, 218, 220, 221, 222, 223, 224, 231, 232, 233, 235, 236, 238, 240, 241, 242, 249, 250, 251, 256, 257, 258, 259, 260, 263, 268, 271, 273, 277, 278, 279, 280, 281, 282, 285, 286, 288, 329, 330, 352, 365, 619, 624, 634, 672, 678, 747, 748, 749, 750, 751, 752, 753, 763, 764, 765, 766, 771, 778, 804, 808, 809, 811, 813, 816, 817, 818, 821, 825, 827, 828, 829, 830, 832, 855, 856, 857], "arithmet": [65, 88, 229, 235, 268, 619, 634, 748, 826], "propag": [65, 229, 329, 330, 365, 619, 634, 747, 748, 749, 751, 752, 753, 824], "04999995": [65, 748], "freedom": [65, 88, 634, 751, 753, 810], "constitut": [65, 88, 634, 751, 753, 822, 834, 856], "commonli": [65, 88, 634, 751, 753, 818, 822, 824], "81649661": [65, 634, 751], "6666665": [65, 753, 837], "667": [65, 76, 235, 529, 579, 619, 621, 753], "_arraywithutil": [66, 97], "logic": [66, 89, 199, 235, 236, 262, 263, 264, 268, 271, 618, 619, 635, 754, 755, 804, 809, 813, 814, 815, 818, 822, 823, 824, 825, 826, 828, 829, 832, 836, 849], "AND": [66, 89, 225, 236, 262, 619, 635, 754], "OR": [66, 89, 228, 264, 271, 619, 635, 755, 805, 806, 824], "_wrap_funct": [67, 90, 811, 822, 823], "function_nam": [67, 90, 804, 830], "new_funct": [67, 90, 811], "add_ivy_array_instance_method": 67, "cl": [67, 90], "moduletyp": [67, 90, 848, 849, 850], "toi": [67, 90], "arrayexampl": 67, "hasattr": [67, 90], "_containerwithactiv": [68, 98], "dict_in": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831, 837], "queue_load_s": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "container_combine_method": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "list_join": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "queue_timeout": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98, 574, 596, 621, 831], "print_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "key_length_limit": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_ind": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "print_line_spac": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "ivyh": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "default_key_color": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "keyword_color_dict": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "rebuild_child_contain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "types_to_iteratively_nest": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "alphabetical_kei": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "dynamic_backend": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 780, 781, 810, 831], "build_cal": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 98], "containerbas": [68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 812], "_static_gelu": 68, "key_chain": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "to_appli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 431, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune_unappli": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 718, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "map_sequ": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 123, 124, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 140, 141, 142, 144, 147, 148, 149, 150, 158, 160, 163, 166, 167, 168, 170, 172, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 295, 296, 297, 298, 299, 300, 301, 303, 304, 305, 307, 308, 311, 312, 322, 323, 327, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 353, 354, 355, 356, 382, 383, 384, 386, 387, 388, 390, 391, 392, 393, 394, 395, 403, 404, 405, 406, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 428, 430, 432, 433, 434, 435, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 460, 469, 471, 473, 474, 475, 477, 478, 479, 480, 481, 482, 483, 486, 488, 489, 490, 491, 492, 493, 495, 497, 502, 503, 510, 511, 512, 513, 520, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 637, 638, 639, 640, 641, 642, 645, 646, 647, 648, 649, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 664, 665, 666, 667, 668, 669, 671, 672, 673, 674, 675, 676, 677, 678, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755], "prune": [68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 105, 106, 107, 108, 109, 110, 111, 112, 113, 129, 131, 136, 138, 144, 148, 150, 163, 167, 168, 175, 209, 215, 216, 217, 218, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 246, 247, 249, 250, 251, 252, 254, 255, 256, 257, 258, 259, 260, 262, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 292, 293, 297, 298, 299, 300, 301, 303, 304, 305, 307, 328, 329, 330, 331, 332, 334, 336, 343, 344, 350, 352, 354, 355, 356, 391, 392, 393, 411, 442, 443, 444, 445, 446, 447, 448, 451, 452, 453, 457, 458, 479, 481, 482, 483, 489, 491, 492, 493, 495, 497, 510, 511, 512, 513, 522, 525, 526, 528, 529, 533, 534, 535, 536, 537, 540, 541, 544, 546, 548, 549, 550, 552, 553, 556, 564, 565, 579, 580, 582, 584, 586, 587, 600, 606, 611, 628, 637, 638, 639, 640, 646, 647, 652, 653, 654, 659, 660, 661, 662, 664, 665, 667, 669, 671, 672, 678, 683, 684, 685, 686, 690, 693, 694, 695, 696, 697, 700, 701, 718, 719, 720, 721, 725, 726, 727, 728, 730, 733, 736, 737, 738, 739, 740, 744, 745, 748, 750, 751, 753, 754, 755, 761, 764, 813], "static_gelu": 68, "046": 68, "_static_hardswish": 68, "_static_leaky_relu": 68, "static_leaky_relu": 68, "38999999": [68, 75, 107, 290, 291, 360], "_static_log_softmax": 68, "static_log_softmax": 68, "371": [68, 108], "_static_mish": 68, "static_mish": 68, "30883577": [68, 109, 613], "28903052": [68, 109, 613], "10714479": [68, 109, 613], "_static_relu": 68, "static_relu": 68, "_static_sigmoid": 68, "static_sigmoid": 68, "2689414": [68, 111, 112, 613], "7310586": [68, 111, 112, 613], "88079703": [68, 111, 613], "62245935": [68, 111], "4750208": [68, 111], "_static_softmax": 68, "static_softmax": 68, "72844321": [68, 112], "19852395": [68, 112], "07303288": [68, 112], "_static_softplu": 68, "revert": [68, 113, 613], "static_softplu": 68, "53499615": 68, "42036411": 68, "948": [68, 113, 628, 705], "166": [68, 105, 613], "dictionari": [69, 86, 98, 207, 588, 604, 618, 621, 622, 739, 758, 760, 793, 809, 813, 814, 822, 826, 827, 837, 840], "asynchron": [69, 98, 855], "wait": [69, 98, 574, 621, 799, 804, 806, 813, 826], "arriv": [69, 98, 574, 621, 832], "cont_list_join": [69, 98], "limit": [69, 98, 160, 163, 528, 529, 545, 617, 621, 626, 686, 763, 765, 766, 778, 785, 793, 799, 805, 806, 811, 813, 816, 818, 826, 829, 832, 837, 840, 854, 855, 856], "whitespac": [69, 98], "indent": [69, 98, 837], "newlin": [69, 98, 817], "termin": [69, 98, 805, 806, 812, 819, 820, 834, 837], "constructor": [69, 98, 524, 621, 760, 776, 784, 814, 815, 817, 836], "kept": [69, 98, 627, 702, 703, 806, 825, 830], "encount": [69, 98, 779, 802, 804, 814, 818, 819, 829], "node": [69, 76, 98, 526, 536, 582, 628, 715, 716, 778, 787, 811, 812, 826, 845, 848, 849, 856], "alphabet": [69, 98], "__setitem__": [69, 371, 481, 809, 812, 836], "_cont_at_key_chains_input_as_dict": 69, "current_chain": 69, "ignore_key_error": 69, "_cont_at_key_chains_input_as_seq": 69, "_cont_call_static_method_with_flexible_arg": 69, "static_method": 69, "kw": 69, "self_idx": 69, "_cont_concat_unifi": 69, "_cont_get_dev": 69, "_cont_get_dtyp": 69, "_cont_get_shap": 69, "_cont_ivi": 69, "_cont_mean_unifi": 69, "_1": 69, "_cont_prune_key_chains_input_as_dict": 69, "return_cont": 69, "_cont_prune_key_chains_input_as_seq": 69, "_cont_slice_kei": 69, "key_slic": 69, "_cont_sum_unifi": 69, "_get_queue_item": 69, "cont_all_fals": 69, "assert_is_bool": 69, "cont_all_key_chain": 69, "include_empti": 69, "cont_all_tru": [69, 812, 837], "cont_as_bool": 69, "cont_assert_contains_sub_contain": 69, "sub_cont": 69, "screen": [69, 804, 805, 837], "cont_assert_contains_sub_structur": 69, "check_shap": [69, 785], "cont_assert_ident": 69, "check_typ": 69, "same_arrai": [69, 837], "arrays_equ": 69, "cont_assert_identical_structur": 69, "assert_and_assign": 69, "congruent": 69, "cont_at_key_chain": 69, "ignore_non": 69, "cont_at_kei": 69, "substr": 69, "cont_combin": 69, "duplic": [69, 371, 478, 545, 621, 628, 707, 810, 817, 823, 824, 827, 838, 861], "configur": [69, 207, 618, 628, 718, 805, 806, 811, 813, 814, 819, 820], "container_rightmost": 69, "cont_common_key_chain": 69, "cont_config": 69, "cont_contains_sub_contain": 69, "cont_contains_sub_structur": 69, "cont_copi": [69, 837], "cont_create_if_abs": 69, "noth": [69, 832, 861], "cont_cutoff_at_depth": 69, "depth_cutoff": 69, "summari": [69, 164, 530, 617, 621, 805, 806, 829], "cont_cutoff_at_height": 69, "height_cutoff": 69, "cont_deep_copi": [69, 837, 848], "cont_dev": 69, "belong": [69, 804, 808, 838], "cont_dev_str": 69, "cont_diff": [69, 837], "diff_kei": 69, "detect_key_diff": 69, "detect_value_diff": 69, "detect_shape_diff": 69, "among": [69, 812, 813, 829, 832, 846, 855], "container0": 69, "cont_dtyp": 69, "cont_duplicate_array_keychain": 69, "cont_find_sub_contain": 69, "sub_cont_to_find": 69, "cont_find_sub_structur": 69, "sub_struc_to_find": 69, "cont_flatten_key_chain": [69, 837], "above_height": [69, 837], "below_depth": [69, 837], "cont_format_key_chain": 69, "format_fn": 69, "cont_from_disk_as_hdf5": [69, 837], "h5_obj_or_filepath": 69, "slice_obj": 69, "disk": [69, 781, 837, 854], "h5py": 69, "filepath": [69, 635, 756, 757, 806, 808], "cont_from_disk_as_json": [69, 837], "json_filepath": 69, "cont_from_disk_as_pickl": [69, 837], "pickle_filepath": 69, "cont_from_flat_list": 69, "flat_list": 69, "hierarchi": [69, 804, 828, 837, 851, 861], "cont_handle_inplac": 69, "prime": [69, 814], "overwritten": [69, 809, 810], "cont_has_kei": 69, "query_kei": 69, "somewher": [69, 813], "cont_has_key_chain": 69, "cont_ident": [69, 837], "cont_identical_array_shap": 69, "cont_identical_config": 69, "cont_identical_structur": 69, "cont_if_exist": 69, "cont_inplace_upd": 69, "cont_ivi": 69, "cont_key_chains_contain": 69, "sub_str": 69, "cont_list_stack": [69, 837], "cont_load": 69, "cont_map": [69, 812, 837], "func": [69, 92, 208, 357, 358, 359, 367, 527, 601, 604, 605, 607, 612, 618, 621, 622, 628, 718, 760, 804, 808, 809, 816, 818, 824], "cont_map_sub_cont": 69, "include_self": 69, "possibli": [69, 584, 621, 763, 829, 840], "cont_max_depth": 69, "cont_multi_map": 69, "map_nest": 69, "assert_ident": 69, "leftmost": [69, 628, 718], "cont_multi_map_in_funct": 69, "cont_num_arrai": 69, "cont_overwrite_at_key_chain": 69, "target_dict": 69, "return_dict": 69, "cont_prune_empti": 69, "keep_non": 69, "cont_prune_key_chain": 69, "key1": [69, 799, 838], "key2": [69, 799], "key3": 69, "cont_prune_key_from_key_chain": 69, "certain": [69, 121, 132, 133, 370, 443, 616, 805, 806, 808, 814, 822, 828, 829, 832, 840, 848, 849, 850, 859], "cont_prune_kei": 69, "cont_prune_keys_from_key_chain": 69, "cont_reduc": 69, "cont_remove_key_length_limit": 69, "cont_remove_print_limit": 69, "cont_reshape_lik": 69, "leading_shap": 69, "cont_restructur": 69, "keep_orig": 69, "old": [69, 805, 810, 825], "cont_restructure_key_chain": 69, "keychain_map": 69, "cont_sav": 69, "cont_set_at_key_chain": 69, "cont_set_at_kei": 69, "cont_shap": [69, 623, 641], "cont_show": 69, "cont_show_sub_contain": 69, "sub_cont_or_keychain": 69, "cont_size_ordered_arrai": 69, "keychain": [69, 75, 331, 451, 452, 453, 482], "cont_slice_kei": 69, "all_depth": 69, "cont_slice_via_kei": 69, "slice_kei": 69, "cont_sort_by_kei": 69, "cont_structural_diff": 69, "cont_to_dict": 69, "cont_to_disk_as_hdf5": [69, 837], "starting_index": 69, "max_batch_s": 69, "cont_to_disk_as_json": [69, 837], "cont_to_disk_as_pickl": [69, 837], "cont_to_flat_list": 69, "cont_to_iter": [69, 812], "leaf_keys_onli": 69, "cont_to_iterator_kei": 69, "cont_to_iterator_valu": 69, "cont_to_json": 69, "cont_to_nested_list": 69, "cont_to_raw": 69, "cont_trim_kei": 69, "cont_try_kc": 69, "cont_unifi": 69, "concatten": [69, 208, 618], "cont_unstack_cont": 69, "dim_siz": 69, "cont_update_config": 69, "cont_with_default_key_color": 69, "cont_with_entries_as_list": 69, "cont_with_ivy_backend": 69, "ivy_backend": [69, 827], "cont_with_key_length_limit": [69, 837], "cont_with_print_ind": [69, 837], "cont_with_print_limit": [69, 837], "cont_with_print_line_spac": 69, "h5_file_s": 69, "shuffle_h5_fil": 69, "split_cont": 69, "_is_json": 69, "_repr": 69, "_containerwithconvers": [70, 98], "_static_to_ivi": 70, "_static_to_n": 70, "_containerwithcr": [71, 98], "_static_arang": 71, "_static_asarrai": 71, "_static_copy_arrai": 71, "_static_empti": 71, "_static_empty_lik": 71, "_static_ey": 71, "n_row": [71, 75, 127, 142, 322, 362, 369, 429, 616], "n_col": [71, 75, 127, 142, 322, 362, 616], "_static_from_dlpack": 71, "_static_ful": 71, "_static_full_lik": 71, "static_full_lik": 71, "2324": [71, 131, 616], "234": [71, 74, 131, 154, 237, 288, 616, 617, 619, 623, 647, 763], "123": [71, 72, 131, 163, 536, 616, 621, 793, 829], "_static_linspac": 71, "_static_logspac": 71, "static_logspac": 71, "15443469": [71, 133], "64158883": [71, 133], "_static_meshgrid": 71, "_static_native_arrai": 71, "_static_one_hot": 71, "static_one_hot": 71, "_static_on": 71, "_static_ones_lik": 71, "_static_tril": 71, "_static_triu": 71, "_static_zero": 71, "_static_zeros_lik": 71, "frombuff": [71, 616], "expos": [71, 129, 530, 616, 621, 799, 813, 834, 838, 844], "x00": [71, 129, 616], "xf0": [71, 129, 616], "x01": [71, 129, 616], "x02": [71, 129, 616], "x03": [71, 129, 616], "x04": [71, 129, 616], "x05": [71, 129], "5443469": [71, 133, 616], "static_frombuff": 71, "static_triu_indic": 71, "triu_indic": [71, 616], "_containerwithdatatyp": [72, 98], "_static_astyp": 72, "718": [72, 74, 147, 264, 617], "618": [72, 74, 147, 264, 617], "static_astyp": 72, "_static_broadcast_arrai": 72, "static_broadcast_arrai": 72, "_static_broadcast_to": 72, "static_broadcast_to": 72, "_static_can_cast": 72, "from_": [72, 150, 617], "static_can_cast": 72, "_static_default_complex_dtyp": 72, "complex_dtyp": [72, 153, 176, 617], "_static_default_float_dtyp": 72, "float_dtyp": [72, 155, 178, 617], "_static_dtyp": 72, "_static_finfo": 72, "inquir": [72, 160, 163], "static_finfo": 72, "55040e": [72, 160, 617], "7976931348623157e": [72, 160, 617], "308": [72, 160, 617, 763, 829], "_static_function_supported_dtyp": 72, "_static_function_unsupported_dtyp": 72, "_static_iinfo": 72, "1800": [72, 163, 617], "1084": 72, "40000": 72, "static_iinfo": 72, "2147483648": [72, 75, 163, 371, 481, 617], "2147483647": [72, 163, 617], "_static_is_bool_dtyp": 72, "dtype_in": [72, 145, 146, 159, 165, 166, 167, 168, 169, 170, 171, 172, 187, 617], "_static_is_complex_dtyp": 72, "is_complex_dtyp": [72, 617, 830], "roughli": [72, 805, 808, 858], "static_is_complex_dtyp": 72, "_static_is_float_dtyp": 72, "static_is_float_dtyp": 72, "_static_is_int_dtyp": 72, "_static_is_uint_dtyp": 72, "_static_result_typ": 72, "static_result_typ": 72, "broadcats": [72, 148], "_containerwithdevic": [73, 98], "_static_dev": 73, "static_dev": 73, "_static_to_devic": 73, "static_to_devic": 73, "contaion": [73, 192], "_containerwithelementwis": [74, 98], "_static_ab": 74, "static_ab": 74, "_static_aco": 74, "static_aco": 74, "_static_acosh": 74, "static_acosh": 74, "_static_add": 74, "static_add": [74, 102], "_static_asin": 74, "static_asin": 74, "524": [74, 220, 619], "412": [74, 79, 220, 619, 628, 705], "_static_asinh": 74, "static_asinh": 74, "_static_atan": 74, "static_atan": 74, "_static_atan2": 74, "static_atan2": 74, "915": [74, 223, 619], "983": [74, 223, 619], "978": [74, 223, 619], "696": [74, 84, 223, 619, 727], "993": [74, 223, 619], "_static_atanh": 74, "static_atanh": 74, "_static_bitwise_and": 74, "static_bitwise_and": 74, "_static_bitwise_invert": 74, "static_bitwise_invert": 74, "_static_bitwise_left_shift": 74, "_static_bitwise_or": 74, "static_bitwise_or": 74, "_static_bitwise_right_shift": 74, "static_bitwise_right_shift": 74, "_static_bitwise_xor": 74, "static_bitwise_xor": 74, "_static_ceil": 74, "static_ceil": 74, "_static_co": 74, "static_co": 74, "_static_cosh": 74, "static_cosh": 74, "_static_deg2rad": 74, "static_deg2rad": 74, "0262": [74, 234, 274, 619], "873": [74, 234, 274, 619], "_static_divid": 74, "static_divid": 74, "_static_equ": 74, "static_equ": 74, "_static_erf": 74, "static_erf": 74, "27632612": [74, 237], "934008": [74, 237, 619], "99999928": [74, 237], "91903949": [74, 237], "_static_exp": 74, "static_exp": 74, "59814835": [74, 238, 619], "4131622": [74, 238], "_static_expm1": 74, "thefunct": [74, 237], "areal": 74, "static_expm1": 74, "71828175": [74, 238, 619], "38905621": [74, 238, 619], "59815216": 74, "_static_floor": 74, "static_floor": 74, "_static_floor_divid": 74, "static_floor_divid": 74, "_static_great": 74, "static_great": 74, "_static_greater_equ": 74, "static_greater_equ": 74, "_static_isfinit": 74, "999999999999": [74, 249, 619], "static_isfinit": 74, "_static_isinf": 74, "static_isinf": 74, "_static_isnan": 74, "static_isnan": 74, "_static_isr": 74, "0j": [74, 75, 137, 138, 216, 217, 218, 221, 224, 233, 238, 240, 252, 256, 258, 275, 279, 281, 282, 286, 332, 365, 616, 619, 624, 672], "23j": [74, 75], "9j": [74, 75], "static_isr": 74, "_static_lcm": 74, "1080": [74, 253], "1550": [74, 253], "130": [74, 253, 371, 478], "_static_less": 74, "static_less": 74, "_static_less_equ": 74, "static_less_equ": 74, "_static_log": 74, "static_log": 74, "_static_log10": 74, "static_log10": 74, "898": [74, 257, 619], "0414": [74, 257, 619], "_static_log1p": 74, "static_log1p": 74, "_static_log2": 74, "static_log2": 74, "_static_logaddexp": 74, "static_logaddexp": 74, "_static_logical_and": 74, "static_logical_and": 74, "_static_logical_not": 74, "static_logical_not": 74, "_static_logical_or": 74, "static_logical_or": 74, "_static_logical_xor": 74, "static_logical_xor": 74, "_static_maximum": 74, "static_maximum": 74, "_static_minimum": 74, "static_minimum": 74, "_static_multipli": 74, "static_multipli": 74, "_static_neg": 74, "static_neg": 74, "_static_not_equ": 74, "static_not_equ": 74, "_static_posit": 74, "static_posit": 74, "_static_pow": 74, "static_pow": 74, "_static_rad2deg": 74, "static_rad2deg": 74, "5160": 74, "10300": [74, 274, 619], "15500": 74, "20600": 74, "2860": [74, 274], "_static_reciproc": 74, "recirpoc": [74, 276], "static_reciproc": 74, "_static_remaind": 74, "static_remaind": 74, "_static_round": 74, "thevfunct": 74, "527": [74, 278, 619], "static_round": 74, "301": [74, 278, 619], "_static_sign": 74, "static_sign": 74, "_static_sin": 74, "static_sin": 74, "757": [74, 280, 619], "959": [74, 240, 280, 619], "279": [74, 280, 368, 389, 399, 528, 619, 621], "_static_sinh": 74, "static_sinh": 74, "835": [74, 281], "347": [74, 281], "721": [74, 281], "_static_sqrt": 74, "static_sqrt": 74, "_static_squar": 74, "static_squar": 74, "_static_subtract": 74, "static_subtract": 74, "_static_tan": 74, "static_tan": 74, "_static_tanh": 74, "static_tanh": 74, "995": [74, 286, 619], "9999": 74, "_static_trapz": 74, "static_trapz": 74, "_static_trunc": 74, "static_trunc": 74, "_static_trunc_divid": 74, "75j": [74, 219, 248], "01317055": [74, 219], "05634501": [74, 219], "115": [74, 219, 274, 619], "3461759": [74, 219], "524111": [74, 219], "644": [74, 220, 619, 838], "305": [74, 79, 220, 619], "351": [74, 234, 274], "00613": [74, 234], "0154": [74, 234], "403": [74, 238], "428772": [74, 238], "649": [74, 240], "220": [74, 240], "865": [74, 240], "metho": [74, 247, 259], "7j": [74, 75, 252, 275, 332, 365, 619], "956": [74, 258], "08746284": [74, 261], "32192809": [74, 261], "nuner": [74, 268], "413": [74, 274], "335": [74, 75, 275, 332], "345j": [74, 75, 275, 332], "static_angl": 74, "static_exp2": 74, "static_fmin": 74, "static_gcd": 74, "static_imag": 74, "static_logaddexp2": 74, "static_nan_to_num": 74, "static_r": 74, "_containerwithactivationexperiment": [75, 98], "_static_celu": 75, "formlat": 75, "static_celu": 75, "_static_elu": 75, "static_elu": 75, "_static_hardshrink": 75, "hard": [75, 292, 806, 836, 855], "shrinkag": [75, 292, 301, 371, 480], "_static_hardtanh": 75, "static_hardtanh": [75, 293], "_static_scaled_tanh": 75, "931": 75, "71587813": 75, "88367474": 75, "00376701": [75, 298], "2285642": 75, "99999881": 75, "49999905": 75, "_static_silu": 75, "static_silu": 75, "27777028": [75, 300], "23947507": [75, 300], "0900332": [75, 300], "_static_softshrink": 75, "_static_tanhshrink": 75, "36634541": [75, 303], "02005103": [75, 303], "00262468": [75, 303], "_static_threshold": 75, "19722462": [75, 294], "84729779": [75, 294], "31326163": [75, 295], "46328258": [75, 295], "51301527": [75, 295], "79813886": [75, 295], "simplywrap": [75, 298], "54939651": [75, 298], "09999998": [75, 298, 602, 622], "09999999": [75, 298], "08336546": [75, 298], "0379949": [75, 298], "22856998": [75, 299], "42028043": [75, 299], "31868932": [75, 299], "static_logit": 75, "static_logsigmoid": 75, "34115386": 75, "64439666": 75, "24115384": 75, "55435526": 75, "07888974": 75, "00741899": 75, "26328245": 75, "00012302": 75, "static_prelu": 75, "static_relu6": 75, "static_selu": 75, "static_thresholded_relu": 75, "_containerwithconversionexperiment": [75, 98], "_containerwithcreationexperiment": [75, 98], "_static_trilu": 75, "blackman": [75, 306, 362], "00770143e": [75, 306], "49229857e": [75, 306], "hamming_window": [75, 362], "ham": [75, 308, 362], "4180": [75, 308], "8180": [75, 308], "hann_window": [75, 362], "hann": [75, 309, 362], "7500": [75, 309], "3455": [75, 309], "9045": [75, 309], "kaiser_bessel_derived_window": [75, 362], "suitabl": [75, 311, 312, 362, 633, 742, 765, 805, 806, 812, 830, 855], "spectral": [75, 311, 312, 362], "analysi": [75, 311, 312, 362, 855, 856], "kaiser": [75, 306, 311, 312, 362], "70710677": [75, 311, 493, 495], "18493208": [75, 311, 362], "9827513": [75, 311, 362], "kaiser_window": [75, 362], "static_kaiser_window": [75, 312], "2049": [75, 312], "8712": [75, 312], "0367": [75, 312, 362], "7753": [75, 312], "static_blackman_window": 75, "static_eye_lik": 75, "static_hamming_window": 75, "static_hann_window": 75, "static_hann": 75, "static_kaiser_bessel_derived_window": 75, "static_mel_weight_matrix": 75, "static_polyv": 75, "static_tril_indic": 75, "static_unsorted_segment_mean": 75, "static_unsorted_segment_min": 75, "static_unsorted_segment_sum": 75, "static_vorbis_window": 75, "vorbis_window": [75, 362], "vorbi": [75, 327, 362], "38268343": [75, 327, 624, 659], "92387953": [75, 327], "14943586": [75, 327, 362], "51644717": [75, 327], "85631905": [75, 327], "98877142": [75, 327], "tril_indic": [75, 362], "_containerwithdata_typeexperiment": [75, 98], "_containerwithdeviceexperiment": [75, 98], "_containerwithelementwiseexperiment": [75, 98], "0003": [75, 328, 624, 662, 763, 766], "0006": [75, 328, 355], "2345j": [75, 332], "5772": [75, 336], "9635": [75, 336], "4228": [75, 336], "9228": [75, 336], "57299206e": [75, 337], "67773480e": [75, 337], "20904985e": [75, 337], "84270084": [75, 337, 365], "99532223": [75, 337], "99997795": [75, 337], "mantissa": [75, 341, 365, 814], "frist": [75, 342, 365], "coord": [75, 342], "6055": [75, 343], "160": [75, 345, 371, 478], "10240": [75, 345], "60000038": [75, 346, 365, 624, 680], "0707": [75, 352, 365], "0579": [75, 352, 365], "static_allclos": 75, "static_amax": 75, "static_amin": 75, "static_binar": 75, "static_conj": 75, "static_copysign": 75, "static_count_nonzero": 75, "static_diff": 75, "static_digamma": 75, "57721537": 75, "96351004": 75, "static_erfc": 75, "15729921": 75, "00467773": [75, 337, 365], "static_fix": 75, "static_float_pow": 75, "static_fmax": 75, "static_fmod": 75, "static_frexp": 75, "static_gradi": 75, "static_hypot": 75, "static_isclos": 75, "static_ldexp": 75, "static_lerp": 75, "90000057": [75, 346, 365], "70000076": [75, 346, 365], "55000019": [75, 346, 365], "05000019": [75, 346, 365], "static_modf": 75, "static_nansum": 75, "static_nextaft": 75, "static_signbit": 75, "static_sinc": 75, "636": 75, "090": 75, "070": 75, "057": 75, "static_sparsify_tensor": 75, "static_xlogi": 75, "static_zeta": 75, "0244": [75, 355], "_containerwithgeneralexperiment": [75, 98], "_static_reduc": 75, "static_reduc": 75, "_containerwithgradientsexperiment": [75, 98], "_containerwithimageexperiment": [75, 98], "_containerwithlayersexperiment": [75, 98], "_static_fft": 75, "static_fft": 75, "_static_sliding_window": 75, "673": [75, 389], "0507": [75, 389], "79711437": [75, 368, 389, 399], "94867325": [75, 368, 389, 399], "74089146": [75, 368, 389, 399], "25980937": [75, 368, 389, 399], "64958102": [75, 368, 389, 399], "2442648": [75, 368, 389, 399], "247306": [75, 401], "908323j": [75, 401], "494955": [75, 401], "90395j": [75, 401], "static_adaptive_avg_pool1d": 75, "static_adaptive_avg_pool2d": 75, "static_adaptive_max_pool2d": 75, "static_avg_pool1d": 75, "static_avg_pool2d": 75, "static_avg_pool3d": 75, "static_dct": 75, "253": [75, 281, 619], "515": [75, 630, 727], "467": 75, "static_dft": 75, "static_embed": 75, "static_idct": 75, "93732834": [75, 368, 389], "75048852": [75, 368, 389], "29723358": [75, 368, 399], "6950531": 75, "93914509": 75, "88008738": 75, "18951225": 75, "06697273": [75, 368, 399], "57439804": 75, "68861485": [75, 368, 399], "41308832": [75, 368, 399], "0700836": 75, "2449036": 75, "6711426": 75, "514": 75, "501709": 75, "4924011": 75, "static_ifft": 75, "static_ifftn": 75, "static_interpol": 75, "static_max_pool1d": 75, "static_max_pool2d": 75, "max_pool2dd": 75, "static_max_pool3d": 75, "static_max_unpool1d": 75, "static_rfft": 75, "static_rfftn": 75, "static_rnn": 75, "step_funct": [75, 368, 413], "initial_st": [75, 368, 413], "go_backward": [75, 368, 413], "unrol": [75, 368, 413, 623, 648, 834, 837], "input_length": [75, 368, 413], "time_major": [75, 368, 413, 623, 648], "zero_output_for_mask": [75, 368, 413], "return_all_output": [75, 368, 413], "rnn": [75, 368, 855], "tempor": [75, 368, 413], "state_s": [75, 368, 413], "while_loop": [75, 368, 413, 615], "otput": [75, 368, 413], "funciton": [75, 368, 413], "static_stft": 75, "_containerwithlinearalgebraexperiment": [75, 98], "933034": [75, 369, 418], "eigenvealu": [75, 421, 658], "xx": [75, 421, 423, 658], "37228107": [75, 421, 658], "3722816": [75, 421, 658], "8245648": [75, 421, 658], "41597357": [75, 421, 658], "56576747": [75, 421, 658], "9093767": [75, 421, 658], "56155": [75, 422], "82842": [75, 422], "450": [75, 428], "static_adjoint": 75, "static_batched_out": 75, "static_cond": 75, "static_diagflat": 75, "static_dot": 75, "static_eig": 75, "static_eigh_tridiagon": 75, "static_eigv": 75, "static_higher_order_mo": 75, "static_initialize_tuck": 75, "static_kron": 75, "kroneck": [75, 369, 427, 428], "static_make_svd_non_neg": 75, "static_matrix_exp": 75, "static_mode_dot": 75, "static_multi_dot": 75, "static_multi_mode_dot": 75, "static_partial_tuck": 75, "static_svd_flip": 75, "static_tensor_train": 75, "static_truncated_svd": 75, "static_tt_matrix_to_tensor": 75, "tt_matrix": [75, 369, 440], "output_tensor": [75, 95, 369, 440], "static_tuck": 75, "_containerwithlossesexperiment": [75, 98], "_static_huber_loss": 75, "static_huber_loss": 75, "0575": [75, 442], "_static_kl_div": 75, "_static_l1_loss": 75, "static_l1_loss": 75, "_static_log_poisson_loss": 75, "static_log_poisson_loss": 75, "_static_poisson_nll_loss": 75, "06446016": 75, "55611551": 75, "30244565": [75, 446], "_static_smooth_l1_loss": 75, "static_smooth_l1_loss": 75, "_static_soft_margin_loss": 75, "06429195": [75, 446], "_containerwithmanipulationexperiment": [75, 98], "_static_fill_diagon": 75, "_static_put_along_axi": 75, "_static_tak": 75, "69999981": [75, 301, 360, 371, 457, 481], "_static_trim_zero": 75, "_static_unique_consecut": 75, "ary1": [75, 371, 451, 452, 453], "ary2": [75, 371, 451, 452, 453], "broadcast_shap": [75, 101, 371, 763, 765], "static_concat_from_sequ": [75, 458], "30192195": [75, 470], "static_as_strid": 75, "static_atleast_1d": 75, "static_atleast_2d": 75, "static_atleast_3d": 75, "static_broadcast_shap": 75, "static_column_stack": 75, "static_dsplit": 75, "static_dstack": 75, "static_expand": 75, "static_flatten": 75, "static_fliplr": 75, "static_flipud": 75, "static_fold": 75, "static_heavisid": 75, "static_hsplit": 75, "static_hstack": 75, "static_i0": 75, "static_matric": 75, "static_moveaxi": 75, "static_pad": 75, "static_partial_fold": 75, "static_partial_tensor_to_vec": 75, "static_partial_unfold": 75, "static_partial_vec_to_tensor": 75, "static_rot90": 75, "static_soft_threshold": 75, "static_take_along_axi": 75, "static_top_k": 75, "static_unfold": 75, "static_vsplit": 75, "static_vstack": 75, "_containerwithnormsexperiment": [75, 98], "16903085": [75, 493, 495], "50709254": [75, 493, 495], "84515423": [75, 493, 495], "44183609": [75, 493, 495], "56807494": [75, 493, 495], "69431382": [75, 493, 495], "static_batch_norm": 75, "static_group_norm": 75, "static_instance_norm": 75, "static_l1_norm": 75, "static_l2_norm": 75, "static_lp_norm": 75, "12500000": 75, "37500000": 75, "62500000": 75, "27500000": 75, "35000000": 75, "42500000": 75, "0000000": 75, "5000000": 75, "2500000": 75, "_containerwithrandomexperiment": [75, 98], "43643127": [75, 498], "32325703": [75, 498], "24031169": [75, 498], "34251311": [75, 498], "31692529": [75, 498], "3405616": [75, 498], "5319725": [75, 498], "22458365": [75, 498], "24344385": [75, 498], "26588406": [75, 498], "61075421": [75, 498], "12336174": [75, 498], "51142915": [75, 498], "25041268": [75, 498], "23815817": [75, 498], "64042903": [75, 498], "25763214": [75, 498], "10193883": [75, 498], "31624692": [75, 498], "46567987": [75, 498], "21807321": [75, 498], "37677699": [75, 498], "39914594": [75, 498], "22407707": [75, 498], "static_bernoulli": 75, "static_beta": 75, "static_dirichlet": 75, "static_gamma": 75, "static_poisson": 75, "_containerwithsearchingexperiment": [75, 98], "static_unravel_index": 75, "_containerwithsetexperiment": [75, 98], "_containerwithsortingexperiment": [75, 98], "invert_permut": [75, 378], "static_invert_permut": 75, "static_lexsort": [75, 87], "_containerwithstatisticalexperiment": [75, 98], "_static_cummax": 75, "static_cummax": 75, "_static_cummin": 75, "static_cummin": 75, "_static_nanmin": 75, "static_nanmin": 75, "func_nam": [75, 513, 804, 816, 817, 822, 826], "static_bincount": 75, "static_corrcoef": 75, "static_cov": [75, 380, 510], "static_histogram": 75, "static_igamma": 75, "static_median": 75, "static_nanmean": 75, "static_nanmedian": 75, "static_nanprod": 75, "static_quantil": 75, "_containerwithutilityexperiment": [75, 98], "static_optional_get_el": 75, "_containerwithgener": [76, 98], "_static_all_equ": 76, "static_all_equ": 76, "_static_array_equ": 76, "a0": [76, 371, 457], "static_array_equ": 76, "_static_assert_supports_inplac": 76, "_static_clip_matrix_norm": 76, "static_clip_matrix_norm": 76, "849": [76, 528, 529, 621], "_static_clip_vector_norm": 76, "static_clip_vector_norm": 76, "_static_einops_rearrang": 76, "static_einops_rearrang": 76, "_static_einops_reduc": 76, "static_einops_reduc": 76, "29333329": [76, 534, 621], "53000069": [76, 534, 621], "39666676": [76, 534, 621], "20666695": [76, 534, 621], "_static_einops_repeat": 76, "static_einops_repeat": 76, "_static_exist": 76, "_static_fourier_encod": 76, "static_fourier_encod": 76, "classivi": [76, 626, 632, 695, 737], "89858720e": 76, "79717439e": 76, "_static_gath": 76, "static_gath": 76, "_static_gather_nd": 76, "static_gather_nd": 76, "_static_get_num_dim": 76, "static_get_num_dim": 76, "_static_has_nan": 76, "leafwis": 76, "static_has_nan": 76, "_static_inplace_decr": 76, "_static_inplace_incr": 76, "_static_inplace_upd": 76, "_static_is_arrai": 76, "static_is_arrai": 76, "_static_is_ivy_arrai": 76, "static_is_ivy_arrai": 76, "_static_is_native_arrai": 76, "static_is_native_arrai": 76, "_static_scatter_flat": 76, "_static_scatter_nd": 76, "static_scatter_nd": 76, "_static_stable_divid": 76, "22222222": 76, "11111111": 76, "857": [76, 579, 621], "444": 76, "_static_stable_pow": 76, "00012": [76, 580, 621], "00016": [76, 77, 580, 608, 621, 622], "00001": [76, 580, 621, 763], "00032": [76, 580], "00256": [76, 580], "1679638": [76, 580], "395": [76, 580], "16777383": [76, 580], "_static_supports_inplace_upd": 76, "_static_to_list": 76, "static_to_list": 76, "_static_to_numpi": 76, "static_to_numpi": 76, "_static_to_scalar": 76, "static_to_scalar": 76, "_static_value_is_nan": 76, "452": 76, "static_value_is_nan": 76, "833": [76, 529], "items": [76, 97, 621], "static_isin": 76, "static_items": 76, "static_strid": 76, "425": [76, 600], "_containerwithgradi": [77, 98], "_static_stop_gradi": 77, "static_stop_gradi": 77, "976": [77, 286, 602, 619, 622], "49e": [77, 602, 622], "74e": [77, 602, 622], "95e": [77, 602, 622], "024": [77, 602, 622], "096": [77, 602, 622], "216": [77, 80, 602, 622, 679], "626": [77, 602, 622], "en": [77, 602, 603, 622, 813], "wikipedia": [77, 602, 603, 622], "wiki": [77, 602, 603, 622], "stochastic_gradient_desc": [77, 602, 603, 622], "01099": [77, 603], "01003": [77, 603, 622], "01015": [77, 603, 622], "99936122": [77, 603, 622], "99936116": [77, 603, 622], "99936128": [77, 603, 622], "99936104": [77, 603, 622], "w_new": [77, 606, 622], "708": [77, 608, 622], "445": [77, 608, 622], "6e": [77, 608, 622], "00036": [77, 608, 622], "00049": [77, 608, 622], "layerwis": [77, 609, 622], "01132035": [77, 609, 622], "22264051": [77, 609, 622], "2056601": [77, 609, 622], "1324538": [77, 609, 622], "56490755": [77, 609, 622], "96622658": [77, 609, 622], "90848625": [77, 609, 622], "93616199": [77, 609, 622], "77232409": [77, 609, 622], "_containerwithimag": [78, 98], "_containerwithlay": [79, 98], "_static_conv1d": 79, "static_conv1d": 79, "_static_conv1d_transpos": 79, "static_conv1d_transpos": 79, "112": [79, 624, 634, 638, 669, 746], "_static_conv2d": 79, "ey": [79, 616, 623, 639, 645, 832, 839], "static_conv2d": 79, "_static_conv2d_transpos": 79, "static_conv2d_transpos": 79, "_static_conv3d": 79, "fdfh": [79, 641], "static_conv3d": 79, "_static_conv3d_transpos": 79, "static_conv3d_transpos": 79, "_static_depthwise_conv2d": 79, "inp": [79, 623, 645], "static_depthwise_conv2d": 79, "_static_dropout": 79, "static_dropout": 79, "_static_dropout1d": 79, "static_dropout1d": 79, "_static_dropout2d": 79, "_static_dropout3d": 79, "_static_linear": 79, "278": [79, 623, 646, 647], "static_linear": 79, "195": 79, "_static_lstm_upd": 79, "_static_multi_head_attent": 79, "_static_reduce_window": 79, "_static_scaled_dot_product_attent": 79, "static_scaled_dot_product_attent": 79, "39999962": [79, 623, 646, 647], "19999695": [79, 647], "11600018": [79, 647], "88399887": [79, 647], "196": [79, 623, 647], "306": [79, 623, 647], "19999981": [79, 292, 304, 360, 623, 646, 652], "59249449": [79, 623, 652], "68226194": [79, 623, 652], "19603825": [79, 623, 652], "9960382": [79, 623, 652], "26894283": [79, 623, 652], "40236187": [79, 623, 652], "39999437": [79, 623, 652], "59999037": [79, 623, 652], "35046196": [79, 623, 652], "54282808": [79, 623, 652], "39989519": [79, 623, 652], "5998764": [79, 623, 652], "_containerwithlinearalgebra": [80, 98], "_static_choleski": 80, "static_choleski": 80, "577": [80, 624, 653], "707": [80, 624, 653], "static_rol": [80, 82], "_static_cross": 80, "static_cross": 80, "_static_det": 80, "_static_diag": 80, "_static_diagon": 80, "static_diagon": 80, "_static_eigh": 80, "_static_eigvalsh": 80, "static_eigvalsh": 80, "51572949": [80, 624, 660], "17091519": [80, 624, 660], "3448143": [80, 624, 660], "35898387e": [80, 624, 660], "46410179e": [80, 624, 660], "_static_inn": 80, "static_inn": 80, "_static_inv": 80, "static_inv": 80, "_static_matmul": 80, "matul": 80, "static_matmul": 80, "_static_matrix_norm": 80, "deimens": 80, "static_matrix_norm": 80, "_static_matrix_pow": 80, "_static_matrix_rank": 80, "static_matrix_rank": 80, "_static_matrix_transpos": 80, "static_matrix_transpos": 80, "_static_out": 80, "n1": [80, 134, 616], "n2": [80, 134, 616], "static_out": [80, 669], "_static_pinv": 80, "static_pinv": 80, "0426": 80, "0964": 80, "0605": 80, "1368": 80, "_static_qr": 80, "static_qr": 80, "31622777": [80, 624, 671], "9486833": [80, 624, 671], "4472136": [80, 624, 671], "89442719": [80, 624, 671], "16227766": [80, 624, 671], "42718872": [80, 624, 671], "63245553": [80, 624, 671], "47213595": [80, 624, 671], "81377674": [80, 624, 671], "_static_slogdet": 80, "static_slogdet": 80, "6931472": 80, "0986123": 80, "_static_solv": 80, "_static_svd": 80, "static_svd": 80, "au": 80, "aS": 80, "avh": 80, "bu": [80, 845], "bvh": 80, "_static_svdv": 80, "_static_tensordot": 80, "_static_tensorsolv": 80, "_static_trac": 80, "static_trac": 80, "_static_vand": 80, "static_vand": 80, "343": [80, 278, 619, 679], "729": [80, 679, 838], "_static_vecdot": 80, "_static_vector_norm": 80, "static_vector_norm": 80, "77359247": [80, 681], "_static_vector_to_skew_symmetric_matrix": 80, "09861231": [80, 624, 672], "static_general_inner_product": 80, "3475602": [80, 674], "93765765": [80, 674], "58776021": [80, 674], "10416126": [80, 674], "80644298": [80, 674], "87024701": [80, 674], "48127627": [80, 674], "79101127": [80, 674], "98288572": [80, 674], "68917423": [80, 674], "_containerwithloss": [81, 98], "_static_binary_cross_entropi": 81, "static_binary_cross_entropi": 81, "511": [81, 625, 683, 685], "_static_cross_entropi": 81, "static_cross_entropi": 81, "20397282": 81, "83258148": 81, "60943794": [81, 624, 672], "_static_sparse_cross_entropi": 81, "static_sparse_cross_entropi": 81, "5108256": [81, 684], "609438": [81, 684], "_containerwithmanipul": [82, 98], "_static_clip": 82, "static_clip": 82, "_static_concat": 82, "_static_constant_pad": 82, "static_constant_pad": 82, "_static_expand_dim": 82, "static_expand_dim": 82, "container_axi": [82, 626, 689], "_static_flip": 82, "static_flip": 82, "_static_permute_dim": 82, "static_permute_dim": 82, "_static_repeat": 82, "static_repeat": 82, "_static_reshap": 82, "static_reshap": 82, "_static_rol": 82, "positivclip": 82, "_static_split": 82, "static_split": 82, "_static_squeez": 82, "static_squeez": 82, "_static_stack": 82, "leavv": 82, "static_stack": 82, "_static_swapax": 82, "_static_til": 82, "static_til": 82, "_static_unstack": 82, "static_unstack": 82, "_static_zero_pad": 82, "repreat": [82, 692], "_containerwithnorm": [83, 98], "34198591": [83, 629, 724], "04274819": [83, 629, 724], "29923761": [83, 629, 724], "24053511": [83, 629, 724], "62221265": [83, 724], "20277636": [83, 724], "41943574": [83, 724], "83710337": [83, 724], "_containerwithrandom": [84, 98], "_static_multinomi": 84, "_static_randint": 84, "static_randint": 84, "_static_random_norm": 84, "static_random_norm": 84, "651": 84, "_static_random_uniform": 84, "static_random_uniform": 84, "481": 84, "0999": 84, "_static_shuffl": 84, "static_shuffl": 84, "431": [84, 727], "274": [84, 727], "_containerwithsearch": [85, 98], "_static_argmax": 85, "static_argmax": 85, "_static_argmin": 85, "static_argmin": 85, "_static_argwher": 85, "static_argwher": 85, "_static_nonzero": 85, "_static_wher": 85, "static_wher": 85, "_containerwithset": [86, 98], "_static_unique_al": 86, "static_unique_al": 86, "_static_unique_count": 86, "static_unique_count": 86, "_static_unique_invers": 86, "static_unique_invers": 86, "_static_unique_valu": 86, "_containerwithsort": [87, 98], "_static_argsort": 87, "static_argsort": 87, "_static_searchsort": 87, "_static_sort": 87, "static_sort": 87, "static_msort": 87, "_containerwithstatist": [88, 98], "_static_cumprod": 88, "static_cumprod": 88, "_static_cumsum": 88, "static_cumsum": 88, "_static_min": 88, "_static_prod": 88, "static_prod": 88, "11000001": [88, 750], "23100001": [88, 750], "30800003": [88, 634, 750], "_static_sum": 88, "_static_var": 88, "static_var": 88, "12666667": [88, 634, 753], "11555555": [88, 634, 753], "rtype": [88, 746, 792], "respectv": [88, 751], "81649649": [88, 751], "94280904": [88, 751], "509902": [88, 634, 751], "2472192": [88, 751], "44948983": [88, 751], "41421354": [88, 751], "6666667": [88, 753], "_containerwithutil": [89, 98], "_static_al": 89, "static_al": 89, "_static_ani": 89, "static_ani": 89, "add_ivy_container_instance_method": 90, "containerexampl": 90, "factorized_tensor": [91, 92, 93, 94, 95, 96], "factorizedtensor": [91, 92, 93, 94, 95, 96], "matrix_or_tensor": 91, "to_tensor": [91, 92, 93, 94, 95, 96], "to_unfold": [91, 92, 93, 94, 95, 96], "to_vec": [91, 92, 93, 94, 95, 96], "cp_tensor": [92, 93], "cptensor": [92, 93, 317, 362], "cp_copi": 92, "cp_flip_sign": 92, "s_i": [92, 93], "normalisation_weight": [92, 93], "normalised_factor": [92, 93], "cp_lstsq_grad": 92, "return_loss": 92, "nabla": 92, "mathcal": 92, "mathbf": 92, "factor_matric": 92, "cp_gradient": 92, "quantiti": 92, "cp_mode_dot": 92, "keep_dim": [92, 96], "cp_multi_mode_dot": 92, "cp_n_param": 92, "tensor_shap": [92, 94, 95, 96], "n_param": [92, 93, 94, 95, 96], "cp_norm": 92, "cp_to_tensor": 92, "khatria": 92, "rao": [92, 369, 427], "khatri": [92, 369, 427], "cp_normal": 92, "normalis": [92, 93], "u_1": [92, 93], "u_n": [92, 93], "v_1": [92, 93], "v_n": [92, 93], "v_k": [92, 93], "u_k": [92, 93], "absorb": [92, 93], "refold": [92, 371, 466, 477], "cp_to_unfold": 92, "ie": 92, "s_u_i": 92, "exploit": [92, 858], "khatri_rao": [92, 369], "cp_to_vec": 92, "ravel": [92, 832], "unfolding_dot_khatri_rao": 92, "mttkrp": 92, "validate_cp_rank": 92, "percent": [92, 95], "validate_cp_tensor": 92, "parafac2_tensor": 93, "parafac2tensor": [93, 318, 362], "apply_parafac2_project": 93, "evolv": [93, 844, 855], "b_i": 93, "ijk": [93, 793], "sum_r": 93, "a_": 93, "ir": [93, 853, 856, 861], "jr": 93, "kr": 93, "coupl": [93, 805, 809, 836, 838, 855], "factoris": 93, "i1": [93, 380, 513], "classmethod": [93, 100, 101, 768], "from_cptensor": 93, "parafac2_tensor_ok": 93, "parafac2_normalis": 93, "normalised_project": 93, "parafac2_to_slic": 93, "slice_idx": 93, "frontal": 93, "a_i": 93, "j_i": 93, "b_": 93, "reformul": 93, "p_i": 93, "orthogon": [93, 317, 321, 362, 369, 421, 435, 441, 624, 658, 659], "sum_": 93, "ijr": 93, "constraint": [93, 793, 813, 814, 824], "projection_matric": 93, "parafac2_to_tensor": 93, "construct": [93, 626, 699, 779, 782, 783, 784, 828, 834, 838, 839, 853, 855, 862], "uneven": 93, "parafac2_to_unfold": 93, "parafac2_to_vec": 93, "validate_parafac2_tensor": 93, "cp": [93, 317, 362, 806], "tr_tensor": 94, "trtensor": [94, 319, 362], "tr_n_param": 94, "tr_to_tensor": 94, "tr_to_unfold": 94, "tr_to_vec": 94, "validate_tr_rank": 94, "validate_tr_tensor": 94, "tt_tensor": 95, "_tt_n_param": 95, "mp": [95, 320, 362], "index_upd": 95, "pad_tt_rank": 95, "factor_list": 95, "n_pad": 95, "pad_boundari": 95, "ring": 95, "bond": 95, "padded_factor_list": 95, "tt_to_tensor": 95, "assembl": [95, 369, 440], "tt_to_unfold": 95, "reassembl": 95, "tt_to_vec": 95, "validate_tt_rank": 95, "constant_rank": 95, "allow_overparametr": 95, "proport": [95, 778], "realiz": [95, 855], "validate_tt_tensor": 95, "tucker_tensor": 96, "tucker_copi": 96, "tucker_mode_dot": [96, 862], "tucker_n_param": 96, "tucker_norm": 96, "tucker_to_tensor": 96, "skip_factor": 96, "transpose_factor": 96, "tucker_to_unfold": 96, "tucker_to_vec": 96, "validate_tucker_rank": 96, "fixed_mod": 96, "validate_tucker_tensor": 96, "_bisection_root_find": 96, "fun": [96, 359, 367, 601, 621, 628, 716, 813], "max_it": 96, "__abs__": [97, 98], "__add__": [97, 98, 809, 812, 816, 817, 821, 826, 827, 836], "__eq__": [97, 98], "__ge__": [97, 98], "__gt__": [97, 98, 832], "__le__": [97, 98], "__lt__": [97, 98], "__ne__": [97, 98], "__pow__": [97, 98, 836], "69678056": 97, "59876156": 97, "82660675": 97, "__radd__": [97, 98, 816, 817, 826], "__rrshift__": [97, 98], "__rshift__": [97, 98], "__rsub__": [97, 98], "__sub__": [97, 98, 809, 812, 816, 821, 836], "__truediv__": [97, 98, 809, 812, 816], "__xor__": [97, 98], "referenc": [97, 818, 825], "resid": [97, 101, 626, 689, 826, 834, 838], "mt": [97, 836], "hopefulli": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846], "overview": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 799, 811, 813, 827, 829, 833], "reach": [97, 98, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 775, 776, 778, 779, 781, 782, 783, 784, 802, 804, 805, 806, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 834, 835, 836, 837, 838, 839, 844, 845, 846, 854, 855], "eq": 98, "ge": 98, "le": 98, "ne": 98, "75979435": 98, "52153397": 98, "13532257": 98, "rshift": 98, "truediv": 98, "66666669": [98, 374, 495, 604, 622], "nested_arrai": [100, 101, 102, 811], "nestedarrai": 100, "nested_rank": [100, 101, 102], "inner_shap": [100, 101, 102], "nestedarraybas": [100, 101, 102], "from_row_length": 100, "row_length": 100, "from_row_split": 100, "row_split": 100, "ragged_map": 101, "ragged_multi_map": 101, "ragged_arrai": 101, "ragged_multi_map_in_funct": 101, "replace_ivy_arrai": 101, "unbind": 101, "nestedarrayelementwis": 102, "strictli": [107, 110, 113, 242, 613, 619, 821, 825], "24000001": [107, 613], "703": [108, 613], "683": [108, 613], "408": [108, 613], "313": [108, 613], "437": [108, 613], "40337825": [109, 613], "56114835": [109, 613], "20788449": [109, 613], "0768": [112, 613], "231": [112, 613], "\u03b2": [113, 613], "66666667": [114, 380, 510, 613], "body_fn": [117, 118, 120, 615], "bodi": [117, 120, 615, 808, 829], "lst": [117, 615], "orelse_fn": [118, 615], "body1": [119, 615], "body2": [119, 615], "test_fn": [120, 615, 761, 799, 849, 850], "repeatedli": [120, 615, 628, 714, 813, 829], "ml_framework": [121, 616], "distanc": [121, 616], "adjac": [121, 616], "nestedsequ": [122, 123, 616], "typevar": [122, 123, 616], "supportsbufferprotocol": [122, 123, 616], "static_copy_arrai": [124, 616], "intdtyp": [127, 138, 144, 156, 167, 172, 179, 185, 616, 617], "pycapsul": [128, 139, 616], "interchang": [128, 139, 616, 626, 698], "plu": [129, 616], "x00b": [129, 616], "x00d": [129, 616], "x00e": [129, 616], "66666663": [132, 616], "41588834": [133, 616], "7827941": [133, 616], "6227766": [133, 616], "23413252": [133, 616], "n3": [134, 616], "xv": [134, 616], "yv": [134, 616], "x_nativ": [135, 616, 825], "y_nativ": [135, 616], "z_nativ": [135, 616], "d_type": [137, 616], "col": [142, 322, 362, 616], "primari": [142, 161, 162, 194, 195, 322, 362, 378, 503, 538, 539, 616, 617, 618, 621, 764, 766, 804, 807, 810, 814, 823, 825, 826, 828, 829, 832, 840, 842], "upward": [142, 322, 362, 616], "downward": [142, 322, 362, 616], "2xn": [142, 322, 362, 616], "subarrai": [142, 322, 362, 616], "incompat": [149, 617], "closest": [152, 231, 241, 242, 278, 288, 617, 619, 829, 832], "xtype": [152, 617], "ytype": [152, 617], "native_uint16": [152, 617], "complexdtyp": [153, 167, 176, 617], "set_default_complex_dtyp": [153, 182, 617], "4294": [153, 155, 617], "967346": [153, 155, 617], "set_default_dtyp": [154, 183, 617, 814, 822], "floatdtyp": [155, 178, 617], "set_default_float_dtyp": [155, 164, 176, 184, 617, 814], "int_dtyp": [156, 179, 617], "set_default_int_dtyp": [156, 164, 185, 617, 814], "4294967346": [156, 157, 617], "uint_dtyp": [157, 180, 617], "uint": [157, 172, 180, 186, 617, 814, 827], "uintdtyp": [157, 172, 180, 186, 617], "set_default_uint_dtyp": [157, 164, 186, 617], "native_bool": [159, 617], "ieee": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "754": [160, 218, 235, 240, 258, 268, 277, 282, 285, 614, 617, 619, 845], "smallest_norm": [160, 617], "bfloat16": [161, 617, 763, 764, 814, 826, 829, 830], "unsupport": [162, 195, 539, 617, 618, 621, 758, 761, 802, 805, 819, 826], "encapsul": [163, 617, 813], "314": [163, 275, 332, 365, 617, 619], "9223372036854775808": [163, 617], "9223372036854775807": [163, 617], "65535": [163, 617], "4294967295": [163, 617], "native_uint8": [165, 617], "hashabl": [169, 617], "type1": [173, 617], "type2": [173, 617], "array_api_promot": [173, 174, 617, 763, 764], "unexpect": [174, 242, 617, 619, 814], "default_complex_dtyp": [176, 617], "default_dtype_stack": [177, 183, 617], "unset_default_dtyp": [177, 617], "native_uint64": [177, 617], "default_float_dtyp": [178, 617, 814], "default_int_dtyp": [179, 185, 617, 814], "default_uint_dtyp": [180, 186, 617], "ret1": [181, 617], "ret2": [181, 617], "reset": [182, 183, 184, 185, 186, 212, 213, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 617, 618, 621, 815], "default_complex_dtype_stack": [182, 617], "default_float_dtype_stack": [184, 617], "native_float16": [187, 617], "unmodifi": [189, 618, 810, 814], "aliv": [196, 201, 203, 542, 562, 563, 618, 621, 815], "139740789224448": [196, 618], "physic": [199, 618], "process_specif": [202, 214, 618], "percentag": [202, 618], "ram": [202, 210, 214, 618], "alon": [202, 214, 618, 799, 820, 829], "036902561555": [202, 618], "7024003467681645": [202, 618], "as_native_dev": [202, 618], "7095597456708771": [202, 618], "attr_onli": [203, 618], "soft_device_mod": [205, 213, 618], "chunk": [206, 207, 208, 618], "split_factor": [206, 618, 818], "max_chunk_s": [208, 618], "chunk_siz": [208, 618], "input_ax": [208, 618], "output_ax": [208, 618], "usag": [208, 618, 814, 822, 825, 829, 834, 840, 845, 858], "fed": [208, 618, 838], "fist": [208, 618], "gb": [210, 214, 618, 805, 819], "66700032": [210, 618], "589934592": [210, 618], "219563008": [214, 618], "902400346": [214, 618], "525205504": [214, 618], "na": [215, 619, 829], "noqa": [215, 282, 619, 779, 788, 827], "princip": [216, 220, 222, 352, 365, 619], "domain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817, 853, 855], "codomain": [216, 217, 220, 221, 222, 223, 232, 233, 238, 240, 256, 257, 259, 280, 281, 282, 285, 286, 352, 365, 619, 817], "\u03c0": [216, 220, 222, 223, 614, 619], "3\u03c0": [216, 223, 619], "unspecifi": [216, 217, 221, 224, 233, 238, 240, 242, 277, 281, 282, 286, 369, 421, 619, 624, 626, 658, 659, 697, 825], "\u03c0j": [217, 221, 224, 256, 258, 619], "3\u03c0j": [217, 256, 258, 619], "x1_i": [218, 223, 225, 227, 228, 229, 230, 235, 236, 242, 246, 247, 254, 255, 260, 262, 264, 265, 268, 271, 273, 277, 284, 619, 808], "2019": [218, 235, 240, 258, 268, 619, 855, 858], "overflow": [218, 235, 242, 619, 624, 634, 672, 752, 803, 814], "commut": [218, 619], "tabl": [218, 235, 268, 573, 595, 619, 621, 763, 764, 779, 826, 831, 855], "dj": [218, 235, 268, 619], "bj": [218, 235, 268, 332, 365, 619], "z1": [218, 619], "z2": [218, 619], "yj": [219, 619], "nanj": [221, 619], "809": [221, 619], "569": [221, 619], "733": [221, 619], "notat": [223, 619, 634, 746, 813], "denot": [223, 619, 781], "quadrant": [223, 619], "rai": [223, 619, 845], "bitwis": [225, 228, 230, 265, 619], "170": [229, 619], "243": [229, 619], "xor": [230, 265, 619], "654": [232, 619], "ci": [233, 238, 240, 281, 619, 808, 814, 820, 827, 829, 840], "368": [233, 619], "670": [233, 619], "202": [233, 619, 808], "548": [233, 619], "1490": [233, 619], "57079633": [234, 619], "14159265": [234, 619], "71238898": [234, 619], "28318531": [234, 619], "02617994": [234, 619], "87266463": [234, 619], "01919862": [234, 619], "03839725": [234, 619], "05759586": [234, 619], "07679449": [234, 619], "09599311": [234, 619], "11519173": [234, 619], "35081118": [234, 619], "88139129": [234, 619], "underflow": [235, 242, 619, 624, 672, 814], "textbook": [235, 268, 619], "frac": [235, 257, 259, 279, 281, 285, 368, 374, 395, 396, 400, 401, 489, 491, 619], "ac": [235, 268, 619, 792, 793], "bd": [235, 268, 619], "bc": [235, 268, 619, 792, 793], "versu": [235, 268, 619], "riemann": [235, 268, 619], "sphere": [235, 268, 619], "c99": [235, 268, 619], "infinit": [235, 268, 282, 619], "unlik": [235, 268, 619, 808, 813, 816, 845, 860, 862], "698": [235, 619], "truth": [236, 246, 247, 254, 255, 271, 370, 442, 619, 758, 760, 771, 802, 819, 826, 829], "32862675": [237, 619], "67780113": [237, 619], "11246294": [237, 619], "42839241": [237, 619], "52050018": [237, 619], "16799599": [237, 619], "30787992": [237, 619], "43796915": [237, 619], "98667163": [237, 619], "79690808": [237, 619], "88020504": [237, 619], "91031402": [237, 619], "95228523": [237, 619], "96610528": [237, 619], "cut": [238, 240, 280, 281, 282, 285, 619, 804, 844, 861], "08553692": [238, 619], "567": [238, 619], "00344786": [238, 619], "76297021": [238, 619], "197948": [238, 619], "53253174": [238, 619], "accur": [240, 258, 619, 624, 672, 823], "fdlibm": [240, 258, 619], "compliant": [240, 258, 263, 264, 329, 330, 365, 619, 634, 747, 748, 749, 751], "potenti": [240, 258, 619, 799, 804, 805, 813, 814, 826, 833, 858], "632": [240, 619], "20e": [240, 619], "72e": [240, 619, 763], "greatest": [241, 242, 245, 619], "pep": [242, 619, 821], "disambigu": [242, 619, 824], "former": [242, 619, 805, 814, 817, 826], "latter": [242, 619, 805, 808, 810, 814, 817, 826], "overload": [242, 619, 829], "led": [242, 619, 808, 857], "subtl": [242, 619, 814, 861], "bug": [242, 619, 799, 804, 806, 811, 819, 820, 826, 829, 841], "ambigu": [242, 619], "semant": [242, 277, 371, 481, 619, 814, 834, 839, 844, 856], "ill": [242, 619, 765], "surpris": [242, 619, 840], "arrau": [248, 619], "log_": [257, 259, 619], "742": [258, 619], "negat": [270, 332, 365, 619], "52095687": [273, 619], "92457771": [273, 619], "49372482": [273, 619], "22738838": [273, 619], "156": [273, 619, 763], "5877228": [273, 619], "189": [274, 619, 628, 705], "252": [274, 619], "378": [274, 619], "1150": [274, 619], "2890": [274, 619], "172": [274, 619], "487": [274, 619, 623, 647], "344": [274, 619], "355j": [275, 332, 365, 619], "55j": [275, 332, 365, 619], "primarili": [277, 619, 804, 812, 855], "reason": [277, 286, 619, 804, 806, 808, 809, 812, 813, 814, 816, 822, 825, 826, 829, 830, 832, 834, 836, 845, 861], "counterpart": [278, 619, 812, 823], "deliber": [278, 619, 832], "imprecis": [278, 619], "5654": [278, 619], "034": [278, 619], "433": [278, 605, 607, 619, 622], "signum": [279, 619], "operatornam": [279, 281, 619, 624, 659], "textrm": [279, 619], "932": [280, 619], "746": [280, 619], "657": [280, 529, 619, 621], "indistinguish": [282, 619], "convent": [282, 619, 624, 634, 664, 746, 806, 810, 821, 830, 844, 861], "infti": [282, 619], "32455532": [282, 619], "89897949": [282, 619], "169": [282, 619], "analyt": [285, 619, 855, 857, 861], "pole": [285, 619], "546": [285, 619, 623, 647], "916": [285, 619, 625, 683], "996": [285, 619], "histor": [286, 619], "stem": [286, 619, 825], "older": [286, 619], "advis": [286, 619, 826], "462": [286, 619], "604": [286, 619], "984": [286, 619], "997": [286, 619], "0375": [288, 619], "032": [288, 619], "57258511": [291, 360], "69999999": [291, 360, 612, 622], "90928203": [291, 360], "98772264": [291, 360], "99591321": [291, 360], "99863964": [291, 360], "69880581": [291, 360], "18126924": [291, 360], "79999995": [292, 301, 304, 360], "70000005": [292, 304, 360], "hardtanhx": [293, 360], "20141329": [295, 360], "40318608": [295, 360], "48683619": [295, 360], "46328247": [295, 360], "59813893": [295, 360], "43748799": [295, 360], "parametr": [296, 360, 808, 829, 855], "71589994": [298, 302, 360], "14324772": [298, 302, 360], "70648694": [298, 302, 360], "54488957": [298, 302, 360], "10740992": [298, 302, 360], "19514863": [298, 302, 360], "6705687": [299, 360], "52016652": [299, 360], "40560818": [299, 360], "45630932": [299, 360], "2689": [300, 360], "7310": [300, 360], "7615": [300, 360], "2784": [300, 360], "7168": [300, 360], "8708": [300, 360], "4374": [300, 360], "1379": [300, 360], "0089": [300, 360], "59999991": [301, 360], "03597236": [303, 360], "43827677": [303, 360], "80100036": [303, 360], "12954807": [303, 360], "76459098": [303, 360], "20044947": [303, 360], "60000372": [303, 360], "taper": [306, 309, 362], "summat": [306, 362, 634, 746, 792, 793], "leakag": [306, 362], "wors": [306, 362, 845], "y1": [307, 362], "0800": [308, 362], "3979": [308, 362], "9121": [308, 362], "5400": [308, 362], "han": [309, 362], "ith": [310, 362], "00726415": [311, 362], "9999736": [311, 362], "2773e": [312, 362], "0172e": [312, 362], "9294e": [312, 362], "4149": [312, 362], "9138": [312, 362], "5529": [312, 362], "multidimension": [314, 315, 362, 855], "normalise_factor": [317, 318, 362], "parafac2": [318, 362], "tr": [319, 362], "context": [319, 362, 561, 621, 804, 805, 806, 810, 814, 815, 816], "38268346": [327, 362], "38268352": [327, 362], "8563191": [327, 362], "14943568": [327, 362], "paddlepaddl": [329, 330, 365, 805], "cn": [329, 330, 365], "zh": [329, 330, 365], "amax_cn": [329, 365], "sentinel": [329, 330, 365, 634, 747, 749], "amin_cn": [330, 365], "position": [339, 365], "triangl": [343, 365], "999999e": [344, 365], "65999985": [346, 365], "52000046": [346, 365], "1500001": [346, 365, 534, 621], "11259177": [347, 365], "3574118": [347, 365], "20097363": [347, 365], "suppli": [351, 365, 371, 473, 792, 809, 811, 829], "217234": [352, 365], "hurwitz": [355, 365], "custom_grad_func": [357, 367], "bind": [357, 367, 804, 824, 854, 855], "upstream": [357, 367, 805, 806, 808, 819, 824], "primal": [358, 359, 367], "jacobian": [358, 359, 367, 607, 622, 840, 855], "cotang": [359, 367], "stanh": 360, "ndenumer": 362, "ndindex": 362, "random_cp": 362, "random_parafac2": 362, "random_tr": 362, "random_tt": 362, "random_tuck": 362, "bind_custom_gradient_funct": [367, 824], "jvp": 367, "vjp": 367, "area_interpol": 368, "01823380e": [368, 389, 399], "15385818e": [368, 389, 399], "36371466e": [368, 389, 399], "38763905e": [368, 389, 399], "60722279e": [368, 389, 399], "80319249e": [368, 389, 399], "05617893e": [368, 389, 399], "21500000e": [368, 389, 399], "24000015e": [368, 389, 399], "90734863e": [368, 389, 399], "10000420e": [368, 389, 399], "15899994e": [368, 389, 399], "24000053e": [368, 389, 399], "81469727e": [368, 389, 399], "09999847e": [368, 389, 399], "4135742": [368, 389, 399], "6779785": [368, 389, 399], "3770599": [368, 389, 399], "8719864": [368, 389, 399], "72109985": [368, 389, 399], "52869415": [368, 389, 399], "79182434": [368, 389, 399], "72489166": [368, 389, 399], "container_n": [368, 389, 399], "container_typ": [368, 389, 399, 621], "container_norm": [368, 389, 399], "1580677": [368, 389], "89422607": [368, 389], "86190414": [368, 389], "00041008": [368, 389], "75149155": [368, 389], "97056389": [368, 389], "87819386": [368, 389], "89381361": [368, 389], "50000000e": [368, 389, 399, 763], "22044605e": [368, 389, 399], "ed": [368, 391, 392, 393], "rest": [368, 371, 391, 392, 393, 459, 805, 811, 813, 829, 839, 857], "5d": [368, 393, 779], "emb": [368, 394], "51285338": [368, 394], "87183261": [368, 394], "2308116": [368, 394], "02733949e": [368, 395], "00j": [368, 395], "49660576e": [368, 395], "68178638e": [368, 395], "01j": [368, 395, 400], "98912367e": [368, 395], "21802426e": [368, 395, 400], "04549134e": [368, 395, 400], "82842712e": [368, 395, 400], "86902654e": [368, 395, 400], "25501143e": [368, 395, 400], "32978028e": [368, 395, 400], "52068201e": [368, 395, 400], "71158374e": [368, 395, 400], "generate_einsum_equ": 368, "get_interpolate_kernel": 368, "27279224e": [368, 399], "44232273e": [368, 399], "70464332e": [368, 399], "73454881e": [368, 399], "00902849e": [368, 399], "10039906e": [368, 399], "07022366e": [368, 399], "69506073": [368, 399], "93914604": [368, 399], "88008881": [368, 399], "18951607": [368, 399], "57439613": [368, 399], "15318303e": [368, 400], "15148591e": [368, 400], "19j": [368, 400], "25000000e": [368, 400], "35378602e": [368, 400], "02j": [368, 400], "65404249e": [368, 400], "17611649e": [368, 400], "24320230e": [368, 400], "79344813e": [368, 400], "22374531e": [368, 400], "45929364e": [368, 400], "14208718e": [368, 400], "07177031e": [368, 400], "indexerror": [368, 401, 412, 626, 689, 794, 818], "interp": [368, 832], "xp": [368, 402, 808], "fp": [368, 402], "nd": [368, 403], "tf_bicub": [368, 403, 832], "nearest_interpol": 368, "window_shap": [368, 409], "pool_typ": [368, 409], "irfft": [368, 411], "silent": [368, 411], "discard": [368, 411, 813], "639999": [368, 411], "516063j": [368, 411], "3999999": [368, 411], "3999996": [368, 411], "99038106j": [368, 412], "33012702": [368, 412], "23205081j": [368, 412], "33012702j": [368, 412], "superdiagon": [369, 419, 624, 656], "subdiagon": [369, 419, 624, 656], "eigendecomposit": [369, 421, 624, 658, 659], "qlq\u1d40": [369, 421, 624, 658, 659], "tridiagon": [369, 422], "38196602": [369, 422], "61803389": [369, 422], "35048741": [369, 422], "56710052": [369, 422], "06693714": [369, 422], "74234426": [369, 422], "56155282": [369, 422], "56155276": [369, 422], "82842714": [369, 422], "82842731": [369, 422, 624, 659], "necessarili": [369, 423, 809, 812], "generalis": [369, 424], "skip_matrix": [369, 427, 429], "khatri_rao_product": [369, 427], "kronecker_product": [369, 429], "n_column": [369, 429], "nnmf": [369, 430], "hoi": [369, 435, 441], "solve_triangular": 369, "unit_diagon": [369, 436], "solut": [369, 436, 624, 673, 763, 799, 802, 804, 805, 806, 812, 814, 819, 827, 829, 832, 853, 857], "determinist": [369, 437], "borrow": [369, 437, 807], "extmath": [369, 437], "ivan": [369, 438], "oseledet": [369, 438], "scientif": [369, 438, 855], "2295": [369, 438], "2317": [369, 438], "2011": [369, 438], "convention": [370, 443, 858], "issu": [370, 443, 778, 800, 801, 802, 803, 805, 808, 810, 811, 813, 814, 815, 816, 818, 819, 826, 829, 830, 832, 834, 838, 840, 846, 848], "explicit": [370, 371, 443, 481, 805, 812, 814, 824, 825, 826, 834, 840, 855], "555969": [370, 443], "223876": [370, 443], "111938": [370, 443], "42649534": [370, 443], "68651628": [370, 443], "51119184": [370, 443], "59967244": [370, 443], "mae": [370, 444], "91097307": [370, 446], "3467": [370, 447], "0133": [370, 447], "0250": [370, 447], "0056": [370, 447], "0025": [370, 447], "0675": [370, 447], "hing": [370, 448], "6987": [370, 448], "1606": [370, 448], "3711": [370, 448], "4032": [370, 448], "6931": [370, 448], "whilst": [371, 451, 452, 453, 839, 842, 855], "ary3": [371, 453], "check_scalar": 371, "force_integ": [371, 455], "force_posit": [371, 455], "mod": [371, 456, 808], "tall": [371, 462], "appear": [371, 464, 465, 601, 621, 805, 806, 808, 826, 832, 848], "horizot": [371, 469], "shortcut": [371, 473, 805], "linear_ramp": [371, 473], "reflect": [371, 473, 806, 809, 825, 829], "ramp": [371, 473], "mirror": [371, 473, 804, 855], "padding_func": [371, 473], "iaxis_pad_width": [371, 473], "iaxi": [371, 473], "unalt": [371, 473], "put": [371, 478, 799, 804, 829, 840, 861], "mul": [371, 478, 825, 836], "conceptu": [371, 481, 851, 856], "concern": [371, 481, 806, 807, 812, 814, 816, 825, 832, 833, 861], "regard": [371, 481, 803, 812, 826, 827, 832, 845], "mutat": [371, 481], "elimin": [371, 486, 805], "consecut": [371, 486], "batch_mean": [374, 489, 491], "batch_var": [374, 489, 491], "running_vari": [374, 489, 491], "local_response_norm": 374, "neighbour": [374, 494], "42857143": [374, 495], "5714286": [374, 495], "multivari": [375, 498], "bayesian": [375, 498], "supposedli": [378, 502], "indirect": [378, 503], "secondari": [378, 503], "is_ivy_sparse_arrai": 379, "is_native_sparse_arrai": 379, "native_sparse_arrai": 379, "coo_indic": [379, 506], "crow_indic": [379, 506], "col_indic": [379, 506], "ccol_indic": [379, 506], "row_indic": [379, 506], "dense_shap": [379, 506], "native_sparse_array_to_indices_values_and_shap": 379, "nativesparsearrai": 379, "sparsearrai": 379, "linalg": [380, 510, 624, 672, 673, 804, 825, 827], "aw": [380, 510, 845], "48447205": [380, 510], "c0": [380, 513], "ck": [380, 513], "c2": [380, 513], "nearest_jax": [380, 520], "trace_on_next_step": [524, 621, 783, 838], "recalcul": [527, 621], "my_sum": [527, 621], "val1": [527, 621], "val2": [527, 621], "cached_sum": [527, 621], "line_eq": [527, 621], "slp": [527, 621], "itc": [527, 621], "cached_line_eq": [527, 621], "0353": [528, 621], "424": [528, 621], "176": [528, 621], "339": [528, 621], "271": [528, 621], "391": [528, 621], "417": [529, 621], "583": [529, 621], "0667": [529, 621], "267": [529, 621], "131": [529, 621], "263": [529, 621], "394": [529, 621, 630, 730], "526": [529, 621], "788": [529, 621], "default_str": [532, 621], "46999979": [533, 621], "66000009": [533, 621], "93000001": [533, 621], "29000092": [533, 621], "33999991": [533, 621], "6400001": [533, 621], "96000004": [533, 621], "36000013": [533, 621], "51999998": [533, 621], "67000008": [533, 621], "suppos": [533, 621, 814, 829], "960": [533, 621], "3600": [533, 621], "h1": [533, 621], "w1": [533, 621], "40499985": [534, 621], "61000061": [534, 621], "max_depth": [545, 621], "seen_set": [545, 621], "local_set": [545, 621], "referr": [545, 621], "redund": [545, 621, 799, 814, 818, 826, 848], "example_funct": [545, 621], "ref_id_1": [545, 621], "ref_id_2": [545, 621], "ref_id_3": [545, 621], "ivyexcept": [550, 582, 621, 794, 815, 818, 823, 825, 826, 830], "allow_dupl": [560, 621], "fork": [561, 621, 800, 804, 808, 813, 819], "forkserv": [561, 621], "spawn": [561, 621], "mp_default": [561, 621], "defaultcontext": [561, 621], "0x7f4e3193e520": [561, 621], "mp_fork": [561, 621], "forkcontext": [561, 621], "0x7f4e3193e580": [561, 621], "mp_spawn": [561, 621], "spawncontext": [561, 621], "0x7f4e3193e5e0": [561, 621], "mp_forkserv": [561, 621], "forkservercontext": [561, 621], "0x7f4e3193e640": [561, 621], "garbag": [563, 621], "collector": [563, 621], "get_all_arrays_in_memori": [563, 621], "exception_trace_mod": [567, 590, 621, 831], "lenient": [568, 591, 621], "inplace_mod": [568, 591, 621], "break": [568, 621, 799, 810, 814, 821, 830, 840], "infus": [569, 621], "nestable_mod": [572, 594, 621, 831], "precise_mod": [573, 595, 621, 831], "shape_array_mod": [575, 597, 621, 831], "show_func_wrapper_trace_mod": [576, 598, 621, 831], "tmp_dr": [577, 621], "tmp_dir": [577, 599, 621, 831], "my_tmp": [577, 621], "49999999999975": [579, 621], "5015015015010504": [579, 621], "000444502911705e": [579, 621], "9999999999995j": [579, 621], "00000262": [580, 621], "15605032": [580, 621], "01208451j": [580, 621], "00048": [580, 621], "1296": [580, 621], "00864": [580, 621], "isn": [582, 621, 806, 823, 825, 837, 840, 857], "100000023841858": [584, 621], "200000047683716": [584, 621], "299999952316284": [584, 621], "400000095367432": [584, 621], "599999904632568": [584, 621], "hemant": [588, 621], "unset_shape_array_mod": [589, 621], "set_exception_trace_mod": [590, 621, 818], "set_min_bas": [592, 621], "set_min_denomin": [593, 621], "set_nestable_mod": [594, 621], "set_precise_mod": [595, 621], "set_queue_timeout": [596, 621], "set_shape_array_mod": [597, 621], "set_show_func_wrapper_trace_mod": [598, 621, 818], "set_tmp_dir": [599, 621], "my_dir": [599, 621], "451": [600, 621], "in_ax": [601, 621], "out_ax": [601, 621], "thereof": [601, 621], "summaris": [601, 621], "99999998": [602, 622], "19999998": [602, 622], "00000001": [602, 622], "00300001": [602, 622], "00800001": [602, 622], "0125": [602, 622], "17294501": [602, 622], "15770318": [602, 622], "20863818": [602, 622], "90000075": [603, 622], "90000164": [603, 622], "9000032": [603, 622], "50000012e": [603, 622], "92558754": [603, 622], "92558694": [603, 622], "92558682": [603, 622], "92558861": [603, 622], "60000025e": [603, 622], "01024": [603, 622], "retain_grad": [604, 622], "func_ret": [604, 622, 824], "666666": [604, 622], "333332": [604, 622], "66666675": [604, 612, 622], "argnum": [605, 622], "933": [605, 607, 622], "jac_fn": [607, 622], "639": [608, 622], "361": [608, 622], "52565837": [609, 622], "8418861": [609, 622], "68377209": [609, 622], "value_grad": [612, 622], "42333412": [612, 622], "5333333": [612, 622], "93333334": [612, 622], "43333334": [612, 622], "0666666": [612, 622], "softsign": 613, "718281828459045": 614, "euler": 614, "141592653589793": 614, "cmp_i": 615, "cmp_isnot": 615, "for_loop": 615, "if_els": 615, "try_except": 615, "to_dlpack": 616, "as_ivy_dtyp": [617, 826], "as_native_dtyp": 617, "check_float": 617, "closest_valid_dtyp": 617, "default_dtyp": [617, 814, 822], "dtype_bit": 617, "function_supported_dtyp": [617, 814, 829], "function_unsupported_dtyp": [617, 814], "infer_default_dtyp": 617, "invalid_dtyp": [617, 814], "is_hashable_dtyp": 617, "is_native_dtyp": 617, "promote_typ": [617, 814], "promote_types_of_input": [617, 814, 825], "type_promote_arrai": [617, 814], "unset_default_complex_dtyp": 617, "unset_default_float_dtyp": 617, "unset_default_int_dtyp": 617, "unset_default_uint_dtyp": 617, "valid_dtyp": 617, "defaultcomplexdtyp": 617, "defaultdtyp": 617, "defaultfloatdtyp": 617, "defaultintdtyp": 617, "defaultuintdtyp": 617, "as_ivy_dev": [618, 836], "clear_cached_mem_on_dev": 618, "dev_util": [618, 815], "function_supported_devic": 618, "function_unsupported_devic": 618, "get_all_ivy_arrays_on_dev": [618, 815], "handle_soft_device_vari": [618, 815], "num_cpu_cor": [618, 815], "num_gpu": [618, 815, 829], "num_ivy_arrays_on_dev": 618, "percent_used_mem_on_dev": 618, "print_all_ivy_arrays_on_dev": 618, "set_split_factor": [618, 818], "split_func_cal": 618, "total_mem_on_dev": [618, 815], "tpu_is_avail": 618, "unset_default_devic": [618, 815], "unset_soft_device_mod": [618, 815], "used_mem_on_dev": 618, "defaultdevic": [618, 815], "profil": 618, "save_dir": 618, "arg_info": 621, "arg_nam": 621, "cache_fn": [621, 822], "current_backend_str": [621, 829, 834, 836], "function_supported_devices_and_dtyp": 621, "function_unsupported_devices_and_dtyp": 621, "get_item": [621, 825], "get_referrers_recurs": 621, "inplace_arrays_support": 621, "inplace_variables_support": 621, "is_ivy_nested_arrai": 621, "isscalar": 621, "match_kwarg": 621, "num_arrays_in_memori": 621, "print_all_arrays_in_memori": 621, "set_item": 621, "to_ivy_shap": 621, "to_native_shap": 621, "try_else_non": 621, "unset_array_mod": [621, 831], "unset_exception_trace_mod": 621, "unset_inplace_mod": 621, "unset_min_bas": 621, "unset_min_denomin": 621, "unset_nestable_mod": 621, "unset_precise_mod": 621, "unset_queue_timeout": 621, "unset_show_func_wrapper_trace_mod": 621, "unset_tmp_dir": 621, "vmap": [621, 840, 855], "arraymod": 621, "precisemod": [621, 814], "jac": 622, "value_and_grad": [622, 824], "neural": [623, 775, 779, 799, 849, 851, 853, 854, 855, 859, 861, 862], "feature_group_count": [623, 636, 643, 644], "oiw": [623, 636, 637, 643], "oihw": [623, 636, 639, 643], "oidhw": [623, 636, 641, 643], "dhwio": [623, 636, 637, 641, 643], "conv_general_dil": [623, 826], "conv_general_transpos": 623, "depthwis": [623, 645, 765, 779], "overfit": [623, 646], "overal": [623, 646, 793, 812, 814, 815, 817, 839, 848, 851, 853, 854, 855], "1428566": [623, 646], "49000001": [623, 646], "55599999": [623, 646], "21000004": [623, 646], "incom": [623, 647], "666": [623, 624, 647, 665], "4269": [623, 647], "911": [623, 647, 818], "157": [623, 647], "753": [623, 647], "545": [623, 630, 647, 728], "547": [623, 647, 815], "124": [623, 647], "963": [623, 647], "98495483": [623, 647], "0293808": [623, 647], "0159359": [623, 647], "74752808": [623, 647], "20942307": [623, 647], "3205719": [623, 647], "long": [623, 648, 805, 806, 813, 814, 816, 818, 819, 826, 834, 855], "lstm": [623, 648, 779, 834, 855], "batch_first": [623, 649], "multi": [623, 624, 649, 654, 765, 779, 816, 833, 840, 851, 853, 855, 859], "paper": [623, 649, 799, 846], "vaswani": [623, 649], "al": [623, 649], "num_attention_head": [623, 649], "key_dim": [623, 649, 779], "value_dim": [623, 649, 779], "measur": [623, 649, 779], "attention_weight": [623, 649], "unbatch": [623, 649], "nm": 623, "box": [623, 650, 651, 805], "iou_threshold": [623, 650], "max_output_s": [623, 650], "score_threshold": [623, 650], "roi_align": 623, "spatial_scal": [623, 651], "sampling_ratio": [623, 651], "23333359": [623, 652], "03946018": [623, 652], "0280633": [623, 652], "29981947": [623, 652], "29981089": [623, 652], "06345534": [623, 652], "9634552": [623, 652], "19336844": [623, 652], "09336829": [623, 652], "axisa": [624, 654], "axisb": [624, 654], "axisc": [624, 654], "293": [624, 655], "46997": [624, 655], "explicitli": [624, 659, 660, 676, 760, 779, 780, 781, 802, 808, 809, 810, 812, 814, 817, 818, 819, 822, 823, 824, 825, 827, 829, 834, 840, 849, 855], "17157288": [624, 659], "9238795": [624, 659], "78930789": [624, 659], "59803128": [624, 659], "19127655": [624, 659], "31213903": [624, 659], "63418275": [624, 659], "84632206": [624, 659], "70548367": [624, 659], "70223427": [624, 659], "09570674": [624, 659], "63116378": [624, 659], "56109613": [624, 659], "53554028": [624, 659], "32237405": [624, 659], "43822157": [624, 659], "83906901": [624, 659], "50766778": [624, 659], "71475857": [624, 659], "48103389": [624, 659], "3676433": [624, 659], "68466955": [624, 659], "62933773": [624, 659], "77917379": [624, 659], "14264561": [624, 659], "61036086": [624, 659], "45033181e": [624, 660], "02829754e": [624, 660], "54220343e": [624, 660], "12647155e": [624, 660], "38447177e": [624, 660], "56155300e": [624, 660], "26794919": [624, 660], "7320509": [624, 660], "0012": [624, 662], "00342": [624, 662], "000565": [624, 662], "0104": [624, 662], "000981": [624, 662], "00282": [624, 662], "000766": [624, 662], "0322": [624, 662], "00237": [624, 662], "000151": [624, 662], "00101": [624, 662], "00019": [624, 662], "0214": [624, 662], "00171": [624, 662], "0107": [624, 662], "0167": [624, 662], "0472": [624, 662], "0536": [624, 662], "0177": [624, 662], "000429": [624, 662], "00762": [624, 662], "lu_factor": 624, "pivot": [624, 663], "lu": [624, 663], "frobeniu": [624, 665], "nuclear": [624, 665], "induc": [624, 665], "ranl": [624, 665], "47722558": [624, 665], "776": [624, 665], "6000004": [624, 665], "118": [624, 666], "moor": [624, 670], "penros": [624, 670], "31622776": [624, 671], "94868332": [624, 671], "1622777": [624, 671], "42718887": [624, 671], "deteremin": [624, 672], "logsabsdet": [624, 672], "subject": [624, 672], "ordin": [624, 673], "b2": [624, 673], "usvh": [624, 674], "cetera": [624, 674], "driver": [624, 675, 840], "cusolv": [624, 675], "gesvd": [624, 675], "gesvdj": [624, 675], "gesvda": [624, 675], "86217213": [624, 675], "31816804": [624, 675], "615": [624, 675], "ss": [624, 675], "25994301": [624, 675], "16403675": [624, 675], "61529762": [624, 675], "51231241": [624, 675], "39777088": [624, 675], "15413129": [624, 675], "1029852": [624, 675], "01383495": [624, 675], "86647356": [624, 675], "7786541": [624, 675], "55970621": [624, 675], "16857576": [624, 675], "86412698": [624, 675], "37566757": [624, 675], "88477993": [624, 675], "95925522": [624, 675], "6444726": [624, 675], "54687881": [624, 675], "16134834": [624, 675], "35037804": [624, 675], "31025076": [624, 675], "35769391": [624, 675], "transposit": [624, 676], "success": [624, 634, 678, 750, 752, 805, 813, 845], "0x": [624, 679], "Such": [624, 679, 822, 829], "progress": [624, 679, 805, 806, 839], "alexandr": [624, 679], "theophil": [624, 679], "dot_product": [624, 680], "9000001": [624, 681], "64158917": [624, 681], "skew": [624, 682], "6666193": [625, 683], "67164493e": [625, 683], "05471958e": [625, 683], "32684899e": [625, 683], "30496836e": [625, 683], "05393649": [625, 683], "49992943": [625, 683], "83330965": [625, 683], "35667494": [625, 685], "79329094": [625, 685], "512926": [625, 685], "outsid": [626, 686, 697, 814, 815, 822, 836, 860], "honor": [626, 693], "beyond": [626, 694, 817, 826, 861], "famili": [626, 697], "intxx": [626, 697], "floatxx": [626, 697], "rep": [626, 699], "fomaml_step": 627, "inner_cost_fn": [627, 702, 703, 704], "outer_cost_fn": [627, 702, 703], "inner_grad_step": [627, 702, 703, 704], "inner_learning_r": [627, 702, 703, 704], "inner_optimization_step": [627, 702, 703, 704], "inner_batch_fn": [627, 702, 703], "outer_batch_fn": [627, 702, 703], "average_across_step": [627, 702, 703], "inner_v": [627, 702, 703], "keep_inner_v": [627, 702, 703], "outer_v": [627, 702, 703], "keep_outer_v": [627, 702, 703], "return_inner_v": [627, 702, 703, 704], "num_task": [627, 702, 703, 704], "maml": [627, 702, 703], "0x7f77ee536e60": [627, 702, 703, 704], "maml_step": 627, "vanilla": [627, 703, 838, 855], "_variabl": [627, 703, 704], "sub_batch": [627, 703], "40069818": [627, 703], "13723135": [627, 703], "reptile_step": 627, "cost_fn": [627, 704], "reptil": [627, 704], "batch_in": [627, 704], "4485182": [627, 704], "139": [627, 704], "9569855": [627, 704], "9880483": [627, 704], "01766968": [627, 704], "02197957": [627, 704], "02197981": [627, 704], "all_nested_indic": 628, "include_nest": [628, 705], "_index": [628, 705, 716], "_base": [628, 705, 715, 716, 825], "themselv": [628, 705, 804, 812, 814, 815, 817, 822, 826, 838, 852, 861], "863": [628, 705, 815], "672": [628, 705], "482": [628, 705], "674": [628, 705], "341": [628, 705], "copy_nest": 628, "to_mut": [628, 706, 717], "deepli": [628, 706, 840, 855], "copied_nest": [628, 706], "1337": [628, 706, 717], "duplicate_array_index_chain": 628, "index_nest": [628, 822], "insert_into_nest_at_index": 628, "insert_into_nest_at_indic": 628, "onto": [628, 711, 717, 843, 844, 855], "special_squar": [628, 711], "6666666666666667": [628, 711], "special_pow": [628, 711], "linear_model": [628, 711], "map_nest_at_index": 628, "_result": [628, 712, 722], "hh": [628, 712, 717], "map_nest_at_indic": 628, "ub": [628, 713], "tb": [628, 713], "multi_index_nest": 628, "nested_ani": 628, "check_nest": [628, 715, 716], "nested_argwher": 628, "stop_after_n_found": [628, 716], "nested_indic": [628, 716], "nested_map": [628, 815, 822], "_tuple_check_fn": [628, 717], "_list_check_fn": [628, 717], "_dict_check_fn": [628, 717], "wherebi": [628, 717, 804, 852], "ah": [628, 717], "bh": [628, 717], "ch": [628, 717], "dh": [628, 717, 808], "eh": [628, 717], "gh": [628, 717, 805, 819], "ih": [628, 717], "1338": [628, 717], "nested_multi_map": 628, "index_chain": [628, 718], "nest0": [628, 718], "ivy_arrai": [628, 718, 809, 826], "unappli": [628, 718], "prune_empti": 628, "prune_nest_at_index": 628, "prune_nest_at_indic": 628, "set_nest_at_index": 628, "set_nest_at_indic": 628, "xyz": [628, 723], "pqr": [628, 723], "mini": [629, 724, 779, 782], "uniformli": [630, 726, 728], "22346112": [630, 727], "0922": [630, 727], "9213753": [630, 727], "12818667": [630, 727], "799": [630, 727], "469": [630, 727], "287": [630, 727], "0366": [630, 727], "26431865": [630, 728], "475": [630, 728], "878": [630, 728], "861": [630, 728], "929": [630, 728], "789": [630, 728], "519": [630, 728], "0435": [630, 728], "381": [630, 728], "4608004": [630, 728], "8458502": [630, 728], "67270088": [630, 728], "31128597": [630, 728], "zeroel": [631, 734], "guarante": [632, 736, 738, 809, 814, 825, 840, 846], "aggreg": [632, 736, 813], "fourth": [632, 736], "1141": [632, 736], "8101": [632, 736], "9298": [632, 736], "8460": [632, 736], "2119": [632, 736], "3519": [632, 736], "6252": [632, 736], "4033": [632, 736], "7443": [632, 736], "2577": [632, 736], "3707": [632, 736], "0545": [632, 736], "3238": [632, 736], "5944": [632, 736], "0775": [632, 736], "4327": [632, 736], "62519997": [632, 736], "40329999": [632, 736], "59439999": [632, 736], "74430001": [632, 736], "81010002": [632, 736], "84600002": [632, 736], "92979997": [632, 736], "einstein": [634, 746, 792], "117": [634, 746], "intend": [634, 752, 761, 778, 808, 821, 824, 853, 855, 859, 860], "07472222": [634, 753], "00666667": [634, 753], "08966666": [634, 753], "simplicit": [635, 754, 755], "ivy_test": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 808, 811, 813, 819, 827], "test_ivi": [758, 760, 761, 763, 764, 765, 766, 767, 768, 769, 770, 771, 804, 805, 806, 811, 813, 819, 827, 829], "assert_all_clos": [758, 827], "ret_np": [758, 760, 827], "ret_from_gt_np": [758, 827], "ground_truth_backend": [758, 760, 761, 770, 771, 802, 819, 827], "mark": [758, 804, 806, 808, 829, 834], "assert_same_typ": 758, "ret_from_target": 758, "ret_from_gt": 758, "backend_to_test": [758, 760, 802, 819, 827], "gt_backend": 758, "with_backend": [758, 788], "assert_same_type_and_shap": 758, "this_key_chain": 758, "check_unsupported_devic": 758, "input_devic": 758, "all_as_kwargs_np": [758, 760], "presenc": [758, 812, 825], "check_unsupported_device_and_dtyp": 758, "input_dtyp": [758, 760, 770, 802, 819, 827, 829], "check_unsupported_dtyp": 758, "test_unsupported_funct": 758, "value_test": 758, "ret_np_flat": 758, "ret_np_from_gt_flat": 758, "specific_tolerance_dict": 758, "ret_from_np_gt_flat": 758, "function_test": 760, "args_to_contain": 760, "array_arg": [760, 822], "args_to_frontend": 760, "frontend_array_fn": 760, "arrays_to_frontend": 760, "as_list": 760, "convtru": 760, "nativeclass": 760, "counter": [760, 838], "create_args_kwarg": 760, "args_np": 760, "arg_np_val": 760, "args_idx": 760, "kwargs_np": 760, "kwarg_np_val": 760, "kwargs_idx": 760, "test_flag": [760, 802, 819, 827, 829], "on_devic": [760, 770, 802, 819, 827], "flatten_and_to_np": 760, "flatten_frontend": 760, "flatten_frontend_fw_to_np": 760, "frontend_ret": [760, 827], "isscalar_func": 760, "is_native_array_func": 760, "to_numpy_func": 760, "flatten_frontend_to_np": 760, "get_frontend_ret": 760, "frontend_fn": 760, "frontend_array_funct": 760, "precision_mod": [760, 770, 771, 819], "test_trac": [760, 770, 771, 802, 808, 819], "get_ret_and_flattened_np_arrai": 760, "gradient_incompatible_funct": 760, "gradient_test": [760, 829], "rtol_": [760, 802, 819], "atol_": [760, 802, 819, 827], "tolerance_dict": 760, "gradient_unsupported_dtyp": 760, "kwargs_to_args_n_kwarg": 760, "num_positional_arg": [760, 770, 771, 802, 819, 827, 829], "port": [760, 846], "test_frontend_funct": [760, 827], "fn_tree": [760, 761, 771, 802, 819, 826, 827, 829], "gt_fn_tree": [760, 771], "test_valu": [760, 827, 829], "frontend_function_flag": [760, 770], "functiontestflag": [760, 770, 802, 819], "with_out": [760, 770, 802, 819, 827, 829], "instance_method": [760, 770, 802, 819, 829], "as_vari": [760, 770, 802, 819, 827, 829], "namespac": [760, 804, 814, 823, 826, 827, 830, 834, 839], "test_frontend_method": [760, 827], "init_input_dtyp": [760, 827], "method_input_dtyp": [760, 827], "init_flag": [760, 827, 829], "method_flag": [760, 770, 827, 829], "init_all_as_kwargs_np": [760, 827], "method_all_as_kwargs_np": [760, 827], "frontend_method_data": [760, 827], "init_as_variable_flag": [760, 771], "dictat": [760, 809, 816, 821, 825], "init_num_positional_arg": [760, 771], "init_native_array_flag": 760, "with_v": 760, "ret_gt": 760, "test_funct": [760, 802, 805, 806, 813, 819, 827, 829], "fn_name": [760, 761, 771, 802, 810, 819, 827, 829], "return_flat_np_arrai": 760, "as_variable_flag": [760, 771, 829], "native_array_flag": [760, 771, 829], "container_flag": [760, 770, 771, 829], "test_function_backend_comput": 760, "test_function_ground_truth_comput": 760, "arg_np_arrai": 760, "arrays_args_indic": 760, "arrays_kwargs_indic": 760, "kwarg_np_arrai": 760, "test_gradient_backend_comput": 760, "test_gradient_ground_truth_comput": 760, "test_method": 760, "method_nam": [760, 769, 771, 827], "init_with_v": 760, "method_with_v": 760, "test_gradi": [760, 770, 771, 802, 819, 829], "method_as_variable_flag": [760, 771], "method_num_positional_arg": [760, 771], "method_native_array_flag": 760, "method_container_flag": [760, 771], "test_method_backend_comput": 760, "test_method_ground_truth_comput": 760, "org_con_data": 760, "args_np_method": 760, "met_arg_np_v": 760, "met_args_idx": 760, "kwargs_np_method": 760, "met_kwarg_np_v": 760, "met_kwargs_idx": 760, "v_np": 760, "traced_if_requir": 760, "wrap_frontend_function_arg": 760, "holder": 761, "current_frontend_config": 761, "0x7f77e1a8dcf0": 761, "interruptedtest": 761, "test_interrupt": 761, "baseexcept": 761, "tri": [761, 814], "testdata": 761, "supported_device_dtyp": 761, "is_method": 761, "setup_api_test": 761, "test_data": 761, "setup_frontend_test": 761, "teardown_api_test": 761, "teardown_frontend_test": 761, "hypothesis_help": [763, 764, 765, 766], "array_help": 763, "array_and_broadcastable_shap": 763, "searchstrategi": [763, 764, 765, 766, 770, 771, 829], "array_bool": [763, 829], "min_valu": [763, 764, 765, 766, 802, 819, 827, 829], "max_valu": [763, 764, 765, 766, 827, 829], "ex": [763, 764, 765, 766, 771, 813, 849], "strategi": [763, 764, 765, 766, 770, 771, 804, 827], "array_helpers_dtype_info_help": 763, "kind_dtyp": [763, 765], "array_indices_axi": 763, "array_dtyp": [763, 764, 829], "indices_dtyp": 763, "get_dtyp": [763, 764, 802, 819, 827, 829], "disable_random_axi": 763, "axis_zero": 763, "allow_inf": [763, 766, 827, 829], "min_num_dim": [763, 765, 827, 829], "max_num_dim": [763, 765, 827, 829], "min_dim_s": [763, 765, 827, 829], "max_dim_s": [763, 765, 827], "first_dimension_onli": 763, "indices_same_dim": 763, "valid_bound": 763, "hypothesi": [763, 765, 771, 804, 806, 808, 813, 823], "65536": 763, "44758124e": [763, 829], "array_indices_put_along_axi": 763, "values_dtyp": 763, "array_valu": [763, 829], "abs_smallest_v": [763, 765, 766], "allow_nan": [763, 766, 829], "allow_subnorm": [763, 766, 829], "exclude_min": [763, 766, 829], "exclude_max": [763, 766], "large_abs_safety_factor": [763, 765, 766, 802, 819, 827, 829], "small_abs_safety_factor": [763, 765, 766, 802, 819, 827], "safety_factor_scal": [763, 765, 766, 827, 829], "subnorm": [763, 766], "safeti": [763, 765, 766, 855], "0002": [763, 766], "get_shap": [763, 765, 827, 829], "1806": 763, "36912": 763, "6955": 763, "59576": 763, "1025": 763, "arrays_and_ax": 763, "available_dtyp": [763, 764, 802, 819, 827, 829], "allow_non": [763, 765, 827, 829], "return_dtyp": 763, "force_int_axi": 763, "26e": 763, "10e": 763, "24322108": 763, "26446279e": 763, "96046448e": 763, "008": 763, "17549435e": 763, "038": 763, "06541027e": 763, "13725760e": 763, "07143888": 763, "arrays_for_pool": 763, "min_dim": 763, "max_dim": 763, "min_sid": 763, "max_sid": 763, "explicit_or_str_pad": 763, "only_explicit_pad": 763, "return_dil": 763, "mixed_fn_compo": [763, 764, 765, 766, 829], "return_data_format": 763, "cond_data_gen_help": 763, "create_concatenable_arrays_dtyp": 763, "min_num_arrai": 763, "max_num_arrai": 763, "concat_dim": 763, "common_shap": [763, 829], "stackabl": 763, "given_common_shap": 763, "create_nested_input": 763, "leaf_valu": 763, "dtype_and_valu": [763, 802, 819, 827, 829], "num_arrai": [763, 764, 827, 829], "shared_dtyp": [763, 764, 827], "ret_shap": 763, "array_api_dtyp": [763, 764], "shape_kei": 763, "37915": 763, "6322": 763, "26765": 763, "12413": 763, "26986": 763, "34665": 763, "000e": 763, "711e": 763, "100e": 763, "955e": [763, 829], "40817": 763, "56193": 763, "29200": 763, "5851": 763, "9746": 763, "9604645e": 763, "103": 763, "41795": 763, "1170789994": 763, "44251": 763, "44209": 763, "433075925": 763, "24791": 763, "24691": 763, "24892": 763, "16711": 763, "972": 763, "15357": 763, "72057594037927936": 763, "dtype_array_queri": 763, "allow_mask": 763, "allow_neg_step": 763, "dtype_array_query_v": 763, "dtype_values_axi": [763, 829], "min_axi": 763, "max_axi": 763, "valid_axi": 763, "allow_neg_ax": 763, "min_axes_s": 763, "max_axes_s": 763, "force_tuple_axi": 763, "29788": 763, "62222885e": 763, "68281172e": 763, "257j": 763, "40129846e": 763, "90000000e": 763, "63426649e": 763, "91931887e": 763, "29488e": 763, "14361019e": 763, "12445": 763, "einsum_help": 763, "get_first_solve_batch_matrix": 763, "choose_adjoint": 763, "get_second_solve_batch_matrix": 763, "get_first_solve_matrix": 763, "allow_simplifi": 763, "choose_sid": 763, "xa": 763, "get_second_solve_matrix": 763, "list_of_s": 763, "sampled_from": [763, 827, 829], "min_siz": [763, 765, 771, 829], "max_siz": [763, 765, 771, 829], "size_bound": [763, 829], "999999999999999": 763, "9394938006792373": 763, "mutually_broadcastable_shap": 763, "num_shap": 763, "base_shap": 763, "dtype_help": 764, "univers": [764, 826, 844], "cast_filt": 764, "cast_filter_help": 764, "current_backend": [764, 788, 804, 810, 818, 822, 827, 830, 834], "get_castable_dtyp": 764, "castabl": 764, "prune_funct": 764, "intersect": [764, 813, 829], "signed_integ": 764, "real_and_complex": 764, "float_and_complex": 764, "general_help": 765, "broadcasterror": 765, "apply_safety_factor": 765, "embedding_help": 765, "general_helpers_dtype_info_help": 765, "get_axi": [765, 829], "allow_neg": 765, "sort_valu": 765, "force_tupl": 765, "force_int": 765, "assertionerror": [765, 802, 808, 818, 819, 827, 829], "get_bound": [765, 829], "get_mean_std": 765, "matrix_is_st": 765, "cond_limit": 765, "instabl": [765, 802, 814, 819], "computation": [765, 805], "prone": [765, 814], "thumb": 765, "gradual": 765, "strong": [765, 840, 845, 855], "collinear": 765, "reshape_shap": [765, 829], "two_broadcastable_shap": 765, "x_and_filt": 765, "number_help": 766, "arbitrarili": [766, 837], "safety_factor": 766, "backend_proc": 767, "input_queu": 767, "output_queu": 767, "frontend_proc": 767, "pipeline_help": 768, "backendhandl": 768, "update_backend": [768, 827], "backendhandlermod": 768, "enum": 768, "setbackend": 768, "withbackend": 768, "withbackendcontext": 768, "get_frontend_config": 768, "frontendmethoddata": 769, "ivy_init_modul": 769, "framework_init_modul": 769, "init_nam": 769, "test_parameter_flag": 770, "dynamicflag": [770, 771], "frontendfunctiontestflag": [770, 819], "with_copi": 770, "generate_frontend_arrai": [770, 771, 819], "testflag": 770, "apply_flag": 770, "args_to_iter": 770, "frontendinittestflag": 770, "frontendmethodtestflag": 770, "initmethodtestflag": 770, "methodtestflag": 770, "build_flag": 770, "frontend_init_flag": 770, "frontend_method_flag": 770, "function_flag": 770, "init_method_flag": 770, "testing_help": 771, "handle_frontend_method": [771, 827, 829], "class_tre": [771, 827], "init_tre": [771, 827], "init_native_arrai": 771, "_as_varaible_strategi": 771, "method_native_arrai": 771, "test_inplac": [771, 829], "_given_kwarg": 771, "test_compil": 771, "handle_frontend_test": [771, 827, 829], "alias": [771, 804, 826, 827], "number_positional_arg": [771, 827], "test_with_out": [771, 827, 829], "test_with_copi": 771, "handle_method": [771, 829], "method_tre": [771, 827, 829], "_gradient_strategi": 771, "handle_test": [771, 802, 819, 829], "test_instance_method": [771, 829], "num_positional_args_help": 771, "num_positional_args_method": 771, "geglu": 775, "leakyrelu": 775, "logsoftmax": 775, "from_flax_modul": 776, "native_modul": 776, "params_fx": 776, "rng_seed": 776, "constructor_arg": 776, "constructor_kwarg": 776, "instance_arg": 776, "instance_kwarg": 776, "flax": [776, 839, 840, 846, 855], "from_haiku_modul": 776, "params_hk": 776, "from_paddle_modul": 776, "from_torch_modul": 776, "dedic": [776, 821, 832, 836, 838], "to_keras_modul": 776, "native_module_class": 776, "modulehelp": [777, 781], "create_vari": [778, 838], "var_shap": [778, 838], "fan_out": [778, 838], "fan_in": [778, 838], "rectangular": 778, "firstlayersiren": 778, "siren": 778, "glorotuniform": [778, 779, 838], "glorot": 778, "xavier": 778, "neuron": 778, "w_1x_1": 778, "w_2x_2": 778, "w_nx_n": 778, "w_i": 778, "vanish": 778, "explod": [778, 843, 844], "kaimingnorm": 778, "fan_mod": [778, 838], "kaim": 778, "he": 778, "negative_slop": 778, "fan": 778, "propog": 778, "fan_sum": [778, 838], "Ones": 778, "randomnorm": 778, "stddev": 778, "w0": 778, "wlim": 778, "predefin": 778, "fan_avg": 778, "adaptiveavgpool1d": 779, "avgpool1d": 779, "implicit": [779, 812, 817, 826, 829, 834, 855], "avgpool2d": 779, "avgpool3d": 779, "e501": 779, "filter_s": 779, "weight_initi": [779, 838], "bias_initi": [779, 838], "0x7f77ee10e560": 779, "0x7f77ee10e5c0": 779, "conv1dtranspos": 779, "0x7f77ee10e620": 779, "0x7f77ee10e680": 779, "filter_shap": 779, "0x7f77ee10e6e0": 779, "0x7f77ee10e740": 779, "0x7f77ee10e7a0": 779, "0x7f77ee10e800": 779, "0x7f77ee10e920": 779, "0x7f77ee10e980": 779, "conv3dtranspos": 779, "0x7f77ee10e9e0": 779, "0x7f77ee10ea40": 779, "depthwiseconv2d": 779, "num_channel": 779, "0x7f77ee10e860": 779, "0x7f77ee10e8c0": 779, "bernoul": 779, "num_embed": 779, "embedding_dim": 779, "padding_idx": 779, "lookup": 779, "num_embeddingss": 779, "renorm": 779, "insensit": 779, "num_lay": 779, "return_sequ": 779, "return_st": 779, "0x7f77ee10eaa0": 779, "get_initial_st": 779, "0x7f77ee10e4a0": 779, "0x7f77ee10e500": 779, "maxpool1d": 779, "maxpool3d": 779, "multiheadattent": 779, "embed_dim": 779, "head_dim": 779, "dropout_r": 779, "use_proj_bia": 779, "attention_ax": 779, "build_mod": [779, 780, 781], "on_init": [779, 781], "parallel": [779, 811, 855, 859, 860], "binarycrossentropyloss": 780, "store_var": [780, 781], "with_partial_v": [780, 781], "logpoissonloss": 780, "modulemeta": 781, "temporarili": [781, 802, 808, 819], "from_cal": 781, "module_dict": 781, "register_buff": 781, "register_paramet": 781, "weights_path": 781, "randomness_factor": 781, "with_edge_label": 781, "with_arg_label": 781, "with_output_label": 781, "output_connected_onli": 781, "highlight_subgraph": 781, "trace_kwarg": 781, "_unified_ivy_graph": 781, "_call": 781, "num_featur": 782, "trail": 782, "layernorm": 782, "normalized_shap": 782, "elementwise_affin": 782, "set_stat": [783, 838], "adamw": 783, "weight_decai": 783, "init_on_first_step": 783, "fallback_to_non_trac": 783, "ignore_miss": 783, "privat": [783, 826, 829], "_step": [783, 838], "stochast": [783, 855], "sub_modul": 784, "check_al": 785, "messag": [785, 794, 798, 805, 806, 813, 816, 818, 820, 826, 834, 836, 845], "check_all_or_any_fn": 785, "check_ani": 785, "check_dev_correct_format": 785, "check_dimens": 785, "check_elem_in_list": [785, 822, 825, 826], "elem": 785, "check_equ": [785, 826], "check_exist": 785, "check_fals": 785, "check_gather_input_valid": 785, "check_gather_nd_input_valid": 785, "check_great": 785, "allow_equ": [785, 818], "check_inplace_sizes_valid": [785, 825], "check_isinst": 785, "allowed_typ": 785, "check_kernel_padding_s": 785, "padding_s": 785, "check_less": [785, 818], "check_one_way_broadcast": 785, "check_same_dtyp": 785, "check_shapes_broadcast": 785, "check_tru": 785, "check_unsorted_segment_valid_param": 785, "ast_help": 787, "importtransform": 787, "nodetransform": 787, "impersonate_import": 787, "tree": [787, 814], "local_ivy_id": 787, "visit_import": 787, "visit_importfrom": 787, "ivyload": 787, "loader": [787, 837, 840], "exec_modul": 787, "ivypathfind": 787, "metapathfind": 787, "find_spec": 787, "fullnam": 787, "contextmanag": 788, "choose_random_backend": 788, "global_backend": 788, "dynamic_backend_convert": 788, "backend_stack": [788, 834], "prevent_access_loc": 788, "previous_backend": [788, 810], "unset": [788, 810, 834], "Or": [788, 799, 801, 825, 837], "set_backend_to_specific_vers": 788, "set_jax_backend": 788, "set_mxnet_backend": 788, "mx": 788, "set_numpy_backend": 788, "set_paddle_backend": 788, "set_tensorflow_backend": 788, "set_torch_backend": 788, "unset_backend": [788, 810], "sub_backend_handl": 789, "clear_sub_backend": 789, "find_available_sub_backend": 789, "sub_backends_loc": 789, "fn_name_from_version_specific_fn_nam": 789, "fn_name_from_version_specific_fn_name_sub_backend": 789, "sub_backend_vers": 789, "backend_vers": [789, 802, 814, 819], "set_sub_backend": 789, "sub_backend_str": 789, "set_sub_backend_to_specific_vers": 789, "sub_backend": 789, "unset_sub_backend": 789, "check_for_binari": 790, "cleanup_and_fetch_binari": [790, 805], "clean": [790, 806, 830, 834, 835, 837], "dynamic_import": 791, "import_modul": [791, 834], "einsum_pars": 792, "convert_interleaved_input": 792, "interleav": 792, "convert_subscript": 792, "old_sub": 792, "symbol_map": 792, "subscript": [792, 793], "oe": 792, "ellipsi": [792, 793], "find_output_shap": 792, "find_output_str": 792, "canon": 792, "gen_unused_symbol": 792, "abd": [792, 793], "get_symbol": 792, "letter": 792, "resort": 792, "unicod": 792, "charact": [792, 826, 845], "chr": 792, "surrog": 792, "\u0155": 792, "20000": 792, "\u4eac": 792, "has_valid_einsum_chars_onli": 792, "einsum_str": 792, "abaz": 792, "\u00f6ver": 792, "is_valid_einsum_char": 792, "\u01f5": 792, "legalise_einsum_expr": 792, "reproduct": [792, 793], "pars": [792, 793, 811, 816, 840], "intak": 792, "contract_path": 792, "parse_einsum_input": [792, 793], "einsum_eqn": 792, "legalis": 792, "legalise_einsum_eqn": 792, "za": [792, 793], "xza": [792, 793], "xz": [792, 793], "possibly_convert_to_numpi": 792, "myshap": 792, "__main__": 792, "0x10f850710": 792, "einsum_path_help": 793, "can_dot": 793, "idx_remov": 793, "bla": 793, "benefici": 793, "movement": 793, "costli": 793, "gemm": 793, "ijj": 793, "ddot": 793, "ikj": 793, "compute_size_by_dict": 793, "idx_dict": 793, "abbc": 793, "find_contract": 793, "input_set": 793, "output_set": 793, "lh": 793, "rh": 793, "new_result": 793, "idx_contract": 793, "iset": 793, "oset": 793, "bdc": 793, "flop_count": 793, "num_term": 793, "size_dictionari": 793, "flop": 793, "greedy_path": 793, "memory_limit": 793, "exhaust": [793, 825, 829, 852, 861], "indices_remov": 793, "priorit": [793, 804, 828, 832], "hadamard": 793, "cubic": 793, "greedi": 793, "idx_siz": 793, "optimal_path": 793, "siev": 793, "input_str": 793, "output_str": 793, "parse_possible_contract": 793, "path_cost": 793, "naive_cost": 793, "propos": [793, 806, 826, 832, 855], "intermediari": [793, 810], "unoptim": 793, "new_input_set": 793, "update_other_result": 793, "provision": 793, "_parse_possible_contract": 793, "mod_result": 793, "inplaceupdateexcept": 794, "include_backend": [794, 818], "ivyattributeerror": [794, 818], "attributeerror": [794, 818, 836], "ivybroadcastshapeerror": [794, 818], "ivydeviceerror": 794, "ivydtypepromotionerror": [794, 818], "ivyindexerror": [794, 818], "ivyinvalidbackendexcept": 794, "ivynotimplementedexcept": [794, 818], "notimplementederror": 794, "ivyvalueerror": [794, 818], "handle_except": [794, 821, 823], "add_array_spec": 795, "fn_array_spec": 795, "set_logging_mod": 796, "debug": [796, 805, 806, 812, 813, 824, 829, 832, 837, 855], "unset_logging_mod": 796, "print_stat": 797, "viz": 797, "snakeviz": 797, "bonu": 797, "cprofil": 797, "cprint": [798, 834], "grant": 799, "autotun": [799, 859], "grow": [799, 855], "peopl": [799, 803, 805, 806, 807, 855, 857], "wip": [799, 848], "docker": [799, 802, 803, 819], "pull": [799, 800, 804, 805, 808, 816, 820, 830, 832, 840, 841, 846], "sweat_smil": 799, "setting_up": 799, "awai": [799, 853, 855], "jax_fn": 799, "jax_x": 799, "torch_x": 799, "torch_fn": 799, "motiv": [799, 836, 845], "contextu": 799, "problem": [799, 804, 806, 808, 809, 815, 826, 836, 845, 851, 857, 861], "explos": [799, 843, 845], "adher": [799, 808, 814, 817, 821, 832, 834, 839, 844, 845, 851, 852, 861], "focus": [799, 814, 830, 853, 854, 855, 861, 862], "orient": 799, "contributor": [799, 800, 802, 804, 805, 806, 819, 826, 833, 855], "shorter": [799, 836], "ensp": 799, "customiz": [799, 811], "deepmind_perceiver_io": 799, "sm_framework": 799, "segmentation_model": 799, "sm": 799, "torch_sm": 799, "metric": [799, 840], "iou_scor": 799, "rax": 799, "torch_rax": 799, "poly1_softmax_loss": 799, "madmom": 799, "madmon": 799, "torch_madmom": 799, "freq": 799, "audio": 799, "hz2midi": 799, "torch_loss": 799, "maxpooling1d": 799, "pool_siz": 799, "tf_kornia": 799, "tf_rax": 799, "tf_madmom": 799, "tf_loss": 799, "_forward_classifi": [799, 849], "forward_classifi": [799, 849], "hk_eff_encod": 799, "dummy_x": 799, "jax_sm": 799, "jax_madmom": 799, "jax_loss": 799, "np_kornia": 799, "np_sm": 799, "np_rax": 799, "np_loss": 799, "yourself": [799, 804, 806, 820, 829, 832], "favourit": [799, 805], "pipelin": [799, 801, 807, 808, 809, 827, 830, 839, 842, 844, 849, 855, 856, 861], "hyperparam": 799, "idea": [799, 804, 828, 830, 835, 846, 854], "instantli": [799, 849], "essenti": [799, 804, 810, 812, 815, 816, 822, 825, 826, 827, 844, 845, 861], "mainli": [799, 804, 807, 824, 826, 829, 835, 837, 842, 855], "handler": [799, 833, 835, 839, 842], "scene": [799, 807, 833, 835, 843, 844, 855], "facilit": 799, "mse_loss": 799, "jax_ms": 799, "tf_mse": 799, "np_mse": 799, "torch_ms": 799, "someth": [799, 802, 806, 810, 819, 820, 830, 837, 838, 840, 841, 861], "favorit": 799, "flexibl": [799, 812, 814, 821, 824, 830, 832, 855], "everyon": [799, 800, 804, 805, 806, 840, 846], "plan": [799, 841], "interoper": [799, 845, 852, 853, 855, 858], "believ": [799, 806, 845], "feedback": [799, 804, 813], "appreci": 799, "amaz": 799, "journei": [799, 800], "ambiti": 799, "season": 799, "perfect": 799, "ask": [799, 804, 805, 816, 834, 836, 840, 841, 846], "fellow": 799, "twitter": 799, "sneak": 799, "peek": 799, "stai": [799, 813], "proper": [799, 804, 826, 849], "credit": 799, "accompani": 799, "lenton2021ivi": 799, "inter": 799, "author": [799, 804, 806, 853, 857], "lenton": 799, "daniel": 799, "pardo": 799, "fabio": 799, "falck": 799, "fabian": 799, "jame": 799, "stephen": 799, "clark": 799, "ronald": 799, "journal": 799, "arxiv": 799, "preprint": 799, "2102": 799, "02886": 799, "year": [799, 808, 840, 844, 846, 855], "strongli": [800, 805, 826, 861, 862], "engag": [800, 806, 845], "skill": [800, 857], "veteran": 800, "effort": [800, 804, 840, 845, 851, 855, 861], "board": [800, 811], "stage": [800, 806, 807, 808, 811, 829, 845, 855], "excit": [800, 807, 845], "Be": [801, 811], "awar": [801, 811, 818, 820], "linux": [801, 805, 806, 811, 858, 860], "regularli": [801, 811, 813], "internet": [801, 811], "codespac": [801, 811, 819], "make_doc": 801, "sh": [801, 805, 806, 808, 813], "host": [801, 813, 840, 845, 860], "pwd": 801, "ssh": [801, 813], "make_docs_without_dock": [801, 811], "assist": [802, 819], "runtimeerror": [802, 819], "logaddexp2_cpu": [802, 819], "falsifi": [802, 808, 819, 829], "test_logaddexp2": [802, 819], "backend_fw": [802, 819, 827], "dtype_and_x": [802, 819, 827, 829], "reproduce_failur": [802, 808, 819, 823, 829], "axicy2bkaamobaar2waaaacvaai": [802, 819], "decoartor": [802, 819], "with_unsupported_dtyp": [802, 814, 819, 826], "25830078125": [802, 819], "258544921875": [802, 819], "test_acosh": [802, 819], "axicy2baabyqwqgiaabdaai": [802, 819], "quit": [802, 806, 809, 816, 817, 819, 822, 823, 829, 832, 855, 861], "41421356": [802, 819], "41421356e": [802, 819], "34078079e": [802, 819], "154": [802, 819], "test_ab": [802, 805, 819, 829], "000j": [802, 819], "154j": [802, 819], "axicy2zkyaiibibgziaaxqhexsaab7juqaaamteazq": [802, 819], "experiment": [802, 806, 814, 826, 830, 834, 855], "thread": [802, 804, 805, 806, 808, 809, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 837, 855], "pycharm": [802, 827, 829], "few": [803, 804, 806, 812, 814, 815, 821, 822, 824, 825, 827, 829, 832, 834, 835, 836, 837, 838, 846, 855, 857], "climb": 803, "steep": 803, "curv": 803, "realpython": 803, "pyn": 803, "exchang": [803, 845, 851, 853], "pilot": [803, 841], "stuck": [803, 804], "spell": 803, "sound": [803, 813, 833], "frequent": [804, 806, 810, 855], "outlin": [804, 805, 806, 807, 812, 814, 817, 822, 825, 826, 829], "broad": [804, 857], "individu": [804, 806, 808, 810, 814, 822, 826, 855, 858, 861, 862], "clearli": [804, 806, 816, 827, 829, 845, 859], "qualiti": [804, 806], "lie": 804, "craft": [804, 828, 829], "fault": [804, 816, 855], "situat": [804, 806, 813, 839], "opportun": 804, "tackl": [804, 826], "challeng": [804, 810, 861], "categoris": [804, 808, 826], "encourag": [804, 820, 840, 845], "comfort": [804, 805, 818], "valuabl": [804, 806], "linkag": 804, "confid": 804, "submit": [804, 820], "merg": [804, 806, 808, 813, 826, 855], "meet": [804, 826], "scipi": [804, 845, 857, 862], "mindspor": 804, "simpler": [804, 806, 820, 848, 856, 862], "member": [804, 806, 826, 841, 845], "comment": [804, 805, 806, 808, 814, 820, 826, 828, 832], "pr": [804, 806, 808, 820, 826, 827, 829], "composition": 804, "feasibl": [804, 813, 845, 848], "pend": 804, "helpfulli": [804, 832, 853], "problemat": [804, 805], "unimpl": 804, "issue_link": 804, "alias_nam": 804, "notic": [804, 809, 813, 819, 820, 829, 832, 848], "push": [804, 806, 808, 827, 829, 861], "liner": 804, "meanwhil": [804, 813], "reselect": 804, "faithfulli": 804, "creation_routin": [804, 827], "indexing_routin": 804, "ma": 804, "manipulation_routin": 804, "mathematical_funct": [804, 826], "sorting_searching_count": 804, "ufunc": [804, 826], "matrix_and_vector_product": 804, "matrix_eigenvalu": 804, "norms_and_other_numb": 804, "solving_equations_and_inverting_matric": 804, "gleam": 804, "uncom": 804, "test_numpy_inn": 804, "test_frontend": [804, 813, 819, 827], "unsur": [804, 829], "statu": [804, 813, 820, 846], "refrain": 804, "checkbox": [804, 805], "aforement": 804, "parent": [804, 813, 836], "arraywithelementwis": [804, 809, 836], "containerwithmanipul": 804, "thorough": [804, 817, 821, 829], "add_reformatting_checklist_": 804, "category_nam": [804, 814, 815, 817, 821, 822], "autom": [804, 813, 820, 829, 842, 857], "bot": [804, 820], "markdown": [804, 811], "patient": [804, 805], "elabor": 804, "struggl": 804, "assigne": 804, "status": 804, "central": [804, 820, 832, 845, 861], "analyz": [804, 842], "relevant_submodul": 804, "roadmap": [804, 813], "soon": [804, 806, 813, 814, 840, 848], "deem": [804, 826], "subtask": 804, "clearer": [804, 818, 827, 837], "backend_nam": [804, 810, 814, 815, 817, 821, 822, 823], "sometim": [804, 805, 806, 808, 814, 822, 826, 829, 832], "rare": [804, 815, 840, 860], "button": [804, 805, 806, 819], "centr": 804, "predetermin": 804, "superset": [804, 807, 822, 825, 840], "reserv": 804, "happi": [805, 819, 840, 846], "your_usernam": [805, 819], "your_fold": [805, 819], "enter": [805, 806, 809, 814, 815, 819, 821, 823], "sync": [805, 808, 819], "remot": [805, 808, 819, 820], "nutshel": [805, 821], "hook": [805, 820, 828], "lint": [805, 807], "succe": [805, 848], "whatev": [805, 812, 840], "elig": 805, "student": 805, "licens": [805, 858], "remind": 805, "expir": 805, "won": [805, 806, 812, 814, 839, 841, 845, 846, 848, 849, 850], "profession": 805, "trial": 805, "jetbrain": 805, "month": [805, 844], "bui": [805, 861], "paid": 805, "rapid": [805, 844, 845, 855], "pace": 805, "person": [805, 806], "abil": [805, 832, 835, 840, 855], "perhap": [805, 836, 837, 838, 840, 861], "conda": [805, 845, 857], "ivy_dev": [805, 806], "icon": [805, 806, 819], "panel": 805, "vscode": [805, 819], "palett": 805, "ctrl": [805, 806], "mac": [805, 806], "intel": [805, 845, 853, 860], "m1": 805, "optional_apple_silicon_1": 805, "optional_apple_silicon_2": 805, "array_api_test": [805, 806, 808, 819], "test_array_api": [805, 806, 808, 819, 829], "suit": [805, 807, 808, 813, 819, 828, 829, 837, 845, 855, 861], "cmd": 805, "bat": [805, 806], "virtualenv": 805, "tick": [805, 806, 813], "nz2": 805, "openssl": 805, "libssl1": 805, "1_1": 805, "1f": 805, "1ubuntu2": 805, "19_amd64": 805, "deb": 805, "dpkg": 805, "mitig": [805, 861], "desktop": [805, 819], "powershel": 805, "admin": 805, "deploy": [805, 849, 854, 857, 858, 861, 862], "menu": [805, 819], "introspect": 805, "dialog": 805, "persist": 805, "earlier": [805, 806, 814, 830], "virtualis": 805, "bio": [805, 845], "dropdown": [805, 813], "dockerfil": 805, "ca": 805, "certif": 805, "gnupg": 805, "lsb": 805, "keyr": 805, "fssl": 805, "gpg": 805, "dearmor": 805, "echo": [805, 813, 841], "arch": 805, "lsb_releas": 805, "null": [805, 819], "ce": 805, "cli": 805, "containerd": 805, "systemctl": 805, "softwar": [805, 806, 844, 845, 853, 858, 859, 860], "press": [805, 806, 837], "4a": 805, "socket": 805, "rwx": 805, "sock": 805, "pid": 805, "editor": 805, "pytest": [805, 806, 808, 813, 819, 823, 829], "keyboard": 805, "screenshot": 805, "pop": [805, 819, 845], "test_elementwis": 805, "bar": [805, 819], "shell": [805, 806, 808, 813], "setup_test": 805, "run_ivy_core_test": 805, "run_ivy_nn_test": 805, "run_ivy_stateful_test": 805, "run_test": [805, 813], "test_depend": 805, "test_ivy_cor": 805, "test_ivy_nn": 805, "test_ivy_st": 805, "unix": 805, "test_": [805, 827], "test_cor": [805, 806, 827], "offici": [805, 814, 834], "wish": [805, 826], "ivy_nn": 805, "ivy_st": 805, "header": [805, 806, 828], "arrow": 805, "test_stat": 805, "test_submodule_nam": 805, "test_function_nam": 805, "debugg": 805, "studio": [805, 819, 829], "especi": [805, 810, 820, 844, 855], "afterward": [805, 837], "background": [805, 811, 819, 855, 857], "overlap": [805, 813, 819, 830, 832, 856], "test_file_path": [805, 819], "test_fn_nam": [805, 819], "engin": [805, 855, 857, 858], "devcontain": 805, "comma": 805, "postcreatecommand": 805, "post_create_command": 805, "poststartcommand": 805, "safe": [805, 826], "containerworkspacefold": 805, "reopen": 805, "test_fle_path": 805, "slash": 805, "isol": [805, 806, 856, 861], "container": 805, "intens": 805, "headach": 805, "arm": [805, 806], "vm": [805, 813], "azur": 805, "cloud": [805, 813, 857], "theme": [805, 811], "ipad": 805, "browser": [805, 811], "quota": 805, "requisit": 805, "pane": [805, 806, 813], "dockerfilegpu": 805, "ivv": 805, "multiv": 805, "multivers": [805, 830], "dockerfilemultivers": 805, "dockerhub": 805, "upto": [805, 806], "minut": [805, 813], "launch": 805, "quickli": [805, 806, 813, 837, 838, 844, 846, 855, 862], "kindli": [805, 828], "guidelin": 805, "colour": 805, "chanc": 805, "troubleshoot": 805, "ever": 805, "flask": [805, 819], "toolbar": [805, 806, 819], "_array_modul": [805, 808, 819], "refresh": [805, 819], "pytestarg": [805, 819], "unittesten": [805, 819], "pytesten": [805, 819], "autotestdiscoveronsaveen": [805, 819], "conftest": 805, "serv": [805, 806, 809, 812, 821, 822, 826, 827, 829, 832, 833, 842, 853], "aren": [805, 814], "record": [805, 840, 856], "available_config": 805, "cp310": 805, "x86": [805, 860], "newer": [805, 829], "_compil": 805, "meantim": 805, "suffici": [805, 816, 826, 829], "bear": [805, 809, 812, 814, 826], "tendenc": 806, "land": 806, "unrel": [806, 845], "fly": [806, 855], "internship": 806, "suspect": 806, "iii": 806, "issue_numb": 806, "12345": 806, "rememb": 806, "respond": 806, "dai": [806, 820], "freed": 806, "obvious": [806, 813], "hypothet": 806, "frustrat": 806, "delai": [806, 848], "busi": 806, "inact": 806, "unfairli": 806, "investig": 806, "name_of_your_branch": 806, "date": [806, 808], "complic": [806, 827, 834], "merge_with_upstream": 806, "abort": 806, "tediou": [806, 816, 832], "stash": [806, 820], "reinstat": 806, "uncommit": 806, "unstag": [806, 820], "untrack": 806, "atlassian": 806, "wrote": 806, "piec": [806, 809, 822, 823, 834, 848, 851, 853], "blame": 806, "eg": 806, "week": [806, 846], "grep": 806, "commit_id": 806, "handi": 806, "histori": 806, "toggl": 806, "highlight": [806, 813, 816, 826, 828], "approv": 806, "someon": [806, 840], "hash": [806, 837], "cancel": 806, "speedup": 806, "unavail": 806, "tickbox": 806, "span": [806, 853, 861], "intent": [806, 825], "discourag": 806, "adopt": [806, 809, 821, 832, 845, 854, 855, 860], "philosophi": 806, "infrequ": 806, "earli": [806, 855], "wast": [806, 813], "spot": [806, 816, 822], "mistak": 806, "mountain": 806, "advoc": [806, 840], "session": [806, 855], "beauti": 806, "particularli": [806, 837, 840, 848, 853], "care": [806, 815, 826, 832, 839, 845], "undo": 806, "stress": 806, "nifti": 806, "reassur": 806, "local_path_to_ivi": 806, "subfold": [806, 827, 829, 830], "dep": 806, "fresh": 806, "arsen": 806, "exec": 806, "ivy_contain": 806, "test_imag": 806, "test_random_crop": 806, "test_creation_funct": 806, "test_arang": 806, "cursor": 806, "alt": 806, "blog": 806, "breakpoint": 806, "gutter": 806, "caret": 806, "f8": 806, "f9": 806, "Into": 806, "f7": 806, "smart": 806, "fragment": [806, 851, 853, 857], "wherein": [806, 822, 829], "failur": [806, 813, 827, 829], "weed": [807, 833], "tour": 807, "formatt": [807, 820], "conjunct": 808, "establish": [808, 857], "popular": [808, 855], "sens": [808, 814, 816, 826, 828, 836], "unconnect": 808, "initialis": [808, 826, 829], "strang": [808, 836], "thoroughli": 808, "test_linalg": [808, 827], "test_set_funct": 808, "test_signatur": 808, "excess": [808, 810, 816], "array_modul": 808, "vv": 808, "test_manipulation_funct": 808, "test_concat": [808, 829], "nb": 808, "liber": 808, "______________________": 808, "test_remaind": 808, "_______________________": 808, "test_operators_and_elementwise_funct": 808, "1264": 808, "1277": 808, "binary_param_assert_against_refimpl": 808, "ctx": 808, "620": 808, "binary_assert_against_refimpl": 808, "324": 808, "scalar_o": 808, "17304064": 808, "binaryparamcontext": 808, "axic42baaowcnp": 808, "rumwmabaear0": 808, "make_binary_param": 808, "numeric_dtyp": 808, "left_strat": 808, "left_sym": 808, "right_strat": 808, "right_sym": 808, "right_is_scalar": 808, "binary_param_assert_dtyp": 808, "binary_param_assert_shap": 808, "recreat": 808, "unexpectedli": 808, "discrep": [808, 827], "test_asarray_arrai": 808, "test_floor_divid": 808, "health": 808, "test_iop": 808, "__imod__": 808, "isequ": 808, "test_matrix_norm": 808, "alter": 808, "tweak": 808, "array_api_methods_to_test": 808, "test_special_cas": 808, "__ipow__": 808, "is_integ": 808, "easier": [808, 809, 810, 814, 827, 830, 842, 855, 857], "revisit": [808, 821], "_data": [809, 825, 826, 836], "organiz": [809, 812, 826], "underpin": [809, 812, 834], "programmat": [809, 812, 856], "backup": [809, 811, 812], "accident": [809, 812, 826], "absent": [809, 812], "auto": [809, 811, 812, 820, 837], "__mul__": [809, 812, 816, 821, 832, 836], "throw": [809, 814, 815, 818, 819, 836, 855], "imposs": 809, "inputs_to_native_arrai": [809, 822, 823], "outputs_to_ivy_arrai": [809, 814, 815, 821, 822, 823], "secondli": [809, 814], "__ivy_array_function__": 809, "inspir": 809, "__torch_function__": 809, "myarrai": 809, "handled_funct": 809, "notimpl": 809, "issubclass": 809, "four": [809, 814, 816, 821, 822, 829, 832, 837], "enough": [809, 813, 814, 815, 829, 836, 837, 838], "ivy_funct": 809, "my_ab": 809, "my_arrai": 809, "implicit_backend": [810, 834], "__dict__": [810, 825, 834], "ivy_original_dict": [810, 834], "fallback": 810, "live": [810, 811, 814, 845, 846, 851, 853], "scope": [810, 856, 860], "dlpack": 810, "set_dynamic_backend": 810, "unset_dynamic_backend": 810, "dynamic_backend_a": 810, "set_": 810, "unset_": 810, "backend_handl": 810, "requires_grad": 810, "memory_format": 810, "preserve_format": 810, "weren": 810, "vast": [810, 814, 855], "minor": [810, 832, 840], "fn_name_v_1p12_and_abov": 810, "fn_name_v_1p01_to_1p1": 810, "heavili": [811, 823, 840], "characterist": 811, "conf": 811, "cleanup": 811, "readm": [811, 840], "maxdepth": 811, "caption": 811, "related_work": 811, "deep_div": 811, "faq": 811, "glossari": 811, "autosummari": 811, "top_functional_toc": 811, "restructuredtext": 811, "discov": [811, 814], "ivy_toctree_caption_map": 811, "stub": 811, "unfortun": [811, 820], "linker": 811, "foo": 811, "discussion_channel_map": 811, "1000043690254946374": 811, "1000043749088436315": 811, "forum": [811, 841], "seri": [811, 814, 826, 829, 855, 857], "discussion_paragraph": 811, "discord_link": 811, "channel_link": 811, "gg": 811, "zvqdvbznqj": 811, "799879767196958751": 811, "channel_id": 811, "autoskippablemethod": 811, "skippable_method_attribut": 811, "__qualname__": 811, "autodoc": 811, "__doc__": 811, "autoivydata": 811, "mutual": [812, 822], "containerwithelementwis": 812, "__repr__": 812, "__getattr__": [812, 848], "__setattr__": [812, 848], "__contains__": 812, "__getstate__": 812, "__setstate__": 812, "unpickl": 812, "num_dim": [812, 839], "restrict": [812, 813, 826, 834, 848, 852], "enforc": [812, 836], "extern": [812, 821, 826, 829, 830], "lefthand": 812, "righthand": 812, "handle_nest": [812, 821, 822, 823, 834], "absenc": [812, 821, 855], "implicitli": [812, 824, 829, 834], "log_pr": [812, 822, 825], "intuit": [812, 829, 837, 838, 851], "chronolog": 812, "concurr": [812, 813, 822, 855], "despit": [812, 814, 815, 827, 834, 845, 852, 855], "__list__": 812, "whatsoev": [812, 822, 842, 861], "children": 812, "shallowest": 812, "deepest": 812, "rollback": 813, "incorpor": [813, 827, 837, 855], "techniqu": 813, "triplet": 813, "test_torch": [813, 827], "test_tensor": [813, 827], "test_torch_instance_arctan_": 813, "12500": 813, "daili": 813, "huge": [813, 837, 843, 845, 855, 861], "shoot": 813, "impact": [813, 829, 838, 857], "_reduce_loss": [813, 822, 825], "test_nn": 813, "test_loss": 813, "test_binary_cross_entropy_with_logit": 813, "test_cross_entropi": 813, "test_binary_cross_entropi": 813, "test_sparse_cross_entropi": 813, "test_loss_funct": 813, "test_torch_binary_cross_entropi": 813, "test_torch_cross_entropi": 813, "binary_cross_entropy_with_logit": 813, "torch_binary_cross_entropi": 813, "torch_cross_entropi": 813, "magic": 813, "readthedoc": 813, "pedagog": 813, "f_1": 813, "t_1": 813, "t_3": 813, "t_7": 813, "t_": 813, "f_m": 813, "cyclic": 813, "intellig": [813, 829, 857], "tests_fil": 813, "file_nam": [813, 829, 830], "tests_lin": 813, "correspondingli": 813, "tests_to_run": 813, "determine_tests_lin": 813, "mongodb": 813, "databas": [813, 829], "mechan": [813, 840], "secret": 813, "db": 813, "ssh_deploy_kei": 813, "suffic": [813, 823, 829], "massiv": 813, "yml": 813, "felicit": 813, "clone_map": 813, "deploy_kei": 813, "user_email": 813, "user_nam": 813, "target_branch": 813, "github_serv": 813, "deploy_key_fil": 813, "ssh_known_hosts_fil": 813, "known_host": 813, "keyscan": 813, "git_ssh_command": 813, "userknownhostsfil": 813, "email": [813, 845], "methodologi": 813, "master1": 813, "restructur": 813, "_map": 813, "t_2": 813, "t_n": 813, "index_map": 813, "test_map": 813, "snowbal": 813, "recalibr": 813, "workflow_dispatch": 813, "schedul": [813, 840, 855, 862], "cron": 813, "saturdai": 813, "night": 813, "pm": 813, "gut": 813, "lesser": [813, 818], "lol": 813, "hour": [813, 846], "cater": [813, 828], "master2": 813, "master32": 813, "synchron": 813, "runner2": 813, "corrupt": 813, "decoupl": [813, 838], "150": 813, "cycl": [813, 829], "yellow": 813, "queu": 813, "redirect": 813, "book": 813, "onrend": 813, "jo": 813, "ran": 813, "badg": 813, "clickabl": 813, "all_dtyp": 814, "all_numeric_dtyp": 814, "all_int_dtyp": 814, "all_float_dtyp": 814, "replic": [814, 824, 825, 826], "thirdli": 814, "native_float32": 814, "importantli": [814, 836, 839], "arguabl": [814, 815, 826], "jaxarrai": [814, 815, 818, 821, 825, 830, 834], "_handle_0_dim_output": 814, "subtli": [814, 825], "promote_types_frontend_nam": 814, "promote_types_of_frontend_name_input": 814, "frontend_nam": 814, "upcast": 814, "nearli": [814, 821, 823, 855], "downcast": 814, "footprint": 814, "concret": 814, "aris": [814, 820, 840, 845], "utterli": 814, "meant": [814, 816, 825], "twice": 814, "disadvantag": 814, "relax": 814, "f64": 814, "unwant": 814, "primaci": 814, "resembl": 814, "compound": 814, "infer_dtyp": [814, 815, 821, 823], "settabl": [814, 815], "handle_out_argu": [814, 815, 821, 822, 823, 825, 834], "infer_devic": [814, 815, 821, 823], "deleg": [814, 862], "shape_to_tupl": 814, "with_supported_dtyp": 814, "unment": 814, "_cast_for_unary_op": [814, 822, 825], "target_typ": 814, "syntax": [814, 844, 845, 855], "unsupported_dtyp": 814, "supported_dtypes_and_devic": 814, "with_unsupported_device_and_dtyp": 814, "globals_getter_func": 814, "f2": 814, "lack": [814, 825, 855, 862], "mandat": [814, 825, 829, 830, 845], "confus": [814, 818, 825, 832, 842, 846], "inconsist": [814, 818, 824], "is_nan": 814, "supported_dtyp": 814, "anytim": 814, "84530": 814, "unwarr": 814, "risk": [814, 861], "needlessli": 814, "bloat": 814, "undergo": [814, 840], "unsupported_devic": 814, "supported_devic": 814, "downsid": 814, "coverag": [814, 829], "undesir": 814, "accomplish": 814, "upcast_data_typ": 814, "downcast_data_typ": 814, "crosscast_data_typ": 814, "cast_data_typ": 814, "downcast_data_dtyp": 814, "vice": 814, "versa": 814, "till": 814, "crosscast": 814, "exmp1": 814, "watch": [814, 826], "handle_numpy_arrays_in_specific_backend": [814, 821], "cate": 814, "understood": 814, "consumpt": [814, 859], "dual": 815, "categor": [815, 822, 826], "210": 815, "_handle_except": [815, 818], "1013": 815, "_handle_nest": [815, 818], "905": 815, "_handle_out_argu": [815, 818], "441": 815, "_inputs_to_native_arrai": [815, 818], "new_arg": [815, 818], "new_kwarg": [815, 818], "_outputs_to_ivy_arrai": [815, 818], "358": 815, "_handle_array_funct": [815, 818], "_handle_device_shift": 815, "handle_device_shift": [815, 823], "crucial": [815, 824], "device_shifting_dev": 815, "__enter__": 815, "__exit__": 815, "mostli": [815, 825, 829], "soft_devic": 815, "eight": [816, 833], "op_nam": 816, "__r": 816, "unsurprisingli": [816, 844], "recap": [816, 838], "combinatori": 816, "okai": [816, 832, 834], "spec": [816, 817], "my_func": [816, 830], "some_flag": 816, "another_flag": 816, "jointli": 816, "5574077": 816, "1850398": 816, "5463025": 816, "8422884": 816, "91601413": 816, "9647598": 816, "3738229": 816, "1597457": 816, "0963247": 816, "9955841": 816, "3278579": 816, "asid": 816, "increasingli": [816, 848], "14254655": 816, "1578213": 816, "380515": 816, "trivial": [816, 825], "failing_fn_nam": 816, "onlin": [816, 817], "minutest": 816, "contrast": [817, 821, 826, 861], "preview": 817, "incorrectli": [817, 848], "needless": [817, 827], "renam": [817, 826], "judgment": 817, "operator_nam": 817, "succinct": 817, "docst": 817, "native_error": 818, "_combine_messag": 818, "truli": [818, 836], "wrong": [818, 820, 823, 826, 832], "198": 818, "392": 818, "_handle_array_like_without_promot": 818, "805": 818, "432": 818, "349": 818, "other_test": 818, "523": 818, "_handle_numpy_out": 818, "396": [818, 838], "_outputs_to_numpy_arrai": 818, "_inputs_to_ivy_arrays_np": 818, "ivy_arg": 818, "ivy_kwarg": 818, "453": 818, "_from_zero_dim_arrays_to_scalar": 818, "truth_value_test": 818, "visibl": 818, "unwieldi": 818, "squash": 818, "hide": [818, 848], "cleaner": [818, 837], "caught": [818, 820], "rethrow": 818, "_print_traceback_histori": 818, "error_stack": 818, "axiserror": 818, "polici": [818, 823, 829, 831], "moreov": 818, "submoodul": 819, "test_jax_transpos": 819, "manipulaiton": 819, "test_jax": [819, 827], "test_numpi": [819, 827], "test_manipul": [819, 827, 829], "preconditionnotmet": 819, "densetensor": 819, "holder_": 819, "phi": 819, "dense_tensor_impl": 819, "array_and_ax": 819, "aaegbaegaqaaaaaaaaaaaaab": 819, "black": 820, "flake8": 820, "linter": 820, "autoflak": 820, "docformatt": 820, "pydocstyl": 820, "yaml": 820, "patch1687898304": 820, "8072": 820, "3516aed563": 820, "reformat": 820, "akshai": 820, "jain": 820, "gui": 820, "cryptic": 820, "garden": 820, "utc": 820, "didn": 820, "human": 820, "intervent": 820, "typo": 820, "ui": 820, "handle_array_like_without_promot": [821, 823], "to_native_arrays_and_back": [821, 823, 834], "handle_array_funct": [821, 823], "inputs_to_native_shap": [821, 823], "rational": [821, 825, 832], "__div__": [821, 832], "484": 821, "annot": 821, "brittl": 821, "freeli": 821, "inde": [821, 832, 840, 853], "technic": [821, 825, 840, 855, 857], "original_typ": 821, "cumbersom": 821, "hinder": [821, 844], "venn": 822, "diagram": [822, 861], "light": [822, 830, 840, 842, 856, 861], "maximis": 822, "encompass": 822, "partial_mixed_handl": [822, 823, 832], "handle_partial_mixed_funct": [822, 823, 832], "fn_decor": 822, "mixed_backend_wrapp": [822, 825], "to_add": 822, "to_skip": 822, "inputs_to_ivy_arrai": [822, 823], "modif": [822, 855], "briefli": [822, 829, 837], "get_all_arrays_on_dev": 822, "outputs_to_ivy_shap": 823, "outputs_to_native_arrai": 823, "handle_view_index": [823, 825], "handle_view": [823, 825], "handle_rag": 823, "handle_backend_invalid": 823, "handle_nan": 823, "to_native_shapes_and_back": 823, "modern": [824, 844, 845, 860], "inter_func": 824, "custom_grad_fn": 824, "args1": 824, "eas": [824, 855], "program": [825, 852, 853, 855, 858, 859, 862], "speak": 825, "val_n": 825, "base_idx": 825, "_manipulation_stack": 825, "base_flat": 825, "_view_ref": 825, "_update_view": 825, "contigu": 825, "c_contigu": 825, "ascontiguousarrai": 825, "copyto": 825, "_is_vari": 825, "tensor_scatter_nd_upd": 825, "is_vari": 825, "_update_torch_view": 825, "predominantli": [825, 830], "support_native_out": [825, 834], "_scalar_output_to_0d_arrai": 825, "_wrap_fn": 825, "dim0": 825, "dim1": 825, "res_floor": 825, "extent": [825, 826], "to_out_fn": 825, "add_wrapp": 825, "paradigm": [825, 840, 855], "expans": 825, "brief": [825, 829], "weak": 825, "_torch_bas": 825, "_torch_view_ref": 825, "_torch_manipul": 825, "weakli": 825, "adequ": 825, "tf_frontend": 826, "lax": [826, 827, 832, 839, 840], "torch_frontend": [826, 827], "numpy_frontend": 826, "jax_frontend": 826, "to_ivy_arrays_and_back": [826, 827], "fidel": 826, "algebra": [826, 853, 854, 855, 858, 862], "dynamic": 826, "mimic": 826, "arithmetic_oper": 826, "handle_numpy_out": 826, "handle_numpy_dtyp": 826, "handle_numpy_cast": 826, "from_zero_dim_arrays_to_scalar": 826, "_add": 826, "same_kind": 826, "subok": [826, 827, 832], "promote_types_of_numpy_input": 826, "underscor": 826, "unhandl": 826, "trigonometric_funct": 826, "_tan": 826, "check_tensorflow_cast": 826, "raw_op": [826, 827], "map_raw_ops_alia": 826, "output_typ": 826, "kwargs_to_upd": 826, "pointwise_op": 826, "sensibl": 826, "ahead": [826, 830, 855], "reduce_logsumexp": 826, "logsumexp": 826, "trick": 826, "max_input_tensor": 826, "preferred_element_typ": 826, "languag": [826, 834, 842, 844, 846, 853, 856, 858, 859, 860, 861], "offer": [826, 838, 846, 855, 861, 862], "finer": 826, "logicaland": 826, "np_frontend": 826, "_ivy_arrai": 826, "radd": 826, "_init_data": 826, "_process_str_data": 826, "_dtype": [826, 827, 836], "_shape": [826, 836], "govern": 826, "promote_types_of_": 826, "_input": 826, "promote_types_of_torch_input": [826, 827], "handle_numpy_casting_speci": 826, "new_fn": 826, "equiv": 826, "unsaf": 826, "array_type_test": 826, "_isfinit": 826, "organis": 826, "grasp": 826, "youtub": 826, "knowledg": 827, "np_frontend_help": 827, "open_task": 827, "test_lax": 827, "test_oper": 827, "test_jax_tan": 827, "test_mathematical_funct": 827, "test_trigonometric_funct": 827, "dtypes_values_cast": 827, "dtypes_values_casting_dtyp": 827, "arr_func": 827, "get_num_positional_args_ufunc": 827, "test_numpy_tan": 827, "handle_where_and_array_bool": 827, "test_tensorflow": 827, "test_math": 827, "test_tensorflow_tan": 827, "test_pointwise_op": 827, "test_torch_tan": 827, "_fill_valu": 827, "test_glob": 827, "test_jax_ful": 827, "test_from_shape_or_valu": 827, "_input_fill_and_dtyp": 827, "dtype_and_input": 827, "dtype_to_cast": 827, "input_fill_dtyp": 827, "test_numpy_ful": 827, "test_raw_op": 827, "test_tensorflow_fil": 827, "test_creation_op": 827, "with_arrai": 827, "test_torch_ful": 827, "add_nois": 827, "all_clos": 827, "_get_dtype_and_matrix": 827, "test_torch_qr": 827, "frontend_q": 827, "frontend_r": 827, "walkthrough": 827, "comparison_op": 827, "test_comparison_op": 827, "test_torch_great": 827, "all_alias": 827, "test_ndarrai": 827, "test_numpy_instance_add__": 827, "test_tensorflow_instance_add": 827, "1e04": 827, "allow_infin": 827, "test_torch_instance_add": 827, "_arrays_idx_n_dtyp": 827, "surprisingli": 827, "closest_relevant_group": 827, "strive": [827, 829, 832, 840, 857], "tailor": 828, "clariti": [828, 829, 832, 855], "weav": 828, "thrill": 828, "brim": 828, "stand": [828, 829], "testament": 828, "landscap": 828, "forese": 828, "refin": 828, "inquiri": 828, "fixtur": 829, "hit": [829, 834, 848], "eleg": [829, 855], "unexplor": 829, "artifact": 829, "bespok": 829, "_array_or_typ": 829, "rigor": [829, 844], "test_default_int_dtyp": 829, "print_hypothesis_exampl": 829, "custom_strategi": 829, "randomis": 829, "simplist": 829, "intricaci": 829, "glanc": 829, "one_of": 829, "datum": 829, "pipe": 829, "array_or_scal": 829, "len_of_arrai": 829, "test_add": 829, "test_gpu_is_avail": 829, "pretest": 829, "snippet": [829, 849], "criterion": 829, "valid_ax": 829, "hoc": 829, "11228": 829, "268": 829, "wherev": 829, "9622": 829, "28136": 829, "6375": 829, "12720": 829, "21354": 829, "900e": 829, "57384": 829, "25687": 829, "248": 829, "test_devic": 829, "array_shap": 829, "test_lay": 829, "some_sequ": 829, "arrays_valu": 829, "36418": 829, "213": 829, "21716926": 829, "none_or_list_of_float": 829, "get_prob": 829, "103515625e": 829, "099609375": 829, "probabilist": 829, "number_positional_argu": 829, "unreproduc": 829, "x_and_linear": 829, "is_torch_backend": 829, "x_shape": [829, 834], "weight_shap": 829, "bias_shap": 829, "ivy_np": 829, "valid_float_dtyp": 829, "test_demo": 829, "failing_test": 829, "traceback": 829, "shrink": 829, "prescrib": 829, "scratch": 829, "therebi": 829, "test_gelu": 829, "test_fil": 829, "phase": [829, 840, 855], "notabl": [829, 855], "max_exampl": 829, "deadlin": 829, "weird": 829, "systemat": 829, "safeguard": 829, "inabl": 829, "test_result_typ": 829, "9090909090909091": 829, "judgement": 830, "some_namespac": 830, "some_backend": 830, "another_backend": 830, "refactor": 830, "ongo": 830, "check_fill_value_and_dtype_are_compat": 830, "_to_devic": 830, "shouldn": [830, 848], "pin": 830, "unpinn": 830, "culmin": 830, "unsett": 831, "array_significant_figur": 831, "array_decimal_valu": 831, "warning_level": 831, "nan_polici": 831, "stablest": 831, "constantli": [832, 844], "answer": [832, 836, 840], "contradict": 832, "entail": 832, "sacrif": 832, "jacfwd": 832, "jacrev": 832, "banner": 832, "expens": 832, "incredibli": [832, 837, 840, 858], "price": 832, "pai": 832, "intrus": 832, "x_beta": 832, "equip": 832, "simplif": 832, "allevi": 832, "ineffici": [832, 840, 855], "fuse": 832, "hybrid": 832, "workaround": 832, "slip": 832, "radar": 832, "stumbl": 832, "gone": [833, 845], "fulfil": 833, "syntact": [834, 839], "power_seq": 834, "_determine_backend_from_arg": 834, "importlib": 834, "_backend_dict": 834, "x_flat": 834, "wi": 834, "wi_x": 834, "wii_x": 834, "wif_x": 834, "wig_x": 834, "wio_x": 834, "wh": 834, "ht": 834, "ct": 834, "hts_list": 834, "wii_xt": 834, "wif_xt": 834, "wig_xt": 834, "wio_xt": 834, "htm1": 834, "ctm1": 834, "wh_htm1": 834, "whi_htm1": 834, "whf_htm1": 834, "whg_htm1": 834, "who_htm1": 834, "ft": 834, "ot": 834, "reliabl": 834, "scalabl": [834, 844, 860, 861], "sacrific": 834, "hear": 834, "virtu": [834, 852], "pure_ivi": 834, "pure_torch": 834, "unclean": 834, "wx": 834, "temp": 834, "ivy_func": 834, "emphas": 834, "torchscript": [834, 842, 862], "example_input": 834, "static_argnum": [834, 848], "static_argnam": [834, 848], "primit": [835, 840, 853, 855], "upcom": 835, "hierarch": [835, 837, 838, 855], "arraywithactiv": 836, "arraywithcr": 836, "arraywithdatatyp": 836, "arraywithdevic": 836, "arraywithgener": 836, "arraywithgradi": 836, "arraywithimag": 836, "arraywithlay": 836, "arraywithlinearalgebra": 836, "arraywithloss": 836, "arraywithmanipul": 836, "arraywithnorm": 836, "arraywithrandom": 836, "arraywithsearch": 836, "arraywithset": 836, "arraywithsort": 836, "arraywithstatist": 836, "arraywithutil": 836, "_init": 836, "_size": 836, "_devic": 836, "_dev_str": 836, "_pre_repr": 836, "_post_repr": 836, "framework_str": 836, "pypep8nam": 836, "immut": 836, "claim": 836, "_native_wrapp": 836, "genuin": 836, "some_method": 836, "rewritten": 836, "littl": [836, 844, 857], "wonder": [836, 844, 846], "compartment": 836, "newshap": 836, "new_shap": 836, "tidi": 836, "crystal": 836, "ton": 837, "ado": [837, 838], "soup": 837, "walk": [837, 838], "cnt": 837, "3333335": 837, "autocomplet": 837, "midwai": 837, "agent": 837, "total_spe": 837, "total_height": 837, "total_width": 837, "ag": 837, "tot": 837, "total_": 837, "total_h": 837, "cnt0": 837, "cnt1": 837, "diff_0": 837, "diff_1": 837, "config0": 837, "config1": 837, "l0": 837, "decoder__l0": 837, "decoder__l1": 837, "encoder__l0": 837, "encoder__l1": 837, "l0__b": 837, "l0__w": 837, "l1__b": 837, "l1__w": 837, "printabl": 837, "foresight": 837, "untidili": 837, "update_ag": 837, "normalize_img": 837, "img_max": 837, "reduce_max": 837, "img_min": 837, "reduce_min": 837, "img_rang": 837, "agent_posit": 837, "agent_veloc": 837, "agent_cam_front_rgb": 837, "agent_cam_front_depth": 837, "agent_cam_rear_rgb": 837, "agent_cam_rear_depth": 837, "agent_cam_lidar": 837, "camera": 837, "front_rgb": 837, "front_depth": 837, "rear_rgb": 837, "rear_depth": 837, "lidar": 837, "rgb": 837, "rear": 837, "veloc": 837, "cam": 837, "cam_max": 837, "cam_min": 837, "cam_rang": 837, "five": 837, "allud": [837, 845], "perman": 837, "straightforward": 837, "dataload": 837, "_cnt": 837, "img_": 837, "_dataset_s": 837, "_batch_siz": 837, "_count": [837, 838], "__next__": 837, "img_fnam": 837, "loaded_img": 837, "batch_slic": 837, "0145": 837, "addbackward0": 837, "_create_vari": 838, "_input_channel": 838, "_output_channel": 838, "_w_shape": 838, "_b_shape": 838, "_with_bia": 838, "764": 838, "872": 838, "211": 838, "439": 838, "nightmar": 838, "overcom": 838, "v1": 838, "key0": 838, "linear3": 838, "v2": 838, "preced": [838, 845], "_w_init": 838, "_b_init": 838, "misnom": 838, "saw": 838, "_beta1": 838, "_beta2": 838, "_epsilon": 838, "_mw": 838, "_vw": 838, "_first_pass": 838, "_should_trac": 838, "new_v": 838, "_lr": 838, "_inplac": 838, "_stop_gradi": 838, "sparse_funct": 839, "vital": [839, 844], "_linear": 839, "jax_graph": 839, "to_backend": 839, "thinli": 839, "to_haiku_modul": 839, "loss_fn_t": 839, "without_apply_rng": 839, "update_rul": 839, "tree_multimap": 839, "trax": [839, 846], "objax": [839, 846], "matur": [840, 845, 855], "doubt": 840, "grate": 840, "probe": 840, "lock": 840, "gold": 840, "dex": 840, "tricki": [840, 842], "predictor": 840, "tight": 840, "dispatch": [840, 855, 858], "ast": 840, "autodiff": 840, "shine": 840, "merci": 840, "compet": [840, 855], "parallelis": 840, "spmd": 840, "mixtur": 840, "expert": 840, "sophist": 840, "depart": 840, "hundr": 840, "thousand": 840, "broadli": [840, 861], "supplementari": 840, "reusabl": [840, 853, 855], "fanci": [840, 855], "fusion": [840, 859], "lose": 840, "pmap": 840, "eventu": 840, "supplement": 840, "backdoor": 840, "callback": 840, "door": 840, "somewhat": [840, 855], "outsourc": 840, "ivy_root": 841, "pem": 841, "api_kei": 841, "asap": 841, "nail": 842, "scientist": 842, "correl": 842, "collabor": [843, 844, 845], "consortium": [843, 845], "grown": 844, "rapidli": 844, "shareabl": 844, "outdat": 844, "newest": 844, "prototyp": [844, 855], "obsolet": [844, 846], "invent": 844, "simultan": [844, 846], "runner": 844, "principl": [844, 853, 855, 858], "2006": 844, "cloth": 844, "forgiven": 845, "eyebrow": 845, "somehow": 845, "industri": [845, 855, 857], "funni": 845, "comic": 845, "charger": 845, "instant": 845, "contrari": 845, "bumpi": 845, "road": 845, "technologi": [845, 853, 857], "pcie": 845, "motherboard": 845, "raid": 845, "bluetooth": 845, "wireless": 845, "btx": 845, "sata": 845, "tcp": 845, "ip": 845, "smtp": 845, "send": [845, 860], "gmail": 845, "outlook": 845, "innov": 845, "growth": [845, 858], "necess": 845, "2015": [845, 855], "aros": 845, "mission": [845, 857], "ourselv": [845, 861], "quansight": [845, 861], "compani": [845, 851], "apach": [845, 857, 861], "onnx": [845, 853, 861], "cupi": [845, 855, 862], "modin": 845, "spyder": 845, "octoml": [845, 861], "sponsor": 845, "lg": 845, "electron": 845, "shaw": 845, "pursuit": 845, "complianc": 845, "convinc": 845, "celebr": 845, "abund": 846, "streamlin": [846, 858], "awesom": 846, "love": 846, "slew": 846, "inevit": [846, 856], "erron": 846, "poor": 846, "spin": 846, "sake": 846, "wouldn": 846, "frantic": 846, "lucid": 846, "honk": 846, "hasn": 846, "spend": [846, 855], "sonnet": 846, "trainer": [846, 862], "quo": 846, "dopamin": 846, "ignit": 846, "catalyst": 846, "lightn": 846, "fastai": 846, "publicli": [848, 849, 850], "logger": 848, "arg_stateful_idx": 848, "kwarg_stateful_idx": 848, "include_gener": 848, "array_cach": 848, "return_backend_traced_fn": 848, "lazygraph": [848, 849, 850], "sum_j": 848, "traced_fn": 848, "impos": 848, "comp_func": 848, "trade": 848, "bake": 848, "cont": 848, "new_attribut": 848, "resnet50": 848, "breed": 848, "autoimageprocessor": [848, 849], "resnetforimageclassif": [848, 849], "traced_graph": 848, "predicted_label": 848, "debug_mod": 849, "rough": 849, "transformed_with_st": 849, "bigger": 849, "hf": 849, "tf_model": 849, "tf_input": 849, "transpile_kwarg": 850, "transpiled_func": 850, "unified_func": 850, "rwork": 851, "vendor": [851, 857], "complimentari": [851, 861], "acycl": [851, 856], "insert_numb": 852, "insert_t": 852, "scaffold": [853, 861], "heart": 853, "toolchain": [853, 858], "assembli": [853, 860, 861], "idl": 853, "middl": 853, "emit": 853, "gnu": [853, 858], "broader": 853, "heterogen": 853, "aid": 853, "coprocessor": 853, "programm": [853, 860], "gate": 853, "onednn": 853, "sit": [853, 856, 861], "tandem": 853, "possess": 853, "khrono": [854, 860], "appl": 854, "coremltool": 854, "albeit": 854, "promin": 855, "abbrevi": 855, "laboratori": 855, "proprietari": [855, 859, 860], "mathwork": 855, "commerci": 855, "1984": 855, "toolbox": 855, "mupad": 855, "simulink": 855, "graphic": [855, 859, 860], "simul": 855, "million": [855, 858], "worldwid": 855, "scienc": [855, 857], "econom": 855, "2001": 855, "od": 855, "solver": 855, "cython": 855, "friendli": 855, "2002": 855, "lua": 855, "luajit": 855, "idiap": 855, "epfl": 855, "2005": 855, "numarrai": 855, "cpython": 855, "partli": 855, "2007": 855, "forest": 855, "boost": 855, "dbscan": 855, "inbuilt": 855, "esqu": 855, "aesara": 855, "datafram": 855, "2012": 855, "Its": 855, "polymorph": 855, "mpi": 855, "openmp": 855, "glue": 855, "jaot": 855, "nasa": 855, "cern": 855, "climat": 855, "allianc": 855, "influenti": 855, "2014": 855, "scala": 855, "ship": 855, "forgiv": 855, "decemb": 855, "announc": 855, "mainten": 855, "v7": 855, "meaning": 855, "2016": 855, "imper": 855, "amazon": 855, "traction": 855, "cognit": [855, 862], "grade": 855, "dnn": 855, "backpropag": 855, "succumb": 855, "came": 855, "monitor": 855, "practition": [855, 859, 860, 861], "hobbyist": 855, "tremend": 855, "ecosystem": 855, "gear": 855, "batteri": 855, "zygot": 855, "jl": 855, "workload": 855, "daggerflux": 855, "frontier": 855, "hessian": 855, "2018": 855, "lightweight": [855, 862], "shortcom": 855, "barrier": 855, "inexperienc": 855, "underdevelop": 855, "fanat": 855, "ounc": 855, "infanc": 855, "emerg": 855, "nich": 855, "mobil": 855, "lite": 855, "enterpris": 855, "reinvent": [855, 857], "inertia": 855, "creator": [855, 857], "paszk": 855, "hi": 855, "bulk": 855, "haskel": 855, "dataflow": 856, "trace_modul": 856, "scriptfunct": 856, "scriptmodul": 856, "fake": 856, "proxi": 856, "graphmodul": 856, "travi": 857, "oliph": 857, "leader": 857, "cornerston": 857, "numba": 857, "numfocu": 857, "pydata": 857, "confer": 857, "consult": 857, "servic": 857, "expertis": 857, "devop": 857, "mlop": 857, "dashboard": 857, "startup": 857, "mlir": [857, 858, 861], "Their": 857, "held": 857, "privileg": 857, "presum": 857, "llvm": [857, 860], "founder": 857, "tvm": [857, 861], "sustain": 857, "empow": 857, "har": 857, "burden": 857, "benchmark": 857, "precompil": 858, "executor": 858, "julia": [858, 861], "fsf": 858, "gpl": 858, "biggest": [858, 861], "throughput": 859, "gpgpu": 859, "classic": 860, "sycl": 860, "dpc": 860, "processor": 860, "maco": 860, "oneapi": 860, "ia": 860, "aka": 860, "xeon": 860, "gen9": 860, "xe": 860, "arria": 860, "gx": 860, "fpga": 860, "lofti": 861, "ambit": 861, "realm": 861, "bedrock": 861, "flux": 861, "bite": 861, "chew": 861, "eagerpi": 861, "tensorli": 861, "thinc": 861, "neuropod": 861, "fx": 861, "retrain": 861, "closer": 861, "greatli": 861, "modular": 861, "anywher": 861, "theano": 862, "plaidml": 862, "partial_svd": 862, "excel": 862, "subsystem": 862}, "objects": {"ivy.Array": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [532, 0, 1, "", "default"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [396, 0, 1, "", "fft2"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [554, 0, 1, "", "is_ivy_container"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [347, 0, 1, "", "lgamma"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [578, 0, 1, "", "shape"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy": [[621, 1, 1, "", "ArrayMode"], [617, 1, 1, "", "DefaultComplexDtype"], [618, 1, 1, "", "DefaultDevice"], [617, 1, 1, "", "DefaultDtype"], [617, 1, 1, "", "DefaultFloatDtype"], [617, 1, 1, "", "DefaultIntDtype"], [617, 1, 1, "", "DefaultUintDtype"], [379, 1, 1, "", "NativeSparseArray"], [616, 1, 1, "", "NestedSequence"], [621, 1, 1, "", "PreciseMode"], [618, 1, 1, "", "Profiler"], [379, 1, 1, "", "SparseArray"], [215, 2, 1, "", "abs"], [216, 2, 1, "", "acos"], [217, 2, 1, "", "acosh"], [622, 2, 1, "", "adam_step"], [622, 2, 1, "", "adam_update"], [382, 2, 1, "", "adaptive_avg_pool1d"], [383, 2, 1, "", "adaptive_avg_pool2d"], [384, 2, 1, "", "adaptive_max_pool2d"], [218, 2, 1, "", "add"], [369, 2, 1, "", "adjoint"], [635, 2, 1, "", "all"], [621, 2, 1, "", "all_equal"], [628, 2, 1, "", "all_nested_indices"], [365, 2, 1, "", "allclose"], [365, 2, 1, "", "amax"], [365, 2, 1, "", "amin"], [219, 2, 1, "", "angle"], [635, 2, 1, "", "any"], [616, 2, 1, "", "arange"], [385, 2, 1, "", "area_interpolate"], [621, 2, 1, "", "arg_info"], [621, 2, 1, "", "arg_names"], [631, 2, 1, "", "argmax"], [631, 2, 1, "", "argmin"], [633, 2, 1, "", "argsort"], [631, 2, 1, "", "argwhere"], [616, 2, 1, "", "array"], [621, 2, 1, "", "array_equal"], [188, 2, 1, "", "as_ivy_dev"], [617, 2, 1, "", "as_ivy_dtype"], [189, 2, 1, "", "as_native_dev"], [617, 2, 1, "", "as_native_dtype"], [371, 2, 1, "", "as_strided"], [616, 2, 1, "", "asarray"], [220, 2, 1, "", "asin"], [221, 2, 1, "", "asinh"], [621, 2, 1, "", "assert_supports_inplace"], [371, 2, 1, "", "associative_scan"], [617, 2, 1, "", "astype"], [222, 2, 1, "", "atan"], [223, 2, 1, "", "atan2"], [224, 2, 1, "", "atanh"], [371, 2, 1, "", "atleast_1d"], [371, 2, 1, "", "atleast_2d"], [371, 2, 1, "", "atleast_3d"], [386, 2, 1, "", "avg_pool1d"], [387, 2, 1, "", "avg_pool2d"], [388, 2, 1, "", "avg_pool3d"], [374, 2, 1, "", "batch_norm"], [369, 2, 1, "", "batched_outer"], [375, 2, 1, "", "bernoulli"], [375, 2, 1, "", "beta"], [365, 2, 1, "", "binarizer"], [625, 2, 1, "", "binary_cross_entropy"], [380, 2, 1, "", "bincount"], [367, 2, 1, "", "bind_custom_gradient_function"], [225, 2, 1, "", "bitwise_and"], [226, 2, 1, "", "bitwise_invert"], [227, 2, 1, "", "bitwise_left_shift"], [228, 2, 1, "", "bitwise_or"], [229, 2, 1, "", "bitwise_right_shift"], [230, 2, 1, "", "bitwise_xor"], [306, 2, 1, "", "blackman_window"], [617, 2, 1, "", "broadcast_arrays"], [371, 2, 1, "", "broadcast_shapes"], [617, 2, 1, "", "broadcast_to"], [621, 2, 1, "", "cache_fn"], [617, 2, 1, "", "can_cast"], [231, 2, 1, "", "ceil"], [290, 2, 1, "", "celu"], [617, 2, 1, "", "check_float"], [371, 2, 1, "", "check_scalar"], [624, 2, 1, "", "cholesky"], [371, 2, 1, "", "choose"], [190, 2, 1, "", "clear_cached_mem_on_dev"], [626, 2, 1, "", "clip"], [621, 2, 1, "", "clip_matrix_norm"], [621, 2, 1, "", "clip_vector_norm"], [617, 2, 1, "", "closest_valid_dtype"], [615, 2, 1, "", "cmp_is"], [615, 2, 1, "", "cmp_isnot"], [371, 2, 1, "", "column_stack"], [626, 2, 1, "", "concat"], [371, 2, 1, "", "concat_from_sequence"], [369, 2, 1, "", "cond"], [365, 2, 1, "", "conj"], [626, 2, 1, "", "constant_pad"], [621, 2, 1, "", "container_types"], [636, 2, 1, "", "conv"], [637, 2, 1, "", "conv1d"], [638, 2, 1, "", "conv1d_transpose"], [639, 2, 1, "", "conv2d"], [640, 2, 1, "", "conv2d_transpose"], [641, 2, 1, "", "conv3d"], [642, 2, 1, "", "conv3d_transpose"], [643, 2, 1, "", "conv_general_dilated"], [623, 2, 1, "", "conv_general_transpose"], [616, 2, 1, "", "copy_array"], [628, 2, 1, "", "copy_nest"], [365, 2, 1, "", "copysign"], [380, 2, 1, "", "corrcoef"], [232, 2, 1, "", "cos"], [233, 2, 1, "", "cosh"], [365, 2, 1, "", "count_nonzero"], [380, 2, 1, "", "cov"], [624, 2, 1, "", "cross"], [625, 2, 1, "", "cross_entropy"], [380, 2, 1, "", "cummax"], [380, 2, 1, "", "cummin"], [634, 2, 1, "", "cumprod"], [634, 2, 1, "", "cumsum"], [621, 2, 1, "", "current_backend_str"], [389, 2, 1, "", "dct"], [621, 2, 1, "", "default"], [617, 2, 1, "", "default_complex_dtype"], [191, 2, 1, "", "default_device"], [617, 2, 1, "", "default_dtype"], [617, 2, 1, "", "default_float_dtype"], [617, 2, 1, "", "default_int_dtype"], [617, 2, 1, "", "default_uint_dtype"], [234, 2, 1, "", "deg2rad"], [623, 2, 1, "", "depthwise_conv2d"], [624, 2, 1, "", "det"], [192, 2, 1, "", "dev"], [193, 2, 1, "", "dev_util"], [390, 2, 1, "", "dft"], [624, 2, 1, "", "diag"], [369, 2, 1, "", "diagflat"], [624, 2, 1, "", "diagonal"], [365, 2, 1, "", "diff"], [365, 2, 1, "", "digamma"], [375, 2, 1, "", "dirichlet"], [235, 2, 1, "", "divide"], [369, 2, 1, "", "dot"], [623, 2, 1, "", "dropout"], [391, 2, 1, "", "dropout1d"], [392, 2, 1, "", "dropout2d"], [393, 2, 1, "", "dropout3d"], [371, 2, 1, "", "dsplit"], [371, 2, 1, "", "dstack"], [617, 2, 1, "", "dtype"], [617, 2, 1, "", "dtype_bits"], [628, 2, 1, "", "duplicate_array_index_chains"], [614, 6, 1, "", "e"], [369, 2, 1, "", "eig"], [624, 2, 1, "", "eigh"], [369, 2, 1, "", "eigh_tridiagonal"], [369, 2, 1, "", "eigvals"], [624, 2, 1, "", "eigvalsh"], [621, 2, 1, "", "einops_rearrange"], [621, 2, 1, "", "einops_reduce"], [621, 2, 1, "", "einops_repeat"], [634, 2, 1, "", "einsum"], [291, 2, 1, "", "elu"], [394, 2, 1, "", "embedding"], [616, 2, 1, "", "empty"], [616, 2, 1, "", "empty_like"], [236, 2, 1, "", "equal"], [237, 2, 1, "", "erf"], [365, 2, 1, "", "erfc"], [622, 2, 1, "", "execute_with_gradients"], [621, 2, 1, "", "exists"], [238, 2, 1, "", "exp"], [239, 2, 1, "", "exp2"], [371, 2, 1, "", "expand"], [626, 2, 1, "", "expand_dims"], [240, 2, 1, "", "expm1"], [616, 2, 1, "", "eye"], [307, 2, 1, "", "eye_like"], [395, 2, 1, "", "fft"], [396, 2, 1, "", "fft2"], [371, 2, 1, "", "fill_diagonal"], [617, 2, 1, "", "finfo"], [365, 2, 1, "", "fix"], [371, 2, 1, "", "flatten"], [626, 2, 1, "", "flip"], [371, 2, 1, "", "fliplr"], [371, 2, 1, "", "flipud"], [365, 2, 1, "", "float_power"], [241, 2, 1, "", "floor"], [242, 2, 1, "", "floor_divide"], [365, 2, 1, "", "fmax"], [243, 2, 1, "", "fmin"], [244, 2, 1, "", "fmod"], [371, 2, 1, "", "fold"], [627, 2, 1, "", "fomaml_step"], [615, 2, 1, "", "for_loop"], [621, 2, 1, "", "fourier_encode"], [365, 2, 1, "", "frexp"], [616, 2, 1, "", "from_dlpack"], [616, 2, 1, "", "frombuffer"], [616, 2, 1, "", "full"], [616, 2, 1, "", "full_like"], [194, 2, 1, "", "function_supported_devices"], [621, 2, 1, "", "function_supported_devices_and_dtypes"], [617, 2, 1, "", "function_supported_dtypes"], [195, 2, 1, "", "function_unsupported_devices"], [621, 2, 1, "", "function_unsupported_devices_and_dtypes"], [617, 2, 1, "", "function_unsupported_dtypes"], [375, 2, 1, "", "gamma"], [621, 2, 1, "", "gather"], [621, 2, 1, "", "gather_nd"], [245, 2, 1, "", "gcd"], [613, 2, 1, "", "gelu"], [369, 2, 1, "", "general_inner_product"], [397, 2, 1, "", "generate_einsum_equation"], [621, 2, 1, "", "get_all_arrays_in_memory"], [196, 2, 1, "", "get_all_ivy_arrays_on_dev"], [398, 2, 1, "", "get_interpolate_kernel"], [621, 2, 1, "", "get_item"], [621, 2, 1, "", "get_num_dims"], [621, 2, 1, "", "get_referrers_recursive"], [197, 2, 1, "", "gpu_is_available"], [622, 2, 1, "", "grad"], [365, 2, 1, "", "gradient"], [622, 2, 1, "", "gradient_descent_update"], [246, 2, 1, "", "greater"], [247, 2, 1, "", "greater_equal"], [374, 2, 1, "", "group_norm"], [308, 2, 1, "", "hamming_window"], [198, 2, 1, "", "handle_soft_device_variable"], [309, 2, 1, "", "hann_window"], [292, 2, 1, "", "hardshrink"], [613, 2, 1, "", "hardswish"], [293, 2, 1, "", "hardtanh"], [621, 2, 1, "", "has_nans"], [371, 2, 1, "", "heaviside"], [369, 2, 1, "", "higher_order_moment"], [380, 2, 1, "", "histogram"], [371, 2, 1, "", "hsplit"], [371, 2, 1, "", "hstack"], [370, 2, 1, "", "huber_loss"], [365, 2, 1, "", "hypot"], [371, 2, 1, "", "i0"], [399, 2, 1, "", "idct"], [615, 2, 1, "", "if_else"], [400, 2, 1, "", "ifft"], [401, 2, 1, "", "ifftn"], [380, 2, 1, "", "igamma"], [617, 2, 1, "", "iinfo"], [248, 2, 1, "", "imag"], [628, 2, 1, "", "index_nest"], [310, 2, 1, "", "indices"], [614, 6, 1, "", "inf"], [617, 2, 1, "", "infer_default_dtype"], [369, 2, 1, "", "initialize_tucker"], [624, 2, 1, "", "inner"], [621, 2, 1, "", "inplace_arrays_supported"], [621, 2, 1, "", "inplace_decrement"], [621, 2, 1, "", "inplace_increment"], [621, 2, 1, "", "inplace_update"], [621, 2, 1, "", "inplace_variables_supported"], [628, 2, 1, "", "insert_into_nest_at_index"], [628, 2, 1, "", "insert_into_nest_at_indices"], [374, 2, 1, "", "instance_norm"], [402, 2, 1, "", "interp"], [403, 2, 1, "", "interpolate"], [624, 2, 1, "", "inv"], [617, 2, 1, "", "invalid_dtype"], [378, 2, 1, "", "invert_permutation"], [621, 2, 1, "", "is_array"], [617, 2, 1, "", "is_bool_dtype"], [617, 2, 1, "", "is_complex_dtype"], [617, 2, 1, "", "is_float_dtype"], [617, 2, 1, "", "is_hashable_dtype"], [617, 2, 1, "", "is_int_dtype"], [621, 2, 1, "", "is_ivy_array"], [621, 2, 1, "", "is_ivy_container"], [621, 2, 1, "", "is_ivy_nested_array"], [379, 2, 1, "", "is_ivy_sparse_array"], [621, 2, 1, "", "is_native_array"], [617, 2, 1, "", "is_native_dtype"], [379, 2, 1, "", "is_native_sparse_array"], [617, 2, 1, "", "is_uint_dtype"], [365, 2, 1, "", "isclose"], [249, 2, 1, "", "isfinite"], [621, 2, 1, "", "isin"], [250, 2, 1, "", "isinf"], [251, 2, 1, "", "isnan"], [252, 2, 1, "", "isreal"], [621, 2, 1, "", "isscalar"], [621, 2, 1, "", "itemsize"], [622, 2, 1, "", "jac"], [367, 2, 1, "", "jvp"], [311, 2, 1, "", "kaiser_bessel_derived_window"], [312, 2, 1, "", "kaiser_window"], [369, 2, 1, "", "khatri_rao"], [370, 2, 1, "", "kl_div"], [369, 2, 1, "", "kron"], [369, 2, 1, "", "kronecker"], [370, 2, 1, "", "l1_loss"], [374, 2, 1, "", "l1_normalize"], [374, 2, 1, "", "l2_normalize"], [622, 2, 1, "", "lamb_update"], [622, 2, 1, "", "lars_update"], [629, 2, 1, "", "layer_norm"], [253, 2, 1, "", "lcm"], [365, 2, 1, "", "ldexp"], [613, 2, 1, "", "leaky_relu"], [365, 2, 1, "", "lerp"], [254, 2, 1, "", "less"], [255, 2, 1, "", "less_equal"], [378, 2, 1, "", "lexsort"], [365, 2, 1, "", "lgamma"], [623, 2, 1, "", "linear"], [616, 2, 1, "", "linspace"], [635, 2, 1, "", "load"], [374, 2, 1, "", "local_response_norm"], [256, 2, 1, "", "log"], [257, 2, 1, "", "log10"], [258, 2, 1, "", "log1p"], [259, 2, 1, "", "log2"], [370, 2, 1, "", "log_poisson_loss"], [613, 2, 1, "", "log_softmax"], [260, 2, 1, "", "logaddexp"], [261, 2, 1, "", "logaddexp2"], [262, 2, 1, "", "logical_and"], [263, 2, 1, "", "logical_not"], [264, 2, 1, "", "logical_or"], [265, 2, 1, "", "logical_xor"], [294, 2, 1, "", "logit"], [295, 2, 1, "", "logsigmoid"], [616, 2, 1, "", "logspace"], [374, 2, 1, "", "lp_normalize"], [623, 2, 1, "", "lstm_update"], [624, 2, 1, "", "lu_factor"], [369, 2, 1, "", "make_svd_non_negative"], [627, 2, 1, "", "maml_step"], [628, 2, 1, "", "map"], [628, 2, 1, "", "map_nest_at_index"], [628, 2, 1, "", "map_nest_at_indices"], [621, 2, 1, "", "match_kwargs"], [624, 2, 1, "", "matmul"], [371, 2, 1, "", "matricize"], [369, 2, 1, "", "matrix_exp"], [624, 2, 1, "", "matrix_norm"], [624, 2, 1, "", "matrix_power"], [624, 2, 1, "", "matrix_rank"], [624, 2, 1, "", "matrix_transpose"], [634, 2, 1, "", "max"], [404, 2, 1, "", "max_pool1d"], [405, 2, 1, "", "max_pool2d"], [406, 2, 1, "", "max_pool3d"], [407, 2, 1, "", "max_unpool1d"], [266, 2, 1, "", "maximum"], [634, 2, 1, "", "mean"], [380, 2, 1, "", "median"], [313, 2, 1, "", "mel_weight_matrix"], [616, 2, 1, "", "meshgrid"], [634, 2, 1, "", "min"], [267, 2, 1, "", "minimum"], [613, 2, 1, "", "mish"], [369, 2, 1, "", "mode_dot"], [365, 2, 1, "", "modf"], [371, 2, 1, "", "moveaxis"], [633, 2, 1, "", "msort"], [369, 2, 1, "", "multi_dot"], [623, 2, 1, "", "multi_head_attention"], [628, 2, 1, "", "multi_index_nest"], [369, 2, 1, "", "multi_mode_dot"], [630, 2, 1, "", "multinomial"], [268, 2, 1, "", "multiply"], [621, 2, 1, "", "multiprocessing"], [614, 6, 1, "", "nan"], [269, 2, 1, "", "nan_to_num"], [380, 2, 1, "", "nanmean"], [380, 2, 1, "", "nanmedian"], [380, 2, 1, "", "nanmin"], [380, 2, 1, "", "nanprod"], [365, 2, 1, "", "nansum"], [616, 2, 1, "", "native_array"], [379, 2, 1, "", "native_sparse_array"], [379, 2, 1, "", "native_sparse_array_to_indices_values_and_shape"], [314, 2, 1, "", "ndenumerate"], [315, 2, 1, "", "ndindex"], [408, 2, 1, "", "nearest_interpolate"], [270, 2, 1, "", "negative"], [628, 2, 1, "", "nested_any"], [628, 2, 1, "", "nested_argwhere"], [628, 2, 1, "", "nested_map"], [628, 2, 1, "", "nested_multi_map"], [614, 6, 1, "", "newaxis"], [365, 2, 1, "", "nextafter"], [623, 2, 1, "", "nms"], [631, 2, 1, "", "nonzero"], [271, 2, 1, "", "not_equal"], [621, 2, 1, "", "num_arrays_in_memory"], [199, 2, 1, "", "num_cpu_cores"], [200, 2, 1, "", "num_gpus"], [201, 2, 1, "", "num_ivy_arrays_on_dev"], [616, 2, 1, "", "one_hot"], [616, 2, 1, "", "ones"], [616, 2, 1, "", "ones_like"], [622, 2, 1, "", "optimizer_update"], [381, 2, 1, "", "optional_get_element"], [624, 2, 1, "", "outer"], [371, 2, 1, "", "pad"], [371, 2, 1, "", "partial_fold"], [371, 2, 1, "", "partial_tensor_to_vec"], [369, 2, 1, "", "partial_tucker"], [371, 2, 1, "", "partial_unfold"], [371, 2, 1, "", "partial_vec_to_tensor"], [202, 2, 1, "", "percent_used_mem_on_dev"], [626, 2, 1, "", "permute_dims"], [614, 6, 1, "", "pi"], [624, 2, 1, "", "pinv"], [375, 2, 1, "", "poisson"], [370, 2, 1, "", "poisson_nll_loss"], [316, 2, 1, "", "polyval"], [409, 2, 1, "", "pool"], [272, 2, 1, "", "positive"], [273, 2, 1, "", "pow"], [296, 2, 1, "", "prelu"], [621, 2, 1, "", "print_all_arrays_in_memory"], [203, 2, 1, "", "print_all_ivy_arrays_on_dev"], [634, 2, 1, "", "prod"], [617, 2, 1, "", "promote_types"], [617, 2, 1, "", "promote_types_of_inputs"], [628, 2, 1, "", "prune_empty"], [628, 2, 1, "", "prune_nest_at_index"], [628, 2, 1, "", "prune_nest_at_indices"], [371, 2, 1, "", "put_along_axis"], [624, 2, 1, "", "qr"], [380, 2, 1, "", "quantile"], [274, 2, 1, "", "rad2deg"], [630, 2, 1, "", "randint"], [317, 2, 1, "", "random_cp"], [630, 2, 1, "", "random_normal"], [318, 2, 1, "", "random_parafac2"], [319, 2, 1, "", "random_tr"], [320, 2, 1, "", "random_tt"], [321, 2, 1, "", "random_tucker"], [630, 2, 1, "", "random_uniform"], [275, 2, 1, "", "real"], [276, 2, 1, "", "reciprocal"], [366, 2, 1, "", "reduce"], [410, 2, 1, "", "reduce_window"], [613, 2, 1, "", "relu"], [297, 2, 1, "", "relu6"], [277, 2, 1, "", "remainder"], [626, 2, 1, "", "repeat"], [627, 2, 1, "", "reptile_step"], [626, 2, 1, "", "reshape"], [617, 2, 1, "", "result_type"], [411, 2, 1, "", "rfft"], [412, 2, 1, "", "rfftn"], [413, 2, 1, "", "rnn"], [623, 2, 1, "", "roi_align"], [626, 2, 1, "", "roll"], [371, 2, 1, "", "rot90"], [278, 2, 1, "", "round"], [635, 2, 1, "", "save"], [623, 2, 1, "", "scaled_dot_product_attention"], [298, 2, 1, "", "scaled_tanh"], [621, 2, 1, "", "scatter_flat"], [621, 2, 1, "", "scatter_nd"], [633, 2, 1, "", "searchsorted"], [630, 2, 1, "", "seed"], [299, 2, 1, "", "selu"], [621, 2, 1, "", "set_array_mode"], [617, 2, 1, "", "set_default_complex_dtype"], [204, 2, 1, "", "set_default_device"], [617, 2, 1, "", "set_default_dtype"], [617, 2, 1, "", "set_default_float_dtype"], [617, 2, 1, "", "set_default_int_dtype"], [617, 2, 1, "", "set_default_uint_dtype"], [621, 2, 1, "", "set_exception_trace_mode"], [621, 2, 1, "", "set_inplace_mode"], [621, 2, 1, "", "set_item"], [621, 2, 1, "", "set_min_base"], [621, 2, 1, "", "set_min_denominator"], [628, 2, 1, "", "set_nest_at_index"], [628, 2, 1, "", "set_nest_at_indices"], [621, 2, 1, "", "set_nestable_mode"], [621, 2, 1, "", "set_precise_mode"], [621, 2, 1, "", "set_queue_timeout"], [621, 2, 1, "", "set_shape_array_mode"], [621, 2, 1, "", "set_show_func_wrapper_trace_mode"], [205, 2, 1, "", "set_soft_device_mode"], [206, 2, 1, "", "set_split_factor"], [621, 2, 1, "", "set_tmp_dir"], [621, 2, 1, "", "shape"], [630, 2, 1, "", "shuffle"], [613, 2, 1, "", "sigmoid"], [279, 2, 1, "", "sign"], [365, 2, 1, "", "signbit"], [300, 2, 1, "", "silu"], [280, 2, 1, "", "sin"], [365, 2, 1, "", "sinc"], [281, 2, 1, "", "sinh"], [368, 2, 1, "", "sliding_window"], [624, 2, 1, "", "slogdet"], [370, 2, 1, "", "smooth_l1_loss"], [370, 2, 1, "", "soft_margin_loss"], [371, 2, 1, "", "soft_thresholding"], [613, 2, 1, "", "softmax"], [613, 2, 1, "", "softplus"], [301, 2, 1, "", "softshrink"], [613, 2, 1, "", "softsign"], [624, 2, 1, "", "solve"], [369, 2, 1, "", "solve_triangular"], [633, 2, 1, "", "sort"], [625, 2, 1, "", "sparse_cross_entropy"], [365, 2, 1, "", "sparsify_tensor"], [626, 2, 1, "", "split"], [207, 2, 1, "", "split_factor"], [208, 2, 1, "", "split_func_call"], [282, 2, 1, "", "sqrt"], [283, 2, 1, "", "square"], [626, 2, 1, "", "squeeze"], [621, 2, 1, "", "stable_divide"], [621, 2, 1, "", "stable_pow"], [626, 2, 1, "", "stack"], [302, 2, 1, "", "stanh"], [634, 2, 1, "", "std"], [368, 2, 1, "", "stft"], [622, 2, 1, "", "stop_gradient"], [621, 2, 1, "", "strides"], [284, 2, 1, "", "subtract"], [634, 2, 1, "", "sum"], [621, 2, 1, "", "supports_inplace_updates"], [624, 2, 1, "", "svd"], [369, 2, 1, "", "svd_flip"], [624, 2, 1, "", "svdvals"], [626, 2, 1, "", "swapaxes"], [371, 2, 1, "", "take"], [371, 2, 1, "", "take_along_axis"], [285, 2, 1, "", "tan"], [286, 2, 1, "", "tanh"], [303, 2, 1, "", "tanhshrink"], [369, 2, 1, "", "tensor_train"], [624, 2, 1, "", "tensordot"], [624, 2, 1, "", "tensorsolve"], [304, 2, 1, "", "threshold"], [305, 2, 1, "", "thresholded_relu"], [626, 2, 1, "", "tile"], [209, 2, 1, "", "to_device"], [616, 2, 1, "", "to_dlpack"], [621, 2, 1, "", "to_ivy_shape"], [621, 2, 1, "", "to_list"], [621, 2, 1, "", "to_native_shape"], [621, 2, 1, "", "to_numpy"], [621, 2, 1, "", "to_scalar"], [371, 2, 1, "", "top_k"], [210, 2, 1, "", "total_mem_on_dev"], [211, 2, 1, "", "tpu_is_available"], [624, 2, 1, "", "trace"], [848, 2, 1, "", "trace_graph"], [849, 2, 1, "", "transpile"], [287, 2, 1, "", "trapz"], [616, 2, 1, "", "tril"], [362, 2, 1, "", "tril_indices"], [362, 2, 1, "", "trilu"], [371, 2, 1, "", "trim_zeros"], [616, 2, 1, "", "triu"], [616, 2, 1, "", "triu_indices"], [288, 2, 1, "", "trunc"], [289, 2, 1, "", "trunc_divide"], [369, 2, 1, "", "truncated_svd"], [621, 2, 1, "", "try_else_none"], [615, 2, 1, "", "try_except"], [369, 2, 1, "", "tt_matrix_to_tensor"], [369, 2, 1, "", "tucker"], [617, 2, 1, "", "type_promote_arrays"], [371, 2, 1, "", "unfold"], [850, 2, 1, "", "unify"], [632, 2, 1, "", "unique_all"], [371, 2, 1, "", "unique_consecutive"], [632, 2, 1, "", "unique_counts"], [632, 2, 1, "", "unique_inverse"], [632, 2, 1, "", "unique_values"], [376, 2, 1, "", "unravel_index"], [621, 2, 1, "", "unset_array_mode"], [617, 2, 1, "", "unset_default_complex_dtype"], [212, 2, 1, "", "unset_default_device"], [617, 2, 1, "", "unset_default_dtype"], [184, 2, 1, "", "unset_default_float_dtype"], [185, 2, 1, "", "unset_default_int_dtype"], [186, 2, 1, "", "unset_default_uint_dtype"], [621, 2, 1, "", "unset_exception_trace_mode"], [621, 2, 1, "", "unset_inplace_mode"], [621, 2, 1, "", "unset_min_base"], [621, 2, 1, "", "unset_min_denominator"], [621, 2, 1, "", "unset_nestable_mode"], [621, 2, 1, "", "unset_precise_mode"], [621, 2, 1, "", "unset_queue_timeout"], [621, 2, 1, "", "unset_shape_array_mode"], [621, 2, 1, "", "unset_show_func_wrapper_trace_mode"], [213, 2, 1, "", "unset_soft_device_mode"], [621, 2, 1, "", "unset_tmp_dir"], [362, 2, 1, "", "unsorted_segment_mean"], [362, 2, 1, "", "unsorted_segment_min"], [362, 2, 1, "", "unsorted_segment_sum"], [626, 2, 1, "", "unstack"], [214, 2, 1, "", "used_mem_on_dev"], [187, 2, 1, "", "valid_dtype"], [622, 2, 1, "", "value_and_grad"], [621, 2, 1, "", "value_is_nan"], [624, 2, 1, "", "vander"], [634, 2, 1, "", "var"], [624, 2, 1, "", "vecdot"], [624, 2, 1, "", "vector_norm"], [624, 2, 1, "", "vector_to_skew_symmetric_matrix"], [367, 2, 1, "", "vjp"], [621, 2, 1, "", "vmap"], [362, 2, 1, "", "vorbis_window"], [371, 2, 1, "", "vsplit"], [371, 2, 1, "", "vstack"], [631, 2, 1, "", "where"], [615, 2, 1, "", "while_loop"], [365, 2, 1, "", "xlogy"], [626, 2, 1, "", "zero_pad"], [616, 2, 1, "", "zeros"], [616, 2, 1, "", "zeros_like"], [365, 2, 1, "", "zeta"]], "ivy.Container": [[215, 0, 1, "", "abs"], [216, 0, 1, "", "acos"], [217, 0, 1, "", "acosh"], [602, 0, 1, "", "adam_step"], [603, 0, 1, "", "adam_update"], [382, 0, 1, "", "adaptive_avg_pool1d"], [383, 0, 1, "", "adaptive_avg_pool2d"], [384, 0, 1, "", "adaptive_max_pool2d"], [218, 0, 1, "", "add"], [416, 0, 1, "", "adjoint"], [754, 0, 1, "", "all"], [522, 0, 1, "", "all_equal"], [328, 0, 1, "", "allclose"], [329, 0, 1, "", "amax"], [330, 0, 1, "", "amin"], [219, 0, 1, "", "angle"], [755, 0, 1, "", "any"], [731, 0, 1, "", "argmax"], [732, 0, 1, "", "argmin"], [740, 0, 1, "", "argsort"], [733, 0, 1, "", "argwhere"], [525, 0, 1, "", "array_equal"], [449, 0, 1, "", "as_strided"], [123, 0, 1, "", "asarray"], [220, 0, 1, "", "asin"], [221, 0, 1, "", "asinh"], [526, 0, 1, "", "assert_supports_inplace"], [450, 0, 1, "", "associative_scan"], [147, 0, 1, "", "astype"], [222, 0, 1, "", "atan"], [223, 0, 1, "", "atan2"], [224, 0, 1, "", "atanh"], [451, 0, 1, "", "atleast_1d"], [452, 0, 1, "", "atleast_2d"], [453, 0, 1, "", "atleast_3d"], [386, 0, 1, "", "avg_pool1d"], [387, 0, 1, "", "avg_pool2d"], [388, 0, 1, "", "avg_pool3d"], [489, 0, 1, "", "batch_norm"], [417, 0, 1, "", "batched_outer"], [496, 0, 1, "", "bernoulli"], [497, 0, 1, "", "beta"], [331, 0, 1, "", "binarizer"], [683, 0, 1, "", "binary_cross_entropy"], [508, 0, 1, "", "bincount"], [225, 0, 1, "", "bitwise_and"], [226, 0, 1, "", "bitwise_invert"], [227, 0, 1, "", "bitwise_left_shift"], [228, 0, 1, "", "bitwise_or"], [229, 0, 1, "", "bitwise_right_shift"], [230, 0, 1, "", "bitwise_xor"], [306, 0, 1, "", "blackman_window"], [148, 0, 1, "", "broadcast_arrays"], [454, 0, 1, "", "broadcast_shapes"], [149, 0, 1, "", "broadcast_to"], [150, 0, 1, "", "can_cast"], [231, 0, 1, "", "ceil"], [290, 0, 1, "", "celu"], [653, 0, 1, "", "cholesky"], [686, 0, 1, "", "clip"], [528, 0, 1, "", "clip_matrix_norm"], [529, 0, 1, "", "clip_vector_norm"], [457, 0, 1, "", "column_stack"], [687, 0, 1, "", "concat"], [458, 0, 1, "", "concat_from_sequence"], [418, 0, 1, "", "cond"], [332, 0, 1, "", "conj"], [688, 0, 1, "", "constant_pad"], [637, 0, 1, "", "conv1d"], [638, 0, 1, "", "conv1d_transpose"], [639, 0, 1, "", "conv2d"], [640, 0, 1, "", "conv2d_transpose"], [641, 0, 1, "", "conv3d"], [642, 0, 1, "", "conv3d_transpose"], [124, 0, 1, "", "copy_array"], [333, 0, 1, "", "copysign"], [509, 0, 1, "", "corrcoef"], [232, 0, 1, "", "cos"], [233, 0, 1, "", "cosh"], [334, 0, 1, "", "count_nonzero"], [510, 0, 1, "", "cov"], [654, 0, 1, "", "cross"], [684, 0, 1, "", "cross_entropy"], [511, 0, 1, "", "cummax"], [512, 0, 1, "", "cummin"], [744, 0, 1, "", "cumprod"], [745, 0, 1, "", "cumsum"], [389, 0, 1, "", "dct"], [234, 0, 1, "", "deg2rad"], [645, 0, 1, "", "depthwise_conv2d"], [655, 0, 1, "", "det"], [192, 0, 1, "", "dev"], [390, 0, 1, "", "dft"], [656, 0, 1, "", "diag"], [419, 0, 1, "", "diagflat"], [657, 0, 1, "", "diagonal"], [335, 0, 1, "", "diff"], [336, 0, 1, "", "digamma"], [498, 0, 1, "", "dirichlet"], [235, 0, 1, "", "divide"], [420, 0, 1, "", "dot"], [646, 0, 1, "", "dropout"], [391, 0, 1, "", "dropout1d"], [392, 0, 1, "", "dropout2d"], [393, 0, 1, "", "dropout3d"], [459, 0, 1, "", "dsplit"], [460, 0, 1, "", "dstack"], [158, 0, 1, "", "dtype"], [421, 0, 1, "", "eig"], [659, 0, 1, "", "eigh"], [422, 0, 1, "", "eigh_tridiagonal"], [423, 0, 1, "", "eigvals"], [660, 0, 1, "", "eigvalsh"], [533, 0, 1, "", "einops_rearrange"], [534, 0, 1, "", "einops_reduce"], [535, 0, 1, "", "einops_repeat"], [746, 0, 1, "", "einsum"], [291, 0, 1, "", "elu"], [394, 0, 1, "", "embedding"], [126, 0, 1, "", "empty_like"], [236, 0, 1, "", "equal"], [237, 0, 1, "", "erf"], [337, 0, 1, "", "erfc"], [536, 0, 1, "", "exists"], [238, 0, 1, "", "exp"], [239, 0, 1, "", "exp2"], [461, 0, 1, "", "expand"], [689, 0, 1, "", "expand_dims"], [240, 0, 1, "", "expm1"], [307, 0, 1, "", "eye_like"], [395, 0, 1, "", "fft"], [462, 0, 1, "", "fill_diagonal"], [160, 0, 1, "", "finfo"], [338, 0, 1, "", "fix"], [463, 0, 1, "", "flatten"], [690, 0, 1, "", "flip"], [464, 0, 1, "", "fliplr"], [465, 0, 1, "", "flipud"], [339, 0, 1, "", "float_power"], [241, 0, 1, "", "floor"], [242, 0, 1, "", "floor_divide"], [340, 0, 1, "", "fmax"], [243, 0, 1, "", "fmin"], [244, 0, 1, "", "fmod"], [466, 0, 1, "", "fold"], [537, 0, 1, "", "fourier_encode"], [341, 0, 1, "", "frexp"], [128, 0, 1, "", "from_dlpack"], [129, 0, 1, "", "frombuffer"], [131, 0, 1, "", "full_like"], [499, 0, 1, "", "gamma"], [540, 0, 1, "", "gather"], [541, 0, 1, "", "gather_nd"], [245, 0, 1, "", "gcd"], [105, 0, 1, "", "gelu"], [424, 0, 1, "", "general_inner_product"], [544, 0, 1, "", "get_num_dims"], [342, 0, 1, "", "gradient"], [606, 0, 1, "", "gradient_descent_update"], [246, 0, 1, "", "greater"], [247, 0, 1, "", "greater_equal"], [490, 0, 1, "", "group_norm"], [308, 0, 1, "", "hamming_window"], [309, 0, 1, "", "hann_window"], [292, 0, 1, "", "hardshrink"], [106, 0, 1, "", "hardswish"], [293, 0, 1, "", "hardtanh"], [546, 0, 1, "", "has_nans"], [467, 0, 1, "", "heaviside"], [425, 0, 1, "", "higher_order_moment"], [513, 0, 1, "", "histogram"], [468, 0, 1, "", "hsplit"], [469, 0, 1, "", "hstack"], [442, 0, 1, "", "huber_loss"], [343, 0, 1, "", "hypot"], [470, 0, 1, "", "i0"], [399, 0, 1, "", "idct"], [400, 0, 1, "", "ifft"], [401, 0, 1, "", "ifftn"], [514, 0, 1, "", "igamma"], [163, 0, 1, "", "iinfo"], [248, 0, 1, "", "imag"], [426, 0, 1, "", "initialize_tucker"], [661, 0, 1, "", "inner"], [548, 0, 1, "", "inplace_decrement"], [549, 0, 1, "", "inplace_increment"], [550, 0, 1, "", "inplace_update"], [491, 0, 1, "", "instance_norm"], [403, 0, 1, "", "interpolate"], [662, 0, 1, "", "inv"], [502, 0, 1, "", "invert_permutation"], [552, 0, 1, "", "is_array"], [166, 0, 1, "", "is_bool_dtype"], [167, 0, 1, "", "is_complex_dtype"], [168, 0, 1, "", "is_float_dtype"], [170, 0, 1, "", "is_int_dtype"], [553, 0, 1, "", "is_ivy_array"], [556, 0, 1, "", "is_native_array"], [172, 0, 1, "", "is_uint_dtype"], [344, 0, 1, "", "isclose"], [249, 0, 1, "", "isfinite"], [557, 0, 1, "", "isin"], [250, 0, 1, "", "isinf"], [251, 0, 1, "", "isnan"], [252, 0, 1, "", "isreal"], [559, 0, 1, "", "itemsize"], [311, 0, 1, "", "kaiser_bessel_derived_window"], [312, 0, 1, "", "kaiser_window"], [443, 0, 1, "", "kl_div"], [428, 0, 1, "", "kron"], [444, 0, 1, "", "l1_loss"], [492, 0, 1, "", "l1_normalize"], [493, 0, 1, "", "l2_normalize"], [608, 0, 1, "", "lamb_update"], [609, 0, 1, "", "lars_update"], [724, 0, 1, "", "layer_norm"], [253, 0, 1, "", "lcm"], [345, 0, 1, "", "ldexp"], [107, 0, 1, "", "leaky_relu"], [346, 0, 1, "", "lerp"], [254, 0, 1, "", "less"], [255, 0, 1, "", "less_equal"], [503, 0, 1, "", "lexsort"], [647, 0, 1, "", "linear"], [132, 0, 1, "", "linspace"], [256, 0, 1, "", "log"], [257, 0, 1, "", "log10"], [258, 0, 1, "", "log1p"], [259, 0, 1, "", "log2"], [445, 0, 1, "", "log_poisson_loss"], [108, 0, 1, "", "log_softmax"], [260, 0, 1, "", "logaddexp"], [261, 0, 1, "", "logaddexp2"], [262, 0, 1, "", "logical_and"], [263, 0, 1, "", "logical_not"], [264, 0, 1, "", "logical_or"], [265, 0, 1, "", "logical_xor"], [294, 0, 1, "", "logit"], [295, 0, 1, "", "logsigmoid"], [133, 0, 1, "", "logspace"], [495, 0, 1, "", "lp_normalize"], [648, 0, 1, "", "lstm_update"], [430, 0, 1, "", "make_svd_non_negative"], [664, 0, 1, "", "matmul"], [471, 0, 1, "", "matricize"], [431, 0, 1, "", "matrix_exp"], [665, 0, 1, "", "matrix_norm"], [666, 0, 1, "", "matrix_power"], [667, 0, 1, "", "matrix_rank"], [668, 0, 1, "", "matrix_transpose"], [747, 0, 1, "", "max"], [404, 0, 1, "", "max_pool1d"], [405, 0, 1, "", "max_pool2d"], [406, 0, 1, "", "max_pool3d"], [407, 0, 1, "", "max_unpool1d"], [266, 0, 1, "", "maximum"], [748, 0, 1, "", "mean"], [515, 0, 1, "", "median"], [313, 0, 1, "", "mel_weight_matrix"], [134, 0, 1, "", "meshgrid"], [749, 0, 1, "", "min"], [267, 0, 1, "", "minimum"], [109, 0, 1, "", "mish"], [432, 0, 1, "", "mode_dot"], [348, 0, 1, "", "modf"], [472, 0, 1, "", "moveaxis"], [741, 0, 1, "", "msort"], [433, 0, 1, "", "multi_dot"], [649, 0, 1, "", "multi_head_attention"], [434, 0, 1, "", "multi_mode_dot"], [725, 0, 1, "", "multinomial"], [268, 0, 1, "", "multiply"], [269, 0, 1, "", "nan_to_num"], [516, 0, 1, "", "nanmean"], [517, 0, 1, "", "nanmedian"], [518, 0, 1, "", "nanmin"], [519, 0, 1, "", "nanprod"], [349, 0, 1, "", "nansum"], [135, 0, 1, "", "native_array"], [270, 0, 1, "", "negative"], [350, 0, 1, "", "nextafter"], [734, 0, 1, "", "nonzero"], [271, 0, 1, "", "not_equal"], [136, 0, 1, "", "one_hot"], [138, 0, 1, "", "ones_like"], [610, 0, 1, "", "optimizer_update"], [521, 0, 1, "", "optional_get_element"], [669, 0, 1, "", "outer"], [473, 0, 1, "", "pad"], [474, 0, 1, "", "partial_fold"], [475, 0, 1, "", "partial_tensor_to_vec"], [435, 0, 1, "", "partial_tucker"], [476, 0, 1, "", "partial_unfold"], [477, 0, 1, "", "partial_vec_to_tensor"], [691, 0, 1, "", "permute_dims"], [670, 0, 1, "", "pinv"], [500, 0, 1, "", "poisson"], [446, 0, 1, "", "poisson_nll_loss"], [316, 0, 1, "", "polyval"], [272, 0, 1, "", "positive"], [273, 0, 1, "", "pow"], [296, 0, 1, "", "prelu"], [750, 0, 1, "", "prod"], [478, 0, 1, "", "put_along_axis"], [671, 0, 1, "", "qr"], [520, 0, 1, "", "quantile"], [274, 0, 1, "", "rad2deg"], [726, 0, 1, "", "randint"], [727, 0, 1, "", "random_normal"], [728, 0, 1, "", "random_uniform"], [275, 0, 1, "", "real"], [276, 0, 1, "", "reciprocal"], [356, 0, 1, "", "reduce"], [410, 0, 1, "", "reduce_window"], [110, 0, 1, "", "relu"], [297, 0, 1, "", "relu6"], [277, 0, 1, "", "remainder"], [692, 0, 1, "", "repeat"], [693, 0, 1, "", "reshape"], [175, 0, 1, "", "result_type"], [411, 0, 1, "", "rfft"], [412, 0, 1, "", "rfftn"], [694, 0, 1, "", "roll"], [479, 0, 1, "", "rot90"], [278, 0, 1, "", "round"], [652, 0, 1, "", "scaled_dot_product_attention"], [298, 0, 1, "", "scaled_tanh"], [564, 0, 1, "", "scatter_flat"], [565, 0, 1, "", "scatter_nd"], [742, 0, 1, "", "searchsorted"], [299, 0, 1, "", "selu"], [730, 0, 1, "", "shuffle"], [111, 0, 1, "", "sigmoid"], [279, 0, 1, "", "sign"], [351, 0, 1, "", "signbit"], [300, 0, 1, "", "silu"], [280, 0, 1, "", "sin"], [352, 0, 1, "", "sinc"], [281, 0, 1, "", "sinh"], [414, 0, 1, "", "sliding_window"], [672, 0, 1, "", "slogdet"], [447, 0, 1, "", "smooth_l1_loss"], [448, 0, 1, "", "soft_margin_loss"], [480, 0, 1, "", "soft_thresholding"], [112, 0, 1, "", "softmax"], [113, 0, 1, "", "softplus"], [301, 0, 1, "", "softshrink"], [673, 0, 1, "", "solve"], [743, 0, 1, "", "sort"], [685, 0, 1, "", "sparse_cross_entropy"], [353, 0, 1, "", "sparsify_tensor"], [695, 0, 1, "", "split"], [282, 0, 1, "", "sqrt"], [283, 0, 1, "", "square"], [696, 0, 1, "", "squeeze"], [579, 0, 1, "", "stable_divide"], [580, 0, 1, "", "stable_pow"], [697, 0, 1, "", "stack"], [751, 0, 1, "", "std"], [415, 0, 1, "", "stft"], [611, 0, 1, "", "stop_gradient"], [581, 0, 1, "", "strides"], [284, 0, 1, "", "subtract"], [752, 0, 1, "", "sum"], [582, 0, 1, "", "supports_inplace_updates"], [674, 0, 1, "", "svd"], [437, 0, 1, "", "svd_flip"], [675, 0, 1, "", "svdvals"], [698, 0, 1, "", "swapaxes"], [481, 0, 1, "", "take"], [482, 0, 1, "", "take_along_axis"], [285, 0, 1, "", "tan"], [286, 0, 1, "", "tanh"], [303, 0, 1, "", "tanhshrink"], [438, 0, 1, "", "tensor_train"], [676, 0, 1, "", "tensordot"], [677, 0, 1, "", "tensorsolve"], [304, 0, 1, "", "threshold"], [305, 0, 1, "", "thresholded_relu"], [699, 0, 1, "", "tile"], [209, 0, 1, "", "to_device"], [584, 0, 1, "", "to_list"], [586, 0, 1, "", "to_numpy"], [587, 0, 1, "", "to_scalar"], [483, 0, 1, "", "top_k"], [678, 0, 1, "", "trace"], [287, 0, 1, "", "trapz"], [140, 0, 1, "", "tril"], [322, 0, 1, "", "tril_indices"], [323, 0, 1, "", "trilu"], [484, 0, 1, "", "trim_zeros"], [141, 0, 1, "", "triu"], [142, 0, 1, "", "triu_indices"], [288, 0, 1, "", "trunc"], [289, 0, 1, "", "trunc_divide"], [439, 0, 1, "", "truncated_svd"], [440, 0, 1, "", "tt_matrix_to_tensor"], [441, 0, 1, "", "tucker"], [485, 0, 1, "", "unfold"], [736, 0, 1, "", "unique_all"], [486, 0, 1, "", "unique_consecutive"], [737, 0, 1, "", "unique_counts"], [738, 0, 1, "", "unique_inverse"], [739, 0, 1, "", "unique_values"], [501, 0, 1, "", "unravel_index"], [324, 0, 1, "", "unsorted_segment_mean"], [325, 0, 1, "", "unsorted_segment_min"], [326, 0, 1, "", "unsorted_segment_sum"], [700, 0, 1, "", "unstack"], [600, 0, 1, "", "value_is_nan"], [679, 0, 1, "", "vander"], [753, 0, 1, "", "var"], [680, 0, 1, "", "vecdot"], [681, 0, 1, "", "vector_norm"], [682, 0, 1, "", "vector_to_skew_symmetric_matrix"], [327, 0, 1, "", "vorbis_window"], [487, 0, 1, "", "vsplit"], [488, 0, 1, "", "vstack"], [735, 0, 1, "", "where"], [354, 0, 1, "", "xlogy"], [701, 0, 1, "", "zero_pad"], [144, 0, 1, "", "zeros_like"], [355, 0, 1, "", "zeta"]], "ivy.data_classes.array": [[46, 3, 0, "-", "activations"], [97, 3, 0, "-", "array"], [47, 3, 0, "-", "conversions"], [48, 3, 0, "-", "creation"], [49, 3, 0, "-", "data_type"], [50, 3, 0, "-", "device"], [51, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "experimental"], [53, 3, 0, "-", "general"], [54, 3, 0, "-", "gradients"], [55, 3, 0, "-", "image"], [56, 3, 0, "-", "layers"], [57, 3, 0, "-", "linear_algebra"], [58, 3, 0, "-", "losses"], [59, 3, 0, "-", "manipulation"], [60, 3, 0, "-", "norms"], [61, 3, 0, "-", "random"], [62, 3, 0, "-", "searching"], [63, 3, 0, "-", "set"], [64, 3, 0, "-", "sorting"], [65, 3, 0, "-", "statistical"], [66, 3, 0, "-", "utility"], [67, 3, 0, "-", "wrapping"]], "ivy.data_classes.array.activations": [[46, 1, 1, "", "_ArrayWithActivations"]], "ivy.data_classes.array.activations._ArrayWithActivations": [[46, 4, 1, "", "_abc_impl"], [46, 0, 1, "", "gelu"], [46, 0, 1, "", "hardswish"], [46, 0, 1, "", "leaky_relu"], [46, 0, 1, "", "log_softmax"], [46, 0, 1, "", "mish"], [46, 0, 1, "", "relu"], [46, 0, 1, "", "sigmoid"], [46, 0, 1, "", "softmax"], [46, 0, 1, "", "softplus"]], "ivy.data_classes.array.array": [[97, 1, 1, "", "Array"]], "ivy.data_classes.array.array.Array": [[97, 5, 1, "", "T"], [97, 0, 1, "", "__abs__"], [97, 0, 1, "", "__add__"], [97, 0, 1, "", "__eq__"], [97, 0, 1, "", "__ge__"], [97, 0, 1, "", "__gt__"], [97, 0, 1, "", "__init__"], [97, 0, 1, "", "__le__"], [97, 0, 1, "", "__lt__"], [97, 0, 1, "", "__ne__"], [97, 0, 1, "", "__pow__"], [97, 0, 1, "", "__radd__"], [97, 0, 1, "", "__rrshift__"], [97, 0, 1, "", "__rshift__"], [97, 0, 1, "", "__rsub__"], [97, 0, 1, "", "__sub__"], [97, 0, 1, "", "__truediv__"], [97, 0, 1, "", "__xor__"], [97, 5, 1, "", "backend"], [97, 5, 1, "", "base"], [97, 5, 1, "", "data"], [97, 5, 1, "", "device"], [97, 5, 1, "", "dtype"], [97, 5, 1, "", "dynamic_backend"], [97, 5, 1, "", "imag"], [97, 5, 1, "", "itemsize"], [97, 5, 1, "", "mT"], [97, 5, 1, "", "ndim"], [97, 5, 1, "", "real"], [97, 5, 1, "", "shape"], [97, 5, 1, "", "size"], [97, 5, 1, "", "strides"]], "ivy.data_classes.array.conversions": [[47, 2, 1, "", "_array_to_new_backend"], [47, 2, 1, "", "_to_ivy"], [47, 2, 1, "", "_to_native"], [47, 2, 1, "", "_to_new_backend"], [47, 2, 1, "", "args_to_ivy"], [47, 2, 1, "", "args_to_native"], [47, 2, 1, "", "args_to_new_backend"], [47, 2, 1, "", "to_ivy"], [47, 2, 1, "", "to_native"], [47, 2, 1, "", "to_new_backend"]], "ivy.data_classes.array.creation": [[48, 1, 1, "", "_ArrayWithCreation"]], "ivy.data_classes.array.creation._ArrayWithCreation": [[48, 4, 1, "", "_abc_impl"], [48, 0, 1, "", "asarray"], [48, 0, 1, "", "copy_array"], [48, 0, 1, "", "empty_like"], [48, 0, 1, "", "from_dlpack"], [48, 0, 1, "", "full_like"], [48, 0, 1, "", "linspace"], [48, 0, 1, "", "logspace"], [48, 0, 1, "", "meshgrid"], [48, 0, 1, "", "native_array"], [48, 0, 1, "", "one_hot"], [48, 0, 1, "", "ones_like"], [48, 0, 1, "", "tril"], [48, 0, 1, "", "triu"], [48, 0, 1, "", "zeros_like"]], "ivy.data_classes.array.data_type": [[49, 1, 1, "", "_ArrayWithDataTypes"]], "ivy.data_classes.array.data_type._ArrayWithDataTypes": [[49, 4, 1, "", "_abc_impl"], [49, 0, 1, "", "astype"], [49, 0, 1, "", "broadcast_arrays"], [49, 0, 1, "", "broadcast_to"], [49, 0, 1, "", "can_cast"], [49, 0, 1, "", "dtype"], [49, 0, 1, "", "finfo"], [49, 0, 1, "", "iinfo"], [49, 0, 1, "", "is_bool_dtype"], [49, 0, 1, "", "is_float_dtype"], [49, 0, 1, "", "is_int_dtype"], [49, 0, 1, "", "is_uint_dtype"], [49, 0, 1, "", "result_type"]], "ivy.data_classes.array.device": [[50, 1, 1, "", "_ArrayWithDevice"]], "ivy.data_classes.array.device._ArrayWithDevice": [[50, 4, 1, "", "_abc_impl"], [50, 0, 1, "", "dev"], [50, 0, 1, "", "to_device"]], "ivy.data_classes.array.elementwise": [[51, 1, 1, "", "_ArrayWithElementwise"]], "ivy.data_classes.array.elementwise._ArrayWithElementwise": [[51, 4, 1, "", "_abc_impl"], [51, 0, 1, "", "abs"], [51, 0, 1, "", "acos"], [51, 0, 1, "", "acosh"], [51, 0, 1, "", "add"], [51, 0, 1, "", "angle"], [51, 0, 1, "", "asin"], [51, 0, 1, "", "asinh"], [51, 0, 1, "", "atan"], [51, 0, 1, "", "atan2"], [51, 0, 1, "", "atanh"], [51, 0, 1, "", "bitwise_and"], [51, 0, 1, "", "bitwise_invert"], [51, 0, 1, "", "bitwise_left_shift"], [51, 0, 1, "", "bitwise_or"], [51, 0, 1, "", "bitwise_right_shift"], [51, 0, 1, "", "bitwise_xor"], [51, 0, 1, "", "ceil"], [51, 0, 1, "", "cos"], [51, 0, 1, "", "cosh"], [51, 0, 1, "", "deg2rad"], [51, 0, 1, "", "divide"], [51, 0, 1, "", "equal"], [51, 0, 1, "", "erf"], [51, 0, 1, "", "exp"], [51, 0, 1, "", "exp2"], [51, 0, 1, "", "expm1"], [51, 0, 1, "", "floor"], [51, 0, 1, "", "floor_divide"], [51, 0, 1, "", "fmin"], [51, 0, 1, "", "gcd"], [51, 0, 1, "", "greater"], [51, 0, 1, "", "greater_equal"], [51, 0, 1, "", "imag"], [51, 0, 1, "", "isfinite"], [51, 0, 1, "", "isinf"], [51, 0, 1, "", "isnan"], [51, 0, 1, "", "isreal"], [51, 0, 1, "", "lcm"], [51, 0, 1, "", "less"], [51, 0, 1, "", "less_equal"], [51, 0, 1, "", "log"], [51, 0, 1, "", "log10"], [51, 0, 1, "", "log1p"], [51, 0, 1, "", "log2"], [51, 0, 1, "", "logaddexp"], [51, 0, 1, "", "logaddexp2"], [51, 0, 1, "", "logical_and"], [51, 0, 1, "", "logical_not"], [51, 0, 1, "", "logical_or"], [51, 0, 1, "", "logical_xor"], [51, 0, 1, "", "maximum"], [51, 0, 1, "", "minimum"], [51, 0, 1, "", "multiply"], [51, 0, 1, "", "nan_to_num"], [51, 0, 1, "", "negative"], [51, 0, 1, "", "not_equal"], [51, 0, 1, "", "positive"], [51, 0, 1, "", "pow"], [51, 0, 1, "", "rad2deg"], [51, 0, 1, "", "real"], [51, 0, 1, "", "reciprocal"], [51, 0, 1, "", "remainder"], [51, 0, 1, "", "round"], [51, 0, 1, "", "sign"], [51, 0, 1, "", "sin"], [51, 0, 1, "", "sinh"], [51, 0, 1, "", "sqrt"], [51, 0, 1, "", "square"], [51, 0, 1, "", "subtract"], [51, 0, 1, "", "tan"], [51, 0, 1, "", "tanh"], [51, 0, 1, "", "trapz"], [51, 0, 1, "", "trunc"], [51, 0, 1, "", "trunc_divide"]], "ivy.data_classes.array.experimental": [[52, 3, 0, "-", "activations"], [52, 3, 0, "-", "conversions"], [52, 3, 0, "-", "creation"], [52, 3, 0, "-", "data_type"], [52, 3, 0, "-", "device"], [52, 3, 0, "-", "elementwise"], [52, 3, 0, "-", "general"], [52, 3, 0, "-", "gradients"], [52, 3, 0, "-", "image"], [52, 3, 0, "-", "layers"], [52, 3, 0, "-", "linear_algebra"], [52, 3, 0, "-", "losses"], [52, 3, 0, "-", "manipulation"], [52, 3, 0, "-", "norms"], [52, 3, 0, "-", "random"], [52, 3, 0, "-", "searching"], [52, 3, 0, "-", "set"], [52, 3, 0, "-", "sorting"], [52, 3, 0, "-", "statistical"], [52, 3, 0, "-", "utility"]], "ivy.data_classes.array.experimental.activations": [[52, 1, 1, "", "_ArrayWithActivationsExperimental"]], "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "celu"], [52, 0, 1, "", "elu"], [52, 0, 1, "", "hardshrink"], [52, 0, 1, "", "hardtanh"], [52, 0, 1, "", "logit"], [52, 0, 1, "", "logsigmoid"], [52, 0, 1, "", "prelu"], [52, 0, 1, "", "relu6"], [52, 0, 1, "", "scaled_tanh"], [52, 0, 1, "", "selu"], [52, 0, 1, "", "silu"], [52, 0, 1, "", "softshrink"], [52, 0, 1, "", "tanhshrink"], [52, 0, 1, "", "threshold"], [52, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.array.experimental.conversions": [[52, 1, 1, "", "_ArrayWithConversionsExperimental"]], "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.creation": [[52, 1, 1, "", "_ArrayWithCreationExperimental"], [52, 2, 1, "", "polyval"]], "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "blackman_window"], [52, 0, 1, "", "eye_like"], [52, 0, 1, "", "mel_weight_matrix"], [52, 0, 1, "", "trilu"], [52, 0, 1, "", "unsorted_segment_mean"], [52, 0, 1, "", "unsorted_segment_min"], [52, 0, 1, "", "unsorted_segment_sum"]], "ivy.data_classes.array.experimental.data_type": [[52, 1, 1, "", "_ArrayWithData_typeExperimental"]], "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.device": [[52, 1, 1, "", "_ArrayWithDeviceExperimental"]], "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.elementwise": [[52, 1, 1, "", "_ArrayWithElementWiseExperimental"]], "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "allclose"], [52, 0, 1, "", "amax"], [52, 0, 1, "", "amin"], [52, 0, 1, "", "binarizer"], [52, 0, 1, "", "conj"], [52, 0, 1, "", "copysign"], [52, 0, 1, "", "count_nonzero"], [52, 0, 1, "", "diff"], [52, 0, 1, "", "digamma"], [52, 0, 1, "", "erfc"], [52, 0, 1, "", "fix"], [52, 0, 1, "", "float_power"], [52, 0, 1, "", "fmax"], [52, 0, 1, "", "fmod"], [52, 0, 1, "", "frexp"], [52, 0, 1, "", "gradient"], [52, 0, 1, "", "hypot"], [52, 0, 1, "", "isclose"], [52, 0, 1, "", "ldexp"], [52, 0, 1, "", "lerp"], [52, 0, 1, "", "lgamma"], [52, 0, 1, "", "modf"], [52, 0, 1, "", "nansum"], [52, 0, 1, "", "nextafter"], [52, 0, 1, "", "signbit"], [52, 0, 1, "", "sinc"], [52, 0, 1, "", "sparsify_tensor"], [52, 0, 1, "", "xlogy"], [52, 0, 1, "", "zeta"]], "ivy.data_classes.array.experimental.general": [[52, 1, 1, "", "_ArrayWithGeneralExperimental"]], "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "reduce"]], "ivy.data_classes.array.experimental.gradients": [[52, 1, 1, "", "_ArrayWithGradientsExperimental"]], "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.image": [[52, 1, 1, "", "_ArrayWithImageExperimental"]], "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.layers": [[52, 1, 1, "", "_ArrayWithLayersExperimental"]], "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adaptive_avg_pool1d"], [52, 0, 1, "", "adaptive_avg_pool2d"], [52, 0, 1, "", "adaptive_max_pool2d"], [52, 0, 1, "", "avg_pool1d"], [52, 0, 1, "", "avg_pool2d"], [52, 0, 1, "", "avg_pool3d"], [52, 0, 1, "", "dct"], [52, 0, 1, "", "dft"], [52, 0, 1, "", "embedding"], [52, 0, 1, "", "fft"], [52, 0, 1, "", "fft2"], [52, 0, 1, "", "idct"], [52, 0, 1, "", "ifft"], [52, 0, 1, "", "ifftn"], [52, 0, 1, "", "interpolate"], [52, 0, 1, "", "max_pool1d"], [52, 0, 1, "", "max_pool2d"], [52, 0, 1, "", "max_pool3d"], [52, 0, 1, "", "max_unpool1d"], [52, 0, 1, "", "reduce_window"], [52, 0, 1, "", "rfft"], [52, 0, 1, "", "rfftn"], [52, 0, 1, "", "sliding_window"], [52, 0, 1, "", "stft"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, 1, 1, "", "_ArrayWithLinearAlgebraExperimental"]], "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "adjoint"], [52, 0, 1, "", "batched_outer"], [52, 0, 1, "", "cond"], [52, 0, 1, "", "diagflat"], [52, 0, 1, "", "dot"], [52, 0, 1, "", "eig"], [52, 0, 1, "", "eigh_tridiagonal"], [52, 0, 1, "", "eigvals"], [52, 0, 1, "", "general_inner_product"], [52, 0, 1, "", "higher_order_moment"], [52, 0, 1, "", "initialize_tucker"], [52, 0, 1, "", "kron"], [52, 0, 1, "", "make_svd_non_negative"], [52, 0, 1, "", "matrix_exp"], [52, 0, 1, "", "mode_dot"], [52, 0, 1, "", "multi_dot"], [52, 0, 1, "", "multi_mode_dot"], [52, 0, 1, "", "partial_tucker"], [52, 0, 1, "", "svd_flip"], [52, 0, 1, "", "tensor_train"], [52, 0, 1, "", "truncated_svd"], [52, 0, 1, "", "tt_matrix_to_tensor"], [52, 0, 1, "", "tucker"]], "ivy.data_classes.array.experimental.losses": [[52, 1, 1, "", "_ArrayWithLossesExperimental"]], "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "huber_loss"], [52, 0, 1, "", "kl_div"], [52, 0, 1, "", "l1_loss"], [52, 0, 1, "", "log_poisson_loss"], [52, 0, 1, "", "poisson_nll_loss"], [52, 0, 1, "", "smooth_l1_loss"], [52, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.array.experimental.manipulation": [[52, 1, 1, "", "_ArrayWithManipulationExperimental"]], "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "as_strided"], [52, 0, 1, "", "associative_scan"], [52, 0, 1, "", "atleast_1d"], [52, 0, 1, "", "atleast_2d"], [52, 0, 1, "", "atleast_3d"], [52, 0, 1, "", "column_stack"], [52, 0, 1, "", "concat_from_sequence"], [52, 0, 1, "", "dsplit"], [52, 0, 1, "", "dstack"], [52, 0, 1, "", "expand"], [52, 0, 1, "", "fill_diagonal"], [52, 0, 1, "", "flatten"], [52, 0, 1, "", "fliplr"], [52, 0, 1, "", "flipud"], [52, 0, 1, "", "fold"], [52, 0, 1, "", "heaviside"], [52, 0, 1, "", "hsplit"], [52, 0, 1, "", "hstack"], [52, 0, 1, "", "i0"], [52, 0, 1, "", "matricize"], [52, 0, 1, "", "moveaxis"], [52, 0, 1, "", "pad"], [52, 0, 1, "", "partial_fold"], [52, 0, 1, "", "partial_tensor_to_vec"], [52, 0, 1, "", "partial_unfold"], [52, 0, 1, "", "partial_vec_to_tensor"], [52, 0, 1, "", "put_along_axis"], [52, 0, 1, "", "rot90"], [52, 0, 1, "", "soft_thresholding"], [52, 0, 1, "", "take"], [52, 0, 1, "", "take_along_axis"], [52, 0, 1, "", "top_k"], [52, 0, 1, "", "trim_zeros"], [52, 0, 1, "", "unfold"], [52, 0, 1, "", "unique_consecutive"], [52, 0, 1, "", "vsplit"], [52, 0, 1, "", "vstack"]], "ivy.data_classes.array.experimental.norms": [[52, 1, 1, "", "_ArrayWithNormsExperimental"]], "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "batch_norm"], [52, 0, 1, "", "group_norm"], [52, 0, 1, "", "instance_norm"], [52, 0, 1, "", "l1_normalize"], [52, 0, 1, "", "l2_normalize"], [52, 0, 1, "", "lp_normalize"]], "ivy.data_classes.array.experimental.random": [[52, 1, 1, "", "_ArrayWithRandomExperimental"]], "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bernoulli"], [52, 0, 1, "", "beta"], [52, 0, 1, "", "dirichlet"], [52, 0, 1, "", "gamma"], [52, 0, 1, "", "poisson"]], "ivy.data_classes.array.experimental.searching": [[52, 1, 1, "", "_ArrayWithSearchingExperimental"]], "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "unravel_index"]], "ivy.data_classes.array.experimental.set": [[52, 1, 1, "", "_ArrayWithSetExperimental"]], "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental": [[52, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.experimental.sorting": [[52, 1, 1, "", "_ArrayWithSortingExperimental"]], "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "lexsort"]], "ivy.data_classes.array.experimental.statistical": [[52, 1, 1, "", "_ArrayWithStatisticalExperimental"]], "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "bincount"], [52, 0, 1, "", "corrcoef"], [52, 0, 1, "", "cov"], [52, 0, 1, "", "cummax"], [52, 0, 1, "", "cummin"], [52, 0, 1, "", "histogram"], [52, 0, 1, "", "igamma"], [52, 0, 1, "", "median"], [52, 0, 1, "", "nanmean"], [52, 0, 1, "", "nanmedian"], [52, 0, 1, "", "nanmin"], [52, 0, 1, "", "nanprod"], [52, 0, 1, "", "quantile"]], "ivy.data_classes.array.experimental.utility": [[52, 1, 1, "", "_ArrayWithUtilityExperimental"]], "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental": [[52, 4, 1, "", "_abc_impl"], [52, 0, 1, "", "optional_get_element"]], "ivy.data_classes.array.general": [[53, 1, 1, "", "_ArrayWithGeneral"]], "ivy.data_classes.array.general._ArrayWithGeneral": [[53, 4, 1, "", "_abc_impl"], [53, 0, 1, "", "all_equal"], [53, 0, 1, "", "array_equal"], [53, 0, 1, "", "assert_supports_inplace"], [53, 0, 1, "", "clip_matrix_norm"], [53, 0, 1, "", "clip_vector_norm"], [53, 0, 1, "", "default"], [53, 0, 1, "", "einops_rearrange"], [53, 0, 1, "", "einops_reduce"], [53, 0, 1, "", "einops_repeat"], [53, 0, 1, "", "exists"], [53, 0, 1, "", "fourier_encode"], [53, 0, 1, "", "gather"], [53, 0, 1, "", "gather_nd"], [53, 0, 1, "", "get_num_dims"], [53, 0, 1, "", "has_nans"], [53, 0, 1, "", "inplace_decrement"], [53, 0, 1, "", "inplace_increment"], [53, 0, 1, "", "inplace_update"], [53, 0, 1, "", "is_array"], [53, 0, 1, "", "is_ivy_array"], [53, 0, 1, "", "is_ivy_container"], [53, 0, 1, "", "is_native_array"], [53, 0, 1, "", "isin"], [53, 0, 1, "", "scatter_flat"], [53, 0, 1, "", "scatter_nd"], [53, 0, 1, "", "stable_divide"], [53, 0, 1, "", "stable_pow"], [53, 0, 1, "", "supports_inplace_updates"], [53, 0, 1, "", "to_file"], [53, 0, 1, "", "to_list"], [53, 0, 1, "", "to_numpy"], [53, 0, 1, "", "to_scalar"], [53, 0, 1, "", "value_is_nan"]], "ivy.data_classes.array.gradients": [[54, 1, 1, "", "_ArrayWithGradients"]], "ivy.data_classes.array.gradients._ArrayWithGradients": [[54, 4, 1, "", "_abc_impl"], [54, 0, 1, "", "adam_step"], [54, 0, 1, "", "adam_update"], [54, 0, 1, "", "gradient_descent_update"], [54, 0, 1, "", "lamb_update"], [54, 0, 1, "", "lars_update"], [54, 0, 1, "", "optimizer_update"], [54, 0, 1, "", "stop_gradient"]], "ivy.data_classes.array.image": [[55, 1, 1, "", "_ArrayWithImage"]], "ivy.data_classes.array.image._ArrayWithImage": [[55, 4, 1, "", "_abc_impl"]], "ivy.data_classes.array.layers": [[56, 1, 1, "", "_ArrayWithLayers"]], "ivy.data_classes.array.layers._ArrayWithLayers": [[56, 4, 1, "", "_abc_impl"], [56, 0, 1, "", "conv1d"], [56, 0, 1, "", "conv1d_transpose"], [56, 0, 1, "", "conv2d"], [56, 0, 1, "", "conv2d_transpose"], [56, 0, 1, "", "conv3d"], [56, 0, 1, "", "conv3d_transpose"], [56, 0, 1, "", "depthwise_conv2d"], [56, 0, 1, "", "dropout"], [56, 0, 1, "", "dropout1d"], [56, 0, 1, "", "dropout2d"], [56, 0, 1, "", "dropout3d"], [56, 0, 1, "", "linear"], [56, 0, 1, "", "lstm_update"], [56, 0, 1, "", "multi_head_attention"], [56, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.array.linear_algebra": [[57, 1, 1, "", "_ArrayWithLinearAlgebra"]], "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra": [[57, 4, 1, "", "_abc_impl"], [57, 0, 1, "", "cholesky"], [57, 0, 1, "", "cross"], [57, 0, 1, "", "det"], [57, 0, 1, "", "diag"], [57, 0, 1, "", "diagonal"], [57, 0, 1, "", "eig"], [57, 0, 1, "", "eigh"], [57, 0, 1, "", "eigvalsh"], [57, 0, 1, "", "inner"], [57, 0, 1, "", "inv"], [57, 0, 1, "", "matmul"], [57, 0, 1, "", "matrix_norm"], [57, 0, 1, "", "matrix_power"], [57, 0, 1, "", "matrix_rank"], [57, 0, 1, "", "matrix_transpose"], [57, 0, 1, "", "outer"], [57, 0, 1, "", "pinv"], [57, 0, 1, "", "qr"], [57, 0, 1, "", "slogdet"], [57, 0, 1, "", "solve"], [57, 0, 1, "", "svd"], [57, 0, 1, "", "svdvals"], [57, 0, 1, "", "tensordot"], [57, 0, 1, "", "tensorsolve"], [57, 0, 1, "", "trace"], [57, 0, 1, "", "vander"], [57, 0, 1, "", "vecdot"], [57, 0, 1, "", "vector_norm"], [57, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.array.losses": [[58, 1, 1, "", "_ArrayWithLosses"]], "ivy.data_classes.array.losses._ArrayWithLosses": [[58, 4, 1, "", "_abc_impl"], [58, 0, 1, "", "binary_cross_entropy"], [58, 0, 1, "", "cross_entropy"], [58, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.array.manipulation": [[59, 1, 1, "", "_ArrayWithManipulation"]], "ivy.data_classes.array.manipulation._ArrayWithManipulation": [[59, 4, 1, "", "_abc_impl"], [59, 0, 1, "", "clip"], [59, 0, 1, "", "concat"], [59, 0, 1, "", "constant_pad"], [59, 0, 1, "", "expand_dims"], [59, 0, 1, "", "flip"], [59, 0, 1, "", "permute_dims"], [59, 0, 1, "", "repeat"], [59, 0, 1, "", "reshape"], [59, 0, 1, "", "roll"], [59, 0, 1, "", "split"], [59, 0, 1, "", "squeeze"], [59, 0, 1, "", "stack"], [59, 0, 1, "", "swapaxes"], [59, 0, 1, "", "tile"], [59, 0, 1, "", "unstack"], [59, 0, 1, "", "view"], [59, 0, 1, "", "zero_pad"]], "ivy.data_classes.array.norms": [[60, 1, 1, "", "_ArrayWithNorms"]], "ivy.data_classes.array.norms._ArrayWithNorms": [[60, 4, 1, "", "_abc_impl"], [60, 0, 1, "", "layer_norm"]], "ivy.data_classes.array.random": [[61, 1, 1, "", "_ArrayWithRandom"]], "ivy.data_classes.array.random._ArrayWithRandom": [[61, 4, 1, "", "_abc_impl"], [61, 0, 1, "", "multinomial"], [61, 0, 1, "", "randint"], [61, 0, 1, "", "random_normal"], [61, 0, 1, "", "random_uniform"], [61, 0, 1, "", "shuffle"]], "ivy.data_classes.array.searching": [[62, 1, 1, "", "_ArrayWithSearching"]], "ivy.data_classes.array.searching._ArrayWithSearching": [[62, 4, 1, "", "_abc_impl"], [62, 0, 1, "", "argmax"], [62, 0, 1, "", "argmin"], [62, 0, 1, "", "argwhere"], [62, 0, 1, "", "nonzero"], [62, 0, 1, "", "where"]], "ivy.data_classes.array.set": [[63, 1, 1, "", "_ArrayWithSet"]], "ivy.data_classes.array.set._ArrayWithSet": [[63, 4, 1, "", "_abc_impl"], [63, 0, 1, "", "unique_all"], [63, 0, 1, "", "unique_counts"], [63, 0, 1, "", "unique_inverse"], [63, 0, 1, "", "unique_values"]], "ivy.data_classes.array.sorting": [[64, 1, 1, "", "_ArrayWithSorting"]], "ivy.data_classes.array.sorting._ArrayWithSorting": [[64, 4, 1, "", "_abc_impl"], [64, 0, 1, "", "argsort"], [64, 0, 1, "", "msort"], [64, 0, 1, "", "searchsorted"], [64, 0, 1, "", "sort"]], "ivy.data_classes.array.statistical": [[65, 1, 1, "", "_ArrayWithStatistical"]], "ivy.data_classes.array.statistical._ArrayWithStatistical": [[65, 4, 1, "", "_abc_impl"], [65, 0, 1, "", "cumprod"], [65, 0, 1, "", "cumsum"], [65, 0, 1, "", "einsum"], [65, 0, 1, "", "max"], [65, 0, 1, "", "mean"], [65, 0, 1, "", "min"], [65, 0, 1, "", "prod"], [65, 0, 1, "", "std"], [65, 0, 1, "", "sum"], [65, 0, 1, "", "var"]], "ivy.data_classes.array.utility": [[66, 1, 1, "", "_ArrayWithUtility"]], "ivy.data_classes.array.utility._ArrayWithUtility": [[66, 4, 1, "", "_abc_impl"], [66, 0, 1, "", "all"], [66, 0, 1, "", "any"]], "ivy.data_classes.array.wrapping": [[67, 2, 1, "", "_wrap_function"], [67, 2, 1, "", "add_ivy_array_instance_methods"]], "ivy.data_classes.container": [[68, 3, 0, "-", "activations"], [69, 3, 0, "-", "base"], [98, 3, 0, "-", "container"], [70, 3, 0, "-", "conversions"], [71, 3, 0, "-", "creation"], [72, 3, 0, "-", "data_type"], [73, 3, 0, "-", "device"], [74, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "experimental"], [76, 3, 0, "-", "general"], [77, 3, 0, "-", "gradients"], [78, 3, 0, "-", "image"], [79, 3, 0, "-", "layers"], [80, 3, 0, "-", "linear_algebra"], [81, 3, 0, "-", "losses"], [82, 3, 0, "-", "manipulation"], [83, 3, 0, "-", "norms"], [84, 3, 0, "-", "random"], [85, 3, 0, "-", "searching"], [86, 3, 0, "-", "set"], [87, 3, 0, "-", "sorting"], [88, 3, 0, "-", "statistical"], [89, 3, 0, "-", "utility"], [90, 3, 0, "-", "wrapping"]], "ivy.data_classes.container.activations": [[68, 1, 1, "", "_ContainerWithActivations"]], "ivy.data_classes.container.activations._ContainerWithActivations": [[68, 4, 1, "", "_abc_impl"], [68, 0, 1, "", "_static_gelu"], [68, 0, 1, "", "_static_hardswish"], [68, 0, 1, "", "_static_leaky_relu"], [68, 0, 1, "", "_static_log_softmax"], [68, 0, 1, "", "_static_mish"], [68, 0, 1, "", "_static_relu"], [68, 0, 1, "", "_static_sigmoid"], [68, 0, 1, "", "_static_softmax"], [68, 0, 1, "", "_static_softplus"], [68, 0, 1, "", "gelu"], [68, 0, 1, "", "hardswish"], [68, 0, 1, "", "leaky_relu"], [68, 0, 1, "", "log_softmax"], [68, 0, 1, "", "mish"], [68, 0, 1, "", "relu"], [68, 0, 1, "", "sigmoid"], [68, 0, 1, "", "softmax"], [68, 0, 1, "", "softplus"]], "ivy.data_classes.container.base": [[69, 1, 1, "", "ContainerBase"], [69, 2, 1, "", "_is_jsonable"], [69, 2, 1, "", "_repr"]], "ivy.data_classes.container.base.ContainerBase": [[69, 0, 1, "", "__getitem__"], [69, 0, 1, "", "__init__"], [69, 0, 1, "", "__setitem__"], [69, 4, 1, "", "_abc_impl"], [69, 0, 1, "", "_cont_at_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_at_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_call_static_method_with_flexible_args"], [69, 0, 1, "", "_cont_concat_unify"], [69, 0, 1, "", "_cont_get_dev"], [69, 0, 1, "", "_cont_get_dtype"], [69, 0, 1, "", "_cont_get_shape"], [69, 0, 1, "", "_cont_get_shapes"], [69, 5, 1, "", "_cont_ivy"], [69, 0, 1, "", "_cont_mean_unify"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_dict"], [69, 0, 1, "", "_cont_prune_key_chains_input_as_seq"], [69, 0, 1, "", "_cont_slice_keys"], [69, 0, 1, "", "_cont_sum_unify"], [69, 0, 1, "", "_get_queue_item"], [69, 0, 1, "", "cont_all_false"], [69, 0, 1, "", "cont_all_key_chains"], [69, 0, 1, "", "cont_all_true"], [69, 0, 1, "", "cont_as_bools"], [69, 0, 1, "", "cont_assert_contains_sub_container"], [69, 0, 1, "", "cont_assert_contains_sub_structure"], [69, 0, 1, "", "cont_assert_identical"], [69, 0, 1, "", "cont_assert_identical_structure"], [69, 0, 1, "", "cont_at_key_chain"], [69, 0, 1, "", "cont_at_key_chains"], [69, 0, 1, "", "cont_at_keys"], [69, 0, 1, "", "cont_combine"], [69, 0, 1, "", "cont_common_key_chains"], [69, 5, 1, "", "cont_config"], [69, 0, 1, "", "cont_contains_sub_container"], [69, 0, 1, "", "cont_contains_sub_structure"], [69, 0, 1, "", "cont_copy"], [69, 0, 1, "", "cont_create_if_absent"], [69, 0, 1, "", "cont_cutoff_at_depth"], [69, 0, 1, "", "cont_cutoff_at_height"], [69, 0, 1, "", "cont_deep_copy"], [69, 5, 1, "", "cont_dev"], [69, 5, 1, "", "cont_dev_str"], [69, 0, 1, "", "cont_diff"], [69, 5, 1, "", "cont_dtype"], [69, 0, 1, "", "cont_duplicate_array_keychains"], [69, 0, 1, "", "cont_find_sub_container"], [69, 0, 1, "", "cont_find_sub_structure"], [69, 0, 1, "", "cont_flatten_key_chain"], [69, 0, 1, "", "cont_flatten_key_chains"], [69, 0, 1, "", "cont_format_key_chains"], [69, 0, 1, "", "cont_from_disk_as_hdf5"], [69, 0, 1, "", "cont_from_disk_as_json"], [69, 0, 1, "", "cont_from_disk_as_pickled"], [69, 0, 1, "", "cont_from_flat_list"], [69, 0, 1, "", "cont_handle_inplace"], [69, 0, 1, "", "cont_has_key"], [69, 0, 1, "", "cont_has_key_chain"], [69, 0, 1, "", "cont_identical"], [69, 0, 1, "", "cont_identical_array_shapes"], [69, 0, 1, "", "cont_identical_configs"], [69, 0, 1, "", "cont_identical_structure"], [69, 0, 1, "", "cont_if_exists"], [69, 0, 1, "", "cont_inplace_update"], [69, 5, 1, "", "cont_ivy"], [69, 0, 1, "", "cont_key_chains_containing"], [69, 0, 1, "", "cont_list_join"], [69, 0, 1, "", "cont_list_stack"], [69, 0, 1, "", "cont_load"], [69, 0, 1, "", "cont_map"], [69, 0, 1, "", "cont_map_sub_conts"], [69, 5, 1, "", "cont_max_depth"], [69, 0, 1, "", "cont_multi_map"], [69, 0, 1, "", "cont_multi_map_in_function"], [69, 0, 1, "", "cont_num_arrays"], [69, 0, 1, "", "cont_overwrite_at_key_chain"], [69, 0, 1, "", "cont_overwrite_at_key_chains"], [69, 0, 1, "", "cont_prune_empty"], [69, 0, 1, "", "cont_prune_key_chain"], [69, 0, 1, "", "cont_prune_key_chains"], [69, 0, 1, "", "cont_prune_key_from_key_chains"], [69, 0, 1, "", "cont_prune_keys"], [69, 0, 1, "", "cont_prune_keys_from_key_chains"], [69, 0, 1, "", "cont_reduce"], [69, 0, 1, "", "cont_remove_key_length_limit"], [69, 0, 1, "", "cont_remove_print_limit"], [69, 0, 1, "", "cont_reshape_like"], [69, 0, 1, "", "cont_restructure"], [69, 0, 1, "", "cont_restructure_key_chains"], [69, 0, 1, "", "cont_save"], [69, 0, 1, "", "cont_set_at_key_chain"], [69, 0, 1, "", "cont_set_at_key_chains"], [69, 0, 1, "", "cont_set_at_keys"], [69, 5, 1, "", "cont_shape"], [69, 5, 1, "", "cont_shapes"], [69, 0, 1, "", "cont_show"], [69, 0, 1, "", "cont_show_sub_container"], [69, 0, 1, "", "cont_size_ordered_arrays"], [69, 0, 1, "", "cont_slice_keys"], [69, 0, 1, "", "cont_slice_via_key"], [69, 0, 1, "", "cont_sort_by_key"], [69, 0, 1, "", "cont_structural_diff"], [69, 0, 1, "", "cont_to_dict"], [69, 0, 1, "", "cont_to_disk_as_hdf5"], [69, 0, 1, "", "cont_to_disk_as_json"], [69, 0, 1, "", "cont_to_disk_as_pickled"], [69, 0, 1, "", "cont_to_flat_list"], [69, 0, 1, "", "cont_to_iterator"], [69, 0, 1, "", "cont_to_iterator_keys"], [69, 0, 1, "", "cont_to_iterator_values"], [69, 0, 1, "", "cont_to_jsonable"], [69, 0, 1, "", "cont_to_nested_list"], [69, 0, 1, "", "cont_to_raw"], [69, 0, 1, "", "cont_trim_key"], [69, 0, 1, "", "cont_try_kc"], [69, 0, 1, "", "cont_unify"], [69, 0, 1, "", "cont_unstack_conts"], [69, 0, 1, "", "cont_update_config"], [69, 0, 1, "", "cont_with_default_key_color"], [69, 0, 1, "", "cont_with_entries_as_lists"], [69, 0, 1, "", "cont_with_ivy_backend"], [69, 0, 1, "", "cont_with_key_length_limit"], [69, 0, 1, "", "cont_with_print_indent"], [69, 0, 1, "", "cont_with_print_limit"], [69, 0, 1, "", "cont_with_print_line_spacing"], [69, 5, 1, "", "dynamic_backend"], [69, 0, 1, "", "h5_file_size"], [69, 0, 1, "", "shuffle_h5_file"], [69, 0, 1, "", "split_conts"]], "ivy.data_classes.container.container": [[98, 1, 1, "", "Container"]], "ivy.data_classes.container.container.Container": [[98, 0, 1, "", "__abs__"], [98, 0, 1, "", "__add__"], [98, 0, 1, "", "__eq__"], [98, 0, 1, "", "__ge__"], [98, 0, 1, "", "__gt__"], [98, 0, 1, "", "__init__"], [98, 0, 1, "", "__le__"], [98, 0, 1, "", "__lt__"], [98, 0, 1, "", "__ne__"], [98, 0, 1, "", "__pow__"], [98, 0, 1, "", "__radd__"], [98, 0, 1, "", "__rrshift__"], [98, 0, 1, "", "__rshift__"], [98, 0, 1, "", "__rsub__"], [98, 0, 1, "", "__sub__"], [98, 0, 1, "", "__truediv__"], [98, 0, 1, "", "__xor__"]], "ivy.data_classes.container.conversions": [[70, 1, 1, "", "_ContainerWithConversions"]], "ivy.data_classes.container.conversions._ContainerWithConversions": [[70, 4, 1, "", "_abc_impl"], [70, 0, 1, "", "_static_to_ivy"], [70, 0, 1, "", "_static_to_native"], [70, 0, 1, "", "to_ivy"], [70, 0, 1, "", "to_native"]], "ivy.data_classes.container.creation": [[71, 1, 1, "", "_ContainerWithCreation"]], "ivy.data_classes.container.creation._ContainerWithCreation": [[71, 4, 1, "", "_abc_impl"], [71, 0, 1, "", "_static_arange"], [71, 0, 1, "", "_static_asarray"], [71, 0, 1, "", "_static_copy_array"], [71, 0, 1, "", "_static_empty"], [71, 0, 1, "", "_static_empty_like"], [71, 0, 1, "", "_static_eye"], [71, 0, 1, "", "_static_from_dlpack"], [71, 0, 1, "", "_static_full"], [71, 0, 1, "", "_static_full_like"], [71, 0, 1, "", "_static_linspace"], [71, 0, 1, "", "_static_logspace"], [71, 0, 1, "", "_static_meshgrid"], [71, 0, 1, "", "_static_native_array"], [71, 0, 1, "", "_static_one_hot"], [71, 0, 1, "", "_static_ones"], [71, 0, 1, "", "_static_ones_like"], [71, 0, 1, "", "_static_tril"], [71, 0, 1, "", "_static_triu"], [71, 0, 1, "", "_static_zeros"], [71, 0, 1, "", "_static_zeros_like"], [71, 0, 1, "", "asarray"], [71, 0, 1, "", "copy_array"], [71, 0, 1, "", "empty_like"], [71, 0, 1, "", "from_dlpack"], [71, 0, 1, "", "frombuffer"], [71, 0, 1, "", "full_like"], [71, 0, 1, "", "linspace"], [71, 0, 1, "", "logspace"], [71, 0, 1, "", "meshgrid"], [71, 0, 1, "", "native_array"], [71, 0, 1, "", "one_hot"], [71, 0, 1, "", "ones_like"], [71, 0, 1, "", "static_frombuffer"], [71, 0, 1, "", "static_triu_indices"], [71, 0, 1, "", "tril"], [71, 0, 1, "", "triu"], [71, 0, 1, "", "triu_indices"], [71, 0, 1, "", "zeros_like"]], "ivy.data_classes.container.data_type": [[72, 1, 1, "", "_ContainerWithDataTypes"]], "ivy.data_classes.container.data_type._ContainerWithDataTypes": [[72, 4, 1, "", "_abc_impl"], [72, 0, 1, "", "_static_astype"], [72, 0, 1, "", "_static_broadcast_arrays"], [72, 0, 1, "", "_static_broadcast_to"], [72, 0, 1, "", "_static_can_cast"], [72, 0, 1, "", "_static_default_complex_dtype"], [72, 0, 1, "", "_static_default_float_dtype"], [72, 0, 1, "", "_static_dtype"], [72, 0, 1, "", "_static_finfo"], [72, 0, 1, "", "_static_function_supported_dtypes"], [72, 0, 1, "", "_static_function_unsupported_dtypes"], [72, 0, 1, "", "_static_iinfo"], [72, 0, 1, "", "_static_is_bool_dtype"], [72, 0, 1, "", "_static_is_complex_dtype"], [72, 0, 1, "", "_static_is_float_dtype"], [72, 0, 1, "", "_static_is_int_dtype"], [72, 0, 1, "", "_static_is_uint_dtype"], [72, 0, 1, "", "_static_result_type"], [72, 0, 1, "", "astype"], [72, 0, 1, "", "broadcast_arrays"], [72, 0, 1, "", "broadcast_to"], [72, 0, 1, "", "can_cast"], [72, 0, 1, "", "dtype"], [72, 0, 1, "", "finfo"], [72, 0, 1, "", "iinfo"], [72, 0, 1, "", "is_bool_dtype"], [72, 0, 1, "", "is_complex_dtype"], [72, 0, 1, "", "is_float_dtype"], [72, 0, 1, "", "is_int_dtype"], [72, 0, 1, "", "is_uint_dtype"], [72, 0, 1, "", "result_type"]], "ivy.data_classes.container.device": [[73, 1, 1, "", "_ContainerWithDevice"]], "ivy.data_classes.container.device._ContainerWithDevice": [[73, 4, 1, "", "_abc_impl"], [73, 0, 1, "", "_static_dev"], [73, 0, 1, "", "_static_to_device"], [73, 0, 1, "", "dev"], [73, 0, 1, "", "to_device"]], "ivy.data_classes.container.elementwise": [[74, 1, 1, "", "_ContainerWithElementwise"]], "ivy.data_classes.container.elementwise._ContainerWithElementwise": [[74, 4, 1, "", "_abc_impl"], [74, 0, 1, "", "_static_abs"], [74, 0, 1, "", "_static_acos"], [74, 0, 1, "", "_static_acosh"], [74, 0, 1, "", "_static_add"], [74, 0, 1, "", "_static_asin"], [74, 0, 1, "", "_static_asinh"], [74, 0, 1, "", "_static_atan"], [74, 0, 1, "", "_static_atan2"], [74, 0, 1, "", "_static_atanh"], [74, 0, 1, "", "_static_bitwise_and"], [74, 0, 1, "", "_static_bitwise_invert"], [74, 0, 1, "", "_static_bitwise_left_shift"], [74, 0, 1, "", "_static_bitwise_or"], [74, 0, 1, "", "_static_bitwise_right_shift"], [74, 0, 1, "", "_static_bitwise_xor"], [74, 0, 1, "", "_static_ceil"], [74, 0, 1, "", "_static_cos"], [74, 0, 1, "", "_static_cosh"], [74, 0, 1, "", "_static_deg2rad"], [74, 0, 1, "", "_static_divide"], [74, 0, 1, "", "_static_equal"], [74, 0, 1, "", "_static_erf"], [74, 0, 1, "", "_static_exp"], [74, 0, 1, "", "_static_expm1"], [74, 0, 1, "", "_static_floor"], [74, 0, 1, "", "_static_floor_divide"], [74, 0, 1, "", "_static_greater"], [74, 0, 1, "", "_static_greater_equal"], [74, 0, 1, "", "_static_isfinite"], [74, 0, 1, "", "_static_isinf"], [74, 0, 1, "", "_static_isnan"], [74, 0, 1, "", "_static_isreal"], [74, 0, 1, "", "_static_lcm"], [74, 0, 1, "", "_static_less"], [74, 0, 1, "", "_static_less_equal"], [74, 0, 1, "", "_static_log"], [74, 0, 1, "", "_static_log10"], [74, 0, 1, "", "_static_log1p"], [74, 0, 1, "", "_static_log2"], [74, 0, 1, "", "_static_logaddexp"], [74, 0, 1, "", "_static_logical_and"], [74, 0, 1, "", "_static_logical_not"], [74, 0, 1, "", "_static_logical_or"], [74, 0, 1, "", "_static_logical_xor"], [74, 0, 1, "", "_static_maximum"], [74, 0, 1, "", "_static_minimum"], [74, 0, 1, "", "_static_multiply"], [74, 0, 1, "", "_static_negative"], [74, 0, 1, "", "_static_not_equal"], [74, 0, 1, "", "_static_positive"], [74, 0, 1, "", "_static_pow"], [74, 0, 1, "", "_static_rad2deg"], [74, 0, 1, "", "_static_reciprocal"], [74, 0, 1, "", "_static_remainder"], [74, 0, 1, "", "_static_round"], [74, 0, 1, "", "_static_sign"], [74, 0, 1, "", "_static_sin"], [74, 0, 1, "", "_static_sinh"], [74, 0, 1, "", "_static_sqrt"], [74, 0, 1, "", "_static_square"], [74, 0, 1, "", "_static_subtract"], [74, 0, 1, "", "_static_tan"], [74, 0, 1, "", "_static_tanh"], [74, 0, 1, "", "_static_trapz"], [74, 0, 1, "", "_static_trunc"], [74, 0, 1, "", "_static_trunc_divide"], [74, 0, 1, "", "abs"], [74, 0, 1, "", "acos"], [74, 0, 1, "", "acosh"], [74, 0, 1, "", "add"], [74, 0, 1, "", "angle"], [74, 0, 1, "", "asin"], [74, 0, 1, "", "asinh"], [74, 0, 1, "", "atan"], [74, 0, 1, "", "atan2"], [74, 0, 1, "", "atanh"], [74, 0, 1, "", "bitwise_and"], [74, 0, 1, "", "bitwise_invert"], [74, 0, 1, "", "bitwise_left_shift"], [74, 0, 1, "", "bitwise_or"], [74, 0, 1, "", "bitwise_right_shift"], [74, 0, 1, "", "bitwise_xor"], [74, 0, 1, "", "ceil"], [74, 0, 1, "", "cos"], [74, 0, 1, "", "cosh"], [74, 0, 1, "", "deg2rad"], [74, 0, 1, "", "divide"], [74, 0, 1, "", "equal"], [74, 0, 1, "", "erf"], [74, 0, 1, "", "exp"], [74, 0, 1, "", "exp2"], [74, 0, 1, "", "expm1"], [74, 0, 1, "", "floor"], [74, 0, 1, "", "floor_divide"], [74, 0, 1, "", "fmin"], [74, 0, 1, "", "gcd"], [74, 0, 1, "", "greater"], [74, 0, 1, "", "greater_equal"], [74, 0, 1, "", "imag"], [74, 0, 1, "", "isfinite"], [74, 0, 1, "", "isinf"], [74, 0, 1, "", "isnan"], [74, 0, 1, "", "isreal"], [74, 0, 1, "", "lcm"], [74, 0, 1, "", "less"], [74, 0, 1, "", "less_equal"], [74, 0, 1, "", "log"], [74, 0, 1, "", "log10"], [74, 0, 1, "", "log1p"], [74, 0, 1, "", "log2"], [74, 0, 1, "", "logaddexp"], [74, 0, 1, "", "logaddexp2"], [74, 0, 1, "", "logical_and"], [74, 0, 1, "", "logical_not"], [74, 0, 1, "", "logical_or"], [74, 0, 1, "", "logical_xor"], [74, 0, 1, "", "maximum"], [74, 0, 1, "", "minimum"], [74, 0, 1, "", "multiply"], [74, 0, 1, "", "nan_to_num"], [74, 0, 1, "", "negative"], [74, 0, 1, "", "not_equal"], [74, 0, 1, "", "positive"], [74, 0, 1, "", "pow"], [74, 0, 1, "", "rad2deg"], [74, 0, 1, "", "real"], [74, 0, 1, "", "reciprocal"], [74, 0, 1, "", "remainder"], [74, 0, 1, "", "round"], [74, 0, 1, "", "sign"], [74, 0, 1, "", "sin"], [74, 0, 1, "", "sinh"], [74, 0, 1, "", "sqrt"], [74, 0, 1, "", "square"], [74, 0, 1, "", "static_angle"], [74, 0, 1, "", "static_exp2"], [74, 0, 1, "", "static_fmin"], [74, 0, 1, "", "static_gcd"], [74, 0, 1, "", "static_imag"], [74, 0, 1, "", "static_logaddexp2"], [74, 0, 1, "", "static_nan_to_num"], [74, 0, 1, "", "static_real"], [74, 0, 1, "", "subtract"], [74, 0, 1, "", "tan"], [74, 0, 1, "", "tanh"], [74, 0, 1, "", "trapz"], [74, 0, 1, "", "trunc"], [74, 0, 1, "", "trunc_divide"]], "ivy.data_classes.container.experimental": [[75, 3, 0, "-", "activations"], [75, 3, 0, "-", "conversions"], [75, 3, 0, "-", "creation"], [75, 3, 0, "-", "data_type"], [75, 3, 0, "-", "device"], [75, 3, 0, "-", "elementwise"], [75, 3, 0, "-", "general"], [75, 3, 0, "-", "gradients"], [75, 3, 0, "-", "image"], [75, 3, 0, "-", "layers"], [75, 3, 0, "-", "linear_algebra"], [75, 3, 0, "-", "losses"], [75, 3, 0, "-", "manipulation"], [75, 3, 0, "-", "norms"], [75, 3, 0, "-", "random"], [75, 3, 0, "-", "searching"], [75, 3, 0, "-", "set"], [75, 3, 0, "-", "sorting"], [75, 3, 0, "-", "statistical"], [75, 3, 0, "-", "utility"]], "ivy.data_classes.container.experimental.activations": [[75, 1, 1, "", "_ContainerWithActivationExperimental"]], "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_celu"], [75, 0, 1, "", "_static_elu"], [75, 0, 1, "", "_static_hardshrink"], [75, 0, 1, "", "_static_hardtanh"], [75, 0, 1, "", "_static_scaled_tanh"], [75, 0, 1, "", "_static_silu"], [75, 0, 1, "", "_static_softshrink"], [75, 0, 1, "", "_static_tanhshrink"], [75, 0, 1, "", "_static_threshold"], [75, 0, 1, "", "celu"], [75, 0, 1, "", "elu"], [75, 0, 1, "", "hardshrink"], [75, 0, 1, "", "hardtanh"], [75, 0, 1, "", "logit"], [75, 0, 1, "", "logsigmoid"], [75, 0, 1, "", "prelu"], [75, 0, 1, "", "relu6"], [75, 0, 1, "", "scaled_tanh"], [75, 0, 1, "", "selu"], [75, 0, 1, "", "silu"], [75, 0, 1, "", "softshrink"], [75, 0, 1, "", "static_logit"], [75, 0, 1, "", "static_logsigmoid"], [75, 0, 1, "", "static_prelu"], [75, 0, 1, "", "static_relu6"], [75, 0, 1, "", "static_selu"], [75, 0, 1, "", "static_thresholded_relu"], [75, 0, 1, "", "tanhshrink"], [75, 0, 1, "", "threshold"], [75, 0, 1, "", "thresholded_relu"]], "ivy.data_classes.container.experimental.conversions": [[75, 1, 1, "", "_ContainerWithConversionExperimental"]], "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.creation": [[75, 1, 1, "", "_ContainerWithCreationExperimental"]], "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_trilu"], [75, 0, 1, "", "blackman_window"], [75, 0, 1, "", "eye_like"], [75, 0, 1, "", "hamming_window"], [75, 0, 1, "", "hann_window"], [75, 0, 1, "", "kaiser_bessel_derived_window"], [75, 0, 1, "", "kaiser_window"], [75, 0, 1, "", "mel_weight_matrix"], [75, 0, 1, "", "polyval"], [75, 0, 1, "", "static_blackman_window"], [75, 0, 1, "", "static_eye_like"], [75, 0, 1, "", "static_hamming_window"], [75, 0, 1, "", "static_hann_window"], [75, 0, 1, "", "static_kaiser_bessel_derived_window"], [75, 0, 1, "", "static_kaiser_window"], [75, 0, 1, "", "static_mel_weight_matrix"], [75, 0, 1, "", "static_polyval"], [75, 0, 1, "", "static_tril_indices"], [75, 0, 1, "", "static_unsorted_segment_mean"], [75, 0, 1, "", "static_unsorted_segment_min"], [75, 0, 1, "", "static_unsorted_segment_sum"], [75, 0, 1, "", "static_vorbis_window"], [75, 0, 1, "", "tril_indices"], [75, 0, 1, "", "trilu"], [75, 0, 1, "", "unsorted_segment_mean"], [75, 0, 1, "", "unsorted_segment_min"], [75, 0, 1, "", "unsorted_segment_sum"], [75, 0, 1, "", "vorbis_window"]], "ivy.data_classes.container.experimental.data_type": [[75, 1, 1, "", "_ContainerWithData_typeExperimental"]], "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.device": [[75, 1, 1, "", "_ContainerWithDeviceExperimental"]], "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.elementwise": [[75, 1, 1, "", "_ContainerWithElementWiseExperimental"]], "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "allclose"], [75, 0, 1, "", "amax"], [75, 0, 1, "", "amin"], [75, 0, 1, "", "binarizer"], [75, 0, 1, "", "conj"], [75, 0, 1, "", "copysign"], [75, 0, 1, "", "count_nonzero"], [75, 0, 1, "", "diff"], [75, 0, 1, "", "digamma"], [75, 0, 1, "", "erfc"], [75, 0, 1, "", "fix"], [75, 0, 1, "", "float_power"], [75, 0, 1, "", "fmax"], [75, 0, 1, "", "fmod"], [75, 0, 1, "", "frexp"], [75, 0, 1, "", "gradient"], [75, 0, 1, "", "hypot"], [75, 0, 1, "", "isclose"], [75, 0, 1, "", "ldexp"], [75, 0, 1, "", "lerp"], [75, 0, 1, "", "modf"], [75, 0, 1, "", "nansum"], [75, 0, 1, "", "nextafter"], [75, 0, 1, "", "signbit"], [75, 0, 1, "", "sinc"], [75, 0, 1, "", "sparsify_tensor"], [75, 0, 1, "", "static_allclose"], [75, 0, 1, "", "static_amax"], [75, 0, 1, "", "static_amin"], [75, 0, 1, "", "static_binarizer"], [75, 0, 1, "", "static_conj"], [75, 0, 1, "", "static_copysign"], [75, 0, 1, "", "static_count_nonzero"], [75, 0, 1, "", "static_diff"], [75, 0, 1, "", "static_digamma"], [75, 0, 1, "", "static_erfc"], [75, 0, 1, "", "static_fix"], [75, 0, 1, "", "static_float_power"], [75, 0, 1, "", "static_fmax"], [75, 0, 1, "", "static_fmod"], [75, 0, 1, "", "static_frexp"], [75, 0, 1, "", "static_gradient"], [75, 0, 1, "", "static_hypot"], [75, 0, 1, "", "static_isclose"], [75, 0, 1, "", "static_ldexp"], [75, 0, 1, "", "static_lerp"], [75, 0, 1, "", "static_modf"], [75, 0, 1, "", "static_nansum"], [75, 0, 1, "", "static_nextafter"], [75, 0, 1, "", "static_signbit"], [75, 0, 1, "", "static_sinc"], [75, 0, 1, "", "static_sparsify_tensor"], [75, 0, 1, "", "static_xlogy"], [75, 0, 1, "", "static_zeta"], [75, 0, 1, "", "xlogy"], [75, 0, 1, "", "zeta"]], "ivy.data_classes.container.experimental.general": [[75, 1, 1, "", "_ContainerWithGeneralExperimental"]], "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_reduce"], [75, 0, 1, "", "reduce"]], "ivy.data_classes.container.experimental.gradients": [[75, 1, 1, "", "_ContainerWithGradientsExperimental"]], "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.image": [[75, 1, 1, "", "_ContainerWithImageExperimental"]], "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.layers": [[75, 1, 1, "", "_ContainerWithLayersExperimental"]], "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fft"], [75, 0, 1, "", "_static_sliding_window"], [75, 0, 1, "", "adaptive_avg_pool1d"], [75, 0, 1, "", "adaptive_avg_pool2d"], [75, 0, 1, "", "adaptive_max_pool2d"], [75, 0, 1, "", "avg_pool1d"], [75, 0, 1, "", "avg_pool2d"], [75, 0, 1, "", "avg_pool3d"], [75, 0, 1, "", "dct"], [75, 0, 1, "", "dft"], [75, 0, 1, "", "embedding"], [75, 0, 1, "", "fft"], [75, 0, 1, "", "idct"], [75, 0, 1, "", "ifft"], [75, 0, 1, "", "ifftn"], [75, 0, 1, "", "interpolate"], [75, 0, 1, "", "max_pool1d"], [75, 0, 1, "", "max_pool2d"], [75, 0, 1, "", "max_pool3d"], [75, 0, 1, "", "max_unpool1d"], [75, 0, 1, "", "rfft"], [75, 0, 1, "", "rfftn"], [75, 0, 1, "", "sliding_window"], [75, 0, 1, "", "static_adaptive_avg_pool1d"], [75, 0, 1, "", "static_adaptive_avg_pool2d"], [75, 0, 1, "", "static_adaptive_max_pool2d"], [75, 0, 1, "", "static_avg_pool1d"], [75, 0, 1, "", "static_avg_pool2d"], [75, 0, 1, "", "static_avg_pool3d"], [75, 0, 1, "", "static_dct"], [75, 0, 1, "", "static_dft"], [75, 0, 1, "", "static_embedding"], [75, 0, 1, "", "static_idct"], [75, 0, 1, "", "static_ifft"], [75, 0, 1, "", "static_ifftn"], [75, 0, 1, "", "static_interpolate"], [75, 0, 1, "", "static_max_pool1d"], [75, 0, 1, "", "static_max_pool2d"], [75, 0, 1, "", "static_max_pool3d"], [75, 0, 1, "", "static_max_unpool1d"], [75, 0, 1, "", "static_rfft"], [75, 0, 1, "", "static_rfftn"], [75, 0, 1, "", "static_rnn"], [75, 0, 1, "", "static_stft"], [75, 0, 1, "", "stft"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, 1, 1, "", "_ContainerWithLinearAlgebraExperimental"]], "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "adjoint"], [75, 0, 1, "", "batched_outer"], [75, 0, 1, "", "cond"], [75, 0, 1, "", "diagflat"], [75, 0, 1, "", "dot"], [75, 0, 1, "", "eig"], [75, 0, 1, "", "eigh_tridiagonal"], [75, 0, 1, "", "eigvals"], [75, 0, 1, "", "higher_order_moment"], [75, 0, 1, "", "initialize_tucker"], [75, 0, 1, "", "kron"], [75, 0, 1, "", "make_svd_non_negative"], [75, 0, 1, "", "matrix_exp"], [75, 0, 1, "", "mode_dot"], [75, 0, 1, "", "multi_dot"], [75, 0, 1, "", "multi_mode_dot"], [75, 0, 1, "", "partial_tucker"], [75, 0, 1, "", "static_adjoint"], [75, 0, 1, "", "static_batched_outer"], [75, 0, 1, "", "static_cond"], [75, 0, 1, "", "static_diagflat"], [75, 0, 1, "", "static_dot"], [75, 0, 1, "", "static_eig"], [75, 0, 1, "", "static_eigh_tridiagonal"], [75, 0, 1, "", "static_eigvals"], [75, 0, 1, "", "static_higher_order_moment"], [75, 0, 1, "", "static_initialize_tucker"], [75, 0, 1, "", "static_kron"], [75, 0, 1, "", "static_make_svd_non_negative"], [75, 0, 1, "", "static_matrix_exp"], [75, 0, 1, "", "static_mode_dot"], [75, 0, 1, "", "static_multi_dot"], [75, 0, 1, "", "static_multi_mode_dot"], [75, 0, 1, "", "static_partial_tucker"], [75, 0, 1, "", "static_svd_flip"], [75, 0, 1, "", "static_tensor_train"], [75, 0, 1, "", "static_truncated_svd"], [75, 0, 1, "", "static_tt_matrix_to_tensor"], [75, 0, 1, "", "static_tucker"], [75, 0, 1, "", "svd_flip"], [75, 0, 1, "", "tensor_train"], [75, 0, 1, "", "truncated_svd"], [75, 0, 1, "", "tt_matrix_to_tensor"], [75, 0, 1, "", "tucker"]], "ivy.data_classes.container.experimental.losses": [[75, 1, 1, "", "_ContainerWithLossesExperimental"]], "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_huber_loss"], [75, 0, 1, "", "_static_kl_div"], [75, 0, 1, "", "_static_l1_loss"], [75, 0, 1, "", "_static_log_poisson_loss"], [75, 0, 1, "", "_static_poisson_nll_loss"], [75, 0, 1, "", "_static_smooth_l1_loss"], [75, 0, 1, "", "_static_soft_margin_loss"], [75, 0, 1, "", "huber_loss"], [75, 0, 1, "", "kl_div"], [75, 0, 1, "", "l1_loss"], [75, 0, 1, "", "log_poisson_loss"], [75, 0, 1, "", "poisson_nll_loss"], [75, 0, 1, "", "smooth_l1_loss"], [75, 0, 1, "", "soft_margin_loss"]], "ivy.data_classes.container.experimental.manipulation": [[75, 1, 1, "", "_ContainerWithManipulationExperimental"], [75, 2, 1, "", "concat_from_sequence"]], "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_fill_diagonal"], [75, 0, 1, "", "_static_put_along_axis"], [75, 0, 1, "", "_static_take"], [75, 0, 1, "", "_static_trim_zeros"], [75, 0, 1, "", "_static_unique_consecutive"], [75, 0, 1, "", "as_strided"], [75, 0, 1, "", "associative_scan"], [75, 0, 1, "", "atleast_1d"], [75, 0, 1, "", "atleast_2d"], [75, 0, 1, "", "atleast_3d"], [75, 0, 1, "", "broadcast_shapes"], [75, 0, 1, "", "column_stack"], [75, 0, 1, "", "concat_from_sequence"], [75, 0, 1, "", "dsplit"], [75, 0, 1, "", "dstack"], [75, 0, 1, "", "expand"], [75, 0, 1, "", "fill_diagonal"], [75, 0, 1, "", "flatten"], [75, 0, 1, "", "fliplr"], [75, 0, 1, "", "flipud"], [75, 0, 1, "", "fold"], [75, 0, 1, "", "heaviside"], [75, 0, 1, "", "hsplit"], [75, 0, 1, "", "hstack"], [75, 0, 1, "", "i0"], [75, 0, 1, "", "matricize"], [75, 0, 1, "", "moveaxis"], [75, 0, 1, "", "pad"], [75, 0, 1, "", "partial_fold"], [75, 0, 1, "", "partial_tensor_to_vec"], [75, 0, 1, "", "partial_unfold"], [75, 0, 1, "", "partial_vec_to_tensor"], [75, 0, 1, "", "put_along_axis"], [75, 0, 1, "", "rot90"], [75, 0, 1, "", "soft_thresholding"], [75, 0, 1, "", "static_as_strided"], [75, 0, 1, "", "static_atleast_1d"], [75, 0, 1, "", "static_atleast_2d"], [75, 0, 1, "", "static_atleast_3d"], [75, 0, 1, "", "static_broadcast_shapes"], [75, 0, 1, "", "static_column_stack"], [75, 0, 1, "", "static_concat_from_sequence"], [75, 0, 1, "", "static_dsplit"], [75, 0, 1, "", "static_dstack"], [75, 0, 1, "", "static_expand"], [75, 0, 1, "", "static_flatten"], [75, 0, 1, "", "static_fliplr"], [75, 0, 1, "", "static_flipud"], [75, 0, 1, "", "static_fold"], [75, 0, 1, "", "static_heaviside"], [75, 0, 1, "", "static_hsplit"], [75, 0, 1, "", "static_hstack"], [75, 0, 1, "", "static_i0"], [75, 0, 1, "", "static_matricize"], [75, 0, 1, "", "static_moveaxis"], [75, 0, 1, "", "static_pad"], [75, 0, 1, "", "static_partial_fold"], [75, 0, 1, "", "static_partial_tensor_to_vec"], [75, 0, 1, "", "static_partial_unfold"], [75, 0, 1, "", "static_partial_vec_to_tensor"], [75, 0, 1, "", "static_rot90"], [75, 0, 1, "", "static_soft_thresholding"], [75, 0, 1, "", "static_take_along_axis"], [75, 0, 1, "", "static_top_k"], [75, 0, 1, "", "static_unfold"], [75, 0, 1, "", "static_vsplit"], [75, 0, 1, "", "static_vstack"], [75, 0, 1, "", "take"], [75, 0, 1, "", "take_along_axis"], [75, 0, 1, "", "top_k"], [75, 0, 1, "", "trim_zeros"], [75, 0, 1, "", "unfold"], [75, 0, 1, "", "unique_consecutive"], [75, 0, 1, "", "vsplit"], [75, 0, 1, "", "vstack"]], "ivy.data_classes.container.experimental.norms": [[75, 1, 1, "", "_ContainerWithNormsExperimental"]], "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "batch_norm"], [75, 0, 1, "", "group_norm"], [75, 0, 1, "", "instance_norm"], [75, 0, 1, "", "l1_normalize"], [75, 0, 1, "", "l2_normalize"], [75, 0, 1, "", "lp_normalize"], [75, 0, 1, "", "static_batch_norm"], [75, 0, 1, "", "static_group_norm"], [75, 0, 1, "", "static_instance_norm"], [75, 0, 1, "", "static_l1_normalize"], [75, 0, 1, "", "static_l2_normalize"], [75, 0, 1, "", "static_lp_normalize"]], "ivy.data_classes.container.experimental.random": [[75, 1, 1, "", "_ContainerWithRandomExperimental"]], "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "bernoulli"], [75, 0, 1, "", "beta"], [75, 0, 1, "", "dirichlet"], [75, 0, 1, "", "gamma"], [75, 0, 1, "", "poisson"], [75, 0, 1, "", "static_bernoulli"], [75, 0, 1, "", "static_beta"], [75, 0, 1, "", "static_dirichlet"], [75, 0, 1, "", "static_gamma"], [75, 0, 1, "", "static_poisson"]], "ivy.data_classes.container.experimental.searching": [[75, 1, 1, "", "_ContainerWithSearchingExperimental"]], "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "static_unravel_index"], [75, 0, 1, "", "unravel_index"]], "ivy.data_classes.container.experimental.set": [[75, 1, 1, "", "_ContainerWithSetExperimental"]], "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental": [[75, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.experimental.sorting": [[75, 1, 1, "", "_ContainerWithSortingExperimental"]], "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "invert_permutation"], [75, 0, 1, "", "lexsort"], [75, 0, 1, "", "static_invert_permutation"], [75, 0, 1, "", "static_lexsort"]], "ivy.data_classes.container.experimental.statistical": [[75, 1, 1, "", "_ContainerWithStatisticalExperimental"]], "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "_static_cummax"], [75, 0, 1, "", "_static_cummin"], [75, 0, 1, "", "_static_nanmin"], [75, 0, 1, "", "bincount"], [75, 0, 1, "", "corrcoef"], [75, 0, 1, "", "cov"], [75, 0, 1, "", "cummax"], [75, 0, 1, "", "cummin"], [75, 0, 1, "", "histogram"], [75, 0, 1, "", "igamma"], [75, 0, 1, "", "median"], [75, 0, 1, "", "nanmean"], [75, 0, 1, "", "nanmedian"], [75, 0, 1, "", "nanmin"], [75, 0, 1, "", "nanprod"], [75, 0, 1, "", "quantile"], [75, 0, 1, "", "static_bincount"], [75, 0, 1, "", "static_corrcoef"], [75, 0, 1, "", "static_cov"], [75, 0, 1, "", "static_histogram"], [75, 0, 1, "", "static_igamma"], [75, 0, 1, "", "static_median"], [75, 0, 1, "", "static_nanmean"], [75, 0, 1, "", "static_nanmedian"], [75, 0, 1, "", "static_nanprod"], [75, 0, 1, "", "static_quantile"]], "ivy.data_classes.container.experimental.utility": [[75, 1, 1, "", "_ContainerWithUtilityExperimental"]], "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental": [[75, 4, 1, "", "_abc_impl"], [75, 0, 1, "", "optional_get_element"], [75, 0, 1, "", "static_optional_get_element"]], "ivy.data_classes.container.general": [[76, 1, 1, "", "_ContainerWithGeneral"]], "ivy.data_classes.container.general._ContainerWithGeneral": [[76, 4, 1, "", "_abc_impl"], [76, 0, 1, "", "_static_all_equal"], [76, 0, 1, "", "_static_array_equal"], [76, 0, 1, "", "_static_assert_supports_inplace"], [76, 0, 1, "", "_static_clip_matrix_norm"], [76, 0, 1, "", "_static_clip_vector_norm"], [76, 0, 1, "", "_static_einops_rearrange"], [76, 0, 1, "", "_static_einops_reduce"], [76, 0, 1, "", "_static_einops_repeat"], [76, 0, 1, "", "_static_exists"], [76, 0, 1, "", "_static_fourier_encode"], [76, 0, 1, "", "_static_gather"], [76, 0, 1, "", "_static_gather_nd"], [76, 0, 1, "", "_static_get_num_dims"], [76, 0, 1, "", "_static_has_nans"], [76, 0, 1, "", "_static_inplace_decrement"], [76, 0, 1, "", "_static_inplace_increment"], [76, 0, 1, "", "_static_inplace_update"], [76, 0, 1, "", "_static_is_array"], [76, 0, 1, "", "_static_is_ivy_array"], [76, 0, 1, "", "_static_is_native_array"], [76, 0, 1, "", "_static_scatter_flat"], [76, 0, 1, "", "_static_scatter_nd"], [76, 0, 1, "", "_static_stable_divide"], [76, 0, 1, "", "_static_stable_pow"], [76, 0, 1, "", "_static_supports_inplace_updates"], [76, 0, 1, "", "_static_to_list"], [76, 0, 1, "", "_static_to_numpy"], [76, 0, 1, "", "_static_to_scalar"], [76, 0, 1, "", "_static_value_is_nan"], [76, 0, 1, "", "all_equal"], [76, 0, 1, "", "array_equal"], [76, 0, 1, "", "assert_supports_inplace"], [76, 0, 1, "", "clip_matrix_norm"], [76, 0, 1, "", "clip_vector_norm"], [76, 0, 1, "", "einops_rearrange"], [76, 0, 1, "", "einops_reduce"], [76, 0, 1, "", "einops_repeat"], [76, 0, 1, "", "exists"], [76, 0, 1, "", "fourier_encode"], [76, 0, 1, "", "gather"], [76, 0, 1, "", "gather_nd"], [76, 0, 1, "", "get_num_dims"], [76, 0, 1, "", "has_nans"], [76, 0, 1, "", "inplace_decrement"], [76, 0, 1, "", "inplace_increment"], [76, 0, 1, "", "inplace_update"], [76, 0, 1, "", "is_array"], [76, 0, 1, "", "is_ivy_array"], [76, 0, 1, "", "is_native_array"], [76, 0, 1, "", "isin"], [76, 0, 1, "", "itemsize"], [76, 0, 1, "", "scatter_flat"], [76, 0, 1, "", "scatter_nd"], [76, 0, 1, "", "stable_divide"], [76, 0, 1, "", "stable_pow"], [76, 0, 1, "", "static_isin"], [76, 0, 1, "", "static_itemsize"], [76, 0, 1, "", "static_strides"], [76, 0, 1, "", "strides"], [76, 0, 1, "", "supports_inplace_updates"], [76, 0, 1, "", "to_list"], [76, 0, 1, "", "to_numpy"], [76, 0, 1, "", "to_scalar"], [76, 0, 1, "", "value_is_nan"]], "ivy.data_classes.container.gradients": [[77, 1, 1, "", "_ContainerWithGradients"]], "ivy.data_classes.container.gradients._ContainerWithGradients": [[77, 4, 1, "", "_abc_impl"], [77, 0, 1, "", "_static_stop_gradient"], [77, 0, 1, "", "adam_step"], [77, 0, 1, "", "adam_update"], [77, 0, 1, "", "gradient_descent_update"], [77, 0, 1, "", "lamb_update"], [77, 0, 1, "", "lars_update"], [77, 0, 1, "", "optimizer_update"], [77, 0, 1, "", "stop_gradient"]], "ivy.data_classes.container.image": [[78, 1, 1, "", "_ContainerWithImage"]], "ivy.data_classes.container.image._ContainerWithImage": [[78, 4, 1, "", "_abc_impl"]], "ivy.data_classes.container.layers": [[79, 1, 1, "", "_ContainerWithLayers"]], "ivy.data_classes.container.layers._ContainerWithLayers": [[79, 4, 1, "", "_abc_impl"], [79, 0, 1, "", "_static_conv1d"], [79, 0, 1, "", "_static_conv1d_transpose"], [79, 0, 1, "", "_static_conv2d"], [79, 0, 1, "", "_static_conv2d_transpose"], [79, 0, 1, "", "_static_conv3d"], [79, 0, 1, "", "_static_conv3d_transpose"], [79, 0, 1, "", "_static_depthwise_conv2d"], [79, 0, 1, "", "_static_dropout"], [79, 0, 1, "", "_static_dropout1d"], [79, 0, 1, "", "_static_dropout2d"], [79, 0, 1, "", "_static_dropout3d"], [79, 0, 1, "", "_static_linear"], [79, 0, 1, "", "_static_lstm_update"], [79, 0, 1, "", "_static_multi_head_attention"], [79, 0, 1, "", "_static_reduce_window"], [79, 0, 1, "", "_static_scaled_dot_product_attention"], [79, 0, 1, "", "conv1d"], [79, 0, 1, "", "conv1d_transpose"], [79, 0, 1, "", "conv2d"], [79, 0, 1, "", "conv2d_transpose"], [79, 0, 1, "", "conv3d"], [79, 0, 1, "", "conv3d_transpose"], [79, 0, 1, "", "depthwise_conv2d"], [79, 0, 1, "", "dropout"], [79, 0, 1, "", "dropout1d"], [79, 0, 1, "", "dropout2d"], [79, 0, 1, "", "dropout3d"], [79, 0, 1, "", "linear"], [79, 0, 1, "", "lstm_update"], [79, 0, 1, "", "multi_head_attention"], [79, 0, 1, "", "reduce_window"], [79, 0, 1, "", "scaled_dot_product_attention"]], "ivy.data_classes.container.linear_algebra": [[80, 1, 1, "", "_ContainerWithLinearAlgebra"]], "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra": [[80, 4, 1, "", "_abc_impl"], [80, 0, 1, "", "_static_cholesky"], [80, 0, 1, "", "_static_cross"], [80, 0, 1, "", "_static_det"], [80, 0, 1, "", "_static_diag"], [80, 0, 1, "", "_static_diagonal"], [80, 0, 1, "", "_static_eigh"], [80, 0, 1, "", "_static_eigvalsh"], [80, 0, 1, "", "_static_inner"], [80, 0, 1, "", "_static_inv"], [80, 0, 1, "", "_static_matmul"], [80, 0, 1, "", "_static_matrix_norm"], [80, 0, 1, "", "_static_matrix_power"], [80, 0, 1, "", "_static_matrix_rank"], [80, 0, 1, "", "_static_matrix_transpose"], [80, 0, 1, "", "_static_outer"], [80, 0, 1, "", "_static_pinv"], [80, 0, 1, "", "_static_qr"], [80, 0, 1, "", "_static_slogdet"], [80, 0, 1, "", "_static_solve"], [80, 0, 1, "", "_static_svd"], [80, 0, 1, "", "_static_svdvals"], [80, 0, 1, "", "_static_tensordot"], [80, 0, 1, "", "_static_tensorsolve"], [80, 0, 1, "", "_static_trace"], [80, 0, 1, "", "_static_vander"], [80, 0, 1, "", "_static_vecdot"], [80, 0, 1, "", "_static_vector_norm"], [80, 0, 1, "", "_static_vector_to_skew_symmetric_matrix"], [80, 0, 1, "", "cholesky"], [80, 0, 1, "", "cross"], [80, 0, 1, "", "det"], [80, 0, 1, "", "diag"], [80, 0, 1, "", "diagonal"], [80, 0, 1, "", "eigh"], [80, 0, 1, "", "eigvalsh"], [80, 0, 1, "", "general_inner_product"], [80, 0, 1, "", "inner"], [80, 0, 1, "", "inv"], [80, 0, 1, "", "matmul"], [80, 0, 1, "", "matrix_norm"], [80, 0, 1, "", "matrix_power"], [80, 0, 1, "", "matrix_rank"], [80, 0, 1, "", "matrix_transpose"], [80, 0, 1, "", "outer"], [80, 0, 1, "", "pinv"], [80, 0, 1, "", "qr"], [80, 0, 1, "", "slogdet"], [80, 0, 1, "", "solve"], [80, 0, 1, "", "static_general_inner_product"], [80, 0, 1, "", "svd"], [80, 0, 1, "", "svdvals"], [80, 0, 1, "", "tensordot"], [80, 0, 1, "", "tensorsolve"], [80, 0, 1, "", "trace"], [80, 0, 1, "", "vander"], [80, 0, 1, "", "vecdot"], [80, 0, 1, "", "vector_norm"], [80, 0, 1, "", "vector_to_skew_symmetric_matrix"]], "ivy.data_classes.container.losses": [[81, 1, 1, "", "_ContainerWithLosses"]], "ivy.data_classes.container.losses._ContainerWithLosses": [[81, 4, 1, "", "_abc_impl"], [81, 0, 1, "", "_static_binary_cross_entropy"], [81, 0, 1, "", "_static_cross_entropy"], [81, 0, 1, "", "_static_sparse_cross_entropy"], [81, 0, 1, "", "binary_cross_entropy"], [81, 0, 1, "", "cross_entropy"], [81, 0, 1, "", "sparse_cross_entropy"]], "ivy.data_classes.container.manipulation": [[82, 1, 1, "", "_ContainerWithManipulation"]], "ivy.data_classes.container.manipulation._ContainerWithManipulation": [[82, 4, 1, "", "_abc_impl"], [82, 0, 1, "", "_static_clip"], [82, 0, 1, "", "_static_concat"], [82, 0, 1, "", "_static_constant_pad"], [82, 0, 1, "", "_static_expand_dims"], [82, 0, 1, "", "_static_flip"], [82, 0, 1, "", "_static_permute_dims"], [82, 0, 1, "", "_static_repeat"], [82, 0, 1, "", "_static_reshape"], [82, 0, 1, "", "_static_roll"], [82, 0, 1, "", "_static_split"], [82, 0, 1, "", "_static_squeeze"], [82, 0, 1, "", "_static_stack"], [82, 0, 1, "", "_static_swapaxes"], [82, 0, 1, "", "_static_tile"], [82, 0, 1, "", "_static_unstack"], [82, 0, 1, "", "_static_zero_pad"], [82, 0, 1, "", "clip"], [82, 0, 1, "", "concat"], [82, 0, 1, "", "constant_pad"], [82, 0, 1, "", "expand_dims"], [82, 0, 1, "", "flip"], [82, 0, 1, "", "permute_dims"], [82, 0, 1, "", "repeat"], [82, 0, 1, "", "reshape"], [82, 0, 1, "", "roll"], [82, 0, 1, "", "split"], [82, 0, 1, "", "squeeze"], [82, 0, 1, "", "stack"], [82, 0, 1, "", "swapaxes"], [82, 0, 1, "", "tile"], [82, 0, 1, "", "unstack"], [82, 0, 1, "", "zero_pad"]], "ivy.data_classes.container.norms": [[83, 1, 1, "", "_ContainerWithNorms"]], "ivy.data_classes.container.norms._ContainerWithNorms": [[83, 4, 1, "", "_abc_impl"], [83, 0, 1, "", "layer_norm"]], "ivy.data_classes.container.random": [[84, 1, 1, "", "_ContainerWithRandom"]], "ivy.data_classes.container.random._ContainerWithRandom": [[84, 4, 1, "", "_abc_impl"], [84, 0, 1, "", "_static_multinomial"], [84, 0, 1, "", "_static_randint"], [84, 0, 1, "", "_static_random_normal"], [84, 0, 1, "", "_static_random_uniform"], [84, 0, 1, "", "_static_shuffle"], [84, 0, 1, "", "multinomial"], [84, 0, 1, "", "randint"], [84, 0, 1, "", "random_normal"], [84, 0, 1, "", "random_uniform"], [84, 0, 1, "", "shuffle"]], "ivy.data_classes.container.searching": [[85, 1, 1, "", "_ContainerWithSearching"]], "ivy.data_classes.container.searching._ContainerWithSearching": [[85, 4, 1, "", "_abc_impl"], [85, 0, 1, "", "_static_argmax"], [85, 0, 1, "", "_static_argmin"], [85, 0, 1, "", "_static_argwhere"], [85, 0, 1, "", "_static_nonzero"], [85, 0, 1, "", "_static_where"], [85, 0, 1, "", "argmax"], [85, 0, 1, "", "argmin"], [85, 0, 1, "", "argwhere"], [85, 0, 1, "", "nonzero"], [85, 0, 1, "", "where"]], "ivy.data_classes.container.set": [[86, 1, 1, "", "_ContainerWithSet"]], "ivy.data_classes.container.set._ContainerWithSet": [[86, 4, 1, "", "_abc_impl"], [86, 0, 1, "", "_static_unique_all"], [86, 0, 1, "", "_static_unique_counts"], [86, 0, 1, "", "_static_unique_inverse"], [86, 0, 1, "", "_static_unique_values"], [86, 0, 1, "", "unique_all"], [86, 0, 1, "", "unique_counts"], [86, 0, 1, "", "unique_inverse"], [86, 0, 1, "", "unique_values"]], "ivy.data_classes.container.sorting": [[87, 1, 1, "", "_ContainerWithSorting"]], "ivy.data_classes.container.sorting._ContainerWithSorting": [[87, 4, 1, "", "_abc_impl"], [87, 0, 1, "", "_static_argsort"], [87, 0, 1, "", "_static_searchsorted"], [87, 0, 1, "", "_static_sort"], [87, 0, 1, "", "argsort"], [87, 0, 1, "", "msort"], [87, 0, 1, "", "searchsorted"], [87, 0, 1, "", "sort"], [87, 0, 1, "", "static_msort"]], "ivy.data_classes.container.statistical": [[88, 1, 1, "", "_ContainerWithStatistical"]], "ivy.data_classes.container.statistical._ContainerWithStatistical": [[88, 4, 1, "", "_abc_impl"], [88, 0, 1, "", "_static_cumprod"], [88, 0, 1, "", "_static_cumsum"], [88, 0, 1, "", "_static_min"], [88, 0, 1, "", "_static_prod"], [88, 0, 1, "", "_static_sum"], [88, 0, 1, "", "_static_var"], [88, 0, 1, "", "cumprod"], [88, 0, 1, "", "cumsum"], [88, 0, 1, "", "einsum"], [88, 0, 1, "", "max"], [88, 0, 1, "", "mean"], [88, 0, 1, "", "min"], [88, 0, 1, "", "prod"], [88, 0, 1, "", "std"], [88, 0, 1, "", "sum"], [88, 0, 1, "", "var"]], "ivy.data_classes.container.utility": [[89, 1, 1, "", "_ContainerWithUtility"]], "ivy.data_classes.container.utility._ContainerWithUtility": [[89, 4, 1, "", "_abc_impl"], [89, 0, 1, "", "_static_all"], [89, 0, 1, "", "_static_any"], [89, 0, 1, "", "all"], [89, 0, 1, "", "any"]], "ivy.data_classes.container.wrapping": [[90, 2, 1, "", "_wrap_function"], [90, 2, 1, "", "add_ivy_container_instance_methods"]], "ivy.data_classes.factorized_tensor": [[91, 3, 0, "-", "base"], [92, 3, 0, "-", "cp_tensor"], [93, 3, 0, "-", "parafac2_tensor"], [94, 3, 0, "-", "tr_tensor"], [95, 3, 0, "-", "tt_tensor"], [96, 3, 0, "-", "tucker_tensor"]], "ivy.data_classes.factorized_tensor.base": [[91, 1, 1, "", "FactorizedTensor"]], "ivy.data_classes.factorized_tensor.base.FactorizedTensor": [[91, 0, 1, "", "__init__"], [91, 4, 1, "", "_abc_impl"], [91, 0, 1, "", "mode_dot"], [91, 0, 1, "", "norm"], [91, 0, 1, "", "to_tensor"], [91, 0, 1, "", "to_unfolded"], [91, 0, 1, "", "to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, 1, 1, "", "CPTensor"]], "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor": [[92, 0, 1, "", "__init__"], [92, 4, 1, "", "_abc_impl"], [92, 0, 1, "", "cp_copy"], [92, 0, 1, "", "cp_flip_sign"], [92, 0, 1, "", "cp_lstsq_grad"], [92, 0, 1, "", "cp_mode_dot"], [92, 0, 1, "", "cp_n_param"], [92, 0, 1, "", "cp_norm"], [92, 0, 1, "", "cp_normalize"], [92, 0, 1, "", "cp_to_tensor"], [92, 0, 1, "", "cp_to_unfolded"], [92, 0, 1, "", "cp_to_vec"], [92, 0, 1, "", "mode_dot"], [92, 5, 1, "", "n_param"], [92, 0, 1, "", "norm"], [92, 0, 1, "", "normalize"], [92, 0, 1, "", "to_tensor"], [92, 0, 1, "", "to_unfolded"], [92, 0, 1, "", "to_vec"], [92, 0, 1, "", "unfolding_dot_khatri_rao"], [92, 0, 1, "", "validate_cp_rank"], [92, 0, 1, "", "validate_cp_tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, 1, 1, "", "Parafac2Tensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor": [[93, 0, 1, "", "__init__"], [93, 4, 1, "", "_abc_impl"], [93, 0, 1, "", "apply_parafac2_projections"], [93, 0, 1, "", "from_CPTensor"], [93, 5, 1, "", "n_param"], [93, 0, 1, "", "parafac2_normalise"], [93, 0, 1, "", "parafac2_to_slice"], [93, 0, 1, "", "parafac2_to_slices"], [93, 0, 1, "", "parafac2_to_tensor"], [93, 0, 1, "", "parafac2_to_unfolded"], [93, 0, 1, "", "parafac2_to_vec"], [93, 0, 1, "", "to_tensor"], [93, 0, 1, "", "to_unfolded"], [93, 0, 1, "", "to_vec"], [93, 0, 1, "", "validate_parafac2_tensor"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, 1, 1, "", "TRTensor"]], "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor": [[94, 0, 1, "", "__init__"], [94, 4, 1, "", "_abc_impl"], [94, 5, 1, "", "n_param"], [94, 0, 1, "", "to_tensor"], [94, 0, 1, "", "to_unfolded"], [94, 0, 1, "", "to_vec"], [94, 0, 1, "", "tr_n_param"], [94, 0, 1, "", "tr_to_tensor"], [94, 0, 1, "", "tr_to_unfolded"], [94, 0, 1, "", "tr_to_vec"], [94, 0, 1, "", "validate_tr_rank"], [94, 0, 1, "", "validate_tr_tensor"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, 1, 1, "", "TTTensor"]], "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor": [[95, 0, 1, "", "__init__"], [95, 4, 1, "", "_abc_impl"], [95, 0, 1, "", "_tt_n_param"], [95, 0, 1, "", "index_update"], [95, 5, 1, "", "n_param"], [95, 0, 1, "", "pad_tt_rank"], [95, 0, 1, "", "to_tensor"], [95, 0, 1, "", "to_unfolding"], [95, 0, 1, "", "to_vec"], [95, 0, 1, "", "tt_to_tensor"], [95, 0, 1, "", "tt_to_unfolded"], [95, 0, 1, "", "tt_to_vec"], [95, 0, 1, "", "validate_tt_rank"], [95, 0, 1, "", "validate_tt_tensor"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, 1, 1, "", "TuckerTensor"], [96, 2, 1, "", "_bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor": [[96, 0, 1, "", "__init__"], [96, 4, 1, "", "_abc_impl"], [96, 0, 1, "", "mode_dot"], [96, 5, 1, "", "n_param"], [96, 0, 1, "", "to_tensor"], [96, 0, 1, "", "to_unfolded"], [96, 0, 1, "", "to_vec"], [96, 0, 1, "", "tucker_copy"], [96, 0, 1, "", "tucker_mode_dot"], [96, 0, 1, "", "tucker_n_param"], [96, 0, 1, "", "tucker_normalize"], [96, 0, 1, "", "tucker_to_tensor"], [96, 0, 1, "", "tucker_to_unfolded"], [96, 0, 1, "", "tucker_to_vec"], [96, 0, 1, "", "validate_tucker_rank"], [96, 0, 1, "", "validate_tucker_tensor"]], "ivy.data_classes.nested_array": [[101, 3, 0, "-", "base"], [102, 3, 0, "-", "elementwise"], [100, 3, 0, "-", "nested_array"]], "ivy.data_classes.nested_array.base": [[101, 1, 1, "", "NestedArrayBase"]], "ivy.data_classes.nested_array.base.NestedArrayBase": [[101, 0, 1, "", "__init__"], [101, 4, 1, "", "_abc_impl"], [101, 0, 1, "", "broadcast_shapes"], [101, 5, 1, "", "data"], [101, 5, 1, "", "device"], [101, 5, 1, "", "dtype"], [101, 5, 1, "", "inner_shape"], [101, 5, 1, "", "ndim"], [101, 0, 1, "", "nested_array"], [101, 5, 1, "", "nested_rank"], [101, 0, 1, "", "ragged_map"], [101, 0, 1, "", "ragged_multi_map"], [101, 0, 1, "", "ragged_multi_map_in_function"], [101, 0, 1, "", "replace_ivy_arrays"], [101, 5, 1, "", "shape"], [101, 0, 1, "", "unbind"]], "ivy.data_classes.nested_array.elementwise": [[102, 1, 1, "", "NestedArrayElementwise"]], "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise": [[102, 4, 1, "", "_abc_impl"], [102, 0, 1, "", "static_add"]], "ivy.data_classes.nested_array.nested_array": [[100, 1, 1, "", "NestedArray"]], "ivy.data_classes.nested_array.nested_array.NestedArray": [[100, 0, 1, "", "__init__"], [100, 0, 1, "", "from_row_lengths"], [100, 0, 1, "", "from_row_splits"]], "ivy.functional.ivy": [[613, 3, 0, "-", "activations"], [614, 3, 0, "-", "constants"], [615, 3, 0, "-", "control_flow_ops"], [616, 3, 0, "-", "creation"], [617, 3, 0, "-", "data_type"], [618, 3, 0, "-", "device"], [619, 3, 0, "-", "elementwise"], [620, 3, 0, "-", "experimental"], [621, 3, 0, "-", "general"], [622, 3, 0, "-", "gradients"], [623, 3, 0, "-", "layers"], [624, 3, 0, "-", "linear_algebra"], [625, 3, 0, "-", "losses"], [626, 3, 0, "-", "manipulation"], [627, 3, 0, "-", "meta"], [628, 3, 0, "-", "nest"], [629, 3, 0, "-", "norms"], [630, 3, 0, "-", "random"], [631, 3, 0, "-", "searching"], [632, 3, 0, "-", "set"], [633, 3, 0, "-", "sorting"], [634, 3, 0, "-", "statistical"], [635, 3, 0, "-", "utility"]], "ivy.functional.ivy.experimental": [[360, 3, 0, "-", "activations"], [361, 3, 0, "-", "constants"], [362, 3, 0, "-", "creation"], [363, 3, 0, "-", "data_type"], [364, 3, 0, "-", "device"], [365, 3, 0, "-", "elementwise"], [366, 3, 0, "-", "general"], [367, 3, 0, "-", "gradients"], [368, 3, 0, "-", "layers"], [369, 3, 0, "-", "linear_algebra"], [370, 3, 0, "-", "losses"], [371, 3, 0, "-", "manipulation"], [372, 3, 0, "-", "meta"], [373, 3, 0, "-", "nest"], [374, 3, 0, "-", "norms"], [375, 3, 0, "-", "random"], [376, 3, 0, "-", "searching"], [377, 3, 0, "-", "set"], [378, 3, 0, "-", "sorting"], [379, 3, 0, "-", "sparse_array"], [380, 3, 0, "-", "statistical"], [381, 3, 0, "-", "utility"]], "ivy.stateful": [[775, 3, 0, "-", "activations"], [776, 3, 0, "-", "converters"], [777, 3, 0, "-", "helpers"], [778, 3, 0, "-", "initializers"], [779, 3, 0, "-", "layers"], [780, 3, 0, "-", "losses"], [781, 3, 0, "-", "module"], [782, 3, 0, "-", "norms"], [783, 3, 0, "-", "optimizers"], [784, 3, 0, "-", "sequential"]], "ivy.stateful.activations": [[775, 1, 1, "", "ELU"], [775, 1, 1, "", "GEGLU"], [775, 1, 1, "", "GELU"], [775, 1, 1, "", "Hardswish"], [775, 1, 1, "", "LeakyReLU"], [775, 1, 1, "", "LogSigmoid"], [775, 1, 1, "", "LogSoftmax"], [775, 1, 1, "", "Logit"], [775, 1, 1, "", "Mish"], [775, 1, 1, "", "PReLU"], [775, 1, 1, "", "ReLU"], [775, 1, 1, "", "ReLU6"], [775, 1, 1, "", "SeLU"], [775, 1, 1, "", "SiLU"], [775, 1, 1, "", "Sigmoid"], [775, 1, 1, "", "Softmax"], [775, 1, 1, "", "Softplus"], [775, 1, 1, "", "Tanh"]], "ivy.stateful.activations.ELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GEGLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.GELU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Hardswish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LeakyReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.LogSoftmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Logit": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Mish": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.PReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.ReLU6": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SeLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.SiLU": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Sigmoid": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softmax": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Softplus": [[775, 0, 1, "", "__init__"]], "ivy.stateful.activations.Tanh": [[775, 0, 1, "", "__init__"]], "ivy.stateful.converters": [[776, 1, 1, "", "ModuleConverters"], [776, 2, 1, "", "to_ivy_module"]], "ivy.stateful.converters.ModuleConverters": [[776, 0, 1, "", "from_flax_module"], [776, 0, 1, "", "from_haiku_module"], [776, 0, 1, "", "from_keras_module"], [776, 0, 1, "", "from_paddle_module"], [776, 0, 1, "", "from_torch_module"], [776, 0, 1, "", "to_keras_module"]], "ivy.stateful.helpers": [[777, 1, 1, "", "ModuleHelpers"]], "ivy.stateful.initializers": [[778, 1, 1, "", "Constant"], [778, 1, 1, "", "FirstLayerSiren"], [778, 1, 1, "", "GlorotUniform"], [778, 1, 1, "", "Initializer"], [778, 1, 1, "", "KaimingNormal"], [778, 1, 1, "", "Ones"], [778, 1, 1, "", "RandomNormal"], [778, 1, 1, "", "Siren"], [778, 1, 1, "", "Uniform"], [778, 1, 1, "", "Zeros"]], "ivy.stateful.initializers.Constant": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.FirstLayerSiren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.GlorotUniform": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Initializer": [[778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.KaimingNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Ones": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.RandomNormal": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Siren": [[778, 0, 1, "", "__init__"]], "ivy.stateful.initializers.Uniform": [[778, 0, 1, "", "__init__"], [778, 0, 1, "", "create_variables"]], "ivy.stateful.initializers.Zeros": [[778, 0, 1, "", "__init__"]], "ivy.stateful.layers": [[779, 1, 1, "", "AdaptiveAvgPool1d"], [779, 1, 1, "", "AdaptiveAvgPool2d"], [779, 1, 1, "", "AvgPool1D"], [779, 1, 1, "", "AvgPool2D"], [779, 1, 1, "", "AvgPool3D"], [779, 1, 1, "", "Conv1D"], [779, 1, 1, "", "Conv1DTranspose"], [779, 1, 1, "", "Conv2D"], [779, 1, 1, "", "Conv2DTranspose"], [779, 1, 1, "", "Conv3D"], [779, 1, 1, "", "Conv3DTranspose"], [779, 1, 1, "", "Dct"], [779, 1, 1, "", "DepthwiseConv2D"], [779, 1, 1, "", "Dropout"], [779, 1, 1, "", "Embedding"], [779, 1, 1, "", "FFT"], [779, 1, 1, "", "IFFT"], [779, 1, 1, "", "Identity"], [779, 1, 1, "", "LSTM"], [779, 1, 1, "", "Linear"], [779, 1, 1, "", "MaxPool1D"], [779, 1, 1, "", "MaxPool2D"], [779, 1, 1, "", "MaxPool3D"], [779, 1, 1, "", "MultiHeadAttention"]], "ivy.stateful.layers.AdaptiveAvgPool1d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AdaptiveAvgPool2d": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.AvgPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv1DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv2DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Conv3DTranspose": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dct": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.DepthwiseConv2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Dropout": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Embedding": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.FFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.IFFT": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.Identity": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.LSTM": [[779, 0, 1, "", "__init__"], [779, 0, 1, "", "get_initial_state"]], "ivy.stateful.layers.Linear": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool1D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool2D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MaxPool3D": [[779, 0, 1, "", "__init__"]], "ivy.stateful.layers.MultiHeadAttention": [[779, 0, 1, "", "__init__"]], "ivy.stateful.losses": [[780, 1, 1, "", "BinaryCrossEntropyLoss"], [780, 1, 1, "", "CrossEntropyLoss"], [780, 1, 1, "", "LogPoissonLoss"]], "ivy.stateful.losses.BinaryCrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.CrossEntropyLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.losses.LogPoissonLoss": [[780, 0, 1, "", "__init__"]], "ivy.stateful.module": [[781, 1, 1, "", "Module"], [781, 1, 1, "", "ModuleMeta"]], "ivy.stateful.module.Module": [[781, 0, 1, "", "__call__"], [781, 0, 1, "", "__init__"], [781, 5, 1, "", "buffers"], [781, 0, 1, "", "build"], [781, 5, 1, "", "build_mode"], [781, 5, 1, "", "built"], [781, 5, 1, "", "device"], [781, 5, 1, "", "dtype"], [781, 0, 1, "", "eval"], [781, 0, 1, "", "load"], [781, 5, 1, "", "module_dict"], [781, 0, 1, "", "register_buffer"], [781, 0, 1, "", "register_parameter"], [781, 0, 1, "", "save"], [781, 0, 1, "", "save_weights"], [781, 0, 1, "", "show_graph"], [781, 5, 1, "", "state_dict"], [781, 0, 1, "", "to_device"], [781, 0, 1, "", "trace_graph"], [781, 0, 1, "", "train"], [781, 5, 1, "", "training"], [781, 5, 1, "", "v"]], "ivy.stateful.norms": [[782, 1, 1, "", "BatchNorm2D"], [782, 1, 1, "", "LayerNorm"]], "ivy.stateful.norms.BatchNorm2D": [[782, 0, 1, "", "__init__"]], "ivy.stateful.norms.LayerNorm": [[782, 0, 1, "", "__init__"]], "ivy.stateful.optimizers": [[783, 1, 1, "", "Adam"], [783, 1, 1, "", "AdamW"], [783, 1, 1, "", "LAMB"], [783, 1, 1, "", "LARS"], [783, 1, 1, "", "Optimizer"], [783, 1, 1, "", "SGD"]], "ivy.stateful.optimizers.Adam": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.AdamW": [[783, 0, 1, "", "__init__"]], "ivy.stateful.optimizers.LAMB": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.LARS": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.optimizers.Optimizer": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 0, 1, "", "step"]], "ivy.stateful.optimizers.SGD": [[783, 0, 1, "", "__init__"], [783, 0, 1, "", "set_state"], [783, 5, 1, "", "state"]], "ivy.stateful.sequential": [[784, 1, 1, "", "Sequential"]], "ivy.stateful.sequential.Sequential": [[784, 0, 1, "", "__init__"]], "ivy.utils": [[785, 3, 0, "-", "assertions"], [786, 3, 0, "-", "backend"], [790, 3, 0, "-", "binaries"], [791, 3, 0, "-", "dynamic_import"], [792, 3, 0, "-", "einsum_parser"], [793, 3, 0, "-", "einsum_path_helpers"], [794, 3, 0, "-", "exceptions"], [795, 3, 0, "-", "inspection"], [796, 3, 0, "-", "logging"], [797, 3, 0, "-", "profiler"], [798, 3, 0, "-", "verbosity"]], "ivy.utils.assertions": [[785, 2, 1, "", "check_all"], [785, 2, 1, "", "check_all_or_any_fn"], [785, 2, 1, "", "check_any"], [785, 2, 1, "", "check_dev_correct_formatting"], [785, 2, 1, "", "check_dimensions"], [785, 2, 1, "", "check_elem_in_list"], [785, 2, 1, "", "check_equal"], [785, 2, 1, "", "check_exists"], [785, 2, 1, "", "check_false"], [785, 2, 1, "", "check_gather_input_valid"], [785, 2, 1, "", "check_gather_nd_input_valid"], [785, 2, 1, "", "check_greater"], [785, 2, 1, "", "check_inplace_sizes_valid"], [785, 2, 1, "", "check_isinstance"], [785, 2, 1, "", "check_kernel_padding_size"], [785, 2, 1, "", "check_less"], [785, 2, 1, "", "check_one_way_broadcastable"], [785, 2, 1, "", "check_same_dtype"], [785, 2, 1, "", "check_shape"], [785, 2, 1, "", "check_shapes_broadcastable"], [785, 2, 1, "", "check_true"], [785, 2, 1, "", "check_unsorted_segment_valid_params"]], "ivy.utils.backend": [[787, 3, 0, "-", "ast_helpers"], [788, 3, 0, "-", "handler"], [789, 3, 0, "-", "sub_backend_handler"]], "ivy.utils.backend.ast_helpers": [[787, 1, 1, "", "ImportTransformer"], [787, 1, 1, "", "IvyLoader"], [787, 1, 1, "", "IvyPathFinder"]], "ivy.utils.backend.ast_helpers.ImportTransformer": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "impersonate_import"], [787, 0, 1, "", "visit_Import"], [787, 0, 1, "", "visit_ImportFrom"]], "ivy.utils.backend.ast_helpers.IvyLoader": [[787, 0, 1, "", "__init__"], [787, 0, 1, "", "exec_module"]], "ivy.utils.backend.ast_helpers.IvyPathFinder": [[787, 0, 1, "", "find_spec"]], "ivy.utils.backend.handler": [[788, 1, 1, "", "ContextManager"], [788, 2, 1, "", "choose_random_backend"], [788, 2, 1, "", "current_backend"], [788, 2, 1, "", "dynamic_backend_converter"], [788, 2, 1, "", "prevent_access_locally"], [788, 2, 1, "", "previous_backend"], [788, 2, 1, "", "set_backend"], [788, 2, 1, "", "set_backend_to_specific_version"], [788, 2, 1, "", "set_jax_backend"], [788, 2, 1, "", "set_mxnet_backend"], [788, 2, 1, "", "set_numpy_backend"], [788, 2, 1, "", "set_paddle_backend"], [788, 2, 1, "", "set_tensorflow_backend"], [788, 2, 1, "", "set_torch_backend"], [788, 2, 1, "", "unset_backend"], [788, 2, 1, "", "with_backend"]], "ivy.utils.backend.handler.ContextManager": [[788, 0, 1, "", "__init__"]], "ivy.utils.backend.sub_backend_handler": [[789, 2, 1, "", "clear_sub_backends"], [789, 2, 1, "", "find_available_sub_backends"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name"], [789, 2, 1, "", "fn_name_from_version_specific_fn_name_sub_backend"], [789, 2, 1, "", "set_sub_backend"], [789, 2, 1, "", "set_sub_backend_to_specific_version"], [789, 2, 1, "", "unset_sub_backend"]], "ivy.utils.binaries": [[790, 2, 1, "", "check_for_binaries"], [790, 2, 1, "", "cleanup_and_fetch_binaries"]], "ivy.utils.dynamic_import": [[791, 2, 1, "", "import_module"]], "ivy.utils.einsum_parser": [[792, 2, 1, "", "convert_interleaved_input"], [792, 2, 1, "", "convert_subscripts"], [792, 2, 1, "", "find_output_shape"], [792, 2, 1, "", "find_output_str"], [792, 2, 1, "", "gen_unused_symbols"], [792, 2, 1, "", "get_symbol"], [792, 2, 1, "", "has_valid_einsum_chars_only"], [792, 2, 1, "", "is_valid_einsum_char"], [792, 2, 1, "", "legalise_einsum_expr"], [792, 2, 1, "", "possibly_convert_to_numpy"]], "ivy.utils.einsum_path_helpers": [[793, 2, 1, "", "can_dot"], [793, 2, 1, "", "compute_size_by_dict"], [793, 2, 1, "", "find_contraction"], [793, 2, 1, "", "flop_count"], [793, 2, 1, "", "greedy_path"], [793, 2, 1, "", "optimal_path"], [793, 2, 1, "", "parse_einsum_input"], [793, 2, 1, "", "parse_possible_contraction"], [793, 2, 1, "", "update_other_results"]], "ivy.utils.exceptions": [[794, 7, 1, "", "InplaceUpdateException"], [794, 7, 1, "", "IvyAttributeError"], [794, 7, 1, "", "IvyBackendException"], [794, 7, 1, "", "IvyBroadcastShapeError"], [794, 7, 1, "", "IvyDeviceError"], [794, 7, 1, "", "IvyDtypePromotionError"], [794, 7, 1, "", "IvyError"], [794, 7, 1, "", "IvyException"], [794, 7, 1, "", "IvyIndexError"], [794, 7, 1, "", "IvyInvalidBackendException"], [794, 7, 1, "", "IvyNotImplementedException"], [794, 7, 1, "", "IvyValueError"], [794, 2, 1, "", "handle_exceptions"]], "ivy.utils.exceptions.InplaceUpdateException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyAttributeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyBroadcastShapeError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDeviceError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyDtypePromotionError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyIndexError": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyInvalidBackendException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyNotImplementedException": [[794, 0, 1, "", "__init__"]], "ivy.utils.exceptions.IvyValueError": [[794, 0, 1, "", "__init__"]], "ivy.utils.inspection": [[795, 2, 1, "", "add_array_specs"], [795, 2, 1, "", "fn_array_spec"]], "ivy.utils.logging": [[796, 2, 1, "", "set_logging_mode"], [796, 2, 1, "", "unset_logging_mode"]], "ivy.utils.profiler": [[797, 1, 1, "", "Profiler"]], "ivy.utils.profiler.Profiler": [[797, 0, 1, "", "__init__"], [797, 4, 1, "", "print_stats"], [797, 4, 1, "", "viz"]], "ivy.utils.verbosity": [[798, 2, 1, "", "cprint"]], "ivy_tests.test_ivy.helpers": [[758, 3, 0, "-", "assertions"], [759, 3, 0, "-", "available_frameworks"], [760, 3, 0, "-", "function_testing"], [761, 3, 0, "-", "globals"], [762, 3, 0, "-", "hypothesis_helpers"], [767, 3, 0, "-", "multiprocessing"], [768, 3, 0, "-", "pipeline_helper"], [769, 3, 0, "-", "structs"], [770, 3, 0, "-", "test_parameter_flags"], [771, 3, 0, "-", "testing_helpers"]], "ivy_tests.test_ivy.helpers.assertions": [[758, 2, 1, "", "assert_all_close"], [758, 2, 1, "", "assert_same_type"], [758, 2, 1, "", "assert_same_type_and_shape"], [758, 2, 1, "", "check_unsupported_device"], [758, 2, 1, "", "check_unsupported_device_and_dtype"], [758, 2, 1, "", "check_unsupported_dtype"], [758, 2, 1, "", "test_unsupported_function"], [758, 2, 1, "", "value_test"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, 2, 1, "", "args_to_container"], [760, 2, 1, "", "args_to_frontend"], [760, 2, 1, "", "arrays_to_frontend"], [760, 2, 1, "", "as_lists"], [760, 2, 1, "", "convtrue"], [760, 2, 1, "", "create_args_kwargs"], [760, 2, 1, "", "flatten"], [760, 2, 1, "", "flatten_and_to_np"], [760, 2, 1, "", "flatten_frontend"], [760, 2, 1, "", "flatten_frontend_fw_to_np"], [760, 2, 1, "", "flatten_frontend_to_np"], [760, 2, 1, "", "get_frontend_ret"], [760, 2, 1, "", "get_ret_and_flattened_np_array"], [760, 2, 1, "", "gradient_incompatible_function"], [760, 2, 1, "", "gradient_test"], [760, 2, 1, "", "gradient_unsupported_dtypes"], [760, 2, 1, "", "kwargs_to_args_n_kwargs"], [760, 2, 1, "", "test_frontend_function"], [760, 2, 1, "", "test_frontend_method"], [760, 2, 1, "", "test_function"], [760, 2, 1, "", "test_function_backend_computation"], [760, 2, 1, "", "test_function_ground_truth_computation"], [760, 2, 1, "", "test_gradient_backend_computation"], [760, 2, 1, "", "test_gradient_ground_truth_computation"], [760, 2, 1, "", "test_method"], [760, 2, 1, "", "test_method_backend_computation"], [760, 2, 1, "", "test_method_ground_truth_computation"], [760, 2, 1, "", "traced_if_required"], [760, 2, 1, "", "wrap_frontend_function_args"]], "ivy_tests.test_ivy.helpers.globals": [[761, 6, 1, "", "CURRENT_FRONTEND_CONFIG"], [761, 7, 1, "", "InterruptedTest"], [761, 1, 1, "", "TestData"], [761, 2, 1, "", "setup_api_test"], [761, 2, 1, "", "setup_frontend_test"], [761, 2, 1, "", "teardown_api_test"], [761, 2, 1, "", "teardown_frontend_test"]], "ivy_tests.test_ivy.helpers.globals.InterruptedTest": [[761, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.globals.TestData": [[761, 0, 1, "", "__init__"], [761, 4, 1, "", "fn_name"], [761, 4, 1, "", "fn_tree"], [761, 4, 1, "", "is_method"], [761, 4, 1, "", "supported_device_dtypes"], [761, 4, 1, "", "test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[763, 3, 0, "-", "array_helpers"], [764, 3, 0, "-", "dtype_helpers"], [765, 3, 0, "-", "general_helpers"], [766, 3, 0, "-", "number_helpers"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, 2, 1, "", "array_and_broadcastable_shape"], [763, 2, 1, "", "array_bools"], [763, 2, 1, "", "array_helpers_dtype_info_helper"], [763, 2, 1, "", "array_indices_axis"], [763, 2, 1, "", "array_indices_put_along_axis"], [763, 2, 1, "", "array_values"], [763, 2, 1, "", "arrays_and_axes"], [763, 2, 1, "", "arrays_for_pooling"], [763, 2, 1, "", "broadcast_shapes"], [763, 2, 1, "", "cond_data_gen_helper"], [763, 2, 1, "", "create_concatenable_arrays_dtypes"], [763, 2, 1, "", "create_nested_input"], [763, 2, 1, "", "dtype_and_values"], [763, 2, 1, "", "dtype_array_query"], [763, 2, 1, "", "dtype_array_query_val"], [763, 2, 1, "", "dtype_values_axis"], [763, 2, 1, "", "einsum_helper"], [763, 2, 1, "", "get_first_solve_batch_matrix"], [763, 2, 1, "", "get_first_solve_matrix"], [763, 2, 1, "", "get_second_solve_batch_matrix"], [763, 2, 1, "", "get_second_solve_matrix"], [763, 2, 1, "", "list_of_size"], [763, 2, 1, "", "lists"], [763, 2, 1, "", "mutually_broadcastable_shapes"], [763, 2, 1, "", "prod"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, 2, 1, "", "array_dtypes"], [764, 2, 1, "", "cast_filter"], [764, 2, 1, "", "cast_filter_helper"], [764, 2, 1, "", "get_castable_dtype"], [764, 2, 1, "", "get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, 7, 1, "", "BroadcastError"], [765, 2, 1, "", "apply_safety_factor"], [765, 2, 1, "", "broadcast_shapes"], [765, 2, 1, "", "embedding_helper"], [765, 2, 1, "", "general_helpers_dtype_info_helper"], [765, 2, 1, "", "get_axis"], [765, 2, 1, "", "get_bounds"], [765, 2, 1, "", "get_mean_std"], [765, 2, 1, "", "get_shape"], [765, 2, 1, "", "matrix_is_stable"], [765, 2, 1, "", "reshape_shapes"], [765, 2, 1, "", "subsets"], [765, 2, 1, "", "two_broadcastable_shapes"], [765, 2, 1, "", "x_and_filters"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, 2, 1, "", "floats"], [766, 2, 1, "", "ints"], [766, 2, 1, "", "number"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, 2, 1, "", "backend_proc"], [767, 2, 1, "", "frontend_proc"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, 1, 1, "", "BackendHandler"], [768, 1, 1, "", "BackendHandlerMode"], [768, 1, 1, "", "WithBackendContext"], [768, 2, 1, "", "get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler": [[768, 0, 1, "", "update_backend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode": [[768, 4, 1, "", "SetBackend"], [768, 4, 1, "", "WithBackend"]], "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext": [[768, 0, 1, "", "__init__"]], "ivy_tests.test_ivy.helpers.structs": [[769, 1, 1, "", "FrontendMethodData"]], "ivy_tests.test_ivy.helpers.structs.FrontendMethodData": [[769, 0, 1, "", "__init__"], [769, 4, 1, "", "framework_init_module"], [769, 4, 1, "", "init_name"], [769, 4, 1, "", "ivy_init_module"], [769, 4, 1, "", "method_name"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, 1, 1, "", "DynamicFlag"], [770, 1, 1, "", "FrontendFunctionTestFlags"], [770, 1, 1, "", "FrontendInitTestFlags"], [770, 1, 1, "", "FrontendMethodTestFlags"], [770, 1, 1, "", "FunctionTestFlags"], [770, 1, 1, "", "InitMethodTestFlags"], [770, 1, 1, "", "MethodTestFlags"], [770, 1, 1, "", "TestFlags"], [770, 2, 1, "", "build_flag"], [770, 2, 1, "", "frontend_function_flags"], [770, 2, 1, "", "frontend_init_flags"], [770, 2, 1, "", "frontend_method_flags"], [770, 2, 1, "", "function_flags"], [770, 2, 1, "", "init_method_flags"], [770, 2, 1, "", "method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag": [[770, 0, 1, "", "__init__"], [770, 4, 1, "", "strategy"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags": [[770, 0, 1, "", "__init__"], [770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags": [[770, 0, 1, "", "apply_flags"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, 2, 1, "", "handle_frontend_method"], [771, 2, 1, "", "handle_frontend_test"], [771, 2, 1, "", "handle_method"], [771, 2, 1, "", "handle_test"], [771, 2, 1, "", "num_positional_args"], [771, 2, 1, "", "num_positional_args_helper"], [771, 2, 1, "", "num_positional_args_method"], [771, 2, 1, "", "seed"]]}, "objtypes": {"0": "py:method", "1": "py:class", "2": "py:function", "3": "py:module", "4": "py:attribute", "5": "py:property", "6": "py:data", "7": "py:exception"}, "objnames": {"0": ["py", "method", "Python method"], "1": ["py", "class", "Python class"], "2": ["py", "function", "Python function"], "3": ["py", "module", "Python module"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "property", "Python property"], "6": ["py", "data", "Python data"], "7": ["py", "exception", "Python exception"]}, "titleterms": {"demo": [0, 2, 3, 4, 15, 26, 40, 41], "creat": [0, 38, 39, 804], "notebook": 0, "TO": 1, "replac": 1, "titl": 1, "exampl": [2, 5, 7, 9, 15, 34, 799, 816, 821, 824, 827, 832, 848, 849, 850], "ivi": [3, 4, 5, 7, 14, 17, 25, 26, 27, 38, 39, 41, 42, 44, 799, 804, 806, 809, 811, 813, 816, 818, 824, 826, 827, 828, 829, 830, 831, 834, 835, 836, 837, 838, 839, 841, 848, 849, 850, 861], "alexnet": 3, "instal": [3, 4, 7, 17, 38, 39, 41, 799, 841], "data": [3, 4, 5, 7, 9, 17, 26, 38, 49, 72, 103, 363, 617, 632, 736, 737, 738, 739, 814, 826, 829, 837, 840], "prepar": [3, 4, 5, 7], "infer": [3, 4, 5, 7, 823], "torch": [3, 4, 5, 7, 34, 41, 855, 856], "tensorflow": [3, 4, 5, 9, 13, 34, 41, 42, 43, 855], "jax": [3, 4, 5, 6, 8, 9, 34, 41, 855], "appendix": [3, 5], "code": [3, 17, 18, 19, 20, 27, 38, 820, 828, 830], "implement": [3, 5, 813, 824, 826, 846], "bert": 4, "dependeci": 4, "import": [4, 5, 7, 9, 17, 38, 39, 42, 791], "modul": [4, 781, 814, 815, 838, 849], "sequenc": [4, 821], "classif": 4, "model": [4, 5, 6, 7, 8, 11, 12, 13, 24, 25, 26, 27, 38, 39, 40, 41, 42, 44, 839, 840], "imag": [5, 7, 55, 78, 248, 801, 811], "segment": 5, "unet": 5, "custom": [5, 809, 811, 824, 828, 837, 840], "preprocess": 5, "load": [5, 7, 9, 756, 837], "visualis": [5, 7], "initi": [5, 7, 778, 838], "nativ": [5, 7, 809, 832], "pretrain": [5, 7], "weight": [5, 7, 837], "mask": 5, "function": [5, 17, 26, 27, 38, 39, 40, 42, 44, 104, 760, 804, 812, 814, 815, 818, 821, 822, 823, 824, 826, 827, 829, 830, 831, 832, 834, 839, 840, 849], "us": [5, 7, 14, 22, 25, 42, 44, 799, 801, 804, 805, 808, 824, 827, 837, 841, 848, 849], "your": [5, 7, 806, 829], "backend": [5, 9, 17, 26, 38, 39, 41, 42, 786, 789, 804, 810, 814, 824, 830, 834, 840], "acceler": [6, 8, 9], "mmpretrain": 6, "resnet": [7, 45], "set": [7, 34, 38, 39, 63, 86, 377, 632, 805, 810, 819, 831, 841], "label": 7, "resnet34": 7, "classifi": 7, "resnet50": 7, "pytorch": [8, 9, 11, 40, 855], "xgboost": 9, "test": [9, 40, 760, 770, 771, 774, 804, 805, 806, 808, 813, 819, 827, 829], "compar": 9, "xgb_frontend": 9, "xgbclassifi": 9, "xgb": 9, "more": [9, 805, 832, 846], "exhaust": 9, "evalu": 9, "train": [9, 38, 40, 42], "time": 9, "v": [9, 21, 31, 34, 820, 840, 845, 848], "number": [9, 766, 821], "boost": 9, "round": [9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 278, 828], "fraction": 9, "comparison": [9, 837], "metric": [9, 42], "guid": [10, 15], "transpil": [11, 12, 13, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 40, 44, 799, 839, 841, 849], "build": [11, 12, 13, 42, 801, 811, 834], "top": [11, 12, 13, 813], "up": [11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 40, 805, 819, 828, 841], "haiku": 12, "develop": 14, "convolut": 14, "network": [14, 39, 42, 837, 839], "tutori": [15, 42], "And": 15, "learn": [15, 16, 855], "basic": [15, 16, 38, 39, 806, 826], "write": [17, 25, 826, 829], "content": [17, 40], "handler": [17, 26, 788, 789, 834], "structur": [17, 26, 811, 824, 840], "api": [17, 26, 27, 804, 808, 812, 813, 824, 830, 834, 836, 838, 839, 841, 845, 848, 849, 850, 852, 859, 861], "state": [17, 26, 27, 838, 840, 848], "unifi": [18, 21, 22, 28, 31, 32, 33, 38, 799, 836, 846, 850, 857, 861], "trace": [19, 21, 22, 27, 678, 818], "lazi": [21, 31, 848], "eager": [21, 31, 848], "how": [22, 804, 811, 819, 828, 829], "decor": [22, 33, 818, 823, 829], "ani": [23, 24, 26, 27, 755], "librari": [23, 26, 27, 42, 44, 849], "odsc": 26, "framework": [26, 32, 38, 759, 772, 824, 827, 835, 855, 858, 861, 862], "graph": [26, 43, 856, 861], "tracer": [26, 834, 839, 841, 848, 856, 861], "quickstart": 27, "get": [27, 799, 806, 841], "familiar": 27, "0": [28, 29, 30, 31, 35, 36], "1": [29, 31, 32, 33, 34, 37, 44, 855], "compil": [29, 31, 32, 33, 39, 848, 853, 858, 860, 861], "2": [30, 33, 35, 44, 855], "select": 32, "As": 33, "3": [34, 36, 37, 44], "dynam": [34, 42, 791, 810, 840], "static": 34, "todo": [34, 806], "explain": 34, "via": 34, "why": [34, 829, 846], "mode": [34, 814, 818, 831], "i": [34, 799, 811, 832], "true": 34, "default": [34, 532], "when": [34, 799], "from": [34, 41, 841], "numpi": [34, 41, 826, 855], "fals": 34, "kornia": 35, "perceiv": 36, "stabl": 37, "diffus": 37, "oper": [38, 821, 831, 836, 840], "ml": [38, 844, 857, 861], "chang": 38, "one": 38, "line": [38, 806], "No": [38, 805, 846], "need": [38, 829], "worri": 38, "about": 38, "type": [38, 49, 72, 363, 617, 814, 822, 826, 840], "differ": 38, "them": 38, "all": [38, 754], "standalon": [38, 822], "defin": [38, 39, 40, 42], "optim": [38, 783, 838], "input": [38, 39, 821], "target": 38, "loss": [38, 58, 81, 370, 625, 780], "loop": [38, 42], "sampl": 39, "check": [39, 820, 840], "result": 39, "simpl": 39, "neural": 39, "deepmind": [40, 41], "": [40, 42, 804, 811, 828, 841], "perceiverio": [40, 41], "tabl": [40, 811, 814], "construct": [40, 837], "some": 40, "helper": [40, 762, 763, 764, 765, 766, 768, 771, 777, 787, 793, 827, 829, 830], "pipelin": [40, 42, 768, 811, 813, 829, 840], "dataset": [40, 42], "download": 40, "dataload": 40, "gpu": [41, 840], "introduct": [41, 44, 826, 827], "python3": 41, "8": 41, "setup": [41, 820], "kernel": 41, "clone": [41, 805, 813], "repo": [41, 805], "ivy_model": 41, "run": [41, 806, 808, 811, 819, 829], "end": 42, "let": 42, "we": [42, 829], "ar": 42, "mnist": 42, "thi": 42, "temporari": 42, "loader": 42, "util": [42, 66, 89, 381, 635, 773], "plot": 42, "save": [42, 757, 837], "huggingfac": 43, "deit": 43, "can": 43, "visual": 43, "displai": 43, "html": 43, "file": 43, "browser": [43, 806], "To": [44, 806], "interfac": 44, "telemetri": 44, "18": 45, "activ": [46, 68, 360, 613, 775], "convers": [47, 70, 823], "creation": [48, 71, 362, 616], "devic": [50, 73, 364, 618, 815, 821, 826], "elementwis": [51, 74, 102, 365, 619], "experiment": [52, 75, 620, 804], "gener": [53, 76, 366, 621, 765, 824, 829, 832, 848], "gradient": [54, 77, 342, 367, 622, 824], "layer": [56, 79, 368, 623, 779], "linear": [57, 80, 369, 624, 647], "algebra": [57, 80, 369, 624], "manipul": [59, 82, 371, 626], "norm": [60, 83, 374, 629, 782], "random": [61, 84, 375, 630], "search": [62, 85, 376, 631], "sort": [64, 87, 378, 633, 743], "statist": [65, 88, 380, 634], "wrap": [67, 90, 823], "base": [69, 91, 101], "cp": 92, "tensor": [92, 93, 94, 95, 96, 99], "parafac2": 93, "tr": 94, "tt": 95, "tucker": [96, 441], "arrai": [97, 100, 122, 379, 763, 808, 809, 813, 821, 836, 845, 848, 852], "contain": [98, 806, 812, 837], "factor": 99, "nest": [100, 373, 628], "class": [103, 772, 809, 818, 826, 836], "gelu": 105, "hardswish": 106, "leaky_relu": 107, "log_softmax": 108, "mish": 109, "relu": 110, "sigmoid": 111, "softmax": 112, "softplu": 113, "softsign": 114, "cmp_i": 115, "cmp_isnot": 116, "for_loop": 117, "if_els": 118, "try_except": 119, "while_loop": 120, "arang": 121, "asarrai": 123, "copy_arrai": 124, "empti": 125, "empty_lik": 126, "ey": 127, "from_dlpack": 128, "note": [128, 139, 616], "frombuff": 129, "full": [130, 827], "full_lik": 131, "linspac": 132, "logspac": 133, "meshgrid": 134, "native_arrai": 135, "one_hot": 136, "ones": 137, "ones_lik": 138, "to_dlpack": 139, "tril": 140, "triu": 141, "triu_indic": 142, "zero": 143, "zeros_lik": 144, "as_ivy_dtyp": 145, "as_native_dtyp": 146, "astyp": 147, "broadcast_arrai": 148, "broadcast_to": 149, "can_cast": 150, "check_float": 151, "closest_valid_dtyp": 152, "default_complex_dtyp": 153, "default_dtyp": 154, "default_float_dtyp": 155, "default_int_dtyp": 156, "default_uint_dtyp": 157, "dtype": [158, 764, 821], "dtype_bit": 159, "finfo": 160, "function_supported_dtyp": 161, "function_unsupported_dtyp": 162, "iinfo": 163, "infer_default_dtyp": 164, "invalid_dtyp": 165, "is_bool_dtyp": 166, "is_complex_dtyp": 167, "is_float_dtyp": 168, "is_hashable_dtyp": 169, "is_int_dtyp": 170, "is_native_dtyp": 171, "is_uint_dtyp": 172, "promote_typ": 173, "promote_types_of_input": 174, "result_typ": 175, "set_default_complex_dtyp": 176, "set_default_dtyp": 177, "set_default_float_dtyp": 178, "set_default_int_dtyp": 179, "set_default_uint_dtyp": 180, "type_promote_arrai": 181, "unset_default_complex_dtyp": 182, "unset_default_dtyp": 183, "unset_default_float_dtyp": 184, "unset_default_int_dtyp": 185, "unset_default_uint_dtyp": 186, "valid_dtyp": 187, "as_ivy_dev": 188, "as_native_dev": 189, "clear_cached_mem_on_dev": 190, "default_devic": 191, "dev": 192, "dev_util": 193, "function_supported_devic": 194, "function_unsupported_devic": 195, "get_all_ivy_arrays_on_dev": 196, "gpu_is_avail": 197, "handle_soft_device_vari": 198, "num_cpu_cor": 199, "num_gpu": 200, "num_ivy_arrays_on_dev": 201, "percent_used_mem_on_dev": 202, "print_all_ivy_arrays_on_dev": 203, "set_default_devic": 204, "set_soft_device_mod": 205, "paramet": [205, 566, 567, 572, 573, 575, 576, 618, 621, 770, 775, 831], "set_split_factor": 206, "split_factor": 207, "split_func_cal": 208, "to_devic": 209, "total_mem_on_dev": 210, "tpu_is_avail": 211, "unset_default_devic": 212, "unset_soft_device_mod": 213, "used_mem_on_dev": 214, "ab": 215, "aco": 216, "acosh": 217, "add": [218, 816, 827, 861], "angl": 219, "asin": 220, "asinh": 221, "atan": 222, "atan2": 223, "atanh": 224, "bitwise_and": 225, "bitwise_invert": 226, "bitwise_left_shift": 227, "bitwise_or": 228, "bitwise_right_shift": 229, "bitwise_xor": 230, "ceil": 231, "co": 232, "cosh": 233, "deg2rad": 234, "divid": 235, "equal": 236, "erf": 237, "exp": 238, "exp2": 239, "expm1": 240, "floor": 241, "floor_divid": 242, "fmin": 243, "fmod": 244, "gcd": 245, "greater": 246, "greater_equ": 247, "isfinit": 249, "isinf": 250, "isnan": 251, "isreal": 252, "lcm": 253, "less": 254, "less_equ": 255, "log": [256, 796, 805], "log10": 257, "log1p": 258, "log2": 259, "logaddexp": 260, "logaddexp2": 261, "logical_and": 262, "logical_not": 263, "logical_or": 264, "logical_xor": 265, "maximum": 266, "minimum": 267, "multipli": 268, "nan_to_num": 269, "neg": 270, "not_equ": 271, "posit": [272, 821], "pow": 273, "rad2deg": 274, "real": 275, "reciproc": 276, "remaind": 277, "sign": 279, "sin": 280, "sinh": 281, "sqrt": 282, "squar": 283, "subtract": 284, "tan": [285, 816, 827], "tanh": 286, "trapz": 287, "trunc": 288, "trunc_divid": 289, "celu": 290, "elu": 291, "hardshrink": 292, "hardtanh": 293, "logit": 294, "logsigmoid": 295, "prelu": 296, "relu6": 297, "scaled_tanh": 298, "selu": 299, "silu": 300, "softshrink": 301, "stanh": 302, "tanhshrink": 303, "threshold": 304, "thresholded_relu": 305, "blackman_window": 306, "eye_lik": 307, "hamming_window": 308, "hann_window": 309, "indic": 310, "kaiser_bessel_derived_window": 311, "kaiser_window": 312, "mel_weight_matrix": 313, "ndenumer": 314, "ndindex": 315, "polyv": 316, "random_cp": 317, "random_parafac2": 318, "random_tr": 319, "random_tt": 320, "random_tuck": 321, "tril_indic": 322, "trilu": 323, "unsorted_segment_mean": 324, "unsorted_segment_min": 325, "unsorted_segment_sum": 326, "vorbis_window": 327, "allclos": 328, "amax": 329, "amin": 330, "binar": 331, "conj": 332, "copysign": 333, "count_nonzero": 334, "diff": 335, "digamma": 336, "erfc": 337, "fix": [338, 804, 819], "float_pow": 339, "fmax": 340, "frexp": 341, "hypot": 343, "isclos": 344, "ldexp": 345, "lerp": 346, "lgamma": 347, "modf": 348, "nansum": 349, "nextaft": 350, "signbit": 351, "sinc": 352, "sparsify_tensor": 353, "xlogi": 354, "zeta": 355, "reduc": 356, "bind_custom_gradient_funct": 357, "jvp": 358, "vjp": 359, "constant": [361, 614], "meta": [372, 627], "spars": 379, "adaptive_avg_pool1d": 382, "adaptive_avg_pool2d": 383, "adaptive_max_pool2d": 384, "area_interpol": 385, "avg_pool1d": 386, "avg_pool2d": 387, "avg_pool3d": 388, "dct": 389, "dft": 390, "dropout1d": 391, "dropout2d": 392, "dropout3d": 393, "embed": 394, "fft": 395, "fft2": 396, "generate_einsum_equ": 397, "get_interpolate_kernel": 398, "idct": 399, "ifft": 400, "ifftn": 401, "interp": 402, "interpol": 403, "max_pool1d": 404, "max_pool2d": 405, "max_pool3d": 406, "max_unpool1d": 407, "nearest_interpol": 408, "pool": 409, "reduce_window": 410, "rfft": 411, "rfftn": 412, "rnn": 413, "sliding_window": 414, "stft": 415, "adjoint": 416, "batched_out": 417, "cond": 418, "diagflat": 419, "dot": 420, "eig": [421, 658], "eigh_tridiagon": 422, "eigval": 423, "general_inner_product": 424, "higher_order_mo": 425, "initialize_tuck": 426, "khatri_rao": 427, "kron": 428, "kroneck": 429, "make_svd_non_neg": 430, "matrix_exp": 431, "mode_dot": 432, "multi_dot": 433, "multi_mode_dot": 434, "partial_tuck": 435, "solve_triangular": 436, "svd_flip": 437, "tensor_train": 438, "truncated_svd": 439, "tt_matrix_to_tensor": 440, "huber_loss": 442, "kl_div": 443, "l1_loss": 444, "log_poisson_loss": 445, "poisson_nll_loss": 446, "smooth_l1_loss": 447, "soft_margin_loss": 448, "as_strid": 449, "associative_scan": 450, "atleast_1d": 451, "atleast_2d": 452, "atleast_3d": 453, "broadcast_shap": 454, "check_scalar": 455, "choos": 456, "column_stack": 457, "concat_from_sequ": 458, "dsplit": 459, "dstack": 460, "expand": 461, "fill_diagon": 462, "flatten": 463, "fliplr": 464, "flipud": 465, "fold": 466, "heavisid": 467, "hsplit": 468, "hstack": 469, "i0": 470, "matric": 471, "moveaxi": 472, "pad": 473, "partial_fold": 474, "partial_tensor_to_vec": 475, "partial_unfold": 476, "partial_vec_to_tensor": 477, "put_along_axi": 478, "rot90": 479, "soft_threshold": 480, "take": 481, "take_along_axi": 482, "top_k": 483, "trim_zero": 484, "unfold": 485, "unique_consecut": 486, "vsplit": 487, "vstack": 488, "batch_norm": 489, "group_norm": 490, "instance_norm": 491, "l1_normal": 492, "l2_normal": 493, "local_response_norm": 494, "lp_normal": 495, "bernoulli": 496, "beta": 497, "dirichlet": 498, "gamma": 499, "poisson": 500, "unravel_index": 501, "invert_permut": 502, "lexsort": 503, "is_ivy_sparse_arrai": 504, "is_native_sparse_arrai": 505, "native_sparse_arrai": 506, "native_sparse_array_to_indices_values_and_shap": 507, "bincount": 508, "corrcoef": 509, "cov": 510, "cummax": 511, "cummin": 512, "histogram": 513, "igamma": 514, "median": 515, "nanmean": 516, "nanmedian": 517, "nanmin": 518, "nanprod": 519, "quantil": 520, "optional_get_el": 521, "all_equ": 522, "arg_info": 523, "arg_nam": 524, "array_equ": 525, "assert_supports_inplac": 526, "cache_fn": 527, "clip_matrix_norm": 528, "clip_vector_norm": 529, "container_typ": 530, "current_backend_str": 531, "einops_rearrang": 533, "einops_reduc": 534, "einops_repeat": 535, "exist": [536, 801, 828], "fourier_encod": 537, "function_supported_devices_and_dtyp": 538, "function_unsupported_devices_and_dtyp": 539, "gather": 540, "gather_nd": 541, "get_all_arrays_in_memori": 542, "get_item": 543, "get_num_dim": 544, "get_referrers_recurs": 545, "has_nan": 546, "inplace_arrays_support": 547, "inplace_decr": 548, "inplace_incr": 549, "inplace_upd": 550, "inplace_variables_support": 551, "is_arrai": 552, "is_ivy_arrai": 553, "is_ivy_contain": 554, "is_ivy_nested_arrai": 555, "is_native_arrai": 556, "isin": 557, "isscalar": 558, "items": 559, "match_kwarg": 560, "multiprocess": [561, 767], "num_arrays_in_memori": 562, "print_all_arrays_in_memori": 563, "scatter_flat": 564, "scatter_nd": 565, "set_array_mod": 566, "set_exception_trace_mod": 567, "set_inplace_mod": 568, "set_item": 569, "set_min_bas": 570, "set_min_denomin": 571, "set_nestable_mod": 572, "set_precise_mod": 573, "set_queue_timeout": 574, "set_shape_array_mod": 575, "set_show_func_wrapper_trace_mod": 576, "set_tmp_dir": 577, "shape": [578, 632, 736, 737, 738, 739, 823, 840], "stable_divid": 579, "stable_pow": 580, "stride": 581, "supports_inplace_upd": 582, "to_ivy_shap": 583, "to_list": 584, "to_native_shap": 585, "to_numpi": 586, "to_scalar": 587, "try_else_non": 588, "unset_array_mod": 589, "unset_exception_trace_mod": 590, "unset_inplace_mod": 591, "unset_min_bas": 592, "unset_min_denomin": 593, "unset_nestable_mod": 594, "unset_precise_mod": 595, "unset_queue_timeout": 596, "unset_shape_array_mod": 597, "unset_show_func_wrapper_trace_mod": 598, "unset_tmp_dir": 599, "value_is_nan": 600, "vmap": 601, "adam_step": 602, "adam_upd": 603, "execute_with_gradi": [604, 824], "grad": 605, "gradient_descent_upd": 606, "jac": 607, "lamb_upd": 608, "lars_upd": 609, "optimizer_upd": 610, "stop_gradi": 611, "value_and_grad": 612, "control": [615, 840], "flow": [615, 840], "op": 615, "depend": [632, 736, 737, 738, 739], "output": [632, 736, 737, 738, 739], "conv": 636, "conv1d": 637, "conv1d_transpos": 638, "conv2d": 639, "conv2d_transpos": 640, "conv3d": 641, "conv3d_transpos": 642, "conv_general_dil": 643, "conv_general_transpos": 644, "depthwise_conv2d": 645, "dropout": 646, "lstm_updat": 648, "multi_head_attent": 649, "nm": 650, "roi_align": 651, "scaled_dot_product_attent": 652, "choleski": 653, "cross": 654, "det": 655, "diag": 656, "diagon": 657, "eigh": 659, "eigvalsh": 660, "inner": 661, "inv": 662, "lu_factor": 663, "matmul": 664, "matrix_norm": 665, "matrix_pow": 666, "matrix_rank": 667, "matrix_transpos": 668, "outer": 669, "pinv": 670, "qr": 671, "slogdet": 672, "solv": 673, "svd": 674, "svdval": 675, "tensordot": 676, "tensorsolv": 677, "vander": 679, "vecdot": 680, "vector_norm": 681, "vector_to_skew_symmetric_matrix": 682, "binary_cross_entropi": 683, "cross_entropi": 684, "sparse_cross_entropi": 685, "clip": 686, "concat": 687, "constant_pad": 688, "expand_dim": 689, "flip": 690, "permute_dim": 691, "repeat": 692, "reshap": 693, "roll": [694, 816], "split": 695, "squeez": 696, "stack": [697, 818], "swapax": 698, "tile": 699, "unstack": 700, "zero_pad": 701, "fomaml_step": 702, "maml_step": 703, "reptile_step": 704, "all_nested_indic": 705, "copy_nest": 706, "duplicate_array_index_chain": 707, "index_nest": 708, "insert_into_nest_at_index": 709, "insert_into_nest_at_indic": 710, "map": [711, 813], "map_nest_at_index": 712, "map_nest_at_indic": 713, "multi_index_nest": 714, "nested_ani": 715, "nested_argwher": 716, "nested_map": 717, "nested_multi_map": 718, "prune_empti": 719, "prune_nest_at_index": 720, "prune_nest_at_indic": 721, "set_nest_at_index": 722, "set_nest_at_indic": 723, "layer_norm": 724, "multinomi": 725, "randint": 726, "random_norm": 727, "random_uniform": 728, "seed": 729, "shuffl": 730, "argmax": 731, "argmin": 732, "argwher": 733, "nonzero": 734, "where": [735, 804, 819], "unique_al": 736, "unique_count": 737, "unique_invers": 738, "unique_valu": 739, "argsort": 740, "msort": 741, "searchsort": 742, "cumprod": 744, "cumsum": 745, "einsum": [746, 792, 793], "max": 747, "mean": 748, "min": 749, "prod": 750, "std": 751, "sum": 752, "var": 753, "assert": [758, 785, 818], "avail": 759, "global": [761, 831], "hypothesi": [762, 805, 827, 829], "struct": 769, "flag": 770, "convert": [776, 839], "sequenti": 784, "ast": 787, "sub": 789, "binari": [790, 805], "parser": 792, "path": 793, "except": [794, 818, 823], "inspect": 795, "profil": 797, "verbos": 798, "statu": 799, "ai": 799, "start": [799, 841], "pip": [799, 841], "document": 799, "dive": [799, 807], "deeper": 799, "should": 799, "contribut": [799, 800, 804, 828], "commun": 799, "citat": 799, "doc": [801, 811], "docker": [801, 805, 806, 811, 841], "conveni": [801, 811, 822], "script": [801, 811], "hub": 801, "local": [801, 806, 820], "without": [801, 827], "error": [802, 818, 819], "handl": [802, 809, 815, 818, 823, 840], "help": [803, 806, 819], "resourc": 803, "open": 804, "task": 804, "fail": [804, 819, 829], "frontend": [804, 810, 826, 827, 839], "place": 804, "checklist": 804, "format": [804, 820, 854, 861], "extend": [804, 829, 832], "an": [804, 824], "issu": [804, 806, 820, 841], "github": [804, 805], "templat": 804, "fork": [805, 806], "pre": [805, 820], "commit": [805, 806, 813, 820], "pycharm": [805, 806, 820], "virtual": 805, "environ": 805, "miniconda": 805, "venv": 805, "interpret": 805, "window": 805, "maco": 805, "ubuntu": 805, "detail": 805, "free": 805, "wsl": 805, "codespac": 805, "The": [805, 806, 811, 824, 826, 836, 840, 845], "list": 806, "manag": 806, "who": 806, "ask": [806, 819], "With": 806, "command": 806, "pull": [806, 813], "request": [806, 813], "small": 806, "often": 806, "interact": 806, "most": 806, "out": [806, 821, 823, 825], "id": [806, 808], "deep": 807, "termin": 808, "regener": 808, "failur": 808, "skip": 808, "integr": [809, 813, 820, 828, 829], "version": [810, 830, 840], "support": [810, 814, 823, 826, 840], "builder": 811, "being": 811, "option": 811, "index": 811, "rst": 811, "partial_conf": 811, "py": 811, "prebuild": 811, "sh": 811, "extens": 811, "custom_autosummari": 811, "hide": 811, "discussion_link": 811, "skippable_funct": 811, "ivy_data": 811, "instanc": [812, 826, 827, 836], "method": [812, 826, 827, 836, 837], "special": [812, 814, 826], "nestabl": [812, 821, 822, 823], "continu": [813, 820], "push": 813, "pr": 813, "trigger": 813, "A": [813, 832], "down": 813, "view": [813, 823, 825], "store": 813, "retriev": 813, "repositori": 813, "nitti": 813, "gritti": 813, "storag": 813, "space": 813, "unifyai": 813, "determin": 813, "coverag": 813, "workflow": 813, "multipl": 813, "runner": 813, "race": 813, "condit": 813, "period": 813, "manual": 813, "dispatch": 813, "ci": 813, "dashboard": 813, "promot": [814, 826], "precis": 814, "non": [814, 832], "argument": [814, 815, 821, 823, 825, 826], "other": [814, 815], "unsupport": 814, "attribut": [814, 831], "case": [814, 837], "bug": 814, "cast": [814, 826], "superset": [814, 832], "docstr": [816, 817], "configur": [818, 827, 837], "func_wrapp": 818, "prune": 818, "handle_except": 818, "consist": [818, 829], "prerequir": 819, "common": [819, 820], "lint": [820, 828], "keyword": 821, "integ": 821, "primari": 822, "composit": 822, "mix": [822, 823, 829], "partial": [822, 823, 829], "order": 823, "wrapper": [823, 861, 862], "miscellan": 823, "overview": [824, 828], "usag": [824, 828, 832, 850], "signatur": 824, "design": [824, 830, 833], "our": 824, "polici": [824, 826], "specif": [824, 859, 860, 861], "consider": 824, "inplac": 825, "updat": 825, "copi": 825, "short": 826, "unus": 826, "rule": 826, "duplic": [826, 832], "valu": 827, "alia": 827, "formatt": 828, "functionorderingformatt": 828, "work": [828, 845, 851], "own": 829, "strategi": 829, "do": [829, 845], "effect": 829, "bonu": 829, "featur": 829, "self": 829, "explicit": 829, "test_array_funct": 829, "re": [829, 846], "navig": 830, "categor": 830, "submodul": 830, "unpin": 830, "properti": 831, "getter": 831, "setter": 831, "set_": 831, "unset_": 831, "behaviour": 832, "standard": [832, 845, 852, 861], "what": [832, 861], "balanc": 832, "effici": 832, "maxim": 832, "block": 834, "monkei": 836, "patch": 836, "represent": 837, "recurs": 837, "built": 837, "ins": 837, "access": 837, "compartment": 837, "role": 839, "faq": 840, "maintain": 840, "size": 840, "deploy": 840, "auto": 840, "differenti": 840, "replica": 840, "parallel": 840, "altern": 840, "sourc": 841, "folder": 841, "kei": 841, "question": 841, "glossari": 842, "motiv": 843, "explos": 844, "skeptic": 845, "complimentari": 845, "competit": 845, "infinit": 846, "shelf": 846, "life": 846, "One": 847, "liner": 847, "trace_graph": 848, "cach": 848, "sharp": [848, 849, 850], "bit": [848, 849, 850], "relat": 851, "infrastructur": [853, 861], "llvm": 853, "mlir": 853, "oneapi": 853, "exchang": [854, 861], "onnx": 854, "nnef": 854, "coreml": 854, "matlab": 855, "scipi": 855, "scikit": 855, "theano": 855, "panda": 855, "julia": 855, "apach": [855, 858], "spark": 855, "mllib": 855, "caff": 855, "chainer": 855, "mxnet": 855, "cntk": 855, "flux": 855, "dex": 855, "languag": 855, "tf": 856, "jaxpr": 856, "jit": 856, "fx": 856, "compani": [857, 861], "quansight": 857, "modular": 857, "octoml": 857, "multi": [858, 861], "vendor": [858, 859, 860, 861], "tvm": 858, "xla": 858, "gcc": 858, "tensorrt": 859, "cuda": 859, "icc": 860, "icx": 860, "nvcc": 860, "doe": 861, "eagerpi": 862, "kera": 862, "thinc": 862, "tensorli": 862, "neuropod": 862}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"as_native_dtype": [[146, "as-native-dtype"]], "astype": [[147, "astype"]], "is_native_dtype": [[171, "is-native-dtype"]], "is_hashable_dtype": [[169, "is-hashable-dtype"]], "can_cast": [[150, "can-cast"]], "set_default_dtype": [[177, "set-default-dtype"]], "dtype": [[158, "dtype"]], "function_unsupported_dtypes": [[162, "function-unsupported-dtypes"]], "iinfo": [[163, "iinfo"]], "set_default_int_dtype": [[179, "set-default-int-dtype"]], "closest_valid_dtype": [[152, "closest-valid-dtype"]], "default_dtype": [[154, "default-dtype"]], "zeros": [[143, "zeros"]], "default_int_dtype": [[156, "default-int-dtype"]], "type_promote_arrays": [[181, "type-promote-arrays"]], "finfo": [[160, "finfo"]], "default_uint_dtype": [[157, "default-uint-dtype"]], "to_dlpack": [[139, "to-dlpack"]], "Note": [[139, null], [128, null], [616, null], [616, null]], "is_int_dtype": [[170, "is-int-dtype"]], "broadcast_to": [[149, "broadcast-to"]], "check_float": [[151, "check-float"]], "triu_indices": [[142, "triu-indices"]], "is_float_dtype": [[168, "is-float-dtype"]], "default_complex_dtype": [[153, "default-complex-dtype"]], "dtype_bits": [[159, "dtype-bits"]], "tril": [[140, "tril"]], "is_uint_dtype": [[172, "is-uint-dtype"]], "set_default_float_dtype": [[178, "set-default-float-dtype"]], "is_bool_dtype": [[166, "is-bool-dtype"]], "unset_default_complex_dtype": [[182, "unset-default-complex-dtype"]], "triu": [[141, "triu"]], "invalid_dtype": [[165, "invalid-dtype"]], "infer_default_dtype": [[164, "infer-default-dtype"]], "set_default_uint_dtype": [[180, "set-default-uint-dtype"]], "promote_types_of_inputs": [[174, "promote-types-of-inputs"]], "unset_default_dtype": [[183, "unset-default-dtype"]], "ones_like": [[138, "ones-like"]], "result_type": [[175, "result-type"]], "promote_types": [[173, "promote-types"]], "broadcast_arrays": [[148, "broadcast-arrays"]], "zeros_like": [[144, "zeros-like"]], "function_supported_dtypes": [[161, "function-supported-dtypes"]], "is_complex_dtype": [[167, "is-complex-dtype"]], "set_default_complex_dtype": [[176, "set-default-complex-dtype"]], "default_float_dtype": [[155, "default-float-dtype"]], "as_ivy_dtype": [[145, "as-ivy-dtype"]], "Vendor-Specific Compilers": [[860, "vendor-specific-compilers"], [861, "vendor-specific-compilers"]], "ICC": [[860, "id1"]], "ICX": [[860, "icx"]], "NVCC": [[860, "nvcc"]], "One liners": [[847, "one-liners"]], "Compiler Infrastructure": [[853, "compiler-infrastructure"], [861, "compiler-infrastructure"]], "LLVM": [[853, "id1"]], "MLIR": [[853, "id2"]], "OneAPI": [[853, "id3"]], "Wrapper Frameworks": [[862, "wrapper-frameworks"], [861, "wrapper-frameworks"]], "EagerPy eagerpy": [[862, "eagerpy-eagerpy"]], "Keras keras": [[862, "keras-keras"]], "Thinc thinc": [[862, "thinc-thinc"]], "TensorLy tensorly": [[862, "tensorly-tensorly"]], "NeuroPod": [[862, "id1"]], "Multi-Vendor Compiler Frameworks": [[858, "multi-vendor-compiler-frameworks"], [861, "multi-vendor-compiler-frameworks"]], "Apache TVM": [[858, "apache-tvm"]], "XLA": [[858, "xla"]], "GCC": [[858, "gcc"]], "ivy.transpile()": [[849, "ivy-transpile"]], "Transpiler API": [[849, "transpiler-api"]], "Using the transpiler": [[849, "using-the-transpiler"]], "Transpiling functions": [[849, "transpiling-functions"]], "Transpiling Libraries": [[849, "transpiling-libraries"]], "Transpiling Modules": [[849, "transpiling-modules"]], "Sharp bits": [[849, "sharp-bits"], [850, "sharp-bits"], [848, "sharp-bits"]], "Examples": [[849, "examples"], [850, "examples"], [848, "examples"], [821, "examples"], [799, "examples"]], "Standardization": [[845, "standardization"]], "Skepticism": [[845, "skepticism"]], "Complimentary vs Competitive": [[845, "complimentary-vs-competitive"]], "Do Standards Work?": [[845, "do-standards-work"]], "The Array API Standard": [[845, "the-array-api-standard"]], "Get Started": [[841, "get-started"]], "Installing using pip": [[841, "installing-using-pip"], [799, "installing-using-pip"]], "Docker": [[841, "docker"]], "Installing from source": [[841, "installing-from-source"]], "Ivy\u2019s tracer and transpiler": [[841, "ivy-s-tracer-and-transpiler"]], "Ivy Folder": [[841, "ivy-folder"]], "Setting Up the API key": [[841, "setting-up-the-api-key"]], "Issues and Questions": [[841, "issues-and-questions"]], "Ivy Tests": [[829, "ivy-tests"], [813, "ivy-tests"]], "Testing Pipeline": [[829, "testing-pipeline"]], "Hypothesis": [[829, "id1"]], "Data Generation": [[829, "id2"]], "Writing your own strategy": [[829, "writing-your-own-strategy"]], "Writing Hypothesis Tests": [[829, "writing-hypothesis-tests"]], "Ivy Test Decorators": [[829, "ivy-test-decorators"]], "Writing Ivy Tests": [[829, "writing-ivy-tests"]], "Integration of Strategies into Ivy Tests": [[829, "integration-of-strategies-into-ivy-tests"]], "Why do we need helper functions?": [[829, "why-do-we-need-helper-functions"]], "How to write Hypothesis Tests effectively": [[829, "how-to-write-hypothesis-tests-effectively"]], "Testing Partial Mixed Functions": [[829, "testing-partial-mixed-functions"]], "Bonus: Hypothesis\u2019 Extended Features": [[829, "bonus-hypothesis-extended-features"]], "Self-Consistent and Explicit Testing": [[829, "self-consistent-and-explicit-testing"]], "test_array_function": [[829, "id4"]], "Running Ivy Tests": [[829, "running-ivy-tests"]], "Re-Running Failed Ivy Tests": [[829, "re-running-failed-ivy-tests"]], "Ivy Stateful API": [[838, "ivy-stateful-api"], [17, "Ivy-Stateful-API"], [26, "Ivy-Stateful-API"]], "Modules": [[838, "modules"]], "Initializers": [[838, "initializers"], [778, "module-ivy.stateful.initializers"]], "Optimizers": [[838, "optimizers"], [783, "module-ivy.stateful.optimizers"]], "Why Unify?": [[846, "why-unify"]], "No More Re-implementations \ud83d\udea7": [[846, "no-more-re-implementations"]], "\u201cInfinite\u201d Shelf-Life \u2705": [[846, "infinite-shelf-life"]], "ML-Unifying Companies": [[857, "ml-unifying-companies"], [861, "ml-unifying-companies"]], "Quansight": [[857, "id1"]], "Modular": [[857, "id2"]], "OctoML": [[857, "id3"]], "Ivy as a Framework": [[835, "ivy-as-a-framework"], [26, "Ivy-as-a-Framework"]], "Exchange Formats": [[854, "exchange-formats"], [861, "exchange-formats"]], "ONNX onnx": [[854, "onnx-onnx"]], "NNEF nnef": [[854, "nnef-nnef"]], "CoreML coreml": [[854, "coreml-coreml"]], "Design": [[833, "design"]], "Ivy Container": [[837, "ivy-container"]], "Construction": [[837, "construction"]], "Representation": [[837, "representation"]], "Recursive Methods": [[837, "recursive-methods"]], "Built-ins": [[837, "built-ins"]], "Access": [[837, "access"]], "Saving and Loading": [[837, "saving-and-loading"]], "Comparisons": [[837, "comparisons"]], "Customized Representations": [[837, "customized-representations"]], "Use Cases": [[837, "use-cases"]], "Compartmentalization": [[837, "compartmentalization"]], "Configuration": [[837, "configuration"]], "Data loading": [[837, "data-loading"]], "Network weights": [[837, "network-weights"]], "Vendor-Specific APIs": [[859, "vendor-specific-apis"], [861, "vendor-specific-apis"]], "TensorRT tensorrt": [[859, "tensorrt-tensorrt"]], "CUDA cuda": [[859, "cuda-cuda"]], "What does Ivy Add?": [[861, "what-does-ivy-add"]], "API Standards": [[861, "api-standards"], [852, "api-standards"]], "Frameworks": [[861, "frameworks"], [855, "frameworks"]], "Graph Tracers": [[861, "graph-tracers"], [856, "graph-tracers"]], "Ivy Array": [[836, "ivy-array"], [809, "ivy-array"]], "The Array Class": [[836, "the-array-class"]], "Unifying Operators": [[836, "unifying-operators"]], "API Monkey Patching": [[836, "api-monkey-patching"]], "Instance Methods": [[836, "instance-methods"]], "Navigating the Code": [[830, "navigating-the-code"]], "Categorization": [[830, "categorization"]], "Submodule Design": [[830, "submodule-design"]], "Ivy API": [[830, "ivy-api"]], "Backend API": [[830, "backend-api"]], "Submodule Helper Functions": [[830, "submodule-helper-functions"]], "Version Unpinning": [[830, "version-unpinning"]], "Glossary": [[842, "glossary"]], "Operating Modes": [[831, "operating-modes"]], "Global Parameter Properties": [[831, "global-parameter-properties"]], "Getter: ivy. attribute": [[831, "getter-ivy-setting-attribute"]], "Setter: ivy.set_ and ivy.unset_ functions": [[831, "setter-ivy-set-setting-and-ivy-unset-setting-functions"]], "ivy.unify()": [[850, "ivy-unify"]], "Unify API": [[850, "unify-api"]], "Usage": [[850, "usage"]], "MATLAB matlab": [[855, "matlab-matlab"]], "SciPy scipy": [[855, "scipy-scipy"]], "Torch torch": [[855, "torch-torch"]], "NumPy numpy": [[855, "numpy-numpy"]], "SciKit Learn scikit-learn": [[855, "scikit-learn-scikit-learn"]], "Theano theano": [[855, "theano-theano"]], "Pandas pandas": [[855, "pandas-pandas"]], "Julia julia": [[855, "julia-julia"]], "Apache Spark MLlib apache-spark-mllib": [[855, "apache-spark-mllib-apache-spark-mllib"]], "Caffe caffe": [[855, "caffe-caffe"]], "Chainer chainer": [[855, "chainer-chainer"]], "TensorFlow 1 tensorflow-1": [[855, "tensorflow-1-tensorflow-1"]], "MXNet mxnet": [[855, "mxnet-mxnet"]], "CNTK cntk": [[855, "cntk-cntk"]], "PyTorch pytorch": [[855, "pytorch-pytorch"]], "Flux flux": [[855, "flux-flux"]], "JAX jax": [[855, "jax-jax"]], "TensorFlow 2 tensorflow-2": [[855, "tensorflow-2-tensorflow-2"]], "DEX Language dex-language": [[855, "dex-language-dex-language"]], "Ivy-Lint: Ivy\u2019s Custom Code Formatters": [[828, "ivy-lint-ivy-s-custom-code-formatters"]], "Overview": [[828, "overview"], [824, "overview"]], "Existing Formatters": [[828, "existing-formatters"]], "FunctionOrderingFormatter": [[828, "functionorderingformatter"]], "How the Formatter Works:": [[828, "how-the-formatter-works"]], "Integration and Usage": [[828, "integration-and-usage"]], "Contribution": [[828, "contribution"]], "Round Up": [[828, "round-up"], [17, "Round-Up"], [28, "Round-Up"], [33, "Round-Up"], [30, "Round-Up"], [31, "Round-Up"], [40, "Round-Up"], [21, "Round-Up"], [19, "Round-Up"], [11, "Round-Up"], [32, "Round-Up"], [29, "Round-Up"], [23, "Round-Up"], [22, "Round-Up"], [20, "Round-Up"], [18, "Round-Up"], [13, "Round-Up"], [27, "Round-Up"]], "Superset Behaviour": [[832, "superset-behaviour"]], "Extending the Standard": [[832, "extending-the-standard"]], "What is the Superset?": [[832, "what-is-the-superset"]], "A Non-Duplicate Superset": [[832, "a-non-duplicate-superset"]], "What is not the Superset?": [[832, "what-is-not-the-superset"]], "Balancing Generalization with Efficiency": [[832, "balancing-generalization-with-efficiency"]], "More Examples": [[832, "more-examples"]], "Maximizing Usage of Native Functionality": [[832, "maximizing-usage-of-native-functionality"]], "tf.Graph": [[856, "tf-graph"]], "Jaxpr": [[856, "jaxpr"]], "torch.jit": [[856, "torch-jit"]], "torch.fx": [[856, "torch-fx"]], "ivy.trace_graph()": [[848, "ivy-trace-graph"]], "Tracer API": [[848, "tracer-api"]], "Using the tracer": [[848, "using-the-tracer"]], "Eager vs lazy Compilation": [[848, "eager-vs-lazy-compilation"]], "Array caching": [[848, "array-caching"]], "Generators": [[848, "generators"]], "Stateful": [[848, "stateful"]], "Motivation": [[843, "motivation"]], "Related Work": [[851, "related-work"]], "FAQ": [[840, "faq"]], "Maintaining Backend Versions": [[840, "maintaining-backend-versions"]], "Dynamic Sizes": [[840, "dynamic-sizes"]], "Type and Shape Checking": [[840, "type-and-shape-checking"]], "GPU handling": [[840, "gpu-handling"]], "Model Deployment": [[840, "model-deployment"]], "Dynamic Control Flow": [[840, "dynamic-control-flow"]], "Auto-Differentiation": [[840, "auto-differentiation"]], "Replicas, and Data vs Model Parallelism": [[840, "replicas-and-data-vs-model-parallelism"]], "Support for Functions": [[840, "support-for-functions"]], "Alternative Data Structures": [[840, "alternative-data-structures"]], "Custom Operations": [[840, "custom-operations"]], "The Pipeline": [[840, "the-pipeline"]], "State": [[840, "state"]], "Ivy as a Transpiler": [[839, "ivy-as-a-transpiler"], [26, "Ivy-as-a-Transpiler"], [27, "Ivy-as-a-Transpiler"]], "Frontend Functional APIs \ud83d\udea7": [[839, "frontend-functional-apis"]], "Role of the Tracer \ud83d\udea7": [[839, "role-of-the-tracer"]], "Converting Network Models \ud83d\udea7": [[839, "converting-network-models"]], "Array API Standard": [[852, "id1"]], "ML Explosion": [[844, "ml-explosion"]], "Building Blocks": [[834, "building-blocks"]], "Backend Functional APIs \u2705": [[834, "backend-functional-apis"]], "Ivy Functional API \u2705": [[834, "ivy-functional-api"]], "Backend Handler \u2705": [[834, "backend-handler"]], "Tracer \ud83d\udea7": [[834, "tracer"]], "Tr tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "logspace": [[133, "logspace"]], "Nested array": [[100, "nested-array"]], "while_loop": [[120, "while-loop"]], "softplus": [[113, "softplus"]], "sigmoid": [[111, "sigmoid"]], "meshgrid": [[134, "meshgrid"]], "one_hot": [[136, "one-hot"]], "full_like": [[131, "full-like"]], "native_array": [[135, "native-array"]], "from_dlpack": [[128, "from-dlpack"]], "asarray": [[123, "asarray"]], "Tucker tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "Tt tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "Parafac2 tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "try_except": [[119, "try-except"]], "empty_like": [[126, "empty-like"]], "empty": [[125, "empty"]], "for_loop": [[117, "for-loop"]], "Array": [[97, "array"]], "copy_array": [[124, "copy-array"]], "eye": [[127, "eye"]], "mish": [[109, "mish"]], "array": [[122, "array"]], "ones": [[137, "ones"]], "full": [[130, "full"]], "if_else": [[118, "if-else"]], "log_softmax": [[108, "log-softmax"]], "Cp tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "gelu": [[105, "gelu"]], "Functions": [[104, "functions"]], "cmp_isnot": [[116, "cmp-isnot"]], "cmp_is": [[115, "cmp-is"]], "leaky_relu": [[107, "leaky-relu"]], "softmax": [[112, "softmax"]], "relu": [[110, "relu"]], "frombuffer": [[129, "frombuffer"]], "softsign": [[114, "softsign"]], "arange": [[121, "arange"]], "Container": [[98, "container"]], "Elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"], [619, "elementwise"], [365, "elementwise"], [51, "module-ivy.data_classes.array.elementwise"], [74, "module-ivy.data_classes.container.elementwise"]], "Data classes": [[103, "data-classes"]], "hardswish": [[106, "hardswish"]], "Base": [[101, "module-ivy.data_classes.nested_array.base"], [69, "module-ivy.data_classes.container.base"], [91, "module-ivy.data_classes.factorized_tensor.base"]], "linspace": [[132, "linspace"]], "Factorized tensor": [[99, "factorized-tensor"]], "Binaries": [[790, "module-ivy.utils.binaries"]], "Error Handling": [[802, "error-handling"]], "Function Arguments": [[821, "function-arguments"]], "Positional and Keyword Arguments": [[821, "positional-and-keyword-arguments"]], "Input Arrays": [[821, "input-arrays"]], "out Argument": [[821, "out-argument"]], "dtype and device arguments": [[821, "dtype-and-device-arguments"]], "Numbers in Operator Functions": [[821, "numbers-in-operator-functions"]], "Integer Sequences": [[821, "integer-sequences"]], "Nestable Functions": [[821, "nestable-functions"], [822, "nestable-functions"], [812, "nestable-functions"]], "Formatting": [[820, "formatting"]], "Lint Checks": [[820, "lint-checks"], [820, "id2"]], "Setup Formatting Locally": [[820, "setup-formatting-locally"]], "Pre-commit": [[820, "pre-commit"]], "VS Code": [[820, "vs-code"]], "PyCharm": [[820, "pycharm"], [805, "pycharm"]], "Common Issues with Pre-Commit": [[820, "common-issues-with-pre-commit"]], "Continuous Integration": [[820, "continuous-integration"], [813, "continuous-integration"]], "Lint Formatting": [[820, "lint-formatting"]], "Status": [[799, "status"]], "Unified AI": [[799, "unified-ai"]], "Getting started": [[799, "getting-started"]], "Installing ivy": [[799, "installing-ivy"]], "Using Ivy": [[799, "using-ivy"]], "Documentation": [[799, "documentation"]], "Diving deeper": [[799, "diving-deeper"]], "When should I use Ivy as a transpiler?": [[799, "when-should-i-use-ivy-as-a-transpiler"]], "Contributing": [[799, "contributing"], [800, "contributing"]], "Community": [[799, "community"]], "Citation": [[799, "citation"]], "Exception Handling": [[818, "exception-handling"], [823, "exception-handling"]], "Ivy Exception Class": [[818, "ivy-exception-class"]], "Configurable Mode for Stack Trace": [[818, "configurable-mode-for-stack-trace"]], "Ivy func_wrapper Pruning": [[818, "ivy-func-wrapper-pruning"]], "@handle_exceptions Decorator": [[818, "handle-exceptions-decorator"]], "Consistency in Errors": [[818, "consistency-in-errors"]], "Assertion Function": [[818, "assertion-function"]], "Handler": [[788, "module-ivy.utils.backend.handler"]], "Gradients": [[824, "gradients"], [622, "gradients"], [367, "gradients"], [54, "module-ivy.data_classes.array.gradients"], [77, "module-ivy.data_classes.container.gradients"]], "Example Usage of the Gradient API": [[824, "example-usage-of-the-gradient-api"]], "The ivy.execute_with_gradients() function signature": [[824, "the-ivy-execute-with-gradients-function-signature"]], "An example using ivy.execute_with_gradients()": [[824, "an-example-using-ivy-execute-with-gradients"]], "Custom Gradient Functions": [[824, "custom-gradient-functions"]], "Design of the Gradient API": [[824, "design-of-the-gradient-api"]], "Our policy on gradients": [[824, "our-policy-on-gradients"]], "Gradient APIs of frameworks": [[824, "gradient-apis-of-frameworks"]], "General Structure of Backend-specific implementations": [[824, "general-structure-of-backend-specific-implementations"]], "Framework-specific Considerations": [[824, "framework-specific-considerations"]], "Ivy Frontends": [[826, "ivy-frontends"]], "Introduction": [[826, "introduction"], [827, "introduction"], [41, "Introduction"]], "The Frontend Basics": [[826, "the-frontend-basics"]], "Writing Frontend Functions": [[826, "writing-frontend-functions"]], "Short Frontend Implementations": [[826, "short-frontend-implementations"]], "Unused Arguments": [[826, "unused-arguments"]], "Supported Data Types and Devices": [[826, "supported-data-types-and-devices"]], "Classes and Instance Methods": [[826, "classes-and-instance-methods"]], "Frontend Data Type Promotion Rules": [[826, "frontend-data-type-promotion-rules"]], "NumPy Special Argument - Casting": [[826, "numpy-special-argument-casting"]], "Frontends Duplicate Policy": [[826, "frontends-duplicate-policy"]], "Verbosity": [[798, "module-ivy.utils.verbosity"]], "Profiler": [[797, "module-ivy.utils.profiler"]], "Ivy Frontend Tests": [[827, "ivy-frontend-tests"]], "Frontend Test Examples": [[827, "frontend-test-examples"]], "ivy.tan()": [[827, "ivy-tan"]], "ivy.full()": [[827, "ivy-full"]], "Testing Without Using Tests Values": [[827, "testing-without-using-tests-values"]], "Alias functions": [[827, "alias-functions"]], "Frontend Instance Method Tests": [[827, "frontend-instance-method-tests"]], "Frontend Instance Method Test Examples": [[827, "frontend-instance-method-test-examples"]], "ivy.add()": [[827, "ivy-add"]], "Hypothesis Helpers": [[827, "hypothesis-helpers"]], "Frontend Framework Testing Configuration": [[827, "frontend-framework-testing-configuration"]], "Array API Tests": [[808, "array-api-tests"], [813, "array-api-tests"]], "Running the Tests": [[808, "running-the-tests"]], "Using Terminal": [[808, "using-terminal"]], "Using the IDE": [[808, "using-the-ide"]], "Regenerating Test Failures": [[808, "regenerating-test-failures"]], "Test Skipping": [[808, "test-skipping"]], "Backend": [[786, "backend"]], "The Basics": [[806, "the-basics"]], "Getting Help": [[806, "getting-help"]], "ToDo List Issues": [[806, "todo-list-issues"]], "Managing Your Fork": [[806, "managing-your-fork"]], "Who To Ask": [[806, "who-to-ask"]], "With Command Line:": [[806, "with-command-line"]], "With Browser:": [[806, "with-browser"]], "Pull Requests": [[806, "pull-requests"]], "Small Commits Often": [[806, "small-commits-often"]], "Interactive Ivy Docker Container": [[806, "interactive-ivy-docker-container"]], "Running Tests Locally": [[806, "running-tests-locally"]], "With Docker": [[806, "with-docker"]], "Getting the most out of IDE": [[806, "getting-the-most-out-of-ide"]], "with PyCharm": [[806, "with-pycharm"]], "Devices": [[815, "devices"]], "Device Module": [[815, "device-module"]], "Arguments in other Functions": [[815, "arguments-in-other-functions"], [814, "arguments-in-other-functions"]], "Device handling": [[815, "device-handling"]], "Ast helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "Commit (Push/PR) Triggered Testing": [[813, "commit-push-pr-triggered-testing"]], "Implementation": [[813, "implementation"]], "A Top-Down View": [[813, "a-top-down-view"]], "Storing (and retrieving) the Mapping": [[813, "storing-and-retrieving-the-mapping"]], "Cloning and Pushing to the Repository": [[813, "cloning-and-pushing-to-the-repository"]], "Implementational Nitty Gritties": [[813, "implementational-nitty-gritties"]], "Storage Space (unifyai/Mapping)": [[813, "storage-space-unifyai-mapping"]], "Determine Test Coverage Workflow": [[813, "determine-test-coverage-workflow"]], "Multiple Runners": [[813, "multiple-runners"]], "Race Condition": [[813, "race-condition"]], "Periodic Testing": [[813, "periodic-testing"]], "Manually Dispatched Workflows": [[813, "manually-dispatched-workflows"]], "CI Pipeline \u27a1\ufe0f": [[813, "ci-pipeline"]], "Push": [[813, "push"]], "Pull Request": [[813, "pull-request"]], "Dashboard": [[813, "dashboard"]], "Function Types": [[822, "function-types"]], "Primary Functions": [[822, "primary-functions"]], "Compositional Functions": [[822, "compositional-functions"]], "Mixed Functions": [[822, "mixed-functions"]], "Partial Mixed Functions": [[822, "partial-mixed-functions"]], "Standalone Functions": [[822, "standalone-functions"]], "Convenience Functions": [[822, "convenience-functions"]], "Assertions": [[785, "module-ivy.utils.assertions"], [758, "module-ivy_tests.test_ivy.helpers.assertions"]], "Building the Docs": [[801, "building-the-docs"]], "Building the Docs using Docker": [[801, "building-the-docs-using-docker"]], "Using convenience script": [[801, "using-convenience-script"]], "Using existing image on Docker Hub": [[801, "using-existing-image-on-docker-hub"]], "Building the image locally": [[801, "building-the-image-locally"]], "Building the Docs without Docker": [[801, "building-the-docs-without-docker"]], "Sub backend handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "Setting Up": [[805, "setting-up"], [819, "setting-up"]], "Forking and cloning the repo": [[805, "forking-and-cloning-the-repo"]], "Pre-Commit": [[805, "pre-commit"]], "Virtual environments - No Docker": [[805, "virtual-environments-no-docker"]], "Using miniconda": [[805, "using-miniconda"]], "Using venv": [[805, "using-venv"]], "Docker Interpreter with PyCharm": [[805, "docker-interpreter-with-pycharm"]], "Windows": [[805, "windows"], [805, "id6"]], "MacOS": [[805, "macos"]], "Ubuntu": [[805, "ubuntu"], [805, "id8"]], "Setting Up Testing in PyCharm": [[805, "setting-up-testing-in-pycharm"]], "More Detailed Hypothesis Logs in PyCharm": [[805, "more-detailed-hypothesis-logs-in-pycharm"]], "Setting up for Free": [[805, "setting-up-for-free"]], "WSL": [[805, "wsl"]], "GitHub Codespaces": [[805, "github-codespaces"]], "The Binaries": [[805, "the-binaries"]], "Arrays": [[809, "arrays"]], "Native Array": [[809, "native-array"]], "Array Handling": [[809, "array-handling"]], "Integrating custom classes with Ivy": [[809, "integrating-custom-classes-with-ivy"]], "Containers": [[812, "containers"]], "Container Instance Methods": [[812, "container-instance-methods"]], "API Instance Methods": [[812, "api-instance-methods"]], "API Special Methods": [[812, "api-special-methods"]], "Einsum path helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "Data Types": [[814, "data-types"]], "Data Type Module": [[814, "data-type-module"]], "Data Type Promotion": [[814, "data-type-promotion"]], "Precise Mode": [[814, "precise-mode"]], "Precise Promotion Table": [[814, "precise-promotion-table"]], "Non-Precise Promotion Table": [[814, "non-precise-promotion-table"]], "Supported and Unsupported Data Types": [[814, "supported-and-unsupported-data-types"]], "Supported and Unsupported Data Types Attributes": [[814, "supported-and-unsupported-data-types-attributes"]], "Special Case": [[814, "special-case"]], "Backend Data Type Bugs": [[814, "backend-data-type-bugs"]], "Data Type Casting Modes": [[814, "data-type-casting-modes"]], "Superset Data Type Support": [[814, "superset-data-type-support"]], "Einsum parser": [[792, "module-ivy.utils.einsum_parser"]], "Backend Setting": [[810, "backend-setting"]], "Dynamic Backend Setting": [[810, "dynamic-backend-setting"]], "Backend and Frontend Version Support": [[810, "backend-and-frontend-version-support"]], "Open Tasks": [[804, "open-tasks"]], "Fixing Failing Tests": [[804, "fixing-failing-tests"]], "How to Contribute": [[804, "how-to-contribute"]], "Frontend APIs": [[804, "frontend-apis"]], "Where to place a frontend function": [[804, "where-to-place-a-frontend-function"]], "Frontend checklist": [[804, "frontend-checklist"]], "Function Formatting": [[804, "function-formatting"]], "Formatting checklist": [[804, "formatting-checklist"]], "Ivy Experimental API": [[804, "ivy-experimental-api"]], "Extending the Ivy API": [[804, "extending-the-ivy-api"]], "Where to place a backend function": [[804, "where-to-place-a-backend-function"]], "Creating an Issue on Ivy\u2019s GitHub using a Template": [[804, "creating-an-issue-on-ivy-s-github-using-a-template"]], "Deep Dive": [[807, "deep-dive"]], "Dynamic import": [[791, "module-ivy.utils.dynamic_import"]], "Helpful Resources": [[803, "helpful-resources"]], "Building the Docs Pipeline": [[811, "building-the-docs-pipeline"]], "How the doc-builder is being run": [[811, "how-the-doc-builder-is-being-run"]], "The convenience script": [[811, "the-convenience-script"]], "Options": [[811, "options"]], "The Docker image": [[811, "the-docker-image"]], "How Ivy\u2019s docs is structured": [[811, "how-ivy-s-docs-is-structured"]], "index.rst": [[811, "index-rst"]], "partial_conf.py": [[811, "partial-conf-py"]], "prebuild.sh": [[811, "prebuild-sh"]], "Custom Extensions": [[811, "custom-extensions"]], "custom_autosummary": [[811, "custom-autosummary"]], ":hide-table:": [[811, "hide-table"]], "discussion_linker": [[811, "discussion-linker"]], "skippable_function": [[811, "skippable-function"]], "ivy_data": [[811, "ivy-data"]], "Docstrings": [[817, "docstrings"]], "Logging": [[796, "module-ivy.utils.logging"]], "Fix Failing Tests:": [[819, "fix-failing-tests"]], "Prerequirement:": [[819, "prerequirement"]], "How to run tests": [[819, "how-to-run-tests"]], "Common Errors": [[819, "common-errors"]], "Where to ask for Help": [[819, "where-to-ask-for-help"]], "Norms": [[782, "module-ivy.stateful.norms"], [629, "norms"], [374, "norms"], [60, "module-ivy.data_classes.array.norms"], [83, "module-ivy.data_classes.container.norms"]], "Inspection": [[795, "module-ivy.utils.inspection"]], "Docstring Examples": [[816, "docstring-examples"]], "ivy.tan": [[816, "ivy-tan"]], "ivy.roll": [[816, "ivy-roll"]], "ivy.add": [[816, "ivy-add"]], "Sequential": [[784, "module-ivy.stateful.sequential"]], "Function Wrapping": [[823, "function-wrapping"]], "Decorator order": [[823, "decorator-order"]], "Conversion Wrappers": [[823, "conversion-wrappers"]], "Inference Wrappers": [[823, "inference-wrappers"]], "Out Argument Support": [[823, "out-argument-support"]], "Nestable Support": [[823, "nestable-support"]], "Partial Mixed Function Support": [[823, "partial-mixed-function-support"]], "Shape Conversion": [[823, "shape-conversion"]], "View Handling": [[823, "view-handling"]], "Miscellaneous Wrappers": [[823, "miscellaneous-wrappers"]], "Exceptions": [[794, "module-ivy.utils.exceptions"]], "Inplace Updates": [[825, "inplace-updates"]], "out argument": [[825, "out-argument"]], "copy argument": [[825, "copy-argument"]], "Views": [[825, "views"]], "insert_into_nest_at_index": [[709, "insert-into-nest-at-index"]], "prune_empty": [[719, "prune-empty"]], "fomaml_step": [[702, "fomaml-step"]], "swapaxes": [[698, "swapaxes"]], "prune_nest_at_indices": [[721, "prune-nest-at-indices"]], "index_nest": [[708, "index-nest"]], "randint": [[726, "randint"]], "maml_step": [[703, "maml-step"]], "flip": [[690, "flip"]], "nested_map": [[717, "nested-map"]], "unstack": [[700, "unstack"]], "tile": [[699, "tile"]], "nested_any": [[715, "nested-any"]], "nested_multi_map": [[718, "nested-multi-map"]], "layer_norm": [[724, "layer-norm"]], "zero_pad": [[701, "zero-pad"]], "random_normal": [[727, "random-normal"]], "insert_into_nest_at_indices": [[710, "insert-into-nest-at-indices"]], "roll": [[694, "roll"]], "duplicate_array_index_chains": [[707, "duplicate-array-index-chains"]], "multi_index_nest": [[714, "multi-index-nest"]], "set_nest_at_indices": [[723, "set-nest-at-indices"]], "argmin": [[732, "argmin"]], "map_nest_at_index": [[712, "map-nest-at-index"]], "reshape": [[693, "reshape"]], "nonzero": [[734, "nonzero"]], "argmax": [[731, "argmax"]], "reptile_step": [[704, "reptile-step"]], "stack": [[697, "stack"]], "multinomial": [[725, "multinomial"]], "where": [[735, "where"]], "nested_argwhere": [[716, "nested-argwhere"]], "permute_dims": [[691, "permute-dims"]], "squeeze": [[696, "squeeze"]], "map": [[711, "map"]], "all_nested_indices": [[705, "all-nested-indices"]], "prune_nest_at_index": [[720, "prune-nest-at-index"]], "seed": [[729, "seed"]], "split": [[695, "split"]], "map_nest_at_indices": [[713, "map-nest-at-indices"]], "repeat": [[692, "repeat"]], "argwhere": [[733, "argwhere"]], "set_nest_at_index": [[722, "set-nest-at-index"]], "random_uniform": [[728, "random-uniform"]], "shuffle": [[730, "shuffle"]], "copy_nest": [[706, "copy-nest"]], "Multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "save": [[757, "save"]], "all": [[754, "all"]], "Available frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "mean": [[748, "mean"]], "Module": [[781, "module-ivy.stateful.module"]], "einsum": [[746, "einsum"]], "Utils": [[773, "utils"]], "Layers": [[779, "module-ivy.stateful.layers"], [623, "layers"], [368, "layers"], [79, "module-ivy.data_classes.container.layers"], [56, "module-ivy.data_classes.array.layers"]], "unique_counts": [[737, "unique-counts"]], "Data-dependent output shape": [[737, null], [738, null], [739, null], [736, null], [632, null], [632, null], [632, null], [632, null]], "sum": [[752, "sum"]], "min": [[749, "min"]], "Helpers": [[777, "module-ivy.stateful.helpers"]], "Number helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "Structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "Testing": [[774, "testing"], [40, "Testing"]], "var": [[753, "var"]], "Activations": [[775, "module-ivy.stateful.activations"], [613, "activations"], [360, "activations"], [68, "module-ivy.data_classes.container.activations"], [46, "module-ivy.data_classes.array.activations"]], "Parameter": [[775, "parameter"], [775, "id1"], [566, "parameter"], [567, "parameter"], [575, "parameter"], [573, "parameter"], [576, "parameter"], [572, "parameter"], [618, "parameter"], [621, "parameter"], [621, "id1"], [621, "id2"], [621, "id3"], [621, "id4"], [621, "id5"], [205, "parameter"]], "std": [[751, "std"]], "Converters": [[776, "module-ivy.stateful.converters"]], "cumprod": [[744, "cumprod"]], "Globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "unique_inverse": [[738, "unique-inverse"]], "cumsum": [[745, "cumsum"]], "sort": [[743, "sort"]], "Array helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "Function testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "Framework classes": [[772, "framework-classes"]], "Pipeline helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "General helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "max": [[747, "max"]], "Losses": [[780, "module-ivy.stateful.losses"], [625, "losses"], [370, "losses"], [81, "module-ivy.data_classes.container.losses"], [58, "module-ivy.data_classes.array.losses"]], "Testing helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "Hypothesis helpers": [[762, "hypothesis-helpers"]], "load": [[756, "load"]], "Dtype helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "msort": [[741, "msort"]], "argsort": [[740, "argsort"]], "prod": [[750, "prod"]], "unique_values": [[739, "unique-values"]], "Test parameter flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "any": [[755, "any"]], "unique_all": [[736, "unique-all"]], "searchsorted": [[742, "searchsorted"]], "depthwise_conv2d": [[645, "depthwise-conv2d"]], "matmul": [[664, "matmul"]], "sparse_cross_entropy": [[685, "sparse-cross-entropy"]], "matrix_transpose": [[668, "matrix-transpose"]], "vecdot": [[680, "vecdot"]], "cross_entropy": [[684, "cross-entropy"]], "inner": [[661, "inner"]], "diagonal": [[657, "diagonal"]], "eigvalsh": [[660, "eigvalsh"]], "matrix_norm": [[665, "matrix-norm"]], "concat": [[687, "concat"]], "nms": [[650, "nms"]], "pinv": [[670, "pinv"]], "matrix_power": [[666, "matrix-power"]], "vander": [[679, "vander"]], "svd": [[674, "svd"]], "det": [[655, "det"]], "tensorsolve": [[677, "tensorsolve"]], "lstm_update": [[648, "lstm-update"]], "inv": [[662, "inv"]], "slogdet": [[672, "slogdet"]], "clip": [[686, "clip"]], "vector_norm": [[681, "vector-norm"]], "tensordot": [[676, "tensordot"]], "conv_general_transpose": [[644, "conv-general-transpose"]], "vector_to_skew_symmetric_matrix": [[682, "vector-to-skew-symmetric-matrix"]], "binary_cross_entropy": [[683, "binary-cross-entropy"]], "diag": [[656, "diag"]], "scaled_dot_product_attention": [[652, "scaled-dot-product-attention"]], "outer": [[669, "outer"]], "solve": [[673, "solve"]], "cholesky": [[653, "cholesky"]], "matrix_rank": [[667, "matrix-rank"]], "trace": [[678, "trace"]], "dropout": [[646, "dropout"]], "lu_factor": [[663, "lu-factor"]], "multi_head_attention": [[649, "multi-head-attention"]], "qr": [[671, "qr"]], "eigh": [[659, "eigh"]], "roi_align": [[651, "roi-align"]], "constant_pad": [[688, "constant-pad"]], "linear": [[647, "linear"]], "cross": [[654, "cross"]], "expand_dims": [[689, "expand-dims"]], "svdvals": [[675, "svdvals"]], "eig": [[658, "eig"], [421, "eig"]], "is_array": [[552, "is-array"]], "unset_inplace_mode": [[591, "unset-inplace-mode"]], "unset_queue_timeout": [[596, "unset-queue-timeout"]], "is_ivy_container": [[554, "is-ivy-container"]], "is_ivy_nested_array": [[555, "is-ivy-nested-array"]], "set_array_mode": [[566, "set-array-mode"]], "is_ivy_array": [[553, "is-ivy-array"]], "print_all_arrays_in_memory": [[563, "print-all-arrays-in-memory"]], "set_min_denominator": [[571, "set-min-denominator"]], "unset_min_denominator": [[593, "unset-min-denominator"]], "set_inplace_mode": [[568, "set-inplace-mode"]], "to_ivy_shape": [[583, "to-ivy-shape"]], "scatter_flat": [[564, "scatter-flat"]], "isin": [[557, "isin"]], "try_else_none": [[588, "try-else-none"]], "set_exception_trace_mode": [[567, "set-exception-trace-mode"]], "to_numpy": [[586, "to-numpy"]], "stable_pow": [[580, "stable-pow"]], "set_shape_array_mode": [[575, "set-shape-array-mode"]], "set_precise_mode": [[573, "set-precise-mode"]], "to_native_shape": [[585, "to-native-shape"]], "unset_nestable_mode": [[594, "unset-nestable-mode"]], "stable_divide": [[579, "stable-divide"]], "unset_exception_trace_mode": [[590, "unset-exception-trace-mode"]], "set_tmp_dir": [[577, "set-tmp-dir"]], "multiprocessing": [[561, "multiprocessing"]], "match_kwargs": [[560, "match-kwargs"]], "scatter_nd": [[565, "scatter-nd"]], "to_scalar": [[587, "to-scalar"]], "strides": [[581, "strides"]], "unset_min_base": [[592, "unset-min-base"]], "shape": [[578, "shape"]], "unset_shape_array_mode": [[597, "unset-shape-array-mode"]], "supports_inplace_updates": [[582, "supports-inplace-updates"]], "isscalar": [[558, "isscalar"]], "num_arrays_in_memory": [[562, "num-arrays-in-memory"]], "itemsize": [[559, "itemsize"]], "is_native_array": [[556, "is-native-array"]], "unset_precise_mode": [[595, "unset-precise-mode"]], "set_min_base": [[570, "set-min-base"]], "set_show_func_wrapper_trace_mode": [[576, "set-show-func-wrapper-trace-mode"]], "set_queue_timeout": [[574, "set-queue-timeout"]], "unset_array_mode": [[589, "unset-array-mode"]], "set_item": [[569, "set-item"]], "to_list": [[584, "to-list"]], "set_nestable_mode": [[572, "set-nestable-mode"]], "inplace_variables_supported": [[551, "inplace-variables-supported"]], "fourier_encode": [[537, "fourier-encode"]], "cache_fn": [[527, "cache-fn"]], "bincount": [[508, "bincount"]], "has_nans": [[546, "has-nans"]], "inplace_decrement": [[548, "inplace-decrement"]], "get_referrers_recursive": [[545, "get-referrers-recursive"]], "function_unsupported_devices_and_dtypes": [[539, "function-unsupported-devices-and-dtypes"]], "einops_rearrange": [[533, "einops-rearrange"]], "all_equal": [[522, "all-equal"]], "default": [[532, "default"]], "container_types": [[530, "container-types"]], "native_sparse_array_to_indices_values_and_shape": [[507, "native-sparse-array-to-indices-values-and-shape"]], "clip_vector_norm": [[529, "clip-vector-norm"]], "get_all_arrays_in_memory": [[542, "get-all-arrays-in-memory"]], "arg_names": [[524, "arg-names"]], "histogram": [[513, "histogram"]], "gather_nd": [[541, "gather-nd"]], "nanmean": [[516, "nanmean"]], "optional_get_element": [[521, "optional-get-element"]], "cummin": [[512, "cummin"]], "assert_supports_inplace": [[526, "assert-supports-inplace"]], "quantile": [[520, "quantile"]], "inplace_increment": [[549, "inplace-increment"]], "corrcoef": [[509, "corrcoef"]], "arg_info": [[523, "arg-info"]], "einops_repeat": [[535, "einops-repeat"]], "get_num_dims": [[544, "get-num-dims"]], "nanmedian": [[517, "nanmedian"]], "function_supported_devices_and_dtypes": [[538, "function-supported-devices-and-dtypes"]], "inplace_update": [[550, "inplace-update"]], "inplace_arrays_supported": [[547, "inplace-arrays-supported"]], "exists": [[536, "exists"]], "cov": [[510, "cov"]], "clip_matrix_norm": [[528, "clip-matrix-norm"]], "native_sparse_array": [[506, "native-sparse-array"]], "nanmin": [[518, "nanmin"]], "current_backend_str": [[531, "current-backend-str"]], "cummax": [[511, "cummax"]], "einops_reduce": [[534, "einops-reduce"]], "array_equal": [[525, "array-equal"]], "nanprod": [[519, "nanprod"]], "median": [[515, "median"]], "gather": [[540, "gather"]], "igamma": [[514, "igamma"]], "get_item": [[543, "get-item"]], "is_native_sparse_array": [[505, "is-native-sparse-array"]], "dirichlet": [[498, "dirichlet"]], "put_along_axis": [[478, "put-along-axis"]], "vsplit": [[487, "vsplit"]], "fill_diagonal": [[462, "fill-diagonal"]], "dstack": [[460, "dstack"]], "fold": [[466, "fold"]], "trim_zeros": [[484, "trim-zeros"]], "vstack": [[488, "vstack"]], "l2_normalize": [[493, "l2-normalize"]], "poisson": [[500, "poisson"]], "group_norm": [[490, "group-norm"]], "unfold": [[485, "unfold"]], "moveaxis": [[472, "moveaxis"]], "expand": [[461, "expand"]], "gamma": [[499, "gamma"]], "unravel_index": [[501, "unravel-index"]], "partial_fold": [[474, "partial-fold"]], "is_ivy_sparse_array": [[504, "is-ivy-sparse-array"]], "fliplr": [[464, "fliplr"]], "take_along_axis": [[482, "take-along-axis"]], "pad": [[473, "pad"]], "local_response_norm": [[494, "local-response-norm"]], "hsplit": [[468, "hsplit"]], "rot90": [[479, "rot90"]], "partial_unfold": [[476, "partial-unfold"]], "instance_norm": [[491, "instance-norm"]], "flatten": [[463, "flatten"]], "i0": [[470, "i0"]], "heaviside": [[467, "heaviside"]], "matricize": [[471, "matricize"]], "top_k": [[483, "top-k"]], "lp_normalize": [[495, "lp-normalize"]], "partial_tensor_to_vec": [[475, "partial-tensor-to-vec"]], "unique_consecutive": [[486, "unique-consecutive"]], "flipud": [[465, "flipud"]], "take": [[481, "take"]], "hstack": [[469, "hstack"]], "l1_normalize": [[492, "l1-normalize"]], "beta": [[497, "beta"]], "invert_permutation": [[502, "invert-permutation"]], "batch_norm": [[489, "batch-norm"]], "partial_vec_to_tensor": [[477, "partial-vec-to-tensor"]], "lexsort": [[503, "lexsort"]], "bernoulli": [[496, "bernoulli"]], "soft_thresholding": [[480, "soft-thresholding"]], "conv3d_transpose": [[642, "conv3d-transpose"]], "value_is_nan": [[600, "value-is-nan"]], "adam_step": [[602, "adam-step"]], "Data type": [[617, "data-type"], [363, "module-ivy.functional.ivy.experimental.data_type"], [72, "module-ivy.data_classes.container.data_type"], [49, "module-ivy.data_classes.array.data_type"]], "Nest": [[628, "nest"], [373, "module-ivy.functional.ivy.experimental.nest"]], "conv_general_dilated": [[643, "conv-general-dilated"]], "Sorting": [[633, "sorting"], [378, "sorting"], [87, "module-ivy.data_classes.container.sorting"], [64, "module-ivy.data_classes.array.sorting"]], "Utility": [[635, "utility"], [381, "utility"], [66, "module-ivy.data_classes.array.utility"], [89, "module-ivy.data_classes.container.utility"]], "conv2d_transpose": [[640, "conv2d-transpose"]], "Experimental": [[620, "experimental"], [52, "module-ivy.data_classes.array.experimental"], [75, "module-ivy.data_classes.container.experimental"]], "adam_update": [[603, "adam-update"]], "gradient_descent_update": [[606, "gradient-descent-update"]], "Device": [[618, "device"], [364, "module-ivy.functional.ivy.experimental.device"], [73, "module-ivy.data_classes.container.device"], [50, "module-ivy.data_classes.array.device"]], "lars_update": [[609, "lars-update"]], "Manipulation": [[626, "manipulation"], [371, "manipulation"], [82, "module-ivy.data_classes.container.manipulation"], [59, "module-ivy.data_classes.array.manipulation"]], "unset_tmp_dir": [[599, "unset-tmp-dir"]], "jac": [[607, "jac"]], "conv": [[636, "conv"]], "Control flow ops": [[615, "control-flow-ops"]], "Constants": [[614, "module-ivy.functional.ivy.constants"], [361, "module-ivy.functional.ivy.experimental.constants"]], "optimizer_update": [[610, "optimizer-update"]], "conv2d": [[639, "conv2d"]], "Random": [[630, "random"], [375, "random"], [84, "module-ivy.data_classes.container.random"], [61, "module-ivy.data_classes.array.random"]], "Creation": [[616, "creation"], [362, "creation"], [48, "module-ivy.data_classes.array.creation"], [71, "module-ivy.data_classes.container.creation"]], "vmap": [[601, "vmap"]], "Linear algebra": [[624, "linear-algebra"], [369, "linear-algebra"], [80, "module-ivy.data_classes.container.linear_algebra"], [57, "module-ivy.data_classes.array.linear_algebra"]], "Searching": [[631, "searching"], [376, "searching"], [62, "module-ivy.data_classes.array.searching"], [85, "module-ivy.data_classes.container.searching"]], "Statistical": [[634, "statistical"], [380, "statistical"], [88, "module-ivy.data_classes.container.statistical"], [65, "module-ivy.data_classes.array.statistical"]], "conv1d": [[637, "conv1d"]], "stop_gradient": [[611, "stop-gradient"]], "Meta": [[627, "meta"], [372, "module-ivy.functional.ivy.experimental.meta"]], "conv1d_transpose": [[638, "conv1d-transpose"]], "Set": [[632, "set"], [377, "module-ivy.functional.ivy.experimental.set"], [63, "module-ivy.data_classes.array.set"], [86, "module-ivy.data_classes.container.set"]], "conv3d": [[641, "conv3d"]], "unset_show_func_wrapper_trace_mode": [[598, "unset-show-func-wrapper-trace-mode"]], "execute_with_gradients": [[604, "execute-with-gradients"]], "General": [[621, "general"], [366, "general"], [53, "module-ivy.data_classes.array.general"], [76, "module-ivy.data_classes.container.general"]], "lamb_update": [[608, "lamb-update"]], "grad": [[605, "grad"]], "value_and_grad": [[612, "value-and-grad"]], "eigvals": [[423, "eigvals"]], "concat_from_sequence": [[458, "concat-from-sequence"]], "sliding_window": [[414, "sliding-window"]], "kronecker": [[429, "kronecker"]], "solve_triangular": [[436, "solve-triangular"]], "multi_mode_dot": [[434, "multi-mode-dot"]], "tensor_train": [[438, "tensor-train"]], "tt_matrix_to_tensor": [[440, "tt-matrix-to-tensor"]], "kl_div": [[443, "kl-div"]], "log_poisson_loss": [[445, "log-poisson-loss"]], "atleast_3d": [[453, "atleast-3d"]], "l1_loss": [[444, "l1-loss"]], "truncated_svd": [[439, "truncated-svd"]], "smooth_l1_loss": [[447, "smooth-l1-loss"]], "associative_scan": [[450, "associative-scan"]], "diagflat": [[419, "diagflat"]], "matrix_exp": [[431, "matrix-exp"]], "make_svd_non_negative": [[430, "make-svd-non-negative"]], "huber_loss": [[442, "huber-loss"]], "as_strided": [[449, "as-strided"]], "dsplit": [[459, "dsplit"]], "general_inner_product": [[424, "general-inner-product"]], "khatri_rao": [[427, "khatri-rao"]], "eigh_tridiagonal": [[422, "eigh-tridiagonal"]], "mode_dot": [[432, "mode-dot"]], "batched_outer": [[417, "batched-outer"]], "broadcast_shapes": [[454, "broadcast-shapes"]], "initialize_tucker": [[426, "initialize-tucker"]], "tucker": [[441, "tucker"]], "atleast_1d": [[451, "atleast-1d"]], "svd_flip": [[437, "svd-flip"]], "cond": [[418, "cond"]], "kron": [[428, "kron"]], "dot": [[420, "dot"]], "soft_margin_loss": [[448, "soft-margin-loss"]], "check_scalar": [[455, "check-scalar"]], "adjoint": [[416, "adjoint"]], "stft": [[415, "stft"]], "poisson_nll_loss": [[446, "poisson-nll-loss"]], "partial_tucker": [[435, "partial-tucker"]], "atleast_2d": [[452, "atleast-2d"]], "higher_order_moment": [[425, "higher-order-moment"]], "column_stack": [[457, "column-stack"]], "multi_dot": [[433, "multi-dot"]], "choose": [[456, "choose"]], "fft2": [[396, "fft2"]], "avg_pool2d": [[387, "avg-pool2d"]], "fft": [[395, "fft"]], "adaptive_max_pool2d": [[384, "adaptive-max-pool2d"]], "max_pool3d": [[406, "max-pool3d"]], "reduce_window": [[410, "reduce-window"]], "dft": [[390, "dft"]], "embedding": [[394, "embedding"]], "rfft": [[411, "rfft"]], "get_interpolate_kernel": [[398, "get-interpolate-kernel"]], "idct": [[399, "idct"]], "dct": [[389, "dct"]], "ifftn": [[401, "ifftn"]], "nearest_interpolate": [[408, "nearest-interpolate"]], "pool": [[409, "pool"]], "rfftn": [[412, "rfftn"]], "dropout3d": [[393, "dropout3d"]], "adaptive_avg_pool2d": [[383, "adaptive-avg-pool2d"]], "area_interpolate": [[385, "area-interpolate"]], "avg_pool1d": [[386, "avg-pool1d"]], "avg_pool3d": [[388, "avg-pool3d"]], "rnn": [[413, "rnn"]], "dropout2d": [[392, "dropout2d"]], "adaptive_avg_pool1d": [[382, "adaptive-avg-pool1d"]], "interp": [[402, "interp"]], "interpolate": [[403, "interpolate"]], "max_pool1d": [[404, "max-pool1d"]], "Sparse array": [[379, "sparse-array"]], "generate_einsum_equation": [[397, "generate-einsum-equation"]], "max_unpool1d": [[407, "max-unpool1d"]], "ifft": [[400, "ifft"]], "dropout1d": [[391, "dropout1d"]], "max_pool2d": [[405, "max-pool2d"]], "unsorted_segment_mean": [[324, "unsorted-segment-mean"]], "signbit": [[351, "signbit"]], "vorbis_window": [[327, "vorbis-window"]], "trilu": [[323, "trilu"]], "zeta": [[355, "zeta"]], "nansum": [[349, "nansum"]], "tril_indices": [[322, "tril-indices"]], "conj": [[332, "conj"]], "bind_custom_gradient_function": [[357, "bind-custom-gradient-function"]], "diff": [[335, "diff"]], "binarizer": [[331, "binarizer"]], "unsorted_segment_min": [[325, "unsorted-segment-min"]], "modf": [[348, "modf"]], "xlogy": [[354, "xlogy"]], "digamma": [[336, "digamma"]], "unsorted_segment_sum": [[326, "unsorted-segment-sum"]], "amin": [[330, "amin"]], "allclose": [[328, "allclose"]], "float_power": [[339, "float-power"]], "copysign": [[333, "copysign"]], "gradient": [[342, "gradient"]], "erfc": [[337, "erfc"]], "amax": [[329, "amax"]], "ldexp": [[345, "ldexp"]], "jvp": [[358, "jvp"]], "sinc": [[352, "sinc"]], "sparsify_tensor": [[353, "sparsify-tensor"]], "frexp": [[341, "frexp"]], "vjp": [[359, "vjp"]], "fmax": [[340, "fmax"]], "lgamma": [[347, "lgamma"]], "isclose": [[344, "isclose"]], "lerp": [[346, "lerp"]], "count_nonzero": [[334, "count-nonzero"]], "reduce": [[356, "reduce"]], "hypot": [[343, "hypot"]], "fix": [[338, "fix"]], "nextafter": [[350, "nextafter"]], "selu": [[299, "selu"]], "hamming_window": [[308, "hamming-window"]], "trunc": [[288, "trunc"]], "remainder": [[277, "remainder"]], "hardshrink": [[292, "hardshrink"]], "relu6": [[297, "relu6"]], "hann_window": [[309, "hann-window"]], "prelu": [[296, "prelu"]], "blackman_window": [[306, "blackman-window"]], "softshrink": [[301, "softshrink"]], "polyval": [[316, "polyval"]], "round": [[278, "round"]], "reciprocal": [[276, "reciprocal"]], "trapz": [[287, "trapz"]], "hardtanh": [[293, "hardtanh"]], "random_tucker": [[321, "random-tucker"]], "sqrt": [[282, "sqrt"]], "trunc_divide": [[289, "trunc-divide"]], "mel_weight_matrix": [[313, "mel-weight-matrix"]], "stanh": [[302, "stanh"]], "sign": [[279, "sign"]], "ndenumerate": [[314, "ndenumerate"]], "eye_like": [[307, "eye-like"]], "square": [[283, "square"]], "elu": [[291, "elu"]], "celu": [[290, "celu"]], "thresholded_relu": [[305, "thresholded-relu"]], "kaiser_bessel_derived_window": [[311, "kaiser-bessel-derived-window"]], "random_parafac2": [[318, "random-parafac2"]], "scaled_tanh": [[298, "scaled-tanh"]], "tanh": [[286, "tanh"]], "indices": [[310, "indices"]], "subtract": [[284, "subtract"]], "kaiser_window": [[312, "kaiser-window"]], "random_cp": [[317, "random-cp"]], "logit": [[294, "logit"]], "logsigmoid": [[295, "logsigmoid"]], "tanhshrink": [[303, "tanhshrink"]], "ndindex": [[315, "ndindex"]], "random_tt": [[320, "random-tt"]], "threshold": [[304, "threshold"]], "sinh": [[281, "sinh"]], "random_tr": [[319, "random-tr"]], "silu": [[300, "silu"]], "sin": [[280, "sin"]], "tan": [[285, "tan"]], "divide": [[235, "divide"]], "maximum": [[266, "maximum"]], "logical_and": [[262, "logical-and"]], "imag": [[248, "imag"]], "isnan": [[251, "isnan"]], "nan_to_num": [[269, "nan-to-num"]], "log2": [[259, "log2"]], "fmod": [[244, "fmod"]], "multiply": [[268, "multiply"]], "exp": [[238, "exp"]], "gcd": [[245, "gcd"]], "fmin": [[243, "fmin"]], "greater_equal": [[247, "greater-equal"]], "not_equal": [[271, "not-equal"]], "logical_xor": [[265, "logical-xor"]], "bitwise_xor": [[230, "bitwise-xor"]], "pow": [[273, "pow"]], "logaddexp": [[260, "logaddexp"]], "logical_or": [[264, "logical-or"]], "log": [[256, "log"]], "floor_divide": [[242, "floor-divide"]], "less": [[254, "less"]], "positive": [[272, "positive"]], "lcm": [[253, "lcm"]], "cos": [[232, "cos"]], "negative": [[270, "negative"]], "exp2": [[239, "exp2"]], "minimum": [[267, "minimum"]], "log10": [[257, "log10"]], "greater": [[246, "greater"]], "floor": [[241, "floor"]], "rad2deg": [[274, "rad2deg"]], "cosh": [[233, "cosh"]], "deg2rad": [[234, "deg2rad"]], "equal": [[236, "equal"]], "isfinite": [[249, "isfinite"]], "ceil": [[231, "ceil"]], "expm1": [[240, "expm1"]], "isinf": [[250, "isinf"]], "less_equal": [[255, "less-equal"]], "logaddexp2": [[261, "logaddexp2"]], "real": [[275, "real"]], "isreal": [[252, "isreal"]], "log1p": [[258, "log1p"]], "erf": [[237, "erf"]], "logical_not": [[263, "logical-not"]], "unset_default_float_dtype": [[184, "unset-default-float-dtype"]], "as_native_dev": [[189, "as-native-dev"]], "num_ivy_arrays_on_dev": [[201, "num-ivy-arrays-on-dev"]], "set_default_device": [[204, "set-default-device"]], "to_device": [[209, "to-device"]], "dev_util": [[193, "dev-util"]], "num_gpus": [[200, "num-gpus"]], "set_soft_device_mode": [[205, "set-soft-device-mode"]], "bitwise_invert": [[226, "bitwise-invert"]], "asin": [[220, "asin"]], "percent_used_mem_on_dev": [[202, "percent-used-mem-on-dev"]], "atan2": [[223, "atan2"]], "split_func_call": [[208, "split-func-call"]], "acosh": [[217, "acosh"]], "unset_default_uint_dtype": [[186, "unset-default-uint-dtype"]], "default_device": [[191, "default-device"]], "unset_default_device": [[212, "unset-default-device"]], "function_supported_devices": [[194, "function-supported-devices"]], "clear_cached_mem_on_dev": [[190, "clear-cached-mem-on-dev"]], "num_cpu_cores": [[199, "num-cpu-cores"]], "bitwise_and": [[225, "bitwise-and"]], "atan": [[222, "atan"]], "valid_dtype": [[187, "valid-dtype"]], "bitwise_or": [[228, "bitwise-or"]], "unset_soft_device_mode": [[213, "unset-soft-device-mode"]], "bitwise_left_shift": [[227, "bitwise-left-shift"]], "asinh": [[221, "asinh"]], "as_ivy_dev": [[188, "as-ivy-dev"]], "get_all_ivy_arrays_on_dev": [[196, "get-all-ivy-arrays-on-dev"]], "total_mem_on_dev": [[210, "total-mem-on-dev"]], "acos": [[216, "acos"]], "bitwise_right_shift": [[229, "bitwise-right-shift"]], "dev": [[192, "dev"]], "angle": [[219, "angle"]], "tpu_is_available": [[211, "tpu-is-available"]], "function_unsupported_devices": [[195, "function-unsupported-devices"]], "unset_default_int_dtype": [[185, "unset-default-int-dtype"]], "split_factor": [[207, "split-factor"]], "print_all_ivy_arrays_on_dev": [[203, "print-all-ivy-arrays-on-dev"]], "used_mem_on_dev": [[214, "used-mem-on-dev"]], "set_split_factor": [[206, "set-split-factor"]], "handle_soft_device_variable": [[198, "handle-soft-device-variable"]], "gpu_is_available": [[197, "gpu-is-available"]], "atanh": [[224, "atanh"]], "add": [[218, "add"]], "abs": [[215, "abs"]], "Wrapping": [[90, "module-ivy.data_classes.container.wrapping"], [67, "module-ivy.data_classes.array.wrapping"]], "Image": [[78, "module-ivy.data_classes.container.image"], [55, "module-ivy.data_classes.array.image"]], "Conversions": [[47, "module-ivy.data_classes.array.conversions"], [70, "module-ivy.data_classes.container.conversions"]], "3.1: Stable Diffusion": [[37, "3.1:-Stable-Diffusion"]], "Transpile any model": [[24, "Transpile-any-model"]], "Round up": [[24, "Round-up"]], "Resnet 18": [[45, "Resnet-18"]], "Write Ivy code": [[17, "Write-Ivy-code"]], "Contents": [[17, "Contents"]], "Installing Ivy": [[17, "Installing-Ivy"]], "Importing Ivy": [[17, "Importing-Ivy"]], "Ivy Backend Handler": [[17, "Ivy-Backend-Handler"], [26, "Ivy-Backend-Handler"]], "Data Structures": [[17, "Data-Structures"], [26, "Data-Structures"]], "Ivy Functional API": [[17, "Ivy-Functional-API"], [26, "Ivy-Functional-API"]], "0.0: Unify": [[28, "0.0:-Unify"]], "1.2: As a Decorator": [[33, "1.2:-As-a-Decorator"]], "Unify": [[33, "Unify"], [31, "Unify"], [21, "Unify"], [32, "Unify"], [22, "Unify"]], "Compile": [[33, "Compile"], [31, "Compile"], [32, "Compile"]], "Transpile": [[33, "Transpile"], [31, "Transpile"], [21, "Transpile"], [32, "Transpile"], [22, "Transpile"]], "0.2: Transpile": [[30, "0.2:-Transpile"]], "Basic Operations with Ivy": [[38, "Basic-Operations-with-Ivy"]], "Installs \ud83d\udcbe": [[38, "Installs-\ud83d\udcbe"], [39, "Installs-\ud83d\udcbe"]], "Imports \ud83d\udec3": [[38, "Imports-\ud83d\udec3"], [39, "Imports-\ud83d\udec3"]], "Ivy as a Unified ML Framework \ud83d\udd00": [[38, "Ivy-as-a-Unified-ML-Framework-\ud83d\udd00"]], "Change frameworks by one line of code \u261d": [[38, "Change-frameworks-by-one-line-of-code-\u261d"]], "No need to worry about data types \ud83c\udfa8": [[38, "No-need-to-worry-about-data-types-\ud83c\udfa8"]], "No need to worry about framework differences \ud83d\udcb1": [[38, "No-need-to-worry-about-framework-differences-\ud83d\udcb1"]], "Unifying them all! \ud83c\udf72": [[38, "Unifying-them-all!-\ud83c\udf72"]], "Ivy as a standalone ML framework \ud83c\udf00": [[38, "Ivy-as-a-standalone-ML-framework-\ud83c\udf00"]], "Set Backend Framework": [[38, "Set-Backend-Framework"]], "Define Model": [[38, "Define-Model"], [39, "Define-Model"]], "Create Model": [[38, "Create-Model"]], "Create Optimizer": [[38, "Create-Optimizer"]], "Input and Target": [[38, "Input-and-Target"]], "Loss Function": [[38, "Loss-Function"]], "Training Loop": [[38, "Training-Loop"]], "1.0: Lazy vs Eager": [[31, "1.0:-Lazy-vs-Eager"]], "HuggingFace Tensorflow DeiT": [[43, "HuggingFace-Tensorflow-DeiT"]], "Graph can be visualized and displayed as html file on browser": [[43, "Graph-can-be-visualized-and-displayed-as-html-file-on-browser"]], "Image Segmentation with Ivy UNet": [[5, "Image-Segmentation-with-Ivy-UNet"]], "Imports": [[5, "Imports"], [7, "Imports"], [9, "Imports"]], "Data Preparation": [[5, "Data-Preparation"], [7, "Data-Preparation"], [3, "Data-Preparation"], [4, "Data-Preparation"]], "Custom Preprocessing": [[5, "Custom-Preprocessing"]], "Load the image example \ud83d\uddbc\ufe0f": [[5, "Load-the-image-example-\ud83d\uddbc\ufe0f"], [7, "Load-the-image-example-\ud83d\uddbc\ufe0f"]], "Visualise image": [[5, "Visualise-image"], [7, "Visualise-image"]], "Model Inference": [[5, "Model-Inference"]], "Initializing Native Torch UNet": [[5, "Initializing-Native-Torch-UNet"]], "Initializing Ivy UNet with Pretrained Weights \u2b07\ufe0f": [[5, "Initializing-Ivy-UNet-with-Pretrained-Weights-\u2b07\ufe0f"]], "Custom masking function": [[5, "Custom-masking-function"]], "Use the model to segment your images \ud83d\ude80": [[5, "Use-the-model-to-segment-your-images-\ud83d\ude80"]], "TensorFlow backend": [[5, "TensorFlow-backend"]], "JAX": [[5, "JAX"]], "Appendix: the Ivy native implementation of UNet": [[5, "Appendix:-the-Ivy-native-implementation-of-UNet"]], "Demo: Transpiling DeepMind\u2019s PerceiverIO": [[40, "Demo:-Transpiling-DeepMind's-PerceiverIO"]], "Table of Contents": [[40, "Table-of-Contents"]], "Defining the model": [[40, "Defining-the-model"]], "Model construction": [[40, "Model-construction"]], "Some helper functions": [[40, "Some-helper-functions"]], "Transpiling the model": [[40, "Transpiling-the-model"]], "PyTorch pipeline": [[40, "PyTorch-pipeline"]], "Dataset download": [[40, "Dataset-download"]], "DataLoader": [[40, "DataLoader"]], "Training": [[40, "Training"]], "Transpiling a haiku model to build on top": [[12, "Transpiling-a-haiku-model-to-build-on-top"]], "Lazy vs Eager": [[21, "Lazy-vs-Eager"]], "Trace": [[21, "Trace"], [22, "Trace"]], "Accelerating PyTorch models with JAX": [[8, "Accelerating-PyTorch-models-with-JAX"]], "Examples and Demos": [[2, "examples-and-demos"], [15, "examples-and-demos"]], "Trace code": [[19, "Trace-code"]], "Developing a convolutional network using Ivy": [[14, "Developing-a-convolutional-network-using-Ivy"]], "Transpiling a PyTorch model to build on top": [[11, "Transpiling-a-PyTorch-model-to-build-on-top"]], "1.1: Framework Selection": [[32, "1.1:-Framework-Selection"]], "Tutorials And Examples": [[15, "tutorials-and-examples"]], "Learn the basics": [[15, "learn-the-basics"], [16, "learn-the-basics"]], "Guides": [[15, "guides"], [10, "guides"]], "0.1: Compile": [[29, "0.1:-Compile"]], "Accelerating MMPreTrain models with JAX": [[6, "Accelerating-MMPreTrain-models-with-JAX"]], "Deepmind PerceiverIO on GPU": [[41, "Deepmind-PerceiverIO-on-GPU"]], "Install Python3.8 and setup the kernel": [[41, "Install-Python3.8-and-setup-the-kernel"]], "Clone the ivy and ivy-models repo": [[41, "Clone-the-ivy-and-ivy-models-repo"]], "Install ivy and ivy_models from the repos": [[41, "Install-ivy-and-ivy_models-from-the-repos"]], "Run the demo\u2026": [[41, "Run-the-demo..."]], "\u2026with torch backend": [[41, "...with-torch-backend"]], "\u2026.with tensorflow backend": [[41, "....with-tensorflow-backend"]], "\u2026with jax backend": [[41, "...with-jax-backend"]], "\u2026with numpy backend": [[41, "...with-numpy-backend"]], "Using Ivy ResNet": [[7, "Using-Ivy-ResNet"]], "Installation": [[7, "Installation"], [3, "Installation"]], "Prepare the set of labels": [[7, "Prepare-the-set-of-labels"]], "Model Inference ResNet34": [[7, "Model-Inference-ResNet34"]], "Initializing Native Torch ResNet34": [[7, "Initializing-Native-Torch-ResNet34"]], "Initializing Ivy ResNet34 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet34-with-Pretrained-Weights-\u2b07\ufe0f"]], "Use the model to classify your images \ud83d\ude80": [[7, "Use-the-model-to-classify-your-images-\ud83d\ude80"], [7, "id1"]], "Model Inference ResNet50": [[7, "Model-Inference-ResNet50"]], "Initializing Native Torch ResNet50": [[7, "Initializing-Native-Torch-ResNet50"]], "Initializing Ivy ResNet50 with Pretrained Weights \u2b07\ufe0f": [[7, "Initializing-Ivy-ResNet50-with-Pretrained-Weights-\u2b07\ufe0f"]], "Ivy AlexNet demo": [[3, "Ivy-AlexNet-demo"]], "Ivy AlexNet inference in Torch": [[3, "Ivy-AlexNet-inference-in-Torch"]], "TensorFlow inference": [[3, "TensorFlow-inference"]], "JAX inference": [[3, "JAX-inference"]], "Appendix (Ivy code for AlexNet implementation)": [[3, "Appendix-(Ivy-code-for-AlexNet-implementation)"]], "Transpile any library": [[23, "Transpile-any-library"]], "How to use decorators": [[22, "How-to-use-decorators"]], "Transpile code": [[20, "Transpile-code"]], "1.3: Dynamic vs Static": [[34, "1.3:-Dynamic-vs-Static"]], "Dynamic": [[34, "Dynamic"]], "Static": [[34, "Static"]], "ToDo: explain via examples why dynamic mode is set to True by default when transpiling to and from numpy and torch, but set to False by default when transpiling to and from tensorflow and jax.": [[34, "ToDo:-explain-via-examples-why-dynamic-mode-is-set-to-True-by-default-when-transpiling-to-and-from-numpy-and-torch,-but-set-to-False-by-default-when-transpiling-to-and-from-tensorflow-and-jax."]], "Write a model using Ivy": [[25, "Write-a-model-using-Ivy"]], "Unify code": [[18, "Unify-code"]], "ODSC Ivy Demo": [[26, "ODSC-Ivy-Demo"]], "Graph Tracer": [[26, "Graph-Tracer"]], "Any function": [[26, "Any-function"], [27, "Any-function"]], "Any library": [[26, "Any-library"], [27, "Any-library"]], "Any model": [[26, "Any-model"], [27, "Any-model"]], "Transpiling a Tensorflow model to build on top": [[13, "Transpiling-a-Tensorflow-model-to-build-on-top"]], "End-to-End Training Pipeline in Ivy": [[42, "End-to-End-Training-Pipeline-in-Ivy"]], "Importing libraries": [[42, "Importing-libraries"]], "Let\u2019s build the pipeline with a Tensorflow backend": [[42, "Let's-build-the-pipeline-with-a-Tensorflow-backend"]], "We are using MNIST dataset for this Tutorial": [[42, "We-are-using-MNIST-dataset-for-this-Tutorial"]], "Temporary Dataset and Dynamic loader": [[42, "Temporary-Dataset-and-Dynamic-loader"]], "Defining the Ivy Network": [[42, "Defining-the-Ivy-Network"]], "Training Loop with utility functions": [[42, "Training-Loop-with-utility-functions"]], "Plotting the training metrics": [[42, "Plotting-the-training-metrics"]], "Save the trained Model": [[42, "Save-the-trained-Model"]], "Demos": [[0, "demos"]], "Creating a Notebook for Demo": [[0, "creating-a-notebook-for-demo"]], "3.0: Perceiver": [[36, "3.0:-Perceiver"]], "2.0: Kornia": [[35, "2.0:-Kornia"]], "Accelerating XGBoost with JAX": [[9, "Accelerating-XGBoost-with-JAX"]], "Tests": [[9, "Tests"]], "Loading the Data": [[9, "Loading-the-Data"]], "Comparing xgb_frontend.XGBClassifier and xgb.XGBClassifier": [[9, "Comparing-xgb_frontend.XGBClassifier-and-xgb.XGBClassifier"]], "JAX backend": [[9, "JAX-backend"]], "Tensorflow backend": [[9, "Tensorflow-backend"]], "PyTorch backend": [[9, "PyTorch-backend"]], "More exhaustive example": [[9, "More-exhaustive-example"]], "Evaluating Training Time vs. Number of Boosting Rounds": [[9, "Evaluating-Training-Time-vs.-Number-of-Boosting-Rounds"]], "Training Time vs. Fractions of Data": [[9, "Training-Time-vs.-Fractions-of-Data"]], "Comparison of Metrics": [[9, "Comparison-of-Metrics"]], "# Ivy Bert Demo": [[4, "#-Ivy-Bert-Demo"]], "Install the dependecies": [[4, "Install-the-dependecies"]], "Import the modules": [[4, "Import-the-modules"]], "Ivy inference with Sequence Classification": [[4, "Ivy-inference-with-Sequence-Classification"]], "Ivy model inference with tensorflow": [[4, "Ivy-model-inference-with-tensorflow"]], "Ivy model inference with Jax": [[4, "Ivy-model-inference-with-Jax"]], "Ivy model inference with torch": [[4, "Ivy-model-inference-with-torch"]], "Compilation of a Basic Function": [[39, "Compilation-of-a-Basic-Function"]], "Import Ivy compiler": [[39, "Import-Ivy-compiler"]], "Function compilation \ud83d\udee0": [[39, "Function-compilation-\ud83d\udee0"]], "Set backend": [[39, "Set-backend"]], "Sample input": [[39, "Sample-input"]], "Define function to compile": [[39, "Define-function-to-compile"]], "Compile the function": [[39, "Compile-the-function"]], "Check results": [[39, "Check-results"], [39, "id1"]], "Compiling simple neural network \ud83e\udde0": [[39, "Compiling-simple-neural-network-\ud83e\udde0"]], "Create model": [[39, "Create-model"]], "Define input": [[39, "Define-input"]], "Compile network": [[39, "Compile-network"]], "Ivy as a Transpiler Introduction": [[44, "Ivy-as-a-Transpiler-Introduction"]], "To use the transpiler:": [[44, "To-use-the-transpiler:"]], "Transpiler Interface": [[44, "Transpiler-Interface"]], "Telemetry": [[44, "Telemetry"]], "1. Transpile Functions \ud83d\udd22": [[44, "1.-Transpile-Functions-\ud83d\udd22"]], "2. Transpile Libraries \ud83d\udcda": [[44, "2.-Transpile-Libraries-\ud83d\udcda"]], "3. Transpile Models \ud83c\udf10": [[44, "3.-Transpile-Models-\ud83c\udf10"]], "Quickstart": [[27, "Quickstart"]], "Get familiar with Ivy": [[27, "Get-familiar-with-Ivy"]], "Functional API": [[27, "Functional-API"]], "Stateful API": [[27, "Stateful-API"]], "Tracing code": [[27, "Tracing-code"]], "TO REPLACE: Title": [[1, "TO-REPLACE:-Title"]]}, "indexentries": {"_arraywithactivations (class in ivy.data_classes.array.activations)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations"]], "_abc_impl (ivy.data_classes.array.activations._arraywithactivations attribute)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations._abc_impl"]], "gelu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.gelu"]], "hardswish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.hardswish"]], "ivy.data_classes.array.activations": [[46, "module-ivy.data_classes.array.activations"]], "leaky_relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.log_softmax"]], "mish() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.mish"]], "module": [[46, "module-ivy.data_classes.array.activations"], [47, "module-ivy.data_classes.array.conversions"], [48, "module-ivy.data_classes.array.creation"], [49, "module-ivy.data_classes.array.data_type"], [50, "module-ivy.data_classes.array.device"], [51, "module-ivy.data_classes.array.elementwise"], [52, "module-ivy.data_classes.array.experimental"], [52, "module-ivy.data_classes.array.experimental.activations"], [52, "module-ivy.data_classes.array.experimental.conversions"], [52, "module-ivy.data_classes.array.experimental.creation"], [52, "module-ivy.data_classes.array.experimental.data_type"], [52, "module-ivy.data_classes.array.experimental.device"], [52, "module-ivy.data_classes.array.experimental.elementwise"], [52, "module-ivy.data_classes.array.experimental.general"], [52, "module-ivy.data_classes.array.experimental.gradients"], [52, "module-ivy.data_classes.array.experimental.image"], [52, "module-ivy.data_classes.array.experimental.layers"], [52, "module-ivy.data_classes.array.experimental.linear_algebra"], [52, "module-ivy.data_classes.array.experimental.losses"], [52, "module-ivy.data_classes.array.experimental.manipulation"], [52, "module-ivy.data_classes.array.experimental.norms"], [52, "module-ivy.data_classes.array.experimental.random"], [52, "module-ivy.data_classes.array.experimental.searching"], [52, "module-ivy.data_classes.array.experimental.set"], [52, "module-ivy.data_classes.array.experimental.sorting"], [52, "module-ivy.data_classes.array.experimental.statistical"], [52, "module-ivy.data_classes.array.experimental.utility"], [53, "module-ivy.data_classes.array.general"], [54, "module-ivy.data_classes.array.gradients"], [55, "module-ivy.data_classes.array.image"], [56, "module-ivy.data_classes.array.layers"], [57, "module-ivy.data_classes.array.linear_algebra"], [58, "module-ivy.data_classes.array.losses"], [59, "module-ivy.data_classes.array.manipulation"], [60, "module-ivy.data_classes.array.norms"], [61, "module-ivy.data_classes.array.random"], [62, "module-ivy.data_classes.array.searching"], [63, "module-ivy.data_classes.array.set"], [64, "module-ivy.data_classes.array.sorting"], [65, "module-ivy.data_classes.array.statistical"], [66, "module-ivy.data_classes.array.utility"], [67, "module-ivy.data_classes.array.wrapping"], [68, "module-ivy.data_classes.container.activations"], [69, "module-ivy.data_classes.container.base"], [70, "module-ivy.data_classes.container.conversions"], [71, "module-ivy.data_classes.container.creation"], [72, "module-ivy.data_classes.container.data_type"], [73, "module-ivy.data_classes.container.device"], [74, "module-ivy.data_classes.container.elementwise"], [75, "module-ivy.data_classes.container.experimental"], [75, "module-ivy.data_classes.container.experimental.activations"], [75, "module-ivy.data_classes.container.experimental.conversions"], [75, "module-ivy.data_classes.container.experimental.creation"], [75, "module-ivy.data_classes.container.experimental.data_type"], [75, "module-ivy.data_classes.container.experimental.device"], [75, "module-ivy.data_classes.container.experimental.elementwise"], [75, "module-ivy.data_classes.container.experimental.general"], [75, "module-ivy.data_classes.container.experimental.gradients"], [75, "module-ivy.data_classes.container.experimental.image"], [75, "module-ivy.data_classes.container.experimental.layers"], [75, "module-ivy.data_classes.container.experimental.linear_algebra"], [75, "module-ivy.data_classes.container.experimental.losses"], [75, "module-ivy.data_classes.container.experimental.manipulation"], [75, "module-ivy.data_classes.container.experimental.norms"], [75, "module-ivy.data_classes.container.experimental.random"], [75, "module-ivy.data_classes.container.experimental.searching"], [75, "module-ivy.data_classes.container.experimental.set"], [75, "module-ivy.data_classes.container.experimental.sorting"], [75, "module-ivy.data_classes.container.experimental.statistical"], [75, "module-ivy.data_classes.container.experimental.utility"], [76, "module-ivy.data_classes.container.general"], [77, "module-ivy.data_classes.container.gradients"], [78, "module-ivy.data_classes.container.image"], [79, "module-ivy.data_classes.container.layers"], [80, "module-ivy.data_classes.container.linear_algebra"], [81, "module-ivy.data_classes.container.losses"], [82, "module-ivy.data_classes.container.manipulation"], [83, "module-ivy.data_classes.container.norms"], [84, "module-ivy.data_classes.container.random"], [85, "module-ivy.data_classes.container.searching"], [86, "module-ivy.data_classes.container.set"], [87, "module-ivy.data_classes.container.sorting"], [88, "module-ivy.data_classes.container.statistical"], [89, "module-ivy.data_classes.container.utility"], [90, "module-ivy.data_classes.container.wrapping"], [91, "module-ivy.data_classes.factorized_tensor.base"], [92, "module-ivy.data_classes.factorized_tensor.cp_tensor"], [93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"], [94, "module-ivy.data_classes.factorized_tensor.tr_tensor"], [95, "module-ivy.data_classes.factorized_tensor.tt_tensor"], [96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"], [97, "module-ivy.data_classes.array.array"], [98, "module-ivy.data_classes.container.container"], [100, "module-ivy.data_classes.nested_array.nested_array"], [101, "module-ivy.data_classes.nested_array.base"], [102, "module-ivy.data_classes.nested_array.elementwise"], [360, "module-ivy.functional.ivy.experimental.activations"], [361, "module-ivy.functional.ivy.experimental.constants"], [362, "module-ivy.functional.ivy.experimental.creation"], [363, "module-ivy.functional.ivy.experimental.data_type"], [364, "module-ivy.functional.ivy.experimental.device"], [365, "module-ivy.functional.ivy.experimental.elementwise"], [366, "module-ivy.functional.ivy.experimental.general"], [367, "module-ivy.functional.ivy.experimental.gradients"], [368, "module-ivy.functional.ivy.experimental.layers"], [369, "module-ivy.functional.ivy.experimental.linear_algebra"], [370, "module-ivy.functional.ivy.experimental.losses"], [371, "module-ivy.functional.ivy.experimental.manipulation"], [372, "module-ivy.functional.ivy.experimental.meta"], [373, "module-ivy.functional.ivy.experimental.nest"], [374, "module-ivy.functional.ivy.experimental.norms"], [375, "module-ivy.functional.ivy.experimental.random"], [376, "module-ivy.functional.ivy.experimental.searching"], [377, "module-ivy.functional.ivy.experimental.set"], [378, "module-ivy.functional.ivy.experimental.sorting"], [379, "module-ivy.functional.ivy.experimental.sparse_array"], [380, "module-ivy.functional.ivy.experimental.statistical"], [381, "module-ivy.functional.ivy.experimental.utility"], [613, "module-ivy.functional.ivy.activations"], [614, "module-ivy.functional.ivy.constants"], [615, "module-ivy.functional.ivy.control_flow_ops"], [616, "module-ivy.functional.ivy.creation"], [617, "module-ivy.functional.ivy.data_type"], [618, "module-ivy.functional.ivy.device"], [619, "module-ivy.functional.ivy.elementwise"], [620, "module-ivy.functional.ivy.experimental"], [621, "module-ivy.functional.ivy.general"], [622, "module-ivy.functional.ivy.gradients"], [623, "module-ivy.functional.ivy.layers"], [624, "module-ivy.functional.ivy.linear_algebra"], [625, "module-ivy.functional.ivy.losses"], [626, "module-ivy.functional.ivy.manipulation"], [627, "module-ivy.functional.ivy.meta"], [628, "module-ivy.functional.ivy.nest"], [629, "module-ivy.functional.ivy.norms"], [630, "module-ivy.functional.ivy.random"], [631, "module-ivy.functional.ivy.searching"], [632, "module-ivy.functional.ivy.set"], [633, "module-ivy.functional.ivy.sorting"], [634, "module-ivy.functional.ivy.statistical"], [635, "module-ivy.functional.ivy.utility"], [758, "module-ivy_tests.test_ivy.helpers.assertions"], [759, "module-ivy_tests.test_ivy.helpers.available_frameworks"], [760, "module-ivy_tests.test_ivy.helpers.function_testing"], [761, "module-ivy_tests.test_ivy.helpers.globals"], [762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"], [763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"], [764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"], [765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"], [766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"], [767, "module-ivy_tests.test_ivy.helpers.multiprocessing"], [768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"], [769, "module-ivy_tests.test_ivy.helpers.structs"], [770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"], [771, "module-ivy_tests.test_ivy.helpers.testing_helpers"], [775, "module-ivy.stateful.activations"], [776, "module-ivy.stateful.converters"], [777, "module-ivy.stateful.helpers"], [778, "module-ivy.stateful.initializers"], [779, "module-ivy.stateful.layers"], [780, "module-ivy.stateful.losses"], [781, "module-ivy.stateful.module"], [782, "module-ivy.stateful.norms"], [783, "module-ivy.stateful.optimizers"], [784, "module-ivy.stateful.sequential"], [785, "module-ivy.utils.assertions"], [786, "module-ivy.utils.backend"], [787, "module-ivy.utils.backend.ast_helpers"], [788, "module-ivy.utils.backend.handler"], [789, "module-ivy.utils.backend.sub_backend_handler"], [790, "module-ivy.utils.binaries"], [791, "module-ivy.utils.dynamic_import"], [792, "module-ivy.utils.einsum_parser"], [793, "module-ivy.utils.einsum_path_helpers"], [794, "module-ivy.utils.exceptions"], [795, "module-ivy.utils.inspection"], [796, "module-ivy.utils.logging"], [797, "module-ivy.utils.profiler"], [798, "module-ivy.utils.verbosity"]], "relu() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.relu"]], "sigmoid() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.sigmoid"]], "softmax() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softmax"]], "softplus() (ivy.data_classes.array.activations._arraywithactivations method)": [[46, "ivy.data_classes.array.activations._ArrayWithActivations.softplus"]], "_array_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._array_to_new_backend"]], "_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_ivy"]], "_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_native"]], "_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions._to_new_backend"]], "args_to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_ivy"]], "args_to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_native"]], "args_to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.args_to_new_backend"]], "ivy.data_classes.array.conversions": [[47, "module-ivy.data_classes.array.conversions"]], "to_ivy() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_ivy"]], "to_native() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_native"]], "to_new_backend() (in module ivy.data_classes.array.conversions)": [[47, "ivy.data_classes.array.conversions.to_new_backend"]], "_arraywithcreation (class in ivy.data_classes.array.creation)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation"]], "_abc_impl (ivy.data_classes.array.creation._arraywithcreation attribute)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation._abc_impl"]], "asarray() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.asarray"]], "copy_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.copy_array"]], "empty_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.from_dlpack"]], "full_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.full_like"]], "ivy.data_classes.array.creation": [[48, "module-ivy.data_classes.array.creation"]], "linspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.linspace"]], "logspace() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.logspace"]], "meshgrid() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.meshgrid"]], "native_array() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.native_array"]], "one_hot() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.one_hot"]], "ones_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.ones_like"]], "tril() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.tril"]], "triu() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.triu"]], "zeros_like() (ivy.data_classes.array.creation._arraywithcreation method)": [[48, "ivy.data_classes.array.creation._ArrayWithCreation.zeros_like"]], "_arraywithdatatypes (class in ivy.data_classes.array.data_type)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes"]], "_abc_impl (ivy.data_classes.array.data_type._arraywithdatatypes attribute)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes._abc_impl"]], "astype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.dtype"]], "finfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_bool_dtype"]], "is_float_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.is_uint_dtype"]], "ivy.data_classes.array.data_type": [[49, "module-ivy.data_classes.array.data_type"]], "result_type() (ivy.data_classes.array.data_type._arraywithdatatypes method)": [[49, "ivy.data_classes.array.data_type._ArrayWithDataTypes.result_type"]], "_arraywithdevice (class in ivy.data_classes.array.device)": [[50, "ivy.data_classes.array.device._ArrayWithDevice"]], "_abc_impl (ivy.data_classes.array.device._arraywithdevice attribute)": [[50, "ivy.data_classes.array.device._ArrayWithDevice._abc_impl"]], "dev() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.dev"]], "ivy.data_classes.array.device": [[50, "module-ivy.data_classes.array.device"]], "to_device() (ivy.data_classes.array.device._arraywithdevice method)": [[50, "ivy.data_classes.array.device._ArrayWithDevice.to_device"]], "_arraywithelementwise (class in ivy.data_classes.array.elementwise)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise"]], "_abc_impl (ivy.data_classes.array.elementwise._arraywithelementwise attribute)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise._abc_impl"]], "abs() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.abs"]], "acos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acos"]], "acosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.acosh"]], "add() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.add"]], "angle() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.angle"]], "asin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asin"]], "asinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.asinh"]], "atan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan"]], "atan2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atan2"]], "atanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.ceil"]], "cos() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cos"]], "cosh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.deg2rad"]], "divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.divide"]], "equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.equal"]], "erf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.erf"]], "exp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp"]], "exp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.exp2"]], "expm1() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.expm1"]], "floor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor"]], "floor_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.fmin"]], "gcd() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.gcd"]], "greater() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater"]], "greater_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.greater_equal"]], "imag() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.imag"]], "isfinite() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isfinite"]], "isinf() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isinf"]], "isnan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isnan"]], "isreal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.isreal"]], "ivy.data_classes.array.elementwise": [[51, "module-ivy.data_classes.array.elementwise"]], "lcm() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.lcm"]], "less() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less"]], "less_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.less_equal"]], "log() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log"]], "log10() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log10"]], "log1p() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log1p"]], "log2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.log2"]], "logaddexp() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.maximum"]], "minimum() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.minimum"]], "multiply() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.negative"]], "not_equal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.not_equal"]], "positive() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.positive"]], "pow() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.pow"]], "rad2deg() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.rad2deg"]], "real() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.real"]], "reciprocal() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.remainder"]], "round() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.round"]], "sign() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sign"]], "sin() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sin"]], "sinh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sinh"]], "sqrt() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.sqrt"]], "square() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.square"]], "subtract() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.subtract"]], "tan() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tan"]], "tanh() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.tanh"]], "trapz() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trapz"]], "trunc() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.array.elementwise._arraywithelementwise method)": [[51, "ivy.data_classes.array.elementwise._ArrayWithElementwise.trunc_divide"]], "_arraywithactivationsexperimental (class in ivy.data_classes.array.experimental.activations)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental"]], "_arraywithconversionsexperimental (class in ivy.data_classes.array.experimental.conversions)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental"]], "_arraywithcreationexperimental (class in ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental"]], "_arraywithdata_typeexperimental (class in ivy.data_classes.array.experimental.data_type)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental"]], "_arraywithdeviceexperimental (class in ivy.data_classes.array.experimental.device)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental"]], "_arraywithelementwiseexperimental (class in ivy.data_classes.array.experimental.elementwise)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental"]], "_arraywithgeneralexperimental (class in ivy.data_classes.array.experimental.general)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental"]], "_arraywithgradientsexperimental (class in ivy.data_classes.array.experimental.gradients)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental"]], "_arraywithimageexperimental (class in ivy.data_classes.array.experimental.image)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental"]], "_arraywithlayersexperimental (class in ivy.data_classes.array.experimental.layers)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental"]], "_arraywithlinearalgebraexperimental (class in ivy.data_classes.array.experimental.linear_algebra)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental"]], "_arraywithlossesexperimental (class in ivy.data_classes.array.experimental.losses)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental"]], "_arraywithmanipulationexperimental (class in ivy.data_classes.array.experimental.manipulation)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental"]], "_arraywithnormsexperimental (class in ivy.data_classes.array.experimental.norms)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental"]], "_arraywithrandomexperimental (class in ivy.data_classes.array.experimental.random)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental"]], "_arraywithsearchingexperimental (class in ivy.data_classes.array.experimental.searching)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental"]], "_arraywithsetexperimental (class in ivy.data_classes.array.experimental.set)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental"]], "_arraywithsortingexperimental (class in ivy.data_classes.array.experimental.sorting)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental"]], "_arraywithstatisticalexperimental (class in ivy.data_classes.array.experimental.statistical)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental"]], "_arraywithutilityexperimental (class in ivy.data_classes.array.experimental.utility)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.conversions._arraywithconversionsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.conversions._ArrayWithConversionsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.data_type._arraywithdata_typeexperimental attribute)": [[52, "ivy.data_classes.array.experimental.data_type._ArrayWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.device._arraywithdeviceexperimental attribute)": [[52, "ivy.data_classes.array.experimental.device._ArrayWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental attribute)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental attribute)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.gradients._arraywithgradientsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.gradients._ArrayWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.image._arraywithimageexperimental attribute)": [[52, "ivy.data_classes.array.experimental.image._ArrayWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental attribute)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental attribute)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental attribute)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental attribute)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental attribute)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.random._arraywithrandomexperimental attribute)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.set._arraywithsetexperimental attribute)": [[52, "ivy.data_classes.array.experimental.set._ArrayWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental attribute)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental attribute)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental attribute)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental._abc_impl"]], "adaptive_avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.blackman_window"]], "celu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.celu"]], "column_stack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.column_stack"]], "concat_from_sequence() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dct"]], "dft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.elu"]], "embedding() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft"]], "fft2() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.fft2"]], "fill_diagonal() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.gamma"]], "general_inner_product() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.general_inner_product"]], "gradient() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.group_norm"]], "hardshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.hardtanh"]], "heaviside() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.interpolate"]], "isclose() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.isclose"]], "ivy.data_classes.array.experimental": [[52, "module-ivy.data_classes.array.experimental"]], "ivy.data_classes.array.experimental.activations": [[52, "module-ivy.data_classes.array.experimental.activations"]], "ivy.data_classes.array.experimental.conversions": [[52, "module-ivy.data_classes.array.experimental.conversions"]], "ivy.data_classes.array.experimental.creation": [[52, "module-ivy.data_classes.array.experimental.creation"]], "ivy.data_classes.array.experimental.data_type": [[52, "module-ivy.data_classes.array.experimental.data_type"]], "ivy.data_classes.array.experimental.device": [[52, "module-ivy.data_classes.array.experimental.device"]], "ivy.data_classes.array.experimental.elementwise": [[52, "module-ivy.data_classes.array.experimental.elementwise"]], "ivy.data_classes.array.experimental.general": [[52, "module-ivy.data_classes.array.experimental.general"]], "ivy.data_classes.array.experimental.gradients": [[52, "module-ivy.data_classes.array.experimental.gradients"]], "ivy.data_classes.array.experimental.image": [[52, "module-ivy.data_classes.array.experimental.image"]], "ivy.data_classes.array.experimental.layers": [[52, "module-ivy.data_classes.array.experimental.layers"]], "ivy.data_classes.array.experimental.linear_algebra": [[52, "module-ivy.data_classes.array.experimental.linear_algebra"]], "ivy.data_classes.array.experimental.losses": [[52, "module-ivy.data_classes.array.experimental.losses"]], "ivy.data_classes.array.experimental.manipulation": [[52, "module-ivy.data_classes.array.experimental.manipulation"]], "ivy.data_classes.array.experimental.norms": [[52, "module-ivy.data_classes.array.experimental.norms"]], "ivy.data_classes.array.experimental.random": [[52, "module-ivy.data_classes.array.experimental.random"]], "ivy.data_classes.array.experimental.searching": [[52, "module-ivy.data_classes.array.experimental.searching"]], "ivy.data_classes.array.experimental.set": [[52, "module-ivy.data_classes.array.experimental.set"]], "ivy.data_classes.array.experimental.sorting": [[52, "module-ivy.data_classes.array.experimental.sorting"]], "ivy.data_classes.array.experimental.statistical": [[52, "module-ivy.data_classes.array.experimental.statistical"]], "ivy.data_classes.array.experimental.utility": [[52, "module-ivy.data_classes.array.experimental.utility"]], "kl_div() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.array.experimental.sorting._arraywithsortingexperimental method)": [[52, "ivy.data_classes.array.experimental.sorting._ArrayWithSortingExperimental.lexsort"]], "lgamma() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.lgamma"]], "log_poisson_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logit"]], "logsigmoid() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.array.experimental.norms._arraywithnormsexperimental method)": [[52, "ivy.data_classes.array.experimental.norms._ArrayWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental static method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.array.experimental.utility._arraywithutilityexperimental method)": [[52, "ivy.data_classes.array.experimental.utility._ArrayWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.array.experimental.random._arraywithrandomexperimental method)": [[52, "ivy.data_classes.array.experimental.random._ArrayWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.poisson_nll_loss"]], "polyval() (in module ivy.data_classes.array.experimental.creation)": [[52, "ivy.data_classes.array.experimental.creation.polyval"]], "prelu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.prelu"]], "put_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.array.experimental.statistical._arraywithstatisticalexperimental method)": [[52, "ivy.data_classes.array.experimental.statistical._ArrayWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.array.experimental.general._arraywithgeneralexperimental method)": [[52, "ivy.data_classes.array.experimental.general._ArrayWithGeneralExperimental.reduce"]], "reduce_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.reduce_window"]], "relu6() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.relu6"]], "rfft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.scaled_tanh"]], "selu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.selu"]], "signbit() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.silu"]], "sinc() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.array.experimental.losses._arraywithlossesexperimental method)": [[52, "ivy.data_classes.array.experimental.losses._ArrayWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.sparsify_tensor"]], "stft() (ivy.data_classes.array.experimental.layers._arraywithlayersexperimental method)": [[52, "ivy.data_classes.array.experimental.layers._ArrayWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.array.experimental.activations._arraywithactivationsexperimental method)": [[52, "ivy.data_classes.array.experimental.activations._ArrayWithActivationsExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.top_k"]], "trilu() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.array.experimental.linear_algebra._arraywithlinearalgebraexperimental method)": [[52, "ivy.data_classes.array.experimental.linear_algebra._ArrayWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.array.experimental.searching._arraywithsearchingexperimental method)": [[52, "ivy.data_classes.array.experimental.searching._ArrayWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.array.experimental.creation._arraywithcreationexperimental method)": [[52, "ivy.data_classes.array.experimental.creation._ArrayWithCreationExperimental.unsorted_segment_sum"]], "vsplit() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.array.experimental.manipulation._arraywithmanipulationexperimental method)": [[52, "ivy.data_classes.array.experimental.manipulation._ArrayWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.array.experimental.elementwise._arraywithelementwiseexperimental method)": [[52, "ivy.data_classes.array.experimental.elementwise._ArrayWithElementWiseExperimental.zeta"]], "_arraywithgeneral (class in ivy.data_classes.array.general)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral"]], "_abc_impl (ivy.data_classes.array.general._arraywithgeneral attribute)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral._abc_impl"]], "all_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.clip_vector_norm"]], "default() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.default"]], "einops_rearrange() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather"]], "gather_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_array"]], "is_ivy_container() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_ivy_container"]], "is_native_array() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.is_native_array"]], "isin() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.isin"]], "ivy.data_classes.array.general": [[53, "module-ivy.data_classes.array.general"]], "scatter_flat() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.stable_pow"]], "supports_inplace_updates() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.supports_inplace_updates"]], "to_file() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_file"]], "to_list() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.array.general._arraywithgeneral method)": [[53, "ivy.data_classes.array.general._ArrayWithGeneral.value_is_nan"]], "_arraywithgradients (class in ivy.data_classes.array.gradients)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients"]], "_abc_impl (ivy.data_classes.array.gradients._arraywithgradients attribute)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients._abc_impl"]], "adam_step() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_step"]], "adam_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.gradient_descent_update"]], "ivy.data_classes.array.gradients": [[54, "module-ivy.data_classes.array.gradients"]], "lamb_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.array.gradients._arraywithgradients method)": [[54, "ivy.data_classes.array.gradients._ArrayWithGradients.stop_gradient"]], "_arraywithimage (class in ivy.data_classes.array.image)": [[55, "ivy.data_classes.array.image._ArrayWithImage"]], "_abc_impl (ivy.data_classes.array.image._arraywithimage attribute)": [[55, "ivy.data_classes.array.image._ArrayWithImage._abc_impl"]], "ivy.data_classes.array.image": [[55, "module-ivy.data_classes.array.image"]], "_arraywithlayers (class in ivy.data_classes.array.layers)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers"]], "_abc_impl (ivy.data_classes.array.layers._arraywithlayers attribute)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers._abc_impl"]], "conv1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout"]], "dropout1d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.dropout3d"]], "ivy.data_classes.array.layers": [[56, "module-ivy.data_classes.array.layers"]], "linear() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.linear"]], "lstm_update() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.multi_head_attention"]], "scaled_dot_product_attention() (ivy.data_classes.array.layers._arraywithlayers method)": [[56, "ivy.data_classes.array.layers._ArrayWithLayers.scaled_dot_product_attention"]], "_arraywithlinearalgebra (class in ivy.data_classes.array.linear_algebra)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra attribute)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra._abc_impl"]], "cholesky() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.cross"]], "det() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.det"]], "diag() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.diagonal"]], "eig() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eig"]], "eigh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.eigvalsh"]], "inner() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.inv"]], "ivy.data_classes.array.linear_algebra": [[57, "module-ivy.data_classes.array.linear_algebra"]], "matmul() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.solve"]], "svd() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.array.linear_algebra._arraywithlinearalgebra method)": [[57, "ivy.data_classes.array.linear_algebra._ArrayWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_arraywithlosses (class in ivy.data_classes.array.losses)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses"]], "_abc_impl (ivy.data_classes.array.losses._arraywithlosses attribute)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses._abc_impl"]], "binary_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.cross_entropy"]], "ivy.data_classes.array.losses": [[58, "module-ivy.data_classes.array.losses"]], "sparse_cross_entropy() (ivy.data_classes.array.losses._arraywithlosses method)": [[58, "ivy.data_classes.array.losses._ArrayWithLosses.sparse_cross_entropy"]], "_arraywithmanipulation (class in ivy.data_classes.array.manipulation)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation"]], "_abc_impl (ivy.data_classes.array.manipulation._arraywithmanipulation attribute)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation._abc_impl"]], "clip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.clip"]], "concat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.concat"]], "constant_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.expand_dims"]], "flip() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.flip"]], "ivy.data_classes.array.manipulation": [[59, "module-ivy.data_classes.array.manipulation"]], "permute_dims() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.repeat"]], "reshape() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.reshape"]], "roll() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.roll"]], "split() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.split"]], "squeeze() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.squeeze"]], "stack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.stack"]], "swapaxes() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.swapaxes"]], "tile() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.tile"]], "unstack() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.unstack"]], "view() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.view"]], "zero_pad() (ivy.data_classes.array.manipulation._arraywithmanipulation method)": [[59, "ivy.data_classes.array.manipulation._ArrayWithManipulation.zero_pad"]], "_arraywithnorms (class in ivy.data_classes.array.norms)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms"]], "_abc_impl (ivy.data_classes.array.norms._arraywithnorms attribute)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms._abc_impl"]], "ivy.data_classes.array.norms": [[60, "module-ivy.data_classes.array.norms"]], "layer_norm() (ivy.data_classes.array.norms._arraywithnorms method)": [[60, "ivy.data_classes.array.norms._ArrayWithNorms.layer_norm"]], "_arraywithrandom (class in ivy.data_classes.array.random)": [[61, "ivy.data_classes.array.random._ArrayWithRandom"]], "_abc_impl (ivy.data_classes.array.random._arraywithrandom attribute)": [[61, "ivy.data_classes.array.random._ArrayWithRandom._abc_impl"]], "ivy.data_classes.array.random": [[61, "module-ivy.data_classes.array.random"]], "multinomial() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.multinomial"]], "randint() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.randint"]], "random_normal() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.array.random._arraywithrandom method)": [[61, "ivy.data_classes.array.random._ArrayWithRandom.shuffle"]], "_arraywithsearching (class in ivy.data_classes.array.searching)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching"]], "_abc_impl (ivy.data_classes.array.searching._arraywithsearching attribute)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching._abc_impl"]], "argmax() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmax"]], "argmin() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argmin"]], "argwhere() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.argwhere"]], "ivy.data_classes.array.searching": [[62, "module-ivy.data_classes.array.searching"]], "nonzero() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.nonzero"]], "where() (ivy.data_classes.array.searching._arraywithsearching method)": [[62, "ivy.data_classes.array.searching._ArrayWithSearching.where"]], "_arraywithset (class in ivy.data_classes.array.set)": [[63, "ivy.data_classes.array.set._ArrayWithSet"]], "_abc_impl (ivy.data_classes.array.set._arraywithset attribute)": [[63, "ivy.data_classes.array.set._ArrayWithSet._abc_impl"]], "ivy.data_classes.array.set": [[63, "module-ivy.data_classes.array.set"]], "unique_all() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_all"]], "unique_counts() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.array.set._arraywithset method)": [[63, "ivy.data_classes.array.set._ArrayWithSet.unique_values"]], "_arraywithsorting (class in ivy.data_classes.array.sorting)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting"]], "_abc_impl (ivy.data_classes.array.sorting._arraywithsorting attribute)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting._abc_impl"]], "argsort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.argsort"]], "ivy.data_classes.array.sorting": [[64, "module-ivy.data_classes.array.sorting"]], "msort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.msort"]], "searchsorted() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.searchsorted"]], "sort() (ivy.data_classes.array.sorting._arraywithsorting method)": [[64, "ivy.data_classes.array.sorting._ArrayWithSorting.sort"]], "_arraywithstatistical (class in ivy.data_classes.array.statistical)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical"]], "_abc_impl (ivy.data_classes.array.statistical._arraywithstatistical attribute)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical._abc_impl"]], "cumprod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.cumsum"]], "einsum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.einsum"]], "ivy.data_classes.array.statistical": [[65, "module-ivy.data_classes.array.statistical"]], "max() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.max"]], "mean() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.mean"]], "min() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.min"]], "prod() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.prod"]], "std() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.std"]], "sum() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.sum"]], "var() (ivy.data_classes.array.statistical._arraywithstatistical method)": [[65, "ivy.data_classes.array.statistical._ArrayWithStatistical.var"]], "_arraywithutility (class in ivy.data_classes.array.utility)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility"]], "_abc_impl (ivy.data_classes.array.utility._arraywithutility attribute)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility._abc_impl"]], "all() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.all"]], "any() (ivy.data_classes.array.utility._arraywithutility method)": [[66, "ivy.data_classes.array.utility._ArrayWithUtility.any"]], "ivy.data_classes.array.utility": [[66, "module-ivy.data_classes.array.utility"]], "_wrap_function() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping._wrap_function"]], "add_ivy_array_instance_methods() (in module ivy.data_classes.array.wrapping)": [[67, "ivy.data_classes.array.wrapping.add_ivy_array_instance_methods"]], "ivy.data_classes.array.wrapping": [[67, "module-ivy.data_classes.array.wrapping"]], "_containerwithactivations (class in ivy.data_classes.container.activations)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations"]], "_abc_impl (ivy.data_classes.container.activations._containerwithactivations attribute)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._abc_impl"]], "_static_gelu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_gelu"]], "_static_hardswish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_hardswish"]], "_static_leaky_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_leaky_relu"]], "_static_log_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_log_softmax"]], "_static_mish() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_mish"]], "_static_relu() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_relu"]], "_static_sigmoid() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_sigmoid"]], "_static_softmax() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softmax"]], "_static_softplus() (ivy.data_classes.container.activations._containerwithactivations static method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations._static_softplus"]], "gelu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.gelu"]], "hardswish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.hardswish"]], "ivy.data_classes.container.activations": [[68, "module-ivy.data_classes.container.activations"]], "leaky_relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.leaky_relu"]], "log_softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.log_softmax"]], "mish() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.mish"]], "relu() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.relu"]], "sigmoid() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.sigmoid"]], "softmax() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softmax"]], "softplus() (ivy.data_classes.container.activations._containerwithactivations method)": [[68, "ivy.data_classes.container.activations._ContainerWithActivations.softplus"]], "containerbase (class in ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base.ContainerBase"]], "__getitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__getitem__"]], "__init__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__init__"]], "__setitem__() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.__setitem__"]], "_abc_impl (ivy.data_classes.container.base.containerbase attribute)": [[69, "ivy.data_classes.container.base.ContainerBase._abc_impl"]], "_cont_at_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_dict"]], "_cont_at_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_at_key_chains_input_as_seq"]], "_cont_call_static_method_with_flexible_args() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_call_static_method_with_flexible_args"]], "_cont_concat_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_concat_unify"]], "_cont_get_dev() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dev"]], "_cont_get_dtype() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_dtype"]], "_cont_get_shape() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shape"]], "_cont_get_shapes() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_get_shapes"]], "_cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_ivy"]], "_cont_mean_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_mean_unify"]], "_cont_prune_key_chains_input_as_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_dict"]], "_cont_prune_key_chains_input_as_seq() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_prune_key_chains_input_as_seq"]], "_cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_slice_keys"]], "_cont_sum_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase._cont_sum_unify"]], "_get_queue_item() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase._get_queue_item"]], "_is_jsonable() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._is_jsonable"]], "_repr() (in module ivy.data_classes.container.base)": [[69, "ivy.data_classes.container.base._repr"]], "cont_all_false() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_false"]], "cont_all_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_key_chains"]], "cont_all_true() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_all_true"]], "cont_as_bools() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_as_bools"]], "cont_assert_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_container"]], "cont_assert_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_contains_sub_structure"]], "cont_assert_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical"]], "cont_assert_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_assert_identical_structure"]], "cont_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chain"]], "cont_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_key_chains"]], "cont_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_at_keys"]], "cont_combine() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_combine"]], "cont_common_key_chains() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_common_key_chains"]], "cont_config (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_config"]], "cont_contains_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_container"]], "cont_contains_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_contains_sub_structure"]], "cont_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_copy"]], "cont_create_if_absent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_create_if_absent"]], "cont_cutoff_at_depth() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_depth"]], "cont_cutoff_at_height() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_cutoff_at_height"]], "cont_deep_copy() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_deep_copy"]], "cont_dev (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev"]], "cont_dev_str (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dev_str"]], "cont_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_diff"]], "cont_dtype (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_dtype"]], "cont_duplicate_array_keychains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_duplicate_array_keychains"]], "cont_find_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_container"]], "cont_find_sub_structure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_find_sub_structure"]], "cont_flatten_key_chain() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chain"]], "cont_flatten_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_flatten_key_chains"]], "cont_format_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_format_key_chains"]], "cont_from_disk_as_hdf5() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_hdf5"]], "cont_from_disk_as_json() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_json"]], "cont_from_disk_as_pickled() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_disk_as_pickled"]], "cont_from_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_from_flat_list"]], "cont_handle_inplace() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_handle_inplace"]], "cont_has_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key"]], "cont_has_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_has_key_chain"]], "cont_identical() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical"]], "cont_identical_array_shapes() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_array_shapes"]], "cont_identical_configs() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_configs"]], "cont_identical_structure() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_identical_structure"]], "cont_if_exists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_if_exists"]], "cont_inplace_update() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_inplace_update"]], "cont_ivy (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_ivy"]], "cont_key_chains_containing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_key_chains_containing"]], "cont_list_join() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_join"]], "cont_list_stack() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_list_stack"]], "cont_load() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_load"]], "cont_map() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map"]], "cont_map_sub_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_map_sub_conts"]], "cont_max_depth (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_max_depth"]], "cont_multi_map() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map"]], "cont_multi_map_in_function() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_multi_map_in_function"]], "cont_num_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_num_arrays"]], "cont_overwrite_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chain"]], "cont_overwrite_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_overwrite_at_key_chains"]], "cont_prune_empty() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_empty"]], "cont_prune_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chain"]], "cont_prune_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_chains"]], "cont_prune_key_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_key_from_key_chains"]], "cont_prune_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys"]], "cont_prune_keys_from_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_prune_keys_from_key_chains"]], "cont_reduce() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reduce"]], "cont_remove_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_key_length_limit"]], "cont_remove_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_remove_print_limit"]], "cont_reshape_like() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_reshape_like"]], "cont_restructure() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure"]], "cont_restructure_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_restructure_key_chains"]], "cont_save() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_save"]], "cont_set_at_key_chain() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chain"]], "cont_set_at_key_chains() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_key_chains"]], "cont_set_at_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_set_at_keys"]], "cont_shape (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shape"]], "cont_shapes (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_shapes"]], "cont_show() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show"]], "cont_show_sub_container() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_show_sub_container"]], "cont_size_ordered_arrays() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_size_ordered_arrays"]], "cont_slice_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_keys"]], "cont_slice_via_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_slice_via_key"]], "cont_sort_by_key() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_sort_by_key"]], "cont_structural_diff() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_structural_diff"]], "cont_to_dict() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_dict"]], "cont_to_disk_as_hdf5() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_hdf5"]], "cont_to_disk_as_json() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_json"]], "cont_to_disk_as_pickled() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_disk_as_pickled"]], "cont_to_flat_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_flat_list"]], "cont_to_iterator() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator"]], "cont_to_iterator_keys() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_keys"]], "cont_to_iterator_values() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_iterator_values"]], "cont_to_jsonable() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_jsonable"]], "cont_to_nested_list() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_nested_list"]], "cont_to_raw() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_to_raw"]], "cont_trim_key() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_trim_key"]], "cont_try_kc() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_try_kc"]], "cont_unify() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unify"]], "cont_unstack_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_unstack_conts"]], "cont_update_config() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_update_config"]], "cont_with_default_key_color() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_default_key_color"]], "cont_with_entries_as_lists() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_entries_as_lists"]], "cont_with_ivy_backend() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_ivy_backend"]], "cont_with_key_length_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_key_length_limit"]], "cont_with_print_indent() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_indent"]], "cont_with_print_limit() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_limit"]], "cont_with_print_line_spacing() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.cont_with_print_line_spacing"]], "dynamic_backend (ivy.data_classes.container.base.containerbase property)": [[69, "ivy.data_classes.container.base.ContainerBase.dynamic_backend"]], "h5_file_size() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.h5_file_size"]], "ivy.data_classes.container.base": [[69, "module-ivy.data_classes.container.base"]], "shuffle_h5_file() (ivy.data_classes.container.base.containerbase static method)": [[69, "ivy.data_classes.container.base.ContainerBase.shuffle_h5_file"]], "split_conts() (ivy.data_classes.container.base.containerbase method)": [[69, "ivy.data_classes.container.base.ContainerBase.split_conts"]], "_containerwithconversions (class in ivy.data_classes.container.conversions)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions"]], "_abc_impl (ivy.data_classes.container.conversions._containerwithconversions attribute)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._abc_impl"]], "_static_to_ivy() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_ivy"]], "_static_to_native() (ivy.data_classes.container.conversions._containerwithconversions static method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions._static_to_native"]], "ivy.data_classes.container.conversions": [[70, "module-ivy.data_classes.container.conversions"]], "to_ivy() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_ivy"]], "to_native() (ivy.data_classes.container.conversions._containerwithconversions method)": [[70, "ivy.data_classes.container.conversions._ContainerWithConversions.to_native"]], "_containerwithcreation (class in ivy.data_classes.container.creation)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation"]], "_abc_impl (ivy.data_classes.container.creation._containerwithcreation attribute)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._abc_impl"]], "_static_arange() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_arange"]], "_static_asarray() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_asarray"]], "_static_copy_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_copy_array"]], "_static_empty() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty"]], "_static_empty_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_empty_like"]], "_static_eye() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_eye"]], "_static_from_dlpack() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_from_dlpack"]], "_static_full() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full"]], "_static_full_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_full_like"]], "_static_linspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_linspace"]], "_static_logspace() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_logspace"]], "_static_meshgrid() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_meshgrid"]], "_static_native_array() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_native_array"]], "_static_one_hot() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_one_hot"]], "_static_ones() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones"]], "_static_ones_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_ones_like"]], "_static_tril() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_tril"]], "_static_triu() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_triu"]], "_static_zeros() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros"]], "_static_zeros_like() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation._static_zeros_like"]], "asarray() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.asarray"]], "copy_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.copy_array"]], "empty_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.empty_like"]], "from_dlpack() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.from_dlpack"]], "frombuffer() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.frombuffer"]], "full_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.full_like"]], "ivy.data_classes.container.creation": [[71, "module-ivy.data_classes.container.creation"]], "linspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.linspace"]], "logspace() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.logspace"]], "meshgrid() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.meshgrid"]], "native_array() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.native_array"]], "one_hot() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.one_hot"]], "ones_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.ones_like"]], "static_frombuffer() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_frombuffer"]], "static_triu_indices() (ivy.data_classes.container.creation._containerwithcreation static method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.static_triu_indices"]], "tril() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.tril"]], "triu() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu"]], "triu_indices() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.triu_indices"]], "zeros_like() (ivy.data_classes.container.creation._containerwithcreation method)": [[71, "ivy.data_classes.container.creation._ContainerWithCreation.zeros_like"]], "_containerwithdatatypes (class in ivy.data_classes.container.data_type)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes"]], "_abc_impl (ivy.data_classes.container.data_type._containerwithdatatypes attribute)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._abc_impl"]], "_static_astype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_astype"]], "_static_broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_arrays"]], "_static_broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_broadcast_to"]], "_static_can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_can_cast"]], "_static_default_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_complex_dtype"]], "_static_default_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_default_float_dtype"]], "_static_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_dtype"]], "_static_finfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_finfo"]], "_static_function_supported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_supported_dtypes"]], "_static_function_unsupported_dtypes() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_function_unsupported_dtypes"]], "_static_iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_iinfo"]], "_static_is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_bool_dtype"]], "_static_is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_complex_dtype"]], "_static_is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_float_dtype"]], "_static_is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_int_dtype"]], "_static_is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_is_uint_dtype"]], "_static_result_type() (ivy.data_classes.container.data_type._containerwithdatatypes static method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes._static_result_type"]], "astype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.astype"]], "broadcast_arrays() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_arrays"]], "broadcast_to() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.broadcast_to"]], "can_cast() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.can_cast"]], "dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.dtype"]], "finfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.finfo"]], "iinfo() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.iinfo"]], "is_bool_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_bool_dtype"]], "is_complex_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_complex_dtype"]], "is_float_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_float_dtype"]], "is_int_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_int_dtype"]], "is_uint_dtype() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.is_uint_dtype"]], "ivy.data_classes.container.data_type": [[72, "module-ivy.data_classes.container.data_type"]], "result_type() (ivy.data_classes.container.data_type._containerwithdatatypes method)": [[72, "ivy.data_classes.container.data_type._ContainerWithDataTypes.result_type"]], "_containerwithdevice (class in ivy.data_classes.container.device)": [[73, "ivy.data_classes.container.device._ContainerWithDevice"]], "_abc_impl (ivy.data_classes.container.device._containerwithdevice attribute)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._abc_impl"]], "_static_dev() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_dev"]], "_static_to_device() (ivy.data_classes.container.device._containerwithdevice static method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice._static_to_device"]], "dev() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.dev"]], "ivy.data_classes.container.device": [[73, "module-ivy.data_classes.container.device"]], "to_device() (ivy.data_classes.container.device._containerwithdevice method)": [[73, "ivy.data_classes.container.device._ContainerWithDevice.to_device"]], "_containerwithelementwise (class in ivy.data_classes.container.elementwise)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise"]], "_abc_impl (ivy.data_classes.container.elementwise._containerwithelementwise attribute)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._abc_impl"]], "_static_abs() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_abs"]], "_static_acos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acos"]], "_static_acosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_acosh"]], "_static_add() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_add"]], "_static_asin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asin"]], "_static_asinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_asinh"]], "_static_atan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan"]], "_static_atan2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atan2"]], "_static_atanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_atanh"]], "_static_bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_and"]], "_static_bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_invert"]], "_static_bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_left_shift"]], "_static_bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_or"]], "_static_bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_right_shift"]], "_static_bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_bitwise_xor"]], "_static_ceil() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_ceil"]], "_static_cos() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cos"]], "_static_cosh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_cosh"]], "_static_deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_deg2rad"]], "_static_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_divide"]], "_static_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_equal"]], "_static_erf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_erf"]], "_static_exp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_exp"]], "_static_expm1() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_expm1"]], "_static_floor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor"]], "_static_floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_floor_divide"]], "_static_greater() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater"]], "_static_greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_greater_equal"]], "_static_isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isfinite"]], "_static_isinf() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isinf"]], "_static_isnan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isnan"]], "_static_isreal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_isreal"]], "_static_lcm() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_lcm"]], "_static_less() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less"]], "_static_less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_less_equal"]], "_static_log() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log"]], "_static_log10() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log10"]], "_static_log1p() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log1p"]], "_static_log2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_log2"]], "_static_logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logaddexp"]], "_static_logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_and"]], "_static_logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_not"]], "_static_logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_or"]], "_static_logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_logical_xor"]], "_static_maximum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_maximum"]], "_static_minimum() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_minimum"]], "_static_multiply() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_multiply"]], "_static_negative() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_negative"]], "_static_not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_not_equal"]], "_static_positive() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_positive"]], "_static_pow() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_pow"]], "_static_rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_rad2deg"]], "_static_reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_reciprocal"]], "_static_remainder() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_remainder"]], "_static_round() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_round"]], "_static_sign() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sign"]], "_static_sin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sin"]], "_static_sinh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sinh"]], "_static_sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_sqrt"]], "_static_square() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_square"]], "_static_subtract() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_subtract"]], "_static_tan() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tan"]], "_static_tanh() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_tanh"]], "_static_trapz() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trapz"]], "_static_trunc() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc"]], "_static_trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise._static_trunc_divide"]], "abs() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.abs"]], "acos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acos"]], "acosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.acosh"]], "add() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.add"]], "angle() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.angle"]], "asin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asin"]], "asinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.asinh"]], "atan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan"]], "atan2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atan2"]], "atanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.atanh"]], "bitwise_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_and"]], "bitwise_invert() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_invert"]], "bitwise_left_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_left_shift"]], "bitwise_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_or"]], "bitwise_right_shift() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_right_shift"]], "bitwise_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.bitwise_xor"]], "ceil() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.ceil"]], "cos() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cos"]], "cosh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.cosh"]], "deg2rad() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.deg2rad"]], "divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.divide"]], "equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.equal"]], "erf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.erf"]], "exp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp"]], "exp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.exp2"]], "expm1() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.expm1"]], "floor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor"]], "floor_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.floor_divide"]], "fmin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.fmin"]], "gcd() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.gcd"]], "greater() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater"]], "greater_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.greater_equal"]], "imag() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.imag"]], "isfinite() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isfinite"]], "isinf() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isinf"]], "isnan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isnan"]], "isreal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.isreal"]], "ivy.data_classes.container.elementwise": [[74, "module-ivy.data_classes.container.elementwise"]], "lcm() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.lcm"]], "less() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less"]], "less_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.less_equal"]], "log() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log"]], "log10() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log10"]], "log1p() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log1p"]], "log2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.log2"]], "logaddexp() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp"]], "logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logaddexp2"]], "logical_and() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_and"]], "logical_not() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_not"]], "logical_or() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_or"]], "logical_xor() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.logical_xor"]], "maximum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.maximum"]], "minimum() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.minimum"]], "multiply() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.multiply"]], "nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.nan_to_num"]], "negative() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.negative"]], "not_equal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.not_equal"]], "positive() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.positive"]], "pow() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.pow"]], "rad2deg() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.rad2deg"]], "real() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.real"]], "reciprocal() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.reciprocal"]], "remainder() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.remainder"]], "round() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.round"]], "sign() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sign"]], "sin() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sin"]], "sinh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sinh"]], "sqrt() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.sqrt"]], "square() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.square"]], "static_angle() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_angle"]], "static_exp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_exp2"]], "static_fmin() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_fmin"]], "static_gcd() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_gcd"]], "static_imag() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_imag"]], "static_logaddexp2() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_logaddexp2"]], "static_nan_to_num() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_nan_to_num"]], "static_real() (ivy.data_classes.container.elementwise._containerwithelementwise static method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.static_real"]], "subtract() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.subtract"]], "tan() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tan"]], "tanh() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.tanh"]], "trapz() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trapz"]], "trunc() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc"]], "trunc_divide() (ivy.data_classes.container.elementwise._containerwithelementwise method)": [[74, "ivy.data_classes.container.elementwise._ContainerWithElementwise.trunc_divide"]], "_containerwithactivationexperimental (class in ivy.data_classes.container.experimental.activations)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental"]], "_containerwithconversionexperimental (class in ivy.data_classes.container.experimental.conversions)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental"]], "_containerwithcreationexperimental (class in ivy.data_classes.container.experimental.creation)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental"]], "_containerwithdata_typeexperimental (class in ivy.data_classes.container.experimental.data_type)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental"]], "_containerwithdeviceexperimental (class in ivy.data_classes.container.experimental.device)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental"]], "_containerwithelementwiseexperimental (class in ivy.data_classes.container.experimental.elementwise)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental"]], "_containerwithgeneralexperimental (class in ivy.data_classes.container.experimental.general)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental"]], "_containerwithgradientsexperimental (class in ivy.data_classes.container.experimental.gradients)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental"]], "_containerwithimageexperimental (class in ivy.data_classes.container.experimental.image)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental"]], "_containerwithlayersexperimental (class in ivy.data_classes.container.experimental.layers)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental"]], "_containerwithlinearalgebraexperimental (class in ivy.data_classes.container.experimental.linear_algebra)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental"]], "_containerwithlossesexperimental (class in ivy.data_classes.container.experimental.losses)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental"]], "_containerwithmanipulationexperimental (class in ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental"]], "_containerwithnormsexperimental (class in ivy.data_classes.container.experimental.norms)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental"]], "_containerwithrandomexperimental (class in ivy.data_classes.container.experimental.random)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental"]], "_containerwithsearchingexperimental (class in ivy.data_classes.container.experimental.searching)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental"]], "_containerwithsetexperimental (class in ivy.data_classes.container.experimental.set)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental"]], "_containerwithsortingexperimental (class in ivy.data_classes.container.experimental.sorting)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental"]], "_containerwithstatisticalexperimental (class in ivy.data_classes.container.experimental.statistical)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental"]], "_containerwithutilityexperimental (class in ivy.data_classes.container.experimental.utility)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental"]], "_abc_impl (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.conversions._containerwithconversionexperimental attribute)": [[75, "ivy.data_classes.container.experimental.conversions._ContainerWithConversionExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.data_type._containerwithdata_typeexperimental attribute)": [[75, "ivy.data_classes.container.experimental.data_type._ContainerWithData_typeExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.device._containerwithdeviceexperimental attribute)": [[75, "ivy.data_classes.container.experimental.device._ContainerWithDeviceExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental attribute)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental attribute)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.gradients._containerwithgradientsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.gradients._ContainerWithGradientsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.image._containerwithimageexperimental attribute)": [[75, "ivy.data_classes.container.experimental.image._ContainerWithImageExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental attribute)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental attribute)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental attribute)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental attribute)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental attribute)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.random._containerwithrandomexperimental attribute)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.set._containerwithsetexperimental attribute)": [[75, "ivy.data_classes.container.experimental.set._ContainerWithSetExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental attribute)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental attribute)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._abc_impl"]], "_abc_impl (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental attribute)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental._abc_impl"]], "_static_celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_celu"]], "_static_cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummax"]], "_static_cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_cummin"]], "_static_elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_elu"]], "_static_fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_fft"]], "_static_fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_fill_diagonal"]], "_static_hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardshrink"]], "_static_hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_hardtanh"]], "_static_huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_huber_loss"]], "_static_kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_kl_div"]], "_static_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_l1_loss"]], "_static_log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_log_poisson_loss"]], "_static_nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental._static_nanmin"]], "_static_poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_poisson_nll_loss"]], "_static_put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_put_along_axis"]], "_static_reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental static method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental._static_reduce"]], "_static_scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_scaled_tanh"]], "_static_silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_silu"]], "_static_sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental._static_sliding_window"]], "_static_smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_smooth_l1_loss"]], "_static_soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental static method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental._static_soft_margin_loss"]], "_static_softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_softshrink"]], "_static_take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_take"]], "_static_tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_tanhshrink"]], "_static_threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental._static_threshold"]], "_static_trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental._static_trilu"]], "_static_trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_trim_zeros"]], "_static_unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental._static_unique_consecutive"]], "adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.adaptive_max_pool2d"]], "adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.adjoint"]], "allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.allclose"]], "amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amax"]], "amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.amin"]], "as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.as_strided"]], "associative_scan() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.associative_scan"]], "atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_1d"]], "atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_2d"]], "atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.atleast_3d"]], "avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool1d"]], "avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool2d"]], "avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.avg_pool3d"]], "batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.batch_norm"]], "batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.batched_outer"]], "bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.bernoulli"]], "beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.beta"]], "binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.binarizer"]], "bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.bincount"]], "blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.blackman_window"]], "broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.broadcast_shapes"]], "celu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.celu"]], "column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.column_stack"]], "concat_from_sequence() (in module ivy.data_classes.container.experimental.manipulation)": [[75, "ivy.data_classes.container.experimental.manipulation.concat_from_sequence"]], "concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.concat_from_sequence"]], "cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.cond"]], "conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.conj"]], "copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.copysign"]], "corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.corrcoef"]], "count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.count_nonzero"]], "cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cov"]], "cummax() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummax"]], "cummin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.cummin"]], "dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dct"]], "dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.dft"]], "diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.diagflat"]], "diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.diff"]], "digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.digamma"]], "dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.dirichlet"]], "dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.dot"]], "dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dsplit"]], "dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.dstack"]], "eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eig"]], "eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigh_tridiagonal"]], "eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.eigvals"]], "elu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.elu"]], "embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.embedding"]], "erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.erfc"]], "expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.expand"]], "eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.eye_like"]], "fft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.fft"]], "fill_diagonal() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fill_diagonal"]], "fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fix"]], "flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flatten"]], "fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fliplr"]], "flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.flipud"]], "float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.float_power"]], "fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmax"]], "fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.fmod"]], "fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.fold"]], "frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.frexp"]], "gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.gamma"]], "gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.gradient"]], "group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.group_norm"]], "hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hamming_window"]], "hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.hann_window"]], "hardshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardshrink"]], "hardtanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.hardtanh"]], "heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.heaviside"]], "higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.higher_order_moment"]], "histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.histogram"]], "hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hsplit"]], "hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.hstack"]], "huber_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.huber_loss"]], "hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.hypot"]], "i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.i0"]], "idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.idct"]], "ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifft"]], "ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.ifftn"]], "igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.igamma"]], "initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.initialize_tucker"]], "instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.instance_norm"]], "interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.interpolate"]], "invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.invert_permutation"]], "isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.isclose"]], "ivy.data_classes.container.experimental": [[75, "module-ivy.data_classes.container.experimental"]], "ivy.data_classes.container.experimental.activations": [[75, "module-ivy.data_classes.container.experimental.activations"]], "ivy.data_classes.container.experimental.conversions": [[75, "module-ivy.data_classes.container.experimental.conversions"]], "ivy.data_classes.container.experimental.creation": [[75, "module-ivy.data_classes.container.experimental.creation"]], "ivy.data_classes.container.experimental.data_type": [[75, "module-ivy.data_classes.container.experimental.data_type"]], "ivy.data_classes.container.experimental.device": [[75, "module-ivy.data_classes.container.experimental.device"]], "ivy.data_classes.container.experimental.elementwise": [[75, "module-ivy.data_classes.container.experimental.elementwise"]], "ivy.data_classes.container.experimental.general": [[75, "module-ivy.data_classes.container.experimental.general"]], "ivy.data_classes.container.experimental.gradients": [[75, "module-ivy.data_classes.container.experimental.gradients"]], "ivy.data_classes.container.experimental.image": [[75, "module-ivy.data_classes.container.experimental.image"]], "ivy.data_classes.container.experimental.layers": [[75, "module-ivy.data_classes.container.experimental.layers"]], "ivy.data_classes.container.experimental.linear_algebra": [[75, "module-ivy.data_classes.container.experimental.linear_algebra"]], "ivy.data_classes.container.experimental.losses": [[75, "module-ivy.data_classes.container.experimental.losses"]], "ivy.data_classes.container.experimental.manipulation": [[75, "module-ivy.data_classes.container.experimental.manipulation"]], "ivy.data_classes.container.experimental.norms": [[75, "module-ivy.data_classes.container.experimental.norms"]], "ivy.data_classes.container.experimental.random": [[75, "module-ivy.data_classes.container.experimental.random"]], "ivy.data_classes.container.experimental.searching": [[75, "module-ivy.data_classes.container.experimental.searching"]], "ivy.data_classes.container.experimental.set": [[75, "module-ivy.data_classes.container.experimental.set"]], "ivy.data_classes.container.experimental.sorting": [[75, "module-ivy.data_classes.container.experimental.sorting"]], "ivy.data_classes.container.experimental.statistical": [[75, "module-ivy.data_classes.container.experimental.statistical"]], "ivy.data_classes.container.experimental.utility": [[75, "module-ivy.data_classes.container.experimental.utility"]], "kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_bessel_derived_window"]], "kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.kaiser_window"]], "kl_div() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.kl_div"]], "kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.kron"]], "l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.l1_loss"]], "l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l1_normalize"]], "l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.l2_normalize"]], "ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.ldexp"]], "lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.lerp"]], "lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.lexsort"]], "log_poisson_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.log_poisson_loss"]], "logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logit"]], "logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.logsigmoid"]], "lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.lp_normalize"]], "make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.make_svd_non_negative"]], "matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.matricize"]], "matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.matrix_exp"]], "max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool1d"]], "max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool2d"]], "max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_pool3d"]], "max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.max_unpool1d"]], "median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.median"]], "mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.mel_weight_matrix"]], "mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.mode_dot"]], "modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.modf"]], "moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.moveaxis"]], "multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_dot"]], "multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.multi_mode_dot"]], "nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmean"]], "nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmedian"]], "nanmin() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanmin"]], "nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.nanprod"]], "nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nansum"]], "nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.nextafter"]], "optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.optional_get_element"]], "pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.pad"]], "partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_fold"]], "partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_tensor_to_vec"]], "partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.partial_tucker"]], "partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_unfold"]], "partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.partial_vec_to_tensor"]], "poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.poisson"]], "poisson_nll_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.poisson_nll_loss"]], "polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.polyval"]], "prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.prelu"]], "put_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.put_along_axis"]], "quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.quantile"]], "reduce() (ivy.data_classes.container.experimental.general._containerwithgeneralexperimental method)": [[75, "ivy.data_classes.container.experimental.general._ContainerWithGeneralExperimental.reduce"]], "relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.relu6"]], "rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfft"]], "rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.rfftn"]], "rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.rot90"]], "scaled_tanh() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.scaled_tanh"]], "selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.selu"]], "signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.signbit"]], "silu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.silu"]], "sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sinc"]], "sliding_window() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.sliding_window"]], "smooth_l1_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.smooth_l1_loss"]], "soft_margin_loss() (ivy.data_classes.container.experimental.losses._containerwithlossesexperimental method)": [[75, "ivy.data_classes.container.experimental.losses._ContainerWithLossesExperimental.soft_margin_loss"]], "soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.soft_thresholding"]], "softshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.softshrink"]], "sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.sparsify_tensor"]], "static_adaptive_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool1d"]], "static_adaptive_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_avg_pool2d"]], "static_adaptive_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_adaptive_max_pool2d"]], "static_adjoint() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_adjoint"]], "static_allclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_allclose"]], "static_amax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amax"]], "static_amin() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_amin"]], "static_as_strided() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_as_strided"]], "static_atleast_1d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_1d"]], "static_atleast_2d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_2d"]], "static_atleast_3d() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_atleast_3d"]], "static_avg_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool1d"]], "static_avg_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool2d"]], "static_avg_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_avg_pool3d"]], "static_batch_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_batch_norm"]], "static_batched_outer() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_batched_outer"]], "static_bernoulli() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_bernoulli"]], "static_beta() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_beta"]], "static_binarizer() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_binarizer"]], "static_bincount() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_bincount"]], "static_blackman_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_blackman_window"]], "static_broadcast_shapes() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_broadcast_shapes"]], "static_column_stack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_column_stack"]], "static_concat_from_sequence() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_concat_from_sequence"]], "static_cond() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_cond"]], "static_conj() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_conj"]], "static_copysign() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_copysign"]], "static_corrcoef() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_corrcoef"]], "static_count_nonzero() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_count_nonzero"]], "static_cov() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_cov"]], "static_dct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dct"]], "static_dft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_dft"]], "static_diagflat() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_diagflat"]], "static_diff() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_diff"]], "static_digamma() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_digamma"]], "static_dirichlet() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_dirichlet"]], "static_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_dot"]], "static_dsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dsplit"]], "static_dstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_dstack"]], "static_eig() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eig"]], "static_eigh_tridiagonal() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigh_tridiagonal"]], "static_eigvals() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_eigvals"]], "static_embedding() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_embedding"]], "static_erfc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_erfc"]], "static_expand() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_expand"]], "static_eye_like() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_eye_like"]], "static_fix() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fix"]], "static_flatten() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flatten"]], "static_fliplr() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fliplr"]], "static_flipud() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_flipud"]], "static_float_power() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_float_power"]], "static_fmax() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmax"]], "static_fmod() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_fmod"]], "static_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_fold"]], "static_frexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_frexp"]], "static_gamma() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_gamma"]], "static_gradient() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_gradient"]], "static_group_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_group_norm"]], "static_hamming_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hamming_window"]], "static_hann_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_hann_window"]], "static_heaviside() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_heaviside"]], "static_higher_order_moment() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_higher_order_moment"]], "static_histogram() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_histogram"]], "static_hsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hsplit"]], "static_hstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_hstack"]], "static_hypot() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_hypot"]], "static_i0() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_i0"]], "static_idct() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_idct"]], "static_ifft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifft"]], "static_ifftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_ifftn"]], "static_igamma() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_igamma"]], "static_initialize_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_initialize_tucker"]], "static_instance_norm() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_instance_norm"]], "static_interpolate() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_interpolate"]], "static_invert_permutation() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_invert_permutation"]], "static_isclose() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_isclose"]], "static_kaiser_bessel_derived_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_bessel_derived_window"]], "static_kaiser_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_kaiser_window"]], "static_kron() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_kron"]], "static_l1_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l1_normalize"]], "static_l2_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_l2_normalize"]], "static_ldexp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_ldexp"]], "static_lerp() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_lerp"]], "static_lexsort() (ivy.data_classes.container.experimental.sorting._containerwithsortingexperimental static method)": [[75, "ivy.data_classes.container.experimental.sorting._ContainerWithSortingExperimental.static_lexsort"]], "static_logit() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logit"]], "static_logsigmoid() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_logsigmoid"]], "static_lp_normalize() (ivy.data_classes.container.experimental.norms._containerwithnormsexperimental static method)": [[75, "ivy.data_classes.container.experimental.norms._ContainerWithNormsExperimental.static_lp_normalize"]], "static_make_svd_non_negative() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_make_svd_non_negative"]], "static_matricize() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_matricize"]], "static_matrix_exp() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_matrix_exp"]], "static_max_pool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool1d"]], "static_max_pool2d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool2d"]], "static_max_pool3d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_pool3d"]], "static_max_unpool1d() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_max_unpool1d"]], "static_median() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_median"]], "static_mel_weight_matrix() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_mel_weight_matrix"]], "static_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_mode_dot"]], "static_modf() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_modf"]], "static_moveaxis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_moveaxis"]], "static_multi_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_dot"]], "static_multi_mode_dot() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_multi_mode_dot"]], "static_nanmean() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmean"]], "static_nanmedian() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanmedian"]], "static_nanprod() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_nanprod"]], "static_nansum() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nansum"]], "static_nextafter() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_nextafter"]], "static_optional_get_element() (ivy.data_classes.container.experimental.utility._containerwithutilityexperimental static method)": [[75, "ivy.data_classes.container.experimental.utility._ContainerWithUtilityExperimental.static_optional_get_element"]], "static_pad() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_pad"]], "static_partial_fold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_fold"]], "static_partial_tensor_to_vec() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_tensor_to_vec"]], "static_partial_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_partial_tucker"]], "static_partial_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_unfold"]], "static_partial_vec_to_tensor() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_partial_vec_to_tensor"]], "static_poisson() (ivy.data_classes.container.experimental.random._containerwithrandomexperimental static method)": [[75, "ivy.data_classes.container.experimental.random._ContainerWithRandomExperimental.static_poisson"]], "static_polyval() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_polyval"]], "static_prelu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_prelu"]], "static_quantile() (ivy.data_classes.container.experimental.statistical._containerwithstatisticalexperimental static method)": [[75, "ivy.data_classes.container.experimental.statistical._ContainerWithStatisticalExperimental.static_quantile"]], "static_relu6() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_relu6"]], "static_rfft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfft"]], "static_rfftn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rfftn"]], "static_rnn() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_rnn"]], "static_rot90() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_rot90"]], "static_selu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_selu"]], "static_signbit() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_signbit"]], "static_sinc() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sinc"]], "static_soft_thresholding() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_soft_thresholding"]], "static_sparsify_tensor() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_sparsify_tensor"]], "static_stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental static method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.static_stft"]], "static_svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_svd_flip"]], "static_take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_take_along_axis"]], "static_tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tensor_train"]], "static_thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental static method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.static_thresholded_relu"]], "static_top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_top_k"]], "static_tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_tril_indices"]], "static_truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_truncated_svd"]], "static_tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tt_matrix_to_tensor"]], "static_tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental static method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.static_tucker"]], "static_unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_unfold"]], "static_unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental static method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.static_unravel_index"]], "static_unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_mean"]], "static_unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_min"]], "static_unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_unsorted_segment_sum"]], "static_vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental static method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.static_vorbis_window"]], "static_vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vsplit"]], "static_vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental static method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.static_vstack"]], "static_xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_xlogy"]], "static_zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental static method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.static_zeta"]], "stft() (ivy.data_classes.container.experimental.layers._containerwithlayersexperimental method)": [[75, "ivy.data_classes.container.experimental.layers._ContainerWithLayersExperimental.stft"]], "svd_flip() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.svd_flip"]], "take() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take"]], "take_along_axis() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.take_along_axis"]], "tanhshrink() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.tanhshrink"]], "tensor_train() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tensor_train"]], "threshold() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.threshold"]], "thresholded_relu() (ivy.data_classes.container.experimental.activations._containerwithactivationexperimental method)": [[75, "ivy.data_classes.container.experimental.activations._ContainerWithActivationExperimental.thresholded_relu"]], "top_k() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.top_k"]], "tril_indices() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.tril_indices"]], "trilu() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.trilu"]], "trim_zeros() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.trim_zeros"]], "truncated_svd() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.truncated_svd"]], "tt_matrix_to_tensor() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tt_matrix_to_tensor"]], "tucker() (ivy.data_classes.container.experimental.linear_algebra._containerwithlinearalgebraexperimental method)": [[75, "ivy.data_classes.container.experimental.linear_algebra._ContainerWithLinearAlgebraExperimental.tucker"]], "unfold() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unfold"]], "unique_consecutive() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.unique_consecutive"]], "unravel_index() (ivy.data_classes.container.experimental.searching._containerwithsearchingexperimental method)": [[75, "ivy.data_classes.container.experimental.searching._ContainerWithSearchingExperimental.unravel_index"]], "unsorted_segment_mean() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_mean"]], "unsorted_segment_min() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_min"]], "unsorted_segment_sum() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.unsorted_segment_sum"]], "vorbis_window() (ivy.data_classes.container.experimental.creation._containerwithcreationexperimental method)": [[75, "ivy.data_classes.container.experimental.creation._ContainerWithCreationExperimental.vorbis_window"]], "vsplit() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vsplit"]], "vstack() (ivy.data_classes.container.experimental.manipulation._containerwithmanipulationexperimental method)": [[75, "ivy.data_classes.container.experimental.manipulation._ContainerWithManipulationExperimental.vstack"]], "xlogy() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.xlogy"]], "zeta() (ivy.data_classes.container.experimental.elementwise._containerwithelementwiseexperimental method)": [[75, "ivy.data_classes.container.experimental.elementwise._ContainerWithElementWiseExperimental.zeta"]], "_containerwithgeneral (class in ivy.data_classes.container.general)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral"]], "_abc_impl (ivy.data_classes.container.general._containerwithgeneral attribute)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._abc_impl"]], "_static_all_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_all_equal"]], "_static_array_equal() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_array_equal"]], "_static_assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_assert_supports_inplace"]], "_static_clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_matrix_norm"]], "_static_clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_clip_vector_norm"]], "_static_einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_rearrange"]], "_static_einops_reduce() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_reduce"]], "_static_einops_repeat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_einops_repeat"]], "_static_exists() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_exists"]], "_static_fourier_encode() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_fourier_encode"]], "_static_gather() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather"]], "_static_gather_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_gather_nd"]], "_static_get_num_dims() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_get_num_dims"]], "_static_has_nans() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_has_nans"]], "_static_inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_decrement"]], "_static_inplace_increment() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_increment"]], "_static_inplace_update() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_inplace_update"]], "_static_is_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_array"]], "_static_is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_ivy_array"]], "_static_is_native_array() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_is_native_array"]], "_static_scatter_flat() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_flat"]], "_static_scatter_nd() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_scatter_nd"]], "_static_stable_divide() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_divide"]], "_static_stable_pow() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_stable_pow"]], "_static_supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_supports_inplace_updates"]], "_static_to_list() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_list"]], "_static_to_numpy() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_numpy"]], "_static_to_scalar() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_to_scalar"]], "_static_value_is_nan() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral._static_value_is_nan"]], "all_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.all_equal"]], "array_equal() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.array_equal"]], "assert_supports_inplace() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.assert_supports_inplace"]], "clip_matrix_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_matrix_norm"]], "clip_vector_norm() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.clip_vector_norm"]], "einops_rearrange() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_rearrange"]], "einops_reduce() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_reduce"]], "einops_repeat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.einops_repeat"]], "exists() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.exists"]], "fourier_encode() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.fourier_encode"]], "gather() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather"]], "gather_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.gather_nd"]], "get_num_dims() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.get_num_dims"]], "has_nans() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.has_nans"]], "inplace_decrement() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_decrement"]], "inplace_increment() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_increment"]], "inplace_update() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.inplace_update"]], "is_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_array"]], "is_ivy_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_ivy_array"]], "is_native_array() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.is_native_array"]], "isin() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.isin"]], "itemsize() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.itemsize"]], "ivy.data_classes.container.general": [[76, "module-ivy.data_classes.container.general"]], "scatter_flat() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_flat"]], "scatter_nd() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.scatter_nd"]], "stable_divide() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_divide"]], "stable_pow() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.stable_pow"]], "static_isin() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_isin"]], "static_itemsize() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_itemsize"]], "static_strides() (ivy.data_classes.container.general._containerwithgeneral static method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.static_strides"]], "strides() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.strides"]], "supports_inplace_updates() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.supports_inplace_updates"]], "to_list() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_list"]], "to_numpy() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_numpy"]], "to_scalar() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.to_scalar"]], "value_is_nan() (ivy.data_classes.container.general._containerwithgeneral method)": [[76, "ivy.data_classes.container.general._ContainerWithGeneral.value_is_nan"]], "_containerwithgradients (class in ivy.data_classes.container.gradients)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients"]], "_abc_impl (ivy.data_classes.container.gradients._containerwithgradients attribute)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._abc_impl"]], "_static_stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients static method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients._static_stop_gradient"]], "adam_step() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_step"]], "adam_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.adam_update"]], "gradient_descent_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.gradient_descent_update"]], "ivy.data_classes.container.gradients": [[77, "module-ivy.data_classes.container.gradients"]], "lamb_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lamb_update"]], "lars_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.lars_update"]], "optimizer_update() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.optimizer_update"]], "stop_gradient() (ivy.data_classes.container.gradients._containerwithgradients method)": [[77, "ivy.data_classes.container.gradients._ContainerWithGradients.stop_gradient"]], "_containerwithimage (class in ivy.data_classes.container.image)": [[78, "ivy.data_classes.container.image._ContainerWithImage"]], "_abc_impl (ivy.data_classes.container.image._containerwithimage attribute)": [[78, "ivy.data_classes.container.image._ContainerWithImage._abc_impl"]], "ivy.data_classes.container.image": [[78, "module-ivy.data_classes.container.image"]], "_containerwithlayers (class in ivy.data_classes.container.layers)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers"]], "_abc_impl (ivy.data_classes.container.layers._containerwithlayers attribute)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._abc_impl"]], "_static_conv1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d"]], "_static_conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv1d_transpose"]], "_static_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d"]], "_static_conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv2d_transpose"]], "_static_conv3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d"]], "_static_conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_conv3d_transpose"]], "_static_depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_depthwise_conv2d"]], "_static_dropout() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout"]], "_static_dropout1d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout1d"]], "_static_dropout2d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout2d"]], "_static_dropout3d() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_dropout3d"]], "_static_linear() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_linear"]], "_static_lstm_update() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_lstm_update"]], "_static_multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_multi_head_attention"]], "_static_reduce_window() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_reduce_window"]], "_static_scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers static method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers._static_scaled_dot_product_attention"]], "conv1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d"]], "conv1d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv1d_transpose"]], "conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d"]], "conv2d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv2d_transpose"]], "conv3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d"]], "conv3d_transpose() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.conv3d_transpose"]], "depthwise_conv2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.depthwise_conv2d"]], "dropout() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout"]], "dropout1d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout1d"]], "dropout2d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout2d"]], "dropout3d() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.dropout3d"]], "ivy.data_classes.container.layers": [[79, "module-ivy.data_classes.container.layers"]], "linear() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.linear"]], "lstm_update() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.lstm_update"]], "multi_head_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.multi_head_attention"]], "reduce_window() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.reduce_window"]], "scaled_dot_product_attention() (ivy.data_classes.container.layers._containerwithlayers method)": [[79, "ivy.data_classes.container.layers._ContainerWithLayers.scaled_dot_product_attention"]], "_containerwithlinearalgebra (class in ivy.data_classes.container.linear_algebra)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra"]], "_abc_impl (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra attribute)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._abc_impl"]], "_static_cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cholesky"]], "_static_cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_cross"]], "_static_det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_det"]], "_static_diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diag"]], "_static_diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_diagonal"]], "_static_eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigh"]], "_static_eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_eigvalsh"]], "_static_inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inner"]], "_static_inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_inv"]], "_static_matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matmul"]], "_static_matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_norm"]], "_static_matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_power"]], "_static_matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_rank"]], "_static_matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_matrix_transpose"]], "_static_outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_outer"]], "_static_pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_pinv"]], "_static_qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_qr"]], "_static_slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_slogdet"]], "_static_solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_solve"]], "_static_svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svd"]], "_static_svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_svdvals"]], "_static_tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensordot"]], "_static_tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_tensorsolve"]], "_static_trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_trace"]], "_static_vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vander"]], "_static_vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vecdot"]], "_static_vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_norm"]], "_static_vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra._static_vector_to_skew_symmetric_matrix"]], "cholesky() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cholesky"]], "cross() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.cross"]], "det() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.det"]], "diag() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diag"]], "diagonal() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.diagonal"]], "eigh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigh"]], "eigvalsh() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.eigvalsh"]], "general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.general_inner_product"]], "inner() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inner"]], "inv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.inv"]], "ivy.data_classes.container.linear_algebra": [[80, "module-ivy.data_classes.container.linear_algebra"]], "matmul() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matmul"]], "matrix_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_norm"]], "matrix_power() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_power"]], "matrix_rank() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_rank"]], "matrix_transpose() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.matrix_transpose"]], "outer() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.outer"]], "pinv() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.pinv"]], "qr() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.qr"]], "slogdet() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.slogdet"]], "solve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.solve"]], "static_general_inner_product() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra static method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.static_general_inner_product"]], "svd() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svd"]], "svdvals() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.svdvals"]], "tensordot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensordot"]], "tensorsolve() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.tensorsolve"]], "trace() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.trace"]], "vander() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vander"]], "vecdot() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vecdot"]], "vector_norm() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.data_classes.container.linear_algebra._containerwithlinearalgebra method)": [[80, "ivy.data_classes.container.linear_algebra._ContainerWithLinearAlgebra.vector_to_skew_symmetric_matrix"]], "_containerwithlosses (class in ivy.data_classes.container.losses)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses"]], "_abc_impl (ivy.data_classes.container.losses._containerwithlosses attribute)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._abc_impl"]], "_static_binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_binary_cross_entropy"]], "_static_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_cross_entropy"]], "_static_sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses static method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses._static_sparse_cross_entropy"]], "binary_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.binary_cross_entropy"]], "cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.cross_entropy"]], "ivy.data_classes.container.losses": [[81, "module-ivy.data_classes.container.losses"]], "sparse_cross_entropy() (ivy.data_classes.container.losses._containerwithlosses method)": [[81, "ivy.data_classes.container.losses._ContainerWithLosses.sparse_cross_entropy"]], "_containerwithmanipulation (class in ivy.data_classes.container.manipulation)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation"]], "_abc_impl (ivy.data_classes.container.manipulation._containerwithmanipulation attribute)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._abc_impl"]], "_static_clip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_clip"]], "_static_concat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_concat"]], "_static_constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_constant_pad"]], "_static_expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_expand_dims"]], "_static_flip() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_flip"]], "_static_permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_permute_dims"]], "_static_repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_repeat"]], "_static_reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_reshape"]], "_static_roll() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_roll"]], "_static_split() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_split"]], "_static_squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_squeeze"]], "_static_stack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_stack"]], "_static_swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_swapaxes"]], "_static_tile() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_tile"]], "_static_unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_unstack"]], "_static_zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation static method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation._static_zero_pad"]], "clip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.clip"]], "concat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.concat"]], "constant_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.constant_pad"]], "expand_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.expand_dims"]], "flip() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.flip"]], "ivy.data_classes.container.manipulation": [[82, "module-ivy.data_classes.container.manipulation"]], "permute_dims() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.permute_dims"]], "repeat() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.repeat"]], "reshape() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.reshape"]], "roll() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.roll"]], "split() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.split"]], "squeeze() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.squeeze"]], "stack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.stack"]], "swapaxes() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.swapaxes"]], "tile() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.tile"]], "unstack() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.unstack"]], "zero_pad() (ivy.data_classes.container.manipulation._containerwithmanipulation method)": [[82, "ivy.data_classes.container.manipulation._ContainerWithManipulation.zero_pad"]], "_containerwithnorms (class in ivy.data_classes.container.norms)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms"]], "_abc_impl (ivy.data_classes.container.norms._containerwithnorms attribute)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms._abc_impl"]], "ivy.data_classes.container.norms": [[83, "module-ivy.data_classes.container.norms"]], "layer_norm() (ivy.data_classes.container.norms._containerwithnorms method)": [[83, "ivy.data_classes.container.norms._ContainerWithNorms.layer_norm"]], "_containerwithrandom (class in ivy.data_classes.container.random)": [[84, "ivy.data_classes.container.random._ContainerWithRandom"]], "_abc_impl (ivy.data_classes.container.random._containerwithrandom attribute)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._abc_impl"]], "_static_multinomial() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_multinomial"]], "_static_randint() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_randint"]], "_static_random_normal() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_normal"]], "_static_random_uniform() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_random_uniform"]], "_static_shuffle() (ivy.data_classes.container.random._containerwithrandom static method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom._static_shuffle"]], "ivy.data_classes.container.random": [[84, "module-ivy.data_classes.container.random"]], "multinomial() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.multinomial"]], "randint() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.randint"]], "random_normal() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_normal"]], "random_uniform() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.random_uniform"]], "shuffle() (ivy.data_classes.container.random._containerwithrandom method)": [[84, "ivy.data_classes.container.random._ContainerWithRandom.shuffle"]], "_containerwithsearching (class in ivy.data_classes.container.searching)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching"]], "_abc_impl (ivy.data_classes.container.searching._containerwithsearching attribute)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._abc_impl"]], "_static_argmax() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmax"]], "_static_argmin() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argmin"]], "_static_argwhere() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_argwhere"]], "_static_nonzero() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_nonzero"]], "_static_where() (ivy.data_classes.container.searching._containerwithsearching static method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching._static_where"]], "argmax() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmax"]], "argmin() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argmin"]], "argwhere() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.argwhere"]], "ivy.data_classes.container.searching": [[85, "module-ivy.data_classes.container.searching"]], "nonzero() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.nonzero"]], "where() (ivy.data_classes.container.searching._containerwithsearching method)": [[85, "ivy.data_classes.container.searching._ContainerWithSearching.where"]], "_containerwithset (class in ivy.data_classes.container.set)": [[86, "ivy.data_classes.container.set._ContainerWithSet"]], "_abc_impl (ivy.data_classes.container.set._containerwithset attribute)": [[86, "ivy.data_classes.container.set._ContainerWithSet._abc_impl"]], "_static_unique_all() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_all"]], "_static_unique_counts() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_counts"]], "_static_unique_inverse() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_inverse"]], "_static_unique_values() (ivy.data_classes.container.set._containerwithset static method)": [[86, "ivy.data_classes.container.set._ContainerWithSet._static_unique_values"]], "ivy.data_classes.container.set": [[86, "module-ivy.data_classes.container.set"]], "unique_all() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_all"]], "unique_counts() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_counts"]], "unique_inverse() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_inverse"]], "unique_values() (ivy.data_classes.container.set._containerwithset method)": [[86, "ivy.data_classes.container.set._ContainerWithSet.unique_values"]], "_containerwithsorting (class in ivy.data_classes.container.sorting)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting"]], "_abc_impl (ivy.data_classes.container.sorting._containerwithsorting attribute)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._abc_impl"]], "_static_argsort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_argsort"]], "_static_searchsorted() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_searchsorted"]], "_static_sort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting._static_sort"]], "argsort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.argsort"]], "ivy.data_classes.container.sorting": [[87, "module-ivy.data_classes.container.sorting"]], "msort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.msort"]], "searchsorted() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.searchsorted"]], "sort() (ivy.data_classes.container.sorting._containerwithsorting method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.sort"]], "static_msort() (ivy.data_classes.container.sorting._containerwithsorting static method)": [[87, "ivy.data_classes.container.sorting._ContainerWithSorting.static_msort"]], "_containerwithstatistical (class in ivy.data_classes.container.statistical)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical"]], "_abc_impl (ivy.data_classes.container.statistical._containerwithstatistical attribute)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._abc_impl"]], "_static_cumprod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumprod"]], "_static_cumsum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_cumsum"]], "_static_min() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_min"]], "_static_prod() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_prod"]], "_static_sum() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_sum"]], "_static_var() (ivy.data_classes.container.statistical._containerwithstatistical static method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical._static_var"]], "cumprod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumprod"]], "cumsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.cumsum"]], "einsum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.einsum"]], "ivy.data_classes.container.statistical": [[88, "module-ivy.data_classes.container.statistical"]], "max() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.max"]], "mean() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.mean"]], "min() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.min"]], "prod() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.prod"]], "std() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.std"]], "sum() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.sum"]], "var() (ivy.data_classes.container.statistical._containerwithstatistical method)": [[88, "ivy.data_classes.container.statistical._ContainerWithStatistical.var"]], "_containerwithutility (class in ivy.data_classes.container.utility)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility"]], "_abc_impl (ivy.data_classes.container.utility._containerwithutility attribute)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._abc_impl"]], "_static_all() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_all"]], "_static_any() (ivy.data_classes.container.utility._containerwithutility static method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility._static_any"]], "all() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.all"]], "any() (ivy.data_classes.container.utility._containerwithutility method)": [[89, "ivy.data_classes.container.utility._ContainerWithUtility.any"]], "ivy.data_classes.container.utility": [[89, "module-ivy.data_classes.container.utility"]], "_wrap_function() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping._wrap_function"]], "add_ivy_container_instance_methods() (in module ivy.data_classes.container.wrapping)": [[90, "ivy.data_classes.container.wrapping.add_ivy_container_instance_methods"]], "ivy.data_classes.container.wrapping": [[90, "module-ivy.data_classes.container.wrapping"]], "factorizedtensor (class in ivy.data_classes.factorized_tensor.base)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor"]], "__init__() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.base.factorizedtensor attribute)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.base": [[91, "module-ivy.data_classes.factorized_tensor.base"]], "mode_dot() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.mode_dot"]], "norm() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.norm"]], "to_tensor() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.base.factorizedtensor method)": [[91, "ivy.data_classes.factorized_tensor.base.FactorizedTensor.to_vec"]], "cptensor (class in ivy.data_classes.factorized_tensor.cp_tensor)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor"]], "__init__() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.cp_tensor.cptensor attribute)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor._abc_impl"]], "cp_copy() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_copy"]], "cp_flip_sign() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_flip_sign"]], "cp_lstsq_grad() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_lstsq_grad"]], "cp_mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_mode_dot"]], "cp_n_param() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_n_param"]], "cp_norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_norm"]], "cp_normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_normalize"]], "cp_to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_tensor"]], "cp_to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_unfolded"]], "cp_to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.cp_to_vec"]], "ivy.data_classes.factorized_tensor.cp_tensor": [[92, "module-ivy.data_classes.factorized_tensor.cp_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.cp_tensor.cptensor property)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.n_param"]], "norm() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.norm"]], "normalize() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.normalize"]], "to_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.to_vec"]], "unfolding_dot_khatri_rao() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.unfolding_dot_khatri_rao"]], "validate_cp_rank() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_rank"]], "validate_cp_tensor() (ivy.data_classes.factorized_tensor.cp_tensor.cptensor static method)": [[92, "ivy.data_classes.factorized_tensor.cp_tensor.CPTensor.validate_cp_tensor"]], "parafac2tensor (class in ivy.data_classes.factorized_tensor.parafac2_tensor)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor"]], "__init__() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor attribute)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor._abc_impl"]], "apply_parafac2_projections() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.apply_parafac2_projections"]], "from_cptensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor class method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.from_CPTensor"]], "ivy.data_classes.factorized_tensor.parafac2_tensor": [[93, "module-ivy.data_classes.factorized_tensor.parafac2_tensor"]], "n_param (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor property)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.n_param"]], "parafac2_normalise() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_normalise"]], "parafac2_to_slice() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slice"]], "parafac2_to_slices() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_slices"]], "parafac2_to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_tensor"]], "parafac2_to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_unfolded"]], "parafac2_to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.parafac2_to_vec"]], "to_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.to_vec"]], "validate_parafac2_tensor() (ivy.data_classes.factorized_tensor.parafac2_tensor.parafac2tensor static method)": [[93, "ivy.data_classes.factorized_tensor.parafac2_tensor.Parafac2Tensor.validate_parafac2_tensor"]], "trtensor (class in ivy.data_classes.factorized_tensor.tr_tensor)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tr_tensor.trtensor attribute)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor._abc_impl"]], "ivy.data_classes.factorized_tensor.tr_tensor": [[94, "module-ivy.data_classes.factorized_tensor.tr_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tr_tensor.trtensor property)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.to_vec"]], "tr_n_param() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_n_param"]], "tr_to_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_tensor"]], "tr_to_unfolded() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_unfolded"]], "tr_to_vec() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.tr_to_vec"]], "validate_tr_rank() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_rank"]], "validate_tr_tensor() (ivy.data_classes.factorized_tensor.tr_tensor.trtensor static method)": [[94, "ivy.data_classes.factorized_tensor.tr_tensor.TRTensor.validate_tr_tensor"]], "tttensor (class in ivy.data_classes.factorized_tensor.tt_tensor)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tt_tensor.tttensor attribute)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._abc_impl"]], "_tt_n_param() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor._tt_n_param"]], "index_update() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.index_update"]], "ivy.data_classes.factorized_tensor.tt_tensor": [[95, "module-ivy.data_classes.factorized_tensor.tt_tensor"]], "n_param (ivy.data_classes.factorized_tensor.tt_tensor.tttensor property)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.n_param"]], "pad_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.pad_tt_rank"]], "to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_tensor"]], "to_unfolding() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_unfolding"]], "to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.to_vec"]], "tt_to_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_tensor"]], "tt_to_unfolded() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_unfolded"]], "tt_to_vec() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.tt_to_vec"]], "validate_tt_rank() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_rank"]], "validate_tt_tensor() (ivy.data_classes.factorized_tensor.tt_tensor.tttensor static method)": [[95, "ivy.data_classes.factorized_tensor.tt_tensor.TTTensor.validate_tt_tensor"]], "tuckertensor (class in ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor"]], "__init__() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.__init__"]], "_abc_impl (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor attribute)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor._abc_impl"]], "_bisection_root_finder() (in module ivy.data_classes.factorized_tensor.tucker_tensor)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor._bisection_root_finder"]], "ivy.data_classes.factorized_tensor.tucker_tensor": [[96, "module-ivy.data_classes.factorized_tensor.tucker_tensor"]], "mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.mode_dot"]], "n_param (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor property)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.n_param"]], "to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_tensor"]], "to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_unfolded"]], "to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.to_vec"]], "tucker_copy() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_copy"]], "tucker_mode_dot() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_mode_dot"]], "tucker_n_param() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_n_param"]], "tucker_normalize() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_normalize"]], "tucker_to_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_tensor"]], "tucker_to_unfolded() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_unfolded"]], "tucker_to_vec() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.tucker_to_vec"]], "validate_tucker_rank() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_rank"]], "validate_tucker_tensor() (ivy.data_classes.factorized_tensor.tucker_tensor.tuckertensor static method)": [[96, "ivy.data_classes.factorized_tensor.tucker_tensor.TuckerTensor.validate_tucker_tensor"]], "array (class in ivy.data_classes.array.array)": [[97, "ivy.data_classes.array.array.Array"]], "t (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.T"]], "__abs__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__abs__"]], "__add__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__add__"]], "__eq__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__eq__"]], "__ge__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ge__"]], "__gt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__gt__"]], "__init__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__init__"]], "__le__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__le__"]], "__lt__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__lt__"]], "__ne__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__ne__"]], "__pow__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__pow__"]], "__radd__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__radd__"]], "__rrshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rrshift__"]], "__rshift__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rshift__"]], "__rsub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__rsub__"]], "__sub__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__sub__"]], "__truediv__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__truediv__"]], "__xor__() (ivy.data_classes.array.array.array method)": [[97, "ivy.data_classes.array.array.Array.__xor__"]], "backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.backend"]], "base (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.base"]], "data (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.data"]], "device (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.device"]], "dtype (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dtype"]], "dynamic_backend (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.dynamic_backend"]], "imag (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.imag"]], "itemsize (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.itemsize"]], "ivy.data_classes.array.array": [[97, "module-ivy.data_classes.array.array"]], "mt (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.mT"]], "ndim (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.ndim"]], "real (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.real"]], "shape (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.shape"]], "size (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.size"]], "strides (ivy.data_classes.array.array.array property)": [[97, "ivy.data_classes.array.array.Array.strides"]], "container (class in ivy.data_classes.container.container)": [[98, "ivy.data_classes.container.container.Container"]], "__abs__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__abs__"]], "__add__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__add__"]], "__eq__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__eq__"]], "__ge__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ge__"]], "__gt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__gt__"]], "__init__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__init__"]], "__le__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__le__"]], "__lt__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__lt__"]], "__ne__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__ne__"]], "__pow__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__pow__"]], "__radd__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__radd__"]], "__rrshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rrshift__"]], "__rshift__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rshift__"]], "__rsub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__rsub__"]], "__sub__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__sub__"]], "__truediv__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__truediv__"]], "__xor__() (ivy.data_classes.container.container.container method)": [[98, "ivy.data_classes.container.container.Container.__xor__"]], "ivy.data_classes.container.container": [[98, "module-ivy.data_classes.container.container"]], "nestedarray (class in ivy.data_classes.nested_array.nested_array)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray"]], "__init__() (ivy.data_classes.nested_array.nested_array.nestedarray method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.__init__"]], "from_row_lengths() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_lengths"]], "from_row_splits() (ivy.data_classes.nested_array.nested_array.nestedarray class method)": [[100, "ivy.data_classes.nested_array.nested_array.NestedArray.from_row_splits"]], "ivy.data_classes.nested_array.nested_array": [[100, "module-ivy.data_classes.nested_array.nested_array"]], "nestedarraybase (class in ivy.data_classes.nested_array.base)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase"]], "__init__() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.__init__"]], "_abc_impl (ivy.data_classes.nested_array.base.nestedarraybase attribute)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase._abc_impl"]], "broadcast_shapes() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.broadcast_shapes"]], "data (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.data"]], "device (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.device"]], "dtype (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.dtype"]], "inner_shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.inner_shape"]], "ivy.data_classes.nested_array.base": [[101, "module-ivy.data_classes.nested_array.base"]], "ndim (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ndim"]], "nested_array() (ivy.data_classes.nested_array.base.nestedarraybase class method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_array"]], "nested_rank (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.nested_rank"]], "ragged_map() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_map"]], "ragged_multi_map() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map"]], "ragged_multi_map_in_function() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.ragged_multi_map_in_function"]], "replace_ivy_arrays() (ivy.data_classes.nested_array.base.nestedarraybase static method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.replace_ivy_arrays"]], "shape (ivy.data_classes.nested_array.base.nestedarraybase property)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.shape"]], "unbind() (ivy.data_classes.nested_array.base.nestedarraybase method)": [[101, "ivy.data_classes.nested_array.base.NestedArrayBase.unbind"]], "nestedarrayelementwise (class in ivy.data_classes.nested_array.elementwise)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise"]], "_abc_impl (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise attribute)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise._abc_impl"]], "ivy.data_classes.nested_array.elementwise": [[102, "module-ivy.data_classes.nested_array.elementwise"]], "static_add() (ivy.data_classes.nested_array.elementwise.nestedarrayelementwise static method)": [[102, "ivy.data_classes.nested_array.elementwise.NestedArrayElementwise.static_add"]], "gelu() (in module ivy)": [[105, "ivy.gelu"], [613, "ivy.gelu"]], "gelu() (ivy.array method)": [[105, "ivy.Array.gelu"]], "gelu() (ivy.container method)": [[105, "ivy.Container.gelu"]], "hardswish() (in module ivy)": [[106, "ivy.hardswish"], [613, "ivy.hardswish"]], "hardswish() (ivy.array method)": [[106, "ivy.Array.hardswish"]], "hardswish() (ivy.container method)": [[106, "ivy.Container.hardswish"]], "leaky_relu() (in module ivy)": [[107, "ivy.leaky_relu"], [613, "ivy.leaky_relu"]], "leaky_relu() (ivy.array method)": [[107, "ivy.Array.leaky_relu"]], "leaky_relu() (ivy.container method)": [[107, "ivy.Container.leaky_relu"]], "log_softmax() (in module ivy)": [[108, "ivy.log_softmax"], [613, "ivy.log_softmax"]], "log_softmax() (ivy.array method)": [[108, "ivy.Array.log_softmax"]], "log_softmax() (ivy.container method)": [[108, "ivy.Container.log_softmax"]], "mish() (in module ivy)": [[109, "ivy.mish"], [613, "ivy.mish"]], "mish() (ivy.array method)": [[109, "ivy.Array.mish"]], "mish() (ivy.container method)": [[109, "ivy.Container.mish"]], "relu() (in module ivy)": [[110, "ivy.relu"], [613, "ivy.relu"]], "relu() (ivy.array method)": [[110, "ivy.Array.relu"]], "relu() (ivy.container method)": [[110, "ivy.Container.relu"]], "sigmoid() (in module ivy)": [[111, "ivy.sigmoid"], [613, "ivy.sigmoid"]], "sigmoid() (ivy.array method)": [[111, "ivy.Array.sigmoid"]], "sigmoid() (ivy.container method)": [[111, "ivy.Container.sigmoid"]], "softmax() (in module ivy)": [[112, "ivy.softmax"], [613, "ivy.softmax"]], "softmax() (ivy.array method)": [[112, "ivy.Array.softmax"]], "softmax() (ivy.container method)": [[112, "ivy.Container.softmax"]], "softplus() (in module ivy)": [[113, "ivy.softplus"], [613, "ivy.softplus"]], "softplus() (ivy.array method)": [[113, "ivy.Array.softplus"]], "softplus() (ivy.container method)": [[113, "ivy.Container.softplus"]], "softsign() (in module ivy)": [[114, "ivy.softsign"], [613, "ivy.softsign"]], "cmp_is() (in module ivy)": [[115, "ivy.cmp_is"], [615, "ivy.cmp_is"]], "cmp_isnot() (in module ivy)": [[116, "ivy.cmp_isnot"], [615, "ivy.cmp_isnot"]], "for_loop() (in module ivy)": [[117, "ivy.for_loop"], [615, "ivy.for_loop"]], "if_else() (in module ivy)": [[118, "ivy.if_else"], [615, "ivy.if_else"]], "try_except() (in module ivy)": [[119, "ivy.try_except"], [615, "ivy.try_except"]], "while_loop() (in module ivy)": [[120, "ivy.while_loop"], [615, "ivy.while_loop"]], "arange() (in module ivy)": [[121, "ivy.arange"], [616, "ivy.arange"]], "array() (in module ivy)": [[122, "ivy.array"], [616, "ivy.array"]], "asarray() (in module ivy)": [[123, "ivy.asarray"], [616, "ivy.asarray"]], "asarray() (ivy.array method)": [[123, "ivy.Array.asarray"]], "asarray() (ivy.container method)": [[123, "ivy.Container.asarray"]], "copy_array() (in module ivy)": [[124, "ivy.copy_array"], [616, "ivy.copy_array"]], "copy_array() (ivy.array method)": [[124, "ivy.Array.copy_array"]], "copy_array() (ivy.container method)": [[124, "ivy.Container.copy_array"]], "empty() (in module ivy)": [[125, "ivy.empty"], [616, "ivy.empty"]], "empty_like() (in module ivy)": [[126, "ivy.empty_like"], [616, "ivy.empty_like"]], "empty_like() (ivy.array method)": [[126, "ivy.Array.empty_like"]], "empty_like() (ivy.container method)": [[126, "ivy.Container.empty_like"]], "eye() (in module ivy)": [[127, "ivy.eye"], [616, "ivy.eye"]], "from_dlpack() (in module ivy)": [[128, "ivy.from_dlpack"], [616, "ivy.from_dlpack"]], "from_dlpack() (ivy.array method)": [[128, "ivy.Array.from_dlpack"]], "from_dlpack() (ivy.container method)": [[128, "ivy.Container.from_dlpack"]], "frombuffer() (in module ivy)": [[129, "ivy.frombuffer"], [616, "ivy.frombuffer"]], "frombuffer() (ivy.container method)": [[129, "ivy.Container.frombuffer"]], "full() (in module ivy)": [[130, "ivy.full"], [616, "ivy.full"]], "full_like() (in module ivy)": [[131, "ivy.full_like"], [616, "ivy.full_like"]], "full_like() (ivy.array method)": [[131, "ivy.Array.full_like"]], "full_like() (ivy.container method)": [[131, "ivy.Container.full_like"]], "linspace() (in module ivy)": [[132, "ivy.linspace"], [616, "ivy.linspace"]], "linspace() (ivy.array method)": [[132, "ivy.Array.linspace"]], "linspace() (ivy.container method)": [[132, "ivy.Container.linspace"]], "logspace() (in module ivy)": [[133, "ivy.logspace"], [616, "ivy.logspace"]], "logspace() (ivy.array method)": [[133, "ivy.Array.logspace"]], "logspace() (ivy.container method)": [[133, "ivy.Container.logspace"]], "meshgrid() (in module ivy)": [[134, "ivy.meshgrid"], [616, "ivy.meshgrid"]], "meshgrid() (ivy.array method)": [[134, "ivy.Array.meshgrid"]], "meshgrid() (ivy.container method)": [[134, "ivy.Container.meshgrid"]], "native_array() (in module ivy)": [[135, "ivy.native_array"], [616, "ivy.native_array"]], "native_array() (ivy.array method)": [[135, "ivy.Array.native_array"]], "native_array() (ivy.container method)": [[135, "ivy.Container.native_array"]], "one_hot() (in module ivy)": [[136, "ivy.one_hot"], [616, "ivy.one_hot"]], "one_hot() (ivy.array method)": [[136, "ivy.Array.one_hot"]], "one_hot() (ivy.container method)": [[136, "ivy.Container.one_hot"]], "ones() (in module ivy)": [[137, "ivy.ones"], [616, "ivy.ones"]], "ones_like() (in module ivy)": [[138, "ivy.ones_like"], [616, "ivy.ones_like"]], "ones_like() (ivy.array method)": [[138, "ivy.Array.ones_like"]], "ones_like() (ivy.container method)": [[138, "ivy.Container.ones_like"]], "to_dlpack() (in module ivy)": [[139, "ivy.to_dlpack"], [616, "ivy.to_dlpack"]], "tril() (in module ivy)": [[140, "ivy.tril"], [616, "ivy.tril"]], "tril() (ivy.array method)": [[140, "ivy.Array.tril"]], "tril() (ivy.container method)": [[140, "ivy.Container.tril"]], "triu() (in module ivy)": [[141, "ivy.triu"], [616, "ivy.triu"]], "triu() (ivy.array method)": [[141, "ivy.Array.triu"]], "triu() (ivy.container method)": [[141, "ivy.Container.triu"]], "triu_indices() (in module ivy)": [[142, "ivy.triu_indices"], [616, "ivy.triu_indices"]], "triu_indices() (ivy.container method)": [[142, "ivy.Container.triu_indices"]], "zeros() (in module ivy)": [[143, "ivy.zeros"], [616, "ivy.zeros"]], "zeros_like() (in module ivy)": [[144, "ivy.zeros_like"], [616, "ivy.zeros_like"]], "zeros_like() (ivy.array method)": [[144, "ivy.Array.zeros_like"]], "zeros_like() (ivy.container method)": [[144, "ivy.Container.zeros_like"]], "as_ivy_dtype() (in module ivy)": [[145, "ivy.as_ivy_dtype"], [617, "ivy.as_ivy_dtype"]], "as_native_dtype() (in module ivy)": [[146, "ivy.as_native_dtype"], [617, "ivy.as_native_dtype"]], "astype() (in module ivy)": [[147, "ivy.astype"], [617, "ivy.astype"]], "astype() (ivy.array method)": [[147, "ivy.Array.astype"]], "astype() (ivy.container method)": [[147, "ivy.Container.astype"]], "broadcast_arrays() (in module ivy)": [[148, "ivy.broadcast_arrays"], [617, "ivy.broadcast_arrays"]], "broadcast_arrays() (ivy.array method)": [[148, "ivy.Array.broadcast_arrays"]], "broadcast_arrays() (ivy.container method)": [[148, "ivy.Container.broadcast_arrays"]], "broadcast_to() (in module ivy)": [[149, "ivy.broadcast_to"], [617, "ivy.broadcast_to"]], "broadcast_to() (ivy.array method)": [[149, "ivy.Array.broadcast_to"]], "broadcast_to() (ivy.container method)": [[149, "ivy.Container.broadcast_to"]], "can_cast() (in module ivy)": [[150, "ivy.can_cast"], [617, "ivy.can_cast"]], "can_cast() (ivy.array method)": [[150, "ivy.Array.can_cast"]], "can_cast() (ivy.container method)": [[150, "ivy.Container.can_cast"]], "check_float() (in module ivy)": [[151, "ivy.check_float"], [617, "ivy.check_float"]], "closest_valid_dtype() (in module ivy)": [[152, "ivy.closest_valid_dtype"], [617, "ivy.closest_valid_dtype"]], "default_complex_dtype() (in module ivy)": [[153, "ivy.default_complex_dtype"], [617, "ivy.default_complex_dtype"]], "default_dtype() (in module ivy)": [[154, "ivy.default_dtype"], [617, "ivy.default_dtype"]], "default_float_dtype() (in module ivy)": [[155, "ivy.default_float_dtype"], [617, "ivy.default_float_dtype"]], "default_int_dtype() (in module ivy)": [[156, "ivy.default_int_dtype"], [617, "ivy.default_int_dtype"]], "default_uint_dtype() (in module ivy)": [[157, "ivy.default_uint_dtype"], [617, "ivy.default_uint_dtype"]], "dtype() (in module ivy)": [[158, "ivy.dtype"], [617, "ivy.dtype"]], "dtype() (ivy.array method)": [[158, "ivy.Array.dtype"]], "dtype() (ivy.container method)": [[158, "ivy.Container.dtype"]], "dtype_bits() (in module ivy)": [[159, "ivy.dtype_bits"], [617, "ivy.dtype_bits"]], "finfo() (in module ivy)": [[160, "ivy.finfo"], [617, "ivy.finfo"]], "finfo() (ivy.array method)": [[160, "ivy.Array.finfo"]], "finfo() (ivy.container method)": [[160, "ivy.Container.finfo"]], "function_supported_dtypes() (in module ivy)": [[161, "ivy.function_supported_dtypes"], [617, "ivy.function_supported_dtypes"]], "function_unsupported_dtypes() (in module ivy)": [[162, "ivy.function_unsupported_dtypes"], [617, "ivy.function_unsupported_dtypes"]], "iinfo() (in module ivy)": [[163, "ivy.iinfo"], [617, "ivy.iinfo"]], "iinfo() (ivy.array method)": [[163, "ivy.Array.iinfo"]], "iinfo() (ivy.container method)": [[163, "ivy.Container.iinfo"]], "infer_default_dtype() (in module ivy)": [[164, "ivy.infer_default_dtype"], [617, "ivy.infer_default_dtype"]], "invalid_dtype() (in module ivy)": [[165, "ivy.invalid_dtype"], [617, "ivy.invalid_dtype"]], "is_bool_dtype() (in module ivy)": [[166, "ivy.is_bool_dtype"], [617, "ivy.is_bool_dtype"]], "is_bool_dtype() (ivy.array method)": [[166, "ivy.Array.is_bool_dtype"]], "is_bool_dtype() (ivy.container method)": [[166, "ivy.Container.is_bool_dtype"]], "is_complex_dtype() (in module ivy)": [[167, "ivy.is_complex_dtype"], [617, "ivy.is_complex_dtype"]], "is_complex_dtype() (ivy.container method)": [[167, "ivy.Container.is_complex_dtype"]], "is_float_dtype() (in module ivy)": [[168, "ivy.is_float_dtype"], [617, "ivy.is_float_dtype"]], "is_float_dtype() (ivy.array method)": [[168, "ivy.Array.is_float_dtype"]], "is_float_dtype() (ivy.container method)": [[168, "ivy.Container.is_float_dtype"]], "is_hashable_dtype() (in module ivy)": [[169, "ivy.is_hashable_dtype"], [617, "ivy.is_hashable_dtype"]], "is_int_dtype() (in module ivy)": [[170, "ivy.is_int_dtype"], [617, "ivy.is_int_dtype"]], "is_int_dtype() (ivy.array method)": [[170, "ivy.Array.is_int_dtype"]], "is_int_dtype() (ivy.container method)": [[170, "ivy.Container.is_int_dtype"]], "is_native_dtype() (in module ivy)": [[171, "ivy.is_native_dtype"], [617, "ivy.is_native_dtype"]], "is_uint_dtype() (in module ivy)": [[172, "ivy.is_uint_dtype"], [617, "ivy.is_uint_dtype"]], "is_uint_dtype() (ivy.array method)": [[172, "ivy.Array.is_uint_dtype"]], "is_uint_dtype() (ivy.container method)": [[172, "ivy.Container.is_uint_dtype"]], "promote_types() (in module ivy)": [[173, "ivy.promote_types"], [617, "ivy.promote_types"]], "promote_types_of_inputs() (in module ivy)": [[174, "ivy.promote_types_of_inputs"], [617, "ivy.promote_types_of_inputs"]], "result_type() (in module ivy)": [[175, "ivy.result_type"], [617, "ivy.result_type"]], "result_type() (ivy.array method)": [[175, "ivy.Array.result_type"]], "result_type() (ivy.container method)": [[175, "ivy.Container.result_type"]], "set_default_complex_dtype() (in module ivy)": [[176, "ivy.set_default_complex_dtype"], [617, "ivy.set_default_complex_dtype"]], "set_default_dtype() (in module ivy)": [[177, "ivy.set_default_dtype"], [617, "ivy.set_default_dtype"]], "set_default_float_dtype() (in module ivy)": [[178, "ivy.set_default_float_dtype"], [617, "ivy.set_default_float_dtype"]], "set_default_int_dtype() (in module ivy)": [[179, "ivy.set_default_int_dtype"], [617, "ivy.set_default_int_dtype"]], "set_default_uint_dtype() (in module ivy)": [[180, "ivy.set_default_uint_dtype"], [617, "ivy.set_default_uint_dtype"]], "type_promote_arrays() (in module ivy)": [[181, "ivy.type_promote_arrays"], [617, "ivy.type_promote_arrays"]], "unset_default_complex_dtype() (in module ivy)": [[182, "ivy.unset_default_complex_dtype"], [617, "ivy.unset_default_complex_dtype"]], "unset_default_dtype() (in module ivy)": [[183, "ivy.unset_default_dtype"], [617, "ivy.unset_default_dtype"]], "unset_default_float_dtype() (in module ivy)": [[184, "ivy.unset_default_float_dtype"], [617, "ivy.unset_default_float_dtype"]], "unset_default_int_dtype() (in module ivy)": [[185, "ivy.unset_default_int_dtype"], [617, "ivy.unset_default_int_dtype"]], "unset_default_uint_dtype() (in module ivy)": [[186, "ivy.unset_default_uint_dtype"], [617, "ivy.unset_default_uint_dtype"]], "valid_dtype() (in module ivy)": [[187, "ivy.valid_dtype"], [617, "ivy.valid_dtype"]], "as_ivy_dev() (in module ivy)": [[188, "ivy.as_ivy_dev"], [618, "ivy.as_ivy_dev"]], "as_native_dev() (in module ivy)": [[189, "ivy.as_native_dev"], [618, "ivy.as_native_dev"]], "clear_cached_mem_on_dev() (in module ivy)": [[190, "ivy.clear_cached_mem_on_dev"], [618, "ivy.clear_cached_mem_on_dev"]], "default_device() (in module ivy)": [[191, "ivy.default_device"], [618, "ivy.default_device"]], "dev() (in module ivy)": [[192, "ivy.dev"], [618, "ivy.dev"]], "dev() (ivy.array method)": [[192, "ivy.Array.dev"]], "dev() (ivy.container method)": [[192, "ivy.Container.dev"]], "dev_util() (in module ivy)": [[193, "ivy.dev_util"], [618, "ivy.dev_util"]], "function_supported_devices() (in module ivy)": [[194, "ivy.function_supported_devices"], [618, "ivy.function_supported_devices"]], "function_unsupported_devices() (in module ivy)": [[195, "ivy.function_unsupported_devices"], [618, "ivy.function_unsupported_devices"]], "get_all_ivy_arrays_on_dev() (in module ivy)": [[196, "ivy.get_all_ivy_arrays_on_dev"], [618, "ivy.get_all_ivy_arrays_on_dev"]], "gpu_is_available() (in module ivy)": [[197, "ivy.gpu_is_available"], [618, "ivy.gpu_is_available"]], "handle_soft_device_variable() (in module ivy)": [[198, "ivy.handle_soft_device_variable"], [618, "ivy.handle_soft_device_variable"]], "num_cpu_cores() (in module ivy)": [[199, "ivy.num_cpu_cores"], [618, "ivy.num_cpu_cores"]], "num_gpus() (in module ivy)": [[200, "ivy.num_gpus"], [618, "ivy.num_gpus"]], "num_ivy_arrays_on_dev() (in module ivy)": [[201, "ivy.num_ivy_arrays_on_dev"], [618, "ivy.num_ivy_arrays_on_dev"]], "percent_used_mem_on_dev() (in module ivy)": [[202, "ivy.percent_used_mem_on_dev"], [618, "ivy.percent_used_mem_on_dev"]], "print_all_ivy_arrays_on_dev() (in module ivy)": [[203, "ivy.print_all_ivy_arrays_on_dev"], [618, "ivy.print_all_ivy_arrays_on_dev"]], "set_default_device() (in module ivy)": [[204, "ivy.set_default_device"], [618, "ivy.set_default_device"]], "set_soft_device_mode() (in module ivy)": [[205, "ivy.set_soft_device_mode"], [618, "ivy.set_soft_device_mode"]], "set_split_factor() (in module ivy)": [[206, "ivy.set_split_factor"], [618, "ivy.set_split_factor"]], "split_factor() (in module ivy)": [[207, "ivy.split_factor"], [618, "ivy.split_factor"]], "split_func_call() (in module ivy)": [[208, "ivy.split_func_call"], [618, "ivy.split_func_call"]], "to_device() (in module ivy)": [[209, "ivy.to_device"], [618, "ivy.to_device"]], "to_device() (ivy.array method)": [[209, "ivy.Array.to_device"]], "to_device() (ivy.container method)": [[209, "ivy.Container.to_device"]], "total_mem_on_dev() (in module ivy)": [[210, "ivy.total_mem_on_dev"], [618, "ivy.total_mem_on_dev"]], "tpu_is_available() (in module ivy)": [[211, "ivy.tpu_is_available"], [618, "ivy.tpu_is_available"]], "unset_default_device() (in module ivy)": [[212, "ivy.unset_default_device"], [618, "ivy.unset_default_device"]], "unset_soft_device_mode() (in module ivy)": [[213, "ivy.unset_soft_device_mode"], [618, "ivy.unset_soft_device_mode"]], "used_mem_on_dev() (in module ivy)": [[214, "ivy.used_mem_on_dev"], [618, "ivy.used_mem_on_dev"]], "abs() (in module ivy)": [[215, "ivy.abs"], [619, "ivy.abs"]], "abs() (ivy.array method)": [[215, "ivy.Array.abs"]], "abs() (ivy.container method)": [[215, "ivy.Container.abs"]], "acos() (in module ivy)": [[216, "ivy.acos"], [619, "ivy.acos"]], "acos() (ivy.array method)": [[216, "ivy.Array.acos"]], "acos() (ivy.container method)": [[216, "ivy.Container.acos"]], "acosh() (in module ivy)": [[217, "ivy.acosh"], [619, "ivy.acosh"]], "acosh() (ivy.array method)": [[217, "ivy.Array.acosh"]], "acosh() (ivy.container method)": [[217, "ivy.Container.acosh"]], "add() (in module ivy)": [[218, "ivy.add"], [619, "ivy.add"]], "add() (ivy.array method)": [[218, "ivy.Array.add"]], "add() (ivy.container method)": [[218, "ivy.Container.add"]], "angle() (in module ivy)": [[219, "ivy.angle"], [619, "ivy.angle"]], "angle() (ivy.array method)": [[219, "ivy.Array.angle"]], "angle() (ivy.container method)": [[219, "ivy.Container.angle"]], "asin() (in module ivy)": [[220, "ivy.asin"], [619, "ivy.asin"]], "asin() (ivy.array method)": [[220, "ivy.Array.asin"]], "asin() (ivy.container method)": [[220, "ivy.Container.asin"]], "asinh() (in module ivy)": [[221, "ivy.asinh"], [619, "ivy.asinh"]], "asinh() (ivy.array method)": [[221, "ivy.Array.asinh"]], "asinh() (ivy.container method)": [[221, "ivy.Container.asinh"]], "atan() (in module ivy)": [[222, "ivy.atan"], [619, "ivy.atan"]], "atan() (ivy.array method)": [[222, "ivy.Array.atan"]], "atan() (ivy.container method)": [[222, "ivy.Container.atan"]], "atan2() (in module ivy)": [[223, "ivy.atan2"], [619, "ivy.atan2"]], "atan2() (ivy.array method)": [[223, "ivy.Array.atan2"]], "atan2() (ivy.container method)": [[223, "ivy.Container.atan2"]], "atanh() (in module ivy)": [[224, "ivy.atanh"], [619, "ivy.atanh"]], "atanh() (ivy.array method)": [[224, "ivy.Array.atanh"]], "atanh() (ivy.container method)": [[224, "ivy.Container.atanh"]], "bitwise_and() (in module ivy)": [[225, "ivy.bitwise_and"], [619, "ivy.bitwise_and"]], "bitwise_and() (ivy.array method)": [[225, "ivy.Array.bitwise_and"]], "bitwise_and() (ivy.container method)": [[225, "ivy.Container.bitwise_and"]], "bitwise_invert() (in module ivy)": [[226, "ivy.bitwise_invert"], [619, "ivy.bitwise_invert"]], "bitwise_invert() (ivy.array method)": [[226, "ivy.Array.bitwise_invert"]], "bitwise_invert() (ivy.container method)": [[226, "ivy.Container.bitwise_invert"]], "bitwise_left_shift() (in module ivy)": [[227, "ivy.bitwise_left_shift"], [619, "ivy.bitwise_left_shift"]], "bitwise_left_shift() (ivy.array method)": [[227, "ivy.Array.bitwise_left_shift"]], "bitwise_left_shift() (ivy.container method)": [[227, "ivy.Container.bitwise_left_shift"]], "bitwise_or() (in module ivy)": [[228, "ivy.bitwise_or"], [619, "ivy.bitwise_or"]], "bitwise_or() (ivy.array method)": [[228, "ivy.Array.bitwise_or"]], "bitwise_or() (ivy.container method)": [[228, "ivy.Container.bitwise_or"]], "bitwise_right_shift() (in module ivy)": [[229, "ivy.bitwise_right_shift"], [619, "ivy.bitwise_right_shift"]], "bitwise_right_shift() (ivy.array method)": [[229, "ivy.Array.bitwise_right_shift"]], "bitwise_right_shift() (ivy.container method)": [[229, "ivy.Container.bitwise_right_shift"]], "bitwise_xor() (in module ivy)": [[230, "ivy.bitwise_xor"], [619, "ivy.bitwise_xor"]], "bitwise_xor() (ivy.array method)": [[230, "ivy.Array.bitwise_xor"]], "bitwise_xor() (ivy.container method)": [[230, "ivy.Container.bitwise_xor"]], "ceil() (in module ivy)": [[231, "ivy.ceil"], [619, "ivy.ceil"]], "ceil() (ivy.array method)": [[231, "ivy.Array.ceil"]], "ceil() (ivy.container method)": [[231, "ivy.Container.ceil"]], "cos() (in module ivy)": [[232, "ivy.cos"], [619, "ivy.cos"]], "cos() (ivy.array method)": [[232, "ivy.Array.cos"]], "cos() (ivy.container method)": [[232, "ivy.Container.cos"]], "cosh() (in module ivy)": [[233, "ivy.cosh"], [619, "ivy.cosh"]], "cosh() (ivy.array method)": [[233, "ivy.Array.cosh"]], "cosh() (ivy.container method)": [[233, "ivy.Container.cosh"]], "deg2rad() (in module ivy)": [[234, "ivy.deg2rad"], [619, "ivy.deg2rad"]], "deg2rad() (ivy.array method)": [[234, "ivy.Array.deg2rad"]], "deg2rad() (ivy.container method)": [[234, "ivy.Container.deg2rad"]], "divide() (in module ivy)": [[235, "ivy.divide"], [619, "ivy.divide"]], "divide() (ivy.array method)": [[235, "ivy.Array.divide"]], "divide() (ivy.container method)": [[235, "ivy.Container.divide"]], "equal() (in module ivy)": [[236, "ivy.equal"], [619, "ivy.equal"]], "equal() (ivy.array method)": [[236, "ivy.Array.equal"]], "equal() (ivy.container method)": [[236, "ivy.Container.equal"]], "erf() (in module ivy)": [[237, "ivy.erf"], [619, "ivy.erf"]], "erf() (ivy.array method)": [[237, "ivy.Array.erf"]], "erf() (ivy.container method)": [[237, "ivy.Container.erf"]], "exp() (in module ivy)": [[238, "ivy.exp"], [619, "ivy.exp"]], "exp() (ivy.array method)": [[238, "ivy.Array.exp"]], "exp() (ivy.container method)": [[238, "ivy.Container.exp"]], "exp2() (in module ivy)": [[239, "ivy.exp2"], [619, "ivy.exp2"]], "exp2() (ivy.array method)": [[239, "ivy.Array.exp2"]], "exp2() (ivy.container method)": [[239, "ivy.Container.exp2"]], "expm1() (in module ivy)": [[240, "ivy.expm1"], [619, "ivy.expm1"]], "expm1() (ivy.array method)": [[240, "ivy.Array.expm1"]], "expm1() (ivy.container method)": [[240, "ivy.Container.expm1"]], "floor() (in module ivy)": [[241, "ivy.floor"], [619, "ivy.floor"]], "floor() (ivy.array method)": [[241, "ivy.Array.floor"]], "floor() (ivy.container method)": [[241, "ivy.Container.floor"]], "floor_divide() (in module ivy)": [[242, "ivy.floor_divide"], [619, "ivy.floor_divide"]], "floor_divide() (ivy.array method)": [[242, "ivy.Array.floor_divide"]], "floor_divide() (ivy.container method)": [[242, "ivy.Container.floor_divide"]], "fmin() (in module ivy)": [[243, "ivy.fmin"], [619, "ivy.fmin"]], "fmin() (ivy.array method)": [[243, "ivy.Array.fmin"]], "fmin() (ivy.container method)": [[243, "ivy.Container.fmin"]], "fmod() (in module ivy)": [[244, "ivy.fmod"], [619, "ivy.fmod"]], "fmod() (ivy.array method)": [[244, "ivy.Array.fmod"]], "fmod() (ivy.container method)": [[244, "ivy.Container.fmod"]], "gcd() (in module ivy)": [[245, "ivy.gcd"], [619, "ivy.gcd"]], "gcd() (ivy.array method)": [[245, "ivy.Array.gcd"]], "gcd() (ivy.container method)": [[245, "ivy.Container.gcd"]], "greater() (in module ivy)": [[246, "ivy.greater"], [619, "ivy.greater"]], "greater() (ivy.array method)": [[246, "ivy.Array.greater"]], "greater() (ivy.container method)": [[246, "ivy.Container.greater"]], "greater_equal() (in module ivy)": [[247, "ivy.greater_equal"], [619, "ivy.greater_equal"]], "greater_equal() (ivy.array method)": [[247, "ivy.Array.greater_equal"]], "greater_equal() (ivy.container method)": [[247, "ivy.Container.greater_equal"]], "imag() (in module ivy)": [[248, "ivy.imag"], [619, "ivy.imag"]], "imag() (ivy.array method)": [[248, "ivy.Array.imag"]], "imag() (ivy.container method)": [[248, "ivy.Container.imag"]], "isfinite() (in module ivy)": [[249, "ivy.isfinite"], [619, "ivy.isfinite"]], "isfinite() (ivy.array method)": [[249, "ivy.Array.isfinite"]], "isfinite() (ivy.container method)": [[249, "ivy.Container.isfinite"]], "isinf() (in module ivy)": [[250, "ivy.isinf"], [619, "ivy.isinf"]], "isinf() (ivy.array method)": [[250, "ivy.Array.isinf"]], "isinf() (ivy.container method)": [[250, "ivy.Container.isinf"]], "isnan() (in module ivy)": [[251, "ivy.isnan"], [619, "ivy.isnan"]], "isnan() (ivy.array method)": [[251, "ivy.Array.isnan"]], "isnan() (ivy.container method)": [[251, "ivy.Container.isnan"]], "isreal() (in module ivy)": [[252, "ivy.isreal"], [619, "ivy.isreal"]], "isreal() (ivy.array method)": [[252, "ivy.Array.isreal"]], "isreal() (ivy.container method)": [[252, "ivy.Container.isreal"]], "lcm() (in module ivy)": [[253, "ivy.lcm"], [619, "ivy.lcm"]], "lcm() (ivy.array method)": [[253, "ivy.Array.lcm"]], "lcm() (ivy.container method)": [[253, "ivy.Container.lcm"]], "less() (in module ivy)": [[254, "ivy.less"], [619, "ivy.less"]], "less() (ivy.array method)": [[254, "ivy.Array.less"]], "less() (ivy.container method)": [[254, "ivy.Container.less"]], "less_equal() (in module ivy)": [[255, "ivy.less_equal"], [619, "ivy.less_equal"]], "less_equal() (ivy.array method)": [[255, "ivy.Array.less_equal"]], "less_equal() (ivy.container method)": [[255, "ivy.Container.less_equal"]], "log() (in module ivy)": [[256, "ivy.log"], [619, "ivy.log"]], "log() (ivy.array method)": [[256, "ivy.Array.log"]], "log() (ivy.container method)": [[256, "ivy.Container.log"]], "log10() (in module ivy)": [[257, "ivy.log10"], [619, "ivy.log10"]], "log10() (ivy.array method)": [[257, "ivy.Array.log10"]], "log10() (ivy.container method)": [[257, "ivy.Container.log10"]], "log1p() (in module ivy)": [[258, "ivy.log1p"], [619, "ivy.log1p"]], "log1p() (ivy.array method)": [[258, "ivy.Array.log1p"]], "log1p() (ivy.container method)": [[258, "ivy.Container.log1p"]], "log2() (in module ivy)": [[259, "ivy.log2"], [619, "ivy.log2"]], "log2() (ivy.array method)": [[259, "ivy.Array.log2"]], "log2() (ivy.container method)": [[259, "ivy.Container.log2"]], "logaddexp() (in module ivy)": [[260, "ivy.logaddexp"], [619, "ivy.logaddexp"]], "logaddexp() (ivy.array method)": [[260, "ivy.Array.logaddexp"]], "logaddexp() (ivy.container method)": [[260, "ivy.Container.logaddexp"]], "logaddexp2() (in module ivy)": [[261, "ivy.logaddexp2"], [619, "ivy.logaddexp2"]], "logaddexp2() (ivy.array method)": [[261, "ivy.Array.logaddexp2"]], "logaddexp2() (ivy.container method)": [[261, "ivy.Container.logaddexp2"]], "logical_and() (in module ivy)": [[262, "ivy.logical_and"], [619, "ivy.logical_and"]], "logical_and() (ivy.array method)": [[262, "ivy.Array.logical_and"]], "logical_and() (ivy.container method)": [[262, "ivy.Container.logical_and"]], "logical_not() (in module ivy)": [[263, "ivy.logical_not"], [619, "ivy.logical_not"]], "logical_not() (ivy.array method)": [[263, "ivy.Array.logical_not"]], "logical_not() (ivy.container method)": [[263, "ivy.Container.logical_not"]], "logical_or() (in module ivy)": [[264, "ivy.logical_or"], [619, "ivy.logical_or"]], "logical_or() (ivy.array method)": [[264, "ivy.Array.logical_or"]], "logical_or() (ivy.container method)": [[264, "ivy.Container.logical_or"]], "logical_xor() (in module ivy)": [[265, "ivy.logical_xor"], [619, "ivy.logical_xor"]], "logical_xor() (ivy.array method)": [[265, "ivy.Array.logical_xor"]], "logical_xor() (ivy.container method)": [[265, "ivy.Container.logical_xor"]], "maximum() (in module ivy)": [[266, "ivy.maximum"], [619, "ivy.maximum"]], "maximum() (ivy.array method)": [[266, "ivy.Array.maximum"]], "maximum() (ivy.container method)": [[266, "ivy.Container.maximum"]], "minimum() (in module ivy)": [[267, "ivy.minimum"], [619, "ivy.minimum"]], "minimum() (ivy.array method)": [[267, "ivy.Array.minimum"]], "minimum() (ivy.container method)": [[267, "ivy.Container.minimum"]], "multiply() (in module ivy)": [[268, "ivy.multiply"], [619, "ivy.multiply"]], "multiply() (ivy.array method)": [[268, "ivy.Array.multiply"]], "multiply() (ivy.container method)": [[268, "ivy.Container.multiply"]], "nan_to_num() (in module ivy)": [[269, "ivy.nan_to_num"], [619, "ivy.nan_to_num"]], "nan_to_num() (ivy.array method)": [[269, "ivy.Array.nan_to_num"]], "nan_to_num() (ivy.container method)": [[269, "ivy.Container.nan_to_num"]], "negative() (in module ivy)": [[270, "ivy.negative"], [619, "ivy.negative"]], "negative() (ivy.array method)": [[270, "ivy.Array.negative"]], "negative() (ivy.container method)": [[270, "ivy.Container.negative"]], "not_equal() (in module ivy)": [[271, "ivy.not_equal"], [619, "ivy.not_equal"]], "not_equal() (ivy.array method)": [[271, "ivy.Array.not_equal"]], "not_equal() (ivy.container method)": [[271, "ivy.Container.not_equal"]], "positive() (in module ivy)": [[272, "ivy.positive"], [619, "ivy.positive"]], "positive() (ivy.array method)": [[272, "ivy.Array.positive"]], "positive() (ivy.container method)": [[272, "ivy.Container.positive"]], "pow() (in module ivy)": [[273, "ivy.pow"], [619, "ivy.pow"]], "pow() (ivy.array method)": [[273, "ivy.Array.pow"]], "pow() (ivy.container method)": [[273, "ivy.Container.pow"]], "rad2deg() (in module ivy)": [[274, "ivy.rad2deg"], [619, "ivy.rad2deg"]], "rad2deg() (ivy.array method)": [[274, "ivy.Array.rad2deg"]], "rad2deg() (ivy.container method)": [[274, "ivy.Container.rad2deg"]], "real() (in module ivy)": [[275, "ivy.real"], [619, "ivy.real"]], "real() (ivy.array method)": [[275, "ivy.Array.real"]], "real() (ivy.container method)": [[275, "ivy.Container.real"]], "reciprocal() (in module ivy)": [[276, "ivy.reciprocal"], [619, "ivy.reciprocal"]], "reciprocal() (ivy.array method)": [[276, "ivy.Array.reciprocal"]], "reciprocal() (ivy.container method)": [[276, "ivy.Container.reciprocal"]], "remainder() (in module ivy)": [[277, "ivy.remainder"], [619, "ivy.remainder"]], "remainder() (ivy.array method)": [[277, "ivy.Array.remainder"]], "remainder() (ivy.container method)": [[277, "ivy.Container.remainder"]], "round() (in module ivy)": [[278, "ivy.round"], [619, "ivy.round"]], "round() (ivy.array method)": [[278, "ivy.Array.round"]], "round() (ivy.container method)": [[278, "ivy.Container.round"]], "sign() (in module ivy)": [[279, "ivy.sign"], [619, "ivy.sign"]], "sign() (ivy.array method)": [[279, "ivy.Array.sign"]], "sign() (ivy.container method)": [[279, "ivy.Container.sign"]], "sin() (in module ivy)": [[280, "ivy.sin"], [619, "ivy.sin"]], "sin() (ivy.array method)": [[280, "ivy.Array.sin"]], "sin() (ivy.container method)": [[280, "ivy.Container.sin"]], "sinh() (in module ivy)": [[281, "ivy.sinh"], [619, "ivy.sinh"]], "sinh() (ivy.array method)": [[281, "ivy.Array.sinh"]], "sinh() (ivy.container method)": [[281, "ivy.Container.sinh"]], "sqrt() (in module ivy)": [[282, "ivy.sqrt"], [619, "ivy.sqrt"]], "sqrt() (ivy.array method)": [[282, "ivy.Array.sqrt"]], "sqrt() (ivy.container method)": [[282, "ivy.Container.sqrt"]], "square() (in module ivy)": [[283, "ivy.square"], [619, "ivy.square"]], "square() (ivy.array method)": [[283, "ivy.Array.square"]], "square() (ivy.container method)": [[283, "ivy.Container.square"]], "subtract() (in module ivy)": [[284, "ivy.subtract"], [619, "ivy.subtract"]], "subtract() (ivy.array method)": [[284, "ivy.Array.subtract"]], "subtract() (ivy.container method)": [[284, "ivy.Container.subtract"]], "tan() (in module ivy)": [[285, "ivy.tan"], [619, "ivy.tan"]], "tan() (ivy.array method)": [[285, "ivy.Array.tan"]], "tan() (ivy.container method)": [[285, "ivy.Container.tan"]], "tanh() (in module ivy)": [[286, "ivy.tanh"], [619, "ivy.tanh"]], "tanh() (ivy.array method)": [[286, "ivy.Array.tanh"]], "tanh() (ivy.container method)": [[286, "ivy.Container.tanh"]], "trapz() (in module ivy)": [[287, "ivy.trapz"], [619, "ivy.trapz"]], "trapz() (ivy.array method)": [[287, "ivy.Array.trapz"]], "trapz() (ivy.container method)": [[287, "ivy.Container.trapz"]], "trunc() (in module ivy)": [[288, "ivy.trunc"], [619, "ivy.trunc"]], "trunc() (ivy.array method)": [[288, "ivy.Array.trunc"]], "trunc() (ivy.container method)": [[288, "ivy.Container.trunc"]], "trunc_divide() (in module ivy)": [[289, "ivy.trunc_divide"], [619, "ivy.trunc_divide"]], "trunc_divide() (ivy.array method)": [[289, "ivy.Array.trunc_divide"]], "trunc_divide() (ivy.container method)": [[289, "ivy.Container.trunc_divide"]], "celu() (in module ivy)": [[290, "ivy.celu"], [360, "ivy.celu"]], "celu() (ivy.array method)": [[290, "ivy.Array.celu"]], "celu() (ivy.container method)": [[290, "ivy.Container.celu"]], "elu() (in module ivy)": [[291, "ivy.elu"], [360, "ivy.elu"]], "elu() (ivy.array method)": [[291, "ivy.Array.elu"]], "elu() (ivy.container method)": [[291, "ivy.Container.elu"]], "hardshrink() (in module ivy)": [[292, "ivy.hardshrink"], [360, "ivy.hardshrink"]], "hardshrink() (ivy.array method)": [[292, "ivy.Array.hardshrink"]], "hardshrink() (ivy.container method)": [[292, "ivy.Container.hardshrink"]], "hardtanh() (in module ivy)": [[293, "ivy.hardtanh"], [360, "ivy.hardtanh"]], "hardtanh() (ivy.array method)": [[293, "ivy.Array.hardtanh"]], "hardtanh() (ivy.container method)": [[293, "ivy.Container.hardtanh"]], "logit() (in module ivy)": [[294, "ivy.logit"], [360, "ivy.logit"]], "logit() (ivy.array method)": [[294, "ivy.Array.logit"]], "logit() (ivy.container method)": [[294, "ivy.Container.logit"]], "logsigmoid() (in module ivy)": [[295, "ivy.logsigmoid"], [360, "ivy.logsigmoid"]], "logsigmoid() (ivy.array method)": [[295, "ivy.Array.logsigmoid"]], "logsigmoid() (ivy.container method)": [[295, "ivy.Container.logsigmoid"]], "prelu() (in module ivy)": [[296, "ivy.prelu"], [360, "ivy.prelu"]], "prelu() (ivy.array method)": [[296, "ivy.Array.prelu"]], "prelu() (ivy.container method)": [[296, "ivy.Container.prelu"]], "relu6() (in module ivy)": [[297, "ivy.relu6"], [360, "ivy.relu6"]], "relu6() (ivy.array method)": [[297, "ivy.Array.relu6"]], "relu6() (ivy.container method)": [[297, "ivy.Container.relu6"]], "scaled_tanh() (in module ivy)": [[298, "ivy.scaled_tanh"], [360, "ivy.scaled_tanh"]], "scaled_tanh() (ivy.array method)": [[298, "ivy.Array.scaled_tanh"]], "scaled_tanh() (ivy.container method)": [[298, "ivy.Container.scaled_tanh"]], "selu() (in module ivy)": [[299, "ivy.selu"], [360, "ivy.selu"]], "selu() (ivy.array method)": [[299, "ivy.Array.selu"]], "selu() (ivy.container method)": [[299, "ivy.Container.selu"]], "silu() (in module ivy)": [[300, "ivy.silu"], [360, "ivy.silu"]], "silu() (ivy.array method)": [[300, "ivy.Array.silu"]], "silu() (ivy.container method)": [[300, "ivy.Container.silu"]], "softshrink() (in module ivy)": [[301, "ivy.softshrink"], [360, "ivy.softshrink"]], "softshrink() (ivy.array method)": [[301, "ivy.Array.softshrink"]], "softshrink() (ivy.container method)": [[301, "ivy.Container.softshrink"]], "stanh() (in module ivy)": [[302, "ivy.stanh"], [360, "ivy.stanh"]], "tanhshrink() (in module ivy)": [[303, "ivy.tanhshrink"], [360, "ivy.tanhshrink"]], "tanhshrink() (ivy.array method)": [[303, "ivy.Array.tanhshrink"]], "tanhshrink() (ivy.container method)": [[303, "ivy.Container.tanhshrink"]], "threshold() (in module ivy)": [[304, "ivy.threshold"], [360, "ivy.threshold"]], "threshold() (ivy.array method)": [[304, "ivy.Array.threshold"]], "threshold() (ivy.container method)": [[304, "ivy.Container.threshold"]], "thresholded_relu() (in module ivy)": [[305, "ivy.thresholded_relu"], [360, "ivy.thresholded_relu"]], "thresholded_relu() (ivy.array method)": [[305, "ivy.Array.thresholded_relu"]], "thresholded_relu() (ivy.container method)": [[305, "ivy.Container.thresholded_relu"]], "blackman_window() (in module ivy)": [[306, "ivy.blackman_window"], [362, "ivy.blackman_window"]], "blackman_window() (ivy.array method)": [[306, "ivy.Array.blackman_window"]], "blackman_window() (ivy.container method)": [[306, "ivy.Container.blackman_window"]], "eye_like() (in module ivy)": [[307, "ivy.eye_like"], [362, "ivy.eye_like"]], "eye_like() (ivy.array method)": [[307, "ivy.Array.eye_like"]], "eye_like() (ivy.container method)": [[307, "ivy.Container.eye_like"]], "hamming_window() (in module ivy)": [[308, "ivy.hamming_window"], [362, "ivy.hamming_window"]], "hamming_window() (ivy.container method)": [[308, "ivy.Container.hamming_window"]], "hann_window() (in module ivy)": [[309, "ivy.hann_window"], [362, "ivy.hann_window"]], "hann_window() (ivy.container method)": [[309, "ivy.Container.hann_window"]], "indices() (in module ivy)": [[310, "ivy.indices"], [362, "ivy.indices"]], "kaiser_bessel_derived_window() (in module ivy)": [[311, "ivy.kaiser_bessel_derived_window"], [362, "ivy.kaiser_bessel_derived_window"]], "kaiser_bessel_derived_window() (ivy.container method)": [[311, "ivy.Container.kaiser_bessel_derived_window"]], "kaiser_window() (in module ivy)": [[312, "ivy.kaiser_window"], [362, "ivy.kaiser_window"]], "kaiser_window() (ivy.container method)": [[312, "ivy.Container.kaiser_window"]], "mel_weight_matrix() (in module ivy)": [[313, "ivy.mel_weight_matrix"], [362, "ivy.mel_weight_matrix"]], "mel_weight_matrix() (ivy.array static method)": [[313, "ivy.Array.mel_weight_matrix"]], "mel_weight_matrix() (ivy.container method)": [[313, "ivy.Container.mel_weight_matrix"]], "ndenumerate() (in module ivy)": [[314, "ivy.ndenumerate"], [362, "ivy.ndenumerate"]], "ndindex() (in module ivy)": [[315, "ivy.ndindex"], [362, "ivy.ndindex"]], "polyval() (in module ivy)": [[316, "ivy.polyval"], [362, "ivy.polyval"]], "polyval() (ivy.container method)": [[316, "ivy.Container.polyval"]], "random_cp() (in module ivy)": [[317, "ivy.random_cp"], [362, "ivy.random_cp"]], "random_parafac2() (in module ivy)": [[318, "ivy.random_parafac2"], [362, "ivy.random_parafac2"]], "random_tr() (in module ivy)": [[319, "ivy.random_tr"], [362, "ivy.random_tr"]], "random_tt() (in module ivy)": [[320, "ivy.random_tt"], [362, "ivy.random_tt"]], "random_tucker() (in module ivy)": [[321, "ivy.random_tucker"], [362, "ivy.random_tucker"]], "tril_indices() (in module ivy)": [[322, "ivy.tril_indices"], [362, "ivy.tril_indices"]], "tril_indices() (ivy.container method)": [[322, "ivy.Container.tril_indices"]], "trilu() (in module ivy)": [[323, "ivy.trilu"], [362, "ivy.trilu"]], "trilu() (ivy.array method)": [[323, "ivy.Array.trilu"]], "trilu() (ivy.container method)": [[323, "ivy.Container.trilu"]], "unsorted_segment_mean() (in module ivy)": [[324, "ivy.unsorted_segment_mean"], [362, "ivy.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.array method)": [[324, "ivy.Array.unsorted_segment_mean"]], "unsorted_segment_mean() (ivy.container method)": [[324, "ivy.Container.unsorted_segment_mean"]], "unsorted_segment_min() (in module ivy)": [[325, "ivy.unsorted_segment_min"], [362, "ivy.unsorted_segment_min"]], "unsorted_segment_min() (ivy.array method)": [[325, "ivy.Array.unsorted_segment_min"]], "unsorted_segment_min() (ivy.container method)": [[325, "ivy.Container.unsorted_segment_min"]], "unsorted_segment_sum() (in module ivy)": [[326, "ivy.unsorted_segment_sum"], [362, "ivy.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.array method)": [[326, "ivy.Array.unsorted_segment_sum"]], "unsorted_segment_sum() (ivy.container method)": [[326, "ivy.Container.unsorted_segment_sum"]], "vorbis_window() (in module ivy)": [[327, "ivy.vorbis_window"], [362, "ivy.vorbis_window"]], "vorbis_window() (ivy.container method)": [[327, "ivy.Container.vorbis_window"]], "allclose() (in module ivy)": [[328, "ivy.allclose"], [365, "ivy.allclose"]], "allclose() (ivy.array method)": [[328, "ivy.Array.allclose"]], "allclose() (ivy.container method)": [[328, "ivy.Container.allclose"]], "amax() (in module ivy)": [[329, "ivy.amax"], [365, "ivy.amax"]], "amax() (ivy.array method)": [[329, "ivy.Array.amax"]], "amax() (ivy.container method)": [[329, "ivy.Container.amax"]], "amin() (in module ivy)": [[330, "ivy.amin"], [365, "ivy.amin"]], "amin() (ivy.array method)": [[330, "ivy.Array.amin"]], "amin() (ivy.container method)": [[330, "ivy.Container.amin"]], "binarizer() (in module ivy)": [[331, "ivy.binarizer"], [365, "ivy.binarizer"]], "binarizer() (ivy.array method)": [[331, "ivy.Array.binarizer"]], "binarizer() (ivy.container method)": [[331, "ivy.Container.binarizer"]], "conj() (in module ivy)": [[332, "ivy.conj"], [365, "ivy.conj"]], "conj() (ivy.array method)": [[332, "ivy.Array.conj"]], "conj() (ivy.container method)": [[332, "ivy.Container.conj"]], "copysign() (in module ivy)": [[333, "ivy.copysign"], [365, "ivy.copysign"]], "copysign() (ivy.array method)": [[333, "ivy.Array.copysign"]], "copysign() (ivy.container method)": [[333, "ivy.Container.copysign"]], "count_nonzero() (in module ivy)": [[334, "ivy.count_nonzero"], [365, "ivy.count_nonzero"]], "count_nonzero() (ivy.array method)": [[334, "ivy.Array.count_nonzero"]], "count_nonzero() (ivy.container method)": [[334, "ivy.Container.count_nonzero"]], "diff() (in module ivy)": [[335, "ivy.diff"], [365, "ivy.diff"]], "diff() (ivy.array method)": [[335, "ivy.Array.diff"]], "diff() (ivy.container method)": [[335, "ivy.Container.diff"]], "digamma() (in module ivy)": [[336, "ivy.digamma"], [365, "ivy.digamma"]], "digamma() (ivy.array method)": [[336, "ivy.Array.digamma"]], "digamma() (ivy.container method)": [[336, "ivy.Container.digamma"]], "erfc() (in module ivy)": [[337, "ivy.erfc"], [365, "ivy.erfc"]], "erfc() (ivy.array method)": [[337, "ivy.Array.erfc"]], "erfc() (ivy.container method)": [[337, "ivy.Container.erfc"]], "fix() (in module ivy)": [[338, "ivy.fix"], [365, "ivy.fix"]], "fix() (ivy.array method)": [[338, "ivy.Array.fix"]], "fix() (ivy.container method)": [[338, "ivy.Container.fix"]], "float_power() (in module ivy)": [[339, "ivy.float_power"], [365, "ivy.float_power"]], "float_power() (ivy.array method)": [[339, "ivy.Array.float_power"]], "float_power() (ivy.container method)": [[339, "ivy.Container.float_power"]], "fmax() (in module ivy)": [[340, "ivy.fmax"], [365, "ivy.fmax"]], "fmax() (ivy.array method)": [[340, "ivy.Array.fmax"]], "fmax() (ivy.container method)": [[340, "ivy.Container.fmax"]], "frexp() (in module ivy)": [[341, "ivy.frexp"], [365, "ivy.frexp"]], "frexp() (ivy.array method)": [[341, "ivy.Array.frexp"]], "frexp() (ivy.container method)": [[341, "ivy.Container.frexp"]], "gradient() (in module ivy)": [[342, "ivy.gradient"], [365, "ivy.gradient"]], "gradient() (ivy.array method)": [[342, "ivy.Array.gradient"]], "gradient() (ivy.container method)": [[342, "ivy.Container.gradient"]], "hypot() (in module ivy)": [[343, "ivy.hypot"], [365, "ivy.hypot"]], "hypot() (ivy.array method)": [[343, "ivy.Array.hypot"]], "hypot() (ivy.container method)": [[343, "ivy.Container.hypot"]], "isclose() (in module ivy)": [[344, "ivy.isclose"], [365, "ivy.isclose"]], "isclose() (ivy.array method)": [[344, "ivy.Array.isclose"]], "isclose() (ivy.container method)": [[344, "ivy.Container.isclose"]], "ldexp() (in module ivy)": [[345, "ivy.ldexp"], [365, "ivy.ldexp"]], "ldexp() (ivy.array method)": [[345, "ivy.Array.ldexp"]], "ldexp() (ivy.container method)": [[345, "ivy.Container.ldexp"]], "lerp() (in module ivy)": [[346, "ivy.lerp"], [365, "ivy.lerp"]], "lerp() (ivy.array method)": [[346, "ivy.Array.lerp"]], "lerp() (ivy.container method)": [[346, "ivy.Container.lerp"]], "lgamma() (in module ivy)": [[347, "ivy.lgamma"], [365, "ivy.lgamma"]], "lgamma() (ivy.array method)": [[347, "ivy.Array.lgamma"]], "modf() (in module ivy)": [[348, "ivy.modf"], [365, "ivy.modf"]], "modf() (ivy.array method)": [[348, "ivy.Array.modf"]], "modf() (ivy.container method)": [[348, "ivy.Container.modf"]], "nansum() (in module ivy)": [[349, "ivy.nansum"], [365, "ivy.nansum"]], "nansum() (ivy.array method)": [[349, "ivy.Array.nansum"]], "nansum() (ivy.container method)": [[349, "ivy.Container.nansum"]], "nextafter() (in module ivy)": [[350, "ivy.nextafter"], [365, "ivy.nextafter"]], "nextafter() (ivy.array method)": [[350, "ivy.Array.nextafter"]], "nextafter() (ivy.container method)": [[350, "ivy.Container.nextafter"]], "signbit() (in module ivy)": [[351, "ivy.signbit"], [365, "ivy.signbit"]], "signbit() (ivy.array method)": [[351, "ivy.Array.signbit"]], "signbit() (ivy.container method)": [[351, "ivy.Container.signbit"]], "sinc() (in module ivy)": [[352, "ivy.sinc"], [365, "ivy.sinc"]], "sinc() (ivy.array method)": [[352, "ivy.Array.sinc"]], "sinc() (ivy.container method)": [[352, "ivy.Container.sinc"]], "sparsify_tensor() (in module ivy)": [[353, "ivy.sparsify_tensor"], [365, "ivy.sparsify_tensor"]], "sparsify_tensor() (ivy.array method)": [[353, "ivy.Array.sparsify_tensor"]], "sparsify_tensor() (ivy.container method)": [[353, "ivy.Container.sparsify_tensor"]], "xlogy() (in module ivy)": [[354, "ivy.xlogy"], [365, "ivy.xlogy"]], "xlogy() (ivy.array method)": [[354, "ivy.Array.xlogy"]], "xlogy() (ivy.container method)": [[354, "ivy.Container.xlogy"]], "zeta() (in module ivy)": [[355, "ivy.zeta"], [365, "ivy.zeta"]], "zeta() (ivy.array method)": [[355, "ivy.Array.zeta"]], "zeta() (ivy.container method)": [[355, "ivy.Container.zeta"]], "reduce() (in module ivy)": [[356, "ivy.reduce"], [366, "ivy.reduce"]], "reduce() (ivy.array method)": [[356, "ivy.Array.reduce"]], "reduce() (ivy.container method)": [[356, "ivy.Container.reduce"]], "bind_custom_gradient_function() (in module ivy)": [[357, "ivy.bind_custom_gradient_function"], [367, "ivy.bind_custom_gradient_function"]], "jvp() (in module ivy)": [[358, "ivy.jvp"], [367, "ivy.jvp"]], "vjp() (in module ivy)": [[359, "ivy.vjp"], [367, "ivy.vjp"]], "ivy.functional.ivy.experimental.activations": [[360, "module-ivy.functional.ivy.experimental.activations"]], "ivy.functional.ivy.experimental.constants": [[361, "module-ivy.functional.ivy.experimental.constants"]], "ivy.functional.ivy.experimental.creation": [[362, "module-ivy.functional.ivy.experimental.creation"]], "ivy.functional.ivy.experimental.data_type": [[363, "module-ivy.functional.ivy.experimental.data_type"]], "ivy.functional.ivy.experimental.device": [[364, "module-ivy.functional.ivy.experimental.device"]], "ivy.functional.ivy.experimental.elementwise": [[365, "module-ivy.functional.ivy.experimental.elementwise"]], "ivy.functional.ivy.experimental.general": [[366, "module-ivy.functional.ivy.experimental.general"]], "ivy.functional.ivy.experimental.gradients": [[367, "module-ivy.functional.ivy.experimental.gradients"]], "adaptive_avg_pool1d() (in module ivy)": [[368, "ivy.adaptive_avg_pool1d"], [382, "ivy.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (in module ivy)": [[368, "ivy.adaptive_avg_pool2d"], [383, "ivy.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (in module ivy)": [[368, "ivy.adaptive_max_pool2d"], [384, "ivy.adaptive_max_pool2d"]], "area_interpolate() (in module ivy)": [[368, "ivy.area_interpolate"], [385, "ivy.area_interpolate"]], "avg_pool1d() (in module ivy)": [[368, "ivy.avg_pool1d"], [386, "ivy.avg_pool1d"]], "avg_pool2d() (in module ivy)": [[368, "ivy.avg_pool2d"], [387, "ivy.avg_pool2d"]], "avg_pool3d() (in module ivy)": [[368, "ivy.avg_pool3d"], [388, "ivy.avg_pool3d"]], "dct() (in module ivy)": [[368, "ivy.dct"], [389, "ivy.dct"]], "dft() (in module ivy)": [[368, "ivy.dft"], [390, "ivy.dft"]], "dropout1d() (in module ivy)": [[368, "ivy.dropout1d"], [391, "ivy.dropout1d"]], "dropout2d() (in module ivy)": [[368, "ivy.dropout2d"], [392, "ivy.dropout2d"]], "dropout3d() (in module ivy)": [[368, "ivy.dropout3d"], [393, "ivy.dropout3d"]], "embedding() (in module ivy)": [[368, "ivy.embedding"], [394, "ivy.embedding"]], "fft() (in module ivy)": [[368, "ivy.fft"], [395, "ivy.fft"]], "fft2() (in module ivy)": [[368, "ivy.fft2"], [396, "ivy.fft2"]], "generate_einsum_equation() (in module ivy)": [[368, "ivy.generate_einsum_equation"], [397, "ivy.generate_einsum_equation"]], "get_interpolate_kernel() (in module ivy)": [[368, "ivy.get_interpolate_kernel"], [398, "ivy.get_interpolate_kernel"]], "idct() (in module ivy)": [[368, "ivy.idct"], [399, "ivy.idct"]], "ifft() (in module ivy)": [[368, "ivy.ifft"], [400, "ivy.ifft"]], "ifftn() (in module ivy)": [[368, "ivy.ifftn"], [401, "ivy.ifftn"]], "interp() (in module ivy)": [[368, "ivy.interp"], [402, "ivy.interp"]], "interpolate() (in module ivy)": [[368, "ivy.interpolate"], [403, "ivy.interpolate"]], "ivy.functional.ivy.experimental.layers": [[368, "module-ivy.functional.ivy.experimental.layers"]], "max_pool1d() (in module ivy)": [[368, "ivy.max_pool1d"], [404, "ivy.max_pool1d"]], "max_pool2d() (in module ivy)": [[368, "ivy.max_pool2d"], [405, "ivy.max_pool2d"]], "max_pool3d() (in module ivy)": [[368, "ivy.max_pool3d"], [406, "ivy.max_pool3d"]], "max_unpool1d() (in module ivy)": [[368, "ivy.max_unpool1d"], [407, "ivy.max_unpool1d"]], "nearest_interpolate() (in module ivy)": [[368, "ivy.nearest_interpolate"], [408, "ivy.nearest_interpolate"]], "pool() (in module ivy)": [[368, "ivy.pool"], [409, "ivy.pool"]], "reduce_window() (in module ivy)": [[368, "ivy.reduce_window"], [410, "ivy.reduce_window"]], "rfft() (in module ivy)": [[368, "ivy.rfft"], [411, "ivy.rfft"]], "rfftn() (in module ivy)": [[368, "ivy.rfftn"], [412, "ivy.rfftn"]], "rnn() (in module ivy)": [[368, "ivy.rnn"], [413, "ivy.rnn"]], "sliding_window() (in module ivy)": [[368, "ivy.sliding_window"], [414, "ivy.sliding_window"]], "stft() (in module ivy)": [[368, "ivy.stft"], [415, "ivy.stft"]], "adjoint() (in module ivy)": [[369, "ivy.adjoint"], [416, "ivy.adjoint"]], "batched_outer() (in module ivy)": [[369, "ivy.batched_outer"], [417, "ivy.batched_outer"]], "cond() (in module ivy)": [[369, "ivy.cond"], [418, "ivy.cond"]], "diagflat() (in module ivy)": [[369, "ivy.diagflat"], [419, "ivy.diagflat"]], "dot() (in module ivy)": [[369, "ivy.dot"], [420, "ivy.dot"]], "eig() (in module ivy)": [[369, "ivy.eig"], [421, "ivy.eig"], [624, "ivy.eig"], [658, "ivy.eig"]], "eigh_tridiagonal() (in module ivy)": [[369, "ivy.eigh_tridiagonal"], [422, "ivy.eigh_tridiagonal"]], "eigvals() (in module ivy)": [[369, "ivy.eigvals"], [423, "ivy.eigvals"]], "general_inner_product() (in module ivy)": [[369, "ivy.general_inner_product"], [424, "ivy.general_inner_product"]], "higher_order_moment() (in module ivy)": [[369, "ivy.higher_order_moment"], [425, "ivy.higher_order_moment"]], "initialize_tucker() (in module ivy)": [[369, "ivy.initialize_tucker"], [426, "ivy.initialize_tucker"]], "ivy.functional.ivy.experimental.linear_algebra": [[369, "module-ivy.functional.ivy.experimental.linear_algebra"]], "khatri_rao() (in module ivy)": [[369, "ivy.khatri_rao"], [427, "ivy.khatri_rao"]], "kron() (in module ivy)": [[369, "ivy.kron"], [428, "ivy.kron"]], "kronecker() (in module ivy)": [[369, "ivy.kronecker"], [429, "ivy.kronecker"]], "make_svd_non_negative() (in module ivy)": [[369, "ivy.make_svd_non_negative"], [430, "ivy.make_svd_non_negative"]], "matrix_exp() (in module ivy)": [[369, "ivy.matrix_exp"], [431, "ivy.matrix_exp"]], "mode_dot() (in module ivy)": [[369, "ivy.mode_dot"], [432, "ivy.mode_dot"]], "multi_dot() (in module ivy)": [[369, "ivy.multi_dot"], [433, "ivy.multi_dot"]], "multi_mode_dot() (in module ivy)": [[369, "ivy.multi_mode_dot"], [434, "ivy.multi_mode_dot"]], "partial_tucker() (in module ivy)": [[369, "ivy.partial_tucker"], [435, "ivy.partial_tucker"]], "solve_triangular() (in module ivy)": [[369, "ivy.solve_triangular"], [436, "ivy.solve_triangular"]], "svd_flip() (in module ivy)": [[369, "ivy.svd_flip"], [437, "ivy.svd_flip"]], "tensor_train() (in module ivy)": [[369, "ivy.tensor_train"], [438, "ivy.tensor_train"]], "truncated_svd() (in module ivy)": [[369, "ivy.truncated_svd"], [439, "ivy.truncated_svd"]], "tt_matrix_to_tensor() (in module ivy)": [[369, "ivy.tt_matrix_to_tensor"], [440, "ivy.tt_matrix_to_tensor"]], "tucker() (in module ivy)": [[369, "ivy.tucker"], [441, "ivy.tucker"]], "huber_loss() (in module ivy)": [[370, "ivy.huber_loss"], [442, "ivy.huber_loss"]], "ivy.functional.ivy.experimental.losses": [[370, "module-ivy.functional.ivy.experimental.losses"]], "kl_div() (in module ivy)": [[370, "ivy.kl_div"], [443, "ivy.kl_div"]], "l1_loss() (in module ivy)": [[370, "ivy.l1_loss"], [444, "ivy.l1_loss"]], "log_poisson_loss() (in module ivy)": [[370, "ivy.log_poisson_loss"], [445, "ivy.log_poisson_loss"]], "poisson_nll_loss() (in module ivy)": [[370, "ivy.poisson_nll_loss"], [446, "ivy.poisson_nll_loss"]], "smooth_l1_loss() (in module ivy)": [[370, "ivy.smooth_l1_loss"], [447, "ivy.smooth_l1_loss"]], "soft_margin_loss() (in module ivy)": [[370, "ivy.soft_margin_loss"], [448, "ivy.soft_margin_loss"]], "as_strided() (in module ivy)": [[371, "ivy.as_strided"], [449, "ivy.as_strided"]], "associative_scan() (in module ivy)": [[371, "ivy.associative_scan"], [450, "ivy.associative_scan"]], "atleast_1d() (in module ivy)": [[371, "ivy.atleast_1d"], [451, "ivy.atleast_1d"]], "atleast_2d() (in module ivy)": [[371, "ivy.atleast_2d"], [452, "ivy.atleast_2d"]], "atleast_3d() (in module ivy)": [[371, "ivy.atleast_3d"], [453, "ivy.atleast_3d"]], "broadcast_shapes() (in module ivy)": [[371, "ivy.broadcast_shapes"], [454, "ivy.broadcast_shapes"]], "check_scalar() (in module ivy)": [[371, "ivy.check_scalar"], [455, "ivy.check_scalar"]], "choose() (in module ivy)": [[371, "ivy.choose"], [456, "ivy.choose"]], "column_stack() (in module ivy)": [[371, "ivy.column_stack"], [457, "ivy.column_stack"]], "concat_from_sequence() (in module ivy)": [[371, "ivy.concat_from_sequence"], [458, "ivy.concat_from_sequence"]], "dsplit() (in module ivy)": [[371, "ivy.dsplit"], [459, "ivy.dsplit"]], "dstack() (in module ivy)": [[371, "ivy.dstack"], [460, "ivy.dstack"]], "expand() (in module ivy)": [[371, "ivy.expand"], [461, "ivy.expand"]], "fill_diagonal() (in module ivy)": [[371, "ivy.fill_diagonal"], [462, "ivy.fill_diagonal"]], "flatten() (in module ivy)": [[371, "ivy.flatten"], [463, "ivy.flatten"]], "fliplr() (in module ivy)": [[371, "ivy.fliplr"], [464, "ivy.fliplr"]], "flipud() (in module ivy)": [[371, "ivy.flipud"], [465, "ivy.flipud"]], "fold() (in module ivy)": [[371, "ivy.fold"], [466, "ivy.fold"]], "heaviside() (in module ivy)": [[371, "ivy.heaviside"], [467, "ivy.heaviside"]], "hsplit() (in module ivy)": [[371, "ivy.hsplit"], [468, "ivy.hsplit"]], "hstack() (in module ivy)": [[371, "ivy.hstack"], [469, "ivy.hstack"]], "i0() (in module ivy)": [[371, "ivy.i0"], [470, "ivy.i0"]], "ivy.functional.ivy.experimental.manipulation": [[371, "module-ivy.functional.ivy.experimental.manipulation"]], "matricize() (in module ivy)": [[371, "ivy.matricize"], [471, "ivy.matricize"]], "moveaxis() (in module ivy)": [[371, "ivy.moveaxis"], [472, "ivy.moveaxis"]], "pad() (in module ivy)": [[371, "ivy.pad"], [473, "ivy.pad"]], "partial_fold() (in module ivy)": [[371, "ivy.partial_fold"], [474, "ivy.partial_fold"]], "partial_tensor_to_vec() (in module ivy)": [[371, "ivy.partial_tensor_to_vec"], [475, "ivy.partial_tensor_to_vec"]], "partial_unfold() (in module ivy)": [[371, "ivy.partial_unfold"], [476, "ivy.partial_unfold"]], "partial_vec_to_tensor() (in module ivy)": [[371, "ivy.partial_vec_to_tensor"], [477, "ivy.partial_vec_to_tensor"]], "put_along_axis() (in module ivy)": [[371, "ivy.put_along_axis"], [478, "ivy.put_along_axis"]], "rot90() (in module ivy)": [[371, "ivy.rot90"], [479, "ivy.rot90"]], "soft_thresholding() (in module ivy)": [[371, "ivy.soft_thresholding"], [480, "ivy.soft_thresholding"]], "take() (in module ivy)": [[371, "ivy.take"], [481, "ivy.take"]], "take_along_axis() (in module ivy)": [[371, "ivy.take_along_axis"], [482, "ivy.take_along_axis"]], "top_k() (in module ivy)": [[371, "ivy.top_k"], [483, "ivy.top_k"]], "trim_zeros() (in module ivy)": [[371, "ivy.trim_zeros"], [484, "ivy.trim_zeros"]], "unfold() (in module ivy)": [[371, "ivy.unfold"], [485, "ivy.unfold"]], "unique_consecutive() (in module ivy)": [[371, "ivy.unique_consecutive"], [486, "ivy.unique_consecutive"]], "vsplit() (in module ivy)": [[371, "ivy.vsplit"], [487, "ivy.vsplit"]], "vstack() (in module ivy)": [[371, "ivy.vstack"], [488, "ivy.vstack"]], "ivy.functional.ivy.experimental.meta": [[372, "module-ivy.functional.ivy.experimental.meta"]], "ivy.functional.ivy.experimental.nest": [[373, "module-ivy.functional.ivy.experimental.nest"]], "batch_norm() (in module ivy)": [[374, "ivy.batch_norm"], [489, "ivy.batch_norm"]], "group_norm() (in module ivy)": [[374, "ivy.group_norm"], [490, "ivy.group_norm"]], "instance_norm() (in module ivy)": [[374, "ivy.instance_norm"], [491, "ivy.instance_norm"]], "ivy.functional.ivy.experimental.norms": [[374, "module-ivy.functional.ivy.experimental.norms"]], "l1_normalize() (in module ivy)": [[374, "ivy.l1_normalize"], [492, "ivy.l1_normalize"]], "l2_normalize() (in module ivy)": [[374, "ivy.l2_normalize"], [493, "ivy.l2_normalize"]], "local_response_norm() (in module ivy)": [[374, "ivy.local_response_norm"], [494, "ivy.local_response_norm"]], "lp_normalize() (in module ivy)": [[374, "ivy.lp_normalize"], [495, "ivy.lp_normalize"]], "bernoulli() (in module ivy)": [[375, "ivy.bernoulli"], [496, "ivy.bernoulli"]], "beta() (in module ivy)": [[375, "ivy.beta"], [497, "ivy.beta"]], "dirichlet() (in module ivy)": [[375, "ivy.dirichlet"], [498, "ivy.dirichlet"]], "gamma() (in module ivy)": [[375, "ivy.gamma"], [499, "ivy.gamma"]], "ivy.functional.ivy.experimental.random": [[375, "module-ivy.functional.ivy.experimental.random"]], "poisson() (in module ivy)": [[375, "ivy.poisson"], [500, "ivy.poisson"]], "ivy.functional.ivy.experimental.searching": [[376, "module-ivy.functional.ivy.experimental.searching"]], "unravel_index() (in module ivy)": [[376, "ivy.unravel_index"], [501, "ivy.unravel_index"]], "ivy.functional.ivy.experimental.set": [[377, "module-ivy.functional.ivy.experimental.set"]], "invert_permutation() (in module ivy)": [[378, "ivy.invert_permutation"], [502, "ivy.invert_permutation"]], "ivy.functional.ivy.experimental.sorting": [[378, "module-ivy.functional.ivy.experimental.sorting"]], "lexsort() (in module ivy)": [[378, "ivy.lexsort"], [503, "ivy.lexsort"]], "nativesparsearray (class in ivy)": [[379, "ivy.NativeSparseArray"]], "sparsearray (class in ivy)": [[379, "ivy.SparseArray"]], "is_ivy_sparse_array() (in module ivy)": [[379, "ivy.is_ivy_sparse_array"], [504, "ivy.is_ivy_sparse_array"]], "is_native_sparse_array() (in module ivy)": [[379, "ivy.is_native_sparse_array"], [505, "ivy.is_native_sparse_array"]], "ivy.functional.ivy.experimental.sparse_array": [[379, "module-ivy.functional.ivy.experimental.sparse_array"]], "native_sparse_array() (in module ivy)": [[379, "ivy.native_sparse_array"], [506, "ivy.native_sparse_array"]], "native_sparse_array_to_indices_values_and_shape() (in module ivy)": [[379, "ivy.native_sparse_array_to_indices_values_and_shape"], [507, "ivy.native_sparse_array_to_indices_values_and_shape"]], "bincount() (in module ivy)": [[380, "ivy.bincount"], [508, "ivy.bincount"]], "corrcoef() (in module ivy)": [[380, "ivy.corrcoef"], [509, "ivy.corrcoef"]], "cov() (in module ivy)": [[380, "ivy.cov"], [510, "ivy.cov"]], "cummax() (in module ivy)": [[380, "ivy.cummax"], [511, "ivy.cummax"]], "cummin() (in module ivy)": [[380, "ivy.cummin"], [512, "ivy.cummin"]], "histogram() (in module ivy)": [[380, "ivy.histogram"], [513, "ivy.histogram"]], "igamma() (in module ivy)": [[380, "ivy.igamma"], [514, "ivy.igamma"]], "ivy.functional.ivy.experimental.statistical": [[380, "module-ivy.functional.ivy.experimental.statistical"]], "median() (in module ivy)": [[380, "ivy.median"], [515, "ivy.median"]], "nanmean() (in module ivy)": [[380, "ivy.nanmean"], [516, "ivy.nanmean"]], "nanmedian() (in module ivy)": [[380, "ivy.nanmedian"], [517, "ivy.nanmedian"]], "nanmin() (in module ivy)": [[380, "ivy.nanmin"], [518, "ivy.nanmin"]], "nanprod() (in module ivy)": [[380, "ivy.nanprod"], [519, "ivy.nanprod"]], "quantile() (in module ivy)": [[380, "ivy.quantile"], [520, "ivy.quantile"]], "ivy.functional.ivy.experimental.utility": [[381, "module-ivy.functional.ivy.experimental.utility"]], "optional_get_element() (in module ivy)": [[381, "ivy.optional_get_element"], [521, "ivy.optional_get_element"]], "adaptive_avg_pool1d() (ivy.array method)": [[382, "ivy.Array.adaptive_avg_pool1d"]], "adaptive_avg_pool1d() (ivy.container method)": [[382, "ivy.Container.adaptive_avg_pool1d"]], "adaptive_avg_pool2d() (ivy.array method)": [[383, "ivy.Array.adaptive_avg_pool2d"]], "adaptive_avg_pool2d() (ivy.container method)": [[383, "ivy.Container.adaptive_avg_pool2d"]], "adaptive_max_pool2d() (ivy.array method)": [[384, "ivy.Array.adaptive_max_pool2d"]], "adaptive_max_pool2d() (ivy.container method)": [[384, "ivy.Container.adaptive_max_pool2d"]], "avg_pool1d() (ivy.array method)": [[386, "ivy.Array.avg_pool1d"]], "avg_pool1d() (ivy.container method)": [[386, "ivy.Container.avg_pool1d"]], "avg_pool2d() (ivy.array method)": [[387, "ivy.Array.avg_pool2d"]], "avg_pool2d() (ivy.container method)": [[387, "ivy.Container.avg_pool2d"]], "avg_pool3d() (ivy.array method)": [[388, "ivy.Array.avg_pool3d"]], "avg_pool3d() (ivy.container method)": [[388, "ivy.Container.avg_pool3d"]], "dct() (ivy.array method)": [[389, "ivy.Array.dct"]], "dct() (ivy.container method)": [[389, "ivy.Container.dct"]], "dft() (ivy.array method)": [[390, "ivy.Array.dft"]], "dft() (ivy.container method)": [[390, "ivy.Container.dft"]], "dropout1d() (ivy.array method)": [[391, "ivy.Array.dropout1d"]], "dropout1d() (ivy.container method)": [[391, "ivy.Container.dropout1d"]], "dropout2d() (ivy.array method)": [[392, "ivy.Array.dropout2d"]], "dropout2d() (ivy.container method)": [[392, "ivy.Container.dropout2d"]], "dropout3d() (ivy.array method)": [[393, "ivy.Array.dropout3d"]], "dropout3d() (ivy.container method)": [[393, "ivy.Container.dropout3d"]], "embedding() (ivy.array method)": [[394, "ivy.Array.embedding"]], "embedding() (ivy.container method)": [[394, "ivy.Container.embedding"]], "fft() (ivy.array method)": [[395, "ivy.Array.fft"]], "fft() (ivy.container method)": [[395, "ivy.Container.fft"]], "fft2() (ivy.array method)": [[396, "ivy.Array.fft2"]], "idct() (ivy.array method)": [[399, "ivy.Array.idct"]], "idct() (ivy.container method)": [[399, "ivy.Container.idct"]], "ifft() (ivy.array method)": [[400, "ivy.Array.ifft"]], "ifft() (ivy.container method)": [[400, "ivy.Container.ifft"]], "ifftn() (ivy.array method)": [[401, "ivy.Array.ifftn"]], "ifftn() (ivy.container method)": [[401, "ivy.Container.ifftn"]], "interpolate() (ivy.array method)": [[403, "ivy.Array.interpolate"]], "interpolate() (ivy.container method)": [[403, "ivy.Container.interpolate"]], "max_pool1d() (ivy.array method)": [[404, "ivy.Array.max_pool1d"]], "max_pool1d() (ivy.container method)": [[404, "ivy.Container.max_pool1d"]], "max_pool2d() (ivy.array method)": [[405, "ivy.Array.max_pool2d"]], "max_pool2d() (ivy.container method)": [[405, "ivy.Container.max_pool2d"]], "max_pool3d() (ivy.array method)": [[406, "ivy.Array.max_pool3d"]], "max_pool3d() (ivy.container method)": [[406, "ivy.Container.max_pool3d"]], "max_unpool1d() (ivy.array method)": [[407, "ivy.Array.max_unpool1d"]], "max_unpool1d() (ivy.container method)": [[407, "ivy.Container.max_unpool1d"]], "reduce_window() (ivy.array method)": [[410, "ivy.Array.reduce_window"]], "reduce_window() (ivy.container method)": [[410, "ivy.Container.reduce_window"]], "rfft() (ivy.array method)": [[411, "ivy.Array.rfft"]], "rfft() (ivy.container method)": [[411, "ivy.Container.rfft"]], "rfftn() (ivy.array method)": [[412, "ivy.Array.rfftn"]], "rfftn() (ivy.container method)": [[412, "ivy.Container.rfftn"]], "sliding_window() (ivy.array method)": [[414, "ivy.Array.sliding_window"]], "sliding_window() (ivy.container method)": [[414, "ivy.Container.sliding_window"]], "stft() (ivy.array method)": [[415, "ivy.Array.stft"]], "stft() (ivy.container method)": [[415, "ivy.Container.stft"]], "adjoint() (ivy.array method)": [[416, "ivy.Array.adjoint"]], "adjoint() (ivy.container method)": [[416, "ivy.Container.adjoint"]], "batched_outer() (ivy.array method)": [[417, "ivy.Array.batched_outer"]], "batched_outer() (ivy.container method)": [[417, "ivy.Container.batched_outer"]], "cond() (ivy.array method)": [[418, "ivy.Array.cond"]], "cond() (ivy.container method)": [[418, "ivy.Container.cond"]], "diagflat() (ivy.array method)": [[419, "ivy.Array.diagflat"]], "diagflat() (ivy.container method)": [[419, "ivy.Container.diagflat"]], "dot() (ivy.array method)": [[420, "ivy.Array.dot"]], "dot() (ivy.container method)": [[420, "ivy.Container.dot"]], "eig() (ivy.array method)": [[421, "ivy.Array.eig"], [658, "ivy.Array.eig"]], "eig() (ivy.container method)": [[421, "ivy.Container.eig"], [658, "ivy.Container.eig"]], "eigh_tridiagonal() (ivy.array method)": [[422, "ivy.Array.eigh_tridiagonal"]], "eigh_tridiagonal() (ivy.container method)": [[422, "ivy.Container.eigh_tridiagonal"]], "eigvals() (ivy.array method)": [[423, "ivy.Array.eigvals"]], "eigvals() (ivy.container method)": [[423, "ivy.Container.eigvals"]], "general_inner_product() (ivy.array method)": [[424, "ivy.Array.general_inner_product"]], "general_inner_product() (ivy.container method)": [[424, "ivy.Container.general_inner_product"]], "higher_order_moment() (ivy.array method)": [[425, "ivy.Array.higher_order_moment"]], "higher_order_moment() (ivy.container method)": [[425, "ivy.Container.higher_order_moment"]], "initialize_tucker() (ivy.array method)": [[426, "ivy.Array.initialize_tucker"]], "initialize_tucker() (ivy.container method)": [[426, "ivy.Container.initialize_tucker"]], "kron() (ivy.array method)": [[428, "ivy.Array.kron"]], "kron() (ivy.container method)": [[428, "ivy.Container.kron"]], "make_svd_non_negative() (ivy.array method)": [[430, "ivy.Array.make_svd_non_negative"]], "make_svd_non_negative() (ivy.container method)": [[430, "ivy.Container.make_svd_non_negative"]], "matrix_exp() (ivy.array method)": [[431, "ivy.Array.matrix_exp"]], "matrix_exp() (ivy.container method)": [[431, "ivy.Container.matrix_exp"]], "mode_dot() (ivy.array method)": [[432, "ivy.Array.mode_dot"]], "mode_dot() (ivy.container method)": [[432, "ivy.Container.mode_dot"]], "multi_dot() (ivy.array method)": [[433, "ivy.Array.multi_dot"]], "multi_dot() (ivy.container method)": [[433, "ivy.Container.multi_dot"]], "multi_mode_dot() (ivy.array method)": [[434, "ivy.Array.multi_mode_dot"]], "multi_mode_dot() (ivy.container method)": [[434, "ivy.Container.multi_mode_dot"]], "partial_tucker() (ivy.array method)": [[435, "ivy.Array.partial_tucker"]], "partial_tucker() (ivy.container method)": [[435, "ivy.Container.partial_tucker"]], "svd_flip() (ivy.array method)": [[437, "ivy.Array.svd_flip"]], "svd_flip() (ivy.container method)": [[437, "ivy.Container.svd_flip"]], "tensor_train() (ivy.array method)": [[438, "ivy.Array.tensor_train"]], "tensor_train() (ivy.container method)": [[438, "ivy.Container.tensor_train"]], "truncated_svd() (ivy.array method)": [[439, "ivy.Array.truncated_svd"]], "truncated_svd() (ivy.container method)": [[439, "ivy.Container.truncated_svd"]], "tt_matrix_to_tensor() (ivy.array method)": [[440, "ivy.Array.tt_matrix_to_tensor"]], "tt_matrix_to_tensor() (ivy.container method)": [[440, "ivy.Container.tt_matrix_to_tensor"]], "tucker() (ivy.array method)": [[441, "ivy.Array.tucker"]], "tucker() (ivy.container method)": [[441, "ivy.Container.tucker"]], "huber_loss() (ivy.array method)": [[442, "ivy.Array.huber_loss"]], "huber_loss() (ivy.container method)": [[442, "ivy.Container.huber_loss"]], "kl_div() (ivy.array method)": [[443, "ivy.Array.kl_div"]], "kl_div() (ivy.container method)": [[443, "ivy.Container.kl_div"]], "l1_loss() (ivy.array method)": [[444, "ivy.Array.l1_loss"]], "l1_loss() (ivy.container method)": [[444, "ivy.Container.l1_loss"]], "log_poisson_loss() (ivy.array method)": [[445, "ivy.Array.log_poisson_loss"]], "log_poisson_loss() (ivy.container method)": [[445, "ivy.Container.log_poisson_loss"]], "poisson_nll_loss() (ivy.array method)": [[446, "ivy.Array.poisson_nll_loss"]], "poisson_nll_loss() (ivy.container method)": [[446, "ivy.Container.poisson_nll_loss"]], "smooth_l1_loss() (ivy.array method)": [[447, "ivy.Array.smooth_l1_loss"]], "smooth_l1_loss() (ivy.container method)": [[447, "ivy.Container.smooth_l1_loss"]], "soft_margin_loss() (ivy.array method)": [[448, "ivy.Array.soft_margin_loss"]], "soft_margin_loss() (ivy.container method)": [[448, "ivy.Container.soft_margin_loss"]], "as_strided() (ivy.array method)": [[449, "ivy.Array.as_strided"]], "as_strided() (ivy.container method)": [[449, "ivy.Container.as_strided"]], "associative_scan() (ivy.array method)": [[450, "ivy.Array.associative_scan"]], "associative_scan() (ivy.container method)": [[450, "ivy.Container.associative_scan"]], "atleast_1d() (ivy.array method)": [[451, "ivy.Array.atleast_1d"]], "atleast_1d() (ivy.container method)": [[451, "ivy.Container.atleast_1d"]], "atleast_2d() (ivy.array method)": [[452, "ivy.Array.atleast_2d"]], "atleast_2d() (ivy.container method)": [[452, "ivy.Container.atleast_2d"]], "atleast_3d() (ivy.array method)": [[453, "ivy.Array.atleast_3d"]], "atleast_3d() (ivy.container method)": [[453, "ivy.Container.atleast_3d"]], "broadcast_shapes() (ivy.container method)": [[454, "ivy.Container.broadcast_shapes"]], "column_stack() (ivy.array method)": [[457, "ivy.Array.column_stack"]], "column_stack() (ivy.container method)": [[457, "ivy.Container.column_stack"]], "concat_from_sequence() (ivy.array method)": [[458, "ivy.Array.concat_from_sequence"]], "concat_from_sequence() (ivy.container method)": [[458, "ivy.Container.concat_from_sequence"]], "dsplit() (ivy.array method)": [[459, "ivy.Array.dsplit"]], "dsplit() (ivy.container method)": [[459, "ivy.Container.dsplit"]], "dstack() (ivy.array method)": [[460, "ivy.Array.dstack"]], "dstack() (ivy.container method)": [[460, "ivy.Container.dstack"]], "expand() (ivy.array method)": [[461, "ivy.Array.expand"]], "expand() (ivy.container method)": [[461, "ivy.Container.expand"]], "fill_diagonal() (ivy.array method)": [[462, "ivy.Array.fill_diagonal"]], "fill_diagonal() (ivy.container method)": [[462, "ivy.Container.fill_diagonal"]], "flatten() (ivy.array method)": [[463, "ivy.Array.flatten"]], "flatten() (ivy.container method)": [[463, "ivy.Container.flatten"]], "fliplr() (ivy.array method)": [[464, "ivy.Array.fliplr"]], "fliplr() (ivy.container method)": [[464, "ivy.Container.fliplr"]], "flipud() (ivy.array method)": [[465, "ivy.Array.flipud"]], "flipud() (ivy.container method)": [[465, "ivy.Container.flipud"]], "fold() (ivy.array method)": [[466, "ivy.Array.fold"]], "fold() (ivy.container method)": [[466, "ivy.Container.fold"]], "heaviside() (ivy.array method)": [[467, "ivy.Array.heaviside"]], "heaviside() (ivy.container method)": [[467, "ivy.Container.heaviside"]], "hsplit() (ivy.array method)": [[468, "ivy.Array.hsplit"]], "hsplit() (ivy.container method)": [[468, "ivy.Container.hsplit"]], "hstack() (ivy.array method)": [[469, "ivy.Array.hstack"]], "hstack() (ivy.container method)": [[469, "ivy.Container.hstack"]], "i0() (ivy.array method)": [[470, "ivy.Array.i0"]], "i0() (ivy.container method)": [[470, "ivy.Container.i0"]], "matricize() (ivy.array method)": [[471, "ivy.Array.matricize"]], "matricize() (ivy.container method)": [[471, "ivy.Container.matricize"]], "moveaxis() (ivy.array method)": [[472, "ivy.Array.moveaxis"]], "moveaxis() (ivy.container method)": [[472, "ivy.Container.moveaxis"]], "pad() (ivy.array method)": [[473, "ivy.Array.pad"]], "pad() (ivy.container method)": [[473, "ivy.Container.pad"]], "partial_fold() (ivy.array method)": [[474, "ivy.Array.partial_fold"]], "partial_fold() (ivy.container method)": [[474, "ivy.Container.partial_fold"]], "partial_tensor_to_vec() (ivy.array method)": [[475, "ivy.Array.partial_tensor_to_vec"]], "partial_tensor_to_vec() (ivy.container method)": [[475, "ivy.Container.partial_tensor_to_vec"]], "partial_unfold() (ivy.array method)": [[476, "ivy.Array.partial_unfold"]], "partial_unfold() (ivy.container method)": [[476, "ivy.Container.partial_unfold"]], "partial_vec_to_tensor() (ivy.array method)": [[477, "ivy.Array.partial_vec_to_tensor"]], "partial_vec_to_tensor() (ivy.container method)": [[477, "ivy.Container.partial_vec_to_tensor"]], "put_along_axis() (ivy.array method)": [[478, "ivy.Array.put_along_axis"]], "put_along_axis() (ivy.container method)": [[478, "ivy.Container.put_along_axis"]], "rot90() (ivy.array method)": [[479, "ivy.Array.rot90"]], "rot90() (ivy.container method)": [[479, "ivy.Container.rot90"]], "soft_thresholding() (ivy.array method)": [[480, "ivy.Array.soft_thresholding"]], "soft_thresholding() (ivy.container method)": [[480, "ivy.Container.soft_thresholding"]], "take() (ivy.array method)": [[481, "ivy.Array.take"]], "take() (ivy.container method)": [[481, "ivy.Container.take"]], "take_along_axis() (ivy.array method)": [[482, "ivy.Array.take_along_axis"]], "take_along_axis() (ivy.container method)": [[482, "ivy.Container.take_along_axis"]], "top_k() (ivy.array method)": [[483, "ivy.Array.top_k"]], "top_k() (ivy.container method)": [[483, "ivy.Container.top_k"]], "trim_zeros() (ivy.array method)": [[484, "ivy.Array.trim_zeros"]], "trim_zeros() (ivy.container method)": [[484, "ivy.Container.trim_zeros"]], "unfold() (ivy.array method)": [[485, "ivy.Array.unfold"]], "unfold() (ivy.container method)": [[485, "ivy.Container.unfold"]], "unique_consecutive() (ivy.array method)": [[486, "ivy.Array.unique_consecutive"]], "unique_consecutive() (ivy.container method)": [[486, "ivy.Container.unique_consecutive"]], "vsplit() (ivy.array method)": [[487, "ivy.Array.vsplit"]], "vsplit() (ivy.container method)": [[487, "ivy.Container.vsplit"]], "vstack() (ivy.array method)": [[488, "ivy.Array.vstack"]], "vstack() (ivy.container method)": [[488, "ivy.Container.vstack"]], "batch_norm() (ivy.array method)": [[489, "ivy.Array.batch_norm"]], "batch_norm() (ivy.container method)": [[489, "ivy.Container.batch_norm"]], "group_norm() (ivy.array method)": [[490, "ivy.Array.group_norm"]], "group_norm() (ivy.container method)": [[490, "ivy.Container.group_norm"]], "instance_norm() (ivy.array method)": [[491, "ivy.Array.instance_norm"]], "instance_norm() (ivy.container method)": [[491, "ivy.Container.instance_norm"]], "l1_normalize() (ivy.array method)": [[492, "ivy.Array.l1_normalize"]], "l1_normalize() (ivy.container method)": [[492, "ivy.Container.l1_normalize"]], "l2_normalize() (ivy.array method)": [[493, "ivy.Array.l2_normalize"]], "l2_normalize() (ivy.container method)": [[493, "ivy.Container.l2_normalize"]], "lp_normalize() (ivy.array method)": [[495, "ivy.Array.lp_normalize"]], "lp_normalize() (ivy.container method)": [[495, "ivy.Container.lp_normalize"]], "bernoulli() (ivy.array method)": [[496, "ivy.Array.bernoulli"]], "bernoulli() (ivy.container method)": [[496, "ivy.Container.bernoulli"]], "beta() (ivy.array method)": [[497, "ivy.Array.beta"]], "beta() (ivy.container method)": [[497, "ivy.Container.beta"]], "dirichlet() (ivy.array method)": [[498, "ivy.Array.dirichlet"]], "dirichlet() (ivy.container method)": [[498, "ivy.Container.dirichlet"]], "gamma() (ivy.array method)": [[499, "ivy.Array.gamma"]], "gamma() (ivy.container method)": [[499, "ivy.Container.gamma"]], "poisson() (ivy.array method)": [[500, "ivy.Array.poisson"]], "poisson() (ivy.container method)": [[500, "ivy.Container.poisson"]], "unravel_index() (ivy.array method)": [[501, "ivy.Array.unravel_index"]], "unravel_index() (ivy.container method)": [[501, "ivy.Container.unravel_index"]], "invert_permutation() (ivy.container method)": [[502, "ivy.Container.invert_permutation"]], "lexsort() (ivy.array method)": [[503, "ivy.Array.lexsort"]], "lexsort() (ivy.container method)": [[503, "ivy.Container.lexsort"]], "bincount() (ivy.array method)": [[508, "ivy.Array.bincount"]], "bincount() (ivy.container method)": [[508, "ivy.Container.bincount"]], "corrcoef() (ivy.array method)": [[509, "ivy.Array.corrcoef"]], "corrcoef() (ivy.container method)": [[509, "ivy.Container.corrcoef"]], "cov() (ivy.array method)": [[510, "ivy.Array.cov"]], "cov() (ivy.container method)": [[510, "ivy.Container.cov"]], "cummax() (ivy.array method)": [[511, "ivy.Array.cummax"]], "cummax() (ivy.container method)": [[511, "ivy.Container.cummax"]], "cummin() (ivy.array method)": [[512, "ivy.Array.cummin"]], "cummin() (ivy.container method)": [[512, "ivy.Container.cummin"]], "histogram() (ivy.array method)": [[513, "ivy.Array.histogram"]], "histogram() (ivy.container method)": [[513, "ivy.Container.histogram"]], "igamma() (ivy.array method)": [[514, "ivy.Array.igamma"]], "igamma() (ivy.container method)": [[514, "ivy.Container.igamma"]], "median() (ivy.array method)": [[515, "ivy.Array.median"]], "median() (ivy.container method)": [[515, "ivy.Container.median"]], "nanmean() (ivy.array method)": [[516, "ivy.Array.nanmean"]], "nanmean() (ivy.container method)": [[516, "ivy.Container.nanmean"]], "nanmedian() (ivy.array method)": [[517, "ivy.Array.nanmedian"]], "nanmedian() (ivy.container method)": [[517, "ivy.Container.nanmedian"]], "nanmin() (ivy.array method)": [[518, "ivy.Array.nanmin"]], "nanmin() (ivy.container method)": [[518, "ivy.Container.nanmin"]], "nanprod() (ivy.array method)": [[519, "ivy.Array.nanprod"]], "nanprod() (ivy.container method)": [[519, "ivy.Container.nanprod"]], "quantile() (ivy.array method)": [[520, "ivy.Array.quantile"]], "quantile() (ivy.container method)": [[520, "ivy.Container.quantile"]], "optional_get_element() (ivy.array method)": [[521, "ivy.Array.optional_get_element"]], "optional_get_element() (ivy.container method)": [[521, "ivy.Container.optional_get_element"]], "all_equal() (in module ivy)": [[522, "ivy.all_equal"], [621, "ivy.all_equal"]], "all_equal() (ivy.array method)": [[522, "ivy.Array.all_equal"]], "all_equal() (ivy.container method)": [[522, "ivy.Container.all_equal"]], "arg_info() (in module ivy)": [[523, "ivy.arg_info"], [621, "ivy.arg_info"]], "arg_names() (in module ivy)": [[524, "ivy.arg_names"], [621, "ivy.arg_names"]], "array_equal() (in module ivy)": [[525, "ivy.array_equal"], [621, "ivy.array_equal"]], "array_equal() (ivy.array method)": [[525, "ivy.Array.array_equal"]], "array_equal() (ivy.container method)": [[525, "ivy.Container.array_equal"]], "assert_supports_inplace() (in module ivy)": [[526, "ivy.assert_supports_inplace"], [621, "ivy.assert_supports_inplace"]], "assert_supports_inplace() (ivy.array method)": [[526, "ivy.Array.assert_supports_inplace"]], "assert_supports_inplace() (ivy.container method)": [[526, "ivy.Container.assert_supports_inplace"]], "cache_fn() (in module ivy)": [[527, "ivy.cache_fn"], [621, "ivy.cache_fn"]], "clip_matrix_norm() (in module ivy)": [[528, "ivy.clip_matrix_norm"], [621, "ivy.clip_matrix_norm"]], "clip_matrix_norm() (ivy.array method)": [[528, "ivy.Array.clip_matrix_norm"]], "clip_matrix_norm() (ivy.container method)": [[528, "ivy.Container.clip_matrix_norm"]], "clip_vector_norm() (in module ivy)": [[529, "ivy.clip_vector_norm"], [621, "ivy.clip_vector_norm"]], "clip_vector_norm() (ivy.array method)": [[529, "ivy.Array.clip_vector_norm"]], "clip_vector_norm() (ivy.container method)": [[529, "ivy.Container.clip_vector_norm"]], "container_types() (in module ivy)": [[530, "ivy.container_types"], [621, "ivy.container_types"]], "current_backend_str() (in module ivy)": [[531, "ivy.current_backend_str"], [621, "ivy.current_backend_str"]], "default() (in module ivy)": [[532, "ivy.default"], [621, "ivy.default"]], "default() (ivy.array method)": [[532, "ivy.Array.default"]], "einops_rearrange() (in module ivy)": [[533, "ivy.einops_rearrange"], [621, "ivy.einops_rearrange"]], "einops_rearrange() (ivy.array method)": [[533, "ivy.Array.einops_rearrange"]], "einops_rearrange() (ivy.container method)": [[533, "ivy.Container.einops_rearrange"]], "einops_reduce() (in module ivy)": [[534, "ivy.einops_reduce"], [621, "ivy.einops_reduce"]], "einops_reduce() (ivy.array method)": [[534, "ivy.Array.einops_reduce"]], "einops_reduce() (ivy.container method)": [[534, "ivy.Container.einops_reduce"]], "einops_repeat() (in module ivy)": [[535, "ivy.einops_repeat"], [621, "ivy.einops_repeat"]], "einops_repeat() (ivy.array method)": [[535, "ivy.Array.einops_repeat"]], "einops_repeat() (ivy.container method)": [[535, "ivy.Container.einops_repeat"]], "exists() (in module ivy)": [[536, "ivy.exists"], [621, "ivy.exists"]], "exists() (ivy.array method)": [[536, "ivy.Array.exists"]], "exists() (ivy.container method)": [[536, "ivy.Container.exists"]], "fourier_encode() (in module ivy)": [[537, "ivy.fourier_encode"], [621, "ivy.fourier_encode"]], "fourier_encode() (ivy.array method)": [[537, "ivy.Array.fourier_encode"]], "fourier_encode() (ivy.container method)": [[537, "ivy.Container.fourier_encode"]], "function_supported_devices_and_dtypes() (in module ivy)": [[538, "ivy.function_supported_devices_and_dtypes"], [621, "ivy.function_supported_devices_and_dtypes"]], "function_unsupported_devices_and_dtypes() (in module ivy)": [[539, "ivy.function_unsupported_devices_and_dtypes"], [621, "ivy.function_unsupported_devices_and_dtypes"]], "gather() (in module ivy)": [[540, "ivy.gather"], [621, "ivy.gather"]], "gather() (ivy.array method)": [[540, "ivy.Array.gather"]], "gather() (ivy.container method)": [[540, "ivy.Container.gather"]], "gather_nd() (in module ivy)": [[541, "ivy.gather_nd"], [621, "ivy.gather_nd"]], "gather_nd() (ivy.array method)": [[541, "ivy.Array.gather_nd"]], "gather_nd() (ivy.container method)": [[541, "ivy.Container.gather_nd"]], "get_all_arrays_in_memory() (in module ivy)": [[542, "ivy.get_all_arrays_in_memory"], [621, "ivy.get_all_arrays_in_memory"]], "get_item() (in module ivy)": [[543, "ivy.get_item"], [621, "ivy.get_item"]], "get_num_dims() (in module ivy)": [[544, "ivy.get_num_dims"], [621, "ivy.get_num_dims"]], "get_num_dims() (ivy.array method)": [[544, "ivy.Array.get_num_dims"]], "get_num_dims() (ivy.container method)": [[544, "ivy.Container.get_num_dims"]], "get_referrers_recursive() (in module ivy)": [[545, "ivy.get_referrers_recursive"], [621, "ivy.get_referrers_recursive"]], "has_nans() (in module ivy)": [[546, "ivy.has_nans"], [621, "ivy.has_nans"]], "has_nans() (ivy.array method)": [[546, "ivy.Array.has_nans"]], "has_nans() (ivy.container method)": [[546, "ivy.Container.has_nans"]], "inplace_arrays_supported() (in module ivy)": [[547, "ivy.inplace_arrays_supported"], [621, "ivy.inplace_arrays_supported"]], "inplace_decrement() (in module ivy)": [[548, "ivy.inplace_decrement"], [621, "ivy.inplace_decrement"]], "inplace_decrement() (ivy.array method)": [[548, "ivy.Array.inplace_decrement"]], "inplace_decrement() (ivy.container method)": [[548, "ivy.Container.inplace_decrement"]], "inplace_increment() (in module ivy)": [[549, "ivy.inplace_increment"], [621, "ivy.inplace_increment"]], "inplace_increment() (ivy.array method)": [[549, "ivy.Array.inplace_increment"]], "inplace_increment() (ivy.container method)": [[549, "ivy.Container.inplace_increment"]], "inplace_update() (in module ivy)": [[550, "ivy.inplace_update"], [621, "ivy.inplace_update"]], "inplace_update() (ivy.array method)": [[550, "ivy.Array.inplace_update"]], "inplace_update() (ivy.container method)": [[550, "ivy.Container.inplace_update"]], "inplace_variables_supported() (in module ivy)": [[551, "ivy.inplace_variables_supported"], [621, "ivy.inplace_variables_supported"]], "is_array() (in module ivy)": [[552, "ivy.is_array"], [621, "ivy.is_array"]], "is_array() (ivy.array method)": [[552, "ivy.Array.is_array"]], "is_array() (ivy.container method)": [[552, "ivy.Container.is_array"]], "is_ivy_array() (in module ivy)": [[553, "ivy.is_ivy_array"], [621, "ivy.is_ivy_array"]], "is_ivy_array() (ivy.array method)": [[553, "ivy.Array.is_ivy_array"]], "is_ivy_array() (ivy.container method)": [[553, "ivy.Container.is_ivy_array"]], "is_ivy_container() (in module ivy)": [[554, "ivy.is_ivy_container"], [621, "ivy.is_ivy_container"]], "is_ivy_container() (ivy.array method)": [[554, "ivy.Array.is_ivy_container"]], "is_ivy_nested_array() (in module ivy)": [[555, "ivy.is_ivy_nested_array"], [621, "ivy.is_ivy_nested_array"]], "is_native_array() (in module ivy)": [[556, "ivy.is_native_array"], [621, "ivy.is_native_array"]], "is_native_array() (ivy.array method)": [[556, "ivy.Array.is_native_array"]], "is_native_array() (ivy.container method)": [[556, "ivy.Container.is_native_array"]], "isin() (in module ivy)": [[557, "ivy.isin"], [621, "ivy.isin"]], "isin() (ivy.array method)": [[557, "ivy.Array.isin"]], "isin() (ivy.container method)": [[557, "ivy.Container.isin"]], "isscalar() (in module ivy)": [[558, "ivy.isscalar"], [621, "ivy.isscalar"]], "itemsize() (in module ivy)": [[559, "ivy.itemsize"], [621, "ivy.itemsize"]], "itemsize() (ivy.array method)": [[559, "ivy.Array.itemsize"]], "itemsize() (ivy.container method)": [[559, "ivy.Container.itemsize"]], "match_kwargs() (in module ivy)": [[560, "ivy.match_kwargs"], [621, "ivy.match_kwargs"]], "multiprocessing() (in module ivy)": [[561, "ivy.multiprocessing"], [621, "ivy.multiprocessing"]], "num_arrays_in_memory() (in module ivy)": [[562, "ivy.num_arrays_in_memory"], [621, "ivy.num_arrays_in_memory"]], "print_all_arrays_in_memory() (in module ivy)": [[563, "ivy.print_all_arrays_in_memory"], [621, "ivy.print_all_arrays_in_memory"]], "scatter_flat() (in module ivy)": [[564, "ivy.scatter_flat"], [621, "ivy.scatter_flat"]], "scatter_flat() (ivy.array method)": [[564, "ivy.Array.scatter_flat"]], "scatter_flat() (ivy.container method)": [[564, "ivy.Container.scatter_flat"]], "scatter_nd() (in module ivy)": [[565, "ivy.scatter_nd"], [621, "ivy.scatter_nd"]], "scatter_nd() (ivy.array method)": [[565, "ivy.Array.scatter_nd"]], "scatter_nd() (ivy.container method)": [[565, "ivy.Container.scatter_nd"]], "set_array_mode() (in module ivy)": [[566, "ivy.set_array_mode"], [621, "ivy.set_array_mode"]], "set_exception_trace_mode() (in module ivy)": [[567, "ivy.set_exception_trace_mode"], [621, "ivy.set_exception_trace_mode"]], "set_inplace_mode() (in module ivy)": [[568, "ivy.set_inplace_mode"], [621, "ivy.set_inplace_mode"]], "set_item() (in module ivy)": [[569, "ivy.set_item"], [621, "ivy.set_item"]], "set_min_base() (in module ivy)": [[570, "ivy.set_min_base"], [621, "ivy.set_min_base"]], "set_min_denominator() (in module ivy)": [[571, "ivy.set_min_denominator"], [621, "ivy.set_min_denominator"]], "set_nestable_mode() (in module ivy)": [[572, "ivy.set_nestable_mode"], [621, "ivy.set_nestable_mode"]], "set_precise_mode() (in module ivy)": [[573, "ivy.set_precise_mode"], [621, "ivy.set_precise_mode"]], "set_queue_timeout() (in module ivy)": [[574, "ivy.set_queue_timeout"], [621, "ivy.set_queue_timeout"]], "set_shape_array_mode() (in module ivy)": [[575, "ivy.set_shape_array_mode"], [621, "ivy.set_shape_array_mode"]], "set_show_func_wrapper_trace_mode() (in module ivy)": [[576, "ivy.set_show_func_wrapper_trace_mode"], [621, "ivy.set_show_func_wrapper_trace_mode"]], "set_tmp_dir() (in module ivy)": [[577, "ivy.set_tmp_dir"], [621, "ivy.set_tmp_dir"]], "shape() (in module ivy)": [[578, "ivy.shape"], [621, "ivy.shape"]], "shape() (ivy.array method)": [[578, "ivy.Array.shape"]], "stable_divide() (in module ivy)": [[579, "ivy.stable_divide"], [621, "ivy.stable_divide"]], "stable_divide() (ivy.array method)": [[579, "ivy.Array.stable_divide"]], "stable_divide() (ivy.container method)": [[579, "ivy.Container.stable_divide"]], "stable_pow() (in module ivy)": [[580, "ivy.stable_pow"], [621, "ivy.stable_pow"]], "stable_pow() (ivy.array method)": [[580, "ivy.Array.stable_pow"]], "stable_pow() (ivy.container method)": [[580, "ivy.Container.stable_pow"]], "strides() (in module ivy)": [[581, "ivy.strides"], [621, "ivy.strides"]], "strides() (ivy.array method)": [[581, "ivy.Array.strides"]], "strides() (ivy.container method)": [[581, "ivy.Container.strides"]], "supports_inplace_updates() (in module ivy)": [[582, "ivy.supports_inplace_updates"], [621, "ivy.supports_inplace_updates"]], "supports_inplace_updates() (ivy.array method)": [[582, "ivy.Array.supports_inplace_updates"]], "supports_inplace_updates() (ivy.container method)": [[582, "ivy.Container.supports_inplace_updates"]], "to_ivy_shape() (in module ivy)": [[583, "ivy.to_ivy_shape"], [621, "ivy.to_ivy_shape"]], "to_list() (in module ivy)": [[584, "ivy.to_list"], [621, "ivy.to_list"]], "to_list() (ivy.array method)": [[584, "ivy.Array.to_list"]], "to_list() (ivy.container method)": [[584, "ivy.Container.to_list"]], "to_native_shape() (in module ivy)": [[585, "ivy.to_native_shape"], [621, "ivy.to_native_shape"]], "to_numpy() (in module ivy)": [[586, "ivy.to_numpy"], [621, "ivy.to_numpy"]], "to_numpy() (ivy.array method)": [[586, "ivy.Array.to_numpy"]], "to_numpy() (ivy.container method)": [[586, "ivy.Container.to_numpy"]], "to_scalar() (in module ivy)": [[587, "ivy.to_scalar"], [621, "ivy.to_scalar"]], "to_scalar() (ivy.array method)": [[587, "ivy.Array.to_scalar"]], "to_scalar() (ivy.container method)": [[587, "ivy.Container.to_scalar"]], "try_else_none() (in module ivy)": [[588, "ivy.try_else_none"], [621, "ivy.try_else_none"]], "unset_array_mode() (in module ivy)": [[589, "ivy.unset_array_mode"], [621, "ivy.unset_array_mode"]], "unset_exception_trace_mode() (in module ivy)": [[590, "ivy.unset_exception_trace_mode"], [621, "ivy.unset_exception_trace_mode"]], "unset_inplace_mode() (in module ivy)": [[591, "ivy.unset_inplace_mode"], [621, "ivy.unset_inplace_mode"]], "unset_min_base() (in module ivy)": [[592, "ivy.unset_min_base"], [621, "ivy.unset_min_base"]], "unset_min_denominator() (in module ivy)": [[593, "ivy.unset_min_denominator"], [621, "ivy.unset_min_denominator"]], "unset_nestable_mode() (in module ivy)": [[594, "ivy.unset_nestable_mode"], [621, "ivy.unset_nestable_mode"]], "unset_precise_mode() (in module ivy)": [[595, "ivy.unset_precise_mode"], [621, "ivy.unset_precise_mode"]], "unset_queue_timeout() (in module ivy)": [[596, "ivy.unset_queue_timeout"], [621, "ivy.unset_queue_timeout"]], "unset_shape_array_mode() (in module ivy)": [[597, "ivy.unset_shape_array_mode"], [621, "ivy.unset_shape_array_mode"]], "unset_show_func_wrapper_trace_mode() (in module ivy)": [[598, "ivy.unset_show_func_wrapper_trace_mode"], [621, "ivy.unset_show_func_wrapper_trace_mode"]], "unset_tmp_dir() (in module ivy)": [[599, "ivy.unset_tmp_dir"], [621, "ivy.unset_tmp_dir"]], "value_is_nan() (in module ivy)": [[600, "ivy.value_is_nan"], [621, "ivy.value_is_nan"]], "value_is_nan() (ivy.array method)": [[600, "ivy.Array.value_is_nan"]], "value_is_nan() (ivy.container method)": [[600, "ivy.Container.value_is_nan"]], "vmap() (in module ivy)": [[601, "ivy.vmap"], [621, "ivy.vmap"]], "adam_step() (in module ivy)": [[602, "ivy.adam_step"], [622, "ivy.adam_step"]], "adam_step() (ivy.array method)": [[602, "ivy.Array.adam_step"]], "adam_step() (ivy.container method)": [[602, "ivy.Container.adam_step"]], "adam_update() (in module ivy)": [[603, "ivy.adam_update"], [622, "ivy.adam_update"]], "adam_update() (ivy.array method)": [[603, "ivy.Array.adam_update"]], "adam_update() (ivy.container method)": [[603, "ivy.Container.adam_update"]], "execute_with_gradients() (in module ivy)": [[604, "ivy.execute_with_gradients"], [622, "ivy.execute_with_gradients"]], "grad() (in module ivy)": [[605, "ivy.grad"], [622, "ivy.grad"]], "gradient_descent_update() (in module ivy)": [[606, "ivy.gradient_descent_update"], [622, "ivy.gradient_descent_update"]], "gradient_descent_update() (ivy.array method)": [[606, "ivy.Array.gradient_descent_update"]], "gradient_descent_update() (ivy.container method)": [[606, "ivy.Container.gradient_descent_update"]], "jac() (in module ivy)": [[607, "ivy.jac"], [622, "ivy.jac"]], "lamb_update() (in module ivy)": [[608, "ivy.lamb_update"], [622, "ivy.lamb_update"]], "lamb_update() (ivy.array method)": [[608, "ivy.Array.lamb_update"]], "lamb_update() (ivy.container method)": [[608, "ivy.Container.lamb_update"]], "lars_update() (in module ivy)": [[609, "ivy.lars_update"], [622, "ivy.lars_update"]], "lars_update() (ivy.array method)": [[609, "ivy.Array.lars_update"]], "lars_update() (ivy.container method)": [[609, "ivy.Container.lars_update"]], "optimizer_update() (in module ivy)": [[610, "ivy.optimizer_update"], [622, "ivy.optimizer_update"]], "optimizer_update() (ivy.array method)": [[610, "ivy.Array.optimizer_update"]], "optimizer_update() (ivy.container method)": [[610, "ivy.Container.optimizer_update"]], "stop_gradient() (in module ivy)": [[611, "ivy.stop_gradient"], [622, "ivy.stop_gradient"]], "stop_gradient() (ivy.array method)": [[611, "ivy.Array.stop_gradient"]], "stop_gradient() (ivy.container method)": [[611, "ivy.Container.stop_gradient"]], "value_and_grad() (in module ivy)": [[612, "ivy.value_and_grad"], [622, "ivy.value_and_grad"]], "ivy.functional.ivy.activations": [[613, "module-ivy.functional.ivy.activations"]], "e (in module ivy)": [[614, "ivy.e"]], "inf (in module ivy)": [[614, "ivy.inf"]], "ivy.functional.ivy.constants": [[614, "module-ivy.functional.ivy.constants"]], "nan (in module ivy)": [[614, "ivy.nan"]], "newaxis (in module ivy)": [[614, "ivy.newaxis"]], "pi (in module ivy)": [[614, "ivy.pi"]], "ivy.functional.ivy.control_flow_ops": [[615, "module-ivy.functional.ivy.control_flow_ops"]], "nestedsequence (class in ivy)": [[616, "ivy.NestedSequence"]], "ivy.functional.ivy.creation": [[616, "module-ivy.functional.ivy.creation"]], "defaultcomplexdtype (class in ivy)": [[617, "ivy.DefaultComplexDtype"]], "defaultdtype (class in ivy)": [[617, "ivy.DefaultDtype"]], "defaultfloatdtype (class in ivy)": [[617, "ivy.DefaultFloatDtype"]], "defaultintdtype (class in ivy)": [[617, "ivy.DefaultIntDtype"]], "defaultuintdtype (class in ivy)": [[617, "ivy.DefaultUintDtype"]], "ivy.functional.ivy.data_type": [[617, "module-ivy.functional.ivy.data_type"]], "defaultdevice (class in ivy)": [[618, "ivy.DefaultDevice"]], "profiler (class in ivy)": [[618, "ivy.Profiler"]], "ivy.functional.ivy.device": [[618, "module-ivy.functional.ivy.device"]], "ivy.functional.ivy.elementwise": [[619, "module-ivy.functional.ivy.elementwise"]], "ivy.functional.ivy.experimental": [[620, "module-ivy.functional.ivy.experimental"]], "arraymode (class in ivy)": [[621, "ivy.ArrayMode"]], "precisemode (class in ivy)": [[621, "ivy.PreciseMode"]], "ivy.functional.ivy.general": [[621, "module-ivy.functional.ivy.general"]], "ivy.functional.ivy.gradients": [[622, "module-ivy.functional.ivy.gradients"]], "conv() (in module ivy)": [[623, "ivy.conv"], [636, "ivy.conv"]], "conv1d() (in module ivy)": [[623, "ivy.conv1d"], [637, "ivy.conv1d"]], "conv1d_transpose() (in module ivy)": [[623, "ivy.conv1d_transpose"], [638, "ivy.conv1d_transpose"]], "conv2d() (in module ivy)": [[623, "ivy.conv2d"], [639, "ivy.conv2d"]], "conv2d_transpose() (in module ivy)": [[623, "ivy.conv2d_transpose"], [640, "ivy.conv2d_transpose"]], "conv3d() (in module ivy)": [[623, "ivy.conv3d"], [641, "ivy.conv3d"]], "conv3d_transpose() (in module ivy)": [[623, "ivy.conv3d_transpose"], [642, "ivy.conv3d_transpose"]], "conv_general_dilated() (in module ivy)": [[623, "ivy.conv_general_dilated"], [643, "ivy.conv_general_dilated"]], "conv_general_transpose() (in module ivy)": [[623, "ivy.conv_general_transpose"], [644, "ivy.conv_general_transpose"]], "depthwise_conv2d() (in module ivy)": [[623, "ivy.depthwise_conv2d"], [645, "ivy.depthwise_conv2d"]], "dropout() (in module ivy)": [[623, "ivy.dropout"], [646, "ivy.dropout"]], "ivy.functional.ivy.layers": [[623, "module-ivy.functional.ivy.layers"]], "linear() (in module ivy)": [[623, "ivy.linear"], [647, "ivy.linear"]], "lstm_update() (in module ivy)": [[623, "ivy.lstm_update"], [648, "ivy.lstm_update"]], "multi_head_attention() (in module ivy)": [[623, "ivy.multi_head_attention"], [649, "ivy.multi_head_attention"]], "nms() (in module ivy)": [[623, "ivy.nms"], [650, "ivy.nms"]], "roi_align() (in module ivy)": [[623, "ivy.roi_align"], [651, "ivy.roi_align"]], "scaled_dot_product_attention() (in module ivy)": [[623, "ivy.scaled_dot_product_attention"], [652, "ivy.scaled_dot_product_attention"]], "cholesky() (in module ivy)": [[624, "ivy.cholesky"], [653, "ivy.cholesky"]], "cross() (in module ivy)": [[624, "ivy.cross"], [654, "ivy.cross"]], "det() (in module ivy)": [[624, "ivy.det"], [655, "ivy.det"]], "diag() (in module ivy)": [[624, "ivy.diag"], [656, "ivy.diag"]], "diagonal() (in module ivy)": [[624, "ivy.diagonal"], [657, "ivy.diagonal"]], "eigh() (in module ivy)": [[624, "ivy.eigh"], [659, "ivy.eigh"]], "eigvalsh() (in module ivy)": [[624, "ivy.eigvalsh"], [660, "ivy.eigvalsh"]], "inner() (in module ivy)": [[624, "ivy.inner"], [661, "ivy.inner"]], "inv() (in module ivy)": [[624, "ivy.inv"], [662, "ivy.inv"]], "ivy.functional.ivy.linear_algebra": [[624, "module-ivy.functional.ivy.linear_algebra"]], "lu_factor() (in module ivy)": [[624, "ivy.lu_factor"], [663, "ivy.lu_factor"]], "matmul() (in module ivy)": [[624, "ivy.matmul"], [664, "ivy.matmul"]], "matrix_norm() (in module ivy)": [[624, "ivy.matrix_norm"], [665, "ivy.matrix_norm"]], "matrix_power() (in module ivy)": [[624, "ivy.matrix_power"], [666, "ivy.matrix_power"]], "matrix_rank() (in module ivy)": [[624, "ivy.matrix_rank"], [667, "ivy.matrix_rank"]], "matrix_transpose() (in module ivy)": [[624, "ivy.matrix_transpose"], [668, "ivy.matrix_transpose"]], "outer() (in module ivy)": [[624, "ivy.outer"], [669, "ivy.outer"]], "pinv() (in module ivy)": [[624, "ivy.pinv"], [670, "ivy.pinv"]], "qr() (in module ivy)": [[624, "ivy.qr"], [671, "ivy.qr"]], "slogdet() (in module ivy)": [[624, "ivy.slogdet"], [672, "ivy.slogdet"]], "solve() (in module ivy)": [[624, "ivy.solve"], [673, "ivy.solve"]], "svd() (in module ivy)": [[624, "ivy.svd"], [674, "ivy.svd"]], "svdvals() (in module ivy)": [[624, "ivy.svdvals"], [675, "ivy.svdvals"]], "tensordot() (in module ivy)": [[624, "ivy.tensordot"], [676, "ivy.tensordot"]], "tensorsolve() (in module ivy)": [[624, "ivy.tensorsolve"], [677, "ivy.tensorsolve"]], "trace() (in module ivy)": [[624, "ivy.trace"], [678, "ivy.trace"]], "vander() (in module ivy)": [[624, "ivy.vander"], [679, "ivy.vander"]], "vecdot() (in module ivy)": [[624, "ivy.vecdot"], [680, "ivy.vecdot"]], "vector_norm() (in module ivy)": [[624, "ivy.vector_norm"], [681, "ivy.vector_norm"]], "vector_to_skew_symmetric_matrix() (in module ivy)": [[624, "ivy.vector_to_skew_symmetric_matrix"], [682, "ivy.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (in module ivy)": [[625, "ivy.binary_cross_entropy"], [683, "ivy.binary_cross_entropy"]], "cross_entropy() (in module ivy)": [[625, "ivy.cross_entropy"], [684, "ivy.cross_entropy"]], "ivy.functional.ivy.losses": [[625, "module-ivy.functional.ivy.losses"]], "sparse_cross_entropy() (in module ivy)": [[625, "ivy.sparse_cross_entropy"], [685, "ivy.sparse_cross_entropy"]], "clip() (in module ivy)": [[626, "ivy.clip"], [686, "ivy.clip"]], "concat() (in module ivy)": [[626, "ivy.concat"], [687, "ivy.concat"]], "constant_pad() (in module ivy)": [[626, "ivy.constant_pad"], [688, "ivy.constant_pad"]], "expand_dims() (in module ivy)": [[626, "ivy.expand_dims"], [689, "ivy.expand_dims"]], "flip() (in module ivy)": [[626, "ivy.flip"], [690, "ivy.flip"]], "ivy.functional.ivy.manipulation": [[626, "module-ivy.functional.ivy.manipulation"]], "permute_dims() (in module ivy)": [[626, "ivy.permute_dims"], [691, "ivy.permute_dims"]], "repeat() (in module ivy)": [[626, "ivy.repeat"], [692, "ivy.repeat"]], "reshape() (in module ivy)": [[626, "ivy.reshape"], [693, "ivy.reshape"]], "roll() (in module ivy)": [[626, "ivy.roll"], [694, "ivy.roll"]], "split() (in module ivy)": [[626, "ivy.split"], [695, "ivy.split"]], "squeeze() (in module ivy)": [[626, "ivy.squeeze"], [696, "ivy.squeeze"]], "stack() (in module ivy)": [[626, "ivy.stack"], [697, "ivy.stack"]], "swapaxes() (in module ivy)": [[626, "ivy.swapaxes"], [698, "ivy.swapaxes"]], "tile() (in module ivy)": [[626, "ivy.tile"], [699, "ivy.tile"]], "unstack() (in module ivy)": [[626, "ivy.unstack"], [700, "ivy.unstack"]], "zero_pad() (in module ivy)": [[626, "ivy.zero_pad"], [701, "ivy.zero_pad"]], "fomaml_step() (in module ivy)": [[627, "ivy.fomaml_step"], [702, "ivy.fomaml_step"]], "ivy.functional.ivy.meta": [[627, "module-ivy.functional.ivy.meta"]], "maml_step() (in module ivy)": [[627, "ivy.maml_step"], [703, "ivy.maml_step"]], "reptile_step() (in module ivy)": [[627, "ivy.reptile_step"], [704, "ivy.reptile_step"]], "all_nested_indices() (in module ivy)": [[628, "ivy.all_nested_indices"], [705, "ivy.all_nested_indices"]], "copy_nest() (in module ivy)": [[628, "ivy.copy_nest"], [706, "ivy.copy_nest"]], "duplicate_array_index_chains() (in module ivy)": [[628, "ivy.duplicate_array_index_chains"], [707, "ivy.duplicate_array_index_chains"]], "index_nest() (in module ivy)": [[628, "ivy.index_nest"], [708, "ivy.index_nest"]], "insert_into_nest_at_index() (in module ivy)": [[628, "ivy.insert_into_nest_at_index"], [709, "ivy.insert_into_nest_at_index"]], "insert_into_nest_at_indices() (in module ivy)": [[628, "ivy.insert_into_nest_at_indices"], [710, "ivy.insert_into_nest_at_indices"]], "ivy.functional.ivy.nest": [[628, "module-ivy.functional.ivy.nest"]], "map() (in module ivy)": [[628, "ivy.map"], [711, "ivy.map"]], "map_nest_at_index() (in module ivy)": [[628, "ivy.map_nest_at_index"], [712, "ivy.map_nest_at_index"]], "map_nest_at_indices() (in module ivy)": [[628, "ivy.map_nest_at_indices"], [713, "ivy.map_nest_at_indices"]], "multi_index_nest() (in module ivy)": [[628, "ivy.multi_index_nest"], [714, "ivy.multi_index_nest"]], "nested_any() (in module ivy)": [[628, "ivy.nested_any"], [715, "ivy.nested_any"]], "nested_argwhere() (in module ivy)": [[628, "ivy.nested_argwhere"], [716, "ivy.nested_argwhere"]], "nested_map() (in module ivy)": [[628, "ivy.nested_map"], [717, "ivy.nested_map"]], "nested_multi_map() (in module ivy)": [[628, "ivy.nested_multi_map"], [718, "ivy.nested_multi_map"]], "prune_empty() (in module ivy)": [[628, "ivy.prune_empty"], [719, "ivy.prune_empty"]], "prune_nest_at_index() (in module ivy)": [[628, "ivy.prune_nest_at_index"], [720, "ivy.prune_nest_at_index"]], "prune_nest_at_indices() (in module ivy)": [[628, "ivy.prune_nest_at_indices"], [721, "ivy.prune_nest_at_indices"]], "set_nest_at_index() (in module ivy)": [[628, "ivy.set_nest_at_index"], [722, "ivy.set_nest_at_index"]], "set_nest_at_indices() (in module ivy)": [[628, "ivy.set_nest_at_indices"], [723, "ivy.set_nest_at_indices"]], "ivy.functional.ivy.norms": [[629, "module-ivy.functional.ivy.norms"]], "layer_norm() (in module ivy)": [[629, "ivy.layer_norm"], [724, "ivy.layer_norm"]], "ivy.functional.ivy.random": [[630, "module-ivy.functional.ivy.random"]], "multinomial() (in module ivy)": [[630, "ivy.multinomial"], [725, "ivy.multinomial"]], "randint() (in module ivy)": [[630, "ivy.randint"], [726, "ivy.randint"]], "random_normal() (in module ivy)": [[630, "ivy.random_normal"], [727, "ivy.random_normal"]], "random_uniform() (in module ivy)": [[630, "ivy.random_uniform"], [728, "ivy.random_uniform"]], "seed() (in module ivy)": [[630, "ivy.seed"], [729, "ivy.seed"]], "shuffle() (in module ivy)": [[630, "ivy.shuffle"], [730, "ivy.shuffle"]], "argmax() (in module ivy)": [[631, "ivy.argmax"], [731, "ivy.argmax"]], "argmin() (in module ivy)": [[631, "ivy.argmin"], [732, "ivy.argmin"]], "argwhere() (in module ivy)": [[631, "ivy.argwhere"], [733, "ivy.argwhere"]], "ivy.functional.ivy.searching": [[631, "module-ivy.functional.ivy.searching"]], "nonzero() (in module ivy)": [[631, "ivy.nonzero"], [734, "ivy.nonzero"]], "where() (in module ivy)": [[631, "ivy.where"], [735, "ivy.where"]], "ivy.functional.ivy.set": [[632, "module-ivy.functional.ivy.set"]], "unique_all() (in module ivy)": [[632, "ivy.unique_all"], [736, "ivy.unique_all"]], "unique_counts() (in module ivy)": [[632, "ivy.unique_counts"], [737, "ivy.unique_counts"]], "unique_inverse() (in module ivy)": [[632, "ivy.unique_inverse"], [738, "ivy.unique_inverse"]], "unique_values() (in module ivy)": [[632, "ivy.unique_values"], [739, "ivy.unique_values"]], "argsort() (in module ivy)": [[633, "ivy.argsort"], [740, "ivy.argsort"]], "ivy.functional.ivy.sorting": [[633, "module-ivy.functional.ivy.sorting"]], "msort() (in module ivy)": [[633, "ivy.msort"], [741, "ivy.msort"]], "searchsorted() (in module ivy)": [[633, "ivy.searchsorted"], [742, "ivy.searchsorted"]], "sort() (in module ivy)": [[633, "ivy.sort"], [743, "ivy.sort"]], "cumprod() (in module ivy)": [[634, "ivy.cumprod"], [744, "ivy.cumprod"]], "cumsum() (in module ivy)": [[634, "ivy.cumsum"], [745, "ivy.cumsum"]], "einsum() (in module ivy)": [[634, "ivy.einsum"], [746, "ivy.einsum"]], "ivy.functional.ivy.statistical": [[634, "module-ivy.functional.ivy.statistical"]], "max() (in module ivy)": [[634, "ivy.max"], [747, "ivy.max"]], "mean() (in module ivy)": [[634, "ivy.mean"], [748, "ivy.mean"]], "min() (in module ivy)": [[634, "ivy.min"], [749, "ivy.min"]], "prod() (in module ivy)": [[634, "ivy.prod"], [750, "ivy.prod"]], "std() (in module ivy)": [[634, "ivy.std"], [751, "ivy.std"]], "sum() (in module ivy)": [[634, "ivy.sum"], [752, "ivy.sum"]], "var() (in module ivy)": [[634, "ivy.var"], [753, "ivy.var"]], "all() (in module ivy)": [[635, "ivy.all"], [754, "ivy.all"]], "any() (in module ivy)": [[635, "ivy.any"], [755, "ivy.any"]], "ivy.functional.ivy.utility": [[635, "module-ivy.functional.ivy.utility"]], "load() (in module ivy)": [[635, "ivy.load"], [756, "ivy.load"]], "save() (in module ivy)": [[635, "ivy.save"], [757, "ivy.save"]], "conv1d() (ivy.array method)": [[637, "ivy.Array.conv1d"]], "conv1d() (ivy.container method)": [[637, "ivy.Container.conv1d"]], "conv1d_transpose() (ivy.array method)": [[638, "ivy.Array.conv1d_transpose"]], "conv1d_transpose() (ivy.container method)": [[638, "ivy.Container.conv1d_transpose"]], "conv2d() (ivy.array method)": [[639, "ivy.Array.conv2d"]], "conv2d() (ivy.container method)": [[639, "ivy.Container.conv2d"]], "conv2d_transpose() (ivy.array method)": [[640, "ivy.Array.conv2d_transpose"]], "conv2d_transpose() (ivy.container method)": [[640, "ivy.Container.conv2d_transpose"]], "conv3d() (ivy.array method)": [[641, "ivy.Array.conv3d"]], "conv3d() (ivy.container method)": [[641, "ivy.Container.conv3d"]], "conv3d_transpose() (ivy.array method)": [[642, "ivy.Array.conv3d_transpose"]], "conv3d_transpose() (ivy.container method)": [[642, "ivy.Container.conv3d_transpose"]], "depthwise_conv2d() (ivy.array method)": [[645, "ivy.Array.depthwise_conv2d"]], "depthwise_conv2d() (ivy.container method)": [[645, "ivy.Container.depthwise_conv2d"]], "dropout() (ivy.array method)": [[646, "ivy.Array.dropout"]], "dropout() (ivy.container method)": [[646, "ivy.Container.dropout"]], "linear() (ivy.array method)": [[647, "ivy.Array.linear"]], "linear() (ivy.container method)": [[647, "ivy.Container.linear"]], "lstm_update() (ivy.array method)": [[648, "ivy.Array.lstm_update"]], "lstm_update() (ivy.container method)": [[648, "ivy.Container.lstm_update"]], "multi_head_attention() (ivy.array method)": [[649, "ivy.Array.multi_head_attention"]], "multi_head_attention() (ivy.container method)": [[649, "ivy.Container.multi_head_attention"]], "scaled_dot_product_attention() (ivy.array method)": [[652, "ivy.Array.scaled_dot_product_attention"]], "scaled_dot_product_attention() (ivy.container method)": [[652, "ivy.Container.scaled_dot_product_attention"]], "cholesky() (ivy.array method)": [[653, "ivy.Array.cholesky"]], "cholesky() (ivy.container method)": [[653, "ivy.Container.cholesky"]], "cross() (ivy.array method)": [[654, "ivy.Array.cross"]], "cross() (ivy.container method)": [[654, "ivy.Container.cross"]], "det() (ivy.array method)": [[655, "ivy.Array.det"]], "det() (ivy.container method)": [[655, "ivy.Container.det"]], "diag() (ivy.array method)": [[656, "ivy.Array.diag"]], "diag() (ivy.container method)": [[656, "ivy.Container.diag"]], "diagonal() (ivy.array method)": [[657, "ivy.Array.diagonal"]], "diagonal() (ivy.container method)": [[657, "ivy.Container.diagonal"]], "eigh() (ivy.array method)": [[659, "ivy.Array.eigh"]], "eigh() (ivy.container method)": [[659, "ivy.Container.eigh"]], "eigvalsh() (ivy.array method)": [[660, "ivy.Array.eigvalsh"]], "eigvalsh() (ivy.container method)": [[660, "ivy.Container.eigvalsh"]], "inner() (ivy.array method)": [[661, "ivy.Array.inner"]], "inner() (ivy.container method)": [[661, "ivy.Container.inner"]], "inv() (ivy.array method)": [[662, "ivy.Array.inv"]], "inv() (ivy.container method)": [[662, "ivy.Container.inv"]], "matmul() (ivy.array method)": [[664, "ivy.Array.matmul"]], "matmul() (ivy.container method)": [[664, "ivy.Container.matmul"]], "matrix_norm() (ivy.array method)": [[665, "ivy.Array.matrix_norm"]], "matrix_norm() (ivy.container method)": [[665, "ivy.Container.matrix_norm"]], "matrix_power() (ivy.array method)": [[666, "ivy.Array.matrix_power"]], "matrix_power() (ivy.container method)": [[666, "ivy.Container.matrix_power"]], "matrix_rank() (ivy.array method)": [[667, "ivy.Array.matrix_rank"]], "matrix_rank() (ivy.container method)": [[667, "ivy.Container.matrix_rank"]], "matrix_transpose() (ivy.array method)": [[668, "ivy.Array.matrix_transpose"]], "matrix_transpose() (ivy.container method)": [[668, "ivy.Container.matrix_transpose"]], "outer() (ivy.array method)": [[669, "ivy.Array.outer"]], "outer() (ivy.container method)": [[669, "ivy.Container.outer"]], "pinv() (ivy.array method)": [[670, "ivy.Array.pinv"]], "pinv() (ivy.container method)": [[670, "ivy.Container.pinv"]], "qr() (ivy.array method)": [[671, "ivy.Array.qr"]], "qr() (ivy.container method)": [[671, "ivy.Container.qr"]], "slogdet() (ivy.array method)": [[672, "ivy.Array.slogdet"]], "slogdet() (ivy.container method)": [[672, "ivy.Container.slogdet"]], "solve() (ivy.array method)": [[673, "ivy.Array.solve"]], "solve() (ivy.container method)": [[673, "ivy.Container.solve"]], "svd() (ivy.array method)": [[674, "ivy.Array.svd"]], "svd() (ivy.container method)": [[674, "ivy.Container.svd"]], "svdvals() (ivy.array method)": [[675, "ivy.Array.svdvals"]], "svdvals() (ivy.container method)": [[675, "ivy.Container.svdvals"]], "tensordot() (ivy.array method)": [[676, "ivy.Array.tensordot"]], "tensordot() (ivy.container method)": [[676, "ivy.Container.tensordot"]], "tensorsolve() (ivy.array method)": [[677, "ivy.Array.tensorsolve"]], "tensorsolve() (ivy.container method)": [[677, "ivy.Container.tensorsolve"]], "trace() (ivy.array method)": [[678, "ivy.Array.trace"]], "trace() (ivy.container method)": [[678, "ivy.Container.trace"]], "vander() (ivy.array method)": [[679, "ivy.Array.vander"]], "vander() (ivy.container method)": [[679, "ivy.Container.vander"]], "vecdot() (ivy.array method)": [[680, "ivy.Array.vecdot"]], "vecdot() (ivy.container method)": [[680, "ivy.Container.vecdot"]], "vector_norm() (ivy.array method)": [[681, "ivy.Array.vector_norm"]], "vector_norm() (ivy.container method)": [[681, "ivy.Container.vector_norm"]], "vector_to_skew_symmetric_matrix() (ivy.array method)": [[682, "ivy.Array.vector_to_skew_symmetric_matrix"]], "vector_to_skew_symmetric_matrix() (ivy.container method)": [[682, "ivy.Container.vector_to_skew_symmetric_matrix"]], "binary_cross_entropy() (ivy.array method)": [[683, "ivy.Array.binary_cross_entropy"]], "binary_cross_entropy() (ivy.container method)": [[683, "ivy.Container.binary_cross_entropy"]], "cross_entropy() (ivy.array method)": [[684, "ivy.Array.cross_entropy"]], "cross_entropy() (ivy.container method)": [[684, "ivy.Container.cross_entropy"]], "sparse_cross_entropy() (ivy.array method)": [[685, "ivy.Array.sparse_cross_entropy"]], "sparse_cross_entropy() (ivy.container method)": [[685, "ivy.Container.sparse_cross_entropy"]], "clip() (ivy.array method)": [[686, "ivy.Array.clip"]], "clip() (ivy.container method)": [[686, "ivy.Container.clip"]], "concat() (ivy.array method)": [[687, "ivy.Array.concat"]], "concat() (ivy.container method)": [[687, "ivy.Container.concat"]], "constant_pad() (ivy.array method)": [[688, "ivy.Array.constant_pad"]], "constant_pad() (ivy.container method)": [[688, "ivy.Container.constant_pad"]], "expand_dims() (ivy.array method)": [[689, "ivy.Array.expand_dims"]], "expand_dims() (ivy.container method)": [[689, "ivy.Container.expand_dims"]], "flip() (ivy.array method)": [[690, "ivy.Array.flip"]], "flip() (ivy.container method)": [[690, "ivy.Container.flip"]], "permute_dims() (ivy.array method)": [[691, "ivy.Array.permute_dims"]], "permute_dims() (ivy.container method)": [[691, "ivy.Container.permute_dims"]], "repeat() (ivy.array method)": [[692, "ivy.Array.repeat"]], "repeat() (ivy.container method)": [[692, "ivy.Container.repeat"]], "reshape() (ivy.array method)": [[693, "ivy.Array.reshape"]], "reshape() (ivy.container method)": [[693, "ivy.Container.reshape"]], "roll() (ivy.array method)": [[694, "ivy.Array.roll"]], "roll() (ivy.container method)": [[694, "ivy.Container.roll"]], "split() (ivy.array method)": [[695, "ivy.Array.split"]], "split() (ivy.container method)": [[695, "ivy.Container.split"]], "squeeze() (ivy.array method)": [[696, "ivy.Array.squeeze"]], "squeeze() (ivy.container method)": [[696, "ivy.Container.squeeze"]], "stack() (ivy.array method)": [[697, "ivy.Array.stack"]], "stack() (ivy.container method)": [[697, "ivy.Container.stack"]], "swapaxes() (ivy.array method)": [[698, "ivy.Array.swapaxes"]], "swapaxes() (ivy.container method)": [[698, "ivy.Container.swapaxes"]], "tile() (ivy.array method)": [[699, "ivy.Array.tile"]], "tile() (ivy.container method)": [[699, "ivy.Container.tile"]], "unstack() (ivy.array method)": [[700, "ivy.Array.unstack"]], "unstack() (ivy.container method)": [[700, "ivy.Container.unstack"]], "zero_pad() (ivy.array method)": [[701, "ivy.Array.zero_pad"]], "zero_pad() (ivy.container method)": [[701, "ivy.Container.zero_pad"]], "layer_norm() (ivy.array method)": [[724, "ivy.Array.layer_norm"]], "layer_norm() (ivy.container method)": [[724, "ivy.Container.layer_norm"]], "multinomial() (ivy.array method)": [[725, "ivy.Array.multinomial"]], "multinomial() (ivy.container method)": [[725, "ivy.Container.multinomial"]], "randint() (ivy.array method)": [[726, "ivy.Array.randint"]], "randint() (ivy.container method)": [[726, "ivy.Container.randint"]], "random_normal() (ivy.array method)": [[727, "ivy.Array.random_normal"]], "random_normal() (ivy.container method)": [[727, "ivy.Container.random_normal"]], "random_uniform() (ivy.array method)": [[728, "ivy.Array.random_uniform"]], "random_uniform() (ivy.container method)": [[728, "ivy.Container.random_uniform"]], "shuffle() (ivy.array method)": [[730, "ivy.Array.shuffle"]], "shuffle() (ivy.container method)": [[730, "ivy.Container.shuffle"]], "argmax() (ivy.array method)": [[731, "ivy.Array.argmax"]], "argmax() (ivy.container method)": [[731, "ivy.Container.argmax"]], "argmin() (ivy.array method)": [[732, "ivy.Array.argmin"]], "argmin() (ivy.container method)": [[732, "ivy.Container.argmin"]], "argwhere() (ivy.array method)": [[733, "ivy.Array.argwhere"]], "argwhere() (ivy.container method)": [[733, "ivy.Container.argwhere"]], "nonzero() (ivy.array method)": [[734, "ivy.Array.nonzero"]], "nonzero() (ivy.container method)": [[734, "ivy.Container.nonzero"]], "where() (ivy.array method)": [[735, "ivy.Array.where"]], "where() (ivy.container method)": [[735, "ivy.Container.where"]], "unique_all() (ivy.array method)": [[736, "ivy.Array.unique_all"]], "unique_all() (ivy.container method)": [[736, "ivy.Container.unique_all"]], "unique_counts() (ivy.array method)": [[737, "ivy.Array.unique_counts"]], "unique_counts() (ivy.container method)": [[737, "ivy.Container.unique_counts"]], "unique_inverse() (ivy.array method)": [[738, "ivy.Array.unique_inverse"]], "unique_inverse() (ivy.container method)": [[738, "ivy.Container.unique_inverse"]], "unique_values() (ivy.array method)": [[739, "ivy.Array.unique_values"]], "unique_values() (ivy.container method)": [[739, "ivy.Container.unique_values"]], "argsort() (ivy.array method)": [[740, "ivy.Array.argsort"]], "argsort() (ivy.container method)": [[740, "ivy.Container.argsort"]], "msort() (ivy.array method)": [[741, "ivy.Array.msort"]], "msort() (ivy.container method)": [[741, "ivy.Container.msort"]], "searchsorted() (ivy.array method)": [[742, "ivy.Array.searchsorted"]], "searchsorted() (ivy.container method)": [[742, "ivy.Container.searchsorted"]], "sort() (ivy.array method)": [[743, "ivy.Array.sort"]], "sort() (ivy.container method)": [[743, "ivy.Container.sort"]], "cumprod() (ivy.array method)": [[744, "ivy.Array.cumprod"]], "cumprod() (ivy.container method)": [[744, "ivy.Container.cumprod"]], "cumsum() (ivy.array method)": [[745, "ivy.Array.cumsum"]], "cumsum() (ivy.container method)": [[745, "ivy.Container.cumsum"]], "einsum() (ivy.array method)": [[746, "ivy.Array.einsum"]], "einsum() (ivy.container method)": [[746, "ivy.Container.einsum"]], "max() (ivy.array method)": [[747, "ivy.Array.max"]], "max() (ivy.container method)": [[747, "ivy.Container.max"]], "mean() (ivy.array method)": [[748, "ivy.Array.mean"]], "mean() (ivy.container method)": [[748, "ivy.Container.mean"]], "min() (ivy.array method)": [[749, "ivy.Array.min"]], "min() (ivy.container method)": [[749, "ivy.Container.min"]], "prod() (ivy.array method)": [[750, "ivy.Array.prod"]], "prod() (ivy.container method)": [[750, "ivy.Container.prod"]], "std() (ivy.array method)": [[751, "ivy.Array.std"]], "std() (ivy.container method)": [[751, "ivy.Container.std"]], "sum() (ivy.array method)": [[752, "ivy.Array.sum"]], "sum() (ivy.container method)": [[752, "ivy.Container.sum"]], "var() (ivy.array method)": [[753, "ivy.Array.var"]], "var() (ivy.container method)": [[753, "ivy.Container.var"]], "all() (ivy.array method)": [[754, "ivy.Array.all"]], "all() (ivy.container method)": [[754, "ivy.Container.all"]], "any() (ivy.array method)": [[755, "ivy.Array.any"]], "any() (ivy.container method)": [[755, "ivy.Container.any"]], "assert_all_close() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_all_close"]], "assert_same_type() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type"]], "assert_same_type_and_shape() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.assert_same_type_and_shape"]], "check_unsupported_device() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device"]], "check_unsupported_device_and_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_device_and_dtype"]], "check_unsupported_dtype() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.check_unsupported_dtype"]], "ivy_tests.test_ivy.helpers.assertions": [[758, "module-ivy_tests.test_ivy.helpers.assertions"]], "test_unsupported_function() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.test_unsupported_function"]], "value_test() (in module ivy_tests.test_ivy.helpers.assertions)": [[758, "ivy_tests.test_ivy.helpers.assertions.value_test"]], "ivy_tests.test_ivy.helpers.available_frameworks": [[759, "module-ivy_tests.test_ivy.helpers.available_frameworks"]], "args_to_container() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_container"]], "args_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.args_to_frontend"]], "arrays_to_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.arrays_to_frontend"]], "as_lists() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.as_lists"]], "convtrue() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.convtrue"]], "create_args_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.create_args_kwargs"]], "flatten() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten"]], "flatten_and_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_and_to_np"]], "flatten_frontend() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend"]], "flatten_frontend_fw_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_fw_to_np"]], "flatten_frontend_to_np() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.flatten_frontend_to_np"]], "get_frontend_ret() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_frontend_ret"]], "get_ret_and_flattened_np_array() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.get_ret_and_flattened_np_array"]], "gradient_incompatible_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_incompatible_function"]], "gradient_test() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_test"]], "gradient_unsupported_dtypes() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.gradient_unsupported_dtypes"]], "ivy_tests.test_ivy.helpers.function_testing": [[760, "module-ivy_tests.test_ivy.helpers.function_testing"]], "kwargs_to_args_n_kwargs() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.kwargs_to_args_n_kwargs"]], "test_frontend_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_function"]], "test_frontend_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_frontend_method"]], "test_function() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function"]], "test_function_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_backend_computation"]], "test_function_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_function_ground_truth_computation"]], "test_gradient_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_backend_computation"]], "test_gradient_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_gradient_ground_truth_computation"]], "test_method() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method"]], "test_method_backend_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_backend_computation"]], "test_method_ground_truth_computation() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.test_method_ground_truth_computation"]], "traced_if_required() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.traced_if_required"]], "wrap_frontend_function_args() (in module ivy_tests.test_ivy.helpers.function_testing)": [[760, "ivy_tests.test_ivy.helpers.function_testing.wrap_frontend_function_args"]], "current_frontend_config (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.CURRENT_FRONTEND_CONFIG"]], "interruptedtest": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest"]], "testdata (class in ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData"]], "__init__() (ivy_tests.test_ivy.helpers.globals.interruptedtest method)": [[761, "ivy_tests.test_ivy.helpers.globals.InterruptedTest.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.globals.testdata method)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.__init__"]], "fn_name (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_name"]], "fn_tree (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.fn_tree"]], "is_method (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.is_method"]], "ivy_tests.test_ivy.helpers.globals": [[761, "module-ivy_tests.test_ivy.helpers.globals"]], "setup_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_api_test"]], "setup_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.setup_frontend_test"]], "supported_device_dtypes (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.supported_device_dtypes"]], "teardown_api_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_api_test"]], "teardown_frontend_test() (in module ivy_tests.test_ivy.helpers.globals)": [[761, "ivy_tests.test_ivy.helpers.globals.teardown_frontend_test"]], "test_fn (ivy_tests.test_ivy.helpers.globals.testdata attribute)": [[761, "ivy_tests.test_ivy.helpers.globals.TestData.test_fn"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers": [[762, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers"]], "array_and_broadcastable_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_and_broadcastable_shape"]], "array_bools() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_bools"]], "array_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_helpers_dtype_info_helper"]], "array_indices_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_axis"]], "array_indices_put_along_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_indices_put_along_axis"]], "array_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.array_values"]], "arrays_and_axes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_and_axes"]], "arrays_for_pooling() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.arrays_for_pooling"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.broadcast_shapes"]], "cond_data_gen_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.cond_data_gen_helper"]], "create_concatenable_arrays_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_concatenable_arrays_dtypes"]], "create_nested_input() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.create_nested_input"]], "dtype_and_values() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_and_values"]], "dtype_array_query() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query"]], "dtype_array_query_val() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_array_query_val"]], "dtype_values_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.dtype_values_axis"]], "einsum_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.einsum_helper"]], "get_first_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_batch_matrix"]], "get_first_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_first_solve_matrix"]], "get_second_solve_batch_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_batch_matrix"]], "get_second_solve_matrix() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.get_second_solve_matrix"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers": [[763, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers"]], "list_of_size() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.list_of_size"]], "lists() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.lists"]], "mutually_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.mutually_broadcastable_shapes"]], "prod() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers)": [[763, "ivy_tests.test_ivy.helpers.hypothesis_helpers.array_helpers.prod"]], "array_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.array_dtypes"]], "cast_filter() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter"]], "cast_filter_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.cast_filter_helper"]], "get_castable_dtype() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_castable_dtype"]], "get_dtypes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers)": [[764, "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers.get_dtypes"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers": [[764, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.dtype_helpers"]], "broadcasterror": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.BroadcastError"]], "apply_safety_factor() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.apply_safety_factor"]], "broadcast_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.broadcast_shapes"]], "embedding_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.embedding_helper"]], "general_helpers_dtype_info_helper() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.general_helpers_dtype_info_helper"]], "get_axis() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_axis"]], "get_bounds() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_bounds"]], "get_mean_std() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_mean_std"]], "get_shape() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.get_shape"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers": [[765, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers"]], "matrix_is_stable() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.matrix_is_stable"]], "reshape_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.reshape_shapes"]], "subsets() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.subsets"]], "two_broadcastable_shapes() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.two_broadcastable_shapes"]], "x_and_filters() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers)": [[765, "ivy_tests.test_ivy.helpers.hypothesis_helpers.general_helpers.x_and_filters"]], "floats() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.floats"]], "ints() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.ints"]], "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers": [[766, "module-ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers"]], "number() (in module ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers)": [[766, "ivy_tests.test_ivy.helpers.hypothesis_helpers.number_helpers.number"]], "backend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.backend_proc"]], "frontend_proc() (in module ivy_tests.test_ivy.helpers.multiprocessing)": [[767, "ivy_tests.test_ivy.helpers.multiprocessing.frontend_proc"]], "ivy_tests.test_ivy.helpers.multiprocessing": [[767, "module-ivy_tests.test_ivy.helpers.multiprocessing"]], "backendhandler (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler"]], "backendhandlermode (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode"]], "setbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.SetBackend"]], "withbackend (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandlermode attribute)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandlerMode.WithBackend"]], "withbackendcontext (class in ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext"]], "__init__() (ivy_tests.test_ivy.helpers.pipeline_helper.withbackendcontext method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.WithBackendContext.__init__"]], "get_frontend_config() (in module ivy_tests.test_ivy.helpers.pipeline_helper)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.get_frontend_config"]], "ivy_tests.test_ivy.helpers.pipeline_helper": [[768, "module-ivy_tests.test_ivy.helpers.pipeline_helper"]], "update_backend() (ivy_tests.test_ivy.helpers.pipeline_helper.backendhandler class method)": [[768, "ivy_tests.test_ivy.helpers.pipeline_helper.BackendHandler.update_backend"]], "frontendmethoddata (class in ivy_tests.test_ivy.helpers.structs)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData"]], "__init__() (ivy_tests.test_ivy.helpers.structs.frontendmethoddata method)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.__init__"]], "framework_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.framework_init_module"]], "init_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.init_name"]], "ivy_init_module (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.ivy_init_module"]], "ivy_tests.test_ivy.helpers.structs": [[769, "module-ivy_tests.test_ivy.helpers.structs"]], "method_name (ivy_tests.test_ivy.helpers.structs.frontendmethoddata attribute)": [[769, "ivy_tests.test_ivy.helpers.structs.FrontendMethodData.method_name"]], "dynamicflag (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag"]], "frontendfunctiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags"]], "frontendinittestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags"]], "frontendmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags"]], "functiontestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags"]], "initmethodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags"]], "methodtestflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags"]], "testflags (class in ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.__init__"]], "__init__() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.__init__"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendfunctiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendFunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendinittestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendInitTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.frontendmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FrontendMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.functiontestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.FunctionTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.initmethodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.InitMethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.methodtestflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.MethodTestFlags.apply_flags"]], "apply_flags() (ivy_tests.test_ivy.helpers.test_parameter_flags.testflags method)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.TestFlags.apply_flags"]], "build_flag() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.build_flag"]], "frontend_function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_function_flags"]], "frontend_init_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_init_flags"]], "frontend_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.frontend_method_flags"]], "function_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.function_flags"]], "init_method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.init_method_flags"]], "ivy_tests.test_ivy.helpers.test_parameter_flags": [[770, "module-ivy_tests.test_ivy.helpers.test_parameter_flags"]], "method_flags() (in module ivy_tests.test_ivy.helpers.test_parameter_flags)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.method_flags"]], "strategy (ivy_tests.test_ivy.helpers.test_parameter_flags.dynamicflag attribute)": [[770, "ivy_tests.test_ivy.helpers.test_parameter_flags.DynamicFlag.strategy"]], "handle_frontend_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_method"]], "handle_frontend_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_frontend_test"]], "handle_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_method"]], "handle_test() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.handle_test"]], "ivy_tests.test_ivy.helpers.testing_helpers": [[771, "module-ivy_tests.test_ivy.helpers.testing_helpers"]], "num_positional_args() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args"]], "num_positional_args_helper() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_helper"]], "num_positional_args_method() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.num_positional_args_method"]], "seed() (in module ivy_tests.test_ivy.helpers.testing_helpers)": [[771, "ivy_tests.test_ivy.helpers.testing_helpers.seed"]], "elu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ELU"]], "geglu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GEGLU"]], "gelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.GELU"]], "hardswish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Hardswish"]], "leakyrelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LeakyReLU"]], "logsigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSigmoid"]], "logsoftmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.LogSoftmax"]], "logit (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Logit"]], "mish (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Mish"]], "prelu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.PReLU"]], "relu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU"]], "relu6 (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.ReLU6"]], "selu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SeLU"]], "silu (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.SiLU"]], "sigmoid (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Sigmoid"]], "softmax (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softmax"]], "softplus (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Softplus"]], "tanh (class in ivy.stateful.activations)": [[775, "ivy.stateful.activations.Tanh"]], "__init__() (ivy.stateful.activations.elu method)": [[775, "ivy.stateful.activations.ELU.__init__"]], "__init__() (ivy.stateful.activations.geglu method)": [[775, "ivy.stateful.activations.GEGLU.__init__"]], "__init__() (ivy.stateful.activations.gelu method)": [[775, "ivy.stateful.activations.GELU.__init__"]], "__init__() (ivy.stateful.activations.hardswish method)": [[775, "ivy.stateful.activations.Hardswish.__init__"]], "__init__() (ivy.stateful.activations.leakyrelu method)": [[775, "ivy.stateful.activations.LeakyReLU.__init__"]], "__init__() (ivy.stateful.activations.logsigmoid method)": [[775, "ivy.stateful.activations.LogSigmoid.__init__"]], "__init__() (ivy.stateful.activations.logsoftmax method)": [[775, "ivy.stateful.activations.LogSoftmax.__init__"]], "__init__() (ivy.stateful.activations.logit method)": [[775, "ivy.stateful.activations.Logit.__init__"]], "__init__() (ivy.stateful.activations.mish method)": [[775, "ivy.stateful.activations.Mish.__init__"]], "__init__() (ivy.stateful.activations.prelu method)": [[775, "ivy.stateful.activations.PReLU.__init__"]], "__init__() (ivy.stateful.activations.relu method)": [[775, "ivy.stateful.activations.ReLU.__init__"]], "__init__() (ivy.stateful.activations.relu6 method)": [[775, "ivy.stateful.activations.ReLU6.__init__"]], "__init__() (ivy.stateful.activations.selu method)": [[775, "ivy.stateful.activations.SeLU.__init__"]], "__init__() (ivy.stateful.activations.silu method)": [[775, "ivy.stateful.activations.SiLU.__init__"]], "__init__() (ivy.stateful.activations.sigmoid method)": [[775, "ivy.stateful.activations.Sigmoid.__init__"]], "__init__() (ivy.stateful.activations.softmax method)": [[775, "ivy.stateful.activations.Softmax.__init__"]], "__init__() (ivy.stateful.activations.softplus method)": [[775, "ivy.stateful.activations.Softplus.__init__"]], "__init__() (ivy.stateful.activations.tanh method)": [[775, "ivy.stateful.activations.Tanh.__init__"]], "ivy.stateful.activations": [[775, "module-ivy.stateful.activations"]], "moduleconverters (class in ivy.stateful.converters)": [[776, "ivy.stateful.converters.ModuleConverters"]], "from_flax_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_flax_module"]], "from_haiku_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_haiku_module"]], "from_keras_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_keras_module"]], "from_paddle_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_paddle_module"]], "from_torch_module() (ivy.stateful.converters.moduleconverters static method)": [[776, "ivy.stateful.converters.ModuleConverters.from_torch_module"]], "ivy.stateful.converters": [[776, "module-ivy.stateful.converters"]], "to_ivy_module() (in module ivy.stateful.converters)": [[776, "ivy.stateful.converters.to_ivy_module"]], "to_keras_module() (ivy.stateful.converters.moduleconverters method)": [[776, "ivy.stateful.converters.ModuleConverters.to_keras_module"]], "modulehelpers (class in ivy.stateful.helpers)": [[777, "ivy.stateful.helpers.ModuleHelpers"]], "ivy.stateful.helpers": [[777, "module-ivy.stateful.helpers"]], "constant (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Constant"]], "firstlayersiren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.FirstLayerSiren"]], "glorotuniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.GlorotUniform"]], "initializer (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Initializer"]], "kaimingnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.KaimingNormal"]], "ones (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Ones"]], "randomnormal (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.RandomNormal"]], "siren (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Siren"]], "uniform (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Uniform"]], "zeros (class in ivy.stateful.initializers)": [[778, "ivy.stateful.initializers.Zeros"]], "__init__() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.__init__"]], "__init__() (ivy.stateful.initializers.firstlayersiren method)": [[778, "ivy.stateful.initializers.FirstLayerSiren.__init__"]], "__init__() (ivy.stateful.initializers.glorotuniform method)": [[778, "ivy.stateful.initializers.GlorotUniform.__init__"]], "__init__() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.__init__"]], "__init__() (ivy.stateful.initializers.ones method)": [[778, "ivy.stateful.initializers.Ones.__init__"]], "__init__() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.__init__"]], "__init__() (ivy.stateful.initializers.siren method)": [[778, "ivy.stateful.initializers.Siren.__init__"]], "__init__() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.__init__"]], "__init__() (ivy.stateful.initializers.zeros method)": [[778, "ivy.stateful.initializers.Zeros.__init__"]], "create_variables() (ivy.stateful.initializers.constant method)": [[778, "ivy.stateful.initializers.Constant.create_variables"]], "create_variables() (ivy.stateful.initializers.initializer method)": [[778, "ivy.stateful.initializers.Initializer.create_variables"]], "create_variables() (ivy.stateful.initializers.kaimingnormal method)": [[778, "ivy.stateful.initializers.KaimingNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.randomnormal method)": [[778, "ivy.stateful.initializers.RandomNormal.create_variables"]], "create_variables() (ivy.stateful.initializers.uniform method)": [[778, "ivy.stateful.initializers.Uniform.create_variables"]], "ivy.stateful.initializers": [[778, "module-ivy.stateful.initializers"]], "adaptiveavgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d"]], "adaptiveavgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d"]], "avgpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool1D"]], "avgpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool2D"]], "avgpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.AvgPool3D"]], "conv1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1D"]], "conv1dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv1DTranspose"]], "conv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2D"]], "conv2dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv2DTranspose"]], "conv3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3D"]], "conv3dtranspose (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Conv3DTranspose"]], "dct (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dct"]], "depthwiseconv2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.DepthwiseConv2D"]], "dropout (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Dropout"]], "embedding (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Embedding"]], "fft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.FFT"]], "ifft (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.IFFT"]], "identity (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Identity"]], "lstm (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.LSTM"]], "linear (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.Linear"]], "maxpool1d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool1D"]], "maxpool2d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool2D"]], "maxpool3d (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MaxPool3D"]], "multiheadattention (class in ivy.stateful.layers)": [[779, "ivy.stateful.layers.MultiHeadAttention"]], "__init__() (ivy.stateful.layers.adaptiveavgpool1d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool1d.__init__"]], "__init__() (ivy.stateful.layers.adaptiveavgpool2d method)": [[779, "ivy.stateful.layers.AdaptiveAvgPool2d.__init__"]], "__init__() (ivy.stateful.layers.avgpool1d method)": [[779, "ivy.stateful.layers.AvgPool1D.__init__"]], "__init__() (ivy.stateful.layers.avgpool2d method)": [[779, "ivy.stateful.layers.AvgPool2D.__init__"]], "__init__() (ivy.stateful.layers.avgpool3d method)": [[779, "ivy.stateful.layers.AvgPool3D.__init__"]], "__init__() (ivy.stateful.layers.conv1d method)": [[779, "ivy.stateful.layers.Conv1D.__init__"]], "__init__() (ivy.stateful.layers.conv1dtranspose method)": [[779, "ivy.stateful.layers.Conv1DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv2d method)": [[779, "ivy.stateful.layers.Conv2D.__init__"]], "__init__() (ivy.stateful.layers.conv2dtranspose method)": [[779, "ivy.stateful.layers.Conv2DTranspose.__init__"]], "__init__() (ivy.stateful.layers.conv3d method)": [[779, "ivy.stateful.layers.Conv3D.__init__"]], "__init__() (ivy.stateful.layers.conv3dtranspose method)": [[779, "ivy.stateful.layers.Conv3DTranspose.__init__"]], "__init__() (ivy.stateful.layers.dct method)": [[779, "ivy.stateful.layers.Dct.__init__"]], "__init__() (ivy.stateful.layers.depthwiseconv2d method)": [[779, "ivy.stateful.layers.DepthwiseConv2D.__init__"]], "__init__() (ivy.stateful.layers.dropout method)": [[779, "ivy.stateful.layers.Dropout.__init__"]], "__init__() (ivy.stateful.layers.embedding method)": [[779, "ivy.stateful.layers.Embedding.__init__"]], "__init__() (ivy.stateful.layers.fft method)": [[779, "ivy.stateful.layers.FFT.__init__"]], "__init__() (ivy.stateful.layers.ifft method)": [[779, "ivy.stateful.layers.IFFT.__init__"]], "__init__() (ivy.stateful.layers.identity method)": [[779, "ivy.stateful.layers.Identity.__init__"]], "__init__() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.__init__"]], "__init__() (ivy.stateful.layers.linear method)": [[779, "ivy.stateful.layers.Linear.__init__"]], "__init__() (ivy.stateful.layers.maxpool1d method)": [[779, "ivy.stateful.layers.MaxPool1D.__init__"]], "__init__() (ivy.stateful.layers.maxpool2d method)": [[779, "ivy.stateful.layers.MaxPool2D.__init__"]], "__init__() (ivy.stateful.layers.maxpool3d method)": [[779, "ivy.stateful.layers.MaxPool3D.__init__"]], "__init__() (ivy.stateful.layers.multiheadattention method)": [[779, "ivy.stateful.layers.MultiHeadAttention.__init__"]], "get_initial_state() (ivy.stateful.layers.lstm method)": [[779, "ivy.stateful.layers.LSTM.get_initial_state"]], "ivy.stateful.layers": [[779, "module-ivy.stateful.layers"]], "binarycrossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss"]], "crossentropyloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.CrossEntropyLoss"]], "logpoissonloss (class in ivy.stateful.losses)": [[780, "ivy.stateful.losses.LogPoissonLoss"]], "__init__() (ivy.stateful.losses.binarycrossentropyloss method)": [[780, "ivy.stateful.losses.BinaryCrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.crossentropyloss method)": [[780, "ivy.stateful.losses.CrossEntropyLoss.__init__"]], "__init__() (ivy.stateful.losses.logpoissonloss method)": [[780, "ivy.stateful.losses.LogPoissonLoss.__init__"]], "ivy.stateful.losses": [[780, "module-ivy.stateful.losses"]], "module (class in ivy.stateful.module)": [[781, "ivy.stateful.module.Module"]], "modulemeta (class in ivy.stateful.module)": [[781, "ivy.stateful.module.ModuleMeta"]], "__call__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__call__"]], "__init__() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.__init__"]], "buffers (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.buffers"]], "build() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.build"]], "build_mode (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.build_mode"]], "built (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.built"]], "device (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.device"]], "dtype (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.dtype"]], "eval() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.eval"]], "ivy.stateful.module": [[781, "module-ivy.stateful.module"]], "load() (ivy.stateful.module.module static method)": [[781, "ivy.stateful.module.Module.load"]], "module_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.module_dict"]], "register_buffer() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_buffer"]], "register_parameter() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.register_parameter"]], "save() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save"]], "save_weights() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.save_weights"]], "show_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.show_graph"]], "state_dict (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.state_dict"]], "to_device() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.to_device"]], "trace_graph() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.trace_graph"]], "train() (ivy.stateful.module.module method)": [[781, "ivy.stateful.module.Module.train"]], "training (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.training"]], "v (ivy.stateful.module.module property)": [[781, "ivy.stateful.module.Module.v"]], "batchnorm2d (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.BatchNorm2D"]], "layernorm (class in ivy.stateful.norms)": [[782, "ivy.stateful.norms.LayerNorm"]], "__init__() (ivy.stateful.norms.batchnorm2d method)": [[782, "ivy.stateful.norms.BatchNorm2D.__init__"]], "__init__() (ivy.stateful.norms.layernorm method)": [[782, "ivy.stateful.norms.LayerNorm.__init__"]], "ivy.stateful.norms": [[782, "module-ivy.stateful.norms"]], "adam (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Adam"]], "adamw (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.AdamW"]], "lamb (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LAMB"]], "lars (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.LARS"]], "optimizer (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.Optimizer"]], "sgd (class in ivy.stateful.optimizers)": [[783, "ivy.stateful.optimizers.SGD"]], "__init__() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.__init__"]], "__init__() (ivy.stateful.optimizers.adamw method)": [[783, "ivy.stateful.optimizers.AdamW.__init__"]], "__init__() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.__init__"]], "__init__() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.__init__"]], "__init__() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.__init__"]], "__init__() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.__init__"]], "ivy.stateful.optimizers": [[783, "module-ivy.stateful.optimizers"]], "set_state() (ivy.stateful.optimizers.adam method)": [[783, "ivy.stateful.optimizers.Adam.set_state"]], "set_state() (ivy.stateful.optimizers.lamb method)": [[783, "ivy.stateful.optimizers.LAMB.set_state"]], "set_state() (ivy.stateful.optimizers.lars method)": [[783, "ivy.stateful.optimizers.LARS.set_state"]], "set_state() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.set_state"]], "set_state() (ivy.stateful.optimizers.sgd method)": [[783, "ivy.stateful.optimizers.SGD.set_state"]], "state (ivy.stateful.optimizers.adam property)": [[783, "ivy.stateful.optimizers.Adam.state"]], "state (ivy.stateful.optimizers.lamb property)": [[783, "ivy.stateful.optimizers.LAMB.state"]], "state (ivy.stateful.optimizers.lars property)": [[783, "ivy.stateful.optimizers.LARS.state"]], "state (ivy.stateful.optimizers.sgd property)": [[783, "ivy.stateful.optimizers.SGD.state"]], "step() (ivy.stateful.optimizers.optimizer method)": [[783, "ivy.stateful.optimizers.Optimizer.step"]], "sequential (class in ivy.stateful.sequential)": [[784, "ivy.stateful.sequential.Sequential"]], "__init__() (ivy.stateful.sequential.sequential method)": [[784, "ivy.stateful.sequential.Sequential.__init__"]], "ivy.stateful.sequential": [[784, "module-ivy.stateful.sequential"]], "check_all() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all"]], "check_all_or_any_fn() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_all_or_any_fn"]], "check_any() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_any"]], "check_dev_correct_formatting() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dev_correct_formatting"]], "check_dimensions() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_dimensions"]], "check_elem_in_list() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_elem_in_list"]], "check_equal() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_equal"]], "check_exists() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_exists"]], "check_false() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_false"]], "check_gather_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_input_valid"]], "check_gather_nd_input_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_gather_nd_input_valid"]], "check_greater() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_greater"]], "check_inplace_sizes_valid() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_inplace_sizes_valid"]], "check_isinstance() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_isinstance"]], "check_kernel_padding_size() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_kernel_padding_size"]], "check_less() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_less"]], "check_one_way_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_one_way_broadcastable"]], "check_same_dtype() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_same_dtype"]], "check_shape() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shape"]], "check_shapes_broadcastable() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_shapes_broadcastable"]], "check_true() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_true"]], "check_unsorted_segment_valid_params() (in module ivy.utils.assertions)": [[785, "ivy.utils.assertions.check_unsorted_segment_valid_params"]], "ivy.utils.assertions": [[785, "module-ivy.utils.assertions"]], "ivy.utils.backend": [[786, "module-ivy.utils.backend"]], "importtransformer (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer"]], "ivyloader (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader"]], "ivypathfinder (class in ivy.utils.backend.ast_helpers)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder"]], "__init__() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.__init__"]], "__init__() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.__init__"]], "exec_module() (ivy.utils.backend.ast_helpers.ivyloader method)": [[787, "ivy.utils.backend.ast_helpers.IvyLoader.exec_module"]], "find_spec() (ivy.utils.backend.ast_helpers.ivypathfinder method)": [[787, "ivy.utils.backend.ast_helpers.IvyPathFinder.find_spec"]], "impersonate_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.impersonate_import"]], "ivy.utils.backend.ast_helpers": [[787, "module-ivy.utils.backend.ast_helpers"]], "visit_import() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_Import"]], "visit_importfrom() (ivy.utils.backend.ast_helpers.importtransformer method)": [[787, "ivy.utils.backend.ast_helpers.ImportTransformer.visit_ImportFrom"]], "contextmanager (class in ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.ContextManager"]], "__init__() (ivy.utils.backend.handler.contextmanager method)": [[788, "ivy.utils.backend.handler.ContextManager.__init__"]], "choose_random_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.choose_random_backend"]], "current_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.current_backend"]], "dynamic_backend_converter() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.dynamic_backend_converter"]], "ivy.utils.backend.handler": [[788, "module-ivy.utils.backend.handler"]], "prevent_access_locally() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.prevent_access_locally"]], "previous_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.previous_backend"]], "set_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend"]], "set_backend_to_specific_version() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_backend_to_specific_version"]], "set_jax_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_jax_backend"]], "set_mxnet_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_mxnet_backend"]], "set_numpy_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_numpy_backend"]], "set_paddle_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_paddle_backend"]], "set_tensorflow_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_tensorflow_backend"]], "set_torch_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.set_torch_backend"]], "unset_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.unset_backend"]], "with_backend() (in module ivy.utils.backend.handler)": [[788, "ivy.utils.backend.handler.with_backend"]], "clear_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.clear_sub_backends"]], "find_available_sub_backends() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.find_available_sub_backends"]], "fn_name_from_version_specific_fn_name() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name"]], "fn_name_from_version_specific_fn_name_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.fn_name_from_version_specific_fn_name_sub_backend"]], "ivy.utils.backend.sub_backend_handler": [[789, "module-ivy.utils.backend.sub_backend_handler"]], "set_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend"]], "set_sub_backend_to_specific_version() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.set_sub_backend_to_specific_version"]], "unset_sub_backend() (in module ivy.utils.backend.sub_backend_handler)": [[789, "ivy.utils.backend.sub_backend_handler.unset_sub_backend"]], "check_for_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.check_for_binaries"]], "cleanup_and_fetch_binaries() (in module ivy.utils.binaries)": [[790, "ivy.utils.binaries.cleanup_and_fetch_binaries"]], "ivy.utils.binaries": [[790, "module-ivy.utils.binaries"]], "import_module() (in module ivy.utils.dynamic_import)": [[791, "ivy.utils.dynamic_import.import_module"]], "ivy.utils.dynamic_import": [[791, "module-ivy.utils.dynamic_import"]], "convert_interleaved_input() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_interleaved_input"]], "convert_subscripts() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.convert_subscripts"]], "find_output_shape() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_shape"]], "find_output_str() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.find_output_str"]], "gen_unused_symbols() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.gen_unused_symbols"]], "get_symbol() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.get_symbol"]], "has_valid_einsum_chars_only() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.has_valid_einsum_chars_only"]], "is_valid_einsum_char() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.is_valid_einsum_char"]], "ivy.utils.einsum_parser": [[792, "module-ivy.utils.einsum_parser"]], "legalise_einsum_expr() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.legalise_einsum_expr"]], "possibly_convert_to_numpy() (in module ivy.utils.einsum_parser)": [[792, "ivy.utils.einsum_parser.possibly_convert_to_numpy"]], "can_dot() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.can_dot"]], "compute_size_by_dict() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.compute_size_by_dict"]], "find_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.find_contraction"]], "flop_count() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.flop_count"]], "greedy_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.greedy_path"]], "ivy.utils.einsum_path_helpers": [[793, "module-ivy.utils.einsum_path_helpers"]], "optimal_path() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.optimal_path"]], "parse_einsum_input() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_einsum_input"]], "parse_possible_contraction() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.parse_possible_contraction"]], "update_other_results() (in module ivy.utils.einsum_path_helpers)": [[793, "ivy.utils.einsum_path_helpers.update_other_results"]], "inplaceupdateexception": [[794, "ivy.utils.exceptions.InplaceUpdateException"]], "ivyattributeerror": [[794, "ivy.utils.exceptions.IvyAttributeError"]], "ivybackendexception": [[794, "ivy.utils.exceptions.IvyBackendException"]], "ivybroadcastshapeerror": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError"]], "ivydeviceerror": [[794, "ivy.utils.exceptions.IvyDeviceError"]], "ivydtypepromotionerror": [[794, "ivy.utils.exceptions.IvyDtypePromotionError"]], "ivyerror": [[794, "ivy.utils.exceptions.IvyError"]], "ivyexception": [[794, "ivy.utils.exceptions.IvyException"]], "ivyindexerror": [[794, "ivy.utils.exceptions.IvyIndexError"]], "ivyinvalidbackendexception": [[794, "ivy.utils.exceptions.IvyInvalidBackendException"]], "ivynotimplementedexception": [[794, "ivy.utils.exceptions.IvyNotImplementedException"]], "ivyvalueerror": [[794, "ivy.utils.exceptions.IvyValueError"]], "__init__() (ivy.utils.exceptions.inplaceupdateexception method)": [[794, "ivy.utils.exceptions.InplaceUpdateException.__init__"]], "__init__() (ivy.utils.exceptions.ivyattributeerror method)": [[794, "ivy.utils.exceptions.IvyAttributeError.__init__"]], "__init__() (ivy.utils.exceptions.ivybackendexception method)": [[794, "ivy.utils.exceptions.IvyBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivybroadcastshapeerror method)": [[794, "ivy.utils.exceptions.IvyBroadcastShapeError.__init__"]], "__init__() (ivy.utils.exceptions.ivydeviceerror method)": [[794, "ivy.utils.exceptions.IvyDeviceError.__init__"]], "__init__() (ivy.utils.exceptions.ivydtypepromotionerror method)": [[794, "ivy.utils.exceptions.IvyDtypePromotionError.__init__"]], "__init__() (ivy.utils.exceptions.ivyerror method)": [[794, "ivy.utils.exceptions.IvyError.__init__"]], "__init__() (ivy.utils.exceptions.ivyexception method)": [[794, "ivy.utils.exceptions.IvyException.__init__"]], "__init__() (ivy.utils.exceptions.ivyindexerror method)": [[794, "ivy.utils.exceptions.IvyIndexError.__init__"]], "__init__() (ivy.utils.exceptions.ivyinvalidbackendexception method)": [[794, "ivy.utils.exceptions.IvyInvalidBackendException.__init__"]], "__init__() (ivy.utils.exceptions.ivynotimplementedexception method)": [[794, "ivy.utils.exceptions.IvyNotImplementedException.__init__"]], "__init__() (ivy.utils.exceptions.ivyvalueerror method)": [[794, "ivy.utils.exceptions.IvyValueError.__init__"]], "handle_exceptions() (in module ivy.utils.exceptions)": [[794, "ivy.utils.exceptions.handle_exceptions"]], "ivy.utils.exceptions": [[794, "module-ivy.utils.exceptions"]], "add_array_specs() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.add_array_specs"]], "fn_array_spec() (in module ivy.utils.inspection)": [[795, "ivy.utils.inspection.fn_array_spec"]], "ivy.utils.inspection": [[795, "module-ivy.utils.inspection"]], "ivy.utils.logging": [[796, "module-ivy.utils.logging"]], "set_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.set_logging_mode"]], "unset_logging_mode() (in module ivy.utils.logging)": [[796, "ivy.utils.logging.unset_logging_mode"]], "profiler (class in ivy.utils.profiler)": [[797, "ivy.utils.profiler.Profiler"]], "__init__() (ivy.utils.profiler.profiler method)": [[797, "ivy.utils.profiler.Profiler.__init__"]], "ivy.utils.profiler": [[797, "module-ivy.utils.profiler"]], "print_stats (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.print_stats"]], "viz (ivy.utils.profiler.profiler attribute)": [[797, "ivy.utils.profiler.Profiler.viz"]], "cprint() (in module ivy.utils.verbosity)": [[798, "ivy.utils.verbosity.cprint"]], "ivy.utils.verbosity": [[798, "module-ivy.utils.verbosity"]], "automatic code conversions": [[842, "term-Automatic-Code-Conversions"]], "backend handler": [[842, "term-Backend-Handler"]], "compositional functions": [[842, "term-Compositional-Functions"]], "convenience functions": [[842, "term-Convenience-Functions"]], "framework": [[842, "term-Framework"]], "framework handler": [[842, "term-Framework-Handler"]], "graph compiler": [[842, "term-Graph-Compiler"]], "ivy array": [[842, "term-Ivy-Array"]], "ivy backends": [[842, "term-Ivy-Backends"]], "ivy compiler": [[842, "term-Ivy-Compiler"]], "ivy container": [[842, "term-Ivy-Container"]], "ivy frontends": [[842, "term-Ivy-Frontends"]], "ivy functional api": [[842, "term-Ivy-Functional-API"]], "ivy tracer": [[842, "term-Ivy-Tracer"]], "ivy transpiler": [[842, "term-Ivy-Transpiler"]], "mixed functions": [[842, "term-Mixed-Functions"]], "native array": [[842, "term-Native-Array"]], "nestable functions": [[842, "term-Nestable-Functions"]], "pipeline": [[842, "term-Pipeline"]], "primary functions": [[842, "term-Primary-Functions"]], "standalone functions": [[842, "term-Standalone-Functions"]], "submodule helper functions": [[842, "term-Submodule-Helper-Functions"]], "built-in function": [[848, "ivy.trace_graph"], [849, "ivy.transpile"], [850, "ivy.unify"]], "ivy.trace_graph()": [[848, "ivy.trace_graph"]], "ivy.transpile()": [[849, "ivy.transpile"]], "ivy.unify()": [[850, "ivy.unify"]]}}) \ No newline at end of file

    HmD~o1X}Pew?=YnAUC=!>J6X7-_E<=|(YxN;yVWQHK3|SrghTWzzes zYTbZ|6*J|?5vYX=wAI3%?al9|-R}yrpC_vslYOnM30`)I9M(=i-89&Zc@idADTe9P zrF)zG&a@{yQ_D-8?BDJbAl)oL+D)6G00IwJ%2p=h;c~}B3wxjG z%S%?xg64IhJuEm2I`lp>wZ@)m4p;h4ZA!O8^2&;mc8ijBiZX=ex2bFXMOhP!{+rxt zi}5{VXBO)?zaqXd+k&H0n_xq^orJ*}fmJedsdG)MyQfx7y?ED^d{6abZB@1~SY+1x$Md6dKQuWNU#np8t|Hp}it!uZ7;r&hMP%n^diwat=_yEO4s7 zT(7ttTNUz*&s`dbYk$^Obw{>Ck(?aEDN?#tPB)5_wu|KUc~!_cph!Yxy(+6TtE^XK zP4JZ^(QUDw&yBYdCRiz2-18kXH$cd=BXkW5qIy0kfWX5+PzuFS!Tyekk<{~XN}sGv z>EV06FwIX?*LMKshPRcW|nbo{(<^AU^{}7MX`Tqtx0nrAA zSOxfzHUEw^J6^VWV%+ zSy!o)vu4#^rVV8JM`_b^pLX}-&e{t5xRB+~QrGoxSrd%tcDHKc&NwM^|0}gs1%2*+ zg{-11NH3Q)p}kUuocph6s|Cc|e_2*DCVN5F1TVWpmcl_`Zl*T}TGRN_fwyHWNSXK7yzFkA)`HdH3)n|?6SF$FwSKw4HZz~$r z4fYCJSG|-KHpT2ZOIJF)Un6z%zMpP>UuZ`=Lm?Ei;+=Pc^&1)ijQ z4L|Ofh@88Xt%>N93IB|z7V^IXI{}G@J(=)#S+$tpf0Z?%UGSmj$`76$&)`559Wz&c z0DN6>R4`T6gm&Q%@y8sixrNj!xjP&Ko&S5aRRc_UKp*3UzI3w~@Ne$!MlmmVkF27s zH5@N%LVKl5VTos|DMp|wvf8R*AAi=%J}x9?>t)qr6|hd$g!T&919H&_)o!8aHeQjuQBUzRm zN=yk7Y*xAqxUb1Su-oUzc(PkjSm?`}l?lglYTm~MS@(hxC}y~mWKFObH9^({o5pl2 zS0c=@QvAu~BkonK@oSuChiaAJr8Y~n)jeDT()^-O;frLYWo!uS zdaF(L(UHNM0}ZcRoA?K{&+AAx+g`d^1~@AMWe}<(C#xl^4nx+2{_2?TuZ|T~XT`8D zbc5=+=5vAS*rKsI=KHIoSq7*MD1%TPSITP1s^fB56WXg|zXks4aJF&Sbun;tpf2v# zRu}uXFYwoeTL7pCD1cBAcgm{BD&jU-6MRKTbSkW0ax*#!6RZ@E$)-NuT=p|VZS{`K zdZaVTY3^-b?iO!YzA#d!*!R~p!*PJN-^N2*<9bLtfwwQTv9QuY3%#=KE=~L?M?(amnT+4`A?J8jzx~8vL?{-OUL#78@VjZ z&^05hP5&1H^p~{N!U64#62N3!vjlci_<~p$8)SuKb}b0?^CwS!j#p)#J7RgzW4 zNd(7;H z6x{h)FK`z#9+1|TvpZi+H@+%JJ{3N#n6pojHNi_RF=}Q5Z@2fBFu_VO%*a7HlRC_$ z-`){lbrv^MC9_^J3h<+5U+E7?)osC~YPmKbW_V2z3X^sVlXeROKb*oqeg%aQI5}0e zl3CMS?3id_el@}Cf1H`8K&Z2{>AOdx$8kR@=-8#MV^-D#BYnMF6|rYniz_BP#_3+{ z6cBtsqu}mG(?#bo5JB*d%Bsb{{fMjy{epXhiz)3r8U^=qs)&^KE?Kph;CINH&@T9- zMi%8o%K+p*)u#EL%>=6PU4iqT$ZE!9e@xbdcG-u>opxvwJ>qVh*JV{=LcbxNve$I446imX#tB4| zg&naB3jBMW+?A1X^TW+6aE9IMbSxA`ahR~cG10>GZ-_;b_s64c{xq;dTqJp)x{|A9 zO|T|&wqqi4F;I40DteLRBKTk&Zx4uy54T9tFRK=d*L|`k(1J^kEvMUCXr29&_RCfl zTz-4ziqxqUqiA{~%fa9!syAw@2e`Nqw#^#Vw2}6Tl0I`qx>*z$S3*&QwB>qPX<6-j z)-ln-z%pxbk5Pgf@w*x_S5uw+sdC9o73}FwSOa(VG{1P==K}%#JKCh5-R_ns%}SK+ z>`z09(sqgL!+XwlX1hc}4g9Bi4g80!3D!Qo;Z|bYBhtgqD#I)bvBz0U5WkKZ1srx&%=(-G}wm0_O6g!c@}X{R`8r#NZ5IBBOi&`h8>LM1&f zt1xRO&&rz6UP<#JDyd0xDra?hSKd229_|g)*DiB(buIIw>Z@6@w6A1Pb)ULdth#qW z@f1_1cSda0O?BQ=v}ZQqLhoV=P>GjDp=KLO#-LF2Ke>FdsQr z8yknSe1w(8PDz@j0aBne0x4@`tC_{xa~u;bOiA{!w-TJM(qlr^DWaBsCiT;6#|qu}0Z zL&WmVgR*Kd!5@${pdJp7!;WA0a2h_G_C72K-v(b-OmE*BvBK}MqFk+p?_@t* zo9Ywc$-8Q`d6Y=(M%&dTPsy6l&iWp3n93^IBZ?K}a`1iUMV}j_&biA@j32Qmn}tJ~ z_JR+Pedd|)7MMevyH&zl0phP<+Zqq=1G6LVfhrbzy+_G1wQ?qJY#w$YXp1bxtRY+} zYl2n&<+3Kc%D-`_%8&oLuY&`%f8MfF%H?X!UG?MZ{6Au<^XR+3Hg|X0pU2((^$l5} zS#^I+)WuR11TU#$v#9^=_~Dj>fd>;#tvhj4Df?ycz|7C|dGQPoM5HG>uQPkouW9GQ zg7DMe>xu(}gJeyhg_oG}oSAoSt=-Mu5eDbnp<54#zSI#te^{!mZPtedFCLtkzvke! zwsnK<-#P%IaHgwLhMPJ{xen+N78eY7KkW~Hd71O!yWJo6xIgZ7e|*jPQO_R@Bggo}b`s%5$nd9bGTZ;8~PIXeOsPdK)BX?fTBM_;j*cWs^^DB4=aM^9_%@`16|G z?aR}`4zPX1t6)5VSkWgqSEn_;DX92ibrmm_HNk?-#coB!J;Ur>klht^LG~TmRBv36 zZGSrY^x&n=Ac$+nMYQ=EwdaT-&Ck$T}X{)irnq^_t)GUi#Q{f|;lVr7JE&T*p6WXh1A8$NU zEtl-tIMb|EtZc9e<+N4EzKxU`zHaN^_`1+S3|akH6?{B z$|b88JGUY&F^lCuZu5KaB!)v41C!iFTC}R!Ipth6JM5~^Z)GK9t?@<2L}Y7>p1hC_ zhkG@5D?*>|o|g!yIc`BLYUckAo&{Ux-fU|k`?SzTcY*IKW`XZ=Oh||-8{_u2HT8A^ zrcQ%>Be3Qf5OtQ!TQPCZ5KXcZ*3{}+1@2C- z!<`=i>Cez6{hsaichkP_3bLOjs~L+BOJz-Hm)(gZjmyg5UXMj*FApeR(x$u{N!X{; z_NN8$H^?f-#P5+cp;j&mN3Ce@s68O zMfEY#d6Uz}b5C{z!rgDQRlnQEJ7-KAW7#kYel1&tjDqJJ6D`b~CM+uTH*d-d$T{X{ zU3usp?eNj&-FRYaYJ)E;W}t7$Rt4kupKet|aV(pv?rsZSa4xA2zSMBIHoYe}dN;l) z1g~~=xl^(xw97r-mfM}%@vodM*CzIEj@a%O1*uP!)rm!j#j+-NsU?Cu>nGeeC1HY< z!tEy{Ot4b8gLerNtQ617P9fN(fLWM#q-J4cgU75!_v22b_88WNx=Z(vv#49+p}lea zePb4NJ~xZ%6bCtxxkU?(_VH`Gk})9Ug)C2NAU zpC@EZuo&)EqEZb1s!Ay!hRSe52nFzU#P2o6zvKU*lazQR`k9p1-(PMgw0_3@vPRf!2b zC~JZjTB3tyeY_j`B}}kVjFWZ5%haE3Z67~zuHDD8M&zG+_-Q;a`MdYI8D|HLy_u!6 zP|j|EEiTZ<*P3lO&{u_Y?>~`Mmy!0EVX=wqiy~LuoDn%$ZajJsmu2# zSre>@{6W?PYp8A|DmBy}s+0nf@ltCW>V&x+^Nvr2r7^RQjU|m4IKti4VrSuD&2(NS z>pct;;4P$)9svbX%)t+HOeEb%Pmf30{6er35N*gtx=dZZC9)=1BV8nGf;CdN5|tY1 zp(>?-MtWRp8|i_k)w{c)b2}AQU;X<>mzdU?z|i9|@GFL)$G}0X&GvL<;IL%1T(Nho z!s&IZHte>vOJvn$z3D}ciB>dJ?>y-&cU3)Wlv15=uEDC-jRM@Ylyie4O_;OU$m-80o?72sN2aHvw= zROR*xxCN&)qVS`FpM)<4W6(+7UICCY-3ezfno>GPGMiG`R~Fmer|nY0ow?~oDTPI& z8y%;Vj%Z#lYk~!?&&rx$fy;%OqPeF9D@DIbDS(VUTYKmJzH90*xn~)LYHAVOqP5gL z#1-5h_a|^Ej+nK(8?&rZ&K&+el|RVp$U@Zb921ctD*pMrJy)1U1&#>xm~i+Po_Y?- zIN{x~$e4c<+zK}6$?XOE!_Fge-iL)YIv&2Rn4682HNjfP7{^5HL#?sPoMRJ#Kt4yC z+`G2B>x<&V(^0YtF=%JWnm~&zy|}kmBRV);?h@E!9|U}rHpTaD_fD6>CHipXo)bqz z^;gPD$JAfpn1~D+`TI9EuMqHVt?+IVaBdv97FOH|_Y~x>xBtA|ob#WDe_J;=^Q?hA z-59yCZowQ$&8XA{KQegMz`pMP>$Gy;I*Idp6WrhPkhK5we(wL%kSqg|IhPt$;m@1- zTij3O`@q%wX8V^5?O!f}U(EcM;5X0MDSs>cI4gfU{QA-S9q{W_`8%C||1$h~MqBv#T_D`%^7+>$vxKu4uo z8_YXbYFO}Xso2DNZnxr;dTuv1Ntj@zaC;mH6Rh$6Mz-IxO9A=A@k0%KqPsllpfGz0 z!~r&uXm9&iVw$~YLLI+&>1V5{v&~A@g!Ac@`F5!DIFgEKE>ia7MGn4OgzskH z9Uu3b8LK?(Sm;Z#@Uf_IvtuGMYDB9pyKp#pjnQe39J*j$$i69uyG3eyJlf_T06W1< zW3P7S%k~k}=9h(3;}La5zb9*gHKgx2CSp%D_HrKivoW{RJaOONAK|kxa2=xk-tG&U z@M$N}i`c;Tds*ce&cBs4p5 zqw?N|)6EYH%HJX@8&m!Zj)@kgvb))C*|&6Z)89YPrsVFgEFW?slY|LY3QhS?_(q=-wAJ=dJMxZ`tt-~5j*&IN z3oTJs-XzwELrr4EKBS+xpkwawY@#aAX1n95#eo!?rdr^hKdH`HkeSP-s)n7X%E?v> zt64+V1gqH(%9`+M_P0_sE1j(!XwOC3bAqgTm#?%}+?SobHc-#k#8l6RuzD7!BN4Na zSIg?lYI&<;LL!BeR(ZnmQmsWe#vK6J73dZ#`63rky01;Nj>GaXw^Rm|St)nk9t zRzK6*osu{;VVA&O8D%9&J0%gS<}b3kviS06Srgi;W>%y9_$tQhY~iWZa?xo+wl2Y0 z%l(g!CodO+)a+&x@>P&mB6x1KTy!eWEs;=F`$Dl4Gxxn^P4HDEnaa7#yKWqnFu_W3 z=g@6gy62j-s_yRBvAgXTFTFL86P%`vi#^-nyH4HP-|gt=5XWsxWvh-g)KeT25{ZCp z|FsV&xXG&Zz)^oVW*zzfLXS30_iYCq?XSZd^6>TOYvE0GWjkd}FrqVV<;2}P9SBw6 zsE}fNfAiE;GnrQAzj;@ZYWVK|VUmgc6Xm|&tIKUu9U3c`)2!`5KCg~ zpS+r%ac}9e;F9wBFn_hd{c2!r9&$2lFDQv(E;~uq1gq8wvL?K0eMqWWrIXX)_S-Is zsd}ULiw;+!RBG(CyiO3{X$Bx^x;gf8~?P2bWow!?e4%`!5GQIae?R~Y;Plq}g zXXB+<`;SsymbL%|;|J1)z*tGTPwtungUpCmk6zyNi@Qb@=`1E(+A7|U}Kp3^St;G3zU<+%$0!F<} z#WUPZ#V4RP6^j+<+hKg3ZM0M3gc9pkTu_y|mE%-O0egF=wl@AuJhuWbCOS9jXJOx6 zU~GIfxDvxQ$AOtH`25cHIdkV_HrZcyICs82TrAouD=v#gTO1S7u_$V=CLQ6&H8;`v zuV46TJlf`O1UmuM;Pi3xgTi#v-RkqMzl}$JISYGTcSDg3SdCmW#P4kKE&98<_{%2XeSo42X z)`WJ+hkZR_-xFgA#~~pD`Fh0OPyne8mdU@TtO@P%5BYk;LT%C`UXM6dRx>910$CH< zWgqVKh!1E}9`}00`(>45;=fPUgm&?Vem&w6ZPH_2kGM!yH70z&tO@PHhwmo4S)1TP z?IycXRwX9%^|B^-q0MU-x9!ws|3f%p>t$wa6z8U>N~5^jWYYvz3U{EPREjHAN&#cZ zpSAQ_@O>88msr7@F!r&rhPTFsi!~XHEHL}b;_!y>_b@aGVhv79j@Df-!{99 zdZ7k?)PyZPz6X8b&%o9=cLP|Up=@@lFzRZsU7S_hz+bq;t8?dWu<`5HJAWd^%fajd zLD%eD4z`O^=)mWPDX+5#5%>$AEw!>6+tw0r^%lRY z6W6b2e@v6V~ciOKErR86FZ3SwmWS&?X_XJ zTF!ufH;TOlvzmrBoc7wVvs*T8RnyRhVY?Q*T30vIo$%Xk8-_n>!uB}UhV4INZ*O(B zOuD-%?EiFlJ}M2|H4Hi2p)D~;9P3a4Asg}PPNS4qI$}Y$B5Q&Vx|BK-hCXg~B4L7+ zV!W&)UNZVYsX>SI^2%;-+!5~M6c(@E@LJyW2e-9dJUBD|;yy`^48pa;7=>&?R&|ZU@c>ktO+(L;8vni`+Q9nC9i$9?+UXklTUBnapqla=3R9b zwU8v=KF?v-ocR|(&jvAL$gM*zQwv}f(iYE@twz=sPj^g2su(>8l$LRyWsnJX!GOD9 z8I_c?0h?c#>y1azdG zPHJbL4Szm)tGbq3WKFP`ccoh$QDH$=^a=LxH}uWwuW6Hf4`7b1uga>$;=_irfRp7HG3n6kgmO`vD&?l!o6OQsRstM+GQO`rvr z?l*>guX>l0W9f%OdJW`z)$f7=DCTzWxU@zkHPPL%boh#VuX=_yIfr|%db+xf(_~FB zjt_E7#6B2_e6RX6ZF&#$UiDI0tytJNMb?CNxg*}I-k?qFA>XU+k=2PwZOWS9rIzSb zS;y?gDG3v-6q-8b@WKA)wAJ@e8xlSvTUV^Q2W3t0LQB*Yt8RCcC}Dz?Vwr4a;SKh` zJJfFS`1{34?aof}Q_M;YZip@hZ%O!RJTwhVk32`w3Ey>YK_7NL?kBQ;z{E_G@gN_71#`cM zYIsf7g!XFK%iYb~xI?-Q>mz|0*zdjZWZq&8z}7}*`?ga7aA}G2X+ivb;QNY+_g=Cl z(BexEe4INxQ)k1y8wR{>&2L0HL7VoIotr1q{tpYvA15mt!~Ph@MC1%)>@j6F%=e|N zQkPjVOIg#MfLv{EtULd;xL{PPR+p6(g}y+W&_}jIkG)Nrt9w$gUsv@_Zf~wk8`0h+DL=a+t%4bA1y}jIS&LBv;B-4{N8F z%bH-2XsVurBCF?gZWF`Z+Un)t=z6gWAymknvTCvlxlPuD_6j*9vO>gNKTl|@l4;RZ z;ub@wlpo6~$|~hYvL^USk%)udNa;^Qjg(^VPRFlu&Yh>`9T$jz|B9zt2li&WX1xRM z@S#AK9f`hv?F;%bk^4qGVi!wa6iR{R9Cqo&L7p{ku;wLJAqg@aBzFpD@58zm%Kuxp%6~v z64Q{4>N1yPO|V9?LDmEtJh+uD(P^?$oS{+**a&@EYn$qBbM1SS)|RZU;7tN|fg5pb zNAhlIvCpf_&2-kSLJrW*bQa3+)Fb>qbKyQ0`_lpbLi*x6WL0Gi`Buk7>l$+S62fEg z=$ii)*a?U>}BSSre>jd|%cCYoKl=DmBnsR7wF2^!3&@(4pT~-uaYxnrYNy zs{zD9+T~90eZ}+ogu*XZMCuv&*pX*YVi5Rz>cAp6`Y-cmMN{e=@LB+WwP~ zB{(|MI1u3NtG5625$<3{+<|>ereIvyZy*0N;r^_Ob4%8os6Tvcrl-8gzP_tog#)5y zwhXhv<%<1W?pXtof9c)6@))Il?_Ruq=P!AQw^*#>xWD8~JHcOJ&+^W+>tnY4%Te|( z9riDC?O*2GzZ`AunzQ0SrgtcaMHNeZgqFkN^x)FWiiz)E))+}wU@|>%BuDv$3%1& z7WZ!9@YM3=cx26g66^#-8#1-LQC+_4WlgY_@mX0DEGWB`s1%g@RZ0P=<({o=pA%st zaH-mB!Sxiv{^MVQD{;hMd}|8KwFf}tTQ#0WVGn`5pc5-G8lt3yYW-aq5SrZJcS+XX) z8v?@DL_Qc()y|6=1TOS0oHg9{d0;GP&(2wJy=Ne>ghb;DWYuPMex9reR_AMFO?Y+w z*`ew@{_UXcOPvG!Y4`zGc(||9rq1?WvxZF}!hNn=VgkS$o7=Onu=&v*^f*7fB4irx zT4$^hs`9Utm7P`o<+3JN<$uUA5&Kf~-pxx_Q_XAt14GlhA9LRwU`KJ}jaCwp5QwaV!U`df06jn=XGIXo zD3KpeyR)m;+TFKoP{27GduB z^MZWe{!zWZ4%OAwJw4sk^?Ht4w=G}1Cs2L6lQrSOsa!UC5c*GfS%MWi=*B_v)2Ya_WSjAE`(3q7IvgjFQqGvTBpoe90_1& zJQ84eBtWVoE^Ste@}#V6mc>!;h_m7)+ooD=kY7gR+tgPbIo#PZI$%Eptesx&IBK0j zPfECWTMl9P^%DxST!cw=(5=mCS2}2Svn-B!2hHEsR~xY>4EUkXNVLH24@QQnUAku; zbJTif!Qw~?`?y3>ERUo}b;%=})u(jH;bvJJ^)8vYqjG?{BI=HyyK^&LI-pevL(Ue`P>7NvxPIFLbKc>UraJQu0 zh(6PvzHR(OT5YU6_KQz8+gsA%AG0j}udT_yY>$S`w~3EZTCO$u=dG*nr_HjE=jBJu zvJh)BcVZKdoJjHER-_a- zi5h^Or*<(3*5X3H)3V5XYTIx0o1Av8T;Cr3noEd}QrXzCi@CPc3vNy8n!CPP7V@ZE zV_CG_WH*^!L|yt+q)Iil;r!C8Vy-Qv;+|&pBd?UMW?39{6;F%b^=jKWcGT2-9CkRo zx=1^m-`A|3MAc7jmc>z5wcoqrUyhol^X?vbL$g{EMZdmT7D+`n@sgJJJWu;gun;Nc zH`|bKb^fk@?CSi~`1v7&Uiiaf_3ZwnJtHdm#Z}T}@`4Nfj-Tp<<$1?H+^m{q$bH|k z$b84Q{rwX@v7>`Zzf;z?=N0q^YK>A_yfUW>Q*WV3RBMY%qzTQkkZ0v@&32+ZvD}F* zJ+a?uMG9J(zxyBi#Lm759}HSQROt`w4<&by%dE93s$q3qdxq6miJbyGUy`|~+!M(_ zA7PGUP(#r3++N-6sFCOP3d+FxUT>INGH?(DXEdEO|^`i2;+yC0EYGs)HuVwLn`)==S zk6z7*#7C(t``tdDvbMM!pW7@8c{FBO7MWwX*`IZJ>~3qQrgps9eJakdyItR`eq?Z7 z(=3aluHuaMde2c)bMAY+t64pXs_$-=#Zgza|Gj?SQPXtZd;Q7HYDpCRgl1VJ72U*3 zS>EeB?Ki4Ad>m+! z`3N1wQSc>3-5k7;vrOUOLu3=60%IKf4+?ac*D$l2ILkK~y^f3jjkBD>1@7Uru? zxxnW+Z6f{ri)#NDPTRw2Z{`ADVlGpWrNgX2_zY z2#z&RMli{I0Krsq2w5hYuc5$na}pwFnC;B$GhjBsoXluG(oQy=TzoRi@-_q$%pHiF zVBW!zF9Moue#vPMp!fvyZO(ER&{Xpv&&t+SH6<45Rz#j=u3+?j?vB@TeZw62QAAEM>ll57x%`nMt3Vy*Uy*i_xtP=5$~kMC z_Bqb^Jw|^Anr(i>S>A0jf>X=~(Awk8&k;;FA4D+0yccP+%wz-;%?PtTh+w)o z4w1*32bt$XoaF+b>E>@hlgtAM=9*qaPBvSBrkd%@WgCLy%n;H}G^ZkMf_Xb4Cz*#4 z9BVp|cAR+=f*I!Nh@5QhLvVumAc84oEwlb6#68xW4KCCH2&S3E%%vA-lKD2WbeR1> z)6Jjj(h|M6FB%QvP>`!L6&Lemn_oXnf2#6cs+_wGsmL9v1ST_N#<@YH)of+^;&%yT2>JdSg2K`_UhjL5m>aX^#I(>VAUSWh(9a_w*7;H?Nc z%xVNDny;YT3iDO4o?yPotbc*DIp%)mGLB%O*~GuH>B0;j~Y2FvO9cWAs%Q4-{748%{4rm(>8K}?;&lHc@<|l8)*|w zH|P8h&hjTl&*$I+T*I5W!0BAWuNhs%!7Gq+k{RTn#^rA3a-ZbjE)G_qz$Ehx&iQ3T zc97FVtOq#q2h93m4qnVz`Z#zWBI(tN0>_*G;4D`m z?KE>9*YHJVwjRtTm@Y;oP74@)or7u2^M0;&oP$?!+9Q!R*?gPJU5emX^8+q0%#m|Z zV261RA{UrjfTozAa@rSJ&Rdwv7n$`uE@b*4&Js!~7>AC!0Aylgy=Dd@df6Ddv9>xzPL*N3P}K z|IBEVgWt10U&+P)g(L6doEsQzVsv6yoU5I{kKys0ErJWoGsq4rVa3laSV7p39M^08KRCXI;OMYxrMI+r?Z?MY#?$i_wp`hW(u7 zZCqdlqm>+dmV=jbFptZf$-yJJz(fwd#95xlX=iir7*0Ev(TfpGFgGA_qWLY?{%w?- zV5TDIFwf+){aoM~K(owGxkX!<*>^Z?2G{p^4t8)bfzzJK%ocKi*^CZy+8F0tgtU{* z8H~QhIsXe;=9~9&&h;ETi?j4_mVF#-LE1#~1kQ3EXL$psy^zuWaN1uOjdI#&fN1;3 z=$#z=0l~56EH1DFL5H~xkyFjJTzmq8iDnI>NeDX3s~An@;86%Bm`5}EIEqg+pWqsv zjo=LPNk-cc(9)K3ewXVz!fBVW5bx%+f9K$I1XIlW5OkO?aPhZu&SNp8W|+eq86cQo z)-lhQapXss%eT10e+@L%oQt$&W;1iS0BDj4IOleboXNrc9Q=~AyaZVmo4<3;S0b2T z-ot61;GFkx+BuA_Vf1N6pFuFuypAKkiD05x%faKpWuiHj(|*UJ?hh>WBM{kP{={fA z*Y{BlE@9S#9Q=@jQ<%#R&Tw#!QVLTS}ylK4!*#V z=X3BUj{Gw##Bk&Z9J!gfyq+WfiGv?-@FY&#&A}v&JcG+E;9!&^kLBP$Ie0%8cm@Zz zaqx3a`z51A9Gt*fI**wx;mAL5u$2q^o`WB8mh(C7DIB?+(S3|AVDv#oS8#y`Ir1_N z7I4}mPWvJvX--CDhj~7y-NEREjK0QM)}TO#`51TAleqZPIPx1@;D0&o)2!sTaD8v% z;B?Npn}a!A{Ks7GG|uuaMpIZJFX1fHIPx3J`s*AVk1QSLCQkcr1e45JEaz`HIG-!} z7_&Z?BmakkK~6i3EBZG^vzf~+96XDIi@3mVILll_c9{7bT!Y9?^A%({%lrzG9cxwr zO*H?3wCU!F2qv2f3QRUHK``BX962YNZz1P2^Cko*noW$pk6?<~j&diP@1wvJ^I4#Y zW)j4mYW@w8i_L9_yvE#)V7mD-f;Fa$;ECpL1SgpJV0NncI?(e>7lPBwao{q=Jd$O( z0m13!2y$*V-+^Q&m=h6sikXd^%S<22Ei!*ZmJ`fB0UdAth%8?+yAez=Lx@~#K8Y-o z%zpt*F$WNk9TUMsb1|pgMg=xMb%OaBYC6um7r_M62{x0>#}J%ou13}wW-0T&lY_4# z@+9*H4ql4L3Fc)8jyF$56&>b(5llCKM=-(cLt2Nq2*G6YEk*+zT+YEsEYp=h$D6AW zOfWw}aGZHE(#WdD!7K#R%$Jz;JCS9Qxr?h^jNmx)0c4qK{)-Fj<(!W~&JKG`H3h%n z8Xm_1?iZv;Tw_MT3NG+GF8%_p?-yLdPoSmA=3R{5jbO4FK$gj)V>4i{9}c?6WKUnP zgSnogdaAun)Jc?UWGD#e(vq&e(eBW!|2C53PBQO5bPxTg=0hMKAre@tG2%}jqNrIQ zbBF}y0jd-6KO3f~pM(4Y??L_u@+Xi#gZ!09U`@>^zj}nC)`F}j5?I4B z;+Ne^QRjgyClZ*~hV{MU@f7t=kavN+n@C{Z6(;`r0gCz!$ZtV@2l9K6KM)D5r5C(A zk5JSiB7u2&*z5~lNl_PqTm-TLWF^SOAeVq#3UV39ATI-XImjzO9wZW28#da#@@*7#3CLw2SAbjvat+9JAge&ufUE<#0b~Qn zMv%=QTS2yi>;TyXvIpc=klR7-1Sx}5K)Q$o)=Um5?t2eKJq_gPL;`EhM*R1_LQy{e zc^KqpAU_BB1(CqovXO27cPXkL9!M7i1qu6~ut-2k8Up2N@s|SbHl(TriuW7J_twEFuz^ z>%*sI@f?ae3uFn%*&yeDECpExaxTbuAmGePbL83%a)ToB=WqWIo6OkcA+fAd5iG1X&Dn7RVBi zvq8=QSqicYWGZ6Mo0ZU)%_vJ+$% z$Zn85L;`DKLdWd*4RV0&0@)3+2jmuzTS0CExgF#VkUK%{0x5&s4N?Kw3(^JB4HAI# zfb@dw1F3=-ko_QiApJxFYwLnMKl~#_Jq+?AkROBm1mvegC|fw#I{ufUCW1@?nM{P* z6pqlZ|AnHy0rE|dZ-IOp_Ei--i) zlm`L6H;JOY5Ap+$AA&p#@*|KRgZu>KryxHg5?H$*irzYfqHY7Z9pny>J3;OODTCY% zQUTcu(go5D5`gr8^n&aIse%}g{UCiH{U8G%HIPA&dq9RjhCxO^MnMjM90WN8av0=Z zkVk+#668@Jj|O=R$YVhs2l9B3ClCn?ESYHEypt(vKF9))g&>_Ei$Kl$2@K5G(EqL_6tx><56CSbw-O1gh5ODU=5c3t98G^- zARh(!7|6##J^}JckWYbp8ssw|p9T3G$mc=60P;nUFM)g+#Yy#N~ zvIS%-$TpDeAUA{T0NDw$3uHIQ9*|o=ZUwmw=0rSwsQ@Yc+)0cbKB8AO>VV zNFR~Fz=BPEa?2yoC$M89`^N~GkAr*yLy;* z$AA~i*x>cVCs6v6K%NZp6p*Ka+z0YBkf(!;fjk4`nIQLrjDtJ?@+^>NgB$^Q4#;ys zo(J-LkQacw5adN5F9vxDk-)$t4pH9m42pUu$h$z^O(Za|i6ilu;}ms2$T-LYAkPAM zHpmf>=YTvH^2YCU=3yA~<#&U4_%X28|uONQ|`8&ul&m}Seq=QIcE$YbosAUi;Ig6sm>4YCL17LZ#(ZUea;xFUTW_Q2sD6xQe2B zL8>78LHa>zL;`E*0*|7fsu>+SsfT{`HjKM=hXQ+HsC7Gq{po(WF6wqlDj$5;oAlRn_!5#+mB?`x_VN4J# zWP)HS69k)?AQ;aC!HOmb<}^XDs|kXEO%N6V3rdE z`xu1i`>32$nuUFv$Xai^6ehn-v5jtsq!y1;K19 z2=-e+u-^hrr*PaFas|DE48lM!r*PaFiUq-9EC{A!L9oOEt)p<tV8|5&i>@G;b_K!4D+tD3K|Kn={3~g&0}FydSP(43f?y&R1Y5Bn7>xzN zdMpTLWI?be3xYKjXoSLXYgQEm`>G%qPJy2IZRCUn73j~G(o2J*U{6g%!Md7=f~_?X z1#@f?$gk1f#4VSZ4*nOe+ZXT0t<}3W5b!5KOs(VAB-@GwV2Tz5o3tPprv<^n4m5|tacgQ91e?1c7~ciK3NHxectNns3xa`O5G?hA zV6qnk+r1zd@dd$}F9>FRL9p)&f}vj!EdGLE`WJ*V06{nm5QI|!K{y@|gmVHxI4}@| zlLJAps{>7=aNHW$1;NrT2qt$yu$u$Dg2HiYKoH^RS@j1f?$9Z1WT+Sm}CXPHY*55T0yYZ3WC{I5bU>tV8|5&i>@G;b_K!4D+tD3 zL9qG?g85ev?7)Ix5EcZ>uppR-1;JJ<2nJuEwG@t9%da4qfCa%8EC@znL9h-Bf|*zl z?8Sm$I2Hs8vLKj}1;M5)2*zbWurdpRxmghG&Vpco76ePQAef{D!8R=jMruK@RttjJ zS`h5lf?&uN1dFyHn6?GM#w`fOZb7hm3xfGu5bWTBU=SAs%eWwz$OXYxE(k_*L9m_+ zf*D;9?CFAFSQi8fyC9g_1>wvH=voTL?ctFioFWOragrdMD+$5@lOUWl3Br++Ae=o3 z!XcC(oJI-4v6LX3PYJ?7l^~p03Bu8pAe>!l9TToQ?^?Spv|bDIB+l3W9LDAPC0{f^gm-2nP>>Z~`F+M-hT>CLsui6M}F` zAqdA6f^cpj2nQH~aFQViM;d}~wjl_I9D;D#AqdAFf^hyJ2nQj8a3UfIMT?Q zW+MoPH-d1ABM8Sif^e=Q2nRfZaMB|PM?QjZ_9F;~K!R`@BnZbsf^a@02nR)iaAG6~ zM@NEih9n4wNrG^yBnZb#f^g0x2nSAraPlMwM^J)r79|LWQi5i6TY_-PB?!(SK(|vkZoNVT!97F}{6qx7VMGu-M+CuzL=b#Q1i`69 z5WGtS!OcVv{7nSG@k9_jPz1phMG$;a1i?8)5WG|b!CgfV{8j|PfkhBJSp>l;1?aaw zfX?8ZA_#6Og5a+r2#za);K3pYt}KG!(;^7YErQ_XA_(p-g5dWe2o5lU;0YrLE-`}O z8zTr#GJ@bOBM5FYg5WcvL2#-O z1n(L_aI+Bve;Yw?yb%Ns96@l$0D1$3^Tt5WC2SgB@K?K1oL=fCV1i?>45FADX!E;0qTu21LmqZYpN(8~X zL=fCe1i{}#5FAeg!2?AQTu}tUCq)pPT!EfJ;kfm76$H0eLGbPa`VfWV*3C~4{QU&M z@lOyu00qGnP!N0q1;IH`5WEBh!Cg=g{00TVflv@U2?fEWP!N0z1;NQs5d3R_o<-rf zb+i=(k6S@-KnCikaNK$#3xZ3sAowN=f|If!cqV=^-(x(eMo^m^GE0f&ZL6iRVoPXrGnsR zDhLjzg5X64bUlUR)}2fc{K^Eu!AuZ5%>=m4ZwZjyrFFDVF)lY-zuDG08Vg5Xmr2+oy);AJTYF1tX# z_!HU=-(5j);uQpMUP15(1G<(%vNkCMA2CUTvzQ=wjR}JLm>~F(34%kJAb6Guf{U3T z_?iiV)0rT6p9z8+njrY234&vqAUN6qT}0uy^|%uR*E>P*!4m{$JVEfv69o4>LGaTP z1cyCA@Z1vw7d}Dol6a;5J zpr24UZoT>h!M#rq{QLyL;ZG1e{{+DWP!N0p1;Hs$5WE8g!A(#Q`~?NUaZnIE2nE5F zP!N0y1;M#c5WEZp!QD_0{0;@d0Z|Y<5e2~|Q4o9+1;I&C5WE!y!EI3x{1*kmWfbTD zg>)vhozW*Kq|;-C;Ax7SoCa?+pb~}T@1zj?()B|+6scxtsr>c z3W6K1Ao$}7f@7{Ac<2g(tF9pU>#!jB5DS7cu^@OA3xa#GAov*zf{QxPTPPg2zUqSD zv@QtV>w@6ME(reYg5cOL2tM;bTPYm3&hvucMK1{M^n&15F9^=?KszZMH*l5*`qQI; z;59D@-swOOQb>M$3c+7p(%`r*2#)JOhbbJl9_)hP$}R{#?SkOkE(l)kg5d5h2!8K^ z-~cZOp74U;5-$k8@q*waF9<(409r#K`Qni0G|)B*$?ysZVn?OG80uLZ%a z8|X#p@zssr7XkqVr^$0l^yVERz4Hc}ow+`qThcf>qq`Z33h9lL|kvyUu$ zob?xf(fnhM*)n$gaCL8Ab)a|E-r9lSh~U*hU+o~_$<=PU+nD~DPG9uws|-~}s+ zub~eS;UWg}*a>t;!!e^{)4KLm26}_xV8k|MN(kL7Q@g4oEC{tZEJ)?TNPDfr2@xV6 z`5wfKj!oG-ZlfIL> z_Sj+SCi>dV*uue~T7PXMD32T-42G93>s(qL=9_0(&K@k+znnnR;PkhB45PpwFnQn{E@ z$ly$sWQC!+R}BqS=o@pv$i7-PHEkB;v2l<}>QkJ~R!I@3HMM~edRBrV;dTbN#qmCl zbRz@*kTVo=-o3$4ZMfW5-S1V`3^0@|N~(ntABmJ`+-cG{$*XuQmiUNAEWR{rwr-Y` zVP1i~hMa~$*rr)M)q$Rx<(C*p)4<54Dk5>anNss7uyv6Zu-GS*= z<8A&>Fg)5fVxIz^>{bpZk7_}ulMpE~(HW;pJDkjl%UMoB#3hzpG%`nbhf^r(k2glY zBf?|3n5MpRchFNo>oOlqD_$xmGpv{?F2h-N0Qhud``4yM1wR!249`vw3+qZ@A8C~< zVl?J5THZ4{V81t49vv7S9UQC;jnIqCw#_?%EwtkV*wwJ+$}U+(Fv zRYrWw>=1VHL`=TvN_JkX+aj8suQZ!15moRy^`v2D-&?EoWe>(^W|v&d$(h+DDSA>8 z&zqjvCA;E;nO%}1PM&8jJ+n(O<`@`!KOr7HOQKP1dn3E4R!mRcNOh;U<9-PZ_aYCo zW$MWrF}+9i$E?gr!9LG6RcURm6v&;g(Eh@K%k569`Bct`;hXhCQ_WrE*i@zKxl$lfsJzmhMNYcp0#!0r zpOj8KG!6$^nz@tGqDsLPdLmz>0({gZ?wlo9KC*+I8y9C)9L|iRBM!0X^2pdh8OJAO3Ctt7HN3H1K#v1S zoc$8FW75sU0#)p{jbyeyQ>Mx6$Hi{ik{MM4o!Qo5lO6_kjI*Y4`7KMP=ICvK9tz2l zEN5We=c?~K_YK)aAHD4h4rS}ot|&80M2ao(do^4T&ZZY&hQZ-D2+YY!iDx)P(yFr^ z%Bu5}U8u{(!$^jg?Zh}<)gRbzTgjl9+f^AT;|*@Lp4c!S59y-}O8)s#Y}8p+T9Lrc zB;0~1rz*cFijB(0(h3jz>W||Sas=jK)dw)Q)a_iWmt;mI*Ro`4j(my1m@LVB1N-$b z(f3T6>-&7Vo(f$fQOPqW&Ym76cGhPdr^?ND%f&hr-P-<%?~ZKGqRkl z=aC8JDj3k|*{*a2<=&yn;J&3~a<*%ICoWRqv~WB7CLMJnt&*eHfn9K$EcIxmlYWoR8D)1uC^2_i+ zl_P|?t42rY;Ao`U)w!nD9S|8fK=)zO(atcPFN_33{mbJV%aMbKlVcLjoQ}|e!cy~Q zG=A0^S|rqlt2i5~^mVQe4R^$Ap5>*ImrJsF3zZf&r`t*fs=+{4;4+yTG9d{#F`LD- z^>j899IOrP$IaeoheRZ5J2_72ysQjGS3Jz4-Bgwq1feAAc{>CI&pLLP|zIyxx>26K0e?hOwvZw&ed>0~bITM~k&p*Y8K z&f#GeU9}(Hm~ZalY4Smy{4V0)wH)+wa0v%Hc<#K^qNT=8@H*GB^KjWj=aL6rOq+#{2n^S%~>ki*N&5iYguZJ-AprXr;`x9DD9jeD=noI=cv?lcXJR#vvzbUsc8_`bCuZ|-bzq%{6)ff)| zc3YN-osaFCD1(w^eiR!?l4y<7H&ISieo+(~mG`tH(Kk_vs2zV)V{FcFwYR_KZ-#wJ z!gM9YJhxEpQ{pS#nJDdPLgFb=Tmn<&p5Tr+qpN?gTpb?pKj?OnjdO4#D)u|q7@pB0 z{$hTC@X8&2P-Svc8m6P#QctC8q&8H&7cNu5z;JD-G(x8?_P--zE4kQmOeTd(Stpus z2EKmh&YhN5=Tci?Cv77dVMcF}OB%^vit1CnxuHxOuj)v-9F3`>ZHd{*yl`z(;*=r@ zlw2FjmAzf%Dwz(+JE;K`i&&Kr+Uf5d9SKNL*EPkW6w9DQ+fk-rFi;+Z7gzIIqm>zU zPqAOpswPDgS(K1F=|F{yuA_t0pZp4GN{LA+S2ri6D~uBJ#!!#Vb}}7C(W-9*K5N%B zCt4_gl4{3bg&z5lGOaV%2-g&l$g6Yg?l&P^-o(K zj~tF|ksTBuch-gdALHeYpuXstXJ-2(WtYl3Nxs-&sW80z-O=AqnxVzq9`_+b3Du5 z#L7J?!F=fOLG5p6_E(3=ww(6dwudE1RQ1n^v!`Wu&a_hH=DX!QGAGWoqSe)8$K{0IDN*Qe;nGb+Aku`hn&}OT0P8iYyNO62`(PF?UhszTuJKdvJbNbb*tu zpff4wngTDjG#hAAq)~$Ipd_+EkY8zN{iweVOY={OS!9!vW&<%JS(K1BQ$k}~RK<*i zQDW{!ozdR3@b0C6phb2sX*PIj9C4JW+c~ZH?j_AW_1qNMy`qx1sx*99OXjs{a}` zYo&WYmM=|8=AS(_InQbvwASRC))7MKtudokp3;gKwbJEFBv^8exI4B2Vv$nbzpp|j zd9teV4_DfS?CldL zk%~)T-ep^0_JqzK_SAmf$k5?(aHuO7^tv8cTZ?4j)>O=?N*4>lpVVh6#QIXYnUq!* zxhc^ANEkk>(Za@++}w)K5;rB{<55z=m(nf8`~v#)GXILms%R$pNqFrz)^vr$NG%Ik zEqv5Fi!M(X@s1Dc7->_Zf)7RdwDyw~v`(O_4Lk?DR2P0mY!zK{!I80xxKR3d*UhHO zxVDp3TP$lQpD*6dkTc9jK0X3-QZ)n-*f=x1Zc%y?};l z2g`lIK<~&t9umoSLZJ#e`TRUyB;C-Q;z~)0lqUDYsl$VP(T~E~B5wL!P^i@+E(^rc z2Ik(#;B5#0xy1(m-pVjJ`YkIo=xttiuwS!92K#Dal;_Z(ng&iZ&{yR57jn4+995{U zSzmmR`*_I!zp8OT{Db?(*mJ;RflH|%**IkxOs~f3md`K??vmeb(Jzvtn_qH=uvcBl zr9s-VRbRrSD5^hKW0Go0an9!LvL^Zx^(sl$b_WOOXQ{2qaz!(;*qW6zYwYh$TNUQ= zW`x0y?UXDVssnTpPT3BmRwYVr|LYGRr+OvVYWf{p~l4P6Pi2AQz@1vG@ zv8A`OZXG2bi|i%JhOjI)HmxeGnI3eiS9-f~sM6a@tFrzIpB6SgLB$J!v>~>>zNB^~ z)vhR>?$oKaAX_^o&!i|yQ1VJ+^+ke`e_y#L{6S5V!!RlI)+VNqJh4;*_6!AdOB(%t ziYnoyd4Z*&Z|J8s-RqhWJ0*+~c1>F*z-FdoTd|U5?dZT>a1?nU@vU%+dtr zrS5jm9^J=Beu=Gpd~}ZtT)bkw!^J~4*)w`Z`}*?l6^L^vbu5UZBaI|B!Opz`aaP6Q z%s4vY;Mx8r?iGlOM9NqewWi^-{E?w%&hn*{yF|Z!=grNW<;Tnlp5@2+OHqAFp^cv9 zr`gF`J^jk@xNAomjK%RU*Bf;s-%Qmsc0})yE4e}_ zazvkILqD93L{SgHPGoJ=IX3-}CWS0=3hoy&7DkD=o5hTJK6+^=lUtEqN-bQ994}`I z8i}Js-Oi#GKVD9=Pf6MAb8P!Id2}RaFH~~_XDNDC z$k|I=t-R{u!=gBiMGnl}u3>#nwWl2P4SO9E?a@n^&V?(csunb%oxGlLJ?IPi=}zK< zRhStsEM#VMi?~afja$UpxK7v>Haa?dX;qV+sMHqG$?RI`oO;zT*j?D}SD&$3Q{0rl zb*axS!zOqq&xz$qcY%FF{aR9U!p4^676GHt`}^p0#~vrmfyZrs<&b^c659*@4I`(k zewybNA_GHWXW*P1h8b1q&O~X?t{`!8sJH~?h}?;zc19%On)+ap8C!h%%H$@wz(fy&@u-(mZ^NaDBx7e(T3e%uLD z@LibSpQ*{^j@0DRa7(g9R-@-`d-xamr?;my3EOVkrq*y{l#ojPo#6uCW9MzO7S};; zL+c&j+gsp0LftnUigNV*6{wMIwt^F;9=0X*Z2$Wo{ZP zaK$ZIdSq;I*7nfNbtmH4(@5Zx@Co$2hPdbdV`}?8#t$G z%ev4gr|XKft(Q2f+AhsCEacR8ULjrbN~O*`7dnBsjpc3z&TahQPU=UpDI-w zUEFt++6K<5ZS<56k^^$X)fIcnEo)UDjTQP$aTAYuv9ZFuRgG6rjYGrxsy$6~VX4pn zjoGVuFQ)RV%ki4}1AavjKMf4i7R`sob16iZXigW7AW_>bs zO&QM3sX^{Gt4K{L=jDqtotJa#D)OFS&Z=E2vz(K2D=W~wCCgaVbxrqS`T}aTtK8%$ zN&ny=C1fd4g{prAU3lDkG)4>fs+umX(kEhv>9_xl)>dRji+HOVFYIr4dA+2-bI`BX z*DEsIv{U`i=u?n#!(K5I&<)@P##y5^fv?is$}C^d+(s3Utd#ckT+z&!C^CzHuWHpL z!}Oco?qIl46&9I^L)KhhU>s2G8e6wPb+i8%&gmnr=lbhRTJmL z*>gAWsdDrI+3-?hDp!94FXaRCBKHJ%mK`9zmQI7bHZ^MKU!#WFE&Sz~Tlnde%A<9-jDIuQ{ z{;n`Fd<5Gs`=%C$F)Q6SL);yS-r(I|*_uju&unRr@R5K@^O5-Rq|$!fw@3U~Kqda( zNR17ji$(?cAbO|m;Ba-69QfPXqW`R^@Xkn*HqD4h={L4Z`sDF>cYN{~wxAK`@64Gv zHTrLEO@5z{Y6$ftb2Q`<5OrRGVN}G)B%7V%)$Zy}HDwol1bLVp`N~5zy2q&p*ZB|G zN7_Actos=Zw+34AH@;x;3&O$%<}LP6)La z5+6-po=slj(=k#e66?yyU*5`t@AH&h|6x~yB#`}RlaohD)afKdBCWz%t*ipAG0Uk2X1lqL#f(YuaAHlleeejKNST{_n`xd7M3cDih~%a=W&HD@4?s3y?fq=qV_rW@k@6 zF}WzEt;##P&t)S|QTpno+=8^dx84FNIWo`sa@n;cN9w5m`kbTwf?}kWse*E(?a!H`sE88WZpcswMUTIea8lyR`3Izpee2jWr7}k*_(P@A5 z7F6c4g2JS)&dn`I4@_LGn%CFD$sot0BA2T?H|c9OatlJ7uvR4v`YGE3A(y4d(nLR{ zT@z^Jwk$~FBR4GvjhEPm;U7C*;%Ze7kzTT0Ckl2@<9cyiDgyHny8twg;tkTH!wpIF z0mMb_f^c-C+BZyI3-GW;*XYO_d@)JxRXeofcDT5UMMuhhHggS?^c z?9g-f3;r6Y%@<@>@8ztTep%P(&=CEyy76kQpNGHI37)FLRSCxk`qBtK>`tF-F5cpm z*)7iGu7tRDa44W}xsQ}9U0uQOF#UM8tJ2q(z8yAG=ND#6;AgF>zZ`k0wb9|mwQi5a z{aQ~lRaLGW4w~p=>zU!N&Ecmiy1_}nr5nS8L07ehd~K+chv~PR#e3Pl;p$fIt3wHN z83ZzwLyhY?XM`tsstT__V*jCmW)yDSZnE2~xTY%|80{x>L&FnDok|r~Rq2&zDScnE zo0jAa*Lr^TBa~*Vs=XHJY!B_}BmdimtIm0P{j62>wtwlvzFqqouepw@6<1a1C8Gln zt>LCxpB?{zQXExf7ay#SG|{-TvwPHK$W;aA1NJLr=I0!IkiS`GX5fW9Cv!=0WNdcU zQiAzb%zGn)sbw`U%?e*<9^QR2h)xy)2$QTjcjm13jMeh8eO`gASeqS#*$ zw&f5tqL{)K<&5sYvQZU;^7mAH*97^rlqbLCqS#->^7mFo_K|~HbzpFGq->AR3O%XT zGM%BTG)qtHbm`)sf0Tc=JIkkFu~*6@_gi=f;7c&n{#_%UQjBv}z(g@$&!dmlfi>EHcbA8QUR<)q&$qpYr@z>+wD%8Z zJm$IFS)9O3R!cU|>W@y3d+Dk4t^T4Ucd>RM*2-am{jg+~^1?iNW(*@sNhV5pD|q?b zSS9v{#H^^Ok~Eu0DI?MGxLwE2O|N6=w&u!EmA-cqt(TowS)AsoC440Dt>h>@OEFP8 zX~uaZquA($?l4lyxvHx#s0@q_(qgu|+!Ksos}u@bph8bGO4$q}bsenl{<3-za)1J(&<95&VIv*SkMW$OxjYkl#$!z zc%9!YS(k}eCNFNFYQJ&vJ_l)sv$@GH;%~`Jv?O}}?7$~j!Vbw8 zVgB51dkTy&FB54}#t8G4^0#URwQ8;XSV`EL#nsrHuC?Uma$9j(k+J0z7U>-uRAyCv zsnHi}v8vfd{$Vv36YBMaFSpx@LVe+3BCW~n3r{J3tEN(`!gkEh>IF`BCBLYM{%tXl zHFFNJ`TWuy59#C)b~d59^CXWeCH>TzFGH|zpo}3F7Zphzi+e^jerZo2X*ZCg$N;KTc3`PZ7nNiZ;N{qhUmA=vF6_GjmoJ?+8 z3XMJ~E8=I4KFREt_+maR4!?exXS+l2{{sE!U zy&Rurhc1xrIyEP|tJd{c$I@r7glpywE3CETIY@`MMp=7a;6xjX6`AndxccEu^PVwaz!m7 zff70>B($sS<{Gf4jSX<6QH@!HU9d9-n-kUgUe+HLiMo^^dlHGhgWu+av%h_7SU6w( zO5k<8wQpH>*1M{{c&XZ0n7~X|b_CCMmkg|QNRKtFZ@cTHx-;1dTtrmCj|c4Im^qC} zaeCw&`-jAr5}cG0FQjKlYRT$fVMdiWuR4h@DL#>Ewz17%h+hh)vU%X`9QiN@9X4(0 zQa+eml73SJRLN*Rnak+NbYIXnNNx_)(A2S_FPp2+m0gtqeC0f=iJtP*R>wBu$xsS; zDve&>RqLk{5}NGE!d>2bxZGXsYOq#&{|S#sZ>^pRln7Vb=^wspLlryj8f&y;araf9 zWUi{dlspCo>2Pv%pusk~27`2umxQgV?y}yYAn3-W<|FB=Ekm2Trw!Dzj`N8pL&@Q* zD!jZlI6}9;;2fjT8r_YKr-d$KRpqsGCn>qFg;LV7&S-FHLhn2IW$`->{jS}bjQEUGz*X&{BP%up2QOukiJ@ru6*Ll2r6|e|&u_w=DPghgE zG9BZGm;qhtS;F1u3Da>R&7Gc>t*($2cMFwSu{Pn0sY{Xk*7rfjmYm{BT`Q71!|Zah z$FPU!*%|%&i*q(r4hKVMK|T5BVO^DA9~V~AUsy-_xRl6lXY4HI3CROhjfvoT#e(L)~tAscOYhT?2d;xxBg&nEMgEs@ZPW=DN`hO9LsMy05%Qpw7}p(>pr zp@rd{KbluuN_|wqaf?W?FF71lRp%Y3-pkht6{*5G8cSC}oD}N|k{z2>LwwVNv$RRG zkGOFif%zu;Je|!8j(a&+%$?lJ=-ccM6|Or%|7rfw9m^7Vx>oxK>G8nexKkUo$uaqO>M5mIt8tQH*eb+G<^<=>Q>bKOnpkS=LG@(v_IWEk!rO(^2MY|*ROPS!vS)@7%8(tTawIvypW%QVv@NvE15RBDeK9`(2`vC zV_?n7h1!*DD>fWByor1^8XC>cMCw&d#8TCCRWv^pXnn*$#)-3h%dOHsYOf6r1zqku zls{b4)q8#npaytUqU2PhT7N0&c^j>k*OM)*AzeGB&Wwf&TUF!rc8h{dcOiuf7g4&$ zpps~{lq$v5u@r$hm6wUnQ0s~C1;X!`c!gq@{j^iWu6BX*it%M|=j3x%byqT1TEdhj zV7=Uuq!KtNy=5=A5~V~>dbyRz<{yz4Swj<+$x-ik+G>T9YV3(L zEz}M6K-~8@#%xqyqz=S$i%N%BJ5g?4f3I8`D=}|gjb)Vz?Rz%A!kD#c;YGtE!C-@x zWsZYbFzTpaP}OtxjvF$KBDJUshv^ZtyJ%lah=Jmm+J9yg5+&LFXGSi6e^@6;TOvr)zW7yUpPe@>@%ElG`j>p{~(+>{!)@a9Z_{dmjDsikK zlISj4mUdZNgVl$}?>jC;T{%~FM{#tCi*ru~W}H`9hWGV*82t}#??0io_iE|I8;IC6 zNVZk7=eSERUk0}o*M&c+C4U$CT>u?8A0X%6Vs=?nMvZeF)gn_cl5kZIwRR-US&iPy zqil5cHQY5+9V}o04Quupp;gVoQdN1GUE|h9NATm1Tvu?VSZb@!&~9r?aa0vvqLN24 zf4!Wn&e@=;BwnOP4Hy|xm0jK&4A3XmMu*|0eYk&bt*^dGxt>DPELD{k_Tt>v)|K@* zDEUc~&cT~XDhVr9#j1Uk@W&+4;XxODS!=jl8_51Cwqi_mI=erWL{|@F@>W7zS@q;A z+G5v#P(3F;rn=g`ptnN58jH_Of%#Mk!#F0fPcr>P+y20}Xp=Li zhD^>ZKwvtQHBe1?@q24HxM!4pf>5PjsHrK>m%*L#mhXrQW-XP3bu?5xOiRK?=`H0B zm0wogn0oCZGB_0_-p+yfMfh%z%P?jgq+hnBe*r=bnTFSpO^xI|^=A43?OZ89>4}Tu zPDB|S=P9{Bm0S~D=_V~Y6{X{NmqTDyNAF}S#O$G9kbat$8d)UvabUv9O71h9B9V|% z^+_VQr|d#qHWpFJ+gkwRcvXL3%8@a|%DynXjf1}+>}$fwwh4S^2j@~PIWx^5-Jn@c zgEBdt?d23VLz-t-mvMYa6=T@~bAWru*hZc?5YSq-yWCG_l+|*7h1bgN!iT!bDlM6j z*;UN1d8mf$m=DZohv+UW&o5#lcFBwpyP14@BC}h9MLpP*D_C%ln?jI&>k&t*L{Hv` z>5b96W7|Ayc(AYP9h3G^vZ-8hDT^^z3Zy&Gd6d#67pRhP$4G}I9wmoEVE)WfvkYh0 zOBu6NdICmKoFi)XUt9)@sdHUj28Vn@`gAZ#<%}49((UVc;fSDLtNS?304K>3vDlzw zO7vNdOsSj^!#Ar5XD;oOYvlRR?Gx#Eh!kbu@?j6pk78{x%9WTePeDnZFQc5Q{Guo} zD(~s)ncxw}C*%lBkD7eu+vj7T)=%$2UsLR;bMh!@I-P__phSagKXZee%!b z7GFki;*wXV5OWL6Mt8zlPK%^)`#{T%`j56fv&|{Pl~l~f)FVD~sOGt)fo2N+d@g*rAn5}BqE+7kCKRmL!tDYZRlHB&a=VnrJ zEOJw#zDo4C9e&&nH@D)m#7&9##PW+y?9MliFS(_dUtqrDcKZCDT7RX#k6Z#mV@%=& zV@I=-hnZB&V_YUn28TxJhs@5H@lO}_W#GvhF}*@PXfu2Is@|8L9Vtju8k!Sl&mAeL za`WACvF1dhiIF1Z19P()Df9Z^!&1g_!*)375nyxtV)>>5(6(P!F&SqLRUfaxykk_ za?3K&5<9&*c_L+eC9*);WpQV?TNoXv!h^=g$Uadzn`+o%ofb7Op&mOsgyWC5JYkiJ z*ExP(9#z@Xzc@bH^eCQz`Ks#p*`&|@YWj*LdaCTcl#`V_XE;UD&y=$-^^{$x%f_-w zcPI9xE|0*Rsi%bDee^K`kIPmxC4}ip`gv}lwD``H;49skDD7!LVoFe40`pP#MZSP` z>2yaZxu0h&2dpyPOx%=;dAU347e$+koM+f>uM+tpX5UgHVh)BIS<8LHo+nyP*IIQ8 zw>rt@heI4-#%-dc4 zmbypD+}H(=+=~6J9ItlioQu@xQ;5BrDz8waqDQ#ZoSvcHDcB@9dY#}FIwN;iZjFj@ zj;PkZ+P*apMJE)K1}jxMopygfO*gaBHG(D3GO7=M6IYVUua1m4KcFs>i^kdQJLsGx62)Fk=Dp;sehm$a5?7`~*%E3c zPPLaW`S*{7gn~D7{fv=*Jk=`kHpQ2XjSj+DpSH<#pC_$Tn(Mr4iwT!isS<5>RxYc- z?&iDo#@2+C>Xo<~J>oVmBfgtlpqDf1RDx}`&pf?u;vVi99q|9Yvwn^AR9sg~w9HzS zaMvEdZ5X!R=0@Cw#iWsHxcb2SGTLa{8H1*3@0%=~s^iy~%{)8GoPLMd`I-08lu0#p zo>R*6_OeT)IG$b)Vd=p9Jz9m@%4hZCUci*HsAKHv-=?a1=SqRJyw2)BU2=gc8OtU+ z?m_uUPr&lQuCZr9$6FmjY|jS_0h6s58fRs*qh$E ztYtk9gVn*Hk3Oju{yK_0v&03zXqnJYg5OuG`AUo%X+KN96V$#E1sT!+z}5T(bJH(B z?YBU}8kPEQ4S&iS{(8a=wPqQ2cJ1y zfQOwvA@h&u@pP?9s_ltiY!&VCG+TLM);FNQG@pbQ(^6ySn@w>2qq}=ZZ*TafmK z7W7HipTsgLVefDf!X7LpPL& z{_&hQZPn{6>zT|VMRUWHXl}6c*Xai;X|G)BV!N88G}XY_QRdv$WU|yer&RsbWL!Eh zcZYU1JBeM=)FgIf?BZsoEpBziOpSD9MOfRE2qp49-b+3W@zqJ;bll)Xn&9F-GTZ5H z9=eR8l_y+tr~Y5l*dwmXt=g#hK>#Cvy zi91nMtOVn3w5SXs=)?G^i5QDOpxhBBotOJ+3#7 z?|G(2UH``1dCU|yt|%~nRa4cuTvhJoWthJF(M8kw*fP$X_iByux)a#->%$G)=3r!B zt$S@{q@t&=tk+D)jGA~!&dVswRZ7>Qbi1M8mN%Q7Ol*1k$n5g|E$*J4A-bUUU~OnW z{YZiCw_zRU+F`P*P?utDY)WbL7<=SVs@!M=#l5=i5HrtApWV_@EQ1nlJKEf4J+5m` zj|oYXn45Xxuy+%;Lx*{bwHzHfQm}Y5J*d+L@-?WE6NUG)h4fh3<9ErTnz&Hnqbb!M zH^@`uI1Ec(#bdF=M?7d5G(v~pWP6V1-h{)jl!@B3F`DvtRo747ma**Ixs_Tom3pj% zL?y$VID2|qX4@Ygq9n`BcguOCPI$*iy@5F{T!h+f(Paf@Xt{wqet2oRzO?>y?Ja2M z?uyx>P8-w@GKU4fkklDY^R?Ot)9?_pt;h1p6WE5-l3 zy`$AW-p05Kc~wvpWF1H{6l57G-WS>^ytDXKP(XaWT2WGv_#~<2rfRV*AhS81Prqoc ze(JSgMDaeKy$Fgj*Y`_k>6w$_ex5ZB6=j|$xn-nypBvCwanW(VFk5#e@KKyEiub+Q z3P(S-r5wB{LEcB&zl3T5!N0Bi*TaEEc42$ZF!7WwBTve^-4$}=CMVpq_PvE0CuRu)sU{LMd z7h0Dxg_IfOoSc@p{8UXB4)3EcarX{Y2Kk=r0`=rgB*HCG3ycvB4ZGZ0Vs5II3uxcv z_$C!-ioSeDkL{S5s^cPDeI7KXu)HV8VW;Xjj}pS4IuvL}-UMbDDc&U;MW1CXItApt zydz$!hI0-SWvwrP(>-uN@m#jqE@3tY$z5#n>7`|izR6l~MS12Mn3JRRX)EW6e6$vu z!J9iz)J)u!TQ4V(--rH&X~tzaSzCI~iHfR|ly)o4AI%mI4;V9~RQ)l)PU53+a z{Um;aCyuK1q4-uNC2Un?<5Mu&=JwRuaQvuPQv+^qUH{=IOv|YnbqCiRUd>Rh(1*Y6 zTg=^-wa^g_o<%A(gdO3ErbO@2qT|x2N?(mW``qqE+|qhyM2*lws^;wG=2+juw)R1T z&H}zZV4;+_x7vKe*1y&J%ik78O`g%L-sHujM&wdL^JpI~x~wesolK z#!m?k=~M$k>Ss`}&{_ns+2qg6|10L~Q@OndfR-SK~@5C2)^**{lwc)825cj|>-k z@y#K+myA9?p8m~53&XvoMOmJZsyTNjbGE-BH@EWK`o&XC=tZ94z`p8^ZkM#QY0Q;U zHK>xx+Wt=2(Q2nCg|mFB5xeQ$(2;Vj$9}=Doik}mt9@4}CGJ+Fv~^dKcUoF^{;|?1 z0ek84tx-CKI_$HIv{mqyMtQE3szF=mLhZEQTMHBB^{otP2*ct9=5f)Pq&>-<-8I@z z-_A@8VOq}GA9i!HYT6l25i)45!g@$d*Uk^S!?Mqrf6Rnq@aNjX7HTG*!`;L$yj?*8 z^EBNEexYSHf|GS4oFci6@RVJs%hs3O`=sJ=nOU-ji)t59b9hkR9lG?$pzI+@X4#o!e&_QB3G?q$r2k>$}K)8{=^_%4i z5%Q&hs?Ynw`0&6#WD*U6)k@%XeBhAl+vj=Rk*$P$TKmMKK6K1S%d&=O0XD7*W~?3} z=V|;5W!=zFjV^#_aO0a0v6NuvR#mPH4$_->xY84h94`0J_kwHbUt~1jEb5;I_m4^0 zJ@TnBe@D{BRd~*;-zg-0gI4mS^hx2g=mGsSqnj?q>TQGZEm3ppq9=t@qW34NOCM#l zw;ReWJzVrVB=yXurB#iyzocsQq#{uz^+$uhq)ITbzomjuO4QxhaP6hfZFje{kWSP^ z!Zx^9NieX&vRF#oTOcl6`RIDOmR8V-`bglLS{)%Gm=bxH-O}!>3>LphrO?FE;5lfb z!B)Zc@);%U9lV__)9+~M9ZR3mhr-z`urW^SsyK`DQ`^ zB_$aP9hk2u{}sQdu)W5aoRZy7X~oOrFwtGNT}WS_q>DZe1gj48ZlmMUi@LK`%3PQp z0`02B(WMj{rRggYKMIkRdscDTag=Bz)X(q#(MPg%E85e#6``RdbhB)CdNT2F0T42`^%wGUxg#Z`QV&(c}wQYmwrWS(yv(Cl=M_< z+y{BmuUMNe{mRy)U)h}WRBIvWS7u1Rg!bnLE~+oO{(V5$uUuAXJ=T$3CwQLMu)bJm z?P91H$Gmh6%wZ?pt~*Shuu5F#lbj!DmddFiW}<4itlk`zlpt=*`Mwz{k=x%Y+YbdE zfXseKjQ+Tmynb+pex{bP#yu`TKCohKtirl)i<}x_CXM%lD?$B!aB{~QQgzyXDDWs} z_Cw-1j%&&52lpY))KbQg{384 z-6wMUTXptY`UW+9*s^YG^w)7CWpQEEitMlB>OvyDcF@~F_GQ7iiq?1r9X51`ki&<_KtTds3fjC-ceKjc&8kGDHm@jBBuR$XmW{(l1k3= z>phpYu2@k0JFsv-Ad6qpb2fD2vy>x;>nc_M5Fuh5mR1sHe+xZPO4RG!Aw{D3C11R0 z$Ii`lrS|F=C6&Z=b!_X(*DQK4dVHTuV1P8Mr}QVdmV zmTaP*Ay*Q2V0vB)-gh&XRs7;sWxboj`eOZf-_4vU=A~*_y18=5?xpK5u)T9qTwHOj zJ151(WFUIyq&Q!`^aYlsdD16VrbVT97pHmBXRS{o-4|HQ7d&lQ#4UDD-ApS7yH zXfrxWXx;dPEqi>3%#=Ou4L zNPN&pmt*`V6&`iQSdU8npYO6Ia!Bl z^Tq4o+PVo}@Y_)x3Njx+R}NC`vg~>j3{`E{WIl;5|5Ad5GTT0fXQYH7A-YxWnxJqBa_U81dVy9{<*r$qt zv^A$sRSAEeu1V@3U)zeK$N-1141KE-`5Irgm43)lP|^Cw%4$S_i_-6kV$Y1NJ$^su z^dvI+wRzFa^kd#ye?vn?uRK&sTyCmG*(;CC^3qv)<&jyy-@?_6jTg5CA_2S^Glq*> zAb+%++sJ!GUnHU0Y}qL7t}HfQxc+#+=nG%cRrvLJeq-+py^~j!gp5>6E-BWMNQSsA zdY9>|#^0K28XFy{dUM{xVct4p;x_seUePHeXG~Z&N|Oc01lJ$yF=tHJoCz%k=6>aE zJ%?Pe;ZSbpWcP>Ww0fA1XDCcplFoArQJ#d?xOH{q6}+!>XQH%c&7SyXoZ=Fg@u&rb z?*p@+w23c^Dbszfy~XYW^A>a$_UqRkrhEUYUF(UZey?QtQ2JPsvT?0wBSlJ1#j10* zCLYLUnaW(cwgu4=!!O)CY@<8)$R5>8=D!wrtIHi*5;77;DRO6Yf#&+~t4llS6Kv?` z#M9r1f~lkPe(dKP8}U7!DKV6^cec{)*)5IdnY^FIH72%yNZieSzxL4#7l@50Hd{+F zj(0UW)-u&na)edAuq`UGf%Y-&883ORVY!M|A}A?uZO2$q>_y3WE`!Cz^^cJ|9JRMH zMlwXtb6jsgbVo>~^_!!yvDsex+n&*p=T(|3b3zCu>Fw;rq z{#M3Frucb3M{P)aM^L5xO{s~#rG-V_k30SHCSP|-x?L@ejU;Os6?yL5#l-ZFhg%#q zH#HuzMc&--`y|OL^F6W!Q&e&YF6B?MRR`b&(a6h@Rvl{^EMjeE2?5kN*we~5@U^br z&Wa>zp6|AIBzU;_$HHwbjs;IeGJx}LSt%^GBcRguO^L2(X-2rN(Xo)ITuHX0m2r?@ zEXvILHHuf62~Ph0-|eWknYkcQiHMu$L|#Z-M=+(`wL9Cg=fHjNlXT2`g7g zSFc2)Z)D;78g0~H!)wiy1WLf0+9})BjXuk6dC{49!c9c2Y4yQkorRF)M zJTfQxBQ717*RanJf2?+9d=I<(3Z`C|YDZ3dxq8L?AaXUb7X6GL%+-d6>C`pj2Xmb0 zTIMfVT^*dc1DlHU zp?04NtI|AFtFqmvyk(_L+I`BKInkoPERCLKJJ?q`zGhjg)A${ZH@v+wD7_-QHt`VN9LLa#GpHY6E&-zxG74GR#vUZmG{a|>NJ)ss#uA& zse+5Ktj41BRs_pi#d!ovR;@%^O`ltA>_)g`4b+1dH`Ie+g<1?6NeAe|c*SoZXjP1; zLM6tg&^^Eoqx}aF{KGmbU9}Qz741mjEZmAbct;d{FzK_nwmv1q#xT5o zA!N1~36X~?-BtSC0sX$GtJXhApPnKY>~h5NA189I7)s@dF<5Xr-?knu7e*D-pNoJZ$1=MZmn9Tq6a%Oiy zstN1t@M(Q|fE#+zcSp&oQwejclhE!*Fz@8jKZrxKxMw&jq3?2qJ{m(H&y6To@+@JL z_?yT3MuR8xUH@3bsJi^lvv3vHBz{<*=S-%1IV1g|%rlP~^x^z#p0}s>qf^Ky6BdRdnwt zD>c`VKiM25#3c<3gHl|d5@V~ge+v#&={vBzjcZ=0yuDGfHFW!CynA$OS0Y|FLQhG# zhkm5oKy#Iz8X7NQZCV7nwse$?8iQ3kSPCz{!uHZ*b5Q}=btOuGwVW1j5Fum}Qs9@j z^@h8rCMC-15xS|QyLND(6?GJuMN;)BF=)RRiqWc4^7ebtfc00#0tM!&>L`6?){nyM z*)0-PL*~TU)91`HsK3H<|5Um8ZaL3M^C>7B$Cso$eKjPK*B+x4`SJ$Fo7}xl%Z%`| z>v^YW$ujP{ciz>>SoHB$-X=c;FXg_@tb(n5$`hV2Dd6cYK zau+sZjW#49kf!#%-qP>&Qkw4BG#ZJSRMEO9I$BpEFSJ8s-B?v3BQalg#0 z%+`$GAFs~I8^8D>;>L{|cOMSu?xvX%`{X0!RBdCAg!;hvGFa(lgJ9OT43ck>gl)?q z3AH6*Bfw-q=XSMu1vUKcE5_9fL(9Y(WIK1%ep>H$pYm3!>R*#x2)w6gc}&yaSzk=- z{Z<_+1naH^atZBmV4=djqXOKP#)YsRu}Qd(_^STf67E^vHPzdy}F?YjGu zDA=aZozX+jyzns`fteVp(oJWdaMOwU;sLP$gOzX8OHi=}ueC9^hf+76d*-=mW#2Bc zXC@$h`A!Zkz5lpxm}H!X+CN}xaO1hDjgNPkp&*I%%XgWjuxNg~=_94HrGM;s%0b6; zOX|sV{)3yV^fv+{sE6|ADia%(!Oc}BaY3UOs_vcpAE~DGsqA^nmGDGXJJJH((kGQ2IorfT#C22A_gv3Re^9ZR9bVAgx_N~ecCtm6aoBhrlrEq(3J;q;rD`^Rs9C&nOEoqqsk1l9KpC0BwCMv zysA_L%aPlF41&gnoWu6{Ho0frt^XEO_3B+(C%5bRH#x`l z#h~Pdg5elI^RPvY~?!WF{T*8+JixEfkyxGjw{L{5el5nt6` z4f0+;b&reD?x^ljdtc8_Zdt^j&rOS>&?b0D;48*L0pG_g3gK($&#U#}_X7*<`B(Ly zL=QajZ=YK2g*~t-2kAC7D6dH6ffjlWsHP`!G$6aoZH!q+fE z5&$i<)bvk)Jy!etLaSBDJc#kdAlrt5fZ{3n6+_#cr2rg zWE}3(2VV}-Z)#93z6#zAA)t2?w4p!}yn#zq|2Pc6m(L`TO2p^%!4<;S*8+JixJn-~ z+?K`}A}8rX#8>s72XEP`?w!%ZP3Nd*_c|OG6b(qfs|v)GlP03#f+7YkS5<*L{T;8nj(PT&9qeb87e1pt|?OV zz72in`r*ltUh2GKj!}6sO9()&E%{aCN%T{bSwac;J^5AehCaz;mLNor6VPL&HyGHX zIUb5~DM+v$0eNFm(*!wk8<2+J$xu{rsOmAar&a2m3rU!t2IXRqdqY8T!BzD2bb#GK ztRZ?5eKn7&eg$OTqC%H-wXXIm8jxgH6^IKYE~H|CA_gv3Re^9ZluBZO0(ov#{jVS@ zU%$oIgie_wSi~UZO^ZUrO_WwSf`tOUk69GL*DynpBUos$$Ip0s_;rAd(XiL)_It^3KZ3@&N@*F5$ym0eqhmMs#h~1Vg0#B1f!#r@VT#1fHIJ(Pa&Yr? zTBmc<4dwzO2S_0R`Q2h*gykBj04bD!-;-ZkDl`d@g7AE*`rkB89XHQx(Wh z=;p|e!-pmknZEO@Y3IzIE)lsB2Uas*ni}|A(ksHJ4)OQS@`zby@y1zhi)SEplo zDA@8et}7t`dA8(NktNYd)s;{JeouZCyrD}{SAq~d-s9U#&1%s8DY}EbH|QKygCYIx zQkbzQ`zo6SUlXG+(J5nFmh_T0VA-Jyd-rkR+jK`TtZ+qVuc>7KjMkIp9D ztvchA?wQGud&7iIn7vmsyXwDsHmVMLG(sy0$d=4Wh2>{xOWyEwEStZ&ugI32%_bMt zx3oQXoi)4e3fLk`_8TMzh@0!`9=)x|O5(>NT^z53p zu|`jX_Ku93A;ap0FZbvML~SvG^0YutKN#rU1Rbgyz@@5xAJoBek2VHd;`0QGD+Jls0(maDnn1~LTN-DG%q|#y zr}iS>t?Iw18_5&Sv&JXGSNUGnj=M4IjMB08i0^OYp8ymWUC}-2y8E0i=H5dowGcO>Nb%nw8L` zVzMRO8*I54e|~yK%V=gSVP94>!sOp-xpvM+_d8XeCQ1gwfjKVXu>?>FqjzgYVmQ}5 z(Qe>qzoZ(uQ8eb#w8HdTp>=Oi04PUGzr#c*Jcq^~TzFBy+!?qnJ?SQ14gx7~*bhH* zMcHn^+Jr74# zzOSJ<=I!vasFoN>RevA_4*TI};b0gisr~>F!+f8FI2LNvmovYlRq*+pMtb5;L-sMobYcMvY1O?2id(WV^a+SH)DF4d&2h2BljLFT9nTRZ$t9?UXI{rwr; zOm6x&qi)k3^VP_Ozr%~sm=@@)N@T+q=sojp{rO;?n_YTwbwqQR$t+Hhdx0Lz_h^Ag zDmQT#zDvZrO92Sn-%=nF?!m0l+3K+OMqlSFYqzGg%h%Q)O|7_?&cZ`XDD zu&bkK2XP!(O8{a2cc4}`9Pb#761V4UEl_}Mx5Lk3&7`hWwiZZ%!+!W#I0U=L`be_1 z0P&pY7_nTV>9aLz9<*L$S)H>rUkp-gC`jIZRkmhecMxlcpJZ#AM^*o3s0p8~sU1p| z7BO2>grJYl)>Nq&H>sX9TT=+&=d(3cD*Oy>t!zyprOy6}ZZ#pWcU{jgmhfUt%3>)x(R^wkY9?LD3Bb$!lLl2?M)>Si?j~l+Zk?`ZFQI?TWVL zdqud?kPLJQS)O8%>!h;&7G4iwS&JJaSwG^$8P=elt`B)v4BdI|`n0NF%t%>Qix~92 zX;Fy8iQ{u5I|`NEzCVkTlv*ARi$`E>->cI3*S)R$TTlI5rakcI%W7bh?(7 zN^?)bh)S|j1n|3=mI^;Z-6Y9Mk)Cf=KLlR4emESB4u{ok%kMZp5CV{EOMVr368%(u zAe4ZoX0JX=m2c>i*X(Rq2z5QuUvv92l0Z6hXzltE`S`kXX@5!%%Hxx-~MG&G#7vsWF zb-PQa%b8!&GjUvK%0UXcBqV}b;{u?o`Z4qf4iI$RjTx2LBLW3{e>?mvW=PDaJR*<+ zhyC!ga4-y+ctn7RCI6l7Cf5(UhbQ!ekg1DrrVW9Ick5dkzCmwH&?w;4-k9hI^FkpE ze#~3bPqe->JRjN2^0+&K_!TohyIOb;n>uek>^v1(KKxTqjq5a zQq-nG8RBw>8h(%Hs{YHms@I*b^ai(wta;LC+2BIpMef!=3vic`x9%?#0)hV=)c3Y4 zc3Xi<=Sev?)kI*qJzXMom()Gin>V4R20qtxiSP-=i_=ia)&Y(3{HprrLBG}0suYtr zMfJrX%Z7sF4xw^&1G|G*LxUt&*F38F-+}C5fOu3*y9^L0L8Gt?5Q@dbNmUuk009CV z!)#F~7LJC>g=K&Mm706Ij-l@gL5y|`B~Lj{3WATgb%!bO{^Q;HH9gyVjb`jewCobz zb*4?Qc;>oY0)%u4` z5~+=(ez_)mQ#4_~`M@L*&PF}+g&yH|8}7eQ)qhu_H7l{^PQ#HYEIV-G(v*XIn;Mii zR5hTn(7Opb$Q^@CGN1u2RsG*c>ctvd8PjF#o%54XMSIKpM}^ z2`59-WO5f^qUGE0+mEAHUn4YiR3q}qwUi%5xb+%Nd18EJvXmH4~xFw{ym z)JBZx^t(Z)_0!?qs!P*2%rXgYoPG!a$g(BBiX@3PD&G@I!0*Ygf;Tit@;yO_9{&}1 z;NE%n4jpCa4+qDck~%z)Na#SSt4W~f=BBBE&ox~ld<+$n%uS<2zyAk3bNNf#N{-+CfgUb1@io?^b=czpFBrJGfT|D$rsdiX=EBK}PlJ zKn|R)Ly>R_T14%VUL9bbBRwnu?RKqS-D`ccv?&L9HZ>@(A(eYt=-mWu=#k`}z@@7D z;9Wbt0c|ZF(8;gTMKCN6P=Pl4P$bqZ*AtKfCmLy{qL6hA{gQeDnAFo3f;X-n5$8km zE{TmRD3nCJBT$@NaCyJQPuwld~DhE=vI{CzRVSZ+-re6ms<5@8E#AC z42hGzEaI#BBhVjg-r{}eC3j*OA_>U86Mru_lFD==E%3M!e-|ExHc6%%F`gH_Tm*Hn zNyo5HJD;rRR%ojxSf@w=^3XvKfabNLbc(dV<4XK}dYvLhbozd%r(GGMU(f_%-^@L@ z&XEk|!ZML9Y5Zyz0@4GoFu9?`v73Lg3&G-9)j!~MtvTPg)*sTzKiW(=KBMPq%At#)&Q`DwH8Nzb65`L!%pYV#-N5RS~=fks(8M!(A;Zl&6&SncBmsh1fIg-vUDP)i> zCJ0ITqc~Lc$DnatrMn;9Mq9cb;Pm30pZ~T32M>~RQqbp-yj&WZAtFEW5Pqj^)2SGq zcU7N*KWyBpMuXu+zu&XO)aqH-k%QsA&3eijafm6A#h z5YMTqzaE;{a;ewiyvP-T1Z#mjuU?fGWw`(EsN-!(q=LgIvm)$ong}G_(F-Y+i<@X})Xltm@yPI}te(-rOVJb-VJ} zlu3Mh7_t zcs`Psx42J|C*@eryQ;q(Y_Q#be42@KMFcYLW$;{M)krio@VTZ-TC_|WiAITjhtNn? ziW^%w+vZY`WIY0MRaCZ}Bk8EP?4c#3;rB_ltvFQmhcMr}8xyd^#kp(s#US^Fg5-j$ zuGPTqAl48)=~^|9svdwxt(^_&Vwz!j`MN0w={Gef7hg>wTIk&bZ77gTAp)1G{z*tH zSJjB!vc4|{`8O0K7hhT5z|zce=%H-KNvyAV(39IB`*z>2$xc`ZQ$(Q0UIx##(e1g! z=bFXGsFt)nXZ+}a9B9w(9%jni3afmaxCIK(%)hb~fVo;~TxWCe&!B1!hC)f=mT;oU zYS3o&Zu^XjF9toRorjstN;!eAt&5;0S zAV}ub>DIsAguDlDI_vgEuRXX*_X}P0t9NrxCL5Nz{R6ju$+7Rz9;ESW53YE!$Mm+Q zjOygCy>$NCjrv!D&eCQyi}8Mwtis{=_%Fz{#U9dl0u;2YIF zms3=oS9|9toglxJwQwV_$${l^$;doFbcH~EQ$9+&WygnZ16NrUUV$jk1Jk9tYYr@U zo{h?Yc&pz%z18wnHlU(O!E|1{EOG-5GyvXr2bfMNN{m`Ku(PLxz=rPGp&2x>i&b~r zGXWJan5TtQ_4i0;y7xU5_9;0lRh$IUJgWNL z66pSeYlAy2ZQEVm^xA{%aWe0-Mdov%3RxjLTIYNdUShzmJYzrR%QDRaVY( z5;|Za-zRk~1@!lc1fcs3U$0+*0b3v?1U6e|ql-b+sZP(%O%rhFS2O^=<_p{h+8qCz z-}r_%zQO%_z;$bYfa^mULCID86dNm`WN_5LFkHdfCgcOZN7kK6(CPpqew{%Tm*iqK zgxxj@%93 z16n(_FR$#J4u*A-@n?XDS^g<#!ztxk+f&N7 z;;4dC$_A2GxEg=Dib=4XQbw#HKD%D{oz96x9(0AZq?GK+G`I-4zg45H!fdxWTz0!gj>5t%__&9?n`nO8#1X*9O7CIYGUbcu+SIGdWo(bT}_ znl2GOL5(;JNak=fO7#0LK)(eI&aS0HH<2;XRRy6G0s8V)9NCzW9K+B#2|_ksx~N)O z+r&W-JrLY&9Rx9f?igtu_q2Q3FHUT*|0^2Mm8Q{Jpv^Q|Ljk~Ty1&w$h%J7WeNz*O z5Bzp%y=;qSxMxoGP^f7O8Z-{MKssMlY$1&vesvVS^`!yDvKH<#fDb{j3Lu`eHh#o>Tgl z#pC@R%=3%s5OIN&N`ULipnBCElF7;a?IFHY4E~ei#rzpgryid+ozjFL!ZorVO|>Lh zS>7e7NR}diAE#3mzo({3r!-RZ9&1N?n@^NxeK>|+te6b-pX}D_(rIwO*l$UYk1Kj` z%jL$+@WTokLZcn@GWQH}z0Z11JvL_V)E^Dbxeki;Cj?M`mw%gvRhs{iQD!5%>D;98a5g2^~1jqFys?WO_Z`VQN@k{!MQ-_T}DbW9U3D zAUDD<`sL$>?YysOHEd>mJ~Pw^b(?gxaPh%fp0aWC<3a?kx0u(z8(G4tSL>VKu<8{k zL8^Hl&(-q4n`&0`4DtXa$g`*?L>swY?}u5N&s^^1uLeBJgL&LQX*Ug5=4D>3YJx*} z(c7vfp6F}7p&tEa=&X+;GidRzi89;EzF64Ueb!f!`J4RGDjnOqOEb6bB}2=8+zYuq zBZ>~3eD+sj`P-LydyRpYe^ah872Ubu;u>damw83BVe@)CT#uJ6ePsbHxL;$dNl&Kp+Lq^~NrBa3Ufyh!ydiU%_$IWaC(q#8 z zhv?y<-ncSxyi%qJJhH04OXm7{0=jK$i@%Pxb!$sQqNkrX>3Iy2++AjC`3iSukp%SF z;g>ZyoEOl%ZUt1pfL>6kx}y%y;vRKQtJBVKP!fbU2N&pp>25Q7*<8+b4jWiN zUbAe<0kq?#XwDv6P_`gY0fXJ9h&I;T9*)eHH#pZoGGMVhuIv}xc)yG*1oE}<$;Iv4 zcGt*yHsu~v)&E*=nOJrkHY_#yTdvT^yAO2E%FpuxBdhqv~4>oTvF9Lzu&r} zLTI!jEfsCWO!PjviggqDeH^muP@7Lw9;G=SK zj{3Fi1Y&Ls^^j@-2sU|3fvCka$wR6I24bPl)(v>NgOA<%yI^Zw+qVAG?tt#drMupH z!$Iq|ejwDXZP`6NUUYI-2nKVzz3IT31&{-TR1A=9g7E&oj$D40GzHF!G!ekJ{2e^S z_cXX)Q8WNvc9-;8!g7mug+RXTuO_RCA7fE95x`f=53{pzd@(@Q-2L{2xm4fr`Emd) zkA`-B$XdBVAYb8((Xs;HU%{mSSR2zKMP*-t?RzO-4xkmPWBWEy{}opXfc5dK-LvjJ zdl<$kj1T~9x%8M0EAI+{e2uchl3=V$Qx2eYcdKQ|U0F0C@UW`>P0(bU^X2BwWO{j| zX|7G@Y3(!&M7pW2b}13DUv^{n^2MOY3J>s$RnMgWSnH095H?p+4j_8ChmN-vaXbkX zNdUT1JfO#3!=(V&?VLoC}A&_r4@}f0(z!xY0xZbBzwWOSB5q5DQNMOU` z39yC$Vf1v@$?>RX9uwlP2?4<9DYJ98+*EWej>nn^;A=xV0eUhtdn>_6jmKB@&q?CS)AG%6 zNHbj1gi!A;2W&cadX46e3I|FwoetW|$5p>2AYTrkbvH$L)^C~E6@nZ_LYimnd=f)^9f60@g`M8@{Mh_DrM-9Q z6=*(tKv^ec^7eEBPjp$to^7{&A0!}c$8nCj=UslRxb+^KNTt1bTh@}?W5<@SaCFc_ zV68p1m{j7xvt|h$Fj?)6OIV) z7MMLG)AxtN(=&QOq0Ej~F-&S;xFaM*xp)Q-sDQyWDPrrCm>e)vTxgUrm0A0CVdNz~4#iamv#9GmG z9%klGyp&i(0OQ938I8{3YG#o&FGRIqfcZ+VRZT7hz%`<$OQ58tiZ#McX3zpNdRt^d zQ)HJ1s)WI~b89%H*WpTS*)z~oz`*SQpV)vo7^Z~4W|vAQv^q|}kPKK{p)xw7aN>9L zmDJ$|mr(*E-V@)}XgM$wkI)_guJ)f7jmq5;acBk`Ob1MMsIa}gOT9!YWN=1<#v$DW zRdjP^093%>CKPpsw@F>PP}gjXydR@L4@|dcf{I?iW}&QJlY1XU1K>yWD&9n&;{Z`a z0At<*Jh4HBJ-0v!jBe`hO>k$nS%DsyKBS3)%URare$u1{hBq`xbRUZ&FJRi_!19{& zvW|EF53o%~;h<*F0<*_(33g&lbG&ZB0P|*_9n_(vIZKL6^Hxe1B5UJJsB!klA_Anm ziDa#{&W==|2c{1rQG3nvt|f25IAi# z1U3r}*_r~dyG_ZnE-SVfaO=;=fXjAM{Juef2S@#c2srFCg&(5|x5eO|G^O%9s`?jY z9)cIp=DO>WuA{+=GV{eTw#bw2*x!L727Tx{nvBa+`HBDRI+_3y&3;Voot!wsLeul- zz41BSgGi_ETV_}^ogR~}9bTML95bgDdAQ${gPyDOHa#Q>oT z3C$T5o^hr!AYMMLy5=;3pGl!YAYY=BHdYw)yn9HzTrv>zc7@1$d~TYPc~e{qFs0G~r4(PokY>+PxIAW7ti-%yw_;g6{R;>$RRR zYr{J#3HAh5$bv3tyTrv_3)=axs9CY5@@~MqS?jfRoITm(;Kut$bcN9gP1Ewr4^#n` zPjlo?34zVp(P(%!yfCMAICM4T09vJm8QOPkeUUxF7XxIgKR%ZmrY)SG;f*u^zRsJr zI`s0;5ncI6kEXcI1{N2dqqK;D-O}LHOf)%MP#F+!jD|hhtX!C1<>~N10l8TLN zR~&hZ^sW>D%QWY0`mEc2i^LbA`a0?(aE%qVN=g?-YDF zfL6-~V!2cB#Q<5MbyIt*E;~7w0$`~c-L`ye3V?0?i5BGU79IxV(Wxc^`10*Sa?bj=!j#+|zBJ@% zc7A+V4#iXkyw{H1ej|Gy3VTyi4xpXp$4=2jcq$U8fWdO_w0mq-5NqTLft)Vmpw$Js zmdAqd%9s!UY=z!!9GEW2)ykzQfbRdZKGFcF6acHeF`3WYZNbgT7XxIee`pRX+3~3i zh?o1-*zDukPOcEhX_0?CE>}vk$S))SU7`hiOK~sO5bI-wh#!B8Mb38OQsB-2v%LpE z(&C9nxy8Fe;J-n?P?ACI-V%!Qz(4`O&G57NHE%KDjo)ozVPcJ7$T{4GBQQciTEaVV`z_YcwU%JGDpi94ne~_~IHxvv!a#2hchX z6VCeP)%<=x7%e*VhyY-l)IQzIlypAMsu4C!BmwC9pgQKwWEPOWCnHICi{1 z0l;;-8NGL2cn*-iCjhlHeEi@|C;+%J8eZ6Kj-v^e0${nc1BZ2ryKkBafhFoT zEM?fpRF?9#hZ+s<0cLN@<5xyzD(%Us5V)_>R_m_)$Od;Xz8E0u^@Z#2Vxi?L1!b6YW3_DqV*n;bcs<^Kw!6{QzL1<#)rZMBDbSG0hzv zp7aLCt=qpMm7bBH9q7k}DQ)&vUkq9@#BOc@lC(H?Gj8$e8Fp|XfG@2Lh6A@#)bc8h zhD|wuR*D~D&*f6F@khYM%@ZW%rqKbNCZs9p=EbVV=rDCS)ZaWa=P9&pH+dqP4>MXC z_)gzVWHX7#^fTh!6E8R(4@c)*>n#@?3yqd*jg0Mnw}fJ|Hsxs6(-MTu%B29<_73Mz z_6A5EaA_idFPA>&qb_k3gRMy=@`~FfX4m=gie|z$Z}}{yZ~1N-IhmQ~$15T>wCVT| z0?!$T-}&(h;ZfD^z|}&2m}A1@c8UfJwyO#x^sv}b6t!BYh=I#hRUlk~@R3upTBtx$ zE9;;0hBtiuYd3EAhio44+pNu|MOHnh6HadH(W{-|8MU&9%bT(@V(r+gho@(BUxnq@ z9GQGE=)2*6qm0i&aYhp;0Ju))i#s$2VGdt7qzM7Q)_S))Ro{LRfZJYE4xr8R(fv+! z?~qm~EGapVL=uF)dg9(?C<)5YNaCSY{j1WXI0oHpsXV_lK@bbG_;sjD17S!?(E(XZfgvSUhRzUpVD(i^o)1M`?O`> zD=zV#fb$=z>c7zBR_bNy@#%0#?=JTrrw-BXICzx}$wcUXaY#?rUcoY!G0z!!-Mkqs z!Y6^(LpCoX-Qtaa;r9c?iM~(Ez<~u_9-rF_fIfewLXd@SLT$)%Z8%Agv2TLg(zqaD zOcdFk;ddJ83cjkpLvml1m%Go~bXv-)_RxJg0+4&lb*cfD%g*2TvI`~P_vBZp$slXg zftO6f?+1bqyI-IllmO9f19o^|J%j+{a1UEWSgRgF33xXI1bmRUsD~g#k6)7geOw>A zV>(?#qf2_JobC=XXE1$R0Wy&3ioqh+Ot+OXuZL`2hL&ktF?d$>w@HG_y3&oZG!^9z z>U9eJ2QQ8R6==E-MdC`y=u1r@0XcBG4n@MrP&1iA0+`h3Uk1y?+yG^zo4M z`KB(GZJ>EPGHNv85o$E@2r5L?3NBExp-HbE6)*MS^xGGMG#d(%JF=R%G_X5} zHB?}y3BMm`9##EE!FjKp(9{EYFO7@n|I?w{B+14}MyzaOgBG;9VGxL=lRD$mJU%EH zAmI9_K_Fa%lCkyjtz+T$0|P9z_#c6<($!e~i_-x;gj%>|#{0Y?0x9=0cwVoZj(Vjv zHSnRE<`OaN_{*JiR8ylwzkdidz2SEQ7xG&k{ssz=XgmBYR!{1Z59WBa0x59V4?hcs zAb6}d_OS5#L4b%h9|dhz@6e&!o;i2LZO#{i6dMYX*Ntj(26hLrLCh$A(&jXes{Sv% z>^`_|-Z|;gV7W8un#*I{UqlkGLbv`OAn#pk83^+PNK+05*wmoh0vw8cHCpK11Z~)W zvzGAt0dT46_kac=x3ixshfE+oJC2z^e0n_bNY!gf){yWBnLy+b1do+k$OME}RsRa; zw9i)?pVA^6z0On02Uxb05bEh#S}Lt3(Ng8dL@r%2DYs{aX$INbpr zbMlU7ELV#t1Ayh*s4edl3u|w z5i(I-%@rU$@OlW#gqNXkGFN~&(e;}_*R}3ZJ*1EX`yLl zH-3`Ph9XJK1TIzmn;}JcNG>Phg&a9cW9h@Iye2hhM-O}Y+m3RExvo6o^G(x)0p|mg zq@_Z6emL02hD*Kv7T=nEcS=E*RvKu%rAG%{==xQ2U84!QNa)#h>u&)!*{9VGS~>C) zF0Da4B?JRpOG`!fq+zHao+5zX&9qeb1)IfgD+%H$Qq1^85ERwDOneKfxwyi1jF&2T zLX%Ro4<2ub0(v}7LE?S=F6#`If zOMVrFl8RLG)j|pQJ^5AeM#Uxb)q)U1{3 zi2+^J{}PfscMzCn+B$th+(bAc_dW#sOayOvc>~iHeo_P4F$=iR&zxL zb_cPBSdabH|@^+QbN$@T3RYTQTDME0sL;JrNS?0 z6@y9QV=2<}t?Eta7dM;ndEt~9`%NSP*>>XZB2}U#+lzmr$jH+G^cmoBCH^iv49$}1 zp@09Y^g7~MO$q;hZl4lh+ZV5lYTwtLvjf!S5DGZ@`PP03M{)+ z-!-?Z^Du$Rkoaz0CZ;l}?duYqSche@fO&qKdv#X`A6X0Jc~z@kJ;S-}QvNf93l$oB zi={( z;*zN%L3ln@{m*?Q_ceDwt!S!%=%1^6?ZIOnFfkf7^i7?8j`SYvE?+Y3N1K`A*B&%t zPW-9>bOfg7p6Fhw@*IpW7VG?B@Gkev20g($`I(JC1hsW7gWHiUomNsG6}j#}#Mq$z zfganXbCj0*@r+NP0ExE4&*DId1F9AKKnfi8!_UIOaKU87K0rj9KO|OWe`tEx$-Q!T zZ|OnfLK7V#Ahbv9-Rjdu4ti^?WgjftA)y01tkY9O#rIG+00;rVc26kMPq76T$$-Tc zJ)_(vI;T^L2Ec1A&dhyHQx2emJ6*aRZPd9%_nK6+yMpqhyR>zyyo;ExX=?)k`<;fe z%#V9BpaKS0PD!d)DVL|)sr*pOY8Kp~Wt6~Zi_TZjtrgXX_6=Js*tCiUz-#VpRJ#1c z0*wdWUp;GwX z!bgqQ^TCrZIFK;;?G+qumW9#`~qgPCsq zLFqpjm1|SD*UQ#M-Sfrl+#TV`2)(g&o-L~N2MYyOa@VgH`5K*Qvi@M9#fbj`vI9Eg zdb>PcbA=!m4L=(4Tt78l%W!l|C*lnGlkr-_)8+-q2if3jy)nOOV?`t1C;4)adQ*dP z!PWSuAp|r%ixEF*CuPa_2e?%A?*R>F$uV!#tTbJ_6VlRLd^HNu`DugQL9Ai>WFA@b zsOpzN_GP*gusm9Jgef3D43|GyotrZWJo(`Y!8mJyJhzRi&J4Gu zafW4*>WuiRUe$(KnrcR>TfYiEut$$uj>f&)_gl8;aor?zp!(IMki$=I1)kUSvy%w` zxZOw!g_~g;-s~5CKS+R{YgIphR=RSJ_Uf2dDX`abDaf-P0l7}f>vQBbAcLH7A};ZI z#i6SA#2I;H_tt4g`ubhQ2Tx2n$Dl!ad`Gv$+SwX60apl?S}IWU3~EZe$?rOzjC%G3 z0Ni9E34CYW{a(7Ui${z?05ErHW6#W(x#qbP0PbEwx=gL~AR~(yNdUTXR(kl6zs02p zaP;r6I&KDVDFC*b%ezZkI3eG3Tbjr1RU1j*OYT)| z`zAIv1D66|)6q}(RwM!F#`%eRjeOWQ_f_*KDo_A$Km1H%_fkD`;*b)0HdVcWA*o-w z>C-!=D+K}8BcL@TF&QAY0XaD&DGszFT|yG)U39tA1+Boe+(O2wBT#`X^m;Hn`hSs5f+ORMad$0*>Ab&FL&Yp!Z)u#-yCp-#h_C8rQQq0ycP)^&%A2|U zmc~t%H{$68H6%!LMYdfP^4Mi_C3uF)k4zOY`0rI!AY2TUc#Io7|C{)^zl6sKoNcqvX7*DI8~jtcyj z;&jAKmN(+7`cHs;^YxfQA8)V6q^nE$dW^8k>!WQwCgq#2$0)vr{*%^Y0{^Q1_t0W4 zIV{?e!ICuJWUB`Ij}M+g3H7-rzY5;aDcLI|2xZA z?GAGX+*5M?CWg_Z-9&sVKbl49+3kO4yWS2~Ui1mNK zTYttqc4QAX-*i61*3}5%(R{c5>tM%AW$7`o&ud?;ZW$T=jv5pY)-YVMx}|wk^>>2o zmmHOo530d@u7PTMLJ9RxcfKIr&?0Gjf{@z(Z-x;qTlba3nwE?KW`!wqWe!B({9k^TWu>)t`NvKj(T)I=tBA$yrrd+7`l>{6R%_|VzI)T3$CN8DZ`4e@D#W?#sGOIGK)_9fG8`t! zc>}ttuZg5T<|<(7{goHzy?*cf{`C7R1<*|Tv8vaHXYQ#{x+&tgqDOfAYnqmcxwp57 z#oq6cmdjc+J549=3T&Qncy!8DBY4w+HQ3~vyowh}b6*unu*Qz*nVYkAXe0sX4!u)N zar&?-qPf0-3K(qDEjmsazA?};IEPtHl)#^u2Cj$zPPZ7iSGQ;>;*2_+vJ%|M8MMG` zyYFo{K@~;h;Z^F0^K#F9 z!g5Luv`x9F{gkN9m3WO_o}iFIH+RtVEzJuL`}QTDY)pd|M7d!QNChQHow|d^00GxW z4Fch61n%Sx9s?|vc#~Ly9boEn74aRQsn1nJh<1XVi@~USmv++@cd~L&0xFUH&x-6^ ziz}nsx6jQpsoXnrDcE#90`lgkCSG#nHXsfAClfDl}-gOrQ z4f}Tg!#pAhe0wMUE`cNoPdw=HW6nqmJg&swg@<80PQ$|Q2N5GWeUs?K&h?IIx9}uS z!8~~Tl=)bK)6r)D%Td{VfC|hw{hf9Ez1c6hXV|pYyLe(c+hA$pwQEff+37CQW8G%RMbs{e9AbF;>Qe_8>x!3FQgDWK0-e0!(`3d`y^d zkTGH85c=IXoo$Z^g;Q03$ZO;0m6~fA&#O*F69X5g{OECMsKyr;`6ID8z`JU<{#}sU zE%%P>7i&3Va)sdHYk|BqW6E$_8fVxfnc|Q5s{S!Q)zwV1(WRY*EiJr%#21UIuYq6C zJu+>h%O;))38+o?$jI*;7;@!RvKDE92i+r+@-PgMBx@1lc~$j0W#*54ot`(l*SQ#! zQ&64~(nKKBo-Qe9#^ZmVhH7fyb4`~BA49w3+_OfBe*ZJLXGpNyu7+-MaJh=PY0V+Q zj@LRT%~{o%B*h7jkYGn1hE_?PrM#;8Z=g<2ZC7J0Iz5fKSnuczU3p_UIsue)#0mC&qgh=3yCa}70j=2UcSoa1I z44Uh;+;NjeOp6~ovP}*wuT9C1r=yS2JG!QG)##TV7MLvO})_%>Ec@V7cs z&&UUa*nNpD^fDXBJKv4NKHcQC+Z(u3;5T1;z*{piGT^e_hUd8-Mc|QD{WrbK`JQ0e zwIEAF?zmi`hjr^8(*5bR0ll+b(K|xErx?;xWahzdUm-cIF#T%~hPNhgV~rFI*n$k_ z`m`uY-n*!cUy2yG&}?qT#c0>b#xDi(+^YJs;^<0HE8BAUl{gk&neu%`r`b!Rf$0z2BB)G+{L@7^VO?FoT%yX>jeVGS>!mc>=t`v7)enoqdroBL_q1WBOW_+8> zvJj8hA_?d_+oM2S6SF>~!=U+}2=Hv=m4Qn?>&R?&@ljdJXk5`q28NsW;TpQ@&Ig4X zeywWikpW%L)H|a`8{Fi^^dkd6f$zlYN-Z<^rI~P(Dw-g@m)2t716gt-FR%&E8nrDB zHLqGGyAuM`p2PCOhX*n3ueOXX^M{bU6Q-{&6!lICL4wP^7}!MZS+3BRi97w|nI$yO zf@mTTcyZU+vl(Z515hBPr{*}rIif`QFgz~rA+&Z&BRxx7hWKL8bLV!C9*u3gp_~`W zfC?C_xi^~W4Fv0>oK-dD09tkLYxK>lqgYU1oI@_kx;e-N=5EWk3+JQ#$}bhd7dB3+ z?%m#)?q9Za@%gn-0C4rB{eeecoI+YF_av{}H}~FR$@N)o@ZNh1aNpo1m_xc6&_b{# zfdYWEMsv67-s_odWCChnxO;YS-s$#-^h$TBHoQzg z1}s)a!}E8U9^<#(xKaRI;m6#|M=4qk?XT)i0dUb(0`hi;eT zA#I?&YZ{2B)pJt(`rYntCFS^MxJ2)M?5c#%N38l#%hKD-F_+^hOaBx&W&b=mD0vpkI5+7*ISYk@phj=ifH zU#7S%jWfhg24(TPRb9!TjO7hWTP>-kOyMV~W>`{apt%NWnWVrYEGa}DhBnDENy@9L zKRm%3ZRKolOtj3sF^cLZv1u;kWOzig*KOXIaLv6jay1Mv$s2`xRWE}jWI@}`=(&q; zHWnw#SF*`DuJk0j<_p>h2U*aL91Oj<2Ey+Li7Zw9M?jmfq-O^gKelO>^kh*yUDAu| z>xn|jSJO7$@CZwKkw*|cuF)sHn)0gZ{~O}PQehFDlcIDDeN~9_rp9&YgGGwkR47B> zWQSxxSM{HgNHOE|P4|8^nq~UN)9WF4-k;3Tf^%lJ|JdOmaiqvhqR=$VA}vJ!dFMSF z#|-VlHWIW8i4-Z+)&ii3CBj$j-~!MjHq7MoGaaUqfM;7m2fV}(0<`U*fr%LeXj?%8 z6C-R?r?;vjx(C|Kpcxn_z-wmOR6XOq=0$HBYTRs*3mgs08MhzJI9a~pCcVws3LYtN zDOAd;U%s(2KTh|3F+k>8`kfoU$4o<>C&e6(d{XSFKze$TDdG&VlM!^pSM@96%PhdW82X*2fpO=$&PIe=pDQ3IWKnCBGK5VVgGf z(R={#dnw+~B)JMf5S~v}e+ASH`O>l3i}P%ZD}?X!eMJS?!Iu&o`BL*4+xnR=3BIbo zAM8$7P<78f$r2>nRr~~{D+P(^3Mv8Q?ypWlG8rK03Mz#(49$@={C=P~RP_&l)R%o_ zhTFhZ_56&OK72I}tCJ|AKvMI64r_kui=BNG3FNsMRn6-Qp&7TOafaAQ%}0Dy{~sVP zT{tn*<1YO5T@A8bkK=d{>;RsKsp_XehWQ>GVu>EY$B0@gGM7|*Ied82Bmm%c zBPkSap?0ImlAHMxpj7mK>?^uvg=c&9sayXFn2Q4T#o&+@;qMmKo_R%76M<@bx}oB2J=^s-Z{=8eNIM3lBr3q=q6! zYUrmxC(0bDSu#I6bEHy`f-*+|YIromw;w=GmRfPB>UV>OY>ukK9_?JG zV-}X1aF!cMz;-n61<+gx<@J#kcwC9Ux42H?^%3KF(fH2mxN}#z%jME``=&yNR zuv`B$IADw}mwV{qh8N^oh&Y-}ZYJ&&Iba;52r$;ow6w)!e2;1Hi~`@Pz6;K-nS6n;O@Jm?gpuJq|2Q0dl3&~9nVk^S;Y zv*l=T0t&AM@?2dtCUjJQ+tRq8QdBh=6GnVhe=j)a?C-{M%-E9GWW{Nc9!h0ILJ9Kk z$*+PpbVxEHL3ln@{jJ{aNh>w?#Xu`Zo_5{cUoF8`D8Rnk2+Udr@q|weY-D zF20Hl`kg7pZE2h#bP^jPzN&v20yu5lys-ChHybyp6l}I00lCO3-(xaBZUfQ~I?0?A zhpK+F4&Af8DBZ1(AsjA`U$O5A^pm+%2x6}V@?2kCMJaAe;|y)nDhl|j{wY0Ka`~5t zyY)Hv<~)yHv)5gR_pn={RB{LnVA5`01=-xICnr{DZD!b$zL93w8}jx_Au6a$nqiN) zDJmu4tNNRu-7Mn$Z?@@U+4JCHSKr<80p-Kk>$7Qnf|Maa)rYfUVQlEVgL97=R4Q!) zjIc7pQ+%xKdIaS4rh^Cd7ViLUDA>!Ze}ptNNP|b@Krcjs)R%itk>%fUQ#QCrmLx@L z0266JlPmG}mI_G*FcBj)@k_q>_|)ifkH~lHZ*Kx)Tn}C?&kJ%w?~6sDZ|Ku1Fx{qo zSEds4T2%?Xf!#r@QLjltuX$AUk4Ru=K~{TXI{#~qO8wp$E=JiEq*ZoL2iP6NPL^Hs zsOtY9PRX*bjk-rq998BXEX!oQM&feoa=9xV10Q(_?I9v+Su17#FuS!yK@QP)cmoLlf3Q^ub-YRc~+tRqn@$D*4kYd;sSKoD72;f26(3U6ra~E_Ch;MltNI(k zbJx#?vZ@&l3+rqqLU^7}4oX;6-aqMrK8C&S9Ez&}LJEa#d6g zW1)8ww4p?j!vGh0u^i+0;c#4@*Kma(J3V05kmrJ{IG*9?@u-M1L{8#(#8>q;%G*2b znu8FIGp-Qj4dkuzX1Fbln=Eg{(}Qc^A?v3X{d2nA;lAY}{tkhL0OZ~RST4J2y+R52 zJ^6L|)+-3lhifGIX^umw1K*O1nqCr_yftWN2s4NTrcA$uX%T-k%Tnw#}J)jEYxmERdLuB0`jmqge z_fUZX?Z z%tQoIyRN83-lS&^=&Jr2l$63$QBo>{Z>|b)tE4GvQ=tsYCXxnpRsSsb{u1@NMM8m9;M|mLt3AW@{hUMa`C@++N-;-YjZzz%EXoB#3XjCVwvOH=IG4kHf zTj;286U+tfK&wbP7OjUuu}E>K>R$q>w{G>$U+vM=+|q!Oew5`k-geA31UxkcR9@eJBnzOAPJ9vzoM@ zof$Mlpu?Un5o0D*!ZF^bo|+o?T+=1O$51TU&#qBYE59H7je6|fz?@5IdTc5MNvOvb zKx?fq86c_0R!Bqmq*fG%s(uV=WsTOdo}l$2wnWlGcs$dT!}m8eD3@K0XDsw?f;Qym zwiSLq04`Pi2f*%|l=ism)duzw3incx1oUvvNo#1XikeS}w7}y^{Jq7SlKGT~@x16( zDX0~WxaDiwT+|EKv~fSp5!VB9C6b7XNRGGx8EhUmG9A}R z>i-(OqM}W_rhz%aa4AT<9s#+?$}4i@HXse56R%Jl=;0ZV+6^)}9k#nHuIWeu^1Jy? z4b7EM?K9E>4>#YL@G#U#+GoUgUNrj#p1wf@eiGGkAI>!c1xVvsn*!zvv0Z%^7D$1E zyG9y080sW54FMwBys2piaX-n@QB{7~fXYOMM+UT$WL1cB`Bk2sqNvyKpCFVWbCPEV zbXEVb_ote_eU)A+?HpCNyEI)$fA97V&0X!B3go0-jc)xdzB)b29l8LzdFVt$OnO3= z4XA|C9}~Y|;g-A9F84-W zRpuYs8Fz*QXH`oFJ^@)oh(Z1Y7-WfD)#AmISX2h)SQX;j8p^Fw)TTliwn*G6psV_y zXt#QdPM9C{s}5gc>fMT7$r<&!x9mqAcq3j5M$GY)Z)x7q9y=S+y+G4joIlcnk&pbn zW*;j1;QsmWoMv}VtJ9Xcso4XDJVKdPJE zO?pTDup&pe7}N2g_KM=2PX&5m{;RtB4{p=xJ9jfaJ@z)fI6I@a*6AbOqfMdRQ%tQO z`ONpr#u9dmmG0o!ZW^47aH&V$@Xo&;0eNMsWF$v!1JbC_BpFd0s``JFWQ3*Opn-z7 zg;jqXWda3Aza4%S$4bVYs^bo%z=7JO{xsRZ&?M=&1H^Nx>c0xwgjtH-;BIB_mFKQN zJlvCkR9CR9pd6=1J}W_b;Pnue2`@v<Y(z|7=-0;0P0@9c2zSaRBBb4j-mm8#9Ck zE#TZ3#LVbzis74tLh?op)~2rEhk7W_Br|u={%u?nA)oSGQY6 z2s|d278yxB&!!qf4iU=>5rcCG%t;~!cs`PUQ+OI-k@Mm3`$3NNyy^8ST|E*Mw*eXItT=bgn^lY+c8H-e&a$zAWE-7uv+TgGNFE+ z<5rkR<`iL7h;w!IJV%1sR47B$be==dRs9K&bj8KHmg;e(N%aIkF0Zbh47nXYWyjVu zHH#do`i~}3Q{|icWqm^FN)xFApk3+=$xh`zHJ#LvLsdVn8|-y#f8}u}Cjl0*INL9P zuM(pUy%uBkuk5QrAnOW)Do#1FMb5uSZ0&MOjOHy*s{ ztlJxf2O<4qrbpCzJN$lhH9qLNSHTbZJ@-a4&8Hn#w?_1uX>&90V{S%cGP%F$IZlB; z-{Icmt9s`rFEHaLJ>Ok;wR$pRdKu&^rjp>G@Ih~m8}&;=nrnZ#)4g@r>7AbScW=za zb(bDw8})8ooL3~^b91pe2r_}FA3i)8((2V6zsGl)Iw)BnM(}6n6I3JuIbS-Y_nmyW zUW|}W%_*c42PAyqsPcPr7bD-3^T|iTfOIdqhXEynn%K@J*YQ`*DIQ4!@_iT{E?kTW z=k!C72;_XB>MhcYbJj8m1Jb=nKlnUhF&3P&mYp;p--qcJnvIFaDHh;~bJns*1aiLA z8w{E|a~5OBIin4W0}@hi7Zzq0V8l87kc0v0K1h#J(wU3}#+#?-i#J{#knyAZaOOQa zQZe%9xEE8?@0(lDQO^qn(tfOwmX6{s)G^<`5OG;5kXNircl-Ir96z0`>x2Snzq+w5 zU7$V~(@{V_?Y9__Us{NTgJdB0OG8Qx{ciWg2s>w-VsSvi7taVwM^Ha4e2~Qf311lB^&46iBj22T zB?$x4eTaT=Ine?;%Xw?r3j|Vr#6P=y)SN$Dj3wtB(FTz~(vSL|7wwgE_UlS0koF}C z?9Fbt#n^Pt2+rbwgde<1tBVWmWaiA}ygZ4F)!|}Yb6y!)9+2^)^hh`@+kBekn@T8< z_M|DG-7Mof)vKNH{Zo2Fcho!V_*7|u(dz5x>ysu3>b0use=MtC?{_nF*J*9{qF)tf zDUT}}|Ixi453YH_()6UzH80R{xBc!oMfjX&GkG?$;X|{0Zz))#p-?k34RffrXTvOC zaptke2qqi9Y*sM}^NY{8t*Wpw-59NwMGEgW&n{2+Fc|1Lo`qh7L|;C$h191(rkA_p zF>M9wG^>!braw6AxAzKDSnT=P<+H^ASzkEp_s*IaFe#KxA!I3+Dnbv^?;FyonAQ@e zil2xR*_V_~eIKNIs#!sqPpB`Qxn7&kf-E$TIT)UeJ9NtsEz1m!+eW;vi>1=9w&R36f$mKo`a(!iWuQxt#8$wKBsCUk8DE=x)^8VYy zi&4+rR5>`5?NfGQJB38=nOP$II!N}Fbj!g>YaTm=M6=t-e-$Ko#{br7?gqcKd1mhu z!-qkh=iLDjx0&LocRHsJl@?KprajQ#2C1Gt;ln$FIVF16%swRF1!-Pv`efQ`cSzUN z(@B8&T7PLCt8A!D09(G^;8QGL5CG(RzleWvMhW1Yz0K@#0lyBCJ?-{TyR8ZHRp{(~ zCf@~Vo~K{QV;3RO>}^qh8>D)nDLEVt&gnggd86p;c~$y-knRIi+MESkKt-13a9dg? zeja3duRF&-pJ%;&<_PA#2~s>yFFK#Q`=f97=S^E?_bUBukm^|}nYSZ+_skZGUj~WZ zM=t`<;X!@j#ie`a+4DR2ILP&EQ>1R~z1%SR5|;8730D9&Tbw?c4puupu+Q0Bmu6YZ zjjtpJ*zYNt#=6~Wj=o*GMrR*+HJ{C7=~K2oUr@M|Ebg-)%hMzvC4OhW;eDTc7o>TH zex-)l@3t+;6+Iyi+h@;)UL#-OW_TXy!6lO!FXE5ItXE0x2CX**HJr|n4JSfCsPoSnRJ!dfZ)01Z}3v6KS zveY&T*uu=^OSgK1?&yApHy+Y(_IxyKZ6^ip(JhNBGi>6_GIWX||2~-OxrK>Vn#(Nc zbO0X)nO+*7bw_l87f`gcox&F`Z#C=t(te(VHGqdEtO2|_>YmYlf#cU?wV<>J5D0Y} z`tpwZnGaUElih3refY=PlPru{nvswkAbY5T7wE!-IEbLxWXc`}hZUV#KR+2B`5t-( zQA&wS5T*TdV*KxEHj39Ayqay_M(_$_jDuskuPwe6V6?@P2$f9 z%eIJS@T3~a+lWDTQ1~3w&qvzA+zd=1=;hlWXW&!_fkz$koO4?98=nu)I#L~GYo6g_ zyPj!m;vdPnj2XBcm@jsF-v?dk zq;Y^h!!~go(2(iQQ;h?j=3BekdQF~sqiY}C?OrVjj3-dpuICI@F~vBbzy`X+(m0@i zEp&okLF8t1&{g?qo=_7Vktw zcG3UdR`9GX=hj%LDA!lm{r&y9RmRg;nqIx&J1@`|^CkWLdxBp24H^rI+ zc(_pcit3=@4xfBC>ux^_Fj?)=Kso)YU$lV_zjuD4mjZ6~^;oqa!k2eP$K%VJyfgu( zKd-(3pMH-Nc*|U(!XKZa!to;@z|)~D8s`#HykizA;+H^_cV61*Z%*-b&m2DZW%S#n z?f&R=-!we_J?^v72A8n*GCpMKTdFPt2?I3I4JdU1%R%Tr=I1zV;s|uR)g_y)K(!jKeL~+Ne|MmLEXI2 zp}9)B->AcFAWe9teF+O+sIt_w=d>^ErF9x@V{iDi0 z!ZxMmv0C$kEmN{MP@;g0@23LV^1K)W=3BdF5Ratrl2!G82QjtWv-yDlZ>Df}NVfEB zDW#60?}-bhPt%n*A0Lwa$sb2~ZquVb z3#h!y$-^H9h^Z8&aLWJc%Ro7bb4{isM|*jWU>g&L<^G#?$^Q zP#rI{z6en-YgJ1gZ`G>)2?+A#b**TWW~HrVT`Q;6Vg4x$^BZFY;*gtmim;;xVv48jr~G|PZwyT zsD*{vPob!?j@wL9J~yv5L!fKhkJ)a<)O^pC*0-lM+ahEVJ5}|EVRz4@UCMOYla^_R zgNeJ81EG!xUlAv+o@y9Pp0^TC6bp)Ltqn6ZBP0AF3OwJI@cE&ee9d45?LYU2iTFax zf2KQTsM&E$WE$s$N`v+mjcB%tKY&I$q>~4JrfOc1N>eRuBE_$xRMqL(`Tb76cc<+% zZwupSsLMzdzYbEp@Aha&2if~)v}a>pW0fXBTXZ^5p9i^~yL~|y;Vi;fm+|xPagga* zx{I9>l-3J2T6B%|SDKh@0lRzP`P+#^!{bk#M9sHRqSI=8ay;tUt1mMIgUi@Rz6}z+ z-|rzpuZ22Ju@6sos+`)<3zsEoh}nMn@@v0&(V+LPg$D_9|xJflI~Dz zyBE2o$wUK{ZXsy_AGq&kl3dIiA}=Y)1xWHd?Gzs_rlKy>lfVsfe68??cHZTWR0du9u!{mRKBB9jTU$dc!o$h0+9^_%2zFy8AwY4e2l5{`hy zZGql8ky2Y(ZJv0Uot;=s5e0>mtetNQOunZhq2R#kt=j^pUXQ_56~k!?nH z9SDCP?DX7VIB==O{8d*P@wMtid)@f+Ak#AoGE=d~Z#9#$5k2JxIo4E5oZb6$uw%L< zPEV?%OuEF$6m4N9PX6_omf}nvR#T#6;`@bMj%k-T8ELYESkt=1S>{oQHeV%k-lW&v z$L%riR4Qka-ueEhsrZB`Z!Zuya~Fl}geNl07B|)BGO<6{wwl&v-e#%TiycJ+1;E-* ze7aft34Epito;P-KyQ62X$i_40WeXDS*f@Ck`7M|AHGy=$|;pwf1Cgzsz2xF2F+BN2%EHHo+j4c={68q6T@ zR3LWPl|*meo%cE?Rrjdl?%N!Mo1fB6kC*EoTX%*{k&Rg5fg)jN z*r;+BuXkSU4UUGdF3@LMcZN-&0mucSy9<8&T}5<*Af1q-b5NbL5xw$pNSpj$hr0OM zIWt3d(P2qUQ0#f1L(WkNVS7S8x}C}o54;2*)kpkq3rPcmeEEA&v&a`^0ZG|@bM-Aj zzIp7I^dxLQovSXQe&?~DmL<2}Tpis)?3Z+FY(JfSeyZ)KWdZwrBuz6vm6E2ifTZu6 zKh+IYozHgBaVvvcgrKean_KcSOCFH;gOIT;Le#eHvu!p7 zK|scDXv@VGA@XJO_BOe^237qvuoC*XU*a@YLRI+XfncZGKdx?#y0nX+v@BYL=y~-I z;hyprnE8{Q_mtD?AP-Hmw+<|UIGrcaABQUb+O}2IlAdkcVG_P|B5G=Z3v==(GO#&3 z8TPC39s4S-OX-ka#QO2JG0hBm$mDk;Fw{gCEAw%ZNv&(@k7i^2);2da+c5NJX+aTp zD=rT>OD{Apq)I-#*eW4eL5Xm~?@_ON{Q6Z!+YP_I8?>Pc-Vp? z7fTC@gviw!*f*OlM2!VUE|L|LxGmwA-Xo?g^z~~cZTC=LB6fLkL6tj7l~M0r`B~M4 z)XP^dwny>LL9@)DR6kLQ9uO)#8@3RwzUFn&iiHNX(z>EmaQmFeLbQ5)>dMIsN}VNj zHTBy5)Ol2vo_)jXQeQ!EP%i{-TE=}neQ?2no23OsLS8`6lDv+Qd%@Y76Bg9CCGPgh z#O27#JJ^R7>tL^pK!sybVcZ`czpev-k1bY@MqW@Rw2$$yf7jkbxsYhK;P%1Nf+8WY z8Q-0_zvuFvwcx~tWCbOnYu!C^S@Y|c*(}<%yu6@HPuhvUWU+KPL83>)c`%-2W??L8%Y`sQ)aS23<%EEjR$Mw4g{B6#ReOeR-fIM^*O(LJ0dJ2!cyQ zkYUL+nLt9qI++Z!?^`mN$xXj|`@Yxr-Fy4aUEa(~i0n9#aUVocao=#|b4O7WMG+K5 zL6F52SKN18_)eeds;*Pj-M6Z{s^?ASkA6LUyQ_Y`Q>UsDhcGiWfkU&{$jD#w zJ#^dNE#N`O-{IaDEvEDKyP?Gq65PifJDmmS()lxEQ-eh|B8ZPVH7*5S{hZw@4LqDx zL*2>8+`5qk+|q@6=Hk`-#&>Y{tGik%Fgwy?j*w`@F}IFkf!UFqHBayz+@ZR0<;)Qh zIrq}jh9SBoxP19~LJuTLR}-2mcrIMR=(uC&wNM>LEuikLKI+uhA@DkC0af3|3D@pu z0l0MOthtKh_@7TnK3osF?P$C#fg~DzI{m@1gIUPkkvB|6N$_*&yY(as_->`IxsHRB zm+-uLP#{N>dn(e4Z`!fxicQHsc|FT<$4+8V5RMv1-79>|tv6Tzc4Q1_?%yLW-M#{C z>Fycx=27wU-tOGLD**3vGtS9#=pJ|MmJ*m9>9Fp(ouzAOat#=FO^UkUX~|I;u!TUm z;7MD5)Tv`y6pJHUM)gGB4iDUVpao)A%AezMJ}Dfx?(|0BcC^w@KqT66O7hQo!0yNr zkU$dj#~nM5h0Gl_I=Z*`gljLcfb7Ut&v6T%05_decd&EJy8ri-o#1I5S%z4*9{da6Q@` z$w^r`3W<|qERA-zAR)5YTaSIS;Ol~Q-N*O@!h95+nTN0dcF`g>5Q9!qTUn!@FtZR} zYJ6oth~z{hg!K1LJRi*#O-q|$EsKPZn}S#ZOt28RcPMfN4-JG3TC}VoH#beTWg9GW zQ&91yU0A!wn)|hK0a=d8Q@{n!a3#l*RvAq^McW1ko;{4D~>j?OV*{(;}G@ zT)Wes>S&jb~ zxcGyCS&x*a2fdOWZZs>G^ev^)PBS8^vfpffQfY#umnz$NSei;fZzUpgKsVJ6&&(HY zu_(<%Ygo&CO{FP`23FuAauoqBFovTC;ANJ+A@C#?C__e|_jx}SOsC;w)}GGCV~Bv7 zoU}F`EMBHlnz<(b+e<9Y(v&j!=c6Q)#QMC>AR4FZBTQCV*AVem612u?F_cZ>m&!uu z62Z0r{uqvO*{JXnYy`frv%_=Ibm4fQR9Kq!m)Y5+DP>|uPz10DN!N?#lL)5s!%+uL zOm`~qGXJ0%a0-qP5E5SwW)SYyDe(FdXP^jRVKlJc+M`9QvP(szX-R#fLEs{=+q_*_ z4rlGr9FCKThKt5ycF4=z-=!%D{g$B-@ON_XE5Woq3Px^$m(4Vo0q3v?XtA*+wQbtn z5YDm~LI5?VN?taVZ-!pOS56}uZEP9>AE6-{O3rpZh7)WzT0=>}5dxwP!0E$i_&e32 z`gMTABA`X9lN_eJR(9T(;Q&)>FYC8DGBg5SZ0UkGiTxQz(rt-79Ks% zZS1N>PIaVy3ok<>;P(j!XD!6SZC~9%EPxPv2V8kr1;VmGZ>0(a=dt9wRPXfRN)>pk zn3Pr4L zh-!fH@e2Q&8?n~MD*zF^hdCVwjzA&Y>g^CkLy+zTqrSe!PhhOBryK`CcMzVsaqS6& z)$6*9g`hkFzc};Z382-7&k7uZb!Rj!IEvELNh$!Ag%K}rH4_X3)!t|p4yVyQ^<3rx zSq&{raS(I|xht-=gHs@^u7xrdf^t9qrKTrSU@Th~TVB2y5`yp$aSOU>!K>Th1PsBs zKmDn$Z_}KZgop_9B>%xh4Oih-ZzB~{1o9o}k5h^_zudBV>f+K^-f*J!cd0& zHd)`D9u!}CPQ_9%4KH3u_aj|fGGfFR<(1tp*cOjw0c`r7+zM%!t>{h?f#uwb@@bKz zNfF%EZo~LFG5y-@1tpMVMpMfAteY1wrQfxrObME;ZCEHA&1ylp(H08Jk>CKSz`lv* zr6MvVXttTHv(G6XSQ9XbmLPyID9KHhatW5ewi%8G1j@M zIXs)fJa}i(^koi6(Y%zcL)5=(Erddl-%9T@}lW)9ZFV#%O<<^?^4+tfg)@Ur)=U8tXFBnR-@jcxnn(Z z&7Ldk()G_db_oK3_;Lm@@hW!1MFFezM|kyV409J~zHAkUXz+ADs`%*PtiDjP26REC_)3A&ey z7iN=r9f4W){3P2vMAPcBH43zB zHIhy*)ikz;Gari~c5s@(k?ZqGokDkoU0@;DkI8ZekLUmt)^=duX~{c|F5 zfr0>K4RyLWOuPasy(>#tbvT!;S2Ts3;UVC6Gbu}>+ZxJTwyLHOr<658wnsx&r)#zx zG3j{|Y}=*Z>!2zNQd2IlDZ#^fnNB=h0&kjq0jl~|1y-6lfpr|k1iuX9k!0D{2Us>? zR3tYI27!883U$4^``KgI)IS3=x(7bb>Ef-FWvHrjZLsr^WKR(8V+iN7xCihO z_t1E@=y=dFfMwGu`gg4F?a)8TESgd#EZ6L>F=5eY+>1uA zaoy2)t!%cn2&@jE45jF`YKXKJN&$eNWVT$g77ZfHX2zU7NY&V^V#{eT2-LLLRj73g z^-2QO01%W1m~zGw2zZ~#vku5gl2r327}G+Z#7S_C>1s0Lxzg=D{}L6t3S$w}{xn{+ zZ&0tYn!liuRAs0M3%`;h> zr010x&sCh5G;@OP2#RwBjuM1P;dIe?eGRPwl42krnXQv-i-0cE9-ZhctJpeet^^PB zuB5-PWeqh@Rq?Knya_gD)eBFWJubD2sbV^d>LqoR#4S>R~2WK5pO;g0-Ckr z*^5wLz{^pgr%~}%X&N;c1nTWrm$P?-EmB_z%GPY_trcq-bAS-IY;*@hccZ4G_pB4KA97ZmTL&BY-PA! z`b@`iF%X%t_Aprx-0sH<_tEJ2XeLb+WfR#GXv~Pk-=J~mtlG;?ZBs1ggR#BH@+aWf zczzHE4(zHbj7N^_PA zg+ShkkduIo=tHWbdQ}>WEMtO-O}WHy2*KG2ENLMNerr_MDkfb%2!fVPj_1EvN1$a} zll6{;bzlW32wv6{vqfd$a6GFs1hQOvhuS9POmMLY4rQ@hjpD8{!J*_%@UfOhd81AN zSDD~YvnL3dUpRXO2kMzkQ$vP!z-X&wtu5WLJ| zoxVAqM6jH&F4QU>YaIYV$<_)@LUeZkz|{&%O@!50Wv!5$H9^L@7x=mQnkxaUO7|k= zOmH!yLi*K>qrZw#kq?5PWh*15!CIYitujzbvLr}Yw+DN}T$y22x;-^}f{+b-)mQ5D zBvqVgTK)ths})9%%}Xg^!@_Qs*i?k`92NJcP!562he&Pr4yk0`b88<2*2uwEJ2r&q1Zcwf=-I(S|@UU?<{!(WdfoS8Z$V77%OU?0)U_t<(t%;54;vnhlt6=(FEz@r5;i$+f{huI7}ca3_5zsTOEe!)4r+B!Rop}QAP8EvWCCA= zZ7OgyAH;B-VvAO%w5!Z9=3*dNS-*LffXP1^g!6=ou8wYyj5|^?k2-&2B#9{!OHQUp1(5biR zsLG^70Sbb5XLo%R3?bfUT6=1^$1I%|O2!1$-j(OKdl9VkH3;0BQ=wHO!E%5rXHH-p zn6Auw5Spr;zG2_TsK_j3rsPk+-8O|?JG0syv!wweWlGT8k{s#7t!0$c=$c{Noe#om z7KGh^fI!b(@JdTgoMd|goSr;p<35Z0p0O~$BvqDC*uR@ZPkc6Gl@mP?7rsE?QV6Fz z#jpk!FFcFAtOqvK-<4x1ZfkE%PSH65kSmz!Rx39nBH{gIQTq%N zyhaY-r+aw}Q)vk#1mK$W)onq;Bw8s9f^9cEgkU?l?S^5x88qE@ zVwgk%4Ny>IaCXcFK*mrIWIJHFo*RMb3-U|_1`r6Qok^50H=y($z!(%@AgFc>3)T%A zrkJT#4M{2C_jkIhiq$2RV4#wk&K$K5)g=WG6ilufh8mcZR$<3l!Eu5OY7{_Vatixj zaMh+wr!Q{a+}|Bvx#>cyu;)!C3~?fp_P*B^^}hM<%RTU(_BNiTMK7G2F7(8Dr;__- zt1wfdILAdlSZcgWhDdS3q-QQ0a~P#o&_jy@ipzRxONnTU%*x_c8G^^xI_1Xnt|Hi-^C9pF6uMtqAy$6X@?#V5`7m(hZc4%b+MPNq_o4X^*loEMaEWL z?C#`Vs4_*J!p4Cv`i#x}{Yh7G#AQn(CRfY+aAsq}DW2@VvEK`Iw_eMzcgk^`=KDIrJ)7?m-~0ax9TLyV&T3Hu)<-a?ZxOE?IJF!6FW zN{(DH7_-RlmyB7qXUUd%4m0hO(p@lSk=|5>7E-3fhBF+q7$s~xW-&^wV9X-yHi+Ms z>-fo)Td_2>@k*K9W(XXc^iC3CkjPrt%RwjhgT2gNw!{t)3HZDDI3)qUC@P^*UYg{~ zjyW+(u|+Tv_?g;t^BqnbNNu{*AC;-i;$uCH#H0z{q1vdYer9R|zifE5NiY(%$z(q( z@H5xd8;7z7hy;8ld-!FGm&Vdzl}#`f!{6|#1MsQp^mt>m6rl;xhLBla%HU|pq^VJR zAev1HDJh9ar4o%`=l-Ill}34MZP5wmY#3NVXs8kzguPjNx)SyLkh;@3sSGe71`9RV zsj<8$7cOn9R!T>l6N=Nxh15|rQi)8GSi>HR=#+Ct5@J$DTElS8Qz5x;7yv1uBD%*; z7!ABMZtl9r1R?=1OhRAQxVw>rYK&)c_hpMalsiBqau>5s-Eeu!WMR0dY7JD`tdmiS zqEk#!5(;A0sT-|9)H*MkUpDJx$pAqT0>U&5&&(Gd^J0{n){(n24G|-OFRE@hSrk3I z8hCeA7Z4UeKes5f)g_01js`Nzl;+%cc)b^;cc?T8Mk09uzc+|I^|nSKJh_`(!Uv25zOag-Db#8| z;{kV85d%pG2(x0)$zK{=*V*UJtN?@rx)>1*!s$kzTSy=h@WN}6{Nk}4b?3FnfD$5^ z0>z8=JsP!kno;dgf#PKXT{NA8c=`J4yfpsq+8)GM4BwAo?G`>Yt+VPIFZ=P-yBpAh z@TsF7&ii3bNBAY^c0*4Co3fL&jcSvy9RyCILc%WxKPQKuUIq?(328Z%QS8UD?asx> zsQ^+!CF>i~Qt>o&bJ#ZspoEB~UK`)-%gaP{`-;&UES-yn1-m8c+Dh(5Zz)Pr8W{x` z>|6#E7)nAxjMy*;_;|1=%Ck`$saYKEMr<5rK8aDd4Er+|2E)A6Bsfe$LUe%8czHBm z-F1KhC!rw}Y8+3a%b+YcOhQ7K;Nyj19job*I};ob66m5$f=Q7rFzw*Q2zS@4rYH#o z(OXZ#P6R7$7oQr(hNJ;Aljvu(r{O$1x`XkjOr%w+|%+Ccf%sY zNZ^ZM(KK4l-{xD_%5XO62alq9dfthL%=Kx`)&@C_WK9G_w1z336y1f zY)Usn@&!^bRf+Hlp;-6 zc7%ZGK$@!Ma43K$ZYG}uOb60TKoMyo&W%^E^T#iEA;yF zi#ZSp2T@C1O~(nbyQ`(@{M$ii+bsmx`u&NvzXIYIyIF}OK-Ra%RNEHLTX3|QS%7pP zNp;7>5tln91kkdmIYuUED{pJWVTTKo1=O;rIfhX6JrIZ7E!Y)6>)Si}W`_f=HaQ5C z_3M$ktKopFML#YvD%%$h0!GK?ZT-5QU?Tm|A$a0wbA^zl1Fh6{Qyg-)i^3sJecQzC z@*V`Y#z}ogsEmzh!NK0*@J>bzU*;yLud4|rg7Uy}XTy11020A?#N`eXp{e!z&b%!p zcaZHFZk4sZ-xD{;K`7cIQw8e1|w1?bnVG%;D z-w)_}Rsg4~y(&&|s+&^|JKU5afY!H5b9SK|aJBnHz^rfYsoPBsI@@LlUhmvR8JB90H7vc8G|=uir8uC?ZS5>1Hd4W1MvF$3cL; z;l?EiCL+ya@WkQf4k6L9*yd*4rvOIq9v6=t%ho~N=aQrnJ^_fG?mH1OuJ4JIpb;qx z%&?-^ZM)?TGe9Gl6U{(5Z#+MHhKwK_*Y7SZTQ6F)+H$-T1{c%^`W{@K=uywWx z#3k08T^~pJHVU`Zt^O#6<06`S9L(@`awe{$O+rGr^;_W#89{uM@9@}Y^5wV)+GEhT zIoxp~#9O~t7QhJJqkPZCMw2ebMbI8_wTDE=wZ1j3ZW=k_a1WM$Oz(NVi$;8!1bF00gT{14-nyQ^(%`wkt*B|Oi2ub_Op*x#R^afp< zTRfd|ay7-MBCp>EX8?0$?rcs>Mea;pv>CE)N(sjF%+=?{b*2)izv)%ONlJjz$VPZh ztRZhSGMt14ue{D|WtD(4Mba$iqkLDL6TyqVslJnf<067S086*s0QFaj=bCD?QL#LzrMjFV`I7+_B-T|t>+XT z49t!#9tNXmJRd;Zmw0sX!n2D`1V3u_z|Rwg_iTt# zO`#Bcd!U)_tmYa`#L-k zxOsDbcXCer(-w>zrs3@3g)c52FeLBD;znB# zEHi@R))WWsXrGpKS0zAhvIUanMv!octObL4Y13Z<#9AUOGlnDVzv3ZsElWq-FT6%$ zmxa}v#*u*;mQhM)lw0lOy^e=VG%eb)_I zL%nL{X~C{xZ3zlwFR5DBTL^;4?4VrqZUk4oWMwP_))hw zp^q!8kGR6gf*GY&(D#XsWH}tn7gSZFe5^VWqZCDll0YQV z7U7~-f=PFJHd+`|#3(Jbt4TMU_rb7Eth52OLt!(f=%ozExeOs^&pPCPw3}RF z&FLhLCRm+y4gzf1fM;YQtE&;OppvlbqB0rDg}ek9Ys;&4U^4$952!wF@{NKQQ~(N zMu|5}F$1N0hYXWwB^XFi?kbK7ZK4!t9ajw zHL4o2(ss7&ER6DQ4XcJ`sawQ$6-RZqhE+pa$woDz@jH|F=($FlHLM!a0t^JzuHvZe z*05?w3t-V`CWtG4#d^cIXel1x0ilbcvRk7oTAV9&-uYc)OM*hm^f3RSBnrDV%%X*d z<}eu=f>gvTUl4WO8m&G8GfYAVHA6%Y@8_~Di2h=jP1a2mErKzZYdj$cMMUyNQPr)X z>SIL1B!o~UNCdN}RYehM3^U5aTEAAQ5ovZ7MoqT{SH1n#qNMLAijr;(s=B?R+IBk& zqoP}bsv#*g3i_V1DCpL}^w~DUByyvk@9tuJaW~dM(W1Y_EebcB5=X8^0EJNdyelw!#Pr)&i`qZCVV3y*wJX8^INAKU^$0 zj)TZ-S8-HuYoS$dcl9XXfD57+xDi<$TmXW|Yj;W1Z)<^7x65*(eD5fV@@);PdaI^J z_1;++)!Q0W^%|)~@!p@s%66k*)ko|Z5~5{0U{==+v>IipMCslImQfRNJMFCIIRU5&cQB}GRn zNksk9sM^*ttnQhTpb#kvj1V-{O*>K_BS0Y-laelrnr$t{S|yz#Aqa&OH-Hb43rqDu z?kS6kZ7ss;sy;a(m+ z+6}(y^5ZxNx_!{tlti(%*1hVzoB%@b?d8#-FSYbI4uWn+QIu+HxmCA5)u_~a%A!(R zu zZ&z_JY3qWmKC;k*NAHBim5y8^)%7jGK%}(;*0;DR$Lg(yy7C7kRS@LRx&Z4)YD8Cz z>?{lh-6SeC`19_P;Lp~$s(ZF_f<5o$K{nl}S9M#1eRs$u_=SITS8(|8`G z!9OOjNG={i5S+z(q|;YrLu)JD9(@=SD_eM;ZQ^37!Mbxj-ii8>vdN3(LKJzg*;Z(l zXKr$2&AD!k8bK;paej)2pumykC>};Zek?kpOtgJ%Wm~UG2#ZaH5-K9o+d1qck!Y0f zwyFkMpKCNqM?g*y5x95BaN}Wn6i^`rHP_C{ImC z%C^v&=m-Tyzza2*uFQMAf{1d}P}fzH6cK^DPg3_90v7v+^dXKB*Oml>;Mle zi<(y;;tWsG;IiPu6i=2nL5A|#(ztxK75T_{>+-pwarxYkBcB^C zp?u`LiF|f*_ND|H$k?wJBi2fJl~QwR3&}1RQh2n&642QmOiZ4 z2-&uVBGX(f^@^z?7NyQ}xzwv%6|pGw>tzForx}#_;R_nqtW~z{C0LH6bhZzsvtfHa z?gq139YoQ=8wDI%Qnm!oel(lgD`C)W2eTRMbcb_A>a@&7Qz%8i^71DLk54nwb(PXzQ#?I9FH&F!%WOmAB#E6^HnQOYEPz&EGv3La8v&SW%lTE&9IG0v zu`CA0LcD1RNd}BaR`|VwDfUsh^|U(bGQXEGYKDx!7T%anJYH}6KwjpJF-4w%Bj81N z;cz&ftvi-@Sr8gi+=z=n7V^fQ+Jk7-wSK#hcLt7t7v8UM-8Jem@0YQ(*XhX$ck_0n zHvtz)cQ7tGWubbt+^>yIjnfkTT?rkL_8kKLyddbkabB8>RNp*roK}V#U=hH=Dcyr# ze5iJrQ`%HX1U3TwG?z7)g;UTI*Xpg?GxqZ4&;PpL{5^3)3|NN5JoMGb|HxQDrls3lyxCLLvALW<#8seTjfr zHk-EyVupsI%mxM<0cD1Upgbg5)UIIG8J|dS2+o7a4@k4HZ z(@(}jknRJs%7JMu3cF5klR_c*4hXZ)l^E;PX#s{{yesv!X3bJftg0ipjyFNWMxfuF z{tRa7ybU`{qK@+sOC85k4mtvVw*#wRsIESzY~GS;W`2UKu6geY8MWsRJ1lE~uuj_~ z;~}McFtdUPkXy4xVhqmbg%Y^qMA33GM&K8hTq%8Z!Ejuh2lv)MY4c~PQdzOKxYU6@kAjGb_w z2GgV%7U&4QnU}$w0Eb7w54bvY!(K2S z%wSE{a6AalwYy%b#YrbRm5Y_o>Z`OM;$ATGMCx{@q$H$-l5m3iDVZ`SxVerYwtU#V zXw-9Gx81--Yy|e0D^L$MnI$V~+SB=Xj7RG-Epp%9-sMD%3h@$p6OG<{gG&=U7J5_EH=VJhfS6=UAFocY=}75M~Oz;|jW9jgk-&3i}-mp2V=c%tgEyZq8`w_H1B*s~+n2+5&4mqg=&B&k0CW7`LA6V3G4+YXP_sn9X91lUc&yCqEAeK3}7emzTIOwOaxvR4h zjh2lZ^x4}b4*DZJNizq%NOOUMUc9HcVnueOzziMq3llYV&@W7Bp@V+146#xdDA&SV zH1Bp%K9FcG~vjD#pM0m@lR~BaF5qL!7(Fs2`kUF~(P8Lmy*h4Stm=>lc z%N*emsf(qnqj;1|&^gzavblG2>?t||T{x=z2)(T7HwUgud_U9u+JY8cYT4j#G0>cv zhzK3jK!*sGDtFLXRTCJ?hE7IO)Jyt+t2!k>maV;63^K10?Q>Ik1j4f6-C~5248#80 z$m)P+7p@LK2L+s`40|+i4=;ppNh8Evt2xf~cV)vvI&gezmRy&~zsva-}eNE#;5N?|D2TdjVQesU!qlm&=&(Mo%;p#^lpXeb^-Sj7gqpC$K=oXUXnvmY|T#NHYN z--h+#;JvjOGRhwo3>mj&X>XS-M#~|il#%I>QTjw0$Q8ihvfG~ww{3@vRyo-Z8Lg7n zhm5EW&$IC$@SqhJFWg|^J`i8Yif}yh9c)Wua@Ns;Gzm}veIh)^kmr!(^3Op*3O}&) z7Z~P2irr{bYM8KI;HbmBr2$0Y8^YeMv#>EbK5J@|8s?gfdW>3Z!&F-eXi_k32!>c3 z45xbOXH<@ww9%$iI9kFX9)^SV*)UpOnYD)jY#q*DAyR`3+h&<@GBU1BIcew#xl_Q$ z+$uH9Gh<@pCp1j8g-{9l0c^}+8>Obc3A3OZ^?II5$%Dovs0oj5H(Cyc!@x6@JKUE|3Y@SB!bz{=nTm%}Nl+6W zclXR)QdSzBbu>oKPphg9c6DHyE1iBR%+j%DAq4(#=37@5v^>M*@ z8}5324<&=J36pL#ZDK&?p_fd76E;hO?qykH5H?`~r!h`^SA7p{Sc01H=nR@L!t_vs zb*o{E;U-)HXrM1c%Q!(zcyvZ^c((ZrhE?OA^^hLQgyAM!dZX~%Ea=U=+hHC?`~o^* z)J;aoOXiD-D;AH37C8k@*aXvPbQz9Y64Zpp0M2BC1x&s5HXPpz^SGW38Kc=-tCDXi z1PHsObFgwc|Ln864QbXOc(7*>HenLn6V7}O`91WT32M#*XT{QmQ7<%_id_yz;UwAr zmCmJ^?Eiwjwd^B#!sKW+FSdjIyuJF8x-36f%DH;aLFrj;$ z#gsk!L@x4!S64;0T1sG$ zs9w0(^z?#mFlL9`t}VC65I_5RV+W~0u33*`G)gi^v6Tau6o}4f%jL#s3-$J9jKH6b zWpvpv$^erxIvw~`Ha!$|PJ3viYyxLKeoqDA9KWJbLjE`SsT$7l-#}}`@ovX>!oZ-I zvsTJzZ-+sOEdWR~=6JWa(GmA3;#1*pDTJx=(Xy#W!$2;Xq@DF^0w$GrZ==f_020I} z;K3FzqShlZR%{IugcNh+t0FqXoFG&%ds2-z4K`h|DfxH79e7nqZilrjGvk#~Ru$4{ zO}asfErdu!eiy`(hUuSp5X_7n8U{IKjfs&r#vsL(1e7p1%?%k(*0Hk=GsBsWf1?{L z9KUL?@aG%dV99V2`NNjGbM5)aA;Elm@??Xz`UsJr4yJ=BF&}*@jM0RPiNa835@Gxd+39Ce+br??iukD+0}ii(45Xch$n*vHwP%{!~+Ydh;`@roz58X3a1w>pW<$9&eEZ&pct_3jCN z!szTUScQ{;*Sg8($o42)hEqG%%pHO?DEg|Qxr7Mk0gJWNh9WaKv!b6g6LCK0$(T8?(opcN2OUdTK%`6Uq{nWhZ?_gB^u0 zmXrx$*-x6&-XLnEb@5dLIS0ZFri_y1^k9<*<`F3Do3^YU?0C{qnFnDQ&nELx2j;}! zfcCXU2J*gq6od%jIG^!wgY8*txkI8(VfwOAbLbGhE6tguM*F|*W!Pd2I4g7~+bsc& zld-bp5>WPy>^_#4fa0%p{KlAo@e)vcTXx)P`E%)@gV=fr=;HK=N7!ts%;H1~T)?MS z=1VYogy2i&K7qxVW$mij-1g!WTNzFw{ySC&ZD`nx&6veGW!U!{^$CkpY%z=k_sPNa z{)BF{B0MQ_@M=l(H26TSXsr|^K@R)EleNOpbPD4*Z+c_2P1J~jf|hdOJVt}TWxz#6 zOSlBnVI0p^+CCM_Y{tz%u_#u;qm!I(081t&%hBbaUn*M81-s4{u*p=jnOF##9gXKO z{{ivvFY>e3jP~r2FXe9ZuB>+NlTw%KxaBSxIV|P_w`B%%l zNLOoQQ(0zE(CtRSv^`BG971E$-!kK@8#D65Tc+O1@RQ<-VX7qVMCjXV!)Z9iK1|E} zGj>L!8q3sy9c4i{0y{WFbvkRCF9)>DKV#>o>;(RNUgpaLHzqG-`JgB-^W}pZlb5m& zVzmnUR;$GIdx3kTD>-IEB>#;2df9Ch@R64bRNOk@hsv~!W~D4shscW(1;VbEtRMoftM>-cXy(+K7Xwcig^7oMU>sV; zGE2|;$FS>s=Kk$oFYQCZXHM6xb$S-((^W1VBZr7(>a7GhDVvp*Fj$MGFfQ?4f4q#g z1bo6OT)B*UScYBYbNTkLD`>A0K0$PycXcyzUD?*3=sLn<1y@RRV1bf%I$mmzfKOO0 z5975kI2RdD5Likv>w%1pezr`##nBT^OXI+Q2V@j;$CeHNCrnoP`hZ4yAuppqnE~N8 z+QkF(X!&arqI1qlKG@%Ub*8^Ar zX{a;_6~cBnp3h)cRSa9;8fiQIlqTUo_;n}o>}LPnwoyD%OWkN8bi!tg(>UT}V~e;K zmU(A-X|!I=xZB&{ww{Kaxy>SdOXbg+ z!k!OhPD{YiQ?R!Lyu zusp&jmMFd~t&7kyC*^D#OLSrCWC?`P%CUt>7A$(W6L&Mi{-25QG06+F${G=)sKyJ^ zV>_-9BNhAdB%Y5qIQ9%9!446apnkywsxSCPtAG}Zp1>pwPQ#+MS)5E^1>7jWkU@&A1R=qEsvAwB&dMM(-eGT$jR%Pfm<0XpR!2`+AvX%6XpmwH zArjOl)5YIjblk}7Gr^sLa2kO&F(;m>@&FumJWnC!qctM3X4pj zAvP*$@qyG9=K|sK!sfVRx#Zb67t$yjO->mnUC=c5=A%il77idR2b{oXs=CIxW=)3C zVjSaiTLd;Q98~5nvs32T#S1V2*_{tUqlNs_kOtb>o2}nJ63%L=?hKT6tBIclFc5Vm z*>YK+qMoo;)RL5mavDYAE(NM9Bo?35`AM(=d4?^K&G||EBe@-t&QChR(yUXIECnb| zqw|weJaUoh5J<7wo}Xlt11Vmk@uE?(dNHGBo*IPblJAXM943--A!V(Nkx6KVKLyGQ z0G0G6t2Sl^n=PiZsFNJ@b)!vNBYh|<>nW+t$zG|Wuvsdgv}Ur)K9S2Ldn&`>vcr;x z+18~_I~tA$*K9Uw?Xol%=R}m)tjn=UzCfA7B{+33o|^}E0%s3b2?I{UaJCY6p=69^ z7_8E6apa_k!cIJybmGwX%v7s9vs&tb4@XY;+}(+d_a9fJViX$LDs9-7utr#PI`bh! ze>QG0tLd20+^{7P#I18Nj~il@U#4H4xI{E=R&NDb_ZUuQGxnKRq~oDI6VPetL{VKI-wa3J21# zx@iWH<-$p;8?HqiIEQv~(a>3YRo2<9?QJ}z6VYttHcYHcRn^o$L2uN?sp?Cuyj+Mj z?kyYk8YM?m?`72>73kT~WQ#g@DB2+FT=g;o$P&p^>ei|tGc-hoCpk=rRmZf#A=sTY z!3s;_QR_5YGE5@%j`#(mLoBE*rovY#=)Tq(6c8vO5lJK<>(Q)Tw5!fKTdg$o z=}PM~v(kX2%^WTvw89C681VsOBnihI2LsF!KhNvBrcrftP0K2Rm2~0v@iI+q1Mh0t%Y4uxQRc)Q7C1X`sA`&Col;CQ77h!l~NGdtv&~rbs|MdXuw%7td~f({CPACT`ClZN{AeG zIK~h|+Z`nXZbNIomEa;skAhY}s5wV{nZT+qGqTpcGzcC+dlFI+X1Ht2E^4TZk08H8 zGPqp>*JF;`3tNIma36L!4iMVmLX$Pa|D9q3$!lkm}V&-b88_BurBmA&m=z1?Mv4^nhRav z*qAPa{r6oZ&zYpNqd5l|WLk&&V=rEK=HiJ|_NF{b@=`iWvOn2>Z#F%GX~De6^GdoL zd`FpOz$}R3?>3tWDNKyaeY~U!oPybo-Gg8q&ge-pUZ6R}*o1Pwv=Xok0oRXDlR33? zlS`?7fTpa4lPRn?fKUzBF4hwHeOXubP+i%UC2OWJQo5iwWs{83n~L^GnGzj3Zl*&< z2@`!PYm%yz>m2Vv;bRQ!v!$jMy-)H>KTQrf!N9JY=7&;3r{adthLyM`<7|nMzBH>GOPVFYv4iE3#{Z}znHO1> z6Umrh+L`_YF|v9^Rz)e(OhhlP1}e>&pxQcJnM3&g{0T)vIJPC0X321b{d1(ncurx9 z0j+1ce(>xh7>{w6=(CI3jhvU|*5hUEB#k!gmF^_VF;PQC*RaH{(WI*<293xTgV$O# z8zT9mLARUqtVz^2#tU|AC(c=j8N@0kn-8*t^>Pzfi?im1^E@&nNt@{$lar|m+QJtv zd`VHM$ZyHTaZ}cq?_V?wkEn{&7aCM~`Qugqm39s6P8`+TQlxD8Ig^iN9qiB{&Q_7fc8O@2k+C>G zP#ArS)Z)*SaZo-oqT8b~-FB2AF=zBh$c}O;s558zOlKz?%yVmvqx`jjl^#OaQBGpO zl~5w3xyH#h%~e0=&ox(->V2H*N-*h8S0>RYKNzng99rqFYR#yloJ8qn#7G(6D-#DJ zV5L!|)}!zHpq$TuTXs>uTM}*5pKa9v#ldahw%f9UnK}tW2 z$Q3Eo&=_U?uvg6#)byhaTv5xI5M3N3&%O7kf}eimq)UDY55g`Q#LETew>ru<8(Zu9 zXdPwILK1}62p&x%IQ}cj->2^==Zu^`z08;phS7M^SbO5Hr)^0`}{k4!86H;zx(^dTb zyEv9n)*1M7ZpoAg*;i!0G|}&=jQx!iG+u-@FJu3mp~~2M8S7mmC+ok5Y@Dp#Unb}3 zB!M@)cPT1YkKJa*h$!)EQmSGw3_iR>AYR*LmG;=%SigWB5dqA8HR9P3J*~gqC}Tnx z4n^sDEmlF$-&B$yLio+Z<0iCM(DdhWSNU+Z)#h4Zz?rQewVi8~KQ5VT-6ry=IoB%X zXEWC-eWuK{<|E@0#h_$W=2~qttTxwbn~OfziYoI0+v)kv1mY~fAN_^eGQXn`ObgBf@5 z7OA%s5=1+f!}YK|hzd?AUQkm_)Km0%#_oL^Y8*Y`G+YUW5Vv)?sX{Y0T5On64uoHS zB^WiPk;y8>RyUXh?am;WPQz)kwY;qPHc*O|M1U~6cQuHnu=8dqgq#Kt6mSx)fnnBA zuKOZh8#t`l+{4@PrZf&?$Y0uZ~b1-y3`AY|1bl+AEX@?RokR?_ZkY z>!tr!xDcZEra#i|rYX9{r*81N$kxrct>x5s69Wg4*JUjmE}q5S13Wv%~es^E=RTUMy*8Yx13mQwfJH>>6B zWmG_^5Sr`hZ^a@&<5atsQ5cvU4lY?QxG+a)0q`(HM zf-_a>H?kuzJ%NAZXfC`Ga%f$$uCw@s21I2R&e?;J@p%g z7D6X%W_tbg*ffhG^D?T)r9#+F^;i70!h)<9b25*~0lc@JS~Jjc53>Pvt4TyXh3)ZHccrNx$YCpU4a*`SjyF3)(yJ zk>bV91;yov^I@wMrunRLBNKhbUU{o5^r=2nk@S$`oQ?lQQcRC{dcNiEY<36`5$j1s zIWXnAnt_RcT9gGQCFUUmrs{--g&+^BC|eIdMpqkb z7Kg!L&>6(j{1`I@?T2;dnPqG2b+OK)#hH*IjDn&woZWLX-uO|08?aD$*%`0ad1hti zm6zf$7{LkY!6bsL1A4RRi9oS;HW4ivB75IK(}m#`qbhMjo44!Z>M&wh4a+dQ@; zoC)DK>BMtzUXJ2X5*fCk0yK8qTGs$rCL+-xOrvhp>or8sqlP9d2(Ll6{X&8(v{UY=>4M+-<0R^#3v4&Z#i_-tc6o$-2` z3hXj6gk{uwKv-W13zb*FQSI)V5sxio561t5SHCxbadktDh_R2Pf<7iR2(#hxB*Kg7avn<#X%J?EXxiie)nl)n5+UsRgYE;O#vu*D432S|G}V-N zY$FpElovFb4*=^pVL^DUj)IZpB$0K)oS9n2)3(-mv=|SrTDjsrLVq_^Ilg~=+ZhKv*A33zJ_ zX(@yVTfUZ=J8J#1RTsnfB+a(qb6$ir53k_g53LgRINnQ_wI!Si$oh6pUkb8{t6FTm zXvSl$GB)0NQK1quea`n^bA?VEz|GcR{|cROA_~o$Ebb9*mazXOi}NC+UzJvG;vsI9 z`N(utUuESc}rl=B?rynOxp%T>Pq%UAQB z^MFU*o#-l8;ks8+bkT zKj)zG_1|b|GZ1`}w&J&MR=JHgX;-#16?#O)dFOl%LV7Pc?;Gao#kq6GQ%=)uaK^hG`G@lUrBihO(hipPcB$4^IAk=<2=*-^B}gJsyF`aBqe&Ih4!^Ugk#RpWNrxbI5Rl}n&P(~g;dO6)Uj z*zp5J9W)?B6*?6fb)#H}3Y>6CprGijH>%@N=+HFSZd6adlM7$jsJ=H?4<~gS1(ppI zzwt(O_JvaZIu@b;RW_;{=0jA#cvH1u;<^&B9ml*!@Aa(Ks~hI3b>_yVieUz#D+m0f zoX&A#(*f+Ds}$ba5Q4_hcpPb%f#67~5W1tF8;oZV|G6EkEyG5pcyPVdsfdP9vNfm1 zYibQsZsibIz;Mgu&TtFe?~|1wtmMNoylfd}1V|Z%4JqeI)Be*~IYp()=i|Acyzx;q zP?XONeyf%@J~z-Bbyv6JrB@T!)A#$Uy0cyWwyt>?U2XjepZn zURi(S++Gr}X?b|Ell+y3Y8bU6-<9I1>()0xOiG~*!36wPZ1)`0a=1I;U=^Ojx=t7e zax+Z1g^)=}^r8{$pB;bTm$ZZ$T2DI}&FvFeC=W?@AI3LwU z;m5^2uErV2DJ&i9_cFqmx3_hua zf|j2lXJfP!`(~2T6@HE;`c31t9F}d1AVErQm{RoR@lcD-`50BgpHIw_ncWyM)#x5^ z#=dNCm6`J~kxYP;89!J{@;fw9{bd@l6OYc+-$0p5gfxXqAQ3d-6&Y@ z!R&UE>TA5Ex?+KHPNXb{UAu_Y)$-1Y(tKcAttf#G+Z;cjL-^eT4_4Z6 ztY}iY@hBKHsj$)mcomLJ#!vEfA6wRVw0Gn;wvw3ILE`D^~5;xu!UoE4SMvibFtxjUQ zL13ja$Q0anPn+-|3|~16R>Ssmt(zR`)Eir{Od)2W9~X za?%Q=O~E(%cKEifI48n%I-Cz? zQPWg?kM{&A!u1?`%;nIe9uIw2U@S$>jIxH%@k!rw2|6a}>a+As zo)RSFU!VR)hQ|%4yDEaIXRXhpNd&=HXEo#uQ2Cp$#j9izwNn0?Yv5Js4}3Iz35wo0 zFn7g{TVY5_od*YPrvFw8-M7iYnJZ2NP8x=1m!P;CA`Rq7NuN)J0neLuFsQ}8)=XQc zG9}{RogTc@kk>(#LPMQiN|2C$W2y@|WA#f=A=aBwha9p*DEFsA(T4DsKqP0I5s5~X z2!vY%4LL2;`q7X@pt&%E+0-|LHb z^}s1zLVdzpjRq=%SYzpXhKO?_OxGH20tMSu&tn9c7h!ysGy_c*uy1`P#0cm6a_V}M z%zbxsIrIqsabsW-(t? zX_kSAJ(|%Vr8ed?R|jo4WU>j0<}39rDKZL#-Wg7BaD8J%XdM4L(J5G@q->JFhjNV< zMVN9R1n&_9<0NcsG@ZiYtEQCIe1VEBQ-w@EWlncA7+n68RWgKf77Te9$Fr4ogW7Dq zP}Z`Hr-TZjE0lT~_mYw1WI1{OD78w4P!6;9*+&~J%qjCdf`-MJ;U;_nfBlKza@=_6 zW5^|^16lG|)dUga;{r^3jJ%#=6%OR`-a`mV=7B;C%SJ^{v~5*wJ-yZ;=iF5Egj+-# zO0UeEn`RU{;kBx^hhCXEFEbTA=Y}K57s31xoUUTN33nKbqVXKIsYS4={=y5{=hvFH zZ{%xvG})uJ? z=<~JQtnWo&+*a8URsoAP7(G)(0S!x4jA{r&Qr55ILKx3s$MqnFLqLLak<~EVg%pgP zZWS^UQlJ!x7=$%EgAFz|jbsHpnhF>X@hW5{$S1@Iy;=DF_5M#)ejtsud7r z+vkjjy%ln4Wqb(Fv#@C`?nJn6u08DpR#WK}aAa(aXH+WW0&FQO!ud=v8-&4h*0zf? zRsl!G)^FJgKKVTDLXB;Fo=VU$QJ!|u#x_1rC06R$rAZugJBj8_SAucqy?+uTYp-=x zWkqy&+KC7A;V9{xI;*}75y9811tK#dT&4b#&cd3a%nLxD!)cG*fYO`3*`sf&jY)-J{2U}Q28+~ zgx`z|85?VejCXHU5N3-|B5X%V^deY=(-=?V$PtxzGBSkWFj+Y}m^4PvYkg!~bbj;Z z#xCCZ&1sCS)m}Vkj-9b5w~~4S6H<2L6*yBdn!?z#G4=H7ZWMF~%i+ocsK;kqRDKVf z9)AVxZ^AE%u4_y^jpvA})W7ID!fTAH$U6`)sxf+AYoDM)SjNM6Eo{QGEyh%^(#tGT zQk62~YzW8xIB2emFkXRGg&q(g%%*&MP@}z|*HN*|h;V%c|Ans#kK1cur?I-}bv`PW z8eu=@ugph{mbLMA=xXZB;vO+hgs&)VDC2gejXV_qWy8uwN}Et4?B{e!t}!L|TiRqM zmGB)*;@Qp3nGwb(epJw*7E&SX&f$8E*~%oGu7Hhid75MOLl?#LU_N;I; zmsGz~YNVOtW!=mylFGV?TAeeeB$M_(wREXSD-%uYTnieQZ&E26N0q42fhArgqS`!k zh?uo$y4&`;*eEScL5@)83f|1jlv>(N)asmhs*LmlwXe>ZygHlef&V!ywUoWi^$1o( zt$B?WGeHl;8ZF2X>i4A*;qyaHGdGTuQ=<8RR^zg=rS=vnFo^9W^S6+0OLTiHTpx1BoT!O zADWyT_5j`Bnd(8Z#ZjV2#K0@TEFQPL@2j{Jl>mtm%6y=6Y5IXCMt3>uDLCo1MiyJD z1>FQ`#w@p_*8q?IT|<|KwB~+ZZDOmoSk32kMYOgzdrfJ|e0N)drq}VCLW-#Hppk}I z@btPeMsJGGG`GiIQ1m)1&G?W~95&O}2##KNVdV5K>-sMG#;T^*Ur_GdW zP6s+{rsr&mpVn8NC|sT}x`xF;x~7T?1A-Fms`6dw_E-$=^nBakPNR4-gy_J}vyAG* zK9j>a-A=@-tM$4S{Y_qEX$L4KEBMjWS9w;UNi#BA9m>brehrE%&5rW z%y};-URnBI$SXa6vgsJC7wIU=ucXF9*Y+-y%8Yx=0W*VX>5k zLHDX!#%=<`vTmiI36lvoMSWI#mPe**#?&s`N*`~akx}cBn^lO@xA~Ucojk_B0kz!otf+A|NTEQi4l^d}# zjr|-}Srpisd=uDwGzr$iK|30C!*e!mm=y>uUbyilFsp1@X|*P#NQsWfPyYCdX)@y| ziFQN@4bBkj{tfnZe|GW07VBC+Uu^%#)9{WTs zdL0faemEawsnd>zHXb=yvsKC#8|U<3F7tD}5bhKPTfyMsgJ?Sb(w7fDymgeuPOVYEo863UTXpLMxVjz;;EN5N?L0Hn-l5z51*Xw-@4BfGBK zx_rf;%XqTcUY9u&%C8eoCY?C!S#{kTk{@S6_^otet0Uj7#hO`Pr;QDATk*k)%{9Vm zwTWg{=%l#?Vowaa3!R(q#-%B4N&`At0c$5-o&;8lD{JVaM?*kRp`{mD``l~L^Qf7O z2jw;l;ha*>J$)0J$#@WMgQV{Z8zX1D+Q?ctS}762ZiEjTEIg0(PEa8XSChvNgjSRB zAlwq&98Y4a==#=rll9|%bu%GC*bUFjgV8J+SRDXSgPunVlQSXw_?}>He)=^uQ81mX zFpc*FTT7JB*l=FCq`6J{KqJk05z@&vu4LBTyUDE6Et~T91 z2V*pvt=mtx^AF{j9A&!w7)x88DygugH_gaqx;_0w=@4?@aM|J9bd~9L70mWD?4~nWffXU3u^H5G_SexPAex1QqsH2rdJITlk4G|uG@6QrsUs+msG)3 zQ0I09-2l#5pM~RG%`?F$+=A6`2>?WLd+_mm+zn>=-UlmWFRLUm2?D`(f~#h`8%{f* zqHR|=_g2DL0Eb}SGYE!D&Tv+frvyR8Hkn>>Yytwob}(tsh7bl|;tb&SN`7Qk<+{OO)CG5{HvsXUN{w%SF_pvv3vOoXK{=Ay~dCb*_`myZK7WToL+2`NP{`?(# z_?JvdKga&}4)$k+ugvEc9@L*+yzk=X{>eR8Zo2Q{g@>~4FnQL074!*vHq9?w31Poi zhVq@p=Tmx)JZ6i1#<)eG9+6 z1E1WC_rC~%h{s%sZ@c!-i{CRMHzW~!a zehPp6IlP|0+&>5J1HAu2y#E!v-h*Gg6`y|+ug}8k-S}&S_y30X@5SrmpnT8wpN02F z@!KE8cixEizk=7_!e74yum6kJpTKvn!~0wC{@d~X^H5uU4ZnI1Uhl(SzZ|c>jJ*C9 zukXg|JMsBL@H)d3&f@jq_~g4Fh4cMi!TT@6)cz0ezYed<_+&rcKLWoxh}Q`|{~Ub& z)A;1i@%kWq{-bz(BR;twukXg|ZTS3Si0Vu6+k5c(CHU(y-hTprUB&y)!S}xkuMxiU zwRqph`xAKopZMl);#UvC`@h5cTk)MXzO#n+|Afy!7p1oo-~4a9{tsT?hrjN^`ya>m zd-&}hy#Eb+egN-3iPu-+^=5qMFy4PIzVkbHJ%&#{AMd{juXo_}EqMJf=Jf}7|1^B_ z*YWxt_~heweH5nrD!e`#udl=FGx5#8z<2%%uYZl#3;63>@zs@3cUU={`xDJ z@89F~v-sq9@%n@K)m8ZBL-BeyKEE38UxvRv2(P@YP|nS zy#6(&_7c4Q1YUmh|hl>-@gU#--OTKkJkx4`5nCf1HAt=MEG*J zKi~gnyx)Z1-h;nhhi|?cpZpqL{|Dc>0iSTz6pQ*Gra#synhPbe>2|y72e;0 z*Kfrq>-g=R_~cjddL2IhZoK{pULS|={4wVEgZSk2_@syLui$lx&(GlXFYwL3!Rznh zuP?&qpT;M@ir1Io^Jif?zl6WO46hHy=S%qfJMsDmeEvqfZowx*y#6u1`7?O^S-k!$ zzVkY~|6zRRN%-UmczrTnAB@k>;dLus{}$hW7?#~1;yeF{Prd=Kd+?n<#^>LI*DuBA zUA(>vfBi4K|0cZtGCuineDjHz=0D;63-S7$_|6!wF<$S)_uq%tyYRXd-~2=T^+WjN zwfJNQKKTl~{|lS0eF(n!d3gUW zy#6&_pN8K)1Fv6%PacWsKNFv9#_KEbNr1mzi%PDb{tI58k6&HHH~$;2zmC`M!{^_O_pib?Uyavq!6zTU>wn;re?)fM@%|6+`L%dm z#}wX=zYg%pWAMrE;*-Pp{s-~?xA6YA@%mbP=ST4Uqj-M|pU?2gU*h#;c>NH5dm4ZJ zYJBr=@cMLoatiOS!Rwdf`+a==y?E{5^Mm+&girnyQ~Ptgek=Yu!0RvKlmEdt--Y)t z#OKe!C%=c+m$NkSzJ=EiuOG$h!|?sD!FRqEuit~uUxCj*f%iA!^-uB16z`vcZ~g*4 zxgGES3ZMTTVz?cj{~kX7e7t`s{`w1eeK=gt_x}N(pT_GheEzR^|3{d@zpy9x=JPO} zU&1Gc@%lITUN~O!>R+$)6@X7n}{wQAGjMum0`!B`of8q5bnAaolzKtoo39paF6dsGu zzY(829`FAI-~SOz?KAlN7(V|TeE&&!|0#TD6@UFHc=LRJ3*O&=*AL+JJMjAX`2N%I z`U*_*!Fc_B{PoTF{7dorN__roy#H3b?!YJif_Z%c-@h8KUyaXK@tv>2`@h0>4&ePK z@%f|i&DY@d2wtzi=jZYMi}1}S~a~pN3!0_uq-{yd1AzkH7Zt z*A=|($LFub>vQneAI9fz!TbNj=l=uu=lgSf{@eKcXYl@K@%rz0eLBAR47|P+pS%R$ zyaKP=@OmX)zXz`m!Rvi^{c^m%7r**VynX{*&-dSl_XqL%DtzaUF#U`8N$gc`jc63!nTqrrgITkHRPW@Y^4RC+GWb!{>jB*Vp6o z<9NLipF9=c|3bXZ@%^jt`QPC6m+;N6!s|)A{w+TLd%XW*ygmxKKL=BI20rUZ0C!{RZAY8?XO~*D*eS0)G4d@czm8 z?d^E|dc0nbZ~im>`V@Tf1$cciKKU^I`VWXT0lxWdczrLv^KpFVNAbEB zuYZEqL-_um;F}-7`zskLd~y<>+=!9VZ6Q-pL{!B&qJE$`=7zkIJu zSj_zvynhj1KZVyfV9M{rU!R2czmKW?EdF{I-hT;Re;I%MG+vkR$$jw7{r#Qz=0D^8 ztMNW@MxO5{zDVeW@y$2mSKo}+zr!bq8}fYr=kWd=cpW9b&bgbh|6y=9W}e8+7ao;3 zisMl@Z4aW=@ZyChPR9`N`o(VmSLVNc z_KHpYtAi^yUAVe8A9WHZ<;DAF7hiqx!sjGOZpA6UEaCo*uf1~9=KjO(*tDtt+`aJC zRczKN{pLx@H{0UT3^ENT5+M1zFVnw6_;55_cQA(YQ7)!$BeqB6VY@oX2aY%xkXIj_ z_v)iF8uABwPXmLFj^y!_f%ZvH|Ad2?6EKfk3`Ts=Y6F;cJ!KsX{p1z;Cyz}fGf!fk zM4fO-Ks_N3)KfId+Q+9(0Kg~dxjiiT6y{`Nn$45)vcZDDcbSgLh5VGf51x=D&J)K zsT_HE;-~+vfBMKI$4)S6Cqg9v@5lp)m7M`pKf2-+fIF;<0Xb!bo%`7_{jT zf2-HYFz*{g%JV~ZIk~OmefdN=w+I#!=sB+DeTRj>bDZaYILiAF8&5rxGkNb~kul{U zU)*yTG~*Mx?qSoEX@>sIAM4*>1C4LCmm*m1lQz&;|7UrikN})I(4*DwY~H&P0rJIU zFA#XM4n`rMfAbdon=eR8kXteB>3lqf_#t7cs+7+?c^JQld_NzRrf^?g3Mi3ClgO*` z-jyUmzWDetkjO*yTB}Gz|K@7_8>|fg2UbmR4JE38W&7GZbXfNw)=5EKe?##%)Amvv z4{~bH{dwOYLZ;YJ-j|;_2-0|;Ue-@d$|_Uv;%|Rj{}%g5_@cNux{wD|>9dLwcxTdB zpVG?$+jsb=s8RZwygbpI5#q`Dbl>fe+tc*iK3|hh(Z|owKgOmIpu*CHm0)R*XWD#y z9$M^{;k*1s@J)H2NZoSYhmQ?_-q+{|m2SE4)34V*#d-uE6k2WHl!uem2Us1I&+S|C zzM;CUfBBi+K<>4=e(Jhi@a-G)ZxJV~Y9Ge4u$|bLwB37a9!|`UeAAA5P>AEX(hGcN z-q+ZUO~Pr?!D~kC_vC$n>cx~g=eyQEkji)J%+Qj^YJAa`-=lwt{Q`ud6K!B|#sB_7 zyz=*Y8~V1q?@+GtcR5uMTi_qb`x^PmU*~JykLP`h)kFSPS0K#zC-Oc_DO4G!pgC<)wgm(-d@J|3coEsD`si0LLG}`n&N8H(&m%1M2jaq!~~h z9L(te0codW*jmfq|I&Nm{mWhR+5Q;=wZD<#wS-VYA{~?As1Rqm3P5z~oFiVT0Q|l9D@}o)m4-01Cjaiz{ zxL96XEejBPCmxG3#0=i96VR7l8p#Jz?+v1Hdm1f|h>U(x&th9;0)y#ndIr~-l01G! z&tq%lJYaDnbo{Xx9ipJ#q358lK{gfCs67rK&IzILPCbL_<(!;DLsEa2o_h6iPEyB{ zuSgc}c9{jZL|J1&vUrc4#ch>~8M0vKsD@pV$$RxoD%R~O3O+jQDc z;lQd9(#p3y>Y0f$ zDao}CrpZ&&2vdJMq)ttv-S&8u3^X$dbNb07Cpuxa$3a#++%s=pF|VIV^3qHu{R|4d zuPzr|D;SRl>)3H)aX}lHOeo^shSX%k{NJH-Jy4%(4+gev)xgF4-l^xetA2h;+mAWD zE6GW1`;XSoOUONKwWnf8g4w=XCwRnRrqB>h2QXhql;}Nro-T>#1h3Sy zFd3W|W}&uqD5%%ynN-yyXc|Zphv~mwPv2xvl0!l?Yw(*qD8X#b>)Dtz*$c9vJrQQ~ zMm-~=b`xeah%fd3-T>|9ei-4{wwpYm*3qN1-NY0RC1WQ0c2i4KYd10Vqxy)_uMWkn8)W7J3K$|s8 ze4r;@6+h&s+Ps)WtY=}={O91uEY#*7Gnwd_R4r%BMCykz{kfjLQS+~p$eRBgbv>tN zW7PbYXOq)n->YYIoq@$Zn|D@Wm6K{hqV0wUb0Y=S)oLK89{*QJAnDQE=OuGUj z$rmQBbqScudXfwEMD4H@2;rbl++jYiNb=FThMJ62e?R8*N}Z7&-$i$Jks_vyltvtL zc}8tgeOq>p7f@3-5s@>P=x$Ui2ky0Re+ILaU%w%R_F*R+T2qpPuU)kkr{9E+w4muHK zk>Y=wo}q~=Y_T|V^#42bybjkRm-VbnJ>|g_7T_!KI(#=&(|c13zu4W<)1(0yP^O742%b*A>7l-K4hB) z$mjo?3@6EW?dgkCXdNYKY(fUg6!NnTl1Ywton{Mgkk5m4u^T4U?J7xKr6=_)BUIrT zC8dW|O=&q)QhH?Nl%$nPD5%HiDLu!C9bNT=X+2&~%S=+RpjND(!jzs^IVF|fldGmQ zQZYSMPsvQB#_?H&-WTdgnF$@jg{tcL#d=yTqXL{vrYliTmDkhtZutL zoz9mOp*>qq%S`@yQrGH9naON6nZt2LYYMXK^yJKtor@<*Qa4mfY6&)ph9j|F3G2{} zNm8n5{!D|iTne(8R!r&UswpMwJxLq?qP&z$+K6trCe6hns+Z=awb_6lSwD+O-I|w_ zzDPsrJkyPH-Sts0gws3nWD4p;*KYC_U&Nr{T?JE*?W5HCq9F76#4G;ZTyZT_2C2& zvHfn;lqpLiyA!E_M}`=12=Jpxs?;Gk(fzv{`_7Z^1hG2Q>r)72O3W)&d2ldFPeL}JpP(UZQ}TE|rL6jT0RJ>?3*AQmB} zyXl~V=0;EU!FsaxGS-YvM0}N=w7s?w0~C{en4YZORY6#lWE(NFhvfh8j^Pm(p^teC z^(pA+ z3KFb^+Rd zex<8DlM8N8du(31*K1AbDEXqQC}(2^;O9%IJw8LpOQ_=EEJ4@7kS`I!N6$Nw<#dJG zBsi+hjMkAD@tqYOBS3AZXuXR%es9u}aUUR#YoE&`XZI$`wz<}m$nkY59yx?{98K(6 zaQ}^UPn!cc5`lcqKUZu|REllYe6q)HcQ)Pz62GOx<`i(_{!RpM$9a}@-GmEyCnDL? z@^-s!BvI2mO$YqxMB;QZ*4^?nfSigDCIjs_x&av-aL-jlrUR>KkpakTge;_5f=XD)5@St(a61_>7zuS&(a zrL%4Hq-8kDa_MfVG5Ic(7DClIqEu}Q3vLxdfJFppTV9f|$W zh?oVs<|rbzCTg&WNw9Sg#>DcON=G|=fixWK=LW=V(3&bU*$g#U#6;MZ2;&R&>KD~v zF#lB|$C|uEKmwk0IuRU#PP4q33^<`f5z2#2k-iUgghMv>oZm?KfHv4zn9q+SYRjV$ ztieV?t%NA<%v3hWI+)ULB}&`_)J!r%eXK=oh7CX`yh5BN?n1-yFxvkcUdgqxGM5Qy z**;lKbxb4lsPVoJF?_Ou8?$WwuI@&|iZ6?q;<3;#+2Re4mYgZc-b`7sFgWZC9C!NjI%{NF{+Cj)wxB9uv;X;8oSOg;I}tp zja_HR*0>X^5n&CIB3t8b6cb?$B?hciPU{~)trk~v@!{+=rJl0blLmxr)I zBN}pX80S%x<+O1~OTET!RPNs>#=GOwA3HSnpD`&I1vm`-2Moj8m?XmxR5r;osNdQB zln~id{)~3QY1r>Vom|kShhC9}N{)UEv1$Q-u0@Fi7Ov?-zz6in1 zq11E9-o)`A?!hjkXJDBN=A_HlQWNH|r+(K_$SG9w?EOT#3CVQu&ezYx;&ens8_mkvs!sL*nzDcNWRJm;U$^tW*B}rN} zqL%8F?qKf6B2tnF?kp}cJ;Wl&epp7EBqNGOTT)w|Vi8$M1n*OK&}gSe$mtU>U*YV% z*Wkx7mY0*{@rl@Id4;r7WKj~y-PH|aN^9wdL%hf#OT~`A(NwP($Z;l|DV1|mIWRp30x(jrnyYTbgM%p2~lmR z=1twn-bAn^L*49dxWy5Y$S7-7l6mWHc&^;hlAI`yH$Kj?h~p#?8%Eg2+g=h;xf3Oc zQ5IMG&qp(T;@C z#v-0a7^T%CLy3+|j_xQ8TxaO}gsjr=tsynD*7fMfmdSbbjK)k_rLL&ZA9h)m)vZzi zV{)rmB$hZBo>}gJn51kUnmV4~Y+hBpNNX9iyMSxqwD@HcE;H>gt_BPdr%-c&w6RG@uqlBE`rJcLMSn-N33o zua-r|-kCJpI@qFU5h)I_BeUS`Zf zPe+2h;B6A@NEXt$(EN|xLVa;@vlnX#p>O*-igy@fda6^Cg=D)WWGNLsj5gGgxoA1i zh|KEuN}!n>3sJ&nmg*?d%TVe%8hUQfJ{-jImRIuZ^+QiY!2OD&Z%U5a5cMQ`lUtBb`HCHz5_%|zFbMDlD{ zuCx-FE!OB29P@Y^3tL+frj5;ZE32uWBxhYo4)2YWNojJ_jW^2kvu$()j7+F=AixD9I8!z26>6R=%g;sP(8mNGsIx^rcd=;UBy$+E_zdTT#L#Qt#8&BYY5dltQgUi&*JI zTZTT5$?`6jGuNwXkZYJ@UyhoMElLfR6ti=)&)Z$^S?2<*4BqQ=_rl&naO9HjL zy7HXX1brv^?boFI15>${bQu_Rrc|XIw0J^k2gQyq+9A$sGlsN}B_3M7Aj>4zsHDo- zQn>2G)cz+4)5c;`7-zM`T9sb>GS3aLtS=;4TKtcYRW%LvwIs<|#r8~ru6nLj$Xb=& zd}}cmgg~bCog_?Kax!VPt6;!V45R-j3DL4iQwTkXSAYJr{(FkH)m9S4LYVq7wO=Hu zT83asrN`*_YMq28)F3%TtyS9tic?%J(@xLQP(of8m+2{)tuRy)=XBmuu~Nyl(w+al z7gHL@xsgF}m?TqMlL%@|1G=>)apeotmDVPUY5iCWN&=E!)zzLRVhQU?HXjv6Sy2u> zNJ|e&@%mh%l^%Z1rheJT!SrdpVOytLGc4!LDX@1={@9gNi=39Q%_L!3LMzpgqpR<+ zMr>q$TS_9eY|SmQ?!NRYilargkwiD}n_7tuon;b5US;=QA`D^^^BpS*)xIxzTT1nh zAMZa(z2G`?Xx1|J5YRH&TlC(IIZWWasoG48<=mhK)CB@e{ehy5wa(zfDh_e5F2Hhc zR&vdC0d2$$^pVi6-m(63Z4=7nVi15>%xxk)ZG|C9lFaN5WTy8jt-4*k+k5kC*>rb_ z-1O)eDNAN|FS2vAEwS_8VV|Kc=|JQCOC;!MTTz_M@j>LchU_q1z2o^{ByxL1k&Q8SwWF9Xd z5A92(*`s9Fe_72GonN$-)t2Ln%gT+dckl%$7oldm1YnwQpxR;op zNfp+ZYbxudc}r3K&uT6md?97{Ig-7!>ia^xMGdEz^CdCbss>$}*+z$Kf}CR1n?!w2 z)9Ab}%QL!PyoCk_#O-y#81h3uM$RUc-{?em8bWLRo#8c z40}VVvOCE9%E#0rxPH+&KhHCy^IB=MI-l+EHmmD^sY3{G8g9^H9~kFf%Vp?b$QcM( zT#=#Az zk!Ld#vfFn=Y;}~*0V}kc09p${3we}`of&MhTP02$R(wtd=I!55Q{IU3txf$jhtjX4 zW7I8(V%I7c!>x5p=^qj$&9!vE?^NqmQL^P)0O>}^0?I^u4~@}i|CHD)rpkH-G7w+= zKyJoKm9eT{+#`VL6Q#;%Hnf$wPjgZ}4##b*cp8R;YUm?K?NDI9&p80QLdp_HNpA9E2~n#|#OjtFaBZ zy9D6s)YW*kvSE8kFz%J5a*Z~=8ppbs*}f8jE$$)Q{*;iAyxj|s&|0k$miH>$7m9i92+0%Qk)nO1P|qgx_zAeLRJ3nHJ=URg7cz@TFFmHu+S-hW+3hc})5b@& zNlwG`&QCS^9_3r(qlEeiQLLxF4NtXec$$H^B_(d`M4shDcR}X0xx`CzDho4XL87%dwuR+X5^70A@uUuIwUxw4 zo75SIGry(4vMkovn$#g?1;p@pMm?G)zX|Q&-K^KC(oabPpf;W%?6wsNw(Lxp09)gk z1GoYLxmoJP`8$4)5i`SQC5BpD7Llb1MDl{&fut3e-Pnr|%WhpqWYw0X@R}qh`n*I` zi_0?f+cCuS(cOTl6_+Ex|3`w+Wdu;$h(trI$APcXHY3fS#9Ln6oV zs7_7;EUX%_7fEry3o{hGT^MpOLfEfTv_-vK3{sQ%en)=wfpo)(=2sS`cWa`wD*CPE zR}yLsMDfT@Wof^p--1l)V~LcOY?zSQ>ky~MFpOFwy8wCuK}^Zp9%NAZUjs@eWS!we z={b~cQ4&BeAgI1_5Uf(LiN28d@Jfv5M_T^2(-O*!uorPFhi+se4n_pKbUu>|@-U|I zwM0d8X&q2miMXteb+lX>AZsDSGfSAOF_-ToF1lI5@-6ETm9J2)Z59jhEh5+~(6fG& zsAy)<0XI!2E;F#(T4n*r?g(MCRH|k#|3%`WnMEsq^LV0iI`&n|EH>gSM0iZBu05oc z0;T;4P-haBFRx2XK16fdOf1AFh+rmN$>0kxyUNf8OtkV-e@{#v#QtD0u@R3Tf|+P3 z=chlAT5Q{YP=|-~8d%nI%7}qM_X( z)meU*Q#<9;kvKY|6W->};{Pp)kLojmc={y96%ZBtM^dnHQ~c=&vVQXn^M0n^V#(ZH z`aKvd_P>(Yrp%GzyI<%-AvNmkZuK9dIbW0%jBdspZ8^H3C=+D0O#2l{YEw>Fm&(yd z9fAoqII;ZKCHYM`p)X(bk+&rA6Z&8jb?lRUJki#zx|CIocO^aB_e&2d`9M_l0XHlAU;mZSb9GsDnLxIXq610E zDjm0?)48>Rd3;F4&@Uuq>iB-_NZ0NwQzMko?Y@>|PwJCwecK_?XZ9YWJ3GLCX zsW$iOA^Fo#N%qucTEdVWoV8beT%%30+QB65EW;#yyY^jQdzp^Kr4uwp(ZMvA(gh@? z%~vw$IsSzLE`1A2`kJp~pf6S>7n78ZY1*=a|1BX&-l>n08+ypnlD6r6)fUTi%StMn zN@&zkPj#ldjRuVaYT0u5xtP6v1xZ0uk+r)_+lPW65yTKkomQ4KscrnO$l9JOw$gor z{y^~UR0=q&lMpRY-=ZZQ;u6UFBJ}vu=o*5yt$7)YVK3FWQ(FXUV90i zWwj_-#wmlS^xhUF^Bal$qLO3~YF+ffJU3>OQu18Rw$hII`oYm=#a8K*vC;HnM6sL1 zXer;CEp$lUj7`jU3sG=XDgkD&S2Gf3!oq5{7S%Lm7H^ykrX(zOJ5lV&7-peeU+P+o zQkMI*Ve4^9sGTlEtxowC@ni-;MiDjyPm~15apNj|*h?3?>7vE@FsI?3%dmss{{ilHgD z{x@~wigDAYd9Md+JyYA2hu1FWlg6iWX)lti@G27JK?Z9R| zNm3P+7sgXX_9WlcPiL^UKS#wrO1*pRl0KZslN)K3DHDN#8F0F(~L$ zHx(I9bcLjI0P5(O69e2;lD^6Psbl@_7@>n)BkAf_9Oq@rY?(e^R*JbUbswa<6pilF zFK2`8Al#IHmsCfsAvAOyTeYC{MoDSEk`bk}lHo|ypu)FEx@YvKT|u`{z{TeRS zXP88>&A9TNTl7vzmAVzuH8pS8qQ(~=)^WF_qhAe3=cegV1iJkz7`(iDDb;CRa{#+f z(jB!D+OU55?ijA#97#o!Nw^o$tmJ;oGL(d0ZzlImdVwLgo(S`Aft6UvP15JtCUb66 zRZ3m+PWKvUHyX31TP00RCQMFERyx57|1sbSRS#CxW0zwt{?Nk;|0yY)*j$e?Yp4|R zFJ`0NBPojdbSStsK?GIn6GrWGYk{p=22WuM+sh`Oja{{ z)OT7-OpE{ZSxNQ@vdq_|?0B>I1Y3f2bP)ZPBs!|@rEDofD{Ay6FuyGQns? zQ?(n^xE2=AzLdO`ArI zq!HqS&CB!|h@Rv!Uy)*6^DAB8^HKY`Bh;}H^@@hyhOA;CQAJep6QzRY53af_Dk_Q^ zS0fa8-_`j|5TiD~6O}~mCFhUa{Jvd=mLn3hp*7svyU8}>pX< z<9F(b^-X^>>0`b!T97!gve96*s1@es6v;N+6m7U$vkm2}TZ^|6fnK*cYK`iXkrkax z(M7iAR$$GjSzUZ3vL(00Iz_GHG@;IA#qCjJ)C4(Fqc_;dcANlqjQR}Pj2hXJJ7B${ zzB@Ff&}GY=P-j%|mUTwX=%Di0xk8-+S7B^JanzK`lo)lgHx~`Nnz9sOKhD8yB#DcXnL&i z<{>;o6ten5B^^;~lwu_eW9c?JLJ}Xf`lQ6uikrRQS=@zYAbZo6P;Ca%$P${Emil7> zR_prn5SG55wBfW-e2vnfs$yuEC25FS<+F_8*TS>5Avz_Aj@miw5DlE$B*BfGT(=4> z$I>1>y0xCp6VW$R{n!JWJu4|_)NLCmu$C@aPi`>u2rW^R^fa1y>-EuZEM(?oN#e3J z^=eUX8D!dOxfbjyR zoTh}Bv+k9hQYKB9WN|nHIII(mmRX#QELMt;W05!yNbqYUlI2?_kribQ7a#|EcQ2Z1JMUdU!rhA$Smtmqa&TK>I{56rfP~u;jFwqEh%DTe01}S?3AZH_ zSmy9Ja&TKhiP_YM?oR>hB$aYCGk5tEsHk~^ zJY>$O3y`hyIdXCP>C9xo9C*J19&SHXV41_W$bs)P4Sa+?E2@X4>Ec$ut3I$CWpHns zUj>I7CI~St^u@TA%g`5ANyvNZ`=pW0sWp($lo4{&&Vsy}H}+WH<(S=vO0b#XspW|# zB-0}kvul#*Px>u-Hf`FZlc(MlV)aQWv;GW4tFKv2u%G=-MVqsndUaF_bt>wmg&?hB z__Jznm!a28$3+Pc8d%ixN|f1&)bZr7U1eGI16y>_VOH%MG;8+~$~1=*L*_(vtYwON zQ(^{PfDjyXW_GVaMb+7V2RTcST;Dg4o0)zX+$QCUwRrO2#pVi=3za{U%W9%k-n z2$Dj>BEZDV9VG!Wm&K7wMEt9BiSElwqR0p{?@g~qn7+LXR4&5I441369P(JwXl{P> zC(!-f1~h7JNS>^Xnr3|T%D0S7C+V%TuFTl3_UUvudt|Uw!xBb8UuY4Oq7bM9OWOoH zXdF(XOir8iiPNaG%xO#HWKK7HJJszo-j7^dqiukT8F6f|%wcSE97dTO#y7=b)OeZ0 zq~e=GUm*=?wV6UirhN)BP(mlQ>;|NrGy}!6AD!d@4Zv#kABx+F*n1k&0OT8rz%LZLlV@6Mc#%JIBUG|WJdD3 z19+)R_QJJ%;+v;WG?8|rO}7x>BVfNQY?U-?gc*P!m21iX7ev(W45-r$i9zy zF<}F9Ioga~UitcJwBNc6+X$AS&FEzyiETQ@cETcdkVKeEJ|>Nfc2gHi*hxt+eIp95Kj6doX^1zY zv8mttTY|1gH0`;IR1q^Enu5xicDhrEj+1$wW_Za=8h1x=$vM4618Nhd}^keGz8R?0Aq=qM;P^iRbBPS*9;MHa~){qCFya<)ukuW`15MopBbws zcDll)O@^%{!C0sFHlYjrhb|fnJNAOG!~4iCt*?}BvOlqq)f=4E5vC#l+KM5noIzV zL(pPOsZz}+ybBF{FJfLT5-+a0XRI9Jwn!4W9q?sT{#ve)b0Bv@B+pLyh6~zmouq4D z?F62wj+Cgf6M0ml1Uy?H&O^{PoYI7x8;Tf;BIZ-(E#!j~ow;r-aa}}}EEltMYj3ta z_%zPt$4KS9m`3@XdSk6vO;9G4rnCMI^K2oB;OOd^rxHWZ!R=(G3$THBU=Ga`Thv7; zYGGxBR7a7v8O#n2JzujPg{7mVH*}X!#k~sHpdGu3Y#AG583hT+im)2O7GPp(-sN`? zW_6szin~;um5vxbn_1AjIs;;~)M*kS z&3|mry=_G5bktz^j|e*pVccGn#`&CzN0CpT(4q1s|6o>q3Z%7{Rz5M2%FmyHVbW?Z z8?g`~xV=k#cuv-wuJw98Y=wH|LEhV>AogHg8C;}LThV%USSg&*r|vG)(yysj!yyn24RR#7oP11l*4M6S-BGwnM#qsn~6K z;ol^R?C4&kmw@l6;pYX^#7TM>W}VQN5vrS!CKIy_GhQcgL^JBRwaY|teQYk-jDXw_ zk?bAyD#3h*UG@fvrZ#bLfeR_(+J-i zk@c{O+||MkU;#Ej08cI}xnjGP9OlDKG-OAE7il?d&K)wCv;5^5@<*mL*>b)y^J zD{<01$3R@4B}R8(jV;eX%w34#0jts#EZMS!{w1-|1}v@o)B6&ag;B0GVA+Vp5aG2~ zS6XEmhHV~{*y!zLV)o4wqfb!2-ChFfGemK%>04B#NG~6miTooHFKz?RrvY_ciI^>m zKEYqpL)VsZDj!z*pHHMim85<4xh3%K`GL^=>{U}K61vE~5i z1x*o|>m<5!u_dq4w$sq(qe>>i$h{I>&B&Dq0dJ{1c~i8IW#on;Hb)Vh z@1=6t;NkK)Ka;LYW(gjl<$F3{S+$z_Etg zn?zKb)w;m99YJKj!}j7hS_jpiPQ#|lN=iAIB4mNCjiGPZh{{PQ_AD=MJFpXvB&Pp| zOnE2XINvDhO;|}Yqvt`(a`?;AUF?Q6ixNdG{ON#;k0D;eQL+{O05Sq0^-iKbsDvL3 zxp~VHA+LBfldsSzRD*v_Dz5h_3-rfBs16UIZS6iK!5&2z_bFNkq2tE0yY-8ixGp^s zIrbX<;HEB`H*d#h)Ik!8M_zRi6nhzU;sQMgoG*q?;4$=23CbgHsZ0+C&<8kmeN;Kw z>k@E;B!DYPO+{ZP`Bvj#M#nmjmLOW-kbwVD3)**~Ijz9qgx-r#_E{fL2*xg^c$`F$ zBaPP&5jOE8BG`$3%gqpWK?g98Kz2!b#lthdu~myHo+wfDc2y84)03hd3UvKff@f?9 zKShFb4V6xM3Noj5l+eZsv-g}P!ML+Aj5>kQ+0KxPd)`4>=)5ew=og;7;d-4dLA;&t zbqH=8Bt&)ci0O)ae2V7nq_{&ZOuB1e)R^2^OfM*CuP3L^Yew zXa^RU=A{zO%ae&FKY-(E^S?+?Z*vhtX1E-W9oqaxM4op# z>ADYfS@Rn=b`D~_AmTX|eVQ-~akE5H42PBBDTXRLh{(Xt5$LV<(R4i>Zm{MC zy-nh#ulAXk;YSm(rLg+!?pkycP`^i%7o}>YQn6fB z)glsVHAHcWL1pXdA=c$z5<8Cj3RTO8t0r9a2c_a#l4XOgJf3Q^Bl5D6ED<&pVcv2w ztyp2U_=v=etM7RfsW4Hm{*kENhB`Rfgf1lG?m!$jX|>#&$mD2LDHIE4^n6_6$3df3 zP|=x_F&vDZlwh34d9a50z|)cdHoqsp@1-z$J|_XWsXd@L$iEHXvq$PQQYPJ&YQx=p@1(Ll}PyOcjIO zE6iydiIes*P%Hn{--ym4`+}V~vV;-IMl6m9Z%wh5*RIlJGGiq&JlJ_bGG#!HzLfZ! zj`ifIrSU<~SqKU!h06|1X?zSyA!Pc+M5&6>1xgmE8$sL(9W-7S>CiwhzhPFBBv#sJ z0;p+!C1Ovb4r?@#anB)+&6RCWQWF|3zN17;Ye5sT|K-H$YLsr7O8{MqAf}Yh&~CtB z;fQTDwE-m)vf*_^XaS6_N$@l&N8+=@KU`>9R1(|Ak21j8(RhE(vuT zqS&vvEZAy>#7pxlK<#!FG5ZvCSbinrK1UokqADGB4{pTWC1RRinUD)EAXej1y48pR zXcB__MpT=-jYix{;$$|Wj@kY^BDFlq$3_IyN{Hf7=71VqRhP{LnH-yHUx}7B{Mn!} zDy$Dh=e0%|5jG5AJZCKO8W3Fpua1ysa+y4R;`D7d?jRbYeynp>a_t82)(tr5p9PAj*RGqn|c zV=}b`Bx+t&sJMFl&YayYES2Y#5--cg$}c7%*m1pqS-?Gd4pn~`R>S&U(g1_f@$ zr6t-Nveb9l`o0Ha%Lc=im0;RuCKq^Pdg!F{9h@j~FAS?034b5qAz@+12NPZ)4q*Yj z=Y>Rg8d_8$?1JxtaPGq?|6^66+FP=^%gPd8?!~EEnXb^R(qb~dcT1OKn9G-|Nk|?~ z(wVj--D6<5?V3_)Z9K6s52|U)dsrWCfK0YfEL9R^I^{-NblZawf*W8RNs;C;F7SU< z8ge&kv>G51ejmcQiUEiYP?>Dkli0HPz1}P$yZ%g6_eEXSnyVX|K&;8Llu4S+w?SN< zI`VVX3IB(^$i)+|Um%uqs7wz{9L%u4kwj3-p-jl7ml3mz(F#@$C4eqN5T_q)#acN_ zUk5TYXSdeXM@!T=lknPDhF)_vQT!ea!0WtW1d9Owgkat_=AQ@h#~F3LFVn><6}+DV zgT$s%4MwPyk3bf!ym+HlV`-a9(zspQlhuxJdn0$}t)#+QyPA-mGs$Q#VZE((6+o{d zh?5MjXu|rGxvj)X%a;Ik+ZjacKd8gXmt@>Ch+{8M`Dep#$=gd*d7S1OknE3(6Qts7 zZ&h4<`quaRa1-qyK{&zo{96K6t|fb{f(f?u>DdWg9ibdm6rh};yFkix9SHr22C)k5 z3NePFog}_&kq)|Mo#stuWSJ%v*QOjcXw*eiwKfbB)|5kpWf8_L?JpFo0grYK1YOOj z*DexK&SQOeIz!jy>eCf&znKz_t?9L&6aBGTP8f|X!S_{!Au1ZbDdG*zvb%vJRv!L92K zr`k{A&A~cN-*i*KiL3+8p^5K(((GId)+S`5e^TY%!{)bwwE+4MLG`>q?MU=H1yh>S zfReYR(1*-;kSOK%gH>RQk^m|ph*PSzEKRuWL%huFA&Hrm`iaQPZzO_gtiF{}xv}kt z<(!=!#!%ND_=aGHk4g-+oZZ5#e*}8OCb~kSi}oIdIWRN&uf#}8m;m+i9HO-s>aY?f8MiOuxa~SB zrCc_c*f6mdC1RR8nUK5wMXYv0=~mkbplJxIQ-Ub^N<&IIWSe`5(uyb@C;?~{1o8RD z>_$cucwM5y=~6vC2#OzlJ5jkAos`WPx>6{g0kHrEFd zCpNFwcv|@%l_RZ<73P2+ww{ex7ZKdv^c7vbSCh~K2UGf3qNGh1B;aum6StF4lQms% zLjQnJUaIv0-nl^a&7RiQj7I&R#FjHC-+*27eLWGMh`qvL zYPXEZD8n;#O-;6o^rAC#{O=^a?bE(fIuk&pA~!IXhT2V46cZh21||PNf4rQ8Sy*QL>d&0pu%$u+ddPm-7vkcyW*O z0+a*$f*O2|M19ujmMHWwh-UYz7E1|pUN}tRsJWkkxb;3_wh_9v<$j16jTmkp+CQ65 z(6edb>oeS-3rM6mYpNR#VClPw*}SNQyL#9$P#**5Lm+2>LhN2xqNXLKCS;K(h}Lr` z-O2z3&=(5l)38e48Li5`b7&vI^f@=>CC8EWOb=0XcL5O4(w zU`uvkdcTB3RkNfCIqPwvcOOc(EGdBIAgE4BPrKQAOE;vXL&pAxD1C*}ff9heMG$v~ zRz4@CACA9CZCY4B+O)u0yhcUXm3I-fA2A46-N6C;1%XVjy00eR(oaKYLbczQIxR}IHTh9@Z)jNsgE2zs_&v9d4M=ZN{ZX`402P6F~ ziw(JiL{m$@CE!Yr5zA}QpRDxT3B4Yn9?4M-l1n!tDFDyBg-D)^=CDb+pr;~~TQ66n z4e#_RfnGGCaER@`ti;u;p6AEd1}jJqy$uB5BPz&-wK6gmby(AE88;qroP@P%w+=I{4{Vr6|C4xWDVKqG zQT6ZJP_~tFA?6Om@M?0&dlSKMsV^i(+G?_e+2!BF=`oaVttLyTClJMYYK1c0cAiuF z@-sa?x0#2LyKg6TNG*1Y$e-0b>0$I1D|WlFk0F+W09}Trwt>-M!+eb{M5hC%KG`1* zA+qaBWUUO!EuwrsvEBkL#O;>L^w4cl!3rs>+fY)cwVQ>x{SK1&HwpC|qPPv} z*8e`{$Y}s2S7iPzLeGd&UFOzQwhUk2cH>9 zF#n+S`9tF85=0w2B;fL|Qkz__?t?L(Ua-avC-f$Sa(wQ}CxdHTnA}$qIgXymbTUs{ z$TC6s^i#xXsB}k-7Ciy=-b;i!9qCxnQ^uWzIB#R9;%0ucWp=|PcI?MqO3YeJ+*!k^ zgQnGuO{S&ojiIQKk?n}&Hp=vR3fcxN(L!)3-x zNQ}AVbIE+GRL7+ygx2x`Zl}emTw~ogwXG5n5r{h719>|0`tqD-_PO zJTR1zS0R$8hiWT&UOh`M(Of~I$u8}6As6_+Dq`J%8m--!k?^|^&f%EO9F>AjWOR&` zCAL}`AR>=mlNx?)?6_7M;Kr_tSk6(saICiEK@VO{BFeV$H{>OAEoy&WGF8oXaS9Pc zi^t|AzN>leMmPG?0gDr=XC86p$-IDL!PN>-m5yNq;CtSnc6p1mcb3nacZdi4tx^;$ zmU4-A6~B4YNqRKIE5jcaOTiq23w>Z0;?7I^ulzRQQXh+@=$L>}>VI}APG<_4Zhf(y z<$Yn7~!j^E>F2A+|J-)OiNA*YVDVR!zmb!~L3$ zpO0!fi704{d2QIsit5|7m4TAggz-|;Jzo*>oC1-zZ=PpMnRs;_j)DGZo}oiJ#}x%M z`=^Pn0erPzNcnscoTDjqsVwbwRXbe$ithIpO=6H z>Ii9_cLw@71FY+xToANB3)OW>*>>=)tWJGwBn; zY$;*5_oi}m=z<>oqZ2-9b@f$(E<@7Lul`8rPbD-*yR_Gt6oR&!2Q+^}U4D|(XL&%- z#IN}=iQhmH&$}|HWP-j{1V`J>Q?X=QNw6_ghC3hY#DZ{t&(EZ9s3d@=+kQJGC@R^T z-~Gz1`vr-pNt8L7s{P7p3%6=Hp4e6_i)KD0{A3Bwj@n+TsYzn8E1Auyi9rp>AUU1gqq zBndnhR}+5O+uv0_JVpZYhY1DLn?=7GjkIwca^m2ij-L}S(9cF3Vmh}y-_IGj|4uI#X=8DCK!^3s1buu| z*^iB;KBt7viGeC3HrL_xQ`X&dXPh754qb)}v<k&u?%PkM7=sndfwa^}h?32_;(JPhp$ZB_n zUZn=jmRTGa>BoK#WAC$|`Zlp>_wk=rZ z9;$}m=JOM zr7~f@)AK$R{ZT5)eyMr;?JrZwy`_?#P|exT{4W(~yAml(xP&{#`2lid34n zLzuS??(ql}o|O}-#y(`6)c^bgD!Zs;IIdf!9IOXi{tT7;M3U;2>6ef<0JZAjgKqH z!xDs9w`sSFq+h3^Cr1{!g=?72hi?H+f1Zl2EQ#k4D_dz(kBbL`#+-js@e3r$+>GkZ zr+q_XVx*$NpYNRyU*lnQrBB-qrsRB#>Al*g&$@lr`P z1U+II40Ri;{xPrAKRAY|qNb4#e}Vv4NU}W^#o#HypI@Sq)1}I>A?TT+k-=`$f4)a$ zKaVUMbiZ@oq_S5_Wxd)J+k@`6{?kQC&wE9IpA00Lx0XFi2^G#g(rS z;z&sa_f5KzESs+d?lr&a4W~<1^-5FM(Mmu30+k*m$>y%+-KCui9{N~V6(24Y=h{-| zQQN?2j^~HXA)Ifsg_EEVNoT%p^K%E5^6`9G=f z-4X?Mi%P9k-Sr)$icefi#lMwyaB|(WWO~PYspJQeV6GdL4D#be@1~-UOGUXIh(PH; zzl|sUoysm4QI;mz;TbBtmil;R7v{wpuduot zy+9i!!)f|+ZxZYq2^Q!W73g?z9rC_C)aOvAj!|jU@vw5aBO-N-4s=}lG8H~gDjd{f zw4mdo9|?A>WGh}hQq`yX;OH@5$`aDF7E53C{I+;&7}aW=`e7z zi!VJ~7O*`1H8RqDralRyZWH#clYf>l8=4q4sijBlw+`Gpw>Ft{yT;}qZ%h}14C9IK zNY$QZm83pcp$15GXy=r+TZ`0fV5;La1&brC!1~pi^*ZT#!mO4Q2Gw>uP17r?Vv|fw z(t;R$m9J(iRh5+b8t3~RLEj}e(;7_DsJ@V7t3jUjsR{yJrcro!@HS`&L0~x5%GyH0 zU1yws%~*>78i61tr)$BU&C%m~gtAF&eGd3f2)F8I1)#mj{Eh2pf%Zd?RX=CsIvNQI z^>f0HL%3BxEBIZ20HOUX&_xKc>gSA_C#a}tZaEU_=Y*e(a9#wg(5HOrIkYE^`grh2 zM9byW3+|T^G!81ByUEb>Xo4=32C^I?LT8HrFN$Cun#dwea-irW+BDXgru$5%oezX}e+zoZ{$HCBOZtR|j_4B7-U}t)VOZ2p+OcldP)Cb!V ztD8`=)sz6a6(Kx3QTNKI>r{-kJW3+O8a#X1pih*4eTUA%16*h-5%wd(cpjv^2+Kw~ zR^k+<_bpoa&37O=t7f1VvX^Ld!gUo!tbqs)Y8hICr-6Y&MY6qE2uDk%b+SZD3u`X$ zx;qia9Z;hc)*|6MA)LD>foPXfkm)ebQzf2k5U)us%pZ3qdPk#tt9weQ;}FGZrk~no z3zXs})E&;Xa8k@1PnS4yvgvV*l<1tyCi^FeEJxMZcgeIu_<=hG|kbTqI)FQS>tlw6z3C9KvrA|>1~ znX0!ja<%$KV;N&m23wS`zUiUY?SkcVCjD25G{;oWwGg)4G-6spEu49UKIH&b5Xgg^ z+5wZ$1_&m1wM0%Ey? zv&ItDhtMz<)d=vT2xiBx6mzs&l0qBZI!((ZW+=W@BI_+8Q*2N-%o%CgKcwQC2djXh zgD#suwfa9KW_hp(n+HwrtpH~VwEm#x&Ebm_>?8k_$gw7`@B6nM>A)2x5y2%;6X#Q* zA3LE-Ba~AdUZz&-X)4AVCcH;tsm%;TD$Qj7@v<=YYGyHKx{Vlw_Q;6Tb*nZZsf&fY&h{vRk z8l4nRuXy zCehQTUoP;snsL`5!MZ!NpI1~2C7HCs8*z=4Agk9iQRLofgHClut;j1H@M~h0n zSfoRtR->>>o-NVUMtT`q+=$4&jT3uo_>2I*hhVlX?~u*YD=+j!G1&GziLB-fF7Wzl zP30;yj%C|O_%#UUC`2bD=+z6l%QP5w_y(VgC8}IQZ*)Z1b1E}F5M!Mcg&e>`5Xjo- zk(OdA%ex}f`S*7D6m1-jVs>oEYkf`eR z1lZy#s&9?0X4_K+ZihgFUbwW+^sb6YFNB@D3DH{@wK(Wm!1WPm&4mV; zHbn0t)Z(CL0WU=$w^eJom`tZs^YSB?!NAQV|1OcVT*@Wj#_>e=E7Zz^D;-2i&9+{b zWsNsV8oh7M9YyT}H5a}`D(uNG=4$x@g#r7n^V=nemLjJF;L2*MSHYTCDY6sVg-~v@ zRI!kvW0-B_BHgiIoh9Y^-6@e}^Lr61O29X2L3Tat(bkJ(4Ml8#BDguycx&6;5?w8q zG9g!NP6QKZ8urR?;vs-q5yV<3=JPEv>P-|s{~Wm|Y1yca)}`&Q_*Uyl;P-YX@Mma% z`u?75u4bqiEve!CDfQ_W@e2@J9YC_H>T(_P8yl}VgwkUx?UfY-0 z@2CWr*0y>>LlIL^giO8??vP~iTQy5w6L4ph$X|xd-iW*{;tCYOvx=@_xs^^MnqOp@ z^|lggYsxL6zgOOUDC*;d6*_yCqC_&-%=dl=75-XMr7f)3pza!hu0;*j!iosH9$~zm zozx!xWm4ZsqSRLyXEHxFBohLDtq_^>P%@CQ zAQvEn7ftD*X*y_1w}totj~V?UG13-I0ae?BXnl(Tz*;nwaX%o=|F+v{&>EsDVTXII z)o9EM0HeEz(QR03%TNHh10n3&sbZ;D-&Mk5v1c0o4i)ZtSOs<-8{EmqT$YfyXnO{<@`sm*N~bDs`Vbp4jF>hej|fh( z=+qTu)3n9kic(8UjM)5M5EpQBio|Rd>fuC7V}=?TnL;EtT$?sru(6hvsA&zS1IDS4 zekw|~8V(?*BZTwUwzBr=klCytvC;BZ199RkqH{1hg_XY|<}k!? z!IwLxvz|mp>uWk-e%1eXR{%3IS$z#4dm)4;%Q@o?R;IIoL`Rz}n~-1CDDn(C1Xq>5 z7n?)oMv`o;syg7JT}ko{DA}qiKyF3|S5-a47|wmTs-q=3T2)QR^W8+~Ni?LjE+BxO zMi37?g-lO1*`}RtWmcO?thD46P@kz(@jldHC9g7W4&t~ot6Y%|o*O}LbBUSOnJvt5 zW#V-V%C|bRggPEk>``>s%givgk|=2&r33bvL458+_pm$)Aa^5#n}hFw&9?PgkI!%; zZY%NPQQ8~Z9oPq3iQ>5!IrzJ7IKD@r|Ac6cgFW>9D%hpZ9JiM^YH`p&9GN0!m!fPd z4kG3+h~cI@P&??sbS6l2w5HSnS0;(gi744>N`Rb#5DpIIjQ*5%ms(!?K()F(S<`}p z30XpAuN^4e3JwBjHiGy&Jk2%JiByg5d8Av8>Q}TT`~xC>w|rEM;g?HHIS20S3Wgdk z`B!Jju1>S$)l$h3!kIYz%${^T+P^ zGyPI3$==eDET=0SU+W=4^i1kQXRQR)Azg_ zEy3#5JnL_SctJWj;DuU^$f5UB(P5JCdQ=XZarbMe=v$IhHi-IeYBtUi>Im#75`Yb& z?h6f0wqA1=m3>$;2n$z5P2tzwN`OuYzyombh?H-|&fBPbRVvRNIVex2)EjDJb?WzK z3AS#dE<+1A=9Q>_Q)$M-6bn25e35@8>hOkAtP4VUk@Oep!eHtVPvj zZziQXNEP57lIhJPa@p_&t4Gxdv8wj+%1Y!@RJLGIuzfmD! zDGA}tHwtO}i^{j^Ncr-Tlk)9)vy*fwP&v^`H&@V|{j_hJ4*#buGt5>8$VW>GIm@Yw zFxR8I9#GYi)N-DaCuQAg=f1z4%XhW=)Cu&hB^;ZB4%X9U26X;2ylvzg6~^|F5Nr;z zhW-%2v#LpVmFmK!OT}C-9SrcH&4wN~yPb5f+ZZ&>yWw_JxyPHPh=${?aGx2cRA11zt3`ly8ikSife61koCm#Y za%pH3KUWF9baLi#i7BO_QOx7#e8?@K#)x4w-wW@U<{1uMn@?AU(?;54m)aaw%!S)Q zwz-6iIYt^=WMsH=V!?|Dxm;r;Eu68=5P9yQgd8pHcjO_2?utm#iy<`WqaLVr?nTZd zSWfy-%|jd3?WQ9MkeBorfRNa&ml9wnsY(VQ+@7)C$prX8(!d#6Iy|vczKlxlCW-b+ zhQ}3;JCI6#BW3y=0n+7SiH_`rEx7d|RDKnSgI+$YWY_Uj{*gxI!#e(`JY=lIoaJZo zt(mm`#N@SCEBR7+u4!9X(~cvknr27zZue#bPkS}UKa^gJ)=@rr7dA8{5H zJy4R$NgaJksRrB24nLgAPLss))XbyqhotEzQsFnH!aQnf_4E;Uol1xi5*2oPzXOLZ zcjUzc*g$Gx0}%S$jf&H|5+?%?I^BD!V-1xk@%&Ozsuj#gRyc_upGi76lBqi$=n@3I zo&Eanqw2qoq>Nilsqu^c@CPcohE&uWK6#RCrA$Q?w@MO*#g{dwcu>XEH6+8bQ>dbW zQ_MMx%8r-n%l)ie2ul77sghIbU<1l5Nbdv(~`!up@miP=cnpPElTg6|B@UK+W?(S(Z zF4y2^0*5tePxGb?euC^xH75$2q+ucg*KY9BTw9w&q}Lh@V`_JBY^5Ulo+f^sMy+aH z$iYuwt!v6?=o!w(rWP?9mM0w3cmwYYO1&!?UTgGwH@|JQA|cF+j<#u70~Y07C*IOn zdgm+DYrK~sI3&B6tO86nYl=yf+|IWH4h?f>;p&s#)2N|0F>Twhp{;vR#vMd5el=ZI zJDt-gY28AFN%I?zbvmb!gso9Rl>TryHr0$$%B1#<w?4Ku(T5OKJ%sPXqQuZk#=YCbSXzAVQZPrqn!n_+CvO%${M(w-7%ef)^?3{KYB9 z>R4y%bDBI=SqpKfD{M`kt~`zyS(k--5^<<2Y)hW%j7M9`x-8rz#A&+ZY0~3}v2@9} zClROlgO*V86f1#Nu>8SBv?78Nb!Kc4EZLL<}b+bsf0m!85ZKWM*wo!8)vVx!kI2wV1wy=ltr0@eYi9?$O{1}0Pwy=-#jB*$n#G%asE`UJowtoSeE zexnxSO_I9x;2Pm2vAk_Pz$}9p%?H$$6hGwh^}|E4DwYobWEeuUQOv%zcxxCrQr+ug5+nhf}URImii2or%YZ3iRIo|>OBo?`SLl0>sIn#m4*rG1{Q!ysUaJgjr*m6S^-#wbp^X zE-Pbkt91af8bUPx(l%`H7MX9bwB=tm;(J7BV~S&A%}ngX)|lb|?twt9Uy8eOQb^G1 zmm;hUVVb|uCLL=-&skXB@;Ahsix|yzj*UP^Ajq$dXU-{!G z@7L-^jFo4~xC0T#q2AIZ?e)41q1NpKfl3K}2g0?z!BKm(c0#1JH#iDC4bfV}6?b{P zh!88{im+D@W?lFau}N%01Y6zPwOQ=+($=rxSX(U)`!CRGPXqBga<{4XZ_JsR)le?v9f;JTB)mfR z3l_JcBtV9!hmK5cTCQY2Ubi1AuyQ3EF$)oT4eTfHevifN8rYEK5yG52FOpu$dmRy0 z+e@go5T(t+%m-cgjlC4Q7!L`diwU4M1Zmj>KF;?$Y(FcTK+IBz(c0X8)bBH7WVN}C z_!1Gi{P4z8ehRQ1?P|-n5S@t7e2TtH2P@P3fZ$U|$MPwFJc|&$72w^$yRf|73V^v6 zF`5p1ukb#swWR|wa}cA=?zp`56w%{v(+And5N6HpoX{r_s{5hjJrtjUgew* z2RX~L0J0!Lv^kvPG0&@zmNkcS0IxxyZZGR4&>7f0`0}P%J+ydlq`K zl_yB3a}lNM5gw%71ew`-1k`4T;;vb*kGg8VWIbg&0wLDO&3E71uoi@AenI1-^a}2W z2(tXb0sI7kTD|PIDfkK9gAiiXON1SYFfCG1?+{+!os1YOQpva}h|_8%zTEo*I+9f@ z5%x2}w2{z$^!Fw#ZHIO;BG`%{w<*nM3gpC!6U=(VsUGv0>}pl(JVzr z5Tnu7wTx3qtf-Q1KuwJZQ*J zdY%Y$Ej#vsPh5m@ToU#J>OV0l4@iCG#kTAt*ub<-oUzQOMKmNeaswYTyl7xF$t z^1$uIcOR84bY;Tl%7=bMDo;b8_4y?Ne1-#TYRzTZ)YaVCaC7R=pGou22p>MG1U+ zE*~vV<>*@cOr<4RE+>1X%T*4$k~+)o2l4=-pNrm1ee;SI(URci+#_4<7@MkQyZA(D zFfy^=y_8_%QS|NmDz_z(Y)vJy`BHG!kTvY9G%S#;(q+=E^ib!S-UiUE`>ds1`+m;~ z5}s``)ec$-^`!T`4!n(}I~$IDtfCcFjO%j+=sknky~fodtRsUu#`j$Zy`iGM_0xpO z4^yn91C{i>CGxhJW)Gxv{q7a!UO?&F_1QqyjXkX3fB{t?Sig!2#`e7iq@a|mnccY? zHMl}eik_d(lq>XndmtjW6or}tOLPSD-pl<{v92(q!Kve`;Kj4jOn0J{ZlB47!y^kl zgoMIHTm02th+u|jO25fOz7w;s!zE!GI1FhEEAY`tL*7x6yisxGIcj{YB(x=lPNYY#lpv+@Gbk$q;%Z^on%i1({7f%#Q@2si}pbF z)&nCupQ&`T)3aTMw`_;9x9x*XydWfa<2aPxmu^H)4<|apuM%wXi72`+zCxla=qr;^ z_?SM}MLjQL*n7%=$qjb+vN3i>xqXQ#>hS`>8oQ!&o(&7Vo`0(LmV)ka$+8st@2Am2 z%eXdnm@)usF=KqPnw&}Uf)tJgKA?spV^Ze|Ly$x`eKom@NF<2WlR%2fm&RtcytXyE!E&<3pUeJsKMoQ(HiKLzJz)s&F?BK{aKXm z3LVkX)6f9V50vP(Y@yAx$x8zzIt!v-MbWNRfM|ozV??cVUs3`M^9HJLtpYSuL0i!1 zy$ICtHtOh`Us5&bP_>}pJ=D-=L)ByzAEFA^Og-9Abl(+yS51J6eu4^Ca>a;D7hNFg z_nqUHpm@7Cp|yDHnv{88i}YZNqV`inj7aO6FFT}RjAe?mlw63hu33RgHvMi?JcVX! zmM%?#JZ*;HHWchyb`Y+yeEJw_l=*s$Mse}d;9AQ}$Ys>4bF^+3v@{D{kc67e<8t+e za34#@HsSMtr#&^3z05UzbTWa&$ybXTSjPkQhvg~cy};`?El z@Y^2?Uk-)$gS-COkHxQu;`?EE?UNr%Uj?Q2gS`H=kHxQ!;`>2f`_jkK*Fx$2Ag_Pq zWAVcWTD<9$BT&3+oxQQo`=5Ta&w*Tr7F06HF+jyvVtxZ;JtI-iPW{${AMIGz#;D7c z{=~0S_>GTsj6oe!`duI4%N{G+0+sdO6SQq`tYm9c()X^YAAn-%+oANnM_7Aw7>C09 zL0#KV!qg|CbXStt*qy8+Ppn`vDsZjd#88m!qBq_Bq=)5CLHT_TgT^^07QZu!?|ai~ zhn!gWt^+DOJmJK`cSGTQ_Z$6m6HDI{rT4?^`oSg^zt2F5H_kM%`2A75YjvZsQ%dKU zSW6PM^t}c2GfXT!jnez>ncDFp7T%7+`yLjob49G66BSJC^AIB*C1N#sRMYn+(2o(Z z^b$&UEfX|$Bm4LeYp9@xzIQX@;8KlxSysSjmN` zq+iyuPWG^li&01at!2++E<+`KAD69jJY0(_22_E0fQJ=ag$nvUX4(gLSi?1_q3?~2 z$8}i8-%&^3YhfSLVGTE;hQ7xTIGw{PZb21&uY`Rnhc(=e8u~s0X-9Hc_?;-c?|s2K zi^B@;Mg@HzBxsjR@R^;Z--pus?xuK`DC?MmI{NNJaD^zVcnDSWJr5}Bw}-O$M^Sv= z+d#iLl%@Y0rT5)G?bYS~pz!`s509TP^=AfDx^`VCOaCuQ?|bHMUKGmmUqtzR4?Xq; zp{(H*)X?{)wb$NXN8x>MS`u!qjlYG```)FDOF`K(?+&bZ?KV&r{{f2c``U_h11M|x z7`3e7T0hX<%kh^Eueq8&b{<6Aw6!nL8^*v(M?+ZFp{A@|nv|t|Mb*xTOmHzjLTxZN zK6vjl;0p0mD_8Vrr5Zl9?mqD9^($Ff^KnYE`4M)vfmf@YYhkS?qSk!}UMt?)%F0hc z<$Di~ayeEp59s{ph%?g7pRjl_6)H?|FCcW0#6IOmUDj$SO8~4Am-t*>)UgJ(! z)_Vc!-EZI0bBb90*jJp*k7kr$AF>!^qrky@-fp}AHsE1~oI@4VKJ&%4gj8e)T; z+Xl(kNS-!COpVh-fg~;djHiPwyzg6gOheO~in%d7#7dZBD|1A!NgXV^%DHrZE)czLL4uWr~!`J#34{qf7QFS8D z=+K;RrRY0OHBl%Q)L~7d>I!apDsBtcBH}Zz4cM!T#E>kvrYZR*8bKt{t4x{uYsCW?Sn=hu#VQDi|I|%iqJxum2 zc1u(|2uW8V(^E~hRjn|+4eB0*-lQ@gIu~ZdkFltE5L%h`ftX|QcvKr}*`~QjO_#FJ zJz{Ni0a!*Y;}{j6gbW5DjP%e~wcw604xBrp-a#< z6{eFcZ7F4P6LPfq?j%pLbFMo>F*cS_W(=4j#~gQer4p71_knoSdHl`D{>H%>j*s5qM^0nHPu`@~k}XrflJiCh=B(HI_n08wXEf`f8w zt&C|c=bjvpqFHLPlIpZl2Uuz6INromqm($TGh4JytTn(~vX?GhG+eV_nkUv8peIJ7 zK858v4Rin)DAp2M3^fiDRYeoU8tLOGO{SA2y3jV0NOrX+N_1Vz$l&HKcDZh)-dxBU zJl&&A-3QJM-82>CdRw{=LEXE?=?SrHE}Q!BxuDXj#gIDE%|yrw*h_QHB;3mPm=LX3P^)*wv=9Jb>6Qwde zj$=)v-as;)gG8o-+JsmX%W3*|zNq#v8lB>8q|z}+ROsk?HJi-QmXk!aMo)2=k?B1o zGFXvmcDZP#5g(%N!E%m#a&{(B=}N1uAoOfQyYcD=r~IEFnONUO`Vgk_N$RaV2}&Cb zpZE+J3|63~?|+#@+KQH6qW-~37WldZAn*+m$P7}a@Cb-z_t5ed1s-`c#B}aL#-d zS9Fb;PrQZ9#%df>oh6k*nCiq^Hj1INqt;5P1Z~kZO}PxV%CuPhG=|FAbnAUKxH6na z$>mU8tWRr-H@#{YK0r8yf6!a6B{veQw<79`wJ#->K6(_dRLoW?loEhlR~babzS4qv zc*kzg)lqT0g@PCsuH=iwYDYpc^jfHPzznU9f>LBFw`T=I4@bot#c|+#vXCv+XtGH! z))~QN1PRoFORTkGU6|&iQ#BpBs~Y-RR0WJc6Due;snQX2Mk?hHbYji$nkA5|Br0l_ znK8%5jj{b=4bsi4uM|^R&f61oj@xYWF-T%?Y*3}wIxE$LwRXS7Tvl(b<8M8e)mv-& z+oAec^M+R6NZW)0q!rJ-6}U)vQK#9BXTngNY; zG$k-bp50LQptzfw9Olerqdn)M>Y6#=?1QRfWhzZuyqGf;?~jTHWu))OB)jN_@+*>JOso!!XjS)HhMP@0;j`zczQHMHkZd#npunyqxc z*p*54WX%a>36;m%V%n_oQqt^Q71TQ@S%kml)@FC_E+mj`b|MmE?$F{B@Rz-ciLQ*f zO}`hJ#JVb``6lp|A8Yh3pB3v4Mhb&!3^IXwuq*7y*ynBegPnXSWey+jh7$Al1bjfuI75*I+ z##%#dTtj*bo-XD~Wl-mhs591wlg2t}ty>l1{SQXxzGd)Kj&i8HeehIz?TEF!6II6g zXji6{mZIs1catcsH^=&D=ZVp}^R6t{*`M!IbdCNT>!V!^HI5!VM=69JJzz@dlU<=$ z%jL3$>pg^x5^Eo8oNBh(M^GO{Wdl~dbheyLb>uSU-ll(}##noi<5Uk1%>M_q#ToRxKYW-i5rgf@Vb_yhE{c46U-PyHXRJ@I@6>C}_TbZMS zy`t1Y2aB~t8ees-P)>Gbave3cb>g*_>Cld-LVola4CG~9=Lp|Nz##f3NW*%|~G}|DkP8G}LR54@T+cFeY$2!{7T&+_@ za~IGs)Ea9+s7b9gy28v1=L^g=#nx8Dg;DV!IClqi;v(JEU?$#+q3%Jjws2$I5_3gy zK0_Z?%@3PPqvBX=Zq4}@-9`l03NMSA2cex=Gt_zo)IA98taMw>y)r5u9CNEf8Ajw> z4K)u!Ib<3BqR`yKoADPt-IW)D_0041PE6W&cHA`)4MyJxiZHl z3(DoKlq+IjDoDa}I;n!bB9xW^V-$%#QjsqUGG*N z)3@M-X0tG5V16%WeoFt$VRdk`oo{s-4d@fMU?A716y)M6D#d*qC~6oMY0lvyEM@T* z*{i8mLU=GU1enfj*PB|NlMueZ5nkH2vP#Zap;HM)4#fCNoN@okamuxNqm_qS0l?NZ zd1@0Oe3c^{*SF{a0_@ET!ZERbBvbYcM{YtT_TS*_U(&zyuvVfSOmPt3Z*jiI_sw^# z-f5O$aX+jlgne0B$oV$s-@n|j+YL4&YJ9)T`Su@e1mC>eZ%iur0cU+|-zvf8pw_9v znmakCMBIPGxxcJ$?h~+<8PB5BRPqzfIqHhi==kCVu6)UXt3A|RpCtUxvV?$^ z9HM`R^h?oc!1V~aL;i~M?_dArR-T#@P5=MPIrr~3z!|*3!2S1}d;bB_;|}x1ZP=?8 zs#1UA2q*OInSf9eYuvel{>lN4N&p}`|KyW@=Un?&J1oeD)u~O`Mi`2_|K!|X-nYy? z_fVku59i%~iv&Z)(F*K^El(;7E=e&jXs}*W0?`F~<;G~@y(Q-zHE4*AHR0Y;UQ|~- zs?Fv|{r5OvWfrV})&s$I88NOvo2tcu?K$KABMe9k%|{~`rjgcn;GFw!^nf#7BUsSe z)15f${%aAOo&c*+C&OH}Zi~J)*eVu-C9~c2Wb&WO*in=E#_LxwO;nToS z9|}cQJzpSoFeIN9MvM7!wGrg4N!(|UI~xuqLx7_ptFULp3AQ&A!n25=4~Zg!wG?&< zj)BfAws(8JM3FXfmC9;bbSXk~^l_-#=ZRCAHw2JXJ4zWi>Rn<<$ zy=foFR#et&)%3-2A1c*}4#V}OAVzgyq*u?Q`{Bj26vVZOTv@ezVFYJ!*q1NXm#&BM z?K-8EZ#ec#rGTevr{of=-GP-}!l-5~;?OZ(M&kQI10Ujhjac>^*72_O3iu$&LPvP-%*@xzm>*g8}jX!X2v+A zh?i%^IOHM6amM}noj6rPQ}7bbHL8OdWw%PJT@5u|fpTpwJ8`xb|%F|v# zb>}=`EawrkS^$F4CPq5?+?`6qBiV4cdb_KPZyb_kxY@CRN14a(^-1XLzoqPpC6 z2cT%2&%(i_HrW!j;L(mbZ*Hgns}P1YH_NOvp*E1DBJVKB;o?NS;o`nG-=#wWwW8EGMoN2>Yr(1+vd4Oka8kO8 z4%DZ`9%U>za6l_R9p)nrLM*p*PO=O`&VNMi4=awsL? z+`w^CR(*lPE%Pppl+yZ8=jALnmF7l{k+KPxgbg)vB8ot6${xfihVAk}4wBL?hBXsZ zoR4s%i_^6;9uj8q*Et*Vt*L6&flaVQZ()emo_>s@M<%@J1UCQc?{5#|lSPoYSH>ri z2`}^6Z5pdRaSlKmkVKB%&D{71ghbpM`LYp6q~}NQrdzG2@Un+__M>|e{Sbd*qE~-Bp!Hw&V`2G<2vW`kr zS1XD)&6U*ZRXCkrQ^1dryRN<{gGaH(=gK8TB=k=?+o;}g9NT);J9$Er`RAN@)I>=S z=5Sulm~uV|iT+E@yZHDwB5KJ~@Uh~p ztNhLM8pA2JrXp%VQY=sIwj}N=jB6{R797SSz)9Q6#z|s-C9>E3HaTy(f|Ph)!+A&f zS5LV&z(Vz)Uq#$s!?{OQjd<>G^9wd4noVENnMXy6c;;O0H*waxM>=pYOnK-EaNTR6 zX;ZQW2S$IUIjzp*t=K+l`GTnH>)0^@+(k*O>yaaitVh^NH|(9Z1$&fy8xY$Yctai) zK)9sA30|F=+?hda-^JNRHK37fAN({m>`k5MG{p@_g7ENYP1 z8>I+~$dygYgmDC7=xu4#=*bG8)d}|d6aS;L>(vW8J4hJ2L>vx&8 z*)06ufi9Ke7>*KIZ+fFR@`M25emv)%q71S_L(EU)%#(}G+~;J@J-O(ucCewIL_Z}{ z<{`&CElcK;at8%Tegt=K8G~z({^PK9QIW zZ5zWYkW}yMg0)mxPf1d|78HVo_n?z*` z{BMWz_^Jda0t2aWQ9E*129 z95g#iR>Nw2YLIA5p-*!(em-teBeu%p)p|K-Vo90L3>45{y=OTfKglg|2?4NC>F6=+ zIgZGe5cP}5YW%M`O8RJKuIaz!P<&;3zXgh@;eX&*eCJ=^SP?b*&m1hhrC5#r+aOR_ zO@5xE@RMZvRh+2?|7##XhMGHTBQ&D=NRcm+>bpdy8oN11;$1a~G+K~Zt?p9jwY;aL z^;-Cew)(fjOa0!;iD6Ff15SDuh40>uV>X<}v!Kdtr<%|E9Rw2b1ISocCeQEm;EZ>n zhuD6Yv+Y}8NFW*n{wU|nGm!BDhm&Zeh+B~_>zeUHkK~$ zUBfXI&c-qx`+#{w4f!sP9M^-7MyAC_d7Ll{##E%qdpH1}h_TQl9*|RVf(-`5`!k$3 z&s*5?ZcoVtF2w!*47qE|XNddfICnn0vy`2<>vnyJv+uVql1G6TYX0(NKmaD9J_BPKF_t5SyHJw!C! z_>Xh;iRuL;QVkY*GCg;!%&=Sv5C4F6Pjj&Eaqc`@80%i-w-^Y=3YAc+{}gA=7v9-1 zm(7SK{?iwjDExJ&`x^(~6R)-f&{;p94eMgP3M>8fYWOeC znlC@^Ej6&N)@w=&rRjcFn|1#C?4^_L;b*KIB&o?qH%HFl7Cdg07UiX05#uWPR=gCc zk<4{r8;;axf5+38+{QuLn#1`fi5hTnAsj52FOTI5qb-OWnyu$?3_eZlY1?TIN7|#) zu8#o#_LJeP4Gm&P4w0xB0mKAujn<2?Gsj5Ma+e&Z0c}Re4huQ+J_o~O-|z@x5wZg>cZ#^6F8PRFV_3L70FQ-;ity9coSpCv$`(;T8`x zhLEDE=M>I5Nq5y_Epmh!z-b&HNdp&j>ow+QaOO$6N&#~(?ix}-_V5Asy5%H zH8)ptq`0*RQ31k?q!;Sd9IDS`H`QX1(08g0c^45`cyR!x7v(z6JxLZ+a?i(=6y{@ zbN)$cI`B8rFVM3(mzg^l`qxVUn~x5mVn^;@p$;k_Gq4a)D(TzRCd- zc|L4z%a2lCRErRgaP~=hGkyStiw0Tp_!}G|NeTu|6JyJ!zQtK5k)BvbWc0qBIRwk+ zeV0QdscuRsOxe62aFisCF`$@pc|YR(lQ=5yhk-=10N49zj`|bMK1oxiu*a&VHv>Q8 z7zqvG7a_0jM5gHa3yzXdQRqo{yOO4;Uvc(HvPht)8uW`Grn0Q<|8j&RO&TCH3wp!z zd(Jt@Y8E(au*w4IpE&PCQa2%p7B!9km2*zgd*Evs|IQgFX-*C<5H<`{_!gG2Jjao~0wC`sp?3L{2=Ff|%pZ?HWFNvyG`q2>-8BgxoV zDF~i(oQG2@i{TXXP8_Pw4rOVoR;a>uGLz|dMegAdL!bSniKFN`xjc4_wMeylYSF!; zgz_GQ#{Gqyd!G@O4$U*fsT}9bj}!~d?%+Ld#s+dRX*jgib-!NA-(ja=L+_F7Z{icT zqZI_i<4)8at$+D0><#%G9K~e0qg7!M+OD`Xg84&u&Xe_yRxAE|M=KTM%ZSw1wh2o# zZ}TN~-Q?9-`UyT^dZ{xZt zJ#jpbEx>Va@|JG`JC9$>6KhsaDG|B~HYOKZl=;w1av_I`ON-kU3YW@>Jd1{QF-ME* zve=?&^Dm^qOF2*$#Udar#Y|{Ljuw}svM$zC&@dCs7>9}5|78m!miSbl6BC?IN^oTk z7aPPZy>P4}j~*kO3df0?WU?+6;BZsbIau5tWLq%k2VyT!w^wsOSoLv^)fo&{70y^5 zZ_2&*WU!4KD{kMTtqx6BZWG?+950J-Sck6rL_L`DBB(1kR2DuDP{H_+aIWS!S@=BS zaG!rQ2g{;RF#HY95TruAZeTdUAti+KMvjw3D}v`z>Q;I)2g;%qAs}w1w{Wz$Jaw;X zWoqrO;}CJV%U%!>t^C`vMTuy1-@#GRG`dl(;JZ0Y8kHf;C>*paZ;K(9elJH!(}%@2 zmOI${IY?ZJrI+=MZQh46#xS*YH)o4sY~ya>7-?c=WZQNd$4OJ^O>Np893qWxncJ8< zIY^oY%^Mp<)Rs?iurwWEKXuS7cVLMf%pZmt>w7s|+@x5qdc)ey`!eURx0erc{%L#} z!Th`2SM0fW%+`Xpey8jfcO zx(vklQIt;0MZ`5qJ$dtN1fe{JC@dQhH;}PF^79cbrme@h%GcPaJW69hMq;!H>y(QH zSZ1xS$)G|$$x-7@K(H^NL~RELkrU$gIAUCX&mOS|r%GTk{bUHCJ;l*3%tWjH92jio zZNM2Td2L4>K|jr*&(9Qk3>KinmQUtM&v4+lp`5*jIn=X*f`W~GW4hlw$DuCCM4kTp z11ykgH0a!Fp;JBP{F=jGnk_s`4#x@bTP{F0RxLAC|A9lrCG+ha2quE?01AW8{+UB& z6a4@(x{CgdqsASJ*;hfMYUlGDGn+Wzcr&Cz!<@Dq^o# zSi%e2KzLtca}F3c?CK2&4T*9r6b1CHI7YgbOSX}QmU$bF7B>^pyF?N#)FRK}NO4`t z-blulcpgWI8-(>n;f}sz))2fE+Bs_o9(@;bh;)HII_fUsQ0Y86HrnpV(bDy%0WB)Z z?#;2%)t<=cx-UmcZLWx@dH{!t%gOexLQ&E5U=Fl*TxZ9bgz>!J@4odh82cRwGug`6 zFK!zo9H0SThleqosc&9UP~{K?8J7sOL}Kg}`MW?tSVp2}t@ z@Mk%A_MWvdRN@CXXm+8Y=*T4zq~FhTwCqB9xVicw2g|T%b$M?K740h=EiRAJpSzZv z@xz<)2onPQ8V8J9cGM?ec@mEG(PGfoIbL>Q-C5s}ml{*?zRBUTa}}o3$Yd0s1i&SB$H(*0?-+=46`?84OC=a(EYJ8vyRS5>cxzZooCE!0>2 z9f!*V+B8Cd7QZgzD6?nyiBP_621Hpxc!*~01V(iR*pLwBi<>%+FKIa=IQSAUTV zbP3liI-!PlTMn6B2OA*qsChPYn>!PrHMwq^Ty;JN&9E+dB@H$F3pi%>+6@n1cHyAe zwfk^NUb!l-nf|!$n4bGsJF_jkOy+a?Aoe^JdKDn`XUaNUA=&j=;1IT)!M3I4wzlUX*$I+ zTxX=*!0y zt`eS5IGuxK=PCfEC-~3gXxUY9&}8E>O_S#g77p$$*WlK0xa`t1a3W-_XiCqV&r##{ zT-bH?;g%MyXcuvixW!SHAmOa?B^)JgNxMCY?u7*olYz!Ulb$6Gl0jK&3hCDUc}t!l^io}eV$zq@-ai>`fE5=`fW042lw->-=wy61OtW&izbtoYNdAZmXUp5T8DJJI6^MZu#uZJ2^~x z7YNT~zGomHp;YSoI7oUwgM6)?BmMwK$-pdZhV;XOfZ;QvALTIVhcS^eqPKFi^cEVc zh8D7Yf}^DO=<%Yy`stG#Bz?FsP3qpofzl8Cq9=3j;c)3qRIV2E%-m-^d_;V*NX^i?Q475p#SN?$7DMDxEmQu^3ro?xD}fi2!iUnt|m^5z^V zeM=agP~M7zq_0b+iR5iKQ2IuSt;3tcQPR72#5DChj+Nf&%+u35a;WtE6+SJ!GlxlU zBQ_nqkfWsc>+r0>A`X&8Q9^TydkzF8Jng(UM@c_oF-$k_%W={tGW;EmZ1(5?j+Va5 z;GwaM)4>A-W66^t4wgO$c_jAMrgr5(p}r1W7oJimD&2T31x*;0;^IZFEGkT2mlWiT+|r5mSlnDk*c za>>RS9PNO(4K5oS4%{FGd;8^%hwXm|JNvi3LfhGYge8w*SaDRIq{|J0RUX7|Tb*Cr zIc*T#1DRBQp<@G<1V|?`UwJ~3CdxG%TE>{3Fe~&>|_CFa8h{Tw&+xX z(=$ns1t^Gq!fv;Zh9VQCjt}w!u;M+Z3{(T@11u$YpT{?kepGIK^n9 zUI}LR$ZKE3MY(ujqOfo_%+X_a{3|U)-%ZMJIE)>}!HWYcdPMj-lFLvSs0=Jpyo5^- zcU)+yR(%*V?!i)K^1l%dKR6=*Jmfj5b$Nvd$#5)}VQ?yFG{b&)!c4*=`q5hNYAJ^w zT$duMy;{bF7+e@?g)OjRM$yBqHFu4AL%q4_^!8u%t!L^H03R6s2 z!$ldmLU?F6e-lW-Bg92qiUCH5HViw9c~(a+;X*V9)>3-D5p_6#A9LL^36ysPBAT7 z_bB>+j8Nb!j0&{w+V>@ZAFSX8G(A~#B?_S@i>xD5KN5^q;I_sptS;C9TXyAEXzE*E z!)34@;q@bfGv#P^OcD5NIJkXH^8Cxf?S>}`RalxkZYuxlxd?bC@GzY@T&xsYEvGdM zwYCl0ot@^eHoWSm{1b(mQU7n^_}0y4KltkkaHwoEKME(sIB;(PWPT?hMjIUBzqmjH zsTQ6<1_}O~OJLo#>qjM3P{am@jvK5N;GUw5S~#5MQp6tam@p&`H|mwC$B@8L37cVQB!BPLqBk4rK(h-l$yBPwWofQzwVfMQt3 zjt_IWCI&B;A%uLC3u2w?Pv9}}k>pk`%s^T>&uL5nABJskz^?y6&tCqwotk;K}0Vlk;E%tQJc{eU53-dYIEUaD+a8ZPcfA zSFwLF3YAK+QkQqlkn8>yrO=a7)|0IXM1T!LnjQWy!|I^Q<;LXFvR%df5tW(*Em0}uVt>%IZUL9*bglEEv456voE zjKK#n(+I831sS|P_&}}6#Ta~@W#hHZrjUXS+ct732AD(jI;V!w+vQx2!FLSJgSacW zD1)yqrm@`BT#&*0DI3zgnoD857$Y)DT^9nF91?!%}kux3K4UDgIWZ@7#=K(0s?b-uDF>;Xk(^JoBF++q#FR zUFptno36pwLwVGiN1Q_1TY=moHFpQo+71SDE$l zA;BtCjMIsKq|)wXO0!;ZV+j|bw)>1~vyPM2;9i&-8`JaY4BXAn9RBL6gl(4i3dR}O8xKik&DP~n}Lp=0oO z4xV{UZiXw>KRIaTl?p-iO7$O(YMt(|)pJZY@C8?~-l%n!)EeGf%Fv@XxaB4kB~kLANx{tea zXzP4lpT1}AMZS;=ka>^8Q#22JDf|9d5XyMLairw{bsW^n}z>#kABq_vkr7=@NpCu zW>BGk^$cIiu?JNhc?a?39DGnsPqU`?O^@TygVK4c9cp`)aO}*701Wgb4tlh8A`Z@J zDm3$j%D6My)TdOJ16yS-$G(5Bu?(lziMT|-MP}Jg#S&?gI@T)>Dv8h|lI|-}4mP`E zpZHEDOQGb}p^ecpQ)h7-TQBxYsFKk_yEp--Ue!C{<^8L;F!mufnNDEAu$~M(m&;(i zU?-tMO69`%802^~!(71SukacNuD22ABaHsGX{XbxyuDS;C#v`SAUc z)OTFZg|c41o6u6?V86T*+Sb|Tk_;8>oRyUv0l_0 zxG2_}of5_vPZVQks>{V0bjb6?3H7P2-DHx4yH;=Il1$Ew2gmlXuIFM6Is|&AGIg|W z;L=RZjFNiwx8B7ivp#$@T@8!xcHPM3nxP=XdS5qjQ7)euxVi-;V$CGxjcjJ$!qc$m2~?i6Dp>k_CH*x8FC~X^^8@@ z`mr5%b8!YeRQ3!f4o!em0-RZ|4V6F5MVg_$BVD8li-}4&LeymXESG798oD-|2TbR_ z=i7DDK@$&f$p)RF^bN?93ZLh~40^$(s3p42I z-phf%&PB4`$d=Sr+;hLlrLf-{QOEl?w0Q9Zuu~>+?Ds|xtMKFvJ&c^S`3{P%&Dz*6 z+qHv>n5OwY0<&ov`!u{QxEF6GI-`(Vg`+@qRsWD%&VJ6UPZ8F^r6lD^&C);S@YXw_ zuq<$KOMa<;bIW<<_QdJ*P__1O-qS$kFkbwha(w&bT)+5r+?i2swIFxO?C|p$6vP*z zR;h47e#r%~pM>aBBduz^-k!*t4D%Z<#=s1N_c1~@p*dbQ80L3e5c@R&mimaOn}6ic z=UNXjEujr{@-H0LdXJrLoiv&J|2VGw5;)7^!bb4uI{1$n5Fobh{hJGrc`%NtbDLca zEt0-nE^`CK*0n9T07u$7JluU&ZggOx8}6ginwYJDsnVISUR9$q3^g(<6)d%>(QvoL z!e|`}>yB9h=!j0nToi(JGS(+is-+Hs=60+M&5LoKdpTvp>@44;$jTcLq?nRLaB&mX-yOwp<(qf7iOSA zu2`>hsx=&b71wD&?l3Nh_54JVdIMpkSZL?Rn)NDNY7K#<7COx2NG_1|Ks<>+rBx|4DOm&AI7S0YKE>k3&=t)499G7Qu$ zaekwspTxXu6Nu2!TiF#{1nXf*B1_aOx&Wth0S4NYpKuD38&0k$uQKWA3YPdfTR{^MLC>t!;@Od}Rnc4|yH zE*E7+lmjY>nDVW1i3Y2j=&VD7i(oqTlyx6;%B5tt#8ZMLd z8nYBKMUJ^&&*iaR(wR!09z*Xpak&OM;`4IBh7tIGZ7NAvC-=WMjUS(x2qA40P_sGf#L( zeHRyFCi*P?fR=@od$>Fs2RU^esKwhSNEg%LFfu&A{tOpvprhK5V1{w_{am7%R8{nF z`*U2dfu?CZRq>(jLtGH+O%^HYd;Ey^%Uq~|E`{*4gUb%0mO?ztMVbkNwd;+%K1=v0 z7i1>daYN;LY|}_G$usbeZz@SxkK#!#$v|gi*h-o2aRCO}e#h0Br?@NwP2};)@-&xV zpgjm!4P#m_^b8kcpp#UF%K9u9VW2ChdMs6Xj*Bx;jTnN)uV-8Y7A=0uMOcxjC)aZ+ z#~%=B_E@J@q?Mp=Xir}~-5s*Us@0oSeFfZ~fuFK`bY)+hLTe_^K<<$XM*oJAYYRrL zmtB+Cy}%-th(3?7Y>BA#T|Rcubgl%P8q=(56Pf=)Y<i!^<2HF)U5BcQh#JhZSgFZCP_Z9P+Mr*N-Z z9pUBkW(q&T*>~jl)=f}f<&XCHow*3s9i+ZQh;;phGbTY)4Olc|5=2#mJ-Gzd+ccZ7 zRIjc_@4bPY(llCc(-f>i&DA-?KeBP$7e&_^N9%2xmT(cx;{gcFn#at+VRL4!-lExe(U18%lp|YT3t?N_@j|t#9~pZDN44&F z*`j*ezBJ<=&2g+%t!kc~VcrJkTLDPK}p1a(M z9Nc;pW1rwA&pVmJA7&d?T5$4maU#5O=M>@un5WmSoa2u(A}6(ch(D^?cvL{NvGM)H=Jg*gDbs48;Z*)hn}>s?jP9; zQE@in%UU(BaAfP0w>`2KZF*>-&SkM~!26cPq>LsP;0SBqN3*ut_B&1Z_KXXhMgfn zLPx1xy-5VA6>8OxAg|_vSSN7$H_d3dR;+hIC$PV6Mnx#ro6Ta~8PlTQ8@UJb3m3t9g--vz==B(k&C_k0LK0&ubqANkeu&a{JK^ah+*sYo zg|JUeBo)FOu|LH{v0kE{*hdV3``%3{gF-P++a8YJN zCoHCZi3>9LfMyJ>U*(cmXNlmvBsg7UO6xp70{oPbt#y{j;}z;OuMr55Bie7E^xBBl zI!j~?7%`Il7DBU;to2$rd-!?-GedBl%(&CeI~9jrTJ>#iLhHS?_F{N7yr(qZ<3wD;#Bw^?pr`Xn&bUFF22e7Q%E*xy40<`JhRNAXl% zfb;F(Frko=oN^o#r0gly$^k=KnXg~t81=9_U zN<V9P$4hU&ax0G^GU&yUGUsum^nM9Q-~$G<9XZ-r>AeNr zl1}jC#oL(!rY{~G6bgIkn{ateC>}55Xs4wvo{ts^D2q5&`j!p)VWSneaI-wAoRvm? zvL}bjplAZFQQx3>|K1!cZr;!?dWAb*c~R~3Xtpm$J|(pQVYh1qnpCZb2XLVD6&!$| zHE8G+{9ulhzKsJUaLYCsepC`U^^&M}WXj^Gd{C3Xi2 zPKFW3(HtasOtcwkyo>`T_r2H=#xa>AMU5TaGd1jFpLz==KPZf8}kTZHHSDku_+=)2Ip~0v8Vg$~*$NltU$VWWQ8~o_~?!B)5;T$3MmqlKWX?PruAjlJ}&j z^^fS`S2)nIi5(iw2-Z6pbIs z$4K5XMvp`;=P)UXVjh89!7-9|{Ji8g^R25nNb)M;gP2_G)f^~!?DBxb2)0E zgyc>}w}a>aZ{z^UbL3V7!Z&loB+ZcRv%%NgO6NAoeU7!RVbV z0$R?2;x>W$Itky5xjYcSe*-ests?lGmt4}6cq#`?SGr1}I%)!1nLSXmWdb^j1I6Zh z0(I#Zj7l})lzSCANKF&kDvlOAuIPydt6?Mj{ag-}iwP9vYC%pr7I%Rt^KM|EtPMG` z*T|2QrQPaaiB-1j4Q7FG6+L8ug_oMzBCe{x?a^R?@>G9TUZ>rkOj z=Pcg}EcH^yHNHY7BUfH-68U=M&&nOwbj4zLaTE^JnUq&}5zq|?qzBNr`6GK2ysp01 zYSdf7{1M^3i{oWcDtTl%q1?z(vMANzrHE49#PPByl|1^KO7%gGl0~VGh$_`bvd1eq zjrPQba*M9}n+#d)V;nE8F}Lx>QnTKucY+xXQsc)tOk8u<2TZ7L-99j&kmCMlU_c=c zyqg21^>cACz26@p1AUsK#I>h32CB5$)lkz-P@m;car=U8psJlpyPSvPs!Mq~*j(LH zN|+CD%(zu!HkeHZ)Aacbuv=WtSQ6OhIau8COdBwqUvo~c`9ZqaZ^nH#K*Q<^5EmI5hL(V>F_t9e?YI%N~IY7v5f0{W!$fJJF0h0Qwp@sP+ z=N^}NinDK2%kmoz5w|QQ4x(p^@;ic(H3%OeQi1-1aBPHl zuC;dJ$`vdRFT%}TPHSDTZikRxz!!|hIzk^M^~b4jHF+?EC(JE5W?X(pV0%uIq*qW_+WirSElLx(& zV`dx{Ta&>V3WWG_j+nJ>CrjAoXmRm4jv9C1Xab9htAQaKqv0;$xEY5gfy*s>5=YM1 zn;<61-ECysG&*;T+Md0;UVKnj&;t4 zd~2#&bzrSc(c34g`S&U=P247vKI)Zm%yTY>iyh6|k9mr0taAa!idzNWN72H8e=SFf zO|;vW3I`gRz49C?BYPRgG@~3Yqmr?)jKiTaDw%N%Gr{3v6Z-Zx^L8u29&i}L_^Ex( zi0e3ZMzw&Cn`#^@qgoK|<*nyPvGXzZ8a0fQ+8ivSeh=MzX&4`E;D{OZn>|E6F1n0E zW?M)$9(pB5%qXGY71BHox{AYQR3Z5I=T#glqmahNJ+I|Zu`}fMH6k?Lc>@QETc_1W zQ)e3IbU9i^*5bY3YdO|vHoYY;N7_4DzmGEno}op30leu?~o-OX|(j{f*r0iim!*2eT_AYYj6A!F$~nq$vvj1UqaK1lhz>`L8@u;w(5BOxC^UkJ8G@YP zkXahDS+4{W$Aq_zs1^lE?Z!Y!&}GKa-=LA1(t}LTg5kUyto9tZONiq!!C!*!eFcwyq4o+ zp~lG8@2wm!3kNZ@de?KLxJ;+5!Az~)4IC;9W3g85T^uJaqiS0u-n!k$fwIt@sa3m) zLuFDX7Ir_#f#Qa2*2*)rVjtmHSvUl1y*|cqvapk>)%rMx%0hj{*6MbS6}LZ`uKV_z zp+mn5L)|-pfwE3JZhvy*UEvzTPoYHGvh28>9FaWvaF)cq7rC?HY}^4~(Fn9GUt8Zu z5chGF#-;OMYD~GiyK)`q^miLIoyMi}#Mhz3!8x4eAAzN=)wpzC3|FpK68SI4pXoKO zhQwlcsR7zZQL9(Was@P@{U4&~8G^Wtr#4XdPFdcoMlk>2FmZ_%TbO#4oF-JJe{-<7 zIhj7dI<@kca$-9bZL_J&HQ1WyjE%`lhzMp24ilFQiz`%=FKo>r;sQn-1k%Djuq|gF zm*eck-fa8193*bTiv@_u=JPp9Qcam`y@0ciJ5(pQ+Srf&`+XQf-|%Hx=!-j4CtwhY zeyjZJsWrxj0b@M?#zl;tym=TT@sC6l76#*5Zwn+Z7#5o2%59tk_Y#ED<6w4J^87l& z8sS)R@u{zJZGhwSgA5Fz9m~<;La#kqtzN^9kmegFaImO z4FV(N4J$ZCT*R^}2iMl=93?LJ_C_&T|4a@N*GBaQ;pI4oL+lwduLKvE`~G?7Q4kdG zfC*xyk9}zTrz{-m%SQ;;#4;O{5?Uo1Z5YB@fCv|b?;5)rIU*Iq=@7wMX z7WoqA9oMlitIFeTu*6q6`?vvHEPIm$9^w2Gi*L~UH#qx!;xrHUI+bg|V(j@>K>+yB z1}y-@UG5coeY+o3i0RG1R1XBPVNZw^4le%F!e}vHt~P?2N(i?g0t*OnIj30ZgW3db z9=@oR<~GFAyF#(u6JPM9^;)|C>mi%xmD>}m{HI=*OT>D_a)OClD%l+zEw=gd`NpHc zTUwd!Y++z)|*(ixKh~Sl?k@bTPzMPt4OnCtN(wv#NmMDynz2`a|< zh{WPX+zc$$*B0ouP>DnHsx@5TuHG(6m=__Y9zWt{XZi+gb%HDN2=5Y(7dybQQ>RzJ zs_d;3Sb>AZ2FJd@m?}#gExV$H^*BCAut|9>4e8P4V6m;4l^#vrSmi*molje!u=W~* zz=5ks!ZD?oLE<{{-ZjB~8~Tqupn;wP3rv-fd|XF9_LgCd={#Ju zs*UL5I`Xl6d4o)1?}!MjL5}m49w=Trr3~!}XJ@|tHUp4aumqey7IKidG;@4O!X;Rg zDf5uzdvfNBV|s}jnuP{z6$^%v_x=Dp@b~(B?co;R59g6neymd~s!NfH-Jfu>b9O*_ zLwow_>26&9!WU||P%7mCJP*r&!~hKTv4UIF;8;x9MLtn41^EjC`l|`(04Dud0q+Zj zgTLX7T&D*8?BUUZOt}05Pt^V}tdNhbgJvGX%L3M`iE~f~k?BWq*}YZ=`P~bae24R( ziE=xi*8pzi>-u>uw?+sL*GVy-KnPaLlb53km+|7MqgpvW$;-h8Q|0_~N!|SeKz&~0TzzeT zyWtL?KCXRxkECul4b*wsw_lUgxz_`AFO9n6>jKVaz8k35Y1AdJ52$Z=3aHD@R%Koz zsY`wd)VFKY+a>j%e*x;Y=cwO)Mp8fXS)iVAmP*~_4FPT&si$hx-6VDMUjVhO;hrR^ zU%Lya^R;i^B&oMO2GoCR)Q?H(#h(M}jT-eXNxkXkK&@)HpOw@t{|waUH0m!T_2%ya zb$^Yz{TqYw{^DVv-lpMpBz4bk0d-gH+p8q?>kk5TTKo1*l6v@0fO@|6?TwQ9#{UKC z4>juCHwRLEeEw#$+zVEzHabjF57`r_2d!4AM@s6=rvUZK=c?3OB=xT=fx6FmD)r}* zy3InMKC0pVQc}OU4^XEx+_U~GkohIM0QGk5+i^)f{Y60CY>kThen~wCalfg3dxxa{ z^gy6KrQv>7Qm@L*_c)Ng9Kx<^v~HU!i|H0qWA9pIk2 z9H@6_C3>f%UWA@Aq~WfANAT^}ws^rTckhB~qmHCL@MHM)nM+h^S5nVD2)R-mHG}zJ!xzBcDaW84M{!jkMQlk^6IyzzcY~eie2E_<3?5LTH?W2-<>C^D-*EQV7B=sr8U9NrmxTJ2q15lsUtpB8>{_o#`^Q0!#d)^z^ z_qY;#`_VDg`ahA>TQ&goE8{BlXOeo@`9S@bqf!reU%>hC)j)kjqaG}&r=APcpJ>z} zN&UqHQ2(Gwb*Q9H;6atk~;iBpypjw=6fZz{wknum{6(rN$M}I z2kNWKD)m80UH^8VzDJ{eK~k^04yYxK`Xxy%-vZRfHL1QTssD31P`A>gdPGvsoC4}k zG#h1Tn*IoHR`t|_3y6)>OmUyyOR3;Hv@I9R-#`@>eO3+dXz@} zjifHc68%S$`GF4xo^$2RFrYgZmTbsg?(ZbEvJ+4*YpB%SKNNhsd{3b6vtFfMEU7mw z1nTFtZ*P#)*Y60_3pMI3lKQRJ0Cj6vBr2u)(T4-vTR#TW%QcyQ5~5zAQ4jox{_UL_ z^@tGlK8<=wi25UqS`JZvp;6l*>hCq`pF-5LE?3L@f}3@j*J{+cA*!QM7lx=cjryt( z^#P6gs}ObWD^#g=_^2+`i!|!(A?gP->f<5m{TlU;KK1%tXKgkM|97BEhJI3eZL^Q* z0z9Kp=Y*)g)~Jg@)W2!e3q#ZcAPFPguPmvZ+2DS+)m7^MN$Mx}0Rf-7My2j`OCa-2 z`@pvqt;!rMsb9JtsJl+7->#R`2VMZw(>2`ROX~Nx2kIiNLT!C(fP2X0Ks^U0US)~S zmDCka0rh#UypE(U`94s;qfuWisV`d$)Jd&GACT0Ct^n$_8t(m)x@K>no~wQPJxTrM zg+M(R^3YP|IUf&7blC!+x>|YnlGMM?1M09wJy=rbUjx)HYf`;ZQoBom`kt1G+xKqjivt+ zaNhohK;8NZRpwb4s7t08JtqdpO$PHNOM@6>T0*QghUs84BBCq#W#qn>q_&iQRu zswFChs2|d(wGj0-jXD*geoCXh^llw@`Bf_JpF-3pH0sfx(!bsMYW3Uo_vq9=Yt&mq z)V;O1@pOoKibnloh5y*J=Y zcZTA{v6A|Pqy`s0O6t>+O4mc-)rgYnekR~dN50~v8IpSOX9H?*N|2;pC8@Mm8qX|| z)a~vIz74i{N$T#BO4~ee!;++~lvG;FjcfWP^(slF^^dr?RZ?$})L`YCq&_LBG`EQB zT_kny`vaM2q6a72B=s0c4JJY)b-APllLP^^<6Z^L?`g9--OZb=_B19*FFXyCrSdt> zdcyPWb}-30j+c+Z=4N={y?0=D3pgDeQq|9$zQwH9PP;d^Ab0dj@$Vlz08&4!JpY>V z{Bh;^6Uy_?D9=BuJby}g{zK*YW6JYyD$gHPo_}3={*dzgi^}uwDbK&JJbzMo{vGA{ z{mSzPl;@vQo_}6>euwh>lgjg7E6;zUJikkMez)@cY32EkmFK@zp8rmH{;cx+=gRYY zl;@vToE}_+y&=soOZW;5WTiL zx7C;^*ESAU>UewGba#jRYS{ME5~l&3)vRyCjQl}YPrGl}Zq}^s*52uY)7>ps5S!Oc zkG^iYI~%581Y2;-siEMniM!po0ONn|&VxU?b40d3r!v?|th$?acO$6`Uv0OFw%g>+ z!i#GKss`omDay0ptSOk(tK~u<-LnrV)r+k|{29bTvT0tj@u7>Wpd*JQ+(=5&L? z2^9Ar@EZC7po_8uDm0sgDXB{j?!^d)KLD4{5-ynTWsrv;B>n*8%Jfb#f*M>aj7}cm z?t@-VZV|Xb3h#rdyHceACytQ!wd+ITuW5JoCFp(f0sh;2HKq3jd=OFqf%hGr+WR!V z7ZApa~onW zID^}qo`u^8iLqfs@da;p5*3X;L7! zT!^khCJYDwxFUH;aSO8W75W!6QD=aYY$^Wm{|gXHGk_4x!5=1sKdj7vCs{@j-MtmY z!}J3}pOn}T#BoIBJC2(7^nx}{DZ3ml5QsNkxcf9v{sU_`W6Jm9{@cwo$rx8 zg#-FS2Q--5L^l*35;(;L#`2X4?Lxji)o@Hh*MK-&Xwl-=623{1wa^*@6AsaXY4?jb zf}Nv1!$0LW*k+ubr2qmGJo6ginPzth3eaci&^tBpsf6wk7{2ibN^`EsatZK83NY#e zJQ!f0az(k^tI>c=gXWQ~J!lP*6qB&VRkfmc<{R>cbHR}Fz>wNwe3Dl`MsuE-(wr(k zbg5|(t!|9t^eNET*-qvAd%^Q~rc+Qg?R(-ktyg6a4ya;n%6U zJ7MPJTIxfA=KdZ#s`vxyOw}5zyn}JM$j_)G5B5(8i$4H6o{b-SR>Zn%@?qbm?q3la ze*k(-CjQ&5tG*im-GzQDJ;-yJRLy6xP|IU@CI!PEL-@zEyV+Xs)!D({^iO&ZebhWq zv<#0bpuhqD{G#wrbABxWWAaTONuaoAVwAxjC_$+)ljdcku){CkN0 zhJ9RTfd_6!uXvBVzr+XVhvu0G+d}H#0uWsB3E_(AJVfU$yiq2h*IG|Sq(k>{G@4MPR9&hFS*+CIZmxD7j)5w}#VdZdezEs_h@Sgn!za!JJ1#Jh zf~P7Yw5vJ)WvdOdaMLad0``4c*f&*AD@p;>QgD2M?S2;RjXzMtQi^86fIi|qTPsu< zj2p4c?vKy`d<%qiok|ZSXROevv|)EM9E#;^R9wNM40#ma8C;w--q}nHp6l$;AyTyq zkwQ+pC=R&9uY^ma>itHdP~|sL1-@IusEt2R(1{doVZ<2moZ?_%F;&F(3rcOXp_!F`jS=6st4a!8aDpAY*I`Q7Cj`%6j?rU*5kA!z#wgUZiz0yew-e^i z#Qy`CgU&d^7P#)e(e(HOg}XF^3LhX#!^5M%>{wQJTPSISep6+%{4#a|A*lGiaq+Ql z_Fv&@k{u0{;9*{JLBpSuW~go!Y}!RB!1B8Y%a^l<(BiyOAVPMp!WJEWpnRhl*j@ri zRx1W(t!^aUpfk)HCJV=RdKLj=Mf07{izlxENqQYzSw5e$C-Y*`x5 z!$OUyoO9@1p3O5+S$?$K7PA2aGlYLmyT8U|MB6G)yg%q|j2Gr5M3!Si;u`=9H1M=T zg{P&rPQY5an-HAJ>djE^si~R zc{)~q@rVCk07+H-0}#O;jPmjfs(-+h?4gM7PGd#E9}qlM_17Up^;d!3jzIVWK&c!| z2a-8J73`e|hCcw7ruq}l5tZ`@Re$jWn77gdWq+qbzSU_o=+tS^l@!syrw#>F(YJu$ za08|UcZ+^O(im$D9qH8XoeRe}W6cnvfzzHUoOZ+D)Pu3#*8r16$l*SOZh${f=thb- z6Nxk8Q`Slmyv~ScCU*roOkgYdnrCXXM>bl5yX9itNTCOgG#_)4i~K?i8D5c8IJzth zfWoIrjrhn0-ol+wKyaru!ksS9#GQCKD5z@=#ow8BQ5N@3bSeCSqPMefDUPH#l|qzm zMRKf0w+bw0&>z|+RdZJknmhW}wEGl}WVaN5`2PivRLxxgBG`keFBPUv)!PlYQgf$> z@4f(g9{2--r)utW2+`cBKwBaZ{s2&_c&h`+=1v8hjbQi#U}>5=;yI#n&ZC=oHV5XZ zatGi~PBZThRjCUqDjq%`@`uXw92PNO3eL8GJ_(V$r#d6__EfpE2;qbv;Ffjamg~|) zpa=}%q+B@y+kG_}7k{9LX>w-<^bvXnkwr{j1jA@lzFR}n3k&!!$UJ4Ls1LWYgeJ_q zCw}r|Ax4_H`orLFDMYG-I1^&pMOZNPWx~{{65@=zXJn<|0?&OO8x;Hj^QK9NYlvW2 zLJBO3MRTXnqP|+C8q?Xbl^?CwD}tM-&aEMQ;@k3h?5oZ#YY*{n1?TT6CDSH z1zWx*3tNV{3tOsBr(MKzzk;^JA1F|&M5Csjpm*Z6G6vwUAu#>`aH=ey8CYp`4B%f! zaQp%A^HX$*H0+Twtm{TU3S5{p{A%ICniK$=YGo$i@_Acu*wB>ieYg^6K6{Rj^zYG~ zQ?1MlGZY?;_~6mg!lTo=m!ZTkpb8^TyNK#ufK3qoK*>@~4u|;%uB~~PCYvY1S`-0) zK!i)uIhn?u{LFh2xEdAuI&?LoaZ{}x1QoEkvzA!cp%6~ z`uSDh);n+lJ`1rx=T0>f$~X%DMiIcjZx{ZZ*46w1s+}L<;yML-2Y~DT2HQ#efx@Mk z31wv?bNi5i#R>BhXmPWC(~U}DbDBSGErK{~Xp^&_^9x|=Ibdq}4F8nhpn+3uXj7R9 z+ae~|_A|n^X=8M#bi%B`Lr4Yzn%l+Ni$74Bv~?)pEz}8sLDULJ9_+OUi$4IH)`tV$ z0jw6W0n+sSNohdQU1Bh64qw^|nKM%EdgO_hblHBEY25VdTR4!|q(|v(zrE zaT6|#u;9W!%fN*hcXDCvsVJtq5sisIpw%?FF^%_#_t#pXV-M=5WJ~QuRAZ{quEs52 zAA{~sqvNgh@MyxSL-jG}DIpDJ{b81=yK59Vpa|h5QxrDU9+Vhig-~Gq-wErdn)Hsr z;eMc$j}+tHgC2oDP~2*Y@lu2oA>UXF_;@&sw2b>(^b_AanH!<$v~U|iu#!srO-=$w zJ*@=K*iL=q|3x352b`8BArJx=fME6Kh1FAqwGeNzwDL?~xi_M9@dt{MD*2$W4%!XT zU?~(2^d!Hk`kSo6DIKgG@MyG6f1G&5`T?o=bzSfQs~6b*cRo6nOuQmx2{MIz6S zd_&0LF2PY2{y?GEr-*WqI3qxTzKlQZ7tVj8GThmqiXH|@H9%2?las;lH1Hm8D)?6z z_jcd}dgd2GPG_ac8ySUyb<`jNc*jn{J5r6gjR?#ul%l&gW1PSr@P;&bBZeIE0u^%s z8XtAe^_!|oq;gaemJ~067MPxBe%N>fH_PoBMJ7rhrouFJmncTqX%~e8m)J|VL}u|+ zkw0ieBIFPXKnXbs$rlWRPzmmy=qqTRC?llGtE+s2Y!vesWsH9V zrkQt!&jM$XM0y^G8L&f7Nwpd%Qbw7p%NaE& z0Y=C};CbL5Sa|m!^ba(MS@G30eO8sL9ECIYK$0I#jz<63MfDGbN`yd8$q_x|+`$M6 zo8X0u93@<2{a|2N6QdN4ByfL*PJ%yB)^!;a4p2r&^D22W9x;69114*sMJF$Q$z87l4?3NePSu$C@6q(131C(91R8pmnm zOK|Qdo`DLd!PdkPJ@5w{Ck(v`{0FQR>$KYSDl8c*IYVP`O?{yaHvmC4cd`w3-p}sk z?*1!)*Xh7?BnSUGpp{!nTysl-Yi^n33IgVO2`Hc;78HbK59;;7V!yFW4YBX*T%Ub7MMug1t)tSgvvP56UpB`Qg4==CLjiy_sS4#yWuZ%cU$Id zWIEIPI8ZQ_@})hoC+Zu9+7pVkhc?uk>wJ^%8b$6dJf*%N2OrA9=FYT38CNP`j(GFg5<-yF+o^|Ie zRbK(7ys;@7E>9Q+IFil~7(tbw_}4?J_Y zmttil1Pci5 z?*d8Si^F?4Yi?G8@_kO zr#$AnMZeJ9?L6^u4nNMp$GPBR0FP{sP>aIMKJSU3@S4>ZM$)?reQ2pS=@UowF1GJa z(9tZ`p}=+QeUOnCm`L3PzSHGSk{>`JkLV5M7sBW31MR>G-5va5`EcY7r}hR>LITc? zdv++prEfr~Q?HBE?iKPt>-V7elNkP(^Z!mgTAnS-zv$_oNeq1i4MDnr%sM$lnUX3x5N z^?I$l*J?j(2}Ze<$SAkW>*JBvozz=*qxD(`7B0)$>uhX0aKj>q1UD3RV0P7$XdjC= zyZfGq>_!wl9gsWOW0+g!GXzCN4mZffy=-P>42Bmqh^HV?oBDpv#zv)FEVn7fK+N`J z+qdOdyxZM(6}|?YH;*N?yeE4ssRkfRkj^T0AL)TZ^gnVMQa4}@k+RAA#za;Y(WTj` z!QGhStcLHv3Edse5ijd?_SoKbZaPCgyRkyK0`?6Dvqf>QbQhiD4Efm0h=DG`{t>+r zvL|+3bM!BvGxwd?qtJT+L$M6-V{D`K=G=WB@-a5x2gI_I{_Y9%L1Ywa!CxH90?(bv ziCam z`{u%Jv3n`W10Fg`^>#aW5;`G&a9vce} z?O}XtCv5#7!df+r%VObZ0OL1YVY_P$m%x1parm2{Y`KkNT**NL6#y_m z-RTQ7Ks64WBEDT*#KBsH+IdUB!Q%J3$l)IDp8|M zeL_!zJ8(jGhjYctxi!Jdpw$sWbu^%j$Y}gsGDuSp`)BZV%ut?e2!0 z4Q~7rOPK>JKrcgju=_$}YxG%Duro=E;Vy7jcW>mUdg|ep@_8Pqu-Xq(g;%%-A@?5cX9~|IFwenqA%V&@~OELgKj6-lk0Tz!tIDsZ6*WjNxAcQG3nuvh*i&VBp z>^t4PmJXUOA5gK!MzG>aHK^#{DZ%8pL>b@%0~ zlp+9=yiyF9Bmv}MF@GtaOKd2fsj7yQJrew#Q{2&AhK_FXz~c;G4-NoY&fp+viP$=CUS9!1J zPV~8896H!kZ~X6dK*1eCkpm@#PmMW2^QVi&kOk{LPPDe#px8pQFz|%j;jvn^HNP2hSlH3{a=}G>lxmEtBQ1pI8@QYWgLuwH<@ADC!vM`bkNf}QC z@F`crDtotC49!rXRz%y2tWw1r5DaZ7wuR)i!rdGCSN?{^P8(P!;VF8Qo; z$U1kjWDROFt^@G(p?mt`Y8?i6&c*^>0Ryq0YFTudtdkGNwQA)M2v0N=* zhFYO1Qk)s_wyFDp1rAng2THMizkA@yfVEg1fGMFfpzksX3l+R1x?qh;F@#92lM(+> zE);6q5(d49&|*rW_>82!VGbSh@_rrHLxbxg|CliFay$9a&Hd`^i*UTKt6M{e=n8LY zCVdu4DGE8QuIKz$Jdh@W#MbKL`zwiGD}5ZlG?NGvUw6;2Lkg;)mkieHR=C=_mmzRp z74ir>Ik4J6%1f<_?iC2eE1+e`WL?Tp-NOnZ>R!;OD|OGkhDz2?ty-i;M;y^nd+iVI zW;LOW-pc!{yVXfSDq<(oXVWge53TNdK@6y|yC_;i)^L4-7&GE)?u{s`!ctq}h3_3Q z+9_ACw&h1F_2N1)*X=(W63^iF$;)sc6Mo#CccS-k?nL?+I}rPZg*G7wj!=l3MIp2V zPqbKGazqA1%#%PoCh>Ol6D47Ccafhok>L*WC#~Ew?|u!-&_tr+Xh3J}0qx0)X3e*fNg zegqZN%cLW|XXI3eaX*62XYvs>N}EI*@iPok-@H$`x|Ud@krCS^^^mO|XWl|0u`| z->I3lh|g$Nl@LP$x{qMFBLvbG6h&~Rg}>hJ@m3p`GmD)f)9!ahq5QOzi^$Vr5_bt+ zijJi{j8zHvHl$mfxnK$9eo~ZM8!g$1haGm3W~f*xv>@)0kn_TiyYp7V8dMTBx0GH4 zfwlCE9bBhY9-G1rsTi8mvLiy=(Lm|$xW;=ucP3@G@O8jFxo<@+hFS;-wAwmn3bIx0 z;sl7`6?K7$)Lj6v91>~x0c5AV4*>ea{-Mh?>~9vGAxM!;)JwjK=dNhCU$>;2u7o7!|OQyxFodz zD=)$6)bl0W&#Oo`_R+w_UGuY0p4=kIvvI< zc3{S7QmNPkxkJ+l6JYw+f2LM#Ex%-Kn8nyJf?QJ#A_)O*BOi3P!QQhVLdkd+IHIoT zB`Xw*4mJhEeJk&;?p900W8iyAGL5w$u?V3b`jkU(cQpy#fo-FqFd zt=l-gOt`bI&@8vW^*qq+)JNUzmMSj*%vs5bD7F=pFM}mwy65?*yT`oI-CgY9!OwHL zpHjP*&|f+&2XCjxB$MzL`JlVanwFDWN<=8Mw$RqzA%!B_Rjhmd2;Rfm$w=$&B(xp+ z1SCip7{S(K>*huKut)cd7OgfLS-@x+~%0wU7hP(VlhZ&{}lg#{tQ@$D$+E zoHll-VX<&|d;(AVBKyq?Kkm*uL%ax!fyIjespgcdOi6u*0AFCa&tntDn-tsTF<>_W z|B^wT%Hhs>2zbv~suDnM+a82utyeTp@GX$JA=s;%gzVH3gmc-tqZ!=Uh+q!v>OulL z5E;USZss6!J(#OA{dP>%IPT6zj!Fz)YT1pFdKN*N;<4}ALfD;FSxuuM3%x(6Z#52*cz1zHHKd((@NH;bUQy?*IOUX%=CqR`Hv$lVk#SJ*cAFq&&S zW1UJKh897p!+$6iS-oZqI_C4SW3D}iu>kbVS9#z2%dNCIqd4pPynNtk7jdA6o`*6) z#h7wDLAfEfqG8RyG6gy-E(R1anA3*LcD>GgThC5d88aNkt?4G zboUkLfV6$W;1}vjLOtqAJ|n*6LJ56OLMo$s4Wd{WGBVaEcxWl#DDW6;=w;+lo9=57 zDb{c{7}6xLagfFrw3f?PyC~Ef5z4|sJImTNR#;EXA^dmRy~u@%x;g%{yZN#uXJbX& zfxRkTgBtfPK!Z1i*&B|-7Um7SsgEIVxh41*q3jX+PIr%$l10v+*YcMC(x`eb zj#`?k6{_XpPzxFoA7-xpusio8@ltLTy#(Sb2O0Rfz(b2D-vJk%z`u$UPH`QjJxKCh zqsZM|SHp+Y(_V!i=9c;&0?eLV-tk5Uu1|qEJ;{5H_N+T+`B`gn!7IRJAI^npE-Y|w zRO(YWmiP2KpFQu+r+Nwt+=EwvZP`ovk!E)?(z-h>!B0*KeFEH-KA3Mh7$V@3Dwx88z)r*a$ri1_ z73*Cq71$Zys(Pi_-}3G50q1yZUrg4eJi%m(mh4t&8LZD2gi>a|e4$_^2HyOPN2LUf zjqjj4n~B|>SBa1C{D`2LAjP;Pf5!RKhtx^q@T!>68F zuqzjh`Zu15w-kSLw_Jt&cXY}5L9_+!jlloKo9;U?cKT88Anhe3ROS4cTs@q*@58Tq z2CdySwq9MzDe=nvAoAfsN*-N-LSq0TN2K_a)8mtSGqQ*aMZ0NIK*W(DhGMgOD{^45 z=Y`s56kcFgLJ&*Dr?=y$#z3>T_PJknFUI6#jB)Qo7LgG}XJZT)LXvxkO;qTR=b)fM z{Wu`1H`bsWRBus4T;c3jZ^8Mq$hn`8u#Z-BufkKs_Pd^5?QtJO*3ng8o`Zr?D^)s2 zGKXuu`w+70Rk`=nq!ZQGo7$80+WiW$GFN2XpRi}D*J1Y&{Fc?+9W`8~(z=h~`?ALF zC#yK@2FSyk&9+mbUJLw^-z}1r_#ApQ{{e7# zQ|Z-&L22Hwf~__z(8OOTu7|#pk=EU51*B2Ii{NEgSBAg%37{w^e1%cq9KCh89*0V` zmG>7c;1ZAF+e0JE0%La{4i<92iDfNV7+!=e6~t?o2r4Xa2|ml=XF2aPz)~h7!*Wu- z#2dO$t1COk9^j(5SGtQJy8-o>r>^=bK>nWIg-? zCs?8KlVNr$n`q!X^q2zv*}*4(k_#%3qL>l*H*E7(s)YM*tWM#YAX_-~W9b@-pOSR$ z7GDG|k&e8`D2wXD?rdbB`0tC1pC}TjJ}6|EgDhg)RPGS}lmLvwh-pclL6h1kSjN5{;D4#a9qkUk2dtn(P7jd~hcbp@~=B zm!gy!Yo+%Iwu396<9#+`_KI zsmhnJMJHBz670YU-5pP=V-JbU*rHP^X*ZLyYM}=h4$#C}L~J;HTn}-V2x@m19LR~4 ziP&)Z5}*^v)wI#bBR)=WgaE48U4_1DaxA$oI*zBbJz31X0NI6HLgw&eIBAwfQ{n^P zl!Eug$h)V_ch&L>O33iN&Pn!ell&Q_=Ps-jOe&$Q4##7#RI)g~8pNfx%%GGS>`k2jJB>}#PL2+L4z z?fN|J4-fWxE##t!(OQhAVHqA)zE5J);Ymadf!`Q=lwA6?=e%aO{pM@Wd2Qu@e6|Ol zxmo|dtr!EXL2p?3j%mH{72=o^v}R7_eq=aGW2S{RGGy;oo$db?!p|n*GJ5hOZc#Ky z>{LOCy`pqByv3m`yf`K=UVRNCZO{c5qps8-#;a6}psPIg`ev;->tMR@u`;-mtURbgBMA4z z-s+=6l$bWHS$rrFE84oQ`^mc7q)E+KWnTsPpuQ3%-@uN_b1bK)>d)Zx+-Zzq+P-LE z{o>*ml8blpV}^BpEXB0@7|21`iy~`TIbOHZ*#&J)_GYq1OGft+sP@yn-Ih(J=Bw_5 zJITr$b%#|u6+h^sj29RIOQq0gL0LREAkk` z`tjt~`3b4z>2kmbiuzknaf6p4p|bfWbTb;Gv9lg z*S1^0gVNQKd7T7-Y*u-2+V1T7UVD=Q*B3>b-z1f2zVMZ+E?VO8saJPp3G-GG?d|&y zD&|zH5zeEP&3BMux3BlmSK!o2;$5Pztb6kSN&DL{yo9Y zx^WNe)MNGQ4-0nayFrg$mT~P43j@C1>6iyT6X9MK6TmC&O$q;Wa=q42AJm?TXe%{@ z`!9hrWQ1U4Q_&|3`HC{9VPE(;FLyUN?_m0xn?Dt7rBg^e6Y4FD75V(=v*i3tQQ$s- zEQQ5^z9Xu2T(c`M=$IFgE{H!&E^v~uQ`djA2*j!8;W?F;#Gsy8 zsM1gjjBn`tF~Qpydz5Sp<-_=~d;qLq5V8;}2=*${%HU2u{0ECv3kmuRBpeqN0VT7M z&mpRD^Ai>VOdy}%$v(!7F9_6quD*uF0GTphWUglY%ahj(=(kplQgqr!y+R5DA@)@g zi)0?Z=TDSYrciL1K-v2`DHi6EqQXIGu&|O}SzlMe-z4GU+%N!T@9RqWJ6)7BUf;)3 zAKU*qChP5?m z8*DrK8_6nqpginV(@$x23@IS=U-ZY~{{5ikLyh;ANRadjG4UFvC*}+ns?7Z5I_uT4KOk0;k%P(hI#64;6m&v9(+bd|~n?xcOE zr~U8V|g)CHBd==BCV#(jnsa(dVKF`FM3>fo#9*AHhW35K-^%> zU52!_ni_Ls=&G8lrxP;7#O@gufrigIX8p5a>8arVBfM`Lfj8B`&LhL_$5JQtbyfq>~?}-a~Q&jc`E&{r}5L) zb}6)}sbiS=NJX1ENvB5h)yYzHrl*>ia3ORWLdV(5PpT?K2gMKavZd4{rNCIhl7kGf z#))xEh&|F6(?hDX*Vf(S3`?BKhp6zHF>G*38U_Dih1#3V$P6am&7acUI)#pk!xe8rUKZi6iT8BrEpq+qtVE4?*@Z z@uF|5Q&dK)IAW-QVQKwiNw3M?IdA@uO8q9og^}He%un6@8&R*_nlDa4V@J z8{SG*?OT`zxB3Fe27~o|lyEl=5}In%=Wt@$cr(4QAQy-CvM(eTLqRt;=PP^oG4